1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the internal per-function state used for llvm translation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 15 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 16 17 #include "CGBuilder.h" 18 #include "CGDebugInfo.h" 19 #include "CGLoopInfo.h" 20 #include "CGValue.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "EHScopeStack.h" 24 #include "clang/AST/CharUnits.h" 25 #include "clang/AST/ExprCXX.h" 26 #include "clang/AST/ExprObjC.h" 27 #include "clang/AST/Type.h" 28 #include "clang/Basic/ABI.h" 29 #include "clang/Basic/CapturedStmt.h" 30 #include "clang/Basic/TargetInfo.h" 31 #include "clang/Frontend/CodeGenOptions.h" 32 #include "llvm/ADT/ArrayRef.h" 33 #include "llvm/ADT/DenseMap.h" 34 #include "llvm/ADT/SmallVector.h" 35 #include "llvm/IR/ValueHandle.h" 36 #include "llvm/Support/Debug.h" 37 38 namespace llvm { 39 class BasicBlock; 40 class LLVMContext; 41 class MDNode; 42 class Module; 43 class SwitchInst; 44 class Twine; 45 class Value; 46 class CallSite; 47 } 48 49 namespace clang { 50 class ASTContext; 51 class BlockDecl; 52 class CXXDestructorDecl; 53 class CXXForRangeStmt; 54 class CXXTryStmt; 55 class Decl; 56 class LabelDecl; 57 class EnumConstantDecl; 58 class FunctionDecl; 59 class FunctionProtoType; 60 class LabelStmt; 61 class ObjCContainerDecl; 62 class ObjCInterfaceDecl; 63 class ObjCIvarDecl; 64 class ObjCMethodDecl; 65 class ObjCImplementationDecl; 66 class ObjCPropertyImplDecl; 67 class TargetInfo; 68 class TargetCodeGenInfo; 69 class VarDecl; 70 class ObjCForCollectionStmt; 71 class ObjCAtTryStmt; 72 class ObjCAtThrowStmt; 73 class ObjCAtSynchronizedStmt; 74 class ObjCAutoreleasePoolStmt; 75 76 namespace CodeGen { 77 class CodeGenTypes; 78 class CGFunctionInfo; 79 class CGRecordLayout; 80 class CGBlockInfo; 81 class CGCXXABI; 82 class BlockFlags; 83 class BlockFieldFlags; 84 85 /// The kind of evaluation to perform on values of a particular 86 /// type. Basically, is the code in CGExprScalar, CGExprComplex, or 87 /// CGExprAgg? 88 /// 89 /// TODO: should vectors maybe be split out into their own thing? 90 enum TypeEvaluationKind { 91 TEK_Scalar, 92 TEK_Complex, 93 TEK_Aggregate 94 }; 95 96 class SuppressDebugLocation { 97 llvm::DebugLoc CurLoc; 98 llvm::IRBuilderBase &Builder; 99 public: 100 SuppressDebugLocation(llvm::IRBuilderBase &Builder) 101 : CurLoc(Builder.getCurrentDebugLocation()), Builder(Builder) { 102 Builder.SetCurrentDebugLocation(llvm::DebugLoc()); 103 } 104 ~SuppressDebugLocation() { 105 Builder.SetCurrentDebugLocation(CurLoc); 106 } 107 }; 108 109 /// CodeGenFunction - This class organizes the per-function state that is used 110 /// while generating LLVM code. 111 class CodeGenFunction : public CodeGenTypeCache { 112 CodeGenFunction(const CodeGenFunction &) LLVM_DELETED_FUNCTION; 113 void operator=(const CodeGenFunction &) LLVM_DELETED_FUNCTION; 114 115 friend class CGCXXABI; 116 public: 117 /// A jump destination is an abstract label, branching to which may 118 /// require a jump out through normal cleanups. 119 struct JumpDest { 120 JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {} 121 JumpDest(llvm::BasicBlock *Block, 122 EHScopeStack::stable_iterator Depth, 123 unsigned Index) 124 : Block(Block), ScopeDepth(Depth), Index(Index) {} 125 126 bool isValid() const { return Block != nullptr; } 127 llvm::BasicBlock *getBlock() const { return Block; } 128 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 129 unsigned getDestIndex() const { return Index; } 130 131 // This should be used cautiously. 132 void setScopeDepth(EHScopeStack::stable_iterator depth) { 133 ScopeDepth = depth; 134 } 135 136 private: 137 llvm::BasicBlock *Block; 138 EHScopeStack::stable_iterator ScopeDepth; 139 unsigned Index; 140 }; 141 142 CodeGenModule &CGM; // Per-module state. 143 const TargetInfo &Target; 144 145 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 146 LoopInfoStack LoopStack; 147 CGBuilderTy Builder; 148 149 /// \brief CGBuilder insert helper. This function is called after an 150 /// instruction is created using Builder. 151 void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name, 152 llvm::BasicBlock *BB, 153 llvm::BasicBlock::iterator InsertPt) const; 154 155 /// CurFuncDecl - Holds the Decl for the current outermost 156 /// non-closure context. 157 const Decl *CurFuncDecl; 158 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 159 const Decl *CurCodeDecl; 160 const CGFunctionInfo *CurFnInfo; 161 QualType FnRetTy; 162 llvm::Function *CurFn; 163 164 /// CurGD - The GlobalDecl for the current function being compiled. 165 GlobalDecl CurGD; 166 167 /// PrologueCleanupDepth - The cleanup depth enclosing all the 168 /// cleanups associated with the parameters. 169 EHScopeStack::stable_iterator PrologueCleanupDepth; 170 171 /// ReturnBlock - Unified return block. 172 JumpDest ReturnBlock; 173 174 /// ReturnValue - The temporary alloca to hold the return value. This is null 175 /// iff the function has no return value. 176 llvm::Value *ReturnValue; 177 178 /// AllocaInsertPoint - This is an instruction in the entry block before which 179 /// we prefer to insert allocas. 180 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 181 182 /// \brief API for captured statement code generation. 183 class CGCapturedStmtInfo { 184 public: 185 explicit CGCapturedStmtInfo(const CapturedStmt &S, 186 CapturedRegionKind K = CR_Default) 187 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) { 188 189 RecordDecl::field_iterator Field = 190 S.getCapturedRecordDecl()->field_begin(); 191 for (CapturedStmt::const_capture_iterator I = S.capture_begin(), 192 E = S.capture_end(); 193 I != E; ++I, ++Field) { 194 if (I->capturesThis()) 195 CXXThisFieldDecl = *Field; 196 else 197 CaptureFields[I->getCapturedVar()] = *Field; 198 } 199 } 200 201 virtual ~CGCapturedStmtInfo(); 202 203 CapturedRegionKind getKind() const { return Kind; } 204 205 void setContextValue(llvm::Value *V) { ThisValue = V; } 206 // \brief Retrieve the value of the context parameter. 207 llvm::Value *getContextValue() const { return ThisValue; } 208 209 /// \brief Lookup the captured field decl for a variable. 210 const FieldDecl *lookup(const VarDecl *VD) const { 211 return CaptureFields.lookup(VD); 212 } 213 214 bool isCXXThisExprCaptured() const { return CXXThisFieldDecl != nullptr; } 215 FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; } 216 217 static bool classof(const CGCapturedStmtInfo *) { 218 return true; 219 } 220 221 /// \brief Emit the captured statement body. 222 virtual void EmitBody(CodeGenFunction &CGF, Stmt *S) { 223 RegionCounter Cnt = CGF.getPGORegionCounter(S); 224 Cnt.beginRegion(CGF.Builder); 225 CGF.EmitStmt(S); 226 } 227 228 /// \brief Get the name of the capture helper. 229 virtual StringRef getHelperName() const { return "__captured_stmt"; } 230 231 private: 232 /// \brief The kind of captured statement being generated. 233 CapturedRegionKind Kind; 234 235 /// \brief Keep the map between VarDecl and FieldDecl. 236 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields; 237 238 /// \brief The base address of the captured record, passed in as the first 239 /// argument of the parallel region function. 240 llvm::Value *ThisValue; 241 242 /// \brief Captured 'this' type. 243 FieldDecl *CXXThisFieldDecl; 244 }; 245 CGCapturedStmtInfo *CapturedStmtInfo; 246 247 /// BoundsChecking - Emit run-time bounds checks. Higher values mean 248 /// potentially higher performance penalties. 249 unsigned char BoundsChecking; 250 251 /// \brief Sanitizer options to use for this function. 252 const SanitizerOptions *SanOpts; 253 254 /// \brief True if CodeGen currently emits code implementing sanitizer checks. 255 bool IsSanitizerScope; 256 257 /// \brief RAII object to set/unset CodeGenFunction::IsSanitizerScope. 258 class SanitizerScope { 259 CodeGenFunction *CGF; 260 public: 261 SanitizerScope(CodeGenFunction *CGF); 262 ~SanitizerScope(); 263 }; 264 265 /// In C++, whether we are code generating a thunk. This controls whether we 266 /// should emit cleanups. 267 bool CurFuncIsThunk; 268 269 /// In ARC, whether we should autorelease the return value. 270 bool AutoreleaseResult; 271 272 /// Whether we processed a Microsoft-style asm block during CodeGen. These can 273 /// potentially set the return value. 274 bool SawAsmBlock; 275 276 const CodeGen::CGBlockInfo *BlockInfo; 277 llvm::Value *BlockPointer; 278 279 llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; 280 FieldDecl *LambdaThisCaptureField; 281 282 /// \brief A mapping from NRVO variables to the flags used to indicate 283 /// when the NRVO has been applied to this variable. 284 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 285 286 EHScopeStack EHStack; 287 llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack; 288 289 /// Header for data within LifetimeExtendedCleanupStack. 290 struct LifetimeExtendedCleanupHeader { 291 /// The size of the following cleanup object. 292 size_t Size : 29; 293 /// The kind of cleanup to push: a value from the CleanupKind enumeration. 294 unsigned Kind : 3; 295 296 size_t getSize() const { return Size; } 297 CleanupKind getKind() const { return static_cast<CleanupKind>(Kind); } 298 }; 299 300 /// i32s containing the indexes of the cleanup destinations. 301 llvm::AllocaInst *NormalCleanupDest; 302 303 unsigned NextCleanupDestIndex; 304 305 /// FirstBlockInfo - The head of a singly-linked-list of block layouts. 306 CGBlockInfo *FirstBlockInfo; 307 308 /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. 309 llvm::BasicBlock *EHResumeBlock; 310 311 /// The exception slot. All landing pads write the current exception pointer 312 /// into this alloca. 313 llvm::Value *ExceptionSlot; 314 315 /// The selector slot. Under the MandatoryCleanup model, all landing pads 316 /// write the current selector value into this alloca. 317 llvm::AllocaInst *EHSelectorSlot; 318 319 /// Emits a landing pad for the current EH stack. 320 llvm::BasicBlock *EmitLandingPad(); 321 322 llvm::BasicBlock *getInvokeDestImpl(); 323 324 template <class T> 325 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 326 return DominatingValue<T>::save(*this, value); 327 } 328 329 public: 330 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 331 /// rethrows. 332 SmallVector<llvm::Value*, 8> ObjCEHValueStack; 333 334 /// A class controlling the emission of a finally block. 335 class FinallyInfo { 336 /// Where the catchall's edge through the cleanup should go. 337 JumpDest RethrowDest; 338 339 /// A function to call to enter the catch. 340 llvm::Constant *BeginCatchFn; 341 342 /// An i1 variable indicating whether or not the @finally is 343 /// running for an exception. 344 llvm::AllocaInst *ForEHVar; 345 346 /// An i8* variable into which the exception pointer to rethrow 347 /// has been saved. 348 llvm::AllocaInst *SavedExnVar; 349 350 public: 351 void enter(CodeGenFunction &CGF, const Stmt *Finally, 352 llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn, 353 llvm::Constant *rethrowFn); 354 void exit(CodeGenFunction &CGF); 355 }; 356 357 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 358 /// current full-expression. Safe against the possibility that 359 /// we're currently inside a conditionally-evaluated expression. 360 template <class T, class A0> 361 void pushFullExprCleanup(CleanupKind kind, A0 a0) { 362 // If we're not in a conditional branch, or if none of the 363 // arguments requires saving, then use the unconditional cleanup. 364 if (!isInConditionalBranch()) 365 return EHStack.pushCleanup<T>(kind, a0); 366 367 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 368 369 typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType; 370 EHStack.pushCleanup<CleanupType>(kind, a0_saved); 371 initFullExprCleanup(); 372 } 373 374 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 375 /// current full-expression. Safe against the possibility that 376 /// we're currently inside a conditionally-evaluated expression. 377 template <class T, class A0, class A1> 378 void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) { 379 // If we're not in a conditional branch, or if none of the 380 // arguments requires saving, then use the unconditional cleanup. 381 if (!isInConditionalBranch()) 382 return EHStack.pushCleanup<T>(kind, a0, a1); 383 384 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 385 typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); 386 387 typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType; 388 EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved); 389 initFullExprCleanup(); 390 } 391 392 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 393 /// current full-expression. Safe against the possibility that 394 /// we're currently inside a conditionally-evaluated expression. 395 template <class T, class A0, class A1, class A2> 396 void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2) { 397 // If we're not in a conditional branch, or if none of the 398 // arguments requires saving, then use the unconditional cleanup. 399 if (!isInConditionalBranch()) { 400 return EHStack.pushCleanup<T>(kind, a0, a1, a2); 401 } 402 403 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 404 typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); 405 typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2); 406 407 typedef EHScopeStack::ConditionalCleanup3<T, A0, A1, A2> CleanupType; 408 EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, a2_saved); 409 initFullExprCleanup(); 410 } 411 412 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 413 /// current full-expression. Safe against the possibility that 414 /// we're currently inside a conditionally-evaluated expression. 415 template <class T, class A0, class A1, class A2, class A3> 416 void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2, A3 a3) { 417 // If we're not in a conditional branch, or if none of the 418 // arguments requires saving, then use the unconditional cleanup. 