1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the internal per-function state used for llvm translation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef CLANG_CODEGEN_CODEGENFUNCTION_H 15 #define CLANG_CODEGEN_CODEGENFUNCTION_H 16 17 #include "CGBuilder.h" 18 #include "CGDebugInfo.h" 19 #include "CGValue.h" 20 #include "CodeGenModule.h" 21 #include "clang/AST/CharUnits.h" 22 #include "clang/AST/ExprCXX.h" 23 #include "clang/AST/ExprObjC.h" 24 #include "clang/AST/Type.h" 25 #include "clang/Basic/ABI.h" 26 #include "clang/Basic/TargetInfo.h" 27 #include "clang/Frontend/CodeGenOptions.h" 28 #include "llvm/ADT/ArrayRef.h" 29 #include "llvm/ADT/DenseMap.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/ValueHandle.h" 33 34 namespace llvm { 35 class BasicBlock; 36 class LLVMContext; 37 class MDNode; 38 class Module; 39 class SwitchInst; 40 class Twine; 41 class Value; 42 class CallSite; 43 } 44 45 namespace clang { 46 class ASTContext; 47 class BlockDecl; 48 class CXXDestructorDecl; 49 class CXXForRangeStmt; 50 class CXXTryStmt; 51 class Decl; 52 class LabelDecl; 53 class EnumConstantDecl; 54 class FunctionDecl; 55 class FunctionProtoType; 56 class LabelStmt; 57 class ObjCContainerDecl; 58 class ObjCInterfaceDecl; 59 class ObjCIvarDecl; 60 class ObjCMethodDecl; 61 class ObjCImplementationDecl; 62 class ObjCPropertyImplDecl; 63 class TargetInfo; 64 class TargetCodeGenInfo; 65 class VarDecl; 66 class ObjCForCollectionStmt; 67 class ObjCAtTryStmt; 68 class ObjCAtThrowStmt; 69 class ObjCAtSynchronizedStmt; 70 class ObjCAutoreleasePoolStmt; 71 72 namespace CodeGen { 73 class CodeGenTypes; 74 class CGFunctionInfo; 75 class CGRecordLayout; 76 class CGBlockInfo; 77 class CGCXXABI; 78 class BlockFlags; 79 class BlockFieldFlags; 80 81 /// A branch fixup. These are required when emitting a goto to a 82 /// label which hasn't been emitted yet. The goto is optimistically 83 /// emitted as a branch to the basic block for the label, and (if it 84 /// occurs in a scope with non-trivial cleanups) a fixup is added to 85 /// the innermost cleanup. When a (normal) cleanup is popped, any 86 /// unresolved fixups in that scope are threaded through the cleanup. 87 struct BranchFixup { 88 /// The block containing the terminator which needs to be modified 89 /// into a switch if this fixup is resolved into the current scope. 90 /// If null, LatestBranch points directly to the destination. 91 llvm::BasicBlock *OptimisticBranchBlock; 92 93 /// The ultimate destination of the branch. 94 /// 95 /// This can be set to null to indicate that this fixup was 96 /// successfully resolved. 97 llvm::BasicBlock *Destination; 98 99 /// The destination index value. 100 unsigned DestinationIndex; 101 102 /// The initial branch of the fixup. 103 llvm::BranchInst *InitialBranch; 104 }; 105 106 template <class T> struct InvariantValue { 107 typedef T type; 108 typedef T saved_type; 109 static bool needsSaving(type value) { return false; } 110 static saved_type save(CodeGenFunction &CGF, type value) { return value; } 111 static type restore(CodeGenFunction &CGF, saved_type value) { return value; } 112 }; 113 114 /// A metaprogramming class for ensuring that a value will dominate an 115 /// arbitrary position in a function. 116 template <class T> struct DominatingValue : InvariantValue<T> {}; 117 118 template <class T, bool mightBeInstruction = 119 llvm::is_base_of<llvm::Value, T>::value && 120 !llvm::is_base_of<llvm::Constant, T>::value && 121 !llvm::is_base_of<llvm::BasicBlock, T>::value> 122 struct DominatingPointer; 123 template <class T> struct DominatingPointer<T,false> : InvariantValue<T*> {}; 124 // template <class T> struct DominatingPointer<T,true> at end of file 125 126 template <class T> struct DominatingValue<T*> : DominatingPointer<T> {}; 127 128 enum CleanupKind { 129 EHCleanup = 0x1, 130 NormalCleanup = 0x2, 131 NormalAndEHCleanup = EHCleanup | NormalCleanup, 132 133 InactiveCleanup = 0x4, 134 InactiveEHCleanup = EHCleanup | InactiveCleanup, 135 InactiveNormalCleanup = NormalCleanup | InactiveCleanup, 136 InactiveNormalAndEHCleanup = NormalAndEHCleanup | InactiveCleanup 137 }; 138 139 /// A stack of scopes which respond to exceptions, including cleanups 140 /// and catch blocks. 141 class EHScopeStack { 142 public: 143 /// A saved depth on the scope stack. This is necessary because 144 /// pushing scopes onto the stack invalidates iterators. 145 class stable_iterator { 146 friend class EHScopeStack; 147 148 /// Offset from StartOfData to EndOfBuffer. 149 ptrdiff_t Size; 150 151 stable_iterator(ptrdiff_t Size) : Size(Size) {} 152 153 public: 154 static stable_iterator invalid() { return stable_iterator(-1); } 155 stable_iterator() : Size(-1) {} 156 157 bool isValid() const { return Size >= 0; } 158 159 /// Returns true if this scope encloses I. 160 /// Returns false if I is invalid. 161 /// This scope must be valid. 162 bool encloses(stable_iterator I) const { return Size <= I.Size; } 163 164 /// Returns true if this scope strictly encloses I: that is, 165 /// if it encloses I and is not I. 166 /// Returns false is I is invalid. 167 /// This scope must be valid. 168 bool strictlyEncloses(stable_iterator I) const { return Size < I.Size; } 169 170 friend bool operator==(stable_iterator A, stable_iterator B) { 171 return A.Size == B.Size; 172 } 173 friend bool operator!=(stable_iterator A, stable_iterator B) { 174 return A.Size != B.Size; 175 } 176 }; 177 178 /// Information for lazily generating a cleanup. Subclasses must be 179 /// POD-like: cleanups will not be destructed, and they will be 180 /// allocated on the cleanup stack and freely copied and moved 181 /// around. 182 /// 183 /// Cleanup implementations should generally be declared in an 184 /// anonymous namespace. 185 class Cleanup { 186 // Anchor the construction vtable. 187 virtual void anchor(); 188 public: 189 /// Generation flags. 190 class Flags { 191 enum { 192 F_IsForEH = 0x1, 193 F_IsNormalCleanupKind = 0x2, 194 F_IsEHCleanupKind = 0x4 195 }; 196 unsigned flags; 197 198 public: 199 Flags() : flags(0) {} 200 201 /// isForEH - true if the current emission is for an EH cleanup. 202 bool isForEHCleanup() const { return flags & F_IsForEH; } 203 bool isForNormalCleanup() const { return !isForEHCleanup(); } 204 void setIsForEHCleanup() { flags |= F_IsForEH; } 205 206 bool isNormalCleanupKind() const { return flags & F_IsNormalCleanupKind; } 207 void setIsNormalCleanupKind() { flags |= F_IsNormalCleanupKind; } 208 209 /// isEHCleanupKind - true if the cleanup was pushed as an EH 210 /// cleanup. 211 bool isEHCleanupKind() const { return flags & F_IsEHCleanupKind; } 212 void setIsEHCleanupKind() { flags |= F_IsEHCleanupKind; } 213 }; 214 215 // Provide a virtual destructor to suppress a very common warning 216 // that unfortunately cannot be suppressed without this. Cleanups 217 // should not rely on this destructor ever being called. 218 virtual ~Cleanup() {} 219 220 /// Emit the cleanup. For normal cleanups, this is run in the 221 /// same EH context as when the cleanup was pushed, i.e. the 222 /// immediately-enclosing context of the cleanup scope. For 223 /// EH cleanups, this is run in a terminate context. 224 /// 225 // \param flags cleanup kind. 226 virtual void Emit(CodeGenFunction &CGF, Flags flags) = 0; 227 }; 228 229 /// ConditionalCleanupN stores the saved form of its N parameters, 230 /// then restores them and performs the cleanup. 231 template <class T, class A0> 232 class ConditionalCleanup1 : public Cleanup { 233 typedef typename DominatingValue<A0>::saved_type A0_saved; 234 A0_saved a0_saved; 235 236 void Emit(CodeGenFunction &CGF, Flags flags) { 237 A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); 238 T(a0).Emit(CGF, flags); 239 } 240 241 public: 242 ConditionalCleanup1(A0_saved a0) 243 : a0_saved(a0) {} 244 }; 245 246 template <class T, class A0, class A1> 247 class ConditionalCleanup2 : public Cleanup { 248 typedef typename DominatingValue<A0>::saved_type A0_saved; 249 typedef typename DominatingValue<A1>::saved_type A1_saved; 250 A0_saved a0_saved; 251 A1_saved a1_saved; 252 253 void Emit(CodeGenFunction &CGF, Flags flags) { 254 A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); 255 A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved); 256 T(a0, a1).Emit(CGF, flags); 257 } 258 259 public: 260 ConditionalCleanup2(A0_saved a0, A1_saved a1) 261 : a0_saved(a0), a1_saved(a1) {} 262 }; 263 264 template <class T, class A0, class A1, class A2> 265 class ConditionalCleanup3 : public Cleanup { 266 typedef typename DominatingValue<A0>::saved_type A0_saved; 267 typedef typename DominatingValue<A1>::saved_type A1_saved; 268 typedef typename DominatingValue<A2>::saved_type A2_saved; 269 A0_saved a0_saved; 270 A1_saved a1_saved; 271 A2_saved a2_saved; 272 273 void Emit(CodeGenFunction &CGF, Flags flags) { 274 A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); 275 A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved); 276 A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved); 277 T(a0, a1, a2).Emit(CGF, flags); 278 } 279 280 public: 281 ConditionalCleanup3(A0_saved a0, A1_saved a1, A2_saved a2) 282 : a0_saved(a0), a1_saved(a1), a2_saved(a2) {} 283 }; 284 285 template <class T, class A0, class A1, class A2, class A3> 286 class ConditionalCleanup4 : public Cleanup { 287 typedef typename DominatingValue<A0>::saved_type A0_saved; 288 typedef typename DominatingValue<A1>::saved_type A1_saved; 289 typedef typename DominatingValue<A2>::saved_type A2_saved; 290 typedef typename DominatingValue<A3>::saved_type A3_saved; 291 A0_saved a0_saved; 292 A1_saved a1_saved; 293 A2_saved a2_saved; 294 A3_saved a3_saved; 295 296 void Emit(CodeGenFunction &CGF, Flags flags) { 297 A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); 298 A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved); 299 A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved); 300 A3 a3 = DominatingValue<A3>::restore(CGF, a3_saved); 301 T(a0, a1, a2, a3).Emit(CGF, flags); 302 } 303 304 public: 305 ConditionalCleanup4(A0_saved a0, A1_saved a1, A2_saved a2, A3_saved a3) 306 : a0_saved(a0), a1_saved(a1), a2_saved(a2), a3_saved(a3) {} 307 }; 308 309 private: 310 // The implementation for this class is in CGException.h and 311 // CGException.cpp; the definition is here because it's used as a 312 // member of CodeGenFunction. 313 314 /// The start of the scope-stack buffer, i.e. the allocated pointer 315 /// for the buffer. All of these pointers are either simultaneously 316 /// null or simultaneously valid. 317 char *StartOfBuffer; 318 319 /// The end of the buffer. 320 char *EndOfBuffer; 321 322 /// The first valid entry in the buffer. 323 char *StartOfData; 324 325 /// The innermost normal cleanup on the stack. 326 stable_iterator InnermostNormalCleanup; 327 328 /// The innermost EH scope on the stack. 329 stable_iterator InnermostEHScope; 330 331 /// The current set of branch fixups. A branch fixup is a jump to 332 /// an as-yet unemitted label, i.e. a label for which we don't yet 333 /// know the EH stack depth. Whenever we pop a cleanup, we have 334 /// to thread all the current branch fixups through it. 335 /// 336 /// Fixups are recorded as the Use of the respective branch or 337 /// switch statement. The use points to the final destination. 338 /// When popping out of a cleanup, these uses are threaded through 339 /// the cleanup and adjusted to point to the new cleanup. 340 /// 341 /// Note that branches are allowed to jump into protected scopes 342 /// in certain situations; e.g. the following code is legal: 343 /// struct A { ~A(); }; // trivial ctor, non-trivial dtor 344 /// goto foo; 345 /// A a; 346 /// foo: 347 /// bar(); 348 SmallVector<BranchFixup, 8> BranchFixups; 349 350 char *allocate(size_t Size); 351 352 void *pushCleanup(CleanupKind K, size_t DataSize); 353 354 public: 355 EHScopeStack() : StartOfBuffer(0), EndOfBuffer(0), StartOfData(0), 356 InnermostNormalCleanup(stable_end()), 357 InnermostEHScope(stable_end()) {} 358 ~EHScopeStack() { delete[] StartOfBuffer; } 359 360 // Variadic templates would make this not terrible. 361 362 /// Push a lazily-created cleanup on the stack. 363 template <class T> 364 void pushCleanup(CleanupKind Kind) { 365 void *Buffer = pushCleanup(Kind, sizeof(T)); 366 Cleanup *Obj = new(Buffer) T(); 367 (void) Obj; 368 } 369 370 /// Push a lazily-created cleanup on the stack. 371 template <class T, class A0> 372 void pushCleanup(CleanupKind Kind, A0 a0) { 373 void *Buffer = pushCleanup(Kind, sizeof(T)); 374 Cleanup *Obj = new(Buffer) T(a0); 375 (void) Obj; 376 } 377 378 /// Push a lazily-created cleanup on the stack. 379 template <class T, class A0, class A1> 380 void pushCleanup(CleanupKind Kind, A0 a0, A1 a1) { 381 void *Buffer = pushCleanup(Kind, sizeof(T)); 382 Cleanup *Obj = new(Buffer) T(a0, a1); 383 (void) Obj; 384 } 385 386 /// Push a lazily-created cleanup on the stack. 387 template <class T, class A0, class A1, class A2> 388 void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2) { 389 void *Buffer = pushCleanup(Kind, sizeof(T)); 390 Cleanup *Obj = new(Buffer) T(a0, a1, a2); 391 (void) Obj; 392 } 393 394 /// Push a lazily-created cleanup on the stack. 395 template <class T, class A0, class A1, class A2, class A3> 396 void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) { 397 void *Buffer = pushCleanup(Kind, sizeof(T)); 398 Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3); 399 (void) Obj; 400 } 401 402 /// Push a lazily-created cleanup on the stack. 