1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the internal per-function state used for llvm translation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 14 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 15 16 #include "CGBuilder.h" 17 #include "CGDebugInfo.h" 18 #include "CGLoopInfo.h" 19 #include "CGValue.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenPGO.h" 22 #include "EHScopeStack.h" 23 #include "VarBypassDetector.h" 24 #include "clang/AST/CharUnits.h" 25 #include "clang/AST/CurrentSourceLocExprScope.h" 26 #include "clang/AST/ExprCXX.h" 27 #include "clang/AST/ExprObjC.h" 28 #include "clang/AST/ExprOpenMP.h" 29 #include "clang/AST/Type.h" 30 #include "clang/Basic/ABI.h" 31 #include "clang/Basic/CapturedStmt.h" 32 #include "clang/Basic/CodeGenOptions.h" 33 #include "clang/Basic/OpenMPKinds.h" 34 #include "clang/Basic/TargetInfo.h" 35 #include "llvm/ADT/ArrayRef.h" 36 #include "llvm/ADT/DenseMap.h" 37 #include "llvm/ADT/MapVector.h" 38 #include "llvm/ADT/SmallVector.h" 39 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 40 #include "llvm/IR/ValueHandle.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Transforms/Utils/SanitizerStats.h" 43 44 namespace llvm { 45 class BasicBlock; 46 class LLVMContext; 47 class MDNode; 48 class Module; 49 class SwitchInst; 50 class Twine; 51 class Value; 52 } 53 54 namespace clang { 55 class ASTContext; 56 class BlockDecl; 57 class CXXDestructorDecl; 58 class CXXForRangeStmt; 59 class CXXTryStmt; 60 class Decl; 61 class LabelDecl; 62 class EnumConstantDecl; 63 class FunctionDecl; 64 class FunctionProtoType; 65 class LabelStmt; 66 class ObjCContainerDecl; 67 class ObjCInterfaceDecl; 68 class ObjCIvarDecl; 69 class ObjCMethodDecl; 70 class ObjCImplementationDecl; 71 class ObjCPropertyImplDecl; 72 class TargetInfo; 73 class VarDecl; 74 class ObjCForCollectionStmt; 75 class ObjCAtTryStmt; 76 class ObjCAtThrowStmt; 77 class ObjCAtSynchronizedStmt; 78 class ObjCAutoreleasePoolStmt; 79 class ReturnsNonNullAttr; 80 class SVETypeFlags; 81 82 namespace analyze_os_log { 83 class OSLogBufferLayout; 84 } 85 86 namespace CodeGen { 87 class CodeGenTypes; 88 class CGCallee; 89 class CGFunctionInfo; 90 class CGRecordLayout; 91 class CGBlockInfo; 92 class CGCXXABI; 93 class BlockByrefHelpers; 94 class BlockByrefInfo; 95 class BlockFlags; 96 class BlockFieldFlags; 97 class RegionCodeGenTy; 98 class TargetCodeGenInfo; 99 struct OMPTaskDataTy; 100 struct CGCoroData; 101 102 /// The kind of evaluation to perform on values of a particular 103 /// type. Basically, is the code in CGExprScalar, CGExprComplex, or 104 /// CGExprAgg? 105 /// 106 /// TODO: should vectors maybe be split out into their own thing? 107 enum TypeEvaluationKind { 108 TEK_Scalar, 109 TEK_Complex, 110 TEK_Aggregate 111 }; 112 113 #define LIST_SANITIZER_CHECKS \ 114 SANITIZER_CHECK(AddOverflow, add_overflow, 0) \ 115 SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0) \ 116 SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0) \ 117 SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0) \ 118 SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0) \ 119 SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0) \ 120 SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 1) \ 121 SANITIZER_CHECK(ImplicitConversion, implicit_conversion, 0) \ 122 SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0) \ 123 SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0) \ 124 SANITIZER_CHECK(MissingReturn, missing_return, 0) \ 125 SANITIZER_CHECK(MulOverflow, mul_overflow, 0) \ 126 SANITIZER_CHECK(NegateOverflow, negate_overflow, 0) \ 127 SANITIZER_CHECK(NullabilityArg, nullability_arg, 0) \ 128 SANITIZER_CHECK(NullabilityReturn, nullability_return, 1) \ 129 SANITIZER_CHECK(NonnullArg, nonnull_arg, 0) \ 130 SANITIZER_CHECK(NonnullReturn, nonnull_return, 1) \ 131 SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0) \ 132 SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0) \ 133 SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0) \ 134 SANITIZER_CHECK(SubOverflow, sub_overflow, 0) \ 135 SANITIZER_CHECK(TypeMismatch, type_mismatch, 1) \ 136 SANITIZER_CHECK(AlignmentAssumption, alignment_assumption, 0) \ 137 SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0) 138 139 enum SanitizerHandler { 140 #define SANITIZER_CHECK(Enum, Name, Version) Enum, 141 LIST_SANITIZER_CHECKS 142 #undef SANITIZER_CHECK 143 }; 144 145 /// Helper class with most of the code for saving a value for a 146 /// conditional expression cleanup. 147 struct DominatingLLVMValue { 148 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 149 150 /// Answer whether the given value needs extra work to be saved. 151 static bool needsSaving(llvm::Value *value) { 152 // If it's not an instruction, we don't need to save. 153 if (!isa<llvm::Instruction>(value)) return false; 154 155 // If it's an instruction in the entry block, we don't need to save. 156 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 157 return (block != &block->getParent()->getEntryBlock()); 158 } 159 160 static saved_type save(CodeGenFunction &CGF, llvm::Value *value); 161 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value); 162 }; 163 164 /// A partial specialization of DominatingValue for llvm::Values that 165 /// might be llvm::Instructions. 166 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 167 typedef T *type; 168 static type restore(CodeGenFunction &CGF, saved_type value) { 169 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 170 } 171 }; 172 173 /// A specialization of DominatingValue for Address. 174 template <> struct DominatingValue<Address> { 175 typedef Address type; 176 177 struct saved_type { 178 DominatingLLVMValue::saved_type SavedValue; 179 CharUnits Alignment; 180 }; 181 182 static bool needsSaving(type value) { 183 return DominatingLLVMValue::needsSaving(value.getPointer()); 184 } 185 static saved_type save(CodeGenFunction &CGF, type value) { 186 return { DominatingLLVMValue::save(CGF, value.getPointer()), 187 value.getAlignment() }; 188 } 189 static type restore(CodeGenFunction &CGF, saved_type value) { 190 return Address(DominatingLLVMValue::restore(CGF, value.SavedValue), 191 value.Alignment); 192 } 193 }; 194 195 /// A specialization of DominatingValue for RValue. 196 template <> struct DominatingValue<RValue> { 197 typedef RValue type; 198 class saved_type { 199 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 200 AggregateAddress, ComplexAddress }; 201 202 llvm::Value *Value; 203 unsigned K : 3; 204 unsigned Align : 29; 205 saved_type(llvm::Value *v, Kind k, unsigned a = 0) 206 : Value(v), K(k), Align(a) {} 207 208 public: 209 static bool needsSaving(RValue value); 210 static saved_type save(CodeGenFunction &CGF, RValue value); 211 RValue restore(CodeGenFunction &CGF); 212 213 // implementations in CGCleanup.cpp 214 }; 215 216 static bool needsSaving(type value) { 217 return saved_type::needsSaving(value); 218 } 219 static saved_type save(CodeGenFunction &CGF, type value) { 220 return saved_type::save(CGF, value); 221 } 222 static type restore(CodeGenFunction &CGF, saved_type value) { 223 return value.restore(CGF); 224 } 225 }; 226 227 /// CodeGenFunction - This class organizes the per-function state that is used 228 /// while generating LLVM code. 229 class CodeGenFunction : public CodeGenTypeCache { 230 CodeGenFunction(const CodeGenFunction &) = delete; 231 void operator=(const CodeGenFunction &) = delete; 232 233 friend class CGCXXABI; 234 public: 235 /// A jump destination is an abstract label, branching to which may 236 /// require a jump out through normal cleanups. 237 struct JumpDest { 238 JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {} 239 JumpDest(llvm::BasicBlock *Block, 240 EHScopeStack::stable_iterator Depth, 241 unsigned Index) 242 : Block(Block), ScopeDepth(Depth), Index(Index) {} 243 244 bool isValid() const { return Block != nullptr; } 245 llvm::BasicBlock *getBlock() const { return Block; } 246 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 247 unsigned getDestIndex() const { return Index; } 248 249 // This should be used cautiously. 250 void setScopeDepth(EHScopeStack::stable_iterator depth) { 251 ScopeDepth = depth; 252 } 253 254 private: 255 llvm::BasicBlock *Block; 256 EHScopeStack::stable_iterator ScopeDepth; 257 unsigned Index; 258 }; 259 260 // Helper class for the OpenMP IR Builder. Allows reusability of code used for 261 // region body, and finalization codegen callbacks. This will class will also 262 // contain privatization functions used by the privatization call backs 263 struct OMPBuilderCBHelpers { 264 265 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 266 267 /// Emit the Finalization for an OMP region 268 /// \param CGF The Codegen function this belongs to 269 /// \param IP Insertion point for generating the finalization code. 270 static void FinalizeOMPRegion(CodeGenFunction &CGF, InsertPointTy IP) { 271 CGBuilderTy::InsertPointGuard IPG(CGF.Builder); 272 assert(IP.getBlock()->end() != IP.getPoint() && 273 "OpenMP IR Builder should cause terminated block!"); 274 275 llvm::BasicBlock *IPBB = IP.getBlock(); 276 llvm::BasicBlock *DestBB = IPBB->getUniqueSuccessor(); 277 assert(DestBB && "Finalization block should have one successor!"); 278 279 // erase and replace with cleanup branch. 280 IPBB->getTerminator()->eraseFromParent(); 281 CGF.Builder.SetInsertPoint(IPBB); 282 CodeGenFunction::JumpDest Dest = CGF.getJumpDestInCurrentScope(DestBB); 283 CGF.EmitBranchThroughCleanup(Dest); 284 } 285 286 /// Emit the body of an OMP region 287 /// \param CGF The Codegen function this belongs to 288 /// \param RegionBodyStmt The body statement for the OpenMP region being 289 /// generated 290 /// \param CodeGenIP Insertion point for generating the body code. 291 /// \param FiniBB The finalization basic block 292 static void EmitOMPRegionBody(CodeGenFunction &CGF, 293 const Stmt *RegionBodyStmt, 294 InsertPointTy CodeGenIP, 295 llvm::BasicBlock &FiniBB) { 296 llvm::BasicBlock *CodeGenIPBB = CodeGenIP.getBlock(); 297 if (llvm::Instruction *CodeGenIPBBTI = CodeGenIPBB->getTerminator()) 298 CodeGenIPBBTI->eraseFromParent(); 299 300 CGF.Builder.SetInsertPoint(CodeGenIPBB); 301 302 CGF.EmitStmt(RegionBodyStmt); 303 304 if (CGF.Builder.saveIP().isSet()) 305 CGF.Builder.CreateBr(&FiniBB); 306 } 307 308 /// RAII for preserving necessary info during Outlined region body codegen. 309 class OutlinedRegionBodyRAII { 310 311 llvm::AssertingVH<llvm::Instruction> OldAllocaIP; 312 CodeGenFunction::JumpDest OldReturnBlock; 313 CodeGenFunction &CGF; 314 315 public: 316 OutlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP, 317 llvm::BasicBlock &RetBB) 318 : CGF(cgf) { 319 assert(AllocaIP.isSet() && 320 "Must specify Insertion point for allocas of outlined function"); 321 OldAllocaIP = CGF.AllocaInsertPt; 322 CGF.AllocaInsertPt = &*AllocaIP.getPoint(); 323 324 OldReturnBlock = CGF.ReturnBlock; 325 CGF.ReturnBlock = CGF.getJumpDestInCurrentScope(&RetBB); 326 } 327 328 ~OutlinedRegionBodyRAII() { 329 CGF.AllocaInsertPt = OldAllocaIP; 330 CGF.ReturnBlock = OldReturnBlock; 331 } 332 }; 333 334 /// RAII for preserving necessary info during inlined region body codegen. 335 class InlinedRegionBodyRAII { 336 337 llvm::AssertingVH<llvm::Instruction> OldAllocaIP; 338 CodeGenFunction &CGF; 339 340 public: 341 InlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP, 342 llvm::BasicBlock &FiniBB) 343 : CGF(cgf) { 344 // Alloca insertion block should be in the entry block of the containing 345 // function so it expects an empty AllocaIP in which case will reuse the 346 // old alloca insertion point, or a new AllocaIP in the same block as 347 // the old one 348 assert((!AllocaIP.isSet() || 349 CGF.AllocaInsertPt->getParent() == AllocaIP.getBlock()) && 350 "Insertion point should be in the entry block of containing " 351 "function!"); 352 OldAllocaIP = CGF.AllocaInsertPt; 353 if (AllocaIP.isSet()) 354 CGF.AllocaInsertPt = &*AllocaIP.getPoint(); 355 356 // TODO: Remove the call, after making sure the counter is not used by 357 // the EHStack. 358 // Since this is an inlined region, it should not modify the 359 // ReturnBlock, and should reuse the one for the enclosing outlined 360 // region. So, the JumpDest being return by the function is discarded 361 (void)CGF.getJumpDestInCurrentScope(&FiniBB); 362 } 363 364 ~InlinedRegionBodyRAII() { CGF.AllocaInsertPt = OldAllocaIP; } 365 }; 366 }; 367 368 CodeGenModule &CGM; // Per-module state. 369 const TargetInfo &Target; 370 371 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 372 LoopInfoStack LoopStack; 373 CGBuilderTy Builder; 374 375 // Stores variables for which we can't generate correct lifetime markers 376 // because of jumps. 377 VarBypassDetector Bypasses; 378 379 // CodeGen lambda for loops and support for ordered clause 380 typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &, 381 JumpDest)> 382 CodeGenLoopTy; 383 typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation, 384 const unsigned, const bool)> 385 CodeGenOrderedTy; 386 387 // Codegen lambda for loop bounds in worksharing loop constructs 388 typedef llvm::function_ref<std::pair<LValue, LValue>( 389 CodeGenFunction &, const OMPExecutableDirective &S)> 390 CodeGenLoopBoundsTy; 391 392 // Codegen lambda for loop bounds in dispatch-based loop implementation 393 typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>( 394 CodeGenFunction &, const OMPExecutableDirective &S, Address LB, 395 Address UB)> 396 CodeGenDispatchBoundsTy; 397 398 /// CGBuilder insert helper. This function is called after an 399 /// instruction is created using Builder. 400 void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name, 401 llvm::BasicBlock *BB, 402 llvm::BasicBlock::iterator InsertPt) const; 403 404 /// CurFuncDecl - Holds the Decl for the current outermost 405 /// non-closure context. 406 const Decl *CurFuncDecl; 407 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 408 const Decl *CurCodeDecl; 409 const CGFunctionInfo *CurFnInfo; 410 QualType FnRetTy; 411 llvm::Function *CurFn = nullptr; 412 413 // Holds coroutine data if the current function is a coroutine. We use a 414 // wrapper to manage its lifetime, so that we don't have to define CGCoroData 415 // in this header. 416 struct CGCoroInfo { 417 std::unique_ptr<CGCoroData> Data; 418 CGCoroInfo(); 419 ~CGCoroInfo(); 420 }; 421 CGCoroInfo CurCoro; 422 423 bool isCoroutine() const { 424 return CurCoro.Data != nullptr; 425 } 426 427 /// CurGD - The GlobalDecl for the current function being compiled. 428 GlobalDecl CurGD; 429 430 /// PrologueCleanupDepth - The cleanup depth enclosing all the 431 /// cleanups associated with the parameters. 432 EHScopeStack::stable_iterator PrologueCleanupDepth; 433 434 /// ReturnBlock - Unified return block. 435 JumpDest ReturnBlock; 436 437 /// ReturnValue - The temporary alloca to hold the return 438 /// value. This is invalid iff the function has no return value. 439 Address ReturnValue = Address::invalid(); 440 441 /// ReturnValuePointer - The temporary alloca to hold a pointer to sret. 442 /// This is invalid if sret is not in use. 443 Address ReturnValuePointer = Address::invalid(); 444 445 /// Return true if a label was seen in the current scope. 446 bool hasLabelBeenSeenInCurrentScope() const { 447 if (CurLexicalScope) 448 return CurLexicalScope->hasLabels(); 449 return !LabelMap.empty(); 450 } 451 452 /// AllocaInsertPoint - This is an instruction in the entry block before which 453 /// we prefer to insert allocas. 454 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 455 456 /// API for captured statement code generation. 457 class CGCapturedStmtInfo { 458 public: 459 explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default) 460 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {} 461 explicit CGCapturedStmtInfo(const CapturedStmt &S, 462 CapturedRegionKind K = CR_Default) 463 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) { 464 465 RecordDecl::field_iterator Field = 466 S.getCapturedRecordDecl()->field_begin(); 467 for (CapturedStmt::const_capture_iterator I = S.capture_begin(), 468 E = S.capture_end(); 469 I != E; ++I, ++Field) { 470 if (I->capturesThis()) 471 CXXThisFieldDecl = *Field; 472 else if (I->capturesVariable()) 473 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 474 else if (I->capturesVariableByCopy()) 475 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 476 } 477 } 478 479 virtual ~CGCapturedStmtInfo(); 480 481 CapturedRegionKind getKind() const { return Kind; } 482 483 virtual void setContextValue(llvm::Value *V) { ThisValue = V; } 484 // Retrieve the value of the context parameter. 485 virtual llvm::Value *getContextValue() const { return ThisValue; } 486 487 /// Lookup the captured field decl for a variable. 488 virtual const FieldDecl *lookup(const VarDecl *VD) const { 489 return CaptureFields.lookup(VD->getCanonicalDecl()); 490 } 491 492 bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; } 493 virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; } 494 495 static bool classof(const CGCapturedStmtInfo *) { 496 return true; 497 } 498 499 /// Emit the captured statement body. 500 virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) { 501 CGF.incrementProfileCounter(S); 502 CGF.EmitStmt(S); 503 } 504 505 /// Get the name of the capture helper. 506 virtual StringRef getHelperName() const { return "__captured_stmt"; } 507 508 private: 509 /// The kind of captured statement being generated. 510 CapturedRegionKind Kind; 511 512 /// Keep the map between VarDecl and FieldDecl. 513 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields; 514 515 /// The base address of the captured record, passed in as the first 516 /// argument of the parallel region function. 517 llvm::Value *ThisValue; 518 519 /// Captured 'this' type. 520 FieldDecl *CXXThisFieldDecl; 521 }; 522 CGCapturedStmtInfo *CapturedStmtInfo = nullptr; 523 524 /// RAII for correct setting/restoring of CapturedStmtInfo. 525 class CGCapturedStmtRAII { 526 private: 527 CodeGenFunction &CGF; 528 CGCapturedStmtInfo *PrevCapturedStmtInfo; 529 public: 530 CGCapturedStmtRAII(CodeGenFunction &CGF, 531 CGCapturedStmtInfo *NewCapturedStmtInfo) 532 : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) { 533 CGF.CapturedStmtInfo = NewCapturedStmtInfo; 534 } 535 ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; } 536 }; 537 538 /// An abstract representation of regular/ObjC call/message targets. 539 class AbstractCallee { 540 /// The function declaration of the callee. 541 const Decl *CalleeDecl; 542 543 public: 544 AbstractCallee() : CalleeDecl(nullptr) {} 545 AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {} 546 AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {} 547 bool hasFunctionDecl() const { 548 return dyn_cast_or_null<FunctionDecl>(CalleeDecl); 549 } 550 const Decl *getDecl() const { return CalleeDecl; } 551 unsigned getNumParams() const { 552 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 553 return FD->getNumParams(); 554 return cast<ObjCMethodDecl>(CalleeDecl)->param_size(); 555 } 556 const ParmVarDecl *getParamDecl(unsigned I) const { 557 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 558 return FD->getParamDecl(I); 559 return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I); 560 } 561 }; 562 563 /// Sanitizers enabled for this function. 564 SanitizerSet SanOpts; 565 566 /// True if CodeGen currently emits code implementing sanitizer checks. 567 bool IsSanitizerScope = false; 568 569 /// RAII object to set/unset CodeGenFunction::IsSanitizerScope. 570 class SanitizerScope { 571 CodeGenFunction *CGF; 572 public: 573 SanitizerScope(CodeGenFunction *CGF); 574 ~SanitizerScope(); 575 }; 576 577 /// In C++, whether we are code generating a thunk. This controls whether we 578 /// should emit cleanups. 579 bool CurFuncIsThunk = false; 580 581 /// In ARC, whether we should autorelease the return value. 582 bool AutoreleaseResult = false; 583 584 /// Whether we processed a Microsoft-style asm block during CodeGen. These can 585 /// potentially set the return value. 586 bool SawAsmBlock = false; 587 588 const NamedDecl *CurSEHParent = nullptr; 589 590 /// True if the current function is an outlined SEH helper. This can be a 591 /// finally block or filter expression. 592 bool IsOutlinedSEHHelper = false; 593 594 /// True if CodeGen currently emits code inside presereved access index 595 /// region. 596 bool IsInPreservedAIRegion = false; 597 598 /// True if the current statement has nomerge attribute. 599 bool InNoMergeAttributedStmt = false; 600 601 const CodeGen::CGBlockInfo *BlockInfo = nullptr; 602 llvm::Value *BlockPointer = nullptr; 603 604 llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; 605 FieldDecl *LambdaThisCaptureField = nullptr; 606 607 /// A mapping from NRVO variables to the flags used to indicate 608 /// when the NRVO has been applied to this variable. 609 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 610 611 EHScopeStack EHStack; 612 llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack; 613 llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack; 614 615 llvm::Instruction *CurrentFuncletPad = nullptr; 616 617 class CallLifetimeEnd final : public EHScopeStack::Cleanup { 618 llvm::Value *Addr; 619 llvm::Value *Size; 620 621 public: 622 CallLifetimeEnd(Address addr, llvm::Value *size) 623 : Addr(addr.getPointer()), Size(size) {} 624 625 void Emit(CodeGenFunction &CGF, Flags flags) override { 626 CGF.EmitLifetimeEnd(Size, Addr); 627 } 628 }; 629 630 /// Header for data within LifetimeExtendedCleanupStack. 631 struct LifetimeExtendedCleanupHeader { 632 /// The size of the following cleanup object. 633 unsigned Size; 634 /// The kind of cleanup to push: a value from the CleanupKind enumeration. 635 unsigned Kind : 31; 636 /// Whether this is a conditional cleanup. 637 unsigned IsConditional : 1; 638 639 size_t getSize() const { return Size; } 640 CleanupKind getKind() const { return (CleanupKind)Kind; } 641 bool isConditional() const { return IsConditional; } 642 }; 643 644 /// i32s containing the indexes of the cleanup destinations. 645 Address NormalCleanupDest = Address::invalid(); 646 647 unsigned NextCleanupDestIndex = 1; 648 649 /// FirstBlockInfo - The head of a singly-linked-list of block layouts. 650 CGBlockInfo *FirstBlockInfo = nullptr; 651 652 /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. 653 llvm::BasicBlock *EHResumeBlock = nullptr; 654 655 /// The exception slot. All landing pads write the current exception pointer 656 /// into this alloca. 657 llvm::Value *ExceptionSlot = nullptr; 658 659 /// The selector slot. Under the MandatoryCleanup model, all landing pads 660 /// write the current selector value into this alloca. 661 llvm::AllocaInst *EHSelectorSlot = nullptr; 662 663 /// A stack of exception code slots. Entering an __except block pushes a slot 664 /// on the stack and leaving pops one. The __exception_code() intrinsic loads 665 /// a value from the top of the stack. 666 SmallVector<Address, 1> SEHCodeSlotStack; 667 668 /// Value returned by __exception_info intrinsic. 669 llvm::Value *SEHInfo = nullptr; 670 671 /// Emits a landing pad for the current EH stack. 672 llvm::BasicBlock *EmitLandingPad(); 673 674 llvm::BasicBlock *getInvokeDestImpl(); 675 676 /// Parent loop-based directive for scan directive. 677 const OMPExecutableDirective *OMPParentLoopDirectiveForScan = nullptr; 678 llvm::BasicBlock *OMPBeforeScanBlock = nullptr; 679 llvm::BasicBlock *OMPAfterScanBlock = nullptr; 680 llvm::BasicBlock *OMPScanExitBlock = nullptr; 681 llvm::BasicBlock *OMPScanDispatch = nullptr; 682 bool OMPFirstScanLoop = false; 683 684 /// Manages parent directive for scan directives. 