419 if (!isInConditionalBranch()) { 420 return EHStack.pushCleanup<T>(kind, a0, a1, a2, a3); 421 } 422 423 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 424 typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); 425 typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2); 426 typename DominatingValue<A3>::saved_type a3_saved = saveValueInCond(a3); 427 428 typedef EHScopeStack::ConditionalCleanup4<T, A0, A1, A2, A3> CleanupType; 429 EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, 430 a2_saved, a3_saved); 431 initFullExprCleanup(); 432 } 433 434 /// \brief Queue a cleanup to be pushed after finishing the current 435 /// full-expression. 436 template <class T, class A0, class A1, class A2, class A3> 437 void pushCleanupAfterFullExpr(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) { 438 assert(!isInConditionalBranch() && "can't defer conditional cleanup"); 439 440 LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind }; 441 442 size_t OldSize = LifetimeExtendedCleanupStack.size(); 443 LifetimeExtendedCleanupStack.resize( 444 LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size); 445 446 char *Buffer = &LifetimeExtendedCleanupStack[OldSize]; 447 new (Buffer) LifetimeExtendedCleanupHeader(Header); 448 new (Buffer + sizeof(Header)) T(a0, a1, a2, a3); 449 } 450 451 /// Set up the last cleaup that was pushed as a conditional 452 /// full-expression cleanup. 453 void initFullExprCleanup(); 454 455 /// PushDestructorCleanup - Push a cleanup to call the 456 /// complete-object destructor of an object of the given type at the 457 /// given address. Does nothing if T is not a C++ class type with a 458 /// non-trivial destructor. 459 void PushDestructorCleanup(QualType T, llvm::Value *Addr); 460 461 /// PushDestructorCleanup - Push a cleanup to call the 462 /// complete-object variant of the given destructor on the object at 463 /// the given address. 464 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, 465 llvm::Value *Addr); 466 467 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 468 /// process all branch fixups. 469 void PopCleanupBlock(bool FallThroughIsBranchThrough = false); 470 471 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 472 /// The block cannot be reactivated. Pops it if it's the top of the 473 /// stack. 474 /// 475 /// \param DominatingIP - An instruction which is known to 476 /// dominate the current IP (if set) and which lies along 477 /// all paths of execution between the current IP and the 478 /// the point at which the cleanup comes into scope. 479 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 480 llvm::Instruction *DominatingIP); 481 482 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 483 /// Cannot be used to resurrect a deactivated cleanup. 484 /// 485 /// \param DominatingIP - An instruction which is known to 486 /// dominate the current IP (if set) and which lies along 487 /// all paths of execution between the current IP and the 488 /// the point at which the cleanup comes into scope. 489 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 490 llvm::Instruction *DominatingIP); 491 492 /// \brief Enters a new scope for capturing cleanups, all of which 493 /// will be executed once the scope is exited. 494 class RunCleanupsScope { 495 EHScopeStack::stable_iterator CleanupStackDepth; 496 size_t LifetimeExtendedCleanupStackSize; 497 bool OldDidCallStackSave; 498 protected: 499 bool PerformCleanup; 500 private: 501 502 RunCleanupsScope(const RunCleanupsScope &) LLVM_DELETED_FUNCTION; 503 void operator=(const RunCleanupsScope &) LLVM_DELETED_FUNCTION; 504 505 protected: 506 CodeGenFunction& CGF; 507 508 public: 509 /// \brief Enter a new cleanup scope. 510 explicit RunCleanupsScope(CodeGenFunction &CGF) 511 : PerformCleanup(true), CGF(CGF) 512 { 513 CleanupStackDepth = CGF.EHStack.stable_begin(); 514 LifetimeExtendedCleanupStackSize = 515 CGF.LifetimeExtendedCleanupStack.size(); 516 OldDidCallStackSave = CGF.DidCallStackSave; 517 CGF.DidCallStackSave = false; 518 } 519 520 /// \brief Exit this cleanup scope, emitting any accumulated 521 /// cleanups. 522 ~RunCleanupsScope() { 523 if (PerformCleanup) { 524 CGF.DidCallStackSave = OldDidCallStackSave; 525 CGF.PopCleanupBlocks(CleanupStackDepth, 526 LifetimeExtendedCleanupStackSize); 527 } 528 } 529 530 /// \brief Determine whether this scope requires any cleanups. 531 bool requiresCleanups() const { 532 return CGF.EHStack.stable_begin() != CleanupStackDepth; 533 } 534 535 /// \brief Force the emission of cleanups now, instead of waiting 536 /// until this object is destroyed. 537 void ForceCleanup() { 538 assert(PerformCleanup && "Already forced cleanup"); 539 CGF.DidCallStackSave = OldDidCallStackSave; 540 CGF.PopCleanupBlocks(CleanupStackDepth, 541 LifetimeExtendedCleanupStackSize); 542 PerformCleanup = false; 543 } 544 }; 545 546 class LexicalScope : public RunCleanupsScope { 547 SourceRange Range; 548 SmallVector<const LabelDecl*, 4> Labels; 549 LexicalScope *ParentScope; 550 551 LexicalScope(const LexicalScope &) LLVM_DELETED_FUNCTION; 552 void operator=(const LexicalScope &) LLVM_DELETED_FUNCTION; 553 554 public: 555 /// \brief Enter a new cleanup scope. 556 explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) 557 : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) { 558 CGF.CurLexicalScope = this; 559 if (CGDebugInfo *DI = CGF.getDebugInfo()) 560 DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); 561 } 562 563 void addLabel(const LabelDecl *label) { 564 assert(PerformCleanup && "adding label to dead scope?"); 565 Labels.push_back(label); 566 } 567 568 /// \brief Exit this cleanup scope, emitting any accumulated 569 /// cleanups. 570 ~LexicalScope() { 571 if (CGDebugInfo *DI = CGF.getDebugInfo()) 572 DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 573 574 // If we should perform a cleanup, force them now. Note that 575 // this ends the cleanup scope before rescoping any labels. 576 if (PerformCleanup) ForceCleanup(); 577 } 578 579 /// \brief Force the emission of cleanups now, instead of waiting 580 /// until this object is destroyed. 581 void ForceCleanup() { 582 CGF.CurLexicalScope = ParentScope; 583 RunCleanupsScope::ForceCleanup(); 584 585 if (!Labels.empty()) 586 rescopeLabels(); 587 } 588 589 void rescopeLabels(); 590 }; 591 592 /// \brief The scope used to remap some variables as private in the OpenMP 593 /// loop body (or other captured region emitted without outlining), and to 594 /// restore old vars back on exit. 595 class OMPPrivateScope : public RunCleanupsScope { 596 typedef llvm::DenseMap<const VarDecl *, llvm::Value *> VarDeclMapTy; 597 VarDeclMapTy SavedLocals; 598 VarDeclMapTy SavedPrivates; 599 600 private: 601 OMPPrivateScope(const OMPPrivateScope &) LLVM_DELETED_FUNCTION; 602 void operator=(const OMPPrivateScope &) LLVM_DELETED_FUNCTION; 603 604 public: 605 /// \brief Enter a new OpenMP private scope. 606 explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {} 607 608 /// \brief Registers \a LocalVD variable as a private and apply \a 609 /// PrivateGen function for it to generate corresponding private variable. 610 /// \a PrivateGen returns an address of the generated private variable. 611 /// \return true if the variable is registered as private, false if it has 612 /// been privatized already. 613 bool 614 addPrivate(const VarDecl *LocalVD, 615 const std::function<llvm::Value *()> &PrivateGen) { 616 assert(PerformCleanup && "adding private to dead scope"); 617 assert(LocalVD->isLocalVarDecl() && "privatizing non-local variable"); 618 if (SavedLocals.count(LocalVD) > 0) return false; 619 SavedLocals[LocalVD] = CGF.LocalDeclMap.lookup(LocalVD); 620 CGF.LocalDeclMap.erase(LocalVD); 621 SavedPrivates[LocalVD] = PrivateGen(); 622 CGF.LocalDeclMap[LocalVD] = SavedLocals[LocalVD]; 623 return true; 624 } 625 626 /// \brief Privatizes local variables previously registered as private. 627 /// Registration is separate from the actual privatization to allow 628 /// initializers use values of the original variables, not the private one. 629 /// This is important, for example, if the private variable is a class 630 /// variable initialized by a constructor that references other private 631 /// variables. But at initialization original variables must be used, not 632 /// private copies. 633 /// \return true if at least one variable was privatized, false otherwise. 634 bool Privatize() { 635 for (auto VDPair : SavedPrivates) { 636 CGF.LocalDeclMap[VDPair.first] = VDPair.second; 637 } 638 SavedPrivates.clear(); 639 return !SavedLocals.empty(); 640 } 641 642 void ForceCleanup() { 643 RunCleanupsScope::ForceCleanup(); 644 // Remap vars back to the original values. 645 for (auto I : SavedLocals) { 646 CGF.LocalDeclMap[I.first] = I.second; 647 } 648 SavedLocals.clear(); 649 } 650 651 /// \brief Exit scope - all the mapped variables are restored. 652 ~OMPPrivateScope() { ForceCleanup(); } 653 }; 654 655 /// \brief Takes the old cleanup stack size and emits the cleanup blocks 656 /// that have been added. 657 void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize); 658 659 /// \brief Takes the old cleanup stack size and emits the cleanup blocks 660 /// that have been added, then adds all lifetime-extended cleanups from 661 /// the given position to the stack. 662 void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 663 size_t OldLifetimeExtendedStackSize); 664 665 void ResolveBranchFixups(llvm::BasicBlock *Target); 666 667 /// The given basic block lies in the current EH scope, but may be a 668 /// target of a potentially scope-crossing jump; get a stable handle 669 /// to which we can perform this jump later. 670 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 671 return JumpDest(Target, 672 EHStack.getInnermostNormalCleanup(), 673 NextCleanupDestIndex++); 674 } 675 676 /// The given basic block lies in the current EH scope, but may be a 677 /// target of a potentially scope-crossing jump; get a stable handle 678 /// to which we can perform this jump later. 679 JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { 680 return getJumpDestInCurrentScope(createBasicBlock(Name)); 681 } 682 683 /// EmitBranchThroughCleanup - Emit a branch from the current insert 684 /// block through the normal cleanup handling code (if any) and then 685 /// on to \arg Dest. 686 void EmitBranchThroughCleanup(JumpDest Dest); 687 688 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 689 /// specified destination obviously has no cleanups to run. 'false' is always 690 /// a conservatively correct answer for this method. 691 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 692 693 /// popCatchScope - Pops the catch scope at the top of the EHScope 694 /// stack, emitting any required code (other than the catch handlers 695 /// themselves). 696 void popCatchScope(); 697 698 llvm::BasicBlock *getEHResumeBlock(bool isCleanup); 699 llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); 700 701 /// An object to manage conditionally-evaluated expressions. 702 class ConditionalEvaluation { 703 llvm::BasicBlock *StartBB; 704 705 public: 706 ConditionalEvaluation(CodeGenFunction &CGF) 707 : StartBB(CGF.Builder.GetInsertBlock()) {} 708 709 void begin(CodeGenFunction &CGF) { 710 assert(CGF.OutermostConditional != this); 711 if (!CGF.OutermostConditional) 712 CGF.OutermostConditional = this; 713 } 714 715 void end(CodeGenFunction &CGF) { 716 assert(CGF.OutermostConditional != nullptr); 717 if (CGF.OutermostConditional == this) 718 CGF.OutermostConditional = nullptr; 719 } 720 721 /// Returns a block which will be executed prior to each 722 /// evaluation of the conditional code. 723 llvm::BasicBlock *getStartingBlock() const { 724 return StartBB; 725 } 726 }; 727 728 /// isInConditionalBranch - Return true if we're currently emitting 729 /// one branch or the other of a conditional expression. 730 bool isInConditionalBranch() const { return OutermostConditional != nullptr; } 731 732 void setBeforeOutermostConditional(llvm::Value *value, llvm::Value *addr) { 733 assert(isInConditionalBranch()); 734 llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); 735 new llvm::StoreInst(value, addr, &block->back()); 736 } 737 738 /// An RAII object to record that we're evaluating a statement 739 /// expression. 740 class StmtExprEvaluation { 741 CodeGenFunction &CGF; 742 743 /// We have to save the outermost conditional: cleanups in a 744 /// statement expression aren't conditional just because the 745 /// StmtExpr is. 746 ConditionalEvaluation *SavedOutermostConditional; 747 748 public: 749 StmtExprEvaluation(CodeGenFunction &CGF) 750 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 751 CGF.OutermostConditional = nullptr; 752 } 753 754 ~StmtExprEvaluation() { 755 CGF.OutermostConditional = SavedOutermostConditional; 756 CGF.EnsureInsertPoint(); 757 } 758 }; 759 760 /// An object which temporarily prevents a value from being 761 /// destroyed by aggressive peephole optimizations that assume that 762 /// all uses of a value have been realized in the IR. 763 class PeepholeProtection { 764 llvm::Instruction *Inst; 765 friend class CodeGenFunction; 766 767 public: 768 PeepholeProtection() : Inst(nullptr) {} 769 }; 770 771 /// A non-RAII class containing all the information about a bound 772 /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for 773 /// this which makes individual mappings very simple; using this 774 /// class directly is useful when you have a variable number of 775 /// opaque values or don't want the RAII functionality for some 776 /// reason. 777 class OpaqueValueMappingData { 778 const OpaqueValueExpr *OpaqueValue; 779 bool BoundLValue; 780 CodeGenFunction::PeepholeProtection Protection; 781 782 OpaqueValueMappingData(const OpaqueValueExpr *ov, 783 bool boundLValue) 784 : OpaqueValue(ov), BoundLValue(boundLValue) {} 785 public: 786 OpaqueValueMappingData() : OpaqueValue(nullptr) {} 787 788 static bool shouldBindAsLValue(const Expr *expr) { 789 // gl-values should be bound as l-values for obvious reasons. 