1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the internal per-function state used for llvm translation.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
14 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
15 
16 #include "CGBuilder.h"
17 #include "CGDebugInfo.h"
18 #include "CGLoopInfo.h"
19 #include "CGValue.h"
20 #include "CodeGenModule.h"
21 #include "CodeGenPGO.h"
22 #include "EHScopeStack.h"
23 #include "VarBypassDetector.h"
24 #include "clang/AST/CharUnits.h"
25 #include "clang/AST/CurrentSourceLocExprScope.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/ExprObjC.h"
28 #include "clang/AST/ExprOpenMP.h"
29 #include "clang/AST/StmtOpenMP.h"
30 #include "clang/AST/Type.h"
31 #include "clang/Basic/ABI.h"
32 #include "clang/Basic/CapturedStmt.h"
33 #include "clang/Basic/CodeGenOptions.h"
34 #include "clang/Basic/OpenMPKinds.h"
35 #include "clang/Basic/TargetInfo.h"
36 #include "llvm/ADT/ArrayRef.h"
37 #include "llvm/ADT/DenseMap.h"
38 #include "llvm/ADT/MapVector.h"
39 #include "llvm/ADT/SmallVector.h"
40 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
41 #include "llvm/IR/ValueHandle.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Transforms/Utils/SanitizerStats.h"
44 
45 namespace llvm {
46 class BasicBlock;
47 class LLVMContext;
48 class MDNode;
49 class Module;
50 class SwitchInst;
51 class Twine;
52 class Value;
53 }
54 
55 namespace clang {
56 class ASTContext;
57 class BlockDecl;
58 class CXXDestructorDecl;
59 class CXXForRangeStmt;
60 class CXXTryStmt;
61 class Decl;
62 class LabelDecl;
63 class EnumConstantDecl;
64 class FunctionDecl;
65 class FunctionProtoType;
66 class LabelStmt;
67 class ObjCContainerDecl;
68 class ObjCInterfaceDecl;
69 class ObjCIvarDecl;
70 class ObjCMethodDecl;
71 class ObjCImplementationDecl;
72 class ObjCPropertyImplDecl;
73 class TargetInfo;
74 class VarDecl;
75 class ObjCForCollectionStmt;
76 class ObjCAtTryStmt;
77 class ObjCAtThrowStmt;
78 class ObjCAtSynchronizedStmt;
79 class ObjCAutoreleasePoolStmt;
80 class OMPUseDevicePtrClause;
81 class OMPUseDeviceAddrClause;
82 class ReturnsNonNullAttr;
83 class SVETypeFlags;
84 class OMPExecutableDirective;
85 
86 namespace analyze_os_log {
87 class OSLogBufferLayout;
88 }
89 
90 namespace CodeGen {
91 class CodeGenTypes;
92 class CGCallee;
93 class CGFunctionInfo;
94 class CGRecordLayout;
95 class CGBlockInfo;
96 class CGCXXABI;
97 class BlockByrefHelpers;
98 class BlockByrefInfo;
99 class BlockFlags;
100 class BlockFieldFlags;
101 class RegionCodeGenTy;
102 class TargetCodeGenInfo;
103 struct OMPTaskDataTy;
104 struct CGCoroData;
105 
106 /// The kind of evaluation to perform on values of a particular
107 /// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
108 /// CGExprAgg?
109 ///
110 /// TODO: should vectors maybe be split out into their own thing?
111 enum TypeEvaluationKind {
112   TEK_Scalar,
113   TEK_Complex,
114   TEK_Aggregate
115 };
116 
117 #define LIST_SANITIZER_CHECKS                                                  \
118   SANITIZER_CHECK(AddOverflow, add_overflow, 0)                                \
119   SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0)                  \
120   SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0)                             \
121   SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0)                          \
122   SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0)            \
123   SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0)                   \
124   SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 1)             \
125   SANITIZER_CHECK(ImplicitConversion, implicit_conversion, 0)                  \
126   SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0)                          \
127   SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0)                     \
128   SANITIZER_CHECK(MissingReturn, missing_return, 0)                            \
129   SANITIZER_CHECK(MulOverflow, mul_overflow, 0)                                \
130   SANITIZER_CHECK(NegateOverflow, negate_overflow, 0)                          \
131   SANITIZER_CHECK(NullabilityArg, nullability_arg, 0)                          \
132   SANITIZER_CHECK(NullabilityReturn, nullability_return, 1)                    \
133   SANITIZER_CHECK(NonnullArg, nonnull_arg, 0)                                  \
134   SANITIZER_CHECK(NonnullReturn, nonnull_return, 1)                            \
135   SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0)                               \
136   SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0)                        \
137   SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0)                    \
138   SANITIZER_CHECK(SubOverflow, sub_overflow, 0)                                \
139   SANITIZER_CHECK(TypeMismatch, type_mismatch, 1)                              \
140   SANITIZER_CHECK(AlignmentAssumption, alignment_assumption, 0)                \
141   SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0)
142 
143 enum SanitizerHandler {
144 #define SANITIZER_CHECK(Enum, Name, Version) Enum,
145   LIST_SANITIZER_CHECKS
146 #undef SANITIZER_CHECK
147 };
148 
149 /// Helper class with most of the code for saving a value for a
150 /// conditional expression cleanup.
151 struct DominatingLLVMValue {
152   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
153 
154   /// Answer whether the given value needs extra work to be saved.
155   static bool needsSaving(llvm::Value *value) {
156     // If it's not an instruction, we don't need to save.
157     if (!isa<llvm::Instruction>(value)) return false;
158 
159     // If it's an instruction in the entry block, we don't need to save.
160     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
161     return (block != &block->getParent()->getEntryBlock());
162   }
163 
164   static saved_type save(CodeGenFunction &CGF, llvm::Value *value);
165   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value);
166 };
167 
168 /// A partial specialization of DominatingValue for llvm::Values that
169 /// might be llvm::Instructions.
170 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
171   typedef T *type;
172   static type restore(CodeGenFunction &CGF, saved_type value) {
173     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
174   }
175 };
176 
177 /// A specialization of DominatingValue for Address.
178 template <> struct DominatingValue<Address> {
179   typedef Address type;
180 
181   struct saved_type {
182     DominatingLLVMValue::saved_type SavedValue;
183     CharUnits Alignment;
184   };
185 
186   static bool needsSaving(type value) {
187     return DominatingLLVMValue::needsSaving(value.getPointer());
188   }
189   static saved_type save(CodeGenFunction &CGF, type value) {
190     return { DominatingLLVMValue::save(CGF, value.getPointer()),
191              value.getAlignment() };
192   }
193   static type restore(CodeGenFunction &CGF, saved_type value) {
194     return Address(DominatingLLVMValue::restore(CGF, value.SavedValue),
195                    value.Alignment);
196   }
197 };
198 
199 /// A specialization of DominatingValue for RValue.
200 template <> struct DominatingValue<RValue> {
201   typedef RValue type;
202   class saved_type {
203     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
204                 AggregateAddress, ComplexAddress };
205 
206     llvm::Value *Value;
207     unsigned K : 3;
208     unsigned Align : 29;
209     saved_type(llvm::Value *v, Kind k, unsigned a = 0)
210       : Value(v), K(k), Align(a) {}
211 
212   public:
213     static bool needsSaving(RValue value);
214     static saved_type save(CodeGenFunction &CGF, RValue value);
215     RValue restore(CodeGenFunction &CGF);
216 
217     // implementations in CGCleanup.cpp
218   };
219 
220   static bool needsSaving(type value) {
221     return saved_type::needsSaving(value);
222   }
223   static saved_type save(CodeGenFunction &CGF, type value) {
224     return saved_type::save(CGF, value);
225   }
226   static type restore(CodeGenFunction &CGF, saved_type value) {
227     return value.restore(CGF);
228   }
229 };
230 
231 /// CodeGenFunction - This class organizes the per-function state that is used
232 /// while generating LLVM code.
233 class CodeGenFunction : public CodeGenTypeCache {
234   CodeGenFunction(const CodeGenFunction &) = delete;
235   void operator=(const CodeGenFunction &) = delete;
236 
237   friend class CGCXXABI;
238 public:
239   /// A jump destination is an abstract label, branching to which may
240   /// require a jump out through normal cleanups.
241   struct JumpDest {
242     JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {}
243     JumpDest(llvm::BasicBlock *Block,
244              EHScopeStack::stable_iterator Depth,
245              unsigned Index)
246       : Block(Block), ScopeDepth(Depth), Index(Index) {}
247 
248     bool isValid() const { return Block != nullptr; }
249     llvm::BasicBlock *getBlock() const { return Block; }
250     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
251     unsigned getDestIndex() const { return Index; }
252 
253     // This should be used cautiously.
254     void setScopeDepth(EHScopeStack::stable_iterator depth) {
255       ScopeDepth = depth;
256     }
257 
258   private:
259     llvm::BasicBlock *Block;
260     EHScopeStack::stable_iterator ScopeDepth;
261     unsigned Index;
262   };
263 
264   CodeGenModule &CGM;  // Per-module state.
265   const TargetInfo &Target;
266 
267   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
268   LoopInfoStack LoopStack;
269   CGBuilderTy Builder;
270 
271   // Stores variables for which we can't generate correct lifetime markers
272   // because of jumps.
273   VarBypassDetector Bypasses;
274 
275   // CodeGen lambda for loops and support for ordered clause
276   typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &,
277                                   JumpDest)>
278       CodeGenLoopTy;
279   typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation,
280                                   const unsigned, const bool)>
281       CodeGenOrderedTy;
282 
283   // Codegen lambda for loop bounds in worksharing loop constructs
284   typedef llvm::function_ref<std::pair<LValue, LValue>(
285       CodeGenFunction &, const OMPExecutableDirective &S)>
286       CodeGenLoopBoundsTy;
287 
288   // Codegen lambda for loop bounds in dispatch-based loop implementation
289   typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>(
290       CodeGenFunction &, const OMPExecutableDirective &S, Address LB,
291       Address UB)>
292       CodeGenDispatchBoundsTy;
293 
294   /// CGBuilder insert helper. This function is called after an
295   /// instruction is created using Builder.
296   void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
297                     llvm::BasicBlock *BB,
298                     llvm::BasicBlock::iterator InsertPt) const;
299 
300   /// CurFuncDecl - Holds the Decl for the current outermost
301   /// non-closure context.
302   const Decl *CurFuncDecl;
303   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
304   const Decl *CurCodeDecl;
305   const CGFunctionInfo *CurFnInfo;
306   QualType FnRetTy;
307   llvm::Function *CurFn = nullptr;
308 
309   // Holds coroutine data if the current function is a coroutine. We use a
310   // wrapper to manage its lifetime, so that we don't have to define CGCoroData
311   // in this header.
312   struct CGCoroInfo {
313     std::unique_ptr<CGCoroData> Data;
314     CGCoroInfo();
315     ~CGCoroInfo();
316   };
317   CGCoroInfo CurCoro;
318 
319   bool isCoroutine() const {
320     return CurCoro.Data != nullptr;
321   }
322 
323   /// CurGD - The GlobalDecl for the current function being compiled.
324   GlobalDecl CurGD;
325 
326   /// PrologueCleanupDepth - The cleanup depth enclosing all the
327   /// cleanups associated with the parameters.
328   EHScopeStack::stable_iterator PrologueCleanupDepth;
329 
330   /// ReturnBlock - Unified return block.
331   JumpDest ReturnBlock;
332 
333   /// ReturnValue - The temporary alloca to hold the return
334   /// value. This is invalid iff the function has no return value.
335   Address ReturnValue = Address::invalid();
336 
337   /// ReturnValuePointer - The temporary alloca to hold a pointer to sret.
338   /// This is invalid if sret is not in use.
339   Address ReturnValuePointer = Address::invalid();
340 
341   /// If a return statement is being visited, this holds the return statment's
342   /// result expression.
343   const Expr *RetExpr = nullptr;
344 
345   /// Return true if a label was seen in the current scope.
346   bool hasLabelBeenSeenInCurrentScope() const {
347     if (CurLexicalScope)
348       return CurLexicalScope->hasLabels();
349     return !LabelMap.empty();
350   }
351 
352   /// AllocaInsertPoint - This is an instruction in the entry block before which
353   /// we prefer to insert allocas.
354   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
355 
356   /// API for captured statement code generation.
357   class CGCapturedStmtInfo {
358   public:
359     explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default)
360         : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
361     explicit CGCapturedStmtInfo(const CapturedStmt &S,
362                                 CapturedRegionKind K = CR_Default)
363       : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
364 
365       RecordDecl::field_iterator Field =
366         S.getCapturedRecordDecl()->field_begin();
367       for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
368                                                 E = S.capture_end();
369            I != E; ++I, ++Field) {
370         if (I->capturesThis())
371           CXXThisFieldDecl = *Field;
372         else if (I->capturesVariable())
373           CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
374         else if (I->capturesVariableByCopy())
375           CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
376       }
377     }
378 
379     virtual ~CGCapturedStmtInfo();
380 
381     CapturedRegionKind getKind() const { return Kind; }
382 
383     virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
384     // Retrieve the value of the context parameter.
385     virtual llvm::Value *getContextValue() const { return ThisValue; }
386 
387     /// Lookup the captured field decl for a variable.
388     virtual const FieldDecl *lookup(const VarDecl *VD) const {
389       return CaptureFields.lookup(VD->getCanonicalDecl());
390     }
391 
392     bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
393     virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
394 
395     static bool classof(const CGCapturedStmtInfo *) {
396       return true;
397     }
398 
399     /// Emit the captured statement body.
400     virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
401       CGF.incrementProfileCounter(S);
402       CGF.EmitStmt(S);
403     }
404 
405     /// Get the name of the capture helper.
406     virtual StringRef getHelperName() const { return "__captured_stmt"; }
407 
408   private:
409     /// The kind of captured statement being generated.
410     CapturedRegionKind Kind;
411 
412     /// Keep the map between VarDecl and FieldDecl.
413     llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
414 
415     /// The base address of the captured record, passed in as the first
416     /// argument of the parallel region function.
417     llvm::Value *ThisValue;
418 
419     /// Captured 'this' type.
420     FieldDecl *CXXThisFieldDecl;
421   };
422   CGCapturedStmtInfo *CapturedStmtInfo = nullptr;
423 
424   /// RAII for correct setting/restoring of CapturedStmtInfo.
425   class CGCapturedStmtRAII {
426   private:
427     CodeGenFunction &CGF;
428     CGCapturedStmtInfo *PrevCapturedStmtInfo;
429   public:
430     CGCapturedStmtRAII(CodeGenFunction &CGF,
431                        CGCapturedStmtInfo *NewCapturedStmtInfo)
432         : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) {
433       CGF.CapturedStmtInfo = NewCapturedStmtInfo;
434     }
435     ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; }
436   };
437 
438   /// An abstract representation of regular/ObjC call/message targets.
439   class AbstractCallee {
440     /// The function declaration of the callee.
441     const Decl *CalleeDecl;
442 
443   public:
444     AbstractCallee() : CalleeDecl(nullptr) {}
445     AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {}
446     AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {}
447     bool hasFunctionDecl() const {
448       return dyn_cast_or_null<FunctionDecl>(CalleeDecl);
449     }
450     const Decl *getDecl() const { return CalleeDecl; }
451     unsigned getNumParams() const {
452       if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
453         return FD->getNumParams();
454       return cast<ObjCMethodDecl>(CalleeDecl)->param_size();
455     }
456     const ParmVarDecl *getParamDecl(unsigned I) const {
457       if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
458         return FD->getParamDecl(I);
459       return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I);
460     }
461   };
462 
463   /// Sanitizers enabled for this function.
464   SanitizerSet SanOpts;
465 
466   /// True if CodeGen currently emits code implementing sanitizer checks.
467   bool IsSanitizerScope = false;
468 
469   /// RAII object to set/unset CodeGenFunction::IsSanitizerScope.
470   class SanitizerScope {
471     CodeGenFunction *CGF;
472   public:
473     SanitizerScope(CodeGenFunction *CGF);
474     ~SanitizerScope();
475   };
476 
477   /// In C++, whether we are code generating a thunk.  This controls whether we
478   /// should emit cleanups.
479   bool CurFuncIsThunk = false;
480 
481   /// In ARC, whether we should autorelease the return value.
482   bool AutoreleaseResult = false;
483 
484   /// Whether we processed a Microsoft-style asm block during CodeGen. These can
485   /// potentially set the return value.
486   bool SawAsmBlock = false;
487 
488   const NamedDecl *CurSEHParent = nullptr;
489 
490   /// True if the current function is an outlined SEH helper. This can be a
491   /// finally block or filter expression.
492   bool IsOutlinedSEHHelper = false;
493 
494   /// True if CodeGen currently emits code inside presereved access index
495   /// region.
496   bool IsInPreservedAIRegion = false;
497 
498   /// True if the current statement has nomerge attribute.
499   bool InNoMergeAttributedStmt = false;
500 
501   const CodeGen::CGBlockInfo *BlockInfo = nullptr;
502   llvm::Value *BlockPointer = nullptr;
503 
504   llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
505   FieldDecl *LambdaThisCaptureField = nullptr;
506 
507   /// A mapping from NRVO variables to the flags used to indicate
508   /// when the NRVO has been applied to this variable.
509   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
510 
511   EHScopeStack EHStack;
512   llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
513   llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack;
514 
515   llvm::Instruction *CurrentFuncletPad = nullptr;
516 
517   class CallLifetimeEnd final : public EHScopeStack::Cleanup {
518     llvm::Value *Addr;
519     llvm::Value *Size;
520 
521   public:
522     CallLifetimeEnd(Address addr, llvm::Value *size)
523         : Addr(addr.getPointer()), Size(size) {}
524 
525     void Emit(CodeGenFunction &CGF, Flags flags) override {
526       CGF.EmitLifetimeEnd(Size, Addr);
527     }
528   };
529 
530   /// Header for data within LifetimeExtendedCleanupStack.
531   struct LifetimeExtendedCleanupHeader {
532     /// The size of the following cleanup object.
533     unsigned Size;
534     /// The kind of cleanup to push: a value from the CleanupKind enumeration.
535     unsigned Kind : 31;
536     /// Whether this is a conditional cleanup.
537     unsigned IsConditional : 1;
538 
539     size_t getSize() const { return Size; }
540     CleanupKind getKind() const { return (CleanupKind)Kind; }
541     bool isConditional() const { return IsConditional; }
542   };
543 
544   /// i32s containing the indexes of the cleanup destinations.
545   Address NormalCleanupDest = Address::invalid();
546 
547   unsigned NextCleanupDestIndex = 1;
548 
549   /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
550   llvm::BasicBlock *EHResumeBlock = nullptr;
551 
552   /// The exception slot.  All landing pads write the current exception pointer
553   /// into this alloca.
554   llvm::Value *ExceptionSlot = nullptr;
555 
556   /// The selector slot.  Under the MandatoryCleanup model, all landing pads
557   /// write the current selector value into this alloca.
558   llvm::AllocaInst *EHSelectorSlot = nullptr;
559 
560   /// A stack of exception code slots. Entering an __except block pushes a slot
561   /// on the stack and leaving pops one. The __exception_code() intrinsic loads
562   /// a value from the top of the stack.
563   SmallVector<Address, 1> SEHCodeSlotStack;
564 
565   /// Value returned by __exception_info intrinsic.
566   llvm::Value *SEHInfo = nullptr;
567 
568   /// Emits a landing pad for the current EH stack.
569   llvm::BasicBlock *EmitLandingPad();
570 
571   llvm::BasicBlock *getInvokeDestImpl();
572 
573   /// Parent loop-based directive for scan directive.
574   const OMPExecutableDirective *OMPParentLoopDirectiveForScan = nullptr;
575   llvm::BasicBlock *OMPBeforeScanBlock = nullptr;
576   llvm::BasicBlock *OMPAfterScanBlock = nullptr;
577   llvm::BasicBlock *OMPScanExitBlock = nullptr;
578   llvm::BasicBlock *OMPScanDispatch = nullptr;
579   bool OMPFirstScanLoop = false;
580 
581   /// Manages parent directive for scan directives.
582   class ParentLoopDirectiveForScanRegion {
583     CodeGenFunction &CGF;
584     const OMPExecutableDirective *ParentLoopDirectiveForScan;
585 
586   public:
587     ParentLoopDirectiveForScanRegion(
588         CodeGenFunction &CGF,
589         const OMPExecutableDirective &ParentLoopDirectiveForScan)
590         : CGF(CGF),
591           ParentLoopDirectiveForScan(CGF.OMPParentLoopDirectiveForScan) {
592       CGF.OMPParentLoopDirectiveForScan = &ParentLoopDirectiveForScan;
593     }
594     ~ParentLoopDirectiveForScanRegion() {
595       CGF.OMPParentLoopDirectiveForScan = ParentLoopDirectiveForScan;
596     }
597   };
598 
599   template <class T>
600   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
601     return DominatingValue<T>::save(*this, value);
602   }
603 
604   class CGFPOptionsRAII {
605   public:
606     CGFPOptionsRAII(CodeGenFunction &CGF, FPOptions FPFeatures);
607     ~CGFPOptionsRAII();
608 
609   private:
610     CodeGenFunction &CGF;
611     FPOptions OldFPFeatures;
612     Optional<CGBuilderTy::FastMathFlagGuard> FMFGuard;
613   };
614   FPOptions CurFPFeatures;
615 
616 public:
617   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
618   /// rethrows.
619   SmallVector<llvm::Value*, 8> ObjCEHValueStack;
620 
621   /// A class controlling the emission of a finally block.
622   class FinallyInfo {
623     /// Where the catchall's edge through the cleanup should go.
624     JumpDest RethrowDest;
625 
626     /// A function to call to enter the catch.
627     llvm::FunctionCallee BeginCatchFn;
628 
629     /// An i1 variable indicating whether or not the @finally is
630     /// running for an exception.
631     llvm::AllocaInst *ForEHVar;
632 
633     /// An i8* variable into which the exception pointer to rethrow
634     /// has been saved.
635     llvm::AllocaInst *SavedExnVar;
636 
637   public:
638     void enter(CodeGenFunction &CGF, const Stmt *Finally,
639                llvm::FunctionCallee beginCatchFn,
640                llvm::FunctionCallee endCatchFn, llvm::FunctionCallee rethrowFn);
641     void exit(CodeGenFunction &CGF);
642   };
643 
644   /// Returns true inside SEH __try blocks.
645   bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }
646 
647   /// Returns true while emitting a cleanuppad.
648   bool isCleanupPadScope() const {
649     return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad);
650   }
651 
652   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
653   /// current full-expression.  Safe against the possibility that
654   /// we're currently inside a conditionally-evaluated expression.
655   template <class T, class... As>
656   void pushFullExprCleanup(CleanupKind kind, As... A) {
657     // If we're not in a conditional branch, or if none of the
658     // arguments requires saving, then use the unconditional cleanup.
659     if (!isInConditionalBranch())
660       return EHStack.pushCleanup<T>(kind, A...);
661 
662     // Stash values in a tuple so we can guarantee the order of saves.
