1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the internal per-function state used for llvm translation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 15 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 16 17 #include "CGBuilder.h" 18 #include "CGDebugInfo.h" 19 #include "CGLoopInfo.h" 20 #include "CGValue.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "EHScopeStack.h" 24 #include "VarBypassDetector.h" 25 #include "clang/AST/CharUnits.h" 26 #include "clang/AST/ExprCXX.h" 27 #include "clang/AST/ExprObjC.h" 28 #include "clang/AST/ExprOpenMP.h" 29 #include "clang/AST/Type.h" 30 #include "clang/Basic/ABI.h" 31 #include "clang/Basic/CapturedStmt.h" 32 #include "clang/Basic/OpenMPKinds.h" 33 #include "clang/Basic/TargetInfo.h" 34 #include "clang/Frontend/CodeGenOptions.h" 35 #include "llvm/ADT/ArrayRef.h" 36 #include "llvm/ADT/DenseMap.h" 37 #include "llvm/ADT/MapVector.h" 38 #include "llvm/ADT/SmallVector.h" 39 #include "llvm/IR/ValueHandle.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Transforms/Utils/SanitizerStats.h" 42 43 namespace llvm { 44 class BasicBlock; 45 class LLVMContext; 46 class MDNode; 47 class Module; 48 class SwitchInst; 49 class Twine; 50 class Value; 51 class CallSite; 52 } 53 54 namespace clang { 55 class ASTContext; 56 class BlockDecl; 57 class CXXDestructorDecl; 58 class CXXForRangeStmt; 59 class CXXTryStmt; 60 class Decl; 61 class LabelDecl; 62 class EnumConstantDecl; 63 class FunctionDecl; 64 class FunctionProtoType; 65 class LabelStmt; 66 class ObjCContainerDecl; 67 class ObjCInterfaceDecl; 68 class ObjCIvarDecl; 69 class ObjCMethodDecl; 70 class ObjCImplementationDecl; 71 class ObjCPropertyImplDecl; 72 class TargetInfo; 73 class VarDecl; 74 class ObjCForCollectionStmt; 75 class ObjCAtTryStmt; 76 class ObjCAtThrowStmt; 77 class ObjCAtSynchronizedStmt; 78 class ObjCAutoreleasePoolStmt; 79 80 namespace analyze_os_log { 81 class OSLogBufferLayout; 82 } 83 84 namespace CodeGen { 85 class CodeGenTypes; 86 class CGCallee; 87 class CGFunctionInfo; 88 class CGRecordLayout; 89 class CGBlockInfo; 90 class CGCXXABI; 91 class BlockByrefHelpers; 92 class BlockByrefInfo; 93 class BlockFlags; 94 class BlockFieldFlags; 95 class RegionCodeGenTy; 96 class TargetCodeGenInfo; 97 struct OMPTaskDataTy; 98 struct CGCoroData; 99 100 /// The kind of evaluation to perform on values of a particular 101 /// type. Basically, is the code in CGExprScalar, CGExprComplex, or 102 /// CGExprAgg? 103 /// 104 /// TODO: should vectors maybe be split out into their own thing? 105 enum TypeEvaluationKind { 106 TEK_Scalar, 107 TEK_Complex, 108 TEK_Aggregate 109 }; 110 111 #define LIST_SANITIZER_CHECKS \ 112 SANITIZER_CHECK(AddOverflow, add_overflow, 0) \ 113 SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0) \ 114 SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0) \ 115 SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0) \ 116 SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0) \ 117 SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0) \ 118 SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 0) \ 119 SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0) \ 120 SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0) \ 121 SANITIZER_CHECK(MissingReturn, missing_return, 0) \ 122 SANITIZER_CHECK(MulOverflow, mul_overflow, 0) \ 123 SANITIZER_CHECK(NegateOverflow, negate_overflow, 0) \ 124 SANITIZER_CHECK(NullabilityArg, nullability_arg, 0) \ 125 SANITIZER_CHECK(NullabilityReturn, nullability_return, 1) \ 126 SANITIZER_CHECK(NonnullArg, nonnull_arg, 0) \ 127 SANITIZER_CHECK(NonnullReturn, nonnull_return, 1) \ 128 SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0) \ 129 SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0) \ 130 SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0) \ 131 SANITIZER_CHECK(SubOverflow, sub_overflow, 0) \ 132 SANITIZER_CHECK(TypeMismatch, type_mismatch, 1) \ 133 SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0) 134 135 enum SanitizerHandler { 136 #define SANITIZER_CHECK(Enum, Name, Version) Enum, 137 LIST_SANITIZER_CHECKS 138 #undef SANITIZER_CHECK 139 }; 140 141 /// CodeGenFunction - This class organizes the per-function state that is used 142 /// while generating LLVM code. 143 class CodeGenFunction : public CodeGenTypeCache { 144 CodeGenFunction(const CodeGenFunction &) = delete; 145 void operator=(const CodeGenFunction &) = delete; 146 147 friend class CGCXXABI; 148 public: 149 /// A jump destination is an abstract label, branching to which may 150 /// require a jump out through normal cleanups. 151 struct JumpDest { 152 JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {} 153 JumpDest(llvm::BasicBlock *Block, 154 EHScopeStack::stable_iterator Depth, 155 unsigned Index) 156 : Block(Block), ScopeDepth(Depth), Index(Index) {} 157 158 bool isValid() const { return Block != nullptr; } 159 llvm::BasicBlock *getBlock() const { return Block; } 160 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 161 unsigned getDestIndex() const { return Index; } 162 163 // This should be used cautiously. 164 void setScopeDepth(EHScopeStack::stable_iterator depth) { 165 ScopeDepth = depth; 166 } 167 168 private: 169 llvm::BasicBlock *Block; 170 EHScopeStack::stable_iterator ScopeDepth; 171 unsigned Index; 172 }; 173 174 CodeGenModule &CGM; // Per-module state. 175 const TargetInfo &Target; 176 177 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 178 LoopInfoStack LoopStack; 179 CGBuilderTy Builder; 180 181 // Stores variables for which we can't generate correct lifetime markers 182 // because of jumps. 183 VarBypassDetector Bypasses; 184 185 // CodeGen lambda for loops and support for ordered clause 186 typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &, 187 JumpDest)> 188 CodeGenLoopTy; 189 typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation, 190 const unsigned, const bool)> 191 CodeGenOrderedTy; 192 193 // Codegen lambda for loop bounds in worksharing loop constructs 194 typedef llvm::function_ref<std::pair<LValue, LValue>( 195 CodeGenFunction &, const OMPExecutableDirective &S)> 196 CodeGenLoopBoundsTy; 197 198 // Codegen lambda for loop bounds in dispatch-based loop implementation 199 typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>( 200 CodeGenFunction &, const OMPExecutableDirective &S, Address LB, 201 Address UB)> 202 CodeGenDispatchBoundsTy; 203 204 /// \brief CGBuilder insert helper. This function is called after an 205 /// instruction is created using Builder. 206 void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name, 207 llvm::BasicBlock *BB, 208 llvm::BasicBlock::iterator InsertPt) const; 209 210 /// CurFuncDecl - Holds the Decl for the current outermost 211 /// non-closure context. 212 const Decl *CurFuncDecl; 213 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 214 const Decl *CurCodeDecl; 215 const CGFunctionInfo *CurFnInfo; 216 QualType FnRetTy; 217 llvm::Function *CurFn; 218 219 // Holds coroutine data if the current function is a coroutine. We use a 220 // wrapper to manage its lifetime, so that we don't have to define CGCoroData 221 // in this header. 222 struct CGCoroInfo { 223 std::unique_ptr<CGCoroData> Data; 224 CGCoroInfo(); 225 ~CGCoroInfo(); 226 }; 227 CGCoroInfo CurCoro; 228 229 bool isCoroutine() const { 230 return CurCoro.Data != nullptr; 231 } 232 233 /// CurGD - The GlobalDecl for the current function being compiled. 234 GlobalDecl CurGD; 235 236 /// PrologueCleanupDepth - The cleanup depth enclosing all the 237 /// cleanups associated with the parameters. 238 EHScopeStack::stable_iterator PrologueCleanupDepth; 239 240 /// ReturnBlock - Unified return block. 241 JumpDest ReturnBlock; 242 243 /// ReturnValue - The temporary alloca to hold the return 244 /// value. This is invalid iff the function has no return value. 245 Address ReturnValue; 246 247 /// Return true if a label was seen in the current scope. 248 bool hasLabelBeenSeenInCurrentScope() const { 249 if (CurLexicalScope) 250 return CurLexicalScope->hasLabels(); 251 return !LabelMap.empty(); 252 } 253 254 /// AllocaInsertPoint - This is an instruction in the entry block before which 255 /// we prefer to insert allocas. 256 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 257 258 /// \brief API for captured statement code generation. 259 class CGCapturedStmtInfo { 260 public: 261 explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default) 262 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {} 263 explicit CGCapturedStmtInfo(const CapturedStmt &S, 264 CapturedRegionKind K = CR_Default) 265 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) { 266 267 RecordDecl::field_iterator Field = 268 S.getCapturedRecordDecl()->field_begin(); 269 for (CapturedStmt::const_capture_iterator I = S.capture_begin(), 270 E = S.capture_end(); 271 I != E; ++I, ++Field) { 272 if (I->capturesThis()) 273 CXXThisFieldDecl = *Field; 274 else if (I->capturesVariable()) 275 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 276 else if (I->capturesVariableByCopy()) 277 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 278 } 279 } 280 281 virtual ~CGCapturedStmtInfo(); 282 283 CapturedRegionKind getKind() const { return Kind; } 284 285 virtual void setContextValue(llvm::Value *V) { ThisValue = V; } 286 // \brief Retrieve the value of the context parameter. 287 virtual llvm::Value *getContextValue() const { return ThisValue; } 288 289 /// \brief Lookup the captured field decl for a variable. 290 virtual const FieldDecl *lookup(const VarDecl *VD) const { 291 return CaptureFields.lookup(VD->getCanonicalDecl()); 292 } 293 294 bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; } 295 virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; } 296 297 static bool classof(const CGCapturedStmtInfo *) { 298 return true; 299 } 300 301 /// \brief Emit the captured statement body. 302 virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) { 303 CGF.incrementProfileCounter(S); 304 CGF.EmitStmt(S); 305 } 306 307 /// \brief Get the name of the capture helper. 308 virtual StringRef getHelperName() const { return "__captured_stmt"; } 309 310 private: 311 /// \brief The kind of captured statement being generated. 312 CapturedRegionKind Kind; 313 314 /// \brief Keep the map between VarDecl and FieldDecl. 315 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields; 316 317 /// \brief The base address of the captured record, passed in as the first 318 /// argument of the parallel region function. 319 llvm::Value *ThisValue; 320 321 /// \brief Captured 'this' type. 322 FieldDecl *CXXThisFieldDecl; 323 }; 324 CGCapturedStmtInfo *CapturedStmtInfo; 325 326 /// \brief RAII for correct setting/restoring of CapturedStmtInfo. 327 class CGCapturedStmtRAII { 328 private: 329 CodeGenFunction &CGF; 330 CGCapturedStmtInfo *PrevCapturedStmtInfo; 331 public: 332 CGCapturedStmtRAII(CodeGenFunction &CGF, 333 CGCapturedStmtInfo *NewCapturedStmtInfo) 334 : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) { 335 CGF.CapturedStmtInfo = NewCapturedStmtInfo; 336 } 337 ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; } 338 }; 339 340 /// An abstract representation of regular/ObjC call/message targets. 341 class AbstractCallee { 342 /// The function declaration of the callee. 343 const Decl *CalleeDecl; 344 345 public: 346 AbstractCallee() : CalleeDecl(nullptr) {} 347 AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {} 348 AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {} 349 bool hasFunctionDecl() const { 350 return dyn_cast_or_null<FunctionDecl>(CalleeDecl); 351 } 352 const Decl *getDecl() const { return CalleeDecl; } 353 unsigned getNumParams() const { 354 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 355 return FD->getNumParams(); 356 return cast<ObjCMethodDecl>(CalleeDecl)->param_size(); 357 } 358 const ParmVarDecl *getParamDecl(unsigned I) const { 359 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 360 return FD->getParamDecl(I); 361 return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I); 362 } 363 }; 364 365 /// \brief Sanitizers enabled for this function. 366 SanitizerSet SanOpts; 367 368 /// \brief True if CodeGen currently emits code implementing sanitizer checks. 369 bool IsSanitizerScope; 370 371 /// \brief RAII object to set/unset CodeGenFunction::IsSanitizerScope. 372 class SanitizerScope { 373 CodeGenFunction *CGF; 374 public: 375 SanitizerScope(CodeGenFunction *CGF); 376 ~SanitizerScope(); 377 }; 378 379 /// In C++, whether we are code generating a thunk. This controls whether we 380 /// should emit cleanups. 381 bool CurFuncIsThunk; 382 383 /// In ARC, whether we should autorelease the return value. 384 bool AutoreleaseResult; 385 386 /// Whether we processed a Microsoft-style asm block during CodeGen. These can 387 /// potentially set the return value. 388 bool SawAsmBlock; 389 390 const FunctionDecl *CurSEHParent = nullptr; 391 392 /// True if the current function is an outlined SEH helper. This can be a 393 /// finally block or filter expression. 394 bool IsOutlinedSEHHelper; 395 396 const CodeGen::CGBlockInfo *BlockInfo; 397 llvm::Value *BlockPointer; 398 399 llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; 400 FieldDecl *LambdaThisCaptureField; 401 402 /// \brief A mapping from NRVO variables to the flags used to indicate 403 /// when the NRVO has been applied to this variable. 404 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 405 406 EHScopeStack EHStack; 407 llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack; 408 llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack; 409 410 llvm::Instruction *CurrentFuncletPad = nullptr; 411 412 class CallLifetimeEnd final : public EHScopeStack::Cleanup { 413 llvm::Value *Addr; 414 llvm::Value *Size; 415 416 public: 417 CallLifetimeEnd(Address addr, llvm::Value *size) 418 : Addr(addr.getPointer()), Size(size) {} 419 420 void Emit(CodeGenFunction &CGF, Flags flags) override { 421 CGF.EmitLifetimeEnd(Size, Addr); 422 } 423 }; 424 425 /// Header for data within LifetimeExtendedCleanupStack. 426 struct LifetimeExtendedCleanupHeader { 427 /// The size of the following cleanup object. 428 unsigned Size; 429 /// The kind of cleanup to push: a value from the CleanupKind enumeration. 430 CleanupKind Kind; 431 432 size_t getSize() const { return Size; } 433 CleanupKind getKind() const { return Kind; } 434 }; 435 436 /// i32s containing the indexes of the cleanup destinations. 437 Address NormalCleanupDest; 438 439 unsigned NextCleanupDestIndex; 440 441 /// FirstBlockInfo - The head of a singly-linked-list of block layouts. 442 CGBlockInfo *FirstBlockInfo; 443 444 /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. 445 llvm::BasicBlock *EHResumeBlock; 446 447 /// The exception slot. All landing pads write the current exception pointer 448 /// into this alloca. 449 llvm::Value *ExceptionSlot; 450 451 /// The selector slot. Under the MandatoryCleanup model, all landing pads 452 /// write the current selector value into this alloca. 453 llvm::AllocaInst *EHSelectorSlot; 454 455 /// A stack of exception code slots. Entering an __except block pushes a slot 456 /// on the stack and leaving pops one. The __exception_code() intrinsic loads 457 /// a value from the top of the stack. 458 SmallVector<Address, 1> SEHCodeSlotStack; 459 460 /// Value returned by __exception_info intrinsic. 461 llvm::Value *SEHInfo = nullptr; 462 463 /// Emits a landing pad for the current EH stack. 464 llvm::BasicBlock *EmitLandingPad(); 465 466 llvm::BasicBlock *getInvokeDestImpl(); 467 468 template <class T> 469 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 470 return DominatingValue<T>::save(*this, value); 471 } 472 473 public: 474 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 475 /// rethrows. 476 SmallVector<llvm::Value*, 8> ObjCEHValueStack; 477 478 /// A class controlling the emission of a finally block. 479 class FinallyInfo { 480 /// Where the catchall's edge through the cleanup should go. 481 JumpDest RethrowDest; 482 483 /// A function to call to enter the catch. 484 llvm::Constant *BeginCatchFn; 485 486 /// An i1 variable indicating whether or not the @finally is 487 /// running for an exception. 488 llvm::AllocaInst *ForEHVar; 489 490 /// An i8* variable into which the exception pointer to rethrow 491 /// has been saved. 492 llvm::AllocaInst *SavedExnVar; 493 494 public: 495 void enter(CodeGenFunction &CGF, const Stmt *Finally, 496 llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn, 497 llvm::Constant *rethrowFn); 498 void exit(CodeGenFunction &CGF); 499 }; 500 501 /// Returns true inside SEH __try blocks. 502 bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); } 503 504 /// Returns true while emitting a cleanuppad. 505 bool isCleanupPadScope() const { 506 return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad); 507 } 508 509 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 510 /// current full-expression. Safe against the possibility that 511 /// we're currently inside a conditionally-evaluated expression. 512 template <class T, class... As> 513 void pushFullExprCleanup(CleanupKind kind, As... A) { 514 // If we're not in a conditional branch, or if none of the 515 // arguments requires saving, then use the unconditional cleanup. 516 if (!isInConditionalBranch()) 517 return EHStack.pushCleanup<T>(kind, A...); 518 519 // Stash values in a tuple so we can guarantee the order of saves. 520 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 521 SavedTuple Saved{saveValueInCond(A)...}; 522 523 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 524 EHStack.pushCleanupTuple<CleanupType>(kind, Saved); 525 initFullExprCleanup(); 526 } 527 528 /// \brief Queue a cleanup to be pushed after finishing the current 529 /// full-expression. 530 template <class T, class... As> 531 void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) { 532 assert(!isInConditionalBranch() && "can't defer conditional cleanup"); 533 534 LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind }; 535 536 size_t OldSize = LifetimeExtendedCleanupStack.size(); 537 LifetimeExtendedCleanupStack.resize( 538 LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size); 539 540 static_assert(sizeof(Header) % alignof(T) == 0, 541 "Cleanup will be allocated on misaligned address"); 542 char *Buffer = &LifetimeExtendedCleanupStack[OldSize]; 543 new (Buffer) LifetimeExtendedCleanupHeader(Header); 544 new (Buffer + sizeof(Header)) T(A...); 545 } 546 547 /// Set up the last cleaup that was pushed as a conditional 548 /// full-expression cleanup. 549 void initFullExprCleanup(); 550 551 /// PushDestructorCleanup - Push a cleanup to call the 552 /// complete-object destructor of an object of the given type at the 553 /// given address. Does nothing if T is not a C++ class type with a 554 /// non-trivial destructor. 555 void PushDestructorCleanup(QualType T, Address Addr); 556 557 /// PushDestructorCleanup - Push a cleanup to call the 558 /// complete-object variant of the given destructor on the object at 559 /// the given address. 560 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, Address Addr); 561 562 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 563 /// process all branch fixups. 564 void PopCleanupBlock(bool FallThroughIsBranchThrough = false); 565 566 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 567 /// The block cannot be reactivated. Pops it if it's the top of the 568 /// stack. 569 /// 570 /// \param DominatingIP - An instruction which is known to 571 /// dominate the current IP (if set) and which lies along 572 /// all paths of execution between the current IP and the 573 /// the point at which the cleanup comes into scope. 574 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 575 llvm::Instruction *DominatingIP); 576 577 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 578 /// Cannot be used to resurrect a deactivated cleanup. 579 /// 580 /// \param DominatingIP - An instruction which is known to 581 /// dominate the current IP (if set) and which lies along 582 /// all paths of execution between the current IP and the 583 /// the point at which the cleanup comes into scope. 584 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 585 llvm::Instruction *DominatingIP); 586 587 /// \brief Enters a new scope for capturing cleanups, all of which 588 /// will be executed once the scope is exited. 589 class RunCleanupsScope { 590 EHScopeStack::stable_iterator CleanupStackDepth; 591 size_t LifetimeExtendedCleanupStackSize; 592 bool OldDidCallStackSave; 593 protected: 594 bool PerformCleanup; 595 private: 596 597 RunCleanupsScope(const RunCleanupsScope &) = delete; 598 void operator=(const RunCleanupsScope &) = delete; 599 600 protected: 601 CodeGenFunction& CGF; 602 603 public: 604 /// \brief Enter a new cleanup scope. 