1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the internal per-function state used for llvm translation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 15 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 16 17 #include "CGBuilder.h" 18 #include "CGDebugInfo.h" 19 #include "CGLoopInfo.h" 20 #include "CGValue.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "EHScopeStack.h" 24 #include "VarBypassDetector.h" 25 #include "clang/AST/CharUnits.h" 26 #include "clang/AST/ExprCXX.h" 27 #include "clang/AST/ExprObjC.h" 28 #include "clang/AST/ExprOpenMP.h" 29 #include "clang/AST/Type.h" 30 #include "clang/Basic/ABI.h" 31 #include "clang/Basic/CapturedStmt.h" 32 #include "clang/Basic/OpenMPKinds.h" 33 #include "clang/Basic/TargetInfo.h" 34 #include "clang/Frontend/CodeGenOptions.h" 35 #include "llvm/ADT/ArrayRef.h" 36 #include "llvm/ADT/DenseMap.h" 37 #include "llvm/ADT/SmallVector.h" 38 #include "llvm/IR/ValueHandle.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Transforms/Utils/SanitizerStats.h" 41 42 namespace llvm { 43 class BasicBlock; 44 class LLVMContext; 45 class MDNode; 46 class Module; 47 class SwitchInst; 48 class Twine; 49 class Value; 50 class CallSite; 51 } 52 53 namespace clang { 54 class ASTContext; 55 class BlockDecl; 56 class CXXDestructorDecl; 57 class CXXForRangeStmt; 58 class CXXTryStmt; 59 class Decl; 60 class LabelDecl; 61 class EnumConstantDecl; 62 class FunctionDecl; 63 class FunctionProtoType; 64 class LabelStmt; 65 class ObjCContainerDecl; 66 class ObjCInterfaceDecl; 67 class ObjCIvarDecl; 68 class ObjCMethodDecl; 69 class ObjCImplementationDecl; 70 class ObjCPropertyImplDecl; 71 class TargetInfo; 72 class VarDecl; 73 class ObjCForCollectionStmt; 74 class ObjCAtTryStmt; 75 class ObjCAtThrowStmt; 76 class ObjCAtSynchronizedStmt; 77 class ObjCAutoreleasePoolStmt; 78 79 namespace CodeGen { 80 class CodeGenTypes; 81 class CGCallee; 82 class CGFunctionInfo; 83 class CGRecordLayout; 84 class CGBlockInfo; 85 class CGCXXABI; 86 class BlockByrefHelpers; 87 class BlockByrefInfo; 88 class BlockFlags; 89 class BlockFieldFlags; 90 class RegionCodeGenTy; 91 class TargetCodeGenInfo; 92 struct OMPTaskDataTy; 93 struct CGCoroData; 94 95 /// The kind of evaluation to perform on values of a particular 96 /// type. Basically, is the code in CGExprScalar, CGExprComplex, or 97 /// CGExprAgg? 98 /// 99 /// TODO: should vectors maybe be split out into their own thing? 100 enum TypeEvaluationKind { 101 TEK_Scalar, 102 TEK_Complex, 103 TEK_Aggregate 104 }; 105 106 /// CodeGenFunction - This class organizes the per-function state that is used 107 /// while generating LLVM code. 108 class CodeGenFunction : public CodeGenTypeCache { 109 CodeGenFunction(const CodeGenFunction &) = delete; 110 void operator=(const CodeGenFunction &) = delete; 111 112 friend class CGCXXABI; 113 public: 114 /// A jump destination is an abstract label, branching to which may 115 /// require a jump out through normal cleanups. 116 struct JumpDest { 117 JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {} 118 JumpDest(llvm::BasicBlock *Block, 119 EHScopeStack::stable_iterator Depth, 120 unsigned Index) 121 : Block(Block), ScopeDepth(Depth), Index(Index) {} 122 123 bool isValid() const { return Block != nullptr; } 124 llvm::BasicBlock *getBlock() const { return Block; } 125 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 126 unsigned getDestIndex() const { return Index; } 127 128 // This should be used cautiously. 129 void setScopeDepth(EHScopeStack::stable_iterator depth) { 130 ScopeDepth = depth; 131 } 132 133 private: 134 llvm::BasicBlock *Block; 135 EHScopeStack::stable_iterator ScopeDepth; 136 unsigned Index; 137 }; 138 139 CodeGenModule &CGM; // Per-module state. 140 const TargetInfo &Target; 141 142 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 143 LoopInfoStack LoopStack; 144 CGBuilderTy Builder; 145 146 // Stores variables for which we can't generate correct lifetime markers 147 // because of jumps. 148 VarBypassDetector Bypasses; 149 150 /// \brief CGBuilder insert helper. This function is called after an 151 /// instruction is created using Builder. 152 void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name, 153 llvm::BasicBlock *BB, 154 llvm::BasicBlock::iterator InsertPt) const; 155 156 /// CurFuncDecl - Holds the Decl for the current outermost 157 /// non-closure context. 158 const Decl *CurFuncDecl; 159 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 160 const Decl *CurCodeDecl; 161 const CGFunctionInfo *CurFnInfo; 162 QualType FnRetTy; 163 llvm::Function *CurFn; 164 165 // Holds coroutine data if the current function is a coroutine. We use a 166 // wrapper to manage its lifetime, so that we don't have to define CGCoroData 167 // in this header. 168 struct CGCoroInfo { 169 std::unique_ptr<CGCoroData> Data; 170 CGCoroInfo(); 171 ~CGCoroInfo(); 172 }; 173 CGCoroInfo CurCoro; 174 175 /// CurGD - The GlobalDecl for the current function being compiled. 176 GlobalDecl CurGD; 177 178 /// PrologueCleanupDepth - The cleanup depth enclosing all the 179 /// cleanups associated with the parameters. 180 EHScopeStack::stable_iterator PrologueCleanupDepth; 181 182 /// ReturnBlock - Unified return block. 183 JumpDest ReturnBlock; 184 185 /// ReturnValue - The temporary alloca to hold the return 186 /// value. This is invalid iff the function has no return value. 187 Address ReturnValue; 188 189 /// AllocaInsertPoint - This is an instruction in the entry block before which 190 /// we prefer to insert allocas. 191 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 192 193 /// \brief API for captured statement code generation. 194 class CGCapturedStmtInfo { 195 public: 196 explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default) 197 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {} 198 explicit CGCapturedStmtInfo(const CapturedStmt &S, 199 CapturedRegionKind K = CR_Default) 200 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) { 201 202 RecordDecl::field_iterator Field = 203 S.getCapturedRecordDecl()->field_begin(); 204 for (CapturedStmt::const_capture_iterator I = S.capture_begin(), 205 E = S.capture_end(); 206 I != E; ++I, ++Field) { 207 if (I->capturesThis()) 208 CXXThisFieldDecl = *Field; 209 else if (I->capturesVariable()) 210 CaptureFields[I->getCapturedVar()] = *Field; 211 else if (I->capturesVariableByCopy()) 212 CaptureFields[I->getCapturedVar()] = *Field; 213 } 214 } 215 216 virtual ~CGCapturedStmtInfo(); 217 218 CapturedRegionKind getKind() const { return Kind; } 219 220 virtual void setContextValue(llvm::Value *V) { ThisValue = V; } 221 // \brief Retrieve the value of the context parameter. 222 virtual llvm::Value *getContextValue() const { return ThisValue; } 223 224 /// \brief Lookup the captured field decl for a variable. 225 virtual const FieldDecl *lookup(const VarDecl *VD) const { 226 return CaptureFields.lookup(VD); 227 } 228 229 bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; } 230 virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; } 231 232 static bool classof(const CGCapturedStmtInfo *) { 233 return true; 234 } 235 236 /// \brief Emit the captured statement body. 237 virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) { 238 CGF.incrementProfileCounter(S); 239 CGF.EmitStmt(S); 240 } 241 242 /// \brief Get the name of the capture helper. 243 virtual StringRef getHelperName() const { return "__captured_stmt"; } 244 245 private: 246 /// \brief The kind of captured statement being generated. 247 CapturedRegionKind Kind; 248 249 /// \brief Keep the map between VarDecl and FieldDecl. 250 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields; 251 252 /// \brief The base address of the captured record, passed in as the first 253 /// argument of the parallel region function. 254 llvm::Value *ThisValue; 255 256 /// \brief Captured 'this' type. 257 FieldDecl *CXXThisFieldDecl; 258 }; 259 CGCapturedStmtInfo *CapturedStmtInfo; 260 261 /// \brief RAII for correct setting/restoring of CapturedStmtInfo. 262 class CGCapturedStmtRAII { 263 private: 264 CodeGenFunction &CGF; 265 CGCapturedStmtInfo *PrevCapturedStmtInfo; 266 public: 267 CGCapturedStmtRAII(CodeGenFunction &CGF, 268 CGCapturedStmtInfo *NewCapturedStmtInfo) 269 : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) { 270 CGF.CapturedStmtInfo = NewCapturedStmtInfo; 271 } 272 ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; } 273 }; 274 275 /// \brief Sanitizers enabled for this function. 276 SanitizerSet SanOpts; 277 278 /// \brief True if CodeGen currently emits code implementing sanitizer checks. 279 bool IsSanitizerScope; 280 281 /// \brief RAII object to set/unset CodeGenFunction::IsSanitizerScope. 282 class SanitizerScope { 283 CodeGenFunction *CGF; 284 public: 285 SanitizerScope(CodeGenFunction *CGF); 286 ~SanitizerScope(); 287 }; 288 289 /// In C++, whether we are code generating a thunk. This controls whether we 290 /// should emit cleanups. 291 bool CurFuncIsThunk; 292 293 /// In ARC, whether we should autorelease the return value. 294 bool AutoreleaseResult; 295 296 /// Whether we processed a Microsoft-style asm block during CodeGen. These can 297 /// potentially set the return value. 298 bool SawAsmBlock; 299 300 const FunctionDecl *CurSEHParent = nullptr; 301 302 /// True if the current function is an outlined SEH helper. This can be a 303 /// finally block or filter expression. 304 bool IsOutlinedSEHHelper; 305 306 const CodeGen::CGBlockInfo *BlockInfo; 307 llvm::Value *BlockPointer; 308 309 llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; 310 FieldDecl *LambdaThisCaptureField; 311 312 /// \brief A mapping from NRVO variables to the flags used to indicate 313 /// when the NRVO has been applied to this variable. 314 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 315 316 EHScopeStack EHStack; 317 llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack; 318 llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack; 319 320 llvm::Instruction *CurrentFuncletPad = nullptr; 321 322 class CallLifetimeEnd final : public EHScopeStack::Cleanup { 323 llvm::Value *Addr; 324 llvm::Value *Size; 325 326 public: 327 CallLifetimeEnd(Address addr, llvm::Value *size) 328 : Addr(addr.getPointer()), Size(size) {} 329 330 void Emit(CodeGenFunction &CGF, Flags flags) override { 331 CGF.EmitLifetimeEnd(Size, Addr); 332 } 333 }; 334 335 /// Header for data within LifetimeExtendedCleanupStack. 336 struct LifetimeExtendedCleanupHeader { 337 /// The size of the following cleanup object. 338 unsigned Size; 339 /// The kind of cleanup to push: a value from the CleanupKind enumeration. 340 CleanupKind Kind; 341 342 size_t getSize() const { return Size; } 343 CleanupKind getKind() const { return Kind; } 344 }; 345 346 /// i32s containing the indexes of the cleanup destinations. 347 llvm::AllocaInst *NormalCleanupDest; 348 349 unsigned NextCleanupDestIndex; 350 351 /// FirstBlockInfo - The head of a singly-linked-list of block layouts. 352 CGBlockInfo *FirstBlockInfo; 353 354 /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. 355 llvm::BasicBlock *EHResumeBlock; 356 357 /// The exception slot. All landing pads write the current exception pointer 358 /// into this alloca. 359 llvm::Value *ExceptionSlot; 360 361 /// The selector slot. Under the MandatoryCleanup model, all landing pads 362 /// write the current selector value into this alloca. 363 llvm::AllocaInst *EHSelectorSlot; 364 365 /// A stack of exception code slots. Entering an __except block pushes a slot 366 /// on the stack and leaving pops one. The __exception_code() intrinsic loads 367 /// a value from the top of the stack. 368 SmallVector<Address, 1> SEHCodeSlotStack; 369 370 /// Value returned by __exception_info intrinsic. 371 llvm::Value *SEHInfo = nullptr; 372 373 /// Emits a landing pad for the current EH stack. 374 llvm::BasicBlock *EmitLandingPad(); 375 376 llvm::BasicBlock *getInvokeDestImpl(); 377 378 template <class T> 379 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 380 return DominatingValue<T>::save(*this, value); 381 } 382 383 public: 384 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 385 /// rethrows. 386 SmallVector<llvm::Value*, 8> ObjCEHValueStack; 387 388 /// A class controlling the emission of a finally block. 389 class FinallyInfo { 390 /// Where the catchall's edge through the cleanup should go. 391 JumpDest RethrowDest; 392 393 /// A function to call to enter the catch. 394 llvm::Constant *BeginCatchFn; 395 396 /// An i1 variable indicating whether or not the @finally is 397 /// running for an exception. 398 llvm::AllocaInst *ForEHVar; 399 400 /// An i8* variable into which the exception pointer to rethrow 401 /// has been saved. 402 llvm::AllocaInst *SavedExnVar; 403 404 public: 405 void enter(CodeGenFunction &CGF, const Stmt *Finally, 406 llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn, 407 llvm::Constant *rethrowFn); 408 void exit(CodeGenFunction &CGF); 409 }; 410 411 /// Returns true inside SEH __try blocks. 412 bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); } 413 414 /// Returns true while emitting a cleanuppad. 415 bool isCleanupPadScope() const { 416 return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad); 417 } 418 419 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 420 /// current full-expression. Safe against the possibility that 421 /// we're currently inside a conditionally-evaluated expression. 422 template <class T, class... As> 423 void pushFullExprCleanup(CleanupKind kind, As... A) { 424 // If we're not in a conditional branch, or if none of the 425 // arguments requires saving, then use the unconditional cleanup. 426 if (!isInConditionalBranch()) 427 return EHStack.pushCleanup<T>(kind, A...); 428 429 // Stash values in a tuple so we can guarantee the order of saves. 430 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 431 SavedTuple Saved{saveValueInCond(A)...}; 432 433 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 434 EHStack.pushCleanupTuple<CleanupType>(kind, Saved); 435 initFullExprCleanup(); 436 } 437 438 /// \brief Queue a cleanup to be pushed after finishing the current 439 /// full-expression. 440 template <class T, class... As> 441 void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) { 442 assert(!isInConditionalBranch() && "can't defer conditional cleanup"); 443 444 LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind }; 445 446 size_t OldSize = LifetimeExtendedCleanupStack.size(); 447 LifetimeExtendedCleanupStack.resize( 448 LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size); 449 450 static_assert(sizeof(Header) % alignof(T) == 0, 451 "Cleanup will be allocated on misaligned address"); 452 char *Buffer = &LifetimeExtendedCleanupStack[OldSize]; 453 new (Buffer) LifetimeExtendedCleanupHeader(Header); 454 new (Buffer + sizeof(Header)) T(A...); 455 } 456 457 /// Set up the last cleaup that was pushed as a conditional 458 /// full-expression cleanup. 459 void initFullExprCleanup(); 460 461 /// PushDestructorCleanup - Push a cleanup to call the 462 /// complete-object destructor of an object of the given type at the 463 /// given address. Does nothing if T is not a C++ class type with a 464 /// non-trivial destructor. 465 void PushDestructorCleanup(QualType T, Address Addr); 466 467 /// PushDestructorCleanup - Push a cleanup to call the 468 /// complete-object variant of the given destructor on the object at 469 /// the given address. 470 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, Address Addr); 471 472 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 473 /// process all branch fixups. 474 void PopCleanupBlock(bool FallThroughIsBranchThrough = false); 475 476 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 477 /// The block cannot be reactivated. Pops it if it's the top of the 478 /// stack. 479 /// 480 /// \param DominatingIP - An instruction which is known to 481 /// dominate the current IP (if set) and which lies along 482 /// all paths of execution between the current IP and the 483 /// the point at which the cleanup comes into scope. 484 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 485 llvm::Instruction *DominatingIP); 486 487 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 488 /// Cannot be used to resurrect a deactivated cleanup. 489 /// 490 /// \param DominatingIP - An instruction which is known to 491 /// dominate the current IP (if set) and which lies along 492 /// all paths of execution between the current IP and the 493 /// the point at which the cleanup comes into scope. 494 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 495 llvm::Instruction *DominatingIP); 496 497 /// \brief Enters a new scope for capturing cleanups, all of which 498 /// will be executed once the scope is exited. 499 class RunCleanupsScope { 500 EHScopeStack::stable_iterator CleanupStackDepth; 501 size_t LifetimeExtendedCleanupStackSize; 502 bool OldDidCallStackSave; 503 protected: 504 bool PerformCleanup; 505 private: 506 507 RunCleanupsScope(const RunCleanupsScope &) = delete; 508 void operator=(const RunCleanupsScope &) = delete; 509 510 protected: 511 CodeGenFunction& CGF; 512 513 public: 514 /// \brief Enter a new cleanup scope. 515 explicit RunCleanupsScope(CodeGenFunction &CGF) 516 : PerformCleanup(true), CGF(CGF) 517 { 518 CleanupStackDepth = CGF.EHStack.stable_begin(); 519 LifetimeExtendedCleanupStackSize = 520 CGF.LifetimeExtendedCleanupStack.size(); 521 OldDidCallStackSave = CGF.DidCallStackSave; 522 CGF.DidCallStackSave = false; 523 } 524 525 /// \brief Exit this cleanup scope, emitting any accumulated 526 /// cleanups. 527 ~RunCleanupsScope() { 528 if (PerformCleanup) { 529 CGF.DidCallStackSave = OldDidCallStackSave; 530 CGF.PopCleanupBlocks(CleanupStackDepth, 531 LifetimeExtendedCleanupStackSize); 532 } 533 } 534 535 /// \brief Determine whether this scope requires any cleanups. 