403 template <class T, class A0, class A1, class A2, class A3, class A4> 404 void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3, A4 a4) { 405 void *Buffer = pushCleanup(Kind, sizeof(T)); 406 Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3, a4); 407 (void) Obj; 408 } 409 410 // Feel free to add more variants of the following: 411 412 /// Push a cleanup with non-constant storage requirements on the 413 /// stack. The cleanup type must provide an additional static method: 414 /// static size_t getExtraSize(size_t); 415 /// The argument to this method will be the value N, which will also 416 /// be passed as the first argument to the constructor. 417 /// 418 /// The data stored in the extra storage must obey the same 419 /// restrictions as normal cleanup member data. 420 /// 421 /// The pointer returned from this method is valid until the cleanup 422 /// stack is modified. 423 template <class T, class A0, class A1, class A2> 424 T *pushCleanupWithExtra(CleanupKind Kind, size_t N, A0 a0, A1 a1, A2 a2) { 425 void *Buffer = pushCleanup(Kind, sizeof(T) + T::getExtraSize(N)); 426 return new (Buffer) T(N, a0, a1, a2); 427 } 428 429 /// Pops a cleanup scope off the stack. This is private to CGCleanup.cpp. 430 void popCleanup(); 431 432 /// Push a set of catch handlers on the stack. The catch is 433 /// uninitialized and will need to have the given number of handlers 434 /// set on it. 435 class EHCatchScope *pushCatch(unsigned NumHandlers); 436 437 /// Pops a catch scope off the stack. This is private to CGException.cpp. 438 void popCatch(); 439 440 /// Push an exceptions filter on the stack. 441 class EHFilterScope *pushFilter(unsigned NumFilters); 442 443 /// Pops an exceptions filter off the stack. 444 void popFilter(); 445 446 /// Push a terminate handler on the stack. 447 void pushTerminate(); 448 449 /// Pops a terminate handler off the stack. 450 void popTerminate(); 451 452 /// Determines whether the exception-scopes stack is empty. 453 bool empty() const { return StartOfData == EndOfBuffer; } 454 455 bool requiresLandingPad() const { 456 return InnermostEHScope != stable_end(); 457 } 458 459 /// Determines whether there are any normal cleanups on the stack. 460 bool hasNormalCleanups() const { 461 return InnermostNormalCleanup != stable_end(); 462 } 463 464 /// Returns the innermost normal cleanup on the stack, or 465 /// stable_end() if there are no normal cleanups. 466 stable_iterator getInnermostNormalCleanup() const { 467 return InnermostNormalCleanup; 468 } 469 stable_iterator getInnermostActiveNormalCleanup() const; 470 471 stable_iterator getInnermostEHScope() const { 472 return InnermostEHScope; 473 } 474 475 stable_iterator getInnermostActiveEHScope() const; 476 477 /// An unstable reference to a scope-stack depth. Invalidated by 478 /// pushes but not pops. 479 class iterator; 480 481 /// Returns an iterator pointing to the innermost EH scope. 482 iterator begin() const; 483 484 /// Returns an iterator pointing to the outermost EH scope. 485 iterator end() const; 486 487 /// Create a stable reference to the top of the EH stack. The 488 /// returned reference is valid until that scope is popped off the 489 /// stack. 490 stable_iterator stable_begin() const { 491 return stable_iterator(EndOfBuffer - StartOfData); 492 } 493 494 /// Create a stable reference to the bottom of the EH stack. 495 static stable_iterator stable_end() { 496 return stable_iterator(0); 497 } 498 499 /// Translates an iterator into a stable_iterator. 500 stable_iterator stabilize(iterator it) const; 501 502 /// Turn a stable reference to a scope depth into a unstable pointer 503 /// to the EH stack. 504 iterator find(stable_iterator save) const; 505 506 /// Removes the cleanup pointed to by the given stable_iterator. 507 void removeCleanup(stable_iterator save); 508 509 /// Add a branch fixup to the current cleanup scope. 510 BranchFixup &addBranchFixup() { 511 assert(hasNormalCleanups() && "adding fixup in scope without cleanups"); 512 BranchFixups.push_back(BranchFixup()); 513 return BranchFixups.back(); 514 } 515 516 unsigned getNumBranchFixups() const { return BranchFixups.size(); } 517 BranchFixup &getBranchFixup(unsigned I) { 518 assert(I < getNumBranchFixups()); 519 return BranchFixups[I]; 520 } 521 522 /// Pops lazily-removed fixups from the end of the list. This 523 /// should only be called by procedures which have just popped a 524 /// cleanup or resolved one or more fixups. 525 void popNullFixups(); 526 527 /// Clears the branch-fixups list. This should only be called by 528 /// ResolveAllBranchFixups. 529 void clearFixups() { BranchFixups.clear(); } 530 }; 531 532 /// CodeGenFunction - This class organizes the per-function state that is used 533 /// while generating LLVM code. 534 class CodeGenFunction : public CodeGenTypeCache { 535 CodeGenFunction(const CodeGenFunction &) LLVM_DELETED_FUNCTION; 536 void operator=(const CodeGenFunction &) LLVM_DELETED_FUNCTION; 537 538 friend class CGCXXABI; 539 public: 540 /// A jump destination is an abstract label, branching to which may 541 /// require a jump out through normal cleanups. 542 struct JumpDest { 543 JumpDest() : Block(0), ScopeDepth(), Index(0) {} 544 JumpDest(llvm::BasicBlock *Block, 545 EHScopeStack::stable_iterator Depth, 546 unsigned Index) 547 : Block(Block), ScopeDepth(Depth), Index(Index) {} 548 549 bool isValid() const { return Block != 0; } 550 llvm::BasicBlock *getBlock() const { return Block; } 551 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 552 unsigned getDestIndex() const { return Index; } 553 554 private: 555 llvm::BasicBlock *Block; 556 EHScopeStack::stable_iterator ScopeDepth; 557 unsigned Index; 558 }; 559 560 CodeGenModule &CGM; // Per-module state. 561 const TargetInfo &Target; 562 563 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 564 CGBuilderTy Builder; 565 566 /// CurFuncDecl - Holds the Decl for the current function or ObjC method. 567 /// This excludes BlockDecls. 568 const Decl *CurFuncDecl; 569 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 570 const Decl *CurCodeDecl; 571 const CGFunctionInfo *CurFnInfo; 572 QualType FnRetTy; 573 llvm::Function *CurFn; 574 575 /// CurGD - The GlobalDecl for the current function being compiled. 576 GlobalDecl CurGD; 577 578 /// PrologueCleanupDepth - The cleanup depth enclosing all the 579 /// cleanups associated with the parameters. 580 EHScopeStack::stable_iterator PrologueCleanupDepth; 581 582 /// ReturnBlock - Unified return block. 583 JumpDest ReturnBlock; 584 585 /// ReturnValue - The temporary alloca to hold the return value. This is null 586 /// iff the function has no return value. 587 llvm::Value *ReturnValue; 588 589 /// AllocaInsertPoint - This is an instruction in the entry block before which 590 /// we prefer to insert allocas. 591 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 592 593 /// BoundsChecking - Emit run-time bounds checks. Higher values mean 594 /// potentially higher performance penalties. 595 unsigned char BoundsChecking; 596 597 /// \brief Whether any type-checking sanitizers are enabled. If \c false, 598 /// calls to EmitTypeCheck can be skipped. 599 bool SanitizePerformTypeCheck; 600 601 /// \brief Sanitizer options to use for this function. 602 const SanitizerOptions *SanOpts; 603 604 /// In ARC, whether we should autorelease the return value. 605 bool AutoreleaseResult; 606 607 const CodeGen::CGBlockInfo *BlockInfo; 608 llvm::Value *BlockPointer; 609 610 llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; 611 FieldDecl *LambdaThisCaptureField; 612 613 /// \brief A mapping from NRVO variables to the flags used to indicate 614 /// when the NRVO has been applied to this variable. 615 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 616 617 EHScopeStack EHStack; 618 619 /// i32s containing the indexes of the cleanup destinations. 620 llvm::AllocaInst *NormalCleanupDest; 621 622 unsigned NextCleanupDestIndex; 623 624 /// FirstBlockInfo - The head of a singly-linked-list of block layouts. 625 CGBlockInfo *FirstBlockInfo; 626 627 /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. 628 llvm::BasicBlock *EHResumeBlock; 629 630 /// The exception slot. All landing pads write the current exception pointer 631 /// into this alloca. 632 llvm::Value *ExceptionSlot; 633 634 /// The selector slot. Under the MandatoryCleanup model, all landing pads 635 /// write the current selector value into this alloca. 636 llvm::AllocaInst *EHSelectorSlot; 637 638 /// Emits a landing pad for the current EH stack. 639 llvm::BasicBlock *EmitLandingPad(); 640 641 llvm::BasicBlock *getInvokeDestImpl(); 642 643 template <class T> 644 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 645 return DominatingValue<T>::save(*this, value); 646 } 647 648 public: 649 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 650 /// rethrows. 651 SmallVector<llvm::Value*, 8> ObjCEHValueStack; 652 653 /// A class controlling the emission of a finally block. 654 class FinallyInfo { 655 /// Where the catchall's edge through the cleanup should go. 656 JumpDest RethrowDest; 657 658 /// A function to call to enter the catch. 659 llvm::Constant *BeginCatchFn; 660 661 /// An i1 variable indicating whether or not the @finally is 662 /// running for an exception. 663 llvm::AllocaInst *ForEHVar; 664 665 /// An i8* variable into which the exception pointer to rethrow 666 /// has been saved. 667 llvm::AllocaInst *SavedExnVar; 668 669 public: 670 void enter(CodeGenFunction &CGF, const Stmt *Finally, 671 llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn, 672 llvm::Constant *rethrowFn); 673 void exit(CodeGenFunction &CGF); 674 }; 675 676 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 677 /// current full-expression. Safe against the possibility that 678 /// we're currently inside a conditionally-evaluated expression. 679 template <class T, class A0> 680 void pushFullExprCleanup(CleanupKind kind, A0 a0) { 681 // If we're not in a conditional branch, or if none of the 682 // arguments requires saving, then use the unconditional cleanup. 683 if (!isInConditionalBranch()) 684 return EHStack.pushCleanup<T>(kind, a0); 685 686 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 687 688 typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType; 689 EHStack.pushCleanup<CleanupType>(kind, a0_saved); 690 initFullExprCleanup(); 691 } 692 693 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 694 /// current full-expression. Safe against the possibility that 695 /// we're currently inside a conditionally-evaluated expression. 696 template <class T, class A0, class A1> 697 void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) { 698 // If we're not in a conditional branch, or if none of the 699 // arguments requires saving, then use the unconditional cleanup. 700 if (!isInConditionalBranch()) 701 return EHStack.pushCleanup<T>(kind, a0, a1); 702 703 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 704 typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); 705 706 typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType; 707 EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved); 708 initFullExprCleanup(); 709 } 710 711 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 712 /// current full-expression. Safe against the possibility that 713 /// we're currently inside a conditionally-evaluated expression. 714 template <class T, class A0, class A1, class A2> 715 void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2) { 716 // If we're not in a conditional branch, or if none of the 717 // arguments requires saving, then use the unconditional cleanup. 718 if (!isInConditionalBranch()) { 719 return EHStack.pushCleanup<T>(kind, a0, a1, a2); 720 } 721 722 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 723 typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); 724 typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2); 725 726 typedef EHScopeStack::ConditionalCleanup3<T, A0, A1, A2> CleanupType; 727 EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, a2_saved); 728 initFullExprCleanup(); 729 } 730 731 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 732 /// current full-expression. Safe against the possibility that 733 /// we're currently inside a conditionally-evaluated expression. 734 template <class T, class A0, class A1, class A2, class A3> 735 void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2, A3 a3) { 736 // If we're not in a conditional branch, or if none of the 737 // arguments requires saving, then use the unconditional cleanup. 738 if (!isInConditionalBranch()) { 739 return EHStack.pushCleanup<T>(kind, a0, a1, a2, a3); 740 } 741 742 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 743 typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); 744 typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2); 745 typename DominatingValue<A3>::saved_type a3_saved = saveValueInCond(a3); 746 747 typedef EHScopeStack::ConditionalCleanup4<T, A0, A1, A2, A3> CleanupType; 748 EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, 749 a2_saved, a3_saved); 750 initFullExprCleanup(); 751 } 752 753 /// Set up the last cleaup that was pushed as a conditional 754 /// full-expression cleanup. 755 void initFullExprCleanup(); 756 757 /// PushDestructorCleanup - Push a cleanup to call the 758 /// complete-object destructor of an object of the given type at the 759 /// given address. Does nothing if T is not a C++ class type with a 760 /// non-trivial destructor. 761 void PushDestructorCleanup(QualType T, llvm::Value *Addr); 762 763 /// PushDestructorCleanup - Push a cleanup to call the 764 /// complete-object variant of the given destructor on the object at 765 /// the given address. 766 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, 767 llvm::Value *Addr); 768 769 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 770 /// process all branch fixups. 771 void PopCleanupBlock(bool FallThroughIsBranchThrough = false); 772 773 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 774 /// The block cannot be reactivated. Pops it if it's the top of the 775 /// stack. 776 /// 777 /// \param DominatingIP - An instruction which is known to 778 /// dominate the current IP (if set) and which lies along 779 /// all paths of execution between the current IP and the 780 /// the point at which the cleanup comes into scope. 781 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 782 llvm::Instruction *DominatingIP); 783 784 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 785 /// Cannot be used to resurrect a deactivated cleanup. 786 /// 787 /// \param DominatingIP - An instruction which is known to 788 /// dominate the current IP (if set) and which lies along 789 /// all paths of execution between the current IP and the 790 /// the point at which the cleanup comes into scope. 791 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 792 llvm::Instruction *DominatingIP); 793 794 /// \brief Enters a new scope for capturing cleanups, all of which 795 /// will be executed once the scope is exited. 796 class RunCleanupsScope { 797 EHScopeStack::stable_iterator CleanupStackDepth; 798 bool OldDidCallStackSave; 799 bool PerformCleanup; 800 801 RunCleanupsScope(const RunCleanupsScope &) LLVM_DELETED_FUNCTION; 802 void operator=(const RunCleanupsScope &) LLVM_DELETED_FUNCTION; 803 804 protected: 805 CodeGenFunction& CGF; 806 807 public: 808 /// \brief Enter a new cleanup scope. 809 explicit RunCleanupsScope(CodeGenFunction &CGF) 810 : PerformCleanup(true), CGF(CGF) 811 { 812 CleanupStackDepth = CGF.EHStack.stable_begin(); 813 OldDidCallStackSave = CGF.DidCallStackSave; 814 CGF.DidCallStackSave = false; 815 } 816 817 /// \brief Exit this cleanup scope, emitting any accumulated 818 /// cleanups. 819 ~RunCleanupsScope() { 820 if (PerformCleanup) { 821 CGF.DidCallStackSave = OldDidCallStackSave; 822 CGF.PopCleanupBlocks(CleanupStackDepth); 823 } 824 } 825 826 /// \brief Determine whether this scope requires any cleanups. 827 bool requiresCleanups() const { 828 return CGF.EHStack.stable_begin() != CleanupStackDepth; 829 } 830 831 /// \brief Force the emission of cleanups now, instead of waiting 832 /// until this object is destroyed. 833 void ForceCleanup() { 834 assert(PerformCleanup && "Already forced cleanup"); 835 CGF.DidCallStackSave = OldDidCallStackSave; 836 CGF.PopCleanupBlocks(CleanupStackDepth); 837 PerformCleanup = false; 838 } 839 }; 840 841 class LexicalScope: protected RunCleanupsScope { 842 SourceRange Range; 843 bool PopDebugStack; 844 845 LexicalScope(const LexicalScope &) LLVM_DELETED_FUNCTION; 846 void operator=(const LexicalScope &) LLVM_DELETED_FUNCTION; 847 848 public: 849 /// \brief Enter a new cleanup scope. 850 explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) 851 : RunCleanupsScope(CGF), Range(Range), PopDebugStack(true) { 852 if (CGDebugInfo *DI = CGF.getDebugInfo()) 853 DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); 854 } 855 856 /// \brief Exit this cleanup scope, emitting any accumulated 857 /// cleanups. 858 ~LexicalScope() { 859 if (PopDebugStack) { 860 CGDebugInfo *DI = CGF.getDebugInfo(); 861 if (DI) DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 862 } 863 } 864 865 /// \brief Force the emission of cleanups now, instead of waiting 866 /// until this object is destroyed. 867 void ForceCleanup() { 868 RunCleanupsScope::ForceCleanup(); 869 if (CGDebugInfo *DI = CGF.getDebugInfo()) { 870 DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 871 PopDebugStack = false; 872 } 873 } 874 }; 875 876 877 /// PopCleanupBlocks - Takes the old cleanup stack size and emits 878 /// the cleanup blocks that have been added. 879 void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize); 880 881 void ResolveBranchFixups(llvm::BasicBlock *Target); 882 883 /// The given basic block lies in the current EH scope, but may be a 884 /// target of a potentially scope-crossing jump; get a stable handle 885 /// to which we can perform this jump later. 886 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 887 return JumpDest(Target, 888 EHStack.getInnermostNormalCleanup(), 889 NextCleanupDestIndex++); 890 } 891 892 /// The given basic block lies in the current EH scope, but may be a 893 /// target of a potentially scope-crossing jump; get a stable handle 894 /// to which we can perform this jump later. 895 JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { 896 return getJumpDestInCurrentScope(createBasicBlock(Name)); 897 } 898 899 /// EmitBranchThroughCleanup - Emit a branch from the current insert 900 /// block through the normal cleanup handling code (if any) and then 901 /// on to \arg Dest. 902 void EmitBranchThroughCleanup(JumpDest Dest); 903 904 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 905 /// specified destination obviously has no cleanups to run. 'false' is always 906 /// a conservatively correct answer for this method. 907 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 908 909 /// popCatchScope - Pops the catch scope at the top of the EHScope 910 /// stack, emitting any required code (other than the catch handlers 911 /// themselves). 912 void popCatchScope(); 913 914 llvm::BasicBlock *getEHResumeBlock(bool isCleanup); 915 llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); 916 917 /// An object to manage conditionally-evaluated expressions. 918 class ConditionalEvaluation { 919 llvm::BasicBlock *StartBB; 920 921 public: 922 ConditionalEvaluation(CodeGenFunction &CGF) 923 : StartBB(CGF.Builder.GetInsertBlock()) {} 924 925 void begin(CodeGenFunction &CGF) { 926 assert(CGF.OutermostConditional != this); 927 if (!CGF.OutermostConditional) 928 CGF.OutermostConditional = this; 929 } 930 931 void end(CodeGenFunction &CGF) { 932 assert(CGF.OutermostConditional != 0); 933 if (CGF.OutermostConditional == this) 934 CGF.OutermostConditional = 0; 935 } 936 937 /// Returns a block which will be executed prior to each 938 /// evaluation of the conditional code. 939 llvm::BasicBlock *getStartingBlock() const { 940 return StartBB; 941 } 942 }; 943 944 /// isInConditionalBranch - Return true if we're currently emitting 945 /// one branch or the other of a conditional expression. 946 bool isInConditionalBranch() const { return OutermostConditional != 0; } 947 948 void setBeforeOutermostConditional(llvm::Value *value, llvm::Value *addr) { 949 assert(isInConditionalBranch()); 950 llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); 951 new llvm::StoreInst(value, addr, &block->back()); 952 } 953 954 /// An RAII object to record that we're evaluating a statement 955 /// expression. 956 class StmtExprEvaluation { 957 CodeGenFunction &CGF; 958 959 /// We have to save the outermost conditional: cleanups in a 960 /// statement expression aren't conditional just because the 961 /// StmtExpr is. 962 ConditionalEvaluation *SavedOutermostConditional; 963 964 public: 965 StmtExprEvaluation(CodeGenFunction &CGF) 966 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 967 CGF.OutermostConditional = 0; 968 } 969 970 ~StmtExprEvaluation() { 971 CGF.OutermostConditional = SavedOutermostConditional; 972 CGF.EnsureInsertPoint(); 973 } 974 }; 975 976 /// An object which temporarily prevents a value from being 977 /// destroyed by aggressive peephole optimizations that assume that 978 /// all uses of a value have been realized in the IR. 979 class PeepholeProtection { 980 llvm::Instruction *Inst; 981 friend class CodeGenFunction; 982 983 public: 984 PeepholeProtection() : Inst(0) {} 985 }; 986 987 /// A non-RAII class containing all the information about a bound 988 /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for 989 /// this which makes individual mappings very simple; using this 990 /// class directly is useful when you have a variable number of 991 /// opaque values or don't want the RAII functionality for some 992 /// reason. 993 class OpaqueValueMappingData { 994 const OpaqueValueExpr *OpaqueValue; 995 bool BoundLValue; 996 CodeGenFunction::PeepholeProtection Protection; 997 998 OpaqueValueMappingData(const OpaqueValueExpr *ov, 999 bool boundLValue) 1000 : OpaqueValue(ov), BoundLValue(boundLValue) {} 1001 public: 1002 OpaqueValueMappingData() : OpaqueValue(0) {} 1003 1004 static bool shouldBindAsLValue(const Expr *expr) { 1005 // gl-values should be bound as l-values for obvious reasons. 1006 // Records should be bound as l-values because IR generation 1007 // always keeps them in memory. Expressions of function type 1008 // act exactly like l-values but are formally required to be 1009 // r-values in C. 1010 return expr->isGLValue() || 1011 expr->getType()->isRecordType() || 1012 expr->getType()->isFunctionType(); 1013 } 1014 1015 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1016 const OpaqueValueExpr *ov, 1017 const Expr *e) { 1018 if (shouldBindAsLValue(ov)) 1019 return bind(CGF, ov, CGF.EmitLValue(e)); 1020 return bind(CGF, ov, CGF.EmitAnyExpr(e)); 1021 } 1022 1023 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1024 const OpaqueValueExpr *ov, 1025 const LValue &lv) { 1026 assert(shouldBindAsLValue(ov)); 1027 CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); 1028 return OpaqueValueMappingData(ov, true); 1029 } 1030 1031 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1032 const OpaqueValueExpr *ov, 1033 const RValue &rv) { 1034 assert(!shouldBindAsLValue(ov)); 1035 CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); 1036 1037 OpaqueValueMappingData data(ov, false); 1038 1039 // Work around an extremely aggressive peephole optimization in 1040 // EmitScalarConversion which assumes that all other uses of a 1041 // value are extant. 1042 data.Protection = CGF.protectFromPeepholes(rv); 1043 1044 return data; 1045 } 1046 1047 bool isValid() const { return OpaqueValue != 0; } 1048 void clear() { OpaqueValue = 0; } 1049 1050 void unbind(CodeGenFunction &CGF) { 1051 assert(OpaqueValue && "no data to unbind!"); 1052 1053 if (BoundLValue) { 1054 CGF.OpaqueLValues.erase(OpaqueValue); 1055 } else { 1056 CGF.OpaqueRValues.erase(OpaqueValue); 1057 CGF.unprotectFromPeepholes(Protection); 1058 } 1059 } 1060 }; 1061 1062 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 1063 class OpaqueValueMapping { 1064 CodeGenFunction &CGF; 1065 OpaqueValueMappingData Data; 1066 1067 public: 1068 static bool shouldBindAsLValue(const Expr *expr) { 1069 return OpaqueValueMappingData::shouldBindAsLValue(expr); 1070 } 1071 1072 /// Build the opaque value mapping for the given conditional 1073 /// operator if it's the GNU ?: extension. This is a common 1074 /// enough pattern that the convenience operator is really 1075 /// helpful. 1076 /// 1077 OpaqueValueMapping(CodeGenFunction &CGF, 1078 const AbstractConditionalOperator *op) : CGF(CGF) { 1079 if (isa<ConditionalOperator>(op)) 1080 // Leave Data empty. 1081 return; 1082 1083 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 1084 Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), 1085 e->getCommon()); 1086 } 1087 1088 OpaqueValueMapping(CodeGenFunction &CGF, 1089 const OpaqueValueExpr *opaqueValue, 1090 LValue lvalue) 1091 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { 1092 } 1093 1094 OpaqueValueMapping(CodeGenFunction &CGF, 1095 const OpaqueValueExpr *opaqueValue, 1096 RValue rvalue) 1097 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { 1098 } 1099 1100 void pop() { 1101 Data.unbind(CGF); 1102 Data.clear(); 1103 } 1104 1105 ~OpaqueValueMapping() { 1106 if (Data.isValid()) Data.unbind(CGF); 1107 } 1108 }; 1109 1110 /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field 1111 /// number that holds the value. 1112 unsigned getByRefValueLLVMField(const ValueDecl *VD) const; 1113 1114 /// BuildBlockByrefAddress - Computes address location of the 1115 /// variable which is declared as __block. 1116 llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr, 1117 const VarDecl *V); 1118 private: 1119 CGDebugInfo *DebugInfo; 1120 bool DisableDebugInfo; 1121 1122 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 1123 /// calling llvm.stacksave for multiple VLAs in the same scope. 1124 bool DidCallStackSave; 1125 1126 /// IndirectBranch - The first time an indirect goto is seen we create a block 1127 /// with an indirect branch. Every time we see the address of a label taken, 1128 /// we add the label to the indirect goto. Every subsequent indirect goto is 1129 /// codegen'd as a jump to the IndirectBranch's basic block. 1130 llvm::IndirectBrInst *IndirectBranch; 1131 1132 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 1133 /// decls. 1134 typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy; 1135 DeclMapTy LocalDeclMap; 1136 1137 /// LabelMap - This keeps track of the LLVM basic block for each C label. 1138 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 1139 1140 // BreakContinueStack - This keeps track of where break and continue 1141 // statements should jump to. 1142 struct BreakContinue { 1143 BreakContinue(JumpDest Break, JumpDest Continue) 1144 : BreakBlock(Break), ContinueBlock(Continue) {} 1145 1146 JumpDest BreakBlock; 1147 JumpDest ContinueBlock; 1148 }; 1149 SmallVector<BreakContinue, 8> BreakContinueStack; 1150 1151 /// SwitchInsn - This is nearest current switch instruction. It is null if 1152 /// current context is not in a switch. 1153 llvm::SwitchInst *SwitchInsn; 1154 1155 /// CaseRangeBlock - This block holds if condition check for last case 1156 /// statement range in current switch instruction. 1157 llvm::BasicBlock *CaseRangeBlock; 1158 1159 /// OpaqueLValues - Keeps track of the current set of opaque value 1160 /// expressions. 