605 explicit RunCleanupsScope(CodeGenFunction &CGF) 606 : PerformCleanup(true), CGF(CGF) 607 { 608 CleanupStackDepth = CGF.EHStack.stable_begin(); 609 LifetimeExtendedCleanupStackSize = 610 CGF.LifetimeExtendedCleanupStack.size(); 611 OldDidCallStackSave = CGF.DidCallStackSave; 612 CGF.DidCallStackSave = false; 613 } 614 615 /// \brief Exit this cleanup scope, emitting any accumulated cleanups. 616 ~RunCleanupsScope() { 617 if (PerformCleanup) 618 ForceCleanup(); 619 } 620 621 /// \brief Determine whether this scope requires any cleanups. 622 bool requiresCleanups() const { 623 return CGF.EHStack.stable_begin() != CleanupStackDepth; 624 } 625 626 /// \brief Force the emission of cleanups now, instead of waiting 627 /// until this object is destroyed. 628 /// \param ValuesToReload - A list of values that need to be available at 629 /// the insertion point after cleanup emission. If cleanup emission created 630 /// a shared cleanup block, these value pointers will be rewritten. 631 /// Otherwise, they not will be modified. 632 void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) { 633 assert(PerformCleanup && "Already forced cleanup"); 634 CGF.DidCallStackSave = OldDidCallStackSave; 635 CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize, 636 ValuesToReload); 637 PerformCleanup = false; 638 } 639 }; 640 641 class LexicalScope : public RunCleanupsScope { 642 SourceRange Range; 643 SmallVector<const LabelDecl*, 4> Labels; 644 LexicalScope *ParentScope; 645 646 LexicalScope(const LexicalScope &) = delete; 647 void operator=(const LexicalScope &) = delete; 648 649 public: 650 /// \brief Enter a new cleanup scope. 651 explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) 652 : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) { 653 CGF.CurLexicalScope = this; 654 if (CGDebugInfo *DI = CGF.getDebugInfo()) 655 DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); 656 } 657 658 void addLabel(const LabelDecl *label) { 659 assert(PerformCleanup && "adding label to dead scope?"); 660 Labels.push_back(label); 661 } 662 663 /// \brief Exit this cleanup scope, emitting any accumulated 664 /// cleanups. 665 ~LexicalScope() { 666 if (CGDebugInfo *DI = CGF.getDebugInfo()) 667 DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 668 669 // If we should perform a cleanup, force them now. Note that 670 // this ends the cleanup scope before rescoping any labels. 671 if (PerformCleanup) { 672 ApplyDebugLocation DL(CGF, Range.getEnd()); 673 ForceCleanup(); 674 } 675 } 676 677 /// \brief Force the emission of cleanups now, instead of waiting 678 /// until this object is destroyed. 679 void ForceCleanup() { 680 CGF.CurLexicalScope = ParentScope; 681 RunCleanupsScope::ForceCleanup(); 682 683 if (!Labels.empty()) 684 rescopeLabels(); 685 } 686 687 bool hasLabels() const { 688 return !Labels.empty(); 689 } 690 691 void rescopeLabels(); 692 }; 693 694 typedef llvm::DenseMap<const Decl *, Address> DeclMapTy; 695 696 /// \brief The scope used to remap some variables as private in the OpenMP 697 /// loop body (or other captured region emitted without outlining), and to 698 /// restore old vars back on exit. 699 class OMPPrivateScope : public RunCleanupsScope { 700 DeclMapTy SavedLocals; 701 DeclMapTy SavedPrivates; 702 703 private: 704 OMPPrivateScope(const OMPPrivateScope &) = delete; 705 void operator=(const OMPPrivateScope &) = delete; 706 707 public: 708 /// \brief Enter a new OpenMP private scope. 709 explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {} 710 711 /// \brief Registers \a LocalVD variable as a private and apply \a 712 /// PrivateGen function for it to generate corresponding private variable. 713 /// \a PrivateGen returns an address of the generated private variable. 714 /// \return true if the variable is registered as private, false if it has 715 /// been privatized already. 716 bool 717 addPrivate(const VarDecl *LocalVD, 718 llvm::function_ref<Address()> PrivateGen) { 719 assert(PerformCleanup && "adding private to dead scope"); 720 721 LocalVD = LocalVD->getCanonicalDecl(); 722 // Only save it once. 723 if (SavedLocals.count(LocalVD)) return false; 724 725 // Copy the existing local entry to SavedLocals. 726 auto it = CGF.LocalDeclMap.find(LocalVD); 727 if (it != CGF.LocalDeclMap.end()) { 728 SavedLocals.insert({LocalVD, it->second}); 729 } else { 730 SavedLocals.insert({LocalVD, Address::invalid()}); 731 } 732 733 // Generate the private entry. 734 Address Addr = PrivateGen(); 735 QualType VarTy = LocalVD->getType(); 736 if (VarTy->isReferenceType()) { 737 Address Temp = CGF.CreateMemTemp(VarTy); 738 CGF.Builder.CreateStore(Addr.getPointer(), Temp); 739 Addr = Temp; 740 } 741 SavedPrivates.insert({LocalVD, Addr}); 742 743 return true; 744 } 745 746 /// \brief Privatizes local variables previously registered as private. 747 /// Registration is separate from the actual privatization to allow 748 /// initializers use values of the original variables, not the private one. 749 /// This is important, for example, if the private variable is a class 750 /// variable initialized by a constructor that references other private 751 /// variables. But at initialization original variables must be used, not 752 /// private copies. 753 /// \return true if at least one variable was privatized, false otherwise. 754 bool Privatize() { 755 copyInto(SavedPrivates, CGF.LocalDeclMap); 756 SavedPrivates.clear(); 757 return !SavedLocals.empty(); 758 } 759 760 void ForceCleanup() { 761 RunCleanupsScope::ForceCleanup(); 762 copyInto(SavedLocals, CGF.LocalDeclMap); 763 SavedLocals.clear(); 764 } 765 766 /// \brief Exit scope - all the mapped variables are restored. 767 ~OMPPrivateScope() { 768 if (PerformCleanup) 769 ForceCleanup(); 770 } 771 772 /// Checks if the global variable is captured in current function. 773 bool isGlobalVarCaptured(const VarDecl *VD) const { 774 VD = VD->getCanonicalDecl(); 775 return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0; 776 } 777 778 private: 779 /// Copy all the entries in the source map over the corresponding 780 /// entries in the destination, which must exist. 781 static void copyInto(const DeclMapTy &src, DeclMapTy &dest) { 782 for (auto &pair : src) { 783 if (!pair.second.isValid()) { 784 dest.erase(pair.first); 785 continue; 786 } 787 788 auto it = dest.find(pair.first); 789 if (it != dest.end()) { 790 it->second = pair.second; 791 } else { 792 dest.insert(pair); 793 } 794 } 795 } 796 }; 797 798 /// \brief Takes the old cleanup stack size and emits the cleanup blocks 799 /// that have been added. 800 void 801 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 802 std::initializer_list<llvm::Value **> ValuesToReload = {}); 803 804 /// \brief Takes the old cleanup stack size and emits the cleanup blocks 805 /// that have been added, then adds all lifetime-extended cleanups from 806 /// the given position to the stack. 807 void 808 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 809 size_t OldLifetimeExtendedStackSize, 810 std::initializer_list<llvm::Value **> ValuesToReload = {}); 811 812 void ResolveBranchFixups(llvm::BasicBlock *Target); 813 814 /// The given basic block lies in the current EH scope, but may be a 815 /// target of a potentially scope-crossing jump; get a stable handle 816 /// to which we can perform this jump later. 817 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 818 return JumpDest(Target, 819 EHStack.getInnermostNormalCleanup(), 820 NextCleanupDestIndex++); 821 } 822 823 /// The given basic block lies in the current EH scope, but may be a 824 /// target of a potentially scope-crossing jump; get a stable handle 825 /// to which we can perform this jump later. 826 JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { 827 return getJumpDestInCurrentScope(createBasicBlock(Name)); 828 } 829 830 /// EmitBranchThroughCleanup - Emit a branch from the current insert 831 /// block through the normal cleanup handling code (if any) and then 832 /// on to \arg Dest. 833 void EmitBranchThroughCleanup(JumpDest Dest); 834 835 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 836 /// specified destination obviously has no cleanups to run. 'false' is always 837 /// a conservatively correct answer for this method. 838 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 839 840 /// popCatchScope - Pops the catch scope at the top of the EHScope 841 /// stack, emitting any required code (other than the catch handlers 842 /// themselves). 843 void popCatchScope(); 844 845 llvm::BasicBlock *getEHResumeBlock(bool isCleanup); 846 llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); 847 llvm::BasicBlock *getMSVCDispatchBlock(EHScopeStack::stable_iterator scope); 848 849 /// An object to manage conditionally-evaluated expressions. 850 class ConditionalEvaluation { 851 llvm::BasicBlock *StartBB; 852 853 public: 854 ConditionalEvaluation(CodeGenFunction &CGF) 855 : StartBB(CGF.Builder.GetInsertBlock()) {} 856 857 void begin(CodeGenFunction &CGF) { 858 assert(CGF.OutermostConditional != this); 859 if (!CGF.OutermostConditional) 860 CGF.OutermostConditional = this; 861 } 862 863 void end(CodeGenFunction &CGF) { 864 assert(CGF.OutermostConditional != nullptr); 865 if (CGF.OutermostConditional == this) 866 CGF.OutermostConditional = nullptr; 867 } 868 869 /// Returns a block which will be executed prior to each 870 /// evaluation of the conditional code. 871 llvm::BasicBlock *getStartingBlock() const { 872 return StartBB; 873 } 874 }; 875 876 /// isInConditionalBranch - Return true if we're currently emitting 877 /// one branch or the other of a conditional expression. 878 bool isInConditionalBranch() const { return OutermostConditional != nullptr; } 879 880 void setBeforeOutermostConditional(llvm::Value *value, Address addr) { 881 assert(isInConditionalBranch()); 882 llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); 883 auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back()); 884 store->setAlignment(addr.getAlignment().getQuantity()); 885 } 886 887 /// An RAII object to record that we're evaluating a statement 888 /// expression. 889 class StmtExprEvaluation { 890 CodeGenFunction &CGF; 891 892 /// We have to save the outermost conditional: cleanups in a 893 /// statement expression aren't conditional just because the 894 /// StmtExpr is. 895 ConditionalEvaluation *SavedOutermostConditional; 896 897 public: 898 StmtExprEvaluation(CodeGenFunction &CGF) 899 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 900 CGF.OutermostConditional = nullptr; 901 } 902 903 ~StmtExprEvaluation() { 904 CGF.OutermostConditional = SavedOutermostConditional; 905 CGF.EnsureInsertPoint(); 906 } 907 }; 908 909 /// An object which temporarily prevents a value from being 910 /// destroyed by aggressive peephole optimizations that assume that 911 /// all uses of a value have been realized in the IR. 912 class PeepholeProtection { 913 llvm::Instruction *Inst; 914 friend class CodeGenFunction; 915 916 public: 917 PeepholeProtection() : Inst(nullptr) {} 918 }; 919 920 /// A non-RAII class containing all the information about a bound 921 /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for 922 /// this which makes individual mappings very simple; using this 923 /// class directly is useful when you have a variable number of 924 /// opaque values or don't want the RAII functionality for some 925 /// reason. 926 class OpaqueValueMappingData { 927 const OpaqueValueExpr *OpaqueValue; 928 bool BoundLValue; 929 CodeGenFunction::PeepholeProtection Protection; 930 931 OpaqueValueMappingData(const OpaqueValueExpr *ov, 932 bool boundLValue) 933 : OpaqueValue(ov), BoundLValue(boundLValue) {} 934 public: 935 OpaqueValueMappingData() : OpaqueValue(nullptr) {} 936 937 static bool shouldBindAsLValue(const Expr *expr) { 938 // gl-values should be bound as l-values for obvious reasons. 939 // Records should be bound as l-values because IR generation 940 // always keeps them in memory. Expressions of function type 941 // act exactly like l-values but are formally required to be 942 // r-values in C. 943 return expr->isGLValue() || 944 expr->getType()->isFunctionType() || 945 hasAggregateEvaluationKind(expr->getType()); 946 } 947 948 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 949 const OpaqueValueExpr *ov, 950 const Expr *e) { 951 if (shouldBindAsLValue(ov)) 952 return bind(CGF, ov, CGF.EmitLValue(e)); 953 return bind(CGF, ov, CGF.EmitAnyExpr(e)); 954 } 955 956 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 957 const OpaqueValueExpr *ov, 958 const LValue &lv) { 959 assert(shouldBindAsLValue(ov)); 960 CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); 961 return OpaqueValueMappingData(ov, true); 962 } 963 964 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 965 const OpaqueValueExpr *ov, 966 const RValue &rv) { 967 assert(!shouldBindAsLValue(ov)); 968 CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); 969 970 OpaqueValueMappingData data(ov, false); 971 972 // Work around an extremely aggressive peephole optimization in 973 // EmitScalarConversion which assumes that all other uses of a 974 // value are extant. 975 data.Protection = CGF.protectFromPeepholes(rv); 976 977 return data; 978 } 979 980 bool isValid() const { return OpaqueValue != nullptr; } 981 void clear() { OpaqueValue = nullptr; } 982 983 void unbind(CodeGenFunction &CGF) { 984 assert(OpaqueValue && "no data to unbind!"); 985 986 if (BoundLValue) { 987 CGF.OpaqueLValues.erase(OpaqueValue); 988 } else { 989 CGF.OpaqueRValues.erase(OpaqueValue); 990 CGF.unprotectFromPeepholes(Protection); 991 } 992 } 993 }; 994 995 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 996 class OpaqueValueMapping { 997 CodeGenFunction &CGF; 998 OpaqueValueMappingData Data; 999 1000 public: 1001 static bool shouldBindAsLValue(const Expr *expr) { 1002 return OpaqueValueMappingData::shouldBindAsLValue(expr); 1003 } 1004 1005 /// Build the opaque value mapping for the given conditional 1006 /// operator if it's the GNU ?: extension. This is a common 1007 /// enough pattern that the convenience operator is really 1008 /// helpful. 1009 /// 1010 OpaqueValueMapping(CodeGenFunction &CGF, 1011 const AbstractConditionalOperator *op) : CGF(CGF) { 1012 if (isa<ConditionalOperator>(op)) 1013 // Leave Data empty. 1014 return; 1015 1016 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 1017 Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), 1018 e->getCommon()); 1019 } 1020 1021 /// Build the opaque value mapping for an OpaqueValueExpr whose source 1022 /// expression is set to the expression the OVE represents. 1023 OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV) 1024 : CGF(CGF) { 1025 if (OV) { 1026 assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used " 1027 "for OVE with no source expression"); 1028 Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr()); 1029 } 1030 } 1031 1032 OpaqueValueMapping(CodeGenFunction &CGF, 1033 const OpaqueValueExpr *opaqueValue, 1034 LValue lvalue) 1035 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { 1036 } 1037 1038 OpaqueValueMapping(CodeGenFunction &CGF, 1039 const OpaqueValueExpr *opaqueValue, 1040 RValue rvalue) 1041 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { 1042 } 1043 1044 void pop() { 1045 Data.unbind(CGF); 1046 Data.clear(); 1047 } 1048 1049 ~OpaqueValueMapping() { 1050 if (Data.isValid()) Data.unbind(CGF); 1051 } 1052 }; 1053 1054 private: 1055 CGDebugInfo *DebugInfo; 1056 bool DisableDebugInfo; 1057 1058 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 1059 /// calling llvm.stacksave for multiple VLAs in the same scope. 1060 bool DidCallStackSave; 1061 1062 /// IndirectBranch - The first time an indirect goto is seen we create a block 1063 /// with an indirect branch. Every time we see the address of a label taken, 1064 /// we add the label to the indirect goto. Every subsequent indirect goto is 1065 /// codegen'd as a jump to the IndirectBranch's basic block. 1066 llvm::IndirectBrInst *IndirectBranch; 1067 1068 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 1069 /// decls. 1070 DeclMapTy LocalDeclMap; 1071 1072 /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this 1073 /// will contain a mapping from said ParmVarDecl to its implicit "object_size" 1074 /// parameter. 1075 llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2> 1076 SizeArguments; 1077 1078 /// Track escaped local variables with auto storage. Used during SEH 1079 /// outlining to produce a call to llvm.localescape. 1080 llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals; 1081 1082 /// LabelMap - This keeps track of the LLVM basic block for each C label. 1083 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 1084 1085 // BreakContinueStack - This keeps track of where break and continue 1086 // statements should jump to. 1087 struct BreakContinue { 1088 BreakContinue(JumpDest Break, JumpDest Continue) 1089 : BreakBlock(Break), ContinueBlock(Continue) {} 1090 1091 JumpDest BreakBlock; 1092 JumpDest ContinueBlock; 1093 }; 1094 SmallVector<BreakContinue, 8> BreakContinueStack; 1095 1096 /// Handles cancellation exit points in OpenMP-related constructs. 1097 class OpenMPCancelExitStack { 1098 /// Tracks cancellation exit point and join point for cancel-related exit 1099 /// and normal exit. 1100 struct CancelExit { 1101 CancelExit() = default; 1102 CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock, 1103 JumpDest ContBlock) 1104 : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {} 1105 OpenMPDirectiveKind Kind = OMPD_unknown; 1106 /// true if the exit block has been emitted already by the special 1107 /// emitExit() call, false if the default codegen is used. 1108 bool HasBeenEmitted = false; 1109 JumpDest ExitBlock; 1110 JumpDest ContBlock; 1111 }; 1112 1113 SmallVector<CancelExit, 8> Stack; 1114 1115 public: 1116 OpenMPCancelExitStack() : Stack(1) {} 1117 ~OpenMPCancelExitStack() = default; 1118 /// Fetches the exit block for the current OpenMP construct. 1119 JumpDest getExitBlock() const { return Stack.back().ExitBlock; } 1120 /// Emits exit block with special codegen procedure specific for the related 1121 /// OpenMP construct + emits code for normal construct cleanup. 1122 void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 1123 const llvm::function_ref<void(CodeGenFunction &)> &CodeGen) { 1124 if (Stack.back().Kind == Kind && getExitBlock().isValid()) { 1125 assert(CGF.getOMPCancelDestination(Kind).isValid()); 1126 assert(CGF.HaveInsertPoint()); 1127 assert(!Stack.back().HasBeenEmitted); 1128 auto IP = CGF.Builder.saveAndClearIP(); 1129 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1130 CodeGen(CGF); 1131 CGF.EmitBranch(Stack.back().ContBlock.getBlock()); 1132 CGF.Builder.restoreIP(IP); 1133 Stack.back().HasBeenEmitted = true; 1134 } 1135 CodeGen(CGF); 1136 } 1137 /// Enter the cancel supporting \a Kind construct. 1138 /// \param Kind OpenMP directive that supports cancel constructs. 1139 /// \param HasCancel true, if the construct has inner cancel directive, 1140 /// false otherwise. 1141 void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) { 1142 Stack.push_back({Kind, 1143 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit") 1144 : JumpDest(), 1145 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont") 1146 : JumpDest()}); 1147 } 1148 /// Emits default exit point for the cancel construct (if the special one 1149 /// has not be used) + join point for cancel/normal exits. 1150 void exit(CodeGenFunction &CGF) { 1151 if (getExitBlock().isValid()) { 1152 assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid()); 1153 bool HaveIP = CGF.HaveInsertPoint(); 1154 if (!Stack.back().HasBeenEmitted) { 1155 if (HaveIP) 1156 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1157 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1158 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1159 } 1160 CGF.EmitBlock(Stack.back().ContBlock.getBlock()); 1161 if (!HaveIP) { 1162 CGF.Builder.CreateUnreachable(); 1163 CGF.Builder.ClearInsertionPoint(); 1164 } 1165 } 1166 Stack.pop_back(); 1167 } 1168 }; 1169 OpenMPCancelExitStack OMPCancelStack; 1170 1171 CodeGenPGO PGO; 1172 1173 /// Calculate branch weights appropriate for PGO data 1174 llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount); 1175 llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights); 1176 llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond, 1177 uint64_t LoopCount); 1178 1179 public: 1180 /// Increment the profiler's counter for the given statement by \p StepV. 1181 /// If \p StepV is null, the default increment is 1. 1182 void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) { 1183 if (CGM.getCodeGenOpts().hasProfileClangInstr()) 1184 PGO.emitCounterIncrement(Builder, S, StepV); 1185 PGO.setCurrentStmt(S); 1186 } 1187 1188 /// Get the profiler's count for the given statement. 1189 uint64_t getProfileCount(const Stmt *S) { 1190 Optional<uint64_t> Count = PGO.getStmtCount(S); 1191 if (!Count.hasValue()) 1192 return 0; 1193 return *Count; 1194 } 1195 1196 /// Set the profiler's current count. 