1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the internal per-function state used for llvm translation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
15 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
16 
17 #include "CGBuilder.h"
18 #include "CGDebugInfo.h"
19 #include "CGLoopInfo.h"
20 #include "CGValue.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "EHScopeStack.h"
24 #include "VarBypassDetector.h"
25 #include "clang/AST/CharUnits.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/ExprObjC.h"
28 #include "clang/AST/ExprOpenMP.h"
29 #include "clang/AST/Type.h"
30 #include "clang/Basic/ABI.h"
31 #include "clang/Basic/CapturedStmt.h"
32 #include "clang/Basic/OpenMPKinds.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "clang/Frontend/CodeGenOptions.h"
35 #include "llvm/ADT/ArrayRef.h"
36 #include "llvm/ADT/DenseMap.h"
37 #include "llvm/ADT/MapVector.h"
38 #include "llvm/ADT/SmallVector.h"
39 #include "llvm/IR/ValueHandle.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Transforms/Utils/SanitizerStats.h"
42 
43 namespace llvm {
44 class BasicBlock;
45 class LLVMContext;
46 class MDNode;
47 class Module;
48 class SwitchInst;
49 class Twine;
50 class Value;
51 class CallSite;
52 }
53 
54 namespace clang {
55 class ASTContext;
56 class BlockDecl;
57 class CXXDestructorDecl;
58 class CXXForRangeStmt;
59 class CXXTryStmt;
60 class Decl;
61 class LabelDecl;
62 class EnumConstantDecl;
63 class FunctionDecl;
64 class FunctionProtoType;
65 class LabelStmt;
66 class ObjCContainerDecl;
67 class ObjCInterfaceDecl;
68 class ObjCIvarDecl;
69 class ObjCMethodDecl;
70 class ObjCImplementationDecl;
71 class ObjCPropertyImplDecl;
72 class TargetInfo;
73 class VarDecl;
74 class ObjCForCollectionStmt;
75 class ObjCAtTryStmt;
76 class ObjCAtThrowStmt;
77 class ObjCAtSynchronizedStmt;
78 class ObjCAutoreleasePoolStmt;
79 
80 namespace analyze_os_log {
81 class OSLogBufferLayout;
82 }
83 
84 namespace CodeGen {
85 class CodeGenTypes;
86 class CGCallee;
87 class CGFunctionInfo;
88 class CGRecordLayout;
89 class CGBlockInfo;
90 class CGCXXABI;
91 class BlockByrefHelpers;
92 class BlockByrefInfo;
93 class BlockFlags;
94 class BlockFieldFlags;
95 class RegionCodeGenTy;
96 class TargetCodeGenInfo;
97 struct OMPTaskDataTy;
98 struct CGCoroData;
99 
100 /// The kind of evaluation to perform on values of a particular
101 /// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
102 /// CGExprAgg?
103 ///
104 /// TODO: should vectors maybe be split out into their own thing?
105 enum TypeEvaluationKind {
106   TEK_Scalar,
107   TEK_Complex,
108   TEK_Aggregate
109 };
110 
111 #define LIST_SANITIZER_CHECKS                                                  \
112   SANITIZER_CHECK(AddOverflow, add_overflow, 0)                                \
113   SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0)                  \
114   SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0)                             \
115   SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0)                          \
116   SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0)            \
117   SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0)                   \
118   SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 0)             \
119   SANITIZER_CHECK(ImplicitConversion, implicit_conversion, 0)                  \
120   SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0)                          \
121   SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0)                     \
122   SANITIZER_CHECK(MissingReturn, missing_return, 0)                            \
123   SANITIZER_CHECK(MulOverflow, mul_overflow, 0)                                \
124   SANITIZER_CHECK(NegateOverflow, negate_overflow, 0)                          \
125   SANITIZER_CHECK(NullabilityArg, nullability_arg, 0)                          \
126   SANITIZER_CHECK(NullabilityReturn, nullability_return, 1)                    \
127   SANITIZER_CHECK(NonnullArg, nonnull_arg, 0)                                  \
128   SANITIZER_CHECK(NonnullReturn, nonnull_return, 1)                            \
129   SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0)                               \
130   SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0)                        \
131   SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0)                    \
132   SANITIZER_CHECK(SubOverflow, sub_overflow, 0)                                \
133   SANITIZER_CHECK(TypeMismatch, type_mismatch, 1)                              \
134   SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0)
135 
136 enum SanitizerHandler {
137 #define SANITIZER_CHECK(Enum, Name, Version) Enum,
138   LIST_SANITIZER_CHECKS
139 #undef SANITIZER_CHECK
140 };
141 
142 /// Helper class with most of the code for saving a value for a
143 /// conditional expression cleanup.
144 struct DominatingLLVMValue {
145   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
146 
147   /// Answer whether the given value needs extra work to be saved.
148   static bool needsSaving(llvm::Value *value) {
149     // If it's not an instruction, we don't need to save.
150     if (!isa<llvm::Instruction>(value)) return false;
151 
152     // If it's an instruction in the entry block, we don't need to save.
153     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
154     return (block != &block->getParent()->getEntryBlock());
155   }
156 
157   static saved_type save(CodeGenFunction &CGF, llvm::Value *value);
158   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value);
159 };
160 
161 /// A partial specialization of DominatingValue for llvm::Values that
162 /// might be llvm::Instructions.
163 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
164   typedef T *type;
165   static type restore(CodeGenFunction &CGF, saved_type value) {
166     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
167   }
168 };
169 
170 /// A specialization of DominatingValue for Address.
171 template <> struct DominatingValue<Address> {
172   typedef Address type;
173 
174   struct saved_type {
175     DominatingLLVMValue::saved_type SavedValue;
176     CharUnits Alignment;
177   };
178 
179   static bool needsSaving(type value) {
180     return DominatingLLVMValue::needsSaving(value.getPointer());
181   }
182   static saved_type save(CodeGenFunction &CGF, type value) {
183     return { DominatingLLVMValue::save(CGF, value.getPointer()),
184              value.getAlignment() };
185   }
186   static type restore(CodeGenFunction &CGF, saved_type value) {
187     return Address(DominatingLLVMValue::restore(CGF, value.SavedValue),
188                    value.Alignment);
189   }
190 };
191 
192 /// A specialization of DominatingValue for RValue.
193 template <> struct DominatingValue<RValue> {
194   typedef RValue type;
195   class saved_type {
196     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
197                 AggregateAddress, ComplexAddress };
198 
199     llvm::Value *Value;
200     unsigned K : 3;
201     unsigned Align : 29;
202     saved_type(llvm::Value *v, Kind k, unsigned a = 0)
203       : Value(v), K(k), Align(a) {}
204 
205   public:
206     static bool needsSaving(RValue value);
207     static saved_type save(CodeGenFunction &CGF, RValue value);
208     RValue restore(CodeGenFunction &CGF);
209 
210     // implementations in CGCleanup.cpp
211   };
212 
213   static bool needsSaving(type value) {
214     return saved_type::needsSaving(value);
215   }
216   static saved_type save(CodeGenFunction &CGF, type value) {
217     return saved_type::save(CGF, value);
218   }
219   static type restore(CodeGenFunction &CGF, saved_type value) {
220     return value.restore(CGF);
221   }
222 };
223 
224 /// CodeGenFunction - This class organizes the per-function state that is used
225 /// while generating LLVM code.
226 class CodeGenFunction : public CodeGenTypeCache {
227   CodeGenFunction(const CodeGenFunction &) = delete;
228   void operator=(const CodeGenFunction &) = delete;
229 
230   friend class CGCXXABI;
231 public:
232   /// A jump destination is an abstract label, branching to which may
233   /// require a jump out through normal cleanups.
234   struct JumpDest {
235     JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {}
236     JumpDest(llvm::BasicBlock *Block,
237              EHScopeStack::stable_iterator Depth,
238              unsigned Index)
239       : Block(Block), ScopeDepth(Depth), Index(Index) {}
240 
241     bool isValid() const { return Block != nullptr; }
242     llvm::BasicBlock *getBlock() const { return Block; }
243     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
244     unsigned getDestIndex() const { return Index; }
245 
246     // This should be used cautiously.
247     void setScopeDepth(EHScopeStack::stable_iterator depth) {
248       ScopeDepth = depth;
249     }
250 
251   private:
252     llvm::BasicBlock *Block;
253     EHScopeStack::stable_iterator ScopeDepth;
254     unsigned Index;
255   };
256 
257   CodeGenModule &CGM;  // Per-module state.
258   const TargetInfo &Target;
259 
260   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
261   LoopInfoStack LoopStack;
262   CGBuilderTy Builder;
263 
264   // Stores variables for which we can't generate correct lifetime markers
265   // because of jumps.
266   VarBypassDetector Bypasses;
267 
268   // CodeGen lambda for loops and support for ordered clause
269   typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &,
270                                   JumpDest)>
271       CodeGenLoopTy;
272   typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation,
273                                   const unsigned, const bool)>
274       CodeGenOrderedTy;
275 
276   // Codegen lambda for loop bounds in worksharing loop constructs
277   typedef llvm::function_ref<std::pair<LValue, LValue>(
278       CodeGenFunction &, const OMPExecutableDirective &S)>
279       CodeGenLoopBoundsTy;
280 
281   // Codegen lambda for loop bounds in dispatch-based loop implementation
282   typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>(
283       CodeGenFunction &, const OMPExecutableDirective &S, Address LB,
284       Address UB)>
285       CodeGenDispatchBoundsTy;
286 
287   /// CGBuilder insert helper. This function is called after an
288   /// instruction is created using Builder.
289   void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
290                     llvm::BasicBlock *BB,
291                     llvm::BasicBlock::iterator InsertPt) const;
292 
293   /// CurFuncDecl - Holds the Decl for the current outermost
294   /// non-closure context.
295   const Decl *CurFuncDecl;
296   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
297   const Decl *CurCodeDecl;
298   const CGFunctionInfo *CurFnInfo;
299   QualType FnRetTy;
300   llvm::Function *CurFn = nullptr;
301 
302   // Holds coroutine data if the current function is a coroutine. We use a
303   // wrapper to manage its lifetime, so that we don't have to define CGCoroData
304   // in this header.
305   struct CGCoroInfo {
306     std::unique_ptr<CGCoroData> Data;
307     CGCoroInfo();
308     ~CGCoroInfo();
309   };
310   CGCoroInfo CurCoro;
311 
312   bool isCoroutine() const {
313     return CurCoro.Data != nullptr;
314   }
315 
316   /// CurGD - The GlobalDecl for the current function being compiled.
317   GlobalDecl CurGD;
318 
319   /// PrologueCleanupDepth - The cleanup depth enclosing all the
320   /// cleanups associated with the parameters.
321   EHScopeStack::stable_iterator PrologueCleanupDepth;
322 
323   /// ReturnBlock - Unified return block.
324   JumpDest ReturnBlock;
325 
326   /// ReturnValue - The temporary alloca to hold the return
327   /// value. This is invalid iff the function has no return value.
328   Address ReturnValue = Address::invalid();
329 
330   /// Return true if a label was seen in the current scope.
331   bool hasLabelBeenSeenInCurrentScope() const {
332     if (CurLexicalScope)
333       return CurLexicalScope->hasLabels();
334     return !LabelMap.empty();
335   }
336 
337   /// AllocaInsertPoint - This is an instruction in the entry block before which
338   /// we prefer to insert allocas.
339   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
340 
341   /// API for captured statement code generation.
342   class CGCapturedStmtInfo {
343   public:
344     explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default)
345         : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
346     explicit CGCapturedStmtInfo(const CapturedStmt &S,
347                                 CapturedRegionKind K = CR_Default)
348       : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
349 
350       RecordDecl::field_iterator Field =
351         S.getCapturedRecordDecl()->field_begin();
352       for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
353                                                 E = S.capture_end();
354            I != E; ++I, ++Field) {
355         if (I->capturesThis())
356           CXXThisFieldDecl = *Field;
357         else if (I->capturesVariable())
358           CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
359         else if (I->capturesVariableByCopy())
360           CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
361       }
362     }
363 
364     virtual ~CGCapturedStmtInfo();
365 
366     CapturedRegionKind getKind() const { return Kind; }
367 
368     virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
369     // Retrieve the value of the context parameter.
370     virtual llvm::Value *getContextValue() const { return ThisValue; }
371 
372     /// Lookup the captured field decl for a variable.
373     virtual const FieldDecl *lookup(const VarDecl *VD) const {
374       return CaptureFields.lookup(VD->getCanonicalDecl());
375     }
376 
377     bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
378     virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
379 
380     static bool classof(const CGCapturedStmtInfo *) {
381       return true;
382     }
383 
384     /// Emit the captured statement body.
385     virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
386       CGF.incrementProfileCounter(S);
387       CGF.EmitStmt(S);
388     }
389 
390     /// Get the name of the capture helper.
391     virtual StringRef getHelperName() const { return "__captured_stmt"; }
392 
393   private:
394     /// The kind of captured statement being generated.
395     CapturedRegionKind Kind;
396 
397     /// Keep the map between VarDecl and FieldDecl.
398     llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
399 
400     /// The base address of the captured record, passed in as the first
401     /// argument of the parallel region function.
402     llvm::Value *ThisValue;
403 
404     /// Captured 'this' type.
405     FieldDecl *CXXThisFieldDecl;
406   };
407   CGCapturedStmtInfo *CapturedStmtInfo = nullptr;
408 
409   /// RAII for correct setting/restoring of CapturedStmtInfo.
410   class CGCapturedStmtRAII {
411   private:
412     CodeGenFunction &CGF;
413     CGCapturedStmtInfo *PrevCapturedStmtInfo;
414   public:
415     CGCapturedStmtRAII(CodeGenFunction &CGF,
416                        CGCapturedStmtInfo *NewCapturedStmtInfo)
417         : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) {
418       CGF.CapturedStmtInfo = NewCapturedStmtInfo;
419     }
420     ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; }
421   };
422 
423   /// An abstract representation of regular/ObjC call/message targets.
424   class AbstractCallee {
425     /// The function declaration of the callee.
426     const Decl *CalleeDecl;
427 
428   public:
429     AbstractCallee() : CalleeDecl(nullptr) {}
430     AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {}
431     AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {}
432     bool hasFunctionDecl() const {
433       return dyn_cast_or_null<FunctionDecl>(CalleeDecl);
434     }
435     const Decl *getDecl() const { return CalleeDecl; }
436     unsigned getNumParams() const {
437       if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
438         return FD->getNumParams();
439       return cast<ObjCMethodDecl>(CalleeDecl)->param_size();
440     }
441     const ParmVarDecl *getParamDecl(unsigned I) const {
442       if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
443         return FD->getParamDecl(I);
444       return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I);
445     }
446   };
447 
448   /// Sanitizers enabled for this function.
449   SanitizerSet SanOpts;
450 
451   /// True if CodeGen currently emits code implementing sanitizer checks.
452   bool IsSanitizerScope = false;
453 
454   /// RAII object to set/unset CodeGenFunction::IsSanitizerScope.
455   class SanitizerScope {
456     CodeGenFunction *CGF;
457   public:
458     SanitizerScope(CodeGenFunction *CGF);
459     ~SanitizerScope();
460   };
461 
462   /// In C++, whether we are code generating a thunk.  This controls whether we
463   /// should emit cleanups.
464   bool CurFuncIsThunk = false;
465 
466   /// In ARC, whether we should autorelease the return value.
467   bool AutoreleaseResult = false;
468 
469   /// Whether we processed a Microsoft-style asm block during CodeGen. These can
470   /// potentially set the return value.
471   bool SawAsmBlock = false;
472 
473   const NamedDecl *CurSEHParent = nullptr;
474 
475   /// True if the current function is an outlined SEH helper. This can be a
476   /// finally block or filter expression.
477   bool IsOutlinedSEHHelper = false;
478 
479   const CodeGen::CGBlockInfo *BlockInfo = nullptr;
480   llvm::Value *BlockPointer = nullptr;
481 
482   llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
483   FieldDecl *LambdaThisCaptureField = nullptr;
484 
485   /// A mapping from NRVO variables to the flags used to indicate
486   /// when the NRVO has been applied to this variable.
487   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
488 
489   EHScopeStack EHStack;
490   llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
491   llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack;
492 
493   llvm::Instruction *CurrentFuncletPad = nullptr;
494 
495   class CallLifetimeEnd final : public EHScopeStack::Cleanup {
496     llvm::Value *Addr;
497     llvm::Value *Size;
498 
499   public:
500     CallLifetimeEnd(Address addr, llvm::Value *size)
501         : Addr(addr.getPointer()), Size(size) {}
502 
503     void Emit(CodeGenFunction &CGF, Flags flags) override {
504       CGF.EmitLifetimeEnd(Size, Addr);
505     }
506   };
507 
508   /// Header for data within LifetimeExtendedCleanupStack.
509   struct LifetimeExtendedCleanupHeader {
510     /// The size of the following cleanup object.
511     unsigned Size;
512     /// The kind of cleanup to push: a value from the CleanupKind enumeration.
513     unsigned Kind : 31;
514     /// Whether this is a conditional cleanup.
515     unsigned IsConditional : 1;
516 
517     size_t getSize() const { return Size; }
518     CleanupKind getKind() const { return (CleanupKind)Kind; }
519     bool isConditional() const { return IsConditional; }
520   };
521 
522   /// i32s containing the indexes of the cleanup destinations.
523   Address NormalCleanupDest = Address::invalid();
524 
525   unsigned NextCleanupDestIndex = 1;
526 
527   /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
528   CGBlockInfo *FirstBlockInfo = nullptr;
529 
530   /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
531   llvm::BasicBlock *EHResumeBlock = nullptr;
532 
533   /// The exception slot.  All landing pads write the current exception pointer
534   /// into this alloca.
535   llvm::Value *ExceptionSlot = nullptr;
536 
537   /// The selector slot.  Under the MandatoryCleanup model, all landing pads
538   /// write the current selector value into this alloca.
539   llvm::AllocaInst *EHSelectorSlot = nullptr;
540 
541   /// A stack of exception code slots. Entering an __except block pushes a slot
542   /// on the stack and leaving pops one. The __exception_code() intrinsic loads
543   /// a value from the top of the stack.
544   SmallVector<Address, 1> SEHCodeSlotStack;
545 
546   /// Value returned by __exception_info intrinsic.
547   llvm::Value *SEHInfo = nullptr;
548 
549   /// Emits a landing pad for the current EH stack.
550   llvm::BasicBlock *EmitLandingPad();
551 
552   llvm::BasicBlock *getInvokeDestImpl();
553 
554   template <class T>
555   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
556     return DominatingValue<T>::save(*this, value);
557   }
558 
559 public:
560   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
561   /// rethrows.
562   SmallVector<llvm::Value*, 8> ObjCEHValueStack;
563 
564   /// A class controlling the emission of a finally block.
565   class FinallyInfo {
566     /// Where the catchall's edge through the cleanup should go.
567     JumpDest RethrowDest;
568 
569     /// A function to call to enter the catch.
570     llvm::Constant *BeginCatchFn;
571 
572     /// An i1 variable indicating whether or not the @finally is
573     /// running for an exception.
574     llvm::AllocaInst *ForEHVar;
575 
576     /// An i8* variable into which the exception pointer to rethrow
577     /// has been saved.
578     llvm::AllocaInst *SavedExnVar;
579 
580   public:
581     void enter(CodeGenFunction &CGF, const Stmt *Finally,
582                llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
583                llvm::Constant *rethrowFn);
584     void exit(CodeGenFunction &CGF);
585   };
586 
587   /// Returns true inside SEH __try blocks.
588   bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }
589 
590   /// Returns true while emitting a cleanuppad.
591   bool isCleanupPadScope() const {
592     return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad);
593   }
594 
595   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
596   /// current full-expression.  Safe against the possibility that
597   /// we're currently inside a conditionally-evaluated expression.
598   template <class T, class... As>
599   void pushFullExprCleanup(CleanupKind kind, As... A) {
600     // If we're not in a conditional branch, or if none of the
601     // arguments requires saving, then use the unconditional cleanup.
602     if (!isInConditionalBranch())
603       return EHStack.pushCleanup<T>(kind, A...);
604 
605     // Stash values in a tuple so we can guarantee the order of saves.
606     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
607     SavedTuple Saved{saveValueInCond(A)...};
608 
609     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
610     EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
611     initFullExprCleanup();
612   }
613 
614   /// Queue a cleanup to be pushed after finishing the current
615   /// full-expression.
616   template <class T, class... As>
617   void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
618     if (!isInConditionalBranch())
619       return pushCleanupAfterFullExprImpl<T>(Kind, Address::invalid(), A...);
620 
621     Address ActiveFlag = createCleanupActiveFlag();
622     assert(!DominatingValue<Address>::needsSaving(ActiveFlag) &&
623            "cleanup active flag should never need saving");
624 
625     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
626     SavedTuple Saved{saveValueInCond(A)...};
627 
628     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
629     pushCleanupAfterFullExprImpl<CleanupType>(Kind, ActiveFlag, Saved);
630   }
631 
632   template <class T, class... As>
633   void pushCleanupAfterFullExprImpl(CleanupKind Kind, Address ActiveFlag,
634                                     As... A) {
635     LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind,
636                                             ActiveFlag.isValid()};
637 
638     size_t OldSize = LifetimeExtendedCleanupStack.size();
639     LifetimeExtendedCleanupStack.resize(
640         LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size +
641         (Header.IsConditional ? sizeof(ActiveFlag) : 0));
642 
643     static_assert(sizeof(Header) % alignof(T) == 0,
644                   "Cleanup will be allocated on misaligned address");
645     char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
646     new (Buffer) LifetimeExtendedCleanupHeader(Header);
647     new (Buffer + sizeof(Header)) T(A...);
648     if (Header.IsConditional)
649       new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag);
650   }
651 
652   /// Set up the last cleanup that was pushed as a conditional
653   /// full-expression cleanup.
654   void initFullExprCleanup() {
655     initFullExprCleanupWithFlag(createCleanupActiveFlag());
656   }
657 
658   void initFullExprCleanupWithFlag(Address ActiveFlag);
659   Address createCleanupActiveFlag();
660 
661   /// PushDestructorCleanup - Push a cleanup to call the
662   /// complete-object destructor of an object of the given type at the
663   /// given address.  Does nothing if T is not a C++ class type with a
664   /// non-trivial destructor.
665   void PushDestructorCleanup(QualType T, Address Addr);
666 
667   /// PushDestructorCleanup - Push a cleanup to call the
668   /// complete-object variant of the given destructor on the object at
669   /// the given address.
670   void PushDestructorCleanup(const CXXDestructorDecl *Dtor, Address Addr);
671 
672   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
673   /// process all branch fixups.
674   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
675 
676   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
677   /// The block cannot be reactivated.  Pops it if it's the top of the
678   /// stack.
679   ///
680   /// \param DominatingIP - An instruction which is known to
681   ///   dominate the current IP (if set) and which lies along
682   ///   all paths of execution between the current IP and the
683   ///   the point at which the cleanup comes into scope.
684   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
685                               llvm::Instruction *DominatingIP);
686 
687   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
688   /// Cannot be used to resurrect a deactivated cleanup.
689   ///
690   /// \param DominatingIP - An instruction which is known to
691   ///   dominate the current IP (if set) and which lies along
692   ///   all paths of execution between the current IP and the
693   ///   the point at which the cleanup comes into scope.
694   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
695                             llvm::Instruction *DominatingIP);
696 
697   /// Enters a new scope for capturing cleanups, all of which
698   /// will be executed once the scope is exited.
699   class RunCleanupsScope {
700     EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth;
701     size_t LifetimeExtendedCleanupStackSize;
702     bool OldDidCallStackSave;
703   protected:
704     bool PerformCleanup;
705   private:
706 
707     RunCleanupsScope(const RunCleanupsScope &) = delete;
708     void operator=(const RunCleanupsScope &) = delete;
709 
710   protected:
711     CodeGenFunction& CGF;
712 
713   public:
714     /// Enter a new cleanup scope.
715     explicit RunCleanupsScope(CodeGenFunction &CGF)
716       : PerformCleanup(true), CGF(CGF)
717     {
718       CleanupStackDepth = CGF.EHStack.stable_begin();
719       LifetimeExtendedCleanupStackSize =
720           CGF.LifetimeExtendedCleanupStack.size();
721       OldDidCallStackSave = CGF.DidCallStackSave;
722       CGF.DidCallStackSave = false;
723       OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth;
724       CGF.CurrentCleanupScopeDepth = CleanupStackDepth;
725     }
726 
727     /// Exit this cleanup scope, emitting any accumulated cleanups.
728     ~RunCleanupsScope() {
729       if (PerformCleanup)
730         ForceCleanup();
731     }
732 
733     /// Determine whether this scope requires any cleanups.
734     bool requiresCleanups() const {
735       return CGF.EHStack.stable_begin() != CleanupStackDepth;
736     }
737 
738     /// Force the emission of cleanups now, instead of waiting
739     /// until this object is destroyed.
740     /// \param ValuesToReload - A list of values that need to be available at
741     /// the insertion point after cleanup emission. If cleanup emission created
742     /// a shared cleanup block, these value pointers will be rewritten.
743     /// Otherwise, they not will be modified.
744     void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) {
745       assert(PerformCleanup && "Already forced cleanup");
746       CGF.DidCallStackSave = OldDidCallStackSave;
747       CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize,
748                            ValuesToReload);
749       PerformCleanup = false;
750       CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth;
751     }
752   };
753 
754   // Cleanup stack depth of the RunCleanupsScope that was pushed most recently.
755   EHScopeStack::stable_iterator CurrentCleanupScopeDepth =
756       EHScopeStack::stable_end();
757 
758   class LexicalScope : public RunCleanupsScope {
759     SourceRange Range;
760     SmallVector<const LabelDecl*, 4> Labels;
761     LexicalScope *ParentScope;
762 
763     LexicalScope(const LexicalScope &) = delete;
764     void operator=(const LexicalScope &) = delete;
765 
766   public:
767     /// Enter a new cleanup scope.
768     explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
769       : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
770       CGF.CurLexicalScope = this;
771       if (CGDebugInfo *DI = CGF.getDebugInfo())
772         DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
773     }
774 
775     void addLabel(const LabelDecl *label) {
776       assert(PerformCleanup && "adding label to dead scope?");
777       Labels.push_back(label);
778     }
779 
780     /// Exit this cleanup scope, emitting any accumulated
781     /// cleanups.
782     ~LexicalScope() {
783       if (CGDebugInfo *DI = CGF.getDebugInfo())
784         DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
785 
786       // If we should perform a cleanup, force them now.  Note that
787       // this ends the cleanup scope before rescoping any labels.
788       if (PerformCleanup) {
789         ApplyDebugLocation DL(CGF, Range.getEnd(), true /* ImplicitCode */);
790         ForceCleanup();
791       }
792     }
793 
794     /// Force the emission of cleanups now, instead of waiting
795     /// until this object is destroyed.
796     void ForceCleanup() {
797       CGF.CurLexicalScope = ParentScope;
798       RunCleanupsScope::ForceCleanup();
799 
800       if (!Labels.empty())
801         rescopeLabels();
802     }
803 
804     bool hasLabels() const {
805       return !Labels.empty();
806     }
807 
808     void rescopeLabels();
809   };
810 
811   typedef llvm::DenseMap<const Decl *, Address> DeclMapTy;
812 
813   /// The class used to assign some variables some temporarily addresses.
814   class OMPMapVars {
815     DeclMapTy SavedLocals;
816     DeclMapTy SavedTempAddresses;
817     OMPMapVars(const OMPMapVars &) = delete;
818     void operator=(const OMPMapVars &) = delete;
819 
820   public:
821     explicit OMPMapVars() = default;
822     ~OMPMapVars() {
823       assert(SavedLocals.empty() && "Did not restored original addresses.");
824     };
825 
826     /// Sets the address of the variable \p LocalVD to be \p TempAddr in
827     /// function \p CGF.
828     /// \return true if at least one variable was set already, false otherwise.
829     bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD,
830                     Address TempAddr) {
831       LocalVD = LocalVD->getCanonicalDecl();
832       // Only save it once.
833       if (SavedLocals.count(LocalVD)) return false;
834 
835       // Copy the existing local entry to SavedLocals.
836       auto it = CGF.LocalDeclMap.find(LocalVD);
837       if (it != CGF.LocalDeclMap.end())
838         SavedLocals.try_emplace(LocalVD, it->second);
839       else
840         SavedLocals.try_emplace(LocalVD, Address::invalid());
841 
842       // Generate the private entry.
843       QualType VarTy = LocalVD->getType();
844       if (VarTy->isReferenceType()) {
845         Address Temp = CGF.CreateMemTemp(VarTy);
846         CGF.Builder.CreateStore(TempAddr.getPointer(), Temp);
847         TempAddr = Temp;
848       }
849       SavedTempAddresses.try_emplace(LocalVD, TempAddr);
850 
851       return true;
852     }
853 
854     /// Applies new addresses to the list of the variables.
855     /// \return true if at least one variable is using new address, false
856     /// otherwise.
857     bool apply(CodeGenFunction &CGF) {
858       copyInto(SavedTempAddresses, CGF.LocalDeclMap);
859       SavedTempAddresses.clear();
860       return !SavedLocals.empty();
861     }
862 
863     /// Restores original addresses of the variables.
864     void restore(CodeGenFunction &CGF) {
865       if (!SavedLocals.empty()) {
866         copyInto(SavedLocals, CGF.LocalDeclMap);
867         SavedLocals.clear();
868       }
869     }
870 
871   private:
872     /// Copy all the entries in the source map over the corresponding
873     /// entries in the destination, which must exist.
874     static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) {
875       for (auto &Pair : Src) {
876         if (!Pair.second.isValid()) {
877           Dest.erase(Pair.first);
878           continue;
879         }
880 
881         auto I = Dest.find(Pair.first);
882         if (I != Dest.end())
883           I->second = Pair.second;
884         else
885           Dest.insert(Pair);
886       }
887     }
888   };
889 
890   /// The scope used to remap some variables as private in the OpenMP loop body
891   /// (or other captured region emitted without outlining), and to restore old
892   /// vars back on exit.
893   class OMPPrivateScope : public RunCleanupsScope {
894     OMPMapVars MappedVars;
895     OMPPrivateScope(const OMPPrivateScope &) = delete;
896     void operator=(const OMPPrivateScope &) = delete;
897 
898   public:
899     /// Enter a new OpenMP private scope.
900     explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}
901 
902     /// Registers \p LocalVD variable as a private and apply \p PrivateGen
903     /// function for it to generate corresponding private variable. \p
904     /// PrivateGen returns an address of the generated private variable.
905     /// \return true if the variable is registered as private, false if it has
906     /// been privatized already.
907     bool addPrivate(const VarDecl *LocalVD,
908                     const llvm::function_ref<Address()> PrivateGen) {
909       assert(PerformCleanup && "adding private to dead scope");
910       return MappedVars.setVarAddr(CGF, LocalVD, PrivateGen());
911     }
912 
913     /// Privatizes local variables previously registered as private.
914     /// Registration is separate from the actual privatization to allow
915     /// initializers use values of the original variables, not the private one.
916     /// This is important, for example, if the private variable is a class
917     /// variable initialized by a constructor that references other private
918     /// variables. But at initialization original variables must be used, not
919     /// private copies.
920     /// \return true if at least one variable was privatized, false otherwise.
921     bool Privatize() { return MappedVars.apply(CGF); }
922 
923     void ForceCleanup() {
924       RunCleanupsScope::ForceCleanup();
925       MappedVars.restore(CGF);
926     }
927 
928     /// Exit scope - all the mapped variables are restored.
929     ~OMPPrivateScope() {
930       if (PerformCleanup)
931         ForceCleanup();
932     }
933 
934     /// Checks if the global variable is captured in current function.
935     bool isGlobalVarCaptured(const VarDecl *VD) const {
936       VD = VD->getCanonicalDecl();
937       return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0;
938     }
939   };
940 
941   /// Takes the old cleanup stack size and emits the cleanup blocks
942   /// that have been added.
943   void
944   PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
945                    std::initializer_list<llvm::Value **> ValuesToReload = {});
946 
947   /// Takes the old cleanup stack size and emits the cleanup blocks
948   /// that have been added, then adds all lifetime-extended cleanups from
949   /// the given position to the stack.
950   void
951   PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
952                    size_t OldLifetimeExtendedStackSize,
953                    std::initializer_list<llvm::Value **> ValuesToReload = {});
954 
955   void ResolveBranchFixups(llvm::BasicBlock *Target);
956 
957   /// The given basic block lies in the current EH scope, but may be a
958   /// target of a potentially scope-crossing jump; get a stable handle
959   /// to which we can perform this jump later.
960   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
961     return JumpDest(Target,
962                     EHStack.getInnermostNormalCleanup(),
963                     NextCleanupDestIndex++);
964   }
965 
966   /// The given basic block lies in the current EH scope, but may be a
967   /// target of a potentially scope-crossing jump; get a stable handle
968   /// to which we can perform this jump later.
969   JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
970     return getJumpDestInCurrentScope(createBasicBlock(Name));
971   }
972 
973   /// EmitBranchThroughCleanup - Emit a branch from the current insert
974   /// block through the normal cleanup handling code (if any) and then
975   /// on to \arg Dest.
976   void EmitBranchThroughCleanup(JumpDest Dest);
977 
978   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
979   /// specified destination obviously has no cleanups to run.  'false' is always
980   /// a conservatively correct answer for this method.
981   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
982 
983   /// popCatchScope - Pops the catch scope at the top of the EHScope
984   /// stack, emitting any required code (other than the catch handlers
985   /// themselves).
986   void popCatchScope();
987 
988   llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
989   llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
990   llvm::BasicBlock *
991   getFuncletEHDispatchBlock(EHScopeStack::stable_iterator scope);
992 
993   /// An object to manage conditionally-evaluated expressions.
994   class ConditionalEvaluation {
995     llvm::BasicBlock *StartBB;
996 
997   public:
998     ConditionalEvaluation(CodeGenFunction &CGF)
999       : StartBB(CGF.Builder.GetInsertBlock()) {}
1000 
1001     void begin(CodeGenFunction &CGF) {
1002       assert(CGF.OutermostConditional != this);
1003       if (!CGF.OutermostConditional)
1004         CGF.OutermostConditional = this;
1005     }
1006 
1007     void end(CodeGenFunction &CGF) {
1008       assert(CGF.OutermostConditional != nullptr);
1009       if (CGF.OutermostConditional == this)
1010         CGF.OutermostConditional = nullptr;
1011     }
1012 
1013     /// Returns a block which will be executed prior to each
1014     /// evaluation of the conditional code.
1015     llvm::BasicBlock *getStartingBlock() const {
1016       return StartBB;
1017     }
1018   };
1019 
1020   /// isInConditionalBranch - Return true if we're currently emitting
1021   /// one branch or the other of a conditional expression.
1022   bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
1023 
1024   void setBeforeOutermostConditional(llvm::Value *value, Address addr) {
1025     assert(isInConditionalBranch());
1026     llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
1027     auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back());
1028     store->setAlignment(addr.getAlignment().getQuantity());
1029   }
1030 
1031   /// An RAII object to record that we're evaluating a statement
1032   /// expression.
1033   class StmtExprEvaluation {
1034     CodeGenFunction &CGF;
1035 
1036     /// We have to save the outermost conditional: cleanups in a
1037     /// statement expression aren't conditional just because the
1038     /// StmtExpr is.
1039     ConditionalEvaluation *SavedOutermostConditional;
1040 
1041   public:
1042     StmtExprEvaluation(CodeGenFunction &CGF)
1043       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
1044       CGF.OutermostConditional = nullptr;
1045     }
1046 
1047     ~StmtExprEvaluation() {
1048       CGF.OutermostConditional = SavedOutermostConditional;
1049       CGF.EnsureInsertPoint();
1050     }
1051   };
1052 
1053   /// An object which temporarily prevents a value from being
1054   /// destroyed by aggressive peephole optimizations that assume that
1055   /// all uses of a value have been realized in the IR.
1056   class PeepholeProtection {
1057     llvm::Instruction *Inst;
1058     friend class CodeGenFunction;
1059 
1060   public:
1061     PeepholeProtection() : Inst(nullptr) {}
1062   };
1063 
1064   /// A non-RAII class containing all the information about a bound
1065   /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
1066   /// this which makes individual mappings very simple; using this
1067   /// class directly is useful when you have a variable number of
1068   /// opaque values or don't want the RAII functionality for some
1069   /// reason.
1070   class OpaqueValueMappingData {
1071     const OpaqueValueExpr *OpaqueValue;
1072     bool BoundLValue;
1073     CodeGenFunction::PeepholeProtection Protection;
1074 
1075     OpaqueValueMappingData(const OpaqueValueExpr *ov,
1076                            bool boundLValue)
1077       : OpaqueValue(ov), BoundLValue(boundLValue) {}
1078   public:
1079     OpaqueValueMappingData() : OpaqueValue(nullptr) {}
1080 
1081     static bool shouldBindAsLValue(const Expr *expr) {
1082       // gl-values should be bound as l-values for obvious reasons.
1083       // Records should be bound as l-values because IR generation
1084       // always keeps them in memory.  Expressions of function type
1085       // act exactly like l-values but are formally required to be
1086       // r-values in C.
1087       return expr->isGLValue() ||
1088              expr->getType()->isFunctionType() ||
1089              hasAggregateEvaluationKind(expr->getType());
1090     }
1091 
1092     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1093                                        const OpaqueValueExpr *ov,
1094                                        const Expr *e) {
1095       if (shouldBindAsLValue(ov))
1096         return bind(CGF, ov, CGF.EmitLValue(e));
1097       return bind(CGF, ov, CGF.EmitAnyExpr(e));
1098     }
1099 
1100     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1101                                        const OpaqueValueExpr *ov,
1102                                        const LValue &lv) {
1103       assert(shouldBindAsLValue(ov));
1104       CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
1105       return OpaqueValueMappingData(ov, true);
1106     }
1107 
1108     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1109                                        const OpaqueValueExpr *ov,
1110                                        const RValue &rv) {
1111       assert(!shouldBindAsLValue(ov));
1112       CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
1113 
1114       OpaqueValueMappingData data(ov, false);
1115 
1116       // Work around an extremely aggressive peephole optimization in
1117       // EmitScalarConversion which assumes that all other uses of a
1118       // value are extant.
1119       data.Protection = CGF.protectFromPeepholes(rv);
1120 
1121       return data;
1122     }
1123 
1124     bool isValid() const { return OpaqueValue != nullptr; }
1125     void clear() { OpaqueValue = nullptr; }
1126 
1127     void unbind(CodeGenFunction &CGF) {
1128       assert(OpaqueValue && "no data to unbind!");
1129 
1130       if (BoundLValue) {
1131         CGF.OpaqueLValues.erase(OpaqueValue);
1132       } else {
1133         CGF.OpaqueRValues.erase(OpaqueValue);
1134         CGF.unprotectFromPeepholes(Protection);
1135       }
1136     }
1137   };
1138 
1139   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
1140   class OpaqueValueMapping {
1141     CodeGenFunction &CGF;
1142     OpaqueValueMappingData Data;
1143 
1144   public:
1145     static bool shouldBindAsLValue(const Expr *expr) {
1146       return OpaqueValueMappingData::shouldBindAsLValue(expr);
1147     }
1148 
1149     /// Build the opaque value mapping for the given conditional
1150     /// operator if it's the GNU ?: extension.  This is a common
1151     /// enough pattern that the convenience operator is really
1152     /// helpful.
1153     ///
1154     OpaqueValueMapping(CodeGenFunction &CGF,
1155                        const AbstractConditionalOperator *op) : CGF(CGF) {
1156       if (isa<ConditionalOperator>(op))
1157         // Leave Data empty.
1158         return;
1159 
1160       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
1161       Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
1162                                           e->getCommon());
1163     }
1164 
1165     /// Build the opaque value mapping for an OpaqueValueExpr whose source
1166     /// expression is set to the expression the OVE represents.
1167     OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV)
1168         : CGF(CGF) {
1169       if (OV) {
1170         assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used "
1171                                       "for OVE with no source expression");
1172         Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr());
1173       }
1174     }
1175 
1176     OpaqueValueMapping(CodeGenFunction &CGF,
1177                        const OpaqueValueExpr *opaqueValue,
1178                        LValue lvalue)
1179       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
1180     }
1181 
1182     OpaqueValueMapping(CodeGenFunction &CGF,
1183                        const OpaqueValueExpr *opaqueValue,
1184                        RValue rvalue)
1185       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
1186     }
1187 
1188     void pop() {
1189       Data.unbind(CGF);
1190       Data.clear();
1191     }
1192 
1193     ~OpaqueValueMapping() {
1194       if (Data.isValid()) Data.unbind(CGF);
1195     }
1196   };
1197 
1198 private:
1199   CGDebugInfo *DebugInfo;
1200   bool DisableDebugInfo = false;
1201 
1202   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
1203   /// calling llvm.stacksave for multiple VLAs in the same scope.