1161 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 1162 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 1163 1164 // VLASizeMap - This keeps track of the associated size for each VLA type. 1165 // We track this by the size expression rather than the type itself because 1166 // in certain situations, like a const qualifier applied to an VLA typedef, 1167 // multiple VLA types can share the same size expression. 1168 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 1169 // enter/leave scopes. 1170 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 1171 1172 /// A block containing a single 'unreachable' instruction. Created 1173 /// lazily by getUnreachableBlock(). 1174 llvm::BasicBlock *UnreachableBlock; 1175 1176 /// CXXThisDecl - When generating code for a C++ member function, 1177 /// this will hold the implicit 'this' declaration. 1178 ImplicitParamDecl *CXXABIThisDecl; 1179 llvm::Value *CXXABIThisValue; 1180 llvm::Value *CXXThisValue; 1181 1182 /// CXXVTTDecl - When generating code for a base object constructor or 1183 /// base object destructor with virtual bases, this will hold the implicit 1184 /// VTT parameter. 1185 ImplicitParamDecl *CXXVTTDecl; 1186 llvm::Value *CXXVTTValue; 1187 1188 /// OutermostConditional - Points to the outermost active 1189 /// conditional control. This is used so that we know if a 1190 /// temporary should be destroyed conditionally. 1191 ConditionalEvaluation *OutermostConditional; 1192 1193 1194 /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM 1195 /// type as well as the field number that contains the actual data. 1196 llvm::DenseMap<const ValueDecl *, std::pair<llvm::Type *, 1197 unsigned> > ByRefValueInfo; 1198 1199 llvm::BasicBlock *TerminateLandingPad; 1200 llvm::BasicBlock *TerminateHandler; 1201 llvm::BasicBlock *TrapBB; 1202 1203 /// Add a kernel metadata node to the named metadata node 'opencl.kernels'. 1204 /// In the kernel metadata node, reference the kernel function and metadata 1205 /// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2): 1206 /// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string 1207 /// "work_group_size_hint", and three 32-bit integers X, Y and Z. 1208 /// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string 1209 /// "reqd_work_group_size", and three 32-bit integers X, Y and Z. 1210 void EmitOpenCLKernelMetadata(const FunctionDecl *FD, 1211 llvm::Function *Fn); 1212 1213 public: 1214 CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false); 1215 ~CodeGenFunction(); 1216 1217 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 1218 ASTContext &getContext() const { return CGM.getContext(); } 1219 /// Returns true if DebugInfo is actually initialized. 1220 bool maybeInitializeDebugInfo() { 1221 if (CGM.getModuleDebugInfo()) { 1222 DebugInfo = CGM.getModuleDebugInfo(); 1223 return true; 1224 } 1225 return false; 1226 } 1227 CGDebugInfo *getDebugInfo() { 1228 if (DisableDebugInfo) 1229 return NULL; 1230 return DebugInfo; 1231 } 1232 void disableDebugInfo() { DisableDebugInfo = true; } 1233 void enableDebugInfo() { DisableDebugInfo = false; } 1234 1235 bool shouldUseFusedARCCalls() { 1236 return CGM.getCodeGenOpts().OptimizationLevel == 0; 1237 } 1238 1239 const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } 1240 1241 /// Returns a pointer to the function's exception object and selector slot, 1242 /// which is assigned in every landing pad. 1243 llvm::Value *getExceptionSlot(); 1244 llvm::Value *getEHSelectorSlot(); 1245 1246 /// Returns the contents of the function's exception object and selector 1247 /// slots. 1248 llvm::Value *getExceptionFromSlot(); 1249 llvm::Value *getSelectorFromSlot(); 1250 1251 llvm::Value *getNormalCleanupDestSlot(); 1252 1253 llvm::BasicBlock *getUnreachableBlock() { 1254 if (!UnreachableBlock) { 1255 UnreachableBlock = createBasicBlock("unreachable"); 1256 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 1257 } 1258 return UnreachableBlock; 1259 } 1260 1261 llvm::BasicBlock *getInvokeDest() { 1262 if (!EHStack.requiresLandingPad()) return 0; 1263 return getInvokeDestImpl(); 1264 } 1265 1266 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 1267 1268 //===--------------------------------------------------------------------===// 1269 // Cleanups 1270 //===--------------------------------------------------------------------===// 1271 1272 typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty); 1273 1274 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1275 llvm::Value *arrayEndPointer, 1276 QualType elementType, 1277 Destroyer *destroyer); 1278 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1279 llvm::Value *arrayEnd, 1280 QualType elementType, 1281 Destroyer *destroyer); 1282 1283 void pushDestroy(QualType::DestructionKind dtorKind, 1284 llvm::Value *addr, QualType type); 1285 void pushEHDestroy(QualType::DestructionKind dtorKind, 1286 llvm::Value *addr, QualType type); 1287 void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type, 1288 Destroyer *destroyer, bool useEHCleanupForArray); 1289 void emitDestroy(llvm::Value *addr, QualType type, Destroyer *destroyer, 1290 bool useEHCleanupForArray); 1291 llvm::Function *generateDestroyHelper(llvm::Constant *addr, 1292 QualType type, 1293 Destroyer *destroyer, 1294 bool useEHCleanupForArray); 1295 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 1296 QualType type, Destroyer *destroyer, 1297 bool checkZeroLength, bool useEHCleanup); 1298 1299 Destroyer *getDestroyer(QualType::DestructionKind destructionKind); 1300 1301 /// Determines whether an EH cleanup is required to destroy a type 1302 /// with the given destruction kind. 1303 bool needsEHCleanup(QualType::DestructionKind kind) { 1304 switch (kind) { 1305 case QualType::DK_none: 1306 return false; 1307 case QualType::DK_cxx_destructor: 1308 case QualType::DK_objc_weak_lifetime: 1309 return getLangOpts().Exceptions; 1310 case QualType::DK_objc_strong_lifetime: 1311 return getLangOpts().Exceptions && 1312 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 1313 } 1314 llvm_unreachable("bad destruction kind"); 1315 } 1316 1317 CleanupKind getCleanupKind(QualType::DestructionKind kind) { 1318 return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); 1319 } 1320 1321 //===--------------------------------------------------------------------===// 1322 // Objective-C 1323 //===--------------------------------------------------------------------===// 1324 1325 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 1326 1327 void StartObjCMethod(const ObjCMethodDecl *MD, 1328 const ObjCContainerDecl *CD, 1329 SourceLocation StartLoc); 1330 1331 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 1332 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 1333 const ObjCPropertyImplDecl *PID); 1334 void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 1335 const ObjCPropertyImplDecl *propImpl, 1336 const ObjCMethodDecl *GetterMothodDecl, 1337 llvm::Constant *AtomicHelperFn); 1338 1339 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1340 ObjCMethodDecl *MD, bool ctor); 1341 1342 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 1343 /// for the given property. 1344 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 1345 const ObjCPropertyImplDecl *PID); 1346 void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1347 const ObjCPropertyImplDecl *propImpl, 1348 llvm::Constant *AtomicHelperFn); 1349 bool IndirectObjCSetterArg(const CGFunctionInfo &FI); 1350 bool IvarTypeWithAggrGCObjects(QualType Ty); 1351 1352 //===--------------------------------------------------------------------===// 1353 // Block Bits 1354 //===--------------------------------------------------------------------===// 1355 1356 llvm::Value *EmitBlockLiteral(const BlockExpr *); 1357 llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); 1358 static void destroyBlockInfos(CGBlockInfo *info); 1359 llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *, 1360 const CGBlockInfo &Info, 1361 llvm::StructType *, 1362 llvm::Constant *BlockVarLayout); 1363 1364 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 1365 const CGBlockInfo &Info, 1366 const Decl *OuterFuncDecl, 1367 const DeclMapTy &ldm, 1368 bool IsLambdaConversionToBlock); 1369 1370 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 1371 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 1372 llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( 1373 const ObjCPropertyImplDecl *PID); 1374 llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( 1375 const ObjCPropertyImplDecl *PID); 1376 llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); 1377 1378 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags); 1379 1380 class AutoVarEmission; 1381 1382 void emitByrefStructureInit(const AutoVarEmission &emission); 1383 void enterByrefCleanup(const AutoVarEmission &emission); 1384 1385 llvm::Value *LoadBlockStruct() { 1386 assert(BlockPointer && "no block pointer set!"); 1387 return BlockPointer; 1388 } 1389 1390 void AllocateBlockCXXThisPointer(const CXXThisExpr *E); 1391 void AllocateBlockDecl(const DeclRefExpr *E); 1392 llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef); 1393 llvm::Type *BuildByRefType(const VarDecl *var); 1394 1395 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1396 const CGFunctionInfo &FnInfo); 1397 void StartFunction(GlobalDecl GD, QualType RetTy, 1398 llvm::Function *Fn, 1399 const CGFunctionInfo &FnInfo, 1400 const FunctionArgList &Args, 1401 SourceLocation StartLoc); 1402 1403 void EmitConstructorBody(FunctionArgList &Args); 1404 void EmitDestructorBody(FunctionArgList &Args); 1405 void EmitFunctionBody(FunctionArgList &Args); 1406 1407 void EmitForwardingCallToLambda(const CXXRecordDecl *Lambda, 1408 CallArgList &CallArgs); 1409 void EmitLambdaToBlockPointerBody(FunctionArgList &Args); 1410 void EmitLambdaBlockInvokeBody(); 1411 void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD); 1412 void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD); 1413 1414 /// EmitReturnBlock - Emit the unified return block, trying to avoid its 1415 /// emission when possible. 1416 void EmitReturnBlock(); 1417 1418 /// FinishFunction - Complete IR generation of the current function. It is 1419 /// legal to call this function even if there is no current insertion point. 1420 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 1421 1422 /// GenerateThunk - Generate a thunk for the given method. 1423 void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1424 GlobalDecl GD, const ThunkInfo &Thunk); 1425 1426 void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1427 GlobalDecl GD, const ThunkInfo &Thunk); 1428 1429 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 1430 FunctionArgList &Args); 1431 1432 void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init, 1433 ArrayRef<VarDecl *> ArrayIndexes); 1434 1435 /// InitializeVTablePointer - Initialize the vtable pointer of the given 1436 /// subobject. 1437 /// 1438 void InitializeVTablePointer(BaseSubobject Base, 1439 const CXXRecordDecl *NearestVBase, 1440 CharUnits OffsetFromNearestVBase, 1441 llvm::Constant *VTable, 1442 const CXXRecordDecl *VTableClass); 1443 1444 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 1445 void InitializeVTablePointers(BaseSubobject Base, 1446 const CXXRecordDecl *NearestVBase, 1447 CharUnits OffsetFromNearestVBase, 1448 bool BaseIsNonVirtualPrimaryBase, 1449 llvm::Constant *VTable, 1450 const CXXRecordDecl *VTableClass, 1451 VisitedVirtualBasesSetTy& VBases); 1452 1453 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 1454 1455 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 1456 /// to by This. 1457 llvm::Value *GetVTablePtr(llvm::Value *This, llvm::Type *Ty); 1458 1459 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 1460 /// given phase of destruction for a destructor. The end result 1461 /// should call destructors on members and base classes in reverse 1462 /// order of their construction. 1463 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 1464 1465 /// ShouldInstrumentFunction - Return true if the current function should be 1466 /// instrumented with __cyg_profile_func_* calls 1467 bool ShouldInstrumentFunction(); 1468 1469 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 1470 /// instrumentation function with the current function and the call site, if 1471 /// function instrumentation is enabled. 1472 void EmitFunctionInstrumentation(const char *Fn); 1473 1474 /// EmitMCountInstrumentation - Emit call to .mcount. 1475 void EmitMCountInstrumentation(); 1476 1477 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 1478 /// arguments for the given function. This is also responsible for naming the 1479 /// LLVM function arguments. 1480 void EmitFunctionProlog(const CGFunctionInfo &FI, 1481 llvm::Function *Fn, 1482 const FunctionArgList &Args); 1483 1484 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 1485 /// given temporary. 1486 void EmitFunctionEpilog(const CGFunctionInfo &FI); 1487 1488 /// EmitStartEHSpec - Emit the start of the exception spec. 1489 void EmitStartEHSpec(const Decl *D); 1490 1491 /// EmitEndEHSpec - Emit the end of the exception spec. 1492 void EmitEndEHSpec(const Decl *D); 1493 1494 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 1495 llvm::BasicBlock *getTerminateLandingPad(); 1496 1497 /// getTerminateHandler - Return a handler (not a landing pad, just 1498 /// a catch handler) that just calls terminate. This is used when 1499 /// a terminate scope encloses a try. 1500 llvm::BasicBlock *getTerminateHandler(); 1501 1502 llvm::Type *ConvertTypeForMem(QualType T); 1503 llvm::Type *ConvertType(QualType T); 1504 llvm::Type *ConvertType(const TypeDecl *T) { 1505 return ConvertType(getContext().getTypeDeclType(T)); 1506 } 1507 1508 /// LoadObjCSelf - Load the value of self. This function is only valid while 1509 /// generating code for an Objective-C method. 