1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the internal per-function state used for llvm translation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef CLANG_CODEGEN_CODEGENFUNCTION_H
15 #define CLANG_CODEGEN_CODEGENFUNCTION_H
16 
17 #include "clang/AST/Type.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/ExprObjC.h"
20 #include "clang/AST/CharUnits.h"
21 #include "clang/Frontend/CodeGenOptions.h"
22 #include "clang/Basic/ABI.h"
23 #include "clang/Basic/TargetInfo.h"
24 #include "llvm/ADT/ArrayRef.h"
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/Support/ValueHandle.h"
28 #include "llvm/Support/Debug.h"
29 #include "CodeGenModule.h"
30 #include "CGBuilder.h"
31 #include "CGDebugInfo.h"
32 #include "CGValue.h"
33 
34 namespace llvm {
35   class BasicBlock;
36   class LLVMContext;
37   class MDNode;
38   class Module;
39   class SwitchInst;
40   class Twine;
41   class Value;
42   class CallSite;
43 }
44 
45 namespace clang {
46   class APValue;
47   class ASTContext;
48   class BlockDecl;
49   class CXXDestructorDecl;
50   class CXXForRangeStmt;
51   class CXXTryStmt;
52   class Decl;
53   class LabelDecl;
54   class EnumConstantDecl;
55   class FunctionDecl;
56   class FunctionProtoType;
57   class LabelStmt;
58   class ObjCContainerDecl;
59   class ObjCInterfaceDecl;
60   class ObjCIvarDecl;
61   class ObjCMethodDecl;
62   class ObjCImplementationDecl;
63   class ObjCPropertyImplDecl;
64   class TargetInfo;
65   class TargetCodeGenInfo;
66   class VarDecl;
67   class ObjCForCollectionStmt;
68   class ObjCAtTryStmt;
69   class ObjCAtThrowStmt;
70   class ObjCAtSynchronizedStmt;
71   class ObjCAutoreleasePoolStmt;
72 
73 namespace CodeGen {
74   class CodeGenTypes;
75   class CGFunctionInfo;
76   class CGRecordLayout;
77   class CGBlockInfo;
78   class CGCXXABI;
79   class BlockFlags;
80   class BlockFieldFlags;
81 
82 /// A branch fixup.  These are required when emitting a goto to a
83 /// label which hasn't been emitted yet.  The goto is optimistically
84 /// emitted as a branch to the basic block for the label, and (if it
85 /// occurs in a scope with non-trivial cleanups) a fixup is added to
86 /// the innermost cleanup.  When a (normal) cleanup is popped, any
87 /// unresolved fixups in that scope are threaded through the cleanup.
88 struct BranchFixup {
89   /// The block containing the terminator which needs to be modified
90   /// into a switch if this fixup is resolved into the current scope.
91   /// If null, LatestBranch points directly to the destination.
92   llvm::BasicBlock *OptimisticBranchBlock;
93 
94   /// The ultimate destination of the branch.
95   ///
96   /// This can be set to null to indicate that this fixup was
97   /// successfully resolved.
98   llvm::BasicBlock *Destination;
99 
100   /// The destination index value.
101   unsigned DestinationIndex;
102 
103   /// The initial branch of the fixup.
104   llvm::BranchInst *InitialBranch;
105 };
106 
107 template <class T> struct InvariantValue {
108   typedef T type;
109   typedef T saved_type;
110   static bool needsSaving(type value) { return false; }
111   static saved_type save(CodeGenFunction &CGF, type value) { return value; }
112   static type restore(CodeGenFunction &CGF, saved_type value) { return value; }
113 };
114 
115 /// A metaprogramming class for ensuring that a value will dominate an
116 /// arbitrary position in a function.
117 template <class T> struct DominatingValue : InvariantValue<T> {};
118 
119 template <class T, bool mightBeInstruction =
120             llvm::is_base_of<llvm::Value, T>::value &&
121             !llvm::is_base_of<llvm::Constant, T>::value &&
122             !llvm::is_base_of<llvm::BasicBlock, T>::value>
123 struct DominatingPointer;
124 template <class T> struct DominatingPointer<T,false> : InvariantValue<T*> {};
125 // template <class T> struct DominatingPointer<T,true> at end of file
126 
127 template <class T> struct DominatingValue<T*> : DominatingPointer<T> {};
128 
129 enum CleanupKind {
130   EHCleanup = 0x1,
131   NormalCleanup = 0x2,
132   NormalAndEHCleanup = EHCleanup | NormalCleanup,
133 
134   InactiveCleanup = 0x4,
135   InactiveEHCleanup = EHCleanup | InactiveCleanup,
136   InactiveNormalCleanup = NormalCleanup | InactiveCleanup,
137   InactiveNormalAndEHCleanup = NormalAndEHCleanup | InactiveCleanup
138 };
139 
140 /// A stack of scopes which respond to exceptions, including cleanups
141 /// and catch blocks.
142 class EHScopeStack {
143 public:
144   /// A saved depth on the scope stack.  This is necessary because
145   /// pushing scopes onto the stack invalidates iterators.
146   class stable_iterator {
147     friend class EHScopeStack;
148 
149     /// Offset from StartOfData to EndOfBuffer.
150     ptrdiff_t Size;
151 
152     stable_iterator(ptrdiff_t Size) : Size(Size) {}
153 
154   public:
155     static stable_iterator invalid() { return stable_iterator(-1); }
156     stable_iterator() : Size(-1) {}
157 
158     bool isValid() const { return Size >= 0; }
159 
160     /// Returns true if this scope encloses I.
161     /// Returns false if I is invalid.
162     /// This scope must be valid.
163     bool encloses(stable_iterator I) const { return Size <= I.Size; }
164 
165     /// Returns true if this scope strictly encloses I: that is,
166     /// if it encloses I and is not I.
167     /// Returns false is I is invalid.
168     /// This scope must be valid.
169     bool strictlyEncloses(stable_iterator I) const { return Size < I.Size; }
170 
171     friend bool operator==(stable_iterator A, stable_iterator B) {
172       return A.Size == B.Size;
173     }
174     friend bool operator!=(stable_iterator A, stable_iterator B) {
175       return A.Size != B.Size;
176     }
177   };
178 
179   /// Information for lazily generating a cleanup.  Subclasses must be
180   /// POD-like: cleanups will not be destructed, and they will be
181   /// allocated on the cleanup stack and freely copied and moved
182   /// around.
183   ///
184   /// Cleanup implementations should generally be declared in an
185   /// anonymous namespace.
186   class Cleanup {
187     // Anchor the construction vtable.
188     virtual void anchor();
189   public:
190     /// Generation flags.
191     class Flags {
192       enum {
193         F_IsForEH             = 0x1,
194         F_IsNormalCleanupKind = 0x2,
195         F_IsEHCleanupKind     = 0x4
196       };
197       unsigned flags;
198 
199     public:
200       Flags() : flags(0) {}
201 
202       /// isForEH - true if the current emission is for an EH cleanup.
203       bool isForEHCleanup() const { return flags & F_IsForEH; }
204       bool isForNormalCleanup() const { return !isForEHCleanup(); }
205       void setIsForEHCleanup() { flags |= F_IsForEH; }
206 
207       bool isNormalCleanupKind() const { return flags & F_IsNormalCleanupKind; }
208       void setIsNormalCleanupKind() { flags |= F_IsNormalCleanupKind; }
209 
210       /// isEHCleanupKind - true if the cleanup was pushed as an EH
211       /// cleanup.
212       bool isEHCleanupKind() const { return flags & F_IsEHCleanupKind; }
213       void setIsEHCleanupKind() { flags |= F_IsEHCleanupKind; }
214     };
215 
216     // Provide a virtual destructor to suppress a very common warning
217     // that unfortunately cannot be suppressed without this.  Cleanups
218     // should not rely on this destructor ever being called.
219     virtual ~Cleanup() {}
220 
221     /// Emit the cleanup.  For normal cleanups, this is run in the
222     /// same EH context as when the cleanup was pushed, i.e. the
223     /// immediately-enclosing context of the cleanup scope.  For
224     /// EH cleanups, this is run in a terminate context.
225     ///
226     // \param IsForEHCleanup true if this is for an EH cleanup, false
227     ///  if for a normal cleanup.
228     virtual void Emit(CodeGenFunction &CGF, Flags flags) = 0;
229   };
230 
231   /// ConditionalCleanupN stores the saved form of its N parameters,
232   /// then restores them and performs the cleanup.
233   template <class T, class A0>
234   class ConditionalCleanup1 : public Cleanup {
235     typedef typename DominatingValue<A0>::saved_type A0_saved;
236     A0_saved a0_saved;
237 
238     void Emit(CodeGenFunction &CGF, Flags flags) {
239       A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
240       T(a0).Emit(CGF, flags);
241     }
242 
243   public:
244     ConditionalCleanup1(A0_saved a0)
245       : a0_saved(a0) {}
246   };
247 
248   template <class T, class A0, class A1>
249   class ConditionalCleanup2 : public Cleanup {
250     typedef typename DominatingValue<A0>::saved_type A0_saved;
251     typedef typename DominatingValue<A1>::saved_type A1_saved;
252     A0_saved a0_saved;
253     A1_saved a1_saved;
254 
255     void Emit(CodeGenFunction &CGF, Flags flags) {
256       A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
257       A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
258       T(a0, a1).Emit(CGF, flags);
259     }
260 
261   public:
262     ConditionalCleanup2(A0_saved a0, A1_saved a1)
263       : a0_saved(a0), a1_saved(a1) {}
264   };
265 
266   template <class T, class A0, class A1, class A2>
267   class ConditionalCleanup3 : public Cleanup {
268     typedef typename DominatingValue<A0>::saved_type A0_saved;
269     typedef typename DominatingValue<A1>::saved_type A1_saved;
270     typedef typename DominatingValue<A2>::saved_type A2_saved;
271     A0_saved a0_saved;
272     A1_saved a1_saved;
273     A2_saved a2_saved;
274 
275     void Emit(CodeGenFunction &CGF, Flags flags) {
276       A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
277       A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
278       A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved);
279       T(a0, a1, a2).Emit(CGF, flags);
280     }
281 
282   public:
283     ConditionalCleanup3(A0_saved a0, A1_saved a1, A2_saved a2)
284       : a0_saved(a0), a1_saved(a1), a2_saved(a2) {}
285   };
286 
287   template <class T, class A0, class A1, class A2, class A3>
288   class ConditionalCleanup4 : public Cleanup {
289     typedef typename DominatingValue<A0>::saved_type A0_saved;
290     typedef typename DominatingValue<A1>::saved_type A1_saved;
291     typedef typename DominatingValue<A2>::saved_type A2_saved;
292     typedef typename DominatingValue<A3>::saved_type A3_saved;
293     A0_saved a0_saved;
294     A1_saved a1_saved;
295     A2_saved a2_saved;
296     A3_saved a3_saved;
297 
298     void Emit(CodeGenFunction &CGF, Flags flags) {
299       A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
300       A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
301       A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved);
302       A3 a3 = DominatingValue<A3>::restore(CGF, a3_saved);
303       T(a0, a1, a2, a3).Emit(CGF, flags);
304     }
305 
306   public:
307     ConditionalCleanup4(A0_saved a0, A1_saved a1, A2_saved a2, A3_saved a3)
308       : a0_saved(a0), a1_saved(a1), a2_saved(a2), a3_saved(a3) {}
309   };
310 
311 private:
312   // The implementation for this class is in CGException.h and
313   // CGException.cpp; the definition is here because it's used as a
314   // member of CodeGenFunction.
315 
316   /// The start of the scope-stack buffer, i.e. the allocated pointer
317   /// for the buffer.  All of these pointers are either simultaneously
318   /// null or simultaneously valid.
319   char *StartOfBuffer;
320 
321   /// The end of the buffer.
322   char *EndOfBuffer;
323 
324   /// The first valid entry in the buffer.
325   char *StartOfData;
326 
327   /// The innermost normal cleanup on the stack.
328   stable_iterator InnermostNormalCleanup;
329 
330   /// The innermost EH scope on the stack.
331   stable_iterator InnermostEHScope;
332 
333   /// The current set of branch fixups.  A branch fixup is a jump to
334   /// an as-yet unemitted label, i.e. a label for which we don't yet
335   /// know the EH stack depth.  Whenever we pop a cleanup, we have
336   /// to thread all the current branch fixups through it.
