1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the internal per-function state used for llvm translation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef CLANG_CODEGEN_CODEGENFUNCTION_H
15 #define CLANG_CODEGEN_CODEGENFUNCTION_H
16 
17 #include "clang/AST/Type.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/ExprObjC.h"
20 #include "clang/AST/CharUnits.h"
21 #include "clang/Frontend/CodeGenOptions.h"
22 #include "clang/Basic/ABI.h"
23 #include "clang/Basic/TargetInfo.h"
24 #include "llvm/ADT/ArrayRef.h"
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/Support/ValueHandle.h"
28 #include "llvm/Support/Debug.h"
29 #include "CodeGenModule.h"
30 #include "CGBuilder.h"
31 #include "CGDebugInfo.h"
32 #include "CGValue.h"
33 
34 namespace llvm {
35   class BasicBlock;
36   class LLVMContext;
37   class MDNode;
38   class Module;
39   class SwitchInst;
40   class Twine;
41   class Value;
42   class CallSite;
43 }
44 
45 namespace clang {
46   class APValue;
47   class ASTContext;
48   class CXXDestructorDecl;
49   class CXXForRangeStmt;
50   class CXXTryStmt;
51   class Decl;
52   class LabelDecl;
53   class EnumConstantDecl;
54   class FunctionDecl;
55   class FunctionProtoType;
56   class LabelStmt;
57   class ObjCContainerDecl;
58   class ObjCInterfaceDecl;
59   class ObjCIvarDecl;
60   class ObjCMethodDecl;
61   class ObjCImplementationDecl;
62   class ObjCPropertyImplDecl;
63   class TargetInfo;
64   class TargetCodeGenInfo;
65   class VarDecl;
66   class ObjCForCollectionStmt;
67   class ObjCAtTryStmt;
68   class ObjCAtThrowStmt;
69   class ObjCAtSynchronizedStmt;
70   class ObjCAutoreleasePoolStmt;
71 
72 namespace CodeGen {
73   class CodeGenTypes;
74   class CGFunctionInfo;
75   class CGRecordLayout;
76   class CGBlockInfo;
77   class CGCXXABI;
78   class BlockFlags;
79   class BlockFieldFlags;
80 
81 /// A branch fixup.  These are required when emitting a goto to a
82 /// label which hasn't been emitted yet.  The goto is optimistically
83 /// emitted as a branch to the basic block for the label, and (if it
84 /// occurs in a scope with non-trivial cleanups) a fixup is added to
85 /// the innermost cleanup.  When a (normal) cleanup is popped, any
86 /// unresolved fixups in that scope are threaded through the cleanup.
87 struct BranchFixup {
88   /// The block containing the terminator which needs to be modified
89   /// into a switch if this fixup is resolved into the current scope.
90   /// If null, LatestBranch points directly to the destination.
91   llvm::BasicBlock *OptimisticBranchBlock;
92 
93   /// The ultimate destination of the branch.
94   ///
95   /// This can be set to null to indicate that this fixup was
96   /// successfully resolved.
97   llvm::BasicBlock *Destination;
98 
99   /// The destination index value.
100   unsigned DestinationIndex;
101 
102   /// The initial branch of the fixup.
103   llvm::BranchInst *InitialBranch;
104 };
105 
106 template <class T> struct InvariantValue {
107   typedef T type;
108   typedef T saved_type;
109   static bool needsSaving(type value) { return false; }
110   static saved_type save(CodeGenFunction &CGF, type value) { return value; }
111   static type restore(CodeGenFunction &CGF, saved_type value) { return value; }
112 };
113 
114 /// A metaprogramming class for ensuring that a value will dominate an
115 /// arbitrary position in a function.
116 template <class T> struct DominatingValue : InvariantValue<T> {};
117 
118 template <class T, bool mightBeInstruction =
119             llvm::is_base_of<llvm::Value, T>::value &&
120             !llvm::is_base_of<llvm::Constant, T>::value &&
121             !llvm::is_base_of<llvm::BasicBlock, T>::value>
122 struct DominatingPointer;
123 template <class T> struct DominatingPointer<T,false> : InvariantValue<T*> {};
124 // template <class T> struct DominatingPointer<T,true> at end of file
125 
126 template <class T> struct DominatingValue<T*> : DominatingPointer<T> {};
127 
128 enum CleanupKind {
129   EHCleanup = 0x1,
130   NormalCleanup = 0x2,
131   NormalAndEHCleanup = EHCleanup | NormalCleanup,
132 
133   InactiveCleanup = 0x4,
134   InactiveEHCleanup = EHCleanup | InactiveCleanup,
135   InactiveNormalCleanup = NormalCleanup | InactiveCleanup,
136   InactiveNormalAndEHCleanup = NormalAndEHCleanup | InactiveCleanup
137 };
138 
139 /// A stack of scopes which respond to exceptions, including cleanups
140 /// and catch blocks.
141 class EHScopeStack {
142 public:
143   /// A saved depth on the scope stack.  This is necessary because
144   /// pushing scopes onto the stack invalidates iterators.
145   class stable_iterator {
146     friend class EHScopeStack;
147 
148     /// Offset from StartOfData to EndOfBuffer.
149     ptrdiff_t Size;
150 
151     stable_iterator(ptrdiff_t Size) : Size(Size) {}
152 
153   public:
154     static stable_iterator invalid() { return stable_iterator(-1); }
155     stable_iterator() : Size(-1) {}
156 
157     bool isValid() const { return Size >= 0; }
158 
159     /// Returns true if this scope encloses I.
160     /// Returns false if I is invalid.
161     /// This scope must be valid.
162     bool encloses(stable_iterator I) const { return Size <= I.Size; }
163 
164     /// Returns true if this scope strictly encloses I: that is,
165     /// if it encloses I and is not I.
166     /// Returns false is I is invalid.
167     /// This scope must be valid.
168     bool strictlyEncloses(stable_iterator I) const { return Size < I.Size; }
169 
170     friend bool operator==(stable_iterator A, stable_iterator B) {
171       return A.Size == B.Size;
172     }
173     friend bool operator!=(stable_iterator A, stable_iterator B) {
174       return A.Size != B.Size;
175     }
176   };
177 
178   /// Information for lazily generating a cleanup.  Subclasses must be
179   /// POD-like: cleanups will not be destructed, and they will be
180   /// allocated on the cleanup stack and freely copied and moved
181   /// around.
182   ///
183   /// Cleanup implementations should generally be declared in an
184   /// anonymous namespace.
185   class Cleanup {
186     // Anchor the construction vtable.
187     virtual void anchor();
188   public:
189     /// Generation flags.
190     class Flags {
191       enum {
192         F_IsForEH             = 0x1,
193         F_IsNormalCleanupKind = 0x2,
194         F_IsEHCleanupKind     = 0x4
195       };
196       unsigned flags;
197 
198     public:
199       Flags() : flags(0) {}
200 
201       /// isForEH - true if the current emission is for an EH cleanup.
202       bool isForEHCleanup() const { return flags & F_IsForEH; }
203       bool isForNormalCleanup() const { return !isForEHCleanup(); }
204       void setIsForEHCleanup() { flags |= F_IsForEH; }
205 
206       bool isNormalCleanupKind() const { return flags & F_IsNormalCleanupKind; }
207       void setIsNormalCleanupKind() { flags |= F_IsNormalCleanupKind; }
208 
209       /// isEHCleanupKind - true if the cleanup was pushed as an EH
210       /// cleanup.
211       bool isEHCleanupKind() const { return flags & F_IsEHCleanupKind; }
212       void setIsEHCleanupKind() { flags |= F_IsEHCleanupKind; }
213     };
214 
215     // Provide a virtual destructor to suppress a very common warning
216     // that unfortunately cannot be suppressed without this.  Cleanups
217     // should not rely on this destructor ever being called.
218     virtual ~Cleanup() {}
219 
220     /// Emit the cleanup.  For normal cleanups, this is run in the
221     /// same EH context as when the cleanup was pushed, i.e. the
222     /// immediately-enclosing context of the cleanup scope.  For
223     /// EH cleanups, this is run in a terminate context.
224     ///
225     // \param IsForEHCleanup true if this is for an EH cleanup, false
226     ///  if for a normal cleanup.
227     virtual void Emit(CodeGenFunction &CGF, Flags flags) = 0;
228   };
229 
230   /// ConditionalCleanupN stores the saved form of its N parameters,
231   /// then restores them and performs the cleanup.
232   template <class T, class A0>
233   class ConditionalCleanup1 : public Cleanup {
234     typedef typename DominatingValue<A0>::saved_type A0_saved;
235     A0_saved a0_saved;
236 
237     void Emit(CodeGenFunction &CGF, Flags flags) {
238       A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
239       T(a0).Emit(CGF, flags);
240     }
241 
242   public:
243     ConditionalCleanup1(A0_saved a0)
244       : a0_saved(a0) {}
245   };
246 
247   template <class T, class A0, class A1>
248   class ConditionalCleanup2 : public Cleanup {
249     typedef typename DominatingValue<A0>::saved_type A0_saved;
250     typedef typename DominatingValue<A1>::saved_type A1_saved;
251     A0_saved a0_saved;
252     A1_saved a1_saved;
253 
254     void Emit(CodeGenFunction &CGF, Flags flags) {
255       A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
256       A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
257       T(a0, a1).Emit(CGF, flags);
258     }
259 
260   public:
261     ConditionalCleanup2(A0_saved a0, A1_saved a1)
262       : a0_saved(a0), a1_saved(a1) {}
263   };
264 
265   template <class T, class A0, class A1, class A2>
266   class ConditionalCleanup3 : public Cleanup {
267     typedef typename DominatingValue<A0>::saved_type A0_saved;
268     typedef typename DominatingValue<A1>::saved_type A1_saved;
269     typedef typename DominatingValue<A2>::saved_type A2_saved;
270     A0_saved a0_saved;
271     A1_saved a1_saved;
272     A2_saved a2_saved;
273 
274     void Emit(CodeGenFunction &CGF, Flags flags) {
275       A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
276       A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
277       A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved);
278       T(a0, a1, a2).Emit(CGF, flags);
279     }
280 
281   public:
282     ConditionalCleanup3(A0_saved a0, A1_saved a1, A2_saved a2)
283       : a0_saved(a0), a1_saved(a1), a2_saved(a2) {}
284   };
285 
286   template <class T, class A0, class A1, class A2, class A3>
287   class ConditionalCleanup4 : public Cleanup {
288     typedef typename DominatingValue<A0>::saved_type A0_saved;
289     typedef typename DominatingValue<A1>::saved_type A1_saved;
290     typedef typename DominatingValue<A2>::saved_type A2_saved;
291     typedef typename DominatingValue<A3>::saved_type A3_saved;
292     A0_saved a0_saved;
293     A1_saved a1_saved;
294     A2_saved a2_saved;
295     A3_saved a3_saved;
296 
297     void Emit(CodeGenFunction &CGF, Flags flags) {
298       A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
299       A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
300       A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved);
301       A3 a3 = DominatingValue<A3>::restore(CGF, a3_saved);
302       T(a0, a1, a2, a3).Emit(CGF, flags);
303     }
304 
305   public:
306     ConditionalCleanup4(A0_saved a0, A1_saved a1, A2_saved a2, A3_saved a3)
307       : a0_saved(a0), a1_saved(a1), a2_saved(a2), a3_saved(a3) {}
308   };
309 
310 private:
311   // The implementation for this class is in CGException.h and
312   // CGException.cpp; the definition is here because it's used as a
313   // member of CodeGenFunction.
314 
315   /// The start of the scope-stack buffer, i.e. the allocated pointer
316   /// for the buffer.  All of these pointers are either simultaneously
317   /// null or simultaneously valid.
318   char *StartOfBuffer;
319 
320   /// The end of the buffer.
321   char *EndOfBuffer;
322 
323   /// The first valid entry in the buffer.
324   char *StartOfData;
325 
326   /// The innermost normal cleanup on the stack.
327   stable_iterator InnermostNormalCleanup;
328 
329   /// The innermost EH scope on the stack.
