1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the internal per-function state used for llvm translation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
15 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
16 
17 #include "CGBuilder.h"
18 #include "CGDebugInfo.h"
19 #include "CGLoopInfo.h"
20 #include "CGValue.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "EHScopeStack.h"
24 #include "VarBypassDetector.h"
25 #include "clang/AST/CharUnits.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/ExprObjC.h"
28 #include "clang/AST/ExprOpenMP.h"
29 #include "clang/AST/Type.h"
30 #include "clang/Basic/ABI.h"
31 #include "clang/Basic/CapturedStmt.h"
32 #include "clang/Basic/OpenMPKinds.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "clang/Frontend/CodeGenOptions.h"
35 #include "llvm/ADT/ArrayRef.h"
36 #include "llvm/ADT/DenseMap.h"
37 #include "llvm/ADT/SmallVector.h"
38 #include "llvm/IR/ValueHandle.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Transforms/Utils/SanitizerStats.h"
41 
42 namespace llvm {
43 class BasicBlock;
44 class LLVMContext;
45 class MDNode;
46 class Module;
47 class SwitchInst;
48 class Twine;
49 class Value;
50 class CallSite;
51 }
52 
53 namespace clang {
54 class ASTContext;
55 class BlockDecl;
56 class CXXDestructorDecl;
57 class CXXForRangeStmt;
58 class CXXTryStmt;
59 class Decl;
60 class LabelDecl;
61 class EnumConstantDecl;
62 class FunctionDecl;
63 class FunctionProtoType;
64 class LabelStmt;
65 class ObjCContainerDecl;
66 class ObjCInterfaceDecl;
67 class ObjCIvarDecl;
68 class ObjCMethodDecl;
69 class ObjCImplementationDecl;
70 class ObjCPropertyImplDecl;
71 class TargetInfo;
72 class VarDecl;
73 class ObjCForCollectionStmt;
74 class ObjCAtTryStmt;
75 class ObjCAtThrowStmt;
76 class ObjCAtSynchronizedStmt;
77 class ObjCAutoreleasePoolStmt;
78 
79 namespace CodeGen {
80 class CodeGenTypes;
81 class CGCallee;
82 class CGFunctionInfo;
83 class CGRecordLayout;
84 class CGBlockInfo;
85 class CGCXXABI;
86 class BlockByrefHelpers;
87 class BlockByrefInfo;
88 class BlockFlags;
89 class BlockFieldFlags;
90 class RegionCodeGenTy;
91 class TargetCodeGenInfo;
92 struct OMPTaskDataTy;
93 struct CGCoroData;
94 
95 /// The kind of evaluation to perform on values of a particular
96 /// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
97 /// CGExprAgg?
98 ///
99 /// TODO: should vectors maybe be split out into their own thing?
100 enum TypeEvaluationKind {
101   TEK_Scalar,
102   TEK_Complex,
103   TEK_Aggregate
104 };
105 
106 /// CodeGenFunction - This class organizes the per-function state that is used
107 /// while generating LLVM code.
108 class CodeGenFunction : public CodeGenTypeCache {
109   CodeGenFunction(const CodeGenFunction &) = delete;
110   void operator=(const CodeGenFunction &) = delete;
111 
112   friend class CGCXXABI;
113 public:
114   /// A jump destination is an abstract label, branching to which may
115   /// require a jump out through normal cleanups.
116   struct JumpDest {
117     JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {}
118     JumpDest(llvm::BasicBlock *Block,
119              EHScopeStack::stable_iterator Depth,
120              unsigned Index)
121       : Block(Block), ScopeDepth(Depth), Index(Index) {}
122 
123     bool isValid() const { return Block != nullptr; }
124     llvm::BasicBlock *getBlock() const { return Block; }
125     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
126     unsigned getDestIndex() const { return Index; }
127 
128     // This should be used cautiously.
129     void setScopeDepth(EHScopeStack::stable_iterator depth) {
130       ScopeDepth = depth;
131     }
132 
133   private:
134     llvm::BasicBlock *Block;
135     EHScopeStack::stable_iterator ScopeDepth;
136     unsigned Index;
137   };
138 
139   CodeGenModule &CGM;  // Per-module state.
140   const TargetInfo &Target;
141 
142   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
143   LoopInfoStack LoopStack;
144   CGBuilderTy Builder;
145 
146   // Stores variables for which we can't generate correct lifetime markers
147   // because of jumps.
148   VarBypassDetector Bypasses;
149 
150   /// \brief CGBuilder insert helper. This function is called after an
151   /// instruction is created using Builder.
152   void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
153                     llvm::BasicBlock *BB,
154                     llvm::BasicBlock::iterator InsertPt) const;
155 
156   /// CurFuncDecl - Holds the Decl for the current outermost
157   /// non-closure context.
158   const Decl *CurFuncDecl;
159   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
160   const Decl *CurCodeDecl;
161   const CGFunctionInfo *CurFnInfo;
162   QualType FnRetTy;
163   llvm::Function *CurFn;
164 
165   // Holds coroutine data if the current function is a coroutine. We use a
166   // wrapper to manage its lifetime, so that we don't have to define CGCoroData
167   // in this header.
168   struct CGCoroInfo {
169     std::unique_ptr<CGCoroData> Data;
170     CGCoroInfo();
171     ~CGCoroInfo();
172   };
173   CGCoroInfo CurCoro;
174 
175   /// CurGD - The GlobalDecl for the current function being compiled.
176   GlobalDecl CurGD;
177 
178   /// PrologueCleanupDepth - The cleanup depth enclosing all the
179   /// cleanups associated with the parameters.
180   EHScopeStack::stable_iterator PrologueCleanupDepth;
181 
182   /// ReturnBlock - Unified return block.
183   JumpDest ReturnBlock;
184 
185   /// ReturnValue - The temporary alloca to hold the return
186   /// value. This is invalid iff the function has no return value.
187   Address ReturnValue;
188 
189   /// AllocaInsertPoint - This is an instruction in the entry block before which
190   /// we prefer to insert allocas.
191   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
192 
193   /// \brief API for captured statement code generation.
194   class CGCapturedStmtInfo {
195   public:
196     explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default)
197         : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
198     explicit CGCapturedStmtInfo(const CapturedStmt &S,
199                                 CapturedRegionKind K = CR_Default)
200       : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
201 
202       RecordDecl::field_iterator Field =
203         S.getCapturedRecordDecl()->field_begin();
204       for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
205                                                 E = S.capture_end();
206            I != E; ++I, ++Field) {
207         if (I->capturesThis())
208           CXXThisFieldDecl = *Field;
209         else if (I->capturesVariable())
210           CaptureFields[I->getCapturedVar()] = *Field;
211         else if (I->capturesVariableByCopy())
212           CaptureFields[I->getCapturedVar()] = *Field;
213       }
214     }
215 
216     virtual ~CGCapturedStmtInfo();
217 
218     CapturedRegionKind getKind() const { return Kind; }
219 
220     virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
221     // \brief Retrieve the value of the context parameter.
222     virtual llvm::Value *getContextValue() const { return ThisValue; }
223 
224     /// \brief Lookup the captured field decl for a variable.
225     virtual const FieldDecl *lookup(const VarDecl *VD) const {
226       return CaptureFields.lookup(VD);
227     }
228 
229     bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
230     virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
231 
232     static bool classof(const CGCapturedStmtInfo *) {
233       return true;
234     }
235 
236     /// \brief Emit the captured statement body.
237     virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
238       CGF.incrementProfileCounter(S);
239       CGF.EmitStmt(S);
240     }
241 
242     /// \brief Get the name of the capture helper.
243     virtual StringRef getHelperName() const { return "__captured_stmt"; }
244 
245   private:
246     /// \brief The kind of captured statement being generated.
247     CapturedRegionKind Kind;
248 
249     /// \brief Keep the map between VarDecl and FieldDecl.
250     llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
251 
252     /// \brief The base address of the captured record, passed in as the first
253     /// argument of the parallel region function.
254     llvm::Value *ThisValue;
255 
256     /// \brief Captured 'this' type.
257     FieldDecl *CXXThisFieldDecl;
258   };
259   CGCapturedStmtInfo *CapturedStmtInfo;
260 
261   /// \brief RAII for correct setting/restoring of CapturedStmtInfo.
262   class CGCapturedStmtRAII {
263   private:
264     CodeGenFunction &CGF;
265     CGCapturedStmtInfo *PrevCapturedStmtInfo;
266   public:
267     CGCapturedStmtRAII(CodeGenFunction &CGF,
268                        CGCapturedStmtInfo *NewCapturedStmtInfo)
269         : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) {
270       CGF.CapturedStmtInfo = NewCapturedStmtInfo;
271     }
272     ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; }
273   };
274 
275   /// \brief Sanitizers enabled for this function.
276   SanitizerSet SanOpts;
277 
278   /// \brief True if CodeGen currently emits code implementing sanitizer checks.
279   bool IsSanitizerScope;
280 
281   /// \brief RAII object to set/unset CodeGenFunction::IsSanitizerScope.
282   class SanitizerScope {
283     CodeGenFunction *CGF;
284   public:
285     SanitizerScope(CodeGenFunction *CGF);
286     ~SanitizerScope();
287   };
288 
289   /// In C++, whether we are code generating a thunk.  This controls whether we
290   /// should emit cleanups.
291   bool CurFuncIsThunk;
292 
293   /// In ARC, whether we should autorelease the return value.
294   bool AutoreleaseResult;
295 
296   /// Whether we processed a Microsoft-style asm block during CodeGen. These can
297   /// potentially set the return value.
298   bool SawAsmBlock;
299 
300   const FunctionDecl *CurSEHParent = nullptr;
301 
302   /// True if the current function is an outlined SEH helper. This can be a
303   /// finally block or filter expression.
304   bool IsOutlinedSEHHelper;
305 
306   const CodeGen::CGBlockInfo *BlockInfo;
307   llvm::Value *BlockPointer;
308 
309   llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
310   FieldDecl *LambdaThisCaptureField;
311 
312   /// \brief A mapping from NRVO variables to the flags used to indicate
313   /// when the NRVO has been applied to this variable.
314   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
315 
316   EHScopeStack EHStack;
317   llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
318   llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack;
319 
320   llvm::Instruction *CurrentFuncletPad = nullptr;
321 
322   class CallLifetimeEnd final : public EHScopeStack::Cleanup {
323     llvm::Value *Addr;
324     llvm::Value *Size;
325 
326   public:
327     CallLifetimeEnd(Address addr, llvm::Value *size)
328         : Addr(addr.getPointer()), Size(size) {}
329 
330     void Emit(CodeGenFunction &CGF, Flags flags) override {
331       CGF.EmitLifetimeEnd(Size, Addr);
332     }
333   };
334 
335   /// Header for data within LifetimeExtendedCleanupStack.
336   struct LifetimeExtendedCleanupHeader {
337     /// The size of the following cleanup object.
338     unsigned Size;
339     /// The kind of cleanup to push: a value from the CleanupKind enumeration.
340     CleanupKind Kind;
341 
342     size_t getSize() const { return Size; }
343     CleanupKind getKind() const { return Kind; }
344   };
345 
346   /// i32s containing the indexes of the cleanup destinations.
347   llvm::AllocaInst *NormalCleanupDest;
348 
349   unsigned NextCleanupDestIndex;
350 
351   /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
352   CGBlockInfo *FirstBlockInfo;
353 
354   /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
355   llvm::BasicBlock *EHResumeBlock;
356 
357   /// The exception slot.  All landing pads write the current exception pointer
358   /// into this alloca.
359   llvm::Value *ExceptionSlot;
360 
361   /// The selector slot.  Under the MandatoryCleanup model, all landing pads
362   /// write the current selector value into this alloca.
363   llvm::AllocaInst *EHSelectorSlot;
364 
365   /// A stack of exception code slots. Entering an __except block pushes a slot
366   /// on the stack and leaving pops one. The __exception_code() intrinsic loads
367   /// a value from the top of the stack.
368   SmallVector<Address, 1> SEHCodeSlotStack;
369 
370   /// Value returned by __exception_info intrinsic.
371   llvm::Value *SEHInfo = nullptr;
372 
373   /// Emits a landing pad for the current EH stack.
374   llvm::BasicBlock *EmitLandingPad();
375 
376   llvm::BasicBlock *getInvokeDestImpl();
377 
378   template <class T>
379   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
380     return DominatingValue<T>::save(*this, value);
381   }
382 
383 public:
384   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
385   /// rethrows.
386   SmallVector<llvm::Value*, 8> ObjCEHValueStack;
387 
388   /// A class controlling the emission of a finally block.
389   class FinallyInfo {
390     /// Where the catchall's edge through the cleanup should go.
391     JumpDest RethrowDest;
392 
393     /// A function to call to enter the catch.
394     llvm::Constant *BeginCatchFn;
395 
396     /// An i1 variable indicating whether or not the @finally is
397     /// running for an exception.
398     llvm::AllocaInst *ForEHVar;
399 
400     /// An i8* variable into which the exception pointer to rethrow
401     /// has been saved.
402     llvm::AllocaInst *SavedExnVar;
403 
404   public:
405     void enter(CodeGenFunction &CGF, const Stmt *Finally,
406                llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
407                llvm::Constant *rethrowFn);
408     void exit(CodeGenFunction &CGF);
409   };
410 
411   /// Returns true inside SEH __try blocks.
412   bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }
413 
414   /// Returns true while emitting a cleanuppad.
415   bool isCleanupPadScope() const {
416     return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad);
417   }
418 
419   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
420   /// current full-expression.  Safe against the possibility that
421   /// we're currently inside a conditionally-evaluated expression.
422   template <class T, class... As>
423   void pushFullExprCleanup(CleanupKind kind, As... A) {
424     // If we're not in a conditional branch, or if none of the
425     // arguments requires saving, then use the unconditional cleanup.
426     if (!isInConditionalBranch())
427       return EHStack.pushCleanup<T>(kind, A...);
428 
429     // Stash values in a tuple so we can guarantee the order of saves.
430     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
431     SavedTuple Saved{saveValueInCond(A)...};
432 
433     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
434     EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
435     initFullExprCleanup();
436   }
437 
438   /// \brief Queue a cleanup to be pushed after finishing the current
439   /// full-expression.
440   template <class T, class... As>
441   void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
442     assert(!isInConditionalBranch() && "can't defer conditional cleanup");
443 
444     LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind };
445 
446     size_t OldSize = LifetimeExtendedCleanupStack.size();
447     LifetimeExtendedCleanupStack.resize(
448         LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size);
449 
450     static_assert(sizeof(Header) % alignof(T) == 0,
451                   "Cleanup will be allocated on misaligned address");
452     char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
453     new (Buffer) LifetimeExtendedCleanupHeader(Header);
454     new (Buffer + sizeof(Header)) T(A...);
455   }
456 
457   /// Set up the last cleaup that was pushed as a conditional
458   /// full-expression cleanup.
459   void initFullExprCleanup();
460 
461   /// PushDestructorCleanup - Push a cleanup to call the
462   /// complete-object destructor of an object of the given type at the
463   /// given address.  Does nothing if T is not a C++ class type with a
464   /// non-trivial destructor.
465   void PushDestructorCleanup(QualType T, Address Addr);
466 
467   /// PushDestructorCleanup - Push a cleanup to call the
468   /// complete-object variant of the given destructor on the object at
469   /// the given address.
470   void PushDestructorCleanup(const CXXDestructorDecl *Dtor, Address Addr);
471 
472   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
473   /// process all branch fixups.
474   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
475 
476   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
477   /// The block cannot be reactivated.  Pops it if it's the top of the
478   /// stack.
479   ///
480   /// \param DominatingIP - An instruction which is known to
481   ///   dominate the current IP (if set) and which lies along
482   ///   all paths of execution between the current IP and the
483   ///   the point at which the cleanup comes into scope.
484   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
485                               llvm::Instruction *DominatingIP);
486 
487   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
488   /// Cannot be used to resurrect a deactivated cleanup.
489   ///
490   /// \param DominatingIP - An instruction which is known to
491   ///   dominate the current IP (if set) and which lies along
492   ///   all paths of execution between the current IP and the
493   ///   the point at which the cleanup comes into scope.
494   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
495                             llvm::Instruction *DominatingIP);
496 
497   /// \brief Enters a new scope for capturing cleanups, all of which
498   /// will be executed once the scope is exited.
499   class RunCleanupsScope {
500     EHScopeStack::stable_iterator CleanupStackDepth;
501     size_t LifetimeExtendedCleanupStackSize;
502     bool OldDidCallStackSave;
503   protected:
504     bool PerformCleanup;
505   private:
506 
507     RunCleanupsScope(const RunCleanupsScope &) = delete;
508     void operator=(const RunCleanupsScope &) = delete;
509 
510   protected:
511     CodeGenFunction& CGF;
512 
513   public:
514     /// \brief Enter a new cleanup scope.
515     explicit RunCleanupsScope(CodeGenFunction &CGF)
516       : PerformCleanup(true), CGF(CGF)
517     {
518       CleanupStackDepth = CGF.EHStack.stable_begin();
519       LifetimeExtendedCleanupStackSize =
520           CGF.LifetimeExtendedCleanupStack.size();
521       OldDidCallStackSave = CGF.DidCallStackSave;
522       CGF.DidCallStackSave = false;
523     }
524 
525     /// \brief Exit this cleanup scope, emitting any accumulated
526     /// cleanups.
527     ~RunCleanupsScope() {
528       if (PerformCleanup) {
529         CGF.DidCallStackSave = OldDidCallStackSave;
530         CGF.PopCleanupBlocks(CleanupStackDepth,
531                              LifetimeExtendedCleanupStackSize);
532       }
533     }
534 
535     /// \brief Determine whether this scope requires any cleanups.
536     bool requiresCleanups() const {
537       return CGF.EHStack.stable_begin() != CleanupStackDepth;
538     }
539 
540     /// \brief Force the emission of cleanups now, instead of waiting
541     /// until this object is destroyed.
542     void ForceCleanup() {
543       assert(PerformCleanup && "Already forced cleanup");
544       CGF.DidCallStackSave = OldDidCallStackSave;
545       CGF.PopCleanupBlocks(CleanupStackDepth,
546                            LifetimeExtendedCleanupStackSize);
547       PerformCleanup = false;
548     }
549   };
550 
551   class LexicalScope : public RunCleanupsScope {
552     SourceRange Range;
553     SmallVector<const LabelDecl*, 4> Labels;
554     LexicalScope *ParentScope;
555 
556     LexicalScope(const LexicalScope &) = delete;
557     void operator=(const LexicalScope &) = delete;
558 
559   public:
560     /// \brief Enter a new cleanup scope.
561     explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
562       : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
563       CGF.CurLexicalScope = this;
564       if (CGDebugInfo *DI = CGF.getDebugInfo())
565         DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
566     }
567 
568     void addLabel(const LabelDecl *label) {
569       assert(PerformCleanup && "adding label to dead scope?");
570       Labels.push_back(label);
571     }
572 
573     /// \brief Exit this cleanup scope, emitting any accumulated
574     /// cleanups.
575     ~LexicalScope() {
576       if (CGDebugInfo *DI = CGF.getDebugInfo())
577         DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
578 
579       // If we should perform a cleanup, force them now.  Note that
580       // this ends the cleanup scope before rescoping any labels.
581       if (PerformCleanup) {
582         ApplyDebugLocation DL(CGF, Range.getEnd());
583         ForceCleanup();
584       }
585     }
586 
587     /// \brief Force the emission of cleanups now, instead of waiting
588     /// until this object is destroyed.
589     void ForceCleanup() {
590       CGF.CurLexicalScope = ParentScope;
591       RunCleanupsScope::ForceCleanup();
592 
593       if (!Labels.empty())
594         rescopeLabels();
595     }
596 
597     void rescopeLabels();
598   };
599 
600   typedef llvm::DenseMap<const Decl *, Address> DeclMapTy;
601 
602   /// \brief The scope used to remap some variables as private in the OpenMP
603   /// loop body (or other captured region emitted without outlining), and to
604   /// restore old vars back on exit.
605   class OMPPrivateScope : public RunCleanupsScope {
606     DeclMapTy SavedLocals;
607     DeclMapTy SavedPrivates;
608 
609   private:
610     OMPPrivateScope(const OMPPrivateScope &) = delete;
611     void operator=(const OMPPrivateScope &) = delete;
612 
613   public:
614     /// \brief Enter a new OpenMP private scope.
615     explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}
616 
617     /// \brief Registers \a LocalVD variable as a private and apply \a
618     /// PrivateGen function for it to generate corresponding private variable.
619     /// \a PrivateGen returns an address of the generated private variable.
620     /// \return true if the variable is registered as private, false if it has
621     /// been privatized already.
622     bool
623     addPrivate(const VarDecl *LocalVD,
624                llvm::function_ref<Address()> PrivateGen) {
625       assert(PerformCleanup && "adding private to dead scope");
626 
627       // Only save it once.
628       if (SavedLocals.count(LocalVD)) return false;
629 
630       // Copy the existing local entry to SavedLocals.
631       auto it = CGF.LocalDeclMap.find(LocalVD);
632       if (it != CGF.LocalDeclMap.end()) {
633         SavedLocals.insert({LocalVD, it->second});
634       } else {
635         SavedLocals.insert({LocalVD, Address::invalid()});
636       }
637 
638       // Generate the private entry.
639       Address Addr = PrivateGen();
640       QualType VarTy = LocalVD->getType();
641       if (VarTy->isReferenceType()) {
642         Address Temp = CGF.CreateMemTemp(VarTy);
643         CGF.Builder.CreateStore(Addr.getPointer(), Temp);
644         Addr = Temp;
645       }
646       SavedPrivates.insert({LocalVD, Addr});
647 
648       return true;
649     }
650 
651     /// \brief Privatizes local variables previously registered as private.
652     /// Registration is separate from the actual privatization to allow
653     /// initializers use values of the original variables, not the private one.
654     /// This is important, for example, if the private variable is a class
655     /// variable initialized by a constructor that references other private
656     /// variables. But at initialization original variables must be used, not
657     /// private copies.
658     /// \return true if at least one variable was privatized, false otherwise.
659     bool Privatize() {
660       copyInto(SavedPrivates, CGF.LocalDeclMap);
661       SavedPrivates.clear();
662       return !SavedLocals.empty();
663     }
664 
665     void ForceCleanup() {
666       RunCleanupsScope::ForceCleanup();
667       copyInto(SavedLocals, CGF.LocalDeclMap);
668       SavedLocals.clear();
669     }
670 
671     /// \brief Exit scope - all the mapped variables are restored.
672     ~OMPPrivateScope() {
673       if (PerformCleanup)
674         ForceCleanup();
675     }
676 
677     /// Checks if the global variable is captured in current function.
678     bool isGlobalVarCaptured(const VarDecl *VD) const {
679       return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0;
680     }
681 
682   private:
683     /// Copy all the entries in the source map over the corresponding
684     /// entries in the destination, which must exist.
685     static void copyInto(const DeclMapTy &src, DeclMapTy &dest) {
686       for (auto &pair : src) {
687         if (!pair.second.isValid()) {
688           dest.erase(pair.first);
689           continue;
690         }
691 
692         auto it = dest.find(pair.first);
693         if (it != dest.end()) {
694           it->second = pair.second;
695         } else {
696           dest.insert(pair);
697         }
698       }
699     }
700   };
701 
702   /// \brief Takes the old cleanup stack size and emits the cleanup blocks
703   /// that have been added.
704   void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize);
705 
706   /// \brief Takes the old cleanup stack size and emits the cleanup blocks
707   /// that have been added, then adds all lifetime-extended cleanups from
708   /// the given position to the stack.
709   void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
710                         size_t OldLifetimeExtendedStackSize);
711 
712   void ResolveBranchFixups(llvm::BasicBlock *Target);
713 
714   /// The given basic block lies in the current EH scope, but may be a
715   /// target of a potentially scope-crossing jump; get a stable handle
716   /// to which we can perform this jump later.
717   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
718     return JumpDest(Target,
719                     EHStack.getInnermostNormalCleanup(),
720                     NextCleanupDestIndex++);
721   }
722 
723   /// The given basic block lies in the current EH scope, but may be a
724   /// target of a potentially scope-crossing jump; get a stable handle
725   /// to which we can perform this jump later.
726   JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
727     return getJumpDestInCurrentScope(createBasicBlock(Name));
728   }
729 
730   /// EmitBranchThroughCleanup - Emit a branch from the current insert
731   /// block through the normal cleanup handling code (if any) and then
732   /// on to \arg Dest.
733   void EmitBranchThroughCleanup(JumpDest Dest);
734 
735   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
736   /// specified destination obviously has no cleanups to run.  'false' is always
737   /// a conservatively correct answer for this method.
738   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
739 
740   /// popCatchScope - Pops the catch scope at the top of the EHScope
741   /// stack, emitting any required code (other than the catch handlers
742   /// themselves).
743   void popCatchScope();
744 
745   llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
746   llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
747   llvm::BasicBlock *getMSVCDispatchBlock(EHScopeStack::stable_iterator scope);
748 
749   /// An object to manage conditionally-evaluated expressions.
750   class ConditionalEvaluation {
751     llvm::BasicBlock *StartBB;
752 
753   public:
754     ConditionalEvaluation(CodeGenFunction &CGF)
755       : StartBB(CGF.Builder.GetInsertBlock()) {}
756 
757     void begin(CodeGenFunction &CGF) {
758       assert(CGF.OutermostConditional != this);
759       if (!CGF.OutermostConditional)
760         CGF.OutermostConditional = this;
761     }
762 
763     void end(CodeGenFunction &CGF) {
764       assert(CGF.OutermostConditional != nullptr);
765       if (CGF.OutermostConditional == this)
766         CGF.OutermostConditional = nullptr;
767     }
768 
769     /// Returns a block which will be executed prior to each
770     /// evaluation of the conditional code.
771     llvm::BasicBlock *getStartingBlock() const {
772       return StartBB;
773     }
774   };
775 
776   /// isInConditionalBranch - Return true if we're currently emitting
777   /// one branch or the other of a conditional expression.
778   bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
779 
780   void setBeforeOutermostConditional(llvm::Value *value, Address addr) {
781     assert(isInConditionalBranch());
782     llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
783     auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back());
784     store->setAlignment(addr.getAlignment().getQuantity());
785   }
786 
787   /// An RAII object to record that we're evaluating a statement
788   /// expression.
789   class StmtExprEvaluation {
790     CodeGenFunction &CGF;
791 
792     /// We have to save the outermost conditional: cleanups in a
793     /// statement expression aren't conditional just because the
794     /// StmtExpr is.
795     ConditionalEvaluation *SavedOutermostConditional;
796 
797   public:
798     StmtExprEvaluation(CodeGenFunction &CGF)
799       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
800       CGF.OutermostConditional = nullptr;
801     }
802 
803     ~StmtExprEvaluation() {
804       CGF.OutermostConditional = SavedOutermostConditional;
805       CGF.EnsureInsertPoint();
806     }
807   };
808 
809   /// An object which temporarily prevents a value from being
810   /// destroyed by aggressive peephole optimizations that assume that
811   /// all uses of a value have been realized in the IR.
812   class PeepholeProtection {
813     llvm::Instruction *Inst;
814     friend class CodeGenFunction;
815 
816   public:
817     PeepholeProtection() : Inst(nullptr) {}
818   };
819 
820   /// A non-RAII class containing all the information about a bound
821   /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
822   /// this which makes individual mappings very simple; using this
823   /// class directly is useful when you have a variable number of
824   /// opaque values or don't want the RAII functionality for some
825   /// reason.
826   class OpaqueValueMappingData {
827     const OpaqueValueExpr *OpaqueValue;
828     bool BoundLValue;
829     CodeGenFunction::PeepholeProtection Protection;
830 
831     OpaqueValueMappingData(const OpaqueValueExpr *ov,
832                            bool boundLValue)
833       : OpaqueValue(ov), BoundLValue(boundLValue) {}
834   public:
835     OpaqueValueMappingData() : OpaqueValue(nullptr) {}
836 
837     static bool shouldBindAsLValue(const Expr *expr) {
838       // gl-values should be bound as l-values for obvious reasons.
839       // Records should be bound as l-values because IR generation
840       // always keeps them in memory.  Expressions of function type
841       // act exactly like l-values but are formally required to be
842       // r-values in C.
843       return expr->isGLValue() ||
844              expr->getType()->isFunctionType() ||
845              hasAggregateEvaluationKind(expr->getType());
846     }
847 
848     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
849                                        const OpaqueValueExpr *ov,
850                                        const Expr *e) {
851       if (shouldBindAsLValue(ov))
852         return bind(CGF, ov, CGF.EmitLValue(e));
853       return bind(CGF, ov, CGF.EmitAnyExpr(e));
854     }
855 
856     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
857                                        const OpaqueValueExpr *ov,
858                                        const LValue &lv) {
859       assert(shouldBindAsLValue(ov));
860       CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
861       return OpaqueValueMappingData(ov, true);
862     }
863 
864     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
865                                        const OpaqueValueExpr *ov,
866                                        const RValue &rv) {
867       assert(!shouldBindAsLValue(ov));
868       CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
869 
870       OpaqueValueMappingData data(ov, false);
871 
872       // Work around an extremely aggressive peephole optimization in
873       // EmitScalarConversion which assumes that all other uses of a
874       // value are extant.
875       data.Protection = CGF.protectFromPeepholes(rv);
876 
877       return data;
878     }
879 
880     bool isValid() const { return OpaqueValue != nullptr; }
881     void clear() { OpaqueValue = nullptr; }
882 
883     void unbind(CodeGenFunction &CGF) {
884       assert(OpaqueValue && "no data to unbind!");
885 
886       if (BoundLValue) {
887         CGF.OpaqueLValues.erase(OpaqueValue);
888       } else {
889         CGF.OpaqueRValues.erase(OpaqueValue);
890         CGF.unprotectFromPeepholes(Protection);
891       }
892     }
893   };
894 
895   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
896   class OpaqueValueMapping {
897     CodeGenFunction &CGF;
898     OpaqueValueMappingData Data;
899 
900   public:
901     static bool shouldBindAsLValue(const Expr *expr) {
902       return OpaqueValueMappingData::shouldBindAsLValue(expr);
903     }
904 
905     /// Build the opaque value mapping for the given conditional
906     /// operator if it's the GNU ?: extension.  This is a common
907     /// enough pattern that the convenience operator is really
908     /// helpful.
909     ///
910     OpaqueValueMapping(CodeGenFunction &CGF,
911                        const AbstractConditionalOperator *op) : CGF(CGF) {
912       if (isa<ConditionalOperator>(op))
913         // Leave Data empty.
914         return;
915 
916       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
917       Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
918                                           e->getCommon());
919     }
920 
921     OpaqueValueMapping(CodeGenFunction &CGF,
922                        const OpaqueValueExpr *opaqueValue,
923                        LValue lvalue)
924       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
925     }
926 
927     OpaqueValueMapping(CodeGenFunction &CGF,
928                        const OpaqueValueExpr *opaqueValue,
929                        RValue rvalue)
930       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
931     }
932 
933     void pop() {
934       Data.unbind(CGF);
935       Data.clear();
936     }
937 
938     ~OpaqueValueMapping() {
939       if (Data.isValid()) Data.unbind(CGF);
940     }
941   };
942 
943 private:
944   CGDebugInfo *DebugInfo;
945   bool DisableDebugInfo;
946 
947   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
948   /// calling llvm.stacksave for multiple VLAs in the same scope.
949   bool DidCallStackSave;
950 
951   /// IndirectBranch - The first time an indirect goto is seen we create a block
952   /// with an indirect branch.  Every time we see the address of a label taken,
953   /// we add the label to the indirect goto.  Every subsequent indirect goto is
954   /// codegen'd as a jump to the IndirectBranch's basic block.
955   llvm::IndirectBrInst *IndirectBranch;
956 
957   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
958   /// decls.
959   DeclMapTy LocalDeclMap;
960 
961   /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this
962   /// will contain a mapping from said ParmVarDecl to its implicit "object_size"
963   /// parameter.
964   llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2>
965       SizeArguments;
966 
967   /// Track escaped local variables with auto storage. Used during SEH
968   /// outlining to produce a call to llvm.localescape.
969   llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;
970 
971   /// LabelMap - This keeps track of the LLVM basic block for each C label.
972   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
973 
974   // BreakContinueStack - This keeps track of where break and continue
975   // statements should jump to.
976   struct BreakContinue {
977     BreakContinue(JumpDest Break, JumpDest Continue)
978       : BreakBlock(Break), ContinueBlock(Continue) {}
979 
980     JumpDest BreakBlock;
981     JumpDest ContinueBlock;
982   };
983   SmallVector<BreakContinue, 8> BreakContinueStack;
984 
985   CodeGenPGO PGO;
986 
987   /// Calculate branch weights appropriate for PGO data
988   llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount);
989   llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights);
990   llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond,
991                                             uint64_t LoopCount);
992 
993 public:
994   /// Increment the profiler's counter for the given statement.
