1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the internal per-function state used for llvm translation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef CLANG_CODEGEN_CODEGENFUNCTION_H 15 #define CLANG_CODEGEN_CODEGENFUNCTION_H 16 17 #include "clang/AST/Type.h" 18 #include "clang/AST/ExprCXX.h" 19 #include "clang/AST/ExprObjC.h" 20 #include "clang/AST/CharUnits.h" 21 #include "clang/Frontend/CodeGenOptions.h" 22 #include "clang/Basic/ABI.h" 23 #include "clang/Basic/TargetInfo.h" 24 #include "llvm/ADT/ArrayRef.h" 25 #include "llvm/ADT/DenseMap.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/Support/ValueHandle.h" 28 #include "llvm/Support/Debug.h" 29 #include "CodeGenModule.h" 30 #include "CGBuilder.h" 31 #include "CGDebugInfo.h" 32 #include "CGValue.h" 33 34 namespace llvm { 35 class BasicBlock; 36 class LLVMContext; 37 class MDNode; 38 class Module; 39 class SwitchInst; 40 class Twine; 41 class Value; 42 class CallSite; 43 } 44 45 namespace clang { 46 class APValue; 47 class ASTContext; 48 class CXXDestructorDecl; 49 class CXXForRangeStmt; 50 class CXXTryStmt; 51 class Decl; 52 class LabelDecl; 53 class EnumConstantDecl; 54 class FunctionDecl; 55 class FunctionProtoType; 56 class LabelStmt; 57 class ObjCContainerDecl; 58 class ObjCInterfaceDecl; 59 class ObjCIvarDecl; 60 class ObjCMethodDecl; 61 class ObjCImplementationDecl; 62 class ObjCPropertyImplDecl; 63 class TargetInfo; 64 class TargetCodeGenInfo; 65 class VarDecl; 66 class ObjCForCollectionStmt; 67 class ObjCAtTryStmt; 68 class ObjCAtThrowStmt; 69 class ObjCAtSynchronizedStmt; 70 class ObjCAutoreleasePoolStmt; 71 72 namespace CodeGen { 73 class CodeGenTypes; 74 class CGFunctionInfo; 75 class CGRecordLayout; 76 class CGBlockInfo; 77 class CGCXXABI; 78 class BlockFlags; 79 class BlockFieldFlags; 80 81 /// A branch fixup. These are required when emitting a goto to a 82 /// label which hasn't been emitted yet. The goto is optimistically 83 /// emitted as a branch to the basic block for the label, and (if it 84 /// occurs in a scope with non-trivial cleanups) a fixup is added to 85 /// the innermost cleanup. When a (normal) cleanup is popped, any 86 /// unresolved fixups in that scope are threaded through the cleanup. 87 struct BranchFixup { 88 /// The block containing the terminator which needs to be modified 89 /// into a switch if this fixup is resolved into the current scope. 90 /// If null, LatestBranch points directly to the destination. 91 llvm::BasicBlock *OptimisticBranchBlock; 92 93 /// The ultimate destination of the branch. 94 /// 95 /// This can be set to null to indicate that this fixup was 96 /// successfully resolved. 97 llvm::BasicBlock *Destination; 98 99 /// The destination index value. 100 unsigned DestinationIndex; 101 102 /// The initial branch of the fixup. 103 llvm::BranchInst *InitialBranch; 104 }; 105 106 template <class T> struct InvariantValue { 107 typedef T type; 108 typedef T saved_type; 109 static bool needsSaving(type value) { return false; } 110 static saved_type save(CodeGenFunction &CGF, type value) { return value; } 111 static type restore(CodeGenFunction &CGF, saved_type value) { return value; } 112 }; 113 114 /// A metaprogramming class for ensuring that a value will dominate an 115 /// arbitrary position in a function. 116 template <class T> struct DominatingValue : InvariantValue<T> {}; 117 118 template <class T, bool mightBeInstruction = 119 llvm::is_base_of<llvm::Value, T>::value && 120 !llvm::is_base_of<llvm::Constant, T>::value && 121 !llvm::is_base_of<llvm::BasicBlock, T>::value> 122 struct DominatingPointer; 123 template <class T> struct DominatingPointer<T,false> : InvariantValue<T*> {}; 124 // template <class T> struct DominatingPointer<T,true> at end of file 125 126 template <class T> struct DominatingValue<T*> : DominatingPointer<T> {}; 127 128 enum CleanupKind { 129 EHCleanup = 0x1, 130 NormalCleanup = 0x2, 131 NormalAndEHCleanup = EHCleanup | NormalCleanup, 132 133 InactiveCleanup = 0x4, 134 InactiveEHCleanup = EHCleanup | InactiveCleanup, 135 InactiveNormalCleanup = NormalCleanup | InactiveCleanup, 136 InactiveNormalAndEHCleanup = NormalAndEHCleanup | InactiveCleanup 137 }; 138 139 /// A stack of scopes which respond to exceptions, including cleanups 140 /// and catch blocks. 141 class EHScopeStack { 142 public: 143 /// A saved depth on the scope stack. This is necessary because 144 /// pushing scopes onto the stack invalidates iterators. 145 class stable_iterator { 146 friend class EHScopeStack; 147 148 /// Offset from StartOfData to EndOfBuffer. 149 ptrdiff_t Size; 150 151 stable_iterator(ptrdiff_t Size) : Size(Size) {} 152 153 public: 154 static stable_iterator invalid() { return stable_iterator(-1); } 155 stable_iterator() : Size(-1) {} 156 157 bool isValid() const { return Size >= 0; } 158 159 /// Returns true if this scope encloses I. 160 /// Returns false if I is invalid. 161 /// This scope must be valid. 162 bool encloses(stable_iterator I) const { return Size <= I.Size; } 163 164 /// Returns true if this scope strictly encloses I: that is, 165 /// if it encloses I and is not I. 166 /// Returns false is I is invalid. 167 /// This scope must be valid. 168 bool strictlyEncloses(stable_iterator I) const { return Size < I.Size; } 169 170 friend bool operator==(stable_iterator A, stable_iterator B) { 171 return A.Size == B.Size; 172 } 173 friend bool operator!=(stable_iterator A, stable_iterator B) { 174 return A.Size != B.Size; 175 } 176 }; 177 178 /// Information for lazily generating a cleanup. Subclasses must be 179 /// POD-like: cleanups will not be destructed, and they will be 180 /// allocated on the cleanup stack and freely copied and moved 181 /// around. 182 /// 183 /// Cleanup implementations should generally be declared in an 184 /// anonymous namespace. 185 class Cleanup { 186 // Anchor the construction vtable. 187 virtual void anchor(); 188 public: 189 /// Generation flags. 190 class Flags { 191 enum { 192 F_IsForEH = 0x1, 193 F_IsNormalCleanupKind = 0x2, 194 F_IsEHCleanupKind = 0x4 195 }; 196 unsigned flags; 197 198 public: 199 Flags() : flags(0) {} 200 201 /// isForEH - true if the current emission is for an EH cleanup. 202 bool isForEHCleanup() const { return flags & F_IsForEH; } 203 bool isForNormalCleanup() const { return !isForEHCleanup(); } 204 void setIsForEHCleanup() { flags |= F_IsForEH; } 205 206 bool isNormalCleanupKind() const { return flags & F_IsNormalCleanupKind; } 207 void setIsNormalCleanupKind() { flags |= F_IsNormalCleanupKind; } 208 209 /// isEHCleanupKind - true if the cleanup was pushed as an EH 210 /// cleanup. 211 bool isEHCleanupKind() const { return flags & F_IsEHCleanupKind; } 212 void setIsEHCleanupKind() { flags |= F_IsEHCleanupKind; } 213 }; 214 215 // Provide a virtual destructor to suppress a very common warning 216 // that unfortunately cannot be suppressed without this. Cleanups 217 // should not rely on this destructor ever being called. 218 virtual ~Cleanup() {} 219 220 /// Emit the cleanup. For normal cleanups, this is run in the 221 /// same EH context as when the cleanup was pushed, i.e. the 222 /// immediately-enclosing context of the cleanup scope. For 223 /// EH cleanups, this is run in a terminate context. 224 /// 225 // \param IsForEHCleanup true if this is for an EH cleanup, false 226 /// if for a normal cleanup. 227 virtual void Emit(CodeGenFunction &CGF, Flags flags) = 0; 228 }; 229 230 /// ConditionalCleanupN stores the saved form of its N parameters, 231 /// then restores them and performs the cleanup. 232 template <class T, class A0> 233 class ConditionalCleanup1 : public Cleanup { 234 typedef typename DominatingValue<A0>::saved_type A0_saved; 235 A0_saved a0_saved; 236 237 void Emit(CodeGenFunction &CGF, Flags flags) { 238 A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); 239 T(a0).Emit(CGF, flags); 240 } 241 242 public: 243 ConditionalCleanup1(A0_saved a0) 244 : a0_saved(a0) {} 245 }; 246 247 template <class T, class A0, class A1> 248 class ConditionalCleanup2 : public Cleanup { 249 typedef typename DominatingValue<A0>::saved_type A0_saved; 250 typedef typename DominatingValue<A1>::saved_type A1_saved; 251 A0_saved a0_saved; 252 A1_saved a1_saved; 253 254 void Emit(CodeGenFunction &CGF, Flags flags) { 255 A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); 256 A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved); 257 T(a0, a1).Emit(CGF, flags); 258 } 259 260 public: 261 ConditionalCleanup2(A0_saved a0, A1_saved a1) 262 : a0_saved(a0), a1_saved(a1) {} 263 }; 264 265 template <class T, class A0, class A1, class A2> 266 class ConditionalCleanup3 : public Cleanup { 267 typedef typename DominatingValue<A0>::saved_type A0_saved; 268 typedef typename DominatingValue<A1>::saved_type A1_saved; 269 typedef typename DominatingValue<A2>::saved_type A2_saved; 270 A0_saved a0_saved; 271 A1_saved a1_saved; 272 A2_saved a2_saved; 273 274 void Emit(CodeGenFunction &CGF, Flags flags) { 275 A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); 276 A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved); 277 A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved); 278 T(a0, a1, a2).Emit(CGF, flags); 279 } 280 281 public: 282 ConditionalCleanup3(A0_saved a0, A1_saved a1, A2_saved a2) 283 : a0_saved(a0), a1_saved(a1), a2_saved(a2) {} 284 }; 285 286 template <class T, class A0, class A1, class A2, class A3> 287 class ConditionalCleanup4 : public Cleanup { 288 typedef typename DominatingValue<A0>::saved_type A0_saved; 289 typedef typename DominatingValue<A1>::saved_type A1_saved; 290 typedef typename DominatingValue<A2>::saved_type A2_saved; 291 typedef typename DominatingValue<A3>::saved_type A3_saved; 292 A0_saved a0_saved; 293 A1_saved a1_saved; 294 A2_saved a2_saved; 295 A3_saved a3_saved; 296 297 void Emit(CodeGenFunction &CGF, Flags flags) { 298 A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); 299 A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved); 300 A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved); 301 A3 a3 = DominatingValue<A3>::restore(CGF, a3_saved); 302 T(a0, a1, a2, a3).Emit(CGF, flags); 303 } 304 305 public: 306 ConditionalCleanup4(A0_saved a0, A1_saved a1, A2_saved a2, A3_saved a3) 307 : a0_saved(a0), a1_saved(a1), a2_saved(a2), a3_saved(a3) {} 308 }; 309 310 private: 311 // The implementation for this class is in CGException.h and 312 // CGException.cpp; the definition is here because it's used as a 313 // member of CodeGenFunction. 314 315 /// The start of the scope-stack buffer, i.e. the allocated pointer 316 /// for the buffer. All of these pointers are either simultaneously 317 /// null or simultaneously valid. 318 char *StartOfBuffer; 319 320 /// The end of the buffer. 321 char *EndOfBuffer; 322 323 /// The first valid entry in the buffer. 324 char *StartOfData; 325 326 /// The innermost normal cleanup on the stack. 327 stable_iterator InnermostNormalCleanup; 328 329 /// The innermost EH scope on the stack. 330 stable_iterator InnermostEHScope; 331 332 /// The current set of branch fixups. A branch fixup is a jump to 333 /// an as-yet unemitted label, i.e. a label for which we don't yet 334 /// know the EH stack depth. Whenever we pop a cleanup, we have 335 /// to thread all the current branch fixups through it. 336 /// 337 /// Fixups are recorded as the Use of the respective branch or 338 /// switch statement. The use points to the final destination. 339 /// When popping out of a cleanup, these uses are threaded through 340 /// the cleanup and adjusted to point to the new cleanup. 341 /// 342 /// Note that branches are allowed to jump into protected scopes 343 /// in certain situations; e.g. the following code is legal: 344 /// struct A { ~A(); }; // trivial ctor, non-trivial dtor 345 /// goto foo; 346 /// A a; 347 /// foo: 348 /// bar(); 349 SmallVector<BranchFixup, 8> BranchFixups; 350 351 char *allocate(size_t Size); 352 353 void *pushCleanup(CleanupKind K, size_t DataSize); 354 355 public: 356 EHScopeStack() : StartOfBuffer(0), EndOfBuffer(0), StartOfData(0), 357 InnermostNormalCleanup(stable_end()), 358 InnermostEHScope(stable_end()) {} 359 ~EHScopeStack() { delete[] StartOfBuffer; } 360 361 // Variadic templates would make this not terrible. 362 363 /// Push a lazily-created cleanup on the stack. 364 template <class T> 365 void pushCleanup(CleanupKind Kind) { 366 void *Buffer = pushCleanup(Kind, sizeof(T)); 367 Cleanup *Obj = new(Buffer) T(); 368 (void) Obj; 369 } 370 371 /// Push a lazily-created cleanup on the stack. 