1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the internal per-function state used for llvm translation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 15 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 16 17 #include "CGBuilder.h" 18 #include "CGDebugInfo.h" 19 #include "CGLoopInfo.h" 20 #include "CGValue.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "EHScopeStack.h" 24 #include "clang/AST/CharUnits.h" 25 #include "clang/AST/ExprCXX.h" 26 #include "clang/AST/ExprObjC.h" 27 #include "clang/AST/ExprOpenMP.h" 28 #include "clang/AST/Type.h" 29 #include "clang/Basic/ABI.h" 30 #include "clang/Basic/CapturedStmt.h" 31 #include "clang/Basic/OpenMPKinds.h" 32 #include "clang/Basic/TargetInfo.h" 33 #include "clang/Frontend/CodeGenOptions.h" 34 #include "llvm/ADT/ArrayRef.h" 35 #include "llvm/ADT/DenseMap.h" 36 #include "llvm/ADT/SmallVector.h" 37 #include "llvm/IR/ValueHandle.h" 38 #include "llvm/Support/Debug.h" 39 40 namespace llvm { 41 class BasicBlock; 42 class LLVMContext; 43 class MDNode; 44 class Module; 45 class SwitchInst; 46 class Twine; 47 class Value; 48 class CallSite; 49 } 50 51 namespace clang { 52 class ASTContext; 53 class BlockDecl; 54 class CXXDestructorDecl; 55 class CXXForRangeStmt; 56 class CXXTryStmt; 57 class Decl; 58 class LabelDecl; 59 class EnumConstantDecl; 60 class FunctionDecl; 61 class FunctionProtoType; 62 class LabelStmt; 63 class ObjCContainerDecl; 64 class ObjCInterfaceDecl; 65 class ObjCIvarDecl; 66 class ObjCMethodDecl; 67 class ObjCