1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the internal per-function state used for llvm translation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef CLANG_CODEGEN_CODEGENFUNCTION_H
15 #define CLANG_CODEGEN_CODEGENFUNCTION_H
16 
17 #include "CGBuilder.h"
18 #include "CGDebugInfo.h"
19 #include "CGValue.h"
20 #include "EHScopeStack.h"
21 #include "CodeGenModule.h"
22 #include "clang/AST/CharUnits.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/ExprObjC.h"
25 #include "clang/AST/Type.h"
26 #include "clang/Basic/ABI.h"
27 #include "clang/Basic/CapturedStmt.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "clang/Frontend/CodeGenOptions.h"
30 #include "llvm/ADT/ArrayRef.h"
31 #include "llvm/ADT/DenseMap.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ValueHandle.h"
35 
36 namespace llvm {
37   class BasicBlock;
38   class LLVMContext;
39   class MDNode;
40   class Module;
41   class SwitchInst;
42   class Twine;
43   class Value;
44   class CallSite;
45 }
46 
47 namespace clang {
48   class ASTContext;
49   class BlockDecl;
50   class CXXDestructorDecl;
51   class CXXForRangeStmt;
52   class CXXTryStmt;
53   class Decl;
54   class LabelDecl;
55   class EnumConstantDecl;
56   class FunctionDecl;
57   class FunctionProtoType;
58   class LabelStmt;
59   class ObjCContainerDecl;
60   class ObjCInterfaceDecl;
61   class ObjCIvarDecl;
62   class ObjCMethodDecl;
63   class ObjCImplementationDecl;
64   class ObjCPropertyImplDecl;
65   class TargetInfo;
66   class TargetCodeGenInfo;
67   class VarDecl;
68   class ObjCForCollectionStmt;
69   class ObjCAtTryStmt;
70   class ObjCAtThrowStmt;
71   class ObjCAtSynchronizedStmt;
72   class ObjCAutoreleasePoolStmt;
73 
74 namespace CodeGen {
75   class CodeGenTypes;
76   class CGFunctionInfo;
77   class CGRecordLayout;
78   class CGBlockInfo;
79   class CGCXXABI;
80   class BlockFlags;
81   class BlockFieldFlags;
82 
83 /// The kind of evaluation to perform on values of a particular
84 /// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
85 /// CGExprAgg?
86 ///
87 /// TODO: should vectors maybe be split out into their own thing?
88 enum TypeEvaluationKind {
89   TEK_Scalar,
90   TEK_Complex,
91   TEK_Aggregate
92 };
93 
94 /// CodeGenFunction - This class organizes the per-function state that is used
95 /// while generating LLVM code.
96 class CodeGenFunction : public CodeGenTypeCache {
97   CodeGenFunction(const CodeGenFunction &) LLVM_DELETED_FUNCTION;
98   void operator=(const CodeGenFunction &) LLVM_DELETED_FUNCTION;
99 
100   friend class CGCXXABI;
101 public:
102   /// A jump destination is an abstract label, branching to which may
103   /// require a jump out through normal cleanups.
104   struct JumpDest {
105     JumpDest() : Block(0), ScopeDepth(), Index(0) {}
106     JumpDest(llvm::BasicBlock *Block,
107              EHScopeStack::stable_iterator Depth,
108              unsigned Index)
109       : Block(Block), ScopeDepth(Depth), Index(Index) {}
110 
111     bool isValid() const { return Block != 0; }
112     llvm::BasicBlock *getBlock() const { return Block; }
113     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
114     unsigned getDestIndex() const { return Index; }
115 
116     // This should be used cautiously.
117     void setScopeDepth(EHScopeStack::stable_iterator depth) {
118       ScopeDepth = depth;
119     }
120 
121   private:
122     llvm::BasicBlock *Block;
123     EHScopeStack::stable_iterator ScopeDepth;
124     unsigned Index;
125   };
126 
127   CodeGenModule &CGM;  // Per-module state.
128   const TargetInfo &Target;
129 
130   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
131   CGBuilderTy Builder;
132 
133   /// CurFuncDecl - Holds the Decl for the current outermost
134   /// non-closure context.
135   const Decl *CurFuncDecl;
136   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
137   const Decl *CurCodeDecl;
138   const CGFunctionInfo *CurFnInfo;
139   QualType FnRetTy;
140   llvm::Function *CurFn;
141 
142   /// CurGD - The GlobalDecl for the current function being compiled.
143   GlobalDecl CurGD;
144 
145   /// PrologueCleanupDepth - The cleanup depth enclosing all the
146   /// cleanups associated with the parameters.
147   EHScopeStack::stable_iterator PrologueCleanupDepth;
148 
149   /// ReturnBlock - Unified return block.
150   JumpDest ReturnBlock;
151 
152   /// ReturnValue - The temporary alloca to hold the return value. This is null
153   /// iff the function has no return value.
154   llvm::Value *ReturnValue;
155 
156   /// AllocaInsertPoint - This is an instruction in the entry block before which
157   /// we prefer to insert allocas.
158   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
159 
160   /// \brief API for captured statement code generation.
161   class CGCapturedStmtInfo {
162   public:
163     explicit CGCapturedStmtInfo(const CapturedStmt &S,
164                                 CapturedRegionKind K = CR_Default)
165       : Kind(K), ThisValue(0), CXXThisFieldDecl(0) {
166 
167       RecordDecl::field_iterator Field =
168         S.getCapturedRecordDecl()->field_begin();
169       for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
170                                                 E = S.capture_end();
171            I != E; ++I, ++Field) {
172         if (I->capturesThis())
173           CXXThisFieldDecl = *Field;
174         else
175           CaptureFields[I->getCapturedVar()] = *Field;
176       }
177     }
178 
179     virtual ~CGCapturedStmtInfo();
180 
181     CapturedRegionKind getKind() const { return Kind; }
182 
183     void setContextValue(llvm::Value *V) { ThisValue = V; }
184     // \brief Retrieve the value of the context parameter.
185     llvm::Value *getContextValue() const { return ThisValue; }
186 
187     /// \brief Lookup the captured field decl for a variable.
188     const FieldDecl *lookup(const VarDecl *VD) const {
189       return CaptureFields.lookup(VD);
190     }
191 
192     bool isCXXThisExprCaptured() const { return CXXThisFieldDecl != 0; }
193     FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
194 
195     /// \brief Emit the captured statement body.
196     virtual void EmitBody(CodeGenFunction &CGF, Stmt *S) {
197       CGF.EmitStmt(S);
198     }
199 
200     /// \brief Get the name of the capture helper.
201     virtual StringRef getHelperName() const { return "__captured_stmt"; }
202 
203   private:
204     /// \brief The kind of captured statement being generated.
205     CapturedRegionKind Kind;
206 
207     /// \brief Keep the map between VarDecl and FieldDecl.
208     llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
209 
210     /// \brief The base address of the captured record, passed in as the first
211     /// argument of the parallel region function.
212     llvm::Value *ThisValue;
213 
214     /// \brief Captured 'this' type.
215     FieldDecl *CXXThisFieldDecl;
216   };
217   CGCapturedStmtInfo *CapturedStmtInfo;
218 
219   /// BoundsChecking - Emit run-time bounds checks. Higher values mean
220   /// potentially higher performance penalties.
221   unsigned char BoundsChecking;
222 
223   /// \brief Whether any type-checking sanitizers are enabled. If \c false,
224   /// calls to EmitTypeCheck can be skipped.
225   bool SanitizePerformTypeCheck;
226 
227   /// \brief Sanitizer options to use for this function.
228   const SanitizerOptions *SanOpts;
229 
230   /// In ARC, whether we should autorelease the return value.
231   bool AutoreleaseResult;
232 
233   const CodeGen::CGBlockInfo *BlockInfo;
234   llvm::Value *BlockPointer;
235 
236   llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
237   FieldDecl *LambdaThisCaptureField;
238 
239   /// \brief A mapping from NRVO variables to the flags used to indicate
240   /// when the NRVO has been applied to this variable.
241   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
242 
243   EHScopeStack EHStack;
244   llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
245 
246   /// Header for data within LifetimeExtendedCleanupStack.
247   struct LifetimeExtendedCleanupHeader {
248     /// The size of the following cleanup object.
249     size_t Size : 29;
250     /// The kind of cleanup to push: a value from the CleanupKind enumeration.
251     unsigned Kind : 3;
252 
253     size_t getSize() const { return Size; }
254     CleanupKind getKind() const { return static_cast<CleanupKind>(Kind); }
255   };
256 
257   /// i32s containing the indexes of the cleanup destinations.
258   llvm::AllocaInst *NormalCleanupDest;
259 
260   unsigned NextCleanupDestIndex;
261 
262   /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
263   CGBlockInfo *FirstBlockInfo;
264 
265   /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
266   llvm::BasicBlock *EHResumeBlock;
267 
268   /// The exception slot.  All landing pads write the current exception pointer
269   /// into this alloca.
270   llvm::Value *ExceptionSlot;
271 
272   /// The selector slot.  Under the MandatoryCleanup model, all landing pads
273   /// write the current selector value into this alloca.
274   llvm::AllocaInst *EHSelectorSlot;
275 
276   /// Emits a landing pad for the current EH stack.
277   llvm::BasicBlock *EmitLandingPad();
278 
279   llvm::BasicBlock *getInvokeDestImpl();
280 
281   template <class T>
282   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
283     return DominatingValue<T>::save(*this, value);
284   }
285 
286 public:
287   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
288   /// rethrows.
289   SmallVector<llvm::Value*, 8> ObjCEHValueStack;
290 
291   /// A class controlling the emission of a finally block.
292   class FinallyInfo {
293     /// Where the catchall's edge through the cleanup should go.
294     JumpDest RethrowDest;
295 
296     /// A function to call to enter the catch.
297     llvm::Constant *BeginCatchFn;
298 
299     /// An i1 variable indicating whether or not the @finally is
300     /// running for an exception.
301     llvm::AllocaInst *ForEHVar;
302 
303     /// An i8* variable into which the exception pointer to rethrow
304     /// has been saved.
305     llvm::AllocaInst *SavedExnVar;
306 
307   public:
308     void enter(CodeGenFunction &CGF, const Stmt *Finally,
309                llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
310                llvm::Constant *rethrowFn);
311     void exit(CodeGenFunction &CGF);
312   };
313 
314   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
315   /// current full-expression.  Safe against the possibility that
316   /// we're currently inside a conditionally-evaluated expression.
317   template <class T, class A0>
318   void pushFullExprCleanup(CleanupKind kind, A0 a0) {
319     // If we're not in a conditional branch, or if none of the
320     // arguments requires saving, then use the unconditional cleanup.
321     if (!isInConditionalBranch())
322       return EHStack.pushCleanup<T>(kind, a0);
323 
324     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
325 
326     typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType;
327     EHStack.pushCleanup<CleanupType>(kind, a0_saved);
328     initFullExprCleanup();
329   }
330 
331   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
332   /// current full-expression.  Safe against the possibility that
333   /// we're currently inside a conditionally-evaluated expression.
334   template <class T, class A0, class A1>
335   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) {
336     // If we're not in a conditional branch, or if none of the
337     // arguments requires saving, then use the unconditional cleanup.
338     if (!isInConditionalBranch())
339       return EHStack.pushCleanup<T>(kind, a0, a1);
340 
341     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
342     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
343 
344     typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType;
345     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved);
346     initFullExprCleanup();
347   }
348 
349   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
350   /// current full-expression.  Safe against the possibility that
351   /// we're currently inside a conditionally-evaluated expression.
352   template <class T, class A0, class A1, class A2>
353   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2) {
354     // If we're not in a conditional branch, or if none of the
355     // arguments requires saving, then use the unconditional cleanup.
356     if (!isInConditionalBranch()) {
357       return EHStack.pushCleanup<T>(kind, a0, a1, a2);
358     }
359 
360     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
361     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
362     typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
363 
364     typedef EHScopeStack::ConditionalCleanup3<T, A0, A1, A2> CleanupType;
365     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, a2_saved);
366     initFullExprCleanup();
367   }
368 
369   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
370   /// current full-expression.  Safe against the possibility that
371   /// we're currently inside a conditionally-evaluated expression.