372 template <class T, class A0> 373 void pushCleanup(CleanupKind Kind, A0 a0) { 374 void *Buffer = pushCleanup(Kind, sizeof(T)); 375 Cleanup *Obj = new(Buffer) T(a0); 376 (void) Obj; 377 } 378 379 /// Push a lazily-created cleanup on the stack. 380 template <class T, class A0, class A1> 381 void pushCleanup(CleanupKind Kind, A0 a0, A1 a1) { 382 void *Buffer = pushCleanup(Kind, sizeof(T)); 383 Cleanup *Obj = new(Buffer) T(a0, a1); 384 (void) Obj; 385 } 386 387 /// Push a lazily-created cleanup on the stack. 388 template <class T, class A0, class A1, class A2> 389 void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2) { 390 void *Buffer = pushCleanup(Kind, sizeof(T)); 391 Cleanup *Obj = new(Buffer) T(a0, a1, a2); 392 (void) Obj; 393 } 394 395 /// Push a lazily-created cleanup on the stack. 396 template <class T, class A0, class A1, class A2, class A3> 397 void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) { 398 void *Buffer = pushCleanup(Kind, sizeof(T)); 399 Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3); 400 (void) Obj; 401 } 402 403 /// Push a lazily-created cleanup on the stack. 404 template <class T, class A0, class A1, class A2, class A3, class A4> 405 void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3, A4 a4) { 406 void *Buffer = pushCleanup(Kind, sizeof(T)); 407 Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3, a4); 408 (void) Obj; 409 } 410 411 // Feel free to add more variants of the following: 412 413 /// Push a cleanup with non-constant storage requirements on the 414 /// stack. The cleanup type must provide an additional static method: 415 /// static size_t getExtraSize(size_t); 416 /// The argument to this method will be the value N, which will also 417 /// be passed as the first argument to the constructor. 418 /// 419 /// The data stored in the extra storage must obey the same 420 /// restrictions as normal cleanup member data. 421 /// 422 /// The pointer returned from this method is valid until the cleanup 423 /// stack is modified. 424 template <class T, class A0, class A1, class A2> 425 T *pushCleanupWithExtra(CleanupKind Kind, size_t N, A0 a0, A1 a1, A2 a2) { 426 void *Buffer = pushCleanup(Kind, sizeof(T) + T::getExtraSize(N)); 427 return new (Buffer) T(N, a0, a1, a2); 428 } 429 430 /// Pops a cleanup scope off the stack. This is private to CGCleanup.cpp. 431 void popCleanup(); 432 433 /// Push a set of catch handlers on the stack. The catch is 434 /// uninitialized and will need to have the given number of handlers 435 /// set on it. 436 class EHCatchScope *pushCatch(unsigned NumHandlers); 437 438 /// Pops a catch scope off the stack. This is private to CGException.cpp. 439 void popCatch(); 440 441 /// Push an exceptions filter on the stack. 442 class EHFilterScope *pushFilter(unsigned NumFilters); 443 444 /// Pops an exceptions filter off the stack. 445 void popFilter(); 446 447 /// Push a terminate handler on the stack. 448 void pushTerminate(); 449 450 /// Pops a terminate handler off the stack. 451 void popTerminate(); 452 453 /// Determines whether the exception-scopes stack is empty. 454 bool empty() const { return StartOfData == EndOfBuffer; } 455 456 bool requiresLandingPad() const { 457 return InnermostEHScope != stable_end(); 458 } 459 460 /// Determines whether there are any normal cleanups on the stack. 461 bool hasNormalCleanups() const { 462 return InnermostNormalCleanup != stable_end(); 463 } 464 465 /// Returns the innermost normal cleanup on the stack, or 466 /// stable_end() if there are no normal cleanups. 467 stable_iterator getInnermostNormalCleanup() const { 468 return InnermostNormalCleanup; 469 } 470 stable_iterator getInnermostActiveNormalCleanup() const; 471 472 stable_iterator getInnermostEHScope() const { 473 return InnermostEHScope; 474 } 475 476 stable_iterator getInnermostActiveEHScope() const; 477 478 /// An unstable reference to a scope-stack depth. Invalidated by 479 /// pushes but not pops. 480 class iterator; 481 482 /// Returns an iterator pointing to the innermost EH scope. 483 iterator begin() const; 484 485 /// Returns an iterator pointing to the outermost EH scope. 486 iterator end() const; 487 488 /// Create a stable reference to the top of the EH stack. The 489 /// returned reference is valid until that scope is popped off the 490 /// stack. 491 stable_iterator stable_begin() const { 492 return stable_iterator(EndOfBuffer - StartOfData); 493 } 494 495 /// Create a stable reference to the bottom of the EH stack. 496 static stable_iterator stable_end() { 497 return stable_iterator(0); 498 } 499 500 /// Translates an iterator into a stable_iterator. 501 stable_iterator stabilize(iterator it) const; 502 503 /// Turn a stable reference to a scope depth into a unstable pointer 504 /// to the EH stack. 505 iterator find(stable_iterator save) const; 506 507 /// Removes the cleanup pointed to by the given stable_iterator. 508 void removeCleanup(stable_iterator save); 509 510 /// Add a branch fixup to the current cleanup scope. 511 BranchFixup &addBranchFixup() { 512 assert(hasNormalCleanups() && "adding fixup in scope without cleanups"); 513 BranchFixups.push_back(BranchFixup()); 514 return BranchFixups.back(); 515 } 516 517 unsigned getNumBranchFixups() const { return BranchFixups.size(); } 518 BranchFixup &getBranchFixup(unsigned I) { 519 assert(I < getNumBranchFixups()); 520 return BranchFixups[I]; 521 } 522 523 /// Pops lazily-removed fixups from the end of the list. This 524 /// should only be called by procedures which have just popped a 525 /// cleanup or resolved one or more fixups. 526 void popNullFixups(); 527 528 /// Clears the branch-fixups list. This should only be called by 529 /// ResolveAllBranchFixups. 530 void clearFixups() { BranchFixups.clear(); } 531 }; 532 533 /// CodeGenFunction - This class organizes the per-function state that is used 534 /// while generating LLVM code. 535 class CodeGenFunction : public CodeGenTypeCache { 536 CodeGenFunction(const CodeGenFunction&); // DO NOT IMPLEMENT 537 void operator=(const CodeGenFunction&); // DO NOT IMPLEMENT 538 539 friend class CGCXXABI; 540 public: 541 /// A jump destination is an abstract label, branching to which may 542 /// require a jump out through normal cleanups. 543 struct JumpDest { 544 JumpDest() : Block(0), ScopeDepth(), Index(0) {} 545 JumpDest(llvm::BasicBlock *Block, 546 EHScopeStack::stable_iterator Depth, 547 unsigned Index) 548 : Block(Block), ScopeDepth(Depth), Index(Index) {} 549 550 bool isValid() const { return Block != 0; } 551 llvm::BasicBlock *getBlock() const { return Block; } 552 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 553 unsigned getDestIndex() const { return Index; } 554 555 private: 556 llvm::BasicBlock *Block; 557 EHScopeStack::stable_iterator ScopeDepth; 558 unsigned Index; 559 }; 560 561 CodeGenModule &CGM; // Per-module state. 562 const TargetInfo &Target; 563 564 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 565 CGBuilderTy Builder; 566 567 /// CurFuncDecl - Holds the Decl for the current function or ObjC method. 568 /// This excludes BlockDecls. 569 const Decl *CurFuncDecl; 570 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 571 const Decl *CurCodeDecl; 572 const CGFunctionInfo *CurFnInfo; 573 QualType FnRetTy; 574 llvm::Function *CurFn; 575 576 /// CurGD - The GlobalDecl for the current function being compiled. 577 GlobalDecl CurGD; 578 579 /// PrologueCleanupDepth - The cleanup depth enclosing all the 580 /// cleanups associated with the parameters. 581 EHScopeStack::stable_iterator PrologueCleanupDepth; 582 583 /// ReturnBlock - Unified return block. 584 JumpDest ReturnBlock; 585 586 /// ReturnValue - The temporary alloca to hold the return value. This is null 587 /// iff the function has no return value. 588 llvm::Value *ReturnValue; 589 590 /// AllocaInsertPoint - This is an instruction in the entry block before which 591 /// we prefer to insert allocas. 592 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 593 594 bool CatchUndefined; 595 596 /// In ARC, whether we should autorelease the return value. 597 bool AutoreleaseResult; 598 599 const CodeGen::CGBlockInfo *BlockInfo; 600 llvm::Value *BlockPointer; 601 602 /// \brief A mapping from NRVO variables to the flags used to indicate 603 /// when the NRVO has been applied to this variable. 604 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 605 606 EHScopeStack EHStack; 607 608 /// i32s containing the indexes of the cleanup destinations. 609 llvm::AllocaInst *NormalCleanupDest; 610 611 unsigned NextCleanupDestIndex; 612 613 /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. 614 llvm::BasicBlock *EHResumeBlock; 615 616 /// The exception slot. All landing pads write the current exception pointer 617 /// into this alloca. 618 llvm::Value *ExceptionSlot; 619 620 /// The selector slot. Under the MandatoryCleanup model, all landing pads 621 /// write the current selector value into this alloca. 622 llvm::AllocaInst *EHSelectorSlot; 623 624 /// Emits a landing pad for the current EH stack. 625 llvm::BasicBlock *EmitLandingPad(); 626 627 llvm::BasicBlock *getInvokeDestImpl(); 628 629 /// Set up the last cleaup that was pushed as a conditional 630 /// full-expression cleanup. 631 void initFullExprCleanup(); 632 633 template <class T> 634 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 635 return DominatingValue<T>::save(*this, value); 636 } 637 638 public: 639 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 640 /// rethrows. 641 SmallVector<llvm::Value*, 8> ObjCEHValueStack; 642 643 /// A class controlling the emission of a finally block. 644 class FinallyInfo { 645 /// Where the catchall's edge through the cleanup should go. 646 JumpDest RethrowDest; 647 648 /// A function to call to enter the catch. 649 llvm::Constant *BeginCatchFn; 650 651 /// An i1 variable indicating whether or not the @finally is 652 /// running for an exception. 653 llvm::AllocaInst *ForEHVar; 654 655 /// An i8* variable into which the exception pointer to rethrow 656 /// has been saved. 657 llvm::AllocaInst *SavedExnVar; 658 659 public: 660 void enter(CodeGenFunction &CGF, const Stmt *Finally, 661 llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn, 662 llvm::Constant *rethrowFn); 663 void exit(CodeGenFunction &CGF); 664 }; 665 666 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 667 /// current full-expression. Safe against the possibility that 668 /// we're currently inside a conditionally-evaluated expression. 669 template <class T, class A0> 670 void pushFullExprCleanup(CleanupKind kind, A0 a0) { 671 // If we're not in a conditional branch, or if none of the 672 // arguments requires saving, then use the unconditional cleanup. 673 if (!isInConditionalBranch()) 674 return EHStack.pushCleanup<T>(kind, a0); 675 676 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 677 678 typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType; 679 EHStack.pushCleanup<CleanupType>(kind, a0_saved); 680 initFullExprCleanup(); 681 } 682 683 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 684 /// current full-expression. Safe against the possibility that 685 /// we're currently inside a conditionally-evaluated expression. 686 template <class T, class A0, class A1> 687 void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) { 688 // If we're not in a conditional branch, or if none of the 689 // arguments requires saving, then use the unconditional cleanup. 690 if (!isInConditionalBranch()) 691 return EHStack.pushCleanup<T>(kind, a0, a1); 692 693 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 694 typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); 695 696 typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType; 697 EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved); 698 initFullExprCleanup(); 699 } 700 701 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 702 /// current full-expression. Safe against the possibility that 703 /// we're currently inside a conditionally-evaluated expression. 704 template <class T, class A0, class A1, class A2> 705 void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2) { 706 // If we're not in a conditional branch, or if none of the 707 // arguments requires saving, then use the unconditional cleanup. 708 if (!isInConditionalBranch()) { 709 return EHStack.pushCleanup<T>(kind, a0, a1, a2); 710 } 711 712 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 713 typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); 714 typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2); 715 716 typedef EHScopeStack::ConditionalCleanup3<T, A0, A1, A2> CleanupType; 717 EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, a2_saved); 718 initFullExprCleanup(); 719 } 720 721 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 722 /// current full-expression. Safe against the possibility that 723 /// we're currently inside a conditionally-evaluated expression. 