790 // Records should be bound as l-values because IR generation 791 // always keeps them in memory. Expressions of function type 792 // act exactly like l-values but are formally required to be 793 // r-values in C. 794 return expr->isGLValue() || 795 expr->getType()->isFunctionType() || 796 hasAggregateEvaluationKind(expr->getType()); 797 } 798 799 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 800 const OpaqueValueExpr *ov, 801 const Expr *e) { 802 if (shouldBindAsLValue(ov)) 803 return bind(CGF, ov, CGF.EmitLValue(e)); 804 return bind(CGF, ov, CGF.EmitAnyExpr(e)); 805 } 806 807 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 808 const OpaqueValueExpr *ov, 809 const LValue &lv) { 810 assert(shouldBindAsLValue(ov)); 811 CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); 812 return OpaqueValueMappingData(ov, true); 813 } 814 815 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 816 const OpaqueValueExpr *ov, 817 const RValue &rv) { 818 assert(!shouldBindAsLValue(ov)); 819 CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); 820 821 OpaqueValueMappingData data(ov, false); 822 823 // Work around an extremely aggressive peephole optimization in 824 // EmitScalarConversion which assumes that all other uses of a 825 // value are extant. 826 data.Protection = CGF.protectFromPeepholes(rv); 827 828 return data; 829 } 830 831 bool isValid() const { return OpaqueValue != nullptr; } 832 void clear() { OpaqueValue = nullptr; } 833 834 void unbind(CodeGenFunction &CGF) { 835 assert(OpaqueValue && "no data to unbind!"); 836 837 if (BoundLValue) { 838 CGF.OpaqueLValues.erase(OpaqueValue); 839 } else { 840 CGF.OpaqueRValues.erase(OpaqueValue); 841 CGF.unprotectFromPeepholes(Protection); 842 } 843 } 844 }; 845 846 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 847 class OpaqueValueMapping { 848 CodeGenFunction &CGF; 849 OpaqueValueMappingData Data; 850 851 public: 852 static bool shouldBindAsLValue(const Expr *expr) { 853 return OpaqueValueMappingData::shouldBindAsLValue(expr); 854 } 855 856 /// Build the opaque value mapping for the given conditional 857 /// operator if it's the GNU ?: extension. This is a common 858 /// enough pattern that the convenience operator is really 859 /// helpful. 860 /// 861 OpaqueValueMapping(CodeGenFunction &CGF, 862 const AbstractConditionalOperator *op) : CGF(CGF) { 863 if (isa<ConditionalOperator>(op)) 864 // Leave Data empty. 865 return; 866 867 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 868 Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), 869 e->getCommon()); 870 } 871 872 OpaqueValueMapping(CodeGenFunction &CGF, 873 const OpaqueValueExpr *opaqueValue, 874 LValue lvalue) 875 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { 876 } 877 878 OpaqueValueMapping(CodeGenFunction &CGF, 879 const OpaqueValueExpr *opaqueValue, 880 RValue rvalue) 881 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { 882 } 883 884 void pop() { 885 Data.unbind(CGF); 886 Data.clear(); 887 } 888 889 ~OpaqueValueMapping() { 890 if (Data.isValid()) Data.unbind(CGF); 891 } 892 }; 893 894 /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field 895 /// number that holds the value. 896 unsigned getByRefValueLLVMField(const ValueDecl *VD) const; 897 898 /// BuildBlockByrefAddress - Computes address location of the 899 /// variable which is declared as __block. 900 llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr, 901 const VarDecl *V); 902 private: 903 CGDebugInfo *DebugInfo; 904 bool DisableDebugInfo; 905 906 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 907 /// calling llvm.stacksave for multiple VLAs in the same scope. 908 bool DidCallStackSave; 909 910 /// IndirectBranch - The first time an indirect goto is seen we create a block 911 /// with an indirect branch. Every time we see the address of a label taken, 912 /// we add the label to the indirect goto. Every subsequent indirect goto is 913 /// codegen'd as a jump to the IndirectBranch's basic block. 914 llvm::IndirectBrInst *IndirectBranch; 915 916 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 917 /// decls. 918 typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy; 919 DeclMapTy LocalDeclMap; 920 921 /// LabelMap - This keeps track of the LLVM basic block for each C label. 922 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 923 924 // BreakContinueStack - This keeps track of where break and continue 925 // statements should jump to. 926 struct BreakContinue { 927 BreakContinue(JumpDest Break, JumpDest Continue) 928 : BreakBlock(Break), ContinueBlock(Continue) {} 929 930 JumpDest BreakBlock; 931 JumpDest ContinueBlock; 932 }; 933 SmallVector<BreakContinue, 8> BreakContinueStack; 934 935 CodeGenPGO PGO; 936 937 public: 938 /// Get a counter for instrumentation of the region associated with the given 939 /// statement. 940 RegionCounter getPGORegionCounter(const Stmt *S) { 941 return RegionCounter(PGO, S); 942 } 943 private: 944 945 /// SwitchInsn - This is nearest current switch instruction. It is null if 946 /// current context is not in a switch. 947 llvm::SwitchInst *SwitchInsn; 948 /// The branch weights of SwitchInsn when doing instrumentation based PGO. 949 SmallVector<uint64_t, 16> *SwitchWeights; 950 951 /// CaseRangeBlock - This block holds if condition check for last case 952 /// statement range in current switch instruction. 953 llvm::BasicBlock *CaseRangeBlock; 954 955 /// OpaqueLValues - Keeps track of the current set of opaque value 956 /// expressions. 957 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 958 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 959 960 // VLASizeMap - This keeps track of the associated size for each VLA type. 961 // We track this by the size expression rather than the type itself because 962 // in certain situations, like a const qualifier applied to an VLA typedef, 963 // multiple VLA types can share the same size expression. 964 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 965 // enter/leave scopes. 966 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 967 968 /// A block containing a single 'unreachable' instruction. Created 969 /// lazily by getUnreachableBlock(). 970 llvm::BasicBlock *UnreachableBlock; 971 972 /// Counts of the number return expressions in the function. 973 unsigned NumReturnExprs; 974 975 /// Count the number of simple (constant) return expressions in the function. 976 unsigned NumSimpleReturnExprs; 977 978 /// The last regular (non-return) debug location (breakpoint) in the function. 979 SourceLocation LastStopPoint; 980 981 public: 982 /// A scope within which we are constructing the fields of an object which 983 /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use 984 /// if we need to evaluate a CXXDefaultInitExpr within the evaluation. 985 class FieldConstructionScope { 986 public: 987 FieldConstructionScope(CodeGenFunction &CGF, llvm::Value *This) 988 : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) { 989 CGF.CXXDefaultInitExprThis = This; 990 } 991 ~FieldConstructionScope() { 992 CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis; 993 } 994 995 private: 996 CodeGenFunction &CGF; 997 llvm::Value *OldCXXDefaultInitExprThis; 998 }; 999 1000 /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this' 1001 /// is overridden to be the object under construction. 1002 class CXXDefaultInitExprScope { 1003 public: 1004 CXXDefaultInitExprScope(CodeGenFunction &CGF) 1005 : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue) { 1006 CGF.CXXThisValue = CGF.CXXDefaultInitExprThis; 1007 } 1008 ~CXXDefaultInitExprScope() { 1009 CGF.CXXThisValue = OldCXXThisValue; 1010 } 1011 1012 public: 1013 CodeGenFunction &CGF; 1014 llvm::Value *OldCXXThisValue; 1015 }; 1016 1017 private: 1018 /// CXXThisDecl - When generating code for a C++ member function, 1019 /// this will hold the implicit 'this' declaration. 1020 ImplicitParamDecl *CXXABIThisDecl; 1021 llvm::Value *CXXABIThisValue; 1022 llvm::Value *CXXThisValue; 1023 1024 /// The value of 'this' to use when evaluating CXXDefaultInitExprs within 1025 /// this expression. 1026 llvm::Value *CXXDefaultInitExprThis; 1027 1028 /// CXXStructorImplicitParamDecl - When generating code for a constructor or 1029 /// destructor, this will hold the implicit argument (e.g. VTT). 1030 ImplicitParamDecl *CXXStructorImplicitParamDecl; 1031 llvm::Value *CXXStructorImplicitParamValue; 1032 1033 /// OutermostConditional - Points to the outermost active 1034 /// conditional control. This is used so that we know if a 1035 /// temporary should be destroyed conditionally. 1036 ConditionalEvaluation *OutermostConditional; 1037 1038 /// The current lexical scope. 1039 LexicalScope *CurLexicalScope; 1040 1041 /// The current source location that should be used for exception 1042 /// handling code. 1043 SourceLocation CurEHLocation; 1044 1045 /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM 1046 /// type as well as the field number that contains the actual data. 1047 llvm::DenseMap<const ValueDecl *, std::pair<llvm::Type *, 1048 unsigned> > ByRefValueInfo; 1049 1050 llvm::BasicBlock *TerminateLandingPad; 1051 llvm::BasicBlock *TerminateHandler; 1052 llvm::BasicBlock *TrapBB; 1053 1054 /// Add a kernel metadata node to the named metadata node 'opencl.kernels'. 1055 /// In the kernel metadata node, reference the kernel function and metadata 1056 /// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2): 1057 /// - A node for the vec_type_hint(<type>) qualifier contains string 1058 /// "vec_type_hint", an undefined value of the <type> data type, 1059 /// and a Boolean that is true if the <type> is integer and signed. 1060 /// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string 1061 /// "work_group_size_hint", and three 32-bit integers X, Y and Z. 1062 /// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string 1063 /// "reqd_work_group_size", and three 32-bit integers X, Y and Z. 1064 void EmitOpenCLKernelMetadata(const FunctionDecl *FD, 1065 llvm::Function *Fn); 1066 1067 public: 1068 CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false); 1069 ~CodeGenFunction(); 1070 1071 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 1072 ASTContext &getContext() const { return CGM.getContext(); } 1073 CGDebugInfo *getDebugInfo() { 1074 if (DisableDebugInfo) 1075 return nullptr; 1076 return DebugInfo; 1077 } 1078 void disableDebugInfo() { DisableDebugInfo = true; } 1079 void enableDebugInfo() { DisableDebugInfo = false; } 1080 1081 bool shouldUseFusedARCCalls() { 1082 return CGM.getCodeGenOpts().OptimizationLevel == 0; 1083 } 1084 1085 const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } 1086 1087 /// Returns a pointer to the function's exception object and selector slot, 1088 /// which is assigned in every landing pad. 1089 llvm::Value *getExceptionSlot(); 1090 llvm::Value *getEHSelectorSlot(); 1091 1092 /// Returns the contents of the function's exception object and selector 1093 /// slots. 1094 llvm::Value *getExceptionFromSlot(); 1095 llvm::Value *getSelectorFromSlot(); 1096 1097 llvm::Value *getNormalCleanupDestSlot(); 1098 1099 llvm::BasicBlock *getUnreachableBlock() { 1100 if (!UnreachableBlock) { 1101 UnreachableBlock = createBasicBlock("unreachable"); 1102 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 1103 } 1104 return UnreachableBlock; 1105 } 1106 1107 llvm::BasicBlock *getInvokeDest() { 1108 if (!EHStack.requiresLandingPad()) return nullptr; 1109 return getInvokeDestImpl(); 1110 } 1111 1112 const TargetInfo &getTarget() const { return Target; } 1113 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 1114 1115 //===--------------------------------------------------------------------===// 1116 // Cleanups 1117 //===--------------------------------------------------------------------===// 1118 1119 typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty); 1120 1121 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1122 llvm::Value *arrayEndPointer, 1123 QualType elementType, 1124 Destroyer *destroyer); 1125 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1126 llvm::Value *arrayEnd, 1127 QualType elementType, 1128 Destroyer *destroyer); 1129 1130 void pushDestroy(QualType::DestructionKind dtorKind, 1131 llvm::Value *addr, QualType type); 1132 void pushEHDestroy(QualType::DestructionKind dtorKind, 1133 llvm::Value *addr, QualType type); 1134 void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type, 1135 Destroyer *destroyer, bool useEHCleanupForArray); 1136 void pushLifetimeExtendedDestroy(CleanupKind kind, llvm::Value *addr, 1137 QualType type, Destroyer *destroyer, 1138 bool useEHCleanupForArray); 1139 void pushStackRestore(CleanupKind kind, llvm::Value *SPMem); 1140 void emitDestroy(llvm::Value *addr, QualType type, Destroyer *destroyer, 1141 bool useEHCleanupForArray); 1142 llvm::Function *generateDestroyHelper(llvm::Constant *addr, QualType type, 1143 Destroyer *destroyer, 1144 bool useEHCleanupForArray, 1145 const VarDecl *VD); 1146 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 1147 QualType type, Destroyer *destroyer, 1148 bool checkZeroLength, bool useEHCleanup); 1149 1150 Destroyer *getDestroyer(QualType::DestructionKind destructionKind); 1151 1152 /// Determines whether an EH cleanup is required to destroy a type 1153 /// with the given destruction kind. 1154 bool needsEHCleanup(QualType::DestructionKind kind) { 1155 switch (kind) { 1156 case QualType::DK_none: 1157 return false; 1158 case QualType::DK_cxx_destructor: 1159 case QualType::DK_objc_weak_lifetime: 1160 return getLangOpts().Exceptions; 1161 case QualType::DK_objc_strong_lifetime: 1162 return getLangOpts().Exceptions && 1163 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 1164 } 1165 llvm_unreachable("bad destruction kind"); 1166 } 1167 1168 CleanupKind getCleanupKind(QualType::DestructionKind kind) { 1169 return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); 1170 } 1171 1172 //===--------------------------------------------------------------------===// 1173 // Objective-C 1174 //===--------------------------------------------------------------------===// 1175 1176 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 1177 1178 void StartObjCMethod(const ObjCMethodDecl *MD, 1179 const ObjCContainerDecl *CD, 1180 SourceLocation StartLoc); 1181 1182 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 1183 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 1184 const ObjCPropertyImplDecl *PID); 1185 void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 1186 const ObjCPropertyImplDecl *propImpl, 1187 const ObjCMethodDecl *GetterMothodDecl, 1188 llvm::Constant *AtomicHelperFn); 1189 1190 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1191 ObjCMethodDecl *MD, bool ctor); 1192 1193 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 1194 /// for the given property. 