995   void incrementProfileCounter(const Stmt *S) {
996     if (CGM.getCodeGenOpts().hasProfileClangInstr())
997       PGO.emitCounterIncrement(Builder, S);
998     PGO.setCurrentStmt(S);
999   }
1000 
1001   /// Get the profiler's count for the given statement.
1002   uint64_t getProfileCount(const Stmt *S) {
1003     Optional<uint64_t> Count = PGO.getStmtCount(S);
1004     if (!Count.hasValue())
1005       return 0;
1006     return *Count;
1007   }
1008 
1009   /// Set the profiler's current count.
1010   void setCurrentProfileCount(uint64_t Count) {
1011     PGO.setCurrentRegionCount(Count);
1012   }
1013 
1014   /// Get the profiler's current count. This is generally the count for the most
1015   /// recently incremented counter.
1016   uint64_t getCurrentProfileCount() {
1017     return PGO.getCurrentRegionCount();
1018   }
1019 
1020 private:
1021 
1022   /// SwitchInsn - This is nearest current switch instruction. It is null if
1023   /// current context is not in a switch.
1024   llvm::SwitchInst *SwitchInsn;
1025   /// The branch weights of SwitchInsn when doing instrumentation based PGO.
1026   SmallVector<uint64_t, 16> *SwitchWeights;
1027 
1028   /// CaseRangeBlock - This block holds if condition check for last case
1029   /// statement range in current switch instruction.
1030   llvm::BasicBlock *CaseRangeBlock;
1031 
1032   /// OpaqueLValues - Keeps track of the current set of opaque value
1033   /// expressions.
1034   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1035   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1036 
1037   // VLASizeMap - This keeps track of the associated size for each VLA type.
1038   // We track this by the size expression rather than the type itself because
1039   // in certain situations, like a const qualifier applied to an VLA typedef,
1040   // multiple VLA types can share the same size expression.
1041   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1042   // enter/leave scopes.
1043   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1044 
1045   /// A block containing a single 'unreachable' instruction.  Created
1046   /// lazily by getUnreachableBlock().
1047   llvm::BasicBlock *UnreachableBlock;
1048 
1049   /// Counts of the number return expressions in the function.
1050   unsigned NumReturnExprs;
1051 
1052   /// Count the number of simple (constant) return expressions in the function.
1053   unsigned NumSimpleReturnExprs;
1054 
1055   /// The last regular (non-return) debug location (breakpoint) in the function.
1056   SourceLocation LastStopPoint;
1057 
1058 public:
1059   /// A scope within which we are constructing the fields of an object which
1060   /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
1061   /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
1062   class FieldConstructionScope {
1063   public:
1064     FieldConstructionScope(CodeGenFunction &CGF, Address This)
1065         : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
1066       CGF.CXXDefaultInitExprThis = This;
1067     }
1068     ~FieldConstructionScope() {
1069       CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
1070     }
1071 
1072   private:
1073     CodeGenFunction &CGF;
1074     Address OldCXXDefaultInitExprThis;
1075   };
1076 
1077   /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
1078   /// is overridden to be the object under construction.
1079   class CXXDefaultInitExprScope {
1080   public:
1081     CXXDefaultInitExprScope(CodeGenFunction &CGF)
1082       : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue),
1083         OldCXXThisAlignment(CGF.CXXThisAlignment) {
1084       CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer();
1085       CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment();
1086     }
1087     ~CXXDefaultInitExprScope() {
1088       CGF.CXXThisValue = OldCXXThisValue;
1089       CGF.CXXThisAlignment = OldCXXThisAlignment;
1090     }
1091 
1092   public:
1093     CodeGenFunction &CGF;
1094     llvm::Value *OldCXXThisValue;
1095     CharUnits OldCXXThisAlignment;
1096   };
1097 
1098   class InlinedInheritingConstructorScope {
1099   public:
1100     InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD)
1101         : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl),
1102           OldCurCodeDecl(CGF.CurCodeDecl),
1103           OldCXXABIThisDecl(CGF.CXXABIThisDecl),
1104           OldCXXABIThisValue(CGF.CXXABIThisValue),
1105           OldCXXThisValue(CGF.CXXThisValue),
1106           OldCXXABIThisAlignment(CGF.CXXABIThisAlignment),
1107           OldCXXThisAlignment(CGF.CXXThisAlignment),
1108           OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy),
1109           OldCXXInheritedCtorInitExprArgs(
1110               std::move(CGF.CXXInheritedCtorInitExprArgs)) {
1111       CGF.CurGD = GD;
1112       CGF.CurFuncDecl = CGF.CurCodeDecl =
1113           cast<CXXConstructorDecl>(GD.getDecl());
1114       CGF.CXXABIThisDecl = nullptr;
1115       CGF.CXXABIThisValue = nullptr;
1116       CGF.CXXThisValue = nullptr;
1117       CGF.CXXABIThisAlignment = CharUnits();
1118       CGF.CXXThisAlignment = CharUnits();
1119       CGF.ReturnValue = Address::invalid();
1120       CGF.FnRetTy = QualType();
1121       CGF.CXXInheritedCtorInitExprArgs.clear();
1122     }
1123     ~InlinedInheritingConstructorScope() {
1124       CGF.CurGD = OldCurGD;
1125       CGF.CurFuncDecl = OldCurFuncDecl;
1126       CGF.CurCodeDecl = OldCurCodeDecl;
1127       CGF.CXXABIThisDecl = OldCXXABIThisDecl;
1128       CGF.CXXABIThisValue = OldCXXABIThisValue;
1129       CGF.CXXThisValue = OldCXXThisValue;
1130       CGF.CXXABIThisAlignment = OldCXXABIThisAlignment;
1131       CGF.CXXThisAlignment = OldCXXThisAlignment;
1132       CGF.ReturnValue = OldReturnValue;
1133       CGF.FnRetTy = OldFnRetTy;
1134       CGF.CXXInheritedCtorInitExprArgs =
1135           std::move(OldCXXInheritedCtorInitExprArgs);
1136     }
1137 
1138   private:
1139     CodeGenFunction &CGF;
1140     GlobalDecl OldCurGD;
1141     const Decl *OldCurFuncDecl;
1142     const Decl *OldCurCodeDecl;
1143     ImplicitParamDecl *OldCXXABIThisDecl;
1144     llvm::Value *OldCXXABIThisValue;
1145     llvm::Value *OldCXXThisValue;
1146     CharUnits OldCXXABIThisAlignment;
1147     CharUnits OldCXXThisAlignment;
1148     Address OldReturnValue;
1149     QualType OldFnRetTy;
1150     CallArgList OldCXXInheritedCtorInitExprArgs;
1151   };
1152 
1153 private:
1154   /// CXXThisDecl - When generating code for a C++ member function,
1155   /// this will hold the implicit 'this' declaration.
1156   ImplicitParamDecl *CXXABIThisDecl;
1157   llvm::Value *CXXABIThisValue;
1158   llvm::Value *CXXThisValue;
1159   CharUnits CXXABIThisAlignment;
1160   CharUnits CXXThisAlignment;
1161 
1162   /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
1163   /// this expression.
1164   Address CXXDefaultInitExprThis = Address::invalid();
1165 
1166   /// The values of function arguments to use when evaluating
1167   /// CXXInheritedCtorInitExprs within this context.
1168   CallArgList CXXInheritedCtorInitExprArgs;
1169 
1170   /// CXXStructorImplicitParamDecl - When generating code for a constructor or
1171   /// destructor, this will hold the implicit argument (e.g. VTT).
1172   ImplicitParamDecl *CXXStructorImplicitParamDecl;
1173   llvm::Value *CXXStructorImplicitParamValue;
1174 
1175   /// OutermostConditional - Points to the outermost active
1176   /// conditional control.  This is used so that we know if a
1177   /// temporary should be destroyed conditionally.
1178   ConditionalEvaluation *OutermostConditional;
1179 
1180   /// The current lexical scope.
1181   LexicalScope *CurLexicalScope;
1182 
1183   /// The current source location that should be used for exception
1184   /// handling code.
1185   SourceLocation CurEHLocation;
1186 
1187   /// BlockByrefInfos - For each __block variable, contains
1188   /// information about the layout of the variable.
1189   llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos;
1190 
1191   llvm::BasicBlock *TerminateLandingPad;
1192   llvm::BasicBlock *TerminateHandler;
1193   llvm::BasicBlock *TrapBB;
1194 
1195   /// True if we need emit the life-time markers.
1196   const bool ShouldEmitLifetimeMarkers;
1197 
1198   /// Add a kernel metadata node to the named metadata node 'opencl.kernels'.
1199   /// In the kernel metadata node, reference the kernel function and metadata
1200   /// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2):
1201   /// - A node for the vec_type_hint(<type>) qualifier contains string
1202   ///   "vec_type_hint", an undefined value of the <type> data type,
1203   ///   and a Boolean that is true if the <type> is integer and signed.
1204   /// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string
1205   ///   "work_group_size_hint", and three 32-bit integers X, Y and Z.
1206   /// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string
1207   ///   "reqd_work_group_size", and three 32-bit integers X, Y and Z.
1208   void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
1209                                 llvm::Function *Fn);
1210 
1211 public:
1212   CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1213   ~CodeGenFunction();
1214 
1215   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1216   ASTContext &getContext() const { return CGM.getContext(); }
1217   CGDebugInfo *getDebugInfo() {
1218     if (DisableDebugInfo)
1219       return nullptr;
1220     return DebugInfo;
1221   }
1222   void disableDebugInfo() { DisableDebugInfo = true; }
1223   void enableDebugInfo() { DisableDebugInfo = false; }
1224 
1225   bool shouldUseFusedARCCalls() {
1226     return CGM.getCodeGenOpts().OptimizationLevel == 0;
1227   }
1228 
1229   const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1230 
1231   /// Returns a pointer to the function's exception object and selector slot,
1232   /// which is assigned in every landing pad.
1233   Address getExceptionSlot();
1234   Address getEHSelectorSlot();
1235 
1236   /// Returns the contents of the function's exception object and selector
1237   /// slots.
1238   llvm::Value *getExceptionFromSlot();
1239   llvm::Value *getSelectorFromSlot();
1240 
1241   Address getNormalCleanupDestSlot();
1242 
1243   llvm::BasicBlock *getUnreachableBlock() {
1244     if (!UnreachableBlock) {
1245       UnreachableBlock = createBasicBlock("unreachable");
1246       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1247     }
1248     return UnreachableBlock;
1249   }
1250 
1251   llvm::BasicBlock *getInvokeDest() {
1252     if (!EHStack.requiresLandingPad()) return nullptr;
1253     return getInvokeDestImpl();
1254   }
1255 
1256   bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; }
1257 
1258   const TargetInfo &getTarget() const { return Target; }
1259   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1260 
1261   //===--------------------------------------------------------------------===//
1262   //                                  Cleanups
1263   //===--------------------------------------------------------------------===//
1264 
1265   typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty);
1266 
1267   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1268                                         Address arrayEndPointer,
1269                                         QualType elementType,
1270                                         CharUnits elementAlignment,
1271                                         Destroyer *destroyer);
1272   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1273                                       llvm::Value *arrayEnd,
1274                                       QualType elementType,
1275                                       CharUnits elementAlignment,
1276                                       Destroyer *destroyer);
1277 
1278   void pushDestroy(QualType::DestructionKind dtorKind,
1279                    Address addr, QualType type);
1280   void pushEHDestroy(QualType::DestructionKind dtorKind,
1281                      Address addr, QualType type);
1282   void pushDestroy(CleanupKind kind, Address addr, QualType type,
1283                    Destroyer *destroyer, bool useEHCleanupForArray);
1284   void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr,
1285                                    QualType type, Destroyer *destroyer,
1286                                    bool useEHCleanupForArray);
1287   void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1288                                    llvm::Value *CompletePtr,
1289                                    QualType ElementType);
1290   void pushStackRestore(CleanupKind kind, Address SPMem);
1291   void emitDestroy(Address addr, QualType type, Destroyer *destroyer,
1292                    bool useEHCleanupForArray);
1293   llvm::Function *generateDestroyHelper(Address addr, QualType type,
1294                                         Destroyer *destroyer,
1295                                         bool useEHCleanupForArray,
1296                                         const VarDecl *VD);
1297   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1298                         QualType elementType, CharUnits elementAlign,
1299                         Destroyer *destroyer,
1300                         bool checkZeroLength, bool useEHCleanup);
1301 
1302   Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1303 
1304   /// Determines whether an EH cleanup is required to destroy a type
1305   /// with the given destruction kind.
1306   bool needsEHCleanup(QualType::DestructionKind kind) {
1307     switch (kind) {
1308     case QualType::DK_none:
1309       return false;
1310     case QualType::DK_cxx_destructor:
1311     case QualType::DK_objc_weak_lifetime:
1312       return getLangOpts().Exceptions;
1313     case QualType::DK_objc_strong_lifetime:
1314       return getLangOpts().Exceptions &&
1315              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1316     }
1317     llvm_unreachable("bad destruction kind");
1318   }
1319 
1320   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
1321     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1322   }
1323 
1324   //===--------------------------------------------------------------------===//
1325   //                                  Objective-C
1326   //===--------------------------------------------------------------------===//
1327 
1328   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1329 
1330   void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
1331 
1332   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1333   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1334                           const ObjCPropertyImplDecl *PID);
1335   void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1336                               const ObjCPropertyImplDecl *propImpl,
1337                               const ObjCMethodDecl *GetterMothodDecl,
1338                               llvm::Constant *AtomicHelperFn);
1339 
1340   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1341                                   ObjCMethodDecl *MD, bool ctor);
1342 
1343   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1344   /// for the given property.
1345   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1346                           const ObjCPropertyImplDecl *PID);
1347   void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1348                               const ObjCPropertyImplDecl *propImpl,
1349                               llvm::Constant *AtomicHelperFn);
1350 
1351   //===--------------------------------------------------------------------===//
1352   //                                  Block Bits
1353   //===--------------------------------------------------------------------===//
1354 
1355   llvm::Value *EmitBlockLiteral(const BlockExpr *);
1356   llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
1357   static void destroyBlockInfos(CGBlockInfo *info);
1358 
1359   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1360                                         const CGBlockInfo &Info,
1361                                         const DeclMapTy &ldm,
1362                                         bool IsLambdaConversionToBlock);
1363 
1364   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1365   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1366   llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
1367                                              const ObjCPropertyImplDecl *PID);
1368   llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
1369                                              const ObjCPropertyImplDecl *PID);
1370   llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
1371 
1372   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
1373 
1374   class AutoVarEmission;
1375 
1376   void emitByrefStructureInit(const AutoVarEmission &emission);
1377   void enterByrefCleanup(const AutoVarEmission &emission);
1378 
1379   void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum,
1380                                 llvm::Value *ptr);
1381 
1382   Address LoadBlockStruct();
1383   Address GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
1384 
1385   /// BuildBlockByrefAddress - Computes the location of the
1386   /// data in a variable which is declared as __block.
1387   Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V,
1388                                 bool followForward = true);
1389   Address emitBlockByrefAddress(Address baseAddr,
1390                                 const BlockByrefInfo &info,
1391                                 bool followForward,
1392                                 const llvm::Twine &name);
1393 
1394   const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var);
1395 
1396   QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args);
1397 
1398   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1399                     const CGFunctionInfo &FnInfo);
1400   /// \brief Emit code for the start of a function.
1401   /// \param Loc       The location to be associated with the function.
1402   /// \param StartLoc  The location of the function body.
1403   void StartFunction(GlobalDecl GD,
1404                      QualType RetTy,
1405                      llvm::Function *Fn,
1406                      const CGFunctionInfo &FnInfo,
1407                      const FunctionArgList &Args,
1408                      SourceLocation Loc = SourceLocation(),
1409                      SourceLocation StartLoc = SourceLocation());
1410 
1411   void EmitConstructorBody(FunctionArgList &Args);
1412   void EmitDestructorBody(FunctionArgList &Args);
1413   void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
1414   void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body);
1415   void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S);
1416 
1417   void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
1418                                   CallArgList &CallArgs);
1419   void EmitLambdaToBlockPointerBody(FunctionArgList &Args);
1420   void EmitLambdaBlockInvokeBody();
1421   void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
1422   void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD);
1423   void EmitAsanPrologueOrEpilogue(bool Prologue);
1424 
1425   /// \brief Emit the unified return block, trying to avoid its emission when
1426   /// possible.
1427   /// \return The debug location of the user written return statement if the
1428   /// return block is is avoided.