685 class ParentLoopDirectiveForScanRegion { 686 CodeGenFunction &CGF; 687 const OMPExecutableDirective *ParentLoopDirectiveForScan; 688 689 public: 690 ParentLoopDirectiveForScanRegion( 691 CodeGenFunction &CGF, 692 const OMPExecutableDirective &ParentLoopDirectiveForScan) 693 : CGF(CGF), 694 ParentLoopDirectiveForScan(CGF.OMPParentLoopDirectiveForScan) { 695 CGF.OMPParentLoopDirectiveForScan = &ParentLoopDirectiveForScan; 696 } 697 ~ParentLoopDirectiveForScanRegion() { 698 CGF.OMPParentLoopDirectiveForScan = ParentLoopDirectiveForScan; 699 } 700 }; 701 702 template <class T> 703 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 704 return DominatingValue<T>::save(*this, value); 705 } 706 707 public: 708 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 709 /// rethrows. 710 SmallVector<llvm::Value*, 8> ObjCEHValueStack; 711 712 /// A class controlling the emission of a finally block. 713 class FinallyInfo { 714 /// Where the catchall's edge through the cleanup should go. 715 JumpDest RethrowDest; 716 717 /// A function to call to enter the catch. 718 llvm::FunctionCallee BeginCatchFn; 719 720 /// An i1 variable indicating whether or not the @finally is 721 /// running for an exception. 722 llvm::AllocaInst *ForEHVar; 723 724 /// An i8* variable into which the exception pointer to rethrow 725 /// has been saved. 726 llvm::AllocaInst *SavedExnVar; 727 728 public: 729 void enter(CodeGenFunction &CGF, const Stmt *Finally, 730 llvm::FunctionCallee beginCatchFn, 731 llvm::FunctionCallee endCatchFn, llvm::FunctionCallee rethrowFn); 732 void exit(CodeGenFunction &CGF); 733 }; 734 735 /// Returns true inside SEH __try blocks. 736 bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); } 737 738 /// Returns true while emitting a cleanuppad. 739 bool isCleanupPadScope() const { 740 return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad); 741 } 742 743 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 744 /// current full-expression. Safe against the possibility that 745 /// we're currently inside a conditionally-evaluated expression. 746 template <class T, class... As> 747 void pushFullExprCleanup(CleanupKind kind, As... A) { 748 // If we're not in a conditional branch, or if none of the 749 // arguments requires saving, then use the unconditional cleanup. 750 if (!isInConditionalBranch()) 751 return EHStack.pushCleanup<T>(kind, A...); 752 753 // Stash values in a tuple so we can guarantee the order of saves. 754 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 755 SavedTuple Saved{saveValueInCond(A)...}; 756 757 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 758 EHStack.pushCleanupTuple<CleanupType>(kind, Saved); 759 initFullExprCleanup(); 760 } 761 762 /// Queue a cleanup to be pushed after finishing the current 763 /// full-expression. 764 template <class T, class... As> 765 void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) { 766 if (!isInConditionalBranch()) 767 return pushCleanupAfterFullExprImpl<T>(Kind, Address::invalid(), A...); 768 769 Address ActiveFlag = createCleanupActiveFlag(); 770 assert(!DominatingValue<Address>::needsSaving(ActiveFlag) && 771 "cleanup active flag should never need saving"); 772 773 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 774 SavedTuple Saved{saveValueInCond(A)...}; 775 776 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 777 pushCleanupAfterFullExprImpl<CleanupType>(Kind, ActiveFlag, Saved); 778 } 779 780 template <class T, class... As> 781 void pushCleanupAfterFullExprImpl(CleanupKind Kind, Address ActiveFlag, 782 As... A) { 783 LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind, 784 ActiveFlag.isValid()}; 785 786 size_t OldSize = LifetimeExtendedCleanupStack.size(); 787 LifetimeExtendedCleanupStack.resize( 788 LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size + 789 (Header.IsConditional ? sizeof(ActiveFlag) : 0)); 790 791 static_assert(sizeof(Header) % alignof(T) == 0, 792 "Cleanup will be allocated on misaligned address"); 793 char *Buffer = &LifetimeExtendedCleanupStack[OldSize]; 794 new (Buffer) LifetimeExtendedCleanupHeader(Header); 795 new (Buffer + sizeof(Header)) T(A...); 796 if (Header.IsConditional) 797 new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag); 798 } 799 800 /// Set up the last cleanup that was pushed as a conditional 801 /// full-expression cleanup. 802 void initFullExprCleanup() { 803 initFullExprCleanupWithFlag(createCleanupActiveFlag()); 804 } 805 806 void initFullExprCleanupWithFlag(Address ActiveFlag); 807 Address createCleanupActiveFlag(); 808 809 /// PushDestructorCleanup - Push a cleanup to call the 810 /// complete-object destructor of an object of the given type at the 811 /// given address. Does nothing if T is not a C++ class type with a 812 /// non-trivial destructor. 813 void PushDestructorCleanup(QualType T, Address Addr); 814 815 /// PushDestructorCleanup - Push a cleanup to call the 816 /// complete-object variant of the given destructor on the object at 817 /// the given address. 818 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, QualType T, 819 Address Addr); 820 821 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 822 /// process all branch fixups. 823 void PopCleanupBlock(bool FallThroughIsBranchThrough = false); 824 825 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 826 /// The block cannot be reactivated. Pops it if it's the top of the 827 /// stack. 828 /// 829 /// \param DominatingIP - An instruction which is known to 830 /// dominate the current IP (if set) and which lies along 831 /// all paths of execution between the current IP and the 832 /// the point at which the cleanup comes into scope. 833 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 834 llvm::Instruction *DominatingIP); 835 836 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 837 /// Cannot be used to resurrect a deactivated cleanup. 838 /// 839 /// \param DominatingIP - An instruction which is known to 840 /// dominate the current IP (if set) and which lies along 841 /// all paths of execution between the current IP and the 842 /// the point at which the cleanup comes into scope. 843 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 844 llvm::Instruction *DominatingIP); 845 846 /// Enters a new scope for capturing cleanups, all of which 847 /// will be executed once the scope is exited. 848 class RunCleanupsScope { 849 EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth; 850 size_t LifetimeExtendedCleanupStackSize; 851 bool OldDidCallStackSave; 852 protected: 853 bool PerformCleanup; 854 private: 855 856 RunCleanupsScope(const RunCleanupsScope &) = delete; 857 void operator=(const RunCleanupsScope &) = delete; 858 859 protected: 860 CodeGenFunction& CGF; 861 862 public: 863 /// Enter a new cleanup scope. 864 explicit RunCleanupsScope(CodeGenFunction &CGF) 865 : PerformCleanup(true), CGF(CGF) 866 { 867 CleanupStackDepth = CGF.EHStack.stable_begin(); 868 LifetimeExtendedCleanupStackSize = 869 CGF.LifetimeExtendedCleanupStack.size(); 870 OldDidCallStackSave = CGF.DidCallStackSave; 871 CGF.DidCallStackSave = false; 872 OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth; 873 CGF.CurrentCleanupScopeDepth = CleanupStackDepth; 874 } 875 876 /// Exit this cleanup scope, emitting any accumulated cleanups. 877 ~RunCleanupsScope() { 878 if (PerformCleanup) 879 ForceCleanup(); 880 } 881 882 /// Determine whether this scope requires any cleanups. 883 bool requiresCleanups() const { 884 return CGF.EHStack.stable_begin() != CleanupStackDepth; 885 } 886 887 /// Force the emission of cleanups now, instead of waiting 888 /// until this object is destroyed. 889 /// \param ValuesToReload - A list of values that need to be available at 890 /// the insertion point after cleanup emission. If cleanup emission created 891 /// a shared cleanup block, these value pointers will be rewritten. 892 /// Otherwise, they not will be modified. 893 void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) { 894 assert(PerformCleanup && "Already forced cleanup"); 895 CGF.DidCallStackSave = OldDidCallStackSave; 896 CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize, 897 ValuesToReload); 898 PerformCleanup = false; 899 CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth; 900 } 901 }; 902 903 // Cleanup stack depth of the RunCleanupsScope that was pushed most recently. 904 EHScopeStack::stable_iterator CurrentCleanupScopeDepth = 905 EHScopeStack::stable_end(); 906 907 class LexicalScope : public RunCleanupsScope { 908 SourceRange Range; 909 SmallVector<const LabelDecl*, 4> Labels; 910 LexicalScope *ParentScope; 911 912 LexicalScope(const LexicalScope &) = delete; 913 void operator=(const LexicalScope &) = delete; 914 915 public: 916 /// Enter a new cleanup scope. 917 explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) 918 : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) { 919 CGF.CurLexicalScope = this; 920 if (CGDebugInfo *DI = CGF.getDebugInfo()) 921 DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); 922 } 923 924 void addLabel(const LabelDecl *label) { 925 assert(PerformCleanup && "adding label to dead scope?"); 926 Labels.push_back(label); 927 } 928 929 /// Exit this cleanup scope, emitting any accumulated 930 /// cleanups. 931 ~LexicalScope() { 932 if (CGDebugInfo *DI = CGF.getDebugInfo()) 933 DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 934 935 // If we should perform a cleanup, force them now. Note that 936 // this ends the cleanup scope before rescoping any labels. 937 if (PerformCleanup) { 938 ApplyDebugLocation DL(CGF, Range.getEnd()); 939 ForceCleanup(); 940 } 941 } 942 943 /// Force the emission of cleanups now, instead of waiting 944 /// until this object is destroyed. 945 void ForceCleanup() { 946 CGF.CurLexicalScope = ParentScope; 947 RunCleanupsScope::ForceCleanup(); 948 949 if (!Labels.empty()) 950 rescopeLabels(); 951 } 952 953 bool hasLabels() const { 954 return !Labels.empty(); 955 } 956 957 void rescopeLabels(); 958 }; 959 960 typedef llvm::DenseMap<const Decl *, Address> DeclMapTy; 961 962 /// The class used to assign some variables some temporarily addresses. 963 class OMPMapVars { 964 DeclMapTy SavedLocals; 965 DeclMapTy SavedTempAddresses; 966 OMPMapVars(const OMPMapVars &) = delete; 967 void operator=(const OMPMapVars &) = delete; 968 969 public: 970 explicit OMPMapVars() = default; 971 ~OMPMapVars() { 972 assert(SavedLocals.empty() && "Did not restored original addresses."); 973 }; 974 975 /// Sets the address of the variable \p LocalVD to be \p TempAddr in 976 /// function \p CGF. 977 /// \return true if at least one variable was set already, false otherwise. 978 bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD, 979 Address TempAddr) { 980 LocalVD = LocalVD->getCanonicalDecl(); 981 // Only save it once. 982 if (SavedLocals.count(LocalVD)) return false; 983 984 // Copy the existing local entry to SavedLocals. 985 auto it = CGF.LocalDeclMap.find(LocalVD); 986 if (it != CGF.LocalDeclMap.end()) 987 SavedLocals.try_emplace(LocalVD, it->second); 988 else 989 SavedLocals.try_emplace(LocalVD, Address::invalid()); 990 991 // Generate the private entry. 992 QualType VarTy = LocalVD->getType(); 993 if (VarTy->isReferenceType()) { 994 Address Temp = CGF.CreateMemTemp(VarTy); 995 CGF.Builder.CreateStore(TempAddr.getPointer(), Temp); 996 TempAddr = Temp; 997 } 998 SavedTempAddresses.try_emplace(LocalVD, TempAddr); 999 1000 return true; 1001 } 1002 1003 /// Applies new addresses to the list of the variables. 1004 /// \return true if at least one variable is using new address, false 1005 /// otherwise. 1006 bool apply(CodeGenFunction &CGF) { 1007 copyInto(SavedTempAddresses, CGF.LocalDeclMap); 1008 SavedTempAddresses.clear(); 1009 return !SavedLocals.empty(); 1010 } 1011 1012 /// Restores original addresses of the variables. 1013 void restore(CodeGenFunction &CGF) { 1014 if (!SavedLocals.empty()) { 1015 copyInto(SavedLocals, CGF.LocalDeclMap); 1016 SavedLocals.clear(); 1017 } 1018 } 1019 1020 private: 1021 /// Copy all the entries in the source map over the corresponding 1022 /// entries in the destination, which must exist. 1023 static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) { 1024 for (auto &Pair : Src) { 1025 if (!Pair.second.isValid()) { 1026 Dest.erase(Pair.first); 1027 continue; 1028 } 1029 1030 auto I = Dest.find(Pair.first); 1031 if (I != Dest.end()) 1032 I->second = Pair.second; 1033 else 1034 Dest.insert(Pair); 1035 } 1036 } 1037 }; 1038 1039 /// The scope used to remap some variables as private in the OpenMP loop body 1040 /// (or other captured region emitted without outlining), and to restore old 1041 /// vars back on exit. 1042 class OMPPrivateScope : public RunCleanupsScope { 1043 OMPMapVars MappedVars; 1044 OMPPrivateScope(const OMPPrivateScope &) = delete; 1045 void operator=(const OMPPrivateScope &) = delete; 1046 1047 public: 1048 /// Enter a new OpenMP private scope. 1049 explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {} 1050 1051 /// Registers \p LocalVD variable as a private and apply \p PrivateGen 1052 /// function for it to generate corresponding private variable. \p 1053 /// PrivateGen returns an address of the generated private variable. 1054 /// \return true if the variable is registered as private, false if it has 1055 /// been privatized already. 1056 bool addPrivate(const VarDecl *LocalVD, 1057 const llvm::function_ref<Address()> PrivateGen) { 1058 assert(PerformCleanup && "adding private to dead scope"); 1059 return MappedVars.setVarAddr(CGF, LocalVD, PrivateGen()); 1060 } 1061 1062 /// Privatizes local variables previously registered as private. 1063 /// Registration is separate from the actual privatization to allow 1064 /// initializers use values of the original variables, not the private one. 1065 /// This is important, for example, if the private variable is a class 1066 /// variable initialized by a constructor that references other private 1067 /// variables. But at initialization original variables must be used, not 1068 /// private copies. 1069 /// \return true if at least one variable was privatized, false otherwise. 1070 bool Privatize() { return MappedVars.apply(CGF); } 1071 1072 void ForceCleanup() { 1073 RunCleanupsScope::ForceCleanup(); 1074 MappedVars.restore(CGF); 1075 } 1076 1077 /// Exit scope - all the mapped variables are restored. 1078 ~OMPPrivateScope() { 1079 if (PerformCleanup) 1080 ForceCleanup(); 1081 } 1082 1083 /// Checks if the global variable is captured in current function. 1084 bool isGlobalVarCaptured(const VarDecl *VD) const { 1085 VD = VD->getCanonicalDecl(); 1086 return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0; 1087 } 1088 }; 1089 1090 /// Save/restore original map of previously emitted local vars in case when we 1091 /// need to duplicate emission of the same code several times in the same 1092 /// function for OpenMP code. 1093 class OMPLocalDeclMapRAII { 1094 CodeGenFunction &CGF; 1095 DeclMapTy SavedMap; 1096 1097 public: 1098 OMPLocalDeclMapRAII(CodeGenFunction &CGF) 1099 : CGF(CGF), SavedMap(CGF.LocalDeclMap) {} 1100 ~OMPLocalDeclMapRAII() { SavedMap.swap(CGF.LocalDeclMap); } 1101 }; 1102 1103 /// Takes the old cleanup stack size and emits the cleanup blocks 1104 /// that have been added. 1105 void 1106 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 1107 std::initializer_list<llvm::Value **> ValuesToReload = {}); 1108 1109 /// Takes the old cleanup stack size and emits the cleanup blocks 1110 /// that have been added, then adds all lifetime-extended cleanups from 1111 /// the given position to the stack. 1112 void 1113 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 1114 size_t OldLifetimeExtendedStackSize, 1115 std::initializer_list<llvm::Value **> ValuesToReload = {}); 1116 1117 void ResolveBranchFixups(llvm::BasicBlock *Target); 1118 1119 /// The given basic block lies in the current EH scope, but may be a 1120 /// target of a potentially scope-crossing jump; get a stable handle 1121 /// to which we can perform this jump later. 1122 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 1123 return JumpDest(Target, 1124 EHStack.getInnermostNormalCleanup(), 1125 NextCleanupDestIndex++); 1126 } 1127 1128 /// The given basic block lies in the current EH scope, but may be a 1129 /// target of a potentially scope-crossing jump; get a stable handle 1130 /// to which we can perform this jump later. 1131 JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { 1132 return getJumpDestInCurrentScope(createBasicBlock(Name)); 1133 } 1134 1135 /// EmitBranchThroughCleanup - Emit a branch from the current insert 1136 /// block through the normal cleanup handling code (if any) and then 1137 /// on to \arg Dest. 1138 void EmitBranchThroughCleanup(JumpDest Dest); 1139 1140 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 1141 /// specified destination obviously has no cleanups to run. 'false' is always 1142 /// a conservatively correct answer for this method. 1143 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 1144 1145 /// popCatchScope - Pops the catch scope at the top of the EHScope 1146 /// stack, emitting any required code (other than the catch handlers 1147 /// themselves). 1148 void popCatchScope(); 1149 1150 llvm::BasicBlock *getEHResumeBlock(bool isCleanup); 1151 llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); 1152 llvm::BasicBlock * 1153 getFuncletEHDispatchBlock(EHScopeStack::stable_iterator scope); 1154 1155 /// An object to manage conditionally-evaluated expressions. 1156 class ConditionalEvaluation { 1157 llvm::BasicBlock *StartBB; 1158 1159 public: 1160 ConditionalEvaluation(CodeGenFunction &CGF) 1161 : StartBB(CGF.Builder.GetInsertBlock()) {} 1162 1163 void begin(CodeGenFunction &CGF) { 1164 assert(CGF.OutermostConditional != this); 1165 if (!CGF.OutermostConditional) 1166 CGF.OutermostConditional = this; 1167 } 1168 1169 void end(CodeGenFunction &CGF) { 1170 assert(CGF.OutermostConditional != nullptr); 1171 if (CGF.OutermostConditional == this) 1172 CGF.OutermostConditional = nullptr; 1173 } 1174 1175 /// Returns a block which will be executed prior to each 1176 /// evaluation of the conditional code. 1177 llvm::BasicBlock *getStartingBlock() const { 1178 return StartBB; 1179 } 1180 }; 1181 1182 /// isInConditionalBranch - Return true if we're currently emitting 1183 /// one branch or the other of a conditional expression. 1184 bool isInConditionalBranch() const { return OutermostConditional != nullptr; } 1185 1186 void setBeforeOutermostConditional(llvm::Value *value, Address addr) { 1187 assert(isInConditionalBranch()); 1188 llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); 1189 auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back()); 1190 store->setAlignment(addr.getAlignment().getAsAlign()); 1191 } 1192 1193 /// An RAII object to record that we're evaluating a statement 1194 /// expression. 1195 class StmtExprEvaluation { 1196 CodeGenFunction &CGF; 1197 1198 /// We have to save the outermost conditional: cleanups in a 1199 /// statement expression aren't conditional just because the 1200 /// StmtExpr is. 1201 ConditionalEvaluation *SavedOutermostConditional; 1202 1203 public: 1204 StmtExprEvaluation(CodeGenFunction &CGF) 1205 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 1206 CGF.OutermostConditional = nullptr; 1207 } 1208 1209 ~StmtExprEvaluation() { 1210 CGF.OutermostConditional = SavedOutermostConditional; 1211 CGF.EnsureInsertPoint(); 1212 } 1213 }; 1214 1215 /// An object which temporarily prevents a value from being 1216 /// destroyed by aggressive peephole optimizations that assume that 1217 /// all uses of a value have been realized in the IR. 1218 class PeepholeProtection { 1219 llvm::Instruction *Inst; 1220 friend class CodeGenFunction; 1221 1222 public: 1223 PeepholeProtection() : Inst(nullptr) {} 1224 }; 1225 1226 /// A non-RAII class containing all the information about a bound 1227 /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for 1228 /// this which makes individual mappings very simple; using this 1229 /// class directly is useful when you have a variable number of 1230 /// opaque values or don't want the RAII functionality for some 1231 /// reason. 1232 class OpaqueValueMappingData { 1233 const OpaqueValueExpr *OpaqueValue; 1234 bool BoundLValue; 1235 CodeGenFunction::PeepholeProtection Protection; 1236 1237 OpaqueValueMappingData(const OpaqueValueExpr *ov, 1238 bool boundLValue) 1239 : OpaqueValue(ov), BoundLValue(boundLValue) {} 1240 public: 1241 OpaqueValueMappingData() : OpaqueValue(nullptr) {} 1242 1243 static bool shouldBindAsLValue(const Expr *expr) { 1244 // gl-values should be bound as l-values for obvious reasons. 1245 // Records should be bound as l-values because IR generation 1246 // always keeps them in memory. Expressions of function type 1247 // act exactly like l-values but are formally required to be 1248 // r-values in C. 1249 return expr->isGLValue() || 1250 expr->getType()->isFunctionType() || 1251 hasAggregateEvaluationKind(expr->getType()); 1252 } 1253 1254 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1255 const OpaqueValueExpr *ov, 1256 const Expr *e) { 1257 if (shouldBindAsLValue(ov)) 1258 return bind(CGF, ov, CGF.EmitLValue(e)); 1259 return bind(CGF, ov, CGF.EmitAnyExpr(e)); 1260 } 1261 1262 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1263 const OpaqueValueExpr *ov, 1264 const LValue &lv) { 1265 assert(shouldBindAsLValue(ov)); 1266 CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); 1267 return OpaqueValueMappingData(ov, true); 1268 } 1269 1270 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1271 const OpaqueValueExpr *ov, 1272 const RValue &rv) { 1273 assert(!shouldBindAsLValue(ov)); 1274 CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); 1275 1276 OpaqueValueMappingData data(ov, false); 1277 1278 // Work around an extremely aggressive peephole optimization in 1279 // EmitScalarConversion which assumes that all other uses of a 1280 // value are extant. 1281 data.Protection = CGF.protectFromPeepholes(rv); 1282 1283 return data; 1284 } 1285 1286 bool isValid() const { return OpaqueValue != nullptr; } 1287 void clear() { OpaqueValue = nullptr; } 1288 1289 void unbind(CodeGenFunction &CGF) { 1290 assert(OpaqueValue && "no data to unbind!"); 1291 1292 if (BoundLValue) { 1293 CGF.OpaqueLValues.erase(OpaqueValue); 1294 } else { 1295 CGF.OpaqueRValues.erase(OpaqueValue); 1296 CGF.unprotectFromPeepholes(Protection); 1297 } 1298 } 1299 }; 1300 1301 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 1302 class OpaqueValueMapping { 1303 CodeGenFunction &CGF; 1304 OpaqueValueMappingData Data; 1305 1306 public: 1307 static bool shouldBindAsLValue(const Expr *expr) { 1308 return OpaqueValueMappingData::shouldBindAsLValue(expr); 1309 } 1310 1311 /// Build the opaque value mapping for the given conditional 1312 /// operator if it's the GNU ?: extension. This is a common 1313 /// enough pattern that the convenience operator is really 1314 /// helpful. 1315 /// 1316 OpaqueValueMapping(CodeGenFunction &CGF, 1317 const AbstractConditionalOperator *op) : CGF(CGF) { 1318 if (isa<ConditionalOperator>(op)) 1319 // Leave Data empty. 1320 return; 1321 1322 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 1323 Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), 1324 e->getCommon()); 1325 } 1326 1327 /// Build the opaque value mapping for an OpaqueValueExpr whose source 1328 /// expression is set to the expression the OVE represents. 