724 template <class T, class A0, class A1, class A2, class A3> 725 void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2, A3 a3) { 726 // If we're not in a conditional branch, or if none of the 727 // arguments requires saving, then use the unconditional cleanup. 728 if (!isInConditionalBranch()) { 729 return EHStack.pushCleanup<T>(kind, a0, a1, a2, a3); 730 } 731 732 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 733 typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); 734 typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2); 735 typename DominatingValue<A3>::saved_type a3_saved = saveValueInCond(a3); 736 737 typedef EHScopeStack::ConditionalCleanup4<T, A0, A1, A2, A3> CleanupType; 738 EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, 739 a2_saved, a3_saved); 740 initFullExprCleanup(); 741 } 742 743 /// PushDestructorCleanup - Push a cleanup to call the 744 /// complete-object destructor of an object of the given type at the 745 /// given address. Does nothing if T is not a C++ class type with a 746 /// non-trivial destructor. 747 void PushDestructorCleanup(QualType T, llvm::Value *Addr); 748 749 /// PushDestructorCleanup - Push a cleanup to call the 750 /// complete-object variant of the given destructor on the object at 751 /// the given address. 752 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, 753 llvm::Value *Addr); 754 755 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 756 /// process all branch fixups. 757 void PopCleanupBlock(bool FallThroughIsBranchThrough = false); 758 759 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 760 /// The block cannot be reactivated. Pops it if it's the top of the 761 /// stack. 762 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup); 763 764 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 765 /// Cannot be used to resurrect a deactivated cleanup. 766 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup); 767 768 /// \brief Enters a new scope for capturing cleanups, all of which 769 /// will be executed once the scope is exited. 770 class RunCleanupsScope { 771 EHScopeStack::stable_iterator CleanupStackDepth; 772 bool OldDidCallStackSave; 773 bool PerformCleanup; 774 775 RunCleanupsScope(const RunCleanupsScope &); // DO NOT IMPLEMENT 776 RunCleanupsScope &operator=(const RunCleanupsScope &); // DO NOT IMPLEMENT 777 778 protected: 779 CodeGenFunction& CGF; 780 781 public: 782 /// \brief Enter a new cleanup scope. 783 explicit RunCleanupsScope(CodeGenFunction &CGF) 784 : PerformCleanup(true), CGF(CGF) 785 { 786 CleanupStackDepth = CGF.EHStack.stable_begin(); 787 OldDidCallStackSave = CGF.DidCallStackSave; 788 CGF.DidCallStackSave = false; 789 } 790 791 /// \brief Exit this cleanup scope, emitting any accumulated 792 /// cleanups. 793 ~RunCleanupsScope() { 794 if (PerformCleanup) { 795 CGF.DidCallStackSave = OldDidCallStackSave; 796 CGF.PopCleanupBlocks(CleanupStackDepth); 797 } 798 } 799 800 /// \brief Determine whether this scope requires any cleanups. 801 bool requiresCleanups() const { 802 return CGF.EHStack.stable_begin() != CleanupStackDepth; 803 } 804 805 /// \brief Force the emission of cleanups now, instead of waiting 806 /// until this object is destroyed. 807 void ForceCleanup() { 808 assert(PerformCleanup && "Already forced cleanup"); 809 CGF.DidCallStackSave = OldDidCallStackSave; 810 CGF.PopCleanupBlocks(CleanupStackDepth); 811 PerformCleanup = false; 812 } 813 }; 814 815 class LexicalScope: protected RunCleanupsScope { 816 SourceRange Range; 817 bool PopDebugStack; 818 819 LexicalScope(const LexicalScope &); // DO NOT IMPLEMENT THESE 820 LexicalScope &operator=(const LexicalScope &); 821 822 public: 823 /// \brief Enter a new cleanup scope. 824 explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) 825 : RunCleanupsScope(CGF), Range(Range), PopDebugStack(true) { 826 if (CGDebugInfo *DI = CGF.getDebugInfo()) 827 DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); 828 } 829 830 /// \brief Exit this cleanup scope, emitting any accumulated 831 /// cleanups. 832 ~LexicalScope() { 833 if (PopDebugStack) { 834 CGDebugInfo *DI = CGF.getDebugInfo(); 835 if (DI) DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 836 } 837 } 838 839 /// \brief Force the emission of cleanups now, instead of waiting 840 /// until this object is destroyed. 841 void ForceCleanup() { 842 RunCleanupsScope::ForceCleanup(); 843 if (CGDebugInfo *DI = CGF.getDebugInfo()) { 844 DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 845 PopDebugStack = false; 846 } 847 } 848 }; 849 850 851 /// PopCleanupBlocks - Takes the old cleanup stack size and emits 852 /// the cleanup blocks that have been added. 853 void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize); 854 855 void ResolveBranchFixups(llvm::BasicBlock *Target); 856 857 /// The given basic block lies in the current EH scope, but may be a 858 /// target of a potentially scope-crossing jump; get a stable handle 859 /// to which we can perform this jump later. 860 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 861 return JumpDest(Target, 862 EHStack.getInnermostNormalCleanup(), 863 NextCleanupDestIndex++); 864 } 865 866 /// The given basic block lies in the current EH scope, but may be a 867 /// target of a potentially scope-crossing jump; get a stable handle 868 /// to which we can perform this jump later. 869 JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { 870 return getJumpDestInCurrentScope(createBasicBlock(Name)); 871 } 872 873 /// EmitBranchThroughCleanup - Emit a branch from the current insert 874 /// block through the normal cleanup handling code (if any) and then 875 /// on to \arg Dest. 876 void EmitBranchThroughCleanup(JumpDest Dest); 877 878 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 879 /// specified destination obviously has no cleanups to run. 'false' is always 880 /// a conservatively correct answer for this method. 881 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 882 883 /// popCatchScope - Pops the catch scope at the top of the EHScope 884 /// stack, emitting any required code (other than the catch handlers 885 /// themselves). 886 void popCatchScope(); 887 888 llvm::BasicBlock *getEHResumeBlock(); 889 llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); 890 891 /// An object to manage conditionally-evaluated expressions. 892 class ConditionalEvaluation { 893 llvm::BasicBlock *StartBB; 894 895 public: 896 ConditionalEvaluation(CodeGenFunction &CGF) 897 : StartBB(CGF.Builder.GetInsertBlock()) {} 898 899 void begin(CodeGenFunction &CGF) { 900 assert(CGF.OutermostConditional != this); 901 if (!CGF.OutermostConditional) 902 CGF.OutermostConditional = this; 903 } 904 905 void end(CodeGenFunction &CGF) { 906 assert(CGF.OutermostConditional != 0); 907 if (CGF.OutermostConditional == this) 908 CGF.OutermostConditional = 0; 909 } 910 911 /// Returns a block which will be executed prior to each 912 /// evaluation of the conditional code. 913 llvm::BasicBlock *getStartingBlock() const { 914 return StartBB; 915 } 916 }; 917 918 /// isInConditionalBranch - Return true if we're currently emitting 919 /// one branch or the other of a conditional expression. 920 bool isInConditionalBranch() const { return OutermostConditional != 0; } 921 922 /// An RAII object to record that we're evaluating a statement 923 /// expression. 924 class StmtExprEvaluation { 925 CodeGenFunction &CGF; 926 927 /// We have to save the outermost conditional: cleanups in a 928 /// statement expression aren't conditional just because the 929 /// StmtExpr is. 930 ConditionalEvaluation *SavedOutermostConditional; 931 932 public: 933 StmtExprEvaluation(CodeGenFunction &CGF) 934 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 935 CGF.OutermostConditional = 0; 936 } 937 938 ~StmtExprEvaluation() { 939 CGF.OutermostConditional = SavedOutermostConditional; 940 CGF.EnsureInsertPoint(); 941 } 942 }; 943 944 /// An object which temporarily prevents a value from being 945 /// destroyed by aggressive peephole optimizations that assume that 946 /// all uses of a value have been realized in the IR. 947 class PeepholeProtection { 948 llvm::Instruction *Inst; 949 friend class CodeGenFunction; 950 951 public: 952 PeepholeProtection() : Inst(0) {} 953 }; 954 955 /// A non-RAII class containing all the information about a bound 956 /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for 957 /// this which makes individual mappings very simple; using this 958 /// class directly is useful when you have a variable number of 959 /// opaque values or don't want the RAII functionality for some 960 /// reason. 961 class OpaqueValueMappingData { 962 const OpaqueValueExpr *OpaqueValue; 963 bool BoundLValue; 964 CodeGenFunction::PeepholeProtection Protection; 965 966 OpaqueValueMappingData(const OpaqueValueExpr *ov, 967 bool boundLValue) 968 : OpaqueValue(ov), BoundLValue(boundLValue) {} 969 public: 970 OpaqueValueMappingData() : OpaqueValue(0) {} 971 972 static bool shouldBindAsLValue(const Expr *expr) { 973 // gl-values should be bound as l-values for obvious reasons. 974 // Records should be bound as l-values because IR generation 975 // always keeps them in memory. Expressions of function type 976 // act exactly like l-values but are formally required to be 977 // r-values in C. 978 return expr->isGLValue() || 979 expr->getType()->isRecordType() || 980 expr->getType()->isFunctionType(); 981 } 982 983 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 984 const OpaqueValueExpr *ov, 985 const Expr *e) { 986 if (shouldBindAsLValue(ov)) 987 return bind(CGF, ov, CGF.EmitLValue(e)); 988 return bind(CGF, ov, CGF.EmitAnyExpr(e)); 989 } 990 991 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 992 const OpaqueValueExpr *ov, 993 const LValue &lv) { 994 assert(shouldBindAsLValue(ov)); 995 CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); 996 return OpaqueValueMappingData(ov, true); 997 } 998 999 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1000 const OpaqueValueExpr *ov, 1001 const RValue &rv) { 1002 assert(!shouldBindAsLValue(ov)); 1003 CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); 1004 1005 OpaqueValueMappingData data(ov, false); 1006 1007 // Work around an extremely aggressive peephole optimization in 1008 // EmitScalarConversion which assumes that all other uses of a 1009 // value are extant. 1010 data.Protection = CGF.protectFromPeepholes(rv); 1011 1012 return data; 1013 } 1014 1015 bool isValid() const { return OpaqueValue != 0; } 1016 void clear() { OpaqueValue = 0; } 1017 1018 void unbind(CodeGenFunction &CGF) { 1019 assert(OpaqueValue && "no data to unbind!"); 1020 1021 if (BoundLValue) { 1022 CGF.OpaqueLValues.erase(OpaqueValue); 1023 } else { 1024 CGF.OpaqueRValues.erase(OpaqueValue); 1025 CGF.unprotectFromPeepholes(Protection); 1026 } 1027 } 1028 }; 1029 1030 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 1031 class OpaqueValueMapping { 1032 CodeGenFunction &CGF; 1033 OpaqueValueMappingData Data; 1034 1035 public: 1036 static bool shouldBindAsLValue(const Expr *expr) { 1037 return OpaqueValueMappingData::shouldBindAsLValue(expr); 1038 } 1039 1040 /// Build the opaque value mapping for the given conditional 1041 /// operator if it's the GNU ?: extension. This is a common 1042 /// enough pattern that the convenience operator is really 1043 /// helpful. 1044 /// 1045 OpaqueValueMapping(CodeGenFunction &CGF, 1046 const AbstractConditionalOperator *op) : CGF(CGF) { 1047 if (isa<ConditionalOperator>(op)) 1048 // Leave Data empty. 1049 return; 1050 1051 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 1052 Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), 1053 e->getCommon()); 1054 } 1055 1056 OpaqueValueMapping(CodeGenFunction &CGF, 1057 const OpaqueValueExpr *opaqueValue, 1058 LValue lvalue) 1059 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { 1060 } 1061 1062 OpaqueValueMapping(CodeGenFunction &CGF, 1063 const OpaqueValueExpr *opaqueValue, 1064 RValue rvalue) 1065 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { 1066 } 1067 1068 void pop() { 1069 Data.unbind(CGF); 1070 Data.clear(); 1071 } 1072 1073 ~OpaqueValueMapping() { 1074 if (Data.isValid()) Data.unbind(CGF); 1075 } 1076 }; 1077 1078 /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field 1079 /// number that holds the value. 1080 unsigned getByRefValueLLVMField(const ValueDecl *VD) const; 1081 1082 /// BuildBlockByrefAddress - Computes address location of the 1083 /// variable which is declared as __block. 