663     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
664     SavedTuple Saved{saveValueInCond(A)...};
665 
666     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
667     EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
668     initFullExprCleanup();
669   }
670 
671   /// Queue a cleanup to be pushed after finishing the current
672   /// full-expression.
673   template <class T, class... As>
674   void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
675     if (!isInConditionalBranch())
676       return pushCleanupAfterFullExprImpl<T>(Kind, Address::invalid(), A...);
677 
678     Address ActiveFlag = createCleanupActiveFlag();
679     assert(!DominatingValue<Address>::needsSaving(ActiveFlag) &&
680            "cleanup active flag should never need saving");
681 
682     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
683     SavedTuple Saved{saveValueInCond(A)...};
684 
685     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
686     pushCleanupAfterFullExprImpl<CleanupType>(Kind, ActiveFlag, Saved);
687   }
688 
689   template <class T, class... As>
690   void pushCleanupAfterFullExprImpl(CleanupKind Kind, Address ActiveFlag,
691                                     As... A) {
692     LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind,
693                                             ActiveFlag.isValid()};
694 
695     size_t OldSize = LifetimeExtendedCleanupStack.size();
696     LifetimeExtendedCleanupStack.resize(
697         LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size +
698         (Header.IsConditional ? sizeof(ActiveFlag) : 0));
699 
700     static_assert(sizeof(Header) % alignof(T) == 0,
701                   "Cleanup will be allocated on misaligned address");
702     char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
703     new (Buffer) LifetimeExtendedCleanupHeader(Header);
704     new (Buffer + sizeof(Header)) T(A...);
705     if (Header.IsConditional)
706       new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag);
707   }
708 
709   /// Set up the last cleanup that was pushed as a conditional
710   /// full-expression cleanup.
711   void initFullExprCleanup() {
712     initFullExprCleanupWithFlag(createCleanupActiveFlag());
713   }
714 
715   void initFullExprCleanupWithFlag(Address ActiveFlag);
716   Address createCleanupActiveFlag();
717 
718   /// PushDestructorCleanup - Push a cleanup to call the
719   /// complete-object destructor of an object of the given type at the
720   /// given address.  Does nothing if T is not a C++ class type with a
721   /// non-trivial destructor.
722   void PushDestructorCleanup(QualType T, Address Addr);
723 
724   /// PushDestructorCleanup - Push a cleanup to call the
725   /// complete-object variant of the given destructor on the object at
726   /// the given address.
727   void PushDestructorCleanup(const CXXDestructorDecl *Dtor, QualType T,
728                              Address Addr);
729 
730   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
731   /// process all branch fixups.
732   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
733 
734   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
735   /// The block cannot be reactivated.  Pops it if it's the top of the
736   /// stack.
737   ///
738   /// \param DominatingIP - An instruction which is known to
739   ///   dominate the current IP (if set) and which lies along
740   ///   all paths of execution between the current IP and the
741   ///   the point at which the cleanup comes into scope.
742   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
743                               llvm::Instruction *DominatingIP);
744 
745   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
746   /// Cannot be used to resurrect a deactivated cleanup.
747   ///
748   /// \param DominatingIP - An instruction which is known to
749   ///   dominate the current IP (if set) and which lies along
750   ///   all paths of execution between the current IP and the
751   ///   the point at which the cleanup comes into scope.
752   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
753                             llvm::Instruction *DominatingIP);
754 
755   /// Enters a new scope for capturing cleanups, all of which
756   /// will be executed once the scope is exited.
757   class RunCleanupsScope {
758     EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth;
759     size_t LifetimeExtendedCleanupStackSize;
760     bool OldDidCallStackSave;
761   protected:
762     bool PerformCleanup;
763   private:
764 
765     RunCleanupsScope(const RunCleanupsScope &) = delete;
766     void operator=(const RunCleanupsScope &) = delete;
767 
768   protected:
769     CodeGenFunction& CGF;
770 
771   public:
772     /// Enter a new cleanup scope.
773     explicit RunCleanupsScope(CodeGenFunction &CGF)
774       : PerformCleanup(true), CGF(CGF)
775     {
776       CleanupStackDepth = CGF.EHStack.stable_begin();
777       LifetimeExtendedCleanupStackSize =
778           CGF.LifetimeExtendedCleanupStack.size();
779       OldDidCallStackSave = CGF.DidCallStackSave;
780       CGF.DidCallStackSave = false;
781       OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth;
782       CGF.CurrentCleanupScopeDepth = CleanupStackDepth;
783     }
784 
785     /// Exit this cleanup scope, emitting any accumulated cleanups.
786     ~RunCleanupsScope() {
787       if (PerformCleanup)
788         ForceCleanup();
789     }
790 
791     /// Determine whether this scope requires any cleanups.
792     bool requiresCleanups() const {
793       return CGF.EHStack.stable_begin() != CleanupStackDepth;
794     }
795 
796     /// Force the emission of cleanups now, instead of waiting
797     /// until this object is destroyed.
798     /// \param ValuesToReload - A list of values that need to be available at
799     /// the insertion point after cleanup emission. If cleanup emission created
800     /// a shared cleanup block, these value pointers will be rewritten.
801     /// Otherwise, they not will be modified.
802     void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) {
803       assert(PerformCleanup && "Already forced cleanup");
804       CGF.DidCallStackSave = OldDidCallStackSave;
805       CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize,
806                            ValuesToReload);
807       PerformCleanup = false;
808       CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth;
809     }
810   };
811 
812   // Cleanup stack depth of the RunCleanupsScope that was pushed most recently.
813   EHScopeStack::stable_iterator CurrentCleanupScopeDepth =
814       EHScopeStack::stable_end();
815 
816   class LexicalScope : public RunCleanupsScope {
817     SourceRange Range;
818     SmallVector<const LabelDecl*, 4> Labels;
819     LexicalScope *ParentScope;
820 
821     LexicalScope(const LexicalScope &) = delete;
822     void operator=(const LexicalScope &) = delete;
823 
824   public:
825     /// Enter a new cleanup scope.
826     explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
827       : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
828       CGF.CurLexicalScope = this;
829       if (CGDebugInfo *DI = CGF.getDebugInfo())
830         DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
831     }
832 
833     void addLabel(const LabelDecl *label) {
834       assert(PerformCleanup && "adding label to dead scope?");
835       Labels.push_back(label);
836     }
837 
838     /// Exit this cleanup scope, emitting any accumulated
839     /// cleanups.
840     ~LexicalScope() {
841       if (CGDebugInfo *DI = CGF.getDebugInfo())
842         DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
843 
844       // If we should perform a cleanup, force them now.  Note that
845       // this ends the cleanup scope before rescoping any labels.
846       if (PerformCleanup) {
847         ApplyDebugLocation DL(CGF, Range.getEnd());
848         ForceCleanup();
849       }
850     }
851 
852     /// Force the emission of cleanups now, instead of waiting
853     /// until this object is destroyed.
854     void ForceCleanup() {
855       CGF.CurLexicalScope = ParentScope;
856       RunCleanupsScope::ForceCleanup();
857 
858       if (!Labels.empty())
859         rescopeLabels();
860     }
861 
862     bool hasLabels() const {
863       return !Labels.empty();
864     }
865 
866     void rescopeLabels();
867   };
868 
869   typedef llvm::DenseMap<const Decl *, Address> DeclMapTy;
870 
871   /// The class used to assign some variables some temporarily addresses.
872   class OMPMapVars {
873     DeclMapTy SavedLocals;
874     DeclMapTy SavedTempAddresses;
875     OMPMapVars(const OMPMapVars &) = delete;
876     void operator=(const OMPMapVars &) = delete;
877 
878   public:
879     explicit OMPMapVars() = default;
880     ~OMPMapVars() {
881       assert(SavedLocals.empty() && "Did not restored original addresses.");
882     };
883 
884     /// Sets the address of the variable \p LocalVD to be \p TempAddr in
885     /// function \p CGF.
886     /// \return true if at least one variable was set already, false otherwise.
887     bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD,
888                     Address TempAddr) {
889       LocalVD = LocalVD->getCanonicalDecl();
890       // Only save it once.
891       if (SavedLocals.count(LocalVD)) return false;
892 
893       // Copy the existing local entry to SavedLocals.
894       auto it = CGF.LocalDeclMap.find(LocalVD);
895       if (it != CGF.LocalDeclMap.end())
896         SavedLocals.try_emplace(LocalVD, it->second);
897       else
898         SavedLocals.try_emplace(LocalVD, Address::invalid());
899 
900       // Generate the private entry.
901       QualType VarTy = LocalVD->getType();
902       if (VarTy->isReferenceType()) {
903         Address Temp = CGF.CreateMemTemp(VarTy);
904         CGF.Builder.CreateStore(TempAddr.getPointer(), Temp);
905         TempAddr = Temp;
906       }
907       SavedTempAddresses.try_emplace(LocalVD, TempAddr);
908 
909       return true;
910     }
911 
912     /// Applies new addresses to the list of the variables.
913     /// \return true if at least one variable is using new address, false
914     /// otherwise.
915     bool apply(CodeGenFunction &CGF) {
916       copyInto(SavedTempAddresses, CGF.LocalDeclMap);
917       SavedTempAddresses.clear();
918       return !SavedLocals.empty();
919     }
920 
921     /// Restores original addresses of the variables.
922     void restore(CodeGenFunction &CGF) {
923       if (!SavedLocals.empty()) {
924         copyInto(SavedLocals, CGF.LocalDeclMap);
925         SavedLocals.clear();
926       }
927     }
928 
929   private:
930     /// Copy all the entries in the source map over the corresponding
931     /// entries in the destination, which must exist.
932     static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) {
933       for (auto &Pair : Src) {
934         if (!Pair.second.isValid()) {
935           Dest.erase(Pair.first);
936           continue;
937         }
938 
939         auto I = Dest.find(Pair.first);
940         if (I != Dest.end())
941           I->second = Pair.second;
942         else
943           Dest.insert(Pair);
944       }
945     }
946   };
947 
948   /// The scope used to remap some variables as private in the OpenMP loop body
949   /// (or other captured region emitted without outlining), and to restore old
950   /// vars back on exit.
951   class OMPPrivateScope : public RunCleanupsScope {
952     OMPMapVars MappedVars;
953     OMPPrivateScope(const OMPPrivateScope &) = delete;
954     void operator=(const OMPPrivateScope &) = delete;
955 
956   public:
957     /// Enter a new OpenMP private scope.
958     explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}
959 
960     /// Registers \p LocalVD variable as a private and apply \p PrivateGen
961     /// function for it to generate corresponding private variable. \p
962     /// PrivateGen returns an address of the generated private variable.
963     /// \return true if the variable is registered as private, false if it has
964     /// been privatized already.
965     bool addPrivate(const VarDecl *LocalVD,
966                     const llvm::function_ref<Address()> PrivateGen) {
967       assert(PerformCleanup && "adding private to dead scope");
968       return MappedVars.setVarAddr(CGF, LocalVD, PrivateGen());
969     }
970 
971     /// Privatizes local variables previously registered as private.
972     /// Registration is separate from the actual privatization to allow
973     /// initializers use values of the original variables, not the private one.
974     /// This is important, for example, if the private variable is a class
975     /// variable initialized by a constructor that references other private
976     /// variables. But at initialization original variables must be used, not
977     /// private copies.
978     /// \return true if at least one variable was privatized, false otherwise.
979     bool Privatize() { return MappedVars.apply(CGF); }
980 
981     void ForceCleanup() {
982       RunCleanupsScope::ForceCleanup();
983       MappedVars.restore(CGF);
984     }
985 
986     /// Exit scope - all the mapped variables are restored.
987     ~OMPPrivateScope() {
988       if (PerformCleanup)
989         ForceCleanup();
990     }
991 
992     /// Checks if the global variable is captured in current function.
993     bool isGlobalVarCaptured(const VarDecl *VD) const {
994       VD = VD->getCanonicalDecl();
995       return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0;
996     }
997   };
998 
999   /// Save/restore original map of previously emitted local vars in case when we
1000   /// need to duplicate emission of the same code several times in the same
1001   /// function for OpenMP code.
1002   class OMPLocalDeclMapRAII {
1003     CodeGenFunction &CGF;
1004     DeclMapTy SavedMap;
1005 
1006   public:
1007     OMPLocalDeclMapRAII(CodeGenFunction &CGF)
1008         : CGF(CGF), SavedMap(CGF.LocalDeclMap) {}
1009     ~OMPLocalDeclMapRAII() { SavedMap.swap(CGF.LocalDeclMap); }
1010   };
1011 
1012   /// Takes the old cleanup stack size and emits the cleanup blocks
1013   /// that have been added.
1014   void
1015   PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
1016                    std::initializer_list<llvm::Value **> ValuesToReload = {});
1017 
1018   /// Takes the old cleanup stack size and emits the cleanup blocks
1019   /// that have been added, then adds all lifetime-extended cleanups from
1020   /// the given position to the stack.
1021   void
1022   PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
1023                    size_t OldLifetimeExtendedStackSize,
1024                    std::initializer_list<llvm::Value **> ValuesToReload = {});
1025 
1026   void ResolveBranchFixups(llvm::BasicBlock *Target);
1027 
1028   /// The given basic block lies in the current EH scope, but may be a
1029   /// target of a potentially scope-crossing jump; get a stable handle
1030   /// to which we can perform this jump later.
1031   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
1032     return JumpDest(Target,
1033                     EHStack.getInnermostNormalCleanup(),
1034                     NextCleanupDestIndex++);
1035   }
1036 
1037   /// The given basic block lies in the current EH scope, but may be a
1038   /// target of a potentially scope-crossing jump; get a stable handle
1039   /// to which we can perform this jump later.
1040   JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
1041     return getJumpDestInCurrentScope(createBasicBlock(Name));
1042   }
1043 
1044   /// EmitBranchThroughCleanup - Emit a branch from the current insert
1045   /// block through the normal cleanup handling code (if any) and then
1046   /// on to \arg Dest.
1047   void EmitBranchThroughCleanup(JumpDest Dest);
1048 
1049   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
1050   /// specified destination obviously has no cleanups to run.  'false' is always
1051   /// a conservatively correct answer for this method.
1052   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
1053 
1054   /// popCatchScope - Pops the catch scope at the top of the EHScope
1055   /// stack, emitting any required code (other than the catch handlers
1056   /// themselves).
1057   void popCatchScope();
1058 
1059   llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
1060   llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
1061   llvm::BasicBlock *
1062   getFuncletEHDispatchBlock(EHScopeStack::stable_iterator scope);
1063 
1064   /// An object to manage conditionally-evaluated expressions.
1065   class ConditionalEvaluation {
1066     llvm::BasicBlock *StartBB;
1067 
1068   public:
1069     ConditionalEvaluation(CodeGenFunction &CGF)
1070       : StartBB(CGF.Builder.GetInsertBlock()) {}
1071 
1072     void begin(CodeGenFunction &CGF) {
1073       assert(CGF.OutermostConditional != this);
1074       if (!CGF.OutermostConditional)
1075         CGF.OutermostConditional = this;
1076     }
1077 
1078     void end(CodeGenFunction &CGF) {
1079       assert(CGF.OutermostConditional != nullptr);
1080       if (CGF.OutermostConditional == this)
1081         CGF.OutermostConditional = nullptr;
1082     }
1083 
1084     /// Returns a block which will be executed prior to each
1085     /// evaluation of the conditional code.
1086     llvm::BasicBlock *getStartingBlock() const {
1087       return StartBB;
1088     }
1089   };
1090 
1091   /// isInConditionalBranch - Return true if we're currently emitting
1092   /// one branch or the other of a conditional expression.
1093   bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
1094 
1095   void setBeforeOutermostConditional(llvm::Value *value, Address addr) {
1096     assert(isInConditionalBranch());
1097     llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
1098     auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back());
1099     store->setAlignment(addr.getAlignment().getAsAlign());
1100   }
1101 
1102   /// An RAII object to record that we're evaluating a statement
1103   /// expression.
1104   class StmtExprEvaluation {
1105     CodeGenFunction &CGF;
1106 
1107     /// We have to save the outermost conditional: cleanups in a
1108     /// statement expression aren't conditional just because the
1109     /// StmtExpr is.
1110     ConditionalEvaluation *SavedOutermostConditional;
1111 
1112   public:
1113     StmtExprEvaluation(CodeGenFunction &CGF)
1114       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
1115       CGF.OutermostConditional = nullptr;
1116     }
1117 
1118     ~StmtExprEvaluation() {
1119       CGF.OutermostConditional = SavedOutermostConditional;
1120       CGF.EnsureInsertPoint();
1121     }
1122   };
1123 
1124   /// An object which temporarily prevents a value from being
1125   /// destroyed by aggressive peephole optimizations that assume that
1126   /// all uses of a value have been realized in the IR.
1127   class PeepholeProtection {
1128     llvm::Instruction *Inst;
1129     friend class CodeGenFunction;
1130 
1131   public:
1132     PeepholeProtection() : Inst(nullptr) {}
1133   };
1134 
1135   /// A non-RAII class containing all the information about a bound
1136   /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
1137   /// this which makes individual mappings very simple; using this
1138   /// class directly is useful when you have a variable number of
1139   /// opaque values or don't want the RAII functionality for some
1140   /// reason.
1141   class OpaqueValueMappingData {
1142     const OpaqueValueExpr *OpaqueValue;
1143     bool BoundLValue;
1144     CodeGenFunction::PeepholeProtection Protection;
1145 
1146     OpaqueValueMappingData(const OpaqueValueExpr *ov,
1147                            bool boundLValue)
1148       : OpaqueValue(ov), BoundLValue(boundLValue) {}
1149   public:
1150     OpaqueValueMappingData() : OpaqueValue(nullptr) {}
1151 
1152     static bool shouldBindAsLValue(const Expr *expr) {
1153       // gl-values should be bound as l-values for obvious reasons.
1154       // Records should be bound as l-values because IR generation
1155       // always keeps them in memory.  Expressions of function type
1156       // act exactly like l-values but are formally required to be
1157       // r-values in C.
1158       return expr->isGLValue() ||
1159              expr->getType()->isFunctionType() ||
1160              hasAggregateEvaluationKind(expr->getType());
1161     }
1162 
1163     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1164                                        const OpaqueValueExpr *ov,
1165                                        const Expr *e) {
1166       if (shouldBindAsLValue(ov))
1167         return bind(CGF, ov, CGF.EmitLValue(e));
1168       return bind(CGF, ov, CGF.EmitAnyExpr(e));
1169     }
1170 
1171     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1172                                        const OpaqueValueExpr *ov,
1173                                        const LValue &lv) {
1174       assert(shouldBindAsLValue(ov));
1175       CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
1176       return OpaqueValueMappingData(ov, true);
1177     }
1178 
1179     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1180                                        const OpaqueValueExpr *ov,
1181                                        const RValue &rv) {
1182       assert(!shouldBindAsLValue(ov));
1183       CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
1184 
1185       OpaqueValueMappingData data(ov, false);
1186 
1187       // Work around an extremely aggressive peephole optimization in
1188       // EmitScalarConversion which assumes that all other uses of a
1189       // value are extant.
1190       data.Protection = CGF.protectFromPeepholes(rv);
1191 
1192       return data;
1193     }
1194 
1195     bool isValid() const { return OpaqueValue != nullptr; }
1196     void clear() { OpaqueValue = nullptr; }
1197 
1198     void unbind(CodeGenFunction &CGF) {
1199       assert(OpaqueValue && "no data to unbind!");
1200 
1201       if (BoundLValue) {
1202         CGF.OpaqueLValues.erase(OpaqueValue);
1203       } else {
1204         CGF.OpaqueRValues.erase(OpaqueValue);
1205         CGF.unprotectFromPeepholes(Protection);
1206       }
1207     }
1208   };
1209 
1210   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
1211   class OpaqueValueMapping {
1212     CodeGenFunction &CGF;
1213     OpaqueValueMappingData Data;
1214 
1215   public:
1216     static bool shouldBindAsLValue(const Expr *expr) {
1217       return OpaqueValueMappingData::shouldBindAsLValue(expr);
1218     }
1219 
1220     /// Build the opaque value mapping for the given conditional
1221     /// operator if it's the GNU ?: extension.  This is a common
1222     /// enough pattern that the convenience operator is really
1223     /// helpful.
1224     ///
1225     OpaqueValueMapping(CodeGenFunction &CGF,
1226                        const AbstractConditionalOperator *op) : CGF(CGF) {
1227       if (isa<ConditionalOperator>(op))
1228         // Leave Data empty.
1229         return;
1230 
1231       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
1232       Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
1233                                           e->getCommon());
1234     }
1235 
1236     /// Build the opaque value mapping for an OpaqueValueExpr whose source
1237     /// expression is set to the expression the OVE represents.
1238     OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV)
1239         : CGF(CGF) {
1240       if (OV) {
1241         assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used "
1242                                       "for OVE with no source expression");
1243         Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr());
1244       }
1245     }
1246 
1247     OpaqueValueMapping(CodeGenFunction &CGF,
1248                        const OpaqueValueExpr *opaqueValue,
1249                        LValue lvalue)
1250       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
1251     }
1252 
1253     OpaqueValueMapping(CodeGenFunction &CGF,
1254                        const OpaqueValueExpr *opaqueValue,
1255                        RValue rvalue)
1256       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
1257     }
1258 
1259     void pop() {
1260       Data.unbind(CGF);
1261       Data.clear();
1262     }
1263 
1264     ~OpaqueValueMapping() {
1265       if (Data.isValid()) Data.unbind(CGF);
1266     }
1267   };
1268 
1269 private:
1270   CGDebugInfo *DebugInfo;
1271   /// Used to create unique names for artificial VLA size debug info variables.
1272   unsigned VLAExprCounter = 0;
1273   bool DisableDebugInfo = false;
1274 
1275   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
1276   /// calling llvm.stacksave for multiple VLAs in the same scope.
1277   bool DidCallStackSave = false;
1278 
1279   /// IndirectBranch - The first time an indirect goto is seen we create a block
1280   /// with an indirect branch.  Every time we see the address of a label taken,
1281   /// we add the label to the indirect goto.  Every subsequent indirect goto is
1282   /// codegen'd as a jump to the IndirectBranch's basic block.
1283   llvm::IndirectBrInst *IndirectBranch = nullptr;
1284 
1285   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1286   /// decls.
1287   DeclMapTy LocalDeclMap;
1288 
1289   // Keep track of the cleanups for callee-destructed parameters pushed to the
1290   // cleanup stack so that they can be deactivated later.
1291   llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator>
1292       CalleeDestructedParamCleanups;
1293 
1294   /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this
1295   /// will contain a mapping from said ParmVarDecl to its implicit "object_size"
1296   /// parameter.
1297   llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2>
1298       SizeArguments;
1299 
1300   /// Track escaped local variables with auto storage. Used during SEH
1301   /// outlining to produce a call to llvm.localescape.
1302   llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;
1303 
1304   /// LabelMap - This keeps track of the LLVM basic block for each C label.