1204   bool DidCallStackSave = false;
1205 
1206   /// IndirectBranch - The first time an indirect goto is seen we create a block
1207   /// with an indirect branch.  Every time we see the address of a label taken,
1208   /// we add the label to the indirect goto.  Every subsequent indirect goto is
1209   /// codegen'd as a jump to the IndirectBranch's basic block.
1210   llvm::IndirectBrInst *IndirectBranch = nullptr;
1211 
1212   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1213   /// decls.
1214   DeclMapTy LocalDeclMap;
1215 
1216   // Keep track of the cleanups for callee-destructed parameters pushed to the
1217   // cleanup stack so that they can be deactivated later.
1218   llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator>
1219       CalleeDestructedParamCleanups;
1220 
1221   /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this
1222   /// will contain a mapping from said ParmVarDecl to its implicit "object_size"
1223   /// parameter.
1224   llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2>
1225       SizeArguments;
1226 
1227   /// Track escaped local variables with auto storage. Used during SEH
1228   /// outlining to produce a call to llvm.localescape.
1229   llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;
1230 
1231   /// LabelMap - This keeps track of the LLVM basic block for each C label.
1232   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1233 
1234   // BreakContinueStack - This keeps track of where break and continue
1235   // statements should jump to.
1236   struct BreakContinue {
1237     BreakContinue(JumpDest Break, JumpDest Continue)
1238       : BreakBlock(Break), ContinueBlock(Continue) {}
1239 
1240     JumpDest BreakBlock;
1241     JumpDest ContinueBlock;
1242   };
1243   SmallVector<BreakContinue, 8> BreakContinueStack;
1244 
1245   /// Handles cancellation exit points in OpenMP-related constructs.
1246   class OpenMPCancelExitStack {
1247     /// Tracks cancellation exit point and join point for cancel-related exit
1248     /// and normal exit.
1249     struct CancelExit {
1250       CancelExit() = default;
1251       CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock,
1252                  JumpDest ContBlock)
1253           : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {}
1254       OpenMPDirectiveKind Kind = OMPD_unknown;
1255       /// true if the exit block has been emitted already by the special
1256       /// emitExit() call, false if the default codegen is used.
1257       bool HasBeenEmitted = false;
1258       JumpDest ExitBlock;
1259       JumpDest ContBlock;
1260     };
1261 
1262     SmallVector<CancelExit, 8> Stack;
1263 
1264   public:
1265     OpenMPCancelExitStack() : Stack(1) {}
1266     ~OpenMPCancelExitStack() = default;
1267     /// Fetches the exit block for the current OpenMP construct.
1268     JumpDest getExitBlock() const { return Stack.back().ExitBlock; }
1269     /// Emits exit block with special codegen procedure specific for the related
1270     /// OpenMP construct + emits code for normal construct cleanup.
1271     void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
1272                   const llvm::function_ref<void(CodeGenFunction &)> CodeGen) {
1273       if (Stack.back().Kind == Kind && getExitBlock().isValid()) {
1274         assert(CGF.getOMPCancelDestination(Kind).isValid());
1275         assert(CGF.HaveInsertPoint());
1276         assert(!Stack.back().HasBeenEmitted);
1277         auto IP = CGF.Builder.saveAndClearIP();
1278         CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1279         CodeGen(CGF);
1280         CGF.EmitBranch(Stack.back().ContBlock.getBlock());
1281         CGF.Builder.restoreIP(IP);
1282         Stack.back().HasBeenEmitted = true;
1283       }
1284       CodeGen(CGF);
1285     }
1286     /// Enter the cancel supporting \a Kind construct.
1287     /// \param Kind OpenMP directive that supports cancel constructs.
1288     /// \param HasCancel true, if the construct has inner cancel directive,
1289     /// false otherwise.
1290     void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) {
1291       Stack.push_back({Kind,
1292                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit")
1293                                  : JumpDest(),
1294                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont")
1295                                  : JumpDest()});
1296     }
1297     /// Emits default exit point for the cancel construct (if the special one
1298     /// has not be used) + join point for cancel/normal exits.
1299     void exit(CodeGenFunction &CGF) {
1300       if (getExitBlock().isValid()) {
1301         assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid());
1302         bool HaveIP = CGF.HaveInsertPoint();
1303         if (!Stack.back().HasBeenEmitted) {
1304           if (HaveIP)
1305             CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1306           CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1307           CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1308         }
1309         CGF.EmitBlock(Stack.back().ContBlock.getBlock());
1310         if (!HaveIP) {
1311           CGF.Builder.CreateUnreachable();
1312           CGF.Builder.ClearInsertionPoint();
1313         }
1314       }
1315       Stack.pop_back();
1316     }
1317   };
1318   OpenMPCancelExitStack OMPCancelStack;
1319 
1320   CodeGenPGO PGO;
1321 
1322   /// Calculate branch weights appropriate for PGO data
1323   llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount);
1324   llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights);
1325   llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond,
1326                                             uint64_t LoopCount);
1327 
1328 public:
1329   /// Increment the profiler's counter for the given statement by \p StepV.
1330   /// If \p StepV is null, the default increment is 1.
1331   void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) {
1332     if (CGM.getCodeGenOpts().hasProfileClangInstr())
1333       PGO.emitCounterIncrement(Builder, S, StepV);
1334     PGO.setCurrentStmt(S);
1335   }
1336 
1337   /// Get the profiler's count for the given statement.
1338   uint64_t getProfileCount(const Stmt *S) {
1339     Optional<uint64_t> Count = PGO.getStmtCount(S);
1340     if (!Count.hasValue())
1341       return 0;
1342     return *Count;
1343   }
1344 
1345   /// Set the profiler's current count.
1346   void setCurrentProfileCount(uint64_t Count) {
1347     PGO.setCurrentRegionCount(Count);
1348   }
1349 
1350   /// Get the profiler's current count. This is generally the count for the most
1351   /// recently incremented counter.
1352   uint64_t getCurrentProfileCount() {
1353     return PGO.getCurrentRegionCount();
1354   }
1355 
1356 private:
1357 
1358   /// SwitchInsn - This is nearest current switch instruction. It is null if
1359   /// current context is not in a switch.
1360   llvm::SwitchInst *SwitchInsn = nullptr;
1361   /// The branch weights of SwitchInsn when doing instrumentation based PGO.
1362   SmallVector<uint64_t, 16> *SwitchWeights = nullptr;
1363 
1364   /// CaseRangeBlock - This block holds if condition check for last case
1365   /// statement range in current switch instruction.
1366   llvm::BasicBlock *CaseRangeBlock = nullptr;
1367 
1368   /// OpaqueLValues - Keeps track of the current set of opaque value
1369   /// expressions.
1370   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1371   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1372 
1373   // VLASizeMap - This keeps track of the associated size for each VLA type.
1374   // We track this by the size expression rather than the type itself because
1375   // in certain situations, like a const qualifier applied to an VLA typedef,
1376   // multiple VLA types can share the same size expression.
1377   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1378   // enter/leave scopes.
1379   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1380 
1381   /// A block containing a single 'unreachable' instruction.  Created
1382   /// lazily by getUnreachableBlock().
1383   llvm::BasicBlock *UnreachableBlock = nullptr;
1384 
1385   /// Counts of the number return expressions in the function.
1386   unsigned NumReturnExprs = 0;
1387 
1388   /// Count the number of simple (constant) return expressions in the function.
1389   unsigned NumSimpleReturnExprs = 0;
1390 
1391   /// The last regular (non-return) debug location (breakpoint) in the function.
1392   SourceLocation LastStopPoint;
1393 
1394 public:
1395   /// A scope within which we are constructing the fields of an object which
1396   /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
1397   /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
1398   class FieldConstructionScope {
1399   public:
1400     FieldConstructionScope(CodeGenFunction &CGF, Address This)
1401         : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
1402       CGF.CXXDefaultInitExprThis = This;
1403     }
1404     ~FieldConstructionScope() {
1405       CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
1406     }
1407 
1408   private:
1409     CodeGenFunction &CGF;
1410     Address OldCXXDefaultInitExprThis;
1411   };
1412 
1413   /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
1414   /// is overridden to be the object under construction.
1415   class CXXDefaultInitExprScope {
1416   public:
1417     CXXDefaultInitExprScope(CodeGenFunction &CGF)
1418       : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue),
1419         OldCXXThisAlignment(CGF.CXXThisAlignment) {
1420       CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer();
1421       CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment();
1422     }
1423     ~CXXDefaultInitExprScope() {
1424       CGF.CXXThisValue = OldCXXThisValue;
1425       CGF.CXXThisAlignment = OldCXXThisAlignment;
1426     }
1427 
1428   public:
1429     CodeGenFunction &CGF;
1430     llvm::Value *OldCXXThisValue;
1431     CharUnits OldCXXThisAlignment;
1432   };
1433 
1434   /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the
1435   /// current loop index is overridden.
1436   class ArrayInitLoopExprScope {
1437   public:
1438     ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index)
1439       : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) {
1440       CGF.ArrayInitIndex = Index;
1441     }
1442     ~ArrayInitLoopExprScope() {
1443       CGF.ArrayInitIndex = OldArrayInitIndex;
1444     }
1445 
1446   private:
1447     CodeGenFunction &CGF;
1448     llvm::Value *OldArrayInitIndex;
1449   };
1450 
1451   class InlinedInheritingConstructorScope {
1452   public:
1453     InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD)
1454         : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl),
1455           OldCurCodeDecl(CGF.CurCodeDecl),
1456           OldCXXABIThisDecl(CGF.CXXABIThisDecl),
1457           OldCXXABIThisValue(CGF.CXXABIThisValue),
1458           OldCXXThisValue(CGF.CXXThisValue),
1459           OldCXXABIThisAlignment(CGF.CXXABIThisAlignment),
1460           OldCXXThisAlignment(CGF.CXXThisAlignment),
1461           OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy),
1462           OldCXXInheritedCtorInitExprArgs(
1463               std::move(CGF.CXXInheritedCtorInitExprArgs)) {
1464       CGF.CurGD = GD;
1465       CGF.CurFuncDecl = CGF.CurCodeDecl =
1466           cast<CXXConstructorDecl>(GD.getDecl());
1467       CGF.CXXABIThisDecl = nullptr;
1468       CGF.CXXABIThisValue = nullptr;
1469       CGF.CXXThisValue = nullptr;
1470       CGF.CXXABIThisAlignment = CharUnits();
1471       CGF.CXXThisAlignment = CharUnits();
1472       CGF.ReturnValue = Address::invalid();
1473       CGF.FnRetTy = QualType();
1474       CGF.CXXInheritedCtorInitExprArgs.clear();
1475     }
1476     ~InlinedInheritingConstructorScope() {
1477       CGF.CurGD = OldCurGD;
1478       CGF.CurFuncDecl = OldCurFuncDecl;
1479       CGF.CurCodeDecl = OldCurCodeDecl;
1480       CGF.CXXABIThisDecl = OldCXXABIThisDecl;
1481       CGF.CXXABIThisValue = OldCXXABIThisValue;
1482       CGF.CXXThisValue = OldCXXThisValue;
1483       CGF.CXXABIThisAlignment = OldCXXABIThisAlignment;
1484       CGF.CXXThisAlignment = OldCXXThisAlignment;
1485       CGF.ReturnValue = OldReturnValue;
1486       CGF.FnRetTy = OldFnRetTy;
1487       CGF.CXXInheritedCtorInitExprArgs =
1488           std::move(OldCXXInheritedCtorInitExprArgs);
1489     }
1490 
1491   private:
1492     CodeGenFunction &CGF;
1493     GlobalDecl OldCurGD;
1494     const Decl *OldCurFuncDecl;
1495     const Decl *OldCurCodeDecl;
1496     ImplicitParamDecl *OldCXXABIThisDecl;
1497     llvm::Value *OldCXXABIThisValue;
1498     llvm::Value *OldCXXThisValue;
1499     CharUnits OldCXXABIThisAlignment;
1500     CharUnits OldCXXThisAlignment;
1501     Address OldReturnValue;
1502     QualType OldFnRetTy;
1503     CallArgList OldCXXInheritedCtorInitExprArgs;
1504   };
1505 
1506 private:
1507   /// CXXThisDecl - When generating code for a C++ member function,
1508   /// this will hold the implicit 'this' declaration.
1509   ImplicitParamDecl *CXXABIThisDecl = nullptr;
1510   llvm::Value *CXXABIThisValue = nullptr;
1511   llvm::Value *CXXThisValue = nullptr;
1512   CharUnits CXXABIThisAlignment;
1513   CharUnits CXXThisAlignment;
1514 
1515   /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
1516   /// this expression.
1517   Address CXXDefaultInitExprThis = Address::invalid();
1518 
1519   /// The current array initialization index when evaluating an
1520   /// ArrayInitIndexExpr within an ArrayInitLoopExpr.
1521   llvm::Value *ArrayInitIndex = nullptr;
1522 
1523   /// The values of function arguments to use when evaluating
1524   /// CXXInheritedCtorInitExprs within this context.
1525   CallArgList CXXInheritedCtorInitExprArgs;
1526 
1527   /// CXXStructorImplicitParamDecl - When generating code for a constructor or
1528   /// destructor, this will hold the implicit argument (e.g. VTT).
1529   ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr;
1530   llvm::Value *CXXStructorImplicitParamValue = nullptr;
1531 
1532   /// OutermostConditional - Points to the outermost active
1533   /// conditional control.  This is used so that we know if a
1534   /// temporary should be destroyed conditionally.
1535   ConditionalEvaluation *OutermostConditional = nullptr;
1536 
1537   /// The current lexical scope.
1538   LexicalScope *CurLexicalScope = nullptr;
1539 
1540   /// The current source location that should be used for exception
1541   /// handling code.
1542   SourceLocation CurEHLocation;
1543 
1544   /// BlockByrefInfos - For each __block variable, contains
1545   /// information about the layout of the variable.
1546   llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos;
1547 
1548   /// Used by -fsanitize=nullability-return to determine whether the return
1549   /// value can be checked.
1550   llvm::Value *RetValNullabilityPrecondition = nullptr;
1551 
1552   /// Check if -fsanitize=nullability-return instrumentation is required for
1553   /// this function.
1554   bool requiresReturnValueNullabilityCheck() const {
1555     return RetValNullabilityPrecondition;
1556   }
1557 
1558   /// Used to store precise source locations for return statements by the
1559   /// runtime return value checks.
1560   Address ReturnLocation = Address::invalid();
1561 
1562   /// Check if the return value of this function requires sanitization.
1563   bool requiresReturnValueCheck() const {
1564     return requiresReturnValueNullabilityCheck() ||
1565            (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
1566             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>());
1567   }
1568 
1569   llvm::BasicBlock *TerminateLandingPad = nullptr;
1570   llvm::BasicBlock *TerminateHandler = nullptr;
1571   llvm::BasicBlock *TrapBB = nullptr;
1572 
1573   /// Terminate funclets keyed by parent funclet pad.
1574   llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets;
1575 
1576   /// Largest vector width used in ths function. Will be used to create a
1577   /// function attribute.
1578   unsigned LargestVectorWidth = 0;
1579 
1580   /// True if we need emit the life-time markers.
1581   const bool ShouldEmitLifetimeMarkers;
1582 
1583   /// Add OpenCL kernel arg metadata and the kernel attribute metadata to
1584   /// the function metadata.
1585   void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
1586                                 llvm::Function *Fn);
1587 
1588 public:
1589   CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1590   ~CodeGenFunction();
1591 
1592   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1593   ASTContext &getContext() const { return CGM.getContext(); }
1594   CGDebugInfo *getDebugInfo() {
1595     if (DisableDebugInfo)
1596       return nullptr;
1597     return DebugInfo;
1598   }
1599   void disableDebugInfo() { DisableDebugInfo = true; }
1600   void enableDebugInfo() { DisableDebugInfo = false; }
1601 
1602   bool shouldUseFusedARCCalls() {
1603     return CGM.getCodeGenOpts().OptimizationLevel == 0;
1604   }
1605 
1606   const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1607 
1608   /// Returns a pointer to the function's exception object and selector slot,
1609   /// which is assigned in every landing pad.
1610   Address getExceptionSlot();
1611   Address getEHSelectorSlot();
1612 
1613   /// Returns the contents of the function's exception object and selector
1614   /// slots.
1615   llvm::Value *getExceptionFromSlot();
1616   llvm::Value *getSelectorFromSlot();
1617 
1618   Address getNormalCleanupDestSlot();
1619 
1620   llvm::BasicBlock *getUnreachableBlock() {
1621     if (!UnreachableBlock) {
1622       UnreachableBlock = createBasicBlock("unreachable");
1623       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1624     }
1625     return UnreachableBlock;
1626   }
1627 
1628   llvm::BasicBlock *getInvokeDest() {
1629     if (!EHStack.requiresLandingPad()) return nullptr;
1630     return getInvokeDestImpl();
1631   }
1632 
1633   bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; }
1634 
1635   const TargetInfo &getTarget() const { return Target; }
1636   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1637   const TargetCodeGenInfo &getTargetHooks() const {
1638     return CGM.getTargetCodeGenInfo();
1639   }
1640 
1641   //===--------------------------------------------------------------------===//
1642   //                                  Cleanups
1643   //===--------------------------------------------------------------------===//
1644 
1645   typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty);
1646 
1647   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1648                                         Address arrayEndPointer,
1649                                         QualType elementType,
1650                                         CharUnits elementAlignment,
1651                                         Destroyer *destroyer);
1652   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1653                                       llvm::Value *arrayEnd,
1654                                       QualType elementType,
1655                                       CharUnits elementAlignment,
1656                                       Destroyer *destroyer);
1657 
1658   void pushDestroy(QualType::DestructionKind dtorKind,
1659                    Address addr, QualType type);
1660   void pushEHDestroy(QualType::DestructionKind dtorKind,
1661                      Address addr, QualType type);
1662   void pushDestroy(CleanupKind kind, Address addr, QualType type,
1663                    Destroyer *destroyer, bool useEHCleanupForArray);
1664   void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr,
1665                                    QualType type, Destroyer *destroyer,
1666                                    bool useEHCleanupForArray);
1667   void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1668                                    llvm::Value *CompletePtr,
1669                                    QualType ElementType);
1670   void pushStackRestore(CleanupKind kind, Address SPMem);
1671   void emitDestroy(Address addr, QualType type, Destroyer *destroyer,
1672                    bool useEHCleanupForArray);
1673   llvm::Function *generateDestroyHelper(Address addr, QualType type,
1674                                         Destroyer *destroyer,
1675                                         bool useEHCleanupForArray,
1676                                         const VarDecl *VD);
1677   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1678                         QualType elementType, CharUnits elementAlign,
1679                         Destroyer *destroyer,
1680                         bool checkZeroLength, bool useEHCleanup);
1681 
1682   Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1683 
1684   /// Determines whether an EH cleanup is required to destroy a type
1685   /// with the given destruction kind.
1686   bool needsEHCleanup(QualType::DestructionKind kind) {
1687     switch (kind) {
1688     case QualType::DK_none:
1689       return false;
1690     case QualType::DK_cxx_destructor:
1691     case QualType::DK_objc_weak_lifetime:
1692     case QualType::DK_nontrivial_c_struct:
1693       return getLangOpts().Exceptions;
1694     case QualType::DK_objc_strong_lifetime:
1695       return getLangOpts().Exceptions &&
1696              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1697     }
1698     llvm_unreachable("bad destruction kind");
1699   }
1700 
1701   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
1702     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1703   }
1704 
1705   //===--------------------------------------------------------------------===//
1706   //                                  Objective-C
1707   //===--------------------------------------------------------------------===//
1708 
1709   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1710 
1711   void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
1712 
1713   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1714   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1715                           const ObjCPropertyImplDecl *PID);
1716   void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1717                               const ObjCPropertyImplDecl *propImpl,
1718                               const ObjCMethodDecl *GetterMothodDecl,
1719                               llvm::Constant *AtomicHelperFn);
1720 
1721   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1722                                   ObjCMethodDecl *MD, bool ctor);
1723 
1724   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1725   /// for the given property.
1726   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1727                           const ObjCPropertyImplDecl *PID);
1728   void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1729                               const ObjCPropertyImplDecl *propImpl,
1730                               llvm::Constant *AtomicHelperFn);
1731 
1732   //===--------------------------------------------------------------------===//
1733   //                                  Block Bits
1734   //===--------------------------------------------------------------------===//
1735 
1736   /// Emit block literal.
1737   /// \return an LLVM value which is a pointer to a struct which contains
1738   /// information about the block, including the block invoke function, the
1739   /// captured variables, etc.