1329 OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV) 1330 : CGF(CGF) { 1331 if (OV) { 1332 assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used " 1333 "for OVE with no source expression"); 1334 Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr()); 1335 } 1336 } 1337 1338 OpaqueValueMapping(CodeGenFunction &CGF, 1339 const OpaqueValueExpr *opaqueValue, 1340 LValue lvalue) 1341 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { 1342 } 1343 1344 OpaqueValueMapping(CodeGenFunction &CGF, 1345 const OpaqueValueExpr *opaqueValue, 1346 RValue rvalue) 1347 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { 1348 } 1349 1350 void pop() { 1351 Data.unbind(CGF); 1352 Data.clear(); 1353 } 1354 1355 ~OpaqueValueMapping() { 1356 if (Data.isValid()) Data.unbind(CGF); 1357 } 1358 }; 1359 1360 private: 1361 CGDebugInfo *DebugInfo; 1362 /// Used to create unique names for artificial VLA size debug info variables. 1363 unsigned VLAExprCounter = 0; 1364 bool DisableDebugInfo = false; 1365 1366 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 1367 /// calling llvm.stacksave for multiple VLAs in the same scope. 1368 bool DidCallStackSave = false; 1369 1370 /// IndirectBranch - The first time an indirect goto is seen we create a block 1371 /// with an indirect branch. Every time we see the address of a label taken, 1372 /// we add the label to the indirect goto. Every subsequent indirect goto is 1373 /// codegen'd as a jump to the IndirectBranch's basic block. 1374 llvm::IndirectBrInst *IndirectBranch = nullptr; 1375 1376 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 1377 /// decls. 1378 DeclMapTy LocalDeclMap; 1379 1380 // Keep track of the cleanups for callee-destructed parameters pushed to the 1381 // cleanup stack so that they can be deactivated later. 1382 llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator> 1383 CalleeDestructedParamCleanups; 1384 1385 /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this 1386 /// will contain a mapping from said ParmVarDecl to its implicit "object_size" 1387 /// parameter. 1388 llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2> 1389 SizeArguments; 1390 1391 /// Track escaped local variables with auto storage. Used during SEH 1392 /// outlining to produce a call to llvm.localescape. 1393 llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals; 1394 1395 /// LabelMap - This keeps track of the LLVM basic block for each C label. 1396 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 1397 1398 // BreakContinueStack - This keeps track of where break and continue 1399 // statements should jump to. 1400 struct BreakContinue { 1401 BreakContinue(JumpDest Break, JumpDest Continue) 1402 : BreakBlock(Break), ContinueBlock(Continue) {} 1403 1404 JumpDest BreakBlock; 1405 JumpDest ContinueBlock; 1406 }; 1407 SmallVector<BreakContinue, 8> BreakContinueStack; 1408 1409 /// Handles cancellation exit points in OpenMP-related constructs. 1410 class OpenMPCancelExitStack { 1411 /// Tracks cancellation exit point and join point for cancel-related exit 1412 /// and normal exit. 1413 struct CancelExit { 1414 CancelExit() = default; 1415 CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock, 1416 JumpDest ContBlock) 1417 : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {} 1418 OpenMPDirectiveKind Kind = llvm::omp::OMPD_unknown; 1419 /// true if the exit block has been emitted already by the special 1420 /// emitExit() call, false if the default codegen is used. 1421 bool HasBeenEmitted = false; 1422 JumpDest ExitBlock; 1423 JumpDest ContBlock; 1424 }; 1425 1426 SmallVector<CancelExit, 8> Stack; 1427 1428 public: 1429 OpenMPCancelExitStack() : Stack(1) {} 1430 ~OpenMPCancelExitStack() = default; 1431 /// Fetches the exit block for the current OpenMP construct. 1432 JumpDest getExitBlock() const { return Stack.back().ExitBlock; } 1433 /// Emits exit block with special codegen procedure specific for the related 1434 /// OpenMP construct + emits code for normal construct cleanup. 1435 void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 1436 const llvm::function_ref<void(CodeGenFunction &)> CodeGen) { 1437 if (Stack.back().Kind == Kind && getExitBlock().isValid()) { 1438 assert(CGF.getOMPCancelDestination(Kind).isValid()); 1439 assert(CGF.HaveInsertPoint()); 1440 assert(!Stack.back().HasBeenEmitted); 1441 auto IP = CGF.Builder.saveAndClearIP(); 1442 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1443 CodeGen(CGF); 1444 CGF.EmitBranch(Stack.back().ContBlock.getBlock()); 1445 CGF.Builder.restoreIP(IP); 1446 Stack.back().HasBeenEmitted = true; 1447 } 1448 CodeGen(CGF); 1449 } 1450 /// Enter the cancel supporting \a Kind construct. 1451 /// \param Kind OpenMP directive that supports cancel constructs. 1452 /// \param HasCancel true, if the construct has inner cancel directive, 1453 /// false otherwise. 1454 void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) { 1455 Stack.push_back({Kind, 1456 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit") 1457 : JumpDest(), 1458 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont") 1459 : JumpDest()}); 1460 } 1461 /// Emits default exit point for the cancel construct (if the special one 1462 /// has not be used) + join point for cancel/normal exits. 1463 void exit(CodeGenFunction &CGF) { 1464 if (getExitBlock().isValid()) { 1465 assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid()); 1466 bool HaveIP = CGF.HaveInsertPoint(); 1467 if (!Stack.back().HasBeenEmitted) { 1468 if (HaveIP) 1469 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1470 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1471 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1472 } 1473 CGF.EmitBlock(Stack.back().ContBlock.getBlock()); 1474 if (!HaveIP) { 1475 CGF.Builder.CreateUnreachable(); 1476 CGF.Builder.ClearInsertionPoint(); 1477 } 1478 } 1479 Stack.pop_back(); 1480 } 1481 }; 1482 OpenMPCancelExitStack OMPCancelStack; 1483 1484 CodeGenPGO PGO; 1485 1486 /// Calculate branch weights appropriate for PGO data 1487 llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount); 1488 llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights); 1489 llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond, 1490 uint64_t LoopCount); 1491 1492 public: 1493 /// Increment the profiler's counter for the given statement by \p StepV. 1494 /// If \p StepV is null, the default increment is 1. 1495 void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) { 1496 if (CGM.getCodeGenOpts().hasProfileClangInstr()) 1497 PGO.emitCounterIncrement(Builder, S, StepV); 1498 PGO.setCurrentStmt(S); 1499 } 1500 1501 /// Get the profiler's count for the given statement. 1502 uint64_t getProfileCount(const Stmt *S) { 1503 Optional<uint64_t> Count = PGO.getStmtCount(S); 1504 if (!Count.hasValue()) 1505 return 0; 1506 return *Count; 1507 } 1508 1509 /// Set the profiler's current count. 1510 void setCurrentProfileCount(uint64_t Count) { 1511 PGO.setCurrentRegionCount(Count); 1512 } 1513 1514 /// Get the profiler's current count. This is generally the count for the most 1515 /// recently incremented counter. 1516 uint64_t getCurrentProfileCount() { 1517 return PGO.getCurrentRegionCount(); 1518 } 1519 1520 private: 1521 1522 /// SwitchInsn - This is nearest current switch instruction. It is null if 1523 /// current context is not in a switch. 1524 llvm::SwitchInst *SwitchInsn = nullptr; 1525 /// The branch weights of SwitchInsn when doing instrumentation based PGO. 1526 SmallVector<uint64_t, 16> *SwitchWeights = nullptr; 1527 1528 /// CaseRangeBlock - This block holds if condition check for last case 1529 /// statement range in current switch instruction. 1530 llvm::BasicBlock *CaseRangeBlock = nullptr; 1531 1532 /// OpaqueLValues - Keeps track of the current set of opaque value 1533 /// expressions. 1534 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 1535 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 1536 1537 // VLASizeMap - This keeps track of the associated size for each VLA type. 1538 // We track this by the size expression rather than the type itself because 1539 // in certain situations, like a const qualifier applied to an VLA typedef, 1540 // multiple VLA types can share the same size expression. 1541 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 1542 // enter/leave scopes. 1543 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 1544 1545 /// A block containing a single 'unreachable' instruction. Created 1546 /// lazily by getUnreachableBlock(). 1547 llvm::BasicBlock *UnreachableBlock = nullptr; 1548 1549 /// Counts of the number return expressions in the function. 1550 unsigned NumReturnExprs = 0; 1551 1552 /// Count the number of simple (constant) return expressions in the function. 1553 unsigned NumSimpleReturnExprs = 0; 1554 1555 /// The last regular (non-return) debug location (breakpoint) in the function. 1556 SourceLocation LastStopPoint; 1557 1558 public: 1559 /// Source location information about the default argument or member 1560 /// initializer expression we're evaluating, if any. 1561 CurrentSourceLocExprScope CurSourceLocExprScope; 1562 using SourceLocExprScopeGuard = 1563 CurrentSourceLocExprScope::SourceLocExprScopeGuard; 1564 1565 /// A scope within which we are constructing the fields of an object which 1566 /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use 1567 /// if we need to evaluate a CXXDefaultInitExpr within the evaluation. 1568 class FieldConstructionScope { 1569 public: 1570 FieldConstructionScope(CodeGenFunction &CGF, Address This) 1571 : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) { 1572 CGF.CXXDefaultInitExprThis = This; 1573 } 1574 ~FieldConstructionScope() { 1575 CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis; 1576 } 1577 1578 private: 1579 CodeGenFunction &CGF; 1580 Address OldCXXDefaultInitExprThis; 1581 }; 1582 1583 /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this' 1584 /// is overridden to be the object under construction. 1585 class CXXDefaultInitExprScope { 1586 public: 1587 CXXDefaultInitExprScope(CodeGenFunction &CGF, const CXXDefaultInitExpr *E) 1588 : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue), 1589 OldCXXThisAlignment(CGF.CXXThisAlignment), 1590 SourceLocScope(E, CGF.CurSourceLocExprScope) { 1591 CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer(); 1592 CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment(); 1593 } 1594 ~CXXDefaultInitExprScope() { 1595 CGF.CXXThisValue = OldCXXThisValue; 1596 CGF.CXXThisAlignment = OldCXXThisAlignment; 1597 } 1598 1599 public: 1600 CodeGenFunction &CGF; 1601 llvm::Value *OldCXXThisValue; 1602 CharUnits OldCXXThisAlignment; 1603 SourceLocExprScopeGuard SourceLocScope; 1604 }; 1605 1606 struct CXXDefaultArgExprScope : SourceLocExprScopeGuard { 1607 CXXDefaultArgExprScope(CodeGenFunction &CGF, const CXXDefaultArgExpr *E) 1608 : SourceLocExprScopeGuard(E, CGF.CurSourceLocExprScope) {} 1609 }; 1610 1611 /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the 1612 /// current loop index is overridden. 1613 class ArrayInitLoopExprScope { 1614 public: 1615 ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index) 1616 : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) { 1617 CGF.ArrayInitIndex = Index; 1618 } 1619 ~ArrayInitLoopExprScope() { 1620 CGF.ArrayInitIndex = OldArrayInitIndex; 1621 } 1622 1623 private: 1624 CodeGenFunction &CGF; 1625 llvm::Value *OldArrayInitIndex; 1626 }; 1627 1628 class InlinedInheritingConstructorScope { 1629 public: 1630 InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD) 1631 : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl), 1632 OldCurCodeDecl(CGF.CurCodeDecl), 1633 OldCXXABIThisDecl(CGF.CXXABIThisDecl), 1634 OldCXXABIThisValue(CGF.CXXABIThisValue), 1635 OldCXXThisValue(CGF.CXXThisValue), 1636 OldCXXABIThisAlignment(CGF.CXXABIThisAlignment), 1637 OldCXXThisAlignment(CGF.CXXThisAlignment), 1638 OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy), 1639 OldCXXInheritedCtorInitExprArgs( 1640 std::move(CGF.CXXInheritedCtorInitExprArgs)) { 1641 CGF.CurGD = GD; 1642 CGF.CurFuncDecl = CGF.CurCodeDecl = 1643 cast<CXXConstructorDecl>(GD.getDecl()); 1644 CGF.CXXABIThisDecl = nullptr; 1645 CGF.CXXABIThisValue = nullptr; 1646 CGF.CXXThisValue = nullptr; 1647 CGF.CXXABIThisAlignment = CharUnits(); 1648 CGF.CXXThisAlignment = CharUnits(); 1649 CGF.ReturnValue = Address::invalid(); 1650 CGF.FnRetTy = QualType(); 1651 CGF.CXXInheritedCtorInitExprArgs.clear(); 1652 } 1653 ~InlinedInheritingConstructorScope() { 1654 CGF.CurGD = OldCurGD; 1655 CGF.CurFuncDecl = OldCurFuncDecl; 1656 CGF.CurCodeDecl = OldCurCodeDecl; 1657 CGF.CXXABIThisDecl = OldCXXABIThisDecl; 1658 CGF.CXXABIThisValue = OldCXXABIThisValue; 1659 CGF.CXXThisValue = OldCXXThisValue; 1660 CGF.CXXABIThisAlignment = OldCXXABIThisAlignment; 1661 CGF.CXXThisAlignment = OldCXXThisAlignment; 1662 CGF.ReturnValue = OldReturnValue; 1663 CGF.FnRetTy = OldFnRetTy; 1664 CGF.CXXInheritedCtorInitExprArgs = 1665 std::move(OldCXXInheritedCtorInitExprArgs); 1666 } 1667 1668 private: 1669 CodeGenFunction &CGF; 1670 GlobalDecl OldCurGD; 1671 const Decl *OldCurFuncDecl; 1672 const Decl *OldCurCodeDecl; 1673 ImplicitParamDecl *OldCXXABIThisDecl; 1674 llvm::Value *OldCXXABIThisValue; 1675 llvm::Value *OldCXXThisValue; 1676 CharUnits OldCXXABIThisAlignment; 1677 CharUnits OldCXXThisAlignment; 1678 Address OldReturnValue; 1679 QualType OldFnRetTy; 1680 CallArgList OldCXXInheritedCtorInitExprArgs; 1681 }; 1682 1683 private: 1684 /// CXXThisDecl - When generating code for a C++ member function, 1685 /// this will hold the implicit 'this' declaration. 1686 ImplicitParamDecl *CXXABIThisDecl = nullptr; 1687 llvm::Value *CXXABIThisValue = nullptr; 1688 llvm::Value *CXXThisValue = nullptr; 1689 CharUnits CXXABIThisAlignment; 1690 CharUnits CXXThisAlignment; 1691 1692 /// The value of 'this' to use when evaluating CXXDefaultInitExprs within 1693 /// this expression. 1694 Address CXXDefaultInitExprThis = Address::invalid(); 1695 1696 /// The current array initialization index when evaluating an 1697 /// ArrayInitIndexExpr within an ArrayInitLoopExpr. 1698 llvm::Value *ArrayInitIndex = nullptr; 1699 1700 /// The values of function arguments to use when evaluating 1701 /// CXXInheritedCtorInitExprs within this context. 1702 CallArgList CXXInheritedCtorInitExprArgs; 1703 1704 /// CXXStructorImplicitParamDecl - When generating code for a constructor or 1705 /// destructor, this will hold the implicit argument (e.g. VTT). 1706 ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr; 1707 llvm::Value *CXXStructorImplicitParamValue = nullptr; 1708 1709 /// OutermostConditional - Points to the outermost active 1710 /// conditional control. This is used so that we know if a 1711 /// temporary should be destroyed conditionally. 1712 ConditionalEvaluation *OutermostConditional = nullptr; 1713 1714 /// The current lexical scope. 1715 LexicalScope *CurLexicalScope = nullptr; 1716 1717 /// The current source location that should be used for exception 1718 /// handling code. 1719 SourceLocation CurEHLocation; 1720 1721 /// BlockByrefInfos - For each __block variable, contains 1722 /// information about the layout of the variable. 1723 llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos; 1724 1725 /// Used by -fsanitize=nullability-return to determine whether the return 1726 /// value can be checked. 1727 llvm::Value *RetValNullabilityPrecondition = nullptr; 1728 1729 /// Check if -fsanitize=nullability-return instrumentation is required for 1730 /// this function. 1731 bool requiresReturnValueNullabilityCheck() const { 1732 return RetValNullabilityPrecondition; 1733 } 1734 1735 /// Used to store precise source locations for return statements by the 1736 /// runtime return value checks. 1737 Address ReturnLocation = Address::invalid(); 1738 1739 /// Check if the return value of this function requires sanitization. 1740 bool requiresReturnValueCheck() const; 1741 1742 llvm::BasicBlock *TerminateLandingPad = nullptr; 1743 llvm::BasicBlock *TerminateHandler = nullptr; 1744 llvm::BasicBlock *TrapBB = nullptr; 1745 1746 /// Terminate funclets keyed by parent funclet pad. 1747 llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets; 1748 1749 /// Largest vector width used in ths function. Will be used to create a 1750 /// function attribute. 1751 unsigned LargestVectorWidth = 0; 1752 1753 /// True if we need emit the life-time markers. 1754 const bool ShouldEmitLifetimeMarkers; 1755 1756 /// Add OpenCL kernel arg metadata and the kernel attribute metadata to 1757 /// the function metadata. 1758 void EmitOpenCLKernelMetadata(const FunctionDecl *FD, 1759 llvm::Function *Fn); 1760 1761 public: 1762 CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false); 1763 ~CodeGenFunction(); 1764 1765 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 1766 ASTContext &getContext() const { return CGM.getContext(); } 1767 CGDebugInfo *getDebugInfo() { 1768 if (DisableDebugInfo) 1769 return nullptr; 1770 return DebugInfo; 1771 } 1772 void disableDebugInfo() { DisableDebugInfo = true; } 1773 void enableDebugInfo() { DisableDebugInfo = false; } 1774 1775 bool shouldUseFusedARCCalls() { 1776 return CGM.getCodeGenOpts().OptimizationLevel == 0; 1777 } 1778 1779 const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } 1780 1781 /// Returns a pointer to the function's exception object and selector slot, 1782 /// which is assigned in every landing pad. 1783 Address getExceptionSlot(); 1784 Address getEHSelectorSlot(); 1785 1786 /// Returns the contents of the function's exception object and selector 1787 /// slots. 1788 llvm::Value *getExceptionFromSlot(); 1789 llvm::Value *getSelectorFromSlot(); 1790 1791 Address getNormalCleanupDestSlot(); 1792 1793 llvm::BasicBlock *getUnreachableBlock() { 1794 if (!UnreachableBlock) { 1795 UnreachableBlock = createBasicBlock("unreachable"); 1796 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 1797 } 1798 return UnreachableBlock; 1799 } 1800 1801 llvm::BasicBlock *getInvokeDest() { 1802 if (!EHStack.requiresLandingPad()) return nullptr; 1803 return getInvokeDestImpl(); 1804 } 1805 1806 bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; } 1807 1808 const TargetInfo &getTarget() const { return Target; } 1809 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 1810 const TargetCodeGenInfo &getTargetHooks() const { 1811 return CGM.getTargetCodeGenInfo(); 1812 } 1813 1814 //===--------------------------------------------------------------------===// 1815 // Cleanups 1816 //===--------------------------------------------------------------------===// 1817 1818 typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty); 1819 1820 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1821 Address arrayEndPointer, 1822 QualType elementType, 1823 CharUnits elementAlignment, 1824 Destroyer *destroyer); 1825 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1826 llvm::Value *arrayEnd, 1827 QualType elementType, 1828 CharUnits elementAlignment, 1829 Destroyer *destroyer); 1830 1831 void pushDestroy(QualType::DestructionKind dtorKind, 1832 Address addr, QualType type); 1833 void pushEHDestroy(QualType::DestructionKind dtorKind, 1834 Address addr, QualType type); 1835 void pushDestroy(CleanupKind kind, Address addr, QualType type, 1836 Destroyer *destroyer, bool useEHCleanupForArray); 1837 void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr, 1838 QualType type, Destroyer *destroyer, 1839 bool useEHCleanupForArray); 1840 void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 1841 llvm::Value *CompletePtr, 1842 QualType ElementType); 1843 void pushStackRestore(CleanupKind kind, Address SPMem); 1844 void emitDestroy(Address addr, QualType type, Destroyer *destroyer, 1845 bool useEHCleanupForArray); 1846 llvm::Function *generateDestroyHelper(Address addr, QualType type, 1847 Destroyer *destroyer, 1848 bool useEHCleanupForArray, 1849 const VarDecl *VD); 1850 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 1851 QualType elementType, CharUnits elementAlign, 1852 Destroyer *destroyer, 1853 bool checkZeroLength, bool useEHCleanup); 1854 1855 Destroyer *getDestroyer(QualType::DestructionKind destructionKind); 1856 1857 /// Determines whether an EH cleanup is required to destroy a type 1858 /// with the given destruction kind. 1859 bool needsEHCleanup(QualType::DestructionKind kind) { 1860 switch (kind) { 1861 case QualType::DK_none: 1862 return false; 1863 case QualType::DK_cxx_destructor: 1864 case QualType::DK_objc_weak_lifetime: 1865 case QualType::DK_nontrivial_c_struct: 1866 return getLangOpts().Exceptions; 1867 case QualType::DK_objc_strong_lifetime: 1868 return getLangOpts().Exceptions && 1869 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 1870 } 1871 llvm_unreachable("bad destruction kind"); 1872 } 1873 1874 CleanupKind getCleanupKind(QualType::DestructionKind kind) { 1875 return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); 1876 } 1877 1878 //===--------------------------------------------------------------------===// 1879 // Objective-C 1880 //===--------------------------------------------------------------------===// 1881 1882 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 1883 1884 void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD); 1885 1886 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 1887 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 1888 const ObjCPropertyImplDecl *PID); 1889 void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 1890 const ObjCPropertyImplDecl *propImpl, 1891 const ObjCMethodDecl *GetterMothodDecl, 1892 llvm::Constant *AtomicHelperFn); 1893 1894 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1895 ObjCMethodDecl *MD, bool ctor); 1896 1897 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 1898 /// for the given property. 1899 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 1900 const ObjCPropertyImplDecl *PID); 1901 void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1902 const ObjCPropertyImplDecl *propImpl, 1903 llvm::Constant *AtomicHelperFn); 1904 1905 //===--------------------------------------------------------------------===// 1906 // Block Bits 1907 //===--------------------------------------------------------------------===// 1908 1909 /// Emit block literal. 1910 /// \return an LLVM value which is a pointer to a struct which contains 1911 /// information about the block, including the block invoke function, the 1912 /// captured variables, etc. 1913 llvm::Value *EmitBlockLiteral(const BlockExpr *); 1914 static void destroyBlockInfos(CGBlockInfo *info); 1915 1916 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 1917 const CGBlockInfo &Info, 1918 const DeclMapTy &ldm, 1919 bool IsLambdaConversionToBlock, 1920 bool BuildGlobalBlock); 1921 1922 /// Check if \p T is a C++ class that has a destructor that can throw. 1923 static bool cxxDestructorCanThrow(QualType T); 1924 1925 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 1926 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 1927 llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( 1928 const ObjCPropertyImplDecl *PID); 1929 llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( 1930 const ObjCPropertyImplDecl *PID); 1931 llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); 1932 1933 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags, 1934 bool CanThrow); 1935 1936 class AutoVarEmission; 1937 1938 void emitByrefStructureInit(const AutoVarEmission &emission); 1939 1940 /// Enter a cleanup to destroy a __block variable. Note that this 1941 /// cleanup should be a no-op if the variable hasn't left the stack 1942 /// yet; if a cleanup is required for the variable itself, that needs 1943 /// to be done externally. 