372   template <class T, class A0, class A1, class A2, class A3>
373   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2, A3 a3) {
374     // If we're not in a conditional branch, or if none of the
375     // arguments requires saving, then use the unconditional cleanup.
376     if (!isInConditionalBranch()) {
377       return EHStack.pushCleanup<T>(kind, a0, a1, a2, a3);
378     }
379 
380     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
381     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
382     typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
383     typename DominatingValue<A3>::saved_type a3_saved = saveValueInCond(a3);
384 
385     typedef EHScopeStack::ConditionalCleanup4<T, A0, A1, A2, A3> CleanupType;
386     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved,
387                                      a2_saved, a3_saved);
388     initFullExprCleanup();
389   }
390 
391   /// \brief Queue a cleanup to be pushed after finishing the current
392   /// full-expression.
393   template <class T, class A0, class A1, class A2, class A3>
394   void pushCleanupAfterFullExpr(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) {
395     assert(!isInConditionalBranch() && "can't defer conditional cleanup");
396 
397     LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind };
398 
399     size_t OldSize = LifetimeExtendedCleanupStack.size();
400     LifetimeExtendedCleanupStack.resize(
401         LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size);
402 
403     char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
404     new (Buffer) LifetimeExtendedCleanupHeader(Header);
405     new (Buffer + sizeof(Header)) T(a0, a1, a2, a3);
406   }
407 
408   /// Set up the last cleaup that was pushed as a conditional
409   /// full-expression cleanup.
410   void initFullExprCleanup();
411 
412   /// PushDestructorCleanup - Push a cleanup to call the
413   /// complete-object destructor of an object of the given type at the
414   /// given address.  Does nothing if T is not a C++ class type with a
415   /// non-trivial destructor.
416   void PushDestructorCleanup(QualType T, llvm::Value *Addr);
417 
418   /// PushDestructorCleanup - Push a cleanup to call the
419   /// complete-object variant of the given destructor on the object at
420   /// the given address.
421   void PushDestructorCleanup(const CXXDestructorDecl *Dtor,
422                              llvm::Value *Addr);
423 
424   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
425   /// process all branch fixups.
426   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
427 
428   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
429   /// The block cannot be reactivated.  Pops it if it's the top of the
430   /// stack.
431   ///
432   /// \param DominatingIP - An instruction which is known to
433   ///   dominate the current IP (if set) and which lies along
434   ///   all paths of execution between the current IP and the
435   ///   the point at which the cleanup comes into scope.
436   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
437                               llvm::Instruction *DominatingIP);
438 
439   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
440   /// Cannot be used to resurrect a deactivated cleanup.
441   ///
442   /// \param DominatingIP - An instruction which is known to
443   ///   dominate the current IP (if set) and which lies along
444   ///   all paths of execution between the current IP and the
445   ///   the point at which the cleanup comes into scope.
446   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
447                             llvm::Instruction *DominatingIP);
448 
449   /// \brief Enters a new scope for capturing cleanups, all of which
450   /// will be executed once the scope is exited.
451   class RunCleanupsScope {
452     EHScopeStack::stable_iterator CleanupStackDepth;
453     size_t LifetimeExtendedCleanupStackSize;
454     bool OldDidCallStackSave;
455   protected:
456     bool PerformCleanup;
457   private:
458 
459     RunCleanupsScope(const RunCleanupsScope &) LLVM_DELETED_FUNCTION;
460     void operator=(const RunCleanupsScope &) LLVM_DELETED_FUNCTION;
461 
462   protected:
463     CodeGenFunction& CGF;
464 
465   public:
466     /// \brief Enter a new cleanup scope.
467     explicit RunCleanupsScope(CodeGenFunction &CGF)
468       : PerformCleanup(true), CGF(CGF)
469     {
470       CleanupStackDepth = CGF.EHStack.stable_begin();
471       LifetimeExtendedCleanupStackSize =
472           CGF.LifetimeExtendedCleanupStack.size();
473       OldDidCallStackSave = CGF.DidCallStackSave;
474       CGF.DidCallStackSave = false;
475     }
476 
477     /// \brief Exit this cleanup scope, emitting any accumulated
478     /// cleanups.
479     ~RunCleanupsScope() {
480       if (PerformCleanup) {
481         CGF.DidCallStackSave = OldDidCallStackSave;
482         CGF.PopCleanupBlocks(CleanupStackDepth,
483                              LifetimeExtendedCleanupStackSize);
484       }
485     }
486 
487     /// \brief Determine whether this scope requires any cleanups.
488     bool requiresCleanups() const {
489       return CGF.EHStack.stable_begin() != CleanupStackDepth;
490     }
491 
492     /// \brief Force the emission of cleanups now, instead of waiting
493     /// until this object is destroyed.
494     void ForceCleanup() {
495       assert(PerformCleanup && "Already forced cleanup");
496       CGF.DidCallStackSave = OldDidCallStackSave;
497       CGF.PopCleanupBlocks(CleanupStackDepth,
498                            LifetimeExtendedCleanupStackSize);
499       PerformCleanup = false;
500     }
501   };
502 
503   class LexicalScope: protected RunCleanupsScope {
504     SourceRange Range;
505     SmallVector<const LabelDecl*, 4> Labels;
506     LexicalScope *ParentScope;
507 
508     LexicalScope(const LexicalScope &) LLVM_DELETED_FUNCTION;
509     void operator=(const LexicalScope &) LLVM_DELETED_FUNCTION;
510 
511   public:
512     /// \brief Enter a new cleanup scope.
513     explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
514       : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
515       CGF.CurLexicalScope = this;
516       if (CGDebugInfo *DI = CGF.getDebugInfo())
517         DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
518     }
519 
520     void addLabel(const LabelDecl *label) {
521       assert(PerformCleanup && "adding label to dead scope?");
522       Labels.push_back(label);
523     }
524 
525     /// \brief Exit this cleanup scope, emitting any accumulated
526     /// cleanups.
527     ~LexicalScope() {
528       if (CGDebugInfo *DI = CGF.getDebugInfo())
529         DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
530 
531       // If we should perform a cleanup, force them now.  Note that
532       // this ends the cleanup scope before rescoping any labels.
533       if (PerformCleanup) ForceCleanup();
534     }
535 
536     /// \brief Force the emission of cleanups now, instead of waiting
537     /// until this object is destroyed.
538     void ForceCleanup() {
539       CGF.CurLexicalScope = ParentScope;
540       RunCleanupsScope::ForceCleanup();
541 
542       if (!Labels.empty())
543         rescopeLabels();
544     }
545 
546     void rescopeLabels();
547   };
548 
549 
550   /// \brief Takes the old cleanup stack size and emits the cleanup blocks
551   /// that have been added.
552   void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize);
553 
554   /// \brief Takes the old cleanup stack size and emits the cleanup blocks
555   /// that have been added, then adds all lifetime-extended cleanups from
556   /// the given position to the stack.
557   void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
558                         size_t OldLifetimeExtendedStackSize);
559 
560   void ResolveBranchFixups(llvm::BasicBlock *Target);
561 
562   /// The given basic block lies in the current EH scope, but may be a
563   /// target of a potentially scope-crossing jump; get a stable handle
564   /// to which we can perform this jump later.
565   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
566     return JumpDest(Target,
567                     EHStack.getInnermostNormalCleanup(),
568                     NextCleanupDestIndex++);
569   }
570 
571   /// The given basic block lies in the current EH scope, but may be a
572   /// target of a potentially scope-crossing jump; get a stable handle
573   /// to which we can perform this jump later.
574   JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
575     return getJumpDestInCurrentScope(createBasicBlock(Name));
576   }
577 
578   /// EmitBranchThroughCleanup - Emit a branch from the current insert
579   /// block through the normal cleanup handling code (if any) and then
580   /// on to \arg Dest.
581   void EmitBranchThroughCleanup(JumpDest Dest);
582 
583   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
584   /// specified destination obviously has no cleanups to run.  'false' is always
585   /// a conservatively correct answer for this method.
586   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
587 
588   /// popCatchScope - Pops the catch scope at the top of the EHScope
589   /// stack, emitting any required code (other than the catch handlers
590   /// themselves).
591   void popCatchScope();
592 
593   llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
594   llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
595 
596   /// An object to manage conditionally-evaluated expressions.
597   class ConditionalEvaluation {
598     llvm::BasicBlock *StartBB;
599 
600   public:
601     ConditionalEvaluation(CodeGenFunction &CGF)
602       : StartBB(CGF.Builder.GetInsertBlock()) {}
603 
604     void begin(CodeGenFunction &CGF) {
605       assert(CGF.OutermostConditional != this);
606       if (!CGF.OutermostConditional)
607         CGF.OutermostConditional = this;
608     }
609 
610     void end(CodeGenFunction &CGF) {
611       assert(CGF.OutermostConditional != 0);
612       if (CGF.OutermostConditional == this)
613         CGF.OutermostConditional = 0;
614     }
615 
616     /// Returns a block which will be executed prior to each
617     /// evaluation of the conditional code.
618     llvm::BasicBlock *getStartingBlock() const {
619       return StartBB;
620     }
621   };
622 
623   /// isInConditionalBranch - Return true if we're currently emitting
624   /// one branch or the other of a conditional expression.
625   bool isInConditionalBranch() const { return OutermostConditional != 0; }
626 
627   void setBeforeOutermostConditional(llvm::Value *value, llvm::Value *addr) {
628     assert(isInConditionalBranch());
629     llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
630     new llvm::StoreInst(value, addr, &block->back());
631   }
632 
633   /// An RAII object to record that we're evaluating a statement
634   /// expression.
635   class StmtExprEvaluation {
636     CodeGenFunction &CGF;
637 
638     /// We have to save the outermost conditional: cleanups in a
639     /// statement expression aren't conditional just because the
640     /// StmtExpr is.
641     ConditionalEvaluation *SavedOutermostConditional;
642 
643   public:
644     StmtExprEvaluation(CodeGenFunction &CGF)
645       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
646       CGF.OutermostConditional = 0;
647     }
648 
649     ~StmtExprEvaluation() {
650       CGF.OutermostConditional = SavedOutermostConditional;
651       CGF.EnsureInsertPoint();
652     }
653   };
654 
655   /// An object which temporarily prevents a value from being
656   /// destroyed by aggressive peephole optimizations that assume that
657   /// all uses of a value have been realized in the IR.
658   class PeepholeProtection {
659     llvm::Instruction *Inst;
660     friend class CodeGenFunction;
661 
662   public:
663     PeepholeProtection() : Inst(0) {}
664   };
665 
666   /// A non-RAII class containing all the information about a bound
667   /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
668   /// this which makes individual mappings very simple; using this
669   /// class directly is useful when you have a variable number of
670   /// opaque values or don't want the RAII functionality for some
671   /// reason.
672   class OpaqueValueMappingData {
673     const OpaqueValueExpr *OpaqueValue;
674     bool BoundLValue;
675     CodeGenFunction::PeepholeProtection Protection;
676 
677     OpaqueValueMappingData(const OpaqueValueExpr *ov,
678                            bool boundLValue)
679       : OpaqueValue(ov), BoundLValue(boundLValue) {}
680   public:
681     OpaqueValueMappingData() : OpaqueValue(0) {}
682 
683     static bool shouldBindAsLValue(const Expr *expr) {
684       // gl-values should be bound as l-values for obvious reasons.
685       // Records should be bound as l-values because IR generation
686       // always keeps them in memory.  Expressions of function type
687       // act exactly like l-values but are formally required to be
688       // r-values in C.