1429   llvm::DebugLoc EmitReturnBlock();
1430 
1431   /// FinishFunction - Complete IR generation of the current function. It is
1432   /// legal to call this function even if there is no current insertion point.
1433   void FinishFunction(SourceLocation EndLoc=SourceLocation());
1434 
1435   void StartThunk(llvm::Function *Fn, GlobalDecl GD,
1436                   const CGFunctionInfo &FnInfo);
1437 
1438   void EmitCallAndReturnForThunk(llvm::Constant *Callee,
1439                                  const ThunkInfo *Thunk);
1440 
1441   void FinishThunk();
1442 
1443   /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
1444   void EmitMustTailThunk(const CXXMethodDecl *MD, llvm::Value *AdjustedThisPtr,
1445                          llvm::Value *Callee);
1446 
1447   /// Generate a thunk for the given method.
1448   void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1449                      GlobalDecl GD, const ThunkInfo &Thunk);
1450 
1451   llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn,
1452                                        const CGFunctionInfo &FnInfo,
1453                                        GlobalDecl GD, const ThunkInfo &Thunk);
1454 
1455   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1456                         FunctionArgList &Args);
1457 
1458   void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init,
1459                                ArrayRef<VarDecl *> ArrayIndexes);
1460 
1461   /// Struct with all informations about dynamic [sub]class needed to set vptr.
1462   struct VPtr {
1463     BaseSubobject Base;
1464     const CXXRecordDecl *NearestVBase;
1465     CharUnits OffsetFromNearestVBase;
1466     const CXXRecordDecl *VTableClass;
1467   };
1468 
1469   /// Initialize the vtable pointer of the given subobject.
1470   void InitializeVTablePointer(const VPtr &vptr);
1471 
1472   typedef llvm::SmallVector<VPtr, 4> VPtrsVector;
1473 
1474   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1475   VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass);
1476 
1477   void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase,
1478                          CharUnits OffsetFromNearestVBase,
1479                          bool BaseIsNonVirtualPrimaryBase,
1480                          const CXXRecordDecl *VTableClass,
1481                          VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs);
1482 
1483   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1484 
1485   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1486   /// to by This.
1487   llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy,
1488                             const CXXRecordDecl *VTableClass);
1489 
1490   enum CFITypeCheckKind {
1491     CFITCK_VCall,
1492     CFITCK_NVCall,
1493     CFITCK_DerivedCast,
1494     CFITCK_UnrelatedCast,
1495     CFITCK_ICall,
1496   };
1497 
1498   /// \brief Derived is the presumed address of an object of type T after a
1499   /// cast. If T is a polymorphic class type, emit a check that the virtual
1500   /// table for Derived belongs to a class derived from T.
1501   void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived,
1502                                  bool MayBeNull, CFITypeCheckKind TCK,
1503                                  SourceLocation Loc);
1504 
1505   /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
1506   /// If vptr CFI is enabled, emit a check that VTable is valid.
1507   void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable,
1508                                  CFITypeCheckKind TCK, SourceLocation Loc);
1509 
1510   /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
1511   /// RD using llvm.type.test.
1512   void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable,
1513                           CFITypeCheckKind TCK, SourceLocation Loc);
1514 
1515   /// If whole-program virtual table optimization is enabled, emit an assumption
1516   /// that VTable is a member of RD's type identifier. Or, if vptr CFI is
1517   /// enabled, emit a check that VTable is a member of RD's type identifier.
1518   void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
1519                                     llvm::Value *VTable, SourceLocation Loc);
1520 
1521   /// Returns whether we should perform a type checked load when loading a
1522   /// virtual function for virtual calls to members of RD. This is generally
1523   /// true when both vcall CFI and whole-program-vtables are enabled.
1524   bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD);
1525 
1526   /// Emit a type checked load from the given vtable.
1527   llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable,
1528                                          uint64_t VTableByteOffset);
1529 
1530   /// CanDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given
1531   /// expr can be devirtualized.
1532   bool CanDevirtualizeMemberFunctionCall(const Expr *Base,
1533                                          const CXXMethodDecl *MD);
1534 
1535   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1536   /// given phase of destruction for a destructor.  The end result
1537   /// should call destructors on members and base classes in reverse
1538   /// order of their construction.
1539   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1540 
1541   /// ShouldInstrumentFunction - Return true if the current function should be
1542   /// instrumented with __cyg_profile_func_* calls
1543   bool ShouldInstrumentFunction();
1544 
1545   /// ShouldXRayInstrument - Return true if the current function should be
1546   /// instrumented with XRay nop sleds.
1547   bool ShouldXRayInstrumentFunction() const;
1548 
1549   /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
1550   /// instrumentation function with the current function and the call site, if
1551   /// function instrumentation is enabled.
1552   void EmitFunctionInstrumentation(const char *Fn);
1553 
1554   /// EmitMCountInstrumentation - Emit call to .mcount.
1555   void EmitMCountInstrumentation();
1556 
1557   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1558   /// arguments for the given function. This is also responsible for naming the
1559   /// LLVM function arguments.
1560   void EmitFunctionProlog(const CGFunctionInfo &FI,
1561                           llvm::Function *Fn,
1562                           const FunctionArgList &Args);
1563 
1564   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1565   /// given temporary.
1566   void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
1567                           SourceLocation EndLoc);
1568 
1569   /// EmitStartEHSpec - Emit the start of the exception spec.
1570   void EmitStartEHSpec(const Decl *D);
1571 
1572   /// EmitEndEHSpec - Emit the end of the exception spec.
1573   void EmitEndEHSpec(const Decl *D);
1574 
1575   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
1576   llvm::BasicBlock *getTerminateLandingPad();
1577 
1578   /// getTerminateHandler - Return a handler (not a landing pad, just
1579   /// a catch handler) that just calls terminate.  This is used when
1580   /// a terminate scope encloses a try.
1581   llvm::BasicBlock *getTerminateHandler();
1582 
1583   llvm::Type *ConvertTypeForMem(QualType T);
1584   llvm::Type *ConvertType(QualType T);
1585   llvm::Type *ConvertType(const TypeDecl *T) {
1586     return ConvertType(getContext().getTypeDeclType(T));
1587   }
1588 
1589   /// LoadObjCSelf - Load the value of self. This function is only valid while
1590   /// generating code for an Objective-C method.
1591   llvm::Value *LoadObjCSelf();
1592 
1593   /// TypeOfSelfObject - Return type of object that this self represents.
1594   QualType TypeOfSelfObject();
1595 
1596   /// hasAggregateLLVMType - Return true if the specified AST type will map into
1597   /// an aggregate LLVM type or is void.
1598   static TypeEvaluationKind getEvaluationKind(QualType T);
1599 
1600   static bool hasScalarEvaluationKind(QualType T) {
1601     return getEvaluationKind(T) == TEK_Scalar;
1602   }
1603 
1604   static bool hasAggregateEvaluationKind(QualType T) {
1605     return getEvaluationKind(T) == TEK_Aggregate;
1606   }
1607 
1608   /// createBasicBlock - Create an LLVM basic block.
1609   llvm::BasicBlock *createBasicBlock(const Twine &name = "",
1610                                      llvm::Function *parent = nullptr,
1611                                      llvm::BasicBlock *before = nullptr) {
1612 #ifdef NDEBUG
1613     return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
1614 #else
1615     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
1616 #endif
1617   }
1618 
1619   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
1620   /// label maps to.
1621   JumpDest getJumpDestForLabel(const LabelDecl *S);
1622 
1623   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
1624   /// another basic block, simplify it. This assumes that no other code could
1625   /// potentially reference the basic block.
1626   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
1627 
1628   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
1629   /// adding a fall-through branch from the current insert block if
1630   /// necessary. It is legal to call this function even if there is no current
1631   /// insertion point.
1632   ///
1633   /// IsFinished - If true, indicates that the caller has finished emitting
1634   /// branches to the given block and does not expect to emit code into it. This
1635   /// means the block can be ignored if it is unreachable.
1636   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
1637 
1638   /// EmitBlockAfterUses - Emit the given block somewhere hopefully
1639   /// near its uses, and leave the insertion point in it.
1640   void EmitBlockAfterUses(llvm::BasicBlock *BB);
1641 
1642   /// EmitBranch - Emit a branch to the specified basic block from the current
1643   /// insert block, taking care to avoid creation of branches from dummy
1644   /// blocks. It is legal to call this function even if there is no current
1645   /// insertion point.
1646   ///
1647   /// This function clears the current insertion point. The caller should follow
1648   /// calls to this function with calls to Emit*Block prior to generation new
1649   /// code.
1650   void EmitBranch(llvm::BasicBlock *Block);
1651 
1652   /// HaveInsertPoint - True if an insertion point is defined. If not, this
1653   /// indicates that the current code being emitted is unreachable.
1654   bool HaveInsertPoint() const {
1655     return Builder.GetInsertBlock() != nullptr;
1656   }
1657 
1658   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
1659   /// emitted IR has a place to go. Note that by definition, if this function
1660   /// creates a block then that block is unreachable; callers may do better to
1661   /// detect when no insertion point is defined and simply skip IR generation.
1662   void EnsureInsertPoint() {
1663     if (!HaveInsertPoint())
1664       EmitBlock(createBasicBlock());
1665   }
1666 
1667   /// ErrorUnsupported - Print out an error that codegen doesn't support the
1668   /// specified stmt yet.
1669   void ErrorUnsupported(const Stmt *S, const char *Type);
1670 
1671   //===--------------------------------------------------------------------===//
1672   //                                  Helpers
1673   //===--------------------------------------------------------------------===//
1674 
1675   LValue MakeAddrLValue(Address Addr, QualType T,
1676                         AlignmentSource AlignSource = AlignmentSource::Type) {
1677     return LValue::MakeAddr(Addr, T, getContext(), AlignSource,
1678                             CGM.getTBAAInfo(T));
1679   }
1680 
1681   LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
1682                         AlignmentSource AlignSource = AlignmentSource::Type) {
1683     return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
1684                             AlignSource, CGM.getTBAAInfo(T));
1685   }
1686 
1687   LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T);
1688   LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T);
1689   CharUnits getNaturalTypeAlignment(QualType T,
1690                                     AlignmentSource *Source = nullptr,
1691                                     bool forPointeeType = false);
1692   CharUnits getNaturalPointeeTypeAlignment(QualType T,
1693                                            AlignmentSource *Source = nullptr);
1694 
1695   Address EmitLoadOfReference(Address Ref, const ReferenceType *RefTy,
1696                               AlignmentSource *Source = nullptr);
1697   LValue EmitLoadOfReferenceLValue(Address Ref, const ReferenceType *RefTy);
1698 
1699   Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy,
1700                             AlignmentSource *Source = nullptr);
1701   LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy);
1702 
1703   /// CreateTempAlloca - This creates a alloca and inserts it into the entry
1704   /// block. The caller is responsible for setting an appropriate alignment on
1705   /// the alloca.
1706   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty,
1707                                      const Twine &Name = "tmp");
1708   Address CreateTempAlloca(llvm::Type *Ty, CharUnits align,
1709                            const Twine &Name = "tmp");
1710 
1711   /// CreateDefaultAlignedTempAlloca - This creates an alloca with the
1712   /// default ABI alignment of the given LLVM type.
1713   ///
1714   /// IMPORTANT NOTE: This is *not* generally the right alignment for
1715   /// any given AST type that happens to have been lowered to the
1716   /// given IR type.  This should only ever be used for function-local,
1717   /// IR-driven manipulations like saving and restoring a value.  Do
1718   /// not hand this address off to arbitrary IRGen routines, and especially
1719   /// do not pass it as an argument to a function that might expect a
1720   /// properly ABI-aligned value.
1721   Address CreateDefaultAlignTempAlloca(llvm::Type *Ty,
1722                                        const Twine &Name = "tmp");
1723 
1724   /// InitTempAlloca - Provide an initial value for the given alloca which
1725   /// will be observable at all locations in the function.
1726   ///
1727   /// The address should be something that was returned from one of
1728   /// the CreateTempAlloca or CreateMemTemp routines, and the
1729   /// initializer must be valid in the entry block (i.e. it must
1730   /// either be a constant or an argument value).
1731   void InitTempAlloca(Address Alloca, llvm::Value *Value);
1732 
1733   /// CreateIRTemp - Create a temporary IR object of the given type, with
1734   /// appropriate alignment. This routine should only be used when an temporary
1735   /// value needs to be stored into an alloca (for example, to avoid explicit
1736   /// PHI construction), but the type is the IR type, not the type appropriate
1737   /// for storing in memory.
1738   ///
1739   /// That is, this is exactly equivalent to CreateMemTemp, but calling
1740   /// ConvertType instead of ConvertTypeForMem.
1741   Address CreateIRTemp(QualType T, const Twine &Name = "tmp");
1742 
1743   /// CreateMemTemp - Create a temporary memory object of the given type, with
1744   /// appropriate alignment.
1745   Address CreateMemTemp(QualType T, const Twine &Name = "tmp");
1746   Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp");
1747 
1748   /// CreateAggTemp - Create a temporary memory object for the given
1749   /// aggregate type.
1750   AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
1751     return AggValueSlot::forAddr(CreateMemTemp(T, Name),
1752                                  T.getQualifiers(),
1753                                  AggValueSlot::IsNotDestructed,
1754                                  AggValueSlot::DoesNotNeedGCBarriers,
1755                                  AggValueSlot::IsNotAliased);
1756   }
1757 
1758   /// Emit a cast to void* in the appropriate address space.
1759   llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
1760 
1761   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
1762   /// expression and compare the result against zero, returning an Int1Ty value.
1763   llvm::Value *EvaluateExprAsBool(const Expr *E);
1764 
1765   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
1766   void EmitIgnoredExpr(const Expr *E);
1767 
1768   /// EmitAnyExpr - Emit code to compute the specified expression which can have
1769   /// any type.  The result is returned as an RValue struct.  If this is an
1770   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
1771   /// the result should be returned.
1772   ///
1773   /// \param ignoreResult True if the resulting value isn't used.
1774   RValue EmitAnyExpr(const Expr *E,
1775                      AggValueSlot aggSlot = AggValueSlot::ignored(),
1776                      bool ignoreResult = false);
1777 
1778   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
1779   // or the value of the expression, depending on how va_list is defined.
1780   Address EmitVAListRef(const Expr *E);
1781 
1782   /// Emit a "reference" to a __builtin_ms_va_list; this is
1783   /// always the value of the expression, because a __builtin_ms_va_list is a
1784   /// pointer to a char.
1785   Address EmitMSVAListRef(const Expr *E);
1786 
1787   /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
1788   /// always be accessible even if no aggregate location is provided.
1789   RValue EmitAnyExprToTemp(const Expr *E);
1790 
1791   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
1792   /// arbitrary expression into the given memory location.
1793   void EmitAnyExprToMem(const Expr *E, Address Location,
1794                         Qualifiers Quals, bool IsInitializer);
1795 
1796   void EmitAnyExprToExn(const Expr *E, Address Addr);
1797 
1798   /// EmitExprAsInit - Emits the code necessary to initialize a
1799   /// location in memory with the given initializer.
1800   void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
1801                       bool capturedByInit);
1802 
1803   /// hasVolatileMember - returns true if aggregate type has a volatile
1804   /// member.
1805   bool hasVolatileMember(QualType T) {
1806     if (const RecordType *RT = T->getAs<RecordType>()) {
1807       const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
1808       return RD->hasVolatileMember();
1809     }
1810     return false;
1811   }
1812   /// EmitAggregateCopy - Emit an aggregate assignment.
1813   ///
1814   /// The difference to EmitAggregateCopy is that tail padding is not copied.
1815   /// This is required for correctness when assigning non-POD structures in C++.
1816   void EmitAggregateAssign(Address DestPtr, Address SrcPtr,
1817                            QualType EltTy) {
1818     bool IsVolatile = hasVolatileMember(EltTy);
1819     EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, true);
1820   }
1821 
1822   void EmitAggregateCopyCtor(Address DestPtr, Address SrcPtr,
1823                              QualType DestTy, QualType SrcTy) {
1824     EmitAggregateCopy(DestPtr, SrcPtr, SrcTy, /*IsVolatile=*/false,
1825                       /*IsAssignment=*/false);
1826   }
1827 
1828   /// EmitAggregateCopy - Emit an aggregate copy.
1829   ///
1830   /// \param isVolatile - True iff either the source or the destination is
1831   /// volatile.
1832   /// \param isAssignment - If false, allow padding to be copied.  This often
1833   /// yields more efficient.