1510 llvm::Value *LoadObjCSelf(); 1511 1512 /// TypeOfSelfObject - Return type of object that this self represents. 1513 QualType TypeOfSelfObject(); 1514 1515 /// hasAggregateLLVMType - Return true if the specified AST type will map into 1516 /// an aggregate LLVM type or is void. 1517 static bool hasAggregateLLVMType(QualType T); 1518 1519 /// createBasicBlock - Create an LLVM basic block. 1520 llvm::BasicBlock *createBasicBlock(const Twine &name = "", 1521 llvm::Function *parent = 0, 1522 llvm::BasicBlock *before = 0) { 1523 #ifdef NDEBUG 1524 return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before); 1525 #else 1526 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 1527 #endif 1528 } 1529 1530 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 1531 /// label maps to. 1532 JumpDest getJumpDestForLabel(const LabelDecl *S); 1533 1534 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 1535 /// another basic block, simplify it. This assumes that no other code could 1536 /// potentially reference the basic block. 1537 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 1538 1539 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 1540 /// adding a fall-through branch from the current insert block if 1541 /// necessary. It is legal to call this function even if there is no current 1542 /// insertion point. 1543 /// 1544 /// IsFinished - If true, indicates that the caller has finished emitting 1545 /// branches to the given block and does not expect to emit code into it. This 1546 /// means the block can be ignored if it is unreachable. 1547 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 1548 1549 /// EmitBlockAfterUses - Emit the given block somewhere hopefully 1550 /// near its uses, and leave the insertion point in it. 1551 void EmitBlockAfterUses(llvm::BasicBlock *BB); 1552 1553 /// EmitBranch - Emit a branch to the specified basic block from the current 1554 /// insert block, taking care to avoid creation of branches from dummy 1555 /// blocks. It is legal to call this function even if there is no current 1556 /// insertion point. 1557 /// 1558 /// This function clears the current insertion point. The caller should follow 1559 /// calls to this function with calls to Emit*Block prior to generation new 1560 /// code. 1561 void EmitBranch(llvm::BasicBlock *Block); 1562 1563 /// HaveInsertPoint - True if an insertion point is defined. If not, this 1564 /// indicates that the current code being emitted is unreachable. 1565 bool HaveInsertPoint() const { 1566 return Builder.GetInsertBlock() != 0; 1567 } 1568 1569 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 1570 /// emitted IR has a place to go. Note that by definition, if this function 1571 /// creates a block then that block is unreachable; callers may do better to 1572 /// detect when no insertion point is defined and simply skip IR generation. 1573 void EnsureInsertPoint() { 1574 if (!HaveInsertPoint()) 1575 EmitBlock(createBasicBlock()); 1576 } 1577 1578 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1579 /// specified stmt yet. 1580 void ErrorUnsupported(const Stmt *S, const char *Type, 1581 bool OmitOnError=false); 1582 1583 //===--------------------------------------------------------------------===// 1584 // Helpers 1585 //===--------------------------------------------------------------------===// 1586 1587 LValue MakeAddrLValue(llvm::Value *V, QualType T, 1588 CharUnits Alignment = CharUnits()) { 1589 return LValue::MakeAddr(V, T, Alignment, getContext(), 1590 CGM.getTBAAInfo(T)); 1591 } 1592 1593 LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 1594 CharUnits Alignment; 1595 if (!T->isIncompleteType()) 1596 Alignment = getContext().getTypeAlignInChars(T); 1597 return LValue::MakeAddr(V, T, Alignment, getContext(), 1598 CGM.getTBAAInfo(T)); 1599 } 1600 1601 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 1602 /// block. The caller is responsible for setting an appropriate alignment on 1603 /// the alloca. 1604 llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, 1605 const Twine &Name = "tmp"); 1606 1607 /// InitTempAlloca - Provide an initial value for the given alloca. 1608 void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value); 1609 1610 /// CreateIRTemp - Create a temporary IR object of the given type, with 1611 /// appropriate alignment. This routine should only be used when an temporary 1612 /// value needs to be stored into an alloca (for example, to avoid explicit 1613 /// PHI construction), but the type is the IR type, not the type appropriate 1614 /// for storing in memory. 1615 llvm::AllocaInst *CreateIRTemp(QualType T, const Twine &Name = "tmp"); 1616 1617 /// CreateMemTemp - Create a temporary memory object of the given type, with 1618 /// appropriate alignment. 1619 llvm::AllocaInst *CreateMemTemp(QualType T, const Twine &Name = "tmp"); 1620 1621 /// CreateAggTemp - Create a temporary memory object for the given 1622 /// aggregate type. 1623 AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") { 1624 CharUnits Alignment = getContext().getTypeAlignInChars(T); 1625 return AggValueSlot::forAddr(CreateMemTemp(T, Name), Alignment, 1626 T.getQualifiers(), 1627 AggValueSlot::IsNotDestructed, 1628 AggValueSlot::DoesNotNeedGCBarriers, 1629 AggValueSlot::IsNotAliased); 1630 } 1631 1632 /// Emit a cast to void* in the appropriate address space. 1633 llvm::Value *EmitCastToVoidPtr(llvm::Value *value); 1634 1635 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 1636 /// expression and compare the result against zero, returning an Int1Ty value. 1637 llvm::Value *EvaluateExprAsBool(const Expr *E); 1638 1639 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 1640 void EmitIgnoredExpr(const Expr *E); 1641 1642 /// EmitAnyExpr - Emit code to compute the specified expression which can have 1643 /// any type. The result is returned as an RValue struct. If this is an 1644 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 1645 /// the result should be returned. 1646 /// 1647 /// \param ignoreResult True if the resulting value isn't used. 1648 RValue EmitAnyExpr(const Expr *E, 1649 AggValueSlot aggSlot = AggValueSlot::ignored(), 1650 bool ignoreResult = false); 1651 1652 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 1653 // or the value of the expression, depending on how va_list is defined. 1654 llvm::Value *EmitVAListRef(const Expr *E); 1655 1656 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 1657 /// always be accessible even if no aggregate location is provided. 1658 RValue EmitAnyExprToTemp(const Expr *E); 1659 1660 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 1661 /// arbitrary expression into the given memory location. 1662 void EmitAnyExprToMem(const Expr *E, llvm::Value *Location, 1663 Qualifiers Quals, bool IsInitializer); 1664 1665 /// EmitExprAsInit - Emits the code necessary to initialize a 1666 /// location in memory with the given initializer. 1667 void EmitExprAsInit(const Expr *init, const ValueDecl *D, 1668 LValue lvalue, bool capturedByInit); 1669 1670 /// hasVolatileMember - returns true if aggregate type has a volatile 1671 /// member. 1672 bool hasVolatileMember(QualType T) { 1673 if (const RecordType *RT = T->getAs<RecordType>()) { 1674 const RecordDecl *RD = cast<RecordDecl>(RT->getDecl()); 1675 return RD->hasVolatileMember(); 1676 } 1677 return false; 1678 } 1679 /// EmitAggregateCopy - Emit an aggregate assignment. 1680 /// 1681 /// The difference to EmitAggregateCopy is that tail padding is not copied. 1682 /// This is required for correctness when assigning non-POD structures in C++. 1683 void EmitAggregateAssign(llvm::Value *DestPtr, llvm::Value *SrcPtr, 1684 QualType EltTy) { 1685 bool IsVolatile = hasVolatileMember(EltTy); 1686 EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, CharUnits::Zero(), 1687 true); 1688 } 1689 1690 /// EmitAggregateCopy - Emit an aggregate copy. 1691 /// 1692 /// \param isVolatile - True iff either the source or the destination is 1693 /// volatile. 1694 /// \param isAssignment - If false, allow padding to be copied. This often 1695 /// yields more efficient. 1696 void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr, 1697 QualType EltTy, bool isVolatile=false, 1698 CharUnits Alignment = CharUnits::Zero(), 1699 bool isAssignment = false); 1700 1701 /// StartBlock - Start new block named N. If insert block is a dummy block 1702 /// then reuse it. 1703 void StartBlock(const char *N); 1704 1705 /// GetAddrOfLocalVar - Return the address of a local variable. 1706 llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) { 1707 llvm::Value *Res = LocalDeclMap[VD]; 1708 assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!"); 1709 return Res; 1710 } 1711 1712 /// getOpaqueLValueMapping - Given an opaque value expression (which 1713 /// must be mapped to an l-value), return its mapping. 1714 const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) { 1715 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 1716 1717 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 1718 it = OpaqueLValues.find(e); 1719 assert(it != OpaqueLValues.end() && "no mapping for opaque value!"); 1720 return it->second; 1721 } 1722 1723 /// getOpaqueRValueMapping - Given an opaque value expression (which 1724 /// must be mapped to an r-value), return its mapping. 1725 const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) { 1726 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 1727 1728 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 1729 it = OpaqueRValues.find(e); 1730 assert(it != OpaqueRValues.end() && "no mapping for opaque value!"); 1731 return it->second; 1732 } 1733 1734 /// getAccessedFieldNo - Given an encoded value and a result number, return 1735 /// the input field number being accessed. 1736 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 1737 1738 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 1739 llvm::BasicBlock *GetIndirectGotoBlock(); 1740 1741 /// EmitNullInitialization - Generate code to set a value of the given type to 1742 /// null, If the type contains data member pointers, they will be initialized 1743 /// to -1 in accordance with the Itanium C++ ABI. 1744 void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty); 1745 1746 // EmitVAArg - Generate code to get an argument from the passed in pointer 1747 // and update it accordingly. The return value is a pointer to the argument. 1748 // FIXME: We should be able to get rid of this method and use the va_arg 1749 // instruction in LLVM instead once it works well enough. 1750 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty); 1751 1752 /// emitArrayLength - Compute the length of an array, even if it's a 1753 /// VLA, and drill down to the base element type. 1754 llvm::Value *emitArrayLength(const ArrayType *arrayType, 1755 QualType &baseType, 1756 llvm::Value *&addr); 1757 1758 /// EmitVLASize - Capture all the sizes for the VLA expressions in 1759 /// the given variably-modified type and store them in the VLASizeMap. 1760 /// 1761 /// This function can be called with a null (unreachable) insert point. 1762 void EmitVariablyModifiedType(QualType Ty); 1763 1764 /// getVLASize - Returns an LLVM value that corresponds to the size, 1765 /// in non-variably-sized elements, of a variable length array type, 1766 /// plus that largest non-variably-sized element type. Assumes that 1767 /// the type has already been emitted with EmitVariablyModifiedType. 1768 std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla); 1769 std::pair<llvm::Value*,QualType> getVLASize(QualType vla); 1770 1771 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 1772 /// generating code for an C++ member function. 1773 llvm::Value *LoadCXXThis() { 1774 assert(CXXThisValue && "no 'this' value for this function"); 1775 return CXXThisValue; 1776 } 1777 1778 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 1779 /// virtual bases. 1780 llvm::Value *LoadCXXVTT() { 1781 assert(CXXVTTValue && "no VTT value for this function"); 1782 return CXXVTTValue; 1783 } 1784 1785 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 1786 /// complete class to the given direct base. 1787 llvm::Value * 1788 GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value, 1789 const CXXRecordDecl *Derived, 1790 const CXXRecordDecl *Base, 1791 bool BaseIsVirtual); 1792 1793 /// GetAddressOfBaseClass - This function will add the necessary delta to the 1794 /// load of 'this' and returns address of the base class. 