1740   llvm::Value *EmitBlockLiteral(const BlockExpr *);
1741   static void destroyBlockInfos(CGBlockInfo *info);
1742 
1743   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1744                                         const CGBlockInfo &Info,
1745                                         const DeclMapTy &ldm,
1746                                         bool IsLambdaConversionToBlock,
1747                                         bool BuildGlobalBlock);
1748 
1749   /// Check if \p T is a C++ class that has a destructor that can throw.
1750   static bool cxxDestructorCanThrow(QualType T);
1751 
1752   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1753   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1754   llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
1755                                              const ObjCPropertyImplDecl *PID);
1756   llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
1757                                              const ObjCPropertyImplDecl *PID);
1758   llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
1759 
1760   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags,
1761                          bool CanThrow);
1762 
1763   class AutoVarEmission;
1764 
1765   void emitByrefStructureInit(const AutoVarEmission &emission);
1766 
1767   /// Enter a cleanup to destroy a __block variable.  Note that this
1768   /// cleanup should be a no-op if the variable hasn't left the stack
1769   /// yet; if a cleanup is required for the variable itself, that needs
1770   /// to be done externally.
1771   ///
1772   /// \param Kind Cleanup kind.
1773   ///
1774   /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block
1775   /// structure that will be passed to _Block_object_dispose. When
1776   /// \p LoadBlockVarAddr is true, the address of the field of the block
1777   /// structure that holds the address of the __block structure.
1778   ///
1779   /// \param Flags The flag that will be passed to _Block_object_dispose.
1780   ///
1781   /// \param LoadBlockVarAddr Indicates whether we need to emit a load from
1782   /// \p Addr to get the address of the __block structure.
1783   void enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags,
1784                          bool LoadBlockVarAddr, bool CanThrow);
1785 
1786   void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum,
1787                                 llvm::Value *ptr);
1788 
1789   Address LoadBlockStruct();
1790   Address GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
1791 
1792   /// BuildBlockByrefAddress - Computes the location of the
1793   /// data in a variable which is declared as __block.
1794   Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V,
1795                                 bool followForward = true);
1796   Address emitBlockByrefAddress(Address baseAddr,
1797                                 const BlockByrefInfo &info,
1798                                 bool followForward,
1799                                 const llvm::Twine &name);
1800 
1801   const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var);
1802 
1803   QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args);
1804 
1805   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1806                     const CGFunctionInfo &FnInfo);
1807 
1808   /// Annotate the function with an attribute that disables TSan checking at
1809   /// runtime.
1810   void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn);
1811 
1812   /// Emit code for the start of a function.
1813   /// \param Loc       The location to be associated with the function.
1814   /// \param StartLoc  The location of the function body.
1815   void StartFunction(GlobalDecl GD,
1816                      QualType RetTy,
1817                      llvm::Function *Fn,
1818                      const CGFunctionInfo &FnInfo,
1819                      const FunctionArgList &Args,
1820                      SourceLocation Loc = SourceLocation(),
1821                      SourceLocation StartLoc = SourceLocation());
1822 
1823   static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor);
1824 
1825   void EmitConstructorBody(FunctionArgList &Args);
1826   void EmitDestructorBody(FunctionArgList &Args);
1827   void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
1828   void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body);
1829   void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S);
1830 
1831   void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
1832                                   CallArgList &CallArgs);
1833   void EmitLambdaBlockInvokeBody();
1834   void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
1835   void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD);
1836   void EmitAsanPrologueOrEpilogue(bool Prologue);
1837 
1838   /// Emit the unified return block, trying to avoid its emission when
1839   /// possible.
1840   /// \return The debug location of the user written return statement if the
1841   /// return block is is avoided.
1842   llvm::DebugLoc EmitReturnBlock();
1843 
1844   /// FinishFunction - Complete IR generation of the current function. It is
1845   /// legal to call this function even if there is no current insertion point.
1846   void FinishFunction(SourceLocation EndLoc=SourceLocation());
1847 
1848   void StartThunk(llvm::Function *Fn, GlobalDecl GD,
1849                   const CGFunctionInfo &FnInfo, bool IsUnprototyped);
1850 
1851   void EmitCallAndReturnForThunk(llvm::Constant *Callee, const ThunkInfo *Thunk,
1852                                  bool IsUnprototyped);
1853 
1854   void FinishThunk();
1855 
1856   /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
1857   void EmitMustTailThunk(const CXXMethodDecl *MD, llvm::Value *AdjustedThisPtr,
1858                          llvm::Value *Callee);
1859 
1860   /// Generate a thunk for the given method.
1861   void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1862                      GlobalDecl GD, const ThunkInfo &Thunk,
1863                      bool IsUnprototyped);
1864 
1865   llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn,
1866                                        const CGFunctionInfo &FnInfo,
1867                                        GlobalDecl GD, const ThunkInfo &Thunk);
1868 
1869   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1870                         FunctionArgList &Args);
1871 
1872   void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init);
1873 
1874   /// Struct with all information about dynamic [sub]class needed to set vptr.
1875   struct VPtr {
1876     BaseSubobject Base;
1877     const CXXRecordDecl *NearestVBase;
1878     CharUnits OffsetFromNearestVBase;
1879     const CXXRecordDecl *VTableClass;
1880   };
1881 
1882   /// Initialize the vtable pointer of the given subobject.
1883   void InitializeVTablePointer(const VPtr &vptr);
1884 
1885   typedef llvm::SmallVector<VPtr, 4> VPtrsVector;
1886 
1887   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1888   VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass);
1889 
1890   void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase,
1891                          CharUnits OffsetFromNearestVBase,
1892                          bool BaseIsNonVirtualPrimaryBase,
1893                          const CXXRecordDecl *VTableClass,
1894                          VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs);
1895 
1896   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1897 
1898   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1899   /// to by This.
1900   llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy,
1901                             const CXXRecordDecl *VTableClass);
1902 
1903   enum CFITypeCheckKind {
1904     CFITCK_VCall,
1905     CFITCK_NVCall,
1906     CFITCK_DerivedCast,
1907     CFITCK_UnrelatedCast,
1908     CFITCK_ICall,
1909     CFITCK_NVMFCall,
1910     CFITCK_VMFCall,
1911   };
1912 
1913   /// Derived is the presumed address of an object of type T after a
1914   /// cast. If T is a polymorphic class type, emit a check that the virtual
1915   /// table for Derived belongs to a class derived from T.
1916   void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived,
1917                                  bool MayBeNull, CFITypeCheckKind TCK,
1918                                  SourceLocation Loc);
1919 
1920   /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
1921   /// If vptr CFI is enabled, emit a check that VTable is valid.
1922   void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable,
1923                                  CFITypeCheckKind TCK, SourceLocation Loc);
1924 
1925   /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
1926   /// RD using llvm.type.test.
1927   void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable,
1928                           CFITypeCheckKind TCK, SourceLocation Loc);
1929 
1930   /// If whole-program virtual table optimization is enabled, emit an assumption
1931   /// that VTable is a member of RD's type identifier. Or, if vptr CFI is
1932   /// enabled, emit a check that VTable is a member of RD's type identifier.
1933   void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
1934                                     llvm::Value *VTable, SourceLocation Loc);
1935 
1936   /// Returns whether we should perform a type checked load when loading a
1937   /// virtual function for virtual calls to members of RD. This is generally
1938   /// true when both vcall CFI and whole-program-vtables are enabled.
1939   bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD);
1940 
1941   /// Emit a type checked load from the given vtable.
1942   llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable,
1943                                          uint64_t VTableByteOffset);
1944 
1945   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1946   /// given phase of destruction for a destructor.  The end result
1947   /// should call destructors on members and base classes in reverse
1948   /// order of their construction.
1949   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1950 
1951   /// ShouldInstrumentFunction - Return true if the current function should be
1952   /// instrumented with __cyg_profile_func_* calls
1953   bool ShouldInstrumentFunction();
1954 
1955   /// ShouldXRayInstrument - Return true if the current function should be
1956   /// instrumented with XRay nop sleds.
1957   bool ShouldXRayInstrumentFunction() const;
1958 
1959   /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit
1960   /// XRay custom event handling calls.
1961   bool AlwaysEmitXRayCustomEvents() const;
1962 
1963   /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit
1964   /// XRay typed event handling calls.
1965   bool AlwaysEmitXRayTypedEvents() const;
1966 
1967   /// Encode an address into a form suitable for use in a function prologue.
1968   llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F,
1969                                              llvm::Constant *Addr);
1970 
1971   /// Decode an address used in a function prologue, encoded by \c
1972   /// EncodeAddrForUseInPrologue.
1973   llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F,
1974                                         llvm::Value *EncodedAddr);
1975 
1976   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1977   /// arguments for the given function. This is also responsible for naming the
1978   /// LLVM function arguments.
1979   void EmitFunctionProlog(const CGFunctionInfo &FI,
1980                           llvm::Function *Fn,
1981                           const FunctionArgList &Args);
1982 
1983   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1984   /// given temporary.
1985   void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
1986                           SourceLocation EndLoc);
1987 
1988   /// Emit a test that checks if the return value \p RV is nonnull.
1989   void EmitReturnValueCheck(llvm::Value *RV);
1990 
1991   /// EmitStartEHSpec - Emit the start of the exception spec.
1992   void EmitStartEHSpec(const Decl *D);
1993 
1994   /// EmitEndEHSpec - Emit the end of the exception spec.
1995   void EmitEndEHSpec(const Decl *D);
1996 
1997   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
1998   llvm::BasicBlock *getTerminateLandingPad();
1999 
2000   /// getTerminateLandingPad - Return a cleanup funclet that just calls
2001   /// terminate.
2002   llvm::BasicBlock *getTerminateFunclet();
2003 
2004   /// getTerminateHandler - Return a handler (not a landing pad, just
2005   /// a catch handler) that just calls terminate.  This is used when
2006   /// a terminate scope encloses a try.
2007   llvm::BasicBlock *getTerminateHandler();
2008 
2009   llvm::Type *ConvertTypeForMem(QualType T);
2010   llvm::Type *ConvertType(QualType T);
2011   llvm::Type *ConvertType(const TypeDecl *T) {
2012     return ConvertType(getContext().getTypeDeclType(T));
2013   }
2014 
2015   /// LoadObjCSelf - Load the value of self. This function is only valid while
2016   /// generating code for an Objective-C method.
2017   llvm::Value *LoadObjCSelf();
2018 
2019   /// TypeOfSelfObject - Return type of object that this self represents.
2020   QualType TypeOfSelfObject();
2021 
2022   /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T.
2023   static TypeEvaluationKind getEvaluationKind(QualType T);
2024 
2025   static bool hasScalarEvaluationKind(QualType T) {
2026     return getEvaluationKind(T) == TEK_Scalar;
2027   }
2028 
2029   static bool hasAggregateEvaluationKind(QualType T) {
2030     return getEvaluationKind(T) == TEK_Aggregate;
2031   }
2032 
2033   /// createBasicBlock - Create an LLVM basic block.
2034   llvm::BasicBlock *createBasicBlock(const Twine &name = "",
2035                                      llvm::Function *parent = nullptr,
2036                                      llvm::BasicBlock *before = nullptr) {
2037     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
2038   }
2039 
2040   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
2041   /// label maps to.
2042   JumpDest getJumpDestForLabel(const LabelDecl *S);
2043 
2044   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
2045   /// another basic block, simplify it. This assumes that no other code could
2046   /// potentially reference the basic block.
2047   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
2048 
2049   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
2050   /// adding a fall-through branch from the current insert block if
2051   /// necessary. It is legal to call this function even if there is no current
2052   /// insertion point.
2053   ///
2054   /// IsFinished - If true, indicates that the caller has finished emitting
2055   /// branches to the given block and does not expect to emit code into it. This
2056   /// means the block can be ignored if it is unreachable.
2057   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
2058 
2059   /// EmitBlockAfterUses - Emit the given block somewhere hopefully
2060   /// near its uses, and leave the insertion point in it.
2061   void EmitBlockAfterUses(llvm::BasicBlock *BB);
2062 
2063   /// EmitBranch - Emit a branch to the specified basic block from the current
2064   /// insert block, taking care to avoid creation of branches from dummy
2065   /// blocks. It is legal to call this function even if there is no current
2066   /// insertion point.
2067   ///
2068   /// This function clears the current insertion point. The caller should follow
2069   /// calls to this function with calls to Emit*Block prior to generation new
2070   /// code.
2071   void EmitBranch(llvm::BasicBlock *Block);
2072 
2073   /// HaveInsertPoint - True if an insertion point is defined. If not, this
2074   /// indicates that the current code being emitted is unreachable.
2075   bool HaveInsertPoint() const {
2076     return Builder.GetInsertBlock() != nullptr;
2077   }
2078 
2079   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
2080   /// emitted IR has a place to go. Note that by definition, if this function
2081   /// creates a block then that block is unreachable; callers may do better to
2082   /// detect when no insertion point is defined and simply skip IR generation.
2083   void EnsureInsertPoint() {
2084     if (!HaveInsertPoint())
2085       EmitBlock(createBasicBlock());
2086   }
2087 
2088   /// ErrorUnsupported - Print out an error that codegen doesn't support the
2089   /// specified stmt yet.
2090   void ErrorUnsupported(const Stmt *S, const char *Type);
2091 
2092   //===--------------------------------------------------------------------===//
2093   //                                  Helpers
2094   //===--------------------------------------------------------------------===//
2095 
2096   LValue MakeAddrLValue(Address Addr, QualType T,
2097                         AlignmentSource Source = AlignmentSource::Type) {
2098     return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
2099                             CGM.getTBAAAccessInfo(T));
2100   }
2101 
2102   LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo,
2103                         TBAAAccessInfo TBAAInfo) {
2104     return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo);
2105   }
2106 
2107   LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
2108                         AlignmentSource Source = AlignmentSource::Type) {
2109     return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
2110                             LValueBaseInfo(Source), CGM.getTBAAAccessInfo(T));
2111   }
2112 
2113   LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
2114                         LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) {
2115     return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
2116                             BaseInfo, TBAAInfo);
2117   }
2118 
2119   LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T);
2120   LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T);
2121   CharUnits getNaturalTypeAlignment(QualType T,
2122                                     LValueBaseInfo *BaseInfo = nullptr,
2123                                     TBAAAccessInfo *TBAAInfo = nullptr,
2124                                     bool forPointeeType = false);
2125   CharUnits getNaturalPointeeTypeAlignment(QualType T,
2126                                            LValueBaseInfo *BaseInfo = nullptr,
2127                                            TBAAAccessInfo *TBAAInfo = nullptr);
2128 
2129   Address EmitLoadOfReference(LValue RefLVal,
2130                               LValueBaseInfo *PointeeBaseInfo = nullptr,
2131                               TBAAAccessInfo *PointeeTBAAInfo = nullptr);
2132   LValue EmitLoadOfReferenceLValue(LValue RefLVal);
2133   LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy,
2134                                    AlignmentSource Source =
2135                                        AlignmentSource::Type) {
2136     LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source),
2137                                     CGM.getTBAAAccessInfo(RefTy));
2138     return EmitLoadOfReferenceLValue(RefLVal);
2139   }
2140 
2141   Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy,
2142                             LValueBaseInfo *BaseInfo = nullptr,
2143                             TBAAAccessInfo *TBAAInfo = nullptr);
2144   LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy);
2145 
2146   /// CreateTempAlloca - This creates an alloca and inserts it into the entry
2147   /// block if \p ArraySize is nullptr, otherwise inserts it at the current
2148   /// insertion point of the builder. The caller is responsible for setting an
2149   /// appropriate alignment on
2150   /// the alloca.
2151   ///
2152   /// \p ArraySize is the number of array elements to be allocated if it
2153   ///    is not nullptr.
2154   ///
2155   /// LangAS::Default is the address space of pointers to local variables and
2156   /// temporaries, as exposed in the source language. In certain
2157   /// configurations, this is not the same as the alloca address space, and a
2158   /// cast is needed to lift the pointer from the alloca AS into
2159   /// LangAS::Default. This can happen when the target uses a restricted
2160   /// address space for the stack but the source language requires
2161   /// LangAS::Default to be a generic address space. The latter condition is
2162   /// common for most programming languages; OpenCL is an exception in that
2163   /// LangAS::Default is the private address space, which naturally maps
2164   /// to the stack.
2165   ///
2166   /// Because the address of a temporary is often exposed to the program in
2167   /// various ways, this function will perform the cast. The original alloca
2168   /// instruction is returned through \p Alloca if it is not nullptr.
2169   ///
2170   /// The cast is not performaed in CreateTempAllocaWithoutCast. This is
2171   /// more efficient if the caller knows that the address will not be exposed.
2172   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp",
2173                                      llvm::Value *ArraySize = nullptr);
2174   Address CreateTempAlloca(llvm::Type *Ty, CharUnits align,
2175                            const Twine &Name = "tmp",
2176                            llvm::Value *ArraySize = nullptr,
2177                            Address *Alloca = nullptr);
2178   Address CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align,
2179                                       const Twine &Name = "tmp",
2180                                       llvm::Value *ArraySize = nullptr);
2181 
2182   /// CreateDefaultAlignedTempAlloca - This creates an alloca with the
2183   /// default ABI alignment of the given LLVM type.
2184   ///
2185   /// IMPORTANT NOTE: This is *not* generally the right alignment for
2186   /// any given AST type that happens to have been lowered to the
2187   /// given IR type.  This should only ever be used for function-local,
2188   /// IR-driven manipulations like saving and restoring a value.  Do
2189   /// not hand this address off to arbitrary IRGen routines, and especially
2190   /// do not pass it as an argument to a function that might expect a
2191   /// properly ABI-aligned value.
2192   Address CreateDefaultAlignTempAlloca(llvm::Type *Ty,
2193                                        const Twine &Name = "tmp");
2194 
2195   /// InitTempAlloca - Provide an initial value for the given alloca which
2196   /// will be observable at all locations in the function.
2197   ///
2198   /// The address should be something that was returned from one of
2199   /// the CreateTempAlloca or CreateMemTemp routines, and the
2200   /// initializer must be valid in the entry block (i.e. it must
2201   /// either be a constant or an argument value).
2202   void InitTempAlloca(Address Alloca, llvm::Value *Value);
2203 
2204   /// CreateIRTemp - Create a temporary IR object of the given type, with
2205   /// appropriate alignment. This routine should only be used when an temporary
2206   /// value needs to be stored into an alloca (for example, to avoid explicit
2207   /// PHI construction), but the type is the IR type, not the type appropriate
2208   /// for storing in memory.
2209   ///
2210   /// That is, this is exactly equivalent to CreateMemTemp, but calling
2211   /// ConvertType instead of ConvertTypeForMem.
2212   Address CreateIRTemp(QualType T, const Twine &Name = "tmp");
2213 
2214   /// CreateMemTemp - Create a temporary memory object of the given type, with
2215   /// appropriate alignmen and cast it to the default address space. Returns
2216   /// the original alloca instruction by \p Alloca if it is not nullptr.
2217   Address CreateMemTemp(QualType T, const Twine &Name = "tmp",
2218                         Address *Alloca = nullptr);
2219   Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp",
2220                         Address *Alloca = nullptr);
2221 
2222   /// CreateMemTemp - Create a temporary memory object of the given type, with
2223   /// appropriate alignmen without casting it to the default address space.
2224   Address CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp");
2225   Address CreateMemTempWithoutCast(QualType T, CharUnits Align,
2226                                    const Twine &Name = "tmp");
2227 
2228   /// CreateAggTemp - Create a temporary memory object for the given
2229   /// aggregate type.
2230   AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
2231     return AggValueSlot::forAddr(CreateMemTemp(T, Name),
2232                                  T.getQualifiers(),
2233                                  AggValueSlot::IsNotDestructed,
2234                                  AggValueSlot::DoesNotNeedGCBarriers,
2235                                  AggValueSlot::IsNotAliased,
2236                                  AggValueSlot::DoesNotOverlap);
2237   }
2238 
2239   /// Emit a cast to void* in the appropriate address space.
2240   llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
2241 
2242   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
2243   /// expression and compare the result against zero, returning an Int1Ty value.
2244   llvm::Value *EvaluateExprAsBool(const Expr *E);
2245 
2246   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
2247   void EmitIgnoredExpr(const Expr *E);
2248 
2249   /// EmitAnyExpr - Emit code to compute the specified expression which can have
2250   /// any type.  The result is returned as an RValue struct.  If this is an
2251   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
2252   /// the result should be returned.
2253   ///
2254   /// \param ignoreResult True if the resulting value isn't used.
2255   RValue EmitAnyExpr(const Expr *E,
2256                      AggValueSlot aggSlot = AggValueSlot::ignored(),
2257                      bool ignoreResult = false);
2258 
2259   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
2260   // or the value of the expression, depending on how va_list is defined.