337   ///
338   /// Fixups are recorded as the Use of the respective branch or
339   /// switch statement.  The use points to the final destination.
340   /// When popping out of a cleanup, these uses are threaded through
341   /// the cleanup and adjusted to point to the new cleanup.
342   ///
343   /// Note that branches are allowed to jump into protected scopes
344   /// in certain situations;  e.g. the following code is legal:
345   ///     struct A { ~A(); }; // trivial ctor, non-trivial dtor
346   ///     goto foo;
347   ///     A a;
348   ///    foo:
349   ///     bar();
350   SmallVector<BranchFixup, 8> BranchFixups;
351 
352   char *allocate(size_t Size);
353 
354   void *pushCleanup(CleanupKind K, size_t DataSize);
355 
356 public:
357   EHScopeStack() : StartOfBuffer(0), EndOfBuffer(0), StartOfData(0),
358                    InnermostNormalCleanup(stable_end()),
359                    InnermostEHScope(stable_end()) {}
360   ~EHScopeStack() { delete[] StartOfBuffer; }
361 
362   // Variadic templates would make this not terrible.
363 
364   /// Push a lazily-created cleanup on the stack.
365   template <class T>
366   void pushCleanup(CleanupKind Kind) {
367     void *Buffer = pushCleanup(Kind, sizeof(T));
368     Cleanup *Obj = new(Buffer) T();
369     (void) Obj;
370   }
371 
372   /// Push a lazily-created cleanup on the stack.
373   template <class T, class A0>
374   void pushCleanup(CleanupKind Kind, A0 a0) {
375     void *Buffer = pushCleanup(Kind, sizeof(T));
376     Cleanup *Obj = new(Buffer) T(a0);
377     (void) Obj;
378   }
379 
380   /// Push a lazily-created cleanup on the stack.
381   template <class T, class A0, class A1>
382   void pushCleanup(CleanupKind Kind, A0 a0, A1 a1) {
383     void *Buffer = pushCleanup(Kind, sizeof(T));
384     Cleanup *Obj = new(Buffer) T(a0, a1);
385     (void) Obj;
386   }
387 
388   /// Push a lazily-created cleanup on the stack.
389   template <class T, class A0, class A1, class A2>
390   void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2) {
391     void *Buffer = pushCleanup(Kind, sizeof(T));
392     Cleanup *Obj = new(Buffer) T(a0, a1, a2);
393     (void) Obj;
394   }
395 
396   /// Push a lazily-created cleanup on the stack.
397   template <class T, class A0, class A1, class A2, class A3>
398   void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) {
399     void *Buffer = pushCleanup(Kind, sizeof(T));
400     Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3);
401     (void) Obj;
402   }
403 
404   /// Push a lazily-created cleanup on the stack.
405   template <class T, class A0, class A1, class A2, class A3, class A4>
406   void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3, A4 a4) {
407     void *Buffer = pushCleanup(Kind, sizeof(T));
408     Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3, a4);
409     (void) Obj;
410   }
411 
412   // Feel free to add more variants of the following:
413 
414   /// Push a cleanup with non-constant storage requirements on the
415   /// stack.  The cleanup type must provide an additional static method:
416   ///   static size_t getExtraSize(size_t);
417   /// The argument to this method will be the value N, which will also
418   /// be passed as the first argument to the constructor.
419   ///
420   /// The data stored in the extra storage must obey the same
421   /// restrictions as normal cleanup member data.
422   ///
423   /// The pointer returned from this method is valid until the cleanup
424   /// stack is modified.
425   template <class T, class A0, class A1, class A2>
426   T *pushCleanupWithExtra(CleanupKind Kind, size_t N, A0 a0, A1 a1, A2 a2) {
427     void *Buffer = pushCleanup(Kind, sizeof(T) + T::getExtraSize(N));
428     return new (Buffer) T(N, a0, a1, a2);
429   }
430 
431   /// Pops a cleanup scope off the stack.  This is private to CGCleanup.cpp.
432   void popCleanup();
433 
434   /// Push a set of catch handlers on the stack.  The catch is
435   /// uninitialized and will need to have the given number of handlers
436   /// set on it.
437   class EHCatchScope *pushCatch(unsigned NumHandlers);
438 
439   /// Pops a catch scope off the stack.  This is private to CGException.cpp.
440   void popCatch();
441 
442   /// Push an exceptions filter on the stack.
443   class EHFilterScope *pushFilter(unsigned NumFilters);
444 
445   /// Pops an exceptions filter off the stack.
446   void popFilter();
447 
448   /// Push a terminate handler on the stack.
449   void pushTerminate();
450 
451   /// Pops a terminate handler off the stack.
452   void popTerminate();
453 
454   /// Determines whether the exception-scopes stack is empty.
455   bool empty() const { return StartOfData == EndOfBuffer; }
456 
457   bool requiresLandingPad() const {
458     return InnermostEHScope != stable_end();
459   }
460 
461   /// Determines whether there are any normal cleanups on the stack.
462   bool hasNormalCleanups() const {
463     return InnermostNormalCleanup != stable_end();
464   }
465 
466   /// Returns the innermost normal cleanup on the stack, or
467   /// stable_end() if there are no normal cleanups.
468   stable_iterator getInnermostNormalCleanup() const {
469     return InnermostNormalCleanup;
470   }
471   stable_iterator getInnermostActiveNormalCleanup() const;
472 
473   stable_iterator getInnermostEHScope() const {
474     return InnermostEHScope;
475   }
476 
477   stable_iterator getInnermostActiveEHScope() const;
478 
479   /// An unstable reference to a scope-stack depth.  Invalidated by
480   /// pushes but not pops.
481   class iterator;
482 
483   /// Returns an iterator pointing to the innermost EH scope.
484   iterator begin() const;
485 
486   /// Returns an iterator pointing to the outermost EH scope.
487   iterator end() const;
488 
489   /// Create a stable reference to the top of the EH stack.  The
490   /// returned reference is valid until that scope is popped off the
491   /// stack.
492   stable_iterator stable_begin() const {
493     return stable_iterator(EndOfBuffer - StartOfData);
494   }
495 
496   /// Create a stable reference to the bottom of the EH stack.
497   static stable_iterator stable_end() {
498     return stable_iterator(0);
499   }
500 
501   /// Translates an iterator into a stable_iterator.
502   stable_iterator stabilize(iterator it) const;
503 
504   /// Turn a stable reference to a scope depth into a unstable pointer
505   /// to the EH stack.
506   iterator find(stable_iterator save) const;
507 
508   /// Removes the cleanup pointed to by the given stable_iterator.
509   void removeCleanup(stable_iterator save);
510 
511   /// Add a branch fixup to the current cleanup scope.
512   BranchFixup &addBranchFixup() {
513     assert(hasNormalCleanups() && "adding fixup in scope without cleanups");
514     BranchFixups.push_back(BranchFixup());
515     return BranchFixups.back();
516   }
517 
518   unsigned getNumBranchFixups() const { return BranchFixups.size(); }
519   BranchFixup &getBranchFixup(unsigned I) {
520     assert(I < getNumBranchFixups());
521     return BranchFixups[I];
522   }
523 
524   /// Pops lazily-removed fixups from the end of the list.  This
525   /// should only be called by procedures which have just popped a
526   /// cleanup or resolved one or more fixups.
527   void popNullFixups();
528 
529   /// Clears the branch-fixups list.  This should only be called by
530   /// ResolveAllBranchFixups.
531   void clearFixups() { BranchFixups.clear(); }
532 };
533 
534 /// CodeGenFunction - This class organizes the per-function state that is used
535 /// while generating LLVM code.
536 class CodeGenFunction : public CodeGenTypeCache {
537   CodeGenFunction(const CodeGenFunction&); // DO NOT IMPLEMENT
538   void operator=(const CodeGenFunction&);  // DO NOT IMPLEMENT
539 
540   friend class CGCXXABI;
541 public:
542   /// A jump destination is an abstract label, branching to which may
543   /// require a jump out through normal cleanups.
544   struct JumpDest {
545     JumpDest() : Block(0), ScopeDepth(), Index(0) {}
546     JumpDest(llvm::BasicBlock *Block,
547              EHScopeStack::stable_iterator Depth,
548              unsigned Index)
549       : Block(Block), ScopeDepth(Depth), Index(Index) {}
550 
551     bool isValid() const { return Block != 0; }
552     llvm::BasicBlock *getBlock() const { return Block; }
553     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
554     unsigned getDestIndex() const { return Index; }
555 
556   private:
557     llvm::BasicBlock *Block;
558     EHScopeStack::stable_iterator ScopeDepth;
559     unsigned Index;
560   };
561 
562   CodeGenModule &CGM;  // Per-module state.
563   const TargetInfo &Target;
564 
565   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
566   CGBuilderTy Builder;
567 
568   /// CurFuncDecl - Holds the Decl for the current function or ObjC method.
569   /// This excludes BlockDecls.
570   const Decl *CurFuncDecl;
571   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
572   const Decl *CurCodeDecl;
573   const CGFunctionInfo *CurFnInfo;
574   QualType FnRetTy;
575   llvm::Function *CurFn;
576 
577   /// CurGD - The GlobalDecl for the current function being compiled.
578   GlobalDecl CurGD;
579 
580   /// PrologueCleanupDepth - The cleanup depth enclosing all the
581   /// cleanups associated with the parameters.
582   EHScopeStack::stable_iterator PrologueCleanupDepth;
583 
584   /// ReturnBlock - Unified return block.
585   JumpDest ReturnBlock;
586 
587   /// ReturnValue - The temporary alloca to hold the return value. This is null
588   /// iff the function has no return value.
589   llvm::Value *ReturnValue;
590 
591   /// AllocaInsertPoint - This is an instruction in the entry block before which
592   /// we prefer to insert allocas.
593   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
594 
595   bool CatchUndefined;
596 
597   /// In ARC, whether we should autorelease the return value.
598   bool AutoreleaseResult;
599 
600   const CodeGen::CGBlockInfo *BlockInfo;
601   llvm::Value *BlockPointer;
602 
603   /// \brief A mapping from NRVO variables to the flags used to indicate
604   /// when the NRVO has been applied to this variable.
605   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
606 
607   EHScopeStack EHStack;
608 
609   /// i32s containing the indexes of the cleanup destinations.
610   llvm::AllocaInst *NormalCleanupDest;
611 
612   unsigned NextCleanupDestIndex;
613 
614   /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
615   CGBlockInfo *FirstBlockInfo;
616 
617   /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
618   llvm::BasicBlock *EHResumeBlock;
619 
620   /// The exception slot.  All landing pads write the current exception pointer
621   /// into this alloca.
622   llvm::Value *ExceptionSlot;
623 
624   /// The selector slot.  Under the MandatoryCleanup model, all landing pads
625   /// write the current selector value into this alloca.
626   llvm::AllocaInst *EHSelectorSlot;
627 
628   /// Emits a landing pad for the current EH stack.
629   llvm::BasicBlock *EmitLandingPad();
630 
631   llvm::BasicBlock *getInvokeDestImpl();
632 
633   template <class T>
634   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
635     return DominatingValue<T>::save(*this, value);
636   }
637 
638 public:
639   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
640   /// rethrows.
641   SmallVector<llvm::Value*, 8> ObjCEHValueStack;
642 
643   /// A class controlling the emission of a finally block.
644   class FinallyInfo {
645     /// Where the catchall's edge through the cleanup should go.
646     JumpDest RethrowDest;
647 
648     /// A function to call to enter the catch.
649     llvm::Constant *BeginCatchFn;
650 
651     /// An i1 variable indicating whether or not the @finally is
652     /// running for an exception.
653     llvm::AllocaInst *ForEHVar;
654 
655     /// An i8* variable into which the exception pointer to rethrow
656     /// has been saved.
657     llvm::AllocaInst *SavedExnVar;
658 
659   public:
660     void enter(CodeGenFunction &CGF, const Stmt *Finally,
661                llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
662                llvm::Constant *rethrowFn);
663     void exit(CodeGenFunction &CGF);
664   };
665 
666   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
667   /// current full-expression.  Safe against the possibility that
668   /// we're currently inside a conditionally-evaluated expression.
669   template <class T, class A0>
670   void pushFullExprCleanup(CleanupKind kind, A0 a0) {
671     // If we're not in a conditional branch, or if none of the
672     // arguments requires saving, then use the unconditional cleanup.