1195 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 1196 const ObjCPropertyImplDecl *PID); 1197 void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1198 const ObjCPropertyImplDecl *propImpl, 1199 llvm::Constant *AtomicHelperFn); 1200 bool IndirectObjCSetterArg(const CGFunctionInfo &FI); 1201 bool IvarTypeWithAggrGCObjects(QualType Ty); 1202 1203 //===--------------------------------------------------------------------===// 1204 // Block Bits 1205 //===--------------------------------------------------------------------===// 1206 1207 llvm::Value *EmitBlockLiteral(const BlockExpr *); 1208 llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); 1209 static void destroyBlockInfos(CGBlockInfo *info); 1210 llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *, 1211 const CGBlockInfo &Info, 1212 llvm::StructType *, 1213 llvm::Constant *BlockVarLayout); 1214 1215 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 1216 const CGBlockInfo &Info, 1217 const DeclMapTy &ldm, 1218 bool IsLambdaConversionToBlock); 1219 1220 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 1221 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 1222 llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( 1223 const ObjCPropertyImplDecl *PID); 1224 llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( 1225 const ObjCPropertyImplDecl *PID); 1226 llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); 1227 1228 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags); 1229 1230 class AutoVarEmission; 1231 1232 void emitByrefStructureInit(const AutoVarEmission &emission); 1233 void enterByrefCleanup(const AutoVarEmission &emission); 1234 1235 llvm::Value *LoadBlockStruct() { 1236 assert(BlockPointer && "no block pointer set!"); 1237 return BlockPointer; 1238 } 1239 1240 void AllocateBlockCXXThisPointer(const CXXThisExpr *E); 1241 void AllocateBlockDecl(const DeclRefExpr *E); 1242 llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef); 1243 llvm::Type *BuildByRefType(const VarDecl *var); 1244 1245 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1246 const CGFunctionInfo &FnInfo); 1247 /// \brief Emit code for the start of a function. 1248 /// \param Loc The location to be associated with the function. 1249 /// \param StartLoc The location of the function body. 1250 void StartFunction(GlobalDecl GD, 1251 QualType RetTy, 1252 llvm::Function *Fn, 1253 const CGFunctionInfo &FnInfo, 1254 const FunctionArgList &Args, 1255 SourceLocation Loc = SourceLocation(), 1256 SourceLocation StartLoc = SourceLocation()); 1257 1258 void EmitConstructorBody(FunctionArgList &Args); 1259 void EmitDestructorBody(FunctionArgList &Args); 1260 void emitImplicitAssignmentOperatorBody(FunctionArgList &Args); 1261 void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body); 1262 void EmitBlockWithFallThrough(llvm::BasicBlock *BB, RegionCounter &Cnt); 1263 1264 void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator, 1265 CallArgList &CallArgs); 1266 void EmitLambdaToBlockPointerBody(FunctionArgList &Args); 1267 void EmitLambdaBlockInvokeBody(); 1268 void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD); 1269 void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD); 1270 1271 /// EmitReturnBlock - Emit the unified return block, trying to avoid its 1272 /// emission when possible. 1273 void EmitReturnBlock(); 1274 1275 /// FinishFunction - Complete IR generation of the current function. It is 1276 /// legal to call this function even if there is no current insertion point. 1277 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 1278 1279 void StartThunk(llvm::Function *Fn, GlobalDecl GD, const CGFunctionInfo &FnInfo); 1280 1281 void EmitCallAndReturnForThunk(llvm::Value *Callee, const ThunkInfo *Thunk); 1282 1283 /// Emit a musttail call for a thunk with a potentially adjusted this pointer. 1284 void EmitMustTailThunk(const CXXMethodDecl *MD, llvm::Value *AdjustedThisPtr, 1285 llvm::Value *Callee); 1286 1287 /// GenerateThunk - Generate a thunk for the given method. 1288 void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1289 GlobalDecl GD, const ThunkInfo &Thunk); 1290 1291 void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1292 GlobalDecl GD, const ThunkInfo &Thunk); 1293 1294 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 1295 FunctionArgList &Args); 1296 1297 void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init, 1298 ArrayRef<VarDecl *> ArrayIndexes); 1299 1300 /// InitializeVTablePointer - Initialize the vtable pointer of the given 1301 /// subobject. 1302 /// 1303 void InitializeVTablePointer(BaseSubobject Base, 1304 const CXXRecordDecl *NearestVBase, 1305 CharUnits OffsetFromNearestVBase, 1306 const CXXRecordDecl *VTableClass); 1307 1308 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 1309 void InitializeVTablePointers(BaseSubobject Base, 1310 const CXXRecordDecl *NearestVBase, 1311 CharUnits OffsetFromNearestVBase, 1312 bool BaseIsNonVirtualPrimaryBase, 1313 const CXXRecordDecl *VTableClass, 1314 VisitedVirtualBasesSetTy& VBases); 1315 1316 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 1317 1318 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 1319 /// to by This. 1320 llvm::Value *GetVTablePtr(llvm::Value *This, llvm::Type *Ty); 1321 1322 1323 /// CanDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given 1324 /// expr can be devirtualized. 1325 bool CanDevirtualizeMemberFunctionCall(const Expr *Base, 1326 const CXXMethodDecl *MD); 1327 1328 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 1329 /// given phase of destruction for a destructor. The end result 1330 /// should call destructors on members and base classes in reverse 1331 /// order of their construction. 1332 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 1333 1334 /// ShouldInstrumentFunction - Return true if the current function should be 1335 /// instrumented with __cyg_profile_func_* calls 1336 bool ShouldInstrumentFunction(); 1337 1338 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 1339 /// instrumentation function with the current function and the call site, if 1340 /// function instrumentation is enabled. 1341 void EmitFunctionInstrumentation(const char *Fn); 1342 1343 /// EmitMCountInstrumentation - Emit call to .mcount. 1344 void EmitMCountInstrumentation(); 1345 1346 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 1347 /// arguments for the given function. This is also responsible for naming the 1348 /// LLVM function arguments. 1349 void EmitFunctionProlog(const CGFunctionInfo &FI, 1350 llvm::Function *Fn, 1351 const FunctionArgList &Args); 1352 1353 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 1354 /// given temporary. 1355 void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc, 1356 SourceLocation EndLoc); 1357 1358 /// EmitStartEHSpec - Emit the start of the exception spec. 1359 void EmitStartEHSpec(const Decl *D); 1360 1361 /// EmitEndEHSpec - Emit the end of the exception spec. 1362 void EmitEndEHSpec(const Decl *D); 1363 1364 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 1365 llvm::BasicBlock *getTerminateLandingPad(); 1366 1367 /// getTerminateHandler - Return a handler (not a landing pad, just 1368 /// a catch handler) that just calls terminate. This is used when 1369 /// a terminate scope encloses a try. 1370 llvm::BasicBlock *getTerminateHandler(); 1371 1372 llvm::Type *ConvertTypeForMem(QualType T); 1373 llvm::Type *ConvertType(QualType T); 1374 llvm::Type *ConvertType(const TypeDecl *T) { 1375 return ConvertType(getContext().getTypeDeclType(T)); 1376 } 1377 1378 /// LoadObjCSelf - Load the value of self. This function is only valid while 1379 /// generating code for an Objective-C method. 1380 llvm::Value *LoadObjCSelf(); 1381 1382 /// TypeOfSelfObject - Return type of object that this self represents. 1383 QualType TypeOfSelfObject(); 1384 1385 /// hasAggregateLLVMType - Return true if the specified AST type will map into 1386 /// an aggregate LLVM type or is void. 1387 static TypeEvaluationKind getEvaluationKind(QualType T); 1388 1389 static bool hasScalarEvaluationKind(QualType T) { 1390 return getEvaluationKind(T) == TEK_Scalar; 1391 } 1392 1393 static bool hasAggregateEvaluationKind(QualType T) { 1394 return getEvaluationKind(T) == TEK_Aggregate; 1395 } 1396 1397 /// createBasicBlock - Create an LLVM basic block. 1398 llvm::BasicBlock *createBasicBlock(const Twine &name = "", 1399 llvm::Function *parent = nullptr, 1400 llvm::BasicBlock *before = nullptr) { 1401 #ifdef NDEBUG 1402 return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before); 1403 #else 1404 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 1405 #endif 1406 } 1407 1408 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 1409 /// label maps to. 1410 JumpDest getJumpDestForLabel(const LabelDecl *S); 1411 1412 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 1413 /// another basic block, simplify it. This assumes that no other code could 1414 /// potentially reference the basic block. 1415 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 1416 1417 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 1418 /// adding a fall-through branch from the current insert block if 1419 /// necessary. It is legal to call this function even if there is no current 1420 /// insertion point. 1421 /// 1422 /// IsFinished - If true, indicates that the caller has finished emitting 1423 /// branches to the given block and does not expect to emit code into it. This 1424 /// means the block can be ignored if it is unreachable. 1425 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 1426 1427 /// EmitBlockAfterUses - Emit the given block somewhere hopefully 1428 /// near its uses, and leave the insertion point in it. 1429 void EmitBlockAfterUses(llvm::BasicBlock *BB); 1430 1431 /// EmitBranch - Emit a branch to the specified basic block from the current 1432 /// insert block, taking care to avoid creation of branches from dummy 1433 /// blocks. It is legal to call this function even if there is no current 1434 /// insertion point. 1435 /// 1436 /// This function clears the current insertion point. The caller should follow 1437 /// calls to this function with calls to Emit*Block prior to generation new 1438 /// code. 1439 void EmitBranch(llvm::BasicBlock *Block); 1440 1441 /// HaveInsertPoint - True if an insertion point is defined. If not, this 1442 /// indicates that the current code being emitted is unreachable. 1443 bool HaveInsertPoint() const { 1444 return Builder.GetInsertBlock() != nullptr; 1445 } 1446 1447 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 1448 /// emitted IR has a place to go. Note that by definition, if this function 1449 /// creates a block then that block is unreachable; callers may do better to 1450 /// detect when no insertion point is defined and simply skip IR generation. 1451 void EnsureInsertPoint() { 1452 if (!HaveInsertPoint()) 1453 EmitBlock(createBasicBlock()); 1454 } 1455 1456 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1457 /// specified stmt yet. 1458 void ErrorUnsupported(const Stmt *S, const char *Type); 1459 1460 //===--------------------------------------------------------------------===// 1461 // Helpers 1462 //===--------------------------------------------------------------------===// 1463 1464 LValue MakeAddrLValue(llvm::Value *V, QualType T, 1465 CharUnits Alignment = CharUnits()) { 1466 return LValue::MakeAddr(V, T, Alignment, getContext(), 1467 CGM.getTBAAInfo(T)); 1468 } 1469 1470 LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T); 1471 1472 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 1473 /// block. The caller is responsible for setting an appropriate alignment on 1474 /// the alloca. 1475 llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, 1476 const Twine &Name = "tmp"); 1477 1478 /// InitTempAlloca - Provide an initial value for the given alloca. 1479 void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value); 1480 1481 /// CreateIRTemp - Create a temporary IR object of the given type, with 1482 /// appropriate alignment. This routine should only be used when an temporary 1483 /// value needs to be stored into an alloca (for example, to avoid explicit 1484 /// PHI construction), but the type is the IR type, not the type appropriate 1485 /// for storing in memory. 1486 llvm::AllocaInst *CreateIRTemp(QualType T, const Twine &Name = "tmp"); 1487 1488 /// CreateMemTemp - Create a temporary memory object of the given type, with 1489 /// appropriate alignment. 1490 llvm::AllocaInst *CreateMemTemp(QualType T, const Twine &Name = "tmp"); 1491 1492 /// CreateAggTemp - Create a temporary memory object for the given 1493 /// aggregate type. 1494 AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") { 1495 CharUnits Alignment = getContext().getTypeAlignInChars(T); 1496 return AggValueSlot::forAddr(CreateMemTemp(T, Name), Alignment, 1497 T.getQualifiers(), 1498 AggValueSlot::IsNotDestructed, 1499 AggValueSlot::DoesNotNeedGCBarriers, 1500 AggValueSlot::IsNotAliased); 1501 } 1502 1503 /// CreateInAllocaTmp - Create a temporary memory object for the given 1504 /// aggregate type. 1505 AggValueSlot CreateInAllocaTmp(QualType T, const Twine &Name = "inalloca"); 1506 1507 /// Emit a cast to void* in the appropriate address space. 1508 llvm::Value *EmitCastToVoidPtr(llvm::Value *value); 1509 1510 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 1511 /// expression and compare the result against zero, returning an Int1Ty value. 1512 llvm::Value *EvaluateExprAsBool(const Expr *E); 1513 1514 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 1515 void EmitIgnoredExpr(const Expr *E); 1516 1517 /// EmitAnyExpr - Emit code to compute the specified expression which can have 1518 /// any type. The result is returned as an RValue struct. If this is an 1519 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 1520 /// the result should be returned. 1521 /// 1522 /// \param ignoreResult True if the resulting value isn't used. 1523 RValue EmitAnyExpr(const Expr *E, 1524 AggValueSlot aggSlot = AggValueSlot::ignored(), 1525 bool ignoreResult = false); 1526 1527 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 1528 // or the value of the expression, depending on how va_list is defined. 