689       return expr->isGLValue() ||
690              expr->getType()->isRecordType() ||
691              expr->getType()->isFunctionType();
692     }
693 
694     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
695                                        const OpaqueValueExpr *ov,
696                                        const Expr *e) {
697       if (shouldBindAsLValue(ov))
698         return bind(CGF, ov, CGF.EmitLValue(e));
699       return bind(CGF, ov, CGF.EmitAnyExpr(e));
700     }
701 
702     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
703                                        const OpaqueValueExpr *ov,
704                                        const LValue &lv) {
705       assert(shouldBindAsLValue(ov));
706       CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
707       return OpaqueValueMappingData(ov, true);
708     }
709 
710     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
711                                        const OpaqueValueExpr *ov,
712                                        const RValue &rv) {
713       assert(!shouldBindAsLValue(ov));
714       CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
715 
716       OpaqueValueMappingData data(ov, false);
717 
718       // Work around an extremely aggressive peephole optimization in
719       // EmitScalarConversion which assumes that all other uses of a
720       // value are extant.
721       data.Protection = CGF.protectFromPeepholes(rv);
722 
723       return data;
724     }
725 
726     bool isValid() const { return OpaqueValue != 0; }
727     void clear() { OpaqueValue = 0; }
728 
729     void unbind(CodeGenFunction &CGF) {
730       assert(OpaqueValue && "no data to unbind!");
731 
732       if (BoundLValue) {
733         CGF.OpaqueLValues.erase(OpaqueValue);
734       } else {
735         CGF.OpaqueRValues.erase(OpaqueValue);
736         CGF.unprotectFromPeepholes(Protection);
737       }
738     }
739   };
740 
741   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
742   class OpaqueValueMapping {
743     CodeGenFunction &CGF;
744     OpaqueValueMappingData Data;
745 
746   public:
747     static bool shouldBindAsLValue(const Expr *expr) {
748       return OpaqueValueMappingData::shouldBindAsLValue(expr);
749     }
750 
751     /// Build the opaque value mapping for the given conditional
752     /// operator if it's the GNU ?: extension.  This is a common
753     /// enough pattern that the convenience operator is really
754     /// helpful.
755     ///
756     OpaqueValueMapping(CodeGenFunction &CGF,
757                        const AbstractConditionalOperator *op) : CGF(CGF) {
758       if (isa<ConditionalOperator>(op))
759         // Leave Data empty.
760         return;
761 
762       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
763       Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
764                                           e->getCommon());
765     }
766 
767     OpaqueValueMapping(CodeGenFunction &CGF,
768                        const OpaqueValueExpr *opaqueValue,
769                        LValue lvalue)
770       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
771     }
772 
773     OpaqueValueMapping(CodeGenFunction &CGF,
774                        const OpaqueValueExpr *opaqueValue,
775                        RValue rvalue)
776       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
777     }
778 
779     void pop() {
780       Data.unbind(CGF);
781       Data.clear();
782     }
783 
784     ~OpaqueValueMapping() {
785       if (Data.isValid()) Data.unbind(CGF);
786     }
787   };
788 
789   /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field
790   /// number that holds the value.
791   unsigned getByRefValueLLVMField(const ValueDecl *VD) const;
792 
793   /// BuildBlockByrefAddress - Computes address location of the
794   /// variable which is declared as __block.
795   llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr,
796                                       const VarDecl *V);
797 private:
798   CGDebugInfo *DebugInfo;
799   bool DisableDebugInfo;
800 
801   /// If the current function returns 'this', use the field to keep track of
802   /// the callee that returns 'this'.
803   llvm::Value *CalleeWithThisReturn;
804 
805   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
806   /// calling llvm.stacksave for multiple VLAs in the same scope.
807   bool DidCallStackSave;
808 
809   /// IndirectBranch - The first time an indirect goto is seen we create a block
810   /// with an indirect branch.  Every time we see the address of a label taken,
811   /// we add the label to the indirect goto.  Every subsequent indirect goto is
812   /// codegen'd as a jump to the IndirectBranch's basic block.
813   llvm::IndirectBrInst *IndirectBranch;
814 
815   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
816   /// decls.
817   typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy;
818   DeclMapTy LocalDeclMap;
819 
820   /// LabelMap - This keeps track of the LLVM basic block for each C label.
821   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
822 
823   // BreakContinueStack - This keeps track of where break and continue
824   // statements should jump to.
825   struct BreakContinue {
826     BreakContinue(JumpDest Break, JumpDest Continue)
827       : BreakBlock(Break), ContinueBlock(Continue) {}
828 
829     JumpDest BreakBlock;
830     JumpDest ContinueBlock;
831   };
832   SmallVector<BreakContinue, 8> BreakContinueStack;
833 
834   /// SwitchInsn - This is nearest current switch instruction. It is null if
835   /// current context is not in a switch.
836   llvm::SwitchInst *SwitchInsn;
837 
838   /// CaseRangeBlock - This block holds if condition check for last case
839   /// statement range in current switch instruction.
840   llvm::BasicBlock *CaseRangeBlock;
841 
842   /// OpaqueLValues - Keeps track of the current set of opaque value
843   /// expressions.
844   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
845   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
846 
847   // VLASizeMap - This keeps track of the associated size for each VLA type.
848   // We track this by the size expression rather than the type itself because
849   // in certain situations, like a const qualifier applied to an VLA typedef,
850   // multiple VLA types can share the same size expression.
851   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
852   // enter/leave scopes.
853   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
854 
855   /// A block containing a single 'unreachable' instruction.  Created
856   /// lazily by getUnreachableBlock().
857   llvm::BasicBlock *UnreachableBlock;
858 
859   /// Counts of the number return expressions in the function.
860   unsigned NumReturnExprs;
861 
862   /// Count the number of simple (constant) return expressions in the function.
863   unsigned NumSimpleReturnExprs;
864 
865   /// The last regular (non-return) debug location (breakpoint) in the function.
866   SourceLocation LastStopPoint;
867 
868 public:
869   /// A scope within which we are constructing the fields of an object which
870   /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
871   /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
872   class FieldConstructionScope {
873   public:
874     FieldConstructionScope(CodeGenFunction &CGF, llvm::Value *This)
875         : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
876       CGF.CXXDefaultInitExprThis = This;
877     }
878     ~FieldConstructionScope() {
879       CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
880     }
881 
882   private:
883     CodeGenFunction &CGF;
884     llvm::Value *OldCXXDefaultInitExprThis;
885   };
886 
887   /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
888   /// is overridden to be the object under construction.
889   class CXXDefaultInitExprScope {
890   public:
891     CXXDefaultInitExprScope(CodeGenFunction &CGF)
892         : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue) {
893       CGF.CXXThisValue = CGF.CXXDefaultInitExprThis;
894     }
895     ~CXXDefaultInitExprScope() {
896       CGF.CXXThisValue = OldCXXThisValue;
897     }
898 
899   public:
900     CodeGenFunction &CGF;
901     llvm::Value *OldCXXThisValue;
902   };
903 
904 private:
905   /// CXXThisDecl - When generating code for a C++ member function,
906   /// this will hold the implicit 'this' declaration.
907   ImplicitParamDecl *CXXABIThisDecl;
908   llvm::Value *CXXABIThisValue;
909   llvm::Value *CXXThisValue;
910 
911   /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
912   /// this expression.
913   llvm::Value *CXXDefaultInitExprThis;
914 
915   /// CXXStructorImplicitParamDecl - When generating code for a constructor or
916   /// destructor, this will hold the implicit argument (e.g. VTT).
917   ImplicitParamDecl *CXXStructorImplicitParamDecl;
918   llvm::Value *CXXStructorImplicitParamValue;
919 
920   /// OutermostConditional - Points to the outermost active
921   /// conditional control.  This is used so that we know if a
922   /// temporary should be destroyed conditionally.
923   ConditionalEvaluation *OutermostConditional;
924 
925   /// The current lexical scope.
926   LexicalScope *CurLexicalScope;
927 
928   /// The current source location that should be used for exception
929   /// handling code.
930   SourceLocation CurEHLocation;
931 
932   /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM
933   /// type as well as the field number that contains the actual data.
934   llvm::DenseMap<const ValueDecl *, std::pair<llvm::Type *,
935                                               unsigned> > ByRefValueInfo;
936 
937   llvm::BasicBlock *TerminateLandingPad;
938   llvm::BasicBlock *TerminateHandler;
939   llvm::BasicBlock *TrapBB;
940 
941   /// Add a kernel metadata node to the named metadata node 'opencl.kernels'.
942   /// In the kernel metadata node, reference the kernel function and metadata
943   /// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2):
944   /// - A node for the vec_type_hint(<type>) qualifier contains string
945   ///   "vec_type_hint", an undefined value of the <type> data type,
946   ///   and a Boolean that is true if the <type> is integer and signed.
947   /// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string
948   ///   "work_group_size_hint", and three 32-bit integers X, Y and Z.
949   /// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string
950   ///   "reqd_work_group_size", and three 32-bit integers X, Y and Z.
951   void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
952                                 llvm::Function *Fn);
953 
954 public:
955   CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
956   ~CodeGenFunction();
957 
958   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
959   ASTContext &getContext() const { return CGM.getContext(); }
960   /// Returns true if DebugInfo is actually initialized.
961   bool maybeInitializeDebugInfo() {
962     if (CGM.getModuleDebugInfo()) {
963       DebugInfo = CGM.getModuleDebugInfo();
964       return true;
965     }
966     return false;
967   }
968   CGDebugInfo *getDebugInfo() {
969     if (DisableDebugInfo)
970       return NULL;
971     return DebugInfo;
972   }
973   void disableDebugInfo() { DisableDebugInfo = true; }
974   void enableDebugInfo() { DisableDebugInfo = false; }
975 
976   bool shouldUseFusedARCCalls() {
977     return CGM.getCodeGenOpts().OptimizationLevel == 0;
978   }
979 
980   const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
981 
982   /// Returns a pointer to the function's exception object and selector slot,
983   /// which is assigned in every landing pad.
984   llvm::Value *getExceptionSlot();
985   llvm::Value *getEHSelectorSlot();
986 
987   /// Returns the contents of the function's exception object and selector
988   /// slots.
989   llvm::Value *getExceptionFromSlot();
990   llvm::Value *getSelectorFromSlot();
991 
992   llvm::Value *getNormalCleanupDestSlot();
993 
994   llvm::BasicBlock *getUnreachableBlock() {
995     if (!UnreachableBlock) {
996       UnreachableBlock = createBasicBlock("unreachable");
997       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
998     }
999     return UnreachableBlock;
1000   }
1001 
1002   llvm::BasicBlock *getInvokeDest() {
1003     if (!EHStack.requiresLandingPad()) return 0;
1004     return getInvokeDestImpl();
1005   }
1006 
1007   const TargetInfo &getTarget() const { return Target; }
1008   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1009 
1010   //===--------------------------------------------------------------------===//
1011   //                                  Cleanups
1012   //===--------------------------------------------------------------------===//
1013 
1014   typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty);
1015 
1016   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1017                                         llvm::Value *arrayEndPointer,
1018                                         QualType elementType,
1019                                         Destroyer *destroyer);
1020   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1021                                       llvm::Value *arrayEnd,
1022                                       QualType elementType,
1023                                       Destroyer *destroyer);
1024 
1025   void pushDestroy(QualType::DestructionKind dtorKind,
1026                    llvm::Value *addr, QualType type);
1027   void pushEHDestroy(QualType::DestructionKind dtorKind,
1028                      llvm::Value *addr, QualType type);
1029   void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type,
1030                    Destroyer *destroyer, bool useEHCleanupForArray);
1031   void pushLifetimeExtendedDestroy(CleanupKind kind, llvm::Value *addr,
1032                                    QualType type, Destroyer *destroyer,
1033                                    bool useEHCleanupForArray);
1034   void emitDestroy(llvm::Value *addr, QualType type, Destroyer *destroyer,
1035                    bool useEHCleanupForArray);
1036   llvm::Function *generateDestroyHelper(llvm::Constant *addr,
1037                                         QualType type,
1038                                         Destroyer *destroyer,
1039                                         bool useEHCleanupForArray);
1040   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1041                         QualType type, Destroyer *destroyer,
1042                         bool checkZeroLength, bool useEHCleanup);
1043 
1044   Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1045 
1046   /// Determines whether an EH cleanup is required to destroy a type
1047   /// with the given destruction kind.