1084 llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr, 1085 const VarDecl *V); 1086 private: 1087 CGDebugInfo *DebugInfo; 1088 bool DisableDebugInfo; 1089 1090 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 1091 /// calling llvm.stacksave for multiple VLAs in the same scope. 1092 bool DidCallStackSave; 1093 1094 /// IndirectBranch - The first time an indirect goto is seen we create a block 1095 /// with an indirect branch. Every time we see the address of a label taken, 1096 /// we add the label to the indirect goto. Every subsequent indirect goto is 1097 /// codegen'd as a jump to the IndirectBranch's basic block. 1098 llvm::IndirectBrInst *IndirectBranch; 1099 1100 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 1101 /// decls. 1102 typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy; 1103 DeclMapTy LocalDeclMap; 1104 1105 /// LabelMap - This keeps track of the LLVM basic block for each C label. 1106 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 1107 1108 // BreakContinueStack - This keeps track of where break and continue 1109 // statements should jump to. 1110 struct BreakContinue { 1111 BreakContinue(JumpDest Break, JumpDest Continue) 1112 : BreakBlock(Break), ContinueBlock(Continue) {} 1113 1114 JumpDest BreakBlock; 1115 JumpDest ContinueBlock; 1116 }; 1117 SmallVector<BreakContinue, 8> BreakContinueStack; 1118 1119 /// SwitchInsn - This is nearest current switch instruction. It is null if if 1120 /// current context is not in a switch. 1121 llvm::SwitchInst *SwitchInsn; 1122 1123 /// CaseRangeBlock - This block holds if condition check for last case 1124 /// statement range in current switch instruction. 1125 llvm::BasicBlock *CaseRangeBlock; 1126 1127 /// OpaqueLValues - Keeps track of the current set of opaque value 1128 /// expressions. 1129 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 1130 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 1131 1132 // VLASizeMap - This keeps track of the associated size for each VLA type. 1133 // We track this by the size expression rather than the type itself because 1134 // in certain situations, like a const qualifier applied to an VLA typedef, 1135 // multiple VLA types can share the same size expression. 1136 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 1137 // enter/leave scopes. 1138 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 1139 1140 /// A block containing a single 'unreachable' instruction. Created 1141 /// lazily by getUnreachableBlock(). 1142 llvm::BasicBlock *UnreachableBlock; 1143 1144 /// CXXThisDecl - When generating code for a C++ member function, 1145 /// this will hold the implicit 'this' declaration. 1146 ImplicitParamDecl *CXXThisDecl; 1147 llvm::Value *CXXThisValue; 1148 1149 /// CXXVTTDecl - When generating code for a base object constructor or 1150 /// base object destructor with virtual bases, this will hold the implicit 1151 /// VTT parameter. 1152 ImplicitParamDecl *CXXVTTDecl; 1153 llvm::Value *CXXVTTValue; 1154 1155 /// OutermostConditional - Points to the outermost active 1156 /// conditional control. This is used so that we know if a 1157 /// temporary should be destroyed conditionally. 1158 ConditionalEvaluation *OutermostConditional; 1159 1160 1161 /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM 1162 /// type as well as the field number that contains the actual data. 1163 llvm::DenseMap<const ValueDecl *, std::pair<llvm::Type *, 1164 unsigned> > ByRefValueInfo; 1165 1166 llvm::BasicBlock *TerminateLandingPad; 1167 llvm::BasicBlock *TerminateHandler; 1168 llvm::BasicBlock *TrapBB; 1169 1170 public: 1171 CodeGenFunction(CodeGenModule &cgm); 1172 1173 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 1174 ASTContext &getContext() const { return CGM.getContext(); } 1175 CGDebugInfo *getDebugInfo() { 1176 if (DisableDebugInfo) 1177 return NULL; 1178 return DebugInfo; 1179 } 1180 void disableDebugInfo() { DisableDebugInfo = true; } 1181 void enableDebugInfo() { DisableDebugInfo = false; } 1182 1183 bool shouldUseFusedARCCalls() { 1184 return CGM.getCodeGenOpts().OptimizationLevel == 0; 1185 } 1186 1187 const LangOptions &getLangOptions() const { return CGM.getLangOptions(); } 1188 1189 /// Returns a pointer to the function's exception object and selector slot, 1190 /// which is assigned in every landing pad. 1191 llvm::Value *getExceptionSlot(); 1192 llvm::Value *getEHSelectorSlot(); 1193 1194 /// Returns the contents of the function's exception object and selector 1195 /// slots. 1196 llvm::Value *getExceptionFromSlot(); 1197 llvm::Value *getSelectorFromSlot(); 1198 1199 llvm::Value *getNormalCleanupDestSlot(); 1200 1201 llvm::BasicBlock *getUnreachableBlock() { 1202 if (!UnreachableBlock) { 1203 UnreachableBlock = createBasicBlock("unreachable"); 1204 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 1205 } 1206 return UnreachableBlock; 1207 } 1208 1209 llvm::BasicBlock *getInvokeDest() { 1210 if (!EHStack.requiresLandingPad()) return 0; 1211 return getInvokeDestImpl(); 1212 } 1213 1214 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 1215 1216 //===--------------------------------------------------------------------===// 1217 // Cleanups 1218 //===--------------------------------------------------------------------===// 1219 1220 typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty); 1221 1222 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1223 llvm::Value *arrayEndPointer, 1224 QualType elementType, 1225 Destroyer &destroyer); 1226 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1227 llvm::Value *arrayEnd, 1228 QualType elementType, 1229 Destroyer &destroyer); 1230 1231 void pushDestroy(QualType::DestructionKind dtorKind, 1232 llvm::Value *addr, QualType type); 1233 void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type, 1234 Destroyer &destroyer, bool useEHCleanupForArray); 1235 void emitDestroy(llvm::Value *addr, QualType type, Destroyer &destroyer, 1236 bool useEHCleanupForArray); 1237 llvm::Function *generateDestroyHelper(llvm::Constant *addr, 1238 QualType type, 1239 Destroyer &destroyer, 1240 bool useEHCleanupForArray); 1241 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 1242 QualType type, Destroyer &destroyer, 1243 bool checkZeroLength, bool useEHCleanup); 1244 1245 Destroyer &getDestroyer(QualType::DestructionKind destructionKind); 1246 1247 /// Determines whether an EH cleanup is required to destroy a type 1248 /// with the given destruction kind. 1249 bool needsEHCleanup(QualType::DestructionKind kind) { 1250 switch (kind) { 1251 case QualType::DK_none: 1252 return false; 1253 case QualType::DK_cxx_destructor: 1254 case QualType::DK_objc_weak_lifetime: 1255 return getLangOptions().Exceptions; 1256 case QualType::DK_objc_strong_lifetime: 1257 return getLangOptions().Exceptions && 1258 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 1259 } 1260 llvm_unreachable("bad destruction kind"); 1261 } 1262 1263 CleanupKind getCleanupKind(QualType::DestructionKind kind) { 1264 return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); 1265 } 1266 1267 //===--------------------------------------------------------------------===// 1268 // Objective-C 1269 //===--------------------------------------------------------------------===// 1270 1271 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 1272 1273 void StartObjCMethod(const ObjCMethodDecl *MD, 1274 const ObjCContainerDecl *CD, 1275 SourceLocation StartLoc); 1276 1277 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 1278 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 1279 const ObjCPropertyImplDecl *PID); 1280 void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 1281 const ObjCPropertyImplDecl *propImpl); 1282 1283 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1284 ObjCMethodDecl *MD, bool ctor); 1285 1286 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 1287 /// for the given property. 1288 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 1289 const ObjCPropertyImplDecl *PID); 1290 void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1291 const ObjCPropertyImplDecl *propImpl); 1292 bool IndirectObjCSetterArg(const CGFunctionInfo &FI); 1293 bool IvarTypeWithAggrGCObjects(QualType Ty); 1294 1295 //===--------------------------------------------------------------------===// 1296 // Block Bits 1297 //===--------------------------------------------------------------------===// 1298 1299 llvm::Value *EmitBlockLiteral(const BlockExpr *); 1300 llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *, 1301 const CGBlockInfo &Info, 1302 llvm::StructType *, 1303 llvm::Constant *BlockVarLayout); 1304 1305 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 1306 const CGBlockInfo &Info, 1307 const Decl *OuterFuncDecl, 1308 const DeclMapTy &ldm); 1309 1310 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 1311 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 1312 1313 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags); 1314 1315 class AutoVarEmission; 1316 1317 void emitByrefStructureInit(const AutoVarEmission &emission); 1318 void enterByrefCleanup(const AutoVarEmission &emission); 1319 1320 llvm::Value *LoadBlockStruct() { 1321 assert(BlockPointer && "no block pointer set!"); 1322 return BlockPointer; 1323 } 1324 1325 void AllocateBlockCXXThisPointer(const CXXThisExpr *E); 1326 void AllocateBlockDecl(const BlockDeclRefExpr *E); 1327 llvm::Value *GetAddrOfBlockDecl(const BlockDeclRefExpr *E) { 1328 return GetAddrOfBlockDecl(E->getDecl(), E->isByRef()); 1329 } 1330 llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef); 1331 llvm::Type *BuildByRefType(const VarDecl *var); 1332 1333 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1334 const CGFunctionInfo &FnInfo); 1335 void StartFunction(GlobalDecl GD, QualType RetTy, 1336 llvm::Function *Fn, 1337 const CGFunctionInfo &FnInfo, 1338 const FunctionArgList &Args, 1339 SourceLocation StartLoc); 1340 1341 void EmitConstructorBody(FunctionArgList &Args); 1342 void EmitDestructorBody(FunctionArgList &Args); 1343 void EmitFunctionBody(FunctionArgList &Args); 1344 1345 /// EmitReturnBlock - Emit the unified return block, trying to avoid its 1346 /// emission when possible. 1347 void EmitReturnBlock(); 1348 1349 /// FinishFunction - Complete IR generation of the current function. It is 1350 /// legal to call this function even if there is no current insertion point. 1351 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 1352 1353 /// GenerateThunk - Generate a thunk for the given method. 1354 void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1355 GlobalDecl GD, const ThunkInfo &Thunk); 1356 1357 void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1358 GlobalDecl GD, const ThunkInfo &Thunk); 1359 1360 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 1361 FunctionArgList &Args); 1362 1363 /// InitializeVTablePointer - Initialize the vtable pointer of the given 1364 /// subobject. 1365 /// 1366 void InitializeVTablePointer(BaseSubobject Base, 1367 const CXXRecordDecl *NearestVBase, 1368 CharUnits OffsetFromNearestVBase, 1369 llvm::Constant *VTable, 1370 const CXXRecordDecl *VTableClass); 1371 1372 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 1373 void InitializeVTablePointers(BaseSubobject Base, 1374 const CXXRecordDecl *NearestVBase, 1375 CharUnits OffsetFromNearestVBase, 1376 bool BaseIsNonVirtualPrimaryBase, 1377 llvm::Constant *VTable, 1378 const CXXRecordDecl *VTableClass, 1379 VisitedVirtualBasesSetTy& VBases); 1380 1381 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 1382 1383 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 1384 /// to by This. 1385 llvm::Value *GetVTablePtr(llvm::Value *This, llvm::Type *Ty); 1386 1387 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 1388 /// given phase of destruction for a destructor. The end result 1389 /// should call destructors on members and base classes in reverse 1390 /// order of their construction. 1391 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 1392 1393 /// ShouldInstrumentFunction - Return true if the current function should be 1394 /// instrumented with __cyg_profile_func_* calls 1395 bool ShouldInstrumentFunction(); 1396 1397 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 1398 /// instrumentation function with the current function and the call site, if 1399 /// function instrumentation is enabled. 1400 void EmitFunctionInstrumentation(const char *Fn); 1401 1402 /// EmitMCountInstrumentation - Emit call to .mcount. 