1529 llvm::Value *EmitVAListRef(const Expr *E); 1530 1531 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 1532 /// always be accessible even if no aggregate location is provided. 1533 RValue EmitAnyExprToTemp(const Expr *E); 1534 1535 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 1536 /// arbitrary expression into the given memory location. 1537 void EmitAnyExprToMem(const Expr *E, llvm::Value *Location, 1538 Qualifiers Quals, bool IsInitializer); 1539 1540 /// EmitExprAsInit - Emits the code necessary to initialize a 1541 /// location in memory with the given initializer. 1542 void EmitExprAsInit(const Expr *init, const ValueDecl *D, 1543 LValue lvalue, bool capturedByInit); 1544 1545 /// hasVolatileMember - returns true if aggregate type has a volatile 1546 /// member. 1547 bool hasVolatileMember(QualType T) { 1548 if (const RecordType *RT = T->getAs<RecordType>()) { 1549 const RecordDecl *RD = cast<RecordDecl>(RT->getDecl()); 1550 return RD->hasVolatileMember(); 1551 } 1552 return false; 1553 } 1554 /// EmitAggregateCopy - Emit an aggregate assignment. 1555 /// 1556 /// The difference to EmitAggregateCopy is that tail padding is not copied. 1557 /// This is required for correctness when assigning non-POD structures in C++. 1558 void EmitAggregateAssign(llvm::Value *DestPtr, llvm::Value *SrcPtr, 1559 QualType EltTy) { 1560 bool IsVolatile = hasVolatileMember(EltTy); 1561 EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, CharUnits::Zero(), 1562 true); 1563 } 1564 1565 /// EmitAggregateCopy - Emit an aggregate copy. 1566 /// 1567 /// \param isVolatile - True iff either the source or the destination is 1568 /// volatile. 1569 /// \param isAssignment - If false, allow padding to be copied. This often 1570 /// yields more efficient. 1571 void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr, 1572 QualType EltTy, bool isVolatile=false, 1573 CharUnits Alignment = CharUnits::Zero(), 1574 bool isAssignment = false); 1575 1576 /// StartBlock - Start new block named N. If insert block is a dummy block 1577 /// then reuse it. 1578 void StartBlock(const char *N); 1579 1580 /// GetAddrOfLocalVar - Return the address of a local variable. 1581 llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) { 1582 llvm::Value *Res = LocalDeclMap[VD]; 1583 assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!"); 1584 return Res; 1585 } 1586 1587 /// getOpaqueLValueMapping - Given an opaque value expression (which 1588 /// must be mapped to an l-value), return its mapping. 1589 const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) { 1590 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 1591 1592 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 1593 it = OpaqueLValues.find(e); 1594 assert(it != OpaqueLValues.end() && "no mapping for opaque value!"); 1595 return it->second; 1596 } 1597 1598 /// getOpaqueRValueMapping - Given an opaque value expression (which 1599 /// must be mapped to an r-value), return its mapping. 1600 const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) { 1601 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 1602 1603 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 1604 it = OpaqueRValues.find(e); 1605 assert(it != OpaqueRValues.end() && "no mapping for opaque value!"); 1606 return it->second; 1607 } 1608 1609 /// getAccessedFieldNo - Given an encoded value and a result number, return 1610 /// the input field number being accessed. 1611 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 1612 1613 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 1614 llvm::BasicBlock *GetIndirectGotoBlock(); 1615 1616 /// EmitNullInitialization - Generate code to set a value of the given type to 1617 /// null, If the type contains data member pointers, they will be initialized 1618 /// to -1 in accordance with the Itanium C++ ABI. 1619 void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty); 1620 1621 // EmitVAArg - Generate code to get an argument from the passed in pointer 1622 // and update it accordingly. The return value is a pointer to the argument. 1623 // FIXME: We should be able to get rid of this method and use the va_arg 1624 // instruction in LLVM instead once it works well enough. 1625 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty); 1626 1627 /// emitArrayLength - Compute the length of an array, even if it's a 1628 /// VLA, and drill down to the base element type. 1629 llvm::Value *emitArrayLength(const ArrayType *arrayType, 1630 QualType &baseType, 1631 llvm::Value *&addr); 1632 1633 /// EmitVLASize - Capture all the sizes for the VLA expressions in 1634 /// the given variably-modified type and store them in the VLASizeMap. 1635 /// 1636 /// This function can be called with a null (unreachable) insert point. 1637 void EmitVariablyModifiedType(QualType Ty); 1638 1639 /// getVLASize - Returns an LLVM value that corresponds to the size, 1640 /// in non-variably-sized elements, of a variable length array type, 1641 /// plus that largest non-variably-sized element type. Assumes that 1642 /// the type has already been emitted with EmitVariablyModifiedType. 1643 std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla); 1644 std::pair<llvm::Value*,QualType> getVLASize(QualType vla); 1645 1646 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 1647 /// generating code for an C++ member function. 1648 llvm::Value *LoadCXXThis() { 1649 assert(CXXThisValue && "no 'this' value for this function"); 1650 return CXXThisValue; 1651 } 1652 1653 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 1654 /// virtual bases. 1655 // FIXME: Every place that calls LoadCXXVTT is something 1656 // that needs to be abstracted properly. 1657 llvm::Value *LoadCXXVTT() { 1658 assert(CXXStructorImplicitParamValue && "no VTT value for this function"); 1659 return CXXStructorImplicitParamValue; 1660 } 1661 1662 /// LoadCXXStructorImplicitParam - Load the implicit parameter 1663 /// for a constructor/destructor. 1664 llvm::Value *LoadCXXStructorImplicitParam() { 1665 assert(CXXStructorImplicitParamValue && 1666 "no implicit argument value for this function"); 1667 return CXXStructorImplicitParamValue; 1668 } 1669 1670 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 1671 /// complete class to the given direct base. 1672 llvm::Value * 1673 GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value, 1674 const CXXRecordDecl *Derived, 1675 const CXXRecordDecl *Base, 1676 bool BaseIsVirtual); 1677 1678 /// GetAddressOfBaseClass - This function will add the necessary delta to the 1679 /// load of 'this' and returns address of the base class. 1680 llvm::Value *GetAddressOfBaseClass(llvm::Value *Value, 1681 const CXXRecordDecl *Derived, 1682 CastExpr::path_const_iterator PathBegin, 1683 CastExpr::path_const_iterator PathEnd, 1684 bool NullCheckValue, SourceLocation Loc); 1685 1686 llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value, 1687 const CXXRecordDecl *Derived, 1688 CastExpr::path_const_iterator PathBegin, 1689 CastExpr::path_const_iterator PathEnd, 1690 bool NullCheckValue); 1691 1692 /// GetVTTParameter - Return the VTT parameter that should be passed to a 1693 /// base constructor/destructor with virtual bases. 1694 /// FIXME: VTTs are Itanium ABI-specific, so the definition should move 1695 /// to ItaniumCXXABI.cpp together with all the references to VTT. 1696 llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase, 1697 bool Delegating); 1698 1699 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 1700 CXXCtorType CtorType, 1701 const FunctionArgList &Args, 1702 SourceLocation Loc); 1703 // It's important not to confuse this and the previous function. Delegating 1704 // constructors are the C++0x feature. The constructor delegate optimization 1705 // is used to reduce duplication in the base and complete consturctors where 1706 // they are substantially the same. 1707 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 1708 const FunctionArgList &Args); 1709 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 1710 bool ForVirtualBase, bool Delegating, 1711 llvm::Value *This, const CXXConstructExpr *E); 1712 1713 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 1714 llvm::Value *This, llvm::Value *Src, 1715 const CXXConstructExpr *E); 1716 1717 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 1718 const ConstantArrayType *ArrayTy, 1719 llvm::Value *ArrayPtr, 1720 const CXXConstructExpr *E, 1721 bool ZeroInitialization = false); 1722 1723 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 1724 llvm::Value *NumElements, 1725 llvm::Value *ArrayPtr, 1726 const CXXConstructExpr *E, 1727 bool ZeroInitialization = false); 1728 1729 static Destroyer destroyCXXObject; 1730 1731 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 1732 bool ForVirtualBase, bool Delegating, 1733 llvm::Value *This); 1734 1735 void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, 1736 llvm::Value *NewPtr, llvm::Value *NumElements, 1737 llvm::Value *AllocSizeWithoutCookie); 1738 1739 void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, 1740 llvm::Value *Ptr); 1741 1742 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 1743 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 1744 1745 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 1746 QualType DeleteTy); 1747 1748 RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 1749 const Expr *Arg, bool IsDelete); 1750 1751 llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E); 1752 llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE); 1753 llvm::Value* EmitCXXUuidofExpr(const CXXUuidofExpr *E); 1754 1755 /// \brief Situations in which we might emit a check for the suitability of a 1756 /// pointer or glvalue. 1757 enum TypeCheckKind { 1758 /// Checking the operand of a load. Must be suitably sized and aligned. 1759 TCK_Load, 1760 /// Checking the destination of a store. Must be suitably sized and aligned. 1761 TCK_Store, 1762 /// Checking the bound value in a reference binding. Must be suitably sized 1763 /// and aligned, but is not required to refer to an object (until the 1764 /// reference is used), per core issue 453. 1765 TCK_ReferenceBinding, 1766 /// Checking the object expression in a non-static data member access. Must 1767 /// be an object within its lifetime. 1768 TCK_MemberAccess, 1769 /// Checking the 'this' pointer for a call to a non-static member function. 1770 /// Must be an object within its lifetime. 1771 TCK_MemberCall, 1772 /// Checking the 'this' pointer for a constructor call. 1773 TCK_ConstructorCall, 1774 /// Checking the operand of a static_cast to a derived pointer type. Must be 1775 /// null or an object within its lifetime. 1776 TCK_DowncastPointer, 1777 /// Checking the operand of a static_cast to a derived reference type. Must 1778 /// be an object within its lifetime. 1779 TCK_DowncastReference, 1780 /// Checking the operand of a cast to a base object. Must be suitably sized 1781 /// and aligned. 1782 TCK_Upcast, 1783 /// Checking the operand of a cast to a virtual base object. Must be an 1784 /// object within its lifetime. 1785 TCK_UpcastToVirtualBase 1786 }; 1787 1788 /// \brief Whether any type-checking sanitizers are enabled. If \c false, 1789 /// calls to EmitTypeCheck can be skipped. 1790 bool sanitizePerformTypeCheck() const; 1791 1792 /// \brief Emit a check that \p V is the address of storage of the 1793 /// appropriate size and alignment for an object of type \p Type. 1794 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, 1795 QualType Type, CharUnits Alignment = CharUnits::Zero(), 1796 bool SkipNullCheck = false); 1797 1798 /// \brief Emit a check that \p Base points into an array object, which 1799 /// we can access at index \p Index. \p Accessed should be \c false if we 1800 /// this expression is used as an lvalue, for instance in "&Arr[Idx]". 1801 void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, 1802 QualType IndexType, bool Accessed); 1803 1804 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 1805 bool isInc, bool isPre); 1806 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 1807 bool isInc, bool isPre); 1808 1809 void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment, 1810 llvm::Value *OffsetValue = nullptr) { 1811 Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment, 1812 OffsetValue); 1813 } 1814 1815 //===--------------------------------------------------------------------===// 1816 // Declaration Emission 1817 //===--------------------------------------------------------------------===// 1818 1819 /// EmitDecl - Emit a declaration. 1820 /// 1821 /// This function can be called with a null (unreachable) insert point. 1822 void EmitDecl(const Decl &D); 1823 1824 /// EmitVarDecl - Emit a local variable declaration. 1825 /// 1826 /// This function can be called with a null (unreachable) insert point. 1827 void EmitVarDecl(const VarDecl &D); 1828 1829 void EmitScalarInit(const Expr *init, const ValueDecl *D, 1830 LValue lvalue, bool capturedByInit); 1831 void EmitScalarInit(llvm::Value *init, LValue lvalue); 1832 1833 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 1834 llvm::Value *Address); 1835 1836 /// \brief Determine whether the given initializer is trivial in the sense 1837 /// that it requires no code to be generated. 1838 bool isTrivialInitializer(const Expr *Init); 1839 1840 /// EmitAutoVarDecl - Emit an auto variable declaration. 1841 /// 1842 /// This function can be called with a null (unreachable) insert point. 1843 void EmitAutoVarDecl(const VarDecl &D); 1844 1845 class AutoVarEmission { 1846 friend class CodeGenFunction; 1847 1848 const VarDecl *Variable; 1849 1850 /// The alignment of the variable. 1851 CharUnits Alignment; 1852 1853 /// The address of the alloca. Null if the variable was emitted 1854 /// as a global constant. 1855 llvm::Value *Address; 1856 1857 llvm::Value *NRVOFlag; 1858 1859 /// True if the variable is a __block variable. 1860 bool IsByRef; 1861 1862 /// True if the variable is of aggregate type and has a constant 1863 /// initializer. 1864 bool IsConstantAggregate; 1865 1866 /// Non-null if we should use lifetime annotations. 