1048   bool needsEHCleanup(QualType::DestructionKind kind) {
1049     switch (kind) {
1050     case QualType::DK_none:
1051       return false;
1052     case QualType::DK_cxx_destructor:
1053     case QualType::DK_objc_weak_lifetime:
1054       return getLangOpts().Exceptions;
1055     case QualType::DK_objc_strong_lifetime:
1056       return getLangOpts().Exceptions &&
1057              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1058     }
1059     llvm_unreachable("bad destruction kind");
1060   }
1061 
1062   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
1063     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1064   }
1065 
1066   //===--------------------------------------------------------------------===//
1067   //                                  Objective-C
1068   //===--------------------------------------------------------------------===//
1069 
1070   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1071 
1072   void StartObjCMethod(const ObjCMethodDecl *MD,
1073                        const ObjCContainerDecl *CD,
1074                        SourceLocation StartLoc);
1075 
1076   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1077   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1078                           const ObjCPropertyImplDecl *PID);
1079   void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1080                               const ObjCPropertyImplDecl *propImpl,
1081                               const ObjCMethodDecl *GetterMothodDecl,
1082                               llvm::Constant *AtomicHelperFn);
1083 
1084   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1085                                   ObjCMethodDecl *MD, bool ctor);
1086 
1087   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1088   /// for the given property.
1089   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1090                           const ObjCPropertyImplDecl *PID);
1091   void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1092                               const ObjCPropertyImplDecl *propImpl,
1093                               llvm::Constant *AtomicHelperFn);
1094   bool IndirectObjCSetterArg(const CGFunctionInfo &FI);
1095   bool IvarTypeWithAggrGCObjects(QualType Ty);
1096 
1097   //===--------------------------------------------------------------------===//
1098   //                                  Block Bits
1099   //===--------------------------------------------------------------------===//
1100 
1101   llvm::Value *EmitBlockLiteral(const BlockExpr *);
1102   llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
1103   static void destroyBlockInfos(CGBlockInfo *info);
1104   llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *,
1105                                            const CGBlockInfo &Info,
1106                                            llvm::StructType *,
1107                                            llvm::Constant *BlockVarLayout);
1108 
1109   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1110                                         const CGBlockInfo &Info,
1111                                         const DeclMapTy &ldm,
1112                                         bool IsLambdaConversionToBlock);
1113 
1114   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1115   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1116   llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
1117                                              const ObjCPropertyImplDecl *PID);
1118   llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
1119                                              const ObjCPropertyImplDecl *PID);
1120   llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
1121 
1122   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
1123 
1124   class AutoVarEmission;
1125 
1126   void emitByrefStructureInit(const AutoVarEmission &emission);
1127   void enterByrefCleanup(const AutoVarEmission &emission);
1128 
1129   llvm::Value *LoadBlockStruct() {
1130     assert(BlockPointer && "no block pointer set!");
1131     return BlockPointer;
1132   }
1133 
1134   void AllocateBlockCXXThisPointer(const CXXThisExpr *E);
1135   void AllocateBlockDecl(const DeclRefExpr *E);
1136   llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
1137   llvm::Type *BuildByRefType(const VarDecl *var);
1138 
1139   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1140                     const CGFunctionInfo &FnInfo);
1141   void StartFunction(GlobalDecl GD,
1142                      QualType RetTy,
1143                      llvm::Function *Fn,
1144                      const CGFunctionInfo &FnInfo,
1145                      const FunctionArgList &Args,
1146                      SourceLocation StartLoc);
1147 
1148   void EmitConstructorBody(FunctionArgList &Args);
1149   void EmitDestructorBody(FunctionArgList &Args);
1150   void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
1151   void EmitFunctionBody(FunctionArgList &Args);
1152 
1153   void EmitForwardingCallToLambda(const CXXRecordDecl *Lambda,
1154                                   CallArgList &CallArgs);
1155   void EmitLambdaToBlockPointerBody(FunctionArgList &Args);
1156   void EmitLambdaBlockInvokeBody();
1157   void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
1158   void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD);
1159 
1160   /// EmitReturnBlock - Emit the unified return block, trying to avoid its
1161   /// emission when possible.
1162   void EmitReturnBlock();
1163 
1164   /// FinishFunction - Complete IR generation of the current function. It is
1165   /// legal to call this function even if there is no current insertion point.
1166   void FinishFunction(SourceLocation EndLoc=SourceLocation());
1167 
1168   /// GenerateThunk - Generate a thunk for the given method.
1169   void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1170                      GlobalDecl GD, const ThunkInfo &Thunk);
1171 
1172   void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1173                             GlobalDecl GD, const ThunkInfo &Thunk);
1174 
1175   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1176                         FunctionArgList &Args);
1177 
1178   void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init,
1179                                ArrayRef<VarDecl *> ArrayIndexes);
1180 
1181   /// InitializeVTablePointer - Initialize the vtable pointer of the given
1182   /// subobject.
1183   ///
1184   void InitializeVTablePointer(BaseSubobject Base,
1185                                const CXXRecordDecl *NearestVBase,
1186                                CharUnits OffsetFromNearestVBase,
1187                                llvm::Constant *VTable,
1188                                const CXXRecordDecl *VTableClass);
1189 
1190   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1191   void InitializeVTablePointers(BaseSubobject Base,
1192                                 const CXXRecordDecl *NearestVBase,
1193                                 CharUnits OffsetFromNearestVBase,
1194                                 bool BaseIsNonVirtualPrimaryBase,
1195                                 llvm::Constant *VTable,
1196                                 const CXXRecordDecl *VTableClass,
1197                                 VisitedVirtualBasesSetTy& VBases);
1198 
1199   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1200 
1201   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1202   /// to by This.
1203   llvm::Value *GetVTablePtr(llvm::Value *This, llvm::Type *Ty);
1204 
1205   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1206   /// given phase of destruction for a destructor.  The end result
1207   /// should call destructors on members and base classes in reverse
1208   /// order of their construction.
1209   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1210 
1211   /// ShouldInstrumentFunction - Return true if the current function should be
1212   /// instrumented with __cyg_profile_func_* calls
1213   bool ShouldInstrumentFunction();
1214 
1215   /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
1216   /// instrumentation function with the current function and the call site, if
1217   /// function instrumentation is enabled.
1218   void EmitFunctionInstrumentation(const char *Fn);
1219 
1220   /// EmitMCountInstrumentation - Emit call to .mcount.
1221   void EmitMCountInstrumentation();
1222 
1223   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1224   /// arguments for the given function. This is also responsible for naming the
1225   /// LLVM function arguments.
1226   void EmitFunctionProlog(const CGFunctionInfo &FI,
1227                           llvm::Function *Fn,
1228                           const FunctionArgList &Args);
1229 
1230   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1231   /// given temporary.
1232   void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc);
1233 
1234   /// EmitStartEHSpec - Emit the start of the exception spec.
1235   void EmitStartEHSpec(const Decl *D);
1236 
1237   /// EmitEndEHSpec - Emit the end of the exception spec.
1238   void EmitEndEHSpec(const Decl *D);
1239 
1240   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
1241   llvm::BasicBlock *getTerminateLandingPad();
1242 
1243   /// getTerminateHandler - Return a handler (not a landing pad, just
1244   /// a catch handler) that just calls terminate.  This is used when
1245   /// a terminate scope encloses a try.
1246   llvm::BasicBlock *getTerminateHandler();
1247 
1248   llvm::Type *ConvertTypeForMem(QualType T);
1249   llvm::Type *ConvertType(QualType T);
1250   llvm::Type *ConvertType(const TypeDecl *T) {
1251     return ConvertType(getContext().getTypeDeclType(T));
1252   }
1253 
1254   /// LoadObjCSelf - Load the value of self. This function is only valid while
1255   /// generating code for an Objective-C method.
1256   llvm::Value *LoadObjCSelf();
1257 
1258   /// TypeOfSelfObject - Return type of object that this self represents.
1259   QualType TypeOfSelfObject();
1260 
1261   /// hasAggregateLLVMType - Return true if the specified AST type will map into
1262   /// an aggregate LLVM type or is void.
1263   static TypeEvaluationKind getEvaluationKind(QualType T);
1264 
1265   static bool hasScalarEvaluationKind(QualType T) {
1266     return getEvaluationKind(T) == TEK_Scalar;
1267   }
1268 
1269   static bool hasAggregateEvaluationKind(QualType T) {
1270     return getEvaluationKind(T) == TEK_Aggregate;
1271   }
1272 
1273   /// createBasicBlock - Create an LLVM basic block.
1274   llvm::BasicBlock *createBasicBlock(const Twine &name = "",
1275                                      llvm::Function *parent = 0,
1276                                      llvm::BasicBlock *before = 0) {
1277 #ifdef NDEBUG
1278     return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
1279 #else
1280     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
1281 #endif
1282   }
1283 
1284   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
1285   /// label maps to.
1286   JumpDest getJumpDestForLabel(const LabelDecl *S);
1287 
1288   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
1289   /// another basic block, simplify it. This assumes that no other code could
1290   /// potentially reference the basic block.
1291   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
1292 
1293   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
1294   /// adding a fall-through branch from the current insert block if
1295   /// necessary. It is legal to call this function even if there is no current
1296   /// insertion point.
1297   ///
1298   /// IsFinished - If true, indicates that the caller has finished emitting
1299   /// branches to the given block and does not expect to emit code into it. This
1300   /// means the block can be ignored if it is unreachable.
1301   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
1302 
1303   /// EmitBlockAfterUses - Emit the given block somewhere hopefully
1304   /// near its uses, and leave the insertion point in it.
1305   void EmitBlockAfterUses(llvm::BasicBlock *BB);
1306 
1307   /// EmitBranch - Emit a branch to the specified basic block from the current
1308   /// insert block, taking care to avoid creation of branches from dummy
1309   /// blocks. It is legal to call this function even if there is no current
1310   /// insertion point.
1311   ///
1312   /// This function clears the current insertion point. The caller should follow
1313   /// calls to this function with calls to Emit*Block prior to generation new
1314   /// code.
1315   void EmitBranch(llvm::BasicBlock *Block);
1316 
1317   /// HaveInsertPoint - True if an insertion point is defined. If not, this
1318   /// indicates that the current code being emitted is unreachable.
1319   bool HaveInsertPoint() const {
1320     return Builder.GetInsertBlock() != 0;
1321   }
1322 
1323   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
1324   /// emitted IR has a place to go. Note that by definition, if this function
1325   /// creates a block then that block is unreachable; callers may do better to
1326   /// detect when no insertion point is defined and simply skip IR generation.
1327   void EnsureInsertPoint() {
1328     if (!HaveInsertPoint())
1329       EmitBlock(createBasicBlock());
1330   }
1331 
1332   /// ErrorUnsupported - Print out an error that codegen doesn't support the
1333   /// specified stmt yet.
1334   void ErrorUnsupported(const Stmt *S, const char *Type,
1335                         bool OmitOnError=false);
1336 
1337   //===--------------------------------------------------------------------===//
1338   //                                  Helpers
1339   //===--------------------------------------------------------------------===//
1340 
1341   LValue MakeAddrLValue(llvm::Value *V, QualType T,
1342                         CharUnits Alignment = CharUnits()) {
1343     return LValue::MakeAddr(V, T, Alignment, getContext(),
1344                             CGM.getTBAAInfo(T));
1345   }
1346 
1347   LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
1348     CharUnits Alignment;
1349     if (!T->isIncompleteType())
1350       Alignment = getContext().getTypeAlignInChars(T);
1351     return LValue::MakeAddr(V, T, Alignment, getContext(),
1352                             CGM.getTBAAInfo(T));
1353   }
1354 
1355   /// CreateTempAlloca - This creates a alloca and inserts it into the entry
1356   /// block. The caller is responsible for setting an appropriate alignment on
1357   /// the alloca.
1358   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty,
1359                                      const Twine &Name = "tmp");
1360 
1361   /// InitTempAlloca - Provide an initial value for the given alloca.
1362   void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value);
1363 
1364   /// CreateIRTemp - Create a temporary IR object of the given type, with
1365   /// appropriate alignment. This routine should only be used when an temporary
1366   /// value needs to be stored into an alloca (for example, to avoid explicit
1367   /// PHI construction), but the type is the IR type, not the type appropriate
1368   /// for storing in memory.