330   stable_iterator InnermostEHScope;
331 
332   /// The current set of branch fixups.  A branch fixup is a jump to
333   /// an as-yet unemitted label, i.e. a label for which we don't yet
334   /// know the EH stack depth.  Whenever we pop a cleanup, we have
335   /// to thread all the current branch fixups through it.
336   ///
337   /// Fixups are recorded as the Use of the respective branch or
338   /// switch statement.  The use points to the final destination.
339   /// When popping out of a cleanup, these uses are threaded through
340   /// the cleanup and adjusted to point to the new cleanup.
341   ///
342   /// Note that branches are allowed to jump into protected scopes
343   /// in certain situations;  e.g. the following code is legal:
344   ///     struct A { ~A(); }; // trivial ctor, non-trivial dtor
345   ///     goto foo;
346   ///     A a;
347   ///    foo:
348   ///     bar();
349   SmallVector<BranchFixup, 8> BranchFixups;
350 
351   char *allocate(size_t Size);
352 
353   void *pushCleanup(CleanupKind K, size_t DataSize);
354 
355 public:
356   EHScopeStack() : StartOfBuffer(0), EndOfBuffer(0), StartOfData(0),
357                    InnermostNormalCleanup(stable_end()),
358                    InnermostEHScope(stable_end()) {}
359   ~EHScopeStack() { delete[] StartOfBuffer; }
360 
361   // Variadic templates would make this not terrible.
362 
363   /// Push a lazily-created cleanup on the stack.
364   template <class T>
365   void pushCleanup(CleanupKind Kind) {
366     void *Buffer = pushCleanup(Kind, sizeof(T));
367     Cleanup *Obj = new(Buffer) T();
368     (void) Obj;
369   }
370 
371   /// Push a lazily-created cleanup on the stack.
372   template <class T, class A0>
373   void pushCleanup(CleanupKind Kind, A0 a0) {
374     void *Buffer = pushCleanup(Kind, sizeof(T));
375     Cleanup *Obj = new(Buffer) T(a0);
376     (void) Obj;
377   }
378 
379   /// Push a lazily-created cleanup on the stack.
380   template <class T, class A0, class A1>
381   void pushCleanup(CleanupKind Kind, A0 a0, A1 a1) {
382     void *Buffer = pushCleanup(Kind, sizeof(T));
383     Cleanup *Obj = new(Buffer) T(a0, a1);
384     (void) Obj;
385   }
386 
387   /// Push a lazily-created cleanup on the stack.
388   template <class T, class A0, class A1, class A2>
389   void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2) {
390     void *Buffer = pushCleanup(Kind, sizeof(T));
391     Cleanup *Obj = new(Buffer) T(a0, a1, a2);
392     (void) Obj;
393   }
394 
395   /// Push a lazily-created cleanup on the stack.
396   template <class T, class A0, class A1, class A2, class A3>
397   void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) {
398     void *Buffer = pushCleanup(Kind, sizeof(T));
399     Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3);
400     (void) Obj;
401   }
402 
403   /// Push a lazily-created cleanup on the stack.
404   template <class T, class A0, class A1, class A2, class A3, class A4>
405   void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3, A4 a4) {
406     void *Buffer = pushCleanup(Kind, sizeof(T));
407     Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3, a4);
408     (void) Obj;
409   }
410 
411   // Feel free to add more variants of the following:
412 
413   /// Push a cleanup with non-constant storage requirements on the
414   /// stack.  The cleanup type must provide an additional static method:
415   ///   static size_t getExtraSize(size_t);
416   /// The argument to this method will be the value N, which will also
417   /// be passed as the first argument to the constructor.
418   ///
419   /// The data stored in the extra storage must obey the same
420   /// restrictions as normal cleanup member data.
421   ///
422   /// The pointer returned from this method is valid until the cleanup
423   /// stack is modified.
424   template <class T, class A0, class A1, class A2>
425   T *pushCleanupWithExtra(CleanupKind Kind, size_t N, A0 a0, A1 a1, A2 a2) {
426     void *Buffer = pushCleanup(Kind, sizeof(T) + T::getExtraSize(N));
427     return new (Buffer) T(N, a0, a1, a2);
428   }
429 
430   /// Pops a cleanup scope off the stack.  This is private to CGCleanup.cpp.
431   void popCleanup();
432 
433   /// Push a set of catch handlers on the stack.  The catch is
434   /// uninitialized and will need to have the given number of handlers
435   /// set on it.
436   class EHCatchScope *pushCatch(unsigned NumHandlers);
437 
438   /// Pops a catch scope off the stack.  This is private to CGException.cpp.
439   void popCatch();
440 
441   /// Push an exceptions filter on the stack.
442   class EHFilterScope *pushFilter(unsigned NumFilters);
443 
444   /// Pops an exceptions filter off the stack.
445   void popFilter();
446 
447   /// Push a terminate handler on the stack.
448   void pushTerminate();
449 
450   /// Pops a terminate handler off the stack.
451   void popTerminate();
452 
453   /// Determines whether the exception-scopes stack is empty.
454   bool empty() const { return StartOfData == EndOfBuffer; }
455 
456   bool requiresLandingPad() const {
457     return InnermostEHScope != stable_end();
458   }
459 
460   /// Determines whether there are any normal cleanups on the stack.
461   bool hasNormalCleanups() const {
462     return InnermostNormalCleanup != stable_end();
463   }
464 
465   /// Returns the innermost normal cleanup on the stack, or
466   /// stable_end() if there are no normal cleanups.
467   stable_iterator getInnermostNormalCleanup() const {
468     return InnermostNormalCleanup;
469   }
470   stable_iterator getInnermostActiveNormalCleanup() const;
471 
472   stable_iterator getInnermostEHScope() const {
473     return InnermostEHScope;
474   }
475 
476   stable_iterator getInnermostActiveEHScope() const;
477 
478   /// An unstable reference to a scope-stack depth.  Invalidated by
479   /// pushes but not pops.
480   class iterator;
481 
482   /// Returns an iterator pointing to the innermost EH scope.
483   iterator begin() const;
484 
485   /// Returns an iterator pointing to the outermost EH scope.
486   iterator end() const;
487 
488   /// Create a stable reference to the top of the EH stack.  The
489   /// returned reference is valid until that scope is popped off the
490   /// stack.
491   stable_iterator stable_begin() const {
492     return stable_iterator(EndOfBuffer - StartOfData);
493   }
494 
495   /// Create a stable reference to the bottom of the EH stack.
496   static stable_iterator stable_end() {
497     return stable_iterator(0);
498   }
499 
500   /// Translates an iterator into a stable_iterator.
501   stable_iterator stabilize(iterator it) const;
502 
503   /// Turn a stable reference to a scope depth into a unstable pointer
504   /// to the EH stack.
505   iterator find(stable_iterator save) const;
506 
507   /// Removes the cleanup pointed to by the given stable_iterator.
508   void removeCleanup(stable_iterator save);
509 
510   /// Add a branch fixup to the current cleanup scope.
511   BranchFixup &addBranchFixup() {
512     assert(hasNormalCleanups() && "adding fixup in scope without cleanups");
513     BranchFixups.push_back(BranchFixup());
514     return BranchFixups.back();
515   }
516 
517   unsigned getNumBranchFixups() const { return BranchFixups.size(); }
518   BranchFixup &getBranchFixup(unsigned I) {
519     assert(I < getNumBranchFixups());
520     return BranchFixups[I];
521   }
522 
523   /// Pops lazily-removed fixups from the end of the list.  This
524   /// should only be called by procedures which have just popped a
525   /// cleanup or resolved one or more fixups.
526   void popNullFixups();
527 
528   /// Clears the branch-fixups list.  This should only be called by
529   /// ResolveAllBranchFixups.
530   void clearFixups() { BranchFixups.clear(); }
531 };
532 
533 /// CodeGenFunction - This class organizes the per-function state that is used
534 /// while generating LLVM code.
535 class CodeGenFunction : public CodeGenTypeCache {
536   CodeGenFunction(const CodeGenFunction&); // DO NOT IMPLEMENT
537   void operator=(const CodeGenFunction&);  // DO NOT IMPLEMENT
538 
539   friend class CGCXXABI;
540 public:
541   /// A jump destination is an abstract label, branching to which may
542   /// require a jump out through normal cleanups.
543   struct JumpDest {
544     JumpDest() : Block(0), ScopeDepth(), Index(0) {}
545     JumpDest(llvm::BasicBlock *Block,
546              EHScopeStack::stable_iterator Depth,
547              unsigned Index)
548       : Block(Block), ScopeDepth(Depth), Index(Index) {}
549 
550     bool isValid() const { return Block != 0; }
551     llvm::BasicBlock *getBlock() const { return Block; }
552     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
553     unsigned getDestIndex() const { return Index; }
554 
555   private:
556     llvm::BasicBlock *Block;
557     EHScopeStack::stable_iterator ScopeDepth;
558     unsigned Index;
559   };
560 
561   CodeGenModule &CGM;  // Per-module state.
562   const TargetInfo &Target;
563 
564   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
565   CGBuilderTy Builder;
566 
567   /// CurFuncDecl - Holds the Decl for the current function or ObjC method.
568   /// This excludes BlockDecls.
569   const Decl *CurFuncDecl;
570   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
571   const Decl *CurCodeDecl;
572   const CGFunctionInfo *CurFnInfo;
573   QualType FnRetTy;
574   llvm::Function *CurFn;
575 
576   /// CurGD - The GlobalDecl for the current function being compiled.
577   GlobalDecl CurGD;
578 
579   /// PrologueCleanupDepth - The cleanup depth enclosing all the
580   /// cleanups associated with the parameters.
581   EHScopeStack::stable_iterator PrologueCleanupDepth;
582 
583   /// ReturnBlock - Unified return block.
584   JumpDest ReturnBlock;
585 
586   /// ReturnValue - The temporary alloca to hold the return value. This is null
587   /// iff the function has no return value.
588   llvm::Value *ReturnValue;
589 
590   /// AllocaInsertPoint - This is an instruction in the entry block before which
591   /// we prefer to insert allocas.
592   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
593 
594   bool CatchUndefined;
595 
596   /// In ARC, whether we should autorelease the return value.
597   bool AutoreleaseResult;
598 
599   const CodeGen::CGBlockInfo *BlockInfo;
600   llvm::Value *BlockPointer;
601 
602   /// \brief A mapping from NRVO variables to the flags used to indicate
603   /// when the NRVO has been applied to this variable.
604   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
605 
606   EHScopeStack EHStack;
607 
608   /// i32s containing the indexes of the cleanup destinations.
609   llvm::AllocaInst *NormalCleanupDest;
610 
611   unsigned NextCleanupDestIndex;
612 
613   /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
614   llvm::BasicBlock *EHResumeBlock;
615 
616   /// The exception slot.  All landing pads write the current exception pointer
617   /// into this alloca.
618   llvm::Value *ExceptionSlot;
619 
620   /// The selector slot.  Under the MandatoryCleanup model, all landing pads
621   /// write the current selector value into this alloca.
622   llvm::AllocaInst *EHSelectorSlot;
623 
624   /// Emits a landing pad for the current EH stack.
625   llvm::BasicBlock *EmitLandingPad();
626 
627   llvm::BasicBlock *getInvokeDestImpl();
628 
629   /// Set up the last cleaup that was pushed as a conditional
630   /// full-expression cleanup.
631   void initFullExprCleanup();
632 
633   template <class T>
634   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
635     return DominatingValue<T>::save(*this, value);
636   }
637 
638 public:
639   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
640   /// rethrows.
641   SmallVector<llvm::Value*, 8> ObjCEHValueStack;
642 
643   /// A class controlling the emission of a finally block.
644   class FinallyInfo {
645     /// Where the catchall's edge through the cleanup should go.
646     JumpDest RethrowDest;
647 
648     /// A function to call to enter the catch.
649     llvm::Constant *BeginCatchFn;
650 
651     /// An i1 variable indicating whether or not the @finally is
652     /// running for an exception.
653     llvm::AllocaInst *ForEHVar;
654 
655     /// An i8* variable into which the exception pointer to rethrow
656     /// has been saved.