1197 void setCurrentProfileCount(uint64_t Count) { 1198 PGO.setCurrentRegionCount(Count); 1199 } 1200 1201 /// Get the profiler's current count. This is generally the count for the most 1202 /// recently incremented counter. 1203 uint64_t getCurrentProfileCount() { 1204 return PGO.getCurrentRegionCount(); 1205 } 1206 1207 private: 1208 1209 /// SwitchInsn - This is nearest current switch instruction. It is null if 1210 /// current context is not in a switch. 1211 llvm::SwitchInst *SwitchInsn; 1212 /// The branch weights of SwitchInsn when doing instrumentation based PGO. 1213 SmallVector<uint64_t, 16> *SwitchWeights; 1214 1215 /// CaseRangeBlock - This block holds if condition check for last case 1216 /// statement range in current switch instruction. 1217 llvm::BasicBlock *CaseRangeBlock; 1218 1219 /// OpaqueLValues - Keeps track of the current set of opaque value 1220 /// expressions. 1221 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 1222 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 1223 1224 // VLASizeMap - This keeps track of the associated size for each VLA type. 1225 // We track this by the size expression rather than the type itself because 1226 // in certain situations, like a const qualifier applied to an VLA typedef, 1227 // multiple VLA types can share the same size expression. 1228 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 1229 // enter/leave scopes. 1230 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 1231 1232 /// A block containing a single 'unreachable' instruction. Created 1233 /// lazily by getUnreachableBlock(). 1234 llvm::BasicBlock *UnreachableBlock; 1235 1236 /// Counts of the number return expressions in the function. 1237 unsigned NumReturnExprs; 1238 1239 /// Count the number of simple (constant) return expressions in the function. 1240 unsigned NumSimpleReturnExprs; 1241 1242 /// The last regular (non-return) debug location (breakpoint) in the function. 1243 SourceLocation LastStopPoint; 1244 1245 public: 1246 /// A scope within which we are constructing the fields of an object which 1247 /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use 1248 /// if we need to evaluate a CXXDefaultInitExpr within the evaluation. 1249 class FieldConstructionScope { 1250 public: 1251 FieldConstructionScope(CodeGenFunction &CGF, Address This) 1252 : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) { 1253 CGF.CXXDefaultInitExprThis = This; 1254 } 1255 ~FieldConstructionScope() { 1256 CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis; 1257 } 1258 1259 private: 1260 CodeGenFunction &CGF; 1261 Address OldCXXDefaultInitExprThis; 1262 }; 1263 1264 /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this' 1265 /// is overridden to be the object under construction. 1266 class CXXDefaultInitExprScope { 1267 public: 1268 CXXDefaultInitExprScope(CodeGenFunction &CGF) 1269 : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue), 1270 OldCXXThisAlignment(CGF.CXXThisAlignment) { 1271 CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer(); 1272 CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment(); 1273 } 1274 ~CXXDefaultInitExprScope() { 1275 CGF.CXXThisValue = OldCXXThisValue; 1276 CGF.CXXThisAlignment = OldCXXThisAlignment; 1277 } 1278 1279 public: 1280 CodeGenFunction &CGF; 1281 llvm::Value *OldCXXThisValue; 1282 CharUnits OldCXXThisAlignment; 1283 }; 1284 1285 /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the 1286 /// current loop index is overridden. 1287 class ArrayInitLoopExprScope { 1288 public: 1289 ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index) 1290 : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) { 1291 CGF.ArrayInitIndex = Index; 1292 } 1293 ~ArrayInitLoopExprScope() { 1294 CGF.ArrayInitIndex = OldArrayInitIndex; 1295 } 1296 1297 private: 1298 CodeGenFunction &CGF; 1299 llvm::Value *OldArrayInitIndex; 1300 }; 1301 1302 class InlinedInheritingConstructorScope { 1303 public: 1304 InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD) 1305 : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl), 1306 OldCurCodeDecl(CGF.CurCodeDecl), 1307 OldCXXABIThisDecl(CGF.CXXABIThisDecl), 1308 OldCXXABIThisValue(CGF.CXXABIThisValue), 1309 OldCXXThisValue(CGF.CXXThisValue), 1310 OldCXXABIThisAlignment(CGF.CXXABIThisAlignment), 1311 OldCXXThisAlignment(CGF.CXXThisAlignment), 1312 OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy), 1313 OldCXXInheritedCtorInitExprArgs( 1314 std::move(CGF.CXXInheritedCtorInitExprArgs)) { 1315 CGF.CurGD = GD; 1316 CGF.CurFuncDecl = CGF.CurCodeDecl = 1317 cast<CXXConstructorDecl>(GD.getDecl()); 1318 CGF.CXXABIThisDecl = nullptr; 1319 CGF.CXXABIThisValue = nullptr; 1320 CGF.CXXThisValue = nullptr; 1321 CGF.CXXABIThisAlignment = CharUnits(); 1322 CGF.CXXThisAlignment = CharUnits(); 1323 CGF.ReturnValue = Address::invalid(); 1324 CGF.FnRetTy = QualType(); 1325 CGF.CXXInheritedCtorInitExprArgs.clear(); 1326 } 1327 ~InlinedInheritingConstructorScope() { 1328 CGF.CurGD = OldCurGD; 1329 CGF.CurFuncDecl = OldCurFuncDecl; 1330 CGF.CurCodeDecl = OldCurCodeDecl; 1331 CGF.CXXABIThisDecl = OldCXXABIThisDecl; 1332 CGF.CXXABIThisValue = OldCXXABIThisValue; 1333 CGF.CXXThisValue = OldCXXThisValue; 1334 CGF.CXXABIThisAlignment = OldCXXABIThisAlignment; 1335 CGF.CXXThisAlignment = OldCXXThisAlignment; 1336 CGF.ReturnValue = OldReturnValue; 1337 CGF.FnRetTy = OldFnRetTy; 1338 CGF.CXXInheritedCtorInitExprArgs = 1339 std::move(OldCXXInheritedCtorInitExprArgs); 1340 } 1341 1342 private: 1343 CodeGenFunction &CGF; 1344 GlobalDecl OldCurGD; 1345 const Decl *OldCurFuncDecl; 1346 const Decl *OldCurCodeDecl; 1347 ImplicitParamDecl *OldCXXABIThisDecl; 1348 llvm::Value *OldCXXABIThisValue; 1349 llvm::Value *OldCXXThisValue; 1350 CharUnits OldCXXABIThisAlignment; 1351 CharUnits OldCXXThisAlignment; 1352 Address OldReturnValue; 1353 QualType OldFnRetTy; 1354 CallArgList OldCXXInheritedCtorInitExprArgs; 1355 }; 1356 1357 private: 1358 /// CXXThisDecl - When generating code for a C++ member function, 1359 /// this will hold the implicit 'this' declaration. 1360 ImplicitParamDecl *CXXABIThisDecl; 1361 llvm::Value *CXXABIThisValue; 1362 llvm::Value *CXXThisValue; 1363 CharUnits CXXABIThisAlignment; 1364 CharUnits CXXThisAlignment; 1365 1366 /// The value of 'this' to use when evaluating CXXDefaultInitExprs within 1367 /// this expression. 1368 Address CXXDefaultInitExprThis = Address::invalid(); 1369 1370 /// The current array initialization index when evaluating an 1371 /// ArrayInitIndexExpr within an ArrayInitLoopExpr. 1372 llvm::Value *ArrayInitIndex = nullptr; 1373 1374 /// The values of function arguments to use when evaluating 1375 /// CXXInheritedCtorInitExprs within this context. 1376 CallArgList CXXInheritedCtorInitExprArgs; 1377 1378 /// CXXStructorImplicitParamDecl - When generating code for a constructor or 1379 /// destructor, this will hold the implicit argument (e.g. VTT). 1380 ImplicitParamDecl *CXXStructorImplicitParamDecl; 1381 llvm::Value *CXXStructorImplicitParamValue; 1382 1383 /// OutermostConditional - Points to the outermost active 1384 /// conditional control. This is used so that we know if a 1385 /// temporary should be destroyed conditionally. 1386 ConditionalEvaluation *OutermostConditional; 1387 1388 /// The current lexical scope. 1389 LexicalScope *CurLexicalScope; 1390 1391 /// The current source location that should be used for exception 1392 /// handling code. 1393 SourceLocation CurEHLocation; 1394 1395 /// BlockByrefInfos - For each __block variable, contains 1396 /// information about the layout of the variable. 1397 llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos; 1398 1399 /// Used by -fsanitize=nullability-return to determine whether the return 1400 /// value can be checked. 1401 llvm::Value *RetValNullabilityPrecondition = nullptr; 1402 1403 /// Check if -fsanitize=nullability-return instrumentation is required for 1404 /// this function. 1405 bool requiresReturnValueNullabilityCheck() const { 1406 return RetValNullabilityPrecondition; 1407 } 1408 1409 /// Used to store precise source locations for return statements by the 1410 /// runtime return value checks. 1411 Address ReturnLocation = Address::invalid(); 1412 1413 /// Check if the return value of this function requires sanitization. 1414 bool requiresReturnValueCheck() const { 1415 return requiresReturnValueNullabilityCheck() || 1416 (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 1417 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()); 1418 } 1419 1420 llvm::BasicBlock *TerminateLandingPad; 1421 llvm::BasicBlock *TerminateHandler; 1422 llvm::BasicBlock *TrapBB; 1423 1424 /// Terminate funclets keyed by parent funclet pad. 1425 llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets; 1426 1427 /// True if we need emit the life-time markers. 1428 const bool ShouldEmitLifetimeMarkers; 1429 1430 /// Add OpenCL kernel arg metadata and the kernel attribute meatadata to 1431 /// the function metadata. 1432 void EmitOpenCLKernelMetadata(const FunctionDecl *FD, 1433 llvm::Function *Fn); 1434 1435 public: 1436 CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false); 1437 ~CodeGenFunction(); 1438 1439 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 1440 ASTContext &getContext() const { return CGM.getContext(); } 1441 CGDebugInfo *getDebugInfo() { 1442 if (DisableDebugInfo) 1443 return nullptr; 1444 return DebugInfo; 1445 } 1446 void disableDebugInfo() { DisableDebugInfo = true; } 1447 void enableDebugInfo() { DisableDebugInfo = false; } 1448 1449 bool shouldUseFusedARCCalls() { 1450 return CGM.getCodeGenOpts().OptimizationLevel == 0; 1451 } 1452 1453 const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } 1454 1455 /// Returns a pointer to the function's exception object and selector slot, 1456 /// which is assigned in every landing pad. 1457 Address getExceptionSlot(); 1458 Address getEHSelectorSlot(); 1459 1460 /// Returns the contents of the function's exception object and selector 1461 /// slots. 1462 llvm::Value *getExceptionFromSlot(); 1463 llvm::Value *getSelectorFromSlot(); 1464 1465 Address getNormalCleanupDestSlot(); 1466 1467 llvm::BasicBlock *getUnreachableBlock() { 1468 if (!UnreachableBlock) { 1469 UnreachableBlock = createBasicBlock("unreachable"); 1470 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 1471 } 1472 return UnreachableBlock; 1473 } 1474 1475 llvm::BasicBlock *getInvokeDest() { 1476 if (!EHStack.requiresLandingPad()) return nullptr; 1477 return getInvokeDestImpl(); 1478 } 1479 1480 bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; } 1481 1482 const TargetInfo &getTarget() const { return Target; } 1483 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 1484 const TargetCodeGenInfo &getTargetHooks() const { 1485 return CGM.getTargetCodeGenInfo(); 1486 } 1487 1488 //===--------------------------------------------------------------------===// 1489 // Cleanups 1490 //===--------------------------------------------------------------------===// 1491 1492 typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty); 1493 1494 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1495 Address arrayEndPointer, 1496 QualType elementType, 1497 CharUnits elementAlignment, 1498 Destroyer *destroyer); 1499 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1500 llvm::Value *arrayEnd, 1501 QualType elementType, 1502 CharUnits elementAlignment, 1503 Destroyer *destroyer); 1504 1505 void pushDestroy(QualType::DestructionKind dtorKind, 1506 Address addr, QualType type); 1507 void pushEHDestroy(QualType::DestructionKind dtorKind, 1508 Address addr, QualType type); 1509 void pushDestroy(CleanupKind kind, Address addr, QualType type, 1510 Destroyer *destroyer, bool useEHCleanupForArray); 1511 void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr, 1512 QualType type, Destroyer *destroyer, 1513 bool useEHCleanupForArray); 1514 void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 1515 llvm::Value *CompletePtr, 1516 QualType ElementType); 1517 void pushStackRestore(CleanupKind kind, Address SPMem); 1518 void emitDestroy(Address addr, QualType type, Destroyer *destroyer, 1519 bool useEHCleanupForArray); 1520 llvm::Function *generateDestroyHelper(Address addr, QualType type, 1521 Destroyer *destroyer, 1522 bool useEHCleanupForArray, 1523 const VarDecl *VD); 1524 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 1525 QualType elementType, CharUnits elementAlign, 1526 Destroyer *destroyer, 1527 bool checkZeroLength, bool useEHCleanup); 1528 1529 Destroyer *getDestroyer(QualType::DestructionKind destructionKind); 1530 1531 /// Determines whether an EH cleanup is required to destroy a type 1532 /// with the given destruction kind. 1533 bool needsEHCleanup(QualType::DestructionKind kind) { 1534 switch (kind) { 1535 case QualType::DK_none: 1536 return false; 1537 case QualType::DK_cxx_destructor: 1538 case QualType::DK_objc_weak_lifetime: 1539 return getLangOpts().Exceptions; 1540 case QualType::DK_objc_strong_lifetime: 1541 return getLangOpts().Exceptions && 1542 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 1543 } 1544 llvm_unreachable("bad destruction kind"); 1545 } 1546 1547 CleanupKind getCleanupKind(QualType::DestructionKind kind) { 1548 return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); 1549 } 1550 1551 //===--------------------------------------------------------------------===// 1552 // Objective-C 1553 //===--------------------------------------------------------------------===// 1554 1555 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 1556 1557 void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD); 1558 1559 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 1560 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 1561 const ObjCPropertyImplDecl *PID); 1562 void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 1563 const ObjCPropertyImplDecl *propImpl, 1564 const ObjCMethodDecl *GetterMothodDecl, 1565 llvm::Constant *AtomicHelperFn); 1566 1567 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1568 ObjCMethodDecl *MD, bool ctor); 1569 1570 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 1571 /// for the given property. 1572 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 1573 const ObjCPropertyImplDecl *PID); 1574 void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1575 const ObjCPropertyImplDecl *propImpl, 1576 llvm::Constant *AtomicHelperFn); 1577 1578 //===--------------------------------------------------------------------===// 1579 // Block Bits 1580 //===--------------------------------------------------------------------===// 1581 1582 /// Emit block literal. 1583 /// \return an LLVM value which is a pointer to a struct which contains 1584 /// information about the block, including the block invoke function, the 1585 /// captured variables, etc. 1586 /// \param InvokeF will contain the block invoke function if it is not 1587 /// nullptr. 1588 llvm::Value *EmitBlockLiteral(const BlockExpr *, 1589 llvm::Function **InvokeF = nullptr); 1590 static void destroyBlockInfos(CGBlockInfo *info); 1591 1592 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 1593 const CGBlockInfo &Info, 1594 const DeclMapTy &ldm, 1595 bool IsLambdaConversionToBlock, 1596 bool BuildGlobalBlock); 1597 1598 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 1599 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 1600 llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( 1601 const ObjCPropertyImplDecl *PID); 1602 llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( 1603 const ObjCPropertyImplDecl *PID); 1604 llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); 1605 1606 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags); 1607 1608 class AutoVarEmission; 1609 1610 void emitByrefStructureInit(const AutoVarEmission &emission); 1611 void enterByrefCleanup(const AutoVarEmission &emission); 1612 1613 void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum, 1614 llvm::Value *ptr); 1615 1616 Address LoadBlockStruct(); 1617 Address GetAddrOfBlockDecl(const VarDecl *var, bool ByRef); 1618 1619 /// BuildBlockByrefAddress - Computes the location of the 1620 /// data in a variable which is declared as __block. 1621 Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V, 1622 bool followForward = true); 1623 Address emitBlockByrefAddress(Address baseAddr, 1624 const BlockByrefInfo &info, 1625 bool followForward, 1626 const llvm::Twine &name); 1627 1628 const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var); 1629 1630 QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args); 1631 1632 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1633 const CGFunctionInfo &FnInfo); 1634 /// \brief Emit code for the start of a function. 1635 /// \param Loc The location to be associated with the function. 1636 /// \param StartLoc The location of the function body. 1637 void StartFunction(GlobalDecl GD, 1638 QualType RetTy, 1639 llvm::Function *Fn, 1640 const CGFunctionInfo &FnInfo, 1641 const FunctionArgList &Args, 1642 SourceLocation Loc = SourceLocation(), 1643 SourceLocation StartLoc = SourceLocation()); 1644 1645 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor); 1646 1647 void EmitConstructorBody(FunctionArgList &Args); 1648 void EmitDestructorBody(FunctionArgList &Args); 1649 void emitImplicitAssignmentOperatorBody(FunctionArgList &Args); 1650 void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body); 1651 void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S); 1652 1653 void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator, 1654 CallArgList &CallArgs); 1655 void EmitLambdaBlockInvokeBody(); 1656 void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD); 1657 void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD); 1658 void EmitAsanPrologueOrEpilogue(bool Prologue); 1659 1660 /// \brief Emit the unified return block, trying to avoid its emission when 1661 /// possible. 1662 /// \return The debug location of the user written return statement if the 1663 /// return block is is avoided. 1664 llvm::DebugLoc EmitReturnBlock(); 1665 1666 /// FinishFunction - Complete IR generation of the current function. It is 1667 /// legal to call this function even if there is no current insertion point. 1668 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 1669 1670 void StartThunk(llvm::Function *Fn, GlobalDecl GD, 1671 const CGFunctionInfo &FnInfo); 1672 1673 void EmitCallAndReturnForThunk(llvm::Constant *Callee, 1674 const ThunkInfo *Thunk); 1675 1676 void FinishThunk(); 1677 1678 /// Emit a musttail call for a thunk with a potentially adjusted this pointer. 1679 void EmitMustTailThunk(const CXXMethodDecl *MD, llvm::Value *AdjustedThisPtr, 1680 llvm::Value *Callee); 1681 1682 /// Generate a thunk for the given method. 1683 void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1684 GlobalDecl GD, const ThunkInfo &Thunk); 1685 1686 llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn, 1687 const CGFunctionInfo &FnInfo, 1688 GlobalDecl GD, const ThunkInfo &Thunk); 1689 1690 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 1691 FunctionArgList &Args); 1692 1693 void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init); 1694 1695 /// Struct with all informations about dynamic [sub]class needed to set vptr. 1696 struct VPtr { 1697 BaseSubobject Base; 1698 const CXXRecordDecl *NearestVBase; 1699 CharUnits OffsetFromNearestVBase; 1700 const CXXRecordDecl *VTableClass; 1701 }; 1702 1703 /// Initialize the vtable pointer of the given subobject. 1704 void InitializeVTablePointer(const VPtr &vptr); 1705 1706 typedef llvm::SmallVector<VPtr, 4> VPtrsVector; 1707 1708 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 1709 VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass); 1710 1711 void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase, 1712 CharUnits OffsetFromNearestVBase, 1713 bool BaseIsNonVirtualPrimaryBase, 1714 const CXXRecordDecl *VTableClass, 1715 VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs); 1716 1717 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 1718 1719 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 1720 /// to by This. 1721 llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy, 1722 const CXXRecordDecl *VTableClass); 1723 1724 enum CFITypeCheckKind { 1725 CFITCK_VCall, 1726 CFITCK_NVCall, 1727 CFITCK_DerivedCast, 1728 CFITCK_UnrelatedCast, 1729 CFITCK_ICall, 1730 }; 1731 1732 /// \brief Derived is the presumed address of an object of type T after a 1733 /// cast. If T is a polymorphic class type, emit a check that the virtual 1734 /// table for Derived belongs to a class derived from T. 1735 void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived, 1736 bool MayBeNull, CFITypeCheckKind TCK, 1737 SourceLocation Loc); 1738 1739 /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable. 1740 /// If vptr CFI is enabled, emit a check that VTable is valid. 