673     if (!isInConditionalBranch())
674       return EHStack.pushCleanup<T>(kind, a0);
675 
676     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
677 
678     typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType;
679     EHStack.pushCleanup<CleanupType>(kind, a0_saved);
680     initFullExprCleanup();
681   }
682 
683   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
684   /// current full-expression.  Safe against the possibility that
685   /// we're currently inside a conditionally-evaluated expression.
686   template <class T, class A0, class A1>
687   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) {
688     // If we're not in a conditional branch, or if none of the
689     // arguments requires saving, then use the unconditional cleanup.
690     if (!isInConditionalBranch())
691       return EHStack.pushCleanup<T>(kind, a0, a1);
692 
693     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
694     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
695 
696     typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType;
697     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved);
698     initFullExprCleanup();
699   }
700 
701   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
702   /// current full-expression.  Safe against the possibility that
703   /// we're currently inside a conditionally-evaluated expression.
704   template <class T, class A0, class A1, class A2>
705   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2) {
706     // If we're not in a conditional branch, or if none of the
707     // arguments requires saving, then use the unconditional cleanup.
708     if (!isInConditionalBranch()) {
709       return EHStack.pushCleanup<T>(kind, a0, a1, a2);
710     }
711 
712     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
713     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
714     typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
715 
716     typedef EHScopeStack::ConditionalCleanup3<T, A0, A1, A2> CleanupType;
717     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, a2_saved);
718     initFullExprCleanup();
719   }
720 
721   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
722   /// current full-expression.  Safe against the possibility that
723   /// we're currently inside a conditionally-evaluated expression.
724   template <class T, class A0, class A1, class A2, class A3>
725   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2, A3 a3) {
726     // If we're not in a conditional branch, or if none of the
727     // arguments requires saving, then use the unconditional cleanup.
728     if (!isInConditionalBranch()) {
729       return EHStack.pushCleanup<T>(kind, a0, a1, a2, a3);
730     }
731 
732     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
733     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
734     typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
735     typename DominatingValue<A3>::saved_type a3_saved = saveValueInCond(a3);
736 
737     typedef EHScopeStack::ConditionalCleanup4<T, A0, A1, A2, A3> CleanupType;
738     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved,
739                                      a2_saved, a3_saved);
740     initFullExprCleanup();
741   }
742 
743   /// Set up the last cleaup that was pushed as a conditional
744   /// full-expression cleanup.
745   void initFullExprCleanup();
746 
747   /// PushDestructorCleanup - Push a cleanup to call the
748   /// complete-object destructor of an object of the given type at the
749   /// given address.  Does nothing if T is not a C++ class type with a
750   /// non-trivial destructor.
751   void PushDestructorCleanup(QualType T, llvm::Value *Addr);
752 
753   /// PushDestructorCleanup - Push a cleanup to call the
754   /// complete-object variant of the given destructor on the object at
755   /// the given address.
756   void PushDestructorCleanup(const CXXDestructorDecl *Dtor,
757                              llvm::Value *Addr);
758 
759   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
760   /// process all branch fixups.
761   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
762 
763   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
764   /// The block cannot be reactivated.  Pops it if it's the top of the
765   /// stack.
766   ///
767   /// \param DominatingIP - An instruction which is known to
768   ///   dominate the current IP (if set) and which lies along
769   ///   all paths of execution between the current IP and the
770   ///   the point at which the cleanup comes into scope.
771   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
772                               llvm::Instruction *DominatingIP);
773 
774   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
775   /// Cannot be used to resurrect a deactivated cleanup.
776   ///
777   /// \param DominatingIP - An instruction which is known to
778   ///   dominate the current IP (if set) and which lies along
779   ///   all paths of execution between the current IP and the
780   ///   the point at which the cleanup comes into scope.
781   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
782                             llvm::Instruction *DominatingIP);
783 
784   /// \brief Enters a new scope for capturing cleanups, all of which
785   /// will be executed once the scope is exited.
786   class RunCleanupsScope {
787     EHScopeStack::stable_iterator CleanupStackDepth;
788     bool OldDidCallStackSave;
789     bool PerformCleanup;
790 
791     RunCleanupsScope(const RunCleanupsScope &); // DO NOT IMPLEMENT
792     RunCleanupsScope &operator=(const RunCleanupsScope &); // DO NOT IMPLEMENT
793 
794   protected:
795     CodeGenFunction& CGF;
796 
797   public:
798     /// \brief Enter a new cleanup scope.
799     explicit RunCleanupsScope(CodeGenFunction &CGF)
800       : PerformCleanup(true), CGF(CGF)
801     {
802       CleanupStackDepth = CGF.EHStack.stable_begin();
803       OldDidCallStackSave = CGF.DidCallStackSave;
804       CGF.DidCallStackSave = false;
805     }
806 
807     /// \brief Exit this cleanup scope, emitting any accumulated
808     /// cleanups.
809     ~RunCleanupsScope() {
810       if (PerformCleanup) {
811         CGF.DidCallStackSave = OldDidCallStackSave;
812         CGF.PopCleanupBlocks(CleanupStackDepth);
813       }
814     }
815 
816     /// \brief Determine whether this scope requires any cleanups.
817     bool requiresCleanups() const {
818       return CGF.EHStack.stable_begin() != CleanupStackDepth;
819     }
820 
821     /// \brief Force the emission of cleanups now, instead of waiting
822     /// until this object is destroyed.
823     void ForceCleanup() {
824       assert(PerformCleanup && "Already forced cleanup");
825       CGF.DidCallStackSave = OldDidCallStackSave;
826       CGF.PopCleanupBlocks(CleanupStackDepth);
827       PerformCleanup = false;
828     }
829   };
830 
831   class LexicalScope: protected RunCleanupsScope {
832     SourceRange Range;
833     bool PopDebugStack;
834 
835     LexicalScope(const LexicalScope &); // DO NOT IMPLEMENT THESE
836     LexicalScope &operator=(const LexicalScope &);
837 
838   public:
839     /// \brief Enter a new cleanup scope.
840     explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
841       : RunCleanupsScope(CGF), Range(Range), PopDebugStack(true) {
842       if (CGDebugInfo *DI = CGF.getDebugInfo())
843         DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
844     }
845 
846     /// \brief Exit this cleanup scope, emitting any accumulated
847     /// cleanups.
848     ~LexicalScope() {
849       if (PopDebugStack) {
850         CGDebugInfo *DI = CGF.getDebugInfo();
851         if (DI) DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
852       }
853     }
854 
855     /// \brief Force the emission of cleanups now, instead of waiting
856     /// until this object is destroyed.
857     void ForceCleanup() {
858       RunCleanupsScope::ForceCleanup();
859       if (CGDebugInfo *DI = CGF.getDebugInfo()) {
860         DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
861         PopDebugStack = false;
862       }
863     }
864   };
865 
866 
867   /// PopCleanupBlocks - Takes the old cleanup stack size and emits
868   /// the cleanup blocks that have been added.
869   void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize);
870 
871   void ResolveBranchFixups(llvm::BasicBlock *Target);
872 
873   /// The given basic block lies in the current EH scope, but may be a
874   /// target of a potentially scope-crossing jump; get a stable handle
875   /// to which we can perform this jump later.
876   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
877     return JumpDest(Target,
878                     EHStack.getInnermostNormalCleanup(),
879                     NextCleanupDestIndex++);
880   }
881 
882   /// The given basic block lies in the current EH scope, but may be a
883   /// target of a potentially scope-crossing jump; get a stable handle
884   /// to which we can perform this jump later.
885   JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
886     return getJumpDestInCurrentScope(createBasicBlock(Name));
887   }
888 
889   /// EmitBranchThroughCleanup - Emit a branch from the current insert
890   /// block through the normal cleanup handling code (if any) and then
891   /// on to \arg Dest.
892   void EmitBranchThroughCleanup(JumpDest Dest);
893 
894   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
895   /// specified destination obviously has no cleanups to run.  'false' is always
896   /// a conservatively correct answer for this method.
897   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
898 
899   /// popCatchScope - Pops the catch scope at the top of the EHScope
900   /// stack, emitting any required code (other than the catch handlers
901   /// themselves).
902   void popCatchScope();
903 
904   llvm::BasicBlock *getEHResumeBlock();
905   llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
906 
907   /// An object to manage conditionally-evaluated expressions.
908   class ConditionalEvaluation {
909     llvm::BasicBlock *StartBB;
910 
911   public:
912     ConditionalEvaluation(CodeGenFunction &CGF)
913       : StartBB(CGF.Builder.GetInsertBlock()) {}
914 
915     void begin(CodeGenFunction &CGF) {
916       assert(CGF.OutermostConditional != this);
917       if (!CGF.OutermostConditional)
918         CGF.OutermostConditional = this;
919     }
920 
921     void end(CodeGenFunction &CGF) {
922       assert(CGF.OutermostConditional != 0);
923       if (CGF.OutermostConditional == this)
924         CGF.OutermostConditional = 0;
925     }
926 
927     /// Returns a block which will be executed prior to each
928     /// evaluation of the conditional code.
929     llvm::BasicBlock *getStartingBlock() const {
930       return StartBB;
931     }
932   };
933 
934   /// isInConditionalBranch - Return true if we're currently emitting
935   /// one branch or the other of a conditional expression.
936   bool isInConditionalBranch() const { return OutermostConditional != 0; }
937 
938   void setBeforeOutermostConditional(llvm::Value *value, llvm::Value *addr) {
939     assert(isInConditionalBranch());
940     llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
941     new llvm::StoreInst(value, addr, &block->back());
942   }
943 
944   /// An RAII object to record that we're evaluating a statement
945   /// expression.
946   class StmtExprEvaluation {
947     CodeGenFunction &CGF;
948 
949     /// We have to save the outermost conditional: cleanups in a
950     /// statement expression aren't conditional just because the
951     /// StmtExpr is.
952     ConditionalEvaluation *SavedOutermostConditional;
953 
954   public:
955     StmtExprEvaluation(CodeGenFunction &CGF)
956       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
957       CGF.OutermostConditional = 0;
958     }
959 
960     ~StmtExprEvaluation() {
961       CGF.OutermostConditional = SavedOutermostConditional;
962       CGF.EnsureInsertPoint();
963     }
964   };
965 
966   /// An object which temporarily prevents a value from being
967   /// destroyed by aggressive peephole optimizations that assume that
968   /// all uses of a value have been realized in the IR.
969   class PeepholeProtection {
970     llvm::Instruction *Inst;
971     friend class CodeGenFunction;
972 
973   public:
974     PeepholeProtection() : Inst(0) {}
975   };
976 
977   /// A non-RAII class containing all the information about a bound
978   /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
979   /// this which makes individual mappings very simple; using this
980   /// class directly is useful when you have a variable number of
981   /// opaque values or don't want the RAII functionality for some
982   /// reason.
983   class OpaqueValueMappingData {
984     const OpaqueValueExpr *OpaqueValue;
985     bool BoundLValue;
986     CodeGenFunction::PeepholeProtection Protection;
987 
988     OpaqueValueMappingData(const OpaqueValueExpr *ov,
989                            bool boundLValue)
990       : OpaqueValue(ov), BoundLValue(boundLValue) {}
991   public:
992     OpaqueValueMappingData() : OpaqueValue(0) {}
993 
994     static bool shouldBindAsLValue(const Expr *expr) {
995       // gl-values should be bound as l-values for obvious reasons.
996       // Records should be bound as l-values because IR generation
997       // always keeps them in memory.  Expressions of function type
998       // act exactly like l-values but are formally required to be
999       // r-values in C.
1000       return expr->isGLValue() ||
1001              expr->getType()->isRecordType() ||
1002              expr->getType()->isFunctionType();
1003     }
1004 
1005     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1006                                        const OpaqueValueExpr *ov,
1007                                        const Expr *e) {
1008       if (shouldBindAsLValue(ov))
1009         return bind(CGF, ov, CGF.EmitLValue(e));
1010       return bind(CGF, ov, CGF.EmitAnyExpr(e));
1011     }
1012 
1013     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1014                                        const OpaqueValueExpr *ov,
1015                                        const LValue &lv) {
1016       assert(shouldBindAsLValue(ov));
1017       CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
1018       return OpaqueValueMappingData(ov, true);
1019     }
1020 
1021     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1022                                        const OpaqueValueExpr *ov,
1023                                        const RValue &rv) {
1024       assert(!shouldBindAsLValue(ov));
1025       CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
1026 
1027       OpaqueValueMappingData data(ov, false);
1028 
1029       // Work around an extremely aggressive peephole optimization in
1030       // EmitScalarConversion which assumes that all other uses of a
1031       // value are extant.