1944 /// 1945 /// \param Kind Cleanup kind. 1946 /// 1947 /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block 1948 /// structure that will be passed to _Block_object_dispose. When 1949 /// \p LoadBlockVarAddr is true, the address of the field of the block 1950 /// structure that holds the address of the __block structure. 1951 /// 1952 /// \param Flags The flag that will be passed to _Block_object_dispose. 1953 /// 1954 /// \param LoadBlockVarAddr Indicates whether we need to emit a load from 1955 /// \p Addr to get the address of the __block structure. 1956 void enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags, 1957 bool LoadBlockVarAddr, bool CanThrow); 1958 1959 void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum, 1960 llvm::Value *ptr); 1961 1962 Address LoadBlockStruct(); 1963 Address GetAddrOfBlockDecl(const VarDecl *var); 1964 1965 /// BuildBlockByrefAddress - Computes the location of the 1966 /// data in a variable which is declared as __block. 1967 Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V, 1968 bool followForward = true); 1969 Address emitBlockByrefAddress(Address baseAddr, 1970 const BlockByrefInfo &info, 1971 bool followForward, 1972 const llvm::Twine &name); 1973 1974 const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var); 1975 1976 QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args); 1977 1978 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1979 const CGFunctionInfo &FnInfo); 1980 1981 /// Annotate the function with an attribute that disables TSan checking at 1982 /// runtime. 1983 void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn); 1984 1985 /// Emit code for the start of a function. 1986 /// \param Loc The location to be associated with the function. 1987 /// \param StartLoc The location of the function body. 1988 void StartFunction(GlobalDecl GD, 1989 QualType RetTy, 1990 llvm::Function *Fn, 1991 const CGFunctionInfo &FnInfo, 1992 const FunctionArgList &Args, 1993 SourceLocation Loc = SourceLocation(), 1994 SourceLocation StartLoc = SourceLocation()); 1995 1996 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor); 1997 1998 void EmitConstructorBody(FunctionArgList &Args); 1999 void EmitDestructorBody(FunctionArgList &Args); 2000 void emitImplicitAssignmentOperatorBody(FunctionArgList &Args); 2001 void EmitFunctionBody(const Stmt *Body); 2002 void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S); 2003 2004 void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator, 2005 CallArgList &CallArgs); 2006 void EmitLambdaBlockInvokeBody(); 2007 void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD); 2008 void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD); 2009 void EmitLambdaVLACapture(const VariableArrayType *VAT, LValue LV) { 2010 EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); 2011 } 2012 void EmitAsanPrologueOrEpilogue(bool Prologue); 2013 2014 /// Emit the unified return block, trying to avoid its emission when 2015 /// possible. 2016 /// \return The debug location of the user written return statement if the 2017 /// return block is is avoided. 2018 llvm::DebugLoc EmitReturnBlock(); 2019 2020 /// FinishFunction - Complete IR generation of the current function. It is 2021 /// legal to call this function even if there is no current insertion point. 2022 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 2023 2024 void StartThunk(llvm::Function *Fn, GlobalDecl GD, 2025 const CGFunctionInfo &FnInfo, bool IsUnprototyped); 2026 2027 void EmitCallAndReturnForThunk(llvm::FunctionCallee Callee, 2028 const ThunkInfo *Thunk, bool IsUnprototyped); 2029 2030 void FinishThunk(); 2031 2032 /// Emit a musttail call for a thunk with a potentially adjusted this pointer. 2033 void EmitMustTailThunk(GlobalDecl GD, llvm::Value *AdjustedThisPtr, 2034 llvm::FunctionCallee Callee); 2035 2036 /// Generate a thunk for the given method. 2037 void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 2038 GlobalDecl GD, const ThunkInfo &Thunk, 2039 bool IsUnprototyped); 2040 2041 llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn, 2042 const CGFunctionInfo &FnInfo, 2043 GlobalDecl GD, const ThunkInfo &Thunk); 2044 2045 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 2046 FunctionArgList &Args); 2047 2048 void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init); 2049 2050 /// Struct with all information about dynamic [sub]class needed to set vptr. 2051 struct VPtr { 2052 BaseSubobject Base; 2053 const CXXRecordDecl *NearestVBase; 2054 CharUnits OffsetFromNearestVBase; 2055 const CXXRecordDecl *VTableClass; 2056 }; 2057 2058 /// Initialize the vtable pointer of the given subobject. 2059 void InitializeVTablePointer(const VPtr &vptr); 2060 2061 typedef llvm::SmallVector<VPtr, 4> VPtrsVector; 2062 2063 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 2064 VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass); 2065 2066 void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase, 2067 CharUnits OffsetFromNearestVBase, 2068 bool BaseIsNonVirtualPrimaryBase, 2069 const CXXRecordDecl *VTableClass, 2070 VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs); 2071 2072 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 2073 2074 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 2075 /// to by This. 2076 llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy, 2077 const CXXRecordDecl *VTableClass); 2078 2079 enum CFITypeCheckKind { 2080 CFITCK_VCall, 2081 CFITCK_NVCall, 2082 CFITCK_DerivedCast, 2083 CFITCK_UnrelatedCast, 2084 CFITCK_ICall, 2085 CFITCK_NVMFCall, 2086 CFITCK_VMFCall, 2087 }; 2088 2089 /// Derived is the presumed address of an object of type T after a 2090 /// cast. If T is a polymorphic class type, emit a check that the virtual 2091 /// table for Derived belongs to a class derived from T. 2092 void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived, 2093 bool MayBeNull, CFITypeCheckKind TCK, 2094 SourceLocation Loc); 2095 2096 /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable. 2097 /// If vptr CFI is enabled, emit a check that VTable is valid. 2098 void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable, 2099 CFITypeCheckKind TCK, SourceLocation Loc); 2100 2101 /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for 2102 /// RD using llvm.type.test. 2103 void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable, 2104 CFITypeCheckKind TCK, SourceLocation Loc); 2105 2106 /// If whole-program virtual table optimization is enabled, emit an assumption 2107 /// that VTable is a member of RD's type identifier. Or, if vptr CFI is 2108 /// enabled, emit a check that VTable is a member of RD's type identifier. 2109 void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, 2110 llvm::Value *VTable, SourceLocation Loc); 2111 2112 /// Returns whether we should perform a type checked load when loading a 2113 /// virtual function for virtual calls to members of RD. This is generally 2114 /// true when both vcall CFI and whole-program-vtables are enabled. 2115 bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD); 2116 2117 /// Emit a type checked load from the given vtable. 2118 llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable, 2119 uint64_t VTableByteOffset); 2120 2121 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 2122 /// given phase of destruction for a destructor. The end result 2123 /// should call destructors on members and base classes in reverse 2124 /// order of their construction. 2125 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 2126 2127 /// ShouldInstrumentFunction - Return true if the current function should be 2128 /// instrumented with __cyg_profile_func_* calls 2129 bool ShouldInstrumentFunction(); 2130 2131 /// ShouldXRayInstrument - Return true if the current function should be 2132 /// instrumented with XRay nop sleds. 2133 bool ShouldXRayInstrumentFunction() const; 2134 2135 /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit 2136 /// XRay custom event handling calls. 2137 bool AlwaysEmitXRayCustomEvents() const; 2138 2139 /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit 2140 /// XRay typed event handling calls. 2141 bool AlwaysEmitXRayTypedEvents() const; 2142 2143 /// Encode an address into a form suitable for use in a function prologue. 2144 llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F, 2145 llvm::Constant *Addr); 2146 2147 /// Decode an address used in a function prologue, encoded by \c 2148 /// EncodeAddrForUseInPrologue. 2149 llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F, 2150 llvm::Value *EncodedAddr); 2151 2152 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 2153 /// arguments for the given function. This is also responsible for naming the 2154 /// LLVM function arguments. 2155 void EmitFunctionProlog(const CGFunctionInfo &FI, 2156 llvm::Function *Fn, 2157 const FunctionArgList &Args); 2158 2159 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 2160 /// given temporary. 2161 void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc, 2162 SourceLocation EndLoc); 2163 2164 /// Emit a test that checks if the return value \p RV is nonnull. 2165 void EmitReturnValueCheck(llvm::Value *RV); 2166 2167 /// EmitStartEHSpec - Emit the start of the exception spec. 2168 void EmitStartEHSpec(const Decl *D); 2169 2170 /// EmitEndEHSpec - Emit the end of the exception spec. 2171 void EmitEndEHSpec(const Decl *D); 2172 2173 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 2174 llvm::BasicBlock *getTerminateLandingPad(); 2175 2176 /// getTerminateLandingPad - Return a cleanup funclet that just calls 2177 /// terminate. 2178 llvm::BasicBlock *getTerminateFunclet(); 2179 2180 /// getTerminateHandler - Return a handler (not a landing pad, just 2181 /// a catch handler) that just calls terminate. This is used when 2182 /// a terminate scope encloses a try. 2183 llvm::BasicBlock *getTerminateHandler(); 2184 2185 llvm::Type *ConvertTypeForMem(QualType T); 2186 llvm::Type *ConvertType(QualType T); 2187 llvm::Type *ConvertType(const TypeDecl *T) { 2188 return ConvertType(getContext().getTypeDeclType(T)); 2189 } 2190 2191 /// LoadObjCSelf - Load the value of self. This function is only valid while 2192 /// generating code for an Objective-C method. 2193 llvm::Value *LoadObjCSelf(); 2194 2195 /// TypeOfSelfObject - Return type of object that this self represents. 2196 QualType TypeOfSelfObject(); 2197 2198 /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T. 2199 static TypeEvaluationKind getEvaluationKind(QualType T); 2200 2201 static bool hasScalarEvaluationKind(QualType T) { 2202 return getEvaluationKind(T) == TEK_Scalar; 2203 } 2204 2205 static bool hasAggregateEvaluationKind(QualType T) { 2206 return getEvaluationKind(T) == TEK_Aggregate; 2207 } 2208 2209 /// createBasicBlock - Create an LLVM basic block. 2210 llvm::BasicBlock *createBasicBlock(const Twine &name = "", 2211 llvm::Function *parent = nullptr, 2212 llvm::BasicBlock *before = nullptr) { 2213 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 2214 } 2215 2216 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 2217 /// label maps to. 2218 JumpDest getJumpDestForLabel(const LabelDecl *S); 2219 2220 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 2221 /// another basic block, simplify it. This assumes that no other code could 2222 /// potentially reference the basic block. 2223 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 2224 2225 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 2226 /// adding a fall-through branch from the current insert block if 2227 /// necessary. It is legal to call this function even if there is no current 2228 /// insertion point. 2229 /// 2230 /// IsFinished - If true, indicates that the caller has finished emitting 2231 /// branches to the given block and does not expect to emit code into it. This 2232 /// means the block can be ignored if it is unreachable. 2233 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 2234 2235 /// EmitBlockAfterUses - Emit the given block somewhere hopefully 2236 /// near its uses, and leave the insertion point in it. 2237 void EmitBlockAfterUses(llvm::BasicBlock *BB); 2238 2239 /// EmitBranch - Emit a branch to the specified basic block from the current 2240 /// insert block, taking care to avoid creation of branches from dummy 2241 /// blocks. It is legal to call this function even if there is no current 2242 /// insertion point. 2243 /// 2244 /// This function clears the current insertion point. The caller should follow 2245 /// calls to this function with calls to Emit*Block prior to generation new 2246 /// code. 2247 void EmitBranch(llvm::BasicBlock *Block); 2248 2249 /// HaveInsertPoint - True if an insertion point is defined. If not, this 2250 /// indicates that the current code being emitted is unreachable. 2251 bool HaveInsertPoint() const { 2252 return Builder.GetInsertBlock() != nullptr; 2253 } 2254 2255 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 2256 /// emitted IR has a place to go. Note that by definition, if this function 2257 /// creates a block then that block is unreachable; callers may do better to 2258 /// detect when no insertion point is defined and simply skip IR generation. 2259 void EnsureInsertPoint() { 2260 if (!HaveInsertPoint()) 2261 EmitBlock(createBasicBlock()); 2262 } 2263 2264 /// ErrorUnsupported - Print out an error that codegen doesn't support the 2265 /// specified stmt yet. 2266 void ErrorUnsupported(const Stmt *S, const char *Type); 2267 2268 //===--------------------------------------------------------------------===// 2269 // Helpers 2270 //===--------------------------------------------------------------------===// 2271 2272 LValue MakeAddrLValue(Address Addr, QualType T, 2273 AlignmentSource Source = AlignmentSource::Type) { 2274 return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source), 2275 CGM.getTBAAAccessInfo(T)); 2276 } 2277 2278 LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo, 2279 TBAAAccessInfo TBAAInfo) { 2280 return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo); 2281 } 2282 2283 LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 2284 AlignmentSource Source = AlignmentSource::Type) { 2285 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), 2286 LValueBaseInfo(Source), CGM.getTBAAAccessInfo(T)); 2287 } 2288 2289 LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 2290 LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) { 2291 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), 2292 BaseInfo, TBAAInfo); 2293 } 2294 2295 LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T); 2296 LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T); 2297 2298 Address EmitLoadOfReference(LValue RefLVal, 2299 LValueBaseInfo *PointeeBaseInfo = nullptr, 2300 TBAAAccessInfo *PointeeTBAAInfo = nullptr); 2301 LValue EmitLoadOfReferenceLValue(LValue RefLVal); 2302 LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy, 2303 AlignmentSource Source = 2304 AlignmentSource::Type) { 2305 LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source), 2306 CGM.getTBAAAccessInfo(RefTy)); 2307 return EmitLoadOfReferenceLValue(RefLVal); 2308 } 2309 2310 Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy, 2311 LValueBaseInfo *BaseInfo = nullptr, 2312 TBAAAccessInfo *TBAAInfo = nullptr); 2313 LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy); 2314 2315 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 2316 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 2317 /// insertion point of the builder. The caller is responsible for setting an 2318 /// appropriate alignment on 2319 /// the alloca. 2320 /// 2321 /// \p ArraySize is the number of array elements to be allocated if it 2322 /// is not nullptr. 2323 /// 2324 /// LangAS::Default is the address space of pointers to local variables and 2325 /// temporaries, as exposed in the source language. In certain 2326 /// configurations, this is not the same as the alloca address space, and a 2327 /// cast is needed to lift the pointer from the alloca AS into 2328 /// LangAS::Default. This can happen when the target uses a restricted 2329 /// address space for the stack but the source language requires 2330 /// LangAS::Default to be a generic address space. The latter condition is 2331 /// common for most programming languages; OpenCL is an exception in that 2332 /// LangAS::Default is the private address space, which naturally maps 2333 /// to the stack. 2334 /// 2335 /// Because the address of a temporary is often exposed to the program in 2336 /// various ways, this function will perform the cast. The original alloca 2337 /// instruction is returned through \p Alloca if it is not nullptr. 2338 /// 2339 /// The cast is not performaed in CreateTempAllocaWithoutCast. This is 2340 /// more efficient if the caller knows that the address will not be exposed. 2341 llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp", 2342 llvm::Value *ArraySize = nullptr); 2343 Address CreateTempAlloca(llvm::Type *Ty, CharUnits align, 2344 const Twine &Name = "tmp", 2345 llvm::Value *ArraySize = nullptr, 2346 Address *Alloca = nullptr); 2347 Address CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align, 2348 const Twine &Name = "tmp", 2349 llvm::Value *ArraySize = nullptr); 2350 2351 /// CreateDefaultAlignedTempAlloca - This creates an alloca with the 2352 /// default ABI alignment of the given LLVM type. 2353 /// 2354 /// IMPORTANT NOTE: This is *not* generally the right alignment for 2355 /// any given AST type that happens to have been lowered to the 2356 /// given IR type. This should only ever be used for function-local, 2357 /// IR-driven manipulations like saving and restoring a value. Do 2358 /// not hand this address off to arbitrary IRGen routines, and especially 2359 /// do not pass it as an argument to a function that might expect a 2360 /// properly ABI-aligned value. 2361 Address CreateDefaultAlignTempAlloca(llvm::Type *Ty, 2362 const Twine &Name = "tmp"); 2363 2364 /// InitTempAlloca - Provide an initial value for the given alloca which 2365 /// will be observable at all locations in the function. 2366 /// 2367 /// The address should be something that was returned from one of 2368 /// the CreateTempAlloca or CreateMemTemp routines, and the 2369 /// initializer must be valid in the entry block (i.e. it must 2370 /// either be a constant or an argument value). 2371 void InitTempAlloca(Address Alloca, llvm::Value *Value); 2372 2373 /// CreateIRTemp - Create a temporary IR object of the given type, with 2374 /// appropriate alignment. This routine should only be used when an temporary 2375 /// value needs to be stored into an alloca (for example, to avoid explicit 2376 /// PHI construction), but the type is the IR type, not the type appropriate 2377 /// for storing in memory. 2378 /// 2379 /// That is, this is exactly equivalent to CreateMemTemp, but calling 2380 /// ConvertType instead of ConvertTypeForMem. 2381 Address CreateIRTemp(QualType T, const Twine &Name = "tmp"); 2382 2383 /// CreateMemTemp - Create a temporary memory object of the given type, with 2384 /// appropriate alignmen and cast it to the default address space. Returns 2385 /// the original alloca instruction by \p Alloca if it is not nullptr. 2386 Address CreateMemTemp(QualType T, const Twine &Name = "tmp", 2387 Address *Alloca = nullptr); 2388 Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp", 2389 Address *Alloca = nullptr); 2390 2391 /// CreateMemTemp - Create a temporary memory object of the given type, with 2392 /// appropriate alignmen without casting it to the default address space. 2393 Address CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp"); 2394 Address CreateMemTempWithoutCast(QualType T, CharUnits Align, 2395 const Twine &Name = "tmp"); 2396 2397 /// CreateAggTemp - Create a temporary memory object for the given 2398 /// aggregate type. 2399 AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp", 2400 Address *Alloca = nullptr) { 2401 return AggValueSlot::forAddr(CreateMemTemp(T, Name, Alloca), 2402 T.getQualifiers(), 2403 AggValueSlot::IsNotDestructed, 2404 AggValueSlot::DoesNotNeedGCBarriers, 2405 AggValueSlot::IsNotAliased, 2406 AggValueSlot::DoesNotOverlap); 2407 } 2408 2409 /// Emit a cast to void* in the appropriate address space. 2410 llvm::Value *EmitCastToVoidPtr(llvm::Value *value); 2411 2412 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 2413 /// expression and compare the result against zero, returning an Int1Ty value. 2414 llvm::Value *EvaluateExprAsBool(const Expr *E); 2415 2416 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 2417 void EmitIgnoredExpr(const Expr *E); 2418 2419 /// EmitAnyExpr - Emit code to compute the specified expression which can have 2420 /// any type. The result is returned as an RValue struct. If this is an 2421 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 2422 /// the result should be returned. 2423 /// 2424 /// \param ignoreResult True if the resulting value isn't used. 2425 RValue EmitAnyExpr(const Expr *E, 2426 AggValueSlot aggSlot = AggValueSlot::ignored(), 2427 bool ignoreResult = false); 2428 2429 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 2430 // or the value of the expression, depending on how va_list is defined. 2431 Address EmitVAListRef(const Expr *E); 2432 2433 /// Emit a "reference" to a __builtin_ms_va_list; this is 2434 /// always the value of the expression, because a __builtin_ms_va_list is a 2435 /// pointer to a char. 2436 Address EmitMSVAListRef(const Expr *E); 2437 2438 /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will 2439 /// always be accessible even if no aggregate location is provided. 2440 RValue EmitAnyExprToTemp(const Expr *E); 2441 2442 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 2443 /// arbitrary expression into the given memory location. 2444 void EmitAnyExprToMem(const Expr *E, Address Location, 2445 Qualifiers Quals, bool IsInitializer); 2446 2447 void EmitAnyExprToExn(const Expr *E, Address Addr); 2448 2449 /// EmitExprAsInit - Emits the code necessary to initialize a 2450 /// location in memory with the given initializer. 2451 void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2452 bool capturedByInit); 2453 2454 /// hasVolatileMember - returns true if aggregate type has a volatile 2455 /// member. 2456 bool hasVolatileMember(QualType T) { 2457 if (const RecordType *RT = T->getAs<RecordType>()) { 2458 const RecordDecl *RD = cast<RecordDecl>(RT->getDecl()); 2459 return RD->hasVolatileMember(); 2460 } 2461 return false; 2462 } 2463 2464 /// Determine whether a return value slot may overlap some other object. 2465 AggValueSlot::Overlap_t getOverlapForReturnValue() { 2466 // FIXME: Assuming no overlap here breaks guaranteed copy elision for base 2467 // class subobjects. These cases may need to be revisited depending on the 2468 // resolution of the relevant core issue. 2469 return AggValueSlot::DoesNotOverlap; 2470 } 2471 2472 /// Determine whether a field initialization may overlap some other object. 2473 AggValueSlot::Overlap_t getOverlapForFieldInit(const FieldDecl *FD); 2474 2475 /// Determine whether a base class initialization may overlap some other 2476 /// object. 