1741 void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable, 1742 CFITypeCheckKind TCK, SourceLocation Loc); 1743 1744 /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for 1745 /// RD using llvm.type.test. 1746 void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable, 1747 CFITypeCheckKind TCK, SourceLocation Loc); 1748 1749 /// If whole-program virtual table optimization is enabled, emit an assumption 1750 /// that VTable is a member of RD's type identifier. Or, if vptr CFI is 1751 /// enabled, emit a check that VTable is a member of RD's type identifier. 1752 void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, 1753 llvm::Value *VTable, SourceLocation Loc); 1754 1755 /// Returns whether we should perform a type checked load when loading a 1756 /// virtual function for virtual calls to members of RD. This is generally 1757 /// true when both vcall CFI and whole-program-vtables are enabled. 1758 bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD); 1759 1760 /// Emit a type checked load from the given vtable. 1761 llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable, 1762 uint64_t VTableByteOffset); 1763 1764 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 1765 /// given phase of destruction for a destructor. The end result 1766 /// should call destructors on members and base classes in reverse 1767 /// order of their construction. 1768 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 1769 1770 /// ShouldInstrumentFunction - Return true if the current function should be 1771 /// instrumented with __cyg_profile_func_* calls 1772 bool ShouldInstrumentFunction(); 1773 1774 /// ShouldXRayInstrument - Return true if the current function should be 1775 /// instrumented with XRay nop sleds. 1776 bool ShouldXRayInstrumentFunction() const; 1777 1778 /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit 1779 /// XRay custom event handling calls. 1780 bool AlwaysEmitXRayCustomEvents() const; 1781 1782 /// Encode an address into a form suitable for use in a function prologue. 1783 llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F, 1784 llvm::Constant *Addr); 1785 1786 /// Decode an address used in a function prologue, encoded by \c 1787 /// EncodeAddrForUseInPrologue. 1788 llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F, 1789 llvm::Value *EncodedAddr); 1790 1791 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 1792 /// arguments for the given function. This is also responsible for naming the 1793 /// LLVM function arguments. 1794 void EmitFunctionProlog(const CGFunctionInfo &FI, 1795 llvm::Function *Fn, 1796 const FunctionArgList &Args); 1797 1798 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 1799 /// given temporary. 1800 void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc, 1801 SourceLocation EndLoc); 1802 1803 /// Emit a test that checks if the return value \p RV is nonnull. 1804 void EmitReturnValueCheck(llvm::Value *RV); 1805 1806 /// EmitStartEHSpec - Emit the start of the exception spec. 1807 void EmitStartEHSpec(const Decl *D); 1808 1809 /// EmitEndEHSpec - Emit the end of the exception spec. 1810 void EmitEndEHSpec(const Decl *D); 1811 1812 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 1813 llvm::BasicBlock *getTerminateLandingPad(); 1814 1815 /// getTerminateLandingPad - Return a cleanup funclet that just calls 1816 /// terminate. 1817 llvm::BasicBlock *getTerminateFunclet(); 1818 1819 /// getTerminateHandler - Return a handler (not a landing pad, just 1820 /// a catch handler) that just calls terminate. This is used when 1821 /// a terminate scope encloses a try. 1822 llvm::BasicBlock *getTerminateHandler(); 1823 1824 llvm::Type *ConvertTypeForMem(QualType T); 1825 llvm::Type *ConvertType(QualType T); 1826 llvm::Type *ConvertType(const TypeDecl *T) { 1827 return ConvertType(getContext().getTypeDeclType(T)); 1828 } 1829 1830 /// LoadObjCSelf - Load the value of self. This function is only valid while 1831 /// generating code for an Objective-C method. 1832 llvm::Value *LoadObjCSelf(); 1833 1834 /// TypeOfSelfObject - Return type of object that this self represents. 1835 QualType TypeOfSelfObject(); 1836 1837 /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T. 1838 static TypeEvaluationKind getEvaluationKind(QualType T); 1839 1840 static bool hasScalarEvaluationKind(QualType T) { 1841 return getEvaluationKind(T) == TEK_Scalar; 1842 } 1843 1844 static bool hasAggregateEvaluationKind(QualType T) { 1845 return getEvaluationKind(T) == TEK_Aggregate; 1846 } 1847 1848 /// createBasicBlock - Create an LLVM basic block. 1849 llvm::BasicBlock *createBasicBlock(const Twine &name = "", 1850 llvm::Function *parent = nullptr, 1851 llvm::BasicBlock *before = nullptr) { 1852 #ifdef NDEBUG 1853 return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before); 1854 #else 1855 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 1856 #endif 1857 } 1858 1859 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 1860 /// label maps to. 1861 JumpDest getJumpDestForLabel(const LabelDecl *S); 1862 1863 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 1864 /// another basic block, simplify it. This assumes that no other code could 1865 /// potentially reference the basic block. 1866 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 1867 1868 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 1869 /// adding a fall-through branch from the current insert block if 1870 /// necessary. It is legal to call this function even if there is no current 1871 /// insertion point. 1872 /// 1873 /// IsFinished - If true, indicates that the caller has finished emitting 1874 /// branches to the given block and does not expect to emit code into it. This 1875 /// means the block can be ignored if it is unreachable. 1876 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 1877 1878 /// EmitBlockAfterUses - Emit the given block somewhere hopefully 1879 /// near its uses, and leave the insertion point in it. 1880 void EmitBlockAfterUses(llvm::BasicBlock *BB); 1881 1882 /// EmitBranch - Emit a branch to the specified basic block from the current 1883 /// insert block, taking care to avoid creation of branches from dummy 1884 /// blocks. It is legal to call this function even if there is no current 1885 /// insertion point. 1886 /// 1887 /// This function clears the current insertion point. The caller should follow 1888 /// calls to this function with calls to Emit*Block prior to generation new 1889 /// code. 1890 void EmitBranch(llvm::BasicBlock *Block); 1891 1892 /// HaveInsertPoint - True if an insertion point is defined. If not, this 1893 /// indicates that the current code being emitted is unreachable. 1894 bool HaveInsertPoint() const { 1895 return Builder.GetInsertBlock() != nullptr; 1896 } 1897 1898 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 1899 /// emitted IR has a place to go. Note that by definition, if this function 1900 /// creates a block then that block is unreachable; callers may do better to 1901 /// detect when no insertion point is defined and simply skip IR generation. 1902 void EnsureInsertPoint() { 1903 if (!HaveInsertPoint()) 1904 EmitBlock(createBasicBlock()); 1905 } 1906 1907 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1908 /// specified stmt yet. 1909 void ErrorUnsupported(const Stmt *S, const char *Type); 1910 1911 //===--------------------------------------------------------------------===// 1912 // Helpers 1913 //===--------------------------------------------------------------------===// 1914 1915 LValue MakeAddrLValue(Address Addr, QualType T, 1916 AlignmentSource Source = AlignmentSource::Type) { 1917 return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source), 1918 CGM.getTBAAAccessInfo(T)); 1919 } 1920 1921 LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo, 1922 TBAAAccessInfo TBAAInfo) { 1923 return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo); 1924 } 1925 1926 LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 1927 AlignmentSource Source = AlignmentSource::Type) { 1928 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), 1929 LValueBaseInfo(Source), CGM.getTBAAAccessInfo(T)); 1930 } 1931 1932 LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 1933 LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) { 1934 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), 1935 BaseInfo, TBAAInfo); 1936 } 1937 1938 LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T); 1939 LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T); 1940 CharUnits getNaturalTypeAlignment(QualType T, 1941 LValueBaseInfo *BaseInfo = nullptr, 1942 TBAAAccessInfo *TBAAInfo = nullptr, 1943 bool forPointeeType = false); 1944 CharUnits getNaturalPointeeTypeAlignment(QualType T, 1945 LValueBaseInfo *BaseInfo = nullptr, 1946 TBAAAccessInfo *TBAAInfo = nullptr); 1947 1948 Address EmitLoadOfReference(LValue RefLVal, 1949 LValueBaseInfo *PointeeBaseInfo = nullptr, 1950 TBAAAccessInfo *PointeeTBAAInfo = nullptr); 1951 LValue EmitLoadOfReferenceLValue(LValue RefLVal); 1952 LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy, 1953 AlignmentSource Source = 1954 AlignmentSource::Type) { 1955 LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source), 1956 CGM.getTBAAAccessInfo(RefTy)); 1957 return EmitLoadOfReferenceLValue(RefLVal); 1958 } 1959 1960 Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy, 1961 LValueBaseInfo *BaseInfo = nullptr, 1962 TBAAAccessInfo *TBAAInfo = nullptr); 1963 LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy); 1964 1965 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 1966 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 1967 /// insertion point of the builder. The caller is responsible for setting an 1968 /// appropriate alignment on 1969 /// the alloca. 1970 /// 1971 /// \p ArraySize is the number of array elements to be allocated if it 1972 /// is not nullptr. 1973 /// 1974 /// LangAS::Default is the address space of pointers to local variables and 1975 /// temporaries, as exposed in the source language. In certain 1976 /// configurations, this is not the same as the alloca address space, and a 1977 /// cast is needed to lift the pointer from the alloca AS into 1978 /// LangAS::Default. This can happen when the target uses a restricted 1979 /// address space for the stack but the source language requires 1980 /// LangAS::Default to be a generic address space. The latter condition is 1981 /// common for most programming languages; OpenCL is an exception in that 1982 /// LangAS::Default is the private address space, which naturally maps 1983 /// to the stack. 1984 /// 1985 /// Because the address of a temporary is often exposed to the program in 1986 /// various ways, this function will perform the cast by default. The cast 1987 /// may be avoided by passing false as \p CastToDefaultAddrSpace; this is 1988 /// more efficient if the caller knows that the address will not be exposed. 1989 llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp", 1990 llvm::Value *ArraySize = nullptr); 1991 Address CreateTempAlloca(llvm::Type *Ty, CharUnits align, 1992 const Twine &Name = "tmp", 1993 llvm::Value *ArraySize = nullptr, 1994 bool CastToDefaultAddrSpace = true); 1995 1996 /// CreateDefaultAlignedTempAlloca - This creates an alloca with the 1997 /// default ABI alignment of the given LLVM type. 1998 /// 1999 /// IMPORTANT NOTE: This is *not* generally the right alignment for 2000 /// any given AST type that happens to have been lowered to the 2001 /// given IR type. This should only ever be used for function-local, 2002 /// IR-driven manipulations like saving and restoring a value. Do 2003 /// not hand this address off to arbitrary IRGen routines, and especially 2004 /// do not pass it as an argument to a function that might expect a 2005 /// properly ABI-aligned value. 2006 Address CreateDefaultAlignTempAlloca(llvm::Type *Ty, 2007 const Twine &Name = "tmp"); 2008 2009 /// InitTempAlloca - Provide an initial value for the given alloca which 2010 /// will be observable at all locations in the function. 2011 /// 2012 /// The address should be something that was returned from one of 2013 /// the CreateTempAlloca or CreateMemTemp routines, and the 2014 /// initializer must be valid in the entry block (i.e. it must 2015 /// either be a constant or an argument value). 2016 void InitTempAlloca(Address Alloca, llvm::Value *Value); 2017 2018 /// CreateIRTemp - Create a temporary IR object of the given type, with 2019 /// appropriate alignment. This routine should only be used when an temporary 2020 /// value needs to be stored into an alloca (for example, to avoid explicit 2021 /// PHI construction), but the type is the IR type, not the type appropriate 2022 /// for storing in memory. 2023 /// 2024 /// That is, this is exactly equivalent to CreateMemTemp, but calling 2025 /// ConvertType instead of ConvertTypeForMem. 2026 Address CreateIRTemp(QualType T, const Twine &Name = "tmp"); 2027 2028 /// CreateMemTemp - Create a temporary memory object of the given type, with 2029 /// appropriate alignment. Cast it to the default address space if 2030 /// \p CastToDefaultAddrSpace is true. 2031 Address CreateMemTemp(QualType T, const Twine &Name = "tmp", 2032 bool CastToDefaultAddrSpace = true); 2033 Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp", 2034 bool CastToDefaultAddrSpace = true); 2035 2036 /// CreateAggTemp - Create a temporary memory object for the given 2037 /// aggregate type. 2038 AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") { 2039 return AggValueSlot::forAddr(CreateMemTemp(T, Name), 2040 T.getQualifiers(), 2041 AggValueSlot::IsNotDestructed, 2042 AggValueSlot::DoesNotNeedGCBarriers, 2043 AggValueSlot::IsNotAliased); 2044 } 2045 2046 /// Emit a cast to void* in the appropriate address space. 2047 llvm::Value *EmitCastToVoidPtr(llvm::Value *value); 2048 2049 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 2050 /// expression and compare the result against zero, returning an Int1Ty value. 2051 llvm::Value *EvaluateExprAsBool(const Expr *E); 2052 2053 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 2054 void EmitIgnoredExpr(const Expr *E); 2055 2056 /// EmitAnyExpr - Emit code to compute the specified expression which can have 2057 /// any type. The result is returned as an RValue struct. If this is an 2058 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 2059 /// the result should be returned. 2060 /// 2061 /// \param ignoreResult True if the resulting value isn't used. 2062 RValue EmitAnyExpr(const Expr *E, 2063 AggValueSlot aggSlot = AggValueSlot::ignored(), 2064 bool ignoreResult = false); 2065 2066 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 2067 // or the value of the expression, depending on how va_list is defined. 2068 Address EmitVAListRef(const Expr *E); 2069 2070 /// Emit a "reference" to a __builtin_ms_va_list; this is 2071 /// always the value of the expression, because a __builtin_ms_va_list is a 2072 /// pointer to a char. 2073 Address EmitMSVAListRef(const Expr *E); 2074 2075 /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will 2076 /// always be accessible even if no aggregate location is provided. 2077 RValue EmitAnyExprToTemp(const Expr *E); 2078 2079 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 2080 /// arbitrary expression into the given memory location. 2081 void EmitAnyExprToMem(const Expr *E, Address Location, 2082 Qualifiers Quals, bool IsInitializer); 2083 2084 void EmitAnyExprToExn(const Expr *E, Address Addr); 2085 2086 /// EmitExprAsInit - Emits the code necessary to initialize a 2087 /// location in memory with the given initializer. 2088 void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2089 bool capturedByInit); 2090 2091 /// hasVolatileMember - returns true if aggregate type has a volatile 2092 /// member. 2093 bool hasVolatileMember(QualType T) { 2094 if (const RecordType *RT = T->getAs<RecordType>()) { 2095 const RecordDecl *RD = cast<RecordDecl>(RT->getDecl()); 2096 return RD->hasVolatileMember(); 2097 } 2098 return false; 2099 } 2100 /// EmitAggregateCopy - Emit an aggregate assignment. 2101 /// 2102 /// The difference to EmitAggregateCopy is that tail padding is not copied. 2103 /// This is required for correctness when assigning non-POD structures in C++. 2104 void EmitAggregateAssign(Address DestPtr, Address SrcPtr, 2105 QualType EltTy) { 2106 bool IsVolatile = hasVolatileMember(EltTy); 2107 EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, true); 2108 } 2109 2110 void EmitAggregateCopyCtor(Address DestPtr, Address SrcPtr, 2111 QualType DestTy, QualType SrcTy) { 2112 EmitAggregateCopy(DestPtr, SrcPtr, SrcTy, /*IsVolatile=*/false, 2113 /*IsAssignment=*/false); 2114 } 2115 2116 /// EmitAggregateCopy - Emit an aggregate copy. 2117 /// 2118 /// \param isVolatile - True iff either the source or the destination is 2119 /// volatile. 2120 /// \param isAssignment - If false, allow padding to be copied. This often 2121 /// yields more efficient. 2122 void EmitAggregateCopy(Address DestPtr, Address SrcPtr, 2123 QualType EltTy, bool isVolatile=false, 2124 bool isAssignment = false); 2125 2126 /// GetAddrOfLocalVar - Return the address of a local variable. 2127 Address GetAddrOfLocalVar(const VarDecl *VD) { 2128 auto it = LocalDeclMap.find(VD); 2129 assert(it != LocalDeclMap.end() && 2130 "Invalid argument to GetAddrOfLocalVar(), no decl!"); 2131 return it->second; 2132 } 2133 2134 /// getOpaqueLValueMapping - Given an opaque value expression (which 2135 /// must be mapped to an l-value), return its mapping. 2136 const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) { 2137 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 2138 2139 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 2140 it = OpaqueLValues.find(e); 2141 assert(it != OpaqueLValues.end() && "no mapping for opaque value!"); 2142 return it->second; 2143 } 2144 2145 /// getOpaqueRValueMapping - Given an opaque value expression (which 2146 /// must be mapped to an r-value), return its mapping. 2147 const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) { 2148 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 2149 2150 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 2151 it = OpaqueRValues.find(e); 2152 assert(it != OpaqueRValues.end() && "no mapping for opaque value!"); 2153 return it->second; 2154 } 2155 2156 /// Get the index of the current ArrayInitLoopExpr, if any. 2157 llvm::Value *getArrayInitIndex() { return ArrayInitIndex; } 2158 2159 /// getAccessedFieldNo - Given an encoded value and a result number, return 2160 /// the input field number being accessed. 2161 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 2162 2163 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 2164 llvm::BasicBlock *GetIndirectGotoBlock(); 2165 2166 /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts. 2167 static bool IsWrappedCXXThis(const Expr *E); 2168 2169 /// EmitNullInitialization - Generate code to set a value of the given type to 2170 /// null, If the type contains data member pointers, they will be initialized 2171 /// to -1 in accordance with the Itanium C++ ABI. 2172 void EmitNullInitialization(Address DestPtr, QualType Ty); 2173 2174 /// Emits a call to an LLVM variable-argument intrinsic, either 2175 /// \c llvm.va_start or \c llvm.va_end. 2176 /// \param ArgValue A reference to the \c va_list as emitted by either 2177 /// \c EmitVAListRef or \c EmitMSVAListRef. 2178 /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise, 2179 /// calls \c llvm.va_end. 2180 llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart); 2181 2182 /// Generate code to get an argument from the passed in pointer 2183 /// and update it accordingly. 2184 /// \param VE The \c VAArgExpr for which to generate code. 2185 /// \param VAListAddr Receives a reference to the \c va_list as emitted by 2186 /// either \c EmitVAListRef or \c EmitMSVAListRef. 2187 /// \returns A pointer to the argument. 2188 // FIXME: We should be able to get rid of this method and use the va_arg 2189 // instruction in LLVM instead once it works well enough. 2190 Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr); 2191 2192 /// emitArrayLength - Compute the length of an array, even if it's a 2193 /// VLA, and drill down to the base element type. 2194 llvm::Value *emitArrayLength(const ArrayType *arrayType, 2195 QualType &baseType, 2196 Address &addr); 2197 2198 /// EmitVLASize - Capture all the sizes for the VLA expressions in 2199 /// the given variably-modified type and store them in the VLASizeMap. 2200 /// 2201 /// This function can be called with a null (unreachable) insert point. 2202 void EmitVariablyModifiedType(QualType Ty); 2203 2204 /// getVLASize - Returns an LLVM value that corresponds to the size, 2205 /// in non-variably-sized elements, of a variable length array type, 2206 /// plus that largest non-variably-sized element type. Assumes that 2207 /// the type has already been emitted with EmitVariablyModifiedType. 