1305   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1306 
1307   // BreakContinueStack - This keeps track of where break and continue
1308   // statements should jump to.
1309   struct BreakContinue {
1310     BreakContinue(JumpDest Break, JumpDest Continue)
1311       : BreakBlock(Break), ContinueBlock(Continue) {}
1312 
1313     JumpDest BreakBlock;
1314     JumpDest ContinueBlock;
1315   };
1316   SmallVector<BreakContinue, 8> BreakContinueStack;
1317 
1318   /// Handles cancellation exit points in OpenMP-related constructs.
1319   class OpenMPCancelExitStack {
1320     /// Tracks cancellation exit point and join point for cancel-related exit
1321     /// and normal exit.
1322     struct CancelExit {
1323       CancelExit() = default;
1324       CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock,
1325                  JumpDest ContBlock)
1326           : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {}
1327       OpenMPDirectiveKind Kind = llvm::omp::OMPD_unknown;
1328       /// true if the exit block has been emitted already by the special
1329       /// emitExit() call, false if the default codegen is used.
1330       bool HasBeenEmitted = false;
1331       JumpDest ExitBlock;
1332       JumpDest ContBlock;
1333     };
1334 
1335     SmallVector<CancelExit, 8> Stack;
1336 
1337   public:
1338     OpenMPCancelExitStack() : Stack(1) {}
1339     ~OpenMPCancelExitStack() = default;
1340     /// Fetches the exit block for the current OpenMP construct.
1341     JumpDest getExitBlock() const { return Stack.back().ExitBlock; }
1342     /// Emits exit block with special codegen procedure specific for the related
1343     /// OpenMP construct + emits code for normal construct cleanup.
1344     void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
1345                   const llvm::function_ref<void(CodeGenFunction &)> CodeGen) {
1346       if (Stack.back().Kind == Kind && getExitBlock().isValid()) {
1347         assert(CGF.getOMPCancelDestination(Kind).isValid());
1348         assert(CGF.HaveInsertPoint());
1349         assert(!Stack.back().HasBeenEmitted);
1350         auto IP = CGF.Builder.saveAndClearIP();
1351         CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1352         CodeGen(CGF);
1353         CGF.EmitBranch(Stack.back().ContBlock.getBlock());
1354         CGF.Builder.restoreIP(IP);
1355         Stack.back().HasBeenEmitted = true;
1356       }
1357       CodeGen(CGF);
1358     }
1359     /// Enter the cancel supporting \a Kind construct.
1360     /// \param Kind OpenMP directive that supports cancel constructs.
1361     /// \param HasCancel true, if the construct has inner cancel directive,
1362     /// false otherwise.
1363     void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) {
1364       Stack.push_back({Kind,
1365                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit")
1366                                  : JumpDest(),
1367                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont")
1368                                  : JumpDest()});
1369     }
1370     /// Emits default exit point for the cancel construct (if the special one
1371     /// has not be used) + join point for cancel/normal exits.
1372     void exit(CodeGenFunction &CGF) {
1373       if (getExitBlock().isValid()) {
1374         assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid());
1375         bool HaveIP = CGF.HaveInsertPoint();
1376         if (!Stack.back().HasBeenEmitted) {
1377           if (HaveIP)
1378             CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1379           CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1380           CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1381         }
1382         CGF.EmitBlock(Stack.back().ContBlock.getBlock());
1383         if (!HaveIP) {
1384           CGF.Builder.CreateUnreachable();
1385           CGF.Builder.ClearInsertionPoint();
1386         }
1387       }
1388       Stack.pop_back();
1389     }
1390   };
1391   OpenMPCancelExitStack OMPCancelStack;
1392 
1393   CodeGenPGO PGO;
1394 
1395   /// Calculate branch weights appropriate for PGO data
1396   llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount);
1397   llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights);
1398   llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond,
1399                                             uint64_t LoopCount);
1400 
1401 public:
1402   /// Increment the profiler's counter for the given statement by \p StepV.
1403   /// If \p StepV is null, the default increment is 1.
1404   void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) {
1405     if (CGM.getCodeGenOpts().hasProfileClangInstr())
1406       PGO.emitCounterIncrement(Builder, S, StepV);
1407     PGO.setCurrentStmt(S);
1408   }
1409 
1410   /// Get the profiler's count for the given statement.
1411   uint64_t getProfileCount(const Stmt *S) {
1412     Optional<uint64_t> Count = PGO.getStmtCount(S);
1413     if (!Count.hasValue())
1414       return 0;
1415     return *Count;
1416   }
1417 
1418   /// Set the profiler's current count.
1419   void setCurrentProfileCount(uint64_t Count) {
1420     PGO.setCurrentRegionCount(Count);
1421   }
1422 
1423   /// Get the profiler's current count. This is generally the count for the most
1424   /// recently incremented counter.
1425   uint64_t getCurrentProfileCount() {
1426     return PGO.getCurrentRegionCount();
1427   }
1428 
1429 private:
1430 
1431   /// SwitchInsn - This is nearest current switch instruction. It is null if
1432   /// current context is not in a switch.
1433   llvm::SwitchInst *SwitchInsn = nullptr;
1434   /// The branch weights of SwitchInsn when doing instrumentation based PGO.
1435   SmallVector<uint64_t, 16> *SwitchWeights = nullptr;
1436 
1437   /// CaseRangeBlock - This block holds if condition check for last case
1438   /// statement range in current switch instruction.
1439   llvm::BasicBlock *CaseRangeBlock = nullptr;
1440 
1441   /// OpaqueLValues - Keeps track of the current set of opaque value
1442   /// expressions.
1443   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1444   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1445 
1446   // VLASizeMap - This keeps track of the associated size for each VLA type.
1447   // We track this by the size expression rather than the type itself because
1448   // in certain situations, like a const qualifier applied to an VLA typedef,
1449   // multiple VLA types can share the same size expression.
1450   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1451   // enter/leave scopes.
1452   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1453 
1454   /// A block containing a single 'unreachable' instruction.  Created
1455   /// lazily by getUnreachableBlock().
1456   llvm::BasicBlock *UnreachableBlock = nullptr;
1457 
1458   /// Counts of the number return expressions in the function.
1459   unsigned NumReturnExprs = 0;
1460 
1461   /// Count the number of simple (constant) return expressions in the function.
1462   unsigned NumSimpleReturnExprs = 0;
1463 
1464   /// The last regular (non-return) debug location (breakpoint) in the function.
1465   SourceLocation LastStopPoint;
1466 
1467 public:
1468   /// Source location information about the default argument or member
1469   /// initializer expression we're evaluating, if any.
1470   CurrentSourceLocExprScope CurSourceLocExprScope;
1471   using SourceLocExprScopeGuard =
1472       CurrentSourceLocExprScope::SourceLocExprScopeGuard;
1473 
1474   /// A scope within which we are constructing the fields of an object which
1475   /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
1476   /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
1477   class FieldConstructionScope {
1478   public:
1479     FieldConstructionScope(CodeGenFunction &CGF, Address This)
1480         : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
1481       CGF.CXXDefaultInitExprThis = This;
1482     }
1483     ~FieldConstructionScope() {
1484       CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
1485     }
1486 
1487   private:
1488     CodeGenFunction &CGF;
1489     Address OldCXXDefaultInitExprThis;
1490   };
1491 
1492   /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
1493   /// is overridden to be the object under construction.
1494   class CXXDefaultInitExprScope  {
1495   public:
1496     CXXDefaultInitExprScope(CodeGenFunction &CGF, const CXXDefaultInitExpr *E)
1497         : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue),
1498           OldCXXThisAlignment(CGF.CXXThisAlignment),
1499           SourceLocScope(E, CGF.CurSourceLocExprScope) {
1500       CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer();
1501       CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment();
1502     }
1503     ~CXXDefaultInitExprScope() {
1504       CGF.CXXThisValue = OldCXXThisValue;
1505       CGF.CXXThisAlignment = OldCXXThisAlignment;
1506     }
1507 
1508   public:
1509     CodeGenFunction &CGF;
1510     llvm::Value *OldCXXThisValue;
1511     CharUnits OldCXXThisAlignment;
1512     SourceLocExprScopeGuard SourceLocScope;
1513   };
1514 
1515   struct CXXDefaultArgExprScope : SourceLocExprScopeGuard {
1516     CXXDefaultArgExprScope(CodeGenFunction &CGF, const CXXDefaultArgExpr *E)
1517         : SourceLocExprScopeGuard(E, CGF.CurSourceLocExprScope) {}
1518   };
1519 
1520   /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the
1521   /// current loop index is overridden.
1522   class ArrayInitLoopExprScope {
1523   public:
1524     ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index)
1525       : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) {
1526       CGF.ArrayInitIndex = Index;
1527     }
1528     ~ArrayInitLoopExprScope() {
1529       CGF.ArrayInitIndex = OldArrayInitIndex;
1530     }
1531 
1532   private:
1533     CodeGenFunction &CGF;
1534     llvm::Value *OldArrayInitIndex;
1535   };
1536 
1537   class InlinedInheritingConstructorScope {
1538   public:
1539     InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD)
1540         : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl),
1541           OldCurCodeDecl(CGF.CurCodeDecl),
1542           OldCXXABIThisDecl(CGF.CXXABIThisDecl),
1543           OldCXXABIThisValue(CGF.CXXABIThisValue),
1544           OldCXXThisValue(CGF.CXXThisValue),
1545           OldCXXABIThisAlignment(CGF.CXXABIThisAlignment),
1546           OldCXXThisAlignment(CGF.CXXThisAlignment),
1547           OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy),
1548           OldCXXInheritedCtorInitExprArgs(
1549               std::move(CGF.CXXInheritedCtorInitExprArgs)) {
1550       CGF.CurGD = GD;
1551       CGF.CurFuncDecl = CGF.CurCodeDecl =
1552           cast<CXXConstructorDecl>(GD.getDecl());
1553       CGF.CXXABIThisDecl = nullptr;
1554       CGF.CXXABIThisValue = nullptr;
1555       CGF.CXXThisValue = nullptr;
1556       CGF.CXXABIThisAlignment = CharUnits();
1557       CGF.CXXThisAlignment = CharUnits();
1558       CGF.ReturnValue = Address::invalid();
1559       CGF.FnRetTy = QualType();
1560       CGF.CXXInheritedCtorInitExprArgs.clear();
1561     }
1562     ~InlinedInheritingConstructorScope() {
1563       CGF.CurGD = OldCurGD;
1564       CGF.CurFuncDecl = OldCurFuncDecl;
1565       CGF.CurCodeDecl = OldCurCodeDecl;
1566       CGF.CXXABIThisDecl = OldCXXABIThisDecl;
1567       CGF.CXXABIThisValue = OldCXXABIThisValue;
1568       CGF.CXXThisValue = OldCXXThisValue;
1569       CGF.CXXABIThisAlignment = OldCXXABIThisAlignment;
1570       CGF.CXXThisAlignment = OldCXXThisAlignment;
1571       CGF.ReturnValue = OldReturnValue;
1572       CGF.FnRetTy = OldFnRetTy;
1573       CGF.CXXInheritedCtorInitExprArgs =
1574           std::move(OldCXXInheritedCtorInitExprArgs);
1575     }
1576 
1577   private:
1578     CodeGenFunction &CGF;
1579     GlobalDecl OldCurGD;
1580     const Decl *OldCurFuncDecl;
1581     const Decl *OldCurCodeDecl;
1582     ImplicitParamDecl *OldCXXABIThisDecl;
1583     llvm::Value *OldCXXABIThisValue;
1584     llvm::Value *OldCXXThisValue;
1585     CharUnits OldCXXABIThisAlignment;
1586     CharUnits OldCXXThisAlignment;
1587     Address OldReturnValue;
1588     QualType OldFnRetTy;
1589     CallArgList OldCXXInheritedCtorInitExprArgs;
1590   };
1591 
1592   // Helper class for the OpenMP IR Builder. Allows reusability of code used for
1593   // region body, and finalization codegen callbacks. This will class will also
1594   // contain privatization functions used by the privatization call backs
1595   //
1596   // TODO: this is temporary class for things that are being moved out of
1597   // CGOpenMPRuntime, new versions of current CodeGenFunction methods, or
1598   // utility function for use with the OMPBuilder. Once that move to use the
1599   // OMPBuilder is done, everything here will either become part of CodeGenFunc.
1600   // directly, or a new helper class that will contain functions used by both
1601   // this and the OMPBuilder
1602 
1603   struct OMPBuilderCBHelpers {
1604 
1605     OMPBuilderCBHelpers() = delete;
1606     OMPBuilderCBHelpers(const OMPBuilderCBHelpers &) = delete;
1607     OMPBuilderCBHelpers &operator=(const OMPBuilderCBHelpers &) = delete;
1608 
1609     using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
1610 
1611     /// Cleanup action for allocate support.
1612     class OMPAllocateCleanupTy final : public EHScopeStack::Cleanup {
1613 
1614     private:
1615       llvm::CallInst *RTLFnCI;
1616 
1617     public:
1618       OMPAllocateCleanupTy(llvm::CallInst *RLFnCI) : RTLFnCI(RLFnCI) {
1619         RLFnCI->removeFromParent();
1620       }
1621 
1622       void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
1623         if (!CGF.HaveInsertPoint())
1624           return;
1625         CGF.Builder.Insert(RTLFnCI);
1626       }
1627     };
1628 
1629     /// Returns address of the threadprivate variable for the current
1630     /// thread. This Also create any necessary OMP runtime calls.
1631     ///
1632     /// \param VD VarDecl for Threadprivate variable.
1633     /// \param VDAddr Address of the Vardecl
1634     /// \param Loc  The location where the barrier directive was encountered
1635     static Address getAddrOfThreadPrivate(CodeGenFunction &CGF,
1636                                           const VarDecl *VD, Address VDAddr,
1637                                           SourceLocation Loc);
1638 
1639     /// Gets the OpenMP-specific address of the local variable /p VD.
1640     static Address getAddressOfLocalVariable(CodeGenFunction &CGF,
1641                                              const VarDecl *VD);
1642     /// Get the platform-specific name separator.
1643     /// \param Parts different parts of the final name that needs separation
1644     /// \param FirstSeparator First separator used between the initial two
1645     ///        parts of the name.
1646     /// \param Separator separator used between all of the rest consecutinve
1647     ///        parts of the name
1648     static std::string getNameWithSeparators(ArrayRef<StringRef> Parts,
1649                                              StringRef FirstSeparator = ".",
1650                                              StringRef Separator = ".");
1651     /// Emit the Finalization for an OMP region
1652     /// \param CGF	The Codegen function this belongs to
1653     /// \param IP	Insertion point for generating the finalization code.
1654     static void FinalizeOMPRegion(CodeGenFunction &CGF, InsertPointTy IP) {
1655       CGBuilderTy::InsertPointGuard IPG(CGF.Builder);
1656       assert(IP.getBlock()->end() != IP.getPoint() &&
1657              "OpenMP IR Builder should cause terminated block!");
1658 
1659       llvm::BasicBlock *IPBB = IP.getBlock();
1660       llvm::BasicBlock *DestBB = IPBB->getUniqueSuccessor();
1661       assert(DestBB && "Finalization block should have one successor!");
1662 
1663       // erase and replace with cleanup branch.
1664       IPBB->getTerminator()->eraseFromParent();
1665       CGF.Builder.SetInsertPoint(IPBB);
1666       CodeGenFunction::JumpDest Dest = CGF.getJumpDestInCurrentScope(DestBB);
1667       CGF.EmitBranchThroughCleanup(Dest);
1668     }
1669 
1670     /// Emit the body of an OMP region
1671     /// \param CGF	The Codegen function this belongs to
1672     /// \param RegionBodyStmt	The body statement for the OpenMP region being
1673     /// 			 generated
1674     /// \param CodeGenIP	Insertion point for generating the body code.
1675     /// \param FiniBB	The finalization basic block
1676     static void EmitOMPRegionBody(CodeGenFunction &CGF,
1677                                   const Stmt *RegionBodyStmt,
1678                                   InsertPointTy CodeGenIP,
1679                                   llvm::BasicBlock &FiniBB) {
1680       llvm::BasicBlock *CodeGenIPBB = CodeGenIP.getBlock();
1681       if (llvm::Instruction *CodeGenIPBBTI = CodeGenIPBB->getTerminator())
1682         CodeGenIPBBTI->eraseFromParent();
1683 
1684       CGF.Builder.SetInsertPoint(CodeGenIPBB);
1685 
1686       CGF.EmitStmt(RegionBodyStmt);
1687 
1688       if (CGF.Builder.saveIP().isSet())
1689         CGF.Builder.CreateBr(&FiniBB);
1690     }
1691 
1692     /// RAII for preserving necessary info during Outlined region body codegen.
1693     class OutlinedRegionBodyRAII {
1694 
1695       llvm::AssertingVH<llvm::Instruction> OldAllocaIP;
1696       CodeGenFunction::JumpDest OldReturnBlock;
1697       CGBuilderTy::InsertPoint IP;
1698       CodeGenFunction &CGF;
1699 
1700     public:
1701       OutlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP,
1702                              llvm::BasicBlock &RetBB)
1703           : CGF(cgf) {
1704         assert(AllocaIP.isSet() &&
1705                "Must specify Insertion point for allocas of outlined function");
1706         OldAllocaIP = CGF.AllocaInsertPt;
1707         CGF.AllocaInsertPt = &*AllocaIP.getPoint();
1708         IP = CGF.Builder.saveIP();
1709 
1710         OldReturnBlock = CGF.ReturnBlock;
1711         CGF.ReturnBlock = CGF.getJumpDestInCurrentScope(&RetBB);
1712       }
1713 
1714       ~OutlinedRegionBodyRAII() {
1715         CGF.AllocaInsertPt = OldAllocaIP;
1716         CGF.ReturnBlock = OldReturnBlock;
1717         CGF.Builder.restoreIP(IP);
1718       }
1719     };
1720 
1721     /// RAII for preserving necessary info during inlined region body codegen.
1722     class InlinedRegionBodyRAII {
1723 
1724       llvm::AssertingVH<llvm::Instruction> OldAllocaIP;
1725       CodeGenFunction &CGF;
1726 
1727     public:
1728       InlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP,
1729                             llvm::BasicBlock &FiniBB)
1730           : CGF(cgf) {
1731         // Alloca insertion block should be in the entry block of the containing
1732         // function so it expects an empty AllocaIP in which case will reuse the
1733         // old alloca insertion point, or a new AllocaIP in the same block as
1734         // the old one
1735         assert((!AllocaIP.isSet() ||
1736                 CGF.AllocaInsertPt->getParent() == AllocaIP.getBlock()) &&
1737                "Insertion point should be in the entry block of containing "
1738                "function!");
1739         OldAllocaIP = CGF.AllocaInsertPt;
1740         if (AllocaIP.isSet())
1741           CGF.AllocaInsertPt = &*AllocaIP.getPoint();
1742 
1743         // TODO: Remove the call, after making sure the counter is not used by
1744         //       the EHStack.
1745         // Since this is an inlined region, it should not modify the
1746         // ReturnBlock, and should reuse the one for the enclosing outlined
1747         // region. So, the JumpDest being return by the function is discarded
1748         (void)CGF.getJumpDestInCurrentScope(&FiniBB);
1749       }
1750 
1751       ~InlinedRegionBodyRAII() { CGF.AllocaInsertPt = OldAllocaIP; }
1752     };
1753   };
1754 private:
1755   /// CXXThisDecl - When generating code for a C++ member function,
1756   /// this will hold the implicit 'this' declaration.
1757   ImplicitParamDecl *CXXABIThisDecl = nullptr;
1758   llvm::Value *CXXABIThisValue = nullptr;
1759   llvm::Value *CXXThisValue = nullptr;
1760   CharUnits CXXABIThisAlignment;
1761   CharUnits CXXThisAlignment;
1762 
1763   /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
1764   /// this expression.
1765   Address CXXDefaultInitExprThis = Address::invalid();
1766 
1767   /// The current array initialization index when evaluating an
1768   /// ArrayInitIndexExpr within an ArrayInitLoopExpr.
1769   llvm::Value *ArrayInitIndex = nullptr;
1770 
1771   /// The values of function arguments to use when evaluating
1772   /// CXXInheritedCtorInitExprs within this context.
1773   CallArgList CXXInheritedCtorInitExprArgs;
1774 
1775   /// CXXStructorImplicitParamDecl - When generating code for a constructor or
1776   /// destructor, this will hold the implicit argument (e.g. VTT).
1777   ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr;
1778   llvm::Value *CXXStructorImplicitParamValue = nullptr;
1779 
1780   /// OutermostConditional - Points to the outermost active
1781   /// conditional control.  This is used so that we know if a
1782   /// temporary should be destroyed conditionally.
1783   ConditionalEvaluation *OutermostConditional = nullptr;
1784 
1785   /// The current lexical scope.
1786   LexicalScope *CurLexicalScope = nullptr;
1787 
1788   /// The current source location that should be used for exception
1789   /// handling code.
1790   SourceLocation CurEHLocation;
1791 
1792   /// BlockByrefInfos - For each __block variable, contains
1793   /// information about the layout of the variable.
1794   llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos;
1795 
1796   /// Used by -fsanitize=nullability-return to determine whether the return
1797   /// value can be checked.
1798   llvm::Value *RetValNullabilityPrecondition = nullptr;
1799 
1800   /// Check if -fsanitize=nullability-return instrumentation is required for
1801   /// this function.
1802   bool requiresReturnValueNullabilityCheck() const {
1803     return RetValNullabilityPrecondition;
1804   }
1805 
1806   /// Used to store precise source locations for return statements by the
1807   /// runtime return value checks.
1808   Address ReturnLocation = Address::invalid();
1809 
1810   /// Check if the return value of this function requires sanitization.
1811   bool requiresReturnValueCheck() const;
1812 
1813   llvm::BasicBlock *TerminateLandingPad = nullptr;
1814   llvm::BasicBlock *TerminateHandler = nullptr;
1815   llvm::BasicBlock *TrapBB = nullptr;
1816 
1817   /// Terminate funclets keyed by parent funclet pad.
1818   llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets;
1819 
1820   /// Largest vector width used in ths function. Will be used to create a
1821   /// function attribute.
1822   unsigned LargestVectorWidth = 0;
1823 
1824   /// True if we need emit the life-time markers.
1825   const bool ShouldEmitLifetimeMarkers;
1826 
1827   /// Add OpenCL kernel arg metadata and the kernel attribute metadata to
1828   /// the function metadata.
1829   void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
1830                                 llvm::Function *Fn);
1831 
1832 public:
1833   CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1834   ~CodeGenFunction();
1835 
1836   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1837   ASTContext &getContext() const { return CGM.getContext(); }
1838   CGDebugInfo *getDebugInfo() {
1839     if (DisableDebugInfo)
1840       return nullptr;
1841     return DebugInfo;
1842   }
1843   void disableDebugInfo() { DisableDebugInfo = true; }
1844   void enableDebugInfo() { DisableDebugInfo = false; }
1845 
1846   bool shouldUseFusedARCCalls() {
1847     return CGM.getCodeGenOpts().OptimizationLevel == 0;
1848   }
1849 
1850   const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1851 
1852   /// Returns a pointer to the function's exception object and selector slot,
1853   /// which is assigned in every landing pad.