2477 AggValueSlot::Overlap_t getOverlapForBaseInit(const CXXRecordDecl *RD, 2478 const CXXRecordDecl *BaseRD, 2479 bool IsVirtual); 2480 2481 /// Emit an aggregate assignment. 2482 void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) { 2483 bool IsVolatile = hasVolatileMember(EltTy); 2484 EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile); 2485 } 2486 2487 void EmitAggregateCopyCtor(LValue Dest, LValue Src, 2488 AggValueSlot::Overlap_t MayOverlap) { 2489 EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap); 2490 } 2491 2492 /// EmitAggregateCopy - Emit an aggregate copy. 2493 /// 2494 /// \param isVolatile \c true iff either the source or the destination is 2495 /// volatile. 2496 /// \param MayOverlap Whether the tail padding of the destination might be 2497 /// occupied by some other object. More efficient code can often be 2498 /// generated if not. 2499 void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy, 2500 AggValueSlot::Overlap_t MayOverlap, 2501 bool isVolatile = false); 2502 2503 /// GetAddrOfLocalVar - Return the address of a local variable. 2504 Address GetAddrOfLocalVar(const VarDecl *VD) { 2505 auto it = LocalDeclMap.find(VD); 2506 assert(it != LocalDeclMap.end() && 2507 "Invalid argument to GetAddrOfLocalVar(), no decl!"); 2508 return it->second; 2509 } 2510 2511 /// Given an opaque value expression, return its LValue mapping if it exists, 2512 /// otherwise create one. 2513 LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e); 2514 2515 /// Given an opaque value expression, return its RValue mapping if it exists, 2516 /// otherwise create one. 2517 RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e); 2518 2519 /// Get the index of the current ArrayInitLoopExpr, if any. 2520 llvm::Value *getArrayInitIndex() { return ArrayInitIndex; } 2521 2522 /// getAccessedFieldNo - Given an encoded value and a result number, return 2523 /// the input field number being accessed. 2524 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 2525 2526 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 2527 llvm::BasicBlock *GetIndirectGotoBlock(); 2528 2529 /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts. 2530 static bool IsWrappedCXXThis(const Expr *E); 2531 2532 /// EmitNullInitialization - Generate code to set a value of the given type to 2533 /// null, If the type contains data member pointers, they will be initialized 2534 /// to -1 in accordance with the Itanium C++ ABI. 2535 void EmitNullInitialization(Address DestPtr, QualType Ty); 2536 2537 /// Emits a call to an LLVM variable-argument intrinsic, either 2538 /// \c llvm.va_start or \c llvm.va_end. 2539 /// \param ArgValue A reference to the \c va_list as emitted by either 2540 /// \c EmitVAListRef or \c EmitMSVAListRef. 2541 /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise, 2542 /// calls \c llvm.va_end. 2543 llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart); 2544 2545 /// Generate code to get an argument from the passed in pointer 2546 /// and update it accordingly. 2547 /// \param VE The \c VAArgExpr for which to generate code. 2548 /// \param VAListAddr Receives a reference to the \c va_list as emitted by 2549 /// either \c EmitVAListRef or \c EmitMSVAListRef. 2550 /// \returns A pointer to the argument. 2551 // FIXME: We should be able to get rid of this method and use the va_arg 2552 // instruction in LLVM instead once it works well enough. 2553 Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr); 2554 2555 /// emitArrayLength - Compute the length of an array, even if it's a 2556 /// VLA, and drill down to the base element type. 2557 llvm::Value *emitArrayLength(const ArrayType *arrayType, 2558 QualType &baseType, 2559 Address &addr); 2560 2561 /// EmitVLASize - Capture all the sizes for the VLA expressions in 2562 /// the given variably-modified type and store them in the VLASizeMap. 2563 /// 2564 /// This function can be called with a null (unreachable) insert point. 2565 void EmitVariablyModifiedType(QualType Ty); 2566 2567 struct VlaSizePair { 2568 llvm::Value *NumElts; 2569 QualType Type; 2570 2571 VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {} 2572 }; 2573 2574 /// Return the number of elements for a single dimension 2575 /// for the given array type. 2576 VlaSizePair getVLAElements1D(const VariableArrayType *vla); 2577 VlaSizePair getVLAElements1D(QualType vla); 2578 2579 /// Returns an LLVM value that corresponds to the size, 2580 /// in non-variably-sized elements, of a variable length array type, 2581 /// plus that largest non-variably-sized element type. Assumes that 2582 /// the type has already been emitted with EmitVariablyModifiedType. 2583 VlaSizePair getVLASize(const VariableArrayType *vla); 2584 VlaSizePair getVLASize(QualType vla); 2585 2586 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 2587 /// generating code for an C++ member function. 2588 llvm::Value *LoadCXXThis() { 2589 assert(CXXThisValue && "no 'this' value for this function"); 2590 return CXXThisValue; 2591 } 2592 Address LoadCXXThisAddress(); 2593 2594 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 2595 /// virtual bases. 2596 // FIXME: Every place that calls LoadCXXVTT is something 2597 // that needs to be abstracted properly. 2598 llvm::Value *LoadCXXVTT() { 2599 assert(CXXStructorImplicitParamValue && "no VTT value for this function"); 2600 return CXXStructorImplicitParamValue; 2601 } 2602 2603 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 2604 /// complete class to the given direct base. 2605 Address 2606 GetAddressOfDirectBaseInCompleteClass(Address Value, 2607 const CXXRecordDecl *Derived, 2608 const CXXRecordDecl *Base, 2609 bool BaseIsVirtual); 2610 2611 static bool ShouldNullCheckClassCastValue(const CastExpr *Cast); 2612 2613 /// GetAddressOfBaseClass - This function will add the necessary delta to the 2614 /// load of 'this' and returns address of the base class. 2615 Address GetAddressOfBaseClass(Address Value, 2616 const CXXRecordDecl *Derived, 2617 CastExpr::path_const_iterator PathBegin, 2618 CastExpr::path_const_iterator PathEnd, 2619 bool NullCheckValue, SourceLocation Loc); 2620 2621 Address GetAddressOfDerivedClass(Address Value, 2622 const CXXRecordDecl *Derived, 2623 CastExpr::path_const_iterator PathBegin, 2624 CastExpr::path_const_iterator PathEnd, 2625 bool NullCheckValue); 2626 2627 /// GetVTTParameter - Return the VTT parameter that should be passed to a 2628 /// base constructor/destructor with virtual bases. 2629 /// FIXME: VTTs are Itanium ABI-specific, so the definition should move 2630 /// to ItaniumCXXABI.cpp together with all the references to VTT. 2631 llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase, 2632 bool Delegating); 2633 2634 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 2635 CXXCtorType CtorType, 2636 const FunctionArgList &Args, 2637 SourceLocation Loc); 2638 // It's important not to confuse this and the previous function. Delegating 2639 // constructors are the C++0x feature. The constructor delegate optimization 2640 // is used to reduce duplication in the base and complete consturctors where 2641 // they are substantially the same. 2642 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2643 const FunctionArgList &Args); 2644 2645 /// Emit a call to an inheriting constructor (that is, one that invokes a 2646 /// constructor inherited from a base class) by inlining its definition. This 2647 /// is necessary if the ABI does not support forwarding the arguments to the 2648 /// base class constructor (because they're variadic or similar). 2649 void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2650 CXXCtorType CtorType, 2651 bool ForVirtualBase, 2652 bool Delegating, 2653 CallArgList &Args); 2654 2655 /// Emit a call to a constructor inherited from a base class, passing the 2656 /// current constructor's arguments along unmodified (without even making 2657 /// a copy). 2658 void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D, 2659 bool ForVirtualBase, Address This, 2660 bool InheritedFromVBase, 2661 const CXXInheritedCtorInitExpr *E); 2662 2663 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2664 bool ForVirtualBase, bool Delegating, 2665 AggValueSlot ThisAVS, const CXXConstructExpr *E); 2666 2667 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2668 bool ForVirtualBase, bool Delegating, 2669 Address This, CallArgList &Args, 2670 AggValueSlot::Overlap_t Overlap, 2671 SourceLocation Loc, bool NewPointerIsChecked); 2672 2673 /// Emit assumption load for all bases. Requires to be be called only on 2674 /// most-derived class and not under construction of the object. 2675 void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This); 2676 2677 /// Emit assumption that vptr load == global vtable. 2678 void EmitVTableAssumptionLoad(const VPtr &vptr, Address This); 2679 2680 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 2681 Address This, Address Src, 2682 const CXXConstructExpr *E); 2683 2684 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2685 const ArrayType *ArrayTy, 2686 Address ArrayPtr, 2687 const CXXConstructExpr *E, 2688 bool NewPointerIsChecked, 2689 bool ZeroInitialization = false); 2690 2691 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2692 llvm::Value *NumElements, 2693 Address ArrayPtr, 2694 const CXXConstructExpr *E, 2695 bool NewPointerIsChecked, 2696 bool ZeroInitialization = false); 2697 2698 static Destroyer destroyCXXObject; 2699 2700 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 2701 bool ForVirtualBase, bool Delegating, Address This, 2702 QualType ThisTy); 2703 2704 void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, 2705 llvm::Type *ElementTy, Address NewPtr, 2706 llvm::Value *NumElements, 2707 llvm::Value *AllocSizeWithoutCookie); 2708 2709 void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, 2710 Address Ptr); 2711 2712 llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr); 2713 void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr); 2714 2715 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 2716 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 2717 2718 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 2719 QualType DeleteTy, llvm::Value *NumElements = nullptr, 2720 CharUnits CookieSize = CharUnits()); 2721 2722 RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 2723 const CallExpr *TheCallExpr, bool IsDelete); 2724 2725 llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E); 2726 llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE); 2727 Address EmitCXXUuidofExpr(const CXXUuidofExpr *E); 2728 2729 /// Situations in which we might emit a check for the suitability of a 2730 /// pointer or glvalue. Needs to be kept in sync with ubsan_handlers.cpp in 2731 /// compiler-rt. 2732 enum TypeCheckKind { 2733 /// Checking the operand of a load. Must be suitably sized and aligned. 2734 TCK_Load, 2735 /// Checking the destination of a store. Must be suitably sized and aligned. 2736 TCK_Store, 2737 /// Checking the bound value in a reference binding. Must be suitably sized 2738 /// and aligned, but is not required to refer to an object (until the 2739 /// reference is used), per core issue 453. 2740 TCK_ReferenceBinding, 2741 /// Checking the object expression in a non-static data member access. Must 2742 /// be an object within its lifetime. 2743 TCK_MemberAccess, 2744 /// Checking the 'this' pointer for a call to a non-static member function. 2745 /// Must be an object within its lifetime. 2746 TCK_MemberCall, 2747 /// Checking the 'this' pointer for a constructor call. 2748 TCK_ConstructorCall, 2749 /// Checking the operand of a static_cast to a derived pointer type. Must be 2750 /// null or an object within its lifetime. 2751 TCK_DowncastPointer, 2752 /// Checking the operand of a static_cast to a derived reference type. Must 2753 /// be an object within its lifetime. 2754 TCK_DowncastReference, 2755 /// Checking the operand of a cast to a base object. Must be suitably sized 2756 /// and aligned. 2757 TCK_Upcast, 2758 /// Checking the operand of a cast to a virtual base object. Must be an 2759 /// object within its lifetime. 2760 TCK_UpcastToVirtualBase, 2761 /// Checking the value assigned to a _Nonnull pointer. Must not be null. 2762 TCK_NonnullAssign, 2763 /// Checking the operand of a dynamic_cast or a typeid expression. Must be 2764 /// null or an object within its lifetime. 2765 TCK_DynamicOperation 2766 }; 2767 2768 /// Determine whether the pointer type check \p TCK permits null pointers. 2769 static bool isNullPointerAllowed(TypeCheckKind TCK); 2770 2771 /// Determine whether the pointer type check \p TCK requires a vptr check. 2772 static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty); 2773 2774 /// Whether any type-checking sanitizers are enabled. If \c false, 2775 /// calls to EmitTypeCheck can be skipped. 2776 bool sanitizePerformTypeCheck() const; 2777 2778 /// Emit a check that \p V is the address of storage of the 2779 /// appropriate size and alignment for an object of type \p Type 2780 /// (or if ArraySize is provided, for an array of that bound). 2781 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, 2782 QualType Type, CharUnits Alignment = CharUnits::Zero(), 2783 SanitizerSet SkippedChecks = SanitizerSet(), 2784 llvm::Value *ArraySize = nullptr); 2785 2786 /// Emit a check that \p Base points into an array object, which 2787 /// we can access at index \p Index. \p Accessed should be \c false if we 2788 /// this expression is used as an lvalue, for instance in "&Arr[Idx]". 2789 void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, 2790 QualType IndexType, bool Accessed); 2791 2792 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 2793 bool isInc, bool isPre); 2794 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 2795 bool isInc, bool isPre); 2796 2797 /// Converts Location to a DebugLoc, if debug information is enabled. 2798 llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location); 2799 2800 /// Get the record field index as represented in debug info. 2801 unsigned getDebugInfoFIndex(const RecordDecl *Rec, unsigned FieldIndex); 2802 2803 2804 //===--------------------------------------------------------------------===// 2805 // Declaration Emission 2806 //===--------------------------------------------------------------------===// 2807 2808 /// EmitDecl - Emit a declaration. 2809 /// 2810 /// This function can be called with a null (unreachable) insert point. 2811 void EmitDecl(const Decl &D); 2812 2813 /// EmitVarDecl - Emit a local variable declaration. 2814 /// 2815 /// This function can be called with a null (unreachable) insert point. 2816 void EmitVarDecl(const VarDecl &D); 2817 2818 void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2819 bool capturedByInit); 2820 2821 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 2822 llvm::Value *Address); 2823 2824 /// Determine whether the given initializer is trivial in the sense 2825 /// that it requires no code to be generated. 2826 bool isTrivialInitializer(const Expr *Init); 2827 2828 /// EmitAutoVarDecl - Emit an auto variable declaration. 2829 /// 2830 /// This function can be called with a null (unreachable) insert point. 2831 void EmitAutoVarDecl(const VarDecl &D); 2832 2833 class AutoVarEmission { 2834 friend class CodeGenFunction; 2835 2836 const VarDecl *Variable; 2837 2838 /// The address of the alloca for languages with explicit address space 2839 /// (e.g. OpenCL) or alloca casted to generic pointer for address space 2840 /// agnostic languages (e.g. C++). Invalid if the variable was emitted 2841 /// as a global constant. 2842 Address Addr; 2843 2844 llvm::Value *NRVOFlag; 2845 2846 /// True if the variable is a __block variable that is captured by an 2847 /// escaping block. 2848 bool IsEscapingByRef; 2849 2850 /// True if the variable is of aggregate type and has a constant 2851 /// initializer. 2852 bool IsConstantAggregate; 2853 2854 /// Non-null if we should use lifetime annotations. 2855 llvm::Value *SizeForLifetimeMarkers; 2856 2857 /// Address with original alloca instruction. Invalid if the variable was 2858 /// emitted as a global constant. 2859 Address AllocaAddr; 2860 2861 struct Invalid {}; 2862 AutoVarEmission(Invalid) 2863 : Variable(nullptr), Addr(Address::invalid()), 2864 AllocaAddr(Address::invalid()) {} 2865 2866 AutoVarEmission(const VarDecl &variable) 2867 : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr), 2868 IsEscapingByRef(false), IsConstantAggregate(false), 2869 SizeForLifetimeMarkers(nullptr), AllocaAddr(Address::invalid()) {} 2870 2871 bool wasEmittedAsGlobal() const { return !Addr.isValid(); } 2872 2873 public: 2874 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 2875 2876 bool useLifetimeMarkers() const { 2877 return SizeForLifetimeMarkers != nullptr; 2878 } 2879 llvm::Value *getSizeForLifetimeMarkers() const { 2880 assert(useLifetimeMarkers()); 2881 return SizeForLifetimeMarkers; 2882 } 2883 2884 /// Returns the raw, allocated address, which is not necessarily 2885 /// the address of the object itself. It is casted to default 2886 /// address space for address space agnostic languages. 2887 Address getAllocatedAddress() const { 2888 return Addr; 2889 } 2890 2891 /// Returns the address for the original alloca instruction. 2892 Address getOriginalAllocatedAddress() const { return AllocaAddr; } 2893 2894 /// Returns the address of the object within this declaration. 2895 /// Note that this does not chase the forwarding pointer for 2896 /// __block decls. 2897 Address getObjectAddress(CodeGenFunction &CGF) const { 2898 if (!IsEscapingByRef) return Addr; 2899 2900 return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false); 2901 } 2902 }; 2903 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 2904 void EmitAutoVarInit(const AutoVarEmission &emission); 2905 void EmitAutoVarCleanups(const AutoVarEmission &emission); 2906 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 2907 QualType::DestructionKind dtorKind); 2908 2909 /// Emits the alloca and debug information for the size expressions for each 2910 /// dimension of an array. It registers the association of its (1-dimensional) 2911 /// QualTypes and size expression's debug node, so that CGDebugInfo can 2912 /// reference this node when creating the DISubrange object to describe the 2913 /// array types. 2914 void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI, 2915 const VarDecl &D, 2916 bool EmitDebugInfo); 2917 2918 void EmitStaticVarDecl(const VarDecl &D, 2919 llvm::GlobalValue::LinkageTypes Linkage); 2920 2921 class ParamValue { 2922 llvm::Value *Value; 2923 unsigned Alignment; 2924 ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {} 2925 public: 2926 static ParamValue forDirect(llvm::Value *value) { 2927 return ParamValue(value, 0); 2928 } 2929 static ParamValue forIndirect(Address addr) { 2930 assert(!addr.getAlignment().isZero()); 2931 return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity()); 2932 } 2933 2934 bool isIndirect() const { return Alignment != 0; } 2935 llvm::Value *getAnyValue() const { return Value; } 2936 2937 llvm::Value *getDirectValue() const { 2938 assert(!isIndirect()); 2939 return Value; 2940 } 2941 2942 Address getIndirectAddress() const { 2943 assert(isIndirect()); 2944 return Address(Value, CharUnits::fromQuantity(Alignment)); 2945 } 2946 }; 2947 2948 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 2949 void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo); 2950 2951 /// protectFromPeepholes - Protect a value that we're intending to 2952 /// store to the side, but which will probably be used later, from 2953 /// aggressive peepholing optimizations that might delete it. 2954 /// 2955 /// Pass the result to unprotectFromPeepholes to declare that 2956 /// protection is no longer required. 2957 /// 2958 /// There's no particular reason why this shouldn't apply to 2959 /// l-values, it's just that no existing peepholes work on pointers. 2960 PeepholeProtection protectFromPeepholes(RValue rvalue); 2961 void unprotectFromPeepholes(PeepholeProtection protection); 2962 2963 void emitAlignmentAssumptionCheck(llvm::Value *Ptr, QualType Ty, 2964 SourceLocation Loc, 2965 SourceLocation AssumptionLoc, 2966 llvm::Value *Alignment, 2967 llvm::Value *OffsetValue, 2968 llvm::Value *TheCheck, 2969 llvm::Instruction *Assumption); 2970 2971 void emitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty, 2972 SourceLocation Loc, SourceLocation AssumptionLoc, 2973 llvm::Value *Alignment, 2974 llvm::Value *OffsetValue = nullptr); 2975 2976 void emitAlignmentAssumption(llvm::Value *PtrValue, const Expr *E, 2977 SourceLocation AssumptionLoc, 2978 llvm::Value *Alignment, 2979 llvm::Value *OffsetValue = nullptr); 2980 2981 //===--------------------------------------------------------------------===// 2982 // Statement Emission 2983 //===--------------------------------------------------------------------===// 2984 2985 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 2986 void EmitStopPoint(const Stmt *S); 2987 2988 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 2989 /// this function even if there is no current insertion point. 2990 /// 2991 /// This function may clear the current insertion point; callers should use 2992 /// EnsureInsertPoint if they wish to subsequently generate code without first 2993 /// calling EmitBlock, EmitBranch, or EmitStmt. 2994 void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None); 2995 2996 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 2997 /// necessarily require an insertion point or debug information; typically 2998 /// because the statement amounts to a jump or a container of other 2999 /// statements. 3000 /// 3001 /// \return True if the statement was handled. 3002 bool EmitSimpleStmt(const Stmt *S); 3003 3004 Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 3005 AggValueSlot AVS = AggValueSlot::ignored()); 3006 Address EmitCompoundStmtWithoutScope(const CompoundStmt &S, 3007 bool GetLast = false, 3008 AggValueSlot AVS = 3009 AggValueSlot::ignored()); 3010 3011 /// EmitLabel - Emit the block for the given label. It is legal to call this 3012 /// function even if there is no current insertion point. 