2208 std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla); 2209 std::pair<llvm::Value*,QualType> getVLASize(QualType vla); 2210 2211 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 2212 /// generating code for an C++ member function. 2213 llvm::Value *LoadCXXThis() { 2214 assert(CXXThisValue && "no 'this' value for this function"); 2215 return CXXThisValue; 2216 } 2217 Address LoadCXXThisAddress(); 2218 2219 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 2220 /// virtual bases. 2221 // FIXME: Every place that calls LoadCXXVTT is something 2222 // that needs to be abstracted properly. 2223 llvm::Value *LoadCXXVTT() { 2224 assert(CXXStructorImplicitParamValue && "no VTT value for this function"); 2225 return CXXStructorImplicitParamValue; 2226 } 2227 2228 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 2229 /// complete class to the given direct base. 2230 Address 2231 GetAddressOfDirectBaseInCompleteClass(Address Value, 2232 const CXXRecordDecl *Derived, 2233 const CXXRecordDecl *Base, 2234 bool BaseIsVirtual); 2235 2236 static bool ShouldNullCheckClassCastValue(const CastExpr *Cast); 2237 2238 /// GetAddressOfBaseClass - This function will add the necessary delta to the 2239 /// load of 'this' and returns address of the base class. 2240 Address GetAddressOfBaseClass(Address Value, 2241 const CXXRecordDecl *Derived, 2242 CastExpr::path_const_iterator PathBegin, 2243 CastExpr::path_const_iterator PathEnd, 2244 bool NullCheckValue, SourceLocation Loc); 2245 2246 Address GetAddressOfDerivedClass(Address Value, 2247 const CXXRecordDecl *Derived, 2248 CastExpr::path_const_iterator PathBegin, 2249 CastExpr::path_const_iterator PathEnd, 2250 bool NullCheckValue); 2251 2252 /// GetVTTParameter - Return the VTT parameter that should be passed to a 2253 /// base constructor/destructor with virtual bases. 2254 /// FIXME: VTTs are Itanium ABI-specific, so the definition should move 2255 /// to ItaniumCXXABI.cpp together with all the references to VTT. 2256 llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase, 2257 bool Delegating); 2258 2259 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 2260 CXXCtorType CtorType, 2261 const FunctionArgList &Args, 2262 SourceLocation Loc); 2263 // It's important not to confuse this and the previous function. Delegating 2264 // constructors are the C++0x feature. The constructor delegate optimization 2265 // is used to reduce duplication in the base and complete consturctors where 2266 // they are substantially the same. 2267 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2268 const FunctionArgList &Args); 2269 2270 /// Emit a call to an inheriting constructor (that is, one that invokes a 2271 /// constructor inherited from a base class) by inlining its definition. This 2272 /// is necessary if the ABI does not support forwarding the arguments to the 2273 /// base class constructor (because they're variadic or similar). 2274 void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2275 CXXCtorType CtorType, 2276 bool ForVirtualBase, 2277 bool Delegating, 2278 CallArgList &Args); 2279 2280 /// Emit a call to a constructor inherited from a base class, passing the 2281 /// current constructor's arguments along unmodified (without even making 2282 /// a copy). 2283 void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D, 2284 bool ForVirtualBase, Address This, 2285 bool InheritedFromVBase, 2286 const CXXInheritedCtorInitExpr *E); 2287 2288 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2289 bool ForVirtualBase, bool Delegating, 2290 Address This, const CXXConstructExpr *E); 2291 2292 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2293 bool ForVirtualBase, bool Delegating, 2294 Address This, CallArgList &Args); 2295 2296 /// Emit assumption load for all bases. Requires to be be called only on 2297 /// most-derived class and not under construction of the object. 2298 void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This); 2299 2300 /// Emit assumption that vptr load == global vtable. 2301 void EmitVTableAssumptionLoad(const VPtr &vptr, Address This); 2302 2303 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 2304 Address This, Address Src, 2305 const CXXConstructExpr *E); 2306 2307 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2308 const ArrayType *ArrayTy, 2309 Address ArrayPtr, 2310 const CXXConstructExpr *E, 2311 bool ZeroInitialization = false); 2312 2313 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2314 llvm::Value *NumElements, 2315 Address ArrayPtr, 2316 const CXXConstructExpr *E, 2317 bool ZeroInitialization = false); 2318 2319 static Destroyer destroyCXXObject; 2320 2321 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 2322 bool ForVirtualBase, bool Delegating, 2323 Address This); 2324 2325 void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, 2326 llvm::Type *ElementTy, Address NewPtr, 2327 llvm::Value *NumElements, 2328 llvm::Value *AllocSizeWithoutCookie); 2329 2330 void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, 2331 Address Ptr); 2332 2333 llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr); 2334 void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr); 2335 2336 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 2337 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 2338 2339 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 2340 QualType DeleteTy, llvm::Value *NumElements = nullptr, 2341 CharUnits CookieSize = CharUnits()); 2342 2343 RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 2344 const Expr *Arg, bool IsDelete); 2345 2346 llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E); 2347 llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE); 2348 Address EmitCXXUuidofExpr(const CXXUuidofExpr *E); 2349 2350 /// \brief Situations in which we might emit a check for the suitability of a 2351 /// pointer or glvalue. 2352 enum TypeCheckKind { 2353 /// Checking the operand of a load. Must be suitably sized and aligned. 2354 TCK_Load, 2355 /// Checking the destination of a store. Must be suitably sized and aligned. 2356 TCK_Store, 2357 /// Checking the bound value in a reference binding. Must be suitably sized 2358 /// and aligned, but is not required to refer to an object (until the 2359 /// reference is used), per core issue 453. 2360 TCK_ReferenceBinding, 2361 /// Checking the object expression in a non-static data member access. Must 2362 /// be an object within its lifetime. 2363 TCK_MemberAccess, 2364 /// Checking the 'this' pointer for a call to a non-static member function. 2365 /// Must be an object within its lifetime. 2366 TCK_MemberCall, 2367 /// Checking the 'this' pointer for a constructor call. 2368 TCK_ConstructorCall, 2369 /// Checking the operand of a static_cast to a derived pointer type. Must be 2370 /// null or an object within its lifetime. 2371 TCK_DowncastPointer, 2372 /// Checking the operand of a static_cast to a derived reference type. Must 2373 /// be an object within its lifetime. 2374 TCK_DowncastReference, 2375 /// Checking the operand of a cast to a base object. Must be suitably sized 2376 /// and aligned. 2377 TCK_Upcast, 2378 /// Checking the operand of a cast to a virtual base object. Must be an 2379 /// object within its lifetime. 2380 TCK_UpcastToVirtualBase, 2381 /// Checking the value assigned to a _Nonnull pointer. Must not be null. 2382 TCK_NonnullAssign, 2383 /// Checking the operand of a dynamic_cast or a typeid expression. Must be 2384 /// null or an object within its lifetime. 2385 TCK_DynamicOperation 2386 }; 2387 2388 /// Determine whether the pointer type check \p TCK permits null pointers. 2389 static bool isNullPointerAllowed(TypeCheckKind TCK); 2390 2391 /// Determine whether the pointer type check \p TCK requires a vptr check. 2392 static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty); 2393 2394 /// \brief Whether any type-checking sanitizers are enabled. If \c false, 2395 /// calls to EmitTypeCheck can be skipped. 2396 bool sanitizePerformTypeCheck() const; 2397 2398 /// \brief Emit a check that \p V is the address of storage of the 2399 /// appropriate size and alignment for an object of type \p Type. 2400 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, 2401 QualType Type, CharUnits Alignment = CharUnits::Zero(), 2402 SanitizerSet SkippedChecks = SanitizerSet()); 2403 2404 /// \brief Emit a check that \p Base points into an array object, which 2405 /// we can access at index \p Index. \p Accessed should be \c false if we 2406 /// this expression is used as an lvalue, for instance in "&Arr[Idx]". 2407 void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, 2408 QualType IndexType, bool Accessed); 2409 2410 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 2411 bool isInc, bool isPre); 2412 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 2413 bool isInc, bool isPre); 2414 2415 void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment, 2416 llvm::Value *OffsetValue = nullptr) { 2417 Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment, 2418 OffsetValue); 2419 } 2420 2421 /// Converts Location to a DebugLoc, if debug information is enabled. 2422 llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location); 2423 2424 2425 //===--------------------------------------------------------------------===// 2426 // Declaration Emission 2427 //===--------------------------------------------------------------------===// 2428 2429 /// EmitDecl - Emit a declaration. 2430 /// 2431 /// This function can be called with a null (unreachable) insert point. 2432 void EmitDecl(const Decl &D); 2433 2434 /// EmitVarDecl - Emit a local variable declaration. 2435 /// 2436 /// This function can be called with a null (unreachable) insert point. 2437 void EmitVarDecl(const VarDecl &D); 2438 2439 void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2440 bool capturedByInit); 2441 2442 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 2443 llvm::Value *Address); 2444 2445 /// \brief Determine whether the given initializer is trivial in the sense 2446 /// that it requires no code to be generated. 2447 bool isTrivialInitializer(const Expr *Init); 2448 2449 /// EmitAutoVarDecl - Emit an auto variable declaration. 2450 /// 2451 /// This function can be called with a null (unreachable) insert point. 2452 void EmitAutoVarDecl(const VarDecl &D); 2453 2454 class AutoVarEmission { 2455 friend class CodeGenFunction; 2456 2457 const VarDecl *Variable; 2458 2459 /// The address of the alloca. Invalid if the variable was emitted 2460 /// as a global constant. 2461 Address Addr; 2462 2463 llvm::Value *NRVOFlag; 2464 2465 /// True if the variable is a __block variable. 2466 bool IsByRef; 2467 2468 /// True if the variable is of aggregate type and has a constant 2469 /// initializer. 2470 bool IsConstantAggregate; 2471 2472 /// Non-null if we should use lifetime annotations. 2473 llvm::Value *SizeForLifetimeMarkers; 2474 2475 struct Invalid {}; 2476 AutoVarEmission(Invalid) : Variable(nullptr), Addr(Address::invalid()) {} 2477 2478 AutoVarEmission(const VarDecl &variable) 2479 : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr), 2480 IsByRef(false), IsConstantAggregate(false), 2481 SizeForLifetimeMarkers(nullptr) {} 2482 2483 bool wasEmittedAsGlobal() const { return !Addr.isValid(); } 2484 2485 public: 2486 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 2487 2488 bool useLifetimeMarkers() const { 2489 return SizeForLifetimeMarkers != nullptr; 2490 } 2491 llvm::Value *getSizeForLifetimeMarkers() const { 2492 assert(useLifetimeMarkers()); 2493 return SizeForLifetimeMarkers; 2494 } 2495 2496 /// Returns the raw, allocated address, which is not necessarily 2497 /// the address of the object itself. 2498 Address getAllocatedAddress() const { 2499 return Addr; 2500 } 2501 2502 /// Returns the address of the object within this declaration. 2503 /// Note that this does not chase the forwarding pointer for 2504 /// __block decls. 2505 Address getObjectAddress(CodeGenFunction &CGF) const { 2506 if (!IsByRef) return Addr; 2507 2508 return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false); 2509 } 2510 }; 2511 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 2512 void EmitAutoVarInit(const AutoVarEmission &emission); 2513 void EmitAutoVarCleanups(const AutoVarEmission &emission); 2514 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 2515 QualType::DestructionKind dtorKind); 2516 2517 void EmitStaticVarDecl(const VarDecl &D, 2518 llvm::GlobalValue::LinkageTypes Linkage); 2519 2520 class ParamValue { 2521 llvm::Value *Value; 2522 unsigned Alignment; 2523 ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {} 2524 public: 2525 static ParamValue forDirect(llvm::Value *value) { 2526 return ParamValue(value, 0); 2527 } 2528 static ParamValue forIndirect(Address addr) { 2529 assert(!addr.getAlignment().isZero()); 2530 return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity()); 2531 } 2532 2533 bool isIndirect() const { return Alignment != 0; } 2534 llvm::Value *getAnyValue() const { return Value; } 2535 2536 llvm::Value *getDirectValue() const { 2537 assert(!isIndirect()); 2538 return Value; 2539 } 2540 2541 Address getIndirectAddress() const { 2542 assert(isIndirect()); 2543 return Address(Value, CharUnits::fromQuantity(Alignment)); 2544 } 2545 }; 2546 2547 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 2548 void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo); 2549 2550 /// protectFromPeepholes - Protect a value that we're intending to 2551 /// store to the side, but which will probably be used later, from 2552 /// aggressive peepholing optimizations that might delete it. 2553 /// 2554 /// Pass the result to unprotectFromPeepholes to declare that 2555 /// protection is no longer required. 2556 /// 2557 /// There's no particular reason why this shouldn't apply to 2558 /// l-values, it's just that no existing peepholes work on pointers. 2559 PeepholeProtection protectFromPeepholes(RValue rvalue); 2560 void unprotectFromPeepholes(PeepholeProtection protection); 2561 2562 void EmitAlignmentAssumption(llvm::Value *PtrValue, llvm::Value *Alignment, 2563 llvm::Value *OffsetValue = nullptr) { 2564 Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment, 2565 OffsetValue); 2566 } 2567 2568 //===--------------------------------------------------------------------===// 2569 // Statement Emission 2570 //===--------------------------------------------------------------------===// 2571 2572 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 2573 void EmitStopPoint(const Stmt *S); 2574 2575 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 2576 /// this function even if there is no current insertion point. 2577 /// 2578 /// This function may clear the current insertion point; callers should use 2579 /// EnsureInsertPoint if they wish to subsequently generate code without first 2580 /// calling EmitBlock, EmitBranch, or EmitStmt. 2581 void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None); 2582 2583 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 2584 /// necessarily require an insertion point or debug information; typically 2585 /// because the statement amounts to a jump or a container of other 2586 /// statements. 2587 /// 2588 /// \return True if the statement was handled. 2589 bool EmitSimpleStmt(const Stmt *S); 2590 2591 Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 2592 AggValueSlot AVS = AggValueSlot::ignored()); 2593 Address EmitCompoundStmtWithoutScope(const CompoundStmt &S, 2594 bool GetLast = false, 2595 AggValueSlot AVS = 2596 AggValueSlot::ignored()); 2597 2598 /// EmitLabel - Emit the block for the given label. It is legal to call this 2599 /// function even if there is no current insertion point. 2600 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 2601 2602 void EmitLabelStmt(const LabelStmt &S); 2603 void EmitAttributedStmt(const AttributedStmt &S); 2604 void EmitGotoStmt(const GotoStmt &S); 2605 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 2606 void EmitIfStmt(const IfStmt &S); 2607 2608 void EmitWhileStmt(const WhileStmt &S, 2609 ArrayRef<const Attr *> Attrs = None); 2610 void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None); 2611 void EmitForStmt(const ForStmt &S, 2612 ArrayRef<const Attr *> Attrs = None); 2613 void EmitReturnStmt(const ReturnStmt &S); 2614 void EmitDeclStmt(const DeclStmt &S); 2615 void EmitBreakStmt(const BreakStmt &S); 2616 void EmitContinueStmt(const ContinueStmt &S); 2617 void EmitSwitchStmt(const SwitchStmt &S); 2618 void EmitDefaultStmt(const DefaultStmt &S); 2619 void EmitCaseStmt(const CaseStmt &S); 2620 void EmitCaseStmtRange(const CaseStmt &S); 2621 void EmitAsmStmt(const AsmStmt &S); 2622 2623 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 2624 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 2625 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 2626 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 2627 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 2628 2629 void EmitCoroutineBody(const CoroutineBodyStmt &S); 2630 void EmitCoreturnStmt(const CoreturnStmt &S); 2631 RValue EmitCoawaitExpr(const CoawaitExpr &E, 2632 AggValueSlot aggSlot = AggValueSlot::ignored(), 2633 bool ignoreResult = false); 2634 LValue EmitCoawaitLValue(const CoawaitExpr *E); 2635 RValue EmitCoyieldExpr(const CoyieldExpr &E, 2636 AggValueSlot aggSlot = AggValueSlot::ignored(), 2637 bool ignoreResult = false); 2638 LValue EmitCoyieldLValue(const CoyieldExpr *E); 2639 RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID); 2640 2641 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 2642 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 2643 2644 void EmitCXXTryStmt(const CXXTryStmt &S); 2645 void EmitSEHTryStmt(const SEHTryStmt &S); 2646 void EmitSEHLeaveStmt(const SEHLeaveStmt &S); 2647 void EnterSEHTryStmt(const SEHTryStmt &S); 2648 void ExitSEHTryStmt(const SEHTryStmt &S); 2649 2650 void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter, 2651 const Stmt *OutlinedStmt); 2652 2653 llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF, 2654 const SEHExceptStmt &Except); 2655 2656 llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF, 2657 const SEHFinallyStmt &Finally); 2658 2659 void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF, 2660 llvm::Value *ParentFP, 2661 llvm::Value *EntryEBP); 2662 llvm::Value *EmitSEHExceptionCode(); 2663 llvm::Value *EmitSEHExceptionInfo(); 2664 llvm::Value *EmitSEHAbnormalTermination(); 2665 2666 /// Emit simple code for OpenMP directives in Simd-only mode. 2667 void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D); 2668 2669 /// Scan the outlined statement for captures from the parent function. For 2670 /// each capture, mark the capture as escaped and emit a call to 2671 /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap. 2672 void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt, 2673 bool IsFilter); 2674 2675 /// Recovers the address of a local in a parent function. ParentVar is the 2676 /// address of the variable used in the immediate parent function. It can 2677 /// either be an alloca or a call to llvm.localrecover if there are nested 2678 /// outlined functions. ParentFP is the frame pointer of the outermost parent 2679 /// frame. 2680 Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF, 2681 Address ParentVar, 2682 llvm::Value *ParentFP); 2683 2684 void EmitCXXForRangeStmt(const CXXForRangeStmt &S, 2685 ArrayRef<const Attr *> Attrs = None); 2686 2687 /// Controls insertion of cancellation exit blocks in worksharing constructs. 2688 class OMPCancelStackRAII { 2689 CodeGenFunction &CGF; 2690 2691 public: 2692 OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 2693 bool HasCancel) 2694 : CGF(CGF) { 2695 CGF.OMPCancelStack.enter(CGF, Kind, HasCancel); 2696 } 2697 ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); } 2698 }; 2699 2700 /// Returns calculated size of the specified type. 2701 llvm::Value *getTypeSize(QualType Ty); 2702 LValue InitCapturedStruct(const CapturedStmt &S); 2703 llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K); 2704 llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S); 2705 Address GenerateCapturedStmtArgument(const CapturedStmt &S); 2706 llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S); 2707 void GenerateOpenMPCapturedVars(const CapturedStmt &S, 2708 SmallVectorImpl<llvm::Value *> &CapturedVars); 2709 void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy, 2710 SourceLocation Loc); 2711 /// \brief Perform element by element copying of arrays with type \a 2712 /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure 2713 /// generated by \a CopyGen. 2714 /// 2715 /// \param DestAddr Address of the destination array. 2716 /// \param SrcAddr Address of the source array. 2717 /// \param OriginalType Type of destination and source arrays. 2718 /// \param CopyGen Copying procedure that copies value of single array element 2719 /// to another single array element. 