657     llvm::AllocaInst *SavedExnVar;
658 
659   public:
660     void enter(CodeGenFunction &CGF, const Stmt *Finally,
661                llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
662                llvm::Constant *rethrowFn);
663     void exit(CodeGenFunction &CGF);
664   };
665 
666   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
667   /// current full-expression.  Safe against the possibility that
668   /// we're currently inside a conditionally-evaluated expression.
669   template <class T, class A0>
670   void pushFullExprCleanup(CleanupKind kind, A0 a0) {
671     // If we're not in a conditional branch, or if none of the
672     // arguments requires saving, then use the unconditional cleanup.
673     if (!isInConditionalBranch())
674       return EHStack.pushCleanup<T>(kind, a0);
675 
676     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
677 
678     typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType;
679     EHStack.pushCleanup<CleanupType>(kind, a0_saved);
680     initFullExprCleanup();
681   }
682 
683   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
684   /// current full-expression.  Safe against the possibility that
685   /// we're currently inside a conditionally-evaluated expression.
686   template <class T, class A0, class A1>
687   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) {
688     // If we're not in a conditional branch, or if none of the
689     // arguments requires saving, then use the unconditional cleanup.
690     if (!isInConditionalBranch())
691       return EHStack.pushCleanup<T>(kind, a0, a1);
692 
693     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
694     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
695 
696     typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType;
697     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved);
698     initFullExprCleanup();
699   }
700 
701   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
702   /// current full-expression.  Safe against the possibility that
703   /// we're currently inside a conditionally-evaluated expression.
704   template <class T, class A0, class A1, class A2>
705   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2) {
706     // If we're not in a conditional branch, or if none of the
707     // arguments requires saving, then use the unconditional cleanup.
708     if (!isInConditionalBranch()) {
709       return EHStack.pushCleanup<T>(kind, a0, a1, a2);
710     }
711 
712     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
713     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
714     typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
715 
716     typedef EHScopeStack::ConditionalCleanup3<T, A0, A1, A2> CleanupType;
717     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, a2_saved);
718     initFullExprCleanup();
719   }
720 
721   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
722   /// current full-expression.  Safe against the possibility that
723   /// we're currently inside a conditionally-evaluated expression.
724   template <class T, class A0, class A1, class A2, class A3>
725   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2, A3 a3) {
726     // If we're not in a conditional branch, or if none of the
727     // arguments requires saving, then use the unconditional cleanup.
728     if (!isInConditionalBranch()) {
729       return EHStack.pushCleanup<T>(kind, a0, a1, a2, a3);
730     }
731 
732     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
733     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
734     typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
735     typename DominatingValue<A3>::saved_type a3_saved = saveValueInCond(a3);
736 
737     typedef EHScopeStack::ConditionalCleanup4<T, A0, A1, A2, A3> CleanupType;
738     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved,
739                                      a2_saved, a3_saved);
740     initFullExprCleanup();
741   }
742 
743   /// PushDestructorCleanup - Push a cleanup to call the
744   /// complete-object destructor of an object of the given type at the
745   /// given address.  Does nothing if T is not a C++ class type with a
746   /// non-trivial destructor.
747   void PushDestructorCleanup(QualType T, llvm::Value *Addr);
748 
749   /// PushDestructorCleanup - Push a cleanup to call the
750   /// complete-object variant of the given destructor on the object at
751   /// the given address.
752   void PushDestructorCleanup(const CXXDestructorDecl *Dtor,
753                              llvm::Value *Addr);
754 
755   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
756   /// process all branch fixups.
757   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
758 
759   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
760   /// The block cannot be reactivated.  Pops it if it's the top of the
761   /// stack.
762   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup);
763 
764   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
765   /// Cannot be used to resurrect a deactivated cleanup.
766   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup);
767 
768   /// \brief Enters a new scope for capturing cleanups, all of which
769   /// will be executed once the scope is exited.
770   class RunCleanupsScope {
771     EHScopeStack::stable_iterator CleanupStackDepth;
772     bool OldDidCallStackSave;
773     bool PerformCleanup;
774 
775     RunCleanupsScope(const RunCleanupsScope &); // DO NOT IMPLEMENT
776     RunCleanupsScope &operator=(const RunCleanupsScope &); // DO NOT IMPLEMENT
777 
778   protected:
779     CodeGenFunction& CGF;
780 
781   public:
782     /// \brief Enter a new cleanup scope.
783     explicit RunCleanupsScope(CodeGenFunction &CGF)
784       : PerformCleanup(true), CGF(CGF)
785     {
786       CleanupStackDepth = CGF.EHStack.stable_begin();
787       OldDidCallStackSave = CGF.DidCallStackSave;
788       CGF.DidCallStackSave = false;
789     }
790 
791     /// \brief Exit this cleanup scope, emitting any accumulated
792     /// cleanups.
793     ~RunCleanupsScope() {
794       if (PerformCleanup) {
795         CGF.DidCallStackSave = OldDidCallStackSave;
796         CGF.PopCleanupBlocks(CleanupStackDepth);
797       }
798     }
799 
800     /// \brief Determine whether this scope requires any cleanups.
801     bool requiresCleanups() const {
802       return CGF.EHStack.stable_begin() != CleanupStackDepth;
803     }
804 
805     /// \brief Force the emission of cleanups now, instead of waiting
806     /// until this object is destroyed.
807     void ForceCleanup() {
808       assert(PerformCleanup && "Already forced cleanup");
809       CGF.DidCallStackSave = OldDidCallStackSave;
810       CGF.PopCleanupBlocks(CleanupStackDepth);
811       PerformCleanup = false;
812     }
813   };
814 
815   class LexicalScope: protected RunCleanupsScope {
816     SourceRange Range;
817     bool PopDebugStack;
818 
819     LexicalScope(const LexicalScope &); // DO NOT IMPLEMENT THESE
820     LexicalScope &operator=(const LexicalScope &);
821 
822   public:
823     /// \brief Enter a new cleanup scope.
824     explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
825       : RunCleanupsScope(CGF), Range(Range), PopDebugStack(true) {
826       if (CGDebugInfo *DI = CGF.getDebugInfo())
827         DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
828     }
829 
830     /// \brief Exit this cleanup scope, emitting any accumulated
831     /// cleanups.
832     ~LexicalScope() {
833       if (PopDebugStack) {
834         CGDebugInfo *DI = CGF.getDebugInfo();
835         if (DI) DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
836       }
837     }
838 
839     /// \brief Force the emission of cleanups now, instead of waiting
840     /// until this object is destroyed.
841     void ForceCleanup() {
842       RunCleanupsScope::ForceCleanup();
843       if (CGDebugInfo *DI = CGF.getDebugInfo()) {
844         DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
845         PopDebugStack = false;
846       }
847     }
848   };
849 
850 
851   /// PopCleanupBlocks - Takes the old cleanup stack size and emits
852   /// the cleanup blocks that have been added.
853   void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize);
854 
855   void ResolveBranchFixups(llvm::BasicBlock *Target);
856 
857   /// The given basic block lies in the current EH scope, but may be a
858   /// target of a potentially scope-crossing jump; get a stable handle
859   /// to which we can perform this jump later.
860   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
861     return JumpDest(Target,
862                     EHStack.getInnermostNormalCleanup(),
863                     NextCleanupDestIndex++);
864   }
865 
866   /// The given basic block lies in the current EH scope, but may be a
867   /// target of a potentially scope-crossing jump; get a stable handle
868   /// to which we can perform this jump later.
869   JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
870     return getJumpDestInCurrentScope(createBasicBlock(Name));
871   }
872 
873   /// EmitBranchThroughCleanup - Emit a branch from the current insert
874   /// block through the normal cleanup handling code (if any) and then
875   /// on to \arg Dest.
876   void EmitBranchThroughCleanup(JumpDest Dest);
877 
878   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
879   /// specified destination obviously has no cleanups to run.  'false' is always
880   /// a conservatively correct answer for this method.
881   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
882 
883   /// popCatchScope - Pops the catch scope at the top of the EHScope
884   /// stack, emitting any required code (other than the catch handlers
885   /// themselves).
886   void popCatchScope();
887 
888   llvm::BasicBlock *getEHResumeBlock();
889   llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
890 
891   /// An object to manage conditionally-evaluated expressions.
892   class ConditionalEvaluation {
893     llvm::BasicBlock *StartBB;
894 
895   public:
896     ConditionalEvaluation(CodeGenFunction &CGF)
897       : StartBB(CGF.Builder.GetInsertBlock()) {}
898 
899     void begin(CodeGenFunction &CGF) {
900       assert(CGF.OutermostConditional != this);
901       if (!CGF.OutermostConditional)
902         CGF.OutermostConditional = this;
903     }
904 
905     void end(CodeGenFunction &CGF) {
906       assert(CGF.OutermostConditional != 0);
907       if (CGF.OutermostConditional == this)
908         CGF.OutermostConditional = 0;
909     }
910 
911     /// Returns a block which will be executed prior to each
912     /// evaluation of the conditional code.
913     llvm::BasicBlock *getStartingBlock() const {
914       return StartBB;
915     }
916   };
917 
918   /// isInConditionalBranch - Return true if we're currently emitting
919   /// one branch or the other of a conditional expression.
920   bool isInConditionalBranch() const { return OutermostConditional != 0; }
921 
922   /// An RAII object to record that we're evaluating a statement
923   /// expression.
924   class StmtExprEvaluation {
925     CodeGenFunction &CGF;
926 
927     /// We have to save the outermost conditional: cleanups in a
928     /// statement expression aren't conditional just because the
929     /// StmtExpr is.
930     ConditionalEvaluation *SavedOutermostConditional;
931 
932   public:
933     StmtExprEvaluation(CodeGenFunction &CGF)
934       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
935       CGF.OutermostConditional = 0;
936     }
937 
938     ~StmtExprEvaluation() {
939       CGF.OutermostConditional = SavedOutermostConditional;
940       CGF.EnsureInsertPoint();
941     }
942   };
943 
944   /// An object which temporarily prevents a value from being
945   /// destroyed by aggressive peephole optimizations that assume that
946   /// all uses of a value have been realized in the IR.
947   class PeepholeProtection {
948     llvm::Instruction *Inst;
949     friend class CodeGenFunction;
950 
951   public:
952     PeepholeProtection() : Inst(0) {}
953   };
954 
955   /// A non-RAII class containing all the information about a bound
956   /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
957   /// this which makes individual mappings very simple; using this
958   /// class directly is useful when you have a variable number of
959   /// opaque values or don't want the RAII functionality for some
960   /// reason.
961   class OpaqueValueMappingData {
962     const OpaqueValueExpr *OpaqueValue;
963     bool BoundLValue;
964     CodeGenFunction::PeepholeProtection Protection;
965 
966     OpaqueValueMappingData(const OpaqueValueExpr *ov,
967                            bool boundLValue)
968       : OpaqueValue(ov), BoundLValue(boundLValue) {}
969   public:
970     OpaqueValueMappingData() : OpaqueValue(0) {}
971 
972     static bool shouldBindAsLValue(const Expr *expr) {
973       // gl-values should be bound as l-values for obvious reasons.
974       // Records should be bound as l-values because IR generation
975       // always keeps them in memory.  Expressions of function type
976       // act exactly like l-values but are formally required to be
977       // r-values in C.
978       return expr->isGLValue() ||
979              expr->getType()->isRecordType() ||
980              expr->getType()->isFunctionType();
981     }
982 
983     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
984                                        const OpaqueValueExpr *ov,
985                                        const Expr *e) {
986       if (shouldBindAsLValue(ov))
987         return bind(CGF, ov, CGF.EmitLValue(e));
988       return bind(CGF, ov, CGF.EmitAnyExpr(e));
989     }
990 
991     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
992                                        const OpaqueValueExpr *ov,
993                                        const LValue &lv) {
994       assert(shouldBindAsLValue(ov));
995       CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
996       return OpaqueValueMappingData(ov, true);
997     }
998 
999     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1000                                        const OpaqueValueExpr *ov,
1001                                        const RValue &rv) {
1002       assert(!shouldBindAsLValue(ov));
1003       CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
1004 
1005       OpaqueValueMappingData data(ov, false);
1006 
1007       // Work around an extremely aggressive peephole optimization in
1008       // EmitScalarConversion which assumes that all other uses of a
1009       // value are extant.