2261   Address EmitVAListRef(const Expr *E);
2262 
2263   /// Emit a "reference" to a __builtin_ms_va_list; this is
2264   /// always the value of the expression, because a __builtin_ms_va_list is a
2265   /// pointer to a char.
2266   Address EmitMSVAListRef(const Expr *E);
2267 
2268   /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will
2269   /// always be accessible even if no aggregate location is provided.
2270   RValue EmitAnyExprToTemp(const Expr *E);
2271 
2272   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
2273   /// arbitrary expression into the given memory location.
2274   void EmitAnyExprToMem(const Expr *E, Address Location,
2275                         Qualifiers Quals, bool IsInitializer);
2276 
2277   void EmitAnyExprToExn(const Expr *E, Address Addr);
2278 
2279   /// EmitExprAsInit - Emits the code necessary to initialize a
2280   /// location in memory with the given initializer.
2281   void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2282                       bool capturedByInit);
2283 
2284   /// hasVolatileMember - returns true if aggregate type has a volatile
2285   /// member.
2286   bool hasVolatileMember(QualType T) {
2287     if (const RecordType *RT = T->getAs<RecordType>()) {
2288       const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
2289       return RD->hasVolatileMember();
2290     }
2291     return false;
2292   }
2293 
2294   /// Determine whether a return value slot may overlap some other object.
2295   AggValueSlot::Overlap_t overlapForReturnValue() {
2296     // FIXME: Assuming no overlap here breaks guaranteed copy elision for base
2297     // class subobjects. These cases may need to be revisited depending on the
2298     // resolution of the relevant core issue.
2299     return AggValueSlot::DoesNotOverlap;
2300   }
2301 
2302   /// Determine whether a field initialization may overlap some other object.
2303   AggValueSlot::Overlap_t overlapForFieldInit(const FieldDecl *FD) {
2304     // FIXME: These cases can result in overlap as a result of P0840R0's
2305     // [[no_unique_address]] attribute. We can still infer NoOverlap in the
2306     // presence of that attribute if the field is within the nvsize of its
2307     // containing class, because non-virtual subobjects are initialized in
2308     // address order.
2309     return AggValueSlot::DoesNotOverlap;
2310   }
2311 
2312   /// Determine whether a base class initialization may overlap some other
2313   /// object.
2314   AggValueSlot::Overlap_t overlapForBaseInit(const CXXRecordDecl *RD,
2315                                              const CXXRecordDecl *BaseRD,
2316                                              bool IsVirtual);
2317 
2318   /// Emit an aggregate assignment.
2319   void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) {
2320     bool IsVolatile = hasVolatileMember(EltTy);
2321     EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile);
2322   }
2323 
2324   void EmitAggregateCopyCtor(LValue Dest, LValue Src,
2325                              AggValueSlot::Overlap_t MayOverlap) {
2326     EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap);
2327   }
2328 
2329   /// EmitAggregateCopy - Emit an aggregate copy.
2330   ///
2331   /// \param isVolatile \c true iff either the source or the destination is
2332   ///        volatile.
2333   /// \param MayOverlap Whether the tail padding of the destination might be
2334   ///        occupied by some other object. More efficient code can often be
2335   ///        generated if not.
2336   void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy,
2337                          AggValueSlot::Overlap_t MayOverlap,
2338                          bool isVolatile = false);
2339 
2340   /// GetAddrOfLocalVar - Return the address of a local variable.
2341   Address GetAddrOfLocalVar(const VarDecl *VD) {
2342     auto it = LocalDeclMap.find(VD);
2343     assert(it != LocalDeclMap.end() &&
2344            "Invalid argument to GetAddrOfLocalVar(), no decl!");
2345     return it->second;
2346   }
2347 
2348   /// Given an opaque value expression, return its LValue mapping if it exists,
2349   /// otherwise create one.
2350   LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e);
2351 
2352   /// Given an opaque value expression, return its RValue mapping if it exists,
2353   /// otherwise create one.
2354   RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e);
2355 
2356   /// Get the index of the current ArrayInitLoopExpr, if any.
2357   llvm::Value *getArrayInitIndex() { return ArrayInitIndex; }
2358 
2359   /// getAccessedFieldNo - Given an encoded value and a result number, return
2360   /// the input field number being accessed.
2361   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
2362 
2363   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
2364   llvm::BasicBlock *GetIndirectGotoBlock();
2365 
2366   /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts.
2367   static bool IsWrappedCXXThis(const Expr *E);
2368 
2369   /// EmitNullInitialization - Generate code to set a value of the given type to
2370   /// null, If the type contains data member pointers, they will be initialized
2371   /// to -1 in accordance with the Itanium C++ ABI.
2372   void EmitNullInitialization(Address DestPtr, QualType Ty);
2373 
2374   /// Emits a call to an LLVM variable-argument intrinsic, either
2375   /// \c llvm.va_start or \c llvm.va_end.
2376   /// \param ArgValue A reference to the \c va_list as emitted by either
2377   /// \c EmitVAListRef or \c EmitMSVAListRef.
2378   /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise,
2379   /// calls \c llvm.va_end.
2380   llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart);
2381 
2382   /// Generate code to get an argument from the passed in pointer
2383   /// and update it accordingly.
2384   /// \param VE The \c VAArgExpr for which to generate code.
2385   /// \param VAListAddr Receives a reference to the \c va_list as emitted by
2386   /// either \c EmitVAListRef or \c EmitMSVAListRef.
2387   /// \returns A pointer to the argument.
2388   // FIXME: We should be able to get rid of this method and use the va_arg
2389   // instruction in LLVM instead once it works well enough.
2390   Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr);
2391 
2392   /// emitArrayLength - Compute the length of an array, even if it's a
2393   /// VLA, and drill down to the base element type.
2394   llvm::Value *emitArrayLength(const ArrayType *arrayType,
2395                                QualType &baseType,
2396                                Address &addr);
2397 
2398   /// EmitVLASize - Capture all the sizes for the VLA expressions in
2399   /// the given variably-modified type and store them in the VLASizeMap.
2400   ///
2401   /// This function can be called with a null (unreachable) insert point.
2402   void EmitVariablyModifiedType(QualType Ty);
2403 
2404   struct VlaSizePair {
2405     llvm::Value *NumElts;
2406     QualType Type;
2407 
2408     VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {}
2409   };
2410 
2411   /// Return the number of elements for a single dimension
2412   /// for the given array type.
2413   VlaSizePair getVLAElements1D(const VariableArrayType *vla);
2414   VlaSizePair getVLAElements1D(QualType vla);
2415 
2416   /// Returns an LLVM value that corresponds to the size,
2417   /// in non-variably-sized elements, of a variable length array type,
2418   /// plus that largest non-variably-sized element type.  Assumes that
2419   /// the type has already been emitted with EmitVariablyModifiedType.
2420   VlaSizePair getVLASize(const VariableArrayType *vla);
2421   VlaSizePair getVLASize(QualType vla);
2422 
2423   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
2424   /// generating code for an C++ member function.
2425   llvm::Value *LoadCXXThis() {
2426     assert(CXXThisValue && "no 'this' value for this function");
2427     return CXXThisValue;
2428   }
2429   Address LoadCXXThisAddress();
2430 
2431   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
2432   /// virtual bases.
2433   // FIXME: Every place that calls LoadCXXVTT is something
2434   // that needs to be abstracted properly.
2435   llvm::Value *LoadCXXVTT() {
2436     assert(CXXStructorImplicitParamValue && "no VTT value for this function");
2437     return CXXStructorImplicitParamValue;
2438   }
2439 
2440   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
2441   /// complete class to the given direct base.
2442   Address
2443   GetAddressOfDirectBaseInCompleteClass(Address Value,
2444                                         const CXXRecordDecl *Derived,
2445                                         const CXXRecordDecl *Base,
2446                                         bool BaseIsVirtual);
2447 
2448   static bool ShouldNullCheckClassCastValue(const CastExpr *Cast);
2449 
2450   /// GetAddressOfBaseClass - This function will add the necessary delta to the
2451   /// load of 'this' and returns address of the base class.
2452   Address GetAddressOfBaseClass(Address Value,
2453                                 const CXXRecordDecl *Derived,
2454                                 CastExpr::path_const_iterator PathBegin,
2455                                 CastExpr::path_const_iterator PathEnd,
2456                                 bool NullCheckValue, SourceLocation Loc);
2457 
2458   Address GetAddressOfDerivedClass(Address Value,
2459                                    const CXXRecordDecl *Derived,
2460                                    CastExpr::path_const_iterator PathBegin,
2461                                    CastExpr::path_const_iterator PathEnd,
2462                                    bool NullCheckValue);
2463 
2464   /// GetVTTParameter - Return the VTT parameter that should be passed to a
2465   /// base constructor/destructor with virtual bases.
2466   /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
2467   /// to ItaniumCXXABI.cpp together with all the references to VTT.
2468   llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
2469                                bool Delegating);
2470 
2471   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
2472                                       CXXCtorType CtorType,
2473                                       const FunctionArgList &Args,
2474                                       SourceLocation Loc);
2475   // It's important not to confuse this and the previous function. Delegating
2476   // constructors are the C++0x feature. The constructor delegate optimization
2477   // is used to reduce duplication in the base and complete consturctors where
2478   // they are substantially the same.
2479   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2480                                         const FunctionArgList &Args);
2481 
2482   /// Emit a call to an inheriting constructor (that is, one that invokes a
2483   /// constructor inherited from a base class) by inlining its definition. This
2484   /// is necessary if the ABI does not support forwarding the arguments to the
2485   /// base class constructor (because they're variadic or similar).
2486   void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2487                                                CXXCtorType CtorType,
2488                                                bool ForVirtualBase,
2489                                                bool Delegating,
2490                                                CallArgList &Args);
2491 
2492   /// Emit a call to a constructor inherited from a base class, passing the
2493   /// current constructor's arguments along unmodified (without even making
2494   /// a copy).
2495   void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D,
2496                                        bool ForVirtualBase, Address This,
2497                                        bool InheritedFromVBase,
2498                                        const CXXInheritedCtorInitExpr *E);
2499 
2500   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2501                               bool ForVirtualBase, bool Delegating,
2502                               Address This, const CXXConstructExpr *E,
2503                               AggValueSlot::Overlap_t Overlap,
2504                               bool NewPointerIsChecked);
2505 
2506   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2507                               bool ForVirtualBase, bool Delegating,
2508                               Address This, CallArgList &Args,
2509                               AggValueSlot::Overlap_t Overlap,
2510                               SourceLocation Loc,
2511                               bool NewPointerIsChecked);
2512 
2513   /// Emit assumption load for all bases. Requires to be be called only on
2514   /// most-derived class and not under construction of the object.
2515   void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This);
2516 
2517   /// Emit assumption that vptr load == global vtable.
2518   void EmitVTableAssumptionLoad(const VPtr &vptr, Address This);
2519 
2520   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
2521                                       Address This, Address Src,
2522                                       const CXXConstructExpr *E);
2523 
2524   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2525                                   const ArrayType *ArrayTy,
2526                                   Address ArrayPtr,
2527                                   const CXXConstructExpr *E,
2528                                   bool NewPointerIsChecked,
2529                                   bool ZeroInitialization = false);
2530 
2531   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2532                                   llvm::Value *NumElements,
2533                                   Address ArrayPtr,
2534                                   const CXXConstructExpr *E,
2535                                   bool NewPointerIsChecked,
2536                                   bool ZeroInitialization = false);
2537 
2538   static Destroyer destroyCXXObject;
2539 
2540   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
2541                              bool ForVirtualBase, bool Delegating,
2542                              Address This);
2543 
2544   void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
2545                                llvm::Type *ElementTy, Address NewPtr,
2546                                llvm::Value *NumElements,
2547                                llvm::Value *AllocSizeWithoutCookie);
2548 
2549   void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
2550                         Address Ptr);
2551 
2552   llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr);
2553   void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr);
2554 
2555   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
2556   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
2557 
2558   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
2559                       QualType DeleteTy, llvm::Value *NumElements = nullptr,
2560                       CharUnits CookieSize = CharUnits());
2561 
2562   RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
2563                                   const CallExpr *TheCallExpr, bool IsDelete);
2564 
2565   llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E);
2566   llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE);
2567   Address EmitCXXUuidofExpr(const CXXUuidofExpr *E);
2568 
2569   /// Situations in which we might emit a check for the suitability of a
2570   ///        pointer or glvalue.
2571   enum TypeCheckKind {
2572     /// Checking the operand of a load. Must be suitably sized and aligned.
2573     TCK_Load,
2574     /// Checking the destination of a store. Must be suitably sized and aligned.
2575     TCK_Store,
2576     /// Checking the bound value in a reference binding. Must be suitably sized
2577     /// and aligned, but is not required to refer to an object (until the
2578     /// reference is used), per core issue 453.
2579     TCK_ReferenceBinding,
2580     /// Checking the object expression in a non-static data member access. Must
2581     /// be an object within its lifetime.
2582     TCK_MemberAccess,
2583     /// Checking the 'this' pointer for a call to a non-static member function.
2584     /// Must be an object within its lifetime.
2585     TCK_MemberCall,
2586     /// Checking the 'this' pointer for a constructor call.
2587     TCK_ConstructorCall,
2588     /// Checking the operand of a static_cast to a derived pointer type. Must be
2589     /// null or an object within its lifetime.
2590     TCK_DowncastPointer,
2591     /// Checking the operand of a static_cast to a derived reference type. Must
2592     /// be an object within its lifetime.
2593     TCK_DowncastReference,
2594     /// Checking the operand of a cast to a base object. Must be suitably sized
2595     /// and aligned.
2596     TCK_Upcast,
2597     /// Checking the operand of a cast to a virtual base object. Must be an
2598     /// object within its lifetime.
2599     TCK_UpcastToVirtualBase,
2600     /// Checking the value assigned to a _Nonnull pointer. Must not be null.
2601     TCK_NonnullAssign,
2602     /// Checking the operand of a dynamic_cast or a typeid expression.  Must be
2603     /// null or an object within its lifetime.
2604     TCK_DynamicOperation
2605   };
2606 
2607   /// Determine whether the pointer type check \p TCK permits null pointers.
2608   static bool isNullPointerAllowed(TypeCheckKind TCK);
2609 
2610   /// Determine whether the pointer type check \p TCK requires a vptr check.
2611   static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty);
2612 
2613   /// Whether any type-checking sanitizers are enabled. If \c false,
2614   /// calls to EmitTypeCheck can be skipped.
2615   bool sanitizePerformTypeCheck() const;
2616 
2617   /// Emit a check that \p V is the address of storage of the
2618   /// appropriate size and alignment for an object of type \p Type.
2619   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
2620                      QualType Type, CharUnits Alignment = CharUnits::Zero(),
2621                      SanitizerSet SkippedChecks = SanitizerSet());
2622 
2623   /// Emit a check that \p Base points into an array object, which
2624   /// we can access at index \p Index. \p Accessed should be \c false if we
2625   /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
2626   void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
2627                        QualType IndexType, bool Accessed);
2628 
2629   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2630                                        bool isInc, bool isPre);
2631   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
2632                                          bool isInc, bool isPre);
2633 
2634   void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment,
2635                                llvm::Value *OffsetValue = nullptr) {
2636     Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment,
2637                                       OffsetValue);
2638   }
2639 
2640   /// Converts Location to a DebugLoc, if debug information is enabled.
2641   llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location);
2642 
2643 
2644   //===--------------------------------------------------------------------===//
2645   //                            Declaration Emission
2646   //===--------------------------------------------------------------------===//
2647 
2648   /// EmitDecl - Emit a declaration.
2649   ///
2650   /// This function can be called with a null (unreachable) insert point.
2651   void EmitDecl(const Decl &D);
2652 
2653   /// EmitVarDecl - Emit a local variable declaration.
2654   ///
2655   /// This function can be called with a null (unreachable) insert point.
2656   void EmitVarDecl(const VarDecl &D);
2657 
2658   void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2659                       bool capturedByInit);
2660 
2661   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
2662                              llvm::Value *Address);
2663 
2664   /// Determine whether the given initializer is trivial in the sense
2665   /// that it requires no code to be generated.
2666   bool isTrivialInitializer(const Expr *Init);
2667 
2668   /// EmitAutoVarDecl - Emit an auto variable declaration.
2669   ///
2670   /// This function can be called with a null (unreachable) insert point.
2671   void EmitAutoVarDecl(const VarDecl &D);
2672 
2673   class AutoVarEmission {
2674     friend class CodeGenFunction;
2675 
2676     const VarDecl *Variable;
2677 
2678     /// The address of the alloca for languages with explicit address space
2679     /// (e.g. OpenCL) or alloca casted to generic pointer for address space
2680     /// agnostic languages (e.g. C++). Invalid if the variable was emitted
2681     /// as a global constant.
2682     Address Addr;
2683 
2684     llvm::Value *NRVOFlag;
2685 
2686     /// True if the variable is a __block variable.
2687     bool IsByRef;
2688 
2689     /// True if the variable is of aggregate type and has a constant
2690     /// initializer.
2691     bool IsConstantAggregate;
2692 
2693     /// Non-null if we should use lifetime annotations.
2694     llvm::Value *SizeForLifetimeMarkers;
2695 
2696     /// Address with original alloca instruction. Invalid if the variable was
2697     /// emitted as a global constant.
2698     Address AllocaAddr;
2699 
2700     struct Invalid {};
2701     AutoVarEmission(Invalid)
2702         : Variable(nullptr), Addr(Address::invalid()),
2703           AllocaAddr(Address::invalid()) {}
2704 
2705     AutoVarEmission(const VarDecl &variable)
2706         : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr),
2707           IsByRef(false), IsConstantAggregate(false),
2708           SizeForLifetimeMarkers(nullptr), AllocaAddr(Address::invalid()) {}
2709 
2710     bool wasEmittedAsGlobal() const { return !Addr.isValid(); }
2711 
2712   public:
2713     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
2714 
2715     bool useLifetimeMarkers() const {
2716       return SizeForLifetimeMarkers != nullptr;
2717     }
2718     llvm::Value *getSizeForLifetimeMarkers() const {
2719       assert(useLifetimeMarkers());
2720       return SizeForLifetimeMarkers;
2721     }
2722 
2723     /// Returns the raw, allocated address, which is not necessarily
2724     /// the address of the object itself. It is casted to default
2725     /// address space for address space agnostic languages.
2726     Address getAllocatedAddress() const {
2727       return Addr;
2728     }
2729 
2730     /// Returns the address for the original alloca instruction.
2731     Address getOriginalAllocatedAddress() const { return AllocaAddr; }
2732 
2733     /// Returns the address of the object within this declaration.
2734     /// Note that this does not chase the forwarding pointer for
2735     /// __block decls.
2736     Address getObjectAddress(CodeGenFunction &CGF) const {
2737       if (!IsByRef) return Addr;
2738 
2739       return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false);
2740     }
2741   };
2742   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
2743   void EmitAutoVarInit(const AutoVarEmission &emission);
2744   void EmitAutoVarCleanups(const AutoVarEmission &emission);
2745   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
2746                               QualType::DestructionKind dtorKind);
2747 
2748   /// Emits the alloca and debug information for the size expressions for each
2749   /// dimension of an array. It registers the association of its (1-dimensional)
2750   /// QualTypes and size expression's debug node, so that CGDebugInfo can
2751   /// reference this node when creating the DISubrange object to describe the
2752   /// array types.
2753   void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI,
2754                                               const VarDecl &D,
2755                                               bool EmitDebugInfo);
2756 
2757   void EmitStaticVarDecl(const VarDecl &D,
2758                          llvm::GlobalValue::LinkageTypes Linkage);
2759 
2760   class ParamValue {
2761     llvm::Value *Value;
2762     unsigned Alignment;
2763     ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {}
2764   public:
2765     static ParamValue forDirect(llvm::Value *value) {
2766       return ParamValue(value, 0);
2767     }
2768     static ParamValue forIndirect(Address addr) {
2769       assert(!addr.getAlignment().isZero());
2770       return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity());
2771     }
2772 
2773     bool isIndirect() const { return Alignment != 0; }
2774     llvm::Value *getAnyValue() const { return Value; }
2775 
2776     llvm::Value *getDirectValue() const {
2777       assert(!isIndirect());
2778       return Value;
2779     }
2780 
2781     Address getIndirectAddress() const {
2782       assert(isIndirect());
2783       return Address(Value, CharUnits::fromQuantity(Alignment));
2784     }
2785   };
2786 
2787   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
2788   void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo);
2789 
2790   /// protectFromPeepholes - Protect a value that we're intending to
2791   /// store to the side, but which will probably be used later, from
2792   /// aggressive peepholing optimizations that might delete it.