2720 void EmitOMPAggregateAssign( 2721 Address DestAddr, Address SrcAddr, QualType OriginalType, 2722 const llvm::function_ref<void(Address, Address)> &CopyGen); 2723 /// \brief Emit proper copying of data from one variable to another. 2724 /// 2725 /// \param OriginalType Original type of the copied variables. 2726 /// \param DestAddr Destination address. 2727 /// \param SrcAddr Source address. 2728 /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has 2729 /// type of the base array element). 2730 /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of 2731 /// the base array element). 2732 /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a 2733 /// DestVD. 2734 void EmitOMPCopy(QualType OriginalType, 2735 Address DestAddr, Address SrcAddr, 2736 const VarDecl *DestVD, const VarDecl *SrcVD, 2737 const Expr *Copy); 2738 /// \brief Emit atomic update code for constructs: \a X = \a X \a BO \a E or 2739 /// \a X = \a E \a BO \a E. 2740 /// 2741 /// \param X Value to be updated. 2742 /// \param E Update value. 2743 /// \param BO Binary operation for update operation. 2744 /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update 2745 /// expression, false otherwise. 2746 /// \param AO Atomic ordering of the generated atomic instructions. 2747 /// \param CommonGen Code generator for complex expressions that cannot be 2748 /// expressed through atomicrmw instruction. 2749 /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was 2750 /// generated, <false, RValue::get(nullptr)> otherwise. 2751 std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr( 2752 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 2753 llvm::AtomicOrdering AO, SourceLocation Loc, 2754 const llvm::function_ref<RValue(RValue)> &CommonGen); 2755 bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 2756 OMPPrivateScope &PrivateScope); 2757 void EmitOMPPrivateClause(const OMPExecutableDirective &D, 2758 OMPPrivateScope &PrivateScope); 2759 void EmitOMPUseDevicePtrClause( 2760 const OMPClause &C, OMPPrivateScope &PrivateScope, 2761 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap); 2762 /// \brief Emit code for copyin clause in \a D directive. The next code is 2763 /// generated at the start of outlined functions for directives: 2764 /// \code 2765 /// threadprivate_var1 = master_threadprivate_var1; 2766 /// operator=(threadprivate_var2, master_threadprivate_var2); 2767 /// ... 2768 /// __kmpc_barrier(&loc, global_tid); 2769 /// \endcode 2770 /// 2771 /// \param D OpenMP directive possibly with 'copyin' clause(s). 2772 /// \returns true if at least one copyin variable is found, false otherwise. 2773 bool EmitOMPCopyinClause(const OMPExecutableDirective &D); 2774 /// \brief Emit initial code for lastprivate variables. If some variable is 2775 /// not also firstprivate, then the default initialization is used. Otherwise 2776 /// initialization of this variable is performed by EmitOMPFirstprivateClause 2777 /// method. 2778 /// 2779 /// \param D Directive that may have 'lastprivate' directives. 2780 /// \param PrivateScope Private scope for capturing lastprivate variables for 2781 /// proper codegen in internal captured statement. 2782 /// 2783 /// \returns true if there is at least one lastprivate variable, false 2784 /// otherwise. 2785 bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D, 2786 OMPPrivateScope &PrivateScope); 2787 /// \brief Emit final copying of lastprivate values to original variables at 2788 /// the end of the worksharing or simd directive. 2789 /// 2790 /// \param D Directive that has at least one 'lastprivate' directives. 2791 /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if 2792 /// it is the last iteration of the loop code in associated directive, or to 2793 /// 'i1 false' otherwise. If this item is nullptr, no final check is required. 2794 void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D, 2795 bool NoFinals, 2796 llvm::Value *IsLastIterCond = nullptr); 2797 /// Emit initial code for linear clauses. 2798 void EmitOMPLinearClause(const OMPLoopDirective &D, 2799 CodeGenFunction::OMPPrivateScope &PrivateScope); 2800 /// Emit final code for linear clauses. 2801 /// \param CondGen Optional conditional code for final part of codegen for 2802 /// linear clause. 2803 void EmitOMPLinearClauseFinal( 2804 const OMPLoopDirective &D, 2805 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen); 2806 /// \brief Emit initial code for reduction variables. Creates reduction copies 2807 /// and initializes them with the values according to OpenMP standard. 2808 /// 2809 /// \param D Directive (possibly) with the 'reduction' clause. 2810 /// \param PrivateScope Private scope for capturing reduction variables for 2811 /// proper codegen in internal captured statement. 2812 /// 2813 void EmitOMPReductionClauseInit(const OMPExecutableDirective &D, 2814 OMPPrivateScope &PrivateScope); 2815 /// \brief Emit final update of reduction values to original variables at 2816 /// the end of the directive. 2817 /// 2818 /// \param D Directive that has at least one 'reduction' directives. 2819 /// \param ReductionKind The kind of reduction to perform. 2820 void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D, 2821 const OpenMPDirectiveKind ReductionKind); 2822 /// \brief Emit initial code for linear variables. Creates private copies 2823 /// and initializes them with the values according to OpenMP standard. 2824 /// 2825 /// \param D Directive (possibly) with the 'linear' clause. 2826 /// \return true if at least one linear variable is found that should be 2827 /// initialized with the value of the original variable, false otherwise. 2828 bool EmitOMPLinearClauseInit(const OMPLoopDirective &D); 2829 2830 typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/, 2831 llvm::Value * /*OutlinedFn*/, 2832 const OMPTaskDataTy & /*Data*/)> 2833 TaskGenTy; 2834 void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S, 2835 const OpenMPDirectiveKind CapturedRegion, 2836 const RegionCodeGenTy &BodyGen, 2837 const TaskGenTy &TaskGen, OMPTaskDataTy &Data); 2838 struct OMPTargetDataInfo { 2839 Address BasePointersArray = Address::invalid(); 2840 Address PointersArray = Address::invalid(); 2841 Address SizesArray = Address::invalid(); 2842 unsigned NumberOfTargetItems = 0; 2843 explicit OMPTargetDataInfo() = default; 2844 OMPTargetDataInfo(Address BasePointersArray, Address PointersArray, 2845 Address SizesArray, unsigned NumberOfTargetItems) 2846 : BasePointersArray(BasePointersArray), PointersArray(PointersArray), 2847 SizesArray(SizesArray), NumberOfTargetItems(NumberOfTargetItems) {} 2848 }; 2849 void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S, 2850 const RegionCodeGenTy &BodyGen, 2851 OMPTargetDataInfo &InputInfo); 2852 2853 void EmitOMPParallelDirective(const OMPParallelDirective &S); 2854 void EmitOMPSimdDirective(const OMPSimdDirective &S); 2855 void EmitOMPForDirective(const OMPForDirective &S); 2856 void EmitOMPForSimdDirective(const OMPForSimdDirective &S); 2857 void EmitOMPSectionsDirective(const OMPSectionsDirective &S); 2858 void EmitOMPSectionDirective(const OMPSectionDirective &S); 2859 void EmitOMPSingleDirective(const OMPSingleDirective &S); 2860 void EmitOMPMasterDirective(const OMPMasterDirective &S); 2861 void EmitOMPCriticalDirective(const OMPCriticalDirective &S); 2862 void EmitOMPParallelForDirective(const OMPParallelForDirective &S); 2863 void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S); 2864 void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S); 2865 void EmitOMPTaskDirective(const OMPTaskDirective &S); 2866 void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S); 2867 void EmitOMPBarrierDirective(const OMPBarrierDirective &S); 2868 void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S); 2869 void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S); 2870 void EmitOMPFlushDirective(const OMPFlushDirective &S); 2871 void EmitOMPOrderedDirective(const OMPOrderedDirective &S); 2872 void EmitOMPAtomicDirective(const OMPAtomicDirective &S); 2873 void EmitOMPTargetDirective(const OMPTargetDirective &S); 2874 void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S); 2875 void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S); 2876 void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S); 2877 void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S); 2878 void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S); 2879 void 2880 EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S); 2881 void EmitOMPTeamsDirective(const OMPTeamsDirective &S); 2882 void 2883 EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S); 2884 void EmitOMPCancelDirective(const OMPCancelDirective &S); 2885 void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S); 2886 void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S); 2887 void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S); 2888 void EmitOMPDistributeDirective(const OMPDistributeDirective &S); 2889 void EmitOMPDistributeParallelForDirective( 2890 const OMPDistributeParallelForDirective &S); 2891 void EmitOMPDistributeParallelForSimdDirective( 2892 const OMPDistributeParallelForSimdDirective &S); 2893 void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S); 2894 void EmitOMPTargetParallelForSimdDirective( 2895 const OMPTargetParallelForSimdDirective &S); 2896 void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S); 2897 void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S); 2898 void 2899 EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S); 2900 void EmitOMPTeamsDistributeParallelForSimdDirective( 2901 const OMPTeamsDistributeParallelForSimdDirective &S); 2902 void EmitOMPTeamsDistributeParallelForDirective( 2903 const OMPTeamsDistributeParallelForDirective &S); 2904 void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S); 2905 void EmitOMPTargetTeamsDistributeDirective( 2906 const OMPTargetTeamsDistributeDirective &S); 2907 void EmitOMPTargetTeamsDistributeParallelForDirective( 2908 const OMPTargetTeamsDistributeParallelForDirective &S); 2909 void EmitOMPTargetTeamsDistributeParallelForSimdDirective( 2910 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 2911 void EmitOMPTargetTeamsDistributeSimdDirective( 2912 const OMPTargetTeamsDistributeSimdDirective &S); 2913 2914 /// Emit device code for the target directive. 2915 static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 2916 StringRef ParentName, 2917 const OMPTargetDirective &S); 2918 static void 2919 EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 2920 const OMPTargetParallelDirective &S); 2921 /// Emit device code for the target parallel for directive. 2922 static void EmitOMPTargetParallelForDeviceFunction( 2923 CodeGenModule &CGM, StringRef ParentName, 2924 const OMPTargetParallelForDirective &S); 2925 /// Emit device code for the target parallel for simd directive. 2926 static void EmitOMPTargetParallelForSimdDeviceFunction( 2927 CodeGenModule &CGM, StringRef ParentName, 2928 const OMPTargetParallelForSimdDirective &S); 2929 /// Emit device code for the target teams directive. 2930 static void 2931 EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 2932 const OMPTargetTeamsDirective &S); 2933 /// Emit device code for the target teams distribute directive. 2934 static void EmitOMPTargetTeamsDistributeDeviceFunction( 2935 CodeGenModule &CGM, StringRef ParentName, 2936 const OMPTargetTeamsDistributeDirective &S); 2937 /// Emit device code for the target teams distribute simd directive. 2938 static void EmitOMPTargetTeamsDistributeSimdDeviceFunction( 2939 CodeGenModule &CGM, StringRef ParentName, 2940 const OMPTargetTeamsDistributeSimdDirective &S); 2941 /// Emit device code for the target simd directive. 2942 static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM, 2943 StringRef ParentName, 2944 const OMPTargetSimdDirective &S); 2945 /// Emit device code for the target teams distribute parallel for simd 2946 /// directive. 2947 static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( 2948 CodeGenModule &CGM, StringRef ParentName, 2949 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 2950 2951 static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 2952 CodeGenModule &CGM, StringRef ParentName, 2953 const OMPTargetTeamsDistributeParallelForDirective &S); 2954 /// \brief Emit inner loop of the worksharing/simd construct. 2955 /// 2956 /// \param S Directive, for which the inner loop must be emitted. 2957 /// \param RequiresCleanup true, if directive has some associated private 2958 /// variables. 2959 /// \param LoopCond Bollean condition for loop continuation. 2960 /// \param IncExpr Increment expression for loop control variable. 2961 /// \param BodyGen Generator for the inner body of the inner loop. 2962 /// \param PostIncGen Genrator for post-increment code (required for ordered 2963 /// loop directvies). 2964 void EmitOMPInnerLoop( 2965 const Stmt &S, bool RequiresCleanup, const Expr *LoopCond, 2966 const Expr *IncExpr, 2967 const llvm::function_ref<void(CodeGenFunction &)> &BodyGen, 2968 const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen); 2969 2970 JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind); 2971 /// Emit initial code for loop counters of loop-based directives. 2972 void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S, 2973 OMPPrivateScope &LoopScope); 2974 2975 /// Helper for the OpenMP loop directives. 2976 void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit); 2977 2978 /// \brief Emit code for the worksharing loop-based directive. 2979 /// \return true, if this construct has any lastprivate clause, false - 2980 /// otherwise. 2981 bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB, 2982 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 2983 const CodeGenDispatchBoundsTy &CGDispatchBounds); 2984 2985 /// Emit code for the distribute loop-based directive. 2986 void EmitOMPDistributeLoop(const OMPLoopDirective &S, 2987 const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr); 2988 2989 /// Helpers for the OpenMP loop directives. 2990 void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false); 2991 void EmitOMPSimdFinal( 2992 const OMPLoopDirective &D, 2993 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen); 2994 2995 /// Emits the lvalue for the expression with possibly captured variable. 2996 LValue EmitOMPSharedLValue(const Expr *E); 2997 2998 private: 2999 /// Helpers for blocks. Returns invoke function by \p InvokeF if it is not 3000 /// nullptr. It should be called without \p InvokeF if the caller does not 3001 /// need invoke function to be returned. 3002 llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info, 3003 llvm::Function **InvokeF = nullptr); 3004 3005 /// struct with the values to be passed to the OpenMP loop-related functions 3006 struct OMPLoopArguments { 3007 /// loop lower bound 3008 Address LB = Address::invalid(); 3009 /// loop upper bound 3010 Address UB = Address::invalid(); 3011 /// loop stride 3012 Address ST = Address::invalid(); 3013 /// isLastIteration argument for runtime functions 3014 Address IL = Address::invalid(); 3015 /// Chunk value generated by sema 3016 llvm::Value *Chunk = nullptr; 3017 /// EnsureUpperBound 3018 Expr *EUB = nullptr; 3019 /// IncrementExpression 3020 Expr *IncExpr = nullptr; 3021 /// Loop initialization 3022 Expr *Init = nullptr; 3023 /// Loop exit condition 3024 Expr *Cond = nullptr; 3025 /// Update of LB after a whole chunk has been executed 3026 Expr *NextLB = nullptr; 3027 /// Update of UB after a whole chunk has been executed 3028 Expr *NextUB = nullptr; 3029 OMPLoopArguments() = default; 3030 OMPLoopArguments(Address LB, Address UB, Address ST, Address IL, 3031 llvm::Value *Chunk = nullptr, Expr *EUB = nullptr, 3032 Expr *IncExpr = nullptr, Expr *Init = nullptr, 3033 Expr *Cond = nullptr, Expr *NextLB = nullptr, 3034 Expr *NextUB = nullptr) 3035 : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB), 3036 IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB), 3037 NextUB(NextUB) {} 3038 }; 3039 void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic, 3040 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, 3041 const OMPLoopArguments &LoopArgs, 3042 const CodeGenLoopTy &CodeGenLoop, 3043 const CodeGenOrderedTy &CodeGenOrdered); 3044 void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind, 3045 bool IsMonotonic, const OMPLoopDirective &S, 3046 OMPPrivateScope &LoopScope, bool Ordered, 3047 const OMPLoopArguments &LoopArgs, 3048 const CodeGenDispatchBoundsTy &CGDispatchBounds); 3049 void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind, 3050 const OMPLoopDirective &S, 3051 OMPPrivateScope &LoopScope, 3052 const OMPLoopArguments &LoopArgs, 3053 const CodeGenLoopTy &CodeGenLoopContent); 3054 /// \brief Emit code for sections directive. 3055 void EmitSections(const OMPExecutableDirective &S); 3056 3057 public: 3058 3059 //===--------------------------------------------------------------------===// 3060 // LValue Expression Emission 3061 //===--------------------------------------------------------------------===// 3062 3063 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 3064 RValue GetUndefRValue(QualType Ty); 3065 3066 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 3067 /// and issue an ErrorUnsupported style diagnostic (using the 3068 /// provided Name). 3069 RValue EmitUnsupportedRValue(const Expr *E, 3070 const char *Name); 3071 3072 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 3073 /// an ErrorUnsupported style diagnostic (using the provided Name). 3074 LValue EmitUnsupportedLValue(const Expr *E, 3075 const char *Name); 3076 3077 /// EmitLValue - Emit code to compute a designator that specifies the location 3078 /// of the expression. 3079 /// 3080 /// This can return one of two things: a simple address or a bitfield 3081 /// reference. In either case, the LLVM Value* in the LValue structure is 3082 /// guaranteed to be an LLVM pointer type. 3083 /// 3084 /// If this returns a bitfield reference, nothing about the pointee type of 3085 /// the LLVM value is known: For example, it may not be a pointer to an 3086 /// integer. 3087 /// 3088 /// If this returns a normal address, and if the lvalue's C type is fixed 3089 /// size, this method guarantees that the returned pointer type will point to 3090 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 3091 /// variable length type, this is not possible. 3092 /// 3093 LValue EmitLValue(const Expr *E); 3094 3095 /// \brief Same as EmitLValue but additionally we generate checking code to 3096 /// guard against undefined behavior. This is only suitable when we know 3097 /// that the address will be used to access the object. 3098 LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK); 3099 3100 RValue convertTempToRValue(Address addr, QualType type, 3101 SourceLocation Loc); 3102 3103 void EmitAtomicInit(Expr *E, LValue lvalue); 3104 3105 bool LValueIsSuitableForInlineAtomic(LValue Src); 3106 3107 RValue EmitAtomicLoad(LValue LV, SourceLocation SL, 3108 AggValueSlot Slot = AggValueSlot::ignored()); 3109 3110 RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc, 3111 llvm::AtomicOrdering AO, bool IsVolatile = false, 3112 AggValueSlot slot = AggValueSlot::ignored()); 3113 3114 void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit); 3115 3116 void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO, 3117 bool IsVolatile, bool isInit); 3118 3119 std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange( 3120 LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, 3121 llvm::AtomicOrdering Success = 3122 llvm::AtomicOrdering::SequentiallyConsistent, 3123 llvm::AtomicOrdering Failure = 3124 llvm::AtomicOrdering::SequentiallyConsistent, 3125 bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored()); 3126 3127 void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO, 3128 const llvm::function_ref<RValue(RValue)> &UpdateOp, 3129 bool IsVolatile); 3130 3131 /// EmitToMemory - Change a scalar value from its value 3132 /// representation to its in-memory representation. 3133 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 3134 3135 /// EmitFromMemory - Change a scalar value from its memory 3136 /// representation to its value representation. 3137 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 3138 3139 /// Check if the scalar \p Value is within the valid range for the given 3140 /// type \p Ty. 3141 /// 3142 /// Returns true if a check is needed (even if the range is unknown). 3143 bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 3144 SourceLocation Loc); 3145 3146 /// EmitLoadOfScalar - Load a scalar value from an address, taking 3147 /// care to appropriately convert from the memory representation to 3148 /// the LLVM value representation. 