536 bool requiresCleanups() const { 537 return CGF.EHStack.stable_begin() != CleanupStackDepth; 538 } 539 540 /// \brief Force the emission of cleanups now, instead of waiting 541 /// until this object is destroyed. 542 void ForceCleanup() { 543 assert(PerformCleanup && "Already forced cleanup"); 544 CGF.DidCallStackSave = OldDidCallStackSave; 545 CGF.PopCleanupBlocks(CleanupStackDepth, 546 LifetimeExtendedCleanupStackSize); 547 PerformCleanup = false; 548 } 549 }; 550 551 class LexicalScope : public RunCleanupsScope { 552 SourceRange Range; 553 SmallVector<const LabelDecl*, 4> Labels; 554 LexicalScope *ParentScope; 555 556 LexicalScope(const LexicalScope &) = delete; 557 void operator=(const LexicalScope &) = delete; 558 559 public: 560 /// \brief Enter a new cleanup scope. 561 explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) 562 : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) { 563 CGF.CurLexicalScope = this; 564 if (CGDebugInfo *DI = CGF.getDebugInfo()) 565 DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); 566 } 567 568 void addLabel(const LabelDecl *label) { 569 assert(PerformCleanup && "adding label to dead scope?"); 570 Labels.push_back(label); 571 } 572 573 /// \brief Exit this cleanup scope, emitting any accumulated 574 /// cleanups. 575 ~LexicalScope() { 576 if (CGDebugInfo *DI = CGF.getDebugInfo()) 577 DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 578 579 // If we should perform a cleanup, force them now. Note that 580 // this ends the cleanup scope before rescoping any labels. 581 if (PerformCleanup) { 582 ApplyDebugLocation DL(CGF, Range.getEnd()); 583 ForceCleanup(); 584 } 585 } 586 587 /// \brief Force the emission of cleanups now, instead of waiting 588 /// until this object is destroyed. 589 void ForceCleanup() { 590 CGF.CurLexicalScope = ParentScope; 591 RunCleanupsScope::ForceCleanup(); 592 593 if (!Labels.empty()) 594 rescopeLabels(); 595 } 596 597 void rescopeLabels(); 598 }; 599 600 typedef llvm::DenseMap<const Decl *, Address> DeclMapTy; 601 602 /// \brief The scope used to remap some variables as private in the OpenMP 603 /// loop body (or other captured region emitted without outlining), and to 604 /// restore old vars back on exit. 605 class OMPPrivateScope : public RunCleanupsScope { 606 DeclMapTy SavedLocals; 607 DeclMapTy SavedPrivates; 608 609 private: 610 OMPPrivateScope(const OMPPrivateScope &) = delete; 611 void operator=(const OMPPrivateScope &) = delete; 612 613 public: 614 /// \brief Enter a new OpenMP private scope. 615 explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {} 616 617 /// \brief Registers \a LocalVD variable as a private and apply \a 618 /// PrivateGen function for it to generate corresponding private variable. 619 /// \a PrivateGen returns an address of the generated private variable. 620 /// \return true if the variable is registered as private, false if it has 621 /// been privatized already. 622 bool 623 addPrivate(const VarDecl *LocalVD, 624 llvm::function_ref<Address()> PrivateGen) { 625 assert(PerformCleanup && "adding private to dead scope"); 626 627 // Only save it once. 628 if (SavedLocals.count(LocalVD)) return false; 629 630 // Copy the existing local entry to SavedLocals. 631 auto it = CGF.LocalDeclMap.find(LocalVD); 632 if (it != CGF.LocalDeclMap.end()) { 633 SavedLocals.insert({LocalVD, it->second}); 634 } else { 635 SavedLocals.insert({LocalVD, Address::invalid()}); 636 } 637 638 // Generate the private entry. 639 Address Addr = PrivateGen(); 640 QualType VarTy = LocalVD->getType(); 641 if (VarTy->isReferenceType()) { 642 Address Temp = CGF.CreateMemTemp(VarTy); 643 CGF.Builder.CreateStore(Addr.getPointer(), Temp); 644 Addr = Temp; 645 } 646 SavedPrivates.insert({LocalVD, Addr}); 647 648 return true; 649 } 650 651 /// \brief Privatizes local variables previously registered as private. 652 /// Registration is separate from the actual privatization to allow 653 /// initializers use values of the original variables, not the private one. 654 /// This is important, for example, if the private variable is a class 655 /// variable initialized by a constructor that references other private 656 /// variables. But at initialization original variables must be used, not 657 /// private copies. 658 /// \return true if at least one variable was privatized, false otherwise. 659 bool Privatize() { 660 copyInto(SavedPrivates, CGF.LocalDeclMap); 661 SavedPrivates.clear(); 662 return !SavedLocals.empty(); 663 } 664 665 void ForceCleanup() { 666 RunCleanupsScope::ForceCleanup(); 667 copyInto(SavedLocals, CGF.LocalDeclMap); 668 SavedLocals.clear(); 669 } 670 671 /// \brief Exit scope - all the mapped variables are restored. 672 ~OMPPrivateScope() { 673 if (PerformCleanup) 674 ForceCleanup(); 675 } 676 677 /// Checks if the global variable is captured in current function. 678 bool isGlobalVarCaptured(const VarDecl *VD) const { 679 return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0; 680 } 681 682 private: 683 /// Copy all the entries in the source map over the corresponding 684 /// entries in the destination, which must exist. 685 static void copyInto(const DeclMapTy &src, DeclMapTy &dest) { 686 for (auto &pair : src) { 687 if (!pair.second.isValid()) { 688 dest.erase(pair.first); 689 continue; 690 } 691 692 auto it = dest.find(pair.first); 693 if (it != dest.end()) { 694 it->second = pair.second; 695 } else { 696 dest.insert(pair); 697 } 698 } 699 } 700 }; 701 702 /// \brief Takes the old cleanup stack size and emits the cleanup blocks 703 /// that have been added. 704 void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize); 705 706 /// \brief Takes the old cleanup stack size and emits the cleanup blocks 707 /// that have been added, then adds all lifetime-extended cleanups from 708 /// the given position to the stack. 709 void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 710 size_t OldLifetimeExtendedStackSize); 711 712 void ResolveBranchFixups(llvm::BasicBlock *Target); 713 714 /// The given basic block lies in the current EH scope, but may be a 715 /// target of a potentially scope-crossing jump; get a stable handle 716 /// to which we can perform this jump later. 717 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 718 return JumpDest(Target, 719 EHStack.getInnermostNormalCleanup(), 720 NextCleanupDestIndex++); 721 } 722 723 /// The given basic block lies in the current EH scope, but may be a 724 /// target of a potentially scope-crossing jump; get a stable handle 725 /// to which we can perform this jump later. 726 JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { 727 return getJumpDestInCurrentScope(createBasicBlock(Name)); 728 } 729 730 /// EmitBranchThroughCleanup - Emit a branch from the current insert 731 /// block through the normal cleanup handling code (if any) and then 732 /// on to \arg Dest. 733 void EmitBranchThroughCleanup(JumpDest Dest); 734 735 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 736 /// specified destination obviously has no cleanups to run. 'false' is always 737 /// a conservatively correct answer for this method. 738 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 739 740 /// popCatchScope - Pops the catch scope at the top of the EHScope 741 /// stack, emitting any required code (other than the catch handlers 742 /// themselves). 743 void popCatchScope(); 744 745 llvm::BasicBlock *getEHResumeBlock(bool isCleanup); 746 llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); 747 llvm::BasicBlock *getMSVCDispatchBlock(EHScopeStack::stable_iterator scope); 748 749 /// An object to manage conditionally-evaluated expressions. 750 class ConditionalEvaluation { 751 llvm::BasicBlock *StartBB; 752 753 public: 754 ConditionalEvaluation(CodeGenFunction &CGF) 755 : StartBB(CGF.Builder.GetInsertBlock()) {} 756 757 void begin(CodeGenFunction &CGF) { 758 assert(CGF.OutermostConditional != this); 759 if (!CGF.OutermostConditional) 760 CGF.OutermostConditional = this; 761 } 762 763 void end(CodeGenFunction &CGF) { 764 assert(CGF.OutermostConditional != nullptr); 765 if (CGF.OutermostConditional == this) 766 CGF.OutermostConditional = nullptr; 767 } 768 769 /// Returns a block which will be executed prior to each 770 /// evaluation of the conditional code. 771 llvm::BasicBlock *getStartingBlock() const { 772 return StartBB; 773 } 774 }; 775 776 /// isInConditionalBranch - Return true if we're currently emitting 777 /// one branch or the other of a conditional expression. 778 bool isInConditionalBranch() const { return OutermostConditional != nullptr; } 779 780 void setBeforeOutermostConditional(llvm::Value *value, Address addr) { 781 assert(isInConditionalBranch()); 782 llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); 783 auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back()); 784 store->setAlignment(addr.getAlignment().getQuantity()); 785 } 786 787 /// An RAII object to record that we're evaluating a statement 788 /// expression. 789 class StmtExprEvaluation { 790 CodeGenFunction &CGF; 791 792 /// We have to save the outermost conditional: cleanups in a 793 /// statement expression aren't conditional just because the 794 /// StmtExpr is. 795 ConditionalEvaluation *SavedOutermostConditional; 796 797 public: 798 StmtExprEvaluation(CodeGenFunction &CGF) 799 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 800 CGF.OutermostConditional = nullptr; 801 } 802 803 ~StmtExprEvaluation() { 804 CGF.OutermostConditional = SavedOutermostConditional; 805 CGF.EnsureInsertPoint(); 806 } 807 }; 808 809 /// An object which temporarily prevents a value from being 810 /// destroyed by aggressive peephole optimizations that assume that 811 /// all uses of a value have been realized in the IR. 812 class PeepholeProtection { 813 llvm::Instruction *Inst; 814 friend class CodeGenFunction; 815 816 public: 817 PeepholeProtection() : Inst(nullptr) {} 818 }; 819 820 /// A non-RAII class containing all the information about a bound 821 /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for 822 /// this which makes individual mappings very simple; using this 823 /// class directly is useful when you have a variable number of 824 /// opaque values or don't want the RAII functionality for some 825 /// reason. 826 class OpaqueValueMappingData { 827 const OpaqueValueExpr *OpaqueValue; 828 bool BoundLValue; 829 CodeGenFunction::PeepholeProtection Protection; 830 831 OpaqueValueMappingData(const OpaqueValueExpr *ov, 832 bool boundLValue) 833 : OpaqueValue(ov), BoundLValue(boundLValue) {} 834 public: 835 OpaqueValueMappingData() : OpaqueValue(nullptr) {} 836 837 static bool shouldBindAsLValue(const Expr *expr) { 838 // gl-values should be bound as l-values for obvious reasons. 839 // Records should be bound as l-values because IR generation 840 // always keeps them in memory. Expressions of function type 841 // act exactly like l-values but are formally required to be 842 // r-values in C. 843 return expr->isGLValue() || 844 expr->getType()->isFunctionType() || 845 hasAggregateEvaluationKind(expr->getType()); 846 } 847 848 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 849 const OpaqueValueExpr *ov, 850 const Expr *e) { 851 if (shouldBindAsLValue(ov)) 852 return bind(CGF, ov, CGF.EmitLValue(e)); 853 return bind(CGF, ov, CGF.EmitAnyExpr(e)); 854 } 855 856 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 857 const OpaqueValueExpr *ov, 858 const LValue &lv) { 859 assert(shouldBindAsLValue(ov)); 860 CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); 861 return OpaqueValueMappingData(ov, true); 862 } 863 864 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 865 const OpaqueValueExpr *ov, 866 const RValue &rv) { 867 assert(!shouldBindAsLValue(ov)); 868 CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); 869 870 OpaqueValueMappingData data(ov, false); 871 872 // Work around an extremely aggressive peephole optimization in 873 // EmitScalarConversion which assumes that all other uses of a 874 // value are extant. 875 data.Protection = CGF.protectFromPeepholes(rv); 876 877 return data; 878 } 879 880 bool isValid() const { return OpaqueValue != nullptr; } 881 void clear() { OpaqueValue = nullptr; } 882 883 void unbind(CodeGenFunction &CGF) { 884 assert(OpaqueValue && "no data to unbind!"); 885 886 if (BoundLValue) { 887 CGF.OpaqueLValues.erase(OpaqueValue); 888 } else { 889 CGF.OpaqueRValues.erase(OpaqueValue); 890 CGF.unprotectFromPeepholes(Protection); 891 } 892 } 893 }; 894 895 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 896 class OpaqueValueMapping { 897 CodeGenFunction &CGF; 898 OpaqueValueMappingData Data; 899 900 public: 901 static bool shouldBindAsLValue(const Expr *expr) { 902 return OpaqueValueMappingData::shouldBindAsLValue(expr); 903 } 904 905 /// Build the opaque value mapping for the given conditional 906 /// operator if it's the GNU ?: extension. This is a common 907 /// enough pattern that the convenience operator is really 908 /// helpful. 909 /// 910 OpaqueValueMapping(CodeGenFunction &CGF, 911 const AbstractConditionalOperator *op) : CGF(CGF) { 912 if (isa<ConditionalOperator>(op)) 913 // Leave Data empty. 914 return; 915 916 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 917 Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), 918 e->getCommon()); 919 } 920 921 OpaqueValueMapping(CodeGenFunction &CGF, 922 const OpaqueValueExpr *opaqueValue, 923 LValue lvalue) 924 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { 925 } 926 927 OpaqueValueMapping(CodeGenFunction &CGF, 928 const OpaqueValueExpr *opaqueValue, 929 RValue rvalue) 930 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { 931 } 932 933 void pop() { 934 Data.unbind(CGF); 935 Data.clear(); 936 } 937 938 ~OpaqueValueMapping() { 939 if (Data.isValid()) Data.unbind(CGF); 940 } 941 }; 942 943 private: 944 CGDebugInfo *DebugInfo; 945 bool DisableDebugInfo; 946 947 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 948 /// calling llvm.stacksave for multiple VLAs in the same scope. 949 bool DidCallStackSave; 950 951 /// IndirectBranch - The first time an indirect goto is seen we create a block 952 /// with an indirect branch. Every time we see the address of a label taken, 953 /// we add the label to the indirect goto. Every subsequent indirect goto is 954 /// codegen'd as a jump to the IndirectBranch's basic block. 955 llvm::IndirectBrInst *IndirectBranch; 956 957 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 958 /// decls. 959 DeclMapTy LocalDeclMap; 960 961 /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this 962 /// will contain a mapping from said ParmVarDecl to its implicit "object_size" 963 /// parameter. 964 llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2> 965 SizeArguments; 966 967 /// Track escaped local variables with auto storage. Used during SEH 968 /// outlining to produce a call to llvm.localescape. 969 llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals; 970 971 /// LabelMap - This keeps track of the LLVM basic block for each C label. 972 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 973 974 // BreakContinueStack - This keeps track of where break and continue 975 // statements should jump to. 976 struct BreakContinue { 977 BreakContinue(JumpDest Break, JumpDest Continue) 978 : BreakBlock(Break), ContinueBlock(Continue) {} 979 980 JumpDest BreakBlock; 981 JumpDest ContinueBlock; 982 }; 983 SmallVector<BreakContinue, 8> BreakContinueStack; 984 985 CodeGenPGO PGO; 986 987 /// Calculate branch weights appropriate for PGO data 988 llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount); 989 llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights); 990 llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond, 991 uint64_t LoopCount); 992 993 public: 994 /// Increment the profiler's counter for the given statement. 995 void incrementProfileCounter(const Stmt *S) { 996 if (CGM.getCodeGenOpts().hasProfileClangInstr()) 997 PGO.emitCounterIncrement(Builder, S); 998 PGO.setCurrentStmt(S); 999 } 1000 1001 /// Get the profiler's count for the given statement. 1002 uint64_t getProfileCount(const Stmt *S) { 1003 Optional<uint64_t> Count = PGO.getStmtCount(S); 1004 if (!Count.hasValue()) 1005 return 0; 1006 return *Count; 1007 } 1008 1009 /// Set the profiler's current count. 1010 void setCurrentProfileCount(uint64_t Count) { 1011 PGO.setCurrentRegionCount(Count); 1012 } 1013 1014 /// Get the profiler's current count. This is generally the count for the most 1015 /// recently incremented counter. 1016 uint64_t getCurrentProfileCount() { 1017 return PGO.getCurrentRegionCount(); 1018 } 1019 1020 private: 1021 1022 /// SwitchInsn - This is nearest current switch instruction. It is null if 1023 /// current context is not in a switch. 1024 llvm::SwitchInst *SwitchInsn; 1025 /// The branch weights of SwitchInsn when doing instrumentation based PGO. 1026 SmallVector<uint64_t, 16> *SwitchWeights; 1027 1028 /// CaseRangeBlock - This block holds if condition check for last case 1029 /// statement range in current switch instruction. 1030 llvm::BasicBlock *CaseRangeBlock; 1031 1032 /// OpaqueLValues - Keeps track of the current set of opaque value 1033 /// expressions. 1034 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 1035 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 1036 1037 // VLASizeMap - This keeps track of the associated size for each VLA type. 1038 // We track this by the size expression rather than the type itself because 1039 // in certain situations, like a const qualifier applied to an VLA typedef, 1040 // multiple VLA types can share the same size expression. 1041 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 1042 // enter/leave scopes. 1043 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 1044 1045 /// A block containing a single 'unreachable' instruction. Created 1046 /// lazily by getUnreachableBlock(). 1047 llvm::BasicBlock *UnreachableBlock; 1048 1049 /// Counts of the number return expressions in the function. 