1834   void EmitAggregateCopy(Address DestPtr, Address SrcPtr,
1835                          QualType EltTy, bool isVolatile=false,
1836                          bool isAssignment = false);
1837 
1838   /// GetAddrOfLocalVar - Return the address of a local variable.
1839   Address GetAddrOfLocalVar(const VarDecl *VD) {
1840     auto it = LocalDeclMap.find(VD);
1841     assert(it != LocalDeclMap.end() &&
1842            "Invalid argument to GetAddrOfLocalVar(), no decl!");
1843     return it->second;
1844   }
1845 
1846   /// getOpaqueLValueMapping - Given an opaque value expression (which
1847   /// must be mapped to an l-value), return its mapping.
1848   const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
1849     assert(OpaqueValueMapping::shouldBindAsLValue(e));
1850 
1851     llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
1852       it = OpaqueLValues.find(e);
1853     assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
1854     return it->second;
1855   }
1856 
1857   /// getOpaqueRValueMapping - Given an opaque value expression (which
1858   /// must be mapped to an r-value), return its mapping.
1859   const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
1860     assert(!OpaqueValueMapping::shouldBindAsLValue(e));
1861 
1862     llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
1863       it = OpaqueRValues.find(e);
1864     assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
1865     return it->second;
1866   }
1867 
1868   /// getAccessedFieldNo - Given an encoded value and a result number, return
1869   /// the input field number being accessed.
1870   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
1871 
1872   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
1873   llvm::BasicBlock *GetIndirectGotoBlock();
1874 
1875   /// EmitNullInitialization - Generate code to set a value of the given type to
1876   /// null, If the type contains data member pointers, they will be initialized
1877   /// to -1 in accordance with the Itanium C++ ABI.
1878   void EmitNullInitialization(Address DestPtr, QualType Ty);
1879 
1880   /// Emits a call to an LLVM variable-argument intrinsic, either
1881   /// \c llvm.va_start or \c llvm.va_end.
1882   /// \param ArgValue A reference to the \c va_list as emitted by either
1883   /// \c EmitVAListRef or \c EmitMSVAListRef.
1884   /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise,
1885   /// calls \c llvm.va_end.
1886   llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart);
1887 
1888   /// Generate code to get an argument from the passed in pointer
1889   /// and update it accordingly.
1890   /// \param VE The \c VAArgExpr for which to generate code.
1891   /// \param VAListAddr Receives a reference to the \c va_list as emitted by
1892   /// either \c EmitVAListRef or \c EmitMSVAListRef.
1893   /// \returns A pointer to the argument.
1894   // FIXME: We should be able to get rid of this method and use the va_arg
1895   // instruction in LLVM instead once it works well enough.
1896   Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr);
1897 
1898   /// emitArrayLength - Compute the length of an array, even if it's a
1899   /// VLA, and drill down to the base element type.
1900   llvm::Value *emitArrayLength(const ArrayType *arrayType,
1901                                QualType &baseType,
1902                                Address &addr);
1903 
1904   /// EmitVLASize - Capture all the sizes for the VLA expressions in
1905   /// the given variably-modified type and store them in the VLASizeMap.
1906   ///
1907   /// This function can be called with a null (unreachable) insert point.
1908   void EmitVariablyModifiedType(QualType Ty);
1909 
1910   /// getVLASize - Returns an LLVM value that corresponds to the size,
1911   /// in non-variably-sized elements, of a variable length array type,
1912   /// plus that largest non-variably-sized element type.  Assumes that
1913   /// the type has already been emitted with EmitVariablyModifiedType.
1914   std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla);
1915   std::pair<llvm::Value*,QualType> getVLASize(QualType vla);
1916 
1917   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
1918   /// generating code for an C++ member function.
1919   llvm::Value *LoadCXXThis() {
1920     assert(CXXThisValue && "no 'this' value for this function");
1921     return CXXThisValue;
1922   }
1923   Address LoadCXXThisAddress();
1924 
1925   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
1926   /// virtual bases.
1927   // FIXME: Every place that calls LoadCXXVTT is something
1928   // that needs to be abstracted properly.
1929   llvm::Value *LoadCXXVTT() {
1930     assert(CXXStructorImplicitParamValue && "no VTT value for this function");
1931     return CXXStructorImplicitParamValue;
1932   }
1933 
1934   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
1935   /// complete class to the given direct base.
1936   Address
1937   GetAddressOfDirectBaseInCompleteClass(Address Value,
1938                                         const CXXRecordDecl *Derived,
1939                                         const CXXRecordDecl *Base,
1940                                         bool BaseIsVirtual);
1941 
1942   static bool ShouldNullCheckClassCastValue(const CastExpr *Cast);
1943 
1944   /// GetAddressOfBaseClass - This function will add the necessary delta to the
1945   /// load of 'this' and returns address of the base class.
1946   Address GetAddressOfBaseClass(Address Value,
1947                                 const CXXRecordDecl *Derived,
1948                                 CastExpr::path_const_iterator PathBegin,
1949                                 CastExpr::path_const_iterator PathEnd,
1950                                 bool NullCheckValue, SourceLocation Loc);
1951 
1952   Address GetAddressOfDerivedClass(Address Value,
1953                                    const CXXRecordDecl *Derived,
1954                                    CastExpr::path_const_iterator PathBegin,
1955                                    CastExpr::path_const_iterator PathEnd,
1956                                    bool NullCheckValue);
1957 
1958   /// GetVTTParameter - Return the VTT parameter that should be passed to a
1959   /// base constructor/destructor with virtual bases.
1960   /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
1961   /// to ItaniumCXXABI.cpp together with all the references to VTT.
1962   llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
1963                                bool Delegating);
1964 
1965   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
1966                                       CXXCtorType CtorType,
1967                                       const FunctionArgList &Args,
1968                                       SourceLocation Loc);
1969   // It's important not to confuse this and the previous function. Delegating
1970   // constructors are the C++0x feature. The constructor delegate optimization
1971   // is used to reduce duplication in the base and complete consturctors where
1972   // they are substantially the same.
1973   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
1974                                         const FunctionArgList &Args);
1975 
1976   /// Emit a call to an inheriting constructor (that is, one that invokes a
1977   /// constructor inherited from a base class) by inlining its definition. This
1978   /// is necessary if the ABI does not support forwarding the arguments to the
1979   /// base class constructor (because they're variadic or similar).
1980   void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor,
1981                                                CXXCtorType CtorType,
1982                                                bool ForVirtualBase,
1983                                                bool Delegating,
1984                                                CallArgList &Args);
1985 
1986   /// Emit a call to a constructor inherited from a base class, passing the
1987   /// current constructor's arguments along unmodified (without even making
1988   /// a copy).
1989   void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D,
1990                                        bool ForVirtualBase, Address This,
1991                                        bool InheritedFromVBase,
1992                                        const CXXInheritedCtorInitExpr *E);
1993 
1994   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
1995                               bool ForVirtualBase, bool Delegating,
1996                               Address This, const CXXConstructExpr *E);
1997 
1998   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
1999                               bool ForVirtualBase, bool Delegating,
2000                               Address This, CallArgList &Args);
2001 
2002   /// Emit assumption load for all bases. Requires to be be called only on
2003   /// most-derived class and not under construction of the object.
2004   void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This);
2005 
2006   /// Emit assumption that vptr load == global vtable.
2007   void EmitVTableAssumptionLoad(const VPtr &vptr, Address This);
2008 
2009   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
2010                                       Address This, Address Src,
2011                                       const CXXConstructExpr *E);
2012 
2013   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2014                                   const ArrayType *ArrayTy,
2015                                   Address ArrayPtr,
2016                                   const CXXConstructExpr *E,
2017                                   bool ZeroInitialization = false);
2018 
2019   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2020                                   llvm::Value *NumElements,
2021                                   Address ArrayPtr,
2022                                   const CXXConstructExpr *E,
2023                                   bool ZeroInitialization = false);
2024 
2025   static Destroyer destroyCXXObject;
2026 
2027   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
2028                              bool ForVirtualBase, bool Delegating,
2029                              Address This);
2030 
2031   void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
2032                                llvm::Type *ElementTy, Address NewPtr,
2033                                llvm::Value *NumElements,
2034                                llvm::Value *AllocSizeWithoutCookie);
2035 
2036   void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
2037                         Address Ptr);
2038 
2039   llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr);
2040   void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr);
2041 
2042   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
2043   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
2044 
2045   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
2046                       QualType DeleteTy, llvm::Value *NumElements = nullptr,
2047                       CharUnits CookieSize = CharUnits());
2048 
2049   RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
2050                                   const Expr *Arg, bool IsDelete);
2051 
2052   llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E);
2053   llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE);
2054   Address EmitCXXUuidofExpr(const CXXUuidofExpr *E);
2055 
2056   /// \brief Situations in which we might emit a check for the suitability of a
2057   ///        pointer or glvalue.
2058   enum TypeCheckKind {
2059     /// Checking the operand of a load. Must be suitably sized and aligned.
2060     TCK_Load,
2061     /// Checking the destination of a store. Must be suitably sized and aligned.
2062     TCK_Store,
2063     /// Checking the bound value in a reference binding. Must be suitably sized
2064     /// and aligned, but is not required to refer to an object (until the
2065     /// reference is used), per core issue 453.
2066     TCK_ReferenceBinding,
2067     /// Checking the object expression in a non-static data member access. Must
2068     /// be an object within its lifetime.
2069     TCK_MemberAccess,
2070     /// Checking the 'this' pointer for a call to a non-static member function.
2071     /// Must be an object within its lifetime.
2072     TCK_MemberCall,
2073     /// Checking the 'this' pointer for a constructor call.
2074     TCK_ConstructorCall,
2075     /// Checking the operand of a static_cast to a derived pointer type. Must be
2076     /// null or an object within its lifetime.
2077     TCK_DowncastPointer,
2078     /// Checking the operand of a static_cast to a derived reference type. Must
2079     /// be an object within its lifetime.
2080     TCK_DowncastReference,
2081     /// Checking the operand of a cast to a base object. Must be suitably sized
2082     /// and aligned.
2083     TCK_Upcast,
2084     /// Checking the operand of a cast to a virtual base object. Must be an
2085     /// object within its lifetime.
2086     TCK_UpcastToVirtualBase
2087   };
2088 
2089   /// \brief Whether any type-checking sanitizers are enabled. If \c false,
2090   /// calls to EmitTypeCheck can be skipped.
2091   bool sanitizePerformTypeCheck() const;
2092 
2093   /// \brief Emit a check that \p V is the address of storage of the
2094   /// appropriate size and alignment for an object of type \p Type.
2095   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
2096                      QualType Type, CharUnits Alignment = CharUnits::Zero(),
2097                      bool SkipNullCheck = false);
2098 
2099   /// \brief Emit a check that \p Base points into an array object, which
2100   /// we can access at index \p Index. \p Accessed should be \c false if we
2101   /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
2102   void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
2103                        QualType IndexType, bool Accessed);
2104 
2105   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2106                                        bool isInc, bool isPre);
2107   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
2108                                          bool isInc, bool isPre);
2109 
2110   void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment,
2111                                llvm::Value *OffsetValue = nullptr) {
2112     Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment,
2113                                       OffsetValue);
2114   }
2115 
2116   /// Converts Location to a DebugLoc, if debug information is enabled.
2117   llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location);
2118 
2119 
2120   //===--------------------------------------------------------------------===//
2121   //                            Declaration Emission
2122   //===--------------------------------------------------------------------===//
2123 
2124   /// EmitDecl - Emit a declaration.
2125   ///
2126   /// This function can be called with a null (unreachable) insert point.
2127   void EmitDecl(const Decl &D);
2128 
2129   /// EmitVarDecl - Emit a local variable declaration.
2130   ///
2131   /// This function can be called with a null (unreachable) insert point.
2132   void EmitVarDecl(const VarDecl &D);
2133 
2134   void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2135                       bool capturedByInit);
2136 
2137   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
2138                              llvm::Value *Address);
2139 
2140   /// \brief Determine whether the given initializer is trivial in the sense
2141   /// that it requires no code to be generated.
2142   bool isTrivialInitializer(const Expr *Init);
2143 
2144   /// EmitAutoVarDecl - Emit an auto variable declaration.
2145   ///
2146   /// This function can be called with a null (unreachable) insert point.
2147   void EmitAutoVarDecl(const VarDecl &D);
2148 
2149   class AutoVarEmission {
2150     friend class CodeGenFunction;
2151 
2152     const VarDecl *Variable;
2153 
2154     /// The address of the alloca.  Invalid if the variable was emitted
2155     /// as a global constant.
2156     Address Addr;
2157 
2158     llvm::Value *NRVOFlag;
2159 
2160     /// True if the variable is a __block variable.
2161     bool IsByRef;
2162 
2163     /// True if the variable is of aggregate type and has a constant
2164     /// initializer.
2165     bool IsConstantAggregate;
2166 
2167     /// Non-null if we should use lifetime annotations.
2168     llvm::Value *SizeForLifetimeMarkers;
2169 
2170     struct Invalid {};
2171     AutoVarEmission(Invalid) : Variable(nullptr), Addr(Address::invalid()) {}
2172 
2173     AutoVarEmission(const VarDecl &variable)
2174       : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr),
2175         IsByRef(false), IsConstantAggregate(false),
2176         SizeForLifetimeMarkers(nullptr) {}
2177 
2178     bool wasEmittedAsGlobal() const { return !Addr.isValid(); }
2179 
2180   public:
2181     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
2182 
2183     bool useLifetimeMarkers() const {
2184       return SizeForLifetimeMarkers != nullptr;
2185     }
2186     llvm::Value *getSizeForLifetimeMarkers() const {
2187       assert(useLifetimeMarkers());
2188       return SizeForLifetimeMarkers;
2189     }
2190 
2191     /// Returns the raw, allocated address, which is not necessarily
2192     /// the address of the object itself.
2193     Address getAllocatedAddress() const {
2194       return Addr;
2195     }
2196 
2197     /// Returns the address of the object within this declaration.
2198     /// Note that this does not chase the forwarding pointer for
2199     /// __block decls.
2200     Address getObjectAddress(CodeGenFunction &CGF) const {
2201       if (!IsByRef) return Addr;
2202 
2203       return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false);
2204     }
2205   };
2206   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
2207   void EmitAutoVarInit(const AutoVarEmission &emission);
2208   void EmitAutoVarCleanups(const AutoVarEmission &emission);
2209   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
2210                               QualType::DestructionKind dtorKind);
2211 
2212   void EmitStaticVarDecl(const VarDecl &D,
2213                          llvm::GlobalValue::LinkageTypes Linkage);
2214 
2215   class ParamValue {
2216     llvm::Value *Value;
2217     unsigned Alignment;
2218     ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {}
2219   public:
2220     static ParamValue forDirect(llvm::Value *value) {
2221       return ParamValue(value, 0);
2222     }
2223     static ParamValue forIndirect(Address addr) {
2224       assert(!addr.getAlignment().isZero());
2225       return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity());
2226     }
2227 
2228     bool isIndirect() const { return Alignment != 0; }
2229     llvm::Value *getAnyValue() const { return Value; }
2230 
2231     llvm::Value *getDirectValue() const {
2232       assert(!isIndirect());
2233       return Value;
2234     }
2235 
2236     Address getIndirectAddress() const {
2237       assert(isIndirect());
2238       return Address(Value, CharUnits::fromQuantity(Alignment));
2239     }
2240   };
2241 
2242   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
2243   void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo);
2244 
2245   /// protectFromPeepholes - Protect a value that we're intending to
2246   /// store to the side, but which will probably be used later, from
2247   /// aggressive peepholing optimizations that might delete it.
2248   ///
2249   /// Pass the result to unprotectFromPeepholes to declare that
2250   /// protection is no longer required.
2251   ///
2252   /// There's no particular reason why this shouldn't apply to
2253   /// l-values, it's just that no existing peepholes work on pointers.
2254   PeepholeProtection protectFromPeepholes(RValue rvalue);
2255   void unprotectFromPeepholes(PeepholeProtection protection);
2256 
2257   //===--------------------------------------------------------------------===//
2258   //                             Statement Emission
2259   //===--------------------------------------------------------------------===//
2260 
2261   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
2262   void EmitStopPoint(const Stmt *S);
2263 
2264   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
2265   /// this function even if there is no current insertion point.
2266   ///
2267   /// This function may clear the current insertion point; callers should use
2268   /// EnsureInsertPoint if they wish to subsequently generate code without first
2269   /// calling EmitBlock, EmitBranch, or EmitStmt.