1032       data.Protection = CGF.protectFromPeepholes(rv);
1033 
1034       return data;
1035     }
1036 
1037     bool isValid() const { return OpaqueValue != 0; }
1038     void clear() { OpaqueValue = 0; }
1039 
1040     void unbind(CodeGenFunction &CGF) {
1041       assert(OpaqueValue && "no data to unbind!");
1042 
1043       if (BoundLValue) {
1044         CGF.OpaqueLValues.erase(OpaqueValue);
1045       } else {
1046         CGF.OpaqueRValues.erase(OpaqueValue);
1047         CGF.unprotectFromPeepholes(Protection);
1048       }
1049     }
1050   };
1051 
1052   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
1053   class OpaqueValueMapping {
1054     CodeGenFunction &CGF;
1055     OpaqueValueMappingData Data;
1056 
1057   public:
1058     static bool shouldBindAsLValue(const Expr *expr) {
1059       return OpaqueValueMappingData::shouldBindAsLValue(expr);
1060     }
1061 
1062     /// Build the opaque value mapping for the given conditional
1063     /// operator if it's the GNU ?: extension.  This is a common
1064     /// enough pattern that the convenience operator is really
1065     /// helpful.
1066     ///
1067     OpaqueValueMapping(CodeGenFunction &CGF,
1068                        const AbstractConditionalOperator *op) : CGF(CGF) {
1069       if (isa<ConditionalOperator>(op))
1070         // Leave Data empty.
1071         return;
1072 
1073       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
1074       Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
1075                                           e->getCommon());
1076     }
1077 
1078     OpaqueValueMapping(CodeGenFunction &CGF,
1079                        const OpaqueValueExpr *opaqueValue,
1080                        LValue lvalue)
1081       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
1082     }
1083 
1084     OpaqueValueMapping(CodeGenFunction &CGF,
1085                        const OpaqueValueExpr *opaqueValue,
1086                        RValue rvalue)
1087       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
1088     }
1089 
1090     void pop() {
1091       Data.unbind(CGF);
1092       Data.clear();
1093     }
1094 
1095     ~OpaqueValueMapping() {
1096       if (Data.isValid()) Data.unbind(CGF);
1097     }
1098   };
1099 
1100   /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field
1101   /// number that holds the value.
1102   unsigned getByRefValueLLVMField(const ValueDecl *VD) const;
1103 
1104   /// BuildBlockByrefAddress - Computes address location of the
1105   /// variable which is declared as __block.
1106   llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr,
1107                                       const VarDecl *V);
1108 private:
1109   CGDebugInfo *DebugInfo;
1110   bool DisableDebugInfo;
1111 
1112   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
1113   /// calling llvm.stacksave for multiple VLAs in the same scope.
1114   bool DidCallStackSave;
1115 
1116   /// IndirectBranch - The first time an indirect goto is seen we create a block
1117   /// with an indirect branch.  Every time we see the address of a label taken,
1118   /// we add the label to the indirect goto.  Every subsequent indirect goto is
1119   /// codegen'd as a jump to the IndirectBranch's basic block.
1120   llvm::IndirectBrInst *IndirectBranch;
1121 
1122   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1123   /// decls.
1124   typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy;
1125   DeclMapTy LocalDeclMap;
1126 
1127   /// LabelMap - This keeps track of the LLVM basic block for each C label.
1128   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1129 
1130   // BreakContinueStack - This keeps track of where break and continue
1131   // statements should jump to.
1132   struct BreakContinue {
1133     BreakContinue(JumpDest Break, JumpDest Continue)
1134       : BreakBlock(Break), ContinueBlock(Continue) {}
1135 
1136     JumpDest BreakBlock;
1137     JumpDest ContinueBlock;
1138   };
1139   SmallVector<BreakContinue, 8> BreakContinueStack;
1140 
1141   /// SwitchInsn - This is nearest current switch instruction. It is null if if
1142   /// current context is not in a switch.
1143   llvm::SwitchInst *SwitchInsn;
1144 
1145   /// CaseRangeBlock - This block holds if condition check for last case
1146   /// statement range in current switch instruction.
1147   llvm::BasicBlock *CaseRangeBlock;
1148 
1149   /// OpaqueLValues - Keeps track of the current set of opaque value
1150   /// expressions.
1151   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1152   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1153 
1154   // VLASizeMap - This keeps track of the associated size for each VLA type.
1155   // We track this by the size expression rather than the type itself because
1156   // in certain situations, like a const qualifier applied to an VLA typedef,
1157   // multiple VLA types can share the same size expression.
1158   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1159   // enter/leave scopes.
1160   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1161 
1162   /// A block containing a single 'unreachable' instruction.  Created
1163   /// lazily by getUnreachableBlock().
1164   llvm::BasicBlock *UnreachableBlock;
1165 
1166   /// CXXThisDecl - When generating code for a C++ member function,
1167   /// this will hold the implicit 'this' declaration.
1168   ImplicitParamDecl *CXXThisDecl;
1169   llvm::Value *CXXThisValue;
1170 
1171   /// CXXVTTDecl - When generating code for a base object constructor or
1172   /// base object destructor with virtual bases, this will hold the implicit
1173   /// VTT parameter.
1174   ImplicitParamDecl *CXXVTTDecl;
1175   llvm::Value *CXXVTTValue;
1176 
1177   /// OutermostConditional - Points to the outermost active
1178   /// conditional control.  This is used so that we know if a
1179   /// temporary should be destroyed conditionally.
1180   ConditionalEvaluation *OutermostConditional;
1181 
1182 
1183   /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM
1184   /// type as well as the field number that contains the actual data.
1185   llvm::DenseMap<const ValueDecl *, std::pair<llvm::Type *,
1186                                               unsigned> > ByRefValueInfo;
1187 
1188   llvm::BasicBlock *TerminateLandingPad;
1189   llvm::BasicBlock *TerminateHandler;
1190   llvm::BasicBlock *TrapBB;
1191 
1192 public:
1193   CodeGenFunction(CodeGenModule &cgm);
1194   ~CodeGenFunction();
1195 
1196   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1197   ASTContext &getContext() const { return CGM.getContext(); }
1198   CGDebugInfo *getDebugInfo() {
1199     if (DisableDebugInfo)
1200       return NULL;
1201     return DebugInfo;
1202   }
1203   void disableDebugInfo() { DisableDebugInfo = true; }
1204   void enableDebugInfo() { DisableDebugInfo = false; }
1205 
1206   bool shouldUseFusedARCCalls() {
1207     return CGM.getCodeGenOpts().OptimizationLevel == 0;
1208   }
1209 
1210   const LangOptions &getLangOptions() const { return CGM.getLangOptions(); }
1211 
1212   /// Returns a pointer to the function's exception object and selector slot,
1213   /// which is assigned in every landing pad.
1214   llvm::Value *getExceptionSlot();
1215   llvm::Value *getEHSelectorSlot();
1216 
1217   /// Returns the contents of the function's exception object and selector
1218   /// slots.
1219   llvm::Value *getExceptionFromSlot();
1220   llvm::Value *getSelectorFromSlot();
1221 
1222   llvm::Value *getNormalCleanupDestSlot();
1223 
1224   llvm::BasicBlock *getUnreachableBlock() {
1225     if (!UnreachableBlock) {
1226       UnreachableBlock = createBasicBlock("unreachable");
1227       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1228     }
1229     return UnreachableBlock;
1230   }
1231 
1232   llvm::BasicBlock *getInvokeDest() {
1233     if (!EHStack.requiresLandingPad()) return 0;
1234     return getInvokeDestImpl();
1235   }
1236 
1237   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1238 
1239   //===--------------------------------------------------------------------===//
1240   //                                  Cleanups
1241   //===--------------------------------------------------------------------===//
1242 
1243   typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty);
1244 
1245   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1246                                         llvm::Value *arrayEndPointer,
1247                                         QualType elementType,
1248                                         Destroyer &destroyer);
1249   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1250                                       llvm::Value *arrayEnd,
1251                                       QualType elementType,
1252                                       Destroyer &destroyer);
1253 
1254   void pushDestroy(QualType::DestructionKind dtorKind,
1255                    llvm::Value *addr, QualType type);
1256   void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type,
1257                    Destroyer &destroyer, bool useEHCleanupForArray);
1258   void emitDestroy(llvm::Value *addr, QualType type, Destroyer &destroyer,
1259                    bool useEHCleanupForArray);
1260   llvm::Function *generateDestroyHelper(llvm::Constant *addr,
1261                                         QualType type,
1262                                         Destroyer &destroyer,
1263                                         bool useEHCleanupForArray);
1264   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1265                         QualType type, Destroyer &destroyer,
1266                         bool checkZeroLength, bool useEHCleanup);
1267 
1268   Destroyer &getDestroyer(QualType::DestructionKind destructionKind);
1269 
1270   /// Determines whether an EH cleanup is required to destroy a type
1271   /// with the given destruction kind.
1272   bool needsEHCleanup(QualType::DestructionKind kind) {
1273     switch (kind) {
1274     case QualType::DK_none:
1275       return false;
1276     case QualType::DK_cxx_destructor:
1277     case QualType::DK_objc_weak_lifetime:
1278       return getLangOptions().Exceptions;
1279     case QualType::DK_objc_strong_lifetime:
1280       return getLangOptions().Exceptions &&
1281              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1282     }
1283     llvm_unreachable("bad destruction kind");
1284   }
1285 
1286   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
1287     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1288   }
1289 
1290   //===--------------------------------------------------------------------===//
1291   //                                  Objective-C
1292   //===--------------------------------------------------------------------===//
1293 
1294   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1295 
1296   void StartObjCMethod(const ObjCMethodDecl *MD,
1297                        const ObjCContainerDecl *CD,
1298                        SourceLocation StartLoc);
1299 
1300   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1301   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1302                           const ObjCPropertyImplDecl *PID);
1303   void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1304                               const ObjCPropertyImplDecl *propImpl);
1305 
1306   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1307                                   ObjCMethodDecl *MD, bool ctor);
1308 
1309   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1310   /// for the given property.
1311   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1312                           const ObjCPropertyImplDecl *PID);
1313   void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1314                               const ObjCPropertyImplDecl *propImpl);
1315   bool IndirectObjCSetterArg(const CGFunctionInfo &FI);
1316   bool IvarTypeWithAggrGCObjects(QualType Ty);
1317 
1318   //===--------------------------------------------------------------------===//
1319   //                                  Block Bits
1320   //===--------------------------------------------------------------------===//
1321 
1322   llvm::Value *EmitBlockLiteral(const BlockExpr *);
1323   llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
1324   static void destroyBlockInfos(CGBlockInfo *info);
1325   llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *,
1326                                            const CGBlockInfo &Info,
1327                                            llvm::StructType *,
1328                                            llvm::Constant *BlockVarLayout);
1329 
1330   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1331                                         const CGBlockInfo &Info,
1332                                         const Decl *OuterFuncDecl,
1333                                         const DeclMapTy &ldm);
1334 
1335   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1336   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1337 
1338   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
1339 
1340   class AutoVarEmission;
1341 
1342   void emitByrefStructureInit(const AutoVarEmission &emission);
1343   void enterByrefCleanup(const AutoVarEmission &emission);
1344 
1345   llvm::Value *LoadBlockStruct() {
1346     assert(BlockPointer && "no block pointer set!");
1347     return BlockPointer;
1348   }
1349 
1350   void AllocateBlockCXXThisPointer(const CXXThisExpr *E);
1351   void AllocateBlockDecl(const BlockDeclRefExpr *E);
1352   llvm::Value *GetAddrOfBlockDecl(const BlockDeclRefExpr *E) {
1353     return GetAddrOfBlockDecl(E->getDecl(), E->isByRef());
1354   }
1355   llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
1356   llvm::Type *BuildByRefType(const VarDecl *var);
1357 
1358   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1359                     const CGFunctionInfo &FnInfo);
1360   void StartFunction(GlobalDecl GD, QualType RetTy,
1361                      llvm::Function *Fn,
1362                      const CGFunctionInfo &FnInfo,
1363                      const FunctionArgList &Args,
1364                      SourceLocation StartLoc);
1365 
1366   void EmitConstructorBody(FunctionArgList &Args);
1367   void EmitDestructorBody(FunctionArgList &Args);
1368   void EmitFunctionBody(FunctionArgList &Args);
1369 
1370   /// EmitReturnBlock - Emit the unified return block, trying to avoid its
1371   /// emission when possible.