1050 unsigned NumReturnExprs; 1051 1052 /// Count the number of simple (constant) return expressions in the function. 1053 unsigned NumSimpleReturnExprs; 1054 1055 /// The last regular (non-return) debug location (breakpoint) in the function. 1056 SourceLocation LastStopPoint; 1057 1058 public: 1059 /// A scope within which we are constructing the fields of an object which 1060 /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use 1061 /// if we need to evaluate a CXXDefaultInitExpr within the evaluation. 1062 class FieldConstructionScope { 1063 public: 1064 FieldConstructionScope(CodeGenFunction &CGF, Address This) 1065 : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) { 1066 CGF.CXXDefaultInitExprThis = This; 1067 } 1068 ~FieldConstructionScope() { 1069 CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis; 1070 } 1071 1072 private: 1073 CodeGenFunction &CGF; 1074 Address OldCXXDefaultInitExprThis; 1075 }; 1076 1077 /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this' 1078 /// is overridden to be the object under construction. 1079 class CXXDefaultInitExprScope { 1080 public: 1081 CXXDefaultInitExprScope(CodeGenFunction &CGF) 1082 : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue), 1083 OldCXXThisAlignment(CGF.CXXThisAlignment) { 1084 CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer(); 1085 CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment(); 1086 } 1087 ~CXXDefaultInitExprScope() { 1088 CGF.CXXThisValue = OldCXXThisValue; 1089 CGF.CXXThisAlignment = OldCXXThisAlignment; 1090 } 1091 1092 public: 1093 CodeGenFunction &CGF; 1094 llvm::Value *OldCXXThisValue; 1095 CharUnits OldCXXThisAlignment; 1096 }; 1097 1098 class InlinedInheritingConstructorScope { 1099 public: 1100 InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD) 1101 : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl), 1102 OldCurCodeDecl(CGF.CurCodeDecl), 1103 OldCXXABIThisDecl(CGF.CXXABIThisDecl), 1104 OldCXXABIThisValue(CGF.CXXABIThisValue), 1105 OldCXXThisValue(CGF.CXXThisValue), 1106 OldCXXABIThisAlignment(CGF.CXXABIThisAlignment), 1107 OldCXXThisAlignment(CGF.CXXThisAlignment), 1108 OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy), 1109 OldCXXInheritedCtorInitExprArgs( 1110 std::move(CGF.CXXInheritedCtorInitExprArgs)) { 1111 CGF.CurGD = GD; 1112 CGF.CurFuncDecl = CGF.CurCodeDecl = 1113 cast<CXXConstructorDecl>(GD.getDecl()); 1114 CGF.CXXABIThisDecl = nullptr; 1115 CGF.CXXABIThisValue = nullptr; 1116 CGF.CXXThisValue = nullptr; 1117 CGF.CXXABIThisAlignment = CharUnits(); 1118 CGF.CXXThisAlignment = CharUnits(); 1119 CGF.ReturnValue = Address::invalid(); 1120 CGF.FnRetTy = QualType(); 1121 CGF.CXXInheritedCtorInitExprArgs.clear(); 1122 } 1123 ~InlinedInheritingConstructorScope() { 1124 CGF.CurGD = OldCurGD; 1125 CGF.CurFuncDecl = OldCurFuncDecl; 1126 CGF.CurCodeDecl = OldCurCodeDecl; 1127 CGF.CXXABIThisDecl = OldCXXABIThisDecl; 1128 CGF.CXXABIThisValue = OldCXXABIThisValue; 1129 CGF.CXXThisValue = OldCXXThisValue; 1130 CGF.CXXABIThisAlignment = OldCXXABIThisAlignment; 1131 CGF.CXXThisAlignment = OldCXXThisAlignment; 1132 CGF.ReturnValue = OldReturnValue; 1133 CGF.FnRetTy = OldFnRetTy; 1134 CGF.CXXInheritedCtorInitExprArgs = 1135 std::move(OldCXXInheritedCtorInitExprArgs); 1136 } 1137 1138 private: 1139 CodeGenFunction &CGF; 1140 GlobalDecl OldCurGD; 1141 const Decl *OldCurFuncDecl; 1142 const Decl *OldCurCodeDecl; 1143 ImplicitParamDecl *OldCXXABIThisDecl; 1144 llvm::Value *OldCXXABIThisValue; 1145 llvm::Value *OldCXXThisValue; 1146 CharUnits OldCXXABIThisAlignment; 1147 CharUnits OldCXXThisAlignment; 1148 Address OldReturnValue; 1149 QualType OldFnRetTy; 1150 CallArgList OldCXXInheritedCtorInitExprArgs; 1151 }; 1152 1153 private: 1154 /// CXXThisDecl - When generating code for a C++ member function, 1155 /// this will hold the implicit 'this' declaration. 1156 ImplicitParamDecl *CXXABIThisDecl; 1157 llvm::Value *CXXABIThisValue; 1158 llvm::Value *CXXThisValue; 1159 CharUnits CXXABIThisAlignment; 1160 CharUnits CXXThisAlignment; 1161 1162 /// The value of 'this' to use when evaluating CXXDefaultInitExprs within 1163 /// this expression. 1164 Address CXXDefaultInitExprThis = Address::invalid(); 1165 1166 /// The values of function arguments to use when evaluating 1167 /// CXXInheritedCtorInitExprs within this context. 1168 CallArgList CXXInheritedCtorInitExprArgs; 1169 1170 /// CXXStructorImplicitParamDecl - When generating code for a constructor or 1171 /// destructor, this will hold the implicit argument (e.g. VTT). 1172 ImplicitParamDecl *CXXStructorImplicitParamDecl; 1173 llvm::Value *CXXStructorImplicitParamValue; 1174 1175 /// OutermostConditional - Points to the outermost active 1176 /// conditional control. This is used so that we know if a 1177 /// temporary should be destroyed conditionally. 1178 ConditionalEvaluation *OutermostConditional; 1179 1180 /// The current lexical scope. 1181 LexicalScope *CurLexicalScope; 1182 1183 /// The current source location that should be used for exception 1184 /// handling code. 1185 SourceLocation CurEHLocation; 1186 1187 /// BlockByrefInfos - For each __block variable, contains 1188 /// information about the layout of the variable. 1189 llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos; 1190 1191 llvm::BasicBlock *TerminateLandingPad; 1192 llvm::BasicBlock *TerminateHandler; 1193 llvm::BasicBlock *TrapBB; 1194 1195 /// True if we need emit the life-time markers. 1196 const bool ShouldEmitLifetimeMarkers; 1197 1198 /// Add a kernel metadata node to the named metadata node 'opencl.kernels'. 1199 /// In the kernel metadata node, reference the kernel function and metadata 1200 /// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2): 1201 /// - A node for the vec_type_hint(<type>) qualifier contains string 1202 /// "vec_type_hint", an undefined value of the <type> data type, 1203 /// and a Boolean that is true if the <type> is integer and signed. 1204 /// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string 1205 /// "work_group_size_hint", and three 32-bit integers X, Y and Z. 1206 /// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string 1207 /// "reqd_work_group_size", and three 32-bit integers X, Y and Z. 1208 void EmitOpenCLKernelMetadata(const FunctionDecl *FD, 1209 llvm::Function *Fn); 1210 1211 public: 1212 CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false); 1213 ~CodeGenFunction(); 1214 1215 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 1216 ASTContext &getContext() const { return CGM.getContext(); } 1217 CGDebugInfo *getDebugInfo() { 1218 if (DisableDebugInfo) 1219 return nullptr; 1220 return DebugInfo; 1221 } 1222 void disableDebugInfo() { DisableDebugInfo = true; } 1223 void enableDebugInfo() { DisableDebugInfo = false; } 1224 1225 bool shouldUseFusedARCCalls() { 1226 return CGM.getCodeGenOpts().OptimizationLevel == 0; 1227 } 1228 1229 const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } 1230 1231 /// Returns a pointer to the function's exception object and selector slot, 1232 /// which is assigned in every landing pad. 1233 Address getExceptionSlot(); 1234 Address getEHSelectorSlot(); 1235 1236 /// Returns the contents of the function's exception object and selector 1237 /// slots. 1238 llvm::Value *getExceptionFromSlot(); 1239 llvm::Value *getSelectorFromSlot(); 1240 1241 Address getNormalCleanupDestSlot(); 1242 1243 llvm::BasicBlock *getUnreachableBlock() { 1244 if (!UnreachableBlock) { 1245 UnreachableBlock = createBasicBlock("unreachable"); 1246 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 1247 } 1248 return UnreachableBlock; 1249 } 1250 1251 llvm::BasicBlock *getInvokeDest() { 1252 if (!EHStack.requiresLandingPad()) return nullptr; 1253 return getInvokeDestImpl(); 1254 } 1255 1256 bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; } 1257 1258 const TargetInfo &getTarget() const { return Target; } 1259 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 1260 1261 //===--------------------------------------------------------------------===// 1262 // Cleanups 1263 //===--------------------------------------------------------------------===// 1264 1265 typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty); 1266 1267 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1268 Address arrayEndPointer, 1269 QualType elementType, 1270 CharUnits elementAlignment, 1271 Destroyer *destroyer); 1272 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1273 llvm::Value *arrayEnd, 1274 QualType elementType, 1275 CharUnits elementAlignment, 1276 Destroyer *destroyer); 1277 1278 void pushDestroy(QualType::DestructionKind dtorKind, 1279 Address addr, QualType type); 1280 void pushEHDestroy(QualType::DestructionKind dtorKind, 1281 Address addr, QualType type); 1282 void pushDestroy(CleanupKind kind, Address addr, QualType type, 1283 Destroyer *destroyer, bool useEHCleanupForArray); 1284 void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr, 1285 QualType type, Destroyer *destroyer, 1286 bool useEHCleanupForArray); 1287 void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 1288 llvm::Value *CompletePtr, 1289 QualType ElementType); 1290 void pushStackRestore(CleanupKind kind, Address SPMem); 1291 void emitDestroy(Address addr, QualType type, Destroyer *destroyer, 1292 bool useEHCleanupForArray); 1293 llvm::Function *generateDestroyHelper(Address addr, QualType type, 1294 Destroyer *destroyer, 1295 bool useEHCleanupForArray, 1296 const VarDecl *VD); 1297 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 1298 QualType elementType, CharUnits elementAlign, 1299 Destroyer *destroyer, 1300 bool checkZeroLength, bool useEHCleanup); 1301 1302 Destroyer *getDestroyer(QualType::DestructionKind destructionKind); 1303 1304 /// Determines whether an EH cleanup is required to destroy a type 1305 /// with the given destruction kind. 1306 bool needsEHCleanup(QualType::DestructionKind kind) { 1307 switch (kind) { 1308 case QualType::DK_none: 1309 return false; 1310 case QualType::DK_cxx_destructor: 1311 case QualType::DK_objc_weak_lifetime: 1312 return getLangOpts().Exceptions; 1313 case QualType::DK_objc_strong_lifetime: 1314 return getLangOpts().Exceptions && 1315 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 1316 } 1317 llvm_unreachable("bad destruction kind"); 1318 } 1319 1320 CleanupKind getCleanupKind(QualType::DestructionKind kind) { 1321 return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); 1322 } 1323 1324 //===--------------------------------------------------------------------===// 1325 // Objective-C 1326 //===--------------------------------------------------------------------===// 1327 1328 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 1329 1330 void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD); 1331 1332 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 1333 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 1334 const ObjCPropertyImplDecl *PID); 1335 void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 1336 const ObjCPropertyImplDecl *propImpl, 1337 const ObjCMethodDecl *GetterMothodDecl, 1338 llvm::Constant *AtomicHelperFn); 1339 1340 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1341 ObjCMethodDecl *MD, bool ctor); 1342 1343 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 1344 /// for the given property. 1345 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 1346 const ObjCPropertyImplDecl *PID); 1347 void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1348 const ObjCPropertyImplDecl *propImpl, 1349 llvm::Constant *AtomicHelperFn); 1350 1351 //===--------------------------------------------------------------------===// 1352 // Block Bits 1353 //===--------------------------------------------------------------------===// 1354 1355 llvm::Value *EmitBlockLiteral(const BlockExpr *); 1356 llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); 1357 static void destroyBlockInfos(CGBlockInfo *info); 1358 1359 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 1360 const CGBlockInfo &Info, 1361 const DeclMapTy &ldm, 1362 bool IsLambdaConversionToBlock); 1363 1364 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 1365 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 1366 llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( 1367 const ObjCPropertyImplDecl *PID); 1368 llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( 1369 const ObjCPropertyImplDecl *PID); 1370 llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); 1371 1372 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags); 1373 1374 class AutoVarEmission; 1375 1376 void emitByrefStructureInit(const AutoVarEmission &emission); 1377 void enterByrefCleanup(const AutoVarEmission &emission); 1378 1379 void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum, 1380 llvm::Value *ptr); 1381 1382 Address LoadBlockStruct(); 1383 Address GetAddrOfBlockDecl(const VarDecl *var, bool ByRef); 1384 1385 /// BuildBlockByrefAddress - Computes the location of the 1386 /// data in a variable which is declared as __block. 1387 Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V, 1388 bool followForward = true); 1389 Address emitBlockByrefAddress(Address baseAddr, 1390 const BlockByrefInfo &info, 1391 bool followForward, 1392 const llvm::Twine &name); 1393 1394 const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var); 1395 1396 QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args); 1397 1398 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1399 const CGFunctionInfo &FnInfo); 1400 /// \brief Emit code for the start of a function. 1401 /// \param Loc The location to be associated with the function. 1402 /// \param StartLoc The location of the function body. 1403 void StartFunction(GlobalDecl GD, 1404 QualType RetTy, 1405 llvm::Function *Fn, 1406 const CGFunctionInfo &FnInfo, 1407 const FunctionArgList &Args, 1408 SourceLocation Loc = SourceLocation(), 1409 SourceLocation StartLoc = SourceLocation()); 1410 1411 void EmitConstructorBody(FunctionArgList &Args); 1412 void EmitDestructorBody(FunctionArgList &Args); 1413 void emitImplicitAssignmentOperatorBody(FunctionArgList &Args); 1414 void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body); 1415 void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S); 1416 1417 void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator, 1418 CallArgList &CallArgs); 1419 void EmitLambdaToBlockPointerBody(FunctionArgList &Args); 1420 void EmitLambdaBlockInvokeBody(); 1421 void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD); 1422 void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD); 1423 void EmitAsanPrologueOrEpilogue(bool Prologue); 1424 1425 /// \brief Emit the unified return block, trying to avoid its emission when 1426 /// possible. 1427 /// \return The debug location of the user written return statement if the 1428 /// return block is is avoided. 1429 llvm::DebugLoc EmitReturnBlock(); 1430 1431 /// FinishFunction - Complete IR generation of the current function. It is 1432 /// legal to call this function even if there is no current insertion point. 1433 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 1434 1435 void StartThunk(llvm::Function *Fn, GlobalDecl GD, 1436 const CGFunctionInfo &FnInfo); 1437 1438 void EmitCallAndReturnForThunk(llvm::Constant *Callee, 1439 const ThunkInfo *Thunk); 1440 1441 void FinishThunk(); 1442 1443 /// Emit a musttail call for a thunk with a potentially adjusted this pointer. 1444 void EmitMustTailThunk(const CXXMethodDecl *MD, llvm::Value *AdjustedThisPtr, 1445 llvm::Value *Callee); 1446 1447 /// Generate a thunk for the given method. 1448 void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1449 GlobalDecl GD, const ThunkInfo &Thunk); 1450 1451 llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn, 1452 const CGFunctionInfo &FnInfo, 1453 GlobalDecl GD, const ThunkInfo &Thunk); 1454 1455 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 1456 FunctionArgList &Args); 1457 1458 void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init, 1459 ArrayRef<VarDecl *> ArrayIndexes); 1460 1461 /// Struct with all informations about dynamic [sub]class needed to set vptr. 1462 struct VPtr { 1463 BaseSubobject Base; 1464 const CXXRecordDecl *NearestVBase; 1465 CharUnits OffsetFromNearestVBase; 1466 const CXXRecordDecl *VTableClass; 1467 }; 1468 1469 /// Initialize the vtable pointer of the given subobject. 1470 void InitializeVTablePointer(const VPtr &vptr); 1471 1472 typedef llvm::SmallVector<VPtr, 4> VPtrsVector; 1473 1474 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 1475 VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass); 1476 1477 void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase, 1478 CharUnits OffsetFromNearestVBase, 1479 bool BaseIsNonVirtualPrimaryBase, 1480 const CXXRecordDecl *VTableClass, 1481 VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs); 1482 1483 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 1484 1485 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 1486 /// to by This. 1487 llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy, 1488 const CXXRecordDecl *VTableClass); 1489 1490 enum CFITypeCheckKind { 1491 CFITCK_VCall, 1492 CFITCK_NVCall, 1493 CFITCK_DerivedCast, 1494 CFITCK_UnrelatedCast, 1495 CFITCK_ICall, 1496 }; 1497 1498 /// \brief Derived is the presumed address of an object of type T after a 1499 /// cast. If T is a polymorphic class type, emit a check that the virtual 1500 /// table for Derived belongs to a class derived from T. 1501 void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived, 1502 bool MayBeNull, CFITypeCheckKind TCK, 1503 SourceLocation Loc); 1504 1505 /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable. 1506 /// If vptr CFI is enabled, emit a check that VTable is valid. 