2270   void EmitStmt(const Stmt *S);
2271 
2272   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
2273   /// necessarily require an insertion point or debug information; typically
2274   /// because the statement amounts to a jump or a container of other
2275   /// statements.
2276   ///
2277   /// \return True if the statement was handled.
2278   bool EmitSimpleStmt(const Stmt *S);
2279 
2280   Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
2281                            AggValueSlot AVS = AggValueSlot::ignored());
2282   Address EmitCompoundStmtWithoutScope(const CompoundStmt &S,
2283                                        bool GetLast = false,
2284                                        AggValueSlot AVS =
2285                                                 AggValueSlot::ignored());
2286 
2287   /// EmitLabel - Emit the block for the given label. It is legal to call this
2288   /// function even if there is no current insertion point.
2289   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
2290 
2291   void EmitLabelStmt(const LabelStmt &S);
2292   void EmitAttributedStmt(const AttributedStmt &S);
2293   void EmitGotoStmt(const GotoStmt &S);
2294   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
2295   void EmitIfStmt(const IfStmt &S);
2296 
2297   void EmitWhileStmt(const WhileStmt &S,
2298                      ArrayRef<const Attr *> Attrs = None);
2299   void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None);
2300   void EmitForStmt(const ForStmt &S,
2301                    ArrayRef<const Attr *> Attrs = None);
2302   void EmitReturnStmt(const ReturnStmt &S);
2303   void EmitDeclStmt(const DeclStmt &S);
2304   void EmitBreakStmt(const BreakStmt &S);
2305   void EmitContinueStmt(const ContinueStmt &S);
2306   void EmitSwitchStmt(const SwitchStmt &S);
2307   void EmitDefaultStmt(const DefaultStmt &S);
2308   void EmitCaseStmt(const CaseStmt &S);
2309   void EmitCaseStmtRange(const CaseStmt &S);
2310   void EmitAsmStmt(const AsmStmt &S);
2311 
2312   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
2313   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
2314   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
2315   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
2316   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
2317 
2318   void EmitCoroutineBody(const CoroutineBodyStmt &S);
2319   RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID);
2320 
2321   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2322   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2323 
2324   void EmitCXXTryStmt(const CXXTryStmt &S);
2325   void EmitSEHTryStmt(const SEHTryStmt &S);
2326   void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
2327   void EnterSEHTryStmt(const SEHTryStmt &S);
2328   void ExitSEHTryStmt(const SEHTryStmt &S);
2329 
2330   void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter,
2331                               const Stmt *OutlinedStmt);
2332 
2333   llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
2334                                             const SEHExceptStmt &Except);
2335 
2336   llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF,
2337                                              const SEHFinallyStmt &Finally);
2338 
2339   void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF,
2340                                 llvm::Value *ParentFP,
2341                                 llvm::Value *EntryEBP);
2342   llvm::Value *EmitSEHExceptionCode();
2343   llvm::Value *EmitSEHExceptionInfo();
2344   llvm::Value *EmitSEHAbnormalTermination();
2345 
2346   /// Scan the outlined statement for captures from the parent function. For
2347   /// each capture, mark the capture as escaped and emit a call to
2348   /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap.
2349   void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
2350                           bool IsFilter);
2351 
2352   /// Recovers the address of a local in a parent function. ParentVar is the
2353   /// address of the variable used in the immediate parent function. It can
2354   /// either be an alloca or a call to llvm.localrecover if there are nested
2355   /// outlined functions. ParentFP is the frame pointer of the outermost parent
2356   /// frame.
2357   Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF,
2358                                     Address ParentVar,
2359                                     llvm::Value *ParentFP);
2360 
2361   void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
2362                            ArrayRef<const Attr *> Attrs = None);
2363 
2364   /// Returns calculated size of the specified type.
2365   llvm::Value *getTypeSize(QualType Ty);
2366   LValue InitCapturedStruct(const CapturedStmt &S);
2367   llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
2368   llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
2369   Address GenerateCapturedStmtArgument(const CapturedStmt &S);
2370   llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S);
2371   void GenerateOpenMPCapturedVars(const CapturedStmt &S,
2372                                   SmallVectorImpl<llvm::Value *> &CapturedVars);
2373   void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy,
2374                           SourceLocation Loc);
2375   /// \brief Perform element by element copying of arrays with type \a
2376   /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
2377   /// generated by \a CopyGen.
2378   ///
2379   /// \param DestAddr Address of the destination array.
2380   /// \param SrcAddr Address of the source array.
2381   /// \param OriginalType Type of destination and source arrays.
2382   /// \param CopyGen Copying procedure that copies value of single array element
2383   /// to another single array element.
2384   void EmitOMPAggregateAssign(
2385       Address DestAddr, Address SrcAddr, QualType OriginalType,
2386       const llvm::function_ref<void(Address, Address)> &CopyGen);
2387   /// \brief Emit proper copying of data from one variable to another.
2388   ///
2389   /// \param OriginalType Original type of the copied variables.
2390   /// \param DestAddr Destination address.
2391   /// \param SrcAddr Source address.
2392   /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
2393   /// type of the base array element).
2394   /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
2395   /// the base array element).
2396   /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
2397   /// DestVD.
2398   void EmitOMPCopy(QualType OriginalType,
2399                    Address DestAddr, Address SrcAddr,
2400                    const VarDecl *DestVD, const VarDecl *SrcVD,
2401                    const Expr *Copy);
2402   /// \brief Emit atomic update code for constructs: \a X = \a X \a BO \a E or
2403   /// \a X = \a E \a BO \a E.
2404   ///
2405   /// \param X Value to be updated.
2406   /// \param E Update value.
2407   /// \param BO Binary operation for update operation.
2408   /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
2409   /// expression, false otherwise.
2410   /// \param AO Atomic ordering of the generated atomic instructions.
2411   /// \param CommonGen Code generator for complex expressions that cannot be
2412   /// expressed through atomicrmw instruction.
2413   /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was
2414   /// generated, <false, RValue::get(nullptr)> otherwise.
2415   std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr(
2416       LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
2417       llvm::AtomicOrdering AO, SourceLocation Loc,
2418       const llvm::function_ref<RValue(RValue)> &CommonGen);
2419   bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
2420                                  OMPPrivateScope &PrivateScope);
2421   void EmitOMPPrivateClause(const OMPExecutableDirective &D,
2422                             OMPPrivateScope &PrivateScope);
2423   void EmitOMPUseDevicePtrClause(
2424       const OMPClause &C, OMPPrivateScope &PrivateScope,
2425       const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap);
2426   /// \brief Emit code for copyin clause in \a D directive. The next code is
2427   /// generated at the start of outlined functions for directives:
2428   /// \code
2429   /// threadprivate_var1 = master_threadprivate_var1;
2430   /// operator=(threadprivate_var2, master_threadprivate_var2);
2431   /// ...
2432   /// __kmpc_barrier(&loc, global_tid);
2433   /// \endcode
2434   ///
2435   /// \param D OpenMP directive possibly with 'copyin' clause(s).
2436   /// \returns true if at least one copyin variable is found, false otherwise.
2437   bool EmitOMPCopyinClause(const OMPExecutableDirective &D);
2438   /// \brief Emit initial code for lastprivate variables. If some variable is
2439   /// not also firstprivate, then the default initialization is used. Otherwise
2440   /// initialization of this variable is performed by EmitOMPFirstprivateClause
2441   /// method.
2442   ///
2443   /// \param D Directive that may have 'lastprivate' directives.
2444   /// \param PrivateScope Private scope for capturing lastprivate variables for
2445   /// proper codegen in internal captured statement.
2446   ///
2447   /// \returns true if there is at least one lastprivate variable, false
2448   /// otherwise.
2449   bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D,
2450                                     OMPPrivateScope &PrivateScope);
2451   /// \brief Emit final copying of lastprivate values to original variables at
2452   /// the end of the worksharing or simd directive.
2453   ///
2454   /// \param D Directive that has at least one 'lastprivate' directives.
2455   /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
2456   /// it is the last iteration of the loop code in associated directive, or to
2457   /// 'i1 false' otherwise. If this item is nullptr, no final check is required.
2458   void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D,
2459                                      bool NoFinals,
2460                                      llvm::Value *IsLastIterCond = nullptr);
2461   /// Emit initial code for linear clauses.
2462   void EmitOMPLinearClause(const OMPLoopDirective &D,
2463                            CodeGenFunction::OMPPrivateScope &PrivateScope);
2464   /// Emit final code for linear clauses.
2465   /// \param CondGen Optional conditional code for final part of codegen for
2466   /// linear clause.
2467   void EmitOMPLinearClauseFinal(
2468       const OMPLoopDirective &D,
2469       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen);
2470   /// \brief Emit initial code for reduction variables. Creates reduction copies
2471   /// and initializes them with the values according to OpenMP standard.
2472   ///
2473   /// \param D Directive (possibly) with the 'reduction' clause.
2474   /// \param PrivateScope Private scope for capturing reduction variables for
2475   /// proper codegen in internal captured statement.
2476   ///
2477   void EmitOMPReductionClauseInit(const OMPExecutableDirective &D,
2478                                   OMPPrivateScope &PrivateScope);
2479   /// \brief Emit final update of reduction values to original variables at
2480   /// the end of the directive.
2481   ///
2482   /// \param D Directive that has at least one 'reduction' directives.
2483   void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D);
2484   /// \brief Emit initial code for linear variables. Creates private copies
2485   /// and initializes them with the values according to OpenMP standard.
2486   ///
2487   /// \param D Directive (possibly) with the 'linear' clause.
2488   void EmitOMPLinearClauseInit(const OMPLoopDirective &D);
2489 
2490   typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/,
2491                                         llvm::Value * /*OutlinedFn*/,
2492                                         const OMPTaskDataTy & /*Data*/)>
2493       TaskGenTy;
2494   void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S,
2495                                  const RegionCodeGenTy &BodyGen,
2496                                  const TaskGenTy &TaskGen, OMPTaskDataTy &Data);
2497 
2498   void EmitOMPParallelDirective(const OMPParallelDirective &S);
2499   void EmitOMPSimdDirective(const OMPSimdDirective &S);
2500   void EmitOMPForDirective(const OMPForDirective &S);
2501   void EmitOMPForSimdDirective(const OMPForSimdDirective &S);
2502   void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
2503   void EmitOMPSectionDirective(const OMPSectionDirective &S);
2504   void EmitOMPSingleDirective(const OMPSingleDirective &S);
2505   void EmitOMPMasterDirective(const OMPMasterDirective &S);
2506   void EmitOMPCriticalDirective(const OMPCriticalDirective &S);
2507   void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
2508   void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S);
2509   void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
2510   void EmitOMPTaskDirective(const OMPTaskDirective &S);
2511   void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
2512   void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
2513   void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
2514   void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S);
2515   void EmitOMPFlushDirective(const OMPFlushDirective &S);
2516   void EmitOMPOrderedDirective(const OMPOrderedDirective &S);
2517   void EmitOMPAtomicDirective(const OMPAtomicDirective &S);
2518   void EmitOMPTargetDirective(const OMPTargetDirective &S);
2519   void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S);
2520   void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S);
2521   void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S);
2522   void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S);
2523   void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S);
2524   void
2525   EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S);
2526   void EmitOMPTeamsDirective(const OMPTeamsDirective &S);
2527   void
2528   EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S);
2529   void EmitOMPCancelDirective(const OMPCancelDirective &S);
2530   void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S);
2531   void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S);
2532   void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S);
2533   void EmitOMPDistributeDirective(const OMPDistributeDirective &S);
2534   void EmitOMPDistributeLoop(const OMPDistributeDirective &S);
2535   void EmitOMPDistributeParallelForDirective(
2536       const OMPDistributeParallelForDirective &S);
2537   void EmitOMPDistributeParallelForSimdDirective(
2538       const OMPDistributeParallelForSimdDirective &S);
2539   void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S);
2540   void EmitOMPTargetParallelForSimdDirective(
2541       const OMPTargetParallelForSimdDirective &S);
2542   void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S);
2543   void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S);
2544   void
2545   EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S);
2546 
2547   /// Emit outlined function for the target directive.
2548   static std::pair<llvm::Function * /*OutlinedFn*/,
2549                    llvm::Constant * /*OutlinedFnID*/>
2550   EmitOMPTargetDirectiveOutlinedFunction(CodeGenModule &CGM,
2551                                          const OMPTargetDirective &S,
2552                                          StringRef ParentName,
2553                                          bool IsOffloadEntry);
2554   /// \brief Emit inner loop of the worksharing/simd construct.
2555   ///
2556   /// \param S Directive, for which the inner loop must be emitted.
2557   /// \param RequiresCleanup true, if directive has some associated private
2558   /// variables.
2559   /// \param LoopCond Bollean condition for loop continuation.
2560   /// \param IncExpr Increment expression for loop control variable.
2561   /// \param BodyGen Generator for the inner body of the inner loop.
2562   /// \param PostIncGen Genrator for post-increment code (required for ordered
2563   /// loop directvies).
2564   void EmitOMPInnerLoop(
2565       const Stmt &S, bool RequiresCleanup, const Expr *LoopCond,
2566       const Expr *IncExpr,
2567       const llvm::function_ref<void(CodeGenFunction &)> &BodyGen,
2568       const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen);
2569 
2570   JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind);
2571   /// Emit initial code for loop counters of loop-based directives.
2572   void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S,
2573                                   OMPPrivateScope &LoopScope);
2574 
2575 private:
2576   /// Helpers for the OpenMP loop directives.
2577   void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit);
2578   void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false);
2579   void EmitOMPSimdFinal(
2580       const OMPLoopDirective &D,
2581       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen);
2582   /// \brief Emit code for the worksharing loop-based directive.
2583   /// \return true, if this construct has any lastprivate clause, false -
2584   /// otherwise.
2585   bool EmitOMPWorksharingLoop(const OMPLoopDirective &S);
2586   void EmitOMPOuterLoop(bool IsMonotonic, bool DynamicOrOrdered,
2587       const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered,
2588       Address LB, Address UB, Address ST, Address IL, llvm::Value *Chunk);
2589   void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind,
2590                            bool IsMonotonic, const OMPLoopDirective &S,
2591                            OMPPrivateScope &LoopScope, bool Ordered, Address LB,
2592                            Address UB, Address ST, Address IL,
2593                            llvm::Value *Chunk);
2594   void EmitOMPDistributeOuterLoop(
2595       OpenMPDistScheduleClauseKind ScheduleKind,
2596       const OMPDistributeDirective &S, OMPPrivateScope &LoopScope,
2597       Address LB, Address UB, Address ST, Address IL, llvm::Value *Chunk);
2598   /// \brief Emit code for sections directive.
2599   void EmitSections(const OMPExecutableDirective &S);
2600 
2601 public:
2602 
2603   //===--------------------------------------------------------------------===//
2604   //                         LValue Expression Emission
2605   //===--------------------------------------------------------------------===//
2606 
2607   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
2608   RValue GetUndefRValue(QualType Ty);
2609 
2610   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
2611   /// and issue an ErrorUnsupported style diagnostic (using the
2612   /// provided Name).
2613   RValue EmitUnsupportedRValue(const Expr *E,
2614                                const char *Name);
2615 
2616   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
2617   /// an ErrorUnsupported style diagnostic (using the provided Name).
2618   LValue EmitUnsupportedLValue(const Expr *E,
2619                                const char *Name);
2620 
2621   /// EmitLValue - Emit code to compute a designator that specifies the location
2622   /// of the expression.
2623   ///
2624   /// This can return one of two things: a simple address or a bitfield
2625   /// reference.  In either case, the LLVM Value* in the LValue structure is
2626   /// guaranteed to be an LLVM pointer type.
2627   ///
2628   /// If this returns a bitfield reference, nothing about the pointee type of
2629   /// the LLVM value is known: For example, it may not be a pointer to an
2630   /// integer.
2631   ///
2632   /// If this returns a normal address, and if the lvalue's C type is fixed
2633   /// size, this method guarantees that the returned pointer type will point to
2634   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
2635   /// variable length type, this is not possible.
2636   ///
2637   LValue EmitLValue(const Expr *E);
2638 
2639   /// \brief Same as EmitLValue but additionally we generate checking code to
2640   /// guard against undefined behavior.  This is only suitable when we know
2641   /// that the address will be used to access the object.