1369   llvm::AllocaInst *CreateIRTemp(QualType T, const Twine &Name = "tmp");
1370 
1371   /// CreateMemTemp - Create a temporary memory object of the given type, with
1372   /// appropriate alignment.
1373   llvm::AllocaInst *CreateMemTemp(QualType T, const Twine &Name = "tmp");
1374 
1375   /// CreateAggTemp - Create a temporary memory object for the given
1376   /// aggregate type.
1377   AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
1378     CharUnits Alignment = getContext().getTypeAlignInChars(T);
1379     return AggValueSlot::forAddr(CreateMemTemp(T, Name), Alignment,
1380                                  T.getQualifiers(),
1381                                  AggValueSlot::IsNotDestructed,
1382                                  AggValueSlot::DoesNotNeedGCBarriers,
1383                                  AggValueSlot::IsNotAliased);
1384   }
1385 
1386   /// Emit a cast to void* in the appropriate address space.
1387   llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
1388 
1389   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
1390   /// expression and compare the result against zero, returning an Int1Ty value.
1391   llvm::Value *EvaluateExprAsBool(const Expr *E);
1392 
1393   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
1394   void EmitIgnoredExpr(const Expr *E);
1395 
1396   /// EmitAnyExpr - Emit code to compute the specified expression which can have
1397   /// any type.  The result is returned as an RValue struct.  If this is an
1398   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
1399   /// the result should be returned.
1400   ///
1401   /// \param ignoreResult True if the resulting value isn't used.
1402   RValue EmitAnyExpr(const Expr *E,
1403                      AggValueSlot aggSlot = AggValueSlot::ignored(),
1404                      bool ignoreResult = false);
1405 
1406   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
1407   // or the value of the expression, depending on how va_list is defined.
1408   llvm::Value *EmitVAListRef(const Expr *E);
1409 
1410   /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
1411   /// always be accessible even if no aggregate location is provided.
1412   RValue EmitAnyExprToTemp(const Expr *E);
1413 
1414   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
1415   /// arbitrary expression into the given memory location.
1416   void EmitAnyExprToMem(const Expr *E, llvm::Value *Location,
1417                         Qualifiers Quals, bool IsInitializer);
1418 
1419   /// EmitExprAsInit - Emits the code necessary to initialize a
1420   /// location in memory with the given initializer.
1421   void EmitExprAsInit(const Expr *init, const ValueDecl *D,
1422                       LValue lvalue, bool capturedByInit);
1423 
1424   /// hasVolatileMember - returns true if aggregate type has a volatile
1425   /// member.
1426   bool hasVolatileMember(QualType T) {
1427     if (const RecordType *RT = T->getAs<RecordType>()) {
1428       const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
1429       return RD->hasVolatileMember();
1430     }
1431     return false;
1432   }
1433   /// EmitAggregateCopy - Emit an aggregate assignment.
1434   ///
1435   /// The difference to EmitAggregateCopy is that tail padding is not copied.
1436   /// This is required for correctness when assigning non-POD structures in C++.
1437   void EmitAggregateAssign(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1438                            QualType EltTy) {
1439     bool IsVolatile = hasVolatileMember(EltTy);
1440     EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, CharUnits::Zero(),
1441                       true);
1442   }
1443 
1444   /// EmitAggregateCopy - Emit an aggregate copy.
1445   ///
1446   /// \param isVolatile - True iff either the source or the destination is
1447   /// volatile.
1448   /// \param isAssignment - If false, allow padding to be copied.  This often
1449   /// yields more efficient.
1450   void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1451                          QualType EltTy, bool isVolatile=false,
1452                          CharUnits Alignment = CharUnits::Zero(),
1453                          bool isAssignment = false);
1454 
1455   /// StartBlock - Start new block named N. If insert block is a dummy block
1456   /// then reuse it.
1457   void StartBlock(const char *N);
1458 
1459   /// GetAddrOfLocalVar - Return the address of a local variable.
1460   llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) {
1461     llvm::Value *Res = LocalDeclMap[VD];
1462     assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!");
1463     return Res;
1464   }
1465 
1466   /// getOpaqueLValueMapping - Given an opaque value expression (which
1467   /// must be mapped to an l-value), return its mapping.
1468   const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
1469     assert(OpaqueValueMapping::shouldBindAsLValue(e));
1470 
1471     llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
1472       it = OpaqueLValues.find(e);
1473     assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
1474     return it->second;
1475   }
1476 
1477   /// getOpaqueRValueMapping - Given an opaque value expression (which
1478   /// must be mapped to an r-value), return its mapping.
1479   const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
1480     assert(!OpaqueValueMapping::shouldBindAsLValue(e));
1481 
1482     llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
1483       it = OpaqueRValues.find(e);
1484     assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
1485     return it->second;
1486   }
1487 
1488   /// getAccessedFieldNo - Given an encoded value and a result number, return
1489   /// the input field number being accessed.
1490   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
1491 
1492   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
1493   llvm::BasicBlock *GetIndirectGotoBlock();
1494 
1495   /// EmitNullInitialization - Generate code to set a value of the given type to
1496   /// null, If the type contains data member pointers, they will be initialized
1497   /// to -1 in accordance with the Itanium C++ ABI.
1498   void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty);
1499 
1500   // EmitVAArg - Generate code to get an argument from the passed in pointer
1501   // and update it accordingly. The return value is a pointer to the argument.
1502   // FIXME: We should be able to get rid of this method and use the va_arg
1503   // instruction in LLVM instead once it works well enough.
1504   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty);
1505 
1506   /// emitArrayLength - Compute the length of an array, even if it's a
1507   /// VLA, and drill down to the base element type.
1508   llvm::Value *emitArrayLength(const ArrayType *arrayType,
1509                                QualType &baseType,
1510                                llvm::Value *&addr);
1511 
1512   /// EmitVLASize - Capture all the sizes for the VLA expressions in
1513   /// the given variably-modified type and store them in the VLASizeMap.
1514   ///
1515   /// This function can be called with a null (unreachable) insert point.
1516   void EmitVariablyModifiedType(QualType Ty);
1517 
1518   /// getVLASize - Returns an LLVM value that corresponds to the size,
1519   /// in non-variably-sized elements, of a variable length array type,
1520   /// plus that largest non-variably-sized element type.  Assumes that
1521   /// the type has already been emitted with EmitVariablyModifiedType.
1522   std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla);
1523   std::pair<llvm::Value*,QualType> getVLASize(QualType vla);
1524 
1525   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
1526   /// generating code for an C++ member function.
1527   llvm::Value *LoadCXXThis() {
1528     assert(CXXThisValue && "no 'this' value for this function");
1529     return CXXThisValue;
1530   }
1531 
1532   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
1533   /// virtual bases.
1534   // FIXME: Every place that calls LoadCXXVTT is something
1535   // that needs to be abstracted properly.
1536   llvm::Value *LoadCXXVTT() {
1537     assert(CXXStructorImplicitParamValue && "no VTT value for this function");
1538     return CXXStructorImplicitParamValue;
1539   }
1540 
1541   /// LoadCXXStructorImplicitParam - Load the implicit parameter
1542   /// for a constructor/destructor.
1543   llvm::Value *LoadCXXStructorImplicitParam() {
1544     assert(CXXStructorImplicitParamValue &&
1545            "no implicit argument value for this function");
1546     return CXXStructorImplicitParamValue;
1547   }
1548 
1549   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
1550   /// complete class to the given direct base.
1551   llvm::Value *
1552   GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value,
1553                                         const CXXRecordDecl *Derived,
1554                                         const CXXRecordDecl *Base,
1555                                         bool BaseIsVirtual);
1556 
1557   /// GetAddressOfBaseClass - This function will add the necessary delta to the
1558   /// load of 'this' and returns address of the base class.
1559   llvm::Value *GetAddressOfBaseClass(llvm::Value *Value,
1560                                      const CXXRecordDecl *Derived,
1561                                      CastExpr::path_const_iterator PathBegin,
1562                                      CastExpr::path_const_iterator PathEnd,
1563                                      bool NullCheckValue);
1564 
1565   llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value,
1566                                         const CXXRecordDecl *Derived,
1567                                         CastExpr::path_const_iterator PathBegin,
1568                                         CastExpr::path_const_iterator PathEnd,
1569                                         bool NullCheckValue);
1570 
1571   /// GetVTTParameter - Return the VTT parameter that should be passed to a
1572   /// base constructor/destructor with virtual bases.
1573   /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
1574   /// to ItaniumCXXABI.cpp together with all the references to VTT.
1575   llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
1576                                bool Delegating);
1577 
1578   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
1579                                       CXXCtorType CtorType,
1580                                       const FunctionArgList &Args);
1581   // It's important not to confuse this and the previous function. Delegating
1582   // constructors are the C++0x feature. The constructor delegate optimization
1583   // is used to reduce duplication in the base and complete consturctors where
1584   // they are substantially the same.
1585   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
1586                                         const FunctionArgList &Args);
1587   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
1588                               bool ForVirtualBase, bool Delegating,
1589                               llvm::Value *This,
1590                               CallExpr::const_arg_iterator ArgBeg,
1591                               CallExpr::const_arg_iterator ArgEnd);
1592 
1593   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
1594                               llvm::Value *This, llvm::Value *Src,
1595                               CallExpr::const_arg_iterator ArgBeg,
1596                               CallExpr::const_arg_iterator ArgEnd);
1597 
1598   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1599                                   const ConstantArrayType *ArrayTy,
1600                                   llvm::Value *ArrayPtr,
1601                                   CallExpr::const_arg_iterator ArgBeg,
1602                                   CallExpr::const_arg_iterator ArgEnd,
1603                                   bool ZeroInitialization = false);
1604 
1605   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1606                                   llvm::Value *NumElements,
1607                                   llvm::Value *ArrayPtr,
1608                                   CallExpr::const_arg_iterator ArgBeg,
1609                                   CallExpr::const_arg_iterator ArgEnd,
1610                                   bool ZeroInitialization = false);
1611 
1612   static Destroyer destroyCXXObject;
1613 
1614   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
1615                              bool ForVirtualBase, bool Delegating,
1616                              llvm::Value *This);
1617 
1618   void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
1619                                llvm::Value *NewPtr, llvm::Value *NumElements);
1620 
1621   void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
1622                         llvm::Value *Ptr);
1623 
1624   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
1625   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
1626 
1627   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
1628                       QualType DeleteTy);
1629 
1630   llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E);
1631   llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE);
1632   llvm::Value* EmitCXXUuidofExpr(const CXXUuidofExpr *E);
1633 
1634   /// \brief Situations in which we might emit a check for the suitability of a
1635   ///        pointer or glvalue.
1636   enum TypeCheckKind {
1637     /// Checking the operand of a load. Must be suitably sized and aligned.
1638     TCK_Load,
1639     /// Checking the destination of a store. Must be suitably sized and aligned.
1640     TCK_Store,
1641     /// Checking the bound value in a reference binding. Must be suitably sized
1642     /// and aligned, but is not required to refer to an object (until the
1643     /// reference is used), per core issue 453.
1644     TCK_ReferenceBinding,
1645     /// Checking the object expression in a non-static data member access. Must
1646     /// be an object within its lifetime.
1647     TCK_MemberAccess,
1648     /// Checking the 'this' pointer for a call to a non-static member function.
1649     /// Must be an object within its lifetime.
1650     TCK_MemberCall,
1651     /// Checking the 'this' pointer for a constructor call.
1652     TCK_ConstructorCall,
1653     /// Checking the operand of a static_cast to a derived pointer type. Must be
1654     /// null or an object within its lifetime.
1655     TCK_DowncastPointer,
1656     /// Checking the operand of a static_cast to a derived reference type. Must
1657     /// be an object within its lifetime.
1658     TCK_DowncastReference
1659   };
1660 
1661   /// \brief Emit a check that \p V is the address of storage of the
1662   /// appropriate size and alignment for an object of type \p Type.