1795 llvm::Value *GetAddressOfBaseClass(llvm::Value *Value, 1796 const CXXRecordDecl *Derived, 1797 CastExpr::path_const_iterator PathBegin, 1798 CastExpr::path_const_iterator PathEnd, 1799 bool NullCheckValue); 1800 1801 llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value, 1802 const CXXRecordDecl *Derived, 1803 CastExpr::path_const_iterator PathBegin, 1804 CastExpr::path_const_iterator PathEnd, 1805 bool NullCheckValue); 1806 1807 llvm::Value *GetVirtualBaseClassOffset(llvm::Value *This, 1808 const CXXRecordDecl *ClassDecl, 1809 const CXXRecordDecl *BaseClassDecl); 1810 1811 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 1812 CXXCtorType CtorType, 1813 const FunctionArgList &Args); 1814 // It's important not to confuse this and the previous function. Delegating 1815 // constructors are the C++0x feature. The constructor delegate optimization 1816 // is used to reduce duplication in the base and complete consturctors where 1817 // they are substantially the same. 1818 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 1819 const FunctionArgList &Args); 1820 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 1821 bool ForVirtualBase, bool Delegating, 1822 llvm::Value *This, 1823 CallExpr::const_arg_iterator ArgBeg, 1824 CallExpr::const_arg_iterator ArgEnd); 1825 1826 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 1827 llvm::Value *This, llvm::Value *Src, 1828 CallExpr::const_arg_iterator ArgBeg, 1829 CallExpr::const_arg_iterator ArgEnd); 1830 1831 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 1832 const ConstantArrayType *ArrayTy, 1833 llvm::Value *ArrayPtr, 1834 CallExpr::const_arg_iterator ArgBeg, 1835 CallExpr::const_arg_iterator ArgEnd, 1836 bool ZeroInitialization = false); 1837 1838 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 1839 llvm::Value *NumElements, 1840 llvm::Value *ArrayPtr, 1841 CallExpr::const_arg_iterator ArgBeg, 1842 CallExpr::const_arg_iterator ArgEnd, 1843 bool ZeroInitialization = false); 1844 1845 static Destroyer destroyCXXObject; 1846 1847 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 1848 bool ForVirtualBase, bool Delegating, 1849 llvm::Value *This); 1850 1851 void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, 1852 llvm::Value *NewPtr, llvm::Value *NumElements); 1853 1854 void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, 1855 llvm::Value *Ptr); 1856 1857 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 1858 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 1859 1860 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 1861 QualType DeleteTy); 1862 1863 llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E); 1864 llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE); 1865 llvm::Value* EmitCXXUuidofExpr(const CXXUuidofExpr *E); 1866 1867 void MaybeEmitStdInitializerListCleanup(llvm::Value *loc, const Expr *init); 1868 void EmitStdInitializerListCleanup(llvm::Value *loc, 1869 const InitListExpr *init); 1870 1871 /// \brief Situations in which we might emit a check for the suitability of a 1872 /// pointer or glvalue. 1873 enum TypeCheckKind { 1874 /// Checking the operand of a load. Must be suitably sized and aligned. 1875 TCK_Load, 1876 /// Checking the destination of a store. Must be suitably sized and aligned. 1877 TCK_Store, 1878 /// Checking the bound value in a reference binding. Must be suitably sized 1879 /// and aligned, but is not required to refer to an object (until the 1880 /// reference is used), per core issue 453. 1881 TCK_ReferenceBinding, 1882 /// Checking the object expression in a non-static data member access. Must 1883 /// be an object within its lifetime. 1884 TCK_MemberAccess, 1885 /// Checking the 'this' pointer for a call to a non-static member function. 1886 /// Must be an object within its lifetime. 1887 TCK_MemberCall, 1888 /// Checking the 'this' pointer for a constructor call. 1889 TCK_ConstructorCall 1890 }; 1891 1892 /// \brief Emit a check that \p V is the address of storage of the 1893 /// appropriate size and alignment for an object of type \p Type. 1894 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, 1895 QualType Type, CharUnits Alignment = CharUnits::Zero()); 1896 1897 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 1898 bool isInc, bool isPre); 1899 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 1900 bool isInc, bool isPre); 1901 //===--------------------------------------------------------------------===// 1902 // Declaration Emission 1903 //===--------------------------------------------------------------------===// 1904 1905 /// EmitDecl - Emit a declaration. 1906 /// 1907 /// This function can be called with a null (unreachable) insert point. 1908 void EmitDecl(const Decl &D); 1909 1910 /// EmitVarDecl - Emit a local variable declaration. 1911 /// 1912 /// This function can be called with a null (unreachable) insert point. 1913 void EmitVarDecl(const VarDecl &D); 1914 1915 void EmitScalarInit(const Expr *init, const ValueDecl *D, 1916 LValue lvalue, bool capturedByInit); 1917 void EmitScalarInit(llvm::Value *init, LValue lvalue); 1918 1919 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 1920 llvm::Value *Address); 1921 1922 /// EmitAutoVarDecl - Emit an auto variable declaration. 1923 /// 1924 /// This function can be called with a null (unreachable) insert point. 1925 void EmitAutoVarDecl(const VarDecl &D); 1926 1927 class AutoVarEmission { 1928 friend class CodeGenFunction; 1929 1930 const VarDecl *Variable; 1931 1932 /// The alignment of the variable. 1933 CharUnits Alignment; 1934 1935 /// The address of the alloca. Null if the variable was emitted 1936 /// as a global constant. 1937 llvm::Value *Address; 1938 1939 llvm::Value *NRVOFlag; 1940 1941 /// True if the variable is a __block variable. 1942 bool IsByRef; 1943 1944 /// True if the variable is of aggregate type and has a constant 1945 /// initializer. 1946 bool IsConstantAggregate; 1947 1948 struct Invalid {}; 1949 AutoVarEmission(Invalid) : Variable(0) {} 1950 1951 AutoVarEmission(const VarDecl &variable) 1952 : Variable(&variable), Address(0), NRVOFlag(0), 1953 IsByRef(false), IsConstantAggregate(false) {} 1954 1955 bool wasEmittedAsGlobal() const { return Address == 0; } 1956 1957 public: 1958 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 1959 1960 /// Returns the address of the object within this declaration. 1961 /// Note that this does not chase the forwarding pointer for 1962 /// __block decls. 1963 llvm::Value *getObjectAddress(CodeGenFunction &CGF) const { 1964 if (!IsByRef) return Address; 1965 1966 return CGF.Builder.CreateStructGEP(Address, 1967 CGF.getByRefValueLLVMField(Variable), 1968 Variable->getNameAsString()); 1969 } 1970 }; 1971 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 1972 void EmitAutoVarInit(const AutoVarEmission &emission); 1973 void EmitAutoVarCleanups(const AutoVarEmission &emission); 1974 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 1975 QualType::DestructionKind dtorKind); 1976 1977 void EmitStaticVarDecl(const VarDecl &D, 1978 llvm::GlobalValue::LinkageTypes Linkage); 1979 1980 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 1981 void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, unsigned ArgNo); 1982 1983 /// protectFromPeepholes - Protect a value that we're intending to 1984 /// store to the side, but which will probably be used later, from 1985 /// aggressive peepholing optimizations that might delete it. 1986 /// 1987 /// Pass the result to unprotectFromPeepholes to declare that 1988 /// protection is no longer required. 1989 /// 1990 /// There's no particular reason why this shouldn't apply to 1991 /// l-values, it's just that no existing peepholes work on pointers. 1992 PeepholeProtection protectFromPeepholes(RValue rvalue); 1993 void unprotectFromPeepholes(PeepholeProtection protection); 1994 1995 //===--------------------------------------------------------------------===// 1996 // Statement Emission 1997 //===--------------------------------------------------------------------===// 1998 1999 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 2000 void EmitStopPoint(const Stmt *S); 2001 2002 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 2003 /// this function even if there is no current insertion point. 2004 /// 2005 /// This function may clear the current insertion point; callers should use 2006 /// EnsureInsertPoint if they wish to subsequently generate code without first 2007 /// calling EmitBlock, EmitBranch, or EmitStmt. 2008 void EmitStmt(const Stmt *S); 2009 2010 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 2011 /// necessarily require an insertion point or debug information; typically 2012 /// because the statement amounts to a jump or a container of other 2013 /// statements. 2014 /// 2015 /// \return True if the statement was handled. 2016 bool EmitSimpleStmt(const Stmt *S); 2017 2018 RValue EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 2019 AggValueSlot AVS = AggValueSlot::ignored()); 2020 RValue EmitCompoundStmtWithoutScope(const CompoundStmt &S, 2021 bool GetLast = false, AggValueSlot AVS = 2022 AggValueSlot::ignored()); 2023 2024 /// EmitLabel - Emit the block for the given label. It is legal to call this 2025 /// function even if there is no current insertion point. 2026 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 2027 2028 void EmitLabelStmt(const LabelStmt &S); 2029 void EmitAttributedStmt(const AttributedStmt &S); 2030 void EmitGotoStmt(const GotoStmt &S); 2031 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 2032 void EmitIfStmt(const IfStmt &S); 2033 void EmitWhileStmt(const WhileStmt &S); 2034 void EmitDoStmt(const DoStmt &S); 2035 void EmitForStmt(const ForStmt &S); 2036 void EmitReturnStmt(const ReturnStmt &S); 2037 void EmitDeclStmt(const DeclStmt &S); 2038 void EmitBreakStmt(const BreakStmt &S); 2039 void EmitContinueStmt(const ContinueStmt &S); 2040 void EmitSwitchStmt(const SwitchStmt &S); 2041 void EmitDefaultStmt(const DefaultStmt &S); 2042 void EmitCaseStmt(const CaseStmt &S); 2043 void EmitCaseStmtRange(const CaseStmt &S); 2044 void EmitAsmStmt(const AsmStmt &S); 2045 2046 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 2047 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 2048 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 2049 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 2050 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 2051 2052 llvm::Constant *getUnwindResumeFn(); 2053 llvm::Constant *getUnwindResumeOrRethrowFn(); 2054 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 2055 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 2056 2057 void EmitCXXTryStmt(const CXXTryStmt &S); 2058 void EmitCXXForRangeStmt(const CXXForRangeStmt &S); 2059 2060 //===--------------------------------------------------------------------===// 2061 // LValue Expression Emission 2062 //===--------------------------------------------------------------------===// 2063 2064 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 2065 RValue GetUndefRValue(QualType Ty); 2066 2067 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 2068 /// and issue an ErrorUnsupported style diagnostic (using the 2069 /// provided Name). 2070 RValue EmitUnsupportedRValue(const Expr *E, 2071 const char *Name); 2072 2073 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 2074 /// an ErrorUnsupported style diagnostic (using the provided Name). 2075 LValue EmitUnsupportedLValue(const Expr *E, 2076 const char *Name); 2077 2078 /// EmitLValue - Emit code to compute a designator that specifies the location 2079 /// of the expression. 2080 /// 2081 /// This can return one of two things: a simple address or a bitfield 2082 /// reference. In either case, the LLVM Value* in the LValue structure is 2083 /// guaranteed to be an LLVM pointer type. 2084 /// 2085 /// If this returns a bitfield reference, nothing about the pointee type of 2086 /// the LLVM value is known: For example, it may not be a pointer to an 2087 /// integer. 2088 /// 2089 /// If this returns a normal address, and if the lvalue's C type is fixed 2090 /// size, this method guarantees that the returned pointer type will point to 2091 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 2092 /// variable length type, this is not possible. 2093 /// 2094 LValue EmitLValue(const Expr *E); 2095 2096 /// \brief Same as EmitLValue but additionally we generate checking code to 2097 /// guard against undefined behavior. This is only suitable when we know 2098 /// that the address will be used to access the object. 2099 LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK); 2100 2101 /// EmitToMemory - Change a scalar value from its value 2102 /// representation to its in-memory representation. 2103 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 2104 2105 /// EmitFromMemory - Change a scalar value from its memory 2106 /// representation to its value representation. 2107 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 2108 2109 /// EmitLoadOfScalar - Load a scalar value from an address, taking 2110 /// care to appropriately convert from the memory representation to 2111 /// the LLVM value representation. 2112 llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile, 2113 unsigned Alignment, QualType Ty, 2114 llvm::MDNode *TBAAInfo = 0); 2115 2116 /// EmitLoadOfScalar - Load a scalar value from an address, taking 2117 /// care to appropriately convert from the memory representation to 2118 /// the LLVM value representation. The l-value must be a simple 2119 /// l-value. 2120 llvm::Value *EmitLoadOfScalar(LValue lvalue); 2121 2122 /// EmitStoreOfScalar - Store a scalar value to an address, taking 2123 /// care to appropriately convert from the memory representation to 2124 /// the LLVM value representation. 2125 void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr, 2126 bool Volatile, unsigned Alignment, QualType Ty, 2127 llvm::MDNode *TBAAInfo = 0, bool isInit=false); 2128 2129 /// EmitStoreOfScalar - Store a scalar value to an address, taking 2130 /// care to appropriately convert from the memory representation to 2131 /// the LLVM value representation. The l-value must be a simple 2132 /// l-value. The isInit flag indicates whether this is an initialization. 2133 /// If so, atomic qualifiers are ignored and the store is always non-atomic. 2134 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); 2135 2136 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 2137 /// this method emits the address of the lvalue, then loads the result as an 2138 /// rvalue, returning the rvalue. 2139 RValue EmitLoadOfLValue(LValue V); 2140 RValue EmitLoadOfExtVectorElementLValue(LValue V); 2141 RValue EmitLoadOfBitfieldLValue(LValue LV); 2142 2143 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 2144 /// lvalue, where both are guaranteed to the have the same type, and that type 2145 /// is 'Ty'. 