2793   ///
2794   /// Pass the result to unprotectFromPeepholes to declare that
2795   /// protection is no longer required.
2796   ///
2797   /// There's no particular reason why this shouldn't apply to
2798   /// l-values, it's just that no existing peepholes work on pointers.
2799   PeepholeProtection protectFromPeepholes(RValue rvalue);
2800   void unprotectFromPeepholes(PeepholeProtection protection);
2801 
2802   void EmitAlignmentAssumption(llvm::Value *PtrValue, llvm::Value *Alignment,
2803                                llvm::Value *OffsetValue = nullptr) {
2804     Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment,
2805                                       OffsetValue);
2806   }
2807 
2808   //===--------------------------------------------------------------------===//
2809   //                             Statement Emission
2810   //===--------------------------------------------------------------------===//
2811 
2812   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
2813   void EmitStopPoint(const Stmt *S);
2814 
2815   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
2816   /// this function even if there is no current insertion point.
2817   ///
2818   /// This function may clear the current insertion point; callers should use
2819   /// EnsureInsertPoint if they wish to subsequently generate code without first
2820   /// calling EmitBlock, EmitBranch, or EmitStmt.
2821   void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None);
2822 
2823   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
2824   /// necessarily require an insertion point or debug information; typically
2825   /// because the statement amounts to a jump or a container of other
2826   /// statements.
2827   ///
2828   /// \return True if the statement was handled.
2829   bool EmitSimpleStmt(const Stmt *S);
2830 
2831   Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
2832                            AggValueSlot AVS = AggValueSlot::ignored());
2833   Address EmitCompoundStmtWithoutScope(const CompoundStmt &S,
2834                                        bool GetLast = false,
2835                                        AggValueSlot AVS =
2836                                                 AggValueSlot::ignored());
2837 
2838   /// EmitLabel - Emit the block for the given label. It is legal to call this
2839   /// function even if there is no current insertion point.
2840   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
2841 
2842   void EmitLabelStmt(const LabelStmt &S);
2843   void EmitAttributedStmt(const AttributedStmt &S);
2844   void EmitGotoStmt(const GotoStmt &S);
2845   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
2846   void EmitIfStmt(const IfStmt &S);
2847 
2848   void EmitWhileStmt(const WhileStmt &S,
2849                      ArrayRef<const Attr *> Attrs = None);
2850   void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None);
2851   void EmitForStmt(const ForStmt &S,
2852                    ArrayRef<const Attr *> Attrs = None);
2853   void EmitReturnStmt(const ReturnStmt &S);
2854   void EmitDeclStmt(const DeclStmt &S);
2855   void EmitBreakStmt(const BreakStmt &S);
2856   void EmitContinueStmt(const ContinueStmt &S);
2857   void EmitSwitchStmt(const SwitchStmt &S);
2858   void EmitDefaultStmt(const DefaultStmt &S);
2859   void EmitCaseStmt(const CaseStmt &S);
2860   void EmitCaseStmtRange(const CaseStmt &S);
2861   void EmitAsmStmt(const AsmStmt &S);
2862 
2863   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
2864   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
2865   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
2866   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
2867   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
2868 
2869   void EmitCoroutineBody(const CoroutineBodyStmt &S);
2870   void EmitCoreturnStmt(const CoreturnStmt &S);
2871   RValue EmitCoawaitExpr(const CoawaitExpr &E,
2872                          AggValueSlot aggSlot = AggValueSlot::ignored(),
2873                          bool ignoreResult = false);
2874   LValue EmitCoawaitLValue(const CoawaitExpr *E);
2875   RValue EmitCoyieldExpr(const CoyieldExpr &E,
2876                          AggValueSlot aggSlot = AggValueSlot::ignored(),
2877                          bool ignoreResult = false);
2878   LValue EmitCoyieldLValue(const CoyieldExpr *E);
2879   RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID);
2880 
2881   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2882   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2883 
2884   void EmitCXXTryStmt(const CXXTryStmt &S);
2885   void EmitSEHTryStmt(const SEHTryStmt &S);
2886   void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
2887   void EnterSEHTryStmt(const SEHTryStmt &S);
2888   void ExitSEHTryStmt(const SEHTryStmt &S);
2889 
2890   void pushSEHCleanup(CleanupKind kind,
2891                       llvm::Function *FinallyFunc);
2892   void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter,
2893                               const Stmt *OutlinedStmt);
2894 
2895   llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
2896                                             const SEHExceptStmt &Except);
2897 
2898   llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF,
2899                                              const SEHFinallyStmt &Finally);
2900 
2901   void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF,
2902                                 llvm::Value *ParentFP,
2903                                 llvm::Value *EntryEBP);
2904   llvm::Value *EmitSEHExceptionCode();
2905   llvm::Value *EmitSEHExceptionInfo();
2906   llvm::Value *EmitSEHAbnormalTermination();
2907 
2908   /// Emit simple code for OpenMP directives in Simd-only mode.
2909   void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D);
2910 
2911   /// Scan the outlined statement for captures from the parent function. For
2912   /// each capture, mark the capture as escaped and emit a call to
2913   /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap.
2914   void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
2915                           bool IsFilter);
2916 
2917   /// Recovers the address of a local in a parent function. ParentVar is the
2918   /// address of the variable used in the immediate parent function. It can
2919   /// either be an alloca or a call to llvm.localrecover if there are nested
2920   /// outlined functions. ParentFP is the frame pointer of the outermost parent
2921   /// frame.
2922   Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF,
2923                                     Address ParentVar,
2924                                     llvm::Value *ParentFP);
2925 
2926   void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
2927                            ArrayRef<const Attr *> Attrs = None);
2928 
2929   /// Controls insertion of cancellation exit blocks in worksharing constructs.
2930   class OMPCancelStackRAII {
2931     CodeGenFunction &CGF;
2932 
2933   public:
2934     OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
2935                        bool HasCancel)
2936         : CGF(CGF) {
2937       CGF.OMPCancelStack.enter(CGF, Kind, HasCancel);
2938     }
2939     ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); }
2940   };
2941 
2942   /// Returns calculated size of the specified type.
2943   llvm::Value *getTypeSize(QualType Ty);
2944   LValue InitCapturedStruct(const CapturedStmt &S);
2945   llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
2946   llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
2947   Address GenerateCapturedStmtArgument(const CapturedStmt &S);
2948   llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S);
2949   void GenerateOpenMPCapturedVars(const CapturedStmt &S,
2950                                   SmallVectorImpl<llvm::Value *> &CapturedVars);
2951   void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy,
2952                           SourceLocation Loc);
2953   /// Perform element by element copying of arrays with type \a
2954   /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
2955   /// generated by \a CopyGen.
2956   ///
2957   /// \param DestAddr Address of the destination array.
2958   /// \param SrcAddr Address of the source array.
2959   /// \param OriginalType Type of destination and source arrays.
2960   /// \param CopyGen Copying procedure that copies value of single array element
2961   /// to another single array element.
2962   void EmitOMPAggregateAssign(
2963       Address DestAddr, Address SrcAddr, QualType OriginalType,
2964       const llvm::function_ref<void(Address, Address)> CopyGen);
2965   /// Emit proper copying of data from one variable to another.
2966   ///
2967   /// \param OriginalType Original type of the copied variables.
2968   /// \param DestAddr Destination address.
2969   /// \param SrcAddr Source address.
2970   /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
2971   /// type of the base array element).
2972   /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
2973   /// the base array element).
2974   /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
2975   /// DestVD.
2976   void EmitOMPCopy(QualType OriginalType,
2977                    Address DestAddr, Address SrcAddr,
2978                    const VarDecl *DestVD, const VarDecl *SrcVD,
2979                    const Expr *Copy);
2980   /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or
2981   /// \a X = \a E \a BO \a E.
2982   ///
2983   /// \param X Value to be updated.
2984   /// \param E Update value.
2985   /// \param BO Binary operation for update operation.
2986   /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
2987   /// expression, false otherwise.
2988   /// \param AO Atomic ordering of the generated atomic instructions.
2989   /// \param CommonGen Code generator for complex expressions that cannot be
2990   /// expressed through atomicrmw instruction.
2991   /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was
2992   /// generated, <false, RValue::get(nullptr)> otherwise.
2993   std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr(
2994       LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
2995       llvm::AtomicOrdering AO, SourceLocation Loc,
2996       const llvm::function_ref<RValue(RValue)> CommonGen);
2997   bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
2998                                  OMPPrivateScope &PrivateScope);
2999   void EmitOMPPrivateClause(const OMPExecutableDirective &D,
3000                             OMPPrivateScope &PrivateScope);
3001   void EmitOMPUseDevicePtrClause(
3002       const OMPClause &C, OMPPrivateScope &PrivateScope,
3003       const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap);
3004   /// Emit code for copyin clause in \a D directive. The next code is
3005   /// generated at the start of outlined functions for directives:
3006   /// \code
3007   /// threadprivate_var1 = master_threadprivate_var1;
3008   /// operator=(threadprivate_var2, master_threadprivate_var2);
3009   /// ...
3010   /// __kmpc_barrier(&loc, global_tid);
3011   /// \endcode
3012   ///
3013   /// \param D OpenMP directive possibly with 'copyin' clause(s).
3014   /// \returns true if at least one copyin variable is found, false otherwise.
3015   bool EmitOMPCopyinClause(const OMPExecutableDirective &D);
3016   /// Emit initial code for lastprivate variables. If some variable is
3017   /// not also firstprivate, then the default initialization is used. Otherwise
3018   /// initialization of this variable is performed by EmitOMPFirstprivateClause
3019   /// method.
3020   ///
3021   /// \param D Directive that may have 'lastprivate' directives.
3022   /// \param PrivateScope Private scope for capturing lastprivate variables for
3023   /// proper codegen in internal captured statement.
3024   ///
3025   /// \returns true if there is at least one lastprivate variable, false
3026   /// otherwise.
3027   bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D,
3028                                     OMPPrivateScope &PrivateScope);
3029   /// Emit final copying of lastprivate values to original variables at
3030   /// the end of the worksharing or simd directive.
3031   ///
3032   /// \param D Directive that has at least one 'lastprivate' directives.
3033   /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
3034   /// it is the last iteration of the loop code in associated directive, or to
3035   /// 'i1 false' otherwise. If this item is nullptr, no final check is required.
3036   void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D,
3037                                      bool NoFinals,
3038                                      llvm::Value *IsLastIterCond = nullptr);
3039   /// Emit initial code for linear clauses.
3040   void EmitOMPLinearClause(const OMPLoopDirective &D,
3041                            CodeGenFunction::OMPPrivateScope &PrivateScope);
3042   /// Emit final code for linear clauses.
3043   /// \param CondGen Optional conditional code for final part of codegen for
3044   /// linear clause.
3045   void EmitOMPLinearClauseFinal(
3046       const OMPLoopDirective &D,
3047       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
3048   /// Emit initial code for reduction variables. Creates reduction copies
3049   /// and initializes them with the values according to OpenMP standard.
3050   ///
3051   /// \param D Directive (possibly) with the 'reduction' clause.
3052   /// \param PrivateScope Private scope for capturing reduction variables for
3053   /// proper codegen in internal captured statement.
3054   ///
3055   void EmitOMPReductionClauseInit(const OMPExecutableDirective &D,
3056                                   OMPPrivateScope &PrivateScope);
3057   /// Emit final update of reduction values to original variables at
3058   /// the end of the directive.
3059   ///
3060   /// \param D Directive that has at least one 'reduction' directives.
3061   /// \param ReductionKind The kind of reduction to perform.
3062   void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D,
3063                                    const OpenMPDirectiveKind ReductionKind);
3064   /// Emit initial code for linear variables. Creates private copies
3065   /// and initializes them with the values according to OpenMP standard.
3066   ///
3067   /// \param D Directive (possibly) with the 'linear' clause.
3068   /// \return true if at least one linear variable is found that should be
3069   /// initialized with the value of the original variable, false otherwise.
3070   bool EmitOMPLinearClauseInit(const OMPLoopDirective &D);
3071 
3072   typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/,
3073                                         llvm::Value * /*OutlinedFn*/,
3074                                         const OMPTaskDataTy & /*Data*/)>
3075       TaskGenTy;
3076   void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S,
3077                                  const OpenMPDirectiveKind CapturedRegion,
3078                                  const RegionCodeGenTy &BodyGen,
3079                                  const TaskGenTy &TaskGen, OMPTaskDataTy &Data);
3080   struct OMPTargetDataInfo {
3081     Address BasePointersArray = Address::invalid();
3082     Address PointersArray = Address::invalid();
3083     Address SizesArray = Address::invalid();
3084     unsigned NumberOfTargetItems = 0;
3085     explicit OMPTargetDataInfo() = default;
3086     OMPTargetDataInfo(Address BasePointersArray, Address PointersArray,
3087                       Address SizesArray, unsigned NumberOfTargetItems)
3088         : BasePointersArray(BasePointersArray), PointersArray(PointersArray),
3089           SizesArray(SizesArray), NumberOfTargetItems(NumberOfTargetItems) {}
3090   };
3091   void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S,
3092                                        const RegionCodeGenTy &BodyGen,
3093                                        OMPTargetDataInfo &InputInfo);
3094 
3095   void EmitOMPParallelDirective(const OMPParallelDirective &S);
3096   void EmitOMPSimdDirective(const OMPSimdDirective &S);
3097   void EmitOMPForDirective(const OMPForDirective &S);
3098   void EmitOMPForSimdDirective(const OMPForSimdDirective &S);
3099   void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
3100   void EmitOMPSectionDirective(const OMPSectionDirective &S);
3101   void EmitOMPSingleDirective(const OMPSingleDirective &S);
3102   void EmitOMPMasterDirective(const OMPMasterDirective &S);
3103   void EmitOMPCriticalDirective(const OMPCriticalDirective &S);
3104   void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
3105   void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S);
3106   void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
3107   void EmitOMPTaskDirective(const OMPTaskDirective &S);
3108   void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
3109   void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
3110   void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
3111   void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S);
3112   void EmitOMPFlushDirective(const OMPFlushDirective &S);
3113   void EmitOMPOrderedDirective(const OMPOrderedDirective &S);
3114   void EmitOMPAtomicDirective(const OMPAtomicDirective &S);
3115   void EmitOMPTargetDirective(const OMPTargetDirective &S);
3116   void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S);
3117   void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S);
3118   void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S);
3119   void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S);
3120   void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S);
3121   void
3122   EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S);
3123   void EmitOMPTeamsDirective(const OMPTeamsDirective &S);
3124   void
3125   EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S);
3126   void EmitOMPCancelDirective(const OMPCancelDirective &S);
3127   void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S);
3128   void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S);
3129   void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S);
3130   void EmitOMPDistributeDirective(const OMPDistributeDirective &S);
3131   void EmitOMPDistributeParallelForDirective(
3132       const OMPDistributeParallelForDirective &S);
3133   void EmitOMPDistributeParallelForSimdDirective(
3134       const OMPDistributeParallelForSimdDirective &S);
3135   void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S);
3136   void EmitOMPTargetParallelForSimdDirective(
3137       const OMPTargetParallelForSimdDirective &S);
3138   void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S);
3139   void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S);
3140   void
3141   EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S);
3142   void EmitOMPTeamsDistributeParallelForSimdDirective(
3143       const OMPTeamsDistributeParallelForSimdDirective &S);
3144   void EmitOMPTeamsDistributeParallelForDirective(
3145       const OMPTeamsDistributeParallelForDirective &S);
3146   void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S);
3147   void EmitOMPTargetTeamsDistributeDirective(
3148       const OMPTargetTeamsDistributeDirective &S);
3149   void EmitOMPTargetTeamsDistributeParallelForDirective(
3150       const OMPTargetTeamsDistributeParallelForDirective &S);
3151   void EmitOMPTargetTeamsDistributeParallelForSimdDirective(
3152       const OMPTargetTeamsDistributeParallelForSimdDirective &S);
3153   void EmitOMPTargetTeamsDistributeSimdDirective(
3154       const OMPTargetTeamsDistributeSimdDirective &S);
3155 
3156   /// Emit device code for the target directive.
3157   static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM,
3158                                           StringRef ParentName,
3159                                           const OMPTargetDirective &S);
3160   static void
3161   EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3162                                       const OMPTargetParallelDirective &S);
3163   /// Emit device code for the target parallel for directive.
3164   static void EmitOMPTargetParallelForDeviceFunction(
3165       CodeGenModule &CGM, StringRef ParentName,
3166       const OMPTargetParallelForDirective &S);
3167   /// Emit device code for the target parallel for simd directive.
3168   static void EmitOMPTargetParallelForSimdDeviceFunction(
3169       CodeGenModule &CGM, StringRef ParentName,
3170       const OMPTargetParallelForSimdDirective &S);
3171   /// Emit device code for the target teams directive.
3172   static void
3173   EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3174                                    const OMPTargetTeamsDirective &S);
3175   /// Emit device code for the target teams distribute directive.
3176   static void EmitOMPTargetTeamsDistributeDeviceFunction(
3177       CodeGenModule &CGM, StringRef ParentName,
3178       const OMPTargetTeamsDistributeDirective &S);
3179   /// Emit device code for the target teams distribute simd directive.
3180   static void EmitOMPTargetTeamsDistributeSimdDeviceFunction(
3181       CodeGenModule &CGM, StringRef ParentName,
3182       const OMPTargetTeamsDistributeSimdDirective &S);
3183   /// Emit device code for the target simd directive.
3184   static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM,
3185                                               StringRef ParentName,
3186                                               const OMPTargetSimdDirective &S);
3187   /// Emit device code for the target teams distribute parallel for simd
3188   /// directive.
3189   static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction(
3190       CodeGenModule &CGM, StringRef ParentName,
3191       const OMPTargetTeamsDistributeParallelForSimdDirective &S);
3192 
3193   static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction(
3194       CodeGenModule &CGM, StringRef ParentName,
3195       const OMPTargetTeamsDistributeParallelForDirective &S);
3196   /// Emit inner loop of the worksharing/simd construct.
3197   ///
3198   /// \param S Directive, for which the inner loop must be emitted.
3199   /// \param RequiresCleanup true, if directive has some associated private
3200   /// variables.
3201   /// \param LoopCond Bollean condition for loop continuation.
3202   /// \param IncExpr Increment expression for loop control variable.
3203   /// \param BodyGen Generator for the inner body of the inner loop.
3204   /// \param PostIncGen Genrator for post-increment code (required for ordered
3205   /// loop directvies).
3206   void EmitOMPInnerLoop(
3207       const Stmt &S, bool RequiresCleanup, const Expr *LoopCond,
3208       const Expr *IncExpr,
3209       const llvm::function_ref<void(CodeGenFunction &)> BodyGen,
3210       const llvm::function_ref<void(CodeGenFunction &)> PostIncGen);
3211 
3212   JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind);
3213   /// Emit initial code for loop counters of loop-based directives.
3214   void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S,
3215                                   OMPPrivateScope &LoopScope);
3216 
3217   /// Helper for the OpenMP loop directives.
3218   void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit);
3219 
3220   /// Emit code for the worksharing loop-based directive.
3221   /// \return true, if this construct has any lastprivate clause, false -
3222   /// otherwise.
3223   bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB,
3224                               const CodeGenLoopBoundsTy &CodeGenLoopBounds,
3225                               const CodeGenDispatchBoundsTy &CGDispatchBounds);
3226 
3227   /// Emit code for the distribute loop-based directive.
3228   void EmitOMPDistributeLoop(const OMPLoopDirective &S,
3229                              const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr);
3230 
3231   /// Helpers for the OpenMP loop directives.
3232   void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false);
3233   void EmitOMPSimdFinal(
3234       const OMPLoopDirective &D,
3235       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
3236 
3237   /// Emits the lvalue for the expression with possibly captured variable.
3238   LValue EmitOMPSharedLValue(const Expr *E);
3239 
3240 private:
3241   /// Helpers for blocks.