1663   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
1664                      QualType Type, CharUnits Alignment = CharUnits::Zero());
1665 
1666   /// \brief Emit a check that \p Base points into an array object, which
1667   /// we can access at index \p Index. \p Accessed should be \c false if we
1668   /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
1669   void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
1670                        QualType IndexType, bool Accessed);
1671 
1672   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1673                                        bool isInc, bool isPre);
1674   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1675                                          bool isInc, bool isPre);
1676   //===--------------------------------------------------------------------===//
1677   //                            Declaration Emission
1678   //===--------------------------------------------------------------------===//
1679 
1680   /// EmitDecl - Emit a declaration.
1681   ///
1682   /// This function can be called with a null (unreachable) insert point.
1683   void EmitDecl(const Decl &D);
1684 
1685   /// EmitVarDecl - Emit a local variable declaration.
1686   ///
1687   /// This function can be called with a null (unreachable) insert point.
1688   void EmitVarDecl(const VarDecl &D);
1689 
1690   void EmitScalarInit(const Expr *init, const ValueDecl *D,
1691                       LValue lvalue, bool capturedByInit);
1692   void EmitScalarInit(llvm::Value *init, LValue lvalue);
1693 
1694   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
1695                              llvm::Value *Address);
1696 
1697   /// EmitAutoVarDecl - Emit an auto variable declaration.
1698   ///
1699   /// This function can be called with a null (unreachable) insert point.
1700   void EmitAutoVarDecl(const VarDecl &D);
1701 
1702   class AutoVarEmission {
1703     friend class CodeGenFunction;
1704 
1705     const VarDecl *Variable;
1706 
1707     /// The alignment of the variable.
1708     CharUnits Alignment;
1709 
1710     /// The address of the alloca.  Null if the variable was emitted
1711     /// as a global constant.
1712     llvm::Value *Address;
1713 
1714     llvm::Value *NRVOFlag;
1715 
1716     /// True if the variable is a __block variable.
1717     bool IsByRef;
1718 
1719     /// True if the variable is of aggregate type and has a constant
1720     /// initializer.
1721     bool IsConstantAggregate;
1722 
1723     /// Non-null if we should use lifetime annotations.
1724     llvm::Value *SizeForLifetimeMarkers;
1725 
1726     struct Invalid {};
1727     AutoVarEmission(Invalid) : Variable(0) {}
1728 
1729     AutoVarEmission(const VarDecl &variable)
1730       : Variable(&variable), Address(0), NRVOFlag(0),
1731         IsByRef(false), IsConstantAggregate(false),
1732         SizeForLifetimeMarkers(0) {}
1733 
1734     bool wasEmittedAsGlobal() const { return Address == 0; }
1735 
1736   public:
1737     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
1738 
1739     bool useLifetimeMarkers() const { return SizeForLifetimeMarkers != 0; }
1740     llvm::Value *getSizeForLifetimeMarkers() const {
1741       assert(useLifetimeMarkers());
1742       return SizeForLifetimeMarkers;
1743     }
1744 
1745     /// Returns the raw, allocated address, which is not necessarily
1746     /// the address of the object itself.
1747     llvm::Value *getAllocatedAddress() const {
1748       return Address;
1749     }
1750 
1751     /// Returns the address of the object within this declaration.
1752     /// Note that this does not chase the forwarding pointer for
1753     /// __block decls.
1754     llvm::Value *getObjectAddress(CodeGenFunction &CGF) const {
1755       if (!IsByRef) return Address;
1756 
1757       return CGF.Builder.CreateStructGEP(Address,
1758                                          CGF.getByRefValueLLVMField(Variable),
1759                                          Variable->getNameAsString());
1760     }
1761   };
1762   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
1763   void EmitAutoVarInit(const AutoVarEmission &emission);
1764   void EmitAutoVarCleanups(const AutoVarEmission &emission);
1765   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
1766                               QualType::DestructionKind dtorKind);
1767 
1768   void EmitStaticVarDecl(const VarDecl &D,
1769                          llvm::GlobalValue::LinkageTypes Linkage);
1770 
1771   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
1772   void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, unsigned ArgNo);
1773 
1774   /// protectFromPeepholes - Protect a value that we're intending to
1775   /// store to the side, but which will probably be used later, from
1776   /// aggressive peepholing optimizations that might delete it.
1777   ///
1778   /// Pass the result to unprotectFromPeepholes to declare that
1779   /// protection is no longer required.
1780   ///
1781   /// There's no particular reason why this shouldn't apply to
1782   /// l-values, it's just that no existing peepholes work on pointers.
1783   PeepholeProtection protectFromPeepholes(RValue rvalue);
1784   void unprotectFromPeepholes(PeepholeProtection protection);
1785 
1786   //===--------------------------------------------------------------------===//
1787   //                             Statement Emission
1788   //===--------------------------------------------------------------------===//
1789 
1790   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
1791   void EmitStopPoint(const Stmt *S);
1792 
1793   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
1794   /// this function even if there is no current insertion point.
1795   ///
1796   /// This function may clear the current insertion point; callers should use
1797   /// EnsureInsertPoint if they wish to subsequently generate code without first
1798   /// calling EmitBlock, EmitBranch, or EmitStmt.
1799   void EmitStmt(const Stmt *S);
1800 
1801   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
1802   /// necessarily require an insertion point or debug information; typically
1803   /// because the statement amounts to a jump or a container of other
1804   /// statements.
1805   ///
1806   /// \return True if the statement was handled.
1807   bool EmitSimpleStmt(const Stmt *S);
1808 
1809   llvm::Value *EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
1810                                 AggValueSlot AVS = AggValueSlot::ignored());
1811   llvm::Value *EmitCompoundStmtWithoutScope(const CompoundStmt &S,
1812                                             bool GetLast = false,
1813                                             AggValueSlot AVS =
1814                                                 AggValueSlot::ignored());
1815 
1816   /// EmitLabel - Emit the block for the given label. It is legal to call this
1817   /// function even if there is no current insertion point.
1818   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
1819 
1820   void EmitLabelStmt(const LabelStmt &S);
1821   void EmitAttributedStmt(const AttributedStmt &S);
1822   void EmitGotoStmt(const GotoStmt &S);
1823   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
1824   void EmitIfStmt(const IfStmt &S);
1825   void EmitWhileStmt(const WhileStmt &S);
1826   void EmitDoStmt(const DoStmt &S);
1827   void EmitForStmt(const ForStmt &S);
1828   void EmitReturnStmt(const ReturnStmt &S);
1829   void EmitDeclStmt(const DeclStmt &S);
1830   void EmitBreakStmt(const BreakStmt &S);
1831   void EmitContinueStmt(const ContinueStmt &S);
1832   void EmitSwitchStmt(const SwitchStmt &S);
1833   void EmitDefaultStmt(const DefaultStmt &S);
1834   void EmitCaseStmt(const CaseStmt &S);
1835   void EmitCaseStmtRange(const CaseStmt &S);
1836   void EmitAsmStmt(const AsmStmt &S);
1837 
1838   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
1839   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
1840   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
1841   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
1842   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
1843 
1844   llvm::Constant *getUnwindResumeFn();
1845   llvm::Constant *getUnwindResumeOrRethrowFn();
1846   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
1847   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
1848 
1849   void EmitCXXTryStmt(const CXXTryStmt &S);
1850   void EmitCXXForRangeStmt(const CXXForRangeStmt &S);
1851 
1852   llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
1853   llvm::Function *GenerateCapturedStmtFunction(const CapturedDecl *CD,
1854                                                const RecordDecl *RD);
1855 
1856   //===--------------------------------------------------------------------===//
1857   //                         LValue Expression Emission
1858   //===--------------------------------------------------------------------===//
1859 
1860   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
1861   RValue GetUndefRValue(QualType Ty);
1862 
1863   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
1864   /// and issue an ErrorUnsupported style diagnostic (using the
1865   /// provided Name).
1866   RValue EmitUnsupportedRValue(const Expr *E,
1867                                const char *Name);
1868 
1869   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
1870   /// an ErrorUnsupported style diagnostic (using the provided Name).
1871   LValue EmitUnsupportedLValue(const Expr *E,
1872                                const char *Name);
1873 
1874   /// EmitLValue - Emit code to compute a designator that specifies the location
1875   /// of the expression.
1876   ///
1877   /// This can return one of two things: a simple address or a bitfield
1878   /// reference.  In either case, the LLVM Value* in the LValue structure is
1879   /// guaranteed to be an LLVM pointer type.
1880   ///
1881   /// If this returns a bitfield reference, nothing about the pointee type of
1882   /// the LLVM value is known: For example, it may not be a pointer to an
1883   /// integer.
1884   ///
1885   /// If this returns a normal address, and if the lvalue's C type is fixed
1886   /// size, this method guarantees that the returned pointer type will point to
1887   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
1888   /// variable length type, this is not possible.
1889   ///
1890   LValue EmitLValue(const Expr *E);
1891 
1892   /// \brief Same as EmitLValue but additionally we generate checking code to
1893   /// guard against undefined behavior.  This is only suitable when we know
1894   /// that the address will be used to access the object.
1895   LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
1896 
1897   RValue convertTempToRValue(llvm::Value *addr, QualType type);
1898 
1899   void EmitAtomicInit(Expr *E, LValue lvalue);
1900 
1901   RValue EmitAtomicLoad(LValue lvalue,
1902                         AggValueSlot slot = AggValueSlot::ignored());
1903 
1904   void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
1905 
1906   /// EmitToMemory - Change a scalar value from its value
1907   /// representation to its in-memory representation.
1908   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
1909 
1910   /// EmitFromMemory - Change a scalar value from its memory
1911   /// representation to its value representation.
1912   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
1913 
1914   /// EmitLoadOfScalar - Load a scalar value from an address, taking
1915   /// care to appropriately convert from the memory representation to
1916   /// the LLVM value representation.
1917   llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
1918                                 unsigned Alignment, QualType Ty,
1919                                 llvm::MDNode *TBAAInfo = 0,
1920                                 QualType TBAABaseTy = QualType(),
1921                                 uint64_t TBAAOffset = 0);
1922 
1923   /// EmitLoadOfScalar - Load a scalar value from an address, taking
1924   /// care to appropriately convert from the memory representation to
1925   /// the LLVM value representation.  The l-value must be a simple
1926   /// l-value.
1927   llvm::Value *EmitLoadOfScalar(LValue lvalue);
1928 
1929   /// EmitStoreOfScalar - Store a scalar value to an address, taking
1930   /// care to appropriately convert from the memory representation to
1931   /// the LLVM value representation.
1932   void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
1933                          bool Volatile, unsigned Alignment, QualType Ty,
1934                          llvm::MDNode *TBAAInfo = 0, bool isInit = false,
1935                          QualType TBAABaseTy = QualType(),
1936                          uint64_t TBAAOffset = 0);
1937 
1938   /// EmitStoreOfScalar - Store a scalar value to an address, taking
1939   /// care to appropriately convert from the memory representation to
1940   /// the LLVM value representation.  The l-value must be a simple
1941   /// l-value.  The isInit flag indicates whether this is an initialization.
1942   /// If so, atomic qualifiers are ignored and the store is always non-atomic.
1943   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
1944 
1945   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
1946   /// this method emits the address of the lvalue, then loads the result as an
1947   /// rvalue, returning the rvalue.
1948   RValue EmitLoadOfLValue(LValue V);
1949   RValue EmitLoadOfExtVectorElementLValue(LValue V);
1950   RValue EmitLoadOfBitfieldLValue(LValue LV);
1951 
1952   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1953   /// lvalue, where both are guaranteed to the have the same type, and that type
1954   /// is 'Ty'.
1955   void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit=false);
1956   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
1957 
1958   /// EmitStoreThroughLValue - Store Src into Dst with same constraints as
1959   /// EmitStoreThroughLValue.
1960   ///
1961   /// \param Result [out] - If non-null, this will be set to a Value* for the
1962   /// bit-field contents after the store, appropriate for use as the result of
1963   /// an assignment to the bit-field.
1964   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1965                                       llvm::Value **Result=0);
1966 
1967   /// Emit an l-value for an assignment (simple or compound) of complex type.