1507 void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable, 1508 CFITypeCheckKind TCK, SourceLocation Loc); 1509 1510 /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for 1511 /// RD using llvm.type.test. 1512 void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable, 1513 CFITypeCheckKind TCK, SourceLocation Loc); 1514 1515 /// If whole-program virtual table optimization is enabled, emit an assumption 1516 /// that VTable is a member of RD's type identifier. Or, if vptr CFI is 1517 /// enabled, emit a check that VTable is a member of RD's type identifier. 1518 void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, 1519 llvm::Value *VTable, SourceLocation Loc); 1520 1521 /// Returns whether we should perform a type checked load when loading a 1522 /// virtual function for virtual calls to members of RD. This is generally 1523 /// true when both vcall CFI and whole-program-vtables are enabled. 1524 bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD); 1525 1526 /// Emit a type checked load from the given vtable. 1527 llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable, 1528 uint64_t VTableByteOffset); 1529 1530 /// CanDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given 1531 /// expr can be devirtualized. 1532 bool CanDevirtualizeMemberFunctionCall(const Expr *Base, 1533 const CXXMethodDecl *MD); 1534 1535 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 1536 /// given phase of destruction for a destructor. The end result 1537 /// should call destructors on members and base classes in reverse 1538 /// order of their construction. 1539 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 1540 1541 /// ShouldInstrumentFunction - Return true if the current function should be 1542 /// instrumented with __cyg_profile_func_* calls 1543 bool ShouldInstrumentFunction(); 1544 1545 /// ShouldXRayInstrument - Return true if the current function should be 1546 /// instrumented with XRay nop sleds. 1547 bool ShouldXRayInstrumentFunction() const; 1548 1549 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 1550 /// instrumentation function with the current function and the call site, if 1551 /// function instrumentation is enabled. 1552 void EmitFunctionInstrumentation(const char *Fn); 1553 1554 /// EmitMCountInstrumentation - Emit call to .mcount. 1555 void EmitMCountInstrumentation(); 1556 1557 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 1558 /// arguments for the given function. This is also responsible for naming the 1559 /// LLVM function arguments. 1560 void EmitFunctionProlog(const CGFunctionInfo &FI, 1561 llvm::Function *Fn, 1562 const FunctionArgList &Args); 1563 1564 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 1565 /// given temporary. 1566 void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc, 1567 SourceLocation EndLoc); 1568 1569 /// EmitStartEHSpec - Emit the start of the exception spec. 1570 void EmitStartEHSpec(const Decl *D); 1571 1572 /// EmitEndEHSpec - Emit the end of the exception spec. 1573 void EmitEndEHSpec(const Decl *D); 1574 1575 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 1576 llvm::BasicBlock *getTerminateLandingPad(); 1577 1578 /// getTerminateHandler - Return a handler (not a landing pad, just 1579 /// a catch handler) that just calls terminate. This is used when 1580 /// a terminate scope encloses a try. 1581 llvm::BasicBlock *getTerminateHandler(); 1582 1583 llvm::Type *ConvertTypeForMem(QualType T); 1584 llvm::Type *ConvertType(QualType T); 1585 llvm::Type *ConvertType(const TypeDecl *T) { 1586 return ConvertType(getContext().getTypeDeclType(T)); 1587 } 1588 1589 /// LoadObjCSelf - Load the value of self. This function is only valid while 1590 /// generating code for an Objective-C method. 1591 llvm::Value *LoadObjCSelf(); 1592 1593 /// TypeOfSelfObject - Return type of object that this self represents. 1594 QualType TypeOfSelfObject(); 1595 1596 /// hasAggregateLLVMType - Return true if the specified AST type will map into 1597 /// an aggregate LLVM type or is void. 1598 static TypeEvaluationKind getEvaluationKind(QualType T); 1599 1600 static bool hasScalarEvaluationKind(QualType T) { 1601 return getEvaluationKind(T) == TEK_Scalar; 1602 } 1603 1604 static bool hasAggregateEvaluationKind(QualType T) { 1605 return getEvaluationKind(T) == TEK_Aggregate; 1606 } 1607 1608 /// createBasicBlock - Create an LLVM basic block. 1609 llvm::BasicBlock *createBasicBlock(const Twine &name = "", 1610 llvm::Function *parent = nullptr, 1611 llvm::BasicBlock *before = nullptr) { 1612 #ifdef NDEBUG 1613 return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before); 1614 #else 1615 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 1616 #endif 1617 } 1618 1619 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 1620 /// label maps to. 1621 JumpDest getJumpDestForLabel(const LabelDecl *S); 1622 1623 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 1624 /// another basic block, simplify it. This assumes that no other code could 1625 /// potentially reference the basic block. 1626 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 1627 1628 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 1629 /// adding a fall-through branch from the current insert block if 1630 /// necessary. It is legal to call this function even if there is no current 1631 /// insertion point. 1632 /// 1633 /// IsFinished - If true, indicates that the caller has finished emitting 1634 /// branches to the given block and does not expect to emit code into it. This 1635 /// means the block can be ignored if it is unreachable. 1636 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 1637 1638 /// EmitBlockAfterUses - Emit the given block somewhere hopefully 1639 /// near its uses, and leave the insertion point in it. 1640 void EmitBlockAfterUses(llvm::BasicBlock *BB); 1641 1642 /// EmitBranch - Emit a branch to the specified basic block from the current 1643 /// insert block, taking care to avoid creation of branches from dummy 1644 /// blocks. It is legal to call this function even if there is no current 1645 /// insertion point. 1646 /// 1647 /// This function clears the current insertion point. The caller should follow 1648 /// calls to this function with calls to Emit*Block prior to generation new 1649 /// code. 1650 void EmitBranch(llvm::BasicBlock *Block); 1651 1652 /// HaveInsertPoint - True if an insertion point is defined. If not, this 1653 /// indicates that the current code being emitted is unreachable. 1654 bool HaveInsertPoint() const { 1655 return Builder.GetInsertBlock() != nullptr; 1656 } 1657 1658 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 1659 /// emitted IR has a place to go. Note that by definition, if this function 1660 /// creates a block then that block is unreachable; callers may do better to 1661 /// detect when no insertion point is defined and simply skip IR generation. 1662 void EnsureInsertPoint() { 1663 if (!HaveInsertPoint()) 1664 EmitBlock(createBasicBlock()); 1665 } 1666 1667 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1668 /// specified stmt yet. 1669 void ErrorUnsupported(const Stmt *S, const char *Type); 1670 1671 //===--------------------------------------------------------------------===// 1672 // Helpers 1673 //===--------------------------------------------------------------------===// 1674 1675 LValue MakeAddrLValue(Address Addr, QualType T, 1676 AlignmentSource AlignSource = AlignmentSource::Type) { 1677 return LValue::MakeAddr(Addr, T, getContext(), AlignSource, 1678 CGM.getTBAAInfo(T)); 1679 } 1680 1681 LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 1682 AlignmentSource AlignSource = AlignmentSource::Type) { 1683 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), 1684 AlignSource, CGM.getTBAAInfo(T)); 1685 } 1686 1687 LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T); 1688 LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T); 1689 CharUnits getNaturalTypeAlignment(QualType T, 1690 AlignmentSource *Source = nullptr, 1691 bool forPointeeType = false); 1692 CharUnits getNaturalPointeeTypeAlignment(QualType T, 1693 AlignmentSource *Source = nullptr); 1694 1695 Address EmitLoadOfReference(Address Ref, const ReferenceType *RefTy, 1696 AlignmentSource *Source = nullptr); 1697 LValue EmitLoadOfReferenceLValue(Address Ref, const ReferenceType *RefTy); 1698 1699 Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy, 1700 AlignmentSource *Source = nullptr); 1701 LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy); 1702 1703 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 1704 /// block. The caller is responsible for setting an appropriate alignment on 1705 /// the alloca. 1706 llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, 1707 const Twine &Name = "tmp"); 1708 Address CreateTempAlloca(llvm::Type *Ty, CharUnits align, 1709 const Twine &Name = "tmp"); 1710 1711 /// CreateDefaultAlignedTempAlloca - This creates an alloca with the 1712 /// default ABI alignment of the given LLVM type. 1713 /// 1714 /// IMPORTANT NOTE: This is *not* generally the right alignment for 1715 /// any given AST type that happens to have been lowered to the 1716 /// given IR type. This should only ever be used for function-local, 1717 /// IR-driven manipulations like saving and restoring a value. Do 1718 /// not hand this address off to arbitrary IRGen routines, and especially 1719 /// do not pass it as an argument to a function that might expect a 1720 /// properly ABI-aligned value. 1721 Address CreateDefaultAlignTempAlloca(llvm::Type *Ty, 1722 const Twine &Name = "tmp"); 1723 1724 /// InitTempAlloca - Provide an initial value for the given alloca which 1725 /// will be observable at all locations in the function. 1726 /// 1727 /// The address should be something that was returned from one of 1728 /// the CreateTempAlloca or CreateMemTemp routines, and the 1729 /// initializer must be valid in the entry block (i.e. it must 1730 /// either be a constant or an argument value). 1731 void InitTempAlloca(Address Alloca, llvm::Value *Value); 1732 1733 /// CreateIRTemp - Create a temporary IR object of the given type, with 1734 /// appropriate alignment. This routine should only be used when an temporary 1735 /// value needs to be stored into an alloca (for example, to avoid explicit 1736 /// PHI construction), but the type is the IR type, not the type appropriate 1737 /// for storing in memory. 1738 /// 1739 /// That is, this is exactly equivalent to CreateMemTemp, but calling 1740 /// ConvertType instead of ConvertTypeForMem. 1741 Address CreateIRTemp(QualType T, const Twine &Name = "tmp"); 1742 1743 /// CreateMemTemp - Create a temporary memory object of the given type, with 1744 /// appropriate alignment. 1745 Address CreateMemTemp(QualType T, const Twine &Name = "tmp"); 1746 Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp"); 1747 1748 /// CreateAggTemp - Create a temporary memory object for the given 1749 /// aggregate type. 1750 AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") { 1751 return AggValueSlot::forAddr(CreateMemTemp(T, Name), 1752 T.getQualifiers(), 1753 AggValueSlot::IsNotDestructed, 1754 AggValueSlot::DoesNotNeedGCBarriers, 1755 AggValueSlot::IsNotAliased); 1756 } 1757 1758 /// Emit a cast to void* in the appropriate address space. 1759 llvm::Value *EmitCastToVoidPtr(llvm::Value *value); 1760 1761 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 1762 /// expression and compare the result against zero, returning an Int1Ty value. 1763 llvm::Value *EvaluateExprAsBool(const Expr *E); 1764 1765 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 1766 void EmitIgnoredExpr(const Expr *E); 1767 1768 /// EmitAnyExpr - Emit code to compute the specified expression which can have 1769 /// any type. The result is returned as an RValue struct. If this is an 1770 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 1771 /// the result should be returned. 1772 /// 1773 /// \param ignoreResult True if the resulting value isn't used. 1774 RValue EmitAnyExpr(const Expr *E, 1775 AggValueSlot aggSlot = AggValueSlot::ignored(), 1776 bool ignoreResult = false); 1777 1778 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 1779 // or the value of the expression, depending on how va_list is defined. 1780 Address EmitVAListRef(const Expr *E); 1781 1782 /// Emit a "reference" to a __builtin_ms_va_list; this is 1783 /// always the value of the expression, because a __builtin_ms_va_list is a 1784 /// pointer to a char. 1785 Address EmitMSVAListRef(const Expr *E); 1786 1787 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 1788 /// always be accessible even if no aggregate location is provided. 1789 RValue EmitAnyExprToTemp(const Expr *E); 1790 1791 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 1792 /// arbitrary expression into the given memory location. 1793 void EmitAnyExprToMem(const Expr *E, Address Location, 1794 Qualifiers Quals, bool IsInitializer); 1795 1796 void EmitAnyExprToExn(const Expr *E, Address Addr); 1797 1798 /// EmitExprAsInit - Emits the code necessary to initialize a 1799 /// location in memory with the given initializer. 1800 void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue, 1801 bool capturedByInit); 1802 1803 /// hasVolatileMember - returns true if aggregate type has a volatile 1804 /// member. 1805 bool hasVolatileMember(QualType T) { 1806 if (const RecordType *RT = T->getAs<RecordType>()) { 1807 const RecordDecl *RD = cast<RecordDecl>(RT->getDecl()); 1808 return RD->hasVolatileMember(); 1809 } 1810 return false; 1811 } 1812 /// EmitAggregateCopy - Emit an aggregate assignment. 1813 /// 1814 /// The difference to EmitAggregateCopy is that tail padding is not copied. 1815 /// This is required for correctness when assigning non-POD structures in C++. 1816 void EmitAggregateAssign(Address DestPtr, Address SrcPtr, 1817 QualType EltTy) { 1818 bool IsVolatile = hasVolatileMember(EltTy); 1819 EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, true); 1820 } 1821 1822 void EmitAggregateCopyCtor(Address DestPtr, Address SrcPtr, 1823 QualType DestTy, QualType SrcTy) { 1824 EmitAggregateCopy(DestPtr, SrcPtr, SrcTy, /*IsVolatile=*/false, 1825 /*IsAssignment=*/false); 1826 } 1827 1828 /// EmitAggregateCopy - Emit an aggregate copy. 1829 /// 1830 /// \param isVolatile - True iff either the source or the destination is 1831 /// volatile. 1832 /// \param isAssignment - If false, allow padding to be copied. This often 1833 /// yields more efficient. 1834 void EmitAggregateCopy(Address DestPtr, Address SrcPtr, 1835 QualType EltTy, bool isVolatile=false, 1836 bool isAssignment = false); 1837 1838 /// GetAddrOfLocalVar - Return the address of a local variable. 1839 Address GetAddrOfLocalVar(const VarDecl *VD) { 1840 auto it = LocalDeclMap.find(VD); 1841 assert(it != LocalDeclMap.end() && 1842 "Invalid argument to GetAddrOfLocalVar(), no decl!"); 1843 return it->second; 1844 } 1845 1846 /// getOpaqueLValueMapping - Given an opaque value expression (which 1847 /// must be mapped to an l-value), return its mapping. 1848 const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) { 1849 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 1850 1851 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 1852 it = OpaqueLValues.find(e); 1853 assert(it != OpaqueLValues.end() && "no mapping for opaque value!"); 1854 return it->second; 1855 } 1856 1857 /// getOpaqueRValueMapping - Given an opaque value expression (which 1858 /// must be mapped to an r-value), return its mapping. 1859 const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) { 1860 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 1861 1862 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 1863 it = OpaqueRValues.find(e); 1864 assert(it != OpaqueRValues.end() && "no mapping for opaque value!"); 1865 return it->second; 1866 } 1867 1868 /// getAccessedFieldNo - Given an encoded value and a result number, return 1869 /// the input field number being accessed. 1870 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 1871 1872 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 1873 llvm::BasicBlock *GetIndirectGotoBlock(); 1874 1875 /// EmitNullInitialization - Generate code to set a value of the given type to 1876 /// null, If the type contains data member pointers, they will be initialized 1877 /// to -1 in accordance with the Itanium C++ ABI. 1878 void EmitNullInitialization(Address DestPtr, QualType Ty); 1879 1880 /// Emits a call to an LLVM variable-argument intrinsic, either 1881 /// \c llvm.va_start or \c llvm.va_end. 1882 /// \param ArgValue A reference to the \c va_list as emitted by either 1883 /// \c EmitVAListRef or \c EmitMSVAListRef. 1884 /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise, 1885 /// calls \c llvm.va_end. 1886 llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart); 1887 1888 /// Generate code to get an argument from the passed in pointer 1889 /// and update it accordingly. 1890 /// \param VE The \c VAArgExpr for which to generate code. 1891 /// \param VAListAddr Receives a reference to the \c va_list as emitted by 1892 /// either \c EmitVAListRef or \c EmitMSVAListRef. 1893 /// \returns A pointer to the argument. 1894 // FIXME: We should be able to get rid of this method and use the va_arg 1895 // instruction in LLVM instead once it works well enough. 1896 Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr); 1897 1898 /// emitArrayLength - Compute the length of an array, even if it's a 1899 /// VLA, and drill down to the base element type. 1900 llvm::Value *emitArrayLength(const ArrayType *arrayType, 1901 QualType &baseType, 1902 Address &addr); 1903 1904 /// EmitVLASize - Capture all the sizes for the VLA expressions in 1905 /// the given variably-modified type and store them in the VLASizeMap. 1906 /// 1907 /// This function can be called with a null (unreachable) insert point. 1908 void EmitVariablyModifiedType(QualType Ty); 1909 1910 /// getVLASize - Returns an LLVM value that corresponds to the size, 1911 /// in non-variably-sized elements, of a variable length array type, 1912 /// plus that largest non-variably-sized element type. Assumes that 1913 /// the type has already been emitted with EmitVariablyModifiedType. 