1372   void EmitReturnBlock();
1373 
1374   /// FinishFunction - Complete IR generation of the current function. It is
1375   /// legal to call this function even if there is no current insertion point.
1376   void FinishFunction(SourceLocation EndLoc=SourceLocation());
1377 
1378   /// GenerateThunk - Generate a thunk for the given method.
1379   void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1380                      GlobalDecl GD, const ThunkInfo &Thunk);
1381 
1382   void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1383                             GlobalDecl GD, const ThunkInfo &Thunk);
1384 
1385   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1386                         FunctionArgList &Args);
1387 
1388   /// InitializeVTablePointer - Initialize the vtable pointer of the given
1389   /// subobject.
1390   ///
1391   void InitializeVTablePointer(BaseSubobject Base,
1392                                const CXXRecordDecl *NearestVBase,
1393                                CharUnits OffsetFromNearestVBase,
1394                                llvm::Constant *VTable,
1395                                const CXXRecordDecl *VTableClass);
1396 
1397   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1398   void InitializeVTablePointers(BaseSubobject Base,
1399                                 const CXXRecordDecl *NearestVBase,
1400                                 CharUnits OffsetFromNearestVBase,
1401                                 bool BaseIsNonVirtualPrimaryBase,
1402                                 llvm::Constant *VTable,
1403                                 const CXXRecordDecl *VTableClass,
1404                                 VisitedVirtualBasesSetTy& VBases);
1405 
1406   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1407 
1408   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1409   /// to by This.
1410   llvm::Value *GetVTablePtr(llvm::Value *This, llvm::Type *Ty);
1411 
1412   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1413   /// given phase of destruction for a destructor.  The end result
1414   /// should call destructors on members and base classes in reverse
1415   /// order of their construction.
1416   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1417 
1418   /// ShouldInstrumentFunction - Return true if the current function should be
1419   /// instrumented with __cyg_profile_func_* calls
1420   bool ShouldInstrumentFunction();
1421 
1422   /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
1423   /// instrumentation function with the current function and the call site, if
1424   /// function instrumentation is enabled.
1425   void EmitFunctionInstrumentation(const char *Fn);
1426 
1427   /// EmitMCountInstrumentation - Emit call to .mcount.
1428   void EmitMCountInstrumentation();
1429 
1430   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1431   /// arguments for the given function. This is also responsible for naming the
1432   /// LLVM function arguments.
1433   void EmitFunctionProlog(const CGFunctionInfo &FI,
1434                           llvm::Function *Fn,
1435                           const FunctionArgList &Args);
1436 
1437   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1438   /// given temporary.
1439   void EmitFunctionEpilog(const CGFunctionInfo &FI);
1440 
1441   /// EmitStartEHSpec - Emit the start of the exception spec.
1442   void EmitStartEHSpec(const Decl *D);
1443 
1444   /// EmitEndEHSpec - Emit the end of the exception spec.
1445   void EmitEndEHSpec(const Decl *D);
1446 
1447   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
1448   llvm::BasicBlock *getTerminateLandingPad();
1449 
1450   /// getTerminateHandler - Return a handler (not a landing pad, just
1451   /// a catch handler) that just calls terminate.  This is used when
1452   /// a terminate scope encloses a try.
1453   llvm::BasicBlock *getTerminateHandler();
1454 
1455   llvm::Type *ConvertTypeForMem(QualType T);
1456   llvm::Type *ConvertType(QualType T);
1457   llvm::Type *ConvertType(const TypeDecl *T) {
1458     return ConvertType(getContext().getTypeDeclType(T));
1459   }
1460 
1461   /// LoadObjCSelf - Load the value of self. This function is only valid while
1462   /// generating code for an Objective-C method.
1463   llvm::Value *LoadObjCSelf();
1464 
1465   /// TypeOfSelfObject - Return type of object that this self represents.
1466   QualType TypeOfSelfObject();
1467 
1468   /// hasAggregateLLVMType - Return true if the specified AST type will map into
1469   /// an aggregate LLVM type or is void.
1470   static bool hasAggregateLLVMType(QualType T);
1471 
1472   /// createBasicBlock - Create an LLVM basic block.
1473   llvm::BasicBlock *createBasicBlock(StringRef name = "",
1474                                      llvm::Function *parent = 0,
1475                                      llvm::BasicBlock *before = 0) {
1476 #ifdef NDEBUG
1477     return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
1478 #else
1479     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
1480 #endif
1481   }
1482 
1483   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
1484   /// label maps to.
1485   JumpDest getJumpDestForLabel(const LabelDecl *S);
1486 
1487   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
1488   /// another basic block, simplify it. This assumes that no other code could
1489   /// potentially reference the basic block.
1490   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
1491 
1492   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
1493   /// adding a fall-through branch from the current insert block if
1494   /// necessary. It is legal to call this function even if there is no current
1495   /// insertion point.
1496   ///
1497   /// IsFinished - If true, indicates that the caller has finished emitting
1498   /// branches to the given block and does not expect to emit code into it. This
1499   /// means the block can be ignored if it is unreachable.
1500   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
1501 
1502   /// EmitBlockAfterUses - Emit the given block somewhere hopefully
1503   /// near its uses, and leave the insertion point in it.
1504   void EmitBlockAfterUses(llvm::BasicBlock *BB);
1505 
1506   /// EmitBranch - Emit a branch to the specified basic block from the current
1507   /// insert block, taking care to avoid creation of branches from dummy
1508   /// blocks. It is legal to call this function even if there is no current
1509   /// insertion point.
1510   ///
1511   /// This function clears the current insertion point. The caller should follow
1512   /// calls to this function with calls to Emit*Block prior to generation new
1513   /// code.
1514   void EmitBranch(llvm::BasicBlock *Block);
1515 
1516   /// HaveInsertPoint - True if an insertion point is defined. If not, this
1517   /// indicates that the current code being emitted is unreachable.
1518   bool HaveInsertPoint() const {
1519     return Builder.GetInsertBlock() != 0;
1520   }
1521 
1522   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
1523   /// emitted IR has a place to go. Note that by definition, if this function
1524   /// creates a block then that block is unreachable; callers may do better to
1525   /// detect when no insertion point is defined and simply skip IR generation.
1526   void EnsureInsertPoint() {
1527     if (!HaveInsertPoint())
1528       EmitBlock(createBasicBlock());
1529   }
1530 
1531   /// ErrorUnsupported - Print out an error that codegen doesn't support the
1532   /// specified stmt yet.
1533   void ErrorUnsupported(const Stmt *S, const char *Type,
1534                         bool OmitOnError=false);
1535 
1536   //===--------------------------------------------------------------------===//
1537   //                                  Helpers
1538   //===--------------------------------------------------------------------===//
1539 
1540   LValue MakeAddrLValue(llvm::Value *V, QualType T,
1541                         CharUnits Alignment = CharUnits()) {
1542     return LValue::MakeAddr(V, T, Alignment, getContext(),
1543                             CGM.getTBAAInfo(T));
1544   }
1545   LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
1546     CharUnits Alignment;
1547     if (!T->isIncompleteType())
1548       Alignment = getContext().getTypeAlignInChars(T);
1549     return LValue::MakeAddr(V, T, Alignment, getContext(),
1550                             CGM.getTBAAInfo(T));
1551   }
1552 
1553   /// CreateTempAlloca - This creates a alloca and inserts it into the entry
1554   /// block. The caller is responsible for setting an appropriate alignment on
1555   /// the alloca.
1556   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty,
1557                                      const Twine &Name = "tmp");
1558 
1559   /// InitTempAlloca - Provide an initial value for the given alloca.
1560   void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value);
1561 
1562   /// CreateIRTemp - Create a temporary IR object of the given type, with
1563   /// appropriate alignment. This routine should only be used when an temporary
1564   /// value needs to be stored into an alloca (for example, to avoid explicit
1565   /// PHI construction), but the type is the IR type, not the type appropriate
1566   /// for storing in memory.
1567   llvm::AllocaInst *CreateIRTemp(QualType T, const Twine &Name = "tmp");
1568 
1569   /// CreateMemTemp - Create a temporary memory object of the given type, with
1570   /// appropriate alignment.
1571   llvm::AllocaInst *CreateMemTemp(QualType T, const Twine &Name = "tmp");
1572 
1573   /// CreateAggTemp - Create a temporary memory object for the given
1574   /// aggregate type.
1575   AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
1576     CharUnits Alignment = getContext().getTypeAlignInChars(T);
1577     return AggValueSlot::forAddr(CreateMemTemp(T, Name), Alignment,
1578                                  T.getQualifiers(),
1579                                  AggValueSlot::IsNotDestructed,
1580                                  AggValueSlot::DoesNotNeedGCBarriers,
1581                                  AggValueSlot::IsNotAliased);
1582   }
1583 
1584   /// Emit a cast to void* in the appropriate address space.
1585   llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
1586 
1587   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
1588   /// expression and compare the result against zero, returning an Int1Ty value.
1589   llvm::Value *EvaluateExprAsBool(const Expr *E);
1590 
1591   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
1592   void EmitIgnoredExpr(const Expr *E);
1593 
1594   /// EmitAnyExpr - Emit code to compute the specified expression which can have
1595   /// any type.  The result is returned as an RValue struct.  If this is an
1596   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
1597   /// the result should be returned.
1598   ///
1599   /// \param IgnoreResult - True if the resulting value isn't used.
1600   RValue EmitAnyExpr(const Expr *E,
1601                      AggValueSlot AggSlot = AggValueSlot::ignored(),
1602                      bool IgnoreResult = false);
1603 
1604   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
1605   // or the value of the expression, depending on how va_list is defined.
1606   llvm::Value *EmitVAListRef(const Expr *E);
1607 
1608   /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
1609   /// always be accessible even if no aggregate location is provided.
1610   RValue EmitAnyExprToTemp(const Expr *E);
1611 
1612   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
1613   /// arbitrary expression into the given memory location.
1614   void EmitAnyExprToMem(const Expr *E, llvm::Value *Location,
1615                         Qualifiers Quals, bool IsInitializer);
1616 
1617   /// EmitExprAsInit - Emits the code necessary to initialize a
1618   /// location in memory with the given initializer.
1619   void EmitExprAsInit(const Expr *init, const ValueDecl *D,
1620                       LValue lvalue, bool capturedByInit);
1621 
1622   /// EmitAggregateCopy - Emit an aggrate copy.
1623   ///
1624   /// \param isVolatile - True iff either the source or the destination is
1625   /// volatile.
1626   void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1627                          QualType EltTy, bool isVolatile=false,
1628                          unsigned Alignment = 0);
1629 
1630   /// StartBlock - Start new block named N. If insert block is a dummy block
1631   /// then reuse it.
1632   void StartBlock(const char *N);
1633 
1634   /// GetAddrOfStaticLocalVar - Return the address of a static local variable.
1635   llvm::Constant *GetAddrOfStaticLocalVar(const VarDecl *BVD) {
1636     return cast<llvm::Constant>(GetAddrOfLocalVar(BVD));
1637   }
1638 
1639   /// GetAddrOfLocalVar - Return the address of a local variable.
1640   llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) {
1641     llvm::Value *Res = LocalDeclMap[VD];
1642     assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!");
1643     return Res;
1644   }
1645 
1646   /// getOpaqueLValueMapping - Given an opaque value expression (which
1647   /// must be mapped to an l-value), return its mapping.
1648   const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
1649     assert(OpaqueValueMapping::shouldBindAsLValue(e));
1650 
1651     llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
1652       it = OpaqueLValues.find(e);
1653     assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
1654     return it->second;
1655   }
1656 
1657   /// getOpaqueRValueMapping - Given an opaque value expression (which
1658   /// must be mapped to an r-value), return its mapping.
1659   const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
1660     assert(!OpaqueValueMapping::shouldBindAsLValue(e));
1661 
1662     llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
1663       it = OpaqueRValues.find(e);
1664     assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
1665     return it->second;
1666   }
1667 
1668   /// getAccessedFieldNo - Given an encoded value and a result number, return
1669   /// the input field number being accessed.