1854   Address getExceptionSlot();
1855   Address getEHSelectorSlot();
1856 
1857   /// Returns the contents of the function's exception object and selector
1858   /// slots.
1859   llvm::Value *getExceptionFromSlot();
1860   llvm::Value *getSelectorFromSlot();
1861 
1862   Address getNormalCleanupDestSlot();
1863 
1864   llvm::BasicBlock *getUnreachableBlock() {
1865     if (!UnreachableBlock) {
1866       UnreachableBlock = createBasicBlock("unreachable");
1867       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1868     }
1869     return UnreachableBlock;
1870   }
1871 
1872   llvm::BasicBlock *getInvokeDest() {
1873     if (!EHStack.requiresLandingPad()) return nullptr;
1874     return getInvokeDestImpl();
1875   }
1876 
1877   bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; }
1878 
1879   const TargetInfo &getTarget() const { return Target; }
1880   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1881   const TargetCodeGenInfo &getTargetHooks() const {
1882     return CGM.getTargetCodeGenInfo();
1883   }
1884 
1885   //===--------------------------------------------------------------------===//
1886   //                                  Cleanups
1887   //===--------------------------------------------------------------------===//
1888 
1889   typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty);
1890 
1891   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1892                                         Address arrayEndPointer,
1893                                         QualType elementType,
1894                                         CharUnits elementAlignment,
1895                                         Destroyer *destroyer);
1896   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1897                                       llvm::Value *arrayEnd,
1898                                       QualType elementType,
1899                                       CharUnits elementAlignment,
1900                                       Destroyer *destroyer);
1901 
1902   void pushDestroy(QualType::DestructionKind dtorKind,
1903                    Address addr, QualType type);
1904   void pushEHDestroy(QualType::DestructionKind dtorKind,
1905                      Address addr, QualType type);
1906   void pushDestroy(CleanupKind kind, Address addr, QualType type,
1907                    Destroyer *destroyer, bool useEHCleanupForArray);
1908   void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr,
1909                                    QualType type, Destroyer *destroyer,
1910                                    bool useEHCleanupForArray);
1911   void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1912                                    llvm::Value *CompletePtr,
1913                                    QualType ElementType);
1914   void pushStackRestore(CleanupKind kind, Address SPMem);
1915   void emitDestroy(Address addr, QualType type, Destroyer *destroyer,
1916                    bool useEHCleanupForArray);
1917   llvm::Function *generateDestroyHelper(Address addr, QualType type,
1918                                         Destroyer *destroyer,
1919                                         bool useEHCleanupForArray,
1920                                         const VarDecl *VD);
1921   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1922                         QualType elementType, CharUnits elementAlign,
1923                         Destroyer *destroyer,
1924                         bool checkZeroLength, bool useEHCleanup);
1925 
1926   Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1927 
1928   /// Determines whether an EH cleanup is required to destroy a type
1929   /// with the given destruction kind.
1930   bool needsEHCleanup(QualType::DestructionKind kind) {
1931     switch (kind) {
1932     case QualType::DK_none:
1933       return false;
1934     case QualType::DK_cxx_destructor:
1935     case QualType::DK_objc_weak_lifetime:
1936     case QualType::DK_nontrivial_c_struct:
1937       return getLangOpts().Exceptions;
1938     case QualType::DK_objc_strong_lifetime:
1939       return getLangOpts().Exceptions &&
1940              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1941     }
1942     llvm_unreachable("bad destruction kind");
1943   }
1944 
1945   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
1946     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1947   }
1948 
1949   //===--------------------------------------------------------------------===//
1950   //                                  Objective-C
1951   //===--------------------------------------------------------------------===//
1952 
1953   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1954 
1955   void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
1956 
1957   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1958   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1959                           const ObjCPropertyImplDecl *PID);
1960   void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1961                               const ObjCPropertyImplDecl *propImpl,
1962                               const ObjCMethodDecl *GetterMothodDecl,
1963                               llvm::Constant *AtomicHelperFn);
1964 
1965   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1966                                   ObjCMethodDecl *MD, bool ctor);
1967 
1968   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1969   /// for the given property.
1970   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1971                           const ObjCPropertyImplDecl *PID);
1972   void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1973                               const ObjCPropertyImplDecl *propImpl,
1974                               llvm::Constant *AtomicHelperFn);
1975 
1976   //===--------------------------------------------------------------------===//
1977   //                                  Block Bits
1978   //===--------------------------------------------------------------------===//
1979 
1980   /// Emit block literal.
1981   /// \return an LLVM value which is a pointer to a struct which contains
1982   /// information about the block, including the block invoke function, the
1983   /// captured variables, etc.
1984   llvm::Value *EmitBlockLiteral(const BlockExpr *);
1985 
1986   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1987                                         const CGBlockInfo &Info,
1988                                         const DeclMapTy &ldm,
1989                                         bool IsLambdaConversionToBlock,
1990                                         bool BuildGlobalBlock);
1991 
1992   /// Check if \p T is a C++ class that has a destructor that can throw.
1993   static bool cxxDestructorCanThrow(QualType T);
1994 
1995   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1996   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1997   llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
1998                                              const ObjCPropertyImplDecl *PID);
1999   llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
2000                                              const ObjCPropertyImplDecl *PID);
2001   llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
2002 
2003   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags,
2004                          bool CanThrow);
2005 
2006   class AutoVarEmission;
2007 
2008   void emitByrefStructureInit(const AutoVarEmission &emission);
2009 
2010   /// Enter a cleanup to destroy a __block variable.  Note that this
2011   /// cleanup should be a no-op if the variable hasn't left the stack
2012   /// yet; if a cleanup is required for the variable itself, that needs
2013   /// to be done externally.
2014   ///
2015   /// \param Kind Cleanup kind.
2016   ///
2017   /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block
2018   /// structure that will be passed to _Block_object_dispose. When
2019   /// \p LoadBlockVarAddr is true, the address of the field of the block
2020   /// structure that holds the address of the __block structure.
2021   ///
2022   /// \param Flags The flag that will be passed to _Block_object_dispose.
2023   ///
2024   /// \param LoadBlockVarAddr Indicates whether we need to emit a load from
2025   /// \p Addr to get the address of the __block structure.
2026   void enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags,
2027                          bool LoadBlockVarAddr, bool CanThrow);
2028 
2029   void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum,
2030                                 llvm::Value *ptr);
2031 
2032   Address LoadBlockStruct();
2033   Address GetAddrOfBlockDecl(const VarDecl *var);
2034 
2035   /// BuildBlockByrefAddress - Computes the location of the
2036   /// data in a variable which is declared as __block.
2037   Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V,
2038                                 bool followForward = true);
2039   Address emitBlockByrefAddress(Address baseAddr,
2040                                 const BlockByrefInfo &info,
2041                                 bool followForward,
2042                                 const llvm::Twine &name);
2043 
2044   const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var);
2045 
2046   QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args);
2047 
2048   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
2049                     const CGFunctionInfo &FnInfo);
2050 
2051   /// Annotate the function with an attribute that disables TSan checking at
2052   /// runtime.
2053   void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn);
2054 
2055   /// Emit code for the start of a function.
2056   /// \param Loc       The location to be associated with the function.
2057   /// \param StartLoc  The location of the function body.
2058   void StartFunction(GlobalDecl GD,
2059                      QualType RetTy,
2060                      llvm::Function *Fn,
2061                      const CGFunctionInfo &FnInfo,
2062                      const FunctionArgList &Args,
2063                      SourceLocation Loc = SourceLocation(),
2064                      SourceLocation StartLoc = SourceLocation());
2065 
2066   static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor);
2067 
2068   void EmitConstructorBody(FunctionArgList &Args);
2069   void EmitDestructorBody(FunctionArgList &Args);
2070   void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
2071   void EmitFunctionBody(const Stmt *Body);
2072   void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S);
2073 
2074   void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
2075                                   CallArgList &CallArgs);
2076   void EmitLambdaBlockInvokeBody();
2077   void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
2078   void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD);
2079   void EmitLambdaVLACapture(const VariableArrayType *VAT, LValue LV) {
2080     EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
2081   }
2082   void EmitAsanPrologueOrEpilogue(bool Prologue);
2083 
2084   /// Emit the unified return block, trying to avoid its emission when
2085   /// possible.
2086   /// \return The debug location of the user written return statement if the
2087   /// return block is is avoided.
2088   llvm::DebugLoc EmitReturnBlock();
2089 
2090   /// FinishFunction - Complete IR generation of the current function. It is
2091   /// legal to call this function even if there is no current insertion point.
2092   void FinishFunction(SourceLocation EndLoc=SourceLocation());
2093 
2094   void StartThunk(llvm::Function *Fn, GlobalDecl GD,
2095                   const CGFunctionInfo &FnInfo, bool IsUnprototyped);
2096 
2097   void EmitCallAndReturnForThunk(llvm::FunctionCallee Callee,
2098                                  const ThunkInfo *Thunk, bool IsUnprototyped);
2099 
2100   void FinishThunk();
2101 
2102   /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
2103   void EmitMustTailThunk(GlobalDecl GD, llvm::Value *AdjustedThisPtr,
2104                          llvm::FunctionCallee Callee);
2105 
2106   /// Generate a thunk for the given method.
2107   void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
2108                      GlobalDecl GD, const ThunkInfo &Thunk,
2109                      bool IsUnprototyped);
2110 
2111   llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn,
2112                                        const CGFunctionInfo &FnInfo,
2113                                        GlobalDecl GD, const ThunkInfo &Thunk);
2114 
2115   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
2116                         FunctionArgList &Args);
2117 
2118   void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init);
2119 
2120   /// Struct with all information about dynamic [sub]class needed to set vptr.
2121   struct VPtr {
2122     BaseSubobject Base;
2123     const CXXRecordDecl *NearestVBase;
2124     CharUnits OffsetFromNearestVBase;
2125     const CXXRecordDecl *VTableClass;
2126   };
2127 
2128   /// Initialize the vtable pointer of the given subobject.
2129   void InitializeVTablePointer(const VPtr &vptr);
2130 
2131   typedef llvm::SmallVector<VPtr, 4> VPtrsVector;
2132 
2133   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
2134   VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass);
2135 
2136   void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase,
2137                          CharUnits OffsetFromNearestVBase,
2138                          bool BaseIsNonVirtualPrimaryBase,
2139                          const CXXRecordDecl *VTableClass,
2140                          VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs);
2141 
2142   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
2143 
2144   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
2145   /// to by This.
2146   llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy,
2147                             const CXXRecordDecl *VTableClass);
2148 
2149   enum CFITypeCheckKind {
2150     CFITCK_VCall,
2151     CFITCK_NVCall,
2152     CFITCK_DerivedCast,
2153     CFITCK_UnrelatedCast,
2154     CFITCK_ICall,
2155     CFITCK_NVMFCall,
2156     CFITCK_VMFCall,
2157   };
2158 
2159   /// Derived is the presumed address of an object of type T after a
2160   /// cast. If T is a polymorphic class type, emit a check that the virtual
2161   /// table for Derived belongs to a class derived from T.
2162   void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived,
2163                                  bool MayBeNull, CFITypeCheckKind TCK,
2164                                  SourceLocation Loc);
2165 
2166   /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
2167   /// If vptr CFI is enabled, emit a check that VTable is valid.
2168   void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable,
2169                                  CFITypeCheckKind TCK, SourceLocation Loc);
2170 
2171   /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
2172   /// RD using llvm.type.test.
2173   void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable,
2174                           CFITypeCheckKind TCK, SourceLocation Loc);
2175 
2176   /// If whole-program virtual table optimization is enabled, emit an assumption
2177   /// that VTable is a member of RD's type identifier. Or, if vptr CFI is
2178   /// enabled, emit a check that VTable is a member of RD's type identifier.
2179   void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
2180                                     llvm::Value *VTable, SourceLocation Loc);
2181 
2182   /// Returns whether we should perform a type checked load when loading a
2183   /// virtual function for virtual calls to members of RD. This is generally
2184   /// true when both vcall CFI and whole-program-vtables are enabled.
2185   bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD);
2186 
2187   /// Emit a type checked load from the given vtable.
2188   llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable,
2189                                          uint64_t VTableByteOffset);
2190 
2191   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
2192   /// given phase of destruction for a destructor.  The end result
2193   /// should call destructors on members and base classes in reverse
2194   /// order of their construction.
2195   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
2196 
2197   /// ShouldInstrumentFunction - Return true if the current function should be
2198   /// instrumented with __cyg_profile_func_* calls
2199   bool ShouldInstrumentFunction();
2200 
2201   /// ShouldXRayInstrument - Return true if the current function should be
2202   /// instrumented with XRay nop sleds.
2203   bool ShouldXRayInstrumentFunction() const;
2204 
2205   /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit
2206   /// XRay custom event handling calls.
2207   bool AlwaysEmitXRayCustomEvents() const;
2208 
2209   /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit
2210   /// XRay typed event handling calls.
2211   bool AlwaysEmitXRayTypedEvents() const;
2212 
2213   /// Encode an address into a form suitable for use in a function prologue.
2214   llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F,
2215                                              llvm::Constant *Addr);
2216 
2217   /// Decode an address used in a function prologue, encoded by \c
2218   /// EncodeAddrForUseInPrologue.
2219   llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F,
2220                                         llvm::Value *EncodedAddr);
2221 
2222   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
2223   /// arguments for the given function. This is also responsible for naming the
2224   /// LLVM function arguments.
2225   void EmitFunctionProlog(const CGFunctionInfo &FI,
2226                           llvm::Function *Fn,
2227                           const FunctionArgList &Args);
2228 
2229   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
2230   /// given temporary.
2231   void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
2232                           SourceLocation EndLoc);
2233 
2234   /// Emit a test that checks if the return value \p RV is nonnull.
2235   void EmitReturnValueCheck(llvm::Value *RV);
2236 
2237   /// EmitStartEHSpec - Emit the start of the exception spec.
2238   void EmitStartEHSpec(const Decl *D);
2239 
2240   /// EmitEndEHSpec - Emit the end of the exception spec.
2241   void EmitEndEHSpec(const Decl *D);
2242 
2243   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
2244   llvm::BasicBlock *getTerminateLandingPad();
2245 
2246   /// getTerminateLandingPad - Return a cleanup funclet that just calls
2247   /// terminate.
2248   llvm::BasicBlock *getTerminateFunclet();
2249 
2250   /// getTerminateHandler - Return a handler (not a landing pad, just
2251   /// a catch handler) that just calls terminate.  This is used when
2252   /// a terminate scope encloses a try.
2253   llvm::BasicBlock *getTerminateHandler();
2254 
2255   llvm::Type *ConvertTypeForMem(QualType T);
2256   llvm::Type *ConvertType(QualType T);
2257   llvm::Type *ConvertType(const TypeDecl *T) {
2258     return ConvertType(getContext().getTypeDeclType(T));
2259   }
2260 
2261   /// LoadObjCSelf - Load the value of self. This function is only valid while
2262   /// generating code for an Objective-C method.
2263   llvm::Value *LoadObjCSelf();
2264 
2265   /// TypeOfSelfObject - Return type of object that this self represents.
2266   QualType TypeOfSelfObject();
2267 
2268   /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T.
2269   static TypeEvaluationKind getEvaluationKind(QualType T);
2270 
2271   static bool hasScalarEvaluationKind(QualType T) {
2272     return getEvaluationKind(T) == TEK_Scalar;
2273   }
2274 
2275   static bool hasAggregateEvaluationKind(QualType T) {
2276     return getEvaluationKind(T) == TEK_Aggregate;
2277   }
2278 
2279   /// createBasicBlock - Create an LLVM basic block.
2280   llvm::BasicBlock *createBasicBlock(const Twine &name = "",
2281                                      llvm::Function *parent = nullptr,
2282                                      llvm::BasicBlock *before = nullptr) {
2283     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
2284   }
2285 
2286   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
2287   /// label maps to.
2288   JumpDest getJumpDestForLabel(const LabelDecl *S);
2289 
2290   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
2291   /// another basic block, simplify it. This assumes that no other code could
2292   /// potentially reference the basic block.
2293   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
2294 
2295   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
2296   /// adding a fall-through branch from the current insert block if
2297   /// necessary. It is legal to call this function even if there is no current
2298   /// insertion point.
2299   ///
2300   /// IsFinished - If true, indicates that the caller has finished emitting
2301   /// branches to the given block and does not expect to emit code into it. This
2302   /// means the block can be ignored if it is unreachable.
2303   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
2304 
2305   /// EmitBlockAfterUses - Emit the given block somewhere hopefully
2306   /// near its uses, and leave the insertion point in it.
2307   void EmitBlockAfterUses(llvm::BasicBlock *BB);
2308 
2309   /// EmitBranch - Emit a branch to the specified basic block from the current
2310   /// insert block, taking care to avoid creation of branches from dummy
2311   /// blocks. It is legal to call this function even if there is no current
2312   /// insertion point.
2313   ///
2314   /// This function clears the current insertion point. The caller should follow
2315   /// calls to this function with calls to Emit*Block prior to generation new
2316   /// code.
2317   void EmitBranch(llvm::BasicBlock *Block);
2318 
2319   /// HaveInsertPoint - True if an insertion point is defined. If not, this
2320   /// indicates that the current code being emitted is unreachable.
2321   bool HaveInsertPoint() const {
2322     return Builder.GetInsertBlock() != nullptr;
2323   }
2324 
2325   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
2326   /// emitted IR has a place to go. Note that by definition, if this function
2327   /// creates a block then that block is unreachable; callers may do better to
2328   /// detect when no insertion point is defined and simply skip IR generation.
2329   void EnsureInsertPoint() {
2330     if (!HaveInsertPoint())
2331       EmitBlock(createBasicBlock());
2332   }
2333 
2334   /// ErrorUnsupported - Print out an error that codegen doesn't support the
2335   /// specified stmt yet.
2336   void ErrorUnsupported(const Stmt *S, const char *Type);
2337 
2338   //===--------------------------------------------------------------------===//
2339   //                                  Helpers
2340   //===--------------------------------------------------------------------===//
2341 
2342   LValue MakeAddrLValue(Address Addr, QualType T,
2343                         AlignmentSource Source = AlignmentSource::Type) {
2344     return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
2345                             CGM.getTBAAAccessInfo(T));
2346   }
2347 
2348   LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo,
2349                         TBAAAccessInfo TBAAInfo) {
2350     return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo);
2351   }
2352 
2353   LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
2354                         AlignmentSource Source = AlignmentSource::Type) {
2355     return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
2356                             LValueBaseInfo(Source), CGM.getTBAAAccessInfo(T));
2357   }
2358 
2359   LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
2360                         LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) {
2361     return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
2362                             BaseInfo, TBAAInfo);
2363   }
2364 
2365   LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T);
2366   LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T);
2367 
2368   Address EmitLoadOfReference(LValue RefLVal,
2369                               LValueBaseInfo *PointeeBaseInfo = nullptr,
2370                               TBAAAccessInfo *PointeeTBAAInfo = nullptr);
2371   LValue EmitLoadOfReferenceLValue(LValue RefLVal);
2372   LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy,
2373                                    AlignmentSource Source =
2374                                        AlignmentSource::Type) {
2375     LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source),
2376                                     CGM.getTBAAAccessInfo(RefTy));
2377     return EmitLoadOfReferenceLValue(RefLVal);
2378   }
2379 
2380   Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy,
2381                             LValueBaseInfo *BaseInfo = nullptr,
2382                             TBAAAccessInfo *TBAAInfo = nullptr);
2383   LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy);
2384 
2385   /// CreateTempAlloca - This creates an alloca and inserts it into the entry
2386   /// block if \p ArraySize is nullptr, otherwise inserts it at the current
2387   /// insertion point of the builder. The caller is responsible for setting an
2388   /// appropriate alignment on
2389   /// the alloca.
2390   ///
2391   /// \p ArraySize is the number of array elements to be allocated if it
2392   ///    is not nullptr.
2393   ///
2394   /// LangAS::Default is the address space of pointers to local variables and
2395   /// temporaries, as exposed in the source language. In certain
2396   /// configurations, this is not the same as the alloca address space, and a
2397   /// cast is needed to lift the pointer from the alloca AS into
2398   /// LangAS::Default. This can happen when the target uses a restricted
2399   /// address space for the stack but the source language requires
2400   /// LangAS::Default to be a generic address space. The latter condition is
2401   /// common for most programming languages; OpenCL is an exception in that
2402   /// LangAS::Default is the private address space, which naturally maps
2403   /// to the stack.
2404   ///
2405   /// Because the address of a temporary is often exposed to the program in
2406   /// various ways, this function will perform the cast. The original alloca
2407   /// instruction is returned through \p Alloca if it is not nullptr.
2408   ///
2409   /// The cast is not performaed in CreateTempAllocaWithoutCast. This is
2410   /// more efficient if the caller knows that the address will not be exposed.
2411   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp",
2412                                      llvm::Value *ArraySize = nullptr);
2413   Address CreateTempAlloca(llvm::Type *Ty, CharUnits align,
2414                            const Twine &Name = "tmp",
2415                            llvm::Value *ArraySize = nullptr,
2416                            Address *Alloca = nullptr);
2417   Address CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align,
2418                                       const Twine &Name = "tmp",
2419                                       llvm::Value *ArraySize = nullptr);
2420 
2421   /// CreateDefaultAlignedTempAlloca - This creates an alloca with the
2422   /// default ABI alignment of the given LLVM type.
2423   ///
2424   /// IMPORTANT NOTE: This is *not* generally the right alignment for
2425   /// any given AST type that happens to have been lowered to the
2426   /// given IR type.  This should only ever be used for function-local,
2427   /// IR-driven manipulations like saving and restoring a value.  Do
2428   /// not hand this address off to arbitrary IRGen routines, and especially
2429   /// do not pass it as an argument to a function that might expect a
2430   /// properly ABI-aligned value.
2431   Address CreateDefaultAlignTempAlloca(llvm::Type *Ty,
2432                                        const Twine &Name = "tmp");
2433 
2434   /// InitTempAlloca - Provide an initial value for the given alloca which
2435   /// will be observable at all locations in the function.
2436   ///
2437   /// The address should be something that was returned from one of
2438   /// the CreateTempAlloca or CreateMemTemp routines, and the
2439   /// initializer must be valid in the entry block (i.e. it must
2440   /// either be a constant or an argument value).
2441   void InitTempAlloca(Address Alloca, llvm::Value *Value);
2442 
2443   /// CreateIRTemp - Create a temporary IR object of the given type, with
2444   /// appropriate alignment. This routine should only be used when an temporary
2445   /// value needs to be stored into an alloca (for example, to avoid explicit
2446   /// PHI construction), but the type is the IR type, not the type appropriate
2447   /// for storing in memory.
2448   ///
2449   /// That is, this is exactly equivalent to CreateMemTemp, but calling
2450   /// ConvertType instead of ConvertTypeForMem.