3013 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 3014 3015 void EmitLabelStmt(const LabelStmt &S); 3016 void EmitAttributedStmt(const AttributedStmt &S); 3017 void EmitGotoStmt(const GotoStmt &S); 3018 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 3019 void EmitIfStmt(const IfStmt &S); 3020 3021 void EmitWhileStmt(const WhileStmt &S, 3022 ArrayRef<const Attr *> Attrs = None); 3023 void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None); 3024 void EmitForStmt(const ForStmt &S, 3025 ArrayRef<const Attr *> Attrs = None); 3026 void EmitReturnStmt(const ReturnStmt &S); 3027 void EmitDeclStmt(const DeclStmt &S); 3028 void EmitBreakStmt(const BreakStmt &S); 3029 void EmitContinueStmt(const ContinueStmt &S); 3030 void EmitSwitchStmt(const SwitchStmt &S); 3031 void EmitDefaultStmt(const DefaultStmt &S); 3032 void EmitCaseStmt(const CaseStmt &S); 3033 void EmitCaseStmtRange(const CaseStmt &S); 3034 void EmitAsmStmt(const AsmStmt &S); 3035 3036 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 3037 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 3038 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 3039 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 3040 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 3041 3042 void EmitCoroutineBody(const CoroutineBodyStmt &S); 3043 void EmitCoreturnStmt(const CoreturnStmt &S); 3044 RValue EmitCoawaitExpr(const CoawaitExpr &E, 3045 AggValueSlot aggSlot = AggValueSlot::ignored(), 3046 bool ignoreResult = false); 3047 LValue EmitCoawaitLValue(const CoawaitExpr *E); 3048 RValue EmitCoyieldExpr(const CoyieldExpr &E, 3049 AggValueSlot aggSlot = AggValueSlot::ignored(), 3050 bool ignoreResult = false); 3051 LValue EmitCoyieldLValue(const CoyieldExpr *E); 3052 RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID); 3053 3054 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 3055 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 3056 3057 void EmitCXXTryStmt(const CXXTryStmt &S); 3058 void EmitSEHTryStmt(const SEHTryStmt &S); 3059 void EmitSEHLeaveStmt(const SEHLeaveStmt &S); 3060 void EnterSEHTryStmt(const SEHTryStmt &S); 3061 void ExitSEHTryStmt(const SEHTryStmt &S); 3062 3063 void pushSEHCleanup(CleanupKind kind, 3064 llvm::Function *FinallyFunc); 3065 void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter, 3066 const Stmt *OutlinedStmt); 3067 3068 llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF, 3069 const SEHExceptStmt &Except); 3070 3071 llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF, 3072 const SEHFinallyStmt &Finally); 3073 3074 void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF, 3075 llvm::Value *ParentFP, 3076 llvm::Value *EntryEBP); 3077 llvm::Value *EmitSEHExceptionCode(); 3078 llvm::Value *EmitSEHExceptionInfo(); 3079 llvm::Value *EmitSEHAbnormalTermination(); 3080 3081 /// Emit simple code for OpenMP directives in Simd-only mode. 3082 void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D); 3083 3084 /// Scan the outlined statement for captures from the parent function. For 3085 /// each capture, mark the capture as escaped and emit a call to 3086 /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap. 3087 void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt, 3088 bool IsFilter); 3089 3090 /// Recovers the address of a local in a parent function. ParentVar is the 3091 /// address of the variable used in the immediate parent function. It can 3092 /// either be an alloca or a call to llvm.localrecover if there are nested 3093 /// outlined functions. ParentFP is the frame pointer of the outermost parent 3094 /// frame. 3095 Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF, 3096 Address ParentVar, 3097 llvm::Value *ParentFP); 3098 3099 void EmitCXXForRangeStmt(const CXXForRangeStmt &S, 3100 ArrayRef<const Attr *> Attrs = None); 3101 3102 /// Controls insertion of cancellation exit blocks in worksharing constructs. 3103 class OMPCancelStackRAII { 3104 CodeGenFunction &CGF; 3105 3106 public: 3107 OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 3108 bool HasCancel) 3109 : CGF(CGF) { 3110 CGF.OMPCancelStack.enter(CGF, Kind, HasCancel); 3111 } 3112 ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); } 3113 }; 3114 3115 /// Returns calculated size of the specified type. 3116 llvm::Value *getTypeSize(QualType Ty); 3117 LValue InitCapturedStruct(const CapturedStmt &S); 3118 llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K); 3119 llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S); 3120 Address GenerateCapturedStmtArgument(const CapturedStmt &S); 3121 llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S, 3122 SourceLocation Loc); 3123 void GenerateOpenMPCapturedVars(const CapturedStmt &S, 3124 SmallVectorImpl<llvm::Value *> &CapturedVars); 3125 void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy, 3126 SourceLocation Loc); 3127 /// Perform element by element copying of arrays with type \a 3128 /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure 3129 /// generated by \a CopyGen. 3130 /// 3131 /// \param DestAddr Address of the destination array. 3132 /// \param SrcAddr Address of the source array. 3133 /// \param OriginalType Type of destination and source arrays. 3134 /// \param CopyGen Copying procedure that copies value of single array element 3135 /// to another single array element. 3136 void EmitOMPAggregateAssign( 3137 Address DestAddr, Address SrcAddr, QualType OriginalType, 3138 const llvm::function_ref<void(Address, Address)> CopyGen); 3139 /// Emit proper copying of data from one variable to another. 3140 /// 3141 /// \param OriginalType Original type of the copied variables. 3142 /// \param DestAddr Destination address. 3143 /// \param SrcAddr Source address. 3144 /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has 3145 /// type of the base array element). 3146 /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of 3147 /// the base array element). 3148 /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a 3149 /// DestVD. 3150 void EmitOMPCopy(QualType OriginalType, 3151 Address DestAddr, Address SrcAddr, 3152 const VarDecl *DestVD, const VarDecl *SrcVD, 3153 const Expr *Copy); 3154 /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or 3155 /// \a X = \a E \a BO \a E. 3156 /// 3157 /// \param X Value to be updated. 3158 /// \param E Update value. 3159 /// \param BO Binary operation for update operation. 3160 /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update 3161 /// expression, false otherwise. 3162 /// \param AO Atomic ordering of the generated atomic instructions. 3163 /// \param CommonGen Code generator for complex expressions that cannot be 3164 /// expressed through atomicrmw instruction. 3165 /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was 3166 /// generated, <false, RValue::get(nullptr)> otherwise. 3167 std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr( 3168 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 3169 llvm::AtomicOrdering AO, SourceLocation Loc, 3170 const llvm::function_ref<RValue(RValue)> CommonGen); 3171 bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 3172 OMPPrivateScope &PrivateScope); 3173 void EmitOMPPrivateClause(const OMPExecutableDirective &D, 3174 OMPPrivateScope &PrivateScope); 3175 void EmitOMPUseDevicePtrClause( 3176 const OMPClause &C, OMPPrivateScope &PrivateScope, 3177 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap); 3178 /// Emit code for copyin clause in \a D directive. The next code is 3179 /// generated at the start of outlined functions for directives: 3180 /// \code 3181 /// threadprivate_var1 = master_threadprivate_var1; 3182 /// operator=(threadprivate_var2, master_threadprivate_var2); 3183 /// ... 3184 /// __kmpc_barrier(&loc, global_tid); 3185 /// \endcode 3186 /// 3187 /// \param D OpenMP directive possibly with 'copyin' clause(s). 3188 /// \returns true if at least one copyin variable is found, false otherwise. 3189 bool EmitOMPCopyinClause(const OMPExecutableDirective &D); 3190 /// Emit initial code for lastprivate variables. If some variable is 3191 /// not also firstprivate, then the default initialization is used. Otherwise 3192 /// initialization of this variable is performed by EmitOMPFirstprivateClause 3193 /// method. 3194 /// 3195 /// \param D Directive that may have 'lastprivate' directives. 3196 /// \param PrivateScope Private scope for capturing lastprivate variables for 3197 /// proper codegen in internal captured statement. 3198 /// 3199 /// \returns true if there is at least one lastprivate variable, false 3200 /// otherwise. 3201 bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D, 3202 OMPPrivateScope &PrivateScope); 3203 /// Emit final copying of lastprivate values to original variables at 3204 /// the end of the worksharing or simd directive. 3205 /// 3206 /// \param D Directive that has at least one 'lastprivate' directives. 3207 /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if 3208 /// it is the last iteration of the loop code in associated directive, or to 3209 /// 'i1 false' otherwise. If this item is nullptr, no final check is required. 3210 void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D, 3211 bool NoFinals, 3212 llvm::Value *IsLastIterCond = nullptr); 3213 /// Emit initial code for linear clauses. 3214 void EmitOMPLinearClause(const OMPLoopDirective &D, 3215 CodeGenFunction::OMPPrivateScope &PrivateScope); 3216 /// Emit final code for linear clauses. 3217 /// \param CondGen Optional conditional code for final part of codegen for 3218 /// linear clause. 3219 void EmitOMPLinearClauseFinal( 3220 const OMPLoopDirective &D, 3221 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); 3222 /// Emit initial code for reduction variables. Creates reduction copies 3223 /// and initializes them with the values according to OpenMP standard. 3224 /// 3225 /// \param D Directive (possibly) with the 'reduction' clause. 3226 /// \param PrivateScope Private scope for capturing reduction variables for 3227 /// proper codegen in internal captured statement. 3228 /// 3229 void EmitOMPReductionClauseInit(const OMPExecutableDirective &D, 3230 OMPPrivateScope &PrivateScope, 3231 bool ForInscan = false); 3232 /// Emit final update of reduction values to original variables at 3233 /// the end of the directive. 3234 /// 3235 /// \param D Directive that has at least one 'reduction' directives. 3236 /// \param ReductionKind The kind of reduction to perform. 3237 void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D, 3238 const OpenMPDirectiveKind ReductionKind); 3239 /// Emit initial code for linear variables. Creates private copies 3240 /// and initializes them with the values according to OpenMP standard. 3241 /// 3242 /// \param D Directive (possibly) with the 'linear' clause. 3243 /// \return true if at least one linear variable is found that should be 3244 /// initialized with the value of the original variable, false otherwise. 3245 bool EmitOMPLinearClauseInit(const OMPLoopDirective &D); 3246 3247 typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/, 3248 llvm::Function * /*OutlinedFn*/, 3249 const OMPTaskDataTy & /*Data*/)> 3250 TaskGenTy; 3251 void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S, 3252 const OpenMPDirectiveKind CapturedRegion, 3253 const RegionCodeGenTy &BodyGen, 3254 const TaskGenTy &TaskGen, OMPTaskDataTy &Data); 3255 struct OMPTargetDataInfo { 3256 Address BasePointersArray = Address::invalid(); 3257 Address PointersArray = Address::invalid(); 3258 Address SizesArray = Address::invalid(); 3259 unsigned NumberOfTargetItems = 0; 3260 explicit OMPTargetDataInfo() = default; 3261 OMPTargetDataInfo(Address BasePointersArray, Address PointersArray, 3262 Address SizesArray, unsigned NumberOfTargetItems) 3263 : BasePointersArray(BasePointersArray), PointersArray(PointersArray), 3264 SizesArray(SizesArray), NumberOfTargetItems(NumberOfTargetItems) {} 3265 }; 3266 void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S, 3267 const RegionCodeGenTy &BodyGen, 3268 OMPTargetDataInfo &InputInfo); 3269 3270 void EmitOMPParallelDirective(const OMPParallelDirective &S); 3271 void EmitOMPSimdDirective(const OMPSimdDirective &S); 3272 void EmitOMPForDirective(const OMPForDirective &S); 3273 void EmitOMPForSimdDirective(const OMPForSimdDirective &S); 3274 void EmitOMPSectionsDirective(const OMPSectionsDirective &S); 3275 void EmitOMPSectionDirective(const OMPSectionDirective &S); 3276 void EmitOMPSingleDirective(const OMPSingleDirective &S); 3277 void EmitOMPMasterDirective(const OMPMasterDirective &S); 3278 void EmitOMPCriticalDirective(const OMPCriticalDirective &S); 3279 void EmitOMPParallelForDirective(const OMPParallelForDirective &S); 3280 void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S); 3281 void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S); 3282 void EmitOMPParallelMasterDirective(const OMPParallelMasterDirective &S); 3283 void EmitOMPTaskDirective(const OMPTaskDirective &S); 3284 void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S); 3285 void EmitOMPBarrierDirective(const OMPBarrierDirective &S); 3286 void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S); 3287 void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S); 3288 void EmitOMPFlushDirective(const OMPFlushDirective &S); 3289 void EmitOMPDepobjDirective(const OMPDepobjDirective &S); 3290 void EmitOMPScanDirective(const OMPScanDirective &S); 3291 void EmitOMPOrderedDirective(const OMPOrderedDirective &S); 3292 void EmitOMPAtomicDirective(const OMPAtomicDirective &S); 3293 void EmitOMPTargetDirective(const OMPTargetDirective &S); 3294 void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S); 3295 void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S); 3296 void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S); 3297 void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S); 3298 void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S); 3299 void 3300 EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S); 3301 void EmitOMPTeamsDirective(const OMPTeamsDirective &S); 3302 void 3303 EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S); 3304 void EmitOMPCancelDirective(const OMPCancelDirective &S); 3305 void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S); 3306 void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S); 3307 void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S); 3308 void EmitOMPMasterTaskLoopDirective(const OMPMasterTaskLoopDirective &S); 3309 void 3310 EmitOMPMasterTaskLoopSimdDirective(const OMPMasterTaskLoopSimdDirective &S); 3311 void EmitOMPParallelMasterTaskLoopDirective( 3312 const OMPParallelMasterTaskLoopDirective &S); 3313 void EmitOMPParallelMasterTaskLoopSimdDirective( 3314 const OMPParallelMasterTaskLoopSimdDirective &S); 3315 void EmitOMPDistributeDirective(const OMPDistributeDirective &S); 3316 void EmitOMPDistributeParallelForDirective( 3317 const OMPDistributeParallelForDirective &S); 3318 void EmitOMPDistributeParallelForSimdDirective( 3319 const OMPDistributeParallelForSimdDirective &S); 3320 void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S); 3321 void EmitOMPTargetParallelForSimdDirective( 3322 const OMPTargetParallelForSimdDirective &S); 3323 void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S); 3324 void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S); 3325 void 3326 EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S); 3327 void EmitOMPTeamsDistributeParallelForSimdDirective( 3328 const OMPTeamsDistributeParallelForSimdDirective &S); 3329 void EmitOMPTeamsDistributeParallelForDirective( 3330 const OMPTeamsDistributeParallelForDirective &S); 3331 void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S); 3332 void EmitOMPTargetTeamsDistributeDirective( 3333 const OMPTargetTeamsDistributeDirective &S); 3334 void EmitOMPTargetTeamsDistributeParallelForDirective( 3335 const OMPTargetTeamsDistributeParallelForDirective &S); 3336 void EmitOMPTargetTeamsDistributeParallelForSimdDirective( 3337 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 3338 void EmitOMPTargetTeamsDistributeSimdDirective( 3339 const OMPTargetTeamsDistributeSimdDirective &S); 3340 3341 /// Emit device code for the target directive. 3342 static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 3343 StringRef ParentName, 3344 const OMPTargetDirective &S); 3345 static void 3346 EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 3347 const OMPTargetParallelDirective &S); 3348 /// Emit device code for the target parallel for directive. 3349 static void EmitOMPTargetParallelForDeviceFunction( 3350 CodeGenModule &CGM, StringRef ParentName, 3351 const OMPTargetParallelForDirective &S); 3352 /// Emit device code for the target parallel for simd directive. 3353 static void EmitOMPTargetParallelForSimdDeviceFunction( 3354 CodeGenModule &CGM, StringRef ParentName, 3355 const OMPTargetParallelForSimdDirective &S); 3356 /// Emit device code for the target teams directive. 3357 static void 3358 EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 3359 const OMPTargetTeamsDirective &S); 3360 /// Emit device code for the target teams distribute directive. 3361 static void EmitOMPTargetTeamsDistributeDeviceFunction( 3362 CodeGenModule &CGM, StringRef ParentName, 3363 const OMPTargetTeamsDistributeDirective &S); 3364 /// Emit device code for the target teams distribute simd directive. 3365 static void EmitOMPTargetTeamsDistributeSimdDeviceFunction( 3366 CodeGenModule &CGM, StringRef ParentName, 3367 const OMPTargetTeamsDistributeSimdDirective &S); 3368 /// Emit device code for the target simd directive. 3369 static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM, 3370 StringRef ParentName, 3371 const OMPTargetSimdDirective &S); 3372 /// Emit device code for the target teams distribute parallel for simd 3373 /// directive. 3374 static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( 3375 CodeGenModule &CGM, StringRef ParentName, 3376 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 3377 3378 static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 3379 CodeGenModule &CGM, StringRef ParentName, 3380 const OMPTargetTeamsDistributeParallelForDirective &S); 3381 /// Emit inner loop of the worksharing/simd construct. 3382 /// 3383 /// \param S Directive, for which the inner loop must be emitted. 3384 /// \param RequiresCleanup true, if directive has some associated private 3385 /// variables. 3386 /// \param LoopCond Bollean condition for loop continuation. 3387 /// \param IncExpr Increment expression for loop control variable. 3388 /// \param BodyGen Generator for the inner body of the inner loop. 3389 /// \param PostIncGen Genrator for post-increment code (required for ordered 3390 /// loop directvies). 3391 void EmitOMPInnerLoop( 3392 const OMPExecutableDirective &S, bool RequiresCleanup, 3393 const Expr *LoopCond, const Expr *IncExpr, 3394 const llvm::function_ref<void(CodeGenFunction &)> BodyGen, 3395 const llvm::function_ref<void(CodeGenFunction &)> PostIncGen); 3396 3397 JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind); 3398 /// Emit initial code for loop counters of loop-based directives. 3399 void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S, 3400 OMPPrivateScope &LoopScope); 3401 3402 /// Helper for the OpenMP loop directives. 3403 void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit); 3404 3405 /// Emit code for the worksharing loop-based directive. 3406 /// \return true, if this construct has any lastprivate clause, false - 3407 /// otherwise. 3408 bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB, 3409 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 3410 const CodeGenDispatchBoundsTy &CGDispatchBounds); 3411 3412 /// Emit code for the distribute loop-based directive. 3413 void EmitOMPDistributeLoop(const OMPLoopDirective &S, 3414 const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr); 3415 3416 /// Helpers for the OpenMP loop directives. 3417 void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false); 3418 void EmitOMPSimdFinal( 3419 const OMPLoopDirective &D, 3420 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); 3421 3422 /// Emits the lvalue for the expression with possibly captured variable. 3423 LValue EmitOMPSharedLValue(const Expr *E); 3424 3425 private: 3426 /// Helpers for blocks. 3427 llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); 3428 3429 /// struct with the values to be passed to the OpenMP loop-related functions 3430 struct OMPLoopArguments { 3431 /// loop lower bound 3432 Address LB = Address::invalid(); 3433 /// loop upper bound 3434 Address UB = Address::invalid(); 3435 /// loop stride 3436 Address ST = Address::invalid(); 3437 /// isLastIteration argument for runtime functions 3438 Address IL = Address::invalid(); 3439 /// Chunk value generated by sema 3440 llvm::Value *Chunk = nullptr; 3441 /// EnsureUpperBound 3442 Expr *EUB = nullptr; 3443 /// IncrementExpression 3444 Expr *IncExpr = nullptr; 3445 /// Loop initialization 3446 Expr *Init = nullptr; 3447 /// Loop exit condition 3448 Expr *Cond = nullptr; 3449 /// Update of LB after a whole chunk has been executed 3450 Expr *NextLB = nullptr; 3451 /// Update of UB after a whole chunk has been executed 3452 Expr *NextUB = nullptr; 3453 OMPLoopArguments() = default; 3454 OMPLoopArguments(Address LB, Address UB, Address ST, Address IL, 3455 llvm::Value *Chunk = nullptr, Expr *EUB = nullptr, 3456 Expr *IncExpr = nullptr, Expr *Init = nullptr, 3457 Expr *Cond = nullptr, Expr *NextLB = nullptr, 3458 Expr *NextUB = nullptr) 3459 : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB), 3460 IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB), 3461 NextUB(NextUB) {} 3462 }; 3463 void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic, 3464 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, 3465 const OMPLoopArguments &LoopArgs, 3466 const CodeGenLoopTy &CodeGenLoop, 3467 const CodeGenOrderedTy &CodeGenOrdered); 3468 void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind, 3469 bool IsMonotonic, const OMPLoopDirective &S, 3470 OMPPrivateScope &LoopScope, bool Ordered, 3471 const OMPLoopArguments &LoopArgs, 3472 const CodeGenDispatchBoundsTy &CGDispatchBounds); 3473 void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind, 3474 const OMPLoopDirective &S, 3475 OMPPrivateScope &LoopScope, 3476 const OMPLoopArguments &LoopArgs, 3477 const CodeGenLoopTy &CodeGenLoopContent); 3478 /// Emit code for sections directive. 3479 void EmitSections(const OMPExecutableDirective &S); 3480 3481 public: 3482 3483 //===--------------------------------------------------------------------===// 3484 // LValue Expression Emission 3485 //===--------------------------------------------------------------------===// 3486 3487 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 3488 RValue GetUndefRValue(QualType Ty); 3489 3490 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 3491 /// and issue an ErrorUnsupported style diagnostic (using the 3492 /// provided Name). 3493 RValue EmitUnsupportedRValue(const Expr *E, 3494 const char *Name); 3495 3496 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 3497 /// an ErrorUnsupported style diagnostic (using the provided Name). 3498 LValue EmitUnsupportedLValue(const Expr *E, 3499 const char *Name); 3500 3501 /// EmitLValue - Emit code to compute a designator that specifies the location 3502 /// of the expression. 3503 /// 3504 /// This can return one of two things: a simple address or a bitfield 3505 /// reference. In either case, the LLVM Value* in the LValue structure is 3506 /// guaranteed to be an LLVM pointer type. 3507 /// 3508 /// If this returns a bitfield reference, nothing about the pointee type of 3509 /// the LLVM value is known: For example, it may not be a pointer to an 3510 /// integer. 3511 /// 3512 /// If this returns a normal address, and if the lvalue's C type is fixed 3513 /// size, this method guarantees that the returned pointer type will point to 3514 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 3515 /// variable length type, this is not possible. 3516 /// 3517 LValue EmitLValue(const Expr *E); 3518 3519 /// Same as EmitLValue but additionally we generate checking code to 3520 /// guard against undefined behavior. This is only suitable when we know 3521 /// that the address will be used to access the object. 