1670   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
1671 
1672   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
1673   llvm::BasicBlock *GetIndirectGotoBlock();
1674 
1675   /// EmitNullInitialization - Generate code to set a value of the given type to
1676   /// null, If the type contains data member pointers, they will be initialized
1677   /// to -1 in accordance with the Itanium C++ ABI.
1678   void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty);
1679 
1680   // EmitVAArg - Generate code to get an argument from the passed in pointer
1681   // and update it accordingly. The return value is a pointer to the argument.
1682   // FIXME: We should be able to get rid of this method and use the va_arg
1683   // instruction in LLVM instead once it works well enough.
1684   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty);
1685 
1686   /// emitArrayLength - Compute the length of an array, even if it's a
1687   /// VLA, and drill down to the base element type.
1688   llvm::Value *emitArrayLength(const ArrayType *arrayType,
1689                                QualType &baseType,
1690                                llvm::Value *&addr);
1691 
1692   /// EmitVLASize - Capture all the sizes for the VLA expressions in
1693   /// the given variably-modified type and store them in the VLASizeMap.
1694   ///
1695   /// This function can be called with a null (unreachable) insert point.
1696   void EmitVariablyModifiedType(QualType Ty);
1697 
1698   /// getVLASize - Returns an LLVM value that corresponds to the size,
1699   /// in non-variably-sized elements, of a variable length array type,
1700   /// plus that largest non-variably-sized element type.  Assumes that
1701   /// the type has already been emitted with EmitVariablyModifiedType.
1702   std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla);
1703   std::pair<llvm::Value*,QualType> getVLASize(QualType vla);
1704 
1705   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
1706   /// generating code for an C++ member function.
1707   llvm::Value *LoadCXXThis() {
1708     assert(CXXThisValue && "no 'this' value for this function");
1709     return CXXThisValue;
1710   }
1711 
1712   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
1713   /// virtual bases.
1714   llvm::Value *LoadCXXVTT() {
1715     assert(CXXVTTValue && "no VTT value for this function");
1716     return CXXVTTValue;
1717   }
1718 
1719   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
1720   /// complete class to the given direct base.
1721   llvm::Value *
1722   GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value,
1723                                         const CXXRecordDecl *Derived,
1724                                         const CXXRecordDecl *Base,
1725                                         bool BaseIsVirtual);
1726 
1727   /// GetAddressOfBaseClass - This function will add the necessary delta to the
1728   /// load of 'this' and returns address of the base class.
1729   llvm::Value *GetAddressOfBaseClass(llvm::Value *Value,
1730                                      const CXXRecordDecl *Derived,
1731                                      CastExpr::path_const_iterator PathBegin,
1732                                      CastExpr::path_const_iterator PathEnd,
1733                                      bool NullCheckValue);
1734 
1735   llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value,
1736                                         const CXXRecordDecl *Derived,
1737                                         CastExpr::path_const_iterator PathBegin,
1738                                         CastExpr::path_const_iterator PathEnd,
1739                                         bool NullCheckValue);
1740 
1741   llvm::Value *GetVirtualBaseClassOffset(llvm::Value *This,
1742                                          const CXXRecordDecl *ClassDecl,
1743                                          const CXXRecordDecl *BaseClassDecl);
1744 
1745   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
1746                                       CXXCtorType CtorType,
1747                                       const FunctionArgList &Args);
1748   // It's important not to confuse this and the previous function. Delegating
1749   // constructors are the C++0x feature. The constructor delegate optimization
1750   // is used to reduce duplication in the base and complete consturctors where
1751   // they are substantially the same.
1752   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
1753                                         const FunctionArgList &Args);
1754   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
1755                               bool ForVirtualBase, llvm::Value *This,
1756                               CallExpr::const_arg_iterator ArgBeg,
1757                               CallExpr::const_arg_iterator ArgEnd);
1758 
1759   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
1760                               llvm::Value *This, llvm::Value *Src,
1761                               CallExpr::const_arg_iterator ArgBeg,
1762                               CallExpr::const_arg_iterator ArgEnd);
1763 
1764   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1765                                   const ConstantArrayType *ArrayTy,
1766                                   llvm::Value *ArrayPtr,
1767                                   CallExpr::const_arg_iterator ArgBeg,
1768                                   CallExpr::const_arg_iterator ArgEnd,
1769                                   bool ZeroInitialization = false);
1770 
1771   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1772                                   llvm::Value *NumElements,
1773                                   llvm::Value *ArrayPtr,
1774                                   CallExpr::const_arg_iterator ArgBeg,
1775                                   CallExpr::const_arg_iterator ArgEnd,
1776                                   bool ZeroInitialization = false);
1777 
1778   static Destroyer destroyCXXObject;
1779 
1780   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
1781                              bool ForVirtualBase, llvm::Value *This);
1782 
1783   void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
1784                                llvm::Value *NewPtr, llvm::Value *NumElements);
1785 
1786   void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
1787                         llvm::Value *Ptr);
1788 
1789   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
1790   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
1791 
1792   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
1793                       QualType DeleteTy);
1794 
1795   llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E);
1796   llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE);
1797 
1798   void EmitCheck(llvm::Value *, unsigned Size);
1799 
1800   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1801                                        bool isInc, bool isPre);
1802   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1803                                          bool isInc, bool isPre);
1804   //===--------------------------------------------------------------------===//
1805   //                            Declaration Emission
1806   //===--------------------------------------------------------------------===//
1807 
1808   /// EmitDecl - Emit a declaration.
1809   ///
1810   /// This function can be called with a null (unreachable) insert point.
1811   void EmitDecl(const Decl &D);
1812 
1813   /// EmitVarDecl - Emit a local variable declaration.
1814   ///
1815   /// This function can be called with a null (unreachable) insert point.
1816   void EmitVarDecl(const VarDecl &D);
1817 
1818   void EmitScalarInit(const Expr *init, const ValueDecl *D,
1819                       LValue lvalue, bool capturedByInit);
1820   void EmitScalarInit(llvm::Value *init, LValue lvalue);
1821 
1822   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
1823                              llvm::Value *Address);
1824 
1825   /// EmitAutoVarDecl - Emit an auto variable declaration.
1826   ///
1827   /// This function can be called with a null (unreachable) insert point.
1828   void EmitAutoVarDecl(const VarDecl &D);
1829 
1830   class AutoVarEmission {
1831     friend class CodeGenFunction;
1832 
1833     const VarDecl *Variable;
1834 
1835     /// The alignment of the variable.
1836     CharUnits Alignment;
1837 
1838     /// The address of the alloca.  Null if the variable was emitted
1839     /// as a global constant.
1840     llvm::Value *Address;
1841 
1842     llvm::Value *NRVOFlag;
1843 
1844     /// True if the variable is a __block variable.
1845     bool IsByRef;
1846 
1847     /// True if the variable is of aggregate type and has a constant
1848     /// initializer.
1849     bool IsConstantAggregate;
1850 
1851     struct Invalid {};
1852     AutoVarEmission(Invalid) : Variable(0) {}
1853 
1854     AutoVarEmission(const VarDecl &variable)
1855       : Variable(&variable), Address(0), NRVOFlag(0),
1856         IsByRef(false), IsConstantAggregate(false) {}
1857 
1858     bool wasEmittedAsGlobal() const { return Address == 0; }
1859 
1860   public:
1861     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
1862 
1863     /// Returns the address of the object within this declaration.
1864     /// Note that this does not chase the forwarding pointer for
1865     /// __block decls.
1866     llvm::Value *getObjectAddress(CodeGenFunction &CGF) const {
1867       if (!IsByRef) return Address;
1868 
1869       return CGF.Builder.CreateStructGEP(Address,
1870                                          CGF.getByRefValueLLVMField(Variable),
1871                                          Variable->getNameAsString());
1872     }
1873   };
1874   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
1875   void EmitAutoVarInit(const AutoVarEmission &emission);
1876   void EmitAutoVarCleanups(const AutoVarEmission &emission);
1877   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
1878                               QualType::DestructionKind dtorKind);
1879 
1880   void EmitStaticVarDecl(const VarDecl &D,
1881                          llvm::GlobalValue::LinkageTypes Linkage);
1882 
1883   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
1884   void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, unsigned ArgNo);
1885 
1886   /// protectFromPeepholes - Protect a value that we're intending to
1887   /// store to the side, but which will probably be used later, from
1888   /// aggressive peepholing optimizations that might delete it.
1889   ///
1890   /// Pass the result to unprotectFromPeepholes to declare that
1891   /// protection is no longer required.
1892   ///
1893   /// There's no particular reason why this shouldn't apply to
1894   /// l-values, it's just that no existing peepholes work on pointers.
1895   PeepholeProtection protectFromPeepholes(RValue rvalue);
1896   void unprotectFromPeepholes(PeepholeProtection protection);
1897 
1898   //===--------------------------------------------------------------------===//
1899   //                             Statement Emission
1900   //===--------------------------------------------------------------------===//
1901 
1902   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
1903   void EmitStopPoint(const Stmt *S);
1904 
1905   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
1906   /// this function even if there is no current insertion point.
1907   ///
1908   /// This function may clear the current insertion point; callers should use
1909   /// EnsureInsertPoint if they wish to subsequently generate code without first
1910   /// calling EmitBlock, EmitBranch, or EmitStmt.
1911   void EmitStmt(const Stmt *S);
1912 
1913   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
1914   /// necessarily require an insertion point or debug information; typically
1915   /// because the statement amounts to a jump or a container of other
1916   /// statements.
1917   ///
1918   /// \return True if the statement was handled.
1919   bool EmitSimpleStmt(const Stmt *S);
1920 
1921   RValue EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
1922                           AggValueSlot AVS = AggValueSlot::ignored());
1923 
1924   /// EmitLabel - Emit the block for the given label. It is legal to call this
1925   /// function even if there is no current insertion point.
1926   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
1927 
1928   void EmitLabelStmt(const LabelStmt &S);
1929   void EmitGotoStmt(const GotoStmt &S);
1930   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
1931   void EmitIfStmt(const IfStmt &S);
1932   void EmitWhileStmt(const WhileStmt &S);
1933   void EmitDoStmt(const DoStmt &S);
1934   void EmitForStmt(const ForStmt &S);
1935   void EmitReturnStmt(const ReturnStmt &S);
1936   void EmitDeclStmt(const DeclStmt &S);
1937   void EmitBreakStmt(const BreakStmt &S);
1938   void EmitContinueStmt(const ContinueStmt &S);
1939   void EmitSwitchStmt(const SwitchStmt &S);
1940   void EmitDefaultStmt(const DefaultStmt &S);
1941   void EmitCaseStmt(const CaseStmt &S);
1942   void EmitCaseStmtRange(const CaseStmt &S);
1943   void EmitAsmStmt(const AsmStmt &S);
1944 
1945   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
1946   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
1947   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
1948   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
1949   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
1950 
1951   llvm::Constant *getUnwindResumeFn();
1952   llvm::Constant *getUnwindResumeOrRethrowFn();
1953   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
1954   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
1955 
1956   void EmitCXXTryStmt(const CXXTryStmt &S);
1957   void EmitCXXForRangeStmt(const CXXForRangeStmt &S);
1958 
1959   //===--------------------------------------------------------------------===//
1960   //                         LValue Expression Emission
1961   //===--------------------------------------------------------------------===//
1962 
1963   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
1964   RValue GetUndefRValue(QualType Ty);
1965 
1966   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
1967   /// and issue an ErrorUnsupported style diagnostic (using the
1968   /// provided Name).
1969   RValue EmitUnsupportedRValue(const Expr *E,
1970                                const char *Name);
1971 
1972   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
1973   /// an ErrorUnsupported style diagnostic (using the provided Name).
1974   LValue EmitUnsupportedLValue(const Expr *E,
1975                                const char *Name);
1976 
1977   /// EmitLValue - Emit code to compute a designator that specifies the location
1978   /// of the expression.
1979   ///
1980   /// This can return one of two things: a simple address or a bitfield
1981   /// reference.  In either case, the LLVM Value* in the LValue structure is
1982   /// guaranteed to be an LLVM pointer type.
1983   ///
1984   /// If this returns a bitfield reference, nothing about the pointee type of
1985   /// the LLVM value is known: For example, it may not be a pointer to an
1986   /// integer.