3242   llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
3243 
3244   /// struct with the values to be passed to the OpenMP loop-related functions
3245   struct OMPLoopArguments {
3246     /// loop lower bound
3247     Address LB = Address::invalid();
3248     /// loop upper bound
3249     Address UB = Address::invalid();
3250     /// loop stride
3251     Address ST = Address::invalid();
3252     /// isLastIteration argument for runtime functions
3253     Address IL = Address::invalid();
3254     /// Chunk value generated by sema
3255     llvm::Value *Chunk = nullptr;
3256     /// EnsureUpperBound
3257     Expr *EUB = nullptr;
3258     /// IncrementExpression
3259     Expr *IncExpr = nullptr;
3260     /// Loop initialization
3261     Expr *Init = nullptr;
3262     /// Loop exit condition
3263     Expr *Cond = nullptr;
3264     /// Update of LB after a whole chunk has been executed
3265     Expr *NextLB = nullptr;
3266     /// Update of UB after a whole chunk has been executed
3267     Expr *NextUB = nullptr;
3268     OMPLoopArguments() = default;
3269     OMPLoopArguments(Address LB, Address UB, Address ST, Address IL,
3270                      llvm::Value *Chunk = nullptr, Expr *EUB = nullptr,
3271                      Expr *IncExpr = nullptr, Expr *Init = nullptr,
3272                      Expr *Cond = nullptr, Expr *NextLB = nullptr,
3273                      Expr *NextUB = nullptr)
3274         : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB),
3275           IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB),
3276           NextUB(NextUB) {}
3277   };
3278   void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic,
3279                         const OMPLoopDirective &S, OMPPrivateScope &LoopScope,
3280                         const OMPLoopArguments &LoopArgs,
3281                         const CodeGenLoopTy &CodeGenLoop,
3282                         const CodeGenOrderedTy &CodeGenOrdered);
3283   void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind,
3284                            bool IsMonotonic, const OMPLoopDirective &S,
3285                            OMPPrivateScope &LoopScope, bool Ordered,
3286                            const OMPLoopArguments &LoopArgs,
3287                            const CodeGenDispatchBoundsTy &CGDispatchBounds);
3288   void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind,
3289                                   const OMPLoopDirective &S,
3290                                   OMPPrivateScope &LoopScope,
3291                                   const OMPLoopArguments &LoopArgs,
3292                                   const CodeGenLoopTy &CodeGenLoopContent);
3293   /// Emit code for sections directive.
3294   void EmitSections(const OMPExecutableDirective &S);
3295 
3296 public:
3297 
3298   //===--------------------------------------------------------------------===//
3299   //                         LValue Expression Emission
3300   //===--------------------------------------------------------------------===//
3301 
3302   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
3303   RValue GetUndefRValue(QualType Ty);
3304 
3305   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
3306   /// and issue an ErrorUnsupported style diagnostic (using the
3307   /// provided Name).
3308   RValue EmitUnsupportedRValue(const Expr *E,
3309                                const char *Name);
3310 
3311   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
3312   /// an ErrorUnsupported style diagnostic (using the provided Name).
3313   LValue EmitUnsupportedLValue(const Expr *E,
3314                                const char *Name);
3315 
3316   /// EmitLValue - Emit code to compute a designator that specifies the location
3317   /// of the expression.
3318   ///
3319   /// This can return one of two things: a simple address or a bitfield
3320   /// reference.  In either case, the LLVM Value* in the LValue structure is
3321   /// guaranteed to be an LLVM pointer type.
3322   ///
3323   /// If this returns a bitfield reference, nothing about the pointee type of
3324   /// the LLVM value is known: For example, it may not be a pointer to an
3325   /// integer.
3326   ///
3327   /// If this returns a normal address, and if the lvalue's C type is fixed
3328   /// size, this method guarantees that the returned pointer type will point to
3329   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
3330   /// variable length type, this is not possible.
3331   ///
3332   LValue EmitLValue(const Expr *E);
3333 
3334   /// Same as EmitLValue but additionally we generate checking code to
3335   /// guard against undefined behavior.  This is only suitable when we know
3336   /// that the address will be used to access the object.
3337   LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
3338 
3339   RValue convertTempToRValue(Address addr, QualType type,
3340                              SourceLocation Loc);
3341 
3342   void EmitAtomicInit(Expr *E, LValue lvalue);
3343 
3344   bool LValueIsSuitableForInlineAtomic(LValue Src);
3345 
3346   RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
3347                         AggValueSlot Slot = AggValueSlot::ignored());
3348 
3349   RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
3350                         llvm::AtomicOrdering AO, bool IsVolatile = false,
3351                         AggValueSlot slot = AggValueSlot::ignored());
3352 
3353   void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
3354 
3355   void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
3356                        bool IsVolatile, bool isInit);
3357 
3358   std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
3359       LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
3360       llvm::AtomicOrdering Success =
3361           llvm::AtomicOrdering::SequentiallyConsistent,
3362       llvm::AtomicOrdering Failure =
3363           llvm::AtomicOrdering::SequentiallyConsistent,
3364       bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
3365 
3366   void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
3367                         const llvm::function_ref<RValue(RValue)> &UpdateOp,
3368                         bool IsVolatile);
3369 
3370   /// EmitToMemory - Change a scalar value from its value
3371   /// representation to its in-memory representation.
3372   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
3373 
3374   /// EmitFromMemory - Change a scalar value from its memory
3375   /// representation to its value representation.
3376   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
3377 
3378   /// Check if the scalar \p Value is within the valid range for the given
3379   /// type \p Ty.
3380   ///
3381   /// Returns true if a check is needed (even if the range is unknown).
3382   bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
3383                             SourceLocation Loc);
3384 
3385   /// EmitLoadOfScalar - Load a scalar value from an address, taking
3386   /// care to appropriately convert from the memory representation to
3387   /// the LLVM value representation.
3388   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3389                                 SourceLocation Loc,
3390                                 AlignmentSource Source = AlignmentSource::Type,
3391                                 bool isNontemporal = false) {
3392     return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source),
3393                             CGM.getTBAAAccessInfo(Ty), isNontemporal);
3394   }
3395 
3396   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3397                                 SourceLocation Loc, LValueBaseInfo BaseInfo,
3398                                 TBAAAccessInfo TBAAInfo,
3399                                 bool isNontemporal = false);
3400 
3401   /// EmitLoadOfScalar - Load a scalar value from an address, taking
3402   /// care to appropriately convert from the memory representation to
3403   /// the LLVM value representation.  The l-value must be a simple
3404   /// l-value.
3405   llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
3406 
3407   /// EmitStoreOfScalar - Store a scalar value to an address, taking
3408   /// care to appropriately convert from the memory representation to
3409   /// the LLVM value representation.
3410   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3411                          bool Volatile, QualType Ty,
3412                          AlignmentSource Source = AlignmentSource::Type,
3413                          bool isInit = false, bool isNontemporal = false) {
3414     EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source),
3415                       CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal);
3416   }
3417 
3418   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3419                          bool Volatile, QualType Ty,
3420                          LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo,
3421                          bool isInit = false, bool isNontemporal = false);
3422 
3423   /// EmitStoreOfScalar - Store a scalar value to an address, taking
3424   /// care to appropriately convert from the memory representation to
3425   /// the LLVM value representation.  The l-value must be a simple
3426   /// l-value.  The isInit flag indicates whether this is an initialization.
3427   /// If so, atomic qualifiers are ignored and the store is always non-atomic.
3428   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
3429 
3430   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
3431   /// this method emits the address of the lvalue, then loads the result as an
3432   /// rvalue, returning the rvalue.
3433   RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
3434   RValue EmitLoadOfExtVectorElementLValue(LValue V);
3435   RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc);
3436   RValue EmitLoadOfGlobalRegLValue(LValue LV);
3437 
3438   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
3439   /// lvalue, where both are guaranteed to the have the same type, and that type
3440   /// is 'Ty'.
3441   void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
3442   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
3443   void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
3444 
3445   /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
3446   /// as EmitStoreThroughLValue.
3447   ///
3448   /// \param Result [out] - If non-null, this will be set to a Value* for the
3449   /// bit-field contents after the store, appropriate for use as the result of
3450   /// an assignment to the bit-field.
3451   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
3452                                       llvm::Value **Result=nullptr);
3453 
3454   /// Emit an l-value for an assignment (simple or compound) of complex type.
3455   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
3456   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
3457   LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
3458                                              llvm::Value *&Result);
3459 
3460   // Note: only available for agg return types
3461   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
3462   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
3463   // Note: only available for agg return types
3464   LValue EmitCallExprLValue(const CallExpr *E);
3465   // Note: only available for agg return types
3466   LValue EmitVAArgExprLValue(const VAArgExpr *E);
3467   LValue EmitDeclRefLValue(const DeclRefExpr *E);
3468   LValue EmitStringLiteralLValue(const StringLiteral *E);
3469   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
3470   LValue EmitPredefinedLValue(const PredefinedExpr *E);
3471   LValue EmitUnaryOpLValue(const UnaryOperator *E);
3472   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3473                                 bool Accessed = false);
3474   LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3475                                  bool IsLowerBound = true);
3476   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
3477   LValue EmitMemberExpr(const MemberExpr *E);
3478   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
3479   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
3480   LValue EmitInitListLValue(const InitListExpr *E);
3481   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
3482   LValue EmitCastLValue(const CastExpr *E);
3483   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
3484   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
3485 
3486   Address EmitExtVectorElementLValue(LValue V);
3487 
3488   RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
3489 
3490   Address EmitArrayToPointerDecay(const Expr *Array,
3491                                   LValueBaseInfo *BaseInfo = nullptr,
3492                                   TBAAAccessInfo *TBAAInfo = nullptr);
3493 
3494   class ConstantEmission {
3495     llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
3496     ConstantEmission(llvm::Constant *C, bool isReference)
3497       : ValueAndIsReference(C, isReference) {}
3498   public:
3499     ConstantEmission() {}
3500     static ConstantEmission forReference(llvm::Constant *C) {
3501       return ConstantEmission(C, true);
3502     }
3503     static ConstantEmission forValue(llvm::Constant *C) {
3504       return ConstantEmission(C, false);
3505     }
3506 
3507     explicit operator bool() const {
3508       return ValueAndIsReference.getOpaqueValue() != nullptr;
3509     }
3510 
3511     bool isReference() const { return ValueAndIsReference.getInt(); }
3512     LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
3513       assert(isReference());
3514       return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
3515                                             refExpr->getType());
3516     }
3517 
3518     llvm::Constant *getValue() const {
3519       assert(!isReference());
3520       return ValueAndIsReference.getPointer();
3521     }
3522   };
3523 
3524   ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
3525   ConstantEmission tryEmitAsConstant(const MemberExpr *ME);
3526 
3527   RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
3528                                 AggValueSlot slot = AggValueSlot::ignored());
3529   LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
3530 
3531   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3532                               const ObjCIvarDecl *Ivar);
3533   LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
3534   LValue EmitLValueForLambdaField(const FieldDecl *Field);
3535 
3536   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
3537   /// if the Field is a reference, this will return the address of the reference
3538   /// and not the address of the value stored in the reference.
3539   LValue EmitLValueForFieldInitialization(LValue Base,
3540                                           const FieldDecl* Field);
3541 
3542   LValue EmitLValueForIvar(QualType ObjectTy,
3543                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
3544                            unsigned CVRQualifiers);
3545 
3546   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
3547   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
3548   LValue EmitLambdaLValue(const LambdaExpr *E);
3549   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
3550   LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
3551 
3552   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
3553   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
3554   LValue EmitStmtExprLValue(const StmtExpr *E);
3555   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
3556   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
3557   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init);
3558 
3559   //===--------------------------------------------------------------------===//
3560   //                         Scalar Expression Emission
3561   //===--------------------------------------------------------------------===//
3562 
3563   /// EmitCall - Generate a call of the given function, expecting the given
3564   /// result type, and using the given argument list which specifies both the
3565   /// LLVM arguments and the types they were derived from.
3566   RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
3567                   ReturnValueSlot ReturnValue, const CallArgList &Args,
3568                   llvm::Instruction **callOrInvoke, SourceLocation Loc);
3569   RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
3570                   ReturnValueSlot ReturnValue, const CallArgList &Args,
3571                   llvm::Instruction **callOrInvoke = nullptr) {
3572     return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke,
3573                     SourceLocation());
3574   }
3575   RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E,
3576                   ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr);
3577   RValue EmitCallExpr(const CallExpr *E,
3578                       ReturnValueSlot ReturnValue = ReturnValueSlot());
3579   RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
3580   CGCallee EmitCallee(const Expr *E);
3581 
3582   void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl);
3583 
3584   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
3585                                   const Twine &name = "");
3586   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
3587                                   ArrayRef<llvm::Value*> args,
3588                                   const Twine &name = "");
3589   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
3590                                           const Twine &name = "");
3591   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
3592                                           ArrayRef<llvm::Value*> args,
3593                                           const Twine &name = "");
3594 
3595   SmallVector<llvm::OperandBundleDef, 1>
3596   getBundlesForFunclet(llvm::Value *Callee);
3597 
3598   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
3599                                   ArrayRef<llvm::Value *> Args,
3600                                   const Twine &Name = "");
3601   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
3602                                          ArrayRef<llvm::Value*> args,
3603                                          const Twine &name = "");
3604   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
3605                                          const Twine &name = "");
3606   void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
3607                                        ArrayRef<llvm::Value*> args);
3608 
3609   CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
3610                                      NestedNameSpecifier *Qual,
3611                                      llvm::Type *Ty);
3612 
3613   CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
3614                                                CXXDtorType Type,
3615                                                const CXXRecordDecl *RD);
3616 
3617   // Return the copy constructor name with the prefix "__copy_constructor_"
3618   // removed.
3619   static std::string getNonTrivialCopyConstructorStr(QualType QT,
3620                                                      CharUnits Alignment,
3621                                                      bool IsVolatile,
3622                                                      ASTContext &Ctx);
3623 
3624   // Return the destructor name with the prefix "__destructor_" removed.
3625   static std::string getNonTrivialDestructorStr(QualType QT,
3626                                                 CharUnits Alignment,
3627                                                 bool IsVolatile,
3628                                                 ASTContext &Ctx);
3629 
3630   // These functions emit calls to the special functions of non-trivial C
3631   // structs.
3632   void defaultInitNonTrivialCStructVar(LValue Dst);
3633   void callCStructDefaultConstructor(LValue Dst);
3634   void callCStructDestructor(LValue Dst);
3635   void callCStructCopyConstructor(LValue Dst, LValue Src);
3636   void callCStructMoveConstructor(LValue Dst, LValue Src);
3637   void callCStructCopyAssignmentOperator(LValue Dst, LValue Src);
3638   void callCStructMoveAssignmentOperator(LValue Dst, LValue Src);
3639 
3640   RValue
3641   EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method,
3642                               const CGCallee &Callee,
3643                               ReturnValueSlot ReturnValue, llvm::Value *This,
3644                               llvm::Value *ImplicitParam,
3645                               QualType ImplicitParamTy, const CallExpr *E,
3646                               CallArgList *RtlArgs);
3647   RValue EmitCXXDestructorCall(const CXXDestructorDecl *DD,
3648                                const CGCallee &Callee,
3649                                llvm::Value *This, llvm::Value *ImplicitParam,
3650                                QualType ImplicitParamTy, const CallExpr *E,
3651                                StructorType Type);
3652   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
3653                                ReturnValueSlot ReturnValue);
3654   RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE,
3655                                                const CXXMethodDecl *MD,
3656                                                ReturnValueSlot ReturnValue,
3657                                                bool HasQualifier,
3658                                                NestedNameSpecifier *Qualifier,
3659                                                bool IsArrow, const Expr *Base);
3660   // Compute the object pointer.
3661   Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
3662                                           llvm::Value *memberPtr,
3663                                           const MemberPointerType *memberPtrType,
3664                                           LValueBaseInfo *BaseInfo = nullptr,
3665                                           TBAAAccessInfo *TBAAInfo = nullptr);
3666   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
3667                                       ReturnValueSlot ReturnValue);
3668 
3669   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
3670                                        const CXXMethodDecl *MD,
3671                                        ReturnValueSlot ReturnValue);
3672   RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E);
3673 
3674   RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
3675                                 ReturnValueSlot ReturnValue);
3676 
3677   RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E,
3678                                        ReturnValueSlot ReturnValue);
3679 
3680   RValue EmitBuiltinExpr(const FunctionDecl *FD,
3681                          unsigned BuiltinID, const CallExpr *E,
3682                          ReturnValueSlot ReturnValue);
3683 
3684   RValue emitRotate(const CallExpr *E, bool IsRotateRight);
3685 
3686   /// Emit IR for __builtin_os_log_format.
3687   RValue emitBuiltinOSLogFormat(const CallExpr &E);
3688 
3689   llvm::Function *generateBuiltinOSLogHelperFunction(
3690       const analyze_os_log::OSLogBufferLayout &Layout,
3691       CharUnits BufferAlignment);
3692 
3693   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
3694 
3695   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
3696   /// is unhandled by the current target.
3697   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3698 
3699   llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
3700                                              const llvm::CmpInst::Predicate Fp,
3701                                              const llvm::CmpInst::Predicate Ip,
3702                                              const llvm::Twine &Name = "");
3703   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
3704                                   llvm::Triple::ArchType Arch);
3705 
3706   llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
3707                                          unsigned LLVMIntrinsic,
3708                                          unsigned AltLLVMIntrinsic,
3709                                          const char *NameHint,
3710                                          unsigned Modifier,
3711                                          const CallExpr *E,
3712                                          SmallVectorImpl<llvm::Value *> &Ops,
3713                                          Address PtrOp0, Address PtrOp1,
3714                                          llvm::Triple::ArchType Arch);
3715 
3716   llvm::Value *EmitISOVolatileLoad(const CallExpr *E);
3717   llvm::Value *EmitISOVolatileStore(const CallExpr *E);
3718 
3719   llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
3720                                           unsigned Modifier, llvm::Type *ArgTy,
3721                                           const CallExpr *E);
3722   llvm::Value *EmitNeonCall(llvm::Function *F,
3723                             SmallVectorImpl<llvm::Value*> &O,
3724                             const char *name,
3725                             unsigned shift = 0, bool rightshift = false);
3726   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
3727   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
3728                                    bool negateForRightShift);
3729   llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
3730                                  llvm::Type *Ty, bool usgn, const char *name);
3731   llvm::Value *vectorWrapScalar16(llvm::Value *Op);
3732   llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E,
3733                                       llvm::Triple::ArchType Arch);
3734 
3735   llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
3736   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3737   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3738   llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3739   llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3740   llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3741   llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
3742                                           const CallExpr *E);
3743   llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3744 
3745 private:
3746   enum class MSVCIntrin;
3747 
3748 public:
3749   llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E);
3750 
3751   llvm::Value *EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args);
3752 
3753   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
3754   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
3755   llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
3756   llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
3757   llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
3758   llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
3759                                 const ObjCMethodDecl *MethodWithObjects);
3760   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
3761   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
3762                              ReturnValueSlot Return = ReturnValueSlot());
3763 
3764   /// Retrieves the default cleanup kind for an ARC cleanup.
3765   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
3766   CleanupKind getARCCleanupKind() {
3767     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
3768              ? NormalAndEHCleanup : NormalCleanup;
3769   }
3770 
3771   // ARC primitives.
3772   void EmitARCInitWeak(Address addr, llvm::Value *value);
3773   void EmitARCDestroyWeak(Address addr);
3774   llvm::Value *EmitARCLoadWeak(Address addr);
3775   llvm::Value *EmitARCLoadWeakRetained(Address addr);
3776   llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored);
3777   void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
3778   void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
3779   void EmitARCCopyWeak(Address dst, Address src);
3780   void EmitARCMoveWeak(Address dst, Address src);
3781   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
3782   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
3783   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
3784                                   bool resultIgnored);
3785   llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value,
3786                                       bool resultIgnored);
3787   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
3788   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
3789   llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
3790   void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise);
3791   void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
3792   llvm::Value *EmitARCAutorelease(llvm::Value *value);
3793   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
3794   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
3795   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
3796   llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value);
3797 
3798   std::pair<LValue,llvm::Value*>
3799   EmitARCStoreAutoreleasing(const BinaryOperator *e);
3800   std::pair<LValue,llvm::Value*>
3801   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
3802   std::pair<LValue,llvm::Value*>
3803   EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored);
3804 
3805   llvm::Value *EmitObjCThrowOperand(const Expr *expr);
3806   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
3807   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
3808 
3809   llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
3810   llvm::Value *EmitARCReclaimReturnedObject(const Expr *e,
3811                                             bool allowUnsafeClaim);
3812   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
3813   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
3814   llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr);
3815 
3816   void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
3817 
3818   static Destroyer destroyARCStrongImprecise;
3819   static Destroyer destroyARCStrongPrecise;
3820   static Destroyer destroyARCWeak;
3821   static Destroyer emitARCIntrinsicUse;
3822   static Destroyer destroyNonTrivialCStruct;
3823 
3824   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
3825   llvm::Value *EmitObjCAutoreleasePoolPush();
3826   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
3827   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
3828   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
3829 
3830   /// Emits a reference binding to the passed in expression.
3831   RValue EmitReferenceBindingToExpr(const Expr *E);
3832 
3833   //===--------------------------------------------------------------------===//
3834   //                           Expression Emission
3835   //===--------------------------------------------------------------------===//
3836 
3837   // Expressions are broken into three classes: scalar, complex, aggregate.