1914 std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla); 1915 std::pair<llvm::Value*,QualType> getVLASize(QualType vla); 1916 1917 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 1918 /// generating code for an C++ member function. 1919 llvm::Value *LoadCXXThis() { 1920 assert(CXXThisValue && "no 'this' value for this function"); 1921 return CXXThisValue; 1922 } 1923 Address LoadCXXThisAddress(); 1924 1925 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 1926 /// virtual bases. 1927 // FIXME: Every place that calls LoadCXXVTT is something 1928 // that needs to be abstracted properly. 1929 llvm::Value *LoadCXXVTT() { 1930 assert(CXXStructorImplicitParamValue && "no VTT value for this function"); 1931 return CXXStructorImplicitParamValue; 1932 } 1933 1934 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 1935 /// complete class to the given direct base. 1936 Address 1937 GetAddressOfDirectBaseInCompleteClass(Address Value, 1938 const CXXRecordDecl *Derived, 1939 const CXXRecordDecl *Base, 1940 bool BaseIsVirtual); 1941 1942 static bool ShouldNullCheckClassCastValue(const CastExpr *Cast); 1943 1944 /// GetAddressOfBaseClass - This function will add the necessary delta to the 1945 /// load of 'this' and returns address of the base class. 1946 Address GetAddressOfBaseClass(Address Value, 1947 const CXXRecordDecl *Derived, 1948 CastExpr::path_const_iterator PathBegin, 1949 CastExpr::path_const_iterator PathEnd, 1950 bool NullCheckValue, SourceLocation Loc); 1951 1952 Address GetAddressOfDerivedClass(Address Value, 1953 const CXXRecordDecl *Derived, 1954 CastExpr::path_const_iterator PathBegin, 1955 CastExpr::path_const_iterator PathEnd, 1956 bool NullCheckValue); 1957 1958 /// GetVTTParameter - Return the VTT parameter that should be passed to a 1959 /// base constructor/destructor with virtual bases. 1960 /// FIXME: VTTs are Itanium ABI-specific, so the definition should move 1961 /// to ItaniumCXXABI.cpp together with all the references to VTT. 1962 llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase, 1963 bool Delegating); 1964 1965 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 1966 CXXCtorType CtorType, 1967 const FunctionArgList &Args, 1968 SourceLocation Loc); 1969 // It's important not to confuse this and the previous function. Delegating 1970 // constructors are the C++0x feature. The constructor delegate optimization 1971 // is used to reduce duplication in the base and complete consturctors where 1972 // they are substantially the same. 1973 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 1974 const FunctionArgList &Args); 1975 1976 /// Emit a call to an inheriting constructor (that is, one that invokes a 1977 /// constructor inherited from a base class) by inlining its definition. This 1978 /// is necessary if the ABI does not support forwarding the arguments to the 1979 /// base class constructor (because they're variadic or similar). 1980 void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor, 1981 CXXCtorType CtorType, 1982 bool ForVirtualBase, 1983 bool Delegating, 1984 CallArgList &Args); 1985 1986 /// Emit a call to a constructor inherited from a base class, passing the 1987 /// current constructor's arguments along unmodified (without even making 1988 /// a copy). 1989 void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D, 1990 bool ForVirtualBase, Address This, 1991 bool InheritedFromVBase, 1992 const CXXInheritedCtorInitExpr *E); 1993 1994 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 1995 bool ForVirtualBase, bool Delegating, 1996 Address This, const CXXConstructExpr *E); 1997 1998 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 1999 bool ForVirtualBase, bool Delegating, 2000 Address This, CallArgList &Args); 2001 2002 /// Emit assumption load for all bases. Requires to be be called only on 2003 /// most-derived class and not under construction of the object. 2004 void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This); 2005 2006 /// Emit assumption that vptr load == global vtable. 2007 void EmitVTableAssumptionLoad(const VPtr &vptr, Address This); 2008 2009 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 2010 Address This, Address Src, 2011 const CXXConstructExpr *E); 2012 2013 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2014 const ArrayType *ArrayTy, 2015 Address ArrayPtr, 2016 const CXXConstructExpr *E, 2017 bool ZeroInitialization = false); 2018 2019 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2020 llvm::Value *NumElements, 2021 Address ArrayPtr, 2022 const CXXConstructExpr *E, 2023 bool ZeroInitialization = false); 2024 2025 static Destroyer destroyCXXObject; 2026 2027 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 2028 bool ForVirtualBase, bool Delegating, 2029 Address This); 2030 2031 void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, 2032 llvm::Type *ElementTy, Address NewPtr, 2033 llvm::Value *NumElements, 2034 llvm::Value *AllocSizeWithoutCookie); 2035 2036 void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, 2037 Address Ptr); 2038 2039 llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr); 2040 void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr); 2041 2042 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 2043 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 2044 2045 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 2046 QualType DeleteTy, llvm::Value *NumElements = nullptr, 2047 CharUnits CookieSize = CharUnits()); 2048 2049 RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 2050 const Expr *Arg, bool IsDelete); 2051 2052 llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E); 2053 llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE); 2054 Address EmitCXXUuidofExpr(const CXXUuidofExpr *E); 2055 2056 /// \brief Situations in which we might emit a check for the suitability of a 2057 /// pointer or glvalue. 2058 enum TypeCheckKind { 2059 /// Checking the operand of a load. Must be suitably sized and aligned. 2060 TCK_Load, 2061 /// Checking the destination of a store. Must be suitably sized and aligned. 2062 TCK_Store, 2063 /// Checking the bound value in a reference binding. Must be suitably sized 2064 /// and aligned, but is not required to refer to an object (until the 2065 /// reference is used), per core issue 453. 2066 TCK_ReferenceBinding, 2067 /// Checking the object expression in a non-static data member access. Must 2068 /// be an object within its lifetime. 2069 TCK_MemberAccess, 2070 /// Checking the 'this' pointer for a call to a non-static member function. 2071 /// Must be an object within its lifetime. 2072 TCK_MemberCall, 2073 /// Checking the 'this' pointer for a constructor call. 2074 TCK_ConstructorCall, 2075 /// Checking the operand of a static_cast to a derived pointer type. Must be 2076 /// null or an object within its lifetime. 2077 TCK_DowncastPointer, 2078 /// Checking the operand of a static_cast to a derived reference type. Must 2079 /// be an object within its lifetime. 2080 TCK_DowncastReference, 2081 /// Checking the operand of a cast to a base object. Must be suitably sized 2082 /// and aligned. 2083 TCK_Upcast, 2084 /// Checking the operand of a cast to a virtual base object. Must be an 2085 /// object within its lifetime. 2086 TCK_UpcastToVirtualBase 2087 }; 2088 2089 /// \brief Whether any type-checking sanitizers are enabled. If \c false, 2090 /// calls to EmitTypeCheck can be skipped. 2091 bool sanitizePerformTypeCheck() const; 2092 2093 /// \brief Emit a check that \p V is the address of storage of the 2094 /// appropriate size and alignment for an object of type \p Type. 2095 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, 2096 QualType Type, CharUnits Alignment = CharUnits::Zero(), 2097 bool SkipNullCheck = false); 2098 2099 /// \brief Emit a check that \p Base points into an array object, which 2100 /// we can access at index \p Index. \p Accessed should be \c false if we 2101 /// this expression is used as an lvalue, for instance in "&Arr[Idx]". 2102 void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, 2103 QualType IndexType, bool Accessed); 2104 2105 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 2106 bool isInc, bool isPre); 2107 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 2108 bool isInc, bool isPre); 2109 2110 void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment, 2111 llvm::Value *OffsetValue = nullptr) { 2112 Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment, 2113 OffsetValue); 2114 } 2115 2116 /// Converts Location to a DebugLoc, if debug information is enabled. 2117 llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location); 2118 2119 2120 //===--------------------------------------------------------------------===// 2121 // Declaration Emission 2122 //===--------------------------------------------------------------------===// 2123 2124 /// EmitDecl - Emit a declaration. 2125 /// 2126 /// This function can be called with a null (unreachable) insert point. 2127 void EmitDecl(const Decl &D); 2128 2129 /// EmitVarDecl - Emit a local variable declaration. 2130 /// 2131 /// This function can be called with a null (unreachable) insert point. 2132 void EmitVarDecl(const VarDecl &D); 2133 2134 void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2135 bool capturedByInit); 2136 2137 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 2138 llvm::Value *Address); 2139 2140 /// \brief Determine whether the given initializer is trivial in the sense 2141 /// that it requires no code to be generated. 2142 bool isTrivialInitializer(const Expr *Init); 2143 2144 /// EmitAutoVarDecl - Emit an auto variable declaration. 2145 /// 2146 /// This function can be called with a null (unreachable) insert point. 2147 void EmitAutoVarDecl(const VarDecl &D); 2148 2149 class AutoVarEmission { 2150 friend class CodeGenFunction; 2151 2152 const VarDecl *Variable; 2153 2154 /// The address of the alloca. Invalid if the variable was emitted 2155 /// as a global constant. 2156 Address Addr; 2157 2158 llvm::Value *NRVOFlag; 2159 2160 /// True if the variable is a __block variable. 2161 bool IsByRef; 2162 2163 /// True if the variable is of aggregate type and has a constant 2164 /// initializer. 2165 bool IsConstantAggregate; 2166 2167 /// Non-null if we should use lifetime annotations. 2168 llvm::Value *SizeForLifetimeMarkers; 2169 2170 struct Invalid {}; 2171 AutoVarEmission(Invalid) : Variable(nullptr), Addr(Address::invalid()) {} 2172 2173 AutoVarEmission(const VarDecl &variable) 2174 : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr), 2175 IsByRef(false), IsConstantAggregate(false), 2176 SizeForLifetimeMarkers(nullptr) {} 2177 2178 bool wasEmittedAsGlobal() const { return !Addr.isValid(); } 2179 2180 public: 2181 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 2182 2183 bool useLifetimeMarkers() const { 2184 return SizeForLifetimeMarkers != nullptr; 2185 } 2186 llvm::Value *getSizeForLifetimeMarkers() const { 2187 assert(useLifetimeMarkers()); 2188 return SizeForLifetimeMarkers; 2189 } 2190 2191 /// Returns the raw, allocated address, which is not necessarily 2192 /// the address of the object itself. 2193 Address getAllocatedAddress() const { 2194 return Addr; 2195 } 2196 2197 /// Returns the address of the object within this declaration. 2198 /// Note that this does not chase the forwarding pointer for 2199 /// __block decls. 2200 Address getObjectAddress(CodeGenFunction &CGF) const { 2201 if (!IsByRef) return Addr; 2202 2203 return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false); 2204 } 2205 }; 2206 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 2207 void EmitAutoVarInit(const AutoVarEmission &emission); 2208 void EmitAutoVarCleanups(const AutoVarEmission &emission); 2209 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 2210 QualType::DestructionKind dtorKind); 2211 2212 void EmitStaticVarDecl(const VarDecl &D, 2213 llvm::GlobalValue::LinkageTypes Linkage); 2214 2215 class ParamValue { 2216 llvm::Value *Value; 2217 unsigned Alignment; 2218 ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {} 2219 public: 2220 static ParamValue forDirect(llvm::Value *value) { 2221 return ParamValue(value, 0); 2222 } 2223 static ParamValue forIndirect(Address addr) { 2224 assert(!addr.getAlignment().isZero()); 2225 return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity()); 2226 } 2227 2228 bool isIndirect() const { return Alignment != 0; } 2229 llvm::Value *getAnyValue() const { return Value; } 2230 2231 llvm::Value *getDirectValue() const { 2232 assert(!isIndirect()); 2233 return Value; 2234 } 2235 2236 Address getIndirectAddress() const { 2237 assert(isIndirect()); 2238 return Address(Value, CharUnits::fromQuantity(Alignment)); 2239 } 2240 }; 2241 2242 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 2243 void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo); 2244 2245 /// protectFromPeepholes - Protect a value that we're intending to 2246 /// store to the side, but which will probably be used later, from 2247 /// aggressive peepholing optimizations that might delete it. 2248 /// 2249 /// Pass the result to unprotectFromPeepholes to declare that 2250 /// protection is no longer required. 2251 /// 2252 /// There's no particular reason why this shouldn't apply to 2253 /// l-values, it's just that no existing peepholes work on pointers. 2254 PeepholeProtection protectFromPeepholes(RValue rvalue); 2255 void unprotectFromPeepholes(PeepholeProtection protection); 2256 2257 //===--------------------------------------------------------------------===// 2258 // Statement Emission 2259 //===--------------------------------------------------------------------===// 2260 2261 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 2262 void EmitStopPoint(const Stmt *S); 2263 2264 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 2265 /// this function even if there is no current insertion point. 2266 /// 2267 /// This function may clear the current insertion point; callers should use 2268 /// EnsureInsertPoint if they wish to subsequently generate code without first 2269 /// calling EmitBlock, EmitBranch, or EmitStmt. 2270 void EmitStmt(const Stmt *S); 2271 2272 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 2273 /// necessarily require an insertion point or debug information; typically 2274 /// because the statement amounts to a jump or a container of other 2275 /// statements. 2276 /// 2277 /// \return True if the statement was handled. 2278 bool EmitSimpleStmt(const Stmt *S); 2279 2280 Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 2281 AggValueSlot AVS = AggValueSlot::ignored()); 2282 Address EmitCompoundStmtWithoutScope(const CompoundStmt &S, 2283 bool GetLast = false, 2284 AggValueSlot AVS = 2285 AggValueSlot::ignored()); 2286 2287 /// EmitLabel - Emit the block for the given label. It is legal to call this 2288 /// function even if there is no current insertion point. 2289 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 2290 2291 void EmitLabelStmt(const LabelStmt &S); 2292 void EmitAttributedStmt(const AttributedStmt &S); 2293 void EmitGotoStmt(const GotoStmt &S); 2294 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 2295 void EmitIfStmt(const IfStmt &S); 2296 2297 void EmitWhileStmt(const WhileStmt &S, 2298 ArrayRef<const Attr *> Attrs = None); 2299 void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None); 2300 void EmitForStmt(const ForStmt &S, 2301 ArrayRef<const Attr *> Attrs = None); 2302 void EmitReturnStmt(const ReturnStmt &S); 2303 void EmitDeclStmt(const DeclStmt &S); 2304 void EmitBreakStmt(const BreakStmt &S); 2305 void EmitContinueStmt(const ContinueStmt &S); 2306 void EmitSwitchStmt(const SwitchStmt &S); 2307 void EmitDefaultStmt(const DefaultStmt &S); 2308 void EmitCaseStmt(const CaseStmt &S); 2309 void EmitCaseStmtRange(const CaseStmt &S); 2310 void EmitAsmStmt(const AsmStmt &S); 2311 2312 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 2313 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 2314 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 2315 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 2316 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 2317 2318 void EmitCoroutineBody(const CoroutineBodyStmt &S); 2319 RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID); 2320 2321 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 2322 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 2323 2324 void EmitCXXTryStmt(const CXXTryStmt &S); 2325 void EmitSEHTryStmt(const SEHTryStmt &S); 2326 void EmitSEHLeaveStmt(const SEHLeaveStmt &S); 2327 void EnterSEHTryStmt(const SEHTryStmt &S); 2328 void ExitSEHTryStmt(const SEHTryStmt &S); 2329 2330 void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter, 2331 const Stmt *OutlinedStmt); 2332 2333 llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF, 2334 const SEHExceptStmt &Except); 2335 2336 llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF, 2337 const SEHFinallyStmt &Finally); 2338 2339 void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF, 2340 llvm::Value *ParentFP, 2341 llvm::Value *EntryEBP); 2342 llvm::Value *EmitSEHExceptionCode(); 2343 llvm::Value *EmitSEHExceptionInfo(); 2344 llvm::Value *EmitSEHAbnormalTermination(); 2345 2346 /// Scan the outlined statement for captures from the parent function. For 2347 /// each capture, mark the capture as escaped and emit a call to 2348 /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap. 2349 void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt, 2350 bool IsFilter); 2351 2352 /// Recovers the address of a local in a parent function. ParentVar is the 2353 /// address of the variable used in the immediate parent function. It can 2354 /// either be an alloca or a call to llvm.localrecover if there are nested 2355 /// outlined functions. ParentFP is the frame pointer of the outermost parent 2356 /// frame. 