1403 void EmitMCountInstrumentation(); 1404 1405 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 1406 /// arguments for the given function. This is also responsible for naming the 1407 /// LLVM function arguments. 1408 void EmitFunctionProlog(const CGFunctionInfo &FI, 1409 llvm::Function *Fn, 1410 const FunctionArgList &Args); 1411 1412 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 1413 /// given temporary. 1414 void EmitFunctionEpilog(const CGFunctionInfo &FI); 1415 1416 /// EmitStartEHSpec - Emit the start of the exception spec. 1417 void EmitStartEHSpec(const Decl *D); 1418 1419 /// EmitEndEHSpec - Emit the end of the exception spec. 1420 void EmitEndEHSpec(const Decl *D); 1421 1422 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 1423 llvm::BasicBlock *getTerminateLandingPad(); 1424 1425 /// getTerminateHandler - Return a handler (not a landing pad, just 1426 /// a catch handler) that just calls terminate. This is used when 1427 /// a terminate scope encloses a try. 1428 llvm::BasicBlock *getTerminateHandler(); 1429 1430 llvm::Type *ConvertTypeForMem(QualType T); 1431 llvm::Type *ConvertType(QualType T); 1432 llvm::Type *ConvertType(const TypeDecl *T) { 1433 return ConvertType(getContext().getTypeDeclType(T)); 1434 } 1435 1436 /// LoadObjCSelf - Load the value of self. This function is only valid while 1437 /// generating code for an Objective-C method. 1438 llvm::Value *LoadObjCSelf(); 1439 1440 /// TypeOfSelfObject - Return type of object that this self represents. 1441 QualType TypeOfSelfObject(); 1442 1443 /// hasAggregateLLVMType - Return true if the specified AST type will map into 1444 /// an aggregate LLVM type or is void. 1445 static bool hasAggregateLLVMType(QualType T); 1446 1447 /// createBasicBlock - Create an LLVM basic block. 1448 llvm::BasicBlock *createBasicBlock(StringRef name = "", 1449 llvm::Function *parent = 0, 1450 llvm::BasicBlock *before = 0) { 1451 #ifdef NDEBUG 1452 return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before); 1453 #else 1454 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 1455 #endif 1456 } 1457 1458 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 1459 /// label maps to. 1460 JumpDest getJumpDestForLabel(const LabelDecl *S); 1461 1462 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 1463 /// another basic block, simplify it. This assumes that no other code could 1464 /// potentially reference the basic block. 1465 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 1466 1467 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 1468 /// adding a fall-through branch from the current insert block if 1469 /// necessary. It is legal to call this function even if there is no current 1470 /// insertion point. 1471 /// 1472 /// IsFinished - If true, indicates that the caller has finished emitting 1473 /// branches to the given block and does not expect to emit code into it. This 1474 /// means the block can be ignored if it is unreachable. 1475 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 1476 1477 /// EmitBlockAfterUses - Emit the given block somewhere hopefully 1478 /// near its uses, and leave the insertion point in it. 1479 void EmitBlockAfterUses(llvm::BasicBlock *BB); 1480 1481 /// EmitBranch - Emit a branch to the specified basic block from the current 1482 /// insert block, taking care to avoid creation of branches from dummy 1483 /// blocks. It is legal to call this function even if there is no current 1484 /// insertion point. 1485 /// 1486 /// This function clears the current insertion point. The caller should follow 1487 /// calls to this function with calls to Emit*Block prior to generation new 1488 /// code. 1489 void EmitBranch(llvm::BasicBlock *Block); 1490 1491 /// HaveInsertPoint - True if an insertion point is defined. If not, this 1492 /// indicates that the current code being emitted is unreachable. 1493 bool HaveInsertPoint() const { 1494 return Builder.GetInsertBlock() != 0; 1495 } 1496 1497 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 1498 /// emitted IR has a place to go. Note that by definition, if this function 1499 /// creates a block then that block is unreachable; callers may do better to 1500 /// detect when no insertion point is defined and simply skip IR generation. 1501 void EnsureInsertPoint() { 1502 if (!HaveInsertPoint()) 1503 EmitBlock(createBasicBlock()); 1504 } 1505 1506 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1507 /// specified stmt yet. 1508 void ErrorUnsupported(const Stmt *S, const char *Type, 1509 bool OmitOnError=false); 1510 1511 //===--------------------------------------------------------------------===// 1512 // Helpers 1513 //===--------------------------------------------------------------------===// 1514 1515 LValue MakeAddrLValue(llvm::Value *V, QualType T, unsigned Alignment = 0) { 1516 return LValue::MakeAddr(V, T, Alignment, getContext(), 1517 CGM.getTBAAInfo(T)); 1518 } 1519 1520 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 1521 /// block. The caller is responsible for setting an appropriate alignment on 1522 /// the alloca. 1523 llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, 1524 const Twine &Name = "tmp"); 1525 1526 /// InitTempAlloca - Provide an initial value for the given alloca. 1527 void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value); 1528 1529 /// CreateIRTemp - Create a temporary IR object of the given type, with 1530 /// appropriate alignment. This routine should only be used when an temporary 1531 /// value needs to be stored into an alloca (for example, to avoid explicit 1532 /// PHI construction), but the type is the IR type, not the type appropriate 1533 /// for storing in memory. 1534 llvm::AllocaInst *CreateIRTemp(QualType T, const Twine &Name = "tmp"); 1535 1536 /// CreateMemTemp - Create a temporary memory object of the given type, with 1537 /// appropriate alignment. 1538 llvm::AllocaInst *CreateMemTemp(QualType T, const Twine &Name = "tmp"); 1539 1540 /// CreateAggTemp - Create a temporary memory object for the given 1541 /// aggregate type. 1542 AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") { 1543 return AggValueSlot::forAddr(CreateMemTemp(T, Name), T.getQualifiers(), 1544 AggValueSlot::IsNotDestructed, 1545 AggValueSlot::DoesNotNeedGCBarriers, 1546 AggValueSlot::IsNotAliased); 1547 } 1548 1549 /// Emit a cast to void* in the appropriate address space. 1550 llvm::Value *EmitCastToVoidPtr(llvm::Value *value); 1551 1552 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 1553 /// expression and compare the result against zero, returning an Int1Ty value. 1554 llvm::Value *EvaluateExprAsBool(const Expr *E); 1555 1556 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 1557 void EmitIgnoredExpr(const Expr *E); 1558 1559 /// EmitAnyExpr - Emit code to compute the specified expression which can have 1560 /// any type. The result is returned as an RValue struct. If this is an 1561 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 1562 /// the result should be returned. 1563 /// 1564 /// \param IgnoreResult - True if the resulting value isn't used. 1565 RValue EmitAnyExpr(const Expr *E, 1566 AggValueSlot AggSlot = AggValueSlot::ignored(), 1567 bool IgnoreResult = false); 1568 1569 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 1570 // or the value of the expression, depending on how va_list is defined. 1571 llvm::Value *EmitVAListRef(const Expr *E); 1572 1573 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 1574 /// always be accessible even if no aggregate location is provided. 1575 RValue EmitAnyExprToTemp(const Expr *E); 1576 1577 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 1578 /// arbitrary expression into the given memory location. 1579 void EmitAnyExprToMem(const Expr *E, llvm::Value *Location, 1580 Qualifiers Quals, bool IsInitializer); 1581 1582 /// EmitExprAsInit - Emits the code necessary to initialize a 1583 /// location in memory with the given initializer. 1584 void EmitExprAsInit(const Expr *init, const ValueDecl *D, 1585 LValue lvalue, bool capturedByInit); 1586 1587 /// EmitAggregateCopy - Emit an aggrate copy. 1588 /// 1589 /// \param isVolatile - True iff either the source or the destination is 1590 /// volatile. 1591 void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr, 1592 QualType EltTy, bool isVolatile=false); 1593 1594 /// StartBlock - Start new block named N. If insert block is a dummy block 1595 /// then reuse it. 1596 void StartBlock(const char *N); 1597 1598 /// GetAddrOfStaticLocalVar - Return the address of a static local variable. 1599 llvm::Constant *GetAddrOfStaticLocalVar(const VarDecl *BVD) { 1600 return cast<llvm::Constant>(GetAddrOfLocalVar(BVD)); 1601 } 1602 1603 /// GetAddrOfLocalVar - Return the address of a local variable. 1604 llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) { 1605 llvm::Value *Res = LocalDeclMap[VD]; 1606 assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!"); 1607 return Res; 1608 } 1609 1610 /// getOpaqueLValueMapping - Given an opaque value expression (which 1611 /// must be mapped to an l-value), return its mapping. 1612 const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) { 1613 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 1614 1615 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 1616 it = OpaqueLValues.find(e); 1617 assert(it != OpaqueLValues.end() && "no mapping for opaque value!"); 1618 return it->second; 1619 } 1620 1621 /// getOpaqueRValueMapping - Given an opaque value expression (which 1622 /// must be mapped to an r-value), return its mapping. 1623 const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) { 1624 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 1625 1626 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 1627 it = OpaqueRValues.find(e); 1628 assert(it != OpaqueRValues.end() && "no mapping for opaque value!"); 1629 return it->second; 1630 } 1631 1632 /// getAccessedFieldNo - Given an encoded value and a result number, return 1633 /// the input field number being accessed. 1634 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 1635 1636 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 1637 llvm::BasicBlock *GetIndirectGotoBlock(); 1638 1639 /// EmitNullInitialization - Generate code to set a value of the given type to 1640 /// null, If the type contains data member pointers, they will be initialized 1641 /// to -1 in accordance with the Itanium C++ ABI. 1642 void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty); 1643 1644 // EmitVAArg - Generate code to get an argument from the passed in pointer 1645 // and update it accordingly. The return value is a pointer to the argument. 1646 // FIXME: We should be able to get rid of this method and use the va_arg 1647 // instruction in LLVM instead once it works well enough. 1648 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty); 1649 1650 /// emitArrayLength - Compute the length of an array, even if it's a 1651 /// VLA, and drill down to the base element type. 1652 llvm::Value *emitArrayLength(const ArrayType *arrayType, 1653 QualType &baseType, 1654 llvm::Value *&addr); 1655 1656 /// EmitVLASize - Capture all the sizes for the VLA expressions in 1657 /// the given variably-modified type and store them in the VLASizeMap. 1658 /// 1659 /// This function can be called with a null (unreachable) insert point. 1660 void EmitVariablyModifiedType(QualType Ty); 1661 1662 /// getVLASize - Returns an LLVM value that corresponds to the size, 1663 /// in non-variably-sized elements, of a variable length array type, 1664 /// plus that largest non-variably-sized element type. Assumes that 1665 /// the type has already been emitted with EmitVariablyModifiedType. 1666 std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla); 1667 std::pair<llvm::Value*,QualType> getVLASize(QualType vla); 1668 1669 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 1670 /// generating code for an C++ member function. 1671 llvm::Value *LoadCXXThis() { 1672 assert(CXXThisValue && "no 'this' value for this function"); 1673 return CXXThisValue; 1674 } 1675 1676 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 1677 /// virtual bases. 1678 llvm::Value *LoadCXXVTT() { 1679 assert(CXXVTTValue && "no VTT value for this function"); 1680 return CXXVTTValue; 1681 } 1682 1683 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 1684 /// complete class to the given direct base. 1685 llvm::Value * 1686 GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value, 1687 const CXXRecordDecl *Derived, 1688 const CXXRecordDecl *Base, 1689 bool BaseIsVirtual); 1690 1691 /// GetAddressOfBaseClass - This function will add the necessary delta to the 1692 /// load of 'this' and returns address of the base class. 