3838 
3839   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
3840   /// scalar type, returning the result.
3841   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
3842 
3843   /// Emit a conversion from the specified type to the specified destination
3844   /// type, both of which are LLVM scalar types.
3845   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
3846                                     QualType DstTy, SourceLocation Loc);
3847 
3848   /// Emit a conversion from the specified complex type to the specified
3849   /// destination type, where the destination type is an LLVM scalar type.
3850   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
3851                                              QualType DstTy,
3852                                              SourceLocation Loc);
3853 
3854   /// EmitAggExpr - Emit the computation of the specified expression
3855   /// of aggregate type.  The result is computed into the given slot,
3856   /// which may be null to indicate that the value is not needed.
3857   void EmitAggExpr(const Expr *E, AggValueSlot AS);
3858 
3859   /// EmitAggExprToLValue - Emit the computation of the specified expression of
3860   /// aggregate type into a temporary LValue.
3861   LValue EmitAggExprToLValue(const Expr *E);
3862 
3863   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
3864   /// make sure it survives garbage collection until this point.
3865   void EmitExtendGCLifetime(llvm::Value *object);
3866 
3867   /// EmitComplexExpr - Emit the computation of the specified expression of
3868   /// complex type, returning the result.
3869   ComplexPairTy EmitComplexExpr(const Expr *E,
3870                                 bool IgnoreReal = false,
3871                                 bool IgnoreImag = false);
3872 
3873   /// EmitComplexExprIntoLValue - Emit the given expression of complex
3874   /// type and place its result into the specified l-value.
3875   void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
3876 
3877   /// EmitStoreOfComplex - Store a complex number into the specified l-value.
3878   void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
3879 
3880   /// EmitLoadOfComplex - Load a complex number from the specified l-value.
3881   ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
3882 
3883   Address emitAddrOfRealComponent(Address complex, QualType complexType);
3884   Address emitAddrOfImagComponent(Address complex, QualType complexType);
3885 
3886   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
3887   /// global variable that has already been created for it.  If the initializer
3888   /// has a different type than GV does, this may free GV and return a different
3889   /// one.  Otherwise it just returns GV.
3890   llvm::GlobalVariable *
3891   AddInitializerToStaticVarDecl(const VarDecl &D,
3892                                 llvm::GlobalVariable *GV);
3893 
3894 
3895   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
3896   /// variable with global storage.
3897   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
3898                                 bool PerformInit);
3899 
3900   llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::Constant *Dtor,
3901                                    llvm::Constant *Addr);
3902 
3903   /// Call atexit() with a function that passes the given argument to
3904   /// the given function.
3905   void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn,
3906                                     llvm::Constant *addr);
3907 
3908   /// Call atexit() with function dtorStub.
3909   void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub);
3910 
3911   /// Emit code in this function to perform a guarded variable
3912   /// initialization.  Guarded initializations are used when it's not
3913   /// possible to prove that an initialization will be done exactly
3914   /// once, e.g. with a static local variable or a static data member
3915   /// of a class template.
3916   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
3917                           bool PerformInit);
3918 
3919   enum class GuardKind { VariableGuard, TlsGuard };
3920 
3921   /// Emit a branch to select whether or not to perform guarded initialization.
3922   void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit,
3923                                 llvm::BasicBlock *InitBlock,
3924                                 llvm::BasicBlock *NoInitBlock,
3925                                 GuardKind Kind, const VarDecl *D);
3926 
3927   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
3928   /// variables.
3929   void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
3930                                  ArrayRef<llvm::Function *> CXXThreadLocals,
3931                                  Address Guard = Address::invalid());
3932 
3933   /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
3934   /// variables.
3935   void GenerateCXXGlobalDtorsFunc(
3936       llvm::Function *Fn,
3937       const std::vector<std::pair<llvm::WeakTrackingVH, llvm::Constant *>>
3938           &DtorsAndObjects);
3939 
3940   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
3941                                         const VarDecl *D,
3942                                         llvm::GlobalVariable *Addr,
3943                                         bool PerformInit);
3944 
3945   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
3946 
3947   void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp);
3948 
3949   void enterFullExpression(const ExprWithCleanups *E) {
3950     if (E->getNumObjects() == 0) return;
3951     enterNonTrivialFullExpression(E);
3952   }
3953   void enterNonTrivialFullExpression(const ExprWithCleanups *E);
3954 
3955   void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
3956 
3957   void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest);
3958 
3959   RValue EmitAtomicExpr(AtomicExpr *E);
3960 
3961   //===--------------------------------------------------------------------===//
3962   //                         Annotations Emission
3963   //===--------------------------------------------------------------------===//
3964 
3965   /// Emit an annotation call (intrinsic or builtin).
3966   llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
3967                                   llvm::Value *AnnotatedVal,
3968                                   StringRef AnnotationStr,
3969                                   SourceLocation Location);
3970 
3971   /// Emit local annotations for the local variable V, declared by D.
3972   void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
3973 
3974   /// Emit field annotations for the given field & value. Returns the
3975   /// annotation result.
3976   Address EmitFieldAnnotations(const FieldDecl *D, Address V);
3977 
3978   //===--------------------------------------------------------------------===//
3979   //                             Internal Helpers
3980   //===--------------------------------------------------------------------===//
3981 
3982   /// ContainsLabel - Return true if the statement contains a label in it.  If
3983   /// this statement is not executed normally, it not containing a label means
3984   /// that we can just remove the code.
3985   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
3986 
3987   /// containsBreak - Return true if the statement contains a break out of it.
3988   /// If the statement (recursively) contains a switch or loop with a break
3989   /// inside of it, this is fine.
3990   static bool containsBreak(const Stmt *S);
3991 
3992   /// Determine if the given statement might introduce a declaration into the
3993   /// current scope, by being a (possibly-labelled) DeclStmt.
3994   static bool mightAddDeclToScope(const Stmt *S);
3995 
3996   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
3997   /// to a constant, or if it does but contains a label, return false.  If it
3998   /// constant folds return true and set the boolean result in Result.
3999   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result,
4000                                     bool AllowLabels = false);
4001 
4002   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
4003   /// to a constant, or if it does but contains a label, return false.  If it
4004   /// constant folds return true and set the folded value.
4005   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result,
4006                                     bool AllowLabels = false);
4007 
4008   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
4009   /// if statement) to the specified blocks.  Based on the condition, this might
4010   /// try to simplify the codegen of the conditional based on the branch.
4011   /// TrueCount should be the number of times we expect the condition to
4012   /// evaluate to true based on PGO data.
4013   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
4014                             llvm::BasicBlock *FalseBlock, uint64_t TrueCount);
4015 
4016   /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is
4017   /// nonnull, if \p LHS is marked _Nonnull.
4018   void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc);
4019 
4020   /// An enumeration which makes it easier to specify whether or not an
4021   /// operation is a subtraction.
4022   enum { NotSubtraction = false, IsSubtraction = true };
4023 
4024   /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to
4025   /// detect undefined behavior when the pointer overflow sanitizer is enabled.
4026   /// \p SignedIndices indicates whether any of the GEP indices are signed.
4027   /// \p IsSubtraction indicates whether the expression used to form the GEP
4028   /// is a subtraction.
4029   llvm::Value *EmitCheckedInBoundsGEP(llvm::Value *Ptr,
4030                                       ArrayRef<llvm::Value *> IdxList,
4031                                       bool SignedIndices,
4032                                       bool IsSubtraction,
4033                                       SourceLocation Loc,
4034                                       const Twine &Name = "");
4035 
4036   /// Specifies which type of sanitizer check to apply when handling a
4037   /// particular builtin.
4038   enum BuiltinCheckKind {
4039     BCK_CTZPassedZero,
4040     BCK_CLZPassedZero,
4041   };
4042 
4043   /// Emits an argument for a call to a builtin. If the builtin sanitizer is
4044   /// enabled, a runtime check specified by \p Kind is also emitted.
4045   llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind);
4046 
4047   /// Emit a description of a type in a format suitable for passing to
4048   /// a runtime sanitizer handler.
4049   llvm::Constant *EmitCheckTypeDescriptor(QualType T);
4050 
4051   /// Convert a value into a format suitable for passing to a runtime
4052   /// sanitizer handler.
4053   llvm::Value *EmitCheckValue(llvm::Value *V);
4054 
4055   /// Emit a description of a source location in a format suitable for
4056   /// passing to a runtime sanitizer handler.
4057   llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
4058 
4059   /// Create a basic block that will call a handler function in a
4060   /// sanitizer runtime with the provided arguments, and create a conditional
4061   /// branch to it.
4062   void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
4063                  SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs,
4064                  ArrayRef<llvm::Value *> DynamicArgs);
4065 
4066   /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath
4067   /// if Cond if false.
4068   void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond,
4069                             llvm::ConstantInt *TypeId, llvm::Value *Ptr,
4070                             ArrayRef<llvm::Constant *> StaticArgs);
4071 
4072   /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime
4073   /// checking is enabled. Otherwise, just emit an unreachable instruction.
4074   void EmitUnreachable(SourceLocation Loc);
4075 
4076   /// Create a basic block that will call the trap intrinsic, and emit a
4077   /// conditional branch to it, for the -ftrapv checks.
4078   void EmitTrapCheck(llvm::Value *Checked);
4079 
4080   /// Emit a call to trap or debugtrap and attach function attribute
4081   /// "trap-func-name" if specified.
4082   llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID);
4083 
4084   /// Emit a stub for the cross-DSO CFI check function.
4085   void EmitCfiCheckStub();
4086 
4087   /// Emit a cross-DSO CFI failure handling function.
4088   void EmitCfiCheckFail();
4089 
4090   /// Create a check for a function parameter that may potentially be
4091   /// declared as non-null.
4092   void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc,
4093                            AbstractCallee AC, unsigned ParmNum);
4094 
4095   /// EmitCallArg - Emit a single call argument.
4096   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
4097 
4098   /// EmitDelegateCallArg - We are performing a delegate call; that
4099   /// is, the current function is delegating to another one.  Produce
4100   /// a r-value suitable for passing the given parameter.
4101   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
4102                            SourceLocation loc);
4103 
4104   /// SetFPAccuracy - Set the minimum required accuracy of the given floating
4105   /// point operation, expressed as the maximum relative error in ulp.
4106   void SetFPAccuracy(llvm::Value *Val, float Accuracy);
4107 
4108 private:
4109   llvm::MDNode *getRangeForLoadFromType(QualType Ty);
4110   void EmitReturnOfRValue(RValue RV, QualType Ty);
4111 
4112   void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
4113 
4114   llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4>
4115   DeferredReplacements;
4116 
4117   /// Set the address of a local variable.
4118   void setAddrOfLocalVar(const VarDecl *VD, Address Addr) {
4119     assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!");
4120     LocalDeclMap.insert({VD, Addr});
4121   }
4122 
4123   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
4124   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
4125   ///
4126   /// \param AI - The first function argument of the expansion.
4127   void ExpandTypeFromArgs(QualType Ty, LValue Dst,
4128                           SmallVectorImpl<llvm::Value *>::iterator &AI);
4129 
4130   /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg
4131   /// Ty, into individual arguments on the provided vector \arg IRCallArgs,
4132   /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand.
4133   void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
4134                         SmallVectorImpl<llvm::Value *> &IRCallArgs,
4135                         unsigned &IRCallArgPos);
4136 
4137   llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
4138                             const Expr *InputExpr, std::string &ConstraintStr);
4139 
4140   llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
4141                                   LValue InputValue, QualType InputType,
4142                                   std::string &ConstraintStr,
4143                                   SourceLocation Loc);
4144 
4145   /// Attempts to statically evaluate the object size of E. If that
4146   /// fails, emits code to figure the size of E out for us. This is
4147   /// pass_object_size aware.
4148   ///
4149   /// If EmittedExpr is non-null, this will use that instead of re-emitting E.
4150   llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
4151                                                llvm::IntegerType *ResType,
4152                                                llvm::Value *EmittedE);
4153 
4154   /// Emits the size of E, as required by __builtin_object_size. This
4155   /// function is aware of pass_object_size parameters, and will act accordingly
4156   /// if E is a parameter with the pass_object_size attribute.
4157   llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type,
4158                                      llvm::IntegerType *ResType,
4159                                      llvm::Value *EmittedE);
4160 
4161 public:
4162 #ifndef NDEBUG
4163   // Determine whether the given argument is an Objective-C method
4164   // that may have type parameters in its signature.
4165   static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) {
4166     const DeclContext *dc = method->getDeclContext();
4167     if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) {
4168       return classDecl->getTypeParamListAsWritten();
4169     }
4170 
4171     if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) {
4172       return catDecl->getTypeParamList();
4173     }
4174 
4175     return false;
4176   }
4177 
4178   template<typename T>
4179   static bool isObjCMethodWithTypeParams(const T *) { return false; }
4180 #endif
4181 
4182   enum class EvaluationOrder {
4183     ///! No language constraints on evaluation order.
4184     Default,
4185     ///! Language semantics require left-to-right evaluation.
4186     ForceLeftToRight,
4187     ///! Language semantics require right-to-left evaluation.
4188     ForceRightToLeft
4189   };
4190 
4191   /// EmitCallArgs - Emit call arguments for a function.
4192   template <typename T>
4193   void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo,
4194                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
4195                     AbstractCallee AC = AbstractCallee(),
4196                     unsigned ParamsToSkip = 0,
4197                     EvaluationOrder Order = EvaluationOrder::Default) {
4198     SmallVector<QualType, 16> ArgTypes;
4199     CallExpr::const_arg_iterator Arg = ArgRange.begin();
4200 
4201     assert((ParamsToSkip == 0 || CallArgTypeInfo) &&
4202            "Can't skip parameters if type info is not provided");
4203     if (CallArgTypeInfo) {
4204 #ifndef NDEBUG
4205       bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo);
4206 #endif
4207 
4208       // First, use the argument types that the type info knows about
4209       for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip,
4210                 E = CallArgTypeInfo->param_type_end();
4211            I != E; ++I, ++Arg) {
4212         assert(Arg != ArgRange.end() && "Running over edge of argument list!");
4213         assert((isGenericMethod ||
4214                 ((*I)->isVariablyModifiedType() ||
4215                  (*I).getNonReferenceType()->isObjCRetainableType() ||
4216                  getContext()
4217                          .getCanonicalType((*I).getNonReferenceType())
4218                          .getTypePtr() ==
4219                      getContext()
4220                          .getCanonicalType((*Arg)->getType())
4221                          .getTypePtr())) &&
4222                "type mismatch in call argument!");
4223         ArgTypes.push_back(*I);
4224       }
4225     }
4226 
4227     // Either we've emitted all the call args, or we have a call to variadic
4228     // function.
4229     assert((Arg == ArgRange.end() || !CallArgTypeInfo ||
4230             CallArgTypeInfo->isVariadic()) &&
4231            "Extra arguments in non-variadic function!");
4232 
4233     // If we still have any arguments, emit them using the type of the argument.
4234     for (auto *A : llvm::make_range(Arg, ArgRange.end()))
4235       ArgTypes.push_back(CallArgTypeInfo ? getVarArgType(A) : A->getType());
4236 
4237     EmitCallArgs(Args, ArgTypes, ArgRange, AC, ParamsToSkip, Order);
4238   }
4239 
4240   void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes,
4241                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
4242                     AbstractCallee AC = AbstractCallee(),
4243                     unsigned ParamsToSkip = 0,
4244                     EvaluationOrder Order = EvaluationOrder::Default);
4245 
4246   /// EmitPointerWithAlignment - Given an expression with a pointer type,
4247   /// emit the value and compute our best estimate of the alignment of the
4248   /// pointee.
4249   ///
4250   /// \param BaseInfo - If non-null, this will be initialized with
4251   /// information about the source of the alignment and the may-alias
4252   /// attribute.  Note that this function will conservatively fall back on
4253   /// the type when it doesn't recognize the expression and may-alias will
4254   /// be set to false.
4255   ///
4256   /// One reasonable way to use this information is when there's a language
4257   /// guarantee that the pointer must be aligned to some stricter value, and
4258   /// we're simply trying to ensure that sufficiently obvious uses of under-
4259   /// aligned objects don't get miscompiled; for example, a placement new
4260   /// into the address of a local variable.  In such a case, it's quite
4261   /// reasonable to just ignore the returned alignment when it isn't from an
4262   /// explicit source.
4263   Address EmitPointerWithAlignment(const Expr *Addr,
4264                                    LValueBaseInfo *BaseInfo = nullptr,
4265                                    TBAAAccessInfo *TBAAInfo = nullptr);
4266 
4267   /// If \p E references a parameter with pass_object_size info or a constant
4268   /// array size modifier, emit the object size divided by the size of \p EltTy.
4269   /// Otherwise return null.
4270   llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy);
4271 
4272   void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK);
4273 
4274   struct MultiVersionResolverOption {
4275     llvm::Function *Function;
4276     struct Conds {
4277       StringRef Architecture;
4278       llvm::SmallVector<StringRef, 8> Features;
4279 
4280       Conds(StringRef Arch, ArrayRef<StringRef> Feats)
4281           : Architecture(Arch), Features(Feats.begin(), Feats.end()) {}
4282     } Conditions;
4283 
4284     MultiVersionResolverOption(llvm::Function *F, StringRef Arch,
4285                                ArrayRef<StringRef> Feats)
4286         : Function(F), Conditions(Arch, Feats) {}
4287   };
4288 
4289   // Emits the body of a multiversion function's resolver. Assumes that the
4290   // options are already sorted in the proper order, with the 'default' option
4291   // last (if it exists).
4292   void EmitMultiVersionResolver(llvm::Function *Resolver,
4293                                 ArrayRef<MultiVersionResolverOption> Options);
4294 
4295   struct CPUDispatchMultiVersionResolverOption {
4296     llvm::Function *Function;
4297     // Note: EmitX86CPUSupports only has 32 bits available, so we store the mask
4298     // as 32 bits here.  When 64-bit support is added to __builtin_cpu_supports,
4299     // this can be extended to 64 bits.
4300     uint32_t FeatureMask;
4301     CPUDispatchMultiVersionResolverOption(llvm::Function *F, uint64_t Mask)
4302         : Function(F), FeatureMask(static_cast<uint32_t>(Mask)) {}
4303     bool operator>(const CPUDispatchMultiVersionResolverOption &Other) const {
4304       return FeatureMask > Other.FeatureMask;
4305     }
4306   };
4307   void EmitCPUDispatchMultiVersionResolver(
4308       llvm::Function *Resolver,
4309       ArrayRef<CPUDispatchMultiVersionResolverOption> Options);
4310   static uint32_t GetX86CpuSupportsMask(ArrayRef<StringRef> FeatureStrs);
4311 
4312 private:
4313   QualType getVarArgType(const Expr *Arg);
4314 
4315   void EmitDeclMetadata();
4316 
4317   BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType,
4318                                   const AutoVarEmission &emission);
4319 
4320   void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
4321 
4322   llvm::Value *GetValueForARMHint(unsigned BuiltinID);
4323   llvm::Value *EmitX86CpuIs(const CallExpr *E);
4324   llvm::Value *EmitX86CpuIs(StringRef CPUStr);
4325   llvm::Value *EmitX86CpuSupports(const CallExpr *E);
4326   llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs);
4327   llvm::Value *EmitX86CpuSupports(uint32_t Mask);
4328   llvm::Value *EmitX86CpuInit();
4329   llvm::Value *FormResolverCondition(const MultiVersionResolverOption &RO);
4330 };
4331 
4332 inline DominatingLLVMValue::saved_type
4333 DominatingLLVMValue::save(CodeGenFunction &CGF, llvm::Value *value) {
4334   if (!needsSaving(value)) return saved_type(value, false);
4335 
4336   // Otherwise, we need an alloca.
4337   auto align = CharUnits::fromQuantity(
4338             CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType()));
4339   Address alloca =
4340     CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save");
4341   CGF.Builder.CreateStore(value, alloca);
4342 
4343   return saved_type(alloca.getPointer(), true);
4344 }
4345 
4346 inline llvm::Value *DominatingLLVMValue::restore(CodeGenFunction &CGF,
4347                                                  saved_type value) {
4348   // If the value says it wasn't saved, trust that it's still dominating.
4349   if (!value.getInt()) return value.getPointer();
4350 
4351   // Otherwise, it should be an alloca instruction, as set up in save().
4352   auto alloca = cast<llvm::AllocaInst>(value.getPointer());
4353   return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlignment());
4354 }
4355 
4356 }  // end namespace CodeGen
4357 }  // end namespace clang
4358 
4359 #endif
4360