1010       data.Protection = CGF.protectFromPeepholes(rv);
1011 
1012       return data;
1013     }
1014 
1015     bool isValid() const { return OpaqueValue != 0; }
1016     void clear() { OpaqueValue = 0; }
1017 
1018     void unbind(CodeGenFunction &CGF) {
1019       assert(OpaqueValue && "no data to unbind!");
1020 
1021       if (BoundLValue) {
1022         CGF.OpaqueLValues.erase(OpaqueValue);
1023       } else {
1024         CGF.OpaqueRValues.erase(OpaqueValue);
1025         CGF.unprotectFromPeepholes(Protection);
1026       }
1027     }
1028   };
1029 
1030   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
1031   class OpaqueValueMapping {
1032     CodeGenFunction &CGF;
1033     OpaqueValueMappingData Data;
1034 
1035   public:
1036     static bool shouldBindAsLValue(const Expr *expr) {
1037       return OpaqueValueMappingData::shouldBindAsLValue(expr);
1038     }
1039 
1040     /// Build the opaque value mapping for the given conditional
1041     /// operator if it's the GNU ?: extension.  This is a common
1042     /// enough pattern that the convenience operator is really
1043     /// helpful.
1044     ///
1045     OpaqueValueMapping(CodeGenFunction &CGF,
1046                        const AbstractConditionalOperator *op) : CGF(CGF) {
1047       if (isa<ConditionalOperator>(op))
1048         // Leave Data empty.
1049         return;
1050 
1051       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
1052       Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
1053                                           e->getCommon());
1054     }
1055 
1056     OpaqueValueMapping(CodeGenFunction &CGF,
1057                        const OpaqueValueExpr *opaqueValue,
1058                        LValue lvalue)
1059       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
1060     }
1061 
1062     OpaqueValueMapping(CodeGenFunction &CGF,
1063                        const OpaqueValueExpr *opaqueValue,
1064                        RValue rvalue)
1065       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
1066     }
1067 
1068     void pop() {
1069       Data.unbind(CGF);
1070       Data.clear();
1071     }
1072 
1073     ~OpaqueValueMapping() {
1074       if (Data.isValid()) Data.unbind(CGF);
1075     }
1076   };
1077 
1078   /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field
1079   /// number that holds the value.
1080   unsigned getByRefValueLLVMField(const ValueDecl *VD) const;
1081 
1082   /// BuildBlockByrefAddress - Computes address location of the
1083   /// variable which is declared as __block.
1084   llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr,
1085                                       const VarDecl *V);
1086 private:
1087   CGDebugInfo *DebugInfo;
1088   bool DisableDebugInfo;
1089 
1090   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
1091   /// calling llvm.stacksave for multiple VLAs in the same scope.
1092   bool DidCallStackSave;
1093 
1094   /// IndirectBranch - The first time an indirect goto is seen we create a block
1095   /// with an indirect branch.  Every time we see the address of a label taken,
1096   /// we add the label to the indirect goto.  Every subsequent indirect goto is
1097   /// codegen'd as a jump to the IndirectBranch's basic block.
1098   llvm::IndirectBrInst *IndirectBranch;
1099 
1100   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1101   /// decls.
1102   typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy;
1103   DeclMapTy LocalDeclMap;
1104 
1105   /// LabelMap - This keeps track of the LLVM basic block for each C label.
1106   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1107 
1108   // BreakContinueStack - This keeps track of where break and continue
1109   // statements should jump to.
1110   struct BreakContinue {
1111     BreakContinue(JumpDest Break, JumpDest Continue)
1112       : BreakBlock(Break), ContinueBlock(Continue) {}
1113 
1114     JumpDest BreakBlock;
1115     JumpDest ContinueBlock;
1116   };
1117   SmallVector<BreakContinue, 8> BreakContinueStack;
1118 
1119   /// SwitchInsn - This is nearest current switch instruction. It is null if if
1120   /// current context is not in a switch.
1121   llvm::SwitchInst *SwitchInsn;
1122 
1123   /// CaseRangeBlock - This block holds if condition check for last case
1124   /// statement range in current switch instruction.
1125   llvm::BasicBlock *CaseRangeBlock;
1126 
1127   /// OpaqueLValues - Keeps track of the current set of opaque value
1128   /// expressions.
1129   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1130   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1131 
1132   // VLASizeMap - This keeps track of the associated size for each VLA type.
1133   // We track this by the size expression rather than the type itself because
1134   // in certain situations, like a const qualifier applied to an VLA typedef,
1135   // multiple VLA types can share the same size expression.
1136   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1137   // enter/leave scopes.
1138   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1139 
1140   /// A block containing a single 'unreachable' instruction.  Created
1141   /// lazily by getUnreachableBlock().
1142   llvm::BasicBlock *UnreachableBlock;
1143 
1144   /// CXXThisDecl - When generating code for a C++ member function,
1145   /// this will hold the implicit 'this' declaration.
1146   ImplicitParamDecl *CXXThisDecl;
1147   llvm::Value *CXXThisValue;
1148 
1149   /// CXXVTTDecl - When generating code for a base object constructor or
1150   /// base object destructor with virtual bases, this will hold the implicit
1151   /// VTT parameter.
1152   ImplicitParamDecl *CXXVTTDecl;
1153   llvm::Value *CXXVTTValue;
1154 
1155   /// OutermostConditional - Points to the outermost active
1156   /// conditional control.  This is used so that we know if a
1157   /// temporary should be destroyed conditionally.
1158   ConditionalEvaluation *OutermostConditional;
1159 
1160 
1161   /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM
1162   /// type as well as the field number that contains the actual data.
1163   llvm::DenseMap<const ValueDecl *, std::pair<llvm::Type *,
1164                                               unsigned> > ByRefValueInfo;
1165 
1166   llvm::BasicBlock *TerminateLandingPad;
1167   llvm::BasicBlock *TerminateHandler;
1168   llvm::BasicBlock *TrapBB;
1169 
1170 public:
1171   CodeGenFunction(CodeGenModule &cgm);
1172 
1173   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1174   ASTContext &getContext() const { return CGM.getContext(); }
1175   CGDebugInfo *getDebugInfo() {
1176     if (DisableDebugInfo)
1177       return NULL;
1178     return DebugInfo;
1179   }
1180   void disableDebugInfo() { DisableDebugInfo = true; }
1181   void enableDebugInfo() { DisableDebugInfo = false; }
1182 
1183   bool shouldUseFusedARCCalls() {
1184     return CGM.getCodeGenOpts().OptimizationLevel == 0;
1185   }
1186 
1187   const LangOptions &getLangOptions() const { return CGM.getLangOptions(); }
1188 
1189   /// Returns a pointer to the function's exception object and selector slot,
1190   /// which is assigned in every landing pad.
1191   llvm::Value *getExceptionSlot();
1192   llvm::Value *getEHSelectorSlot();
1193 
1194   /// Returns the contents of the function's exception object and selector
1195   /// slots.
1196   llvm::Value *getExceptionFromSlot();
1197   llvm::Value *getSelectorFromSlot();
1198 
1199   llvm::Value *getNormalCleanupDestSlot();
1200 
1201   llvm::BasicBlock *getUnreachableBlock() {
1202     if (!UnreachableBlock) {
1203       UnreachableBlock = createBasicBlock("unreachable");
1204       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1205     }
1206     return UnreachableBlock;
1207   }
1208 
1209   llvm::BasicBlock *getInvokeDest() {
1210     if (!EHStack.requiresLandingPad()) return 0;
1211     return getInvokeDestImpl();
1212   }
1213 
1214   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1215 
1216   //===--------------------------------------------------------------------===//
1217   //                                  Cleanups
1218   //===--------------------------------------------------------------------===//
1219 
1220   typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty);
1221 
1222   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1223                                         llvm::Value *arrayEndPointer,
1224                                         QualType elementType,
1225                                         Destroyer &destroyer);
1226   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1227                                       llvm::Value *arrayEnd,
1228                                       QualType elementType,
1229                                       Destroyer &destroyer);
1230 
1231   void pushDestroy(QualType::DestructionKind dtorKind,
1232                    llvm::Value *addr, QualType type);
1233   void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type,
1234                    Destroyer &destroyer, bool useEHCleanupForArray);
1235   void emitDestroy(llvm::Value *addr, QualType type, Destroyer &destroyer,
1236                    bool useEHCleanupForArray);
1237   llvm::Function *generateDestroyHelper(llvm::Constant *addr,
1238                                         QualType type,
1239                                         Destroyer &destroyer,
1240                                         bool useEHCleanupForArray);
1241   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1242                         QualType type, Destroyer &destroyer,
1243                         bool checkZeroLength, bool useEHCleanup);
1244 
1245   Destroyer &getDestroyer(QualType::DestructionKind destructionKind);
1246 
1247   /// Determines whether an EH cleanup is required to destroy a type
1248   /// with the given destruction kind.
1249   bool needsEHCleanup(QualType::DestructionKind kind) {
1250     switch (kind) {
1251     case QualType::DK_none:
1252       return false;
1253     case QualType::DK_cxx_destructor:
1254     case QualType::DK_objc_weak_lifetime:
1255       return getLangOptions().Exceptions;
1256     case QualType::DK_objc_strong_lifetime:
1257       return getLangOptions().Exceptions &&
1258              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1259     }
1260     llvm_unreachable("bad destruction kind");
1261   }
1262 
1263   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
1264     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1265   }
1266 
1267   //===--------------------------------------------------------------------===//
1268   //                                  Objective-C
1269   //===--------------------------------------------------------------------===//
1270 
1271   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1272 
1273   void StartObjCMethod(const ObjCMethodDecl *MD,
1274                        const ObjCContainerDecl *CD,
1275                        SourceLocation StartLoc);
1276 
1277   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1278   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1279                           const ObjCPropertyImplDecl *PID);
1280   void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1281                               const ObjCPropertyImplDecl *propImpl);
1282 
1283   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1284                                   ObjCMethodDecl *MD, bool ctor);
1285 
1286   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1287   /// for the given property.
1288   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1289                           const ObjCPropertyImplDecl *PID);
1290   void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1291                               const ObjCPropertyImplDecl *propImpl);
1292   bool IndirectObjCSetterArg(const CGFunctionInfo &FI);
1293   bool IvarTypeWithAggrGCObjects(QualType Ty);
1294 
1295   //===--------------------------------------------------------------------===//
1296   //                                  Block Bits
1297   //===--------------------------------------------------------------------===//
1298 
1299   llvm::Value *EmitBlockLiteral(const BlockExpr *);
1300   llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *,
1301                                            const CGBlockInfo &Info,
1302                                            llvm::StructType *,
1303                                            llvm::Constant *BlockVarLayout);
1304 
1305   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1306                                         const CGBlockInfo &Info,
1307                                         const Decl *OuterFuncDecl,
1308                                         const DeclMapTy &ldm);
1309 
1310   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1311   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1312 
1313   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
1314 
1315   class AutoVarEmission;
1316 
1317   void emitByrefStructureInit(const AutoVarEmission &emission);
1318   void enterByrefCleanup(const AutoVarEmission &emission);
1319 
1320   llvm::Value *LoadBlockStruct() {
1321     assert(BlockPointer && "no block pointer set!");
1322     return BlockPointer;
1323   }
1324 
1325   void AllocateBlockCXXThisPointer(const CXXThisExpr *E);
1326   void AllocateBlockDecl(const BlockDeclRefExpr *E);
1327   llvm::Value *GetAddrOfBlockDecl(const BlockDeclRefExpr *E) {
1328     return GetAddrOfBlockDecl(E->getDecl(), E->isByRef());
1329   }
1330   llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
1331   llvm::Type *BuildByRefType(const VarDecl *var);
1332 
1333   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1334                     const CGFunctionInfo &FnInfo);
1335   void StartFunction(GlobalDecl GD, QualType RetTy,
1336                      llvm::Function *Fn,
1337                      const CGFunctionInfo &FnInfo,
1338                      const FunctionArgList &Args,
1339                      SourceLocation StartLoc);
1340 
1341   void EmitConstructorBody(FunctionArgList &Args);
1342   void EmitDestructorBody(FunctionArgList &Args);
1343   void EmitFunctionBody(FunctionArgList &Args);
1344 
1345   /// EmitReturnBlock - Emit the unified return block, trying to avoid its
1346   /// emission when possible.