2642   LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
2643 
2644   RValue convertTempToRValue(Address addr, QualType type,
2645                              SourceLocation Loc);
2646 
2647   void EmitAtomicInit(Expr *E, LValue lvalue);
2648 
2649   bool LValueIsSuitableForInlineAtomic(LValue Src);
2650 
2651   RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
2652                         AggValueSlot Slot = AggValueSlot::ignored());
2653 
2654   RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
2655                         llvm::AtomicOrdering AO, bool IsVolatile = false,
2656                         AggValueSlot slot = AggValueSlot::ignored());
2657 
2658   void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
2659 
2660   void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
2661                        bool IsVolatile, bool isInit);
2662 
2663   std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
2664       LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
2665       llvm::AtomicOrdering Success =
2666           llvm::AtomicOrdering::SequentiallyConsistent,
2667       llvm::AtomicOrdering Failure =
2668           llvm::AtomicOrdering::SequentiallyConsistent,
2669       bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
2670 
2671   void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
2672                         const llvm::function_ref<RValue(RValue)> &UpdateOp,
2673                         bool IsVolatile);
2674 
2675   /// EmitToMemory - Change a scalar value from its value
2676   /// representation to its in-memory representation.
2677   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
2678 
2679   /// EmitFromMemory - Change a scalar value from its memory
2680   /// representation to its value representation.
2681   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
2682 
2683   /// EmitLoadOfScalar - Load a scalar value from an address, taking
2684   /// care to appropriately convert from the memory representation to
2685   /// the LLVM value representation.
2686   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
2687                                 SourceLocation Loc,
2688                                 AlignmentSource AlignSource =
2689                                   AlignmentSource::Type,
2690                                 llvm::MDNode *TBAAInfo = nullptr,
2691                                 QualType TBAABaseTy = QualType(),
2692                                 uint64_t TBAAOffset = 0,
2693                                 bool isNontemporal = false);
2694 
2695   /// EmitLoadOfScalar - Load a scalar value from an address, taking
2696   /// care to appropriately convert from the memory representation to
2697   /// the LLVM value representation.  The l-value must be a simple
2698   /// l-value.
2699   llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
2700 
2701   /// EmitStoreOfScalar - Store a scalar value to an address, taking
2702   /// care to appropriately convert from the memory representation to
2703   /// the LLVM value representation.
2704   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
2705                          bool Volatile, QualType Ty,
2706                          AlignmentSource AlignSource = AlignmentSource::Type,
2707                          llvm::MDNode *TBAAInfo = nullptr, bool isInit = false,
2708                          QualType TBAABaseTy = QualType(),
2709                          uint64_t TBAAOffset = 0, bool isNontemporal = false);
2710 
2711   /// EmitStoreOfScalar - Store a scalar value to an address, taking
2712   /// care to appropriately convert from the memory representation to
2713   /// the LLVM value representation.  The l-value must be a simple
2714   /// l-value.  The isInit flag indicates whether this is an initialization.
2715   /// If so, atomic qualifiers are ignored and the store is always non-atomic.
2716   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
2717 
2718   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
2719   /// this method emits the address of the lvalue, then loads the result as an
2720   /// rvalue, returning the rvalue.
2721   RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
2722   RValue EmitLoadOfExtVectorElementLValue(LValue V);
2723   RValue EmitLoadOfBitfieldLValue(LValue LV);
2724   RValue EmitLoadOfGlobalRegLValue(LValue LV);
2725 
2726   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
2727   /// lvalue, where both are guaranteed to the have the same type, and that type
2728   /// is 'Ty'.
2729   void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
2730   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
2731   void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
2732 
2733   /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
2734   /// as EmitStoreThroughLValue.
2735   ///
2736   /// \param Result [out] - If non-null, this will be set to a Value* for the
2737   /// bit-field contents after the store, appropriate for use as the result of
2738   /// an assignment to the bit-field.
2739   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2740                                       llvm::Value **Result=nullptr);
2741 
2742   /// Emit an l-value for an assignment (simple or compound) of complex type.
2743   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
2744   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
2745   LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
2746                                              llvm::Value *&Result);
2747 
2748   // Note: only available for agg return types
2749   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
2750   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
2751   // Note: only available for agg return types
2752   LValue EmitCallExprLValue(const CallExpr *E);
2753   // Note: only available for agg return types
2754   LValue EmitVAArgExprLValue(const VAArgExpr *E);
2755   LValue EmitDeclRefLValue(const DeclRefExpr *E);
2756   LValue EmitStringLiteralLValue(const StringLiteral *E);
2757   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
2758   LValue EmitPredefinedLValue(const PredefinedExpr *E);
2759   LValue EmitUnaryOpLValue(const UnaryOperator *E);
2760   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
2761                                 bool Accessed = false);
2762   LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
2763                                  bool IsLowerBound = true);
2764   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
2765   LValue EmitMemberExpr(const MemberExpr *E);
2766   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
2767   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
2768   LValue EmitInitListLValue(const InitListExpr *E);
2769   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
2770   LValue EmitCastLValue(const CastExpr *E);
2771   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
2772   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
2773 
2774   Address EmitExtVectorElementLValue(LValue V);
2775 
2776   RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
2777 
2778   Address EmitArrayToPointerDecay(const Expr *Array,
2779                                   AlignmentSource *AlignSource = nullptr);
2780 
2781   class ConstantEmission {
2782     llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
2783     ConstantEmission(llvm::Constant *C, bool isReference)
2784       : ValueAndIsReference(C, isReference) {}
2785   public:
2786     ConstantEmission() {}
2787     static ConstantEmission forReference(llvm::Constant *C) {
2788       return ConstantEmission(C, true);
2789     }
2790     static ConstantEmission forValue(llvm::Constant *C) {
2791       return ConstantEmission(C, false);
2792     }
2793 
2794     explicit operator bool() const {
2795       return ValueAndIsReference.getOpaqueValue() != nullptr;
2796     }
2797 
2798     bool isReference() const { return ValueAndIsReference.getInt(); }
2799     LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
2800       assert(isReference());
2801       return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
2802                                             refExpr->getType());
2803     }
2804 
2805     llvm::Constant *getValue() const {
2806       assert(!isReference());
2807       return ValueAndIsReference.getPointer();
2808     }
2809   };
2810 
2811   ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
2812 
2813   RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
2814                                 AggValueSlot slot = AggValueSlot::ignored());
2815   LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
2816 
2817   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
2818                               const ObjCIvarDecl *Ivar);
2819   LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
2820   LValue EmitLValueForLambdaField(const FieldDecl *Field);
2821 
2822   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
2823   /// if the Field is a reference, this will return the address of the reference
2824   /// and not the address of the value stored in the reference.
2825   LValue EmitLValueForFieldInitialization(LValue Base,
2826                                           const FieldDecl* Field);
2827 
2828   LValue EmitLValueForIvar(QualType ObjectTy,
2829                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
2830                            unsigned CVRQualifiers);
2831 
2832   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
2833   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
2834   LValue EmitLambdaLValue(const LambdaExpr *E);
2835   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
2836   LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
2837 
2838   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
2839   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
2840   LValue EmitStmtExprLValue(const StmtExpr *E);
2841   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
2842   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
2843   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init);
2844 
2845   //===--------------------------------------------------------------------===//
2846   //                         Scalar Expression Emission
2847   //===--------------------------------------------------------------------===//
2848 
2849   /// EmitCall - Generate a call of the given function, expecting the given
2850   /// result type, and using the given argument list which specifies both the
2851   /// LLVM arguments and the types they were derived from.
2852   RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
2853                   ReturnValueSlot ReturnValue, const CallArgList &Args,
2854                   llvm::Instruction **callOrInvoke = nullptr);
2855 
2856   RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E,
2857                   ReturnValueSlot ReturnValue,
2858                   llvm::Value *Chain = nullptr);
2859   RValue EmitCallExpr(const CallExpr *E,
2860                       ReturnValueSlot ReturnValue = ReturnValueSlot());
2861   RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
2862   CGCallee EmitCallee(const Expr *E);
2863 
2864   void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl);
2865 
2866   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
2867                                   const Twine &name = "");
2868   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
2869                                   ArrayRef<llvm::Value*> args,
2870                                   const Twine &name = "");
2871   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
2872                                           const Twine &name = "");
2873   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
2874                                           ArrayRef<llvm::Value*> args,
2875                                           const Twine &name = "");
2876 
2877   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2878                                   ArrayRef<llvm::Value *> Args,
2879                                   const Twine &Name = "");
2880   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
2881                                          ArrayRef<llvm::Value*> args,
2882                                          const Twine &name = "");
2883   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
2884                                          const Twine &name = "");
2885   void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
2886                                        ArrayRef<llvm::Value*> args);
2887 
2888   CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
2889                                      NestedNameSpecifier *Qual,
2890                                      llvm::Type *Ty);
2891 
2892   CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
2893                                                CXXDtorType Type,
2894                                                const CXXRecordDecl *RD);
2895 
2896   RValue
2897   EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method,
2898                               const CGCallee &Callee,
2899                               ReturnValueSlot ReturnValue, llvm::Value *This,
2900                               llvm::Value *ImplicitParam,
2901                               QualType ImplicitParamTy, const CallExpr *E,
2902                               CallArgList *RtlArgs);
2903   RValue EmitCXXDestructorCall(const CXXDestructorDecl *DD,
2904                                const CGCallee &Callee,
2905                                llvm::Value *This, llvm::Value *ImplicitParam,
2906                                QualType ImplicitParamTy, const CallExpr *E,
2907                                StructorType Type);
2908   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
2909                                ReturnValueSlot ReturnValue);
2910   RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE,
2911                                                const CXXMethodDecl *MD,
2912                                                ReturnValueSlot ReturnValue,
2913                                                bool HasQualifier,
2914                                                NestedNameSpecifier *Qualifier,
2915                                                bool IsArrow, const Expr *Base);
2916   // Compute the object pointer.
2917   Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
2918                                           llvm::Value *memberPtr,
2919                                           const MemberPointerType *memberPtrType,
2920                                           AlignmentSource *AlignSource = nullptr);
2921   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
2922                                       ReturnValueSlot ReturnValue);
2923 
2924   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
2925                                        const CXXMethodDecl *MD,
2926                                        ReturnValueSlot ReturnValue);
2927   RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E);
2928 
2929   RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
2930                                 ReturnValueSlot ReturnValue);
2931 
2932   RValue EmitCUDADevicePrintfCallExpr(const CallExpr *E,
2933                                       ReturnValueSlot ReturnValue);
2934 
2935   RValue EmitBuiltinExpr(const FunctionDecl *FD,
2936                          unsigned BuiltinID, const CallExpr *E,
2937                          ReturnValueSlot ReturnValue);
2938 
2939   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
2940 
2941   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
2942   /// is unhandled by the current target.
2943   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2944 
2945   llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
2946                                              const llvm::CmpInst::Predicate Fp,
2947                                              const llvm::CmpInst::Predicate Ip,
2948                                              const llvm::Twine &Name = "");
2949   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2950 
2951   llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
2952                                          unsigned LLVMIntrinsic,
2953                                          unsigned AltLLVMIntrinsic,
2954                                          const char *NameHint,
2955                                          unsigned Modifier,
2956                                          const CallExpr *E,
2957                                          SmallVectorImpl<llvm::Value *> &Ops,
2958                                          Address PtrOp0, Address PtrOp1);
2959   llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
2960                                           unsigned Modifier, llvm::Type *ArgTy,
2961                                           const CallExpr *E);
2962   llvm::Value *EmitNeonCall(llvm::Function *F,
2963                             SmallVectorImpl<llvm::Value*> &O,
2964                             const char *name,
2965                             unsigned shift = 0, bool rightshift = false);
2966   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
2967   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
2968                                    bool negateForRightShift);
2969   llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
2970                                  llvm::Type *Ty, bool usgn, const char *name);
2971   llvm::Value *vectorWrapScalar16(llvm::Value *Op);
2972   llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2973 
2974   llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
2975   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2976   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2977   llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2978   llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2979   llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2980   llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
2981                                           const CallExpr *E);
2982 
2983 private:
2984   enum class MSVCIntrin;
2985 
2986 public:
2987   llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E);
2988 
2989   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
2990   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
2991   llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
2992   llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
2993   llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
2994   llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
2995                                 const ObjCMethodDecl *MethodWithObjects);
2996   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
2997   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
2998                              ReturnValueSlot Return = ReturnValueSlot());
2999 
3000   /// Retrieves the default cleanup kind for an ARC cleanup.
3001   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
3002   CleanupKind getARCCleanupKind() {
3003     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
3004              ? NormalAndEHCleanup : NormalCleanup;
3005   }
3006 
3007   // ARC primitives.
3008   void EmitARCInitWeak(Address addr, llvm::Value *value);
3009   void EmitARCDestroyWeak(Address addr);
3010   llvm::Value *EmitARCLoadWeak(Address addr);
3011   llvm::Value *EmitARCLoadWeakRetained(Address addr);
3012   llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored);
3013   void EmitARCCopyWeak(Address dst, Address src);
3014   void EmitARCMoveWeak(Address dst, Address src);
3015   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
3016   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
3017   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
3018                                   bool resultIgnored);
3019   llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value,
3020                                       bool resultIgnored);
3021   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
3022   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
3023   llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
3024   void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise);
3025   void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
3026   llvm::Value *EmitARCAutorelease(llvm::Value *value);
3027   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
3028   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
3029   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
3030   llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value);
3031 
3032   std::pair<LValue,llvm::Value*>
3033   EmitARCStoreAutoreleasing(const BinaryOperator *e);
3034   std::pair<LValue,llvm::Value*>
3035   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
3036   std::pair<LValue,llvm::Value*>
3037   EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored);
3038 
3039   llvm::Value *EmitObjCThrowOperand(const Expr *expr);
3040   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
3041   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
3042 
3043   llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
3044   llvm::Value *EmitARCReclaimReturnedObject(const Expr *e,
3045                                             bool allowUnsafeClaim);
3046   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
3047   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
3048   llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr);
3049 
3050   void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
3051 
3052   static Destroyer destroyARCStrongImprecise;
3053   static Destroyer destroyARCStrongPrecise;
3054   static Destroyer destroyARCWeak;
3055 
3056   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
3057   llvm::Value *EmitObjCAutoreleasePoolPush();
3058   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
3059   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
3060   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
3061 
3062   /// \brief Emits a reference binding to the passed in expression.
3063   RValue EmitReferenceBindingToExpr(const Expr *E);
3064 
3065   //===--------------------------------------------------------------------===//
3066   //                           Expression Emission
3067   //===--------------------------------------------------------------------===//
3068 
3069   // Expressions are broken into three classes: scalar, complex, aggregate.
3070 
3071   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
3072   /// scalar type, returning the result.
3073   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
3074 
3075   /// Emit a conversion from the specified type to the specified destination
3076   /// type, both of which are LLVM scalar types.
3077   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
3078                                     QualType DstTy, SourceLocation Loc);
3079 
3080   /// Emit a conversion from the specified complex type to the specified
3081   /// destination type, where the destination type is an LLVM scalar type.
3082   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
3083                                              QualType DstTy,
3084                                              SourceLocation Loc);
3085 
3086   /// EmitAggExpr - Emit the computation of the specified expression
3087   /// of aggregate type.  The result is computed into the given slot,
3088   /// which may be null to indicate that the value is not needed.
3089   void EmitAggExpr(const Expr *E, AggValueSlot AS);
3090 
3091   /// EmitAggExprToLValue - Emit the computation of the specified expression of
3092   /// aggregate type into a temporary LValue.
3093   LValue EmitAggExprToLValue(const Expr *E);
3094 
3095   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
3096   /// make sure it survives garbage collection until this point.
3097   void EmitExtendGCLifetime(llvm::Value *object);
3098 
3099   /// EmitComplexExpr - Emit the computation of the specified expression of
3100   /// complex type, returning the result.
3101   ComplexPairTy EmitComplexExpr(const Expr *E,
3102                                 bool IgnoreReal = false,
3103                                 bool IgnoreImag = false);
3104 
3105   /// EmitComplexExprIntoLValue - Emit the given expression of complex
3106   /// type and place its result into the specified l-value.
3107   void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
3108 
3109   /// EmitStoreOfComplex - Store a complex number into the specified l-value.
3110   void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
3111 
3112   /// EmitLoadOfComplex - Load a complex number from the specified l-value.
3113   ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
3114 
3115   Address emitAddrOfRealComponent(Address complex, QualType complexType);
3116   Address emitAddrOfImagComponent(Address complex, QualType complexType);
3117 
3118   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
3119   /// global variable that has already been created for it.  If the initializer
3120   /// has a different type than GV does, this may free GV and return a different
3121   /// one.  Otherwise it just returns GV.
3122   llvm::GlobalVariable *
3123   AddInitializerToStaticVarDecl(const VarDecl &D,
3124                                 llvm::GlobalVariable *GV);
3125 
3126 
3127   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
3128   /// variable with global storage.