3522 LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK); 3523 3524 RValue convertTempToRValue(Address addr, QualType type, 3525 SourceLocation Loc); 3526 3527 void EmitAtomicInit(Expr *E, LValue lvalue); 3528 3529 bool LValueIsSuitableForInlineAtomic(LValue Src); 3530 3531 RValue EmitAtomicLoad(LValue LV, SourceLocation SL, 3532 AggValueSlot Slot = AggValueSlot::ignored()); 3533 3534 RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc, 3535 llvm::AtomicOrdering AO, bool IsVolatile = false, 3536 AggValueSlot slot = AggValueSlot::ignored()); 3537 3538 void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit); 3539 3540 void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO, 3541 bool IsVolatile, bool isInit); 3542 3543 std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange( 3544 LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, 3545 llvm::AtomicOrdering Success = 3546 llvm::AtomicOrdering::SequentiallyConsistent, 3547 llvm::AtomicOrdering Failure = 3548 llvm::AtomicOrdering::SequentiallyConsistent, 3549 bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored()); 3550 3551 void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO, 3552 const llvm::function_ref<RValue(RValue)> &UpdateOp, 3553 bool IsVolatile); 3554 3555 /// EmitToMemory - Change a scalar value from its value 3556 /// representation to its in-memory representation. 3557 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 3558 3559 /// EmitFromMemory - Change a scalar value from its memory 3560 /// representation to its value representation. 3561 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 3562 3563 /// Check if the scalar \p Value is within the valid range for the given 3564 /// type \p Ty. 3565 /// 3566 /// Returns true if a check is needed (even if the range is unknown). 3567 bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 3568 SourceLocation Loc); 3569 3570 /// EmitLoadOfScalar - Load a scalar value from an address, taking 3571 /// care to appropriately convert from the memory representation to 3572 /// the LLVM value representation. 3573 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 3574 SourceLocation Loc, 3575 AlignmentSource Source = AlignmentSource::Type, 3576 bool isNontemporal = false) { 3577 return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source), 3578 CGM.getTBAAAccessInfo(Ty), isNontemporal); 3579 } 3580 3581 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 3582 SourceLocation Loc, LValueBaseInfo BaseInfo, 3583 TBAAAccessInfo TBAAInfo, 3584 bool isNontemporal = false); 3585 3586 /// EmitLoadOfScalar - Load a scalar value from an address, taking 3587 /// care to appropriately convert from the memory representation to 3588 /// the LLVM value representation. The l-value must be a simple 3589 /// l-value. 3590 llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc); 3591 3592 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3593 /// care to appropriately convert from the memory representation to 3594 /// the LLVM value representation. 3595 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 3596 bool Volatile, QualType Ty, 3597 AlignmentSource Source = AlignmentSource::Type, 3598 bool isInit = false, bool isNontemporal = false) { 3599 EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source), 3600 CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal); 3601 } 3602 3603 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 3604 bool Volatile, QualType Ty, 3605 LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo, 3606 bool isInit = false, bool isNontemporal = false); 3607 3608 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3609 /// care to appropriately convert from the memory representation to 3610 /// the LLVM value representation. The l-value must be a simple 3611 /// l-value. The isInit flag indicates whether this is an initialization. 3612 /// If so, atomic qualifiers are ignored and the store is always non-atomic. 3613 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); 3614 3615 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 3616 /// this method emits the address of the lvalue, then loads the result as an 3617 /// rvalue, returning the rvalue. 3618 RValue EmitLoadOfLValue(LValue V, SourceLocation Loc); 3619 RValue EmitLoadOfExtVectorElementLValue(LValue V); 3620 RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc); 3621 RValue EmitLoadOfGlobalRegLValue(LValue LV); 3622 3623 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 3624 /// lvalue, where both are guaranteed to the have the same type, and that type 3625 /// is 'Ty'. 3626 void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false); 3627 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 3628 void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst); 3629 3630 /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints 3631 /// as EmitStoreThroughLValue. 3632 /// 3633 /// \param Result [out] - If non-null, this will be set to a Value* for the 3634 /// bit-field contents after the store, appropriate for use as the result of 3635 /// an assignment to the bit-field. 3636 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 3637 llvm::Value **Result=nullptr); 3638 3639 /// Emit an l-value for an assignment (simple or compound) of complex type. 3640 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 3641 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 3642 LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 3643 llvm::Value *&Result); 3644 3645 // Note: only available for agg return types 3646 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 3647 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 3648 // Note: only available for agg return types 3649 LValue EmitCallExprLValue(const CallExpr *E); 3650 // Note: only available for agg return types 3651 LValue EmitVAArgExprLValue(const VAArgExpr *E); 3652 LValue EmitDeclRefLValue(const DeclRefExpr *E); 3653 LValue EmitStringLiteralLValue(const StringLiteral *E); 3654 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 3655 LValue EmitPredefinedLValue(const PredefinedExpr *E); 3656 LValue EmitUnaryOpLValue(const UnaryOperator *E); 3657 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3658 bool Accessed = false); 3659 LValue EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E); 3660 LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3661 bool IsLowerBound = true); 3662 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 3663 LValue EmitMemberExpr(const MemberExpr *E); 3664 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 3665 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 3666 LValue EmitInitListLValue(const InitListExpr *E); 3667 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 3668 LValue EmitCastLValue(const CastExpr *E); 3669 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 3670 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 3671 3672 Address EmitExtVectorElementLValue(LValue V); 3673 3674 RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc); 3675 3676 Address EmitArrayToPointerDecay(const Expr *Array, 3677 LValueBaseInfo *BaseInfo = nullptr, 3678 TBAAAccessInfo *TBAAInfo = nullptr); 3679 3680 class ConstantEmission { 3681 llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; 3682 ConstantEmission(llvm::Constant *C, bool isReference) 3683 : ValueAndIsReference(C, isReference) {} 3684 public: 3685 ConstantEmission() {} 3686 static ConstantEmission forReference(llvm::Constant *C) { 3687 return ConstantEmission(C, true); 3688 } 3689 static ConstantEmission forValue(llvm::Constant *C) { 3690 return ConstantEmission(C, false); 3691 } 3692 3693 explicit operator bool() const { 3694 return ValueAndIsReference.getOpaqueValue() != nullptr; 3695 } 3696 3697 bool isReference() const { return ValueAndIsReference.getInt(); } 3698 LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { 3699 assert(isReference()); 3700 return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), 3701 refExpr->getType()); 3702 } 3703 3704 llvm::Constant *getValue() const { 3705 assert(!isReference()); 3706 return ValueAndIsReference.getPointer(); 3707 } 3708 }; 3709 3710 ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); 3711 ConstantEmission tryEmitAsConstant(const MemberExpr *ME); 3712 llvm::Value *emitScalarConstant(const ConstantEmission &Constant, Expr *E); 3713 3714 RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, 3715 AggValueSlot slot = AggValueSlot::ignored()); 3716 LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); 3717 3718 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 3719 const ObjCIvarDecl *Ivar); 3720 LValue EmitLValueForField(LValue Base, const FieldDecl* Field); 3721 LValue EmitLValueForLambdaField(const FieldDecl *Field); 3722 3723 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 3724 /// if the Field is a reference, this will return the address of the reference 3725 /// and not the address of the value stored in the reference. 3726 LValue EmitLValueForFieldInitialization(LValue Base, 3727 const FieldDecl* Field); 3728 3729 LValue EmitLValueForIvar(QualType ObjectTy, 3730 llvm::Value* Base, const ObjCIvarDecl *Ivar, 3731 unsigned CVRQualifiers); 3732 3733 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 3734 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 3735 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 3736 LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E); 3737 3738 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 3739 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 3740 LValue EmitStmtExprLValue(const StmtExpr *E); 3741 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 3742 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 3743 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init); 3744 3745 //===--------------------------------------------------------------------===// 3746 // Scalar Expression Emission 3747 //===--------------------------------------------------------------------===// 3748 3749 /// EmitCall - Generate a call of the given function, expecting the given 3750 /// result type, and using the given argument list which specifies both the 3751 /// LLVM arguments and the types they were derived from. 3752 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 3753 ReturnValueSlot ReturnValue, const CallArgList &Args, 3754 llvm::CallBase **callOrInvoke, SourceLocation Loc); 3755 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 3756 ReturnValueSlot ReturnValue, const CallArgList &Args, 3757 llvm::CallBase **callOrInvoke = nullptr) { 3758 return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke, 3759 SourceLocation()); 3760 } 3761 RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E, 3762 ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr); 3763 RValue EmitCallExpr(const CallExpr *E, 3764 ReturnValueSlot ReturnValue = ReturnValueSlot()); 3765 RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 3766 CGCallee EmitCallee(const Expr *E); 3767 3768 void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl); 3769 void checkTargetFeatures(SourceLocation Loc, const FunctionDecl *TargetDecl); 3770 3771 llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee, 3772 const Twine &name = ""); 3773 llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee, 3774 ArrayRef<llvm::Value *> args, 3775 const Twine &name = ""); 3776 llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 3777 const Twine &name = ""); 3778 llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 3779 ArrayRef<llvm::Value *> args, 3780 const Twine &name = ""); 3781 3782 SmallVector<llvm::OperandBundleDef, 1> 3783 getBundlesForFunclet(llvm::Value *Callee); 3784 3785 llvm::CallBase *EmitCallOrInvoke(llvm::FunctionCallee Callee, 3786 ArrayRef<llvm::Value *> Args, 3787 const Twine &Name = ""); 3788 llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 3789 ArrayRef<llvm::Value *> args, 3790 const Twine &name = ""); 3791 llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 3792 const Twine &name = ""); 3793 void EmitNoreturnRuntimeCallOrInvoke(llvm::FunctionCallee callee, 3794 ArrayRef<llvm::Value *> args); 3795 3796 CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 3797 NestedNameSpecifier *Qual, 3798 llvm::Type *Ty); 3799 3800 CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 3801 CXXDtorType Type, 3802 const CXXRecordDecl *RD); 3803 3804 // Return the copy constructor name with the prefix "__copy_constructor_" 3805 // removed. 3806 static std::string getNonTrivialCopyConstructorStr(QualType QT, 3807 CharUnits Alignment, 3808 bool IsVolatile, 3809 ASTContext &Ctx); 3810 3811 // Return the destructor name with the prefix "__destructor_" removed. 3812 static std::string getNonTrivialDestructorStr(QualType QT, 3813 CharUnits Alignment, 3814 bool IsVolatile, 3815 ASTContext &Ctx); 3816 3817 // These functions emit calls to the special functions of non-trivial C 3818 // structs. 3819 void defaultInitNonTrivialCStructVar(LValue Dst); 3820 void callCStructDefaultConstructor(LValue Dst); 3821 void callCStructDestructor(LValue Dst); 3822 void callCStructCopyConstructor(LValue Dst, LValue Src); 3823 void callCStructMoveConstructor(LValue Dst, LValue Src); 3824 void callCStructCopyAssignmentOperator(LValue Dst, LValue Src); 3825 void callCStructMoveAssignmentOperator(LValue Dst, LValue Src); 3826 3827 RValue 3828 EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method, 3829 const CGCallee &Callee, 3830 ReturnValueSlot ReturnValue, llvm::Value *This, 3831 llvm::Value *ImplicitParam, 3832 QualType ImplicitParamTy, const CallExpr *E, 3833 CallArgList *RtlArgs); 3834 RValue EmitCXXDestructorCall(GlobalDecl Dtor, const CGCallee &Callee, 3835 llvm::Value *This, QualType ThisTy, 3836 llvm::Value *ImplicitParam, 3837 QualType ImplicitParamTy, const CallExpr *E); 3838 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 3839 ReturnValueSlot ReturnValue); 3840 RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE, 3841 const CXXMethodDecl *MD, 3842 ReturnValueSlot ReturnValue, 3843 bool HasQualifier, 3844 NestedNameSpecifier *Qualifier, 3845 bool IsArrow, const Expr *Base); 3846 // Compute the object pointer. 3847 Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base, 3848 llvm::Value *memberPtr, 3849 const MemberPointerType *memberPtrType, 3850 LValueBaseInfo *BaseInfo = nullptr, 3851 TBAAAccessInfo *TBAAInfo = nullptr); 3852 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 3853 ReturnValueSlot ReturnValue); 3854 3855 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 3856 const CXXMethodDecl *MD, 3857 ReturnValueSlot ReturnValue); 3858 RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E); 3859 3860 RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 3861 ReturnValueSlot ReturnValue); 3862 3863 RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E, 3864 ReturnValueSlot ReturnValue); 3865 RValue EmitAMDGPUDevicePrintfCallExpr(const CallExpr *E, 3866 ReturnValueSlot ReturnValue); 3867 3868 RValue EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID, 3869 const CallExpr *E, ReturnValueSlot ReturnValue); 3870 3871 RValue emitRotate(const CallExpr *E, bool IsRotateRight); 3872 3873 /// Emit IR for __builtin_os_log_format. 3874 RValue emitBuiltinOSLogFormat(const CallExpr &E); 3875 3876 /// Emit IR for __builtin_is_aligned. 3877 RValue EmitBuiltinIsAligned(const CallExpr *E); 3878 /// Emit IR for __builtin_align_up/__builtin_align_down. 3879 RValue EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp); 3880 3881 llvm::Function *generateBuiltinOSLogHelperFunction( 3882 const analyze_os_log::OSLogBufferLayout &Layout, 3883 CharUnits BufferAlignment); 3884 3885 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 3886 3887 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 3888 /// is unhandled by the current target. 3889 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 3890 ReturnValueSlot ReturnValue); 3891 3892 llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty, 3893 const llvm::CmpInst::Predicate Fp, 3894 const llvm::CmpInst::Predicate Ip, 3895 const llvm::Twine &Name = ""); 3896 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 3897 ReturnValueSlot ReturnValue, 3898 llvm::Triple::ArchType Arch); 3899 llvm::Value *EmitARMMVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 3900 ReturnValueSlot ReturnValue, 3901 llvm::Triple::ArchType Arch); 3902 llvm::Value *EmitARMCDEBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 3903 ReturnValueSlot ReturnValue, 3904 llvm::Triple::ArchType Arch); 3905 llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::IntegerType *ITy, 3906 QualType RTy); 3907 llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::ArrayType *ATy, 3908 QualType RTy); 3909 llvm::Value *EmitCMSEClearFP16(llvm::Value *V); 3910 3911 llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID, 3912 unsigned LLVMIntrinsic, 3913 unsigned AltLLVMIntrinsic, 3914 const char *NameHint, 3915 unsigned Modifier, 3916 const CallExpr *E, 3917 SmallVectorImpl<llvm::Value *> &Ops, 3918 Address PtrOp0, Address PtrOp1, 3919 llvm::Triple::ArchType Arch); 3920 3921 llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID, 3922 unsigned Modifier, llvm::Type *ArgTy, 3923 const CallExpr *E); 3924 llvm::Value *EmitNeonCall(llvm::Function *F, 3925 SmallVectorImpl<llvm::Value*> &O, 3926 const char *name, 3927 unsigned shift = 0, bool rightshift = false); 3928 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx, 3929 const llvm::ElementCount &Count); 3930 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 3931 llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, 3932 bool negateForRightShift); 3933 llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt, 3934 llvm::Type *Ty, bool usgn, const char *name); 3935 llvm::Value *vectorWrapScalar16(llvm::Value *Op); 3936 /// SVEBuiltinMemEltTy - Returns the memory element type for this memory 3937 /// access builtin. Only required if it can't be inferred from the base 3938 /// pointer operand. 3939 llvm::Type *SVEBuiltinMemEltTy(SVETypeFlags TypeFlags); 3940 3941 SmallVector<llvm::Type *, 2> getSVEOverloadTypes(SVETypeFlags TypeFlags, 3942 ArrayRef<llvm::Value *> Ops); 3943 llvm::Type *getEltType(SVETypeFlags TypeFlags); 3944 llvm::ScalableVectorType *getSVEType(const SVETypeFlags &TypeFlags); 3945 llvm::ScalableVectorType *getSVEPredType(SVETypeFlags TypeFlags); 3946 llvm::Value *EmitSVEAllTruePred(SVETypeFlags TypeFlags); 3947 llvm::Value *EmitSVEDupX(llvm::Value *Scalar); 3948 llvm::Value *EmitSVEDupX(llvm::Value *Scalar, llvm::Type *Ty); 3949 llvm::Value *EmitSVEReinterpret(llvm::Value *Val, llvm::Type *Ty); 3950 llvm::Value *EmitSVEPMull(SVETypeFlags TypeFlags, 3951 llvm::SmallVectorImpl<llvm::Value *> &Ops, 3952 unsigned BuiltinID); 3953 llvm::Value *EmitSVEMovl(SVETypeFlags TypeFlags, 3954 llvm::ArrayRef<llvm::Value *> Ops, 3955 unsigned BuiltinID); 3956 llvm::Value *EmitSVEPredicateCast(llvm::Value *Pred, 3957 llvm::ScalableVectorType *VTy); 3958 llvm::Value *EmitSVEGatherLoad(SVETypeFlags TypeFlags, 3959 llvm::SmallVectorImpl<llvm::Value *> &Ops, 3960 unsigned IntID); 3961 llvm::Value *EmitSVEScatterStore(SVETypeFlags TypeFlags, 3962 llvm::SmallVectorImpl<llvm::Value *> &Ops, 3963 unsigned IntID); 3964 llvm::Value *EmitSVEMaskedLoad(const CallExpr *, llvm::Type *ReturnTy, 3965 SmallVectorImpl<llvm::Value *> &Ops, 3966 unsigned BuiltinID, bool IsZExtReturn); 3967 llvm::Value *EmitSVEMaskedStore(const CallExpr *, 3968 SmallVectorImpl<llvm::Value *> &Ops, 3969 unsigned BuiltinID); 3970 llvm::Value *EmitSVEPrefetchLoad(SVETypeFlags TypeFlags, 3971 SmallVectorImpl<llvm::Value *> &Ops, 3972 unsigned BuiltinID); 3973 llvm::Value *EmitSVEGatherPrefetch(SVETypeFlags TypeFlags, 3974 SmallVectorImpl<llvm::Value *> &Ops, 3975 unsigned IntID); 3976 llvm::Value *EmitAArch64SVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3977 3978 llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E, 3979 llvm::Triple::ArchType Arch); 3980 llvm::Value *EmitBPFBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3981 3982 llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); 3983 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3984 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3985 llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3986 llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3987 llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3988 llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID, 3989 const CallExpr *E); 3990 llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3991 bool ProcessOrderScopeAMDGCN(llvm::Value *Order, llvm::Value *Scope, 3992 llvm::AtomicOrdering &AO, 3993 llvm::SyncScope::ID &SSID); 3994 3995 private: 3996 enum class MSVCIntrin; 3997 3998 public: 3999 llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E); 4000 4001 llvm::Value *EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args); 4002 4003 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 4004 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 4005 llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); 4006 llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); 4007 llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); 4008 llvm::Value *EmitObjCCollectionLiteral(const Expr *E, 4009 const ObjCMethodDecl *MethodWithObjects); 4010 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 4011 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 4012 ReturnValueSlot Return = ReturnValueSlot()); 4013 4014 /// Retrieves the default cleanup kind for an ARC cleanup. 4015 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. 4016 CleanupKind getARCCleanupKind() { 4017 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 4018 ? NormalAndEHCleanup : NormalCleanup; 4019 } 4020 4021 // ARC primitives. 4022 void EmitARCInitWeak(Address addr, llvm::Value *value); 4023 void EmitARCDestroyWeak(Address addr); 4024 llvm::Value *EmitARCLoadWeak(Address addr); 4025 llvm::Value *EmitARCLoadWeakRetained(Address addr); 4026 llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored); 4027 void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); 4028 void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); 4029 void EmitARCCopyWeak(Address dst, Address src); 4030 void EmitARCMoveWeak(Address dst, Address src); 4031 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 4032 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 4033 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 4034 bool resultIgnored); 4035 llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value, 4036 bool resultIgnored); 4037 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 4038 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 4039 llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); 4040 void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise); 4041 void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 4042 llvm::Value *EmitARCAutorelease(llvm::Value *value); 4043 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 4044 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 4045 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 4046 llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value); 4047 4048 llvm::Value *EmitObjCAutorelease(llvm::Value *value, llvm::Type *returnType); 4049 llvm::Value *EmitObjCRetainNonBlock(llvm::Value *value, 4050 llvm::Type *returnType); 4051 void EmitObjCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 4052 4053 std::pair<LValue,llvm::Value*> 4054 EmitARCStoreAutoreleasing(const BinaryOperator *e); 4055 std::pair<LValue,llvm::Value*> 4056 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 4057 std::pair<LValue,llvm::Value*> 4058 EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored); 4059 4060 llvm::Value *EmitObjCAlloc(llvm::Value *value, 4061 llvm::Type *returnType); 4062 llvm::Value *EmitObjCAllocWithZone(llvm::Value *value, 4063 llvm::Type *returnType); 4064 llvm::Value *EmitObjCAllocInit(llvm::Value *value, llvm::Type *resultType); 4065 4066 llvm::Value *EmitObjCThrowOperand(const Expr *expr); 4067 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 4068 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 4069 4070 llvm::Value *EmitARCExtendBlockObject(const Expr *expr); 4071 llvm::Value *EmitARCReclaimReturnedObject(const Expr *e, 4072 bool allowUnsafeClaim); 4073 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 4074 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 4075 llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr); 4076 4077 void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values); 4078 4079 static Destroyer destroyARCStrongImprecise; 4080 static Destroyer destroyARCStrongPrecise; 4081 static Destroyer destroyARCWeak; 4082 static Destroyer emitARCIntrinsicUse; 4083 static Destroyer destroyNonTrivialCStruct; 4084 4085 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 4086 llvm::Value *EmitObjCAutoreleasePoolPush(); 4087 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 4088 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 4089 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 4090 4091 /// Emits a reference binding to the passed in expression. 