1347   void EmitReturnBlock();
1348 
1349   /// FinishFunction - Complete IR generation of the current function. It is
1350   /// legal to call this function even if there is no current insertion point.
1351   void FinishFunction(SourceLocation EndLoc=SourceLocation());
1352 
1353   /// GenerateThunk - Generate a thunk for the given method.
1354   void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1355                      GlobalDecl GD, const ThunkInfo &Thunk);
1356 
1357   void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1358                             GlobalDecl GD, const ThunkInfo &Thunk);
1359 
1360   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1361                         FunctionArgList &Args);
1362 
1363   /// InitializeVTablePointer - Initialize the vtable pointer of the given
1364   /// subobject.
1365   ///
1366   void InitializeVTablePointer(BaseSubobject Base,
1367                                const CXXRecordDecl *NearestVBase,
1368                                CharUnits OffsetFromNearestVBase,
1369                                llvm::Constant *VTable,
1370                                const CXXRecordDecl *VTableClass);
1371 
1372   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1373   void InitializeVTablePointers(BaseSubobject Base,
1374                                 const CXXRecordDecl *NearestVBase,
1375                                 CharUnits OffsetFromNearestVBase,
1376                                 bool BaseIsNonVirtualPrimaryBase,
1377                                 llvm::Constant *VTable,
1378                                 const CXXRecordDecl *VTableClass,
1379                                 VisitedVirtualBasesSetTy& VBases);
1380 
1381   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1382 
1383   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1384   /// to by This.
1385   llvm::Value *GetVTablePtr(llvm::Value *This, llvm::Type *Ty);
1386 
1387   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1388   /// given phase of destruction for a destructor.  The end result
1389   /// should call destructors on members and base classes in reverse
1390   /// order of their construction.
1391   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1392 
1393   /// ShouldInstrumentFunction - Return true if the current function should be
1394   /// instrumented with __cyg_profile_func_* calls
1395   bool ShouldInstrumentFunction();
1396 
1397   /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
1398   /// instrumentation function with the current function and the call site, if
1399   /// function instrumentation is enabled.
1400   void EmitFunctionInstrumentation(const char *Fn);
1401 
1402   /// EmitMCountInstrumentation - Emit call to .mcount.
1403   void EmitMCountInstrumentation();
1404 
1405   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1406   /// arguments for the given function. This is also responsible for naming the
1407   /// LLVM function arguments.
1408   void EmitFunctionProlog(const CGFunctionInfo &FI,
1409                           llvm::Function *Fn,
1410                           const FunctionArgList &Args);
1411 
1412   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1413   /// given temporary.
1414   void EmitFunctionEpilog(const CGFunctionInfo &FI);
1415 
1416   /// EmitStartEHSpec - Emit the start of the exception spec.
1417   void EmitStartEHSpec(const Decl *D);
1418 
1419   /// EmitEndEHSpec - Emit the end of the exception spec.
1420   void EmitEndEHSpec(const Decl *D);
1421 
1422   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
1423   llvm::BasicBlock *getTerminateLandingPad();
1424 
1425   /// getTerminateHandler - Return a handler (not a landing pad, just
1426   /// a catch handler) that just calls terminate.  This is used when
1427   /// a terminate scope encloses a try.
1428   llvm::BasicBlock *getTerminateHandler();
1429 
1430   llvm::Type *ConvertTypeForMem(QualType T);
1431   llvm::Type *ConvertType(QualType T);
1432   llvm::Type *ConvertType(const TypeDecl *T) {
1433     return ConvertType(getContext().getTypeDeclType(T));
1434   }
1435 
1436   /// LoadObjCSelf - Load the value of self. This function is only valid while
1437   /// generating code for an Objective-C method.
1438   llvm::Value *LoadObjCSelf();
1439 
1440   /// TypeOfSelfObject - Return type of object that this self represents.
1441   QualType TypeOfSelfObject();
1442 
1443   /// hasAggregateLLVMType - Return true if the specified AST type will map into
1444   /// an aggregate LLVM type or is void.
1445   static bool hasAggregateLLVMType(QualType T);
1446 
1447   /// createBasicBlock - Create an LLVM basic block.
1448   llvm::BasicBlock *createBasicBlock(StringRef name = "",
1449                                      llvm::Function *parent = 0,
1450                                      llvm::BasicBlock *before = 0) {
1451 #ifdef NDEBUG
1452     return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
1453 #else
1454     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
1455 #endif
1456   }
1457 
1458   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
1459   /// label maps to.
1460   JumpDest getJumpDestForLabel(const LabelDecl *S);
1461 
1462   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
1463   /// another basic block, simplify it. This assumes that no other code could
1464   /// potentially reference the basic block.
1465   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
1466 
1467   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
1468   /// adding a fall-through branch from the current insert block if
1469   /// necessary. It is legal to call this function even if there is no current
1470   /// insertion point.
1471   ///
1472   /// IsFinished - If true, indicates that the caller has finished emitting
1473   /// branches to the given block and does not expect to emit code into it. This
1474   /// means the block can be ignored if it is unreachable.
1475   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
1476 
1477   /// EmitBlockAfterUses - Emit the given block somewhere hopefully
1478   /// near its uses, and leave the insertion point in it.
1479   void EmitBlockAfterUses(llvm::BasicBlock *BB);
1480 
1481   /// EmitBranch - Emit a branch to the specified basic block from the current
1482   /// insert block, taking care to avoid creation of branches from dummy
1483   /// blocks. It is legal to call this function even if there is no current
1484   /// insertion point.
1485   ///
1486   /// This function clears the current insertion point. The caller should follow
1487   /// calls to this function with calls to Emit*Block prior to generation new
1488   /// code.
1489   void EmitBranch(llvm::BasicBlock *Block);
1490 
1491   /// HaveInsertPoint - True if an insertion point is defined. If not, this
1492   /// indicates that the current code being emitted is unreachable.
1493   bool HaveInsertPoint() const {
1494     return Builder.GetInsertBlock() != 0;
1495   }
1496 
1497   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
1498   /// emitted IR has a place to go. Note that by definition, if this function
1499   /// creates a block then that block is unreachable; callers may do better to
1500   /// detect when no insertion point is defined and simply skip IR generation.
1501   void EnsureInsertPoint() {
1502     if (!HaveInsertPoint())
1503       EmitBlock(createBasicBlock());
1504   }
1505 
1506   /// ErrorUnsupported - Print out an error that codegen doesn't support the
1507   /// specified stmt yet.
1508   void ErrorUnsupported(const Stmt *S, const char *Type,
1509                         bool OmitOnError=false);
1510 
1511   //===--------------------------------------------------------------------===//
1512   //                                  Helpers
1513   //===--------------------------------------------------------------------===//
1514 
1515   LValue MakeAddrLValue(llvm::Value *V, QualType T, unsigned Alignment = 0) {
1516     return LValue::MakeAddr(V, T, Alignment, getContext(),
1517                             CGM.getTBAAInfo(T));
1518   }
1519 
1520   /// CreateTempAlloca - This creates a alloca and inserts it into the entry
1521   /// block. The caller is responsible for setting an appropriate alignment on
1522   /// the alloca.
1523   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty,
1524                                      const Twine &Name = "tmp");
1525 
1526   /// InitTempAlloca - Provide an initial value for the given alloca.
1527   void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value);
1528 
1529   /// CreateIRTemp - Create a temporary IR object of the given type, with
1530   /// appropriate alignment. This routine should only be used when an temporary
1531   /// value needs to be stored into an alloca (for example, to avoid explicit
1532   /// PHI construction), but the type is the IR type, not the type appropriate
1533   /// for storing in memory.
1534   llvm::AllocaInst *CreateIRTemp(QualType T, const Twine &Name = "tmp");
1535 
1536   /// CreateMemTemp - Create a temporary memory object of the given type, with
1537   /// appropriate alignment.
1538   llvm::AllocaInst *CreateMemTemp(QualType T, const Twine &Name = "tmp");
1539 
1540   /// CreateAggTemp - Create a temporary memory object for the given
1541   /// aggregate type.
1542   AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
1543     return AggValueSlot::forAddr(CreateMemTemp(T, Name), T.getQualifiers(),
1544                                  AggValueSlot::IsNotDestructed,
1545                                  AggValueSlot::DoesNotNeedGCBarriers,
1546                                  AggValueSlot::IsNotAliased);
1547   }
1548 
1549   /// Emit a cast to void* in the appropriate address space.
1550   llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
1551 
1552   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
1553   /// expression and compare the result against zero, returning an Int1Ty value.
1554   llvm::Value *EvaluateExprAsBool(const Expr *E);
1555 
1556   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
1557   void EmitIgnoredExpr(const Expr *E);
1558 
1559   /// EmitAnyExpr - Emit code to compute the specified expression which can have
1560   /// any type.  The result is returned as an RValue struct.  If this is an
1561   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
1562   /// the result should be returned.
1563   ///
1564   /// \param IgnoreResult - True if the resulting value isn't used.
1565   RValue EmitAnyExpr(const Expr *E,
1566                      AggValueSlot AggSlot = AggValueSlot::ignored(),
1567                      bool IgnoreResult = false);
1568 
1569   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
1570   // or the value of the expression, depending on how va_list is defined.
1571   llvm::Value *EmitVAListRef(const Expr *E);
1572 
1573   /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
1574   /// always be accessible even if no aggregate location is provided.
1575   RValue EmitAnyExprToTemp(const Expr *E);
1576 
1577   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
1578   /// arbitrary expression into the given memory location.
1579   void EmitAnyExprToMem(const Expr *E, llvm::Value *Location,
1580                         Qualifiers Quals, bool IsInitializer);
1581 
1582   /// EmitExprAsInit - Emits the code necessary to initialize a
1583   /// location in memory with the given initializer.
1584   void EmitExprAsInit(const Expr *init, const ValueDecl *D,
1585                       LValue lvalue, bool capturedByInit);
1586 
1587   /// EmitAggregateCopy - Emit an aggrate copy.
1588   ///
1589   /// \param isVolatile - True iff either the source or the destination is
1590   /// volatile.
1591   void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1592                          QualType EltTy, bool isVolatile=false);
1593 
1594   /// StartBlock - Start new block named N. If insert block is a dummy block
1595   /// then reuse it.
1596   void StartBlock(const char *N);
1597 
1598   /// GetAddrOfStaticLocalVar - Return the address of a static local variable.
1599   llvm::Constant *GetAddrOfStaticLocalVar(const VarDecl *BVD) {
1600     return cast<llvm::Constant>(GetAddrOfLocalVar(BVD));
1601   }
1602 
1603   /// GetAddrOfLocalVar - Return the address of a local variable.
1604   llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) {
1605     llvm::Value *Res = LocalDeclMap[VD];
1606     assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!");
1607     return Res;
1608   }
1609 
1610   /// getOpaqueLValueMapping - Given an opaque value expression (which
1611   /// must be mapped to an l-value), return its mapping.
1612   const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
1613     assert(OpaqueValueMapping::shouldBindAsLValue(e));
1614 
1615     llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
1616       it = OpaqueLValues.find(e);
1617     assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
1618     return it->second;
1619   }
1620 
1621   /// getOpaqueRValueMapping - Given an opaque value expression (which
1622   /// must be mapped to an r-value), return its mapping.
1623   const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
1624     assert(!OpaqueValueMapping::shouldBindAsLValue(e));
1625 
1626     llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
1627       it = OpaqueRValues.find(e);
1628     assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
1629     return it->second;
1630   }
1631 
1632   /// getAccessedFieldNo - Given an encoded value and a result number, return
1633   /// the input field number being accessed.
1634   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
1635 
1636   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
1637   llvm::BasicBlock *GetIndirectGotoBlock();
1638 
1639   /// EmitNullInitialization - Generate code to set a value of the given type to
1640   /// null, If the type contains data member pointers, they will be initialized
1641   /// to -1 in accordance with the Itanium C++ ABI.
1642   void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty);
1643 
1644   // EmitVAArg - Generate code to get an argument from the passed in pointer
1645   // and update it accordingly. The return value is a pointer to the argument.