2357 Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF, 2358 Address ParentVar, 2359 llvm::Value *ParentFP); 2360 2361 void EmitCXXForRangeStmt(const CXXForRangeStmt &S, 2362 ArrayRef<const Attr *> Attrs = None); 2363 2364 /// Returns calculated size of the specified type. 2365 llvm::Value *getTypeSize(QualType Ty); 2366 LValue InitCapturedStruct(const CapturedStmt &S); 2367 llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K); 2368 llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S); 2369 Address GenerateCapturedStmtArgument(const CapturedStmt &S); 2370 llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S); 2371 void GenerateOpenMPCapturedVars(const CapturedStmt &S, 2372 SmallVectorImpl<llvm::Value *> &CapturedVars); 2373 void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy, 2374 SourceLocation Loc); 2375 /// \brief Perform element by element copying of arrays with type \a 2376 /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure 2377 /// generated by \a CopyGen. 2378 /// 2379 /// \param DestAddr Address of the destination array. 2380 /// \param SrcAddr Address of the source array. 2381 /// \param OriginalType Type of destination and source arrays. 2382 /// \param CopyGen Copying procedure that copies value of single array element 2383 /// to another single array element. 2384 void EmitOMPAggregateAssign( 2385 Address DestAddr, Address SrcAddr, QualType OriginalType, 2386 const llvm::function_ref<void(Address, Address)> &CopyGen); 2387 /// \brief Emit proper copying of data from one variable to another. 2388 /// 2389 /// \param OriginalType Original type of the copied variables. 2390 /// \param DestAddr Destination address. 2391 /// \param SrcAddr Source address. 2392 /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has 2393 /// type of the base array element). 2394 /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of 2395 /// the base array element). 2396 /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a 2397 /// DestVD. 2398 void EmitOMPCopy(QualType OriginalType, 2399 Address DestAddr, Address SrcAddr, 2400 const VarDecl *DestVD, const VarDecl *SrcVD, 2401 const Expr *Copy); 2402 /// \brief Emit atomic update code for constructs: \a X = \a X \a BO \a E or 2403 /// \a X = \a E \a BO \a E. 2404 /// 2405 /// \param X Value to be updated. 2406 /// \param E Update value. 2407 /// \param BO Binary operation for update operation. 2408 /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update 2409 /// expression, false otherwise. 2410 /// \param AO Atomic ordering of the generated atomic instructions. 2411 /// \param CommonGen Code generator for complex expressions that cannot be 2412 /// expressed through atomicrmw instruction. 2413 /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was 2414 /// generated, <false, RValue::get(nullptr)> otherwise. 2415 std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr( 2416 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 2417 llvm::AtomicOrdering AO, SourceLocation Loc, 2418 const llvm::function_ref<RValue(RValue)> &CommonGen); 2419 bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 2420 OMPPrivateScope &PrivateScope); 2421 void EmitOMPPrivateClause(const OMPExecutableDirective &D, 2422 OMPPrivateScope &PrivateScope); 2423 void EmitOMPUseDevicePtrClause( 2424 const OMPClause &C, OMPPrivateScope &PrivateScope, 2425 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap); 2426 /// \brief Emit code for copyin clause in \a D directive. The next code is 2427 /// generated at the start of outlined functions for directives: 2428 /// \code 2429 /// threadprivate_var1 = master_threadprivate_var1; 2430 /// operator=(threadprivate_var2, master_threadprivate_var2); 2431 /// ... 2432 /// __kmpc_barrier(&loc, global_tid); 2433 /// \endcode 2434 /// 2435 /// \param D OpenMP directive possibly with 'copyin' clause(s). 2436 /// \returns true if at least one copyin variable is found, false otherwise. 2437 bool EmitOMPCopyinClause(const OMPExecutableDirective &D); 2438 /// \brief Emit initial code for lastprivate variables. If some variable is 2439 /// not also firstprivate, then the default initialization is used. Otherwise 2440 /// initialization of this variable is performed by EmitOMPFirstprivateClause 2441 /// method. 2442 /// 2443 /// \param D Directive that may have 'lastprivate' directives. 2444 /// \param PrivateScope Private scope for capturing lastprivate variables for 2445 /// proper codegen in internal captured statement. 2446 /// 2447 /// \returns true if there is at least one lastprivate variable, false 2448 /// otherwise. 2449 bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D, 2450 OMPPrivateScope &PrivateScope); 2451 /// \brief Emit final copying of lastprivate values to original variables at 2452 /// the end of the worksharing or simd directive. 2453 /// 2454 /// \param D Directive that has at least one 'lastprivate' directives. 2455 /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if 2456 /// it is the last iteration of the loop code in associated directive, or to 2457 /// 'i1 false' otherwise. If this item is nullptr, no final check is required. 2458 void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D, 2459 bool NoFinals, 2460 llvm::Value *IsLastIterCond = nullptr); 2461 /// Emit initial code for linear clauses. 2462 void EmitOMPLinearClause(const OMPLoopDirective &D, 2463 CodeGenFunction::OMPPrivateScope &PrivateScope); 2464 /// Emit final code for linear clauses. 2465 /// \param CondGen Optional conditional code for final part of codegen for 2466 /// linear clause. 2467 void EmitOMPLinearClauseFinal( 2468 const OMPLoopDirective &D, 2469 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen); 2470 /// \brief Emit initial code for reduction variables. Creates reduction copies 2471 /// and initializes them with the values according to OpenMP standard. 2472 /// 2473 /// \param D Directive (possibly) with the 'reduction' clause. 2474 /// \param PrivateScope Private scope for capturing reduction variables for 2475 /// proper codegen in internal captured statement. 2476 /// 2477 void EmitOMPReductionClauseInit(const OMPExecutableDirective &D, 2478 OMPPrivateScope &PrivateScope); 2479 /// \brief Emit final update of reduction values to original variables at 2480 /// the end of the directive. 2481 /// 2482 /// \param D Directive that has at least one 'reduction' directives. 2483 void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D); 2484 /// \brief Emit initial code for linear variables. Creates private copies 2485 /// and initializes them with the values according to OpenMP standard. 2486 /// 2487 /// \param D Directive (possibly) with the 'linear' clause. 2488 void EmitOMPLinearClauseInit(const OMPLoopDirective &D); 2489 2490 typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/, 2491 llvm::Value * /*OutlinedFn*/, 2492 const OMPTaskDataTy & /*Data*/)> 2493 TaskGenTy; 2494 void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S, 2495 const RegionCodeGenTy &BodyGen, 2496 const TaskGenTy &TaskGen, OMPTaskDataTy &Data); 2497 2498 void EmitOMPParallelDirective(const OMPParallelDirective &S); 2499 void EmitOMPSimdDirective(const OMPSimdDirective &S); 2500 void EmitOMPForDirective(const OMPForDirective &S); 2501 void EmitOMPForSimdDirective(const OMPForSimdDirective &S); 2502 void EmitOMPSectionsDirective(const OMPSectionsDirective &S); 2503 void EmitOMPSectionDirective(const OMPSectionDirective &S); 2504 void EmitOMPSingleDirective(const OMPSingleDirective &S); 2505 void EmitOMPMasterDirective(const OMPMasterDirective &S); 2506 void EmitOMPCriticalDirective(const OMPCriticalDirective &S); 2507 void EmitOMPParallelForDirective(const OMPParallelForDirective &S); 2508 void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S); 2509 void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S); 2510 void EmitOMPTaskDirective(const OMPTaskDirective &S); 2511 void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S); 2512 void EmitOMPBarrierDirective(const OMPBarrierDirective &S); 2513 void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S); 2514 void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S); 2515 void EmitOMPFlushDirective(const OMPFlushDirective &S); 2516 void EmitOMPOrderedDirective(const OMPOrderedDirective &S); 2517 void EmitOMPAtomicDirective(const OMPAtomicDirective &S); 2518 void EmitOMPTargetDirective(const OMPTargetDirective &S); 2519 void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S); 2520 void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S); 2521 void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S); 2522 void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S); 2523 void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S); 2524 void 2525 EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S); 2526 void EmitOMPTeamsDirective(const OMPTeamsDirective &S); 2527 void 2528 EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S); 2529 void EmitOMPCancelDirective(const OMPCancelDirective &S); 2530 void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S); 2531 void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S); 2532 void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S); 2533 void EmitOMPDistributeDirective(const OMPDistributeDirective &S); 2534 void EmitOMPDistributeLoop(const OMPDistributeDirective &S); 2535 void EmitOMPDistributeParallelForDirective( 2536 const OMPDistributeParallelForDirective &S); 2537 void EmitOMPDistributeParallelForSimdDirective( 2538 const OMPDistributeParallelForSimdDirective &S); 2539 void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S); 2540 void EmitOMPTargetParallelForSimdDirective( 2541 const OMPTargetParallelForSimdDirective &S); 2542 void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S); 2543 void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S); 2544 void 2545 EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S); 2546 2547 /// Emit outlined function for the target directive. 2548 static std::pair<llvm::Function * /*OutlinedFn*/, 2549 llvm::Constant * /*OutlinedFnID*/> 2550 EmitOMPTargetDirectiveOutlinedFunction(CodeGenModule &CGM, 2551 const OMPTargetDirective &S, 2552 StringRef ParentName, 2553 bool IsOffloadEntry); 2554 /// \brief Emit inner loop of the worksharing/simd construct. 2555 /// 2556 /// \param S Directive, for which the inner loop must be emitted. 2557 /// \param RequiresCleanup true, if directive has some associated private 2558 /// variables. 2559 /// \param LoopCond Bollean condition for loop continuation. 2560 /// \param IncExpr Increment expression for loop control variable. 2561 /// \param BodyGen Generator for the inner body of the inner loop. 2562 /// \param PostIncGen Genrator for post-increment code (required for ordered 2563 /// loop directvies). 2564 void EmitOMPInnerLoop( 2565 const Stmt &S, bool RequiresCleanup, const Expr *LoopCond, 2566 const Expr *IncExpr, 2567 const llvm::function_ref<void(CodeGenFunction &)> &BodyGen, 2568 const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen); 2569 2570 JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind); 2571 /// Emit initial code for loop counters of loop-based directives. 2572 void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S, 2573 OMPPrivateScope &LoopScope); 2574 2575 private: 2576 /// Helpers for the OpenMP loop directives. 2577 void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit); 2578 void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false); 2579 void EmitOMPSimdFinal( 2580 const OMPLoopDirective &D, 2581 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen); 2582 /// \brief Emit code for the worksharing loop-based directive. 2583 /// \return true, if this construct has any lastprivate clause, false - 2584 /// otherwise. 2585 bool EmitOMPWorksharingLoop(const OMPLoopDirective &S); 2586 void EmitOMPOuterLoop(bool IsMonotonic, bool DynamicOrOrdered, 2587 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered, 2588 Address LB, Address UB, Address ST, Address IL, llvm::Value *Chunk); 2589 void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind, 2590 bool IsMonotonic, const OMPLoopDirective &S, 2591 OMPPrivateScope &LoopScope, bool Ordered, Address LB, 2592 Address UB, Address ST, Address IL, 2593 llvm::Value *Chunk); 2594 void EmitOMPDistributeOuterLoop( 2595 OpenMPDistScheduleClauseKind ScheduleKind, 2596 const OMPDistributeDirective &S, OMPPrivateScope &LoopScope, 2597 Address LB, Address UB, Address ST, Address IL, llvm::Value *Chunk); 2598 /// \brief Emit code for sections directive. 2599 void EmitSections(const OMPExecutableDirective &S); 2600 2601 public: 2602 2603 //===--------------------------------------------------------------------===// 2604 // LValue Expression Emission 2605 //===--------------------------------------------------------------------===// 2606 2607 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 2608 RValue GetUndefRValue(QualType Ty); 2609 2610 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 2611 /// and issue an ErrorUnsupported style diagnostic (using the 2612 /// provided Name). 2613 RValue EmitUnsupportedRValue(const Expr *E, 2614 const char *Name); 2615 2616 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 2617 /// an ErrorUnsupported style diagnostic (using the provided Name). 2618 LValue EmitUnsupportedLValue(const Expr *E, 2619 const char *Name); 2620 2621 /// EmitLValue - Emit code to compute a designator that specifies the location 2622 /// of the expression. 2623 /// 2624 /// This can return one of two things: a simple address or a bitfield 2625 /// reference. In either case, the LLVM Value* in the LValue structure is 2626 /// guaranteed to be an LLVM pointer type. 2627 /// 2628 /// If this returns a bitfield reference, nothing about the pointee type of 2629 /// the LLVM value is known: For example, it may not be a pointer to an 2630 /// integer. 2631 /// 2632 /// If this returns a normal address, and if the lvalue's C type is fixed 2633 /// size, this method guarantees that the returned pointer type will point to 2634 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 2635 /// variable length type, this is not possible. 2636 /// 2637 LValue EmitLValue(const Expr *E); 2638 2639 /// \brief Same as EmitLValue but additionally we generate checking code to 2640 /// guard against undefined behavior. This is only suitable when we know 2641 /// that the address will be used to access the object. 2642 LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK); 2643 2644 RValue convertTempToRValue(Address addr, QualType type, 2645 SourceLocation Loc); 2646 2647 void EmitAtomicInit(Expr *E, LValue lvalue); 2648 2649 bool LValueIsSuitableForInlineAtomic(LValue Src); 2650 2651 RValue EmitAtomicLoad(LValue LV, SourceLocation SL, 2652 AggValueSlot Slot = AggValueSlot::ignored()); 2653 2654 RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc, 2655 llvm::AtomicOrdering AO, bool IsVolatile = false, 2656 AggValueSlot slot = AggValueSlot::ignored()); 2657 2658 void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit); 2659 2660 void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO, 2661 bool IsVolatile, bool isInit); 2662 2663 std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange( 2664 LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, 2665 llvm::AtomicOrdering Success = 2666 llvm::AtomicOrdering::SequentiallyConsistent, 2667 llvm::AtomicOrdering Failure = 2668 llvm::AtomicOrdering::SequentiallyConsistent, 2669 bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored()); 2670 2671 void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO, 2672 const llvm::function_ref<RValue(RValue)> &UpdateOp, 2673 bool IsVolatile); 2674 2675 /// EmitToMemory - Change a scalar value from its value 2676 /// representation to its in-memory representation. 2677 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 2678 2679 /// EmitFromMemory - Change a scalar value from its memory 2680 /// representation to its value representation. 2681 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 2682 2683 /// EmitLoadOfScalar - Load a scalar value from an address, taking 2684 /// care to appropriately convert from the memory representation to 2685 /// the LLVM value representation. 2686 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 2687 SourceLocation Loc, 2688 AlignmentSource AlignSource = 2689 AlignmentSource::Type, 2690 llvm::MDNode *TBAAInfo = nullptr, 2691 QualType TBAABaseTy = QualType(), 2692 uint64_t TBAAOffset = 0, 2693 bool isNontemporal = false); 2694 2695 /// EmitLoadOfScalar - Load a scalar value from an address, taking 2696 /// care to appropriately convert from the memory representation to 2697 /// the LLVM value representation. The l-value must be a simple 2698 /// l-value. 2699 llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc); 2700 2701 /// EmitStoreOfScalar - Store a scalar value to an address, taking 2702 /// care to appropriately convert from the memory representation to 2703 /// the LLVM value representation. 2704 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 2705 bool Volatile, QualType Ty, 2706 AlignmentSource AlignSource = AlignmentSource::Type, 2707 llvm::MDNode *TBAAInfo = nullptr, bool isInit = false, 2708 QualType TBAABaseTy = QualType(), 2709 uint64_t TBAAOffset = 0, bool isNontemporal = false); 2710 2711 /// EmitStoreOfScalar - Store a scalar value to an address, taking 2712 /// care to appropriately convert from the memory representation to 2713 /// the LLVM value representation. The l-value must be a simple 2714 /// l-value. The isInit flag indicates whether this is an initialization. 2715 /// If so, atomic qualifiers are ignored and the store is always non-atomic. 