1867 llvm::Value *SizeForLifetimeMarkers; 1868 1869 struct Invalid {}; 1870 AutoVarEmission(Invalid) : Variable(nullptr) {} 1871 1872 AutoVarEmission(const VarDecl &variable) 1873 : Variable(&variable), Address(nullptr), NRVOFlag(nullptr), 1874 IsByRef(false), IsConstantAggregate(false), 1875 SizeForLifetimeMarkers(nullptr) {} 1876 1877 bool wasEmittedAsGlobal() const { return Address == nullptr; } 1878 1879 public: 1880 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 1881 1882 bool useLifetimeMarkers() const { 1883 return SizeForLifetimeMarkers != nullptr; 1884 } 1885 llvm::Value *getSizeForLifetimeMarkers() const { 1886 assert(useLifetimeMarkers()); 1887 return SizeForLifetimeMarkers; 1888 } 1889 1890 /// Returns the raw, allocated address, which is not necessarily 1891 /// the address of the object itself. 1892 llvm::Value *getAllocatedAddress() const { 1893 return Address; 1894 } 1895 1896 /// Returns the address of the object within this declaration. 1897 /// Note that this does not chase the forwarding pointer for 1898 /// __block decls. 1899 llvm::Value *getObjectAddress(CodeGenFunction &CGF) const { 1900 if (!IsByRef) return Address; 1901 1902 return CGF.Builder.CreateStructGEP(Address, 1903 CGF.getByRefValueLLVMField(Variable), 1904 Variable->getNameAsString()); 1905 } 1906 }; 1907 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 1908 void EmitAutoVarInit(const AutoVarEmission &emission); 1909 void EmitAutoVarCleanups(const AutoVarEmission &emission); 1910 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 1911 QualType::DestructionKind dtorKind); 1912 1913 void EmitStaticVarDecl(const VarDecl &D, 1914 llvm::GlobalValue::LinkageTypes Linkage); 1915 1916 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 1917 void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, bool ArgIsPointer, 1918 unsigned ArgNo); 1919 1920 /// protectFromPeepholes - Protect a value that we're intending to 1921 /// store to the side, but which will probably be used later, from 1922 /// aggressive peepholing optimizations that might delete it. 1923 /// 1924 /// Pass the result to unprotectFromPeepholes to declare that 1925 /// protection is no longer required. 1926 /// 1927 /// There's no particular reason why this shouldn't apply to 1928 /// l-values, it's just that no existing peepholes work on pointers. 1929 PeepholeProtection protectFromPeepholes(RValue rvalue); 1930 void unprotectFromPeepholes(PeepholeProtection protection); 1931 1932 //===--------------------------------------------------------------------===// 1933 // Statement Emission 1934 //===--------------------------------------------------------------------===// 1935 1936 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 1937 void EmitStopPoint(const Stmt *S); 1938 1939 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 1940 /// this function even if there is no current insertion point. 1941 /// 1942 /// This function may clear the current insertion point; callers should use 1943 /// EnsureInsertPoint if they wish to subsequently generate code without first 1944 /// calling EmitBlock, EmitBranch, or EmitStmt. 1945 void EmitStmt(const Stmt *S); 1946 1947 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 1948 /// necessarily require an insertion point or debug information; typically 1949 /// because the statement amounts to a jump or a container of other 1950 /// statements. 1951 /// 1952 /// \return True if the statement was handled. 1953 bool EmitSimpleStmt(const Stmt *S); 1954 1955 llvm::Value *EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 1956 AggValueSlot AVS = AggValueSlot::ignored()); 1957 llvm::Value *EmitCompoundStmtWithoutScope(const CompoundStmt &S, 1958 bool GetLast = false, 1959 AggValueSlot AVS = 1960 AggValueSlot::ignored()); 1961 1962 /// EmitLabel - Emit the block for the given label. It is legal to call this 1963 /// function even if there is no current insertion point. 1964 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 1965 1966 void EmitLabelStmt(const LabelStmt &S); 1967 void EmitAttributedStmt(const AttributedStmt &S); 1968 void EmitGotoStmt(const GotoStmt &S); 1969 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 1970 void EmitIfStmt(const IfStmt &S); 1971 1972 void EmitCondBrHints(llvm::LLVMContext &Context, llvm::BranchInst *CondBr, 1973 ArrayRef<const Attr *> Attrs); 1974 void EmitWhileStmt(const WhileStmt &S, 1975 ArrayRef<const Attr *> Attrs = None); 1976 void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None); 1977 void EmitForStmt(const ForStmt &S, 1978 ArrayRef<const Attr *> Attrs = None); 1979 void EmitReturnStmt(const ReturnStmt &S); 1980 void EmitDeclStmt(const DeclStmt &S); 1981 void EmitBreakStmt(const BreakStmt &S); 1982 void EmitContinueStmt(const ContinueStmt &S); 1983 void EmitSwitchStmt(const SwitchStmt &S); 1984 void EmitDefaultStmt(const DefaultStmt &S); 1985 void EmitCaseStmt(const CaseStmt &S); 1986 void EmitCaseStmtRange(const CaseStmt &S); 1987 void EmitAsmStmt(const AsmStmt &S); 1988 1989 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 1990 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 1991 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 1992 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 1993 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 1994 1995 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 1996 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 1997 1998 void EmitCXXTryStmt(const CXXTryStmt &S); 1999 void EmitSEHTryStmt(const SEHTryStmt &S); 2000 void EmitSEHLeaveStmt(const SEHLeaveStmt &S); 2001 void EmitCXXForRangeStmt(const CXXForRangeStmt &S, 2002 ArrayRef<const Attr *> Attrs = None); 2003 2004 llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K); 2005 void GenerateCapturedStmtFunctionProlog(const CapturedStmt &S); 2006 llvm::Function *GenerateCapturedStmtFunctionEpilog(const CapturedStmt &S); 2007 llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S); 2008 llvm::Value *GenerateCapturedStmtArgument(const CapturedStmt &S); 2009 void EmitOMPAggregateAssign(LValue OriginalAddr, llvm::Value *PrivateAddr, 2010 const Expr *AssignExpr, QualType Type, 2011 const VarDecl *VDInit); 2012 void EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 2013 OMPPrivateScope &PrivateScope); 2014 2015 void EmitOMPParallelDirective(const OMPParallelDirective &S); 2016 void EmitOMPSimdDirective(const OMPSimdDirective &S); 2017 void EmitOMPForDirective(const OMPForDirective &S); 2018 void EmitOMPForSimdDirective(const OMPForSimdDirective &S); 2019 void EmitOMPSectionsDirective(const OMPSectionsDirective &S); 2020 void EmitOMPSectionDirective(const OMPSectionDirective &S); 2021 void EmitOMPSingleDirective(const OMPSingleDirective &S); 2022 void EmitOMPMasterDirective(const OMPMasterDirective &S); 2023 void EmitOMPCriticalDirective(const OMPCriticalDirective &S); 2024 void EmitOMPParallelForDirective(const OMPParallelForDirective &S); 2025 void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S); 2026 void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S); 2027 void EmitOMPTaskDirective(const OMPTaskDirective &S); 2028 void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S); 2029 void EmitOMPBarrierDirective(const OMPBarrierDirective &S); 2030 void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S); 2031 void EmitOMPFlushDirective(const OMPFlushDirective &S); 2032 void EmitOMPOrderedDirective(const OMPOrderedDirective &S); 2033 void EmitOMPAtomicDirective(const OMPAtomicDirective &S); 2034 void EmitOMPTargetDirective(const OMPTargetDirective &S); 2035 void EmitOMPTeamsDirective(const OMPTeamsDirective &S); 2036 2037 /// Helpers for 'omp simd' directive. 2038 void EmitOMPLoopBody(const OMPLoopDirective &Directive, 2039 bool SeparateIter = false); 2040 void EmitOMPInnerLoop(const OMPLoopDirective &S, OMPPrivateScope &LoopScope, 2041 bool SeparateIter = false); 2042 void EmitOMPSimdFinal(const OMPLoopDirective &S); 2043 2044 //===--------------------------------------------------------------------===// 2045 // LValue Expression Emission 2046 //===--------------------------------------------------------------------===// 2047 2048 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 2049 RValue GetUndefRValue(QualType Ty); 2050 2051 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 2052 /// and issue an ErrorUnsupported style diagnostic (using the 2053 /// provided Name). 2054 RValue EmitUnsupportedRValue(const Expr *E, 2055 const char *Name); 2056 2057 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 2058 /// an ErrorUnsupported style diagnostic (using the provided Name). 2059 LValue EmitUnsupportedLValue(const Expr *E, 2060 const char *Name); 2061 2062 /// EmitLValue - Emit code to compute a designator that specifies the location 2063 /// of the expression. 2064 /// 2065 /// This can return one of two things: a simple address or a bitfield 2066 /// reference. In either case, the LLVM Value* in the LValue structure is 2067 /// guaranteed to be an LLVM pointer type. 2068 /// 2069 /// If this returns a bitfield reference, nothing about the pointee type of 2070 /// the LLVM value is known: For example, it may not be a pointer to an 2071 /// integer. 2072 /// 2073 /// If this returns a normal address, and if the lvalue's C type is fixed 2074 /// size, this method guarantees that the returned pointer type will point to 2075 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 2076 /// variable length type, this is not possible. 2077 /// 2078 LValue EmitLValue(const Expr *E); 2079 2080 /// \brief Same as EmitLValue but additionally we generate checking code to 2081 /// guard against undefined behavior. This is only suitable when we know 2082 /// that the address will be used to access the object. 2083 LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK); 2084 2085 RValue convertTempToRValue(llvm::Value *addr, QualType type, 2086 SourceLocation Loc); 2087 2088 void EmitAtomicInit(Expr *E, LValue lvalue); 2089 2090 RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc, 2091 AggValueSlot slot = AggValueSlot::ignored()); 2092 2093 void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit); 2094 2095 /// EmitToMemory - Change a scalar value from its value 2096 /// representation to its in-memory representation. 2097 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 2098 2099 /// EmitFromMemory - Change a scalar value from its memory 2100 /// representation to its value representation. 2101 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 2102 2103 /// EmitLoadOfScalar - Load a scalar value from an address, taking 2104 /// care to appropriately convert from the memory representation to 2105 /// the LLVM value representation. 2106 llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile, 2107 unsigned Alignment, QualType Ty, 2108 SourceLocation Loc, 2109 llvm::MDNode *TBAAInfo = nullptr, 2110 QualType TBAABaseTy = QualType(), 2111 uint64_t TBAAOffset = 0); 2112 2113 /// EmitLoadOfScalar - Load a scalar value from an address, taking 2114 /// care to appropriately convert from the memory representation to 2115 /// the LLVM value representation. The l-value must be a simple 2116 /// l-value. 2117 llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc); 2118 2119 /// EmitStoreOfScalar - Store a scalar value to an address, taking 2120 /// care to appropriately convert from the memory representation to 2121 /// the LLVM value representation. 2122 void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr, 2123 bool Volatile, unsigned Alignment, QualType Ty, 2124 llvm::MDNode *TBAAInfo = nullptr, bool isInit = false, 2125 QualType TBAABaseTy = QualType(), 2126 uint64_t TBAAOffset = 0); 2127 2128 /// EmitStoreOfScalar - Store a scalar value to an address, taking 2129 /// care to appropriately convert from the memory representation to 2130 /// the LLVM value representation. The l-value must be a simple 2131 /// l-value. The isInit flag indicates whether this is an initialization. 2132 /// If so, atomic qualifiers are ignored and the store is always non-atomic. 2133 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); 2134 2135 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 2136 /// this method emits the address of the lvalue, then loads the result as an 2137 /// rvalue, returning the rvalue. 2138 RValue EmitLoadOfLValue(LValue V, SourceLocation Loc); 2139 RValue EmitLoadOfExtVectorElementLValue(LValue V); 2140 RValue EmitLoadOfBitfieldLValue(LValue LV); 2141 RValue EmitLoadOfGlobalRegLValue(LValue LV); 2142 2143 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 2144 /// lvalue, where both are guaranteed to the have the same type, and that type 2145 /// is 'Ty'. 2146 void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit=false); 2147 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 2148 void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst); 2149 2150 /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints 2151 /// as EmitStoreThroughLValue. 2152 /// 2153 /// \param Result [out] - If non-null, this will be set to a Value* for the 2154 /// bit-field contents after the store, appropriate for use as the result of 2155 /// an assignment to the bit-field. 