1646   // FIXME: We should be able to get rid of this method and use the va_arg
1647   // instruction in LLVM instead once it works well enough.
1648   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty);
1649 
1650   /// emitArrayLength - Compute the length of an array, even if it's a
1651   /// VLA, and drill down to the base element type.
1652   llvm::Value *emitArrayLength(const ArrayType *arrayType,
1653                                QualType &baseType,
1654                                llvm::Value *&addr);
1655 
1656   /// EmitVLASize - Capture all the sizes for the VLA expressions in
1657   /// the given variably-modified type and store them in the VLASizeMap.
1658   ///
1659   /// This function can be called with a null (unreachable) insert point.
1660   void EmitVariablyModifiedType(QualType Ty);
1661 
1662   /// getVLASize - Returns an LLVM value that corresponds to the size,
1663   /// in non-variably-sized elements, of a variable length array type,
1664   /// plus that largest non-variably-sized element type.  Assumes that
1665   /// the type has already been emitted with EmitVariablyModifiedType.
1666   std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla);
1667   std::pair<llvm::Value*,QualType> getVLASize(QualType vla);
1668 
1669   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
1670   /// generating code for an C++ member function.
1671   llvm::Value *LoadCXXThis() {
1672     assert(CXXThisValue && "no 'this' value for this function");
1673     return CXXThisValue;
1674   }
1675 
1676   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
1677   /// virtual bases.
1678   llvm::Value *LoadCXXVTT() {
1679     assert(CXXVTTValue && "no VTT value for this function");
1680     return CXXVTTValue;
1681   }
1682 
1683   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
1684   /// complete class to the given direct base.
1685   llvm::Value *
1686   GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value,
1687                                         const CXXRecordDecl *Derived,
1688                                         const CXXRecordDecl *Base,
1689                                         bool BaseIsVirtual);
1690 
1691   /// GetAddressOfBaseClass - This function will add the necessary delta to the
1692   /// load of 'this' and returns address of the base class.
1693   llvm::Value *GetAddressOfBaseClass(llvm::Value *Value,
1694                                      const CXXRecordDecl *Derived,
1695                                      CastExpr::path_const_iterator PathBegin,
1696                                      CastExpr::path_const_iterator PathEnd,
1697                                      bool NullCheckValue);
1698 
1699   llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value,
1700                                         const CXXRecordDecl *Derived,
1701                                         CastExpr::path_const_iterator PathBegin,
1702                                         CastExpr::path_const_iterator PathEnd,
1703                                         bool NullCheckValue);
1704 
1705   llvm::Value *GetVirtualBaseClassOffset(llvm::Value *This,
1706                                          const CXXRecordDecl *ClassDecl,
1707                                          const CXXRecordDecl *BaseClassDecl);
1708 
1709   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
1710                                       CXXCtorType CtorType,
1711                                       const FunctionArgList &Args);
1712   // It's important not to confuse this and the previous function. Delegating
1713   // constructors are the C++0x feature. The constructor delegate optimization
1714   // is used to reduce duplication in the base and complete consturctors where
1715   // they are substantially the same.
1716   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
1717                                         const FunctionArgList &Args);
1718   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
1719                               bool ForVirtualBase, llvm::Value *This,
1720                               CallExpr::const_arg_iterator ArgBeg,
1721                               CallExpr::const_arg_iterator ArgEnd);
1722 
1723   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
1724                               llvm::Value *This, llvm::Value *Src,
1725                               CallExpr::const_arg_iterator ArgBeg,
1726                               CallExpr::const_arg_iterator ArgEnd);
1727 
1728   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1729                                   const ConstantArrayType *ArrayTy,
1730                                   llvm::Value *ArrayPtr,
1731                                   CallExpr::const_arg_iterator ArgBeg,
1732                                   CallExpr::const_arg_iterator ArgEnd,
1733                                   bool ZeroInitialization = false);
1734 
1735   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1736                                   llvm::Value *NumElements,
1737                                   llvm::Value *ArrayPtr,
1738                                   CallExpr::const_arg_iterator ArgBeg,
1739                                   CallExpr::const_arg_iterator ArgEnd,
1740                                   bool ZeroInitialization = false);
1741 
1742   static Destroyer destroyCXXObject;
1743 
1744   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
1745                              bool ForVirtualBase, llvm::Value *This);
1746 
1747   void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
1748                                llvm::Value *NewPtr, llvm::Value *NumElements);
1749 
1750   void EmitCXXTemporary(const CXXTemporary *Temporary, llvm::Value *Ptr);
1751 
1752   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
1753   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
1754 
1755   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
1756                       QualType DeleteTy);
1757 
1758   llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E);
1759   llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE);
1760 
1761   void EmitCheck(llvm::Value *, unsigned Size);
1762 
1763   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1764                                        bool isInc, bool isPre);
1765   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1766                                          bool isInc, bool isPre);
1767   //===--------------------------------------------------------------------===//
1768   //                            Declaration Emission
1769   //===--------------------------------------------------------------------===//
1770 
1771   /// EmitDecl - Emit a declaration.
1772   ///
1773   /// This function can be called with a null (unreachable) insert point.
1774   void EmitDecl(const Decl &D);
1775 
1776   /// EmitVarDecl - Emit a local variable declaration.
1777   ///
1778   /// This function can be called with a null (unreachable) insert point.
1779   void EmitVarDecl(const VarDecl &D);
1780 
1781   void EmitScalarInit(const Expr *init, const ValueDecl *D,
1782                       LValue lvalue, bool capturedByInit);
1783   void EmitScalarInit(llvm::Value *init, LValue lvalue);
1784 
1785   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
1786                              llvm::Value *Address);
1787 
1788   /// EmitAutoVarDecl - Emit an auto variable declaration.
1789   ///
1790   /// This function can be called with a null (unreachable) insert point.
1791   void EmitAutoVarDecl(const VarDecl &D);
1792 
1793   class AutoVarEmission {
1794     friend class CodeGenFunction;
1795 
1796     const VarDecl *Variable;
1797 
1798     /// The alignment of the variable.
1799     CharUnits Alignment;
1800 
1801     /// The address of the alloca.  Null if the variable was emitted
1802     /// as a global constant.
1803     llvm::Value *Address;
1804 
1805     llvm::Value *NRVOFlag;
1806 
1807     /// True if the variable is a __block variable.
1808     bool IsByRef;
1809 
1810     /// True if the variable is of aggregate type and has a constant
1811     /// initializer.
1812     bool IsConstantAggregate;
1813 
1814     struct Invalid {};
1815     AutoVarEmission(Invalid) : Variable(0) {}
1816 
1817     AutoVarEmission(const VarDecl &variable)
1818       : Variable(&variable), Address(0), NRVOFlag(0),
1819         IsByRef(false), IsConstantAggregate(false) {}
1820 
1821     bool wasEmittedAsGlobal() const { return Address == 0; }
1822 
1823   public:
1824     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
1825 
1826     /// Returns the address of the object within this declaration.
1827     /// Note that this does not chase the forwarding pointer for
1828     /// __block decls.
1829     llvm::Value *getObjectAddress(CodeGenFunction &CGF) const {
1830       if (!IsByRef) return Address;
1831 
1832       return CGF.Builder.CreateStructGEP(Address,
1833                                          CGF.getByRefValueLLVMField(Variable),
1834                                          Variable->getNameAsString());
1835     }
1836   };
1837   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
1838   void EmitAutoVarInit(const AutoVarEmission &emission);
1839   void EmitAutoVarCleanups(const AutoVarEmission &emission);
1840   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
1841                               QualType::DestructionKind dtorKind);
1842 
1843   void EmitStaticVarDecl(const VarDecl &D,
1844                          llvm::GlobalValue::LinkageTypes Linkage);
1845 
1846   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
1847   void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, unsigned ArgNo);
1848 
1849   /// protectFromPeepholes - Protect a value that we're intending to
1850   /// store to the side, but which will probably be used later, from
1851   /// aggressive peepholing optimizations that might delete it.
1852   ///
1853   /// Pass the result to unprotectFromPeepholes to declare that
1854   /// protection is no longer required.
1855   ///
1856   /// There's no particular reason why this shouldn't apply to
1857   /// l-values, it's just that no existing peepholes work on pointers.
1858   PeepholeProtection protectFromPeepholes(RValue rvalue);
1859   void unprotectFromPeepholes(PeepholeProtection protection);
1860 
1861   //===--------------------------------------------------------------------===//
1862   //                             Statement Emission
1863   //===--------------------------------------------------------------------===//
1864 
1865   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
1866   void EmitStopPoint(const Stmt *S);
1867 
1868   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
1869   /// this function even if there is no current insertion point.
1870   ///
1871   /// This function may clear the current insertion point; callers should use
1872   /// EnsureInsertPoint if they wish to subsequently generate code without first
1873   /// calling EmitBlock, EmitBranch, or EmitStmt.
1874   void EmitStmt(const Stmt *S);
1875 
1876   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
1877   /// necessarily require an insertion point or debug information; typically
1878   /// because the statement amounts to a jump or a container of other
1879   /// statements.
1880   ///
1881   /// \return True if the statement was handled.
1882   bool EmitSimpleStmt(const Stmt *S);
1883 
1884   RValue EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
1885                           AggValueSlot AVS = AggValueSlot::ignored());
1886 
1887   /// EmitLabel - Emit the block for the given label. It is legal to call this
1888   /// function even if there is no current insertion point.
1889   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
1890 
1891   void EmitLabelStmt(const LabelStmt &S);
1892   void EmitGotoStmt(const GotoStmt &S);
1893   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
1894   void EmitIfStmt(const IfStmt &S);
1895   void EmitWhileStmt(const WhileStmt &S);
1896   void EmitDoStmt(const DoStmt &S);
1897   void EmitForStmt(const ForStmt &S);
1898   void EmitReturnStmt(const ReturnStmt &S);
1899   void EmitDeclStmt(const DeclStmt &S);
1900   void EmitBreakStmt(const BreakStmt &S);
1901   void EmitContinueStmt(const ContinueStmt &S);
1902   void EmitSwitchStmt(const SwitchStmt &S);
1903   void EmitDefaultStmt(const DefaultStmt &S);
1904   void EmitCaseStmt(const CaseStmt &S);
1905   void EmitCaseStmtRange(const CaseStmt &S);
1906   void EmitAsmStmt(const AsmStmt &S);
1907 
1908   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
1909   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
1910   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
1911   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
1912   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
1913 
1914   llvm::Constant *getUnwindResumeFn();
1915   llvm::Constant *getUnwindResumeOrRethrowFn();
1916   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
1917   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
1918 
1919   void EmitCXXTryStmt(const CXXTryStmt &S);
1920   void EmitCXXForRangeStmt(const CXXForRangeStmt &S);
1921 
1922   //===--------------------------------------------------------------------===//
1923   //                         LValue Expression Emission
1924   //===--------------------------------------------------------------------===//
1925 
1926   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
1927   RValue GetUndefRValue(QualType Ty);
1928 
1929   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
1930   /// and issue an ErrorUnsupported style diagnostic (using the
1931   /// provided Name).
1932   RValue EmitUnsupportedRValue(const Expr *E,
1933                                const char *Name);
1934 
1935   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
1936   /// an ErrorUnsupported style diagnostic (using the provided Name).
1937   LValue EmitUnsupportedLValue(const Expr *E,
1938                                const char *Name);
1939 
1940   /// EmitLValue - Emit code to compute a designator that specifies the location
1941   /// of the expression.
1942   ///
1943   /// This can return one of two things: a simple address or a bitfield
1944   /// reference.  In either case, the LLVM Value* in the LValue structure is
1945   /// guaranteed to be an LLVM pointer type.
1946   ///
1947   /// If this returns a bitfield reference, nothing about the pointee type of
1948   /// the LLVM value is known: For example, it may not be a pointer to an
1949   /// integer.
1950   ///
1951   /// If this returns a normal address, and if the lvalue's C type is fixed
1952   /// size, this method guarantees that the returned pointer type will point to
1953   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
1954   /// variable length type, this is not possible.