2146 void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit=false); 2147 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 2148 2149 /// EmitStoreThroughLValue - Store Src into Dst with same constraints as 2150 /// EmitStoreThroughLValue. 2151 /// 2152 /// \param Result [out] - If non-null, this will be set to a Value* for the 2153 /// bit-field contents after the store, appropriate for use as the result of 2154 /// an assignment to the bit-field. 2155 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 2156 llvm::Value **Result=0); 2157 2158 /// Emit an l-value for an assignment (simple or compound) of complex type. 2159 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 2160 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 2161 2162 // Note: only available for agg return types 2163 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 2164 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 2165 // Note: only available for agg return types 2166 LValue EmitCallExprLValue(const CallExpr *E); 2167 // Note: only available for agg return types 2168 LValue EmitVAArgExprLValue(const VAArgExpr *E); 2169 LValue EmitDeclRefLValue(const DeclRefExpr *E); 2170 LValue EmitStringLiteralLValue(const StringLiteral *E); 2171 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 2172 LValue EmitPredefinedLValue(const PredefinedExpr *E); 2173 LValue EmitUnaryOpLValue(const UnaryOperator *E); 2174 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E); 2175 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 2176 LValue EmitMemberExpr(const MemberExpr *E); 2177 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 2178 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 2179 LValue EmitInitListLValue(const InitListExpr *E); 2180 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 2181 LValue EmitCastLValue(const CastExpr *E); 2182 LValue EmitNullInitializationLValue(const CXXScalarValueInitExpr *E); 2183 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 2184 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 2185 2186 RValue EmitRValueForField(LValue LV, const FieldDecl *FD); 2187 2188 class ConstantEmission { 2189 llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; 2190 ConstantEmission(llvm::Constant *C, bool isReference) 2191 : ValueAndIsReference(C, isReference) {} 2192 public: 2193 ConstantEmission() {} 2194 static ConstantEmission forReference(llvm::Constant *C) { 2195 return ConstantEmission(C, true); 2196 } 2197 static ConstantEmission forValue(llvm::Constant *C) { 2198 return ConstantEmission(C, false); 2199 } 2200 2201 operator bool() const { return ValueAndIsReference.getOpaqueValue() != 0; } 2202 2203 bool isReference() const { return ValueAndIsReference.getInt(); } 2204 LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { 2205 assert(isReference()); 2206 return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), 2207 refExpr->getType()); 2208 } 2209 2210 llvm::Constant *getValue() const { 2211 assert(!isReference()); 2212 return ValueAndIsReference.getPointer(); 2213 } 2214 }; 2215 2216 ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); 2217 2218 RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, 2219 AggValueSlot slot = AggValueSlot::ignored()); 2220 LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); 2221 2222 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 2223 const ObjCIvarDecl *Ivar); 2224 LValue EmitLValueForField(LValue Base, const FieldDecl* Field); 2225 2226 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 2227 /// if the Field is a reference, this will return the address of the reference 2228 /// and not the address of the value stored in the reference. 2229 LValue EmitLValueForFieldInitialization(LValue Base, 2230 const FieldDecl* Field); 2231 2232 LValue EmitLValueForIvar(QualType ObjectTy, 2233 llvm::Value* Base, const ObjCIvarDecl *Ivar, 2234 unsigned CVRQualifiers); 2235 2236 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 2237 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 2238 LValue EmitLambdaLValue(const LambdaExpr *E); 2239 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 2240 LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E); 2241 2242 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 2243 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 2244 LValue EmitStmtExprLValue(const StmtExpr *E); 2245 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 2246 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 2247 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init); 2248 2249 //===--------------------------------------------------------------------===// 2250 // Scalar Expression Emission 2251 //===--------------------------------------------------------------------===// 2252 2253 /// EmitCall - Generate a call of the given function, expecting the given 2254 /// result type, and using the given argument list which specifies both the 2255 /// LLVM arguments and the types they were derived from. 2256 /// 2257 /// \param TargetDecl - If given, the decl of the function in a direct call; 2258 /// used to set attributes on the call (noreturn, etc.). 2259 RValue EmitCall(const CGFunctionInfo &FnInfo, 2260 llvm::Value *Callee, 2261 ReturnValueSlot ReturnValue, 2262 const CallArgList &Args, 2263 const Decl *TargetDecl = 0, 2264 llvm::Instruction **callOrInvoke = 0); 2265 2266 RValue EmitCall(QualType FnType, llvm::Value *Callee, 2267 ReturnValueSlot ReturnValue, 2268 CallExpr::const_arg_iterator ArgBeg, 2269 CallExpr::const_arg_iterator ArgEnd, 2270 const Decl *TargetDecl = 0); 2271 RValue EmitCallExpr(const CallExpr *E, 2272 ReturnValueSlot ReturnValue = ReturnValueSlot()); 2273 2274 llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, 2275 ArrayRef<llvm::Value *> Args, 2276 const Twine &Name = ""); 2277 llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, 2278 const Twine &Name = ""); 2279 2280 llvm::Value *BuildVirtualCall(const CXXMethodDecl *MD, llvm::Value *This, 2281 llvm::Type *Ty); 2282 llvm::Value *BuildVirtualCall(const CXXDestructorDecl *DD, CXXDtorType Type, 2283 llvm::Value *This, llvm::Type *Ty); 2284 llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 2285 NestedNameSpecifier *Qual, 2286 llvm::Type *Ty); 2287 2288 llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 2289 CXXDtorType Type, 2290 const CXXRecordDecl *RD); 2291 2292 RValue EmitCXXMemberCall(const CXXMethodDecl *MD, 2293 SourceLocation CallLoc, 2294 llvm::Value *Callee, 2295 ReturnValueSlot ReturnValue, 2296 llvm::Value *This, 2297 llvm::Value *VTT, 2298 CallExpr::const_arg_iterator ArgBeg, 2299 CallExpr::const_arg_iterator ArgEnd); 2300 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 2301 ReturnValueSlot ReturnValue); 2302 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 2303 ReturnValueSlot ReturnValue); 2304 2305 llvm::Value *EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E, 2306 const CXXMethodDecl *MD, 2307 llvm::Value *This); 2308 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 2309 const CXXMethodDecl *MD, 2310 ReturnValueSlot ReturnValue); 2311 2312 RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 2313 ReturnValueSlot ReturnValue); 2314 2315 2316 RValue EmitBuiltinExpr(const FunctionDecl *FD, 2317 unsigned BuiltinID, const CallExpr *E); 2318 2319 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 2320 2321 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 2322 /// is unhandled by the current target. 2323 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2324 2325 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2326 llvm::Value *EmitNeonCall(llvm::Function *F, 2327 SmallVectorImpl<llvm::Value*> &O, 2328 const char *name, 2329 unsigned shift = 0, bool rightshift = false); 2330 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 2331 llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, 2332 bool negateForRightShift); 2333 2334 llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); 2335 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2336 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2337 2338 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 2339 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 2340 llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); 2341 llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); 2342 llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); 2343 llvm::Value *EmitObjCCollectionLiteral(const Expr *E, 2344 const ObjCMethodDecl *MethodWithObjects); 2345 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 2346 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 2347 ReturnValueSlot Return = ReturnValueSlot()); 2348 2349 /// Retrieves the default cleanup kind for an ARC cleanup. 2350 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. 2351 CleanupKind getARCCleanupKind() { 2352 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 2353 ? NormalAndEHCleanup : NormalCleanup; 2354 } 2355 2356 // ARC primitives. 2357 void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr); 2358 void EmitARCDestroyWeak(llvm::Value *addr); 2359 llvm::Value *EmitARCLoadWeak(llvm::Value *addr); 2360 llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr); 2361 llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr, 2362 bool ignored); 2363 void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src); 2364 void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src); 2365 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 2366 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 2367 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 2368 bool ignored); 2369 llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value, 2370 bool ignored); 2371 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 2372 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 2373 llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); 2374 void EmitARCDestroyStrong(llvm::Value *addr, bool precise); 2375 void EmitARCRelease(llvm::Value *value, bool precise); 2376 llvm::Value *EmitARCAutorelease(llvm::Value *value); 2377 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 2378 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 2379 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 2380 2381 std::pair<LValue,llvm::Value*> 2382 EmitARCStoreAutoreleasing(const BinaryOperator *e); 2383 std::pair<LValue,llvm::Value*> 2384 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 2385 2386 llvm::Value *EmitObjCThrowOperand(const Expr *expr); 2387 2388 llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr); 2389 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 2390 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 2391 2392 llvm::Value *EmitARCExtendBlockObject(const Expr *expr); 2393 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 2394 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 2395 2396 static Destroyer destroyARCStrongImprecise; 2397 static Destroyer destroyARCStrongPrecise; 2398 static Destroyer destroyARCWeak; 2399 2400 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 2401 llvm::Value *EmitObjCAutoreleasePoolPush(); 2402 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 2403 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 2404 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 2405 2406 /// EmitReferenceBindingToExpr - Emits a reference binding to the passed in 2407 /// expression. Will emit a temporary variable if E is not an LValue. 2408 RValue EmitReferenceBindingToExpr(const Expr* E, 2409 const NamedDecl *InitializedDecl); 2410 2411 //===--------------------------------------------------------------------===// 2412 // Expression Emission 2413 //===--------------------------------------------------------------------===// 2414 2415 // Expressions are broken into three classes: scalar, complex, aggregate. 2416 2417 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 2418 /// scalar type, returning the result. 2419 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 2420 2421 /// EmitScalarConversion - Emit a conversion from the specified type to the 2422 /// specified destination type, both of which are LLVM scalar types. 2423 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 2424 QualType DstTy); 2425 2426 /// EmitComplexToScalarConversion - Emit a conversion from the specified 2427 /// complex type to the specified destination type, where the destination type 2428 /// is an LLVM scalar type. 2429 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 2430 QualType DstTy); 2431 2432 2433 /// EmitAggExpr - Emit the computation of the specified expression 2434 /// of aggregate type. The result is computed into the given slot, 2435 /// which may be null to indicate that the value is not needed. 2436 void EmitAggExpr(const Expr *E, AggValueSlot AS); 2437 2438 /// EmitAggExprToLValue - Emit the computation of the specified expression of 2439 /// aggregate type into a temporary LValue. 2440 LValue EmitAggExprToLValue(const Expr *E); 2441 2442 /// EmitGCMemmoveCollectable - Emit special API for structs with object 2443 /// pointers. 2444 void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr, 2445 QualType Ty); 2446 2447 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 2448 /// make sure it survives garbage collection until this point. 2449 void EmitExtendGCLifetime(llvm::Value *object); 2450 2451 /// EmitComplexExpr - Emit the computation of the specified expression of 2452 /// complex type, returning the result. 2453 ComplexPairTy EmitComplexExpr(const Expr *E, 2454 bool IgnoreReal = false, 2455 bool IgnoreImag = false); 2456 2457 /// EmitComplexExprIntoAddr - Emit the computation of the specified expression 2458 /// of complex type, storing into the specified Value*. 