1987   ///
1988   /// If this returns a normal address, and if the lvalue's C type is fixed
1989   /// size, this method guarantees that the returned pointer type will point to
1990   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
1991   /// variable length type, this is not possible.
1992   ///
1993   LValue EmitLValue(const Expr *E);
1994 
1995   /// EmitCheckedLValue - Same as EmitLValue but additionally we generate
1996   /// checking code to guard against undefined behavior.  This is only
1997   /// suitable when we know that the address will be used to access the
1998   /// object.
1999   LValue EmitCheckedLValue(const Expr *E);
2000 
2001   /// EmitToMemory - Change a scalar value from its value
2002   /// representation to its in-memory representation.
2003   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
2004 
2005   /// EmitFromMemory - Change a scalar value from its memory
2006   /// representation to its value representation.
2007   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
2008 
2009   /// EmitLoadOfScalar - Load a scalar value from an address, taking
2010   /// care to appropriately convert from the memory representation to
2011   /// the LLVM value representation.
2012   llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
2013                                 unsigned Alignment, QualType Ty,
2014                                 llvm::MDNode *TBAAInfo = 0);
2015 
2016   /// EmitLoadOfScalar - Load a scalar value from an address, taking
2017   /// care to appropriately convert from the memory representation to
2018   /// the LLVM value representation.  The l-value must be a simple
2019   /// l-value.
2020   llvm::Value *EmitLoadOfScalar(LValue lvalue);
2021 
2022   /// EmitStoreOfScalar - Store a scalar value to an address, taking
2023   /// care to appropriately convert from the memory representation to
2024   /// the LLVM value representation.
2025   void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
2026                          bool Volatile, unsigned Alignment, QualType Ty,
2027                          llvm::MDNode *TBAAInfo = 0);
2028 
2029   /// EmitStoreOfScalar - Store a scalar value to an address, taking
2030   /// care to appropriately convert from the memory representation to
2031   /// the LLVM value representation.  The l-value must be a simple
2032   /// l-value.
2033   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue);
2034 
2035   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
2036   /// this method emits the address of the lvalue, then loads the result as an
2037   /// rvalue, returning the rvalue.
2038   RValue EmitLoadOfLValue(LValue V);
2039   RValue EmitLoadOfExtVectorElementLValue(LValue V);
2040   RValue EmitLoadOfBitfieldLValue(LValue LV);
2041 
2042   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
2043   /// lvalue, where both are guaranteed to the have the same type, and that type
2044   /// is 'Ty'.
2045   void EmitStoreThroughLValue(RValue Src, LValue Dst);
2046   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
2047 
2048   /// EmitStoreThroughLValue - Store Src into Dst with same constraints as
2049   /// EmitStoreThroughLValue.
2050   ///
2051   /// \param Result [out] - If non-null, this will be set to a Value* for the
2052   /// bit-field contents after the store, appropriate for use as the result of
2053   /// an assignment to the bit-field.
2054   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2055                                       llvm::Value **Result=0);
2056 
2057   /// Emit an l-value for an assignment (simple or compound) of complex type.
2058   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
2059   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
2060 
2061   // Note: only available for agg return types
2062   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
2063   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
2064   // Note: only available for agg return types
2065   LValue EmitCallExprLValue(const CallExpr *E);
2066   // Note: only available for agg return types
2067   LValue EmitVAArgExprLValue(const VAArgExpr *E);
2068   LValue EmitDeclRefLValue(const DeclRefExpr *E);
2069   LValue EmitStringLiteralLValue(const StringLiteral *E);
2070   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
2071   LValue EmitPredefinedLValue(const PredefinedExpr *E);
2072   LValue EmitUnaryOpLValue(const UnaryOperator *E);
2073   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E);
2074   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
2075   LValue EmitMemberExpr(const MemberExpr *E);
2076   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
2077   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
2078   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
2079   LValue EmitCastLValue(const CastExpr *E);
2080   LValue EmitNullInitializationLValue(const CXXScalarValueInitExpr *E);
2081   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
2082   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
2083 
2084   RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
2085                                 AggValueSlot slot = AggValueSlot::ignored());
2086   LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
2087 
2088   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
2089                               const ObjCIvarDecl *Ivar);
2090   LValue EmitLValueForAnonRecordField(llvm::Value* Base,
2091                                       const IndirectFieldDecl* Field,
2092                                       unsigned CVRQualifiers);
2093   LValue EmitLValueForField(llvm::Value* Base, const FieldDecl* Field,
2094                             unsigned CVRQualifiers);
2095 
2096   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
2097   /// if the Field is a reference, this will return the address of the reference
2098   /// and not the address of the value stored in the reference.
2099   LValue EmitLValueForFieldInitialization(llvm::Value* Base,
2100                                           const FieldDecl* Field,
2101                                           unsigned CVRQualifiers);
2102 
2103   LValue EmitLValueForIvar(QualType ObjectTy,
2104                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
2105                            unsigned CVRQualifiers);
2106 
2107   LValue EmitLValueForBitfield(llvm::Value* Base, const FieldDecl* Field,
2108                                 unsigned CVRQualifiers);
2109 
2110   LValue EmitBlockDeclRefLValue(const BlockDeclRefExpr *E);
2111 
2112   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
2113   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
2114   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
2115 
2116   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
2117   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
2118   LValue EmitStmtExprLValue(const StmtExpr *E);
2119   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
2120   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
2121   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init);
2122 
2123   //===--------------------------------------------------------------------===//
2124   //                         Scalar Expression Emission
2125   //===--------------------------------------------------------------------===//
2126 
2127   /// EmitCall - Generate a call of the given function, expecting the given
2128   /// result type, and using the given argument list which specifies both the
2129   /// LLVM arguments and the types they were derived from.
2130   ///
2131   /// \param TargetDecl - If given, the decl of the function in a direct call;
2132   /// used to set attributes on the call (noreturn, etc.).
2133   RValue EmitCall(const CGFunctionInfo &FnInfo,
2134                   llvm::Value *Callee,
2135                   ReturnValueSlot ReturnValue,
2136                   const CallArgList &Args,
2137                   const Decl *TargetDecl = 0,
2138                   llvm::Instruction **callOrInvoke = 0);
2139 
2140   RValue EmitCall(QualType FnType, llvm::Value *Callee,
2141                   ReturnValueSlot ReturnValue,
2142                   CallExpr::const_arg_iterator ArgBeg,
2143                   CallExpr::const_arg_iterator ArgEnd,
2144                   const Decl *TargetDecl = 0);
2145   RValue EmitCallExpr(const CallExpr *E,
2146                       ReturnValueSlot ReturnValue = ReturnValueSlot());
2147 
2148   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2149                                   ArrayRef<llvm::Value *> Args,
2150                                   const Twine &Name = "");
2151   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2152                                   const Twine &Name = "");
2153 
2154   llvm::Value *BuildVirtualCall(const CXXMethodDecl *MD, llvm::Value *This,
2155                                 llvm::Type *Ty);
2156   llvm::Value *BuildVirtualCall(const CXXDestructorDecl *DD, CXXDtorType Type,
2157                                 llvm::Value *This, llvm::Type *Ty);
2158   llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
2159                                          NestedNameSpecifier *Qual,
2160                                          llvm::Type *Ty);
2161 
2162   llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
2163                                                    CXXDtorType Type,
2164                                                    const CXXRecordDecl *RD);
2165 
2166   RValue EmitCXXMemberCall(const CXXMethodDecl *MD,
2167                            llvm::Value *Callee,
2168                            ReturnValueSlot ReturnValue,
2169                            llvm::Value *This,
2170                            llvm::Value *VTT,
2171                            CallExpr::const_arg_iterator ArgBeg,
2172                            CallExpr::const_arg_iterator ArgEnd);
2173   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
2174                                ReturnValueSlot ReturnValue);
2175   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
2176                                       ReturnValueSlot ReturnValue);
2177 
2178   llvm::Value *EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E,
2179                                            const CXXMethodDecl *MD,
2180                                            llvm::Value *This);
2181   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
2182                                        const CXXMethodDecl *MD,
2183                                        ReturnValueSlot ReturnValue);
2184 
2185   RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
2186                                 ReturnValueSlot ReturnValue);
2187 
2188 
2189   RValue EmitBuiltinExpr(const FunctionDecl *FD,
2190                          unsigned BuiltinID, const CallExpr *E);
2191 
2192   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
2193 
2194   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
2195   /// is unhandled by the current target.
2196   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2197 
2198   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2199   llvm::Value *EmitNeonCall(llvm::Function *F,
2200                             SmallVectorImpl<llvm::Value*> &O,
2201                             const char *name,
2202                             unsigned shift = 0, bool rightshift = false);
2203   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
2204   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
2205                                    bool negateForRightShift);
2206 
2207   llvm::Value *BuildVector(const SmallVectorImpl<llvm::Value*> &Ops);
2208   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2209   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2210 
2211   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
2212   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
2213   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
2214   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
2215                              ReturnValueSlot Return = ReturnValueSlot());
2216 
2217   /// Retrieves the default cleanup kind for an ARC cleanup.
2218   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
2219   CleanupKind getARCCleanupKind() {
2220     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
2221              ? NormalAndEHCleanup : NormalCleanup;
2222   }
2223 
2224   // ARC primitives.
2225   void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr);
2226   void EmitARCDestroyWeak(llvm::Value *addr);
2227   llvm::Value *EmitARCLoadWeak(llvm::Value *addr);
2228   llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr);
2229   llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr,
2230                                 bool ignored);
2231   void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src);
2232   void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src);
2233   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
2234   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
2235   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
2236                                   bool ignored);
2237   llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value,
2238                                       bool ignored);
2239   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
2240   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
2241   llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
2242   void EmitARCRelease(llvm::Value *value, bool precise);
2243   llvm::Value *EmitARCAutorelease(llvm::Value *value);
2244   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
2245   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
2246   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
2247 
2248   std::pair<LValue,llvm::Value*>
2249   EmitARCStoreAutoreleasing(const BinaryOperator *e);
2250   std::pair<LValue,llvm::Value*>
2251   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
2252 
2253   llvm::Value *EmitObjCThrowOperand(const Expr *expr);
2254 
2255   llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr);
2256   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
2257   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
2258 
2259   llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
2260   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
2261   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
2262 
2263   static Destroyer destroyARCStrongImprecise;
2264   static Destroyer destroyARCStrongPrecise;
2265   static Destroyer destroyARCWeak;
2266 
2267   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
2268   llvm::Value *EmitObjCAutoreleasePoolPush();
2269   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
2270   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
2271   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
2272 
2273   /// EmitReferenceBindingToExpr - Emits a reference binding to the passed in
2274   /// expression. Will emit a temporary variable if E is not an LValue.
2275   RValue EmitReferenceBindingToExpr(const Expr* E,
2276                                     const NamedDecl *InitializedDecl);
2277 
2278   //===--------------------------------------------------------------------===//
2279   //                           Expression Emission
2280   //===--------------------------------------------------------------------===//
2281 
2282   // Expressions are broken into three classes: scalar, complex, aggregate.
2283 
2284   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
2285   /// scalar type, returning the result.
2286   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
2287 
2288   /// EmitScalarConversion - Emit a conversion from the specified type to the
2289   /// specified destination type, both of which are LLVM scalar types.
2290   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
2291                                     QualType DstTy);
2292 
2293   /// EmitComplexToScalarConversion - Emit a conversion from the specified
2294   /// complex type to the specified destination type, where the destination type
2295   /// is an LLVM scalar type.
2296   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
2297                                              QualType DstTy);
2298 
2299 
2300   /// EmitAggExpr - Emit the computation of the specified expression
2301   /// of aggregate type.  The result is computed into the given slot,
2302   /// which may be null to indicate that the value is not needed.
2303   void EmitAggExpr(const Expr *E, AggValueSlot AS, bool IgnoreResult = false);
2304 
2305   /// EmitAggExprToLValue - Emit the computation of the specified expression of
2306   /// aggregate type into a temporary LValue.
2307   LValue EmitAggExprToLValue(const Expr *E);
2308 
2309   /// EmitGCMemmoveCollectable - Emit special API for structs with object
2310   /// pointers.
2311   void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr,
2312                                 QualType Ty);
2313 
2314   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
2315   /// make sure it survives garbage collection until this point.