1955   ///
1956   LValue EmitLValue(const Expr *E);
1957 
1958   /// EmitCheckedLValue - Same as EmitLValue but additionally we generate
1959   /// checking code to guard against undefined behavior.  This is only
1960   /// suitable when we know that the address will be used to access the
1961   /// object.
1962   LValue EmitCheckedLValue(const Expr *E);
1963 
1964   /// EmitToMemory - Change a scalar value from its value
1965   /// representation to its in-memory representation.
1966   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
1967 
1968   /// EmitFromMemory - Change a scalar value from its memory
1969   /// representation to its value representation.
1970   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
1971 
1972   /// EmitLoadOfScalar - Load a scalar value from an address, taking
1973   /// care to appropriately convert from the memory representation to
1974   /// the LLVM value representation.
1975   llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
1976                                 unsigned Alignment, QualType Ty,
1977                                 llvm::MDNode *TBAAInfo = 0);
1978 
1979   /// EmitLoadOfScalar - Load a scalar value from an address, taking
1980   /// care to appropriately convert from the memory representation to
1981   /// the LLVM value representation.  The l-value must be a simple
1982   /// l-value.
1983   llvm::Value *EmitLoadOfScalar(LValue lvalue);
1984 
1985   /// EmitStoreOfScalar - Store a scalar value to an address, taking
1986   /// care to appropriately convert from the memory representation to
1987   /// the LLVM value representation.
1988   void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
1989                          bool Volatile, unsigned Alignment, QualType Ty,
1990                          llvm::MDNode *TBAAInfo = 0);
1991 
1992   /// EmitStoreOfScalar - Store a scalar value to an address, taking
1993   /// care to appropriately convert from the memory representation to
1994   /// the LLVM value representation.  The l-value must be a simple
1995   /// l-value.
1996   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue);
1997 
1998   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
1999   /// this method emits the address of the lvalue, then loads the result as an
2000   /// rvalue, returning the rvalue.
2001   RValue EmitLoadOfLValue(LValue V);
2002   RValue EmitLoadOfExtVectorElementLValue(LValue V);
2003   RValue EmitLoadOfBitfieldLValue(LValue LV);
2004 
2005   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
2006   /// lvalue, where both are guaranteed to the have the same type, and that type
2007   /// is 'Ty'.
2008   void EmitStoreThroughLValue(RValue Src, LValue Dst);
2009   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
2010 
2011   /// EmitStoreThroughLValue - Store Src into Dst with same constraints as
2012   /// EmitStoreThroughLValue.
2013   ///
2014   /// \param Result [out] - If non-null, this will be set to a Value* for the
2015   /// bit-field contents after the store, appropriate for use as the result of
2016   /// an assignment to the bit-field.
2017   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2018                                       llvm::Value **Result=0);
2019 
2020   /// Emit an l-value for an assignment (simple or compound) of complex type.
2021   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
2022   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
2023 
2024   // Note: only available for agg return types
2025   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
2026   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
2027   // Note: only available for agg return types
2028   LValue EmitCallExprLValue(const CallExpr *E);
2029   // Note: only available for agg return types
2030   LValue EmitVAArgExprLValue(const VAArgExpr *E);
2031   LValue EmitDeclRefLValue(const DeclRefExpr *E);
2032   LValue EmitStringLiteralLValue(const StringLiteral *E);
2033   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
2034   LValue EmitPredefinedLValue(const PredefinedExpr *E);
2035   LValue EmitUnaryOpLValue(const UnaryOperator *E);
2036   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E);
2037   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
2038   LValue EmitMemberExpr(const MemberExpr *E);
2039   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
2040   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
2041   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
2042   LValue EmitCastLValue(const CastExpr *E);
2043   LValue EmitNullInitializationLValue(const CXXScalarValueInitExpr *E);
2044   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
2045   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
2046 
2047   RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
2048                                 AggValueSlot slot = AggValueSlot::ignored());
2049   LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
2050 
2051   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
2052                               const ObjCIvarDecl *Ivar);
2053   LValue EmitLValueForAnonRecordField(llvm::Value* Base,
2054                                       const IndirectFieldDecl* Field,
2055                                       unsigned CVRQualifiers);
2056   LValue EmitLValueForField(llvm::Value* Base, const FieldDecl* Field,
2057                             unsigned CVRQualifiers);
2058 
2059   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
2060   /// if the Field is a reference, this will return the address of the reference
2061   /// and not the address of the value stored in the reference.
2062   LValue EmitLValueForFieldInitialization(llvm::Value* Base,
2063                                           const FieldDecl* Field,
2064                                           unsigned CVRQualifiers);
2065 
2066   LValue EmitLValueForIvar(QualType ObjectTy,
2067                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
2068                            unsigned CVRQualifiers);
2069 
2070   LValue EmitLValueForBitfield(llvm::Value* Base, const FieldDecl* Field,
2071                                 unsigned CVRQualifiers);
2072 
2073   LValue EmitBlockDeclRefLValue(const BlockDeclRefExpr *E);
2074 
2075   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
2076   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
2077   LValue EmitExprWithCleanupsLValue(const ExprWithCleanups *E);
2078   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
2079 
2080   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
2081   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
2082   LValue EmitStmtExprLValue(const StmtExpr *E);
2083   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
2084   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
2085   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init);
2086 
2087   //===--------------------------------------------------------------------===//
2088   //                         Scalar Expression Emission
2089   //===--------------------------------------------------------------------===//
2090 
2091   /// EmitCall - Generate a call of the given function, expecting the given
2092   /// result type, and using the given argument list which specifies both the
2093   /// LLVM arguments and the types they were derived from.
2094   ///
2095   /// \param TargetDecl - If given, the decl of the function in a direct call;
2096   /// used to set attributes on the call (noreturn, etc.).
2097   RValue EmitCall(const CGFunctionInfo &FnInfo,
2098                   llvm::Value *Callee,
2099                   ReturnValueSlot ReturnValue,
2100                   const CallArgList &Args,
2101                   const Decl *TargetDecl = 0,
2102                   llvm::Instruction **callOrInvoke = 0);
2103 
2104   RValue EmitCall(QualType FnType, llvm::Value *Callee,
2105                   ReturnValueSlot ReturnValue,
2106                   CallExpr::const_arg_iterator ArgBeg,
2107                   CallExpr::const_arg_iterator ArgEnd,
2108                   const Decl *TargetDecl = 0);
2109   RValue EmitCallExpr(const CallExpr *E,
2110                       ReturnValueSlot ReturnValue = ReturnValueSlot());
2111 
2112   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2113                                   ArrayRef<llvm::Value *> Args,
2114                                   const Twine &Name = "");
2115   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2116                                   const Twine &Name = "");
2117 
2118   llvm::Value *BuildVirtualCall(const CXXMethodDecl *MD, llvm::Value *This,
2119                                 llvm::Type *Ty);
2120   llvm::Value *BuildVirtualCall(const CXXDestructorDecl *DD, CXXDtorType Type,
2121                                 llvm::Value *This, llvm::Type *Ty);
2122   llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
2123                                          NestedNameSpecifier *Qual,
2124                                          llvm::Type *Ty);
2125 
2126   llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
2127                                                    CXXDtorType Type,
2128                                                    const CXXRecordDecl *RD);
2129 
2130   RValue EmitCXXMemberCall(const CXXMethodDecl *MD,
2131                            llvm::Value *Callee,
2132                            ReturnValueSlot ReturnValue,
2133                            llvm::Value *This,
2134                            llvm::Value *VTT,
2135                            CallExpr::const_arg_iterator ArgBeg,
2136                            CallExpr::const_arg_iterator ArgEnd);
2137   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
2138                                ReturnValueSlot ReturnValue);
2139   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
2140                                       ReturnValueSlot ReturnValue);
2141 
2142   llvm::Value *EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E,
2143                                            const CXXMethodDecl *MD,
2144                                            llvm::Value *This);
2145   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
2146                                        const CXXMethodDecl *MD,
2147                                        ReturnValueSlot ReturnValue);
2148 
2149   RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
2150                                 ReturnValueSlot ReturnValue);
2151 
2152 
2153   RValue EmitBuiltinExpr(const FunctionDecl *FD,
2154                          unsigned BuiltinID, const CallExpr *E);
2155 
2156   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
2157 
2158   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
2159   /// is unhandled by the current target.
2160   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2161 
2162   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2163   llvm::Value *EmitNeonCall(llvm::Function *F,
2164                             SmallVectorImpl<llvm::Value*> &O,
2165                             const char *name,
2166                             unsigned shift = 0, bool rightshift = false);
2167   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
2168   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
2169                                    bool negateForRightShift);
2170 
2171   llvm::Value *BuildVector(const SmallVectorImpl<llvm::Value*> &Ops);
2172   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2173   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2174 
2175   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
2176   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
2177   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
2178   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
2179                              ReturnValueSlot Return = ReturnValueSlot());
2180 
2181   /// Retrieves the default cleanup kind for an ARC cleanup.
2182   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
2183   CleanupKind getARCCleanupKind() {
2184     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
2185              ? NormalAndEHCleanup : NormalCleanup;
2186   }
2187 
2188   // ARC primitives.
2189   void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr);
2190   void EmitARCDestroyWeak(llvm::Value *addr);
2191   llvm::Value *EmitARCLoadWeak(llvm::Value *addr);
2192   llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr);
2193   llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr,
2194                                 bool ignored);
2195   void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src);
2196   void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src);
2197   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
2198   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
2199   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
2200                                   bool ignored);
2201   llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value,
2202                                       bool ignored);
2203   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
2204   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
2205   llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
2206   void EmitARCRelease(llvm::Value *value, bool precise);
2207   llvm::Value *EmitARCAutorelease(llvm::Value *value);
2208   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
2209   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
2210   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
2211 
2212   std::pair<LValue,llvm::Value*>
2213   EmitARCStoreAutoreleasing(const BinaryOperator *e);
2214   std::pair<LValue,llvm::Value*>
2215   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
2216 
2217   llvm::Value *EmitObjCThrowOperand(const Expr *expr);
2218 
2219   llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr);
2220   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
2221   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
2222 
2223   llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
2224   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
2225   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
2226 
2227   static Destroyer destroyARCStrongImprecise;
2228   static Destroyer destroyARCStrongPrecise;
2229   static Destroyer destroyARCWeak;
2230 
2231   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
2232   llvm::Value *EmitObjCAutoreleasePoolPush();
2233   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
2234   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
2235   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
2236 
2237   /// EmitReferenceBindingToExpr - Emits a reference binding to the passed in
2238   /// expression. Will emit a temporary variable if E is not an LValue.
2239   RValue EmitReferenceBindingToExpr(const Expr* E,
2240                                     const NamedDecl *InitializedDecl);
2241 
2242   //===--------------------------------------------------------------------===//
2243   //                           Expression Emission
2244   //===--------------------------------------------------------------------===//
2245 
2246   // Expressions are broken into three classes: scalar, complex, aggregate.
2247 
2248   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
2249   /// scalar type, returning the result.
2250   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
2251 
2252   /// EmitScalarConversion - Emit a conversion from the specified type to the
2253   /// specified destination type, both of which are LLVM scalar types.
2254   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
2255                                     QualType DstTy);
2256 
2257   /// EmitComplexToScalarConversion - Emit a conversion from the specified
2258   /// complex type to the specified destination type, where the destination type
2259   /// is an LLVM scalar type.
2260   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
2261                                              QualType DstTy);
2262 
2263 
2264   /// EmitAggExpr - Emit the computation of the specified expression
2265   /// of aggregate type.  The result is computed into the given slot,
2266   /// which may be null to indicate that the value is not needed.
2267   void EmitAggExpr(const Expr *E, AggValueSlot AS, bool IgnoreResult = false);
2268 
2269   /// EmitAggExprToLValue - Emit the computation of the specified expression of
2270   /// aggregate type into a temporary LValue.
2271   LValue EmitAggExprToLValue(const Expr *E);
2272 
2273   /// EmitGCMemmoveCollectable - Emit special API for structs with object
2274   /// pointers.
2275   void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr,
2276                                 QualType Ty);
2277 
2278   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
2279   /// make sure it survives garbage collection until this point.
2280   void EmitExtendGCLifetime(llvm::Value *object);
2281 
2282   /// EmitComplexExpr - Emit the computation of the specified expression of
2283   /// complex type, returning the result.