2716 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); 2717 2718 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 2719 /// this method emits the address of the lvalue, then loads the result as an 2720 /// rvalue, returning the rvalue. 2721 RValue EmitLoadOfLValue(LValue V, SourceLocation Loc); 2722 RValue EmitLoadOfExtVectorElementLValue(LValue V); 2723 RValue EmitLoadOfBitfieldLValue(LValue LV); 2724 RValue EmitLoadOfGlobalRegLValue(LValue LV); 2725 2726 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 2727 /// lvalue, where both are guaranteed to the have the same type, and that type 2728 /// is 'Ty'. 2729 void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false); 2730 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 2731 void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst); 2732 2733 /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints 2734 /// as EmitStoreThroughLValue. 2735 /// 2736 /// \param Result [out] - If non-null, this will be set to a Value* for the 2737 /// bit-field contents after the store, appropriate for use as the result of 2738 /// an assignment to the bit-field. 2739 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 2740 llvm::Value **Result=nullptr); 2741 2742 /// Emit an l-value for an assignment (simple or compound) of complex type. 2743 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 2744 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 2745 LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 2746 llvm::Value *&Result); 2747 2748 // Note: only available for agg return types 2749 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 2750 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 2751 // Note: only available for agg return types 2752 LValue EmitCallExprLValue(const CallExpr *E); 2753 // Note: only available for agg return types 2754 LValue EmitVAArgExprLValue(const VAArgExpr *E); 2755 LValue EmitDeclRefLValue(const DeclRefExpr *E); 2756 LValue EmitStringLiteralLValue(const StringLiteral *E); 2757 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 2758 LValue EmitPredefinedLValue(const PredefinedExpr *E); 2759 LValue EmitUnaryOpLValue(const UnaryOperator *E); 2760 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 2761 bool Accessed = false); 2762 LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 2763 bool IsLowerBound = true); 2764 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 2765 LValue EmitMemberExpr(const MemberExpr *E); 2766 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 2767 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 2768 LValue EmitInitListLValue(const InitListExpr *E); 2769 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 2770 LValue EmitCastLValue(const CastExpr *E); 2771 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 2772 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 2773 2774 Address EmitExtVectorElementLValue(LValue V); 2775 2776 RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc); 2777 2778 Address EmitArrayToPointerDecay(const Expr *Array, 2779 AlignmentSource *AlignSource = nullptr); 2780 2781 class ConstantEmission { 2782 llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; 2783 ConstantEmission(llvm::Constant *C, bool isReference) 2784 : ValueAndIsReference(C, isReference) {} 2785 public: 2786 ConstantEmission() {} 2787 static ConstantEmission forReference(llvm::Constant *C) { 2788 return ConstantEmission(C, true); 2789 } 2790 static ConstantEmission forValue(llvm::Constant *C) { 2791 return ConstantEmission(C, false); 2792 } 2793 2794 explicit operator bool() const { 2795 return ValueAndIsReference.getOpaqueValue() != nullptr; 2796 } 2797 2798 bool isReference() const { return ValueAndIsReference.getInt(); } 2799 LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { 2800 assert(isReference()); 2801 return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), 2802 refExpr->getType()); 2803 } 2804 2805 llvm::Constant *getValue() const { 2806 assert(!isReference()); 2807 return ValueAndIsReference.getPointer(); 2808 } 2809 }; 2810 2811 ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); 2812 2813 RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, 2814 AggValueSlot slot = AggValueSlot::ignored()); 2815 LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); 2816 2817 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 2818 const ObjCIvarDecl *Ivar); 2819 LValue EmitLValueForField(LValue Base, const FieldDecl* Field); 2820 LValue EmitLValueForLambdaField(const FieldDecl *Field); 2821 2822 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 2823 /// if the Field is a reference, this will return the address of the reference 2824 /// and not the address of the value stored in the reference. 2825 LValue EmitLValueForFieldInitialization(LValue Base, 2826 const FieldDecl* Field); 2827 2828 LValue EmitLValueForIvar(QualType ObjectTy, 2829 llvm::Value* Base, const ObjCIvarDecl *Ivar, 2830 unsigned CVRQualifiers); 2831 2832 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 2833 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 2834 LValue EmitLambdaLValue(const LambdaExpr *E); 2835 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 2836 LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E); 2837 2838 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 2839 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 2840 LValue EmitStmtExprLValue(const StmtExpr *E); 2841 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 2842 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 2843 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init); 2844 2845 //===--------------------------------------------------------------------===// 2846 // Scalar Expression Emission 2847 //===--------------------------------------------------------------------===// 2848 2849 /// EmitCall - Generate a call of the given function, expecting the given 2850 /// result type, and using the given argument list which specifies both the 2851 /// LLVM arguments and the types they were derived from. 2852 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 2853 ReturnValueSlot ReturnValue, const CallArgList &Args, 2854 llvm::Instruction **callOrInvoke = nullptr); 2855 2856 RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E, 2857 ReturnValueSlot ReturnValue, 2858 llvm::Value *Chain = nullptr); 2859 RValue EmitCallExpr(const CallExpr *E, 2860 ReturnValueSlot ReturnValue = ReturnValueSlot()); 2861 RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 2862 CGCallee EmitCallee(const Expr *E); 2863 2864 void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl); 2865 2866 llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, 2867 const Twine &name = ""); 2868 llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, 2869 ArrayRef<llvm::Value*> args, 2870 const Twine &name = ""); 2871 llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, 2872 const Twine &name = ""); 2873 llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, 2874 ArrayRef<llvm::Value*> args, 2875 const Twine &name = ""); 2876 2877 llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, 2878 ArrayRef<llvm::Value *> Args, 2879 const Twine &Name = ""); 2880 llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, 2881 ArrayRef<llvm::Value*> args, 2882 const Twine &name = ""); 2883 llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, 2884 const Twine &name = ""); 2885 void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee, 2886 ArrayRef<llvm::Value*> args); 2887 2888 CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 2889 NestedNameSpecifier *Qual, 2890 llvm::Type *Ty); 2891 2892 CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 2893 CXXDtorType Type, 2894 const CXXRecordDecl *RD); 2895 2896 RValue 2897 EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method, 2898 const CGCallee &Callee, 2899 ReturnValueSlot ReturnValue, llvm::Value *This, 2900 llvm::Value *ImplicitParam, 2901 QualType ImplicitParamTy, const CallExpr *E, 2902 CallArgList *RtlArgs); 2903 RValue EmitCXXDestructorCall(const CXXDestructorDecl *DD, 2904 const CGCallee &Callee, 2905 llvm::Value *This, llvm::Value *ImplicitParam, 2906 QualType ImplicitParamTy, const CallExpr *E, 2907 StructorType Type); 2908 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 2909 ReturnValueSlot ReturnValue); 2910 RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE, 2911 const CXXMethodDecl *MD, 2912 ReturnValueSlot ReturnValue, 2913 bool HasQualifier, 2914 NestedNameSpecifier *Qualifier, 2915 bool IsArrow, const Expr *Base); 2916 // Compute the object pointer. 2917 Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base, 2918 llvm::Value *memberPtr, 2919 const MemberPointerType *memberPtrType, 2920 AlignmentSource *AlignSource = nullptr); 2921 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 2922 ReturnValueSlot ReturnValue); 2923 2924 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 2925 const CXXMethodDecl *MD, 2926 ReturnValueSlot ReturnValue); 2927 RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E); 2928 2929 RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 2930 ReturnValueSlot ReturnValue); 2931 2932 RValue EmitCUDADevicePrintfCallExpr(const CallExpr *E, 2933 ReturnValueSlot ReturnValue); 2934 2935 RValue EmitBuiltinExpr(const FunctionDecl *FD, 2936 unsigned BuiltinID, const CallExpr *E, 2937 ReturnValueSlot ReturnValue); 2938 2939 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 2940 2941 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 2942 /// is unhandled by the current target. 2943 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2944 2945 llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty, 2946 const llvm::CmpInst::Predicate Fp, 2947 const llvm::CmpInst::Predicate Ip, 2948 const llvm::Twine &Name = ""); 2949 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2950 2951 llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID, 2952 unsigned LLVMIntrinsic, 2953 unsigned AltLLVMIntrinsic, 2954 const char *NameHint, 2955 unsigned Modifier, 2956 const CallExpr *E, 2957 SmallVectorImpl<llvm::Value *> &Ops, 2958 Address PtrOp0, Address PtrOp1); 2959 llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID, 2960 unsigned Modifier, llvm::Type *ArgTy, 2961 const CallExpr *E); 2962 llvm::Value *EmitNeonCall(llvm::Function *F, 2963 SmallVectorImpl<llvm::Value*> &O, 2964 const char *name, 2965 unsigned shift = 0, bool rightshift = false); 2966 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 2967 llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, 2968 bool negateForRightShift); 2969 llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt, 2970 llvm::Type *Ty, bool usgn, const char *name); 2971 llvm::Value *vectorWrapScalar16(llvm::Value *Op); 2972 llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2973 2974 llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); 2975 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2976 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2977 llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2978 llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2979 llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2980 llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID, 2981 const CallExpr *E); 2982 2983 private: 2984 enum class MSVCIntrin; 2985 2986 public: 2987 llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E); 2988 2989 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 2990 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 2991 llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); 2992 llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); 2993 llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); 2994 llvm::Value *EmitObjCCollectionLiteral(const Expr *E, 2995 const ObjCMethodDecl *MethodWithObjects); 2996 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 2997 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 2998 ReturnValueSlot Return = ReturnValueSlot()); 2999 3000 /// Retrieves the default cleanup kind for an ARC cleanup. 3001 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. 3002 CleanupKind getARCCleanupKind() { 3003 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 3004 ? NormalAndEHCleanup : NormalCleanup; 3005 } 3006 3007 // ARC primitives. 3008 void EmitARCInitWeak(Address addr, llvm::Value *value); 3009 void EmitARCDestroyWeak(Address addr); 3010 llvm::Value *EmitARCLoadWeak(Address addr); 3011 llvm::Value *EmitARCLoadWeakRetained(Address addr); 3012 llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored); 3013 void EmitARCCopyWeak(Address dst, Address src); 3014 void EmitARCMoveWeak(Address dst, Address src); 3015 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 3016 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 3017 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 3018 bool resultIgnored); 3019 llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value, 3020 bool resultIgnored); 3021 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 3022 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 3023 llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); 3024 void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise); 3025 void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 3026 llvm::Value *EmitARCAutorelease(llvm::Value *value); 3027 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 3028 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 3029 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 3030 llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value); 3031 3032 std::pair<LValue,llvm::Value*> 3033 EmitARCStoreAutoreleasing(const BinaryOperator *e); 3034 std::pair<LValue,llvm::Value*> 3035 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 3036 std::pair<LValue,llvm::Value*> 3037 EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored); 3038 3039 llvm::Value *EmitObjCThrowOperand(const Expr *expr); 3040 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 3041 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 3042 3043 llvm::Value *EmitARCExtendBlockObject(const Expr *expr); 3044 llvm::Value *EmitARCReclaimReturnedObject(const Expr *e, 3045 bool allowUnsafeClaim); 3046 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 3047 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 3048 llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr); 3049 3050 void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values); 3051 3052 static Destroyer destroyARCStrongImprecise; 3053 static Destroyer destroyARCStrongPrecise; 3054 static Destroyer destroyARCWeak; 3055 3056 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 3057 llvm::Value *EmitObjCAutoreleasePoolPush(); 3058 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 3059 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 3060 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 3061 3062 /// \brief Emits a reference binding to the passed in expression. 3063 RValue EmitReferenceBindingToExpr(const Expr *E); 3064 3065 //===--------------------------------------------------------------------===// 3066 // Expression Emission 3067 //===--------------------------------------------------------------------===// 3068 3069 // Expressions are broken into three classes: scalar, complex, aggregate. 3070 3071 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 3072 /// scalar type, returning the result. 3073 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 3074 3075 /// Emit a conversion from the specified type to the specified destination 3076 /// type, both of which are LLVM scalar types. 3077 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 3078 QualType DstTy, SourceLocation Loc); 3079 3080 /// Emit a conversion from the specified complex type to the specified 3081 /// destination type, where the destination type is an LLVM scalar type. 3082 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 3083 QualType DstTy, 3084 SourceLocation Loc); 3085 3086 /// EmitAggExpr - Emit the computation of the specified expression 3087 /// of aggregate type. The result is computed into the given slot, 3088 /// which may be null to indicate that the value is not needed. 3089 void EmitAggExpr(const Expr *E, AggValueSlot AS); 3090 3091 /// EmitAggExprToLValue - Emit the computation of the specified expression of 3092 /// aggregate type into a temporary LValue. 3093 LValue EmitAggExprToLValue(const Expr *E); 3094 3095 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 3096 /// make sure it survives garbage collection until this point. 3097 void EmitExtendGCLifetime(llvm::Value *object); 3098 3099 /// EmitComplexExpr - Emit the computation of the specified expression of 3100 /// complex type, returning the result. 3101 ComplexPairTy EmitComplexExpr(const Expr *E, 3102 bool IgnoreReal = false, 3103 bool IgnoreImag = false); 3104 3105 /// EmitComplexExprIntoLValue - Emit the given expression of complex 3106 /// type and place its result into the specified l-value. 3107 void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit); 3108 3109 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 3110 void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit); 3111 3112 /// EmitLoadOfComplex - Load a complex number from the specified l-value. 3113 ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc); 3114 3115 Address emitAddrOfRealComponent(Address complex, QualType complexType); 3116 Address emitAddrOfImagComponent(Address complex, QualType complexType); 3117 3118 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 3119 /// global variable that has already been created for it. If the initializer 3120 /// has a different type than GV does, this may free GV and return a different 3121 /// one. Otherwise it just returns GV. 3122 llvm::GlobalVariable * 3123 AddInitializerToStaticVarDecl(const VarDecl &D, 3124 llvm::GlobalVariable *GV); 3125 3126 3127 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 3128 /// variable with global storage. 