2316   void EmitExtendGCLifetime(llvm::Value *object);
2317 
2318   /// EmitComplexExpr - Emit the computation of the specified expression of
2319   /// complex type, returning the result.
2320   ComplexPairTy EmitComplexExpr(const Expr *E,
2321                                 bool IgnoreReal = false,
2322                                 bool IgnoreImag = false);
2323 
2324   /// EmitComplexExprIntoAddr - Emit the computation of the specified expression
2325   /// of complex type, storing into the specified Value*.
2326   void EmitComplexExprIntoAddr(const Expr *E, llvm::Value *DestAddr,
2327                                bool DestIsVolatile);
2328 
2329   /// StoreComplexToAddr - Store a complex number into the specified address.
2330   void StoreComplexToAddr(ComplexPairTy V, llvm::Value *DestAddr,
2331                           bool DestIsVolatile);
2332   /// LoadComplexFromAddr - Load a complex number from the specified address.
2333   ComplexPairTy LoadComplexFromAddr(llvm::Value *SrcAddr, bool SrcIsVolatile);
2334 
2335   /// CreateStaticVarDecl - Create a zero-initialized LLVM global for
2336   /// a static local variable.
2337   llvm::GlobalVariable *CreateStaticVarDecl(const VarDecl &D,
2338                                             const char *Separator,
2339                                        llvm::GlobalValue::LinkageTypes Linkage);
2340 
2341   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
2342   /// global variable that has already been created for it.  If the initializer
2343   /// has a different type than GV does, this may free GV and return a different
2344   /// one.  Otherwise it just returns GV.
2345   llvm::GlobalVariable *
2346   AddInitializerToStaticVarDecl(const VarDecl &D,
2347                                 llvm::GlobalVariable *GV);
2348 
2349 
2350   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
2351   /// variable with global storage.
2352   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr);
2353 
2354   /// EmitCXXGlobalDtorRegistration - Emits a call to register the global ptr
2355   /// with the C++ runtime so that its destructor will be called at exit.
2356   void EmitCXXGlobalDtorRegistration(llvm::Constant *DtorFn,
2357                                      llvm::Constant *DeclPtr);
2358 
2359   /// Emit code in this function to perform a guarded variable
2360   /// initialization.  Guarded initializations are used when it's not
2361   /// possible to prove that an initialization will be done exactly
2362   /// once, e.g. with a static local variable or a static data member
2363   /// of a class template.
2364   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr);
2365 
2366   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
2367   /// variables.
2368   void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
2369                                  llvm::Constant **Decls,
2370                                  unsigned NumDecls);
2371 
2372   /// GenerateCXXGlobalDtorFunc - Generates code for destroying global
2373   /// variables.
2374   void GenerateCXXGlobalDtorFunc(llvm::Function *Fn,
2375                                  const std::vector<std::pair<llvm::WeakVH,
2376                                    llvm::Constant*> > &DtorsAndObjects);
2377 
2378   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
2379                                         const VarDecl *D,
2380                                         llvm::GlobalVariable *Addr);
2381 
2382   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
2383 
2384   void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src,
2385                                   const Expr *Exp);
2386 
2387   void enterFullExpression(const ExprWithCleanups *E) {
2388     if (E->getNumObjects() == 0) return;
2389     enterNonTrivialFullExpression(E);
2390   }
2391   void enterNonTrivialFullExpression(const ExprWithCleanups *E);
2392 
2393   void EmitCXXThrowExpr(const CXXThrowExpr *E);
2394 
2395   RValue EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest = 0);
2396 
2397   //===--------------------------------------------------------------------===//
2398   //                         Annotations Emission
2399   //===--------------------------------------------------------------------===//
2400 
2401   /// Emit an annotation call (intrinsic or builtin).
2402   llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
2403                                   llvm::Value *AnnotatedVal,
2404                                   llvm::StringRef AnnotationStr,
2405                                   SourceLocation Location);
2406 
2407   /// Emit local annotations for the local variable V, declared by D.
2408   void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
2409 
2410   /// Emit field annotations for the given field & value. Returns the
2411   /// annotation result.
2412   llvm::Value *EmitFieldAnnotations(const FieldDecl *D, llvm::Value *V);
2413 
2414   //===--------------------------------------------------------------------===//
2415   //                             Internal Helpers
2416   //===--------------------------------------------------------------------===//
2417 
2418   /// ContainsLabel - Return true if the statement contains a label in it.  If
2419   /// this statement is not executed normally, it not containing a label means
2420   /// that we can just remove the code.
2421   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
2422 
2423   /// containsBreak - Return true if the statement contains a break out of it.
2424   /// If the statement (recursively) contains a switch or loop with a break
2425   /// inside of it, this is fine.
2426   static bool containsBreak(const Stmt *S);
2427 
2428   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2429   /// to a constant, or if it does but contains a label, return false.  If it
2430   /// constant folds return true and set the boolean result in Result.
2431   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result);
2432 
2433   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2434   /// to a constant, or if it does but contains a label, return false.  If it
2435   /// constant folds return true and set the folded value.
2436   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APInt &Result);
2437 
2438   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
2439   /// if statement) to the specified blocks.  Based on the condition, this might
2440   /// try to simplify the codegen of the conditional based on the branch.
2441   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
2442                             llvm::BasicBlock *FalseBlock);
2443 
2444   /// getTrapBB - Create a basic block that will call the trap intrinsic.  We'll
2445   /// generate a branch around the created basic block as necessary.
2446   llvm::BasicBlock *getTrapBB();
2447 
2448   /// EmitCallArg - Emit a single call argument.
2449   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
2450 
2451   /// EmitDelegateCallArg - We are performing a delegate call; that
2452   /// is, the current function is delegating to another one.  Produce
2453   /// a r-value suitable for passing the given parameter.
2454   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param);
2455 
2456   /// SetFPAccuracy - Set the minimum required accuracy of the given floating
2457   /// point operation, expressed as the maximum relative error in ulp.
2458   void SetFPAccuracy(llvm::Value *Val, unsigned AccuracyN,
2459                      unsigned AccuracyD = 1);
2460 
2461 private:
2462   void EmitReturnOfRValue(RValue RV, QualType Ty);
2463 
2464   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
2465   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
2466   ///
2467   /// \param AI - The first function argument of the expansion.
2468   /// \return The argument following the last expanded function
2469   /// argument.
2470   llvm::Function::arg_iterator
2471   ExpandTypeFromArgs(QualType Ty, LValue Dst,
2472                      llvm::Function::arg_iterator AI);
2473 
2474   /// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg
2475   /// Ty, into individual arguments on the provided vector \arg Args. See
2476   /// ABIArgInfo::Expand.
2477   void ExpandTypeToArgs(QualType Ty, RValue Src,
2478                         SmallVector<llvm::Value*, 16> &Args,
2479                         llvm::FunctionType *IRFuncTy);
2480 
2481   llvm::Value* EmitAsmInput(const AsmStmt &S,
2482                             const TargetInfo::ConstraintInfo &Info,
2483                             const Expr *InputExpr, std::string &ConstraintStr);
2484 
2485   llvm::Value* EmitAsmInputLValue(const AsmStmt &S,
2486                                   const TargetInfo::ConstraintInfo &Info,
2487                                   LValue InputValue, QualType InputType,
2488                                   std::string &ConstraintStr);
2489 
2490   /// EmitCallArgs - Emit call arguments for a function.
2491   /// The CallArgTypeInfo parameter is used for iterating over the known
2492   /// argument types of the function being called.
2493   template<typename T>
2494   void EmitCallArgs(CallArgList& Args, const T* CallArgTypeInfo,
2495                     CallExpr::const_arg_iterator ArgBeg,
2496                     CallExpr::const_arg_iterator ArgEnd) {
2497       CallExpr::const_arg_iterator Arg = ArgBeg;
2498 
2499     // First, use the argument types that the type info knows about
2500     if (CallArgTypeInfo) {
2501       for (typename T::arg_type_iterator I = CallArgTypeInfo->arg_type_begin(),
2502            E = CallArgTypeInfo->arg_type_end(); I != E; ++I, ++Arg) {
2503         assert(Arg != ArgEnd && "Running over edge of argument list!");
2504         QualType ArgType = *I;
2505 #ifndef NDEBUG
2506         QualType ActualArgType = Arg->getType();
2507         if (ArgType->isPointerType() && ActualArgType->isPointerType()) {
2508           QualType ActualBaseType =
2509             ActualArgType->getAs<PointerType>()->getPointeeType();
2510           QualType ArgBaseType =
2511             ArgType->getAs<PointerType>()->getPointeeType();
2512           if (ArgBaseType->isVariableArrayType()) {
2513             if (const VariableArrayType *VAT =
2514                 getContext().getAsVariableArrayType(ActualBaseType)) {
2515               if (!VAT->getSizeExpr())
2516                 ActualArgType = ArgType;
2517             }
2518           }
2519         }
2520         assert(getContext().getCanonicalType(ArgType.getNonReferenceType()).
2521                getTypePtr() ==
2522                getContext().getCanonicalType(ActualArgType).getTypePtr() &&
2523                "type mismatch in call argument!");
2524 #endif
2525         EmitCallArg(Args, *Arg, ArgType);
2526       }
2527 
2528       // Either we've emitted all the call args, or we have a call to a
2529       // variadic function.
2530       assert((Arg == ArgEnd || CallArgTypeInfo->isVariadic()) &&
2531              "Extra arguments in non-variadic function!");
2532 
2533     }
2534 
2535     // If we still have any arguments, emit them using the type of the argument.
2536     for (; Arg != ArgEnd; ++Arg)
2537       EmitCallArg(Args, *Arg, Arg->getType());
2538   }
2539 
2540   const TargetCodeGenInfo &getTargetHooks() const {
2541     return CGM.getTargetCodeGenInfo();
2542   }
2543 
2544   void EmitDeclMetadata();
2545 
2546   CodeGenModule::ByrefHelpers *
2547   buildByrefHelpers(llvm::StructType &byrefType,
2548                     const AutoVarEmission &emission);
2549 };
2550 
2551 /// Helper class with most of the code for saving a value for a
2552 /// conditional expression cleanup.
2553 struct DominatingLLVMValue {
2554   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
2555 
2556   /// Answer whether the given value needs extra work to be saved.
2557   static bool needsSaving(llvm::Value *value) {
2558     // If it's not an instruction, we don't need to save.
2559     if (!isa<llvm::Instruction>(value)) return false;
2560 
2561     // If it's an instruction in the entry block, we don't need to save.
2562     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
2563     return (block != &block->getParent()->getEntryBlock());
2564   }
2565 
2566   /// Try to save the given value.
2567   static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
2568     if (!needsSaving(value)) return saved_type(value, false);
2569 
2570     // Otherwise we need an alloca.
2571     llvm::Value *alloca =
2572       CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save");
2573     CGF.Builder.CreateStore(value, alloca);
2574 
2575     return saved_type(alloca, true);
2576   }
2577 
2578   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
2579     if (!value.getInt()) return value.getPointer();
2580     return CGF.Builder.CreateLoad(value.getPointer());
2581   }
2582 };
2583 
2584 /// A partial specialization of DominatingValue for llvm::Values that
2585 /// might be llvm::Instructions.
2586 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
2587   typedef T *type;
2588   static type restore(CodeGenFunction &CGF, saved_type value) {
2589     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
2590   }
2591 };
2592 
2593 /// A specialization of DominatingValue for RValue.
2594 template <> struct DominatingValue<RValue> {
2595   typedef RValue type;
2596   class saved_type {
2597     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
2598                 AggregateAddress, ComplexAddress };
2599 
2600     llvm::Value *Value;
2601     Kind K;
2602     saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {}
2603 
2604   public:
2605     static bool needsSaving(RValue value);
2606     static saved_type save(CodeGenFunction &CGF, RValue value);
2607     RValue restore(CodeGenFunction &CGF);
2608 
2609     // implementations in CGExprCXX.cpp
2610   };
2611 
2612   static bool needsSaving(type value) {
2613     return saved_type::needsSaving(value);
2614   }
2615   static saved_type save(CodeGenFunction &CGF, type value) {
2616     return saved_type::save(CGF, value);
2617   }
2618   static type restore(CodeGenFunction &CGF, saved_type value) {
2619     return value.restore(CGF);
2620   }
2621 };
2622 
2623 }  // end namespace CodeGen
2624 }  // end namespace clang
2625 
2626 #endif
2627