2284   ComplexPairTy EmitComplexExpr(const Expr *E,
2285                                 bool IgnoreReal = false,
2286                                 bool IgnoreImag = false);
2287 
2288   /// EmitComplexExprIntoAddr - Emit the computation of the specified expression
2289   /// of complex type, storing into the specified Value*.
2290   void EmitComplexExprIntoAddr(const Expr *E, llvm::Value *DestAddr,
2291                                bool DestIsVolatile);
2292 
2293   /// StoreComplexToAddr - Store a complex number into the specified address.
2294   void StoreComplexToAddr(ComplexPairTy V, llvm::Value *DestAddr,
2295                           bool DestIsVolatile);
2296   /// LoadComplexFromAddr - Load a complex number from the specified address.
2297   ComplexPairTy LoadComplexFromAddr(llvm::Value *SrcAddr, bool SrcIsVolatile);
2298 
2299   /// CreateStaticVarDecl - Create a zero-initialized LLVM global for
2300   /// a static local variable.
2301   llvm::GlobalVariable *CreateStaticVarDecl(const VarDecl &D,
2302                                             const char *Separator,
2303                                        llvm::GlobalValue::LinkageTypes Linkage);
2304 
2305   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
2306   /// global variable that has already been created for it.  If the initializer
2307   /// has a different type than GV does, this may free GV and return a different
2308   /// one.  Otherwise it just returns GV.
2309   llvm::GlobalVariable *
2310   AddInitializerToStaticVarDecl(const VarDecl &D,
2311                                 llvm::GlobalVariable *GV);
2312 
2313 
2314   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
2315   /// variable with global storage.
2316   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr);
2317 
2318   /// EmitCXXGlobalDtorRegistration - Emits a call to register the global ptr
2319   /// with the C++ runtime so that its destructor will be called at exit.
2320   void EmitCXXGlobalDtorRegistration(llvm::Constant *DtorFn,
2321                                      llvm::Constant *DeclPtr);
2322 
2323   /// Emit code in this function to perform a guarded variable
2324   /// initialization.  Guarded initializations are used when it's not
2325   /// possible to prove that an initialization will be done exactly
2326   /// once, e.g. with a static local variable or a static data member
2327   /// of a class template.
2328   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr);
2329 
2330   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
2331   /// variables.
2332   void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
2333                                  llvm::Constant **Decls,
2334                                  unsigned NumDecls);
2335 
2336   /// GenerateCXXGlobalDtorFunc - Generates code for destroying global
2337   /// variables.
2338   void GenerateCXXGlobalDtorFunc(llvm::Function *Fn,
2339                                  const std::vector<std::pair<llvm::WeakVH,
2340                                    llvm::Constant*> > &DtorsAndObjects);
2341 
2342   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
2343                                         const VarDecl *D,
2344                                         llvm::GlobalVariable *Addr);
2345 
2346   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
2347 
2348   void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src,
2349                                   const Expr *Exp);
2350 
2351   RValue EmitExprWithCleanups(const ExprWithCleanups *E,
2352                               AggValueSlot Slot =AggValueSlot::ignored());
2353 
2354   void EmitCXXThrowExpr(const CXXThrowExpr *E);
2355 
2356   RValue EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest = 0);
2357 
2358   //===--------------------------------------------------------------------===//
2359   //                         Annotations Emission
2360   //===--------------------------------------------------------------------===//
2361 
2362   /// Emit an annotation call (intrinsic or builtin).
2363   llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
2364                                   llvm::Value *AnnotatedVal,
2365                                   llvm::StringRef AnnotationStr,
2366                                   SourceLocation Location);
2367 
2368   /// Emit local annotations for the local variable V, declared by D.
2369   void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
2370 
2371   /// Emit field annotations for the given field & value. Returns the
2372   /// annotation result.
2373   llvm::Value *EmitFieldAnnotations(const FieldDecl *D, llvm::Value *V);
2374 
2375   //===--------------------------------------------------------------------===//
2376   //                             Internal Helpers
2377   //===--------------------------------------------------------------------===//
2378 
2379   /// ContainsLabel - Return true if the statement contains a label in it.  If
2380   /// this statement is not executed normally, it not containing a label means
2381   /// that we can just remove the code.
2382   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
2383 
2384   /// containsBreak - Return true if the statement contains a break out of it.
2385   /// If the statement (recursively) contains a switch or loop with a break
2386   /// inside of it, this is fine.
2387   static bool containsBreak(const Stmt *S);
2388 
2389   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2390   /// to a constant, or if it does but contains a label, return false.  If it
2391   /// constant folds return true and set the boolean result in Result.
2392   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result);
2393 
2394   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2395   /// to a constant, or if it does but contains a label, return false.  If it
2396   /// constant folds return true and set the folded value.
2397   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APInt &Result);
2398 
2399   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
2400   /// if statement) to the specified blocks.  Based on the condition, this might
2401   /// try to simplify the codegen of the conditional based on the branch.
2402   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
2403                             llvm::BasicBlock *FalseBlock);
2404 
2405   /// getTrapBB - Create a basic block that will call the trap intrinsic.  We'll
2406   /// generate a branch around the created basic block as necessary.
2407   llvm::BasicBlock *getTrapBB();
2408 
2409   /// EmitCallArg - Emit a single call argument.
2410   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
2411 
2412   /// EmitDelegateCallArg - We are performing a delegate call; that
2413   /// is, the current function is delegating to another one.  Produce
2414   /// a r-value suitable for passing the given parameter.
2415   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param);
2416 
2417   /// SetFPAccuracy - Set the minimum required accuracy of the given floating
2418   /// point operation, expressed as the maximum relative error in ulp.
2419   void SetFPAccuracy(llvm::Value *Val, unsigned AccuracyN,
2420                      unsigned AccuracyD = 1);
2421 
2422 private:
2423   void EmitReturnOfRValue(RValue RV, QualType Ty);
2424 
2425   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
2426   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
2427   ///
2428   /// \param AI - The first function argument of the expansion.
2429   /// \return The argument following the last expanded function
2430   /// argument.
2431   llvm::Function::arg_iterator
2432   ExpandTypeFromArgs(QualType Ty, LValue Dst,
2433                      llvm::Function::arg_iterator AI);
2434 
2435   /// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg
2436   /// Ty, into individual arguments on the provided vector \arg Args. See
2437   /// ABIArgInfo::Expand.
2438   void ExpandTypeToArgs(QualType Ty, RValue Src,
2439                         SmallVector<llvm::Value*, 16> &Args,
2440                         llvm::FunctionType *IRFuncTy);
2441 
2442   llvm::Value* EmitAsmInput(const AsmStmt &S,
2443                             const TargetInfo::ConstraintInfo &Info,
2444                             const Expr *InputExpr, std::string &ConstraintStr);
2445 
2446   llvm::Value* EmitAsmInputLValue(const AsmStmt &S,
2447                                   const TargetInfo::ConstraintInfo &Info,
2448                                   LValue InputValue, QualType InputType,
2449                                   std::string &ConstraintStr);
2450 
2451   /// EmitCallArgs - Emit call arguments for a function.
2452   /// The CallArgTypeInfo parameter is used for iterating over the known
2453   /// argument types of the function being called.
2454   template<typename T>
2455   void EmitCallArgs(CallArgList& Args, const T* CallArgTypeInfo,
2456                     CallExpr::const_arg_iterator ArgBeg,
2457                     CallExpr::const_arg_iterator ArgEnd) {
2458       CallExpr::const_arg_iterator Arg = ArgBeg;
2459 
2460     // First, use the argument types that the type info knows about
2461     if (CallArgTypeInfo) {
2462       for (typename T::arg_type_iterator I = CallArgTypeInfo->arg_type_begin(),
2463            E = CallArgTypeInfo->arg_type_end(); I != E; ++I, ++Arg) {
2464         assert(Arg != ArgEnd && "Running over edge of argument list!");
2465         QualType ArgType = *I;
2466 #ifndef NDEBUG
2467         QualType ActualArgType = Arg->getType();
2468         if (ArgType->isPointerType() && ActualArgType->isPointerType()) {
2469           QualType ActualBaseType =
2470             ActualArgType->getAs<PointerType>()->getPointeeType();
2471           QualType ArgBaseType =
2472             ArgType->getAs<PointerType>()->getPointeeType();
2473           if (ArgBaseType->isVariableArrayType()) {
2474             if (const VariableArrayType *VAT =
2475                 getContext().getAsVariableArrayType(ActualBaseType)) {
2476               if (!VAT->getSizeExpr())
2477                 ActualArgType = ArgType;
2478             }
2479           }
2480         }
2481         assert(getContext().getCanonicalType(ArgType.getNonReferenceType()).
2482                getTypePtr() ==
2483                getContext().getCanonicalType(ActualArgType).getTypePtr() &&
2484                "type mismatch in call argument!");
2485 #endif
2486         EmitCallArg(Args, *Arg, ArgType);
2487       }
2488 
2489       // Either we've emitted all the call args, or we have a call to a
2490       // variadic function.
2491       assert((Arg == ArgEnd || CallArgTypeInfo->isVariadic()) &&
2492              "Extra arguments in non-variadic function!");
2493 
2494     }
2495 
2496     // If we still have any arguments, emit them using the type of the argument.
2497     for (; Arg != ArgEnd; ++Arg)
2498       EmitCallArg(Args, *Arg, Arg->getType());
2499   }
2500 
2501   const TargetCodeGenInfo &getTargetHooks() const {
2502     return CGM.getTargetCodeGenInfo();
2503   }
2504 
2505   void EmitDeclMetadata();
2506 
2507   CodeGenModule::ByrefHelpers *
2508   buildByrefHelpers(llvm::StructType &byrefType,
2509                     const AutoVarEmission &emission);
2510 };
2511 
2512 /// Helper class with most of the code for saving a value for a
2513 /// conditional expression cleanup.
2514 struct DominatingLLVMValue {
2515   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
2516 
2517   /// Answer whether the given value needs extra work to be saved.
2518   static bool needsSaving(llvm::Value *value) {
2519     // If it's not an instruction, we don't need to save.
2520     if (!isa<llvm::Instruction>(value)) return false;
2521 
2522     // If it's an instruction in the entry block, we don't need to save.
2523     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
2524     return (block != &block->getParent()->getEntryBlock());
2525   }
2526 
2527   /// Try to save the given value.
2528   static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
2529     if (!needsSaving(value)) return saved_type(value, false);
2530 
2531     // Otherwise we need an alloca.
2532     llvm::Value *alloca =
2533       CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save");
2534     CGF.Builder.CreateStore(value, alloca);
2535 
2536     return saved_type(alloca, true);
2537   }
2538 
2539   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
2540     if (!value.getInt()) return value.getPointer();
2541     return CGF.Builder.CreateLoad(value.getPointer());
2542   }
2543 };
2544 
2545 /// A partial specialization of DominatingValue for llvm::Values that
2546 /// might be llvm::Instructions.
2547 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
2548   typedef T *type;
2549   static type restore(CodeGenFunction &CGF, saved_type value) {
2550     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
2551   }
2552 };
2553 
2554 /// A specialization of DominatingValue for RValue.
2555 template <> struct DominatingValue<RValue> {
2556   typedef RValue type;
2557   class saved_type {
2558     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
2559                 AggregateAddress, ComplexAddress };
2560 
2561     llvm::Value *Value;
2562     Kind K;
2563     saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {}
2564 
2565   public:
2566     static bool needsSaving(RValue value);
2567     static saved_type save(CodeGenFunction &CGF, RValue value);
2568     RValue restore(CodeGenFunction &CGF);
2569 
2570     // implementations in CGExprCXX.cpp
2571   };
2572 
2573   static bool needsSaving(type value) {
2574     return saved_type::needsSaving(value);
2575   }
2576   static saved_type save(CodeGenFunction &CGF, type value) {
2577     return saved_type::save(CGF, value);
2578   }
2579   static type restore(CodeGenFunction &CGF, saved_type value) {
2580     return value.restore(CGF);
2581   }
2582 };
2583 
2584 }  // end namespace CodeGen
2585 }  // end namespace clang
2586 
2587 #endif
2588