2451   Address CreateIRTemp(QualType T, const Twine &Name = "tmp");
2452 
2453   /// CreateMemTemp - Create a temporary memory object of the given type, with
2454   /// appropriate alignmen and cast it to the default address space. Returns
2455   /// the original alloca instruction by \p Alloca if it is not nullptr.
2456   Address CreateMemTemp(QualType T, const Twine &Name = "tmp",
2457                         Address *Alloca = nullptr);
2458   Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp",
2459                         Address *Alloca = nullptr);
2460 
2461   /// CreateMemTemp - Create a temporary memory object of the given type, with
2462   /// appropriate alignmen without casting it to the default address space.
2463   Address CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp");
2464   Address CreateMemTempWithoutCast(QualType T, CharUnits Align,
2465                                    const Twine &Name = "tmp");
2466 
2467   /// CreateAggTemp - Create a temporary memory object for the given
2468   /// aggregate type.
2469   AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp",
2470                              Address *Alloca = nullptr) {
2471     return AggValueSlot::forAddr(CreateMemTemp(T, Name, Alloca),
2472                                  T.getQualifiers(),
2473                                  AggValueSlot::IsNotDestructed,
2474                                  AggValueSlot::DoesNotNeedGCBarriers,
2475                                  AggValueSlot::IsNotAliased,
2476                                  AggValueSlot::DoesNotOverlap);
2477   }
2478 
2479   /// Emit a cast to void* in the appropriate address space.
2480   llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
2481 
2482   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
2483   /// expression and compare the result against zero, returning an Int1Ty value.
2484   llvm::Value *EvaluateExprAsBool(const Expr *E);
2485 
2486   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
2487   void EmitIgnoredExpr(const Expr *E);
2488 
2489   /// EmitAnyExpr - Emit code to compute the specified expression which can have
2490   /// any type.  The result is returned as an RValue struct.  If this is an
2491   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
2492   /// the result should be returned.
2493   ///
2494   /// \param ignoreResult True if the resulting value isn't used.
2495   RValue EmitAnyExpr(const Expr *E,
2496                      AggValueSlot aggSlot = AggValueSlot::ignored(),
2497                      bool ignoreResult = false);
2498 
2499   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
2500   // or the value of the expression, depending on how va_list is defined.
2501   Address EmitVAListRef(const Expr *E);
2502 
2503   /// Emit a "reference" to a __builtin_ms_va_list; this is
2504   /// always the value of the expression, because a __builtin_ms_va_list is a
2505   /// pointer to a char.
2506   Address EmitMSVAListRef(const Expr *E);
2507 
2508   /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will
2509   /// always be accessible even if no aggregate location is provided.
2510   RValue EmitAnyExprToTemp(const Expr *E);
2511 
2512   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
2513   /// arbitrary expression into the given memory location.
2514   void EmitAnyExprToMem(const Expr *E, Address Location,
2515                         Qualifiers Quals, bool IsInitializer);
2516 
2517   void EmitAnyExprToExn(const Expr *E, Address Addr);
2518 
2519   /// EmitExprAsInit - Emits the code necessary to initialize a
2520   /// location in memory with the given initializer.
2521   void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2522                       bool capturedByInit);
2523 
2524   /// hasVolatileMember - returns true if aggregate type has a volatile
2525   /// member.
2526   bool hasVolatileMember(QualType T) {
2527     if (const RecordType *RT = T->getAs<RecordType>()) {
2528       const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
2529       return RD->hasVolatileMember();
2530     }
2531     return false;
2532   }
2533 
2534   /// Determine whether a return value slot may overlap some other object.
2535   AggValueSlot::Overlap_t getOverlapForReturnValue() {
2536     // FIXME: Assuming no overlap here breaks guaranteed copy elision for base
2537     // class subobjects. These cases may need to be revisited depending on the
2538     // resolution of the relevant core issue.
2539     return AggValueSlot::DoesNotOverlap;
2540   }
2541 
2542   /// Determine whether a field initialization may overlap some other object.
2543   AggValueSlot::Overlap_t getOverlapForFieldInit(const FieldDecl *FD);
2544 
2545   /// Determine whether a base class initialization may overlap some other
2546   /// object.
2547   AggValueSlot::Overlap_t getOverlapForBaseInit(const CXXRecordDecl *RD,
2548                                                 const CXXRecordDecl *BaseRD,
2549                                                 bool IsVirtual);
2550 
2551   /// Emit an aggregate assignment.
2552   void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) {
2553     bool IsVolatile = hasVolatileMember(EltTy);
2554     EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile);
2555   }
2556 
2557   void EmitAggregateCopyCtor(LValue Dest, LValue Src,
2558                              AggValueSlot::Overlap_t MayOverlap) {
2559     EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap);
2560   }
2561 
2562   /// EmitAggregateCopy - Emit an aggregate copy.
2563   ///
2564   /// \param isVolatile \c true iff either the source or the destination is
2565   ///        volatile.
2566   /// \param MayOverlap Whether the tail padding of the destination might be
2567   ///        occupied by some other object. More efficient code can often be
2568   ///        generated if not.
2569   void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy,
2570                          AggValueSlot::Overlap_t MayOverlap,
2571                          bool isVolatile = false);
2572 
2573   /// GetAddrOfLocalVar - Return the address of a local variable.
2574   Address GetAddrOfLocalVar(const VarDecl *VD) {
2575     auto it = LocalDeclMap.find(VD);
2576     assert(it != LocalDeclMap.end() &&
2577            "Invalid argument to GetAddrOfLocalVar(), no decl!");
2578     return it->second;
2579   }
2580 
2581   /// Given an opaque value expression, return its LValue mapping if it exists,
2582   /// otherwise create one.
2583   LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e);
2584 
2585   /// Given an opaque value expression, return its RValue mapping if it exists,
2586   /// otherwise create one.
2587   RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e);
2588 
2589   /// Get the index of the current ArrayInitLoopExpr, if any.
2590   llvm::Value *getArrayInitIndex() { return ArrayInitIndex; }
2591 
2592   /// getAccessedFieldNo - Given an encoded value and a result number, return
2593   /// the input field number being accessed.
2594   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
2595 
2596   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
2597   llvm::BasicBlock *GetIndirectGotoBlock();
2598 
2599   /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts.
2600   static bool IsWrappedCXXThis(const Expr *E);
2601 
2602   /// EmitNullInitialization - Generate code to set a value of the given type to
2603   /// null, If the type contains data member pointers, they will be initialized
2604   /// to -1 in accordance with the Itanium C++ ABI.
2605   void EmitNullInitialization(Address DestPtr, QualType Ty);
2606 
2607   /// Emits a call to an LLVM variable-argument intrinsic, either
2608   /// \c llvm.va_start or \c llvm.va_end.
2609   /// \param ArgValue A reference to the \c va_list as emitted by either
2610   /// \c EmitVAListRef or \c EmitMSVAListRef.
2611   /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise,
2612   /// calls \c llvm.va_end.
2613   llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart);
2614 
2615   /// Generate code to get an argument from the passed in pointer
2616   /// and update it accordingly.
2617   /// \param VE The \c VAArgExpr for which to generate code.
2618   /// \param VAListAddr Receives a reference to the \c va_list as emitted by
2619   /// either \c EmitVAListRef or \c EmitMSVAListRef.
2620   /// \returns A pointer to the argument.
2621   // FIXME: We should be able to get rid of this method and use the va_arg
2622   // instruction in LLVM instead once it works well enough.
2623   Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr);
2624 
2625   /// emitArrayLength - Compute the length of an array, even if it's a
2626   /// VLA, and drill down to the base element type.
2627   llvm::Value *emitArrayLength(const ArrayType *arrayType,
2628                                QualType &baseType,
2629                                Address &addr);
2630 
2631   /// EmitVLASize - Capture all the sizes for the VLA expressions in
2632   /// the given variably-modified type and store them in the VLASizeMap.
2633   ///
2634   /// This function can be called with a null (unreachable) insert point.
2635   void EmitVariablyModifiedType(QualType Ty);
2636 
2637   struct VlaSizePair {
2638     llvm::Value *NumElts;
2639     QualType Type;
2640 
2641     VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {}
2642   };
2643 
2644   /// Return the number of elements for a single dimension
2645   /// for the given array type.
2646   VlaSizePair getVLAElements1D(const VariableArrayType *vla);
2647   VlaSizePair getVLAElements1D(QualType vla);
2648 
2649   /// Returns an LLVM value that corresponds to the size,
2650   /// in non-variably-sized elements, of a variable length array type,
2651   /// plus that largest non-variably-sized element type.  Assumes that
2652   /// the type has already been emitted with EmitVariablyModifiedType.
2653   VlaSizePair getVLASize(const VariableArrayType *vla);
2654   VlaSizePair getVLASize(QualType vla);
2655 
2656   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
2657   /// generating code for an C++ member function.
2658   llvm::Value *LoadCXXThis() {
2659     assert(CXXThisValue && "no 'this' value for this function");
2660     return CXXThisValue;
2661   }
2662   Address LoadCXXThisAddress();
2663 
2664   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
2665   /// virtual bases.
2666   // FIXME: Every place that calls LoadCXXVTT is something
2667   // that needs to be abstracted properly.
2668   llvm::Value *LoadCXXVTT() {
2669     assert(CXXStructorImplicitParamValue && "no VTT value for this function");
2670     return CXXStructorImplicitParamValue;
2671   }
2672 
2673   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
2674   /// complete class to the given direct base.
2675   Address
2676   GetAddressOfDirectBaseInCompleteClass(Address Value,
2677                                         const CXXRecordDecl *Derived,
2678                                         const CXXRecordDecl *Base,
2679                                         bool BaseIsVirtual);
2680 
2681   static bool ShouldNullCheckClassCastValue(const CastExpr *Cast);
2682 
2683   /// GetAddressOfBaseClass - This function will add the necessary delta to the
2684   /// load of 'this' and returns address of the base class.
2685   Address GetAddressOfBaseClass(Address Value,
2686                                 const CXXRecordDecl *Derived,
2687                                 CastExpr::path_const_iterator PathBegin,
2688                                 CastExpr::path_const_iterator PathEnd,
2689                                 bool NullCheckValue, SourceLocation Loc);
2690 
2691   Address GetAddressOfDerivedClass(Address Value,
2692                                    const CXXRecordDecl *Derived,
2693                                    CastExpr::path_const_iterator PathBegin,
2694                                    CastExpr::path_const_iterator PathEnd,
2695                                    bool NullCheckValue);
2696 
2697   /// GetVTTParameter - Return the VTT parameter that should be passed to a
2698   /// base constructor/destructor with virtual bases.
2699   /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
2700   /// to ItaniumCXXABI.cpp together with all the references to VTT.
2701   llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
2702                                bool Delegating);
2703 
2704   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
2705                                       CXXCtorType CtorType,
2706                                       const FunctionArgList &Args,
2707                                       SourceLocation Loc);
2708   // It's important not to confuse this and the previous function. Delegating
2709   // constructors are the C++0x feature. The constructor delegate optimization
2710   // is used to reduce duplication in the base and complete consturctors where
2711   // they are substantially the same.
2712   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2713                                         const FunctionArgList &Args);
2714 
2715   /// Emit a call to an inheriting constructor (that is, one that invokes a
2716   /// constructor inherited from a base class) by inlining its definition. This
2717   /// is necessary if the ABI does not support forwarding the arguments to the
2718   /// base class constructor (because they're variadic or similar).
2719   void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2720                                                CXXCtorType CtorType,
2721                                                bool ForVirtualBase,
2722                                                bool Delegating,
2723                                                CallArgList &Args);
2724 
2725   /// Emit a call to a constructor inherited from a base class, passing the
2726   /// current constructor's arguments along unmodified (without even making
2727   /// a copy).
2728   void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D,
2729                                        bool ForVirtualBase, Address This,
2730                                        bool InheritedFromVBase,
2731                                        const CXXInheritedCtorInitExpr *E);
2732 
2733   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2734                               bool ForVirtualBase, bool Delegating,
2735                               AggValueSlot ThisAVS, const CXXConstructExpr *E);
2736 
2737   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2738                               bool ForVirtualBase, bool Delegating,
2739                               Address This, CallArgList &Args,
2740                               AggValueSlot::Overlap_t Overlap,
2741                               SourceLocation Loc, bool NewPointerIsChecked);
2742 
2743   /// Emit assumption load for all bases. Requires to be be called only on
2744   /// most-derived class and not under construction of the object.
2745   void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This);
2746 
2747   /// Emit assumption that vptr load == global vtable.
2748   void EmitVTableAssumptionLoad(const VPtr &vptr, Address This);
2749 
2750   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
2751                                       Address This, Address Src,
2752                                       const CXXConstructExpr *E);
2753 
2754   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2755                                   const ArrayType *ArrayTy,
2756                                   Address ArrayPtr,
2757                                   const CXXConstructExpr *E,
2758                                   bool NewPointerIsChecked,
2759                                   bool ZeroInitialization = false);
2760 
2761   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2762                                   llvm::Value *NumElements,
2763                                   Address ArrayPtr,
2764                                   const CXXConstructExpr *E,
2765                                   bool NewPointerIsChecked,
2766                                   bool ZeroInitialization = false);
2767 
2768   static Destroyer destroyCXXObject;
2769 
2770   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
2771                              bool ForVirtualBase, bool Delegating, Address This,
2772                              QualType ThisTy);
2773 
2774   void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
2775                                llvm::Type *ElementTy, Address NewPtr,
2776                                llvm::Value *NumElements,
2777                                llvm::Value *AllocSizeWithoutCookie);
2778 
2779   void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
2780                         Address Ptr);
2781 
2782   llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr);
2783   void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr);
2784 
2785   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
2786   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
2787 
2788   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
2789                       QualType DeleteTy, llvm::Value *NumElements = nullptr,
2790                       CharUnits CookieSize = CharUnits());
2791 
2792   RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
2793                                   const CallExpr *TheCallExpr, bool IsDelete);
2794 
2795   llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E);
2796   llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE);
2797   Address EmitCXXUuidofExpr(const CXXUuidofExpr *E);
2798 
2799   /// Situations in which we might emit a check for the suitability of a
2800   /// pointer or glvalue. Needs to be kept in sync with ubsan_handlers.cpp in
2801   /// compiler-rt.
2802   enum TypeCheckKind {
2803     /// Checking the operand of a load. Must be suitably sized and aligned.
2804     TCK_Load,
2805     /// Checking the destination of a store. Must be suitably sized and aligned.
2806     TCK_Store,
2807     /// Checking the bound value in a reference binding. Must be suitably sized
2808     /// and aligned, but is not required to refer to an object (until the
2809     /// reference is used), per core issue 453.
2810     TCK_ReferenceBinding,
2811     /// Checking the object expression in a non-static data member access. Must
2812     /// be an object within its lifetime.
2813     TCK_MemberAccess,
2814     /// Checking the 'this' pointer for a call to a non-static member function.
2815     /// Must be an object within its lifetime.
2816     TCK_MemberCall,
2817     /// Checking the 'this' pointer for a constructor call.
2818     TCK_ConstructorCall,
2819     /// Checking the operand of a static_cast to a derived pointer type. Must be
2820     /// null or an object within its lifetime.
2821     TCK_DowncastPointer,
2822     /// Checking the operand of a static_cast to a derived reference type. Must
2823     /// be an object within its lifetime.
2824     TCK_DowncastReference,
2825     /// Checking the operand of a cast to a base object. Must be suitably sized
2826     /// and aligned.
2827     TCK_Upcast,
2828     /// Checking the operand of a cast to a virtual base object. Must be an
2829     /// object within its lifetime.
2830     TCK_UpcastToVirtualBase,
2831     /// Checking the value assigned to a _Nonnull pointer. Must not be null.
2832     TCK_NonnullAssign,
2833     /// Checking the operand of a dynamic_cast or a typeid expression.  Must be
2834     /// null or an object within its lifetime.
2835     TCK_DynamicOperation
2836   };
2837 
2838   /// Determine whether the pointer type check \p TCK permits null pointers.
2839   static bool isNullPointerAllowed(TypeCheckKind TCK);
2840 
2841   /// Determine whether the pointer type check \p TCK requires a vptr check.
2842   static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty);
2843 
2844   /// Whether any type-checking sanitizers are enabled. If \c false,
2845   /// calls to EmitTypeCheck can be skipped.
2846   bool sanitizePerformTypeCheck() const;
2847 
2848   /// Emit a check that \p V is the address of storage of the
2849   /// appropriate size and alignment for an object of type \p Type
2850   /// (or if ArraySize is provided, for an array of that bound).
2851   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
2852                      QualType Type, CharUnits Alignment = CharUnits::Zero(),
2853                      SanitizerSet SkippedChecks = SanitizerSet(),
2854                      llvm::Value *ArraySize = nullptr);
2855 
2856   /// Emit a check that \p Base points into an array object, which
2857   /// we can access at index \p Index. \p Accessed should be \c false if we
2858   /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
2859   void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
2860                        QualType IndexType, bool Accessed);
2861 
2862   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2863                                        bool isInc, bool isPre);
2864   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
2865                                          bool isInc, bool isPre);
2866 
2867   /// Converts Location to a DebugLoc, if debug information is enabled.
2868   llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location);
2869 
2870   /// Get the record field index as represented in debug info.
2871   unsigned getDebugInfoFIndex(const RecordDecl *Rec, unsigned FieldIndex);
2872 
2873 
2874   //===--------------------------------------------------------------------===//
2875   //                            Declaration Emission
2876   //===--------------------------------------------------------------------===//
2877 
2878   /// EmitDecl - Emit a declaration.
2879   ///
2880   /// This function can be called with a null (unreachable) insert point.
2881   void EmitDecl(const Decl &D);
2882 
2883   /// EmitVarDecl - Emit a local variable declaration.
2884   ///
2885   /// This function can be called with a null (unreachable) insert point.
2886   void EmitVarDecl(const VarDecl &D);
2887 
2888   void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2889                       bool capturedByInit);
2890 
2891   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
2892                              llvm::Value *Address);
2893 
2894   /// Determine whether the given initializer is trivial in the sense
2895   /// that it requires no code to be generated.
2896   bool isTrivialInitializer(const Expr *Init);
2897 
2898   /// EmitAutoVarDecl - Emit an auto variable declaration.
2899   ///
2900   /// This function can be called with a null (unreachable) insert point.
2901   void EmitAutoVarDecl(const VarDecl &D);
2902 
2903   class AutoVarEmission {
2904     friend class CodeGenFunction;
2905 
2906     const VarDecl *Variable;
2907 
2908     /// The address of the alloca for languages with explicit address space
2909     /// (e.g. OpenCL) or alloca casted to generic pointer for address space
2910     /// agnostic languages (e.g. C++). Invalid if the variable was emitted
2911     /// as a global constant.
2912     Address Addr;
2913 
2914     llvm::Value *NRVOFlag;
2915 
2916     /// True if the variable is a __block variable that is captured by an
2917     /// escaping block.
2918     bool IsEscapingByRef;
2919 
2920     /// True if the variable is of aggregate type and has a constant
2921     /// initializer.
2922     bool IsConstantAggregate;
2923 
2924     /// Non-null if we should use lifetime annotations.
2925     llvm::Value *SizeForLifetimeMarkers;
2926 
2927     /// Address with original alloca instruction. Invalid if the variable was
2928     /// emitted as a global constant.
2929     Address AllocaAddr;
2930 
2931     struct Invalid {};
2932     AutoVarEmission(Invalid)
2933         : Variable(nullptr), Addr(Address::invalid()),
2934           AllocaAddr(Address::invalid()) {}
2935 
2936     AutoVarEmission(const VarDecl &variable)
2937         : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr),
2938           IsEscapingByRef(false), IsConstantAggregate(false),
2939           SizeForLifetimeMarkers(nullptr), AllocaAddr(Address::invalid()) {}
2940 
2941     bool wasEmittedAsGlobal() const { return !Addr.isValid(); }
2942 
2943   public:
2944     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
2945 
2946     bool useLifetimeMarkers() const {
2947       return SizeForLifetimeMarkers != nullptr;
2948     }
2949     llvm::Value *getSizeForLifetimeMarkers() const {
2950       assert(useLifetimeMarkers());
2951       return SizeForLifetimeMarkers;
2952     }
2953 
2954     /// Returns the raw, allocated address, which is not necessarily
2955     /// the address of the object itself. It is casted to default
2956     /// address space for address space agnostic languages.
2957     Address getAllocatedAddress() const {
2958       return Addr;
2959     }
2960 
2961     /// Returns the address for the original alloca instruction.
2962     Address getOriginalAllocatedAddress() const { return AllocaAddr; }
2963 
2964     /// Returns the address of the object within this declaration.
2965     /// Note that this does not chase the forwarding pointer for
2966     /// __block decls.
2967     Address getObjectAddress(CodeGenFunction &CGF) const {
2968       if (!IsEscapingByRef) return Addr;
2969 
2970       return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false);
2971     }
2972   };
2973   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
2974   void EmitAutoVarInit(const AutoVarEmission &emission);
2975   void EmitAutoVarCleanups(const AutoVarEmission &emission);
2976   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
2977                               QualType::DestructionKind dtorKind);
2978 
2979   /// Emits the alloca and debug information for the size expressions for each
2980   /// dimension of an array. It registers the association of its (1-dimensional)
2981   /// QualTypes and size expression's debug node, so that CGDebugInfo can
2982   /// reference this node when creating the DISubrange object to describe the
2983   /// array types.
2984   void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI,
2985                                               const VarDecl &D,
2986                                               bool EmitDebugInfo);
2987 
2988   void EmitStaticVarDecl(const VarDecl &D,
2989                          llvm::GlobalValue::LinkageTypes Linkage);
2990 
2991   class ParamValue {
2992     llvm::Value *Value;
2993     unsigned Alignment;
2994     ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {}
2995   public:
2996     static ParamValue forDirect(llvm::Value *value) {
2997       return ParamValue(value, 0);
2998     }
2999     static ParamValue forIndirect(Address addr) {
3000       assert(!addr.getAlignment().isZero());
3001       return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity());
3002     }
3003 
3004     bool isIndirect() const { return Alignment != 0; }
3005     llvm::Value *getAnyValue() const { return Value; }
3006 
3007     llvm::Value *getDirectValue() const {
3008       assert(!isIndirect());
3009       return Value;
3010     }
3011 
3012     Address getIndirectAddress() const {
3013       assert(isIndirect());
3014       return Address(Value, CharUnits::fromQuantity(Alignment));
3015     }
3016   };
3017 
3018   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
3019   void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo);
3020 
3021   /// protectFromPeepholes - Protect a value that we're intending to
3022   /// store to the side, but which will probably be used later, from
3023   /// aggressive peepholing optimizations that might delete it.
3024   ///
3025   /// Pass the result to unprotectFromPeepholes to declare that
3026   /// protection is no longer required.
3027   ///
3028   /// There's no particular reason why this shouldn't apply to
3029   /// l-values, it's just that no existing peepholes work on pointers.