3149 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 3150 SourceLocation Loc, 3151 AlignmentSource Source = AlignmentSource::Type, 3152 bool isNontemporal = false) { 3153 return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source), 3154 CGM.getTBAAAccessInfo(Ty), isNontemporal); 3155 } 3156 3157 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 3158 SourceLocation Loc, LValueBaseInfo BaseInfo, 3159 TBAAAccessInfo TBAAInfo, 3160 bool isNontemporal = false); 3161 3162 /// EmitLoadOfScalar - Load a scalar value from an address, taking 3163 /// care to appropriately convert from the memory representation to 3164 /// the LLVM value representation. The l-value must be a simple 3165 /// l-value. 3166 llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc); 3167 3168 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3169 /// care to appropriately convert from the memory representation to 3170 /// the LLVM value representation. 3171 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 3172 bool Volatile, QualType Ty, 3173 AlignmentSource Source = AlignmentSource::Type, 3174 bool isInit = false, bool isNontemporal = false) { 3175 EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source), 3176 CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal); 3177 } 3178 3179 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 3180 bool Volatile, QualType Ty, 3181 LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo, 3182 bool isInit = false, bool isNontemporal = false); 3183 3184 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3185 /// care to appropriately convert from the memory representation to 3186 /// the LLVM value representation. The l-value must be a simple 3187 /// l-value. The isInit flag indicates whether this is an initialization. 3188 /// If so, atomic qualifiers are ignored and the store is always non-atomic. 3189 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); 3190 3191 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 3192 /// this method emits the address of the lvalue, then loads the result as an 3193 /// rvalue, returning the rvalue. 3194 RValue EmitLoadOfLValue(LValue V, SourceLocation Loc); 3195 RValue EmitLoadOfExtVectorElementLValue(LValue V); 3196 RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc); 3197 RValue EmitLoadOfGlobalRegLValue(LValue LV); 3198 3199 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 3200 /// lvalue, where both are guaranteed to the have the same type, and that type 3201 /// is 'Ty'. 3202 void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false); 3203 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 3204 void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst); 3205 3206 /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints 3207 /// as EmitStoreThroughLValue. 3208 /// 3209 /// \param Result [out] - If non-null, this will be set to a Value* for the 3210 /// bit-field contents after the store, appropriate for use as the result of 3211 /// an assignment to the bit-field. 3212 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 3213 llvm::Value **Result=nullptr); 3214 3215 /// Emit an l-value for an assignment (simple or compound) of complex type. 3216 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 3217 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 3218 LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 3219 llvm::Value *&Result); 3220 3221 // Note: only available for agg return types 3222 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 3223 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 3224 // Note: only available for agg return types 3225 LValue EmitCallExprLValue(const CallExpr *E); 3226 // Note: only available for agg return types 3227 LValue EmitVAArgExprLValue(const VAArgExpr *E); 3228 LValue EmitDeclRefLValue(const DeclRefExpr *E); 3229 LValue EmitStringLiteralLValue(const StringLiteral *E); 3230 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 3231 LValue EmitPredefinedLValue(const PredefinedExpr *E); 3232 LValue EmitUnaryOpLValue(const UnaryOperator *E); 3233 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3234 bool Accessed = false); 3235 LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3236 bool IsLowerBound = true); 3237 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 3238 LValue EmitMemberExpr(const MemberExpr *E); 3239 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 3240 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 3241 LValue EmitInitListLValue(const InitListExpr *E); 3242 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 3243 LValue EmitCastLValue(const CastExpr *E); 3244 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 3245 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 3246 3247 Address EmitExtVectorElementLValue(LValue V); 3248 3249 RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc); 3250 3251 Address EmitArrayToPointerDecay(const Expr *Array, 3252 LValueBaseInfo *BaseInfo = nullptr, 3253 TBAAAccessInfo *TBAAInfo = nullptr); 3254 3255 class ConstantEmission { 3256 llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; 3257 ConstantEmission(llvm::Constant *C, bool isReference) 3258 : ValueAndIsReference(C, isReference) {} 3259 public: 3260 ConstantEmission() {} 3261 static ConstantEmission forReference(llvm::Constant *C) { 3262 return ConstantEmission(C, true); 3263 } 3264 static ConstantEmission forValue(llvm::Constant *C) { 3265 return ConstantEmission(C, false); 3266 } 3267 3268 explicit operator bool() const { 3269 return ValueAndIsReference.getOpaqueValue() != nullptr; 3270 } 3271 3272 bool isReference() const { return ValueAndIsReference.getInt(); } 3273 LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { 3274 assert(isReference()); 3275 return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), 3276 refExpr->getType()); 3277 } 3278 3279 llvm::Constant *getValue() const { 3280 assert(!isReference()); 3281 return ValueAndIsReference.getPointer(); 3282 } 3283 }; 3284 3285 ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); 3286 ConstantEmission tryEmitAsConstant(const MemberExpr *ME); 3287 3288 RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, 3289 AggValueSlot slot = AggValueSlot::ignored()); 3290 LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); 3291 3292 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 3293 const ObjCIvarDecl *Ivar); 3294 LValue EmitLValueForField(LValue Base, const FieldDecl* Field); 3295 LValue EmitLValueForLambdaField(const FieldDecl *Field); 3296 3297 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 3298 /// if the Field is a reference, this will return the address of the reference 3299 /// and not the address of the value stored in the reference. 3300 LValue EmitLValueForFieldInitialization(LValue Base, 3301 const FieldDecl* Field); 3302 3303 LValue EmitLValueForIvar(QualType ObjectTy, 3304 llvm::Value* Base, const ObjCIvarDecl *Ivar, 3305 unsigned CVRQualifiers); 3306 3307 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 3308 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 3309 LValue EmitLambdaLValue(const LambdaExpr *E); 3310 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 3311 LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E); 3312 3313 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 3314 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 3315 LValue EmitStmtExprLValue(const StmtExpr *E); 3316 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 3317 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 3318 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init); 3319 3320 //===--------------------------------------------------------------------===// 3321 // Scalar Expression Emission 3322 //===--------------------------------------------------------------------===// 3323 3324 /// EmitCall - Generate a call of the given function, expecting the given 3325 /// result type, and using the given argument list which specifies both the 3326 /// LLVM arguments and the types they were derived from. 3327 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 3328 ReturnValueSlot ReturnValue, const CallArgList &Args, 3329 llvm::Instruction **callOrInvoke, SourceLocation Loc); 3330 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 3331 ReturnValueSlot ReturnValue, const CallArgList &Args, 3332 llvm::Instruction **callOrInvoke = nullptr) { 3333 return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke, 3334 SourceLocation()); 3335 } 3336 RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E, 3337 ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr); 3338 RValue EmitCallExpr(const CallExpr *E, 3339 ReturnValueSlot ReturnValue = ReturnValueSlot()); 3340 RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 3341 CGCallee EmitCallee(const Expr *E); 3342 3343 void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl); 3344 3345 llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, 3346 const Twine &name = ""); 3347 llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, 3348 ArrayRef<llvm::Value*> args, 3349 const Twine &name = ""); 3350 llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, 3351 const Twine &name = ""); 3352 llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, 3353 ArrayRef<llvm::Value*> args, 3354 const Twine &name = ""); 3355 3356 llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, 3357 ArrayRef<llvm::Value *> Args, 3358 const Twine &Name = ""); 3359 llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, 3360 ArrayRef<llvm::Value*> args, 3361 const Twine &name = ""); 3362 llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, 3363 const Twine &name = ""); 3364 void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee, 3365 ArrayRef<llvm::Value*> args); 3366 3367 CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 3368 NestedNameSpecifier *Qual, 3369 llvm::Type *Ty); 3370 3371 CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 3372 CXXDtorType Type, 3373 const CXXRecordDecl *RD); 3374 3375 RValue 3376 EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method, 3377 const CGCallee &Callee, 3378 ReturnValueSlot ReturnValue, llvm::Value *This, 3379 llvm::Value *ImplicitParam, 3380 QualType ImplicitParamTy, const CallExpr *E, 3381 CallArgList *RtlArgs); 3382 RValue EmitCXXDestructorCall(const CXXDestructorDecl *DD, 3383 const CGCallee &Callee, 3384 llvm::Value *This, llvm::Value *ImplicitParam, 3385 QualType ImplicitParamTy, const CallExpr *E, 3386 StructorType Type); 3387 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 3388 ReturnValueSlot ReturnValue); 3389 RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE, 3390 const CXXMethodDecl *MD, 3391 ReturnValueSlot ReturnValue, 3392 bool HasQualifier, 3393 NestedNameSpecifier *Qualifier, 3394 bool IsArrow, const Expr *Base); 3395 // Compute the object pointer. 3396 Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base, 3397 llvm::Value *memberPtr, 3398 const MemberPointerType *memberPtrType, 3399 LValueBaseInfo *BaseInfo = nullptr, 3400 TBAAAccessInfo *TBAAInfo = nullptr); 3401 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 3402 ReturnValueSlot ReturnValue); 3403 3404 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 3405 const CXXMethodDecl *MD, 3406 ReturnValueSlot ReturnValue); 3407 RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E); 3408 3409 RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 3410 ReturnValueSlot ReturnValue); 3411 3412 RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E, 3413 ReturnValueSlot ReturnValue); 3414 3415 RValue EmitBuiltinExpr(const FunctionDecl *FD, 3416 unsigned BuiltinID, const CallExpr *E, 3417 ReturnValueSlot ReturnValue); 3418 3419 /// Emit IR for __builtin_os_log_format. 3420 RValue emitBuiltinOSLogFormat(const CallExpr &E); 3421 3422 llvm::Function *generateBuiltinOSLogHelperFunction( 3423 const analyze_os_log::OSLogBufferLayout &Layout, 3424 CharUnits BufferAlignment); 3425 3426 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 3427 3428 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 3429 /// is unhandled by the current target. 3430 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3431 3432 llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty, 3433 const llvm::CmpInst::Predicate Fp, 3434 const llvm::CmpInst::Predicate Ip, 3435 const llvm::Twine &Name = ""); 3436 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 3437 llvm::Triple::ArchType Arch); 3438 3439 llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID, 3440 unsigned LLVMIntrinsic, 3441 unsigned AltLLVMIntrinsic, 3442 const char *NameHint, 3443 unsigned Modifier, 3444 const CallExpr *E, 3445 SmallVectorImpl<llvm::Value *> &Ops, 3446 Address PtrOp0, Address PtrOp1, 3447 llvm::Triple::ArchType Arch); 3448 llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID, 3449 unsigned Modifier, llvm::Type *ArgTy, 3450 const CallExpr *E); 3451 llvm::Value *EmitNeonCall(llvm::Function *F, 3452 SmallVectorImpl<llvm::Value*> &O, 3453 const char *name, 3454 unsigned shift = 0, bool rightshift = false); 3455 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 3456 llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, 3457 bool negateForRightShift); 3458 llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt, 3459 llvm::Type *Ty, bool usgn, const char *name); 3460 llvm::Value *vectorWrapScalar16(llvm::Value *Op); 3461 llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E, 3462 llvm::Triple::ArchType Arch); 3463 3464 llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); 3465 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3466 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3467 llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3468 llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3469 llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3470 llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID, 3471 const CallExpr *E); 3472 llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3473 3474 private: 3475 enum class MSVCIntrin; 3476 3477 public: 3478 llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E); 3479 3480 llvm::Value *EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args); 3481 3482 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 3483 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 3484 llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); 3485 llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); 3486 llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); 3487 llvm::Value *EmitObjCCollectionLiteral(const Expr *E, 3488 const ObjCMethodDecl *MethodWithObjects); 3489 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 3490 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 3491 ReturnValueSlot Return = ReturnValueSlot()); 3492 3493 /// Retrieves the default cleanup kind for an ARC cleanup. 3494 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. 3495 CleanupKind getARCCleanupKind() { 3496 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 3497 ? NormalAndEHCleanup : NormalCleanup; 3498 } 3499 3500 // ARC primitives. 3501 void EmitARCInitWeak(Address addr, llvm::Value *value); 3502 void EmitARCDestroyWeak(Address addr); 3503 llvm::Value *EmitARCLoadWeak(Address addr); 3504 llvm::Value *EmitARCLoadWeakRetained(Address addr); 3505 llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored); 3506 void EmitARCCopyWeak(Address dst, Address src); 3507 void EmitARCMoveWeak(Address dst, Address src); 3508 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 3509 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 3510 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 3511 bool resultIgnored); 3512 llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value, 3513 bool resultIgnored); 3514 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 3515 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 3516 llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); 3517 void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise); 3518 void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 3519 llvm::Value *EmitARCAutorelease(llvm::Value *value); 3520 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 3521 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 3522 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 3523 llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value); 3524 3525 std::pair<LValue,llvm::Value*> 3526 EmitARCStoreAutoreleasing(const BinaryOperator *e); 3527 std::pair<LValue,llvm::Value*> 3528 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 3529 std::pair<LValue,llvm::Value*> 3530 EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored); 3531 3532 llvm::Value *EmitObjCThrowOperand(const Expr *expr); 3533 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 3534 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 3535 3536 llvm::Value *EmitARCExtendBlockObject(const Expr *expr); 3537 llvm::Value *EmitARCReclaimReturnedObject(const Expr *e, 3538 bool allowUnsafeClaim); 3539 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 3540 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 3541 llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr); 3542 3543 void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values); 3544 3545 static Destroyer destroyARCStrongImprecise; 3546 static Destroyer destroyARCStrongPrecise; 3547 static Destroyer destroyARCWeak; 3548 static Destroyer emitARCIntrinsicUse; 3549 3550 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 3551 llvm::Value *EmitObjCAutoreleasePoolPush(); 3552 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 3553 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 3554 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 3555 3556 /// \brief Emits a reference binding to the passed in expression. 3557 RValue EmitReferenceBindingToExpr(const Expr *E); 3558 3559 //===--------------------------------------------------------------------===// 3560 // Expression Emission 3561 //===--------------------------------------------------------------------===// 3562 3563 // Expressions are broken into three classes: scalar, complex, aggregate. 3564 3565 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 3566 /// scalar type, returning the result. 3567 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 3568 3569 /// Emit a conversion from the specified type to the specified destination 3570 /// type, both of which are LLVM scalar types. 3571 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 3572 QualType DstTy, SourceLocation Loc); 3573 3574 /// Emit a conversion from the specified complex type to the specified 3575 /// destination type, where the destination type is an LLVM scalar type. 3576 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 3577 QualType DstTy, 3578 SourceLocation Loc); 3579 3580 /// EmitAggExpr - Emit the computation of the specified expression 3581 /// of aggregate type. The result is computed into the given slot, 3582 /// which may be null to indicate that the value is not needed. 3583 void EmitAggExpr(const Expr *E, AggValueSlot AS); 3584 3585 /// EmitAggExprToLValue - Emit the computation of the specified expression of 3586 /// aggregate type into a temporary LValue. 3587 LValue EmitAggExprToLValue(const Expr *E); 3588 3589 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 3590 /// make sure it survives garbage collection until this point. 3591 void EmitExtendGCLifetime(llvm::Value *object); 3592 3593 /// EmitComplexExpr - Emit the computation of the specified expression of 3594 /// complex type, returning the result. 3595 ComplexPairTy EmitComplexExpr(const Expr *E, 3596 bool IgnoreReal = false, 3597 bool IgnoreImag = false); 3598 3599 /// EmitComplexExprIntoLValue - Emit the given expression of complex 3600 /// type and place its result into the specified l-value. 3601 void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit); 3602 3603 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 3604 void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit); 3605 3606 /// EmitLoadOfComplex - Load a complex number from the specified l-value. 3607 ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc); 3608 3609 Address emitAddrOfRealComponent(Address complex, QualType complexType); 3610 Address emitAddrOfImagComponent(Address complex, QualType complexType); 3611 3612 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 3613 /// global variable that has already been created for it. If the initializer 3614 /// has a different type than GV does, this may free GV and return a different 3615 /// one. Otherwise it just returns GV. 3616 llvm::GlobalVariable * 3617 AddInitializerToStaticVarDecl(const VarDecl &D, 3618 llvm::GlobalVariable *GV); 3619 3620 3621 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 3622 /// variable with global storage. 3623 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr, 3624 bool PerformInit); 3625 3626 llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::Constant *Dtor, 3627 llvm::Constant *Addr); 3628 3629 /// Call atexit() with a function that passes the given argument to 3630 /// the given function. 