1693 llvm::Value *GetAddressOfBaseClass(llvm::Value *Value, 1694 const CXXRecordDecl *Derived, 1695 CastExpr::path_const_iterator PathBegin, 1696 CastExpr::path_const_iterator PathEnd, 1697 bool NullCheckValue); 1698 1699 llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value, 1700 const CXXRecordDecl *Derived, 1701 CastExpr::path_const_iterator PathBegin, 1702 CastExpr::path_const_iterator PathEnd, 1703 bool NullCheckValue); 1704 1705 llvm::Value *GetVirtualBaseClassOffset(llvm::Value *This, 1706 const CXXRecordDecl *ClassDecl, 1707 const CXXRecordDecl *BaseClassDecl); 1708 1709 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 1710 CXXCtorType CtorType, 1711 const FunctionArgList &Args); 1712 // It's important not to confuse this and the previous function. Delegating 1713 // constructors are the C++0x feature. The constructor delegate optimization 1714 // is used to reduce duplication in the base and complete consturctors where 1715 // they are substantially the same. 1716 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 1717 const FunctionArgList &Args); 1718 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 1719 bool ForVirtualBase, llvm::Value *This, 1720 CallExpr::const_arg_iterator ArgBeg, 1721 CallExpr::const_arg_iterator ArgEnd); 1722 1723 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 1724 llvm::Value *This, llvm::Value *Src, 1725 CallExpr::const_arg_iterator ArgBeg, 1726 CallExpr::const_arg_iterator ArgEnd); 1727 1728 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 1729 const ConstantArrayType *ArrayTy, 1730 llvm::Value *ArrayPtr, 1731 CallExpr::const_arg_iterator ArgBeg, 1732 CallExpr::const_arg_iterator ArgEnd, 1733 bool ZeroInitialization = false); 1734 1735 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 1736 llvm::Value *NumElements, 1737 llvm::Value *ArrayPtr, 1738 CallExpr::const_arg_iterator ArgBeg, 1739 CallExpr::const_arg_iterator ArgEnd, 1740 bool ZeroInitialization = false); 1741 1742 static Destroyer destroyCXXObject; 1743 1744 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 1745 bool ForVirtualBase, llvm::Value *This); 1746 1747 void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, 1748 llvm::Value *NewPtr, llvm::Value *NumElements); 1749 1750 void EmitCXXTemporary(const CXXTemporary *Temporary, llvm::Value *Ptr); 1751 1752 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 1753 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 1754 1755 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 1756 QualType DeleteTy); 1757 1758 llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E); 1759 llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE); 1760 1761 void EmitCheck(llvm::Value *, unsigned Size); 1762 1763 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 1764 bool isInc, bool isPre); 1765 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 1766 bool isInc, bool isPre); 1767 //===--------------------------------------------------------------------===// 1768 // Declaration Emission 1769 //===--------------------------------------------------------------------===// 1770 1771 /// EmitDecl - Emit a declaration. 1772 /// 1773 /// This function can be called with a null (unreachable) insert point. 1774 void EmitDecl(const Decl &D); 1775 1776 /// EmitVarDecl - Emit a local variable declaration. 1777 /// 1778 /// This function can be called with a null (unreachable) insert point. 1779 void EmitVarDecl(const VarDecl &D); 1780 1781 void EmitScalarInit(const Expr *init, const ValueDecl *D, 1782 LValue lvalue, bool capturedByInit); 1783 void EmitScalarInit(llvm::Value *init, LValue lvalue); 1784 1785 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 1786 llvm::Value *Address); 1787 1788 /// EmitAutoVarDecl - Emit an auto variable declaration. 1789 /// 1790 /// This function can be called with a null (unreachable) insert point. 1791 void EmitAutoVarDecl(const VarDecl &D); 1792 1793 class AutoVarEmission { 1794 friend class CodeGenFunction; 1795 1796 const VarDecl *Variable; 1797 1798 /// The alignment of the variable. 1799 CharUnits Alignment; 1800 1801 /// The address of the alloca. Null if the variable was emitted 1802 /// as a global constant. 1803 llvm::Value *Address; 1804 1805 llvm::Value *NRVOFlag; 1806 1807 /// True if the variable is a __block variable. 1808 bool IsByRef; 1809 1810 /// True if the variable is of aggregate type and has a constant 1811 /// initializer. 1812 bool IsConstantAggregate; 1813 1814 struct Invalid {}; 1815 AutoVarEmission(Invalid) : Variable(0) {} 1816 1817 AutoVarEmission(const VarDecl &variable) 1818 : Variable(&variable), Address(0), NRVOFlag(0), 1819 IsByRef(false), IsConstantAggregate(false) {} 1820 1821 bool wasEmittedAsGlobal() const { return Address == 0; } 1822 1823 public: 1824 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 1825 1826 /// Returns the address of the object within this declaration. 1827 /// Note that this does not chase the forwarding pointer for 1828 /// __block decls. 1829 llvm::Value *getObjectAddress(CodeGenFunction &CGF) const { 1830 if (!IsByRef) return Address; 1831 1832 return CGF.Builder.CreateStructGEP(Address, 1833 CGF.getByRefValueLLVMField(Variable), 1834 Variable->getNameAsString()); 1835 } 1836 }; 1837 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 1838 void EmitAutoVarInit(const AutoVarEmission &emission); 1839 void EmitAutoVarCleanups(const AutoVarEmission &emission); 1840 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 1841 QualType::DestructionKind dtorKind); 1842 1843 void EmitStaticVarDecl(const VarDecl &D, 1844 llvm::GlobalValue::LinkageTypes Linkage); 1845 1846 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 1847 void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, unsigned ArgNo); 1848 1849 /// protectFromPeepholes - Protect a value that we're intending to 1850 /// store to the side, but which will probably be used later, from 1851 /// aggressive peepholing optimizations that might delete it. 1852 /// 1853 /// Pass the result to unprotectFromPeepholes to declare that 1854 /// protection is no longer required. 1855 /// 1856 /// There's no particular reason why this shouldn't apply to 1857 /// l-values, it's just that no existing peepholes work on pointers. 1858 PeepholeProtection protectFromPeepholes(RValue rvalue); 1859 void unprotectFromPeepholes(PeepholeProtection protection); 1860 1861 //===--------------------------------------------------------------------===// 1862 // Statement Emission 1863 //===--------------------------------------------------------------------===// 1864 1865 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 1866 void EmitStopPoint(const Stmt *S); 1867 1868 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 1869 /// this function even if there is no current insertion point. 1870 /// 1871 /// This function may clear the current insertion point; callers should use 1872 /// EnsureInsertPoint if they wish to subsequently generate code without first 1873 /// calling EmitBlock, EmitBranch, or EmitStmt. 1874 void EmitStmt(const Stmt *S); 1875 1876 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 1877 /// necessarily require an insertion point or debug information; typically 1878 /// because the statement amounts to a jump or a container of other 1879 /// statements. 1880 /// 1881 /// \return True if the statement was handled. 1882 bool EmitSimpleStmt(const Stmt *S); 1883 1884 RValue EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 1885 AggValueSlot AVS = AggValueSlot::ignored()); 1886 1887 /// EmitLabel - Emit the block for the given label. It is legal to call this 1888 /// function even if there is no current insertion point. 1889 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 1890 1891 void EmitLabelStmt(const LabelStmt &S); 1892 void EmitGotoStmt(const GotoStmt &S); 1893 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 1894 void EmitIfStmt(const IfStmt &S); 1895 void EmitWhileStmt(const WhileStmt &S); 1896 void EmitDoStmt(const DoStmt &S); 1897 void EmitForStmt(const ForStmt &S); 1898 void EmitReturnStmt(const ReturnStmt &S); 1899 void EmitDeclStmt(const DeclStmt &S); 1900 void EmitBreakStmt(const BreakStmt &S); 1901 void EmitContinueStmt(const ContinueStmt &S); 1902 void EmitSwitchStmt(const SwitchStmt &S); 1903 void EmitDefaultStmt(const DefaultStmt &S); 1904 void EmitCaseStmt(const CaseStmt &S); 1905 void EmitCaseStmtRange(const CaseStmt &S); 1906 void EmitAsmStmt(const AsmStmt &S); 1907 1908 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 1909 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 1910 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 1911 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 1912 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 1913 1914 llvm::Constant *getUnwindResumeFn(); 1915 llvm::Constant *getUnwindResumeOrRethrowFn(); 1916 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 1917 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 1918 1919 void EmitCXXTryStmt(const CXXTryStmt &S); 1920 void EmitCXXForRangeStmt(const CXXForRangeStmt &S); 1921 1922 //===--------------------------------------------------------------------===// 1923 // LValue Expression Emission 1924 //===--------------------------------------------------------------------===// 1925 1926 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 1927 RValue GetUndefRValue(QualType Ty); 1928 1929 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 1930 /// and issue an ErrorUnsupported style diagnostic (using the 1931 /// provided Name). 1932 RValue EmitUnsupportedRValue(const Expr *E, 1933 const char *Name); 1934 1935 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 1936 /// an ErrorUnsupported style diagnostic (using the provided Name). 1937 LValue EmitUnsupportedLValue(const Expr *E, 1938 const char *Name); 1939 1940 /// EmitLValue - Emit code to compute a designator that specifies the location 1941 /// of the expression. 1942 /// 1943 /// This can return one of two things: a simple address or a bitfield 1944 /// reference. In either case, the LLVM Value* in the LValue structure is 1945 /// guaranteed to be an LLVM pointer type. 1946 /// 1947 /// If this returns a bitfield reference, nothing about the pointee type of 1948 /// the LLVM value is known: For example, it may not be a pointer to an 1949 /// integer. 1950 /// 1951 /// If this returns a normal address, and if the lvalue's C type is fixed 1952 /// size, this method guarantees that the returned pointer type will point to 1953 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 1954 /// variable length type, this is not possible. 1955 /// 1956 LValue EmitLValue(const Expr *E); 1957 1958 /// EmitCheckedLValue - Same as EmitLValue but additionally we generate 1959 /// checking code to guard against undefined behavior. This is only 1960 /// suitable when we know that the address will be used to access the 1961 /// object. 1962 LValue EmitCheckedLValue(const Expr *E); 1963 1964 /// EmitToMemory - Change a scalar value from its value 1965 /// representation to its in-memory representation. 1966 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 1967 1968 /// EmitFromMemory - Change a scalar value from its memory 1969 /// representation to its value representation. 1970 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 1971 1972 /// EmitLoadOfScalar - Load a scalar value from an address, taking 1973 /// care to appropriately convert from the memory representation to 1974 /// the LLVM value representation. 1975 llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile, 1976 unsigned Alignment, QualType Ty, 1977 llvm::MDNode *TBAAInfo = 0); 1978 1979 /// EmitLoadOfScalar - Load a scalar value from an address, taking 1980 /// care to appropriately convert from the memory representation to 1981 /// the LLVM value representation. The l-value must be a simple 1982 /// l-value. 1983 llvm::Value *EmitLoadOfScalar(LValue lvalue); 1984 1985 /// EmitStoreOfScalar - Store a scalar value to an address, taking 1986 /// care to appropriately convert from the memory representation to 1987 /// the LLVM value representation. 1988 void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr, 1989 bool Volatile, unsigned Alignment, QualType Ty, 1990 llvm::MDNode *TBAAInfo = 0); 1991 1992 /// EmitStoreOfScalar - Store a scalar value to an address, taking 1993 /// care to appropriately convert from the memory representation to 1994 /// the LLVM value representation. The l-value must be a simple 1995 /// l-value. 