3030   PeepholeProtection protectFromPeepholes(RValue rvalue);
3031   void unprotectFromPeepholes(PeepholeProtection protection);
3032 
3033   void emitAlignmentAssumptionCheck(llvm::Value *Ptr, QualType Ty,
3034                                     SourceLocation Loc,
3035                                     SourceLocation AssumptionLoc,
3036                                     llvm::Value *Alignment,
3037                                     llvm::Value *OffsetValue,
3038                                     llvm::Value *TheCheck,
3039                                     llvm::Instruction *Assumption);
3040 
3041   void emitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty,
3042                                SourceLocation Loc, SourceLocation AssumptionLoc,
3043                                llvm::Value *Alignment,
3044                                llvm::Value *OffsetValue = nullptr);
3045 
3046   void emitAlignmentAssumption(llvm::Value *PtrValue, const Expr *E,
3047                                SourceLocation AssumptionLoc,
3048                                llvm::Value *Alignment,
3049                                llvm::Value *OffsetValue = nullptr);
3050 
3051   //===--------------------------------------------------------------------===//
3052   //                             Statement Emission
3053   //===--------------------------------------------------------------------===//
3054 
3055   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
3056   void EmitStopPoint(const Stmt *S);
3057 
3058   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
3059   /// this function even if there is no current insertion point.
3060   ///
3061   /// This function may clear the current insertion point; callers should use
3062   /// EnsureInsertPoint if they wish to subsequently generate code without first
3063   /// calling EmitBlock, EmitBranch, or EmitStmt.
3064   void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None);
3065 
3066   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
3067   /// necessarily require an insertion point or debug information; typically
3068   /// because the statement amounts to a jump or a container of other
3069   /// statements.
3070   ///
3071   /// \return True if the statement was handled.
3072   bool EmitSimpleStmt(const Stmt *S);
3073 
3074   Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
3075                            AggValueSlot AVS = AggValueSlot::ignored());
3076   Address EmitCompoundStmtWithoutScope(const CompoundStmt &S,
3077                                        bool GetLast = false,
3078                                        AggValueSlot AVS =
3079                                                 AggValueSlot::ignored());
3080 
3081   /// EmitLabel - Emit the block for the given label. It is legal to call this
3082   /// function even if there is no current insertion point.
3083   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
3084 
3085   void EmitLabelStmt(const LabelStmt &S);
3086   void EmitAttributedStmt(const AttributedStmt &S);
3087   void EmitGotoStmt(const GotoStmt &S);
3088   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
3089   void EmitIfStmt(const IfStmt &S);
3090 
3091   void EmitWhileStmt(const WhileStmt &S,
3092                      ArrayRef<const Attr *> Attrs = None);
3093   void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None);
3094   void EmitForStmt(const ForStmt &S,
3095                    ArrayRef<const Attr *> Attrs = None);
3096   void EmitReturnStmt(const ReturnStmt &S);
3097   void EmitDeclStmt(const DeclStmt &S);
3098   void EmitBreakStmt(const BreakStmt &S);
3099   void EmitContinueStmt(const ContinueStmt &S);
3100   void EmitSwitchStmt(const SwitchStmt &S);
3101   void EmitDefaultStmt(const DefaultStmt &S);
3102   void EmitCaseStmt(const CaseStmt &S);
3103   void EmitCaseStmtRange(const CaseStmt &S);
3104   void EmitAsmStmt(const AsmStmt &S);
3105 
3106   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
3107   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
3108   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
3109   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
3110   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
3111 
3112   void EmitCoroutineBody(const CoroutineBodyStmt &S);
3113   void EmitCoreturnStmt(const CoreturnStmt &S);
3114   RValue EmitCoawaitExpr(const CoawaitExpr &E,
3115                          AggValueSlot aggSlot = AggValueSlot::ignored(),
3116                          bool ignoreResult = false);
3117   LValue EmitCoawaitLValue(const CoawaitExpr *E);
3118   RValue EmitCoyieldExpr(const CoyieldExpr &E,
3119                          AggValueSlot aggSlot = AggValueSlot::ignored(),
3120                          bool ignoreResult = false);
3121   LValue EmitCoyieldLValue(const CoyieldExpr *E);
3122   RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID);
3123 
3124   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
3125   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
3126 
3127   void EmitCXXTryStmt(const CXXTryStmt &S);
3128   void EmitSEHTryStmt(const SEHTryStmt &S);
3129   void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
3130   void EnterSEHTryStmt(const SEHTryStmt &S);
3131   void ExitSEHTryStmt(const SEHTryStmt &S);
3132 
3133   void pushSEHCleanup(CleanupKind kind,
3134                       llvm::Function *FinallyFunc);
3135   void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter,
3136                               const Stmt *OutlinedStmt);
3137 
3138   llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
3139                                             const SEHExceptStmt &Except);
3140 
3141   llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF,
3142                                              const SEHFinallyStmt &Finally);
3143 
3144   void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF,
3145                                 llvm::Value *ParentFP,
3146                                 llvm::Value *EntryEBP);
3147   llvm::Value *EmitSEHExceptionCode();
3148   llvm::Value *EmitSEHExceptionInfo();
3149   llvm::Value *EmitSEHAbnormalTermination();
3150 
3151   /// Emit simple code for OpenMP directives in Simd-only mode.
3152   void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D);
3153 
3154   /// Scan the outlined statement for captures from the parent function. For
3155   /// each capture, mark the capture as escaped and emit a call to
3156   /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap.
3157   void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
3158                           bool IsFilter);
3159 
3160   /// Recovers the address of a local in a parent function. ParentVar is the
3161   /// address of the variable used in the immediate parent function. It can
3162   /// either be an alloca or a call to llvm.localrecover if there are nested
3163   /// outlined functions. ParentFP is the frame pointer of the outermost parent
3164   /// frame.
3165   Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF,
3166                                     Address ParentVar,
3167                                     llvm::Value *ParentFP);
3168 
3169   void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
3170                            ArrayRef<const Attr *> Attrs = None);
3171 
3172   /// Controls insertion of cancellation exit blocks in worksharing constructs.
3173   class OMPCancelStackRAII {
3174     CodeGenFunction &CGF;
3175 
3176   public:
3177     OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
3178                        bool HasCancel)
3179         : CGF(CGF) {
3180       CGF.OMPCancelStack.enter(CGF, Kind, HasCancel);
3181     }
3182     ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); }
3183   };
3184 
3185   /// Returns calculated size of the specified type.
3186   llvm::Value *getTypeSize(QualType Ty);
3187   LValue InitCapturedStruct(const CapturedStmt &S);
3188   llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
3189   llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
3190   Address GenerateCapturedStmtArgument(const CapturedStmt &S);
3191   llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S,
3192                                                      SourceLocation Loc);
3193   void GenerateOpenMPCapturedVars(const CapturedStmt &S,
3194                                   SmallVectorImpl<llvm::Value *> &CapturedVars);
3195   void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy,
3196                           SourceLocation Loc);
3197   /// Perform element by element copying of arrays with type \a
3198   /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
3199   /// generated by \a CopyGen.
3200   ///
3201   /// \param DestAddr Address of the destination array.
3202   /// \param SrcAddr Address of the source array.
3203   /// \param OriginalType Type of destination and source arrays.
3204   /// \param CopyGen Copying procedure that copies value of single array element
3205   /// to another single array element.
3206   void EmitOMPAggregateAssign(
3207       Address DestAddr, Address SrcAddr, QualType OriginalType,
3208       const llvm::function_ref<void(Address, Address)> CopyGen);
3209   /// Emit proper copying of data from one variable to another.
3210   ///
3211   /// \param OriginalType Original type of the copied variables.
3212   /// \param DestAddr Destination address.
3213   /// \param SrcAddr Source address.
3214   /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
3215   /// type of the base array element).
3216   /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
3217   /// the base array element).
3218   /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
3219   /// DestVD.
3220   void EmitOMPCopy(QualType OriginalType,
3221                    Address DestAddr, Address SrcAddr,
3222                    const VarDecl *DestVD, const VarDecl *SrcVD,
3223                    const Expr *Copy);
3224   /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or
3225   /// \a X = \a E \a BO \a E.
3226   ///
3227   /// \param X Value to be updated.
3228   /// \param E Update value.
3229   /// \param BO Binary operation for update operation.
3230   /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
3231   /// expression, false otherwise.
3232   /// \param AO Atomic ordering of the generated atomic instructions.
3233   /// \param CommonGen Code generator for complex expressions that cannot be
3234   /// expressed through atomicrmw instruction.
3235   /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was
3236   /// generated, <false, RValue::get(nullptr)> otherwise.
3237   std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr(
3238       LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
3239       llvm::AtomicOrdering AO, SourceLocation Loc,
3240       const llvm::function_ref<RValue(RValue)> CommonGen);
3241   bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
3242                                  OMPPrivateScope &PrivateScope);
3243   void EmitOMPPrivateClause(const OMPExecutableDirective &D,
3244                             OMPPrivateScope &PrivateScope);
3245   void EmitOMPUseDevicePtrClause(
3246       const OMPUseDevicePtrClause &C, OMPPrivateScope &PrivateScope,
3247       const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap);
3248   void EmitOMPUseDeviceAddrClause(
3249       const OMPUseDeviceAddrClause &C, OMPPrivateScope &PrivateScope,
3250       const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap);
3251   /// Emit code for copyin clause in \a D directive. The next code is
3252   /// generated at the start of outlined functions for directives:
3253   /// \code
3254   /// threadprivate_var1 = master_threadprivate_var1;
3255   /// operator=(threadprivate_var2, master_threadprivate_var2);
3256   /// ...
3257   /// __kmpc_barrier(&loc, global_tid);
3258   /// \endcode
3259   ///
3260   /// \param D OpenMP directive possibly with 'copyin' clause(s).
3261   /// \returns true if at least one copyin variable is found, false otherwise.
3262   bool EmitOMPCopyinClause(const OMPExecutableDirective &D);
3263   /// Emit initial code for lastprivate variables. If some variable is
3264   /// not also firstprivate, then the default initialization is used. Otherwise
3265   /// initialization of this variable is performed by EmitOMPFirstprivateClause
3266   /// method.
3267   ///
3268   /// \param D Directive that may have 'lastprivate' directives.
3269   /// \param PrivateScope Private scope for capturing lastprivate variables for
3270   /// proper codegen in internal captured statement.
3271   ///
3272   /// \returns true if there is at least one lastprivate variable, false
3273   /// otherwise.
3274   bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D,
3275                                     OMPPrivateScope &PrivateScope);
3276   /// Emit final copying of lastprivate values to original variables at
3277   /// the end of the worksharing or simd directive.
3278   ///
3279   /// \param D Directive that has at least one 'lastprivate' directives.
3280   /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
3281   /// it is the last iteration of the loop code in associated directive, or to
3282   /// 'i1 false' otherwise. If this item is nullptr, no final check is required.
3283   void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D,
3284                                      bool NoFinals,
3285                                      llvm::Value *IsLastIterCond = nullptr);
3286   /// Emit initial code for linear clauses.
3287   void EmitOMPLinearClause(const OMPLoopDirective &D,
3288                            CodeGenFunction::OMPPrivateScope &PrivateScope);
3289   /// Emit final code for linear clauses.
3290   /// \param CondGen Optional conditional code for final part of codegen for
3291   /// linear clause.
3292   void EmitOMPLinearClauseFinal(
3293       const OMPLoopDirective &D,
3294       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
3295   /// Emit initial code for reduction variables. Creates reduction copies
3296   /// and initializes them with the values according to OpenMP standard.
3297   ///
3298   /// \param D Directive (possibly) with the 'reduction' clause.
3299   /// \param PrivateScope Private scope for capturing reduction variables for
3300   /// proper codegen in internal captured statement.
3301   ///
3302   void EmitOMPReductionClauseInit(const OMPExecutableDirective &D,
3303                                   OMPPrivateScope &PrivateScope,
3304                                   bool ForInscan = false);
3305   /// Emit final update of reduction values to original variables at
3306   /// the end of the directive.
3307   ///
3308   /// \param D Directive that has at least one 'reduction' directives.
3309   /// \param ReductionKind The kind of reduction to perform.
3310   void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D,
3311                                    const OpenMPDirectiveKind ReductionKind);
3312   /// Emit initial code for linear variables. Creates private copies
3313   /// and initializes them with the values according to OpenMP standard.
3314   ///
3315   /// \param D Directive (possibly) with the 'linear' clause.
3316   /// \return true if at least one linear variable is found that should be
3317   /// initialized with the value of the original variable, false otherwise.
3318   bool EmitOMPLinearClauseInit(const OMPLoopDirective &D);
3319 
3320   typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/,
3321                                         llvm::Function * /*OutlinedFn*/,
3322                                         const OMPTaskDataTy & /*Data*/)>
3323       TaskGenTy;
3324   void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S,
3325                                  const OpenMPDirectiveKind CapturedRegion,
3326                                  const RegionCodeGenTy &BodyGen,
3327                                  const TaskGenTy &TaskGen, OMPTaskDataTy &Data);
3328   struct OMPTargetDataInfo {
3329     Address BasePointersArray = Address::invalid();
3330     Address PointersArray = Address::invalid();
3331     Address SizesArray = Address::invalid();
3332     unsigned NumberOfTargetItems = 0;
3333     explicit OMPTargetDataInfo() = default;
3334     OMPTargetDataInfo(Address BasePointersArray, Address PointersArray,
3335                       Address SizesArray, unsigned NumberOfTargetItems)
3336         : BasePointersArray(BasePointersArray), PointersArray(PointersArray),
3337           SizesArray(SizesArray), NumberOfTargetItems(NumberOfTargetItems) {}
3338   };
3339   void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S,
3340                                        const RegionCodeGenTy &BodyGen,
3341                                        OMPTargetDataInfo &InputInfo);
3342 
3343   void EmitOMPParallelDirective(const OMPParallelDirective &S);
3344   void EmitOMPSimdDirective(const OMPSimdDirective &S);
3345   void EmitOMPForDirective(const OMPForDirective &S);
3346   void EmitOMPForSimdDirective(const OMPForSimdDirective &S);
3347   void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
3348   void EmitOMPSectionDirective(const OMPSectionDirective &S);
3349   void EmitOMPSingleDirective(const OMPSingleDirective &S);
3350   void EmitOMPMasterDirective(const OMPMasterDirective &S);
3351   void EmitOMPCriticalDirective(const OMPCriticalDirective &S);
3352   void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
3353   void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S);
3354   void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
3355   void EmitOMPParallelMasterDirective(const OMPParallelMasterDirective &S);
3356   void EmitOMPTaskDirective(const OMPTaskDirective &S);
3357   void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
3358   void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
3359   void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
3360   void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S);
3361   void EmitOMPFlushDirective(const OMPFlushDirective &S);
3362   void EmitOMPDepobjDirective(const OMPDepobjDirective &S);
3363   void EmitOMPScanDirective(const OMPScanDirective &S);
3364   void EmitOMPOrderedDirective(const OMPOrderedDirective &S);
3365   void EmitOMPAtomicDirective(const OMPAtomicDirective &S);
3366   void EmitOMPTargetDirective(const OMPTargetDirective &S);
3367   void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S);
3368   void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S);
3369   void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S);
3370   void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S);
3371   void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S);
3372   void
3373   EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S);
3374   void EmitOMPTeamsDirective(const OMPTeamsDirective &S);
3375   void
3376   EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S);
3377   void EmitOMPCancelDirective(const OMPCancelDirective &S);
3378   void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S);
3379   void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S);
3380   void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S);
3381   void EmitOMPMasterTaskLoopDirective(const OMPMasterTaskLoopDirective &S);
3382   void
3383   EmitOMPMasterTaskLoopSimdDirective(const OMPMasterTaskLoopSimdDirective &S);
3384   void EmitOMPParallelMasterTaskLoopDirective(
3385       const OMPParallelMasterTaskLoopDirective &S);
3386   void EmitOMPParallelMasterTaskLoopSimdDirective(
3387       const OMPParallelMasterTaskLoopSimdDirective &S);
3388   void EmitOMPDistributeDirective(const OMPDistributeDirective &S);
3389   void EmitOMPDistributeParallelForDirective(
3390       const OMPDistributeParallelForDirective &S);
3391   void EmitOMPDistributeParallelForSimdDirective(
3392       const OMPDistributeParallelForSimdDirective &S);
3393   void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S);
3394   void EmitOMPTargetParallelForSimdDirective(
3395       const OMPTargetParallelForSimdDirective &S);
3396   void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S);
3397   void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S);
3398   void
3399   EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S);
3400   void EmitOMPTeamsDistributeParallelForSimdDirective(
3401       const OMPTeamsDistributeParallelForSimdDirective &S);
3402   void EmitOMPTeamsDistributeParallelForDirective(
3403       const OMPTeamsDistributeParallelForDirective &S);
3404   void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S);
3405   void EmitOMPTargetTeamsDistributeDirective(
3406       const OMPTargetTeamsDistributeDirective &S);
3407   void EmitOMPTargetTeamsDistributeParallelForDirective(
3408       const OMPTargetTeamsDistributeParallelForDirective &S);
3409   void EmitOMPTargetTeamsDistributeParallelForSimdDirective(
3410       const OMPTargetTeamsDistributeParallelForSimdDirective &S);
3411   void EmitOMPTargetTeamsDistributeSimdDirective(
3412       const OMPTargetTeamsDistributeSimdDirective &S);
3413 
3414   /// Emit device code for the target directive.
3415   static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM,
3416                                           StringRef ParentName,
3417                                           const OMPTargetDirective &S);
3418   static void
3419   EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3420                                       const OMPTargetParallelDirective &S);
3421   /// Emit device code for the target parallel for directive.
3422   static void EmitOMPTargetParallelForDeviceFunction(
3423       CodeGenModule &CGM, StringRef ParentName,
3424       const OMPTargetParallelForDirective &S);
3425   /// Emit device code for the target parallel for simd directive.
3426   static void EmitOMPTargetParallelForSimdDeviceFunction(
3427       CodeGenModule &CGM, StringRef ParentName,
3428       const OMPTargetParallelForSimdDirective &S);
3429   /// Emit device code for the target teams directive.
3430   static void
3431   EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3432                                    const OMPTargetTeamsDirective &S);
3433   /// Emit device code for the target teams distribute directive.
3434   static void EmitOMPTargetTeamsDistributeDeviceFunction(
3435       CodeGenModule &CGM, StringRef ParentName,
3436       const OMPTargetTeamsDistributeDirective &S);
3437   /// Emit device code for the target teams distribute simd directive.
3438   static void EmitOMPTargetTeamsDistributeSimdDeviceFunction(
3439       CodeGenModule &CGM, StringRef ParentName,
3440       const OMPTargetTeamsDistributeSimdDirective &S);
3441   /// Emit device code for the target simd directive.
3442   static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM,
3443                                               StringRef ParentName,
3444                                               const OMPTargetSimdDirective &S);
3445   /// Emit device code for the target teams distribute parallel for simd
3446   /// directive.
3447   static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction(
3448       CodeGenModule &CGM, StringRef ParentName,
3449       const OMPTargetTeamsDistributeParallelForSimdDirective &S);
3450 
3451   static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction(
3452       CodeGenModule &CGM, StringRef ParentName,
3453       const OMPTargetTeamsDistributeParallelForDirective &S);
3454   /// Emit inner loop of the worksharing/simd construct.
3455   ///
3456   /// \param S Directive, for which the inner loop must be emitted.
3457   /// \param RequiresCleanup true, if directive has some associated private
3458   /// variables.
3459   /// \param LoopCond Bollean condition for loop continuation.
3460   /// \param IncExpr Increment expression for loop control variable.
3461   /// \param BodyGen Generator for the inner body of the inner loop.
3462   /// \param PostIncGen Genrator for post-increment code (required for ordered
3463   /// loop directvies).
3464   void EmitOMPInnerLoop(
3465       const OMPExecutableDirective &S, bool RequiresCleanup,
3466       const Expr *LoopCond, const Expr *IncExpr,
3467       const llvm::function_ref<void(CodeGenFunction &)> BodyGen,
3468       const llvm::function_ref<void(CodeGenFunction &)> PostIncGen);
3469 
3470   JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind);
3471   /// Emit initial code for loop counters of loop-based directives.
3472   void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S,
3473                                   OMPPrivateScope &LoopScope);
3474 
3475   /// Helper for the OpenMP loop directives.
3476   void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit);
3477 
3478   /// Emit code for the worksharing loop-based directive.
3479   /// \return true, if this construct has any lastprivate clause, false -
3480   /// otherwise.
3481   bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB,
3482                               const CodeGenLoopBoundsTy &CodeGenLoopBounds,
3483                               const CodeGenDispatchBoundsTy &CGDispatchBounds);
3484 
3485   /// Emit code for the distribute loop-based directive.
3486   void EmitOMPDistributeLoop(const OMPLoopDirective &S,
3487                              const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr);
3488 
3489   /// Helpers for the OpenMP loop directives.
3490   void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false);
3491   void EmitOMPSimdFinal(
3492       const OMPLoopDirective &D,
3493       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
3494 
3495   /// Emits the lvalue for the expression with possibly captured variable.
3496   LValue EmitOMPSharedLValue(const Expr *E);
3497 
3498 private:
3499   /// Helpers for blocks.
3500   llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
3501 
3502   /// struct with the values to be passed to the OpenMP loop-related functions
3503   struct OMPLoopArguments {
3504     /// loop lower bound
3505     Address LB = Address::invalid();
3506     /// loop upper bound
3507     Address UB = Address::invalid();
3508     /// loop stride
3509     Address ST = Address::invalid();
3510     /// isLastIteration argument for runtime functions
3511     Address IL = Address::invalid();
3512     /// Chunk value generated by sema
3513     llvm::Value *Chunk = nullptr;
3514     /// EnsureUpperBound
3515     Expr *EUB = nullptr;
3516     /// IncrementExpression
3517     Expr *IncExpr = nullptr;
3518     /// Loop initialization
3519     Expr *Init = nullptr;
3520     /// Loop exit condition
3521     Expr *Cond = nullptr;
3522     /// Update of LB after a whole chunk has been executed
3523     Expr *NextLB = nullptr;
3524     /// Update of UB after a whole chunk has been executed
3525     Expr *NextUB = nullptr;
3526     OMPLoopArguments() = default;
3527     OMPLoopArguments(Address LB, Address UB, Address ST, Address IL,
3528                      llvm::Value *Chunk = nullptr, Expr *EUB = nullptr,
3529                      Expr *IncExpr = nullptr, Expr *Init = nullptr,
3530                      Expr *Cond = nullptr, Expr *NextLB = nullptr,
3531                      Expr *NextUB = nullptr)
3532         : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB),
3533           IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB),
3534           NextUB(NextUB) {}
3535   };
3536   void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic,
3537                         const OMPLoopDirective &S, OMPPrivateScope &LoopScope,
3538                         const OMPLoopArguments &LoopArgs,
3539                         const CodeGenLoopTy &CodeGenLoop,
3540                         const CodeGenOrderedTy &CodeGenOrdered);
3541   void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind,
3542                            bool IsMonotonic, const OMPLoopDirective &S,
3543                            OMPPrivateScope &LoopScope, bool Ordered,
3544                            const OMPLoopArguments &LoopArgs,
3545                            const CodeGenDispatchBoundsTy &CGDispatchBounds);
3546   void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind,
3547                                   const OMPLoopDirective &S,
3548                                   OMPPrivateScope &LoopScope,
3549                                   const OMPLoopArguments &LoopArgs,
3550                                   const CodeGenLoopTy &CodeGenLoopContent);
3551   /// Emit code for sections directive.