2459 void EmitComplexExprIntoAddr(const Expr *E, llvm::Value *DestAddr, 2460 bool DestIsVolatile); 2461 2462 /// StoreComplexToAddr - Store a complex number into the specified address. 2463 void StoreComplexToAddr(ComplexPairTy V, llvm::Value *DestAddr, 2464 bool DestIsVolatile); 2465 /// LoadComplexFromAddr - Load a complex number from the specified address. 2466 ComplexPairTy LoadComplexFromAddr(llvm::Value *SrcAddr, bool SrcIsVolatile); 2467 2468 /// CreateStaticVarDecl - Create a zero-initialized LLVM global for 2469 /// a static local variable. 2470 llvm::GlobalVariable *CreateStaticVarDecl(const VarDecl &D, 2471 const char *Separator, 2472 llvm::GlobalValue::LinkageTypes Linkage); 2473 2474 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 2475 /// global variable that has already been created for it. If the initializer 2476 /// has a different type than GV does, this may free GV and return a different 2477 /// one. Otherwise it just returns GV. 2478 llvm::GlobalVariable * 2479 AddInitializerToStaticVarDecl(const VarDecl &D, 2480 llvm::GlobalVariable *GV); 2481 2482 2483 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 2484 /// variable with global storage. 2485 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr, 2486 bool PerformInit); 2487 2488 /// Call atexit() with a function that passes the given argument to 2489 /// the given function. 2490 void registerGlobalDtorWithAtExit(llvm::Constant *fn, llvm::Constant *addr); 2491 2492 /// Emit code in this function to perform a guarded variable 2493 /// initialization. Guarded initializations are used when it's not 2494 /// possible to prove that an initialization will be done exactly 2495 /// once, e.g. with a static local variable or a static data member 2496 /// of a class template. 2497 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, 2498 bool PerformInit); 2499 2500 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 2501 /// variables. 2502 void GenerateCXXGlobalInitFunc(llvm::Function *Fn, 2503 llvm::Constant **Decls, 2504 unsigned NumDecls); 2505 2506 /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global 2507 /// variables. 2508 void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn, 2509 const std::vector<std::pair<llvm::WeakVH, 2510 llvm::Constant*> > &DtorsAndObjects); 2511 2512 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 2513 const VarDecl *D, 2514 llvm::GlobalVariable *Addr, 2515 bool PerformInit); 2516 2517 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 2518 2519 void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src, 2520 const Expr *Exp); 2521 2522 void enterFullExpression(const ExprWithCleanups *E) { 2523 if (E->getNumObjects() == 0) return; 2524 enterNonTrivialFullExpression(E); 2525 } 2526 void enterNonTrivialFullExpression(const ExprWithCleanups *E); 2527 2528 void EmitCXXThrowExpr(const CXXThrowExpr *E); 2529 2530 void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest); 2531 2532 RValue EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest = 0); 2533 2534 //===--------------------------------------------------------------------===// 2535 // Annotations Emission 2536 //===--------------------------------------------------------------------===// 2537 2538 /// Emit an annotation call (intrinsic or builtin). 2539 llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn, 2540 llvm::Value *AnnotatedVal, 2541 StringRef AnnotationStr, 2542 SourceLocation Location); 2543 2544 /// Emit local annotations for the local variable V, declared by D. 2545 void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); 2546 2547 /// Emit field annotations for the given field & value. Returns the 2548 /// annotation result. 2549 llvm::Value *EmitFieldAnnotations(const FieldDecl *D, llvm::Value *V); 2550 2551 //===--------------------------------------------------------------------===// 2552 // Internal Helpers 2553 //===--------------------------------------------------------------------===// 2554 2555 /// ContainsLabel - Return true if the statement contains a label in it. If 2556 /// this statement is not executed normally, it not containing a label means 2557 /// that we can just remove the code. 2558 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 2559 2560 /// containsBreak - Return true if the statement contains a break out of it. 2561 /// If the statement (recursively) contains a switch or loop with a break 2562 /// inside of it, this is fine. 2563 static bool containsBreak(const Stmt *S); 2564 2565 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 2566 /// to a constant, or if it does but contains a label, return false. If it 2567 /// constant folds return true and set the boolean result in Result. 2568 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result); 2569 2570 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 2571 /// to a constant, or if it does but contains a label, return false. If it 2572 /// constant folds return true and set the folded value. 2573 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result); 2574 2575 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 2576 /// if statement) to the specified blocks. Based on the condition, this might 2577 /// try to simplify the codegen of the conditional based on the branch. 2578 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 2579 llvm::BasicBlock *FalseBlock); 2580 2581 /// \brief Emit a description of a type in a format suitable for passing to 2582 /// a runtime sanitizer handler. 2583 llvm::Constant *EmitCheckTypeDescriptor(QualType T); 2584 2585 /// \brief Convert a value into a format suitable for passing to a runtime 2586 /// sanitizer handler. 2587 llvm::Value *EmitCheckValue(llvm::Value *V); 2588 2589 /// \brief Emit a description of a source location in a format suitable for 2590 /// passing to a runtime sanitizer handler. 2591 llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc); 2592 2593 /// \brief Specify under what conditions this check can be recovered 2594 enum CheckRecoverableKind { 2595 /// Always terminate program execution if this check fails 2596 CRK_Unrecoverable, 2597 /// Check supports recovering, allows user to specify which 2598 CRK_Recoverable, 2599 /// Runtime conditionally aborts, always need to support recovery. 2600 CRK_AlwaysRecoverable 2601 }; 2602 2603 /// \brief Create a basic block that will call a handler function in a 2604 /// sanitizer runtime with the provided arguments, and create a conditional 2605 /// branch to it. 2606 void EmitCheck(llvm::Value *Checked, StringRef CheckName, 2607 ArrayRef<llvm::Constant *> StaticArgs, 2608 ArrayRef<llvm::Value *> DynamicArgs, 2609 CheckRecoverableKind Recoverable); 2610 2611 /// \brief Create a basic block that will call the trap intrinsic, and emit a 2612 /// conditional branch to it, for the -ftrapv checks. 2613 void EmitTrapCheck(llvm::Value *Checked); 2614 2615 /// EmitCallArg - Emit a single call argument. 2616 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 2617 2618 /// EmitDelegateCallArg - We are performing a delegate call; that 2619 /// is, the current function is delegating to another one. Produce 2620 /// a r-value suitable for passing the given parameter. 2621 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param); 2622 2623 /// SetFPAccuracy - Set the minimum required accuracy of the given floating 2624 /// point operation, expressed as the maximum relative error in ulp. 2625 void SetFPAccuracy(llvm::Value *Val, float Accuracy); 2626 2627 private: 2628 llvm::MDNode *getRangeForLoadFromType(QualType Ty); 2629 void EmitReturnOfRValue(RValue RV, QualType Ty); 2630 2631 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 2632 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 2633 /// 2634 /// \param AI - The first function argument of the expansion. 2635 /// \return The argument following the last expanded function 2636 /// argument. 2637 llvm::Function::arg_iterator 2638 ExpandTypeFromArgs(QualType Ty, LValue Dst, 2639 llvm::Function::arg_iterator AI); 2640 2641 /// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg 2642 /// Ty, into individual arguments on the provided vector \arg Args. See 2643 /// ABIArgInfo::Expand. 2644 void ExpandTypeToArgs(QualType Ty, RValue Src, 2645 SmallVector<llvm::Value*, 16> &Args, 2646 llvm::FunctionType *IRFuncTy); 2647 2648 llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info, 2649 const Expr *InputExpr, std::string &ConstraintStr); 2650 2651 llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 2652 LValue InputValue, QualType InputType, 2653 std::string &ConstraintStr); 2654 2655 /// EmitCallArgs - Emit call arguments for a function. 2656 /// The CallArgTypeInfo parameter is used for iterating over the known 2657 /// argument types of the function being called. 2658 template<typename T> 2659 void EmitCallArgs(CallArgList& Args, const T* CallArgTypeInfo, 2660 CallExpr::const_arg_iterator ArgBeg, 2661 CallExpr::const_arg_iterator ArgEnd) { 2662 CallExpr::const_arg_iterator Arg = ArgBeg; 2663 2664 // First, use the argument types that the type info knows about 2665 if (CallArgTypeInfo) { 2666 for (typename T::arg_type_iterator I = CallArgTypeInfo->arg_type_begin(), 2667 E = CallArgTypeInfo->arg_type_end(); I != E; ++I, ++Arg) { 2668 assert(Arg != ArgEnd && "Running over edge of argument list!"); 2669 QualType ArgType = *I; 2670 #ifndef NDEBUG 2671 QualType ActualArgType = Arg->getType(); 2672 if (ArgType->isPointerType() && ActualArgType->isPointerType()) { 2673 QualType ActualBaseType = 2674 ActualArgType->getAs<PointerType>()->getPointeeType(); 2675 QualType ArgBaseType = 2676 ArgType->getAs<PointerType>()->getPointeeType(); 2677 if (ArgBaseType->isVariableArrayType()) { 2678 if (const VariableArrayType *VAT = 2679 getContext().getAsVariableArrayType(ActualBaseType)) { 2680 if (!VAT->getSizeExpr()) 2681 ActualArgType = ArgType; 2682 } 2683 } 2684 } 2685 assert(getContext().getCanonicalType(ArgType.getNonReferenceType()). 2686 getTypePtr() == 2687 getContext().getCanonicalType(ActualArgType).getTypePtr() && 2688 "type mismatch in call argument!"); 2689 #endif 2690 EmitCallArg(Args, *Arg, ArgType); 2691 } 2692 2693 // Either we've emitted all the call args, or we have a call to a 2694 // variadic function. 2695 assert((Arg == ArgEnd || CallArgTypeInfo->isVariadic()) && 2696 "Extra arguments in non-variadic function!"); 2697 2698 } 2699 2700 // If we still have any arguments, emit them using the type of the argument. 2701 for (; Arg != ArgEnd; ++Arg) 2702 EmitCallArg(Args, *Arg, Arg->getType()); 2703 } 2704 2705 const TargetCodeGenInfo &getTargetHooks() const { 2706 return CGM.getTargetCodeGenInfo(); 2707 } 2708 2709 void EmitDeclMetadata(); 2710 2711 CodeGenModule::ByrefHelpers * 2712 buildByrefHelpers(llvm::StructType &byrefType, 2713 const AutoVarEmission &emission); 2714 2715 void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); 2716 2717 /// GetPointeeAlignment - Given an expression with a pointer type, emit the 2718 /// value and compute our best estimate of the alignment of the pointee. 2719 std::pair<llvm::Value*, unsigned> EmitPointerWithAlignment(const Expr *Addr); 2720 }; 2721 2722 /// Helper class with most of the code for saving a value for a 2723 /// conditional expression cleanup. 2724 struct DominatingLLVMValue { 2725 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 2726 2727 /// Answer whether the given value needs extra work to be saved. 2728 static bool needsSaving(llvm::Value *value) { 2729 // If it's not an instruction, we don't need to save. 2730 if (!isa<llvm::Instruction>(value)) return false; 2731 2732 // If it's an instruction in the entry block, we don't need to save. 2733 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 2734 return (block != &block->getParent()->getEntryBlock()); 2735 } 2736 2737 /// Try to save the given value. 2738 static saved_type save(CodeGenFunction &CGF, llvm::Value *value) { 2739 if (!needsSaving(value)) return saved_type(value, false); 2740 2741 // Otherwise we need an alloca. 2742 llvm::Value *alloca = 2743 CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save"); 2744 CGF.Builder.CreateStore(value, alloca); 2745 2746 return saved_type(alloca, true); 2747 } 2748 2749 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) { 2750 if (!value.getInt()) return value.getPointer(); 2751 return CGF.Builder.CreateLoad(value.getPointer()); 2752 } 2753 }; 2754 2755 /// A partial specialization of DominatingValue for llvm::Values that 2756 /// might be llvm::Instructions. 2757 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 2758 typedef T *type; 2759 static type restore(CodeGenFunction &CGF, saved_type value) { 2760 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 2761 } 2762 }; 2763 2764 /// A specialization of DominatingValue for RValue. 2765 template <> struct DominatingValue<RValue> { 2766 typedef RValue type; 2767 class saved_type { 2768 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 2769 AggregateAddress, ComplexAddress }; 2770 2771 llvm::Value *Value; 2772 Kind K; 2773 saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {} 2774 2775 public: 2776 static bool needsSaving(RValue value); 2777 static saved_type save(CodeGenFunction &CGF, RValue value); 2778 RValue restore(CodeGenFunction &CGF); 2779 2780 // implementations in CGExprCXX.cpp 2781 }; 2782 2783 static bool needsSaving(type value) { 2784 return saved_type::needsSaving(value); 2785 } 2786 static saved_type save(CodeGenFunction &CGF, type value) { 2787 return saved_type::save(CGF, value); 2788 } 2789 static type restore(CodeGenFunction &CGF, saved_type value) { 2790 return value.restore(CGF); 2791 } 2792 }; 2793 2794 } // end namespace CodeGen 2795 } // end namespace clang 2796 2797 #endif 2798