1996 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue); 1997 1998 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 1999 /// this method emits the address of the lvalue, then loads the result as an 2000 /// rvalue, returning the rvalue. 2001 RValue EmitLoadOfLValue(LValue V); 2002 RValue EmitLoadOfExtVectorElementLValue(LValue V); 2003 RValue EmitLoadOfBitfieldLValue(LValue LV); 2004 2005 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 2006 /// lvalue, where both are guaranteed to the have the same type, and that type 2007 /// is 'Ty'. 2008 void EmitStoreThroughLValue(RValue Src, LValue Dst); 2009 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 2010 2011 /// EmitStoreThroughLValue - Store Src into Dst with same constraints as 2012 /// EmitStoreThroughLValue. 2013 /// 2014 /// \param Result [out] - If non-null, this will be set to a Value* for the 2015 /// bit-field contents after the store, appropriate for use as the result of 2016 /// an assignment to the bit-field. 2017 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 2018 llvm::Value **Result=0); 2019 2020 /// Emit an l-value for an assignment (simple or compound) of complex type. 2021 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 2022 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 2023 2024 // Note: only available for agg return types 2025 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 2026 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 2027 // Note: only available for agg return types 2028 LValue EmitCallExprLValue(const CallExpr *E); 2029 // Note: only available for agg return types 2030 LValue EmitVAArgExprLValue(const VAArgExpr *E); 2031 LValue EmitDeclRefLValue(const DeclRefExpr *E); 2032 LValue EmitStringLiteralLValue(const StringLiteral *E); 2033 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 2034 LValue EmitPredefinedLValue(const PredefinedExpr *E); 2035 LValue EmitUnaryOpLValue(const UnaryOperator *E); 2036 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E); 2037 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 2038 LValue EmitMemberExpr(const MemberExpr *E); 2039 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 2040 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 2041 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 2042 LValue EmitCastLValue(const CastExpr *E); 2043 LValue EmitNullInitializationLValue(const CXXScalarValueInitExpr *E); 2044 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 2045 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 2046 2047 RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, 2048 AggValueSlot slot = AggValueSlot::ignored()); 2049 LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); 2050 2051 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 2052 const ObjCIvarDecl *Ivar); 2053 LValue EmitLValueForAnonRecordField(llvm::Value* Base, 2054 const IndirectFieldDecl* Field, 2055 unsigned CVRQualifiers); 2056 LValue EmitLValueForField(llvm::Value* Base, const FieldDecl* Field, 2057 unsigned CVRQualifiers); 2058 2059 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 2060 /// if the Field is a reference, this will return the address of the reference 2061 /// and not the address of the value stored in the reference. 2062 LValue EmitLValueForFieldInitialization(llvm::Value* Base, 2063 const FieldDecl* Field, 2064 unsigned CVRQualifiers); 2065 2066 LValue EmitLValueForIvar(QualType ObjectTy, 2067 llvm::Value* Base, const ObjCIvarDecl *Ivar, 2068 unsigned CVRQualifiers); 2069 2070 LValue EmitLValueForBitfield(llvm::Value* Base, const FieldDecl* Field, 2071 unsigned CVRQualifiers); 2072 2073 LValue EmitBlockDeclRefLValue(const BlockDeclRefExpr *E); 2074 2075 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 2076 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 2077 LValue EmitExprWithCleanupsLValue(const ExprWithCleanups *E); 2078 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 2079 2080 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 2081 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 2082 LValue EmitStmtExprLValue(const StmtExpr *E); 2083 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 2084 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 2085 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init); 2086 2087 //===--------------------------------------------------------------------===// 2088 // Scalar Expression Emission 2089 //===--------------------------------------------------------------------===// 2090 2091 /// EmitCall - Generate a call of the given function, expecting the given 2092 /// result type, and using the given argument list which specifies both the 2093 /// LLVM arguments and the types they were derived from. 2094 /// 2095 /// \param TargetDecl - If given, the decl of the function in a direct call; 2096 /// used to set attributes on the call (noreturn, etc.). 2097 RValue EmitCall(const CGFunctionInfo &FnInfo, 2098 llvm::Value *Callee, 2099 ReturnValueSlot ReturnValue, 2100 const CallArgList &Args, 2101 const Decl *TargetDecl = 0, 2102 llvm::Instruction **callOrInvoke = 0); 2103 2104 RValue EmitCall(QualType FnType, llvm::Value *Callee, 2105 ReturnValueSlot ReturnValue, 2106 CallExpr::const_arg_iterator ArgBeg, 2107 CallExpr::const_arg_iterator ArgEnd, 2108 const Decl *TargetDecl = 0); 2109 RValue EmitCallExpr(const CallExpr *E, 2110 ReturnValueSlot ReturnValue = ReturnValueSlot()); 2111 2112 llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, 2113 ArrayRef<llvm::Value *> Args, 2114 const Twine &Name = ""); 2115 llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, 2116 const Twine &Name = ""); 2117 2118 llvm::Value *BuildVirtualCall(const CXXMethodDecl *MD, llvm::Value *This, 2119 llvm::Type *Ty); 2120 llvm::Value *BuildVirtualCall(const CXXDestructorDecl *DD, CXXDtorType Type, 2121 llvm::Value *This, llvm::Type *Ty); 2122 llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 2123 NestedNameSpecifier *Qual, 2124 llvm::Type *Ty); 2125 2126 llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 2127 CXXDtorType Type, 2128 const CXXRecordDecl *RD); 2129 2130 RValue EmitCXXMemberCall(const CXXMethodDecl *MD, 2131 llvm::Value *Callee, 2132 ReturnValueSlot ReturnValue, 2133 llvm::Value *This, 2134 llvm::Value *VTT, 2135 CallExpr::const_arg_iterator ArgBeg, 2136 CallExpr::const_arg_iterator ArgEnd); 2137 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 2138 ReturnValueSlot ReturnValue); 2139 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 2140 ReturnValueSlot ReturnValue); 2141 2142 llvm::Value *EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E, 2143 const CXXMethodDecl *MD, 2144 llvm::Value *This); 2145 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 2146 const CXXMethodDecl *MD, 2147 ReturnValueSlot ReturnValue); 2148 2149 RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 2150 ReturnValueSlot ReturnValue); 2151 2152 2153 RValue EmitBuiltinExpr(const FunctionDecl *FD, 2154 unsigned BuiltinID, const CallExpr *E); 2155 2156 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 2157 2158 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 2159 /// is unhandled by the current target. 2160 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2161 2162 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2163 llvm::Value *EmitNeonCall(llvm::Function *F, 2164 SmallVectorImpl<llvm::Value*> &O, 2165 const char *name, 2166 unsigned shift = 0, bool rightshift = false); 2167 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 2168 llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, 2169 bool negateForRightShift); 2170 2171 llvm::Value *BuildVector(const SmallVectorImpl<llvm::Value*> &Ops); 2172 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2173 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2174 2175 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 2176 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 2177 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 2178 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 2179 ReturnValueSlot Return = ReturnValueSlot()); 2180 2181 /// Retrieves the default cleanup kind for an ARC cleanup. 2182 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. 2183 CleanupKind getARCCleanupKind() { 2184 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 2185 ? NormalAndEHCleanup : NormalCleanup; 2186 } 2187 2188 // ARC primitives. 2189 void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr); 2190 void EmitARCDestroyWeak(llvm::Value *addr); 2191 llvm::Value *EmitARCLoadWeak(llvm::Value *addr); 2192 llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr); 2193 llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr, 2194 bool ignored); 2195 void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src); 2196 void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src); 2197 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 2198 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 2199 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 2200 bool ignored); 2201 llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value, 2202 bool ignored); 2203 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 2204 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 2205 llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); 2206 void EmitARCRelease(llvm::Value *value, bool precise); 2207 llvm::Value *EmitARCAutorelease(llvm::Value *value); 2208 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 2209 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 2210 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 2211 2212 std::pair<LValue,llvm::Value*> 2213 EmitARCStoreAutoreleasing(const BinaryOperator *e); 2214 std::pair<LValue,llvm::Value*> 2215 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 2216 2217 llvm::Value *EmitObjCThrowOperand(const Expr *expr); 2218 2219 llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr); 2220 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 2221 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 2222 2223 llvm::Value *EmitARCExtendBlockObject(const Expr *expr); 2224 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 2225 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 2226 2227 static Destroyer destroyARCStrongImprecise; 2228 static Destroyer destroyARCStrongPrecise; 2229 static Destroyer destroyARCWeak; 2230 2231 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 2232 llvm::Value *EmitObjCAutoreleasePoolPush(); 2233 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 2234 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 2235 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 2236 2237 /// EmitReferenceBindingToExpr - Emits a reference binding to the passed in 2238 /// expression. Will emit a temporary variable if E is not an LValue. 2239 RValue EmitReferenceBindingToExpr(const Expr* E, 2240 const NamedDecl *InitializedDecl); 2241 2242 //===--------------------------------------------------------------------===// 2243 // Expression Emission 2244 //===--------------------------------------------------------------------===// 2245 2246 // Expressions are broken into three classes: scalar, complex, aggregate. 2247 2248 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 2249 /// scalar type, returning the result. 2250 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 2251 2252 /// EmitScalarConversion - Emit a conversion from the specified type to the 2253 /// specified destination type, both of which are LLVM scalar types. 2254 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 2255 QualType DstTy); 2256 2257 /// EmitComplexToScalarConversion - Emit a conversion from the specified 2258 /// complex type to the specified destination type, where the destination type 2259 /// is an LLVM scalar type. 2260 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 2261 QualType DstTy); 2262 2263 2264 /// EmitAggExpr - Emit the computation of the specified expression 2265 /// of aggregate type. The result is computed into the given slot, 2266 /// which may be null to indicate that the value is not needed. 2267 void EmitAggExpr(const Expr *E, AggValueSlot AS, bool IgnoreResult = false); 2268 2269 /// EmitAggExprToLValue - Emit the computation of the specified expression of 2270 /// aggregate type into a temporary LValue. 2271 LValue EmitAggExprToLValue(const Expr *E); 2272 2273 /// EmitGCMemmoveCollectable - Emit special API for structs with object 2274 /// pointers. 