3552   void EmitSections(const OMPExecutableDirective &S);
3553 
3554 public:
3555 
3556   //===--------------------------------------------------------------------===//
3557   //                         LValue Expression Emission
3558   //===--------------------------------------------------------------------===//
3559 
3560   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
3561   RValue GetUndefRValue(QualType Ty);
3562 
3563   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
3564   /// and issue an ErrorUnsupported style diagnostic (using the
3565   /// provided Name).
3566   RValue EmitUnsupportedRValue(const Expr *E,
3567                                const char *Name);
3568 
3569   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
3570   /// an ErrorUnsupported style diagnostic (using the provided Name).
3571   LValue EmitUnsupportedLValue(const Expr *E,
3572                                const char *Name);
3573 
3574   /// EmitLValue - Emit code to compute a designator that specifies the location
3575   /// of the expression.
3576   ///
3577   /// This can return one of two things: a simple address or a bitfield
3578   /// reference.  In either case, the LLVM Value* in the LValue structure is
3579   /// guaranteed to be an LLVM pointer type.
3580   ///
3581   /// If this returns a bitfield reference, nothing about the pointee type of
3582   /// the LLVM value is known: For example, it may not be a pointer to an
3583   /// integer.
3584   ///
3585   /// If this returns a normal address, and if the lvalue's C type is fixed
3586   /// size, this method guarantees that the returned pointer type will point to
3587   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
3588   /// variable length type, this is not possible.
3589   ///
3590   LValue EmitLValue(const Expr *E);
3591 
3592   /// Same as EmitLValue but additionally we generate checking code to
3593   /// guard against undefined behavior.  This is only suitable when we know
3594   /// that the address will be used to access the object.
3595   LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
3596 
3597   RValue convertTempToRValue(Address addr, QualType type,
3598                              SourceLocation Loc);
3599 
3600   void EmitAtomicInit(Expr *E, LValue lvalue);
3601 
3602   bool LValueIsSuitableForInlineAtomic(LValue Src);
3603 
3604   RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
3605                         AggValueSlot Slot = AggValueSlot::ignored());
3606 
3607   RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
3608                         llvm::AtomicOrdering AO, bool IsVolatile = false,
3609                         AggValueSlot slot = AggValueSlot::ignored());
3610 
3611   void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
3612 
3613   void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
3614                        bool IsVolatile, bool isInit);
3615 
3616   std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
3617       LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
3618       llvm::AtomicOrdering Success =
3619           llvm::AtomicOrdering::SequentiallyConsistent,
3620       llvm::AtomicOrdering Failure =
3621           llvm::AtomicOrdering::SequentiallyConsistent,
3622       bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
3623 
3624   void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
3625                         const llvm::function_ref<RValue(RValue)> &UpdateOp,
3626                         bool IsVolatile);
3627 
3628   /// EmitToMemory - Change a scalar value from its value
3629   /// representation to its in-memory representation.
3630   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
3631 
3632   /// EmitFromMemory - Change a scalar value from its memory
3633   /// representation to its value representation.
3634   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
3635 
3636   /// Check if the scalar \p Value is within the valid range for the given
3637   /// type \p Ty.
3638   ///
3639   /// Returns true if a check is needed (even if the range is unknown).
3640   bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
3641                             SourceLocation Loc);
3642 
3643   /// EmitLoadOfScalar - Load a scalar value from an address, taking
3644   /// care to appropriately convert from the memory representation to
3645   /// the LLVM value representation.
3646   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3647                                 SourceLocation Loc,
3648                                 AlignmentSource Source = AlignmentSource::Type,
3649                                 bool isNontemporal = false) {
3650     return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source),
3651                             CGM.getTBAAAccessInfo(Ty), isNontemporal);
3652   }
3653 
3654   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3655                                 SourceLocation Loc, LValueBaseInfo BaseInfo,
3656                                 TBAAAccessInfo TBAAInfo,
3657                                 bool isNontemporal = false);
3658 
3659   /// EmitLoadOfScalar - Load a scalar value from an address, taking
3660   /// care to appropriately convert from the memory representation to
3661   /// the LLVM value representation.  The l-value must be a simple
3662   /// l-value.
3663   llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
3664 
3665   /// EmitStoreOfScalar - Store a scalar value to an address, taking
3666   /// care to appropriately convert from the memory representation to
3667   /// the LLVM value representation.
3668   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3669                          bool Volatile, QualType Ty,
3670                          AlignmentSource Source = AlignmentSource::Type,
3671                          bool isInit = false, bool isNontemporal = false) {
3672     EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source),
3673                       CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal);
3674   }
3675 
3676   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3677                          bool Volatile, QualType Ty,
3678                          LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo,
3679                          bool isInit = false, bool isNontemporal = false);
3680 
3681   /// EmitStoreOfScalar - Store a scalar value to an address, taking
3682   /// care to appropriately convert from the memory representation to
3683   /// the LLVM value representation.  The l-value must be a simple
3684   /// l-value.  The isInit flag indicates whether this is an initialization.
3685   /// If so, atomic qualifiers are ignored and the store is always non-atomic.
3686   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
3687 
3688   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
3689   /// this method emits the address of the lvalue, then loads the result as an
3690   /// rvalue, returning the rvalue.
3691   RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
3692   RValue EmitLoadOfExtVectorElementLValue(LValue V);
3693   RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc);
3694   RValue EmitLoadOfGlobalRegLValue(LValue LV);
3695 
3696   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
3697   /// lvalue, where both are guaranteed to the have the same type, and that type
3698   /// is 'Ty'.
3699   void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
3700   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
3701   void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
3702 
3703   /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
3704   /// as EmitStoreThroughLValue.
3705   ///
3706   /// \param Result [out] - If non-null, this will be set to a Value* for the
3707   /// bit-field contents after the store, appropriate for use as the result of
3708   /// an assignment to the bit-field.
3709   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
3710                                       llvm::Value **Result=nullptr);
3711 
3712   /// Emit an l-value for an assignment (simple or compound) of complex type.
3713   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
3714   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
3715   LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
3716                                              llvm::Value *&Result);
3717 
3718   // Note: only available for agg return types
3719   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
3720   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
3721   // Note: only available for agg return types
3722   LValue EmitCallExprLValue(const CallExpr *E);
3723   // Note: only available for agg return types
3724   LValue EmitVAArgExprLValue(const VAArgExpr *E);
3725   LValue EmitDeclRefLValue(const DeclRefExpr *E);
3726   LValue EmitStringLiteralLValue(const StringLiteral *E);
3727   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
3728   LValue EmitPredefinedLValue(const PredefinedExpr *E);
3729   LValue EmitUnaryOpLValue(const UnaryOperator *E);
3730   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3731                                 bool Accessed = false);
3732   LValue EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E);
3733   LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3734                                  bool IsLowerBound = true);
3735   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
3736   LValue EmitMemberExpr(const MemberExpr *E);
3737   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
3738   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
3739   LValue EmitInitListLValue(const InitListExpr *E);
3740   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
3741   LValue EmitCastLValue(const CastExpr *E);
3742   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
3743   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
3744 
3745   Address EmitExtVectorElementLValue(LValue V);
3746 
3747   RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
3748 
3749   Address EmitArrayToPointerDecay(const Expr *Array,
3750                                   LValueBaseInfo *BaseInfo = nullptr,
3751                                   TBAAAccessInfo *TBAAInfo = nullptr);
3752 
3753   class ConstantEmission {
3754     llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
3755     ConstantEmission(llvm::Constant *C, bool isReference)
3756       : ValueAndIsReference(C, isReference) {}
3757   public:
3758     ConstantEmission() {}
3759     static ConstantEmission forReference(llvm::Constant *C) {
3760       return ConstantEmission(C, true);
3761     }
3762     static ConstantEmission forValue(llvm::Constant *C) {
3763       return ConstantEmission(C, false);
3764     }
3765 
3766     explicit operator bool() const {
3767       return ValueAndIsReference.getOpaqueValue() != nullptr;
3768     }
3769 
3770     bool isReference() const { return ValueAndIsReference.getInt(); }
3771     LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
3772       assert(isReference());
3773       return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
3774                                             refExpr->getType());
3775     }
3776 
3777     llvm::Constant *getValue() const {
3778       assert(!isReference());
3779       return ValueAndIsReference.getPointer();
3780     }
3781   };
3782 
3783   ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
3784   ConstantEmission tryEmitAsConstant(const MemberExpr *ME);
3785   llvm::Value *emitScalarConstant(const ConstantEmission &Constant, Expr *E);
3786 
3787   RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
3788                                 AggValueSlot slot = AggValueSlot::ignored());
3789   LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
3790 
3791   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3792                               const ObjCIvarDecl *Ivar);
3793   LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
3794   LValue EmitLValueForLambdaField(const FieldDecl *Field);
3795 
3796   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
3797   /// if the Field is a reference, this will return the address of the reference
3798   /// and not the address of the value stored in the reference.
3799   LValue EmitLValueForFieldInitialization(LValue Base,
3800                                           const FieldDecl* Field);
3801 
3802   LValue EmitLValueForIvar(QualType ObjectTy,
3803                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
3804                            unsigned CVRQualifiers);
3805 
3806   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
3807   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
3808   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
3809   LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
3810 
3811   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
3812   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
3813   LValue EmitStmtExprLValue(const StmtExpr *E);
3814   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
3815   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
3816   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init);
3817 
3818   //===--------------------------------------------------------------------===//
3819   //                         Scalar Expression Emission
3820   //===--------------------------------------------------------------------===//
3821 
3822   /// EmitCall - Generate a call of the given function, expecting the given
3823   /// result type, and using the given argument list which specifies both the
3824   /// LLVM arguments and the types they were derived from.
3825   RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
3826                   ReturnValueSlot ReturnValue, const CallArgList &Args,
3827                   llvm::CallBase **callOrInvoke, SourceLocation Loc);
3828   RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
3829                   ReturnValueSlot ReturnValue, const CallArgList &Args,
3830                   llvm::CallBase **callOrInvoke = nullptr) {
3831     return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke,
3832                     SourceLocation());
3833   }
3834   RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E,
3835                   ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr);
3836   RValue EmitCallExpr(const CallExpr *E,
3837                       ReturnValueSlot ReturnValue = ReturnValueSlot());
3838   RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
3839   CGCallee EmitCallee(const Expr *E);
3840 
3841   void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl);
3842   void checkTargetFeatures(SourceLocation Loc, const FunctionDecl *TargetDecl);
3843 
3844   llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee,
3845                                   const Twine &name = "");
3846   llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee,
3847                                   ArrayRef<llvm::Value *> args,
3848                                   const Twine &name = "");
3849   llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
3850                                           const Twine &name = "");
3851   llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
3852                                           ArrayRef<llvm::Value *> args,
3853                                           const Twine &name = "");
3854 
3855   SmallVector<llvm::OperandBundleDef, 1>
3856   getBundlesForFunclet(llvm::Value *Callee);
3857 
3858   llvm::CallBase *EmitCallOrInvoke(llvm::FunctionCallee Callee,
3859                                    ArrayRef<llvm::Value *> Args,
3860                                    const Twine &Name = "");
3861   llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
3862                                           ArrayRef<llvm::Value *> args,
3863                                           const Twine &name = "");
3864   llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
3865                                           const Twine &name = "");
3866   void EmitNoreturnRuntimeCallOrInvoke(llvm::FunctionCallee callee,
3867                                        ArrayRef<llvm::Value *> args);
3868 
3869   CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
3870                                      NestedNameSpecifier *Qual,
3871                                      llvm::Type *Ty);
3872 
3873   CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
3874                                                CXXDtorType Type,
3875                                                const CXXRecordDecl *RD);
3876 
3877   // Return the copy constructor name with the prefix "__copy_constructor_"
3878   // removed.
3879   static std::string getNonTrivialCopyConstructorStr(QualType QT,
3880                                                      CharUnits Alignment,
3881                                                      bool IsVolatile,
3882                                                      ASTContext &Ctx);
3883 
3884   // Return the destructor name with the prefix "__destructor_" removed.
3885   static std::string getNonTrivialDestructorStr(QualType QT,
3886                                                 CharUnits Alignment,
3887                                                 bool IsVolatile,
3888                                                 ASTContext &Ctx);
3889 
3890   // These functions emit calls to the special functions of non-trivial C
3891   // structs.
3892   void defaultInitNonTrivialCStructVar(LValue Dst);
3893   void callCStructDefaultConstructor(LValue Dst);
3894   void callCStructDestructor(LValue Dst);
3895   void callCStructCopyConstructor(LValue Dst, LValue Src);
3896   void callCStructMoveConstructor(LValue Dst, LValue Src);
3897   void callCStructCopyAssignmentOperator(LValue Dst, LValue Src);
3898   void callCStructMoveAssignmentOperator(LValue Dst, LValue Src);
3899 
3900   RValue
3901   EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method,
3902                               const CGCallee &Callee,
3903                               ReturnValueSlot ReturnValue, llvm::Value *This,
3904                               llvm::Value *ImplicitParam,
3905                               QualType ImplicitParamTy, const CallExpr *E,
3906                               CallArgList *RtlArgs);
3907   RValue EmitCXXDestructorCall(GlobalDecl Dtor, const CGCallee &Callee,
3908                                llvm::Value *This, QualType ThisTy,
3909                                llvm::Value *ImplicitParam,
3910                                QualType ImplicitParamTy, const CallExpr *E);
3911   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
3912                                ReturnValueSlot ReturnValue);
3913   RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE,
3914                                                const CXXMethodDecl *MD,
3915                                                ReturnValueSlot ReturnValue,
3916                                                bool HasQualifier,
3917                                                NestedNameSpecifier *Qualifier,
3918                                                bool IsArrow, const Expr *Base);
3919   // Compute the object pointer.
3920   Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
3921                                           llvm::Value *memberPtr,
3922                                           const MemberPointerType *memberPtrType,
3923                                           LValueBaseInfo *BaseInfo = nullptr,
3924                                           TBAAAccessInfo *TBAAInfo = nullptr);
3925   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
3926                                       ReturnValueSlot ReturnValue);
3927 
3928   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
3929                                        const CXXMethodDecl *MD,
3930                                        ReturnValueSlot ReturnValue);
3931   RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E);
3932 
3933   RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
3934                                 ReturnValueSlot ReturnValue);
3935 
3936   RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E,
3937                                        ReturnValueSlot ReturnValue);
3938   RValue EmitAMDGPUDevicePrintfCallExpr(const CallExpr *E,
3939                                         ReturnValueSlot ReturnValue);
3940 
3941   RValue EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID,
3942                          const CallExpr *E, ReturnValueSlot ReturnValue);
3943 
3944   RValue emitRotate(const CallExpr *E, bool IsRotateRight);
3945 
3946   /// Emit IR for __builtin_os_log_format.
3947   RValue emitBuiltinOSLogFormat(const CallExpr &E);
3948 
3949   /// Emit IR for __builtin_is_aligned.
3950   RValue EmitBuiltinIsAligned(const CallExpr *E);
3951   /// Emit IR for __builtin_align_up/__builtin_align_down.
3952   RValue EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp);
3953 
3954   llvm::Function *generateBuiltinOSLogHelperFunction(
3955       const analyze_os_log::OSLogBufferLayout &Layout,
3956       CharUnits BufferAlignment);
3957 
3958   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
3959 
3960   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
3961   /// is unhandled by the current target.
3962   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
3963                                      ReturnValueSlot ReturnValue);
3964 
3965   llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
3966                                              const llvm::CmpInst::Predicate Fp,
3967                                              const llvm::CmpInst::Predicate Ip,
3968                                              const llvm::Twine &Name = "");
3969   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
3970                                   ReturnValueSlot ReturnValue,
3971                                   llvm::Triple::ArchType Arch);
3972   llvm::Value *EmitARMMVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
3973                                      ReturnValueSlot ReturnValue,
3974                                      llvm::Triple::ArchType Arch);
3975   llvm::Value *EmitARMCDEBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
3976                                      ReturnValueSlot ReturnValue,
3977                                      llvm::Triple::ArchType Arch);
3978   llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::IntegerType *ITy,
3979                                    QualType RTy);
3980   llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::ArrayType *ATy,
3981                                    QualType RTy);
3982 
3983   llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
3984                                          unsigned LLVMIntrinsic,
3985                                          unsigned AltLLVMIntrinsic,
3986                                          const char *NameHint,
3987                                          unsigned Modifier,
3988                                          const CallExpr *E,
3989                                          SmallVectorImpl<llvm::Value *> &Ops,
3990                                          Address PtrOp0, Address PtrOp1,
3991                                          llvm::Triple::ArchType Arch);
3992 
3993   llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
3994                                           unsigned Modifier, llvm::Type *ArgTy,
3995                                           const CallExpr *E);
3996   llvm::Value *EmitNeonCall(llvm::Function *F,
3997                             SmallVectorImpl<llvm::Value*> &O,
3998                             const char *name,
3999                             unsigned shift = 0, bool rightshift = false);
4000   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx,
4001                              const llvm::ElementCount &Count);
4002   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
4003   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
4004                                    bool negateForRightShift);
4005   llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
4006                                  llvm::Type *Ty, bool usgn, const char *name);
4007   llvm::Value *vectorWrapScalar16(llvm::Value *Op);
4008   /// SVEBuiltinMemEltTy - Returns the memory element type for this memory
4009   /// access builtin.  Only required if it can't be inferred from the base
4010   /// pointer operand.
4011   llvm::Type *SVEBuiltinMemEltTy(SVETypeFlags TypeFlags);
4012 
4013   SmallVector<llvm::Type *, 2> getSVEOverloadTypes(SVETypeFlags TypeFlags,
4014                                                    llvm::Type *ReturnType,
4015                                                    ArrayRef<llvm::Value *> Ops);
4016   llvm::Type *getEltType(SVETypeFlags TypeFlags);
4017   llvm::ScalableVectorType *getSVEType(const SVETypeFlags &TypeFlags);
4018   llvm::ScalableVectorType *getSVEPredType(SVETypeFlags TypeFlags);
4019   llvm::Value *EmitSVEAllTruePred(SVETypeFlags TypeFlags);
4020   llvm::Value *EmitSVEDupX(llvm::Value *Scalar);
4021   llvm::Value *EmitSVEDupX(llvm::Value *Scalar, llvm::Type *Ty);
4022   llvm::Value *EmitSVEReinterpret(llvm::Value *Val, llvm::Type *Ty);
4023   llvm::Value *EmitSVEPMull(SVETypeFlags TypeFlags,
4024                             llvm::SmallVectorImpl<llvm::Value *> &Ops,
4025                             unsigned BuiltinID);
4026   llvm::Value *EmitSVEMovl(SVETypeFlags TypeFlags,
4027                            llvm::ArrayRef<llvm::Value *> Ops,
4028                            unsigned BuiltinID);
4029   llvm::Value *EmitSVEPredicateCast(llvm::Value *Pred,
4030                                     llvm::ScalableVectorType *VTy);
4031   llvm::Value *EmitSVEGatherLoad(SVETypeFlags TypeFlags,
4032                                  llvm::SmallVectorImpl<llvm::Value *> &Ops,
4033                                  unsigned IntID);
4034   llvm::Value *EmitSVEScatterStore(SVETypeFlags TypeFlags,
4035                                    llvm::SmallVectorImpl<llvm::Value *> &Ops,
4036                                    unsigned IntID);
4037   llvm::Value *EmitSVEMaskedLoad(const CallExpr *, llvm::Type *ReturnTy,
4038                                  SmallVectorImpl<llvm::Value *> &Ops,
4039                                  unsigned BuiltinID, bool IsZExtReturn);
4040   llvm::Value *EmitSVEMaskedStore(const CallExpr *,
4041                                   SmallVectorImpl<llvm::Value *> &Ops,
4042                                   unsigned BuiltinID);
4043   llvm::Value *EmitSVEPrefetchLoad(SVETypeFlags TypeFlags,
4044                                    SmallVectorImpl<llvm::Value *> &Ops,
4045                                    unsigned BuiltinID);
4046   llvm::Value *EmitSVEGatherPrefetch(SVETypeFlags TypeFlags,
4047                                      SmallVectorImpl<llvm::Value *> &Ops,
4048                                      unsigned IntID);
4049   llvm::Value *EmitSVEStructLoad(SVETypeFlags TypeFlags,
4050                                  SmallVectorImpl<llvm::Value *> &Ops, unsigned IntID);
4051   llvm::Value *EmitSVEStructStore(SVETypeFlags TypeFlags,
4052                                   SmallVectorImpl<llvm::Value *> &Ops,
4053                                   unsigned IntID);
4054   llvm::Value *EmitAArch64SVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4055 
4056   llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4057                                       llvm::Triple::ArchType Arch);
4058   llvm::Value *EmitBPFBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4059 
4060   llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
4061   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4062   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4063   llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4064   llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4065   llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4066   llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
4067                                           const CallExpr *E);
4068   llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4069   bool ProcessOrderScopeAMDGCN(llvm::Value *Order, llvm::Value *Scope,
4070                                llvm::AtomicOrdering &AO,
4071                                llvm::SyncScope::ID &SSID);
4072 
4073 private:
4074   enum class MSVCIntrin;
4075 
4076 public:
4077   llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E);
4078 
4079   llvm::Value *EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args);
4080 
4081   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
4082   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
4083   llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
4084   llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
4085   llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
4086   llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
4087                                 const ObjCMethodDecl *MethodWithObjects);
4088   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
4089   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
4090                              ReturnValueSlot Return = ReturnValueSlot());
4091 
4092   /// Retrieves the default cleanup kind for an ARC cleanup.
4093   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
4094   CleanupKind getARCCleanupKind() {
4095     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
4096              ? NormalAndEHCleanup : NormalCleanup;
4097   }
4098 
4099   // ARC primitives.