3129   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
3130                                 bool PerformInit);
3131 
3132   llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::Constant *Dtor,
3133                                    llvm::Constant *Addr);
3134 
3135   /// Call atexit() with a function that passes the given argument to
3136   /// the given function.
3137   void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn,
3138                                     llvm::Constant *addr);
3139 
3140   /// Emit code in this function to perform a guarded variable
3141   /// initialization.  Guarded initializations are used when it's not
3142   /// possible to prove that an initialization will be done exactly
3143   /// once, e.g. with a static local variable or a static data member
3144   /// of a class template.
3145   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
3146                           bool PerformInit);
3147 
3148   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
3149   /// variables.
3150   void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
3151                                  ArrayRef<llvm::Function *> CXXThreadLocals,
3152                                  Address Guard = Address::invalid());
3153 
3154   /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
3155   /// variables.
3156   void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn,
3157                                   const std::vector<std::pair<llvm::WeakVH,
3158                                   llvm::Constant*> > &DtorsAndObjects);
3159 
3160   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
3161                                         const VarDecl *D,
3162                                         llvm::GlobalVariable *Addr,
3163                                         bool PerformInit);
3164 
3165   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
3166 
3167   void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp);
3168 
3169   void enterFullExpression(const ExprWithCleanups *E) {
3170     if (E->getNumObjects() == 0) return;
3171     enterNonTrivialFullExpression(E);
3172   }
3173   void enterNonTrivialFullExpression(const ExprWithCleanups *E);
3174 
3175   void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
3176 
3177   void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest);
3178 
3179   RValue EmitAtomicExpr(AtomicExpr *E);
3180 
3181   //===--------------------------------------------------------------------===//
3182   //                         Annotations Emission
3183   //===--------------------------------------------------------------------===//
3184 
3185   /// Emit an annotation call (intrinsic or builtin).
3186   llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
3187                                   llvm::Value *AnnotatedVal,
3188                                   StringRef AnnotationStr,
3189                                   SourceLocation Location);
3190 
3191   /// Emit local annotations for the local variable V, declared by D.
3192   void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
3193 
3194   /// Emit field annotations for the given field & value. Returns the
3195   /// annotation result.
3196   Address EmitFieldAnnotations(const FieldDecl *D, Address V);
3197 
3198   //===--------------------------------------------------------------------===//
3199   //                             Internal Helpers
3200   //===--------------------------------------------------------------------===//
3201 
3202   /// ContainsLabel - Return true if the statement contains a label in it.  If
3203   /// this statement is not executed normally, it not containing a label means
3204   /// that we can just remove the code.
3205   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
3206 
3207   /// containsBreak - Return true if the statement contains a break out of it.
3208   /// If the statement (recursively) contains a switch or loop with a break
3209   /// inside of it, this is fine.
3210   static bool containsBreak(const Stmt *S);
3211 
3212   /// Determine if the given statement might introduce a declaration into the
3213   /// current scope, by being a (possibly-labelled) DeclStmt.
3214   static bool mightAddDeclToScope(const Stmt *S);
3215 
3216   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
3217   /// to a constant, or if it does but contains a label, return false.  If it
3218   /// constant folds return true and set the boolean result in Result.
3219   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result,
3220                                     bool AllowLabels = false);
3221 
3222   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
3223   /// to a constant, or if it does but contains a label, return false.  If it
3224   /// constant folds return true and set the folded value.
3225   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result,
3226                                     bool AllowLabels = false);
3227 
3228   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
3229   /// if statement) to the specified blocks.  Based on the condition, this might
3230   /// try to simplify the codegen of the conditional based on the branch.
3231   /// TrueCount should be the number of times we expect the condition to
3232   /// evaluate to true based on PGO data.
3233   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
3234                             llvm::BasicBlock *FalseBlock, uint64_t TrueCount);
3235 
3236   /// \brief Emit a description of a type in a format suitable for passing to
3237   /// a runtime sanitizer handler.
3238   llvm::Constant *EmitCheckTypeDescriptor(QualType T);
3239 
3240   /// \brief Convert a value into a format suitable for passing to a runtime
3241   /// sanitizer handler.
3242   llvm::Value *EmitCheckValue(llvm::Value *V);
3243 
3244   /// \brief Emit a description of a source location in a format suitable for
3245   /// passing to a runtime sanitizer handler.
3246   llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
3247 
3248   /// \brief Create a basic block that will call a handler function in a
3249   /// sanitizer runtime with the provided arguments, and create a conditional
3250   /// branch to it.
3251   void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
3252                  StringRef CheckName, ArrayRef<llvm::Constant *> StaticArgs,
3253                  ArrayRef<llvm::Value *> DynamicArgs);
3254 
3255   /// \brief Emit a slow path cross-DSO CFI check which calls __cfi_slowpath
3256   /// if Cond if false.
3257   void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond,
3258                             llvm::ConstantInt *TypeId, llvm::Value *Ptr,
3259                             ArrayRef<llvm::Constant *> StaticArgs);
3260 
3261   /// \brief Create a basic block that will call the trap intrinsic, and emit a
3262   /// conditional branch to it, for the -ftrapv checks.
3263   void EmitTrapCheck(llvm::Value *Checked);
3264 
3265   /// \brief Emit a call to trap or debugtrap and attach function attribute
3266   /// "trap-func-name" if specified.
3267   llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID);
3268 
3269   /// \brief Emit a cross-DSO CFI failure handling function.
3270   void EmitCfiCheckFail();
3271 
3272   /// \brief Create a check for a function parameter that may potentially be
3273   /// declared as non-null.
3274   void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc,
3275                            const FunctionDecl *FD, unsigned ParmNum);
3276 
3277   /// EmitCallArg - Emit a single call argument.
3278   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
3279 
3280   /// EmitDelegateCallArg - We are performing a delegate call; that
3281   /// is, the current function is delegating to another one.  Produce
3282   /// a r-value suitable for passing the given parameter.
3283   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
3284                            SourceLocation loc);
3285 
3286   /// SetFPAccuracy - Set the minimum required accuracy of the given floating
3287   /// point operation, expressed as the maximum relative error in ulp.
3288   void SetFPAccuracy(llvm::Value *Val, float Accuracy);
3289 
3290 private:
3291   llvm::MDNode *getRangeForLoadFromType(QualType Ty);
3292   void EmitReturnOfRValue(RValue RV, QualType Ty);
3293 
3294   void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
3295 
3296   llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4>
3297   DeferredReplacements;
3298 
3299   /// Set the address of a local variable.
3300   void setAddrOfLocalVar(const VarDecl *VD, Address Addr) {
3301     assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!");
3302     LocalDeclMap.insert({VD, Addr});
3303   }
3304 
3305   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
3306   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
3307   ///
3308   /// \param AI - The first function argument of the expansion.
3309   void ExpandTypeFromArgs(QualType Ty, LValue Dst,
3310                           SmallVectorImpl<llvm::Value *>::iterator &AI);
3311 
3312   /// ExpandTypeToArgs - Expand an RValue \arg RV, with the LLVM type for \arg
3313   /// Ty, into individual arguments on the provided vector \arg IRCallArgs,
3314   /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand.
3315   void ExpandTypeToArgs(QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy,
3316                         SmallVectorImpl<llvm::Value *> &IRCallArgs,
3317                         unsigned &IRCallArgPos);
3318 
3319   llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
3320                             const Expr *InputExpr, std::string &ConstraintStr);
3321 
3322   llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
3323                                   LValue InputValue, QualType InputType,
3324                                   std::string &ConstraintStr,
3325                                   SourceLocation Loc);
3326 
3327   /// \brief Attempts to statically evaluate the object size of E. If that
3328   /// fails, emits code to figure the size of E out for us. This is
3329   /// pass_object_size aware.
3330   llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
3331                                                llvm::IntegerType *ResType);
3332 
3333   /// \brief Emits the size of E, as required by __builtin_object_size. This
3334   /// function is aware of pass_object_size parameters, and will act accordingly
3335   /// if E is a parameter with the pass_object_size attribute.
3336   llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type,
3337                                      llvm::IntegerType *ResType);
3338 
3339 public:
3340 #ifndef NDEBUG
3341   // Determine whether the given argument is an Objective-C method
3342   // that may have type parameters in its signature.
3343   static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) {
3344     const DeclContext *dc = method->getDeclContext();
3345     if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) {
3346       return classDecl->getTypeParamListAsWritten();
3347     }
3348 
3349     if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) {
3350       return catDecl->getTypeParamList();
3351     }
3352 
3353     return false;
3354   }
3355 
3356   template<typename T>
3357   static bool isObjCMethodWithTypeParams(const T *) { return false; }
3358 #endif
3359 
3360   enum class EvaluationOrder {
3361     ///! No language constraints on evaluation order.
3362     Default,
3363     ///! Language semantics require left-to-right evaluation.
3364     ForceLeftToRight,
3365     ///! Language semantics require right-to-left evaluation.
3366     ForceRightToLeft
3367   };
3368 
3369   /// EmitCallArgs - Emit call arguments for a function.
3370   template <typename T>
3371   void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo,
3372                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3373                     const FunctionDecl *CalleeDecl = nullptr,
3374                     unsigned ParamsToSkip = 0,
3375                     EvaluationOrder Order = EvaluationOrder::Default) {
3376     SmallVector<QualType, 16> ArgTypes;
3377     CallExpr::const_arg_iterator Arg = ArgRange.begin();
3378 
3379     assert((ParamsToSkip == 0 || CallArgTypeInfo) &&
3380            "Can't skip parameters if type info is not provided");
3381     if (CallArgTypeInfo) {
3382 #ifndef NDEBUG
3383       bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo);
3384 #endif
3385 
3386       // First, use the argument types that the type info knows about
3387       for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip,
3388                 E = CallArgTypeInfo->param_type_end();
3389            I != E; ++I, ++Arg) {
3390         assert(Arg != ArgRange.end() && "Running over edge of argument list!");
3391         assert((isGenericMethod ||
3392                 ((*I)->isVariablyModifiedType() ||
3393                  (*I).getNonReferenceType()->isObjCRetainableType() ||
3394                  getContext()
3395                          .getCanonicalType((*I).getNonReferenceType())
3396                          .getTypePtr() ==
3397                      getContext()
3398                          .getCanonicalType((*Arg)->getType())
3399                          .getTypePtr())) &&
3400                "type mismatch in call argument!");
3401         ArgTypes.push_back(*I);
3402       }
3403     }
3404 
3405     // Either we've emitted all the call args, or we have a call to variadic
3406     // function.
3407     assert((Arg == ArgRange.end() || !CallArgTypeInfo ||
3408             CallArgTypeInfo->isVariadic()) &&
3409            "Extra arguments in non-variadic function!");
3410 
3411     // If we still have any arguments, emit them using the type of the argument.
3412     for (auto *A : llvm::make_range(Arg, ArgRange.end()))
3413       ArgTypes.push_back(getVarArgType(A));
3414 
3415     EmitCallArgs(Args, ArgTypes, ArgRange, CalleeDecl, ParamsToSkip, Order);
3416   }
3417 
3418   void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes,
3419                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3420                     const FunctionDecl *CalleeDecl = nullptr,
3421                     unsigned ParamsToSkip = 0,
3422                     EvaluationOrder Order = EvaluationOrder::Default);
3423 
3424   /// EmitPointerWithAlignment - Given an expression with a pointer
3425   /// type, emit the value and compute our best estimate of the
3426   /// alignment of the pointee.
3427   ///
3428   /// Note that this function will conservatively fall back on the type
3429   /// when it doesn't
3430   ///
3431   /// \param Source - If non-null, this will be initialized with
3432   ///   information about the source of the alignment.  Note that this
3433   ///   function will conservatively fall back on the type when it
3434   ///   doesn't recognize the expression, which means that sometimes
3435   ///
3436   ///   a worst-case One
3437   ///   reasonable way to use this information is when there's a
3438   ///   language guarantee that the pointer must be aligned to some
3439   ///   stricter value, and we're simply trying to ensure that
3440   ///   sufficiently obvious uses of under-aligned objects don't get
3441   ///   miscompiled; for example, a placement new into the address of
3442   ///   a local variable.  In such a case, it's quite reasonable to
3443   ///   just ignore the returned alignment when it isn't from an
3444   ///   explicit source.
3445   Address EmitPointerWithAlignment(const Expr *Addr,
3446                                    AlignmentSource *Source = nullptr);
3447 
3448   void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK);
3449 
3450 private:
3451   QualType getVarArgType(const Expr *Arg);
3452 
3453   const TargetCodeGenInfo &getTargetHooks() const {
3454     return CGM.getTargetCodeGenInfo();
3455   }
3456 
3457   void EmitDeclMetadata();
3458 
3459   BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType,
3460                                   const AutoVarEmission &emission);
3461 
3462   void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
3463 
3464   llvm::Value *GetValueForARMHint(unsigned BuiltinID);
3465 };
3466 
3467 /// Helper class with most of the code for saving a value for a
3468 /// conditional expression cleanup.
3469 struct DominatingLLVMValue {
3470   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
3471 
3472   /// Answer whether the given value needs extra work to be saved.
3473   static bool needsSaving(llvm::Value *value) {
3474     // If it's not an instruction, we don't need to save.
3475     if (!isa<llvm::Instruction>(value)) return false;
3476 
3477     // If it's an instruction in the entry block, we don't need to save.
3478     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
3479     return (block != &block->getParent()->getEntryBlock());
3480   }
3481 
3482   /// Try to save the given value.
3483   static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
3484     if (!needsSaving(value)) return saved_type(value, false);
3485 
3486     // Otherwise, we need an alloca.
3487     auto align = CharUnits::fromQuantity(
3488               CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType()));
3489     Address alloca =
3490       CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save");
3491     CGF.Builder.CreateStore(value, alloca);
3492 
3493     return saved_type(alloca.getPointer(), true);
3494   }
3495 
3496   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
3497     // If the value says it wasn't saved, trust that it's still dominating.
3498     if (!value.getInt()) return value.getPointer();
3499 
3500     // Otherwise, it should be an alloca instruction, as set up in save().
3501     auto alloca = cast<llvm::AllocaInst>(value.getPointer());
3502     return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlignment());
3503   }
3504 };
3505 
3506 /// A partial specialization of DominatingValue for llvm::Values that
3507 /// might be llvm::Instructions.
3508 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
3509   typedef T *type;
3510   static type restore(CodeGenFunction &CGF, saved_type value) {
3511     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
3512   }
3513 };
3514 
3515 /// A specialization of DominatingValue for Address.
3516 template <> struct DominatingValue<Address> {
3517   typedef Address type;
3518 
3519   struct saved_type {
3520     DominatingLLVMValue::saved_type SavedValue;
3521     CharUnits Alignment;
3522   };
3523 
3524   static bool needsSaving(type value) {
3525     return DominatingLLVMValue::needsSaving(value.getPointer());
3526   }
3527   static saved_type save(CodeGenFunction &CGF, type value) {
3528     return { DominatingLLVMValue::save(CGF, value.getPointer()),
3529              value.getAlignment() };
3530   }
3531   static type restore(CodeGenFunction &CGF, saved_type value) {
3532     return Address(DominatingLLVMValue::restore(CGF, value.SavedValue),
3533                    value.Alignment);
3534   }
3535 };
3536 
3537 /// A specialization of DominatingValue for RValue.
3538 template <> struct DominatingValue<RValue> {
3539   typedef RValue type;
3540   class saved_type {
3541     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
3542                 AggregateAddress, ComplexAddress };
3543 
3544     llvm::Value *Value;
3545     unsigned K : 3;
3546     unsigned Align : 29;
3547     saved_type(llvm::Value *v, Kind k, unsigned a = 0)
3548       : Value(v), K(k), Align(a) {}
3549 
3550   public:
3551     static bool needsSaving(RValue value);
3552     static saved_type save(CodeGenFunction &CGF, RValue value);
3553     RValue restore(CodeGenFunction &CGF);
3554 
3555     // implementations in CGCleanup.cpp
3556   };
3557 
3558   static bool needsSaving(type value) {
3559     return saved_type::needsSaving(value);
3560   }
3561   static saved_type save(CodeGenFunction &CGF, type value) {
3562     return saved_type::save(CGF, value);
3563   }
3564   static type restore(CodeGenFunction &CGF, saved_type value) {
3565     return value.restore(CGF);
3566   }
3567 };
3568 
3569 }  // end namespace CodeGen
3570 }  // end namespace clang
3571 
3572 #endif
3573