1968   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
1969   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
1970   LValue EmitScalarCompooundAssignWithComplex(const CompoundAssignOperator *E,
1971                                               llvm::Value *&Result);
1972 
1973   // Note: only available for agg return types
1974   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
1975   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
1976   // Note: only available for agg return types
1977   LValue EmitCallExprLValue(const CallExpr *E);
1978   // Note: only available for agg return types
1979   LValue EmitVAArgExprLValue(const VAArgExpr *E);
1980   LValue EmitDeclRefLValue(const DeclRefExpr *E);
1981   LValue EmitStringLiteralLValue(const StringLiteral *E);
1982   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
1983   LValue EmitPredefinedLValue(const PredefinedExpr *E);
1984   LValue EmitUnaryOpLValue(const UnaryOperator *E);
1985   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
1986                                 bool Accessed = false);
1987   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
1988   LValue EmitMemberExpr(const MemberExpr *E);
1989   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
1990   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
1991   LValue EmitInitListLValue(const InitListExpr *E);
1992   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
1993   LValue EmitCastLValue(const CastExpr *E);
1994   LValue EmitNullInitializationLValue(const CXXScalarValueInitExpr *E);
1995   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
1996   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
1997 
1998   RValue EmitRValueForField(LValue LV, const FieldDecl *FD);
1999 
2000   class ConstantEmission {
2001     llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
2002     ConstantEmission(llvm::Constant *C, bool isReference)
2003       : ValueAndIsReference(C, isReference) {}
2004   public:
2005     ConstantEmission() {}
2006     static ConstantEmission forReference(llvm::Constant *C) {
2007       return ConstantEmission(C, true);
2008     }
2009     static ConstantEmission forValue(llvm::Constant *C) {
2010       return ConstantEmission(C, false);
2011     }
2012 
2013     LLVM_EXPLICIT operator bool() const { return ValueAndIsReference.getOpaqueValue() != 0; }
2014 
2015     bool isReference() const { return ValueAndIsReference.getInt(); }
2016     LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
2017       assert(isReference());
2018       return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
2019                                             refExpr->getType());
2020     }
2021 
2022     llvm::Constant *getValue() const {
2023       assert(!isReference());
2024       return ValueAndIsReference.getPointer();
2025     }
2026   };
2027 
2028   ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
2029 
2030   RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
2031                                 AggValueSlot slot = AggValueSlot::ignored());
2032   LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
2033 
2034   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
2035                               const ObjCIvarDecl *Ivar);
2036   LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
2037   LValue EmitLValueForLambdaField(const FieldDecl *Field);
2038 
2039   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
2040   /// if the Field is a reference, this will return the address of the reference
2041   /// and not the address of the value stored in the reference.
2042   LValue EmitLValueForFieldInitialization(LValue Base,
2043                                           const FieldDecl* Field);
2044 
2045   LValue EmitLValueForIvar(QualType ObjectTy,
2046                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
2047                            unsigned CVRQualifiers);
2048 
2049   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
2050   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
2051   LValue EmitLambdaLValue(const LambdaExpr *E);
2052   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
2053   LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
2054 
2055   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
2056   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
2057   LValue EmitStmtExprLValue(const StmtExpr *E);
2058   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
2059   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
2060   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init);
2061 
2062   //===--------------------------------------------------------------------===//
2063   //                         Scalar Expression Emission
2064   //===--------------------------------------------------------------------===//
2065 
2066   /// EmitCall - Generate a call of the given function, expecting the given
2067   /// result type, and using the given argument list which specifies both the
2068   /// LLVM arguments and the types they were derived from.
2069   ///
2070   /// \param TargetDecl - If given, the decl of the function in a direct call;
2071   /// used to set attributes on the call (noreturn, etc.).
2072   RValue EmitCall(const CGFunctionInfo &FnInfo,
2073                   llvm::Value *Callee,
2074                   ReturnValueSlot ReturnValue,
2075                   const CallArgList &Args,
2076                   const Decl *TargetDecl = 0,
2077                   llvm::Instruction **callOrInvoke = 0);
2078 
2079   RValue EmitCall(QualType FnType, llvm::Value *Callee,
2080                   ReturnValueSlot ReturnValue,
2081                   CallExpr::const_arg_iterator ArgBeg,
2082                   CallExpr::const_arg_iterator ArgEnd,
2083                   const Decl *TargetDecl = 0);
2084   RValue EmitCallExpr(const CallExpr *E,
2085                       ReturnValueSlot ReturnValue = ReturnValueSlot());
2086 
2087   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
2088                                   const Twine &name = "");
2089   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
2090                                   ArrayRef<llvm::Value*> args,
2091                                   const Twine &name = "");
2092   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
2093                                           const Twine &name = "");
2094   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
2095                                           ArrayRef<llvm::Value*> args,
2096                                           const Twine &name = "");
2097 
2098   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2099                                   ArrayRef<llvm::Value *> Args,
2100                                   const Twine &Name = "");
2101   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2102                                   const Twine &Name = "");
2103   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
2104                                          ArrayRef<llvm::Value*> args,
2105                                          const Twine &name = "");
2106   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
2107                                          const Twine &name = "");
2108   void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
2109                                        ArrayRef<llvm::Value*> args);
2110 
2111   llvm::Value *BuildVirtualCall(const CXXMethodDecl *MD, llvm::Value *This,
2112                                 llvm::Type *Ty);
2113   llvm::Value *BuildVirtualCall(const CXXDestructorDecl *DD, CXXDtorType Type,
2114                                 llvm::Value *This, llvm::Type *Ty);
2115   llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
2116                                          NestedNameSpecifier *Qual,
2117                                          llvm::Type *Ty);
2118 
2119   llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
2120                                                    CXXDtorType Type,
2121                                                    const CXXRecordDecl *RD);
2122 
2123   RValue EmitCXXMemberCall(const CXXMethodDecl *MD,
2124                            SourceLocation CallLoc,
2125                            llvm::Value *Callee,
2126                            ReturnValueSlot ReturnValue,
2127                            llvm::Value *This,
2128                            llvm::Value *ImplicitParam,
2129                            QualType ImplicitParamTy,
2130                            CallExpr::const_arg_iterator ArgBeg,
2131                            CallExpr::const_arg_iterator ArgEnd);
2132   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
2133                                ReturnValueSlot ReturnValue);
2134   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
2135                                       ReturnValueSlot ReturnValue);
2136 
2137   llvm::Value *EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E,
2138                                            const CXXMethodDecl *MD,
2139                                            llvm::Value *This);
2140   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
2141                                        const CXXMethodDecl *MD,
2142                                        ReturnValueSlot ReturnValue);
2143 
2144   RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
2145                                 ReturnValueSlot ReturnValue);
2146 
2147 
2148   RValue EmitBuiltinExpr(const FunctionDecl *FD,
2149                          unsigned BuiltinID, const CallExpr *E);
2150 
2151   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
2152 
2153   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
2154   /// is unhandled by the current target.
2155   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2156 
2157   llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2158   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2159   llvm::Value *EmitNeonCall(llvm::Function *F,
2160                             SmallVectorImpl<llvm::Value*> &O,
2161                             const char *name,
2162                             unsigned shift = 0, bool rightshift = false);
2163   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
2164   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
2165                                    bool negateForRightShift);
2166 
2167   llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
2168   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2169   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2170 
2171   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
2172   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
2173   llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
2174   llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
2175   llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
2176   llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
2177                                 const ObjCMethodDecl *MethodWithObjects);
2178   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
2179   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
2180                              ReturnValueSlot Return = ReturnValueSlot());
2181 
2182   /// Retrieves the default cleanup kind for an ARC cleanup.
2183   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
2184   CleanupKind getARCCleanupKind() {
2185     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
2186              ? NormalAndEHCleanup : NormalCleanup;
2187   }
2188 
2189   // ARC primitives.
2190   void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr);
2191   void EmitARCDestroyWeak(llvm::Value *addr);
2192   llvm::Value *EmitARCLoadWeak(llvm::Value *addr);
2193   llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr);
2194   llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr,
2195                                 bool ignored);
2196   void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src);
2197   void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src);
2198   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
2199   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
2200   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
2201                                   bool resultIgnored);
2202   llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value,
2203                                       bool resultIgnored);
2204   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
2205   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
2206   llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
2207   void EmitARCDestroyStrong(llvm::Value *addr, ARCPreciseLifetime_t precise);
2208   void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
2209   llvm::Value *EmitARCAutorelease(llvm::Value *value);
2210   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
2211   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
2212   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
2213 
2214   std::pair<LValue,llvm::Value*>
2215   EmitARCStoreAutoreleasing(const BinaryOperator *e);
2216   std::pair<LValue,llvm::Value*>
2217   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
2218 
2219   llvm::Value *EmitObjCThrowOperand(const Expr *expr);
2220 
2221   llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr);
2222   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
2223   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
2224 
2225   llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
2226   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
2227   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
2228 
2229   void EmitARCIntrinsicUse(llvm::ArrayRef<llvm::Value*> values);
2230 
2231   static Destroyer destroyARCStrongImprecise;
2232   static Destroyer destroyARCStrongPrecise;
2233   static Destroyer destroyARCWeak;
2234 
2235   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
2236   llvm::Value *EmitObjCAutoreleasePoolPush();
2237   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
2238   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
2239   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
2240 
2241   /// \brief Emits a reference binding to the passed in expression.
2242   RValue EmitReferenceBindingToExpr(const Expr *E);
2243 
2244   //===--------------------------------------------------------------------===//
2245   //                           Expression Emission
2246   //===--------------------------------------------------------------------===//
2247 
2248   // Expressions are broken into three classes: scalar, complex, aggregate.
2249 
2250   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
2251   /// scalar type, returning the result.
2252   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
2253 
2254   /// EmitScalarConversion - Emit a conversion from the specified type to the
2255   /// specified destination type, both of which are LLVM scalar types.
2256   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
2257                                     QualType DstTy);
2258 
2259   /// EmitComplexToScalarConversion - Emit a conversion from the specified
2260   /// complex type to the specified destination type, where the destination type
2261   /// is an LLVM scalar type.
2262   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
2263                                              QualType DstTy);
2264 
2265 
2266   /// EmitAggExpr - Emit the computation of the specified expression
2267   /// of aggregate type.  The result is computed into the given slot,
2268   /// which may be null to indicate that the value is not needed.
2269   void EmitAggExpr(const Expr *E, AggValueSlot AS);
2270 
2271   /// EmitAggExprToLValue - Emit the computation of the specified expression of
2272   /// aggregate type into a temporary LValue.
2273   LValue EmitAggExprToLValue(const Expr *E);
2274 
2275   /// EmitGCMemmoveCollectable - Emit special API for structs with object
2276   /// pointers.
2277   void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr,
2278                                 QualType Ty);
2279 
2280   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
2281   /// make sure it survives garbage collection until this point.
2282   void EmitExtendGCLifetime(llvm::Value *object);
2283 
2284   /// EmitComplexExpr - Emit the computation of the specified expression of
2285   /// complex type, returning the result.
2286   ComplexPairTy EmitComplexExpr(const Expr *E,
2287                                 bool IgnoreReal = false,
2288                                 bool IgnoreImag = false);
2289 
2290   /// EmitComplexExprIntoLValue - Emit the given expression of complex
2291   /// type and place its result into the specified l-value.
2292   void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
2293 
2294   /// EmitStoreOfComplex - Store a complex number into the specified l-value.
2295   void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
2296 
2297   /// EmitLoadOfComplex - Load a complex number from the specified l-value.
2298   ComplexPairTy EmitLoadOfComplex(LValue src);
2299 
2300   /// CreateStaticVarDecl - Create a zero-initialized LLVM global for
2301   /// a static local variable.
2302   llvm::GlobalVariable *CreateStaticVarDecl(const VarDecl &D,
2303                                             const char *Separator,
2304                                        llvm::GlobalValue::LinkageTypes Linkage);
2305 
2306   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
2307   /// global variable that has already been created for it.  If the initializer
2308   /// has a different type than GV does, this may free GV and return a different
2309   /// one.  Otherwise it just returns GV.