4100   void EmitARCInitWeak(Address addr, llvm::Value *value);
4101   void EmitARCDestroyWeak(Address addr);
4102   llvm::Value *EmitARCLoadWeak(Address addr);
4103   llvm::Value *EmitARCLoadWeakRetained(Address addr);
4104   llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored);
4105   void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
4106   void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
4107   void EmitARCCopyWeak(Address dst, Address src);
4108   void EmitARCMoveWeak(Address dst, Address src);
4109   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
4110   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
4111   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
4112                                   bool resultIgnored);
4113   llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value,
4114                                       bool resultIgnored);
4115   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
4116   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
4117   llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
4118   void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise);
4119   void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
4120   llvm::Value *EmitARCAutorelease(llvm::Value *value);
4121   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
4122   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
4123   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
4124   llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value);
4125 
4126   llvm::Value *EmitObjCAutorelease(llvm::Value *value, llvm::Type *returnType);
4127   llvm::Value *EmitObjCRetainNonBlock(llvm::Value *value,
4128                                       llvm::Type *returnType);
4129   void EmitObjCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
4130 
4131   std::pair<LValue,llvm::Value*>
4132   EmitARCStoreAutoreleasing(const BinaryOperator *e);
4133   std::pair<LValue,llvm::Value*>
4134   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
4135   std::pair<LValue,llvm::Value*>
4136   EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored);
4137 
4138   llvm::Value *EmitObjCAlloc(llvm::Value *value,
4139                              llvm::Type *returnType);
4140   llvm::Value *EmitObjCAllocWithZone(llvm::Value *value,
4141                                      llvm::Type *returnType);
4142   llvm::Value *EmitObjCAllocInit(llvm::Value *value, llvm::Type *resultType);
4143 
4144   llvm::Value *EmitObjCThrowOperand(const Expr *expr);
4145   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
4146   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
4147 
4148   llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
4149   llvm::Value *EmitARCReclaimReturnedObject(const Expr *e,
4150                                             bool allowUnsafeClaim);
4151   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
4152   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
4153   llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr);
4154 
4155   void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
4156 
4157   static Destroyer destroyARCStrongImprecise;
4158   static Destroyer destroyARCStrongPrecise;
4159   static Destroyer destroyARCWeak;
4160   static Destroyer emitARCIntrinsicUse;
4161   static Destroyer destroyNonTrivialCStruct;
4162 
4163   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
4164   llvm::Value *EmitObjCAutoreleasePoolPush();
4165   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
4166   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
4167   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
4168 
4169   /// Emits a reference binding to the passed in expression.
4170   RValue EmitReferenceBindingToExpr(const Expr *E);
4171 
4172   //===--------------------------------------------------------------------===//
4173   //                           Expression Emission
4174   //===--------------------------------------------------------------------===//
4175 
4176   // Expressions are broken into three classes: scalar, complex, aggregate.
4177 
4178   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
4179   /// scalar type, returning the result.
4180   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
4181 
4182   /// Emit a conversion from the specified type to the specified destination
4183   /// type, both of which are LLVM scalar types.
4184   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
4185                                     QualType DstTy, SourceLocation Loc);
4186 
4187   /// Emit a conversion from the specified complex type to the specified
4188   /// destination type, where the destination type is an LLVM scalar type.
4189   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
4190                                              QualType DstTy,
4191                                              SourceLocation Loc);
4192 
4193   /// EmitAggExpr - Emit the computation of the specified expression
4194   /// of aggregate type.  The result is computed into the given slot,
4195   /// which may be null to indicate that the value is not needed.
4196   void EmitAggExpr(const Expr *E, AggValueSlot AS);
4197 
4198   /// EmitAggExprToLValue - Emit the computation of the specified expression of
4199   /// aggregate type into a temporary LValue.
4200   LValue EmitAggExprToLValue(const Expr *E);
4201 
4202   /// Build all the stores needed to initialize an aggregate at Dest with the
4203   /// value Val.
4204   void EmitAggregateStore(llvm::Value *Val, Address Dest, bool DestIsVolatile);
4205 
4206   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
4207   /// make sure it survives garbage collection until this point.
4208   void EmitExtendGCLifetime(llvm::Value *object);
4209 
4210   /// EmitComplexExpr - Emit the computation of the specified expression of
4211   /// complex type, returning the result.
4212   ComplexPairTy EmitComplexExpr(const Expr *E,
4213                                 bool IgnoreReal = false,
4214                                 bool IgnoreImag = false);
4215 
4216   /// EmitComplexExprIntoLValue - Emit the given expression of complex
4217   /// type and place its result into the specified l-value.
4218   void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
4219 
4220   /// EmitStoreOfComplex - Store a complex number into the specified l-value.
4221   void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
4222 
4223   /// EmitLoadOfComplex - Load a complex number from the specified l-value.
4224   ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
4225 
4226   Address emitAddrOfRealComponent(Address complex, QualType complexType);
4227   Address emitAddrOfImagComponent(Address complex, QualType complexType);
4228 
4229   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
4230   /// global variable that has already been created for it.  If the initializer
4231   /// has a different type than GV does, this may free GV and return a different
4232   /// one.  Otherwise it just returns GV.
4233   llvm::GlobalVariable *
4234   AddInitializerToStaticVarDecl(const VarDecl &D,
4235                                 llvm::GlobalVariable *GV);
4236 
4237   // Emit an @llvm.invariant.start call for the given memory region.
4238   void EmitInvariantStart(llvm::Constant *Addr, CharUnits Size);
4239 
4240   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
4241   /// variable with global storage.
4242   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
4243                                 bool PerformInit);
4244 
4245   llvm::Function *createAtExitStub(const VarDecl &VD, llvm::FunctionCallee Dtor,
4246                                    llvm::Constant *Addr);
4247 
4248   /// Call atexit() with a function that passes the given argument to
4249   /// the given function.
4250   void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::FunctionCallee fn,
4251                                     llvm::Constant *addr);
4252 
4253   /// Call atexit() with function dtorStub.
4254   void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub);
4255 
4256   /// Call unatexit() with function dtorStub.
4257   llvm::Value *unregisterGlobalDtorWithUnAtExit(llvm::Function *dtorStub);
4258 
4259   /// Emit code in this function to perform a guarded variable
4260   /// initialization.  Guarded initializations are used when it's not
4261   /// possible to prove that an initialization will be done exactly
4262   /// once, e.g. with a static local variable or a static data member
4263   /// of a class template.
4264   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
4265                           bool PerformInit);
4266 
4267   enum class GuardKind { VariableGuard, TlsGuard };
4268 
4269   /// Emit a branch to select whether or not to perform guarded initialization.
4270   void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit,
4271                                 llvm::BasicBlock *InitBlock,
4272                                 llvm::BasicBlock *NoInitBlock,
4273                                 GuardKind Kind, const VarDecl *D);
4274 
4275   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
4276   /// variables.
4277   void
4278   GenerateCXXGlobalInitFunc(llvm::Function *Fn,
4279                             ArrayRef<llvm::Function *> CXXThreadLocals,
4280                             ConstantAddress Guard = ConstantAddress::invalid());
4281 
4282   /// GenerateCXXGlobalCleanUpFunc - Generates code for cleaning up global
4283   /// variables.
4284   void GenerateCXXGlobalCleanUpFunc(
4285       llvm::Function *Fn,
4286       const std::vector<std::tuple<llvm::FunctionType *, llvm::WeakTrackingVH,
4287                                    llvm::Constant *>> &DtorsOrStermFinalizers);
4288 
4289   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
4290                                         const VarDecl *D,
4291                                         llvm::GlobalVariable *Addr,
4292                                         bool PerformInit);
4293 
4294   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
4295 
4296   void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp);
4297 
4298   void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
4299 
4300   RValue EmitAtomicExpr(AtomicExpr *E);
4301 
4302   //===--------------------------------------------------------------------===//
4303   //                         Annotations Emission
4304   //===--------------------------------------------------------------------===//
4305 
4306   /// Emit an annotation call (intrinsic).
4307   llvm::Value *EmitAnnotationCall(llvm::Function *AnnotationFn,
4308                                   llvm::Value *AnnotatedVal,
4309                                   StringRef AnnotationStr,
4310                                   SourceLocation Location);
4311 
4312   /// Emit local annotations for the local variable V, declared by D.
4313   void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
4314 
4315   /// Emit field annotations for the given field & value. Returns the
4316   /// annotation result.
4317   Address EmitFieldAnnotations(const FieldDecl *D, Address V);
4318 
4319   //===--------------------------------------------------------------------===//
4320   //                             Internal Helpers
4321   //===--------------------------------------------------------------------===//
4322 
4323   /// ContainsLabel - Return true if the statement contains a label in it.  If
4324   /// this statement is not executed normally, it not containing a label means
4325   /// that we can just remove the code.
4326   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
4327 
4328   /// containsBreak - Return true if the statement contains a break out of it.
4329   /// If the statement (recursively) contains a switch or loop with a break
4330   /// inside of it, this is fine.
4331   static bool containsBreak(const Stmt *S);
4332 
4333   /// Determine if the given statement might introduce a declaration into the
4334   /// current scope, by being a (possibly-labelled) DeclStmt.
4335   static bool mightAddDeclToScope(const Stmt *S);
4336 
4337   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
4338   /// to a constant, or if it does but contains a label, return false.  If it
4339   /// constant folds return true and set the boolean result in Result.
4340   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result,
4341                                     bool AllowLabels = false);
4342 
4343   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
4344   /// to a constant, or if it does but contains a label, return false.  If it
4345   /// constant folds return true and set the folded value.
4346   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result,
4347                                     bool AllowLabels = false);
4348 
4349   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
4350   /// if statement) to the specified blocks.  Based on the condition, this might
4351   /// try to simplify the codegen of the conditional based on the branch.
4352   /// TrueCount should be the number of times we expect the condition to
4353   /// evaluate to true based on PGO data.
4354   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
4355                             llvm::BasicBlock *FalseBlock, uint64_t TrueCount);
4356 
4357   /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is
4358   /// nonnull, if \p LHS is marked _Nonnull.
4359   void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc);
4360 
4361   /// An enumeration which makes it easier to specify whether or not an
4362   /// operation is a subtraction.
4363   enum { NotSubtraction = false, IsSubtraction = true };
4364 
4365   /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to
4366   /// detect undefined behavior when the pointer overflow sanitizer is enabled.
4367   /// \p SignedIndices indicates whether any of the GEP indices are signed.
4368   /// \p IsSubtraction indicates whether the expression used to form the GEP
4369   /// is a subtraction.
4370   llvm::Value *EmitCheckedInBoundsGEP(llvm::Value *Ptr,
4371                                       ArrayRef<llvm::Value *> IdxList,
4372                                       bool SignedIndices,
4373                                       bool IsSubtraction,
4374                                       SourceLocation Loc,
4375                                       const Twine &Name = "");
4376 
4377   /// Specifies which type of sanitizer check to apply when handling a
4378   /// particular builtin.
4379   enum BuiltinCheckKind {
4380     BCK_CTZPassedZero,
4381     BCK_CLZPassedZero,
4382   };
4383 
4384   /// Emits an argument for a call to a builtin. If the builtin sanitizer is
4385   /// enabled, a runtime check specified by \p Kind is also emitted.
4386   llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind);
4387 
4388   /// Emit a description of a type in a format suitable for passing to
4389   /// a runtime sanitizer handler.
4390   llvm::Constant *EmitCheckTypeDescriptor(QualType T);
4391 
4392   /// Convert a value into a format suitable for passing to a runtime
4393   /// sanitizer handler.
4394   llvm::Value *EmitCheckValue(llvm::Value *V);
4395 
4396   /// Emit a description of a source location in a format suitable for
4397   /// passing to a runtime sanitizer handler.
4398   llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
4399 
4400   /// Create a basic block that will either trap or call a handler function in
4401   /// the UBSan runtime with the provided arguments, and create a conditional
4402   /// branch to it.
4403   void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
4404                  SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs,
4405                  ArrayRef<llvm::Value *> DynamicArgs);
4406 
4407   /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath
4408   /// if Cond if false.
4409   void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond,
4410                             llvm::ConstantInt *TypeId, llvm::Value *Ptr,
4411                             ArrayRef<llvm::Constant *> StaticArgs);
4412 
4413   /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime
4414   /// checking is enabled. Otherwise, just emit an unreachable instruction.
4415   void EmitUnreachable(SourceLocation Loc);
4416 
4417   /// Create a basic block that will call the trap intrinsic, and emit a
4418   /// conditional branch to it, for the -ftrapv checks.
4419   void EmitTrapCheck(llvm::Value *Checked);
4420 
4421   /// Emit a call to trap or debugtrap and attach function attribute
4422   /// "trap-func-name" if specified.
4423   llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID);
4424 
4425   /// Emit a stub for the cross-DSO CFI check function.
4426   void EmitCfiCheckStub();
4427 
4428   /// Emit a cross-DSO CFI failure handling function.
4429   void EmitCfiCheckFail();
4430 
4431   /// Create a check for a function parameter that may potentially be
4432   /// declared as non-null.
4433   void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc,
4434                            AbstractCallee AC, unsigned ParmNum);
4435 
4436   /// EmitCallArg - Emit a single call argument.
4437   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
4438 
4439   /// EmitDelegateCallArg - We are performing a delegate call; that
4440   /// is, the current function is delegating to another one.  Produce
4441   /// a r-value suitable for passing the given parameter.
4442   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
4443                            SourceLocation loc);
4444 
4445   /// SetFPAccuracy - Set the minimum required accuracy of the given floating
4446   /// point operation, expressed as the maximum relative error in ulp.
4447   void SetFPAccuracy(llvm::Value *Val, float Accuracy);
4448 
4449   /// SetFPModel - Control floating point behavior via fp-model settings.
4450   void SetFPModel();
4451 
4452   /// Set the codegen fast-math flags.
4453   void SetFastMathFlags(FPOptions FPFeatures);
4454 
4455 private:
4456   llvm::MDNode *getRangeForLoadFromType(QualType Ty);
4457   void EmitReturnOfRValue(RValue RV, QualType Ty);
4458 
4459   void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
4460 
4461   llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4>
4462   DeferredReplacements;
4463 
4464   /// Set the address of a local variable.
4465   void setAddrOfLocalVar(const VarDecl *VD, Address Addr) {
4466     assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!");
4467     LocalDeclMap.insert({VD, Addr});
4468   }
4469 
4470   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
4471   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
4472   ///
4473   /// \param AI - The first function argument of the expansion.
4474   void ExpandTypeFromArgs(QualType Ty, LValue Dst,
4475                           llvm::Function::arg_iterator &AI);
4476 
4477   /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg
4478   /// Ty, into individual arguments on the provided vector \arg IRCallArgs,
4479   /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand.
4480   void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
4481                         SmallVectorImpl<llvm::Value *> &IRCallArgs,
4482                         unsigned &IRCallArgPos);
4483 
4484   llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
4485                             const Expr *InputExpr, std::string &ConstraintStr);
4486 
4487   llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
4488                                   LValue InputValue, QualType InputType,
4489                                   std::string &ConstraintStr,
4490                                   SourceLocation Loc);
4491 
4492   /// Attempts to statically evaluate the object size of E. If that
4493   /// fails, emits code to figure the size of E out for us. This is
4494   /// pass_object_size aware.
4495   ///
4496   /// If EmittedExpr is non-null, this will use that instead of re-emitting E.
4497   llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
4498                                                llvm::IntegerType *ResType,
4499                                                llvm::Value *EmittedE,
4500                                                bool IsDynamic);
4501 
4502   /// Emits the size of E, as required by __builtin_object_size. This
4503   /// function is aware of pass_object_size parameters, and will act accordingly
4504   /// if E is a parameter with the pass_object_size attribute.
4505   llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type,
4506                                      llvm::IntegerType *ResType,
4507                                      llvm::Value *EmittedE,
4508                                      bool IsDynamic);
4509 
4510   void emitZeroOrPatternForAutoVarInit(QualType type, const VarDecl &D,
4511                                        Address Loc);
4512 
4513 public:
4514 #ifndef NDEBUG
4515   // Determine whether the given argument is an Objective-C method
4516   // that may have type parameters in its signature.
4517   static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) {
4518     const DeclContext *dc = method->getDeclContext();
4519     if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) {
4520       return classDecl->getTypeParamListAsWritten();
4521     }
4522 
4523     if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) {
4524       return catDecl->getTypeParamList();
4525     }
4526 
4527     return false;
4528   }
4529 
4530   template<typename T>
4531   static bool isObjCMethodWithTypeParams(const T *) { return false; }
4532 #endif
4533 
4534   enum class EvaluationOrder {
4535     ///! No language constraints on evaluation order.
4536     Default,
4537     ///! Language semantics require left-to-right evaluation.
4538     ForceLeftToRight,
4539     ///! Language semantics require right-to-left evaluation.
4540     ForceRightToLeft
4541   };
4542 
4543   /// EmitCallArgs - Emit call arguments for a function.
4544   template <typename T>
4545   void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo,
4546                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
4547                     AbstractCallee AC = AbstractCallee(),
4548                     unsigned ParamsToSkip = 0,
4549                     EvaluationOrder Order = EvaluationOrder::Default) {
4550     SmallVector<QualType, 16> ArgTypes;
4551     CallExpr::const_arg_iterator Arg = ArgRange.begin();
4552 
4553     assert((ParamsToSkip == 0 || CallArgTypeInfo) &&
4554            "Can't skip parameters if type info is not provided");
4555     if (CallArgTypeInfo) {
4556 #ifndef NDEBUG
4557       bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo);
4558 #endif
4559 
4560       // First, use the argument types that the type info knows about
4561       for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip,
4562                 E = CallArgTypeInfo->param_type_end();
4563            I != E; ++I, ++Arg) {
4564         assert(Arg != ArgRange.end() && "Running over edge of argument list!");
4565         assert((isGenericMethod ||
4566                 ((*I)->isVariablyModifiedType() ||
4567                  (*I).getNonReferenceType()->isObjCRetainableType() ||
4568                  getContext()
4569                          .getCanonicalType((*I).getNonReferenceType())
4570                          .getTypePtr() ==
4571                      getContext()
4572                          .getCanonicalType((*Arg)->getType())
4573                          .getTypePtr())) &&
4574                "type mismatch in call argument!");
4575         ArgTypes.push_back(*I);
4576       }
4577     }
4578 
4579     // Either we've emitted all the call args, or we have a call to variadic
4580     // function.
4581     assert((Arg == ArgRange.end() || !CallArgTypeInfo ||
4582             CallArgTypeInfo->isVariadic()) &&
4583            "Extra arguments in non-variadic function!");
4584 
4585     // If we still have any arguments, emit them using the type of the argument.
4586     for (auto *A : llvm::make_range(Arg, ArgRange.end()))
4587       ArgTypes.push_back(CallArgTypeInfo ? getVarArgType(A) : A->getType());
4588 
4589     EmitCallArgs(Args, ArgTypes, ArgRange, AC, ParamsToSkip, Order);
4590   }
4591 
4592   void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes,
4593                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
4594                     AbstractCallee AC = AbstractCallee(),
4595                     unsigned ParamsToSkip = 0,
4596                     EvaluationOrder Order = EvaluationOrder::Default);
4597 
4598   /// EmitPointerWithAlignment - Given an expression with a pointer type,
4599   /// emit the value and compute our best estimate of the alignment of the
4600   /// pointee.
4601   ///
4602   /// \param BaseInfo - If non-null, this will be initialized with
4603   /// information about the source of the alignment and the may-alias
4604   /// attribute.  Note that this function will conservatively fall back on
4605   /// the type when it doesn't recognize the expression and may-alias will
4606   /// be set to false.
4607   ///
4608   /// One reasonable way to use this information is when there's a language
4609   /// guarantee that the pointer must be aligned to some stricter value, and
4610   /// we're simply trying to ensure that sufficiently obvious uses of under-
4611   /// aligned objects don't get miscompiled; for example, a placement new
4612   /// into the address of a local variable.  In such a case, it's quite
4613   /// reasonable to just ignore the returned alignment when it isn't from an
4614   /// explicit source.
4615   Address EmitPointerWithAlignment(const Expr *Addr,
4616                                    LValueBaseInfo *BaseInfo = nullptr,
4617                                    TBAAAccessInfo *TBAAInfo = nullptr);
4618 
4619   /// If \p E references a parameter with pass_object_size info or a constant
4620   /// array size modifier, emit the object size divided by the size of \p EltTy.
4621   /// Otherwise return null.
4622   llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy);
4623 
4624   void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK);
4625 
4626   struct MultiVersionResolverOption {
4627     llvm::Function *Function;
4628     FunctionDecl *FD;
4629     struct Conds {
4630       StringRef Architecture;
4631       llvm::SmallVector<StringRef, 8> Features;
4632 
4633       Conds(StringRef Arch, ArrayRef<StringRef> Feats)
4634           : Architecture(Arch), Features(Feats.begin(), Feats.end()) {}
4635     } Conditions;
4636 
4637     MultiVersionResolverOption(llvm::Function *F, StringRef Arch,
4638                                ArrayRef<StringRef> Feats)
4639         : Function(F), Conditions(Arch, Feats) {}
4640   };
4641 
4642   // Emits the body of a multiversion function's resolver. Assumes that the
4643   // options are already sorted in the proper order, with the 'default' option
4644   // last (if it exists).
4645   void EmitMultiVersionResolver(llvm::Function *Resolver,
4646                                 ArrayRef<MultiVersionResolverOption> Options);
4647 
4648   static uint64_t GetX86CpuSupportsMask(ArrayRef<StringRef> FeatureStrs);
4649 
4650 private:
4651   QualType getVarArgType(const Expr *Arg);
4652 
4653   void EmitDeclMetadata();
4654 
4655   BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType,
4656                                   const AutoVarEmission &emission);
4657 
4658   void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
4659 
4660   llvm::Value *GetValueForARMHint(unsigned BuiltinID);
4661   llvm::Value *EmitX86CpuIs(const CallExpr *E);
4662   llvm::Value *EmitX86CpuIs(StringRef CPUStr);
4663   llvm::Value *EmitX86CpuSupports(const CallExpr *E);
4664   llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs);
4665   llvm::Value *EmitX86CpuSupports(uint64_t Mask);
4666   llvm::Value *EmitX86CpuInit();
4667   llvm::Value *FormResolverCondition(const MultiVersionResolverOption &RO);
4668 };
4669 
4670 inline DominatingLLVMValue::saved_type
4671 DominatingLLVMValue::save(CodeGenFunction &CGF, llvm::Value *value) {
4672   if (!needsSaving(value)) return saved_type(value, false);
4673 
4674   // Otherwise, we need an alloca.
4675   auto align = CharUnits::fromQuantity(
4676             CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType()));
4677   Address alloca =
4678     CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save");
4679   CGF.Builder.CreateStore(value, alloca);
4680 
4681   return saved_type(alloca.getPointer(), true);
4682 }
4683 
4684 inline llvm::Value *DominatingLLVMValue::restore(CodeGenFunction &CGF,
4685                                                  saved_type value) {
4686   // If the value says it wasn't saved, trust that it's still dominating.
4687   if (!value.getInt()) return value.getPointer();
4688 
4689   // Otherwise, it should be an alloca instruction, as set up in save().
4690   auto alloca = cast<llvm::AllocaInst>(value.getPointer());
4691   return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlign());
4692 }
4693 
4694 }  // end namespace CodeGen
4695 
4696 // Map the LangOption for floating point exception behavior into
4697 // the corresponding enum in the IR.
4698 llvm::fp::ExceptionBehavior
4699 ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind);
4700 }  // end namespace clang
4701 
4702 #endif
4703