2156 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 2157 llvm::Value **Result=nullptr); 2158 2159 /// Emit an l-value for an assignment (simple or compound) of complex type. 2160 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 2161 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 2162 LValue EmitScalarCompooundAssignWithComplex(const CompoundAssignOperator *E, 2163 llvm::Value *&Result); 2164 2165 // Note: only available for agg return types 2166 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 2167 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 2168 // Note: only available for agg return types 2169 LValue EmitCallExprLValue(const CallExpr *E); 2170 // Note: only available for agg return types 2171 LValue EmitVAArgExprLValue(const VAArgExpr *E); 2172 LValue EmitDeclRefLValue(const DeclRefExpr *E); 2173 LValue EmitReadRegister(const VarDecl *VD); 2174 LValue EmitStringLiteralLValue(const StringLiteral *E); 2175 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 2176 LValue EmitPredefinedLValue(const PredefinedExpr *E); 2177 LValue EmitUnaryOpLValue(const UnaryOperator *E); 2178 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 2179 bool Accessed = false); 2180 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 2181 LValue EmitMemberExpr(const MemberExpr *E); 2182 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 2183 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 2184 LValue EmitInitListLValue(const InitListExpr *E); 2185 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 2186 LValue EmitCastLValue(const CastExpr *E); 2187 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 2188 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 2189 2190 llvm::Value *EmitExtVectorElementLValue(LValue V); 2191 2192 RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc); 2193 2194 class ConstantEmission { 2195 llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; 2196 ConstantEmission(llvm::Constant *C, bool isReference) 2197 : ValueAndIsReference(C, isReference) {} 2198 public: 2199 ConstantEmission() {} 2200 static ConstantEmission forReference(llvm::Constant *C) { 2201 return ConstantEmission(C, true); 2202 } 2203 static ConstantEmission forValue(llvm::Constant *C) { 2204 return ConstantEmission(C, false); 2205 } 2206 2207 LLVM_EXPLICIT operator bool() const { 2208 return ValueAndIsReference.getOpaqueValue() != nullptr; 2209 } 2210 2211 bool isReference() const { return ValueAndIsReference.getInt(); } 2212 LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { 2213 assert(isReference()); 2214 return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), 2215 refExpr->getType()); 2216 } 2217 2218 llvm::Constant *getValue() const { 2219 assert(!isReference()); 2220 return ValueAndIsReference.getPointer(); 2221 } 2222 }; 2223 2224 ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); 2225 2226 RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, 2227 AggValueSlot slot = AggValueSlot::ignored()); 2228 LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); 2229 2230 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 2231 const ObjCIvarDecl *Ivar); 2232 LValue EmitLValueForField(LValue Base, const FieldDecl* Field); 2233 LValue EmitLValueForLambdaField(const FieldDecl *Field); 2234 2235 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 2236 /// if the Field is a reference, this will return the address of the reference 2237 /// and not the address of the value stored in the reference. 2238 LValue EmitLValueForFieldInitialization(LValue Base, 2239 const FieldDecl* Field); 2240 2241 LValue EmitLValueForIvar(QualType ObjectTy, 2242 llvm::Value* Base, const ObjCIvarDecl *Ivar, 2243 unsigned CVRQualifiers); 2244 2245 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 2246 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 2247 LValue EmitLambdaLValue(const LambdaExpr *E); 2248 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 2249 LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E); 2250 2251 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 2252 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 2253 LValue EmitStmtExprLValue(const StmtExpr *E); 2254 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 2255 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 2256 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init); 2257 2258 //===--------------------------------------------------------------------===// 2259 // Scalar Expression Emission 2260 //===--------------------------------------------------------------------===// 2261 2262 /// EmitCall - Generate a call of the given function, expecting the given 2263 /// result type, and using the given argument list which specifies both the 2264 /// LLVM arguments and the types they were derived from. 2265 /// 2266 /// \param TargetDecl - If given, the decl of the function in a direct call; 2267 /// used to set attributes on the call (noreturn, etc.). 2268 RValue EmitCall(const CGFunctionInfo &FnInfo, 2269 llvm::Value *Callee, 2270 ReturnValueSlot ReturnValue, 2271 const CallArgList &Args, 2272 const Decl *TargetDecl = nullptr, 2273 llvm::Instruction **callOrInvoke = nullptr); 2274 2275 RValue EmitCall(QualType FnType, llvm::Value *Callee, const CallExpr *E, 2276 ReturnValueSlot ReturnValue, 2277 const Decl *TargetDecl = nullptr); 2278 RValue EmitCallExpr(const CallExpr *E, 2279 ReturnValueSlot ReturnValue = ReturnValueSlot()); 2280 2281 llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, 2282 const Twine &name = ""); 2283 llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, 2284 ArrayRef<llvm::Value*> args, 2285 const Twine &name = ""); 2286 llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, 2287 const Twine &name = ""); 2288 llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, 2289 ArrayRef<llvm::Value*> args, 2290 const Twine &name = ""); 2291 2292 llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, 2293 ArrayRef<llvm::Value *> Args, 2294 const Twine &Name = ""); 2295 llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, 2296 const Twine &Name = ""); 2297 llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, 2298 ArrayRef<llvm::Value*> args, 2299 const Twine &name = ""); 2300 llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, 2301 const Twine &name = ""); 2302 void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee, 2303 ArrayRef<llvm::Value*> args); 2304 2305 llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 2306 NestedNameSpecifier *Qual, 2307 llvm::Type *Ty); 2308 2309 llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 2310 CXXDtorType Type, 2311 const CXXRecordDecl *RD); 2312 2313 RValue 2314 EmitCXXMemberOrOperatorCall(const CXXMethodDecl *MD, llvm::Value *Callee, 2315 ReturnValueSlot ReturnValue, llvm::Value *This, 2316 llvm::Value *ImplicitParam, 2317 QualType ImplicitParamTy, const CallExpr *E); 2318 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 2319 ReturnValueSlot ReturnValue); 2320 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 2321 ReturnValueSlot ReturnValue); 2322 2323 llvm::Value *EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E, 2324 const CXXMethodDecl *MD, 2325 llvm::Value *This); 2326 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 2327 const CXXMethodDecl *MD, 2328 ReturnValueSlot ReturnValue); 2329 2330 RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 2331 ReturnValueSlot ReturnValue); 2332 2333 2334 RValue EmitBuiltinExpr(const FunctionDecl *FD, 2335 unsigned BuiltinID, const CallExpr *E); 2336 2337 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 2338 2339 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 2340 /// is unhandled by the current target. 2341 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2342 2343 llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty, 2344 const llvm::CmpInst::Predicate Fp, 2345 const llvm::CmpInst::Predicate Ip, 2346 const llvm::Twine &Name = ""); 2347 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2348 2349 llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID, 2350 unsigned LLVMIntrinsic, 2351 unsigned AltLLVMIntrinsic, 2352 const char *NameHint, 2353 unsigned Modifier, 2354 const CallExpr *E, 2355 SmallVectorImpl<llvm::Value *> &Ops, 2356 llvm::Value *Align = nullptr); 2357 llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID, 2358 unsigned Modifier, llvm::Type *ArgTy, 2359 const CallExpr *E); 2360 llvm::Value *EmitNeonCall(llvm::Function *F, 2361 SmallVectorImpl<llvm::Value*> &O, 2362 const char *name, 2363 unsigned shift = 0, bool rightshift = false); 2364 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 2365 llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, 2366 bool negateForRightShift); 2367 llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt, 2368 llvm::Type *Ty, bool usgn, const char *name); 2369 // Helper functions for EmitAArch64BuiltinExpr. 2370 llvm::Value *vectorWrapScalar8(llvm::Value *Op); 2371 llvm::Value *vectorWrapScalar16(llvm::Value *Op); 2372 llvm::Value *emitVectorWrappedScalar8Intrinsic( 2373 unsigned Int, SmallVectorImpl<llvm::Value *> &Ops, const char *Name); 2374 llvm::Value *emitVectorWrappedScalar16Intrinsic( 2375 unsigned Int, SmallVectorImpl<llvm::Value *> &Ops, const char *Name); 2376 llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2377 llvm::Value *EmitNeon64Call(llvm::Function *F, 2378 llvm::SmallVectorImpl<llvm::Value *> &O, 2379 const char *name); 2380 2381 llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); 2382 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2383 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2384 llvm::Value *EmitR600BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2385 2386 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 2387 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 2388 llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); 2389 llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); 2390 llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); 2391 llvm::Value *EmitObjCCollectionLiteral(const Expr *E, 2392 const ObjCMethodDecl *MethodWithObjects, 2393 const ObjCMethodDecl *AllocMethod); 2394 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 2395 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 2396 ReturnValueSlot Return = ReturnValueSlot()); 2397 2398 /// Retrieves the default cleanup kind for an ARC cleanup. 2399 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. 2400 CleanupKind getARCCleanupKind() { 2401 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 2402 ? NormalAndEHCleanup : NormalCleanup; 2403 } 2404 2405 // ARC primitives. 2406 void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr); 2407 void EmitARCDestroyWeak(llvm::Value *addr); 2408 llvm::Value *EmitARCLoadWeak(llvm::Value *addr); 2409 llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr); 2410 llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr, 2411 bool ignored); 2412 void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src); 2413 void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src); 2414 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 2415 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 2416 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 2417 bool resultIgnored); 2418 llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value, 2419 bool resultIgnored); 2420 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 2421 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 2422 llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); 2423 void EmitARCDestroyStrong(llvm::Value *addr, ARCPreciseLifetime_t precise); 2424 void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 2425 llvm::Value *EmitARCAutorelease(llvm::Value *value); 2426 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 2427 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 2428 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 2429 2430 std::pair<LValue,llvm::Value*> 2431 EmitARCStoreAutoreleasing(const BinaryOperator *e); 2432 std::pair<LValue,llvm::Value*> 2433 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 2434 2435 llvm::Value *EmitObjCThrowOperand(const Expr *expr); 2436 2437 llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr); 2438 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 2439 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 2440 2441 llvm::Value *EmitARCExtendBlockObject(const Expr *expr); 2442 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 2443 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 2444 2445 void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values); 2446 2447 static Destroyer destroyARCStrongImprecise; 2448 static Destroyer destroyARCStrongPrecise; 2449 static Destroyer destroyARCWeak; 2450 2451 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 2452 llvm::Value *EmitObjCAutoreleasePoolPush(); 2453 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 2454 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 2455 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 2456 2457 /// \brief Emits a reference binding to the passed in expression. 2458 RValue EmitReferenceBindingToExpr(const Expr *E); 2459 2460 //===--------------------------------------------------------------------===// 2461 // Expression Emission 2462 //===--------------------------------------------------------------------===// 2463 2464 // Expressions are broken into three classes: scalar, complex, aggregate. 2465 2466 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 2467 /// scalar type, returning the result. 2468 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 2469 2470 /// EmitScalarConversion - Emit a conversion from the specified type to the 2471 /// specified destination type, both of which are LLVM scalar types. 2472 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 2473 QualType DstTy); 2474 2475 /// EmitComplexToScalarConversion - Emit a conversion from the specified 2476 /// complex type to the specified destination type, where the destination type 2477 /// is an LLVM scalar type. 2478 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 2479 QualType DstTy); 2480 2481 2482 /// EmitAggExpr - Emit the computation of the specified expression 2483 /// of aggregate type. The result is computed into the given slot, 2484 /// which may be null to indicate that the value is not needed. 2485 void EmitAggExpr(const Expr *E, AggValueSlot AS); 2486 2487 /// EmitAggExprToLValue - Emit the computation of the specified expression of 2488 /// aggregate type into a temporary LValue. 2489 LValue EmitAggExprToLValue(const Expr *E); 2490 2491 /// EmitGCMemmoveCollectable - Emit special API for structs with object 2492 /// pointers. 2493 void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr, 2494 QualType Ty); 2495 2496 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 2497 /// make sure it survives garbage collection until this point. 2498 void EmitExtendGCLifetime(llvm::Value *object); 2499 2500 /// EmitComplexExpr - Emit the computation of the specified expression of 2501 /// complex type, returning the result. 2502 ComplexPairTy EmitComplexExpr(const Expr *E, 2503 bool IgnoreReal = false, 2504 bool IgnoreImag = false); 2505 2506 /// EmitComplexExprIntoLValue - Emit the given expression of complex 2507 /// type and place its result into the specified l-value. 2508 void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit); 2509 2510 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 2511 void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit); 2512 2513 /// EmitLoadOfComplex - Load a complex number from the specified l-value. 