3129 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr, 3130 bool PerformInit); 3131 3132 llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::Constant *Dtor, 3133 llvm::Constant *Addr); 3134 3135 /// Call atexit() with a function that passes the given argument to 3136 /// the given function. 3137 void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn, 3138 llvm::Constant *addr); 3139 3140 /// Emit code in this function to perform a guarded variable 3141 /// initialization. Guarded initializations are used when it's not 3142 /// possible to prove that an initialization will be done exactly 3143 /// once, e.g. with a static local variable or a static data member 3144 /// of a class template. 3145 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, 3146 bool PerformInit); 3147 3148 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 3149 /// variables. 3150 void GenerateCXXGlobalInitFunc(llvm::Function *Fn, 3151 ArrayRef<llvm::Function *> CXXThreadLocals, 3152 Address Guard = Address::invalid()); 3153 3154 /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global 3155 /// variables. 3156 void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn, 3157 const std::vector<std::pair<llvm::WeakVH, 3158 llvm::Constant*> > &DtorsAndObjects); 3159 3160 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 3161 const VarDecl *D, 3162 llvm::GlobalVariable *Addr, 3163 bool PerformInit); 3164 3165 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 3166 3167 void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp); 3168 3169 void enterFullExpression(const ExprWithCleanups *E) { 3170 if (E->getNumObjects() == 0) return; 3171 enterNonTrivialFullExpression(E); 3172 } 3173 void enterNonTrivialFullExpression(const ExprWithCleanups *E); 3174 3175 void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true); 3176 3177 void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest); 3178 3179 RValue EmitAtomicExpr(AtomicExpr *E); 3180 3181 //===--------------------------------------------------------------------===// 3182 // Annotations Emission 3183 //===--------------------------------------------------------------------===// 3184 3185 /// Emit an annotation call (intrinsic or builtin). 3186 llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn, 3187 llvm::Value *AnnotatedVal, 3188 StringRef AnnotationStr, 3189 SourceLocation Location); 3190 3191 /// Emit local annotations for the local variable V, declared by D. 3192 void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); 3193 3194 /// Emit field annotations for the given field & value. Returns the 3195 /// annotation result. 3196 Address EmitFieldAnnotations(const FieldDecl *D, Address V); 3197 3198 //===--------------------------------------------------------------------===// 3199 // Internal Helpers 3200 //===--------------------------------------------------------------------===// 3201 3202 /// ContainsLabel - Return true if the statement contains a label in it. If 3203 /// this statement is not executed normally, it not containing a label means 3204 /// that we can just remove the code. 3205 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 3206 3207 /// containsBreak - Return true if the statement contains a break out of it. 3208 /// If the statement (recursively) contains a switch or loop with a break 3209 /// inside of it, this is fine. 3210 static bool containsBreak(const Stmt *S); 3211 3212 /// Determine if the given statement might introduce a declaration into the 3213 /// current scope, by being a (possibly-labelled) DeclStmt. 3214 static bool mightAddDeclToScope(const Stmt *S); 3215 3216 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 3217 /// to a constant, or if it does but contains a label, return false. If it 3218 /// constant folds return true and set the boolean result in Result. 3219 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result, 3220 bool AllowLabels = false); 3221 3222 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 3223 /// to a constant, or if it does but contains a label, return false. If it 3224 /// constant folds return true and set the folded value. 3225 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result, 3226 bool AllowLabels = false); 3227 3228 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 3229 /// if statement) to the specified blocks. Based on the condition, this might 3230 /// try to simplify the codegen of the conditional based on the branch. 3231 /// TrueCount should be the number of times we expect the condition to 3232 /// evaluate to true based on PGO data. 3233 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 3234 llvm::BasicBlock *FalseBlock, uint64_t TrueCount); 3235 3236 /// \brief Emit a description of a type in a format suitable for passing to 3237 /// a runtime sanitizer handler. 3238 llvm::Constant *EmitCheckTypeDescriptor(QualType T); 3239 3240 /// \brief Convert a value into a format suitable for passing to a runtime 3241 /// sanitizer handler. 3242 llvm::Value *EmitCheckValue(llvm::Value *V); 3243 3244 /// \brief Emit a description of a source location in a format suitable for 3245 /// passing to a runtime sanitizer handler. 3246 llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc); 3247 3248 /// \brief Create a basic block that will call a handler function in a 3249 /// sanitizer runtime with the provided arguments, and create a conditional 3250 /// branch to it. 3251 void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 3252 StringRef CheckName, ArrayRef<llvm::Constant *> StaticArgs, 3253 ArrayRef<llvm::Value *> DynamicArgs); 3254 3255 /// \brief Emit a slow path cross-DSO CFI check which calls __cfi_slowpath 3256 /// if Cond if false. 3257 void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond, 3258 llvm::ConstantInt *TypeId, llvm::Value *Ptr, 3259 ArrayRef<llvm::Constant *> StaticArgs); 3260 3261 /// \brief Create a basic block that will call the trap intrinsic, and emit a 3262 /// conditional branch to it, for the -ftrapv checks. 3263 void EmitTrapCheck(llvm::Value *Checked); 3264 3265 /// \brief Emit a call to trap or debugtrap and attach function attribute 3266 /// "trap-func-name" if specified. 3267 llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID); 3268 3269 /// \brief Emit a cross-DSO CFI failure handling function. 3270 void EmitCfiCheckFail(); 3271 3272 /// \brief Create a check for a function parameter that may potentially be 3273 /// declared as non-null. 3274 void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc, 3275 const FunctionDecl *FD, unsigned ParmNum); 3276 3277 /// EmitCallArg - Emit a single call argument. 3278 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 3279 3280 /// EmitDelegateCallArg - We are performing a delegate call; that 3281 /// is, the current function is delegating to another one. Produce 3282 /// a r-value suitable for passing the given parameter. 3283 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param, 3284 SourceLocation loc); 3285 3286 /// SetFPAccuracy - Set the minimum required accuracy of the given floating 3287 /// point operation, expressed as the maximum relative error in ulp. 3288 void SetFPAccuracy(llvm::Value *Val, float Accuracy); 3289 3290 private: 3291 llvm::MDNode *getRangeForLoadFromType(QualType Ty); 3292 void EmitReturnOfRValue(RValue RV, QualType Ty); 3293 3294 void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New); 3295 3296 llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4> 3297 DeferredReplacements; 3298 3299 /// Set the address of a local variable. 3300 void setAddrOfLocalVar(const VarDecl *VD, Address Addr) { 3301 assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!"); 3302 LocalDeclMap.insert({VD, Addr}); 3303 } 3304 3305 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 3306 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 3307 /// 3308 /// \param AI - The first function argument of the expansion. 3309 void ExpandTypeFromArgs(QualType Ty, LValue Dst, 3310 SmallVectorImpl<llvm::Value *>::iterator &AI); 3311 3312 /// ExpandTypeToArgs - Expand an RValue \arg RV, with the LLVM type for \arg 3313 /// Ty, into individual arguments on the provided vector \arg IRCallArgs, 3314 /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand. 3315 void ExpandTypeToArgs(QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy, 3316 SmallVectorImpl<llvm::Value *> &IRCallArgs, 3317 unsigned &IRCallArgPos); 3318 3319 llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info, 3320 const Expr *InputExpr, std::string &ConstraintStr); 3321 3322 llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 3323 LValue InputValue, QualType InputType, 3324 std::string &ConstraintStr, 3325 SourceLocation Loc); 3326 3327 /// \brief Attempts to statically evaluate the object size of E. If that 3328 /// fails, emits code to figure the size of E out for us. This is 3329 /// pass_object_size aware. 3330 llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type, 3331 llvm::IntegerType *ResType); 3332 3333 /// \brief Emits the size of E, as required by __builtin_object_size. This 3334 /// function is aware of pass_object_size parameters, and will act accordingly 3335 /// if E is a parameter with the pass_object_size attribute. 3336 llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type, 3337 llvm::IntegerType *ResType); 3338 3339 public: 3340 #ifndef NDEBUG 3341 // Determine whether the given argument is an Objective-C method 3342 // that may have type parameters in its signature. 3343 static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) { 3344 const DeclContext *dc = method->getDeclContext(); 3345 if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) { 3346 return classDecl->getTypeParamListAsWritten(); 3347 } 3348 3349 if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) { 3350 return catDecl->getTypeParamList(); 3351 } 3352 3353 return false; 3354 } 3355 3356 template<typename T> 3357 static bool isObjCMethodWithTypeParams(const T *) { return false; } 3358 #endif 3359 3360 enum class EvaluationOrder { 3361 ///! No language constraints on evaluation order. 3362 Default, 3363 ///! Language semantics require left-to-right evaluation. 3364 ForceLeftToRight, 3365 ///! Language semantics require right-to-left evaluation. 3366 ForceRightToLeft 3367 }; 3368 3369 /// EmitCallArgs - Emit call arguments for a function. 3370 template <typename T> 3371 void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo, 3372 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 3373 const FunctionDecl *CalleeDecl = nullptr, 3374 unsigned ParamsToSkip = 0, 3375 EvaluationOrder Order = EvaluationOrder::Default) { 3376 SmallVector<QualType, 16> ArgTypes; 3377 CallExpr::const_arg_iterator Arg = ArgRange.begin(); 3378 3379 assert((ParamsToSkip == 0 || CallArgTypeInfo) && 3380 "Can't skip parameters if type info is not provided"); 3381 if (CallArgTypeInfo) { 3382 #ifndef NDEBUG 3383 bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo); 3384 #endif 3385 3386 // First, use the argument types that the type info knows about 3387 for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip, 3388 E = CallArgTypeInfo->param_type_end(); 3389 I != E; ++I, ++Arg) { 3390 assert(Arg != ArgRange.end() && "Running over edge of argument list!"); 3391 assert((isGenericMethod || 3392 ((*I)->isVariablyModifiedType() || 3393 (*I).getNonReferenceType()->isObjCRetainableType() || 3394 getContext() 3395 .getCanonicalType((*I).getNonReferenceType()) 3396 .getTypePtr() == 3397 getContext() 3398 .getCanonicalType((*Arg)->getType()) 3399 .getTypePtr())) && 3400 "type mismatch in call argument!"); 3401 ArgTypes.push_back(*I); 3402 } 3403 } 3404 3405 // Either we've emitted all the call args, or we have a call to variadic 3406 // function. 3407 assert((Arg == ArgRange.end() || !CallArgTypeInfo || 3408 CallArgTypeInfo->isVariadic()) && 3409 "Extra arguments in non-variadic function!"); 3410 3411 // If we still have any arguments, emit them using the type of the argument. 3412 for (auto *A : llvm::make_range(Arg, ArgRange.end())) 3413 ArgTypes.push_back(getVarArgType(A)); 3414 3415 EmitCallArgs(Args, ArgTypes, ArgRange, CalleeDecl, ParamsToSkip, Order); 3416 } 3417 3418 void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes, 3419 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 3420 const FunctionDecl *CalleeDecl = nullptr, 3421 unsigned ParamsToSkip = 0, 3422 EvaluationOrder Order = EvaluationOrder::Default); 3423 3424 /// EmitPointerWithAlignment - Given an expression with a pointer 3425 /// type, emit the value and compute our best estimate of the 3426 /// alignment of the pointee. 3427 /// 3428 /// Note that this function will conservatively fall back on the type 3429 /// when it doesn't 3430 /// 3431 /// \param Source - If non-null, this will be initialized with 3432 /// information about the source of the alignment. Note that this 3433 /// function will conservatively fall back on the type when it 3434 /// doesn't recognize the expression, which means that sometimes 3435 /// 3436 /// a worst-case One 3437 /// reasonable way to use this information is when there's a 3438 /// language guarantee that the pointer must be aligned to some 3439 /// stricter value, and we're simply trying to ensure that 3440 /// sufficiently obvious uses of under-aligned objects don't get 3441 /// miscompiled; for example, a placement new into the address of 3442 /// a local variable. In such a case, it's quite reasonable to 3443 /// just ignore the returned alignment when it isn't from an 3444 /// explicit source. 3445 Address EmitPointerWithAlignment(const Expr *Addr, 3446 AlignmentSource *Source = nullptr); 3447 3448 void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK); 3449 3450 private: 3451 QualType getVarArgType(const Expr *Arg); 3452 3453 const TargetCodeGenInfo &getTargetHooks() const { 3454 return CGM.getTargetCodeGenInfo(); 3455 } 3456 3457 void EmitDeclMetadata(); 3458 3459 BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType, 3460 const AutoVarEmission &emission); 3461 3462 void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); 3463 3464 llvm::Value *GetValueForARMHint(unsigned BuiltinID); 3465 }; 3466 3467 /// Helper class with most of the code for saving a value for a 3468 /// conditional expression cleanup. 3469 struct DominatingLLVMValue { 3470 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 3471 3472 /// Answer whether the given value needs extra work to be saved. 3473 static bool needsSaving(llvm::Value *value) { 3474 // If it's not an instruction, we don't need to save. 3475 if (!isa<llvm::Instruction>(value)) return false; 3476 3477 // If it's an instruction in the entry block, we don't need to save. 3478 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 3479 return (block != &block->getParent()->getEntryBlock()); 3480 } 3481 3482 /// Try to save the given value. 3483 static saved_type save(CodeGenFunction &CGF, llvm::Value *value) { 3484 if (!needsSaving(value)) return saved_type(value, false); 3485 3486 // Otherwise, we need an alloca. 3487 auto align = CharUnits::fromQuantity( 3488 CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType())); 3489 Address alloca = 3490 CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save"); 3491 CGF.Builder.CreateStore(value, alloca); 3492 3493 return saved_type(alloca.getPointer(), true); 3494 } 3495 3496 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) { 3497 // If the value says it wasn't saved, trust that it's still dominating. 3498 if (!value.getInt()) return value.getPointer(); 3499 3500 // Otherwise, it should be an alloca instruction, as set up in save(). 3501 auto alloca = cast<llvm::AllocaInst>(value.getPointer()); 3502 return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlignment()); 3503 } 3504 }; 3505 3506 /// A partial specialization of DominatingValue for llvm::Values that 3507 /// might be llvm::Instructions. 3508 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 3509 typedef T *type; 3510 static type restore(CodeGenFunction &CGF, saved_type value) { 3511 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 3512 } 3513 }; 3514 3515 /// A specialization of DominatingValue for Address. 3516 template <> struct DominatingValue<Address> { 3517 typedef Address type; 3518 3519 struct saved_type { 3520 DominatingLLVMValue::saved_type SavedValue; 3521 CharUnits Alignment; 3522 }; 3523 3524 static bool needsSaving(type value) { 3525 return DominatingLLVMValue::needsSaving(value.getPointer()); 3526 } 3527 static saved_type save(CodeGenFunction &CGF, type value) { 3528 return { DominatingLLVMValue::save(CGF, value.getPointer()), 3529 value.getAlignment() }; 3530 } 3531 static type restore(CodeGenFunction &CGF, saved_type value) { 3532 return Address(DominatingLLVMValue::restore(CGF, value.SavedValue), 3533 value.Alignment); 3534 } 3535 }; 3536 3537 /// A specialization of DominatingValue for RValue. 3538 template <> struct DominatingValue<RValue> { 3539 typedef RValue type; 3540 class saved_type { 3541 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 3542 AggregateAddress, ComplexAddress }; 3543 3544 llvm::Value *Value; 3545 unsigned K : 3; 3546 unsigned Align : 29; 3547 saved_type(llvm::Value *v, Kind k, unsigned a = 0) 3548 : Value(v), K(k), Align(a) {} 3549 3550 public: 3551 static bool needsSaving(RValue value); 3552 static saved_type save(CodeGenFunction &CGF, RValue value); 3553 RValue restore(CodeGenFunction &CGF); 3554 3555 // implementations in CGCleanup.cpp 3556 }; 3557 3558 static bool needsSaving(type value) { 3559 return saved_type::needsSaving(value); 3560 } 3561 static saved_type save(CodeGenFunction &CGF, type value) { 3562 return saved_type::save(CGF, value); 3563 } 3564 static type restore(CodeGenFunction &CGF, saved_type value) { 3565 return value.restore(CGF); 3566 } 3567 }; 3568 3569 } // end namespace CodeGen 3570 } // end namespace clang 3571 3572 #endif 3573