2310   llvm::GlobalVariable *
2311   AddInitializerToStaticVarDecl(const VarDecl &D,
2312                                 llvm::GlobalVariable *GV);
2313 
2314 
2315   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
2316   /// variable with global storage.
2317   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
2318                                 bool PerformInit);
2319 
2320   /// Call atexit() with a function that passes the given argument to
2321   /// the given function.
2322   void registerGlobalDtorWithAtExit(llvm::Constant *fn, llvm::Constant *addr);
2323 
2324   /// Emit code in this function to perform a guarded variable
2325   /// initialization.  Guarded initializations are used when it's not
2326   /// possible to prove that an initialization will be done exactly
2327   /// once, e.g. with a static local variable or a static data member
2328   /// of a class template.
2329   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
2330                           bool PerformInit);
2331 
2332   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
2333   /// variables.
2334   void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
2335                                  ArrayRef<llvm::Constant *> Decls,
2336                                  llvm::GlobalVariable *Guard = 0);
2337 
2338   /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
2339   /// variables.
2340   void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn,
2341                                   const std::vector<std::pair<llvm::WeakVH,
2342                                   llvm::Constant*> > &DtorsAndObjects);
2343 
2344   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
2345                                         const VarDecl *D,
2346                                         llvm::GlobalVariable *Addr,
2347                                         bool PerformInit);
2348 
2349   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
2350 
2351   void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src,
2352                                   const Expr *Exp);
2353 
2354   void enterFullExpression(const ExprWithCleanups *E) {
2355     if (E->getNumObjects() == 0) return;
2356     enterNonTrivialFullExpression(E);
2357   }
2358   void enterNonTrivialFullExpression(const ExprWithCleanups *E);
2359 
2360   void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
2361 
2362   void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest);
2363 
2364   RValue EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest = 0);
2365 
2366   //===--------------------------------------------------------------------===//
2367   //                         Annotations Emission
2368   //===--------------------------------------------------------------------===//
2369 
2370   /// Emit an annotation call (intrinsic or builtin).
2371   llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
2372                                   llvm::Value *AnnotatedVal,
2373                                   StringRef AnnotationStr,
2374                                   SourceLocation Location);
2375 
2376   /// Emit local annotations for the local variable V, declared by D.
2377   void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
2378 
2379   /// Emit field annotations for the given field & value. Returns the
2380   /// annotation result.
2381   llvm::Value *EmitFieldAnnotations(const FieldDecl *D, llvm::Value *V);
2382 
2383   //===--------------------------------------------------------------------===//
2384   //                             Internal Helpers
2385   //===--------------------------------------------------------------------===//
2386 
2387   /// ContainsLabel - Return true if the statement contains a label in it.  If
2388   /// this statement is not executed normally, it not containing a label means
2389   /// that we can just remove the code.
2390   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
2391 
2392   /// containsBreak - Return true if the statement contains a break out of it.
2393   /// If the statement (recursively) contains a switch or loop with a break
2394   /// inside of it, this is fine.
2395   static bool containsBreak(const Stmt *S);
2396 
2397   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2398   /// to a constant, or if it does but contains a label, return false.  If it
2399   /// constant folds return true and set the boolean result in Result.
2400   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result);
2401 
2402   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2403   /// to a constant, or if it does but contains a label, return false.  If it
2404   /// constant folds return true and set the folded value.
2405   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result);
2406 
2407   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
2408   /// if statement) to the specified blocks.  Based on the condition, this might
2409   /// try to simplify the codegen of the conditional based on the branch.
2410   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
2411                             llvm::BasicBlock *FalseBlock);
2412 
2413   /// \brief Emit a description of a type in a format suitable for passing to
2414   /// a runtime sanitizer handler.
2415   llvm::Constant *EmitCheckTypeDescriptor(QualType T);
2416 
2417   /// \brief Convert a value into a format suitable for passing to a runtime
2418   /// sanitizer handler.
2419   llvm::Value *EmitCheckValue(llvm::Value *V);
2420 
2421   /// \brief Emit a description of a source location in a format suitable for
2422   /// passing to a runtime sanitizer handler.
2423   llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
2424 
2425   /// \brief Specify under what conditions this check can be recovered
2426   enum CheckRecoverableKind {
2427     /// Always terminate program execution if this check fails
2428     CRK_Unrecoverable,
2429     /// Check supports recovering, allows user to specify which
2430     CRK_Recoverable,
2431     /// Runtime conditionally aborts, always need to support recovery.
2432     CRK_AlwaysRecoverable
2433   };
2434 
2435   /// \brief Create a basic block that will call a handler function in a
2436   /// sanitizer runtime with the provided arguments, and create a conditional
2437   /// branch to it.
2438   void EmitCheck(llvm::Value *Checked, StringRef CheckName,
2439                  ArrayRef<llvm::Constant *> StaticArgs,
2440                  ArrayRef<llvm::Value *> DynamicArgs,
2441                  CheckRecoverableKind Recoverable);
2442 
2443   /// \brief Create a basic block that will call the trap intrinsic, and emit a
2444   /// conditional branch to it, for the -ftrapv checks.
2445   void EmitTrapCheck(llvm::Value *Checked);
2446 
2447   /// EmitCallArg - Emit a single call argument.
2448   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
2449 
2450   /// EmitDelegateCallArg - We are performing a delegate call; that
2451   /// is, the current function is delegating to another one.  Produce
2452   /// a r-value suitable for passing the given parameter.
2453   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param);
2454 
2455   /// SetFPAccuracy - Set the minimum required accuracy of the given floating
2456   /// point operation, expressed as the maximum relative error in ulp.
2457   void SetFPAccuracy(llvm::Value *Val, float Accuracy);
2458 
2459 private:
2460   llvm::MDNode *getRangeForLoadFromType(QualType Ty);
2461   void EmitReturnOfRValue(RValue RV, QualType Ty);
2462 
2463   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
2464   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
2465   ///
2466   /// \param AI - The first function argument of the expansion.
2467   /// \return The argument following the last expanded function
2468   /// argument.
2469   llvm::Function::arg_iterator
2470   ExpandTypeFromArgs(QualType Ty, LValue Dst,
2471                      llvm::Function::arg_iterator AI);
2472 
2473   /// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg
2474   /// Ty, into individual arguments on the provided vector \arg Args. See
2475   /// ABIArgInfo::Expand.
2476   void ExpandTypeToArgs(QualType Ty, RValue Src,
2477                         SmallVector<llvm::Value*, 16> &Args,
2478                         llvm::FunctionType *IRFuncTy);
2479 
2480   llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
2481                             const Expr *InputExpr, std::string &ConstraintStr);
2482 
2483   llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
2484                                   LValue InputValue, QualType InputType,
2485                                   std::string &ConstraintStr);
2486 
2487   /// EmitCallArgs - Emit call arguments for a function.
2488   /// The CallArgTypeInfo parameter is used for iterating over the known
2489   /// argument types of the function being called.
2490   template<typename T>
2491   void EmitCallArgs(CallArgList& Args, const T* CallArgTypeInfo,
2492                     CallExpr::const_arg_iterator ArgBeg,
2493                     CallExpr::const_arg_iterator ArgEnd) {
2494       CallExpr::const_arg_iterator Arg = ArgBeg;
2495 
2496     // First, use the argument types that the type info knows about
2497     if (CallArgTypeInfo) {
2498       for (typename T::arg_type_iterator I = CallArgTypeInfo->arg_type_begin(),
2499            E = CallArgTypeInfo->arg_type_end(); I != E; ++I, ++Arg) {
2500         assert(Arg != ArgEnd && "Running over edge of argument list!");
2501         QualType ArgType = *I;
2502 #ifndef NDEBUG
2503         QualType ActualArgType = Arg->getType();
2504         if (ArgType->isPointerType() && ActualArgType->isPointerType()) {
2505           QualType ActualBaseType =
2506             ActualArgType->getAs<PointerType>()->getPointeeType();
2507           QualType ArgBaseType =
2508             ArgType->getAs<PointerType>()->getPointeeType();
2509           if (ArgBaseType->isVariableArrayType()) {
2510             if (const VariableArrayType *VAT =
2511                 getContext().getAsVariableArrayType(ActualBaseType)) {
2512               if (!VAT->getSizeExpr())
2513                 ActualArgType = ArgType;
2514             }
2515           }
2516         }
2517         assert(getContext().getCanonicalType(ArgType.getNonReferenceType()).
2518                getTypePtr() ==
2519                getContext().getCanonicalType(ActualArgType).getTypePtr() &&
2520                "type mismatch in call argument!");
2521 #endif
2522         EmitCallArg(Args, *Arg, ArgType);
2523       }
2524 
2525       // Either we've emitted all the call args, or we have a call to a
2526       // variadic function.
2527       assert((Arg == ArgEnd || CallArgTypeInfo->isVariadic()) &&
2528              "Extra arguments in non-variadic function!");
2529 
2530     }
2531 
2532     // If we still have any arguments, emit them using the type of the argument.
2533     for (; Arg != ArgEnd; ++Arg)
2534       EmitCallArg(Args, *Arg, Arg->getType());
2535   }
2536 
2537   const TargetCodeGenInfo &getTargetHooks() const {
2538     return CGM.getTargetCodeGenInfo();
2539   }
2540 
2541   void EmitDeclMetadata();
2542 
2543   CodeGenModule::ByrefHelpers *
2544   buildByrefHelpers(llvm::StructType &byrefType,
2545                     const AutoVarEmission &emission);
2546 
2547   void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
2548 
2549   /// GetPointeeAlignment - Given an expression with a pointer type, emit the
2550   /// value and compute our best estimate of the alignment of the pointee.
2551   std::pair<llvm::Value*, unsigned> EmitPointerWithAlignment(const Expr *Addr);
2552 };
2553 
2554 /// Helper class with most of the code for saving a value for a
2555 /// conditional expression cleanup.
2556 struct DominatingLLVMValue {
2557   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
2558 
2559   /// Answer whether the given value needs extra work to be saved.
2560   static bool needsSaving(llvm::Value *value) {
2561     // If it's not an instruction, we don't need to save.
2562     if (!isa<llvm::Instruction>(value)) return false;
2563 
2564     // If it's an instruction in the entry block, we don't need to save.
2565     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
2566     return (block != &block->getParent()->getEntryBlock());
2567   }
2568 
2569   /// Try to save the given value.
2570   static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
2571     if (!needsSaving(value)) return saved_type(value, false);
2572 
2573     // Otherwise we need an alloca.
2574     llvm::Value *alloca =
2575       CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save");
2576     CGF.Builder.CreateStore(value, alloca);
2577 
2578     return saved_type(alloca, true);
2579   }
2580 
2581   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
2582     if (!value.getInt()) return value.getPointer();
2583     return CGF.Builder.CreateLoad(value.getPointer());
2584   }
2585 };
2586 
2587 /// A partial specialization of DominatingValue for llvm::Values that
2588 /// might be llvm::Instructions.
2589 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
2590   typedef T *type;
2591   static type restore(CodeGenFunction &CGF, saved_type value) {
2592     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
2593   }
2594 };
2595 
2596 /// A specialization of DominatingValue for RValue.
2597 template <> struct DominatingValue<RValue> {
2598   typedef RValue type;
2599   class saved_type {
2600     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
2601                 AggregateAddress, ComplexAddress };
2602 
2603     llvm::Value *Value;
2604     Kind K;
2605     saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {}
2606 
2607   public:
2608     static bool needsSaving(RValue value);
2609     static saved_type save(CodeGenFunction &CGF, RValue value);
2610     RValue restore(CodeGenFunction &CGF);
2611 
2612     // implementations in CGExprCXX.cpp
2613   };
2614 
2615   static bool needsSaving(type value) {
2616     return saved_type::needsSaving(value);
2617   }
2618   static saved_type save(CodeGenFunction &CGF, type value) {
2619     return saved_type::save(CGF, value);
2620   }
2621   static type restore(CodeGenFunction &CGF, saved_type value) {
2622     return value.restore(CGF);
2623   }
2624 };
2625 
2626 }  // end namespace CodeGen
2627 }  // end namespace clang
2628 
2629 #endif
2630