2514 ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc); 2515 2516 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 2517 /// global variable that has already been created for it. If the initializer 2518 /// has a different type than GV does, this may free GV and return a different 2519 /// one. Otherwise it just returns GV. 2520 llvm::GlobalVariable * 2521 AddInitializerToStaticVarDecl(const VarDecl &D, 2522 llvm::GlobalVariable *GV); 2523 2524 2525 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 2526 /// variable with global storage. 2527 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr, 2528 bool PerformInit); 2529 2530 llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::Constant *Dtor, 2531 llvm::Constant *Addr); 2532 2533 /// Call atexit() with a function that passes the given argument to 2534 /// the given function. 2535 void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn, 2536 llvm::Constant *addr); 2537 2538 /// Emit code in this function to perform a guarded variable 2539 /// initialization. Guarded initializations are used when it's not 2540 /// possible to prove that an initialization will be done exactly 2541 /// once, e.g. with a static local variable or a static data member 2542 /// of a class template. 2543 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, 2544 bool PerformInit); 2545 2546 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 2547 /// variables. 2548 void GenerateCXXGlobalInitFunc(llvm::Function *Fn, 2549 ArrayRef<llvm::Function *> CXXThreadLocals, 2550 llvm::GlobalVariable *Guard = nullptr); 2551 2552 /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global 2553 /// variables. 2554 void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn, 2555 const std::vector<std::pair<llvm::WeakVH, 2556 llvm::Constant*> > &DtorsAndObjects); 2557 2558 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 2559 const VarDecl *D, 2560 llvm::GlobalVariable *Addr, 2561 bool PerformInit); 2562 2563 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 2564 2565 void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src, 2566 const Expr *Exp); 2567 2568 void enterFullExpression(const ExprWithCleanups *E) { 2569 if (E->getNumObjects() == 0) return; 2570 enterNonTrivialFullExpression(E); 2571 } 2572 void enterNonTrivialFullExpression(const ExprWithCleanups *E); 2573 2574 void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true); 2575 2576 void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest); 2577 2578 RValue EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest = nullptr); 2579 2580 //===--------------------------------------------------------------------===// 2581 // Annotations Emission 2582 //===--------------------------------------------------------------------===// 2583 2584 /// Emit an annotation call (intrinsic or builtin). 2585 llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn, 2586 llvm::Value *AnnotatedVal, 2587 StringRef AnnotationStr, 2588 SourceLocation Location); 2589 2590 /// Emit local annotations for the local variable V, declared by D. 2591 void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); 2592 2593 /// Emit field annotations for the given field & value. Returns the 2594 /// annotation result. 2595 llvm::Value *EmitFieldAnnotations(const FieldDecl *D, llvm::Value *V); 2596 2597 //===--------------------------------------------------------------------===// 2598 // Internal Helpers 2599 //===--------------------------------------------------------------------===// 2600 2601 /// ContainsLabel - Return true if the statement contains a label in it. If 2602 /// this statement is not executed normally, it not containing a label means 2603 /// that we can just remove the code. 2604 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 2605 2606 /// containsBreak - Return true if the statement contains a break out of it. 2607 /// If the statement (recursively) contains a switch or loop with a break 2608 /// inside of it, this is fine. 2609 static bool containsBreak(const Stmt *S); 2610 2611 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 2612 /// to a constant, or if it does but contains a label, return false. If it 2613 /// constant folds return true and set the boolean result in Result. 2614 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result); 2615 2616 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 2617 /// to a constant, or if it does but contains a label, return false. If it 2618 /// constant folds return true and set the folded value. 2619 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result); 2620 2621 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 2622 /// if statement) to the specified blocks. Based on the condition, this might 2623 /// try to simplify the codegen of the conditional based on the branch. 2624 /// TrueCount should be the number of times we expect the condition to 2625 /// evaluate to true based on PGO data. 2626 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 2627 llvm::BasicBlock *FalseBlock, uint64_t TrueCount); 2628 2629 /// \brief Emit a description of a type in a format suitable for passing to 2630 /// a runtime sanitizer handler. 2631 llvm::Constant *EmitCheckTypeDescriptor(QualType T); 2632 2633 /// \brief Convert a value into a format suitable for passing to a runtime 2634 /// sanitizer handler. 2635 llvm::Value *EmitCheckValue(llvm::Value *V); 2636 2637 /// \brief Emit a description of a source location in a format suitable for 2638 /// passing to a runtime sanitizer handler. 2639 llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc); 2640 2641 /// \brief Specify under what conditions this check can be recovered 2642 enum CheckRecoverableKind { 2643 /// Always terminate program execution if this check fails 2644 CRK_Unrecoverable, 2645 /// Check supports recovering, allows user to specify which 2646 CRK_Recoverable, 2647 /// Runtime conditionally aborts, always need to support recovery. 2648 CRK_AlwaysRecoverable 2649 }; 2650 2651 /// \brief Create a basic block that will call a handler function in a 2652 /// sanitizer runtime with the provided arguments, and create a conditional 2653 /// branch to it. 2654 void EmitCheck(llvm::Value *Checked, StringRef CheckName, 2655 ArrayRef<llvm::Constant *> StaticArgs, 2656 ArrayRef<llvm::Value *> DynamicArgs, 2657 CheckRecoverableKind Recoverable); 2658 2659 /// \brief Create a basic block that will call the trap intrinsic, and emit a 2660 /// conditional branch to it, for the -ftrapv checks. 2661 void EmitTrapCheck(llvm::Value *Checked); 2662 2663 /// EmitCallArg - Emit a single call argument. 2664 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 2665 2666 /// EmitDelegateCallArg - We are performing a delegate call; that 2667 /// is, the current function is delegating to another one. Produce 2668 /// a r-value suitable for passing the given parameter. 2669 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param, 2670 SourceLocation loc); 2671 2672 /// SetFPAccuracy - Set the minimum required accuracy of the given floating 2673 /// point operation, expressed as the maximum relative error in ulp. 2674 void SetFPAccuracy(llvm::Value *Val, float Accuracy); 2675 2676 private: 2677 llvm::MDNode *getRangeForLoadFromType(QualType Ty); 2678 void EmitReturnOfRValue(RValue RV, QualType Ty); 2679 2680 void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New); 2681 2682 llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4> 2683 DeferredReplacements; 2684 2685 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 2686 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 2687 /// 2688 /// \param AI - The first function argument of the expansion. 2689 void ExpandTypeFromArgs(QualType Ty, LValue Dst, 2690 SmallVectorImpl<llvm::Argument *>::iterator &AI); 2691 2692 /// ExpandTypeToArgs - Expand an RValue \arg RV, with the LLVM type for \arg 2693 /// Ty, into individual arguments on the provided vector \arg IRCallArgs, 2694 /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand. 2695 void ExpandTypeToArgs(QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy, 2696 SmallVectorImpl<llvm::Value *> &IRCallArgs, 2697 unsigned &IRCallArgPos); 2698 2699 llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info, 2700 const Expr *InputExpr, std::string &ConstraintStr); 2701 2702 llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 2703 LValue InputValue, QualType InputType, 2704 std::string &ConstraintStr, 2705 SourceLocation Loc); 2706 2707 public: 2708 /// EmitCallArgs - Emit call arguments for a function. 2709 template <typename T> 2710 void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo, 2711 CallExpr::const_arg_iterator ArgBeg, 2712 CallExpr::const_arg_iterator ArgEnd, 2713 const FunctionDecl *CalleeDecl = nullptr, 2714 unsigned ParamsToSkip = 0, bool ForceColumnInfo = false) { 2715 SmallVector<QualType, 16> ArgTypes; 2716 CallExpr::const_arg_iterator Arg = ArgBeg; 2717 2718 assert((ParamsToSkip == 0 || CallArgTypeInfo) && 2719 "Can't skip parameters if type info is not provided"); 2720 if (CallArgTypeInfo) { 2721 // First, use the argument types that the type info knows about 2722 for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip, 2723 E = CallArgTypeInfo->param_type_end(); 2724 I != E; ++I, ++Arg) { 2725 assert(Arg != ArgEnd && "Running over edge of argument list!"); 2726 #ifndef NDEBUG 2727 QualType ArgType = *I; 2728 QualType ActualArgType = Arg->getType(); 2729 if (ArgType->isPointerType() && ActualArgType->isPointerType()) { 2730 QualType ActualBaseType = 2731 ActualArgType->getAs<PointerType>()->getPointeeType(); 2732 QualType ArgBaseType = 2733 ArgType->getAs<PointerType>()->getPointeeType(); 2734 if (ArgBaseType->isVariableArrayType()) { 2735 if (const VariableArrayType *VAT = 2736 getContext().getAsVariableArrayType(ActualBaseType)) { 2737 if (!VAT->getSizeExpr()) 2738 ActualArgType = ArgType; 2739 } 2740 } 2741 } 2742 assert(getContext() 2743 .getCanonicalType(ArgType.getNonReferenceType()) 2744 .getTypePtr() == 2745 getContext().getCanonicalType(ActualArgType).getTypePtr() && 2746 "type mismatch in call argument!"); 2747 #endif 2748 ArgTypes.push_back(*I); 2749 } 2750 } 2751 2752 // Either we've emitted all the call args, or we have a call to variadic 2753 // function. 2754 assert( 2755 (Arg == ArgEnd || !CallArgTypeInfo || CallArgTypeInfo->isVariadic()) && 2756 "Extra arguments in non-variadic function!"); 2757 2758 // If we still have any arguments, emit them using the type of the argument. 2759 for (; Arg != ArgEnd; ++Arg) 2760 ArgTypes.push_back(getVarArgType(*Arg)); 2761 2762 EmitCallArgs(Args, ArgTypes, ArgBeg, ArgEnd, CalleeDecl, ParamsToSkip, 2763 ForceColumnInfo); 2764 } 2765 2766 void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes, 2767 CallExpr::const_arg_iterator ArgBeg, 2768 CallExpr::const_arg_iterator ArgEnd, 2769 const FunctionDecl *CalleeDecl = nullptr, 2770 unsigned ParamsToSkip = 0, bool ForceColumnInfo = false); 2771 2772 private: 2773 QualType getVarArgType(const Expr *Arg); 2774 2775 const TargetCodeGenInfo &getTargetHooks() const { 2776 return CGM.getTargetCodeGenInfo(); 2777 } 2778 2779 void EmitDeclMetadata(); 2780 2781 CodeGenModule::ByrefHelpers * 2782 buildByrefHelpers(llvm::StructType &byrefType, 2783 const AutoVarEmission &emission); 2784 2785 void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); 2786 2787 /// GetPointeeAlignment - Given an expression with a pointer type, emit the 2788 /// value and compute our best estimate of the alignment of the pointee. 2789 std::pair<llvm::Value*, unsigned> EmitPointerWithAlignment(const Expr *Addr); 2790 }; 2791 2792 /// Helper class with most of the code for saving a value for a 2793 /// conditional expression cleanup. 2794 struct DominatingLLVMValue { 2795 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 2796 2797 /// Answer whether the given value needs extra work to be saved. 2798 static bool needsSaving(llvm::Value *value) { 2799 // If it's not an instruction, we don't need to save. 2800 if (!isa<llvm::Instruction>(value)) return false; 2801 2802 // If it's an instruction in the entry block, we don't need to save. 2803 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 2804 return (block != &block->getParent()->getEntryBlock()); 2805 } 2806 2807 /// Try to save the given value. 2808 static saved_type save(CodeGenFunction &CGF, llvm::Value *value) { 2809 if (!needsSaving(value)) return saved_type(value, false); 2810 2811 // Otherwise we need an alloca. 2812 llvm::Value *alloca = 2813 CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save"); 2814 CGF.Builder.CreateStore(value, alloca); 2815 2816 return saved_type(alloca, true); 2817 } 2818 2819 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) { 2820 if (!value.getInt()) return value.getPointer(); 2821 return CGF.Builder.CreateLoad(value.getPointer()); 2822 } 2823 }; 2824 2825 /// A partial specialization of DominatingValue for llvm::Values that 2826 /// might be llvm::Instructions. 2827 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 2828 typedef T *type; 2829 static type restore(CodeGenFunction &CGF, saved_type value) { 2830 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 2831 } 2832 }; 2833 2834 /// A specialization of DominatingValue for RValue. 2835 template <> struct DominatingValue<RValue> { 2836 typedef RValue type; 2837 class saved_type { 2838 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 2839 AggregateAddress, ComplexAddress }; 2840 2841 llvm::Value *Value; 2842 Kind K; 2843 saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {} 2844 2845 public: 2846 static bool needsSaving(RValue value); 2847 static saved_type save(CodeGenFunction &CGF, RValue value); 2848 RValue restore(CodeGenFunction &CGF); 2849 2850 // implementations in CGExprCXX.cpp 2851 }; 2852 2853 static bool needsSaving(type value) { 2854 return saved_type::needsSaving(value); 2855 } 2856 static saved_type save(CodeGenFunction &CGF, type value) { 2857 return saved_type::save(CGF, value); 2858 } 2859 static type restore(CodeGenFunction &CGF, saved_type value) { 2860 return value.restore(CGF); 2861 } 2862 }; 2863 2864 } // end namespace CodeGen 2865 } // end namespace clang 2866 2867 #endif 2868