3631 void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn, 3632 llvm::Constant *addr); 3633 3634 /// Emit code in this function to perform a guarded variable 3635 /// initialization. Guarded initializations are used when it's not 3636 /// possible to prove that an initialization will be done exactly 3637 /// once, e.g. with a static local variable or a static data member 3638 /// of a class template. 3639 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, 3640 bool PerformInit); 3641 3642 enum class GuardKind { VariableGuard, TlsGuard }; 3643 3644 /// Emit a branch to select whether or not to perform guarded initialization. 3645 void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit, 3646 llvm::BasicBlock *InitBlock, 3647 llvm::BasicBlock *NoInitBlock, 3648 GuardKind Kind, const VarDecl *D); 3649 3650 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 3651 /// variables. 3652 void GenerateCXXGlobalInitFunc(llvm::Function *Fn, 3653 ArrayRef<llvm::Function *> CXXThreadLocals, 3654 Address Guard = Address::invalid()); 3655 3656 /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global 3657 /// variables. 3658 void GenerateCXXGlobalDtorsFunc( 3659 llvm::Function *Fn, 3660 const std::vector<std::pair<llvm::WeakTrackingVH, llvm::Constant *>> 3661 &DtorsAndObjects); 3662 3663 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 3664 const VarDecl *D, 3665 llvm::GlobalVariable *Addr, 3666 bool PerformInit); 3667 3668 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 3669 3670 void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp); 3671 3672 void enterFullExpression(const ExprWithCleanups *E) { 3673 if (E->getNumObjects() == 0) return; 3674 enterNonTrivialFullExpression(E); 3675 } 3676 void enterNonTrivialFullExpression(const ExprWithCleanups *E); 3677 3678 void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true); 3679 3680 void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest); 3681 3682 RValue EmitAtomicExpr(AtomicExpr *E); 3683 3684 //===--------------------------------------------------------------------===// 3685 // Annotations Emission 3686 //===--------------------------------------------------------------------===// 3687 3688 /// Emit an annotation call (intrinsic or builtin). 3689 llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn, 3690 llvm::Value *AnnotatedVal, 3691 StringRef AnnotationStr, 3692 SourceLocation Location); 3693 3694 /// Emit local annotations for the local variable V, declared by D. 3695 void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); 3696 3697 /// Emit field annotations for the given field & value. Returns the 3698 /// annotation result. 3699 Address EmitFieldAnnotations(const FieldDecl *D, Address V); 3700 3701 //===--------------------------------------------------------------------===// 3702 // Internal Helpers 3703 //===--------------------------------------------------------------------===// 3704 3705 /// ContainsLabel - Return true if the statement contains a label in it. If 3706 /// this statement is not executed normally, it not containing a label means 3707 /// that we can just remove the code. 3708 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 3709 3710 /// containsBreak - Return true if the statement contains a break out of it. 3711 /// If the statement (recursively) contains a switch or loop with a break 3712 /// inside of it, this is fine. 3713 static bool containsBreak(const Stmt *S); 3714 3715 /// Determine if the given statement might introduce a declaration into the 3716 /// current scope, by being a (possibly-labelled) DeclStmt. 3717 static bool mightAddDeclToScope(const Stmt *S); 3718 3719 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 3720 /// to a constant, or if it does but contains a label, return false. If it 3721 /// constant folds return true and set the boolean result in Result. 3722 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result, 3723 bool AllowLabels = false); 3724 3725 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 3726 /// to a constant, or if it does but contains a label, return false. If it 3727 /// constant folds return true and set the folded value. 3728 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result, 3729 bool AllowLabels = false); 3730 3731 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 3732 /// if statement) to the specified blocks. Based on the condition, this might 3733 /// try to simplify the codegen of the conditional based on the branch. 3734 /// TrueCount should be the number of times we expect the condition to 3735 /// evaluate to true based on PGO data. 3736 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 3737 llvm::BasicBlock *FalseBlock, uint64_t TrueCount); 3738 3739 /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is 3740 /// nonnull, if \p LHS is marked _Nonnull. 3741 void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc); 3742 3743 /// An enumeration which makes it easier to specify whether or not an 3744 /// operation is a subtraction. 3745 enum { NotSubtraction = false, IsSubtraction = true }; 3746 3747 /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to 3748 /// detect undefined behavior when the pointer overflow sanitizer is enabled. 3749 /// \p SignedIndices indicates whether any of the GEP indices are signed. 3750 /// \p IsSubtraction indicates whether the expression used to form the GEP 3751 /// is a subtraction. 3752 llvm::Value *EmitCheckedInBoundsGEP(llvm::Value *Ptr, 3753 ArrayRef<llvm::Value *> IdxList, 3754 bool SignedIndices, 3755 bool IsSubtraction, 3756 SourceLocation Loc, 3757 const Twine &Name = ""); 3758 3759 /// Specifies which type of sanitizer check to apply when handling a 3760 /// particular builtin. 3761 enum BuiltinCheckKind { 3762 BCK_CTZPassedZero, 3763 BCK_CLZPassedZero, 3764 }; 3765 3766 /// Emits an argument for a call to a builtin. If the builtin sanitizer is 3767 /// enabled, a runtime check specified by \p Kind is also emitted. 3768 llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind); 3769 3770 /// \brief Emit a description of a type in a format suitable for passing to 3771 /// a runtime sanitizer handler. 3772 llvm::Constant *EmitCheckTypeDescriptor(QualType T); 3773 3774 /// \brief Convert a value into a format suitable for passing to a runtime 3775 /// sanitizer handler. 3776 llvm::Value *EmitCheckValue(llvm::Value *V); 3777 3778 /// \brief Emit a description of a source location in a format suitable for 3779 /// passing to a runtime sanitizer handler. 3780 llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc); 3781 3782 /// \brief Create a basic block that will call a handler function in a 3783 /// sanitizer runtime with the provided arguments, and create a conditional 3784 /// branch to it. 3785 void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 3786 SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs, 3787 ArrayRef<llvm::Value *> DynamicArgs); 3788 3789 /// \brief Emit a slow path cross-DSO CFI check which calls __cfi_slowpath 3790 /// if Cond if false. 3791 void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond, 3792 llvm::ConstantInt *TypeId, llvm::Value *Ptr, 3793 ArrayRef<llvm::Constant *> StaticArgs); 3794 3795 /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime 3796 /// checking is enabled. Otherwise, just emit an unreachable instruction. 3797 void EmitUnreachable(SourceLocation Loc); 3798 3799 /// \brief Create a basic block that will call the trap intrinsic, and emit a 3800 /// conditional branch to it, for the -ftrapv checks. 3801 void EmitTrapCheck(llvm::Value *Checked); 3802 3803 /// \brief Emit a call to trap or debugtrap and attach function attribute 3804 /// "trap-func-name" if specified. 3805 llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID); 3806 3807 /// \brief Emit a stub for the cross-DSO CFI check function. 3808 void EmitCfiCheckStub(); 3809 3810 /// \brief Emit a cross-DSO CFI failure handling function. 3811 void EmitCfiCheckFail(); 3812 3813 /// \brief Create a check for a function parameter that may potentially be 3814 /// declared as non-null. 3815 void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc, 3816 AbstractCallee AC, unsigned ParmNum); 3817 3818 /// EmitCallArg - Emit a single call argument. 3819 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 3820 3821 /// EmitDelegateCallArg - We are performing a delegate call; that 3822 /// is, the current function is delegating to another one. Produce 3823 /// a r-value suitable for passing the given parameter. 3824 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param, 3825 SourceLocation loc); 3826 3827 /// SetFPAccuracy - Set the minimum required accuracy of the given floating 3828 /// point operation, expressed as the maximum relative error in ulp. 3829 void SetFPAccuracy(llvm::Value *Val, float Accuracy); 3830 3831 private: 3832 llvm::MDNode *getRangeForLoadFromType(QualType Ty); 3833 void EmitReturnOfRValue(RValue RV, QualType Ty); 3834 3835 void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New); 3836 3837 llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4> 3838 DeferredReplacements; 3839 3840 /// Set the address of a local variable. 3841 void setAddrOfLocalVar(const VarDecl *VD, Address Addr) { 3842 assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!"); 3843 LocalDeclMap.insert({VD, Addr}); 3844 } 3845 3846 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 3847 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 3848 /// 3849 /// \param AI - The first function argument of the expansion. 3850 void ExpandTypeFromArgs(QualType Ty, LValue Dst, 3851 SmallVectorImpl<llvm::Value *>::iterator &AI); 3852 3853 /// ExpandTypeToArgs - Expand an RValue \arg RV, with the LLVM type for \arg 3854 /// Ty, into individual arguments on the provided vector \arg IRCallArgs, 3855 /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand. 3856 void ExpandTypeToArgs(QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy, 3857 SmallVectorImpl<llvm::Value *> &IRCallArgs, 3858 unsigned &IRCallArgPos); 3859 3860 llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info, 3861 const Expr *InputExpr, std::string &ConstraintStr); 3862 3863 llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 3864 LValue InputValue, QualType InputType, 3865 std::string &ConstraintStr, 3866 SourceLocation Loc); 3867 3868 /// \brief Attempts to statically evaluate the object size of E. If that 3869 /// fails, emits code to figure the size of E out for us. This is 3870 /// pass_object_size aware. 3871 /// 3872 /// If EmittedExpr is non-null, this will use that instead of re-emitting E. 3873 llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type, 3874 llvm::IntegerType *ResType, 3875 llvm::Value *EmittedE); 3876 3877 /// \brief Emits the size of E, as required by __builtin_object_size. This 3878 /// function is aware of pass_object_size parameters, and will act accordingly 3879 /// if E is a parameter with the pass_object_size attribute. 3880 llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type, 3881 llvm::IntegerType *ResType, 3882 llvm::Value *EmittedE); 3883 3884 public: 3885 #ifndef NDEBUG 3886 // Determine whether the given argument is an Objective-C method 3887 // that may have type parameters in its signature. 3888 static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) { 3889 const DeclContext *dc = method->getDeclContext(); 3890 if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) { 3891 return classDecl->getTypeParamListAsWritten(); 3892 } 3893 3894 if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) { 3895 return catDecl->getTypeParamList(); 3896 } 3897 3898 return false; 3899 } 3900 3901 template<typename T> 3902 static bool isObjCMethodWithTypeParams(const T *) { return false; } 3903 #endif 3904 3905 enum class EvaluationOrder { 3906 ///! No language constraints on evaluation order. 3907 Default, 3908 ///! Language semantics require left-to-right evaluation. 3909 ForceLeftToRight, 3910 ///! Language semantics require right-to-left evaluation. 3911 ForceRightToLeft 3912 }; 3913 3914 /// EmitCallArgs - Emit call arguments for a function. 3915 template <typename T> 3916 void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo, 3917 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 3918 AbstractCallee AC = AbstractCallee(), 3919 unsigned ParamsToSkip = 0, 3920 EvaluationOrder Order = EvaluationOrder::Default) { 3921 SmallVector<QualType, 16> ArgTypes; 3922 CallExpr::const_arg_iterator Arg = ArgRange.begin(); 3923 3924 assert((ParamsToSkip == 0 || CallArgTypeInfo) && 3925 "Can't skip parameters if type info is not provided"); 3926 if (CallArgTypeInfo) { 3927 #ifndef NDEBUG 3928 bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo); 3929 #endif 3930 3931 // First, use the argument types that the type info knows about 3932 for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip, 3933 E = CallArgTypeInfo->param_type_end(); 3934 I != E; ++I, ++Arg) { 3935 assert(Arg != ArgRange.end() && "Running over edge of argument list!"); 3936 assert((isGenericMethod || 3937 ((*I)->isVariablyModifiedType() || 3938 (*I).getNonReferenceType()->isObjCRetainableType() || 3939 getContext() 3940 .getCanonicalType((*I).getNonReferenceType()) 3941 .getTypePtr() == 3942 getContext() 3943 .getCanonicalType((*Arg)->getType()) 3944 .getTypePtr())) && 3945 "type mismatch in call argument!"); 3946 ArgTypes.push_back(*I); 3947 } 3948 } 3949 3950 // Either we've emitted all the call args, or we have a call to variadic 3951 // function. 3952 assert((Arg == ArgRange.end() || !CallArgTypeInfo || 3953 CallArgTypeInfo->isVariadic()) && 3954 "Extra arguments in non-variadic function!"); 3955 3956 // If we still have any arguments, emit them using the type of the argument. 3957 for (auto *A : llvm::make_range(Arg, ArgRange.end())) 3958 ArgTypes.push_back(CallArgTypeInfo ? getVarArgType(A) : A->getType()); 3959 3960 EmitCallArgs(Args, ArgTypes, ArgRange, AC, ParamsToSkip, Order); 3961 } 3962 3963 void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes, 3964 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 3965 AbstractCallee AC = AbstractCallee(), 3966 unsigned ParamsToSkip = 0, 3967 EvaluationOrder Order = EvaluationOrder::Default); 3968 3969 /// EmitPointerWithAlignment - Given an expression with a pointer type, 3970 /// emit the value and compute our best estimate of the alignment of the 3971 /// pointee. 3972 /// 3973 /// \param BaseInfo - If non-null, this will be initialized with 3974 /// information about the source of the alignment and the may-alias 3975 /// attribute. Note that this function will conservatively fall back on 3976 /// the type when it doesn't recognize the expression and may-alias will 3977 /// be set to false. 3978 /// 3979 /// One reasonable way to use this information is when there's a language 3980 /// guarantee that the pointer must be aligned to some stricter value, and 3981 /// we're simply trying to ensure that sufficiently obvious uses of under- 3982 /// aligned objects don't get miscompiled; for example, a placement new 3983 /// into the address of a local variable. In such a case, it's quite 3984 /// reasonable to just ignore the returned alignment when it isn't from an 3985 /// explicit source. 3986 Address EmitPointerWithAlignment(const Expr *Addr, 3987 LValueBaseInfo *BaseInfo = nullptr, 3988 TBAAAccessInfo *TBAAInfo = nullptr); 3989 3990 /// If \p E references a parameter with pass_object_size info or a constant 3991 /// array size modifier, emit the object size divided by the size of \p EltTy. 3992 /// Otherwise return null. 3993 llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy); 3994 3995 void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK); 3996 3997 struct MultiVersionResolverOption { 3998 llvm::Function *Function; 3999 TargetAttr::ParsedTargetAttr ParsedAttribute; 4000 unsigned Priority; 4001 MultiVersionResolverOption(const TargetInfo &TargInfo, llvm::Function *F, 4002 const clang::TargetAttr::ParsedTargetAttr &PT) 4003 : Function(F), ParsedAttribute(PT), Priority(0u) { 4004 for (StringRef Feat : PT.Features) 4005 Priority = std::max(Priority, 4006 TargInfo.multiVersionSortPriority(Feat.substr(1))); 4007 4008 if (!PT.Architecture.empty()) 4009 Priority = std::max(Priority, 4010 TargInfo.multiVersionSortPriority(PT.Architecture)); 4011 } 4012 4013 bool operator>(const MultiVersionResolverOption &Other) const { 4014 return Priority > Other.Priority; 4015 } 4016 }; 4017 void EmitMultiVersionResolver(llvm::Function *Resolver, 4018 ArrayRef<MultiVersionResolverOption> Options); 4019 4020 private: 4021 QualType getVarArgType(const Expr *Arg); 4022 4023 void EmitDeclMetadata(); 4024 4025 BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType, 4026 const AutoVarEmission &emission); 4027 4028 void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); 4029 4030 llvm::Value *GetValueForARMHint(unsigned BuiltinID); 4031 llvm::Value *EmitX86CpuIs(const CallExpr *E); 4032 llvm::Value *EmitX86CpuIs(StringRef CPUStr); 4033 llvm::Value *EmitX86CpuSupports(const CallExpr *E); 4034 llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs); 4035 llvm::Value *EmitX86CpuInit(); 4036 llvm::Value *FormResolverCondition(const MultiVersionResolverOption &RO); 4037 }; 4038 4039 /// Helper class with most of the code for saving a value for a 4040 /// conditional expression cleanup. 4041 struct DominatingLLVMValue { 4042 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 4043 4044 /// Answer whether the given value needs extra work to be saved. 4045 static bool needsSaving(llvm::Value *value) { 4046 // If it's not an instruction, we don't need to save. 4047 if (!isa<llvm::Instruction>(value)) return false; 4048 4049 // If it's an instruction in the entry block, we don't need to save. 4050 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 4051 return (block != &block->getParent()->getEntryBlock()); 4052 } 4053 4054 /// Try to save the given value. 4055 static saved_type save(CodeGenFunction &CGF, llvm::Value *value) { 4056 if (!needsSaving(value)) return saved_type(value, false); 4057 4058 // Otherwise, we need an alloca. 4059 auto align = CharUnits::fromQuantity( 4060 CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType())); 4061 Address alloca = 4062 CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save"); 4063 CGF.Builder.CreateStore(value, alloca); 4064 4065 return saved_type(alloca.getPointer(), true); 4066 } 4067 4068 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) { 4069 // If the value says it wasn't saved, trust that it's still dominating. 4070 if (!value.getInt()) return value.getPointer(); 4071 4072 // Otherwise, it should be an alloca instruction, as set up in save(). 4073 auto alloca = cast<llvm::AllocaInst>(value.getPointer()); 4074 return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlignment()); 4075 } 4076 }; 4077 4078 /// A partial specialization of DominatingValue for llvm::Values that 4079 /// might be llvm::Instructions. 4080 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 4081 typedef T *type; 4082 static type restore(CodeGenFunction &CGF, saved_type value) { 4083 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 4084 } 4085 }; 4086 4087 /// A specialization of DominatingValue for Address. 4088 template <> struct DominatingValue<Address> { 4089 typedef Address type; 4090 4091 struct saved_type { 4092 DominatingLLVMValue::saved_type SavedValue; 4093 CharUnits Alignment; 4094 }; 4095 4096 static bool needsSaving(type value) { 4097 return DominatingLLVMValue::needsSaving(value.getPointer()); 4098 } 4099 static saved_type save(CodeGenFunction &CGF, type value) { 4100 return { DominatingLLVMValue::save(CGF, value.getPointer()), 4101 value.getAlignment() }; 4102 } 4103 static type restore(CodeGenFunction &CGF, saved_type value) { 4104 return Address(DominatingLLVMValue::restore(CGF, value.SavedValue), 4105 value.Alignment); 4106 } 4107 }; 4108 4109 /// A specialization of DominatingValue for RValue. 4110 template <> struct DominatingValue<RValue> { 4111 typedef RValue type; 4112 class saved_type { 4113 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 4114 AggregateAddress, ComplexAddress }; 4115 4116 llvm::Value *Value; 4117 unsigned K : 3; 4118 unsigned Align : 29; 4119 saved_type(llvm::Value *v, Kind k, unsigned a = 0) 4120 : Value(v), K(k), Align(a) {} 4121 4122 public: 4123 static bool needsSaving(RValue value); 4124 static saved_type save(CodeGenFunction &CGF, RValue value); 4125 RValue restore(CodeGenFunction &CGF); 4126 4127 // implementations in CGCleanup.cpp 4128 }; 4129 4130 static bool needsSaving(type value) { 4131 return saved_type::needsSaving(value); 4132 } 4133 static saved_type save(CodeGenFunction &CGF, type value) { 4134 return saved_type::save(CGF, value); 4135 } 4136 static type restore(CodeGenFunction &CGF, saved_type value) { 4137 return value.restore(CGF); 4138 } 4139 }; 4140 4141 } // end namespace CodeGen 4142 } // end namespace clang 4143 4144 #endif 4145