2275 void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr, 2276 QualType Ty); 2277 2278 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 2279 /// make sure it survives garbage collection until this point. 2280 void EmitExtendGCLifetime(llvm::Value *object); 2281 2282 /// EmitComplexExpr - Emit the computation of the specified expression of 2283 /// complex type, returning the result. 2284 ComplexPairTy EmitComplexExpr(const Expr *E, 2285 bool IgnoreReal = false, 2286 bool IgnoreImag = false); 2287 2288 /// EmitComplexExprIntoAddr - Emit the computation of the specified expression 2289 /// of complex type, storing into the specified Value*. 2290 void EmitComplexExprIntoAddr(const Expr *E, llvm::Value *DestAddr, 2291 bool DestIsVolatile); 2292 2293 /// StoreComplexToAddr - Store a complex number into the specified address. 2294 void StoreComplexToAddr(ComplexPairTy V, llvm::Value *DestAddr, 2295 bool DestIsVolatile); 2296 /// LoadComplexFromAddr - Load a complex number from the specified address. 2297 ComplexPairTy LoadComplexFromAddr(llvm::Value *SrcAddr, bool SrcIsVolatile); 2298 2299 /// CreateStaticVarDecl - Create a zero-initialized LLVM global for 2300 /// a static local variable. 2301 llvm::GlobalVariable *CreateStaticVarDecl(const VarDecl &D, 2302 const char *Separator, 2303 llvm::GlobalValue::LinkageTypes Linkage); 2304 2305 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 2306 /// global variable that has already been created for it. If the initializer 2307 /// has a different type than GV does, this may free GV and return a different 2308 /// one. Otherwise it just returns GV. 2309 llvm::GlobalVariable * 2310 AddInitializerToStaticVarDecl(const VarDecl &D, 2311 llvm::GlobalVariable *GV); 2312 2313 2314 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 2315 /// variable with global storage. 2316 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr); 2317 2318 /// EmitCXXGlobalDtorRegistration - Emits a call to register the global ptr 2319 /// with the C++ runtime so that its destructor will be called at exit. 2320 void EmitCXXGlobalDtorRegistration(llvm::Constant *DtorFn, 2321 llvm::Constant *DeclPtr); 2322 2323 /// Emit code in this function to perform a guarded variable 2324 /// initialization. Guarded initializations are used when it's not 2325 /// possible to prove that an initialization will be done exactly 2326 /// once, e.g. with a static local variable or a static data member 2327 /// of a class template. 2328 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr); 2329 2330 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 2331 /// variables. 2332 void GenerateCXXGlobalInitFunc(llvm::Function *Fn, 2333 llvm::Constant **Decls, 2334 unsigned NumDecls); 2335 2336 /// GenerateCXXGlobalDtorFunc - Generates code for destroying global 2337 /// variables. 2338 void GenerateCXXGlobalDtorFunc(llvm::Function *Fn, 2339 const std::vector<std::pair<llvm::WeakVH, 2340 llvm::Constant*> > &DtorsAndObjects); 2341 2342 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 2343 const VarDecl *D, 2344 llvm::GlobalVariable *Addr); 2345 2346 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 2347 2348 void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src, 2349 const Expr *Exp); 2350 2351 RValue EmitExprWithCleanups(const ExprWithCleanups *E, 2352 AggValueSlot Slot =AggValueSlot::ignored()); 2353 2354 void EmitCXXThrowExpr(const CXXThrowExpr *E); 2355 2356 RValue EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest = 0); 2357 2358 //===--------------------------------------------------------------------===// 2359 // Annotations Emission 2360 //===--------------------------------------------------------------------===// 2361 2362 /// Emit an annotation call (intrinsic or builtin). 2363 llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn, 2364 llvm::Value *AnnotatedVal, 2365 llvm::StringRef AnnotationStr, 2366 SourceLocation Location); 2367 2368 /// Emit local annotations for the local variable V, declared by D. 2369 void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); 2370 2371 /// Emit field annotations for the given field & value. Returns the 2372 /// annotation result. 2373 llvm::Value *EmitFieldAnnotations(const FieldDecl *D, llvm::Value *V); 2374 2375 //===--------------------------------------------------------------------===// 2376 // Internal Helpers 2377 //===--------------------------------------------------------------------===// 2378 2379 /// ContainsLabel - Return true if the statement contains a label in it. If 2380 /// this statement is not executed normally, it not containing a label means 2381 /// that we can just remove the code. 2382 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 2383 2384 /// containsBreak - Return true if the statement contains a break out of it. 2385 /// If the statement (recursively) contains a switch or loop with a break 2386 /// inside of it, this is fine. 2387 static bool containsBreak(const Stmt *S); 2388 2389 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 2390 /// to a constant, or if it does but contains a label, return false. If it 2391 /// constant folds return true and set the boolean result in Result. 2392 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result); 2393 2394 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 2395 /// to a constant, or if it does but contains a label, return false. If it 2396 /// constant folds return true and set the folded value. 2397 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APInt &Result); 2398 2399 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 2400 /// if statement) to the specified blocks. Based on the condition, this might 2401 /// try to simplify the codegen of the conditional based on the branch. 2402 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 2403 llvm::BasicBlock *FalseBlock); 2404 2405 /// getTrapBB - Create a basic block that will call the trap intrinsic. We'll 2406 /// generate a branch around the created basic block as necessary. 2407 llvm::BasicBlock *getTrapBB(); 2408 2409 /// EmitCallArg - Emit a single call argument. 2410 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 2411 2412 /// EmitDelegateCallArg - We are performing a delegate call; that 2413 /// is, the current function is delegating to another one. Produce 2414 /// a r-value suitable for passing the given parameter. 2415 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param); 2416 2417 /// SetFPAccuracy - Set the minimum required accuracy of the given floating 2418 /// point operation, expressed as the maximum relative error in ulp. 2419 void SetFPAccuracy(llvm::Value *Val, unsigned AccuracyN, 2420 unsigned AccuracyD = 1); 2421 2422 private: 2423 void EmitReturnOfRValue(RValue RV, QualType Ty); 2424 2425 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 2426 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 2427 /// 2428 /// \param AI - The first function argument of the expansion. 2429 /// \return The argument following the last expanded function 2430 /// argument. 2431 llvm::Function::arg_iterator 2432 ExpandTypeFromArgs(QualType Ty, LValue Dst, 2433 llvm::Function::arg_iterator AI); 2434 2435 /// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg 2436 /// Ty, into individual arguments on the provided vector \arg Args. See 2437 /// ABIArgInfo::Expand. 2438 void ExpandTypeToArgs(QualType Ty, RValue Src, 2439 SmallVector<llvm::Value*, 16> &Args, 2440 llvm::FunctionType *IRFuncTy); 2441 2442 llvm::Value* EmitAsmInput(const AsmStmt &S, 2443 const TargetInfo::ConstraintInfo &Info, 2444 const Expr *InputExpr, std::string &ConstraintStr); 2445 2446 llvm::Value* EmitAsmInputLValue(const AsmStmt &S, 2447 const TargetInfo::ConstraintInfo &Info, 2448 LValue InputValue, QualType InputType, 2449 std::string &ConstraintStr); 2450 2451 /// EmitCallArgs - Emit call arguments for a function. 2452 /// The CallArgTypeInfo parameter is used for iterating over the known 2453 /// argument types of the function being called. 2454 template<typename T> 2455 void EmitCallArgs(CallArgList& Args, const T* CallArgTypeInfo, 2456 CallExpr::const_arg_iterator ArgBeg, 2457 CallExpr::const_arg_iterator ArgEnd) { 2458 CallExpr::const_arg_iterator Arg = ArgBeg; 2459 2460 // First, use the argument types that the type info knows about 2461 if (CallArgTypeInfo) { 2462 for (typename T::arg_type_iterator I = CallArgTypeInfo->arg_type_begin(), 2463 E = CallArgTypeInfo->arg_type_end(); I != E; ++I, ++Arg) { 2464 assert(Arg != ArgEnd && "Running over edge of argument list!"); 2465 QualType ArgType = *I; 2466 #ifndef NDEBUG 2467 QualType ActualArgType = Arg->getType(); 2468 if (ArgType->isPointerType() && ActualArgType->isPointerType()) { 2469 QualType ActualBaseType = 2470 ActualArgType->getAs<PointerType>()->getPointeeType(); 2471 QualType ArgBaseType = 2472 ArgType->getAs<PointerType>()->getPointeeType(); 2473 if (ArgBaseType->isVariableArrayType()) { 2474 if (const VariableArrayType *VAT = 2475 getContext().getAsVariableArrayType(ActualBaseType)) { 2476 if (!VAT->getSizeExpr()) 2477 ActualArgType = ArgType; 2478 } 2479 } 2480 } 2481 assert(getContext().getCanonicalType(ArgType.getNonReferenceType()). 2482 getTypePtr() == 2483 getContext().getCanonicalType(ActualArgType).getTypePtr() && 2484 "type mismatch in call argument!"); 2485 #endif 2486 EmitCallArg(Args, *Arg, ArgType); 2487 } 2488 2489 // Either we've emitted all the call args, or we have a call to a 2490 // variadic function. 2491 assert((Arg == ArgEnd || CallArgTypeInfo->isVariadic()) && 2492 "Extra arguments in non-variadic function!"); 2493 2494 } 2495 2496 // If we still have any arguments, emit them using the type of the argument. 2497 for (; Arg != ArgEnd; ++Arg) 2498 EmitCallArg(Args, *Arg, Arg->getType()); 2499 } 2500 2501 const TargetCodeGenInfo &getTargetHooks() const { 2502 return CGM.getTargetCodeGenInfo(); 2503 } 2504 2505 void EmitDeclMetadata(); 2506 2507 CodeGenModule::ByrefHelpers * 2508 buildByrefHelpers(llvm::StructType &byrefType, 2509 const AutoVarEmission &emission); 2510 }; 2511 2512 /// Helper class with most of the code for saving a value for a 2513 /// conditional expression cleanup. 2514 struct DominatingLLVMValue { 2515 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 2516 2517 /// Answer whether the given value needs extra work to be saved. 2518 static bool needsSaving(llvm::Value *value) { 2519 // If it's not an instruction, we don't need to save. 2520 if (!isa<llvm::Instruction>(value)) return false; 2521 2522 // If it's an instruction in the entry block, we don't need to save. 2523 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 2524 return (block != &block->getParent()->getEntryBlock()); 2525 } 2526 2527 /// Try to save the given value. 2528 static saved_type save(CodeGenFunction &CGF, llvm::Value *value) { 2529 if (!needsSaving(value)) return saved_type(value, false); 2530 2531 // Otherwise we need an alloca. 2532 llvm::Value *alloca = 2533 CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save"); 2534 CGF.Builder.CreateStore(value, alloca); 2535 2536 return saved_type(alloca, true); 2537 } 2538 2539 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) { 2540 if (!value.getInt()) return value.getPointer(); 2541 return CGF.Builder.CreateLoad(value.getPointer()); 2542 } 2543 }; 2544 2545 /// A partial specialization of DominatingValue for llvm::Values that 2546 /// might be llvm::Instructions. 2547 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 2548 typedef T *type; 2549 static type restore(CodeGenFunction &CGF, saved_type value) { 2550 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 2551 } 2552 }; 2553 2554 /// A specialization of DominatingValue for RValue. 2555 template <> struct DominatingValue<RValue> { 2556 typedef RValue type; 2557 class saved_type { 2558 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 2559 AggregateAddress, ComplexAddress }; 2560 2561 llvm::Value *Value; 2562 Kind K; 2563 saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {} 2564 2565 public: 2566 static bool needsSaving(RValue value); 2567 static saved_type save(CodeGenFunction &CGF, RValue value); 2568 RValue restore(CodeGenFunction &CGF); 2569 2570 // implementations in CGExprCXX.cpp 2571 }; 2572 2573 static bool needsSaving(type value) { 2574 return saved_type::needsSaving(value); 2575 } 2576 static saved_type save(CodeGenFunction &CGF, type value) { 2577 return saved_type::save(CGF, value); 2578 } 2579 static type restore(CodeGenFunction &CGF, saved_type value) { 2580 return value.restore(CGF); 2581 } 2582 }; 2583 2584 } // end namespace CodeGen 2585 } // end namespace clang 2586 2587 #endif 2588