4092 RValue EmitReferenceBindingToExpr(const Expr *E); 4093 4094 //===--------------------------------------------------------------------===// 4095 // Expression Emission 4096 //===--------------------------------------------------------------------===// 4097 4098 // Expressions are broken into three classes: scalar, complex, aggregate. 4099 4100 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 4101 /// scalar type, returning the result. 4102 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 4103 4104 /// Emit a conversion from the specified type to the specified destination 4105 /// type, both of which are LLVM scalar types. 4106 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 4107 QualType DstTy, SourceLocation Loc); 4108 4109 /// Emit a conversion from the specified complex type to the specified 4110 /// destination type, where the destination type is an LLVM scalar type. 4111 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 4112 QualType DstTy, 4113 SourceLocation Loc); 4114 4115 /// EmitAggExpr - Emit the computation of the specified expression 4116 /// of aggregate type. The result is computed into the given slot, 4117 /// which may be null to indicate that the value is not needed. 4118 void EmitAggExpr(const Expr *E, AggValueSlot AS); 4119 4120 /// EmitAggExprToLValue - Emit the computation of the specified expression of 4121 /// aggregate type into a temporary LValue. 4122 LValue EmitAggExprToLValue(const Expr *E); 4123 4124 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 4125 /// make sure it survives garbage collection until this point. 4126 void EmitExtendGCLifetime(llvm::Value *object); 4127 4128 /// EmitComplexExpr - Emit the computation of the specified expression of 4129 /// complex type, returning the result. 4130 ComplexPairTy EmitComplexExpr(const Expr *E, 4131 bool IgnoreReal = false, 4132 bool IgnoreImag = false); 4133 4134 /// EmitComplexExprIntoLValue - Emit the given expression of complex 4135 /// type and place its result into the specified l-value. 4136 void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit); 4137 4138 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 4139 void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit); 4140 4141 /// EmitLoadOfComplex - Load a complex number from the specified l-value. 4142 ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc); 4143 4144 Address emitAddrOfRealComponent(Address complex, QualType complexType); 4145 Address emitAddrOfImagComponent(Address complex, QualType complexType); 4146 4147 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 4148 /// global variable that has already been created for it. If the initializer 4149 /// has a different type than GV does, this may free GV and return a different 4150 /// one. Otherwise it just returns GV. 4151 llvm::GlobalVariable * 4152 AddInitializerToStaticVarDecl(const VarDecl &D, 4153 llvm::GlobalVariable *GV); 4154 4155 // Emit an @llvm.invariant.start call for the given memory region. 4156 void EmitInvariantStart(llvm::Constant *Addr, CharUnits Size); 4157 4158 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 4159 /// variable with global storage. 4160 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr, 4161 bool PerformInit); 4162 4163 llvm::Function *createAtExitStub(const VarDecl &VD, llvm::FunctionCallee Dtor, 4164 llvm::Constant *Addr); 4165 4166 /// Call atexit() with a function that passes the given argument to 4167 /// the given function. 4168 void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::FunctionCallee fn, 4169 llvm::Constant *addr); 4170 4171 /// Call atexit() with function dtorStub. 4172 void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub); 4173 4174 /// Emit code in this function to perform a guarded variable 4175 /// initialization. Guarded initializations are used when it's not 4176 /// possible to prove that an initialization will be done exactly 4177 /// once, e.g. with a static local variable or a static data member 4178 /// of a class template. 4179 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, 4180 bool PerformInit); 4181 4182 enum class GuardKind { VariableGuard, TlsGuard }; 4183 4184 /// Emit a branch to select whether or not to perform guarded initialization. 4185 void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit, 4186 llvm::BasicBlock *InitBlock, 4187 llvm::BasicBlock *NoInitBlock, 4188 GuardKind Kind, const VarDecl *D); 4189 4190 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 4191 /// variables. 4192 void 4193 GenerateCXXGlobalInitFunc(llvm::Function *Fn, 4194 ArrayRef<llvm::Function *> CXXThreadLocals, 4195 ConstantAddress Guard = ConstantAddress::invalid()); 4196 4197 /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global 4198 /// variables. 4199 void GenerateCXXGlobalDtorsFunc( 4200 llvm::Function *Fn, 4201 const std::vector<std::tuple<llvm::FunctionType *, llvm::WeakTrackingVH, 4202 llvm::Constant *>> &DtorsAndObjects); 4203 4204 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 4205 const VarDecl *D, 4206 llvm::GlobalVariable *Addr, 4207 bool PerformInit); 4208 4209 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 4210 4211 void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp); 4212 4213 void enterFullExpression(const FullExpr *E) { 4214 if (const auto *EWC = dyn_cast<ExprWithCleanups>(E)) 4215 if (EWC->getNumObjects() == 0) 4216 return; 4217 enterNonTrivialFullExpression(E); 4218 } 4219 void enterNonTrivialFullExpression(const FullExpr *E); 4220 4221 void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true); 4222 4223 RValue EmitAtomicExpr(AtomicExpr *E); 4224 4225 //===--------------------------------------------------------------------===// 4226 // Annotations Emission 4227 //===--------------------------------------------------------------------===// 4228 4229 /// Emit an annotation call (intrinsic). 4230 llvm::Value *EmitAnnotationCall(llvm::Function *AnnotationFn, 4231 llvm::Value *AnnotatedVal, 4232 StringRef AnnotationStr, 4233 SourceLocation Location); 4234 4235 /// Emit local annotations for the local variable V, declared by D. 4236 void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); 4237 4238 /// Emit field annotations for the given field & value. Returns the 4239 /// annotation result. 4240 Address EmitFieldAnnotations(const FieldDecl *D, Address V); 4241 4242 //===--------------------------------------------------------------------===// 4243 // Internal Helpers 4244 //===--------------------------------------------------------------------===// 4245 4246 /// ContainsLabel - Return true if the statement contains a label in it. If 4247 /// this statement is not executed normally, it not containing a label means 4248 /// that we can just remove the code. 4249 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 4250 4251 /// containsBreak - Return true if the statement contains a break out of it. 4252 /// If the statement (recursively) contains a switch or loop with a break 4253 /// inside of it, this is fine. 4254 static bool containsBreak(const Stmt *S); 4255 4256 /// Determine if the given statement might introduce a declaration into the 4257 /// current scope, by being a (possibly-labelled) DeclStmt. 4258 static bool mightAddDeclToScope(const Stmt *S); 4259 4260 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 4261 /// to a constant, or if it does but contains a label, return false. If it 4262 /// constant folds return true and set the boolean result in Result. 4263 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result, 4264 bool AllowLabels = false); 4265 4266 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 4267 /// to a constant, or if it does but contains a label, return false. If it 4268 /// constant folds return true and set the folded value. 4269 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result, 4270 bool AllowLabels = false); 4271 4272 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 4273 /// if statement) to the specified blocks. Based on the condition, this might 4274 /// try to simplify the codegen of the conditional based on the branch. 4275 /// TrueCount should be the number of times we expect the condition to 4276 /// evaluate to true based on PGO data. 4277 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 4278 llvm::BasicBlock *FalseBlock, uint64_t TrueCount); 4279 4280 /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is 4281 /// nonnull, if \p LHS is marked _Nonnull. 4282 void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc); 4283 4284 /// An enumeration which makes it easier to specify whether or not an 4285 /// operation is a subtraction. 4286 enum { NotSubtraction = false, IsSubtraction = true }; 4287 4288 /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to 4289 /// detect undefined behavior when the pointer overflow sanitizer is enabled. 4290 /// \p SignedIndices indicates whether any of the GEP indices are signed. 4291 /// \p IsSubtraction indicates whether the expression used to form the GEP 4292 /// is a subtraction. 4293 llvm::Value *EmitCheckedInBoundsGEP(llvm::Value *Ptr, 4294 ArrayRef<llvm::Value *> IdxList, 4295 bool SignedIndices, 4296 bool IsSubtraction, 4297 SourceLocation Loc, 4298 const Twine &Name = ""); 4299 4300 /// Specifies which type of sanitizer check to apply when handling a 4301 /// particular builtin. 4302 enum BuiltinCheckKind { 4303 BCK_CTZPassedZero, 4304 BCK_CLZPassedZero, 4305 }; 4306 4307 /// Emits an argument for a call to a builtin. If the builtin sanitizer is 4308 /// enabled, a runtime check specified by \p Kind is also emitted. 4309 llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind); 4310 4311 /// Emit a description of a type in a format suitable for passing to 4312 /// a runtime sanitizer handler. 4313 llvm::Constant *EmitCheckTypeDescriptor(QualType T); 4314 4315 /// Convert a value into a format suitable for passing to a runtime 4316 /// sanitizer handler. 4317 llvm::Value *EmitCheckValue(llvm::Value *V); 4318 4319 /// Emit a description of a source location in a format suitable for 4320 /// passing to a runtime sanitizer handler. 4321 llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc); 4322 4323 /// Create a basic block that will either trap or call a handler function in 4324 /// the UBSan runtime with the provided arguments, and create a conditional 4325 /// branch to it. 4326 void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 4327 SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs, 4328 ArrayRef<llvm::Value *> DynamicArgs); 4329 4330 /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath 4331 /// if Cond if false. 4332 void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond, 4333 llvm::ConstantInt *TypeId, llvm::Value *Ptr, 4334 ArrayRef<llvm::Constant *> StaticArgs); 4335 4336 /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime 4337 /// checking is enabled. Otherwise, just emit an unreachable instruction. 4338 void EmitUnreachable(SourceLocation Loc); 4339 4340 /// Create a basic block that will call the trap intrinsic, and emit a 4341 /// conditional branch to it, for the -ftrapv checks. 4342 void EmitTrapCheck(llvm::Value *Checked); 4343 4344 /// Emit a call to trap or debugtrap and attach function attribute 4345 /// "trap-func-name" if specified. 4346 llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID); 4347 4348 /// Emit a stub for the cross-DSO CFI check function. 4349 void EmitCfiCheckStub(); 4350 4351 /// Emit a cross-DSO CFI failure handling function. 4352 void EmitCfiCheckFail(); 4353 4354 /// Create a check for a function parameter that may potentially be 4355 /// declared as non-null. 4356 void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc, 4357 AbstractCallee AC, unsigned ParmNum); 4358 4359 /// EmitCallArg - Emit a single call argument. 4360 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 4361 4362 /// EmitDelegateCallArg - We are performing a delegate call; that 4363 /// is, the current function is delegating to another one. Produce 4364 /// a r-value suitable for passing the given parameter. 4365 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param, 4366 SourceLocation loc); 4367 4368 /// SetFPAccuracy - Set the minimum required accuracy of the given floating 4369 /// point operation, expressed as the maximum relative error in ulp. 4370 void SetFPAccuracy(llvm::Value *Val, float Accuracy); 4371 4372 /// SetFPModel - Control floating point behavior via fp-model settings. 4373 void SetFPModel(); 4374 4375 /// Set the codegen fast-math flags. 4376 void SetFastMathFlags(FPOptions FPFeatures); 4377 4378 private: 4379 llvm::MDNode *getRangeForLoadFromType(QualType Ty); 4380 void EmitReturnOfRValue(RValue RV, QualType Ty); 4381 4382 void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New); 4383 4384 llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4> 4385 DeferredReplacements; 4386 4387 /// Set the address of a local variable. 4388 void setAddrOfLocalVar(const VarDecl *VD, Address Addr) { 4389 assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!"); 4390 LocalDeclMap.insert({VD, Addr}); 4391 } 4392 4393 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 4394 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 4395 /// 4396 /// \param AI - The first function argument of the expansion. 4397 void ExpandTypeFromArgs(QualType Ty, LValue Dst, 4398 llvm::Function::arg_iterator &AI); 4399 4400 /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg 4401 /// Ty, into individual arguments on the provided vector \arg IRCallArgs, 4402 /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand. 4403 void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, 4404 SmallVectorImpl<llvm::Value *> &IRCallArgs, 4405 unsigned &IRCallArgPos); 4406 4407 llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info, 4408 const Expr *InputExpr, std::string &ConstraintStr); 4409 4410 llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 4411 LValue InputValue, QualType InputType, 4412 std::string &ConstraintStr, 4413 SourceLocation Loc); 4414 4415 /// Attempts to statically evaluate the object size of E. If that 4416 /// fails, emits code to figure the size of E out for us. This is 4417 /// pass_object_size aware. 4418 /// 4419 /// If EmittedExpr is non-null, this will use that instead of re-emitting E. 4420 llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type, 4421 llvm::IntegerType *ResType, 4422 llvm::Value *EmittedE, 4423 bool IsDynamic); 4424 4425 /// Emits the size of E, as required by __builtin_object_size. This 4426 /// function is aware of pass_object_size parameters, and will act accordingly 4427 /// if E is a parameter with the pass_object_size attribute. 4428 llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type, 4429 llvm::IntegerType *ResType, 4430 llvm::Value *EmittedE, 4431 bool IsDynamic); 4432 4433 void emitZeroOrPatternForAutoVarInit(QualType type, const VarDecl &D, 4434 Address Loc); 4435 4436 public: 4437 #ifndef NDEBUG 4438 // Determine whether the given argument is an Objective-C method 4439 // that may have type parameters in its signature. 4440 static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) { 4441 const DeclContext *dc = method->getDeclContext(); 4442 if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) { 4443 return classDecl->getTypeParamListAsWritten(); 4444 } 4445 4446 if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) { 4447 return catDecl->getTypeParamList(); 4448 } 4449 4450 return false; 4451 } 4452 4453 template<typename T> 4454 static bool isObjCMethodWithTypeParams(const T *) { return false; } 4455 #endif 4456 4457 enum class EvaluationOrder { 4458 ///! No language constraints on evaluation order. 4459 Default, 4460 ///! Language semantics require left-to-right evaluation. 4461 ForceLeftToRight, 4462 ///! Language semantics require right-to-left evaluation. 4463 ForceRightToLeft 4464 }; 4465 4466 /// EmitCallArgs - Emit call arguments for a function. 4467 template <typename T> 4468 void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo, 4469 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 4470 AbstractCallee AC = AbstractCallee(), 4471 unsigned ParamsToSkip = 0, 4472 EvaluationOrder Order = EvaluationOrder::Default) { 4473 SmallVector<QualType, 16> ArgTypes; 4474 CallExpr::const_arg_iterator Arg = ArgRange.begin(); 4475 4476 assert((ParamsToSkip == 0 || CallArgTypeInfo) && 4477 "Can't skip parameters if type info is not provided"); 4478 if (CallArgTypeInfo) { 4479 #ifndef NDEBUG 4480 bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo); 4481 #endif 4482 4483 // First, use the argument types that the type info knows about 4484 for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip, 4485 E = CallArgTypeInfo->param_type_end(); 4486 I != E; ++I, ++Arg) { 4487 assert(Arg != ArgRange.end() && "Running over edge of argument list!"); 4488 assert((isGenericMethod || 4489 ((*I)->isVariablyModifiedType() || 4490 (*I).getNonReferenceType()->isObjCRetainableType() || 4491 getContext() 4492 .getCanonicalType((*I).getNonReferenceType()) 4493 .getTypePtr() == 4494 getContext() 4495 .getCanonicalType((*Arg)->getType()) 4496 .getTypePtr())) && 4497 "type mismatch in call argument!"); 4498 ArgTypes.push_back(*I); 4499 } 4500 } 4501 4502 // Either we've emitted all the call args, or we have a call to variadic 4503 // function. 4504 assert((Arg == ArgRange.end() || !CallArgTypeInfo || 4505 CallArgTypeInfo->isVariadic()) && 4506 "Extra arguments in non-variadic function!"); 4507 4508 // If we still have any arguments, emit them using the type of the argument. 4509 for (auto *A : llvm::make_range(Arg, ArgRange.end())) 4510 ArgTypes.push_back(CallArgTypeInfo ? getVarArgType(A) : A->getType()); 4511 4512 EmitCallArgs(Args, ArgTypes, ArgRange, AC, ParamsToSkip, Order); 4513 } 4514 4515 void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes, 4516 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 4517 AbstractCallee AC = AbstractCallee(), 4518 unsigned ParamsToSkip = 0, 4519 EvaluationOrder Order = EvaluationOrder::Default); 4520 4521 /// EmitPointerWithAlignment - Given an expression with a pointer type, 4522 /// emit the value and compute our best estimate of the alignment of the 4523 /// pointee. 4524 /// 4525 /// \param BaseInfo - If non-null, this will be initialized with 4526 /// information about the source of the alignment and the may-alias 4527 /// attribute. Note that this function will conservatively fall back on 4528 /// the type when it doesn't recognize the expression and may-alias will 4529 /// be set to false. 4530 /// 4531 /// One reasonable way to use this information is when there's a language 4532 /// guarantee that the pointer must be aligned to some stricter value, and 4533 /// we're simply trying to ensure that sufficiently obvious uses of under- 4534 /// aligned objects don't get miscompiled; for example, a placement new 4535 /// into the address of a local variable. In such a case, it's quite 4536 /// reasonable to just ignore the returned alignment when it isn't from an 4537 /// explicit source. 4538 Address EmitPointerWithAlignment(const Expr *Addr, 4539 LValueBaseInfo *BaseInfo = nullptr, 4540 TBAAAccessInfo *TBAAInfo = nullptr); 4541 4542 /// If \p E references a parameter with pass_object_size info or a constant 4543 /// array size modifier, emit the object size divided by the size of \p EltTy. 4544 /// Otherwise return null. 4545 llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy); 4546 4547 void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK); 4548 4549 struct MultiVersionResolverOption { 4550 llvm::Function *Function; 4551 FunctionDecl *FD; 4552 struct Conds { 4553 StringRef Architecture; 4554 llvm::SmallVector<StringRef, 8> Features; 4555 4556 Conds(StringRef Arch, ArrayRef<StringRef> Feats) 4557 : Architecture(Arch), Features(Feats.begin(), Feats.end()) {} 4558 } Conditions; 4559 4560 MultiVersionResolverOption(llvm::Function *F, StringRef Arch, 4561 ArrayRef<StringRef> Feats) 4562 : Function(F), Conditions(Arch, Feats) {} 4563 }; 4564 4565 // Emits the body of a multiversion function's resolver. Assumes that the 4566 // options are already sorted in the proper order, with the 'default' option 4567 // last (if it exists). 4568 void EmitMultiVersionResolver(llvm::Function *Resolver, 4569 ArrayRef<MultiVersionResolverOption> Options); 4570 4571 static uint64_t GetX86CpuSupportsMask(ArrayRef<StringRef> FeatureStrs); 4572 4573 private: 4574 QualType getVarArgType(const Expr *Arg); 4575 4576 void EmitDeclMetadata(); 4577 4578 BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType, 4579 const AutoVarEmission &emission); 4580 4581 void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); 4582 4583 llvm::Value *GetValueForARMHint(unsigned BuiltinID); 4584 llvm::Value *EmitX86CpuIs(const CallExpr *E); 4585 llvm::Value *EmitX86CpuIs(StringRef CPUStr); 4586 llvm::Value *EmitX86CpuSupports(const CallExpr *E); 4587 llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs); 4588 llvm::Value *EmitX86CpuSupports(uint64_t Mask); 4589 llvm::Value *EmitX86CpuInit(); 4590 llvm::Value *FormResolverCondition(const MultiVersionResolverOption &RO); 4591 }; 4592 4593 inline DominatingLLVMValue::saved_type 4594 DominatingLLVMValue::save(CodeGenFunction &CGF, llvm::Value *value) { 4595 if (!needsSaving(value)) return saved_type(value, false); 4596 4597 // Otherwise, we need an alloca. 4598 auto align = CharUnits::fromQuantity( 4599 CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType())); 4600 Address alloca = 4601 CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save"); 4602 CGF.Builder.CreateStore(value, alloca); 4603 4604 return saved_type(alloca.getPointer(), true); 4605 } 4606 4607 inline llvm::Value *DominatingLLVMValue::restore(CodeGenFunction &CGF, 4608 saved_type value) { 4609 // If the value says it wasn't saved, trust that it's still dominating. 4610 if (!value.getInt()) return value.getPointer(); 4611 4612 // Otherwise, it should be an alloca instruction, as set up in save(). 4613 auto alloca = cast<llvm::AllocaInst>(value.getPointer()); 4614 return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlign()); 4615 } 4616 4617 } // end namespace CodeGen 4618 4619 // Map the LangOption for floating point exception behavior into 4620 // the corresponding enum in the IR. 4621 llvm::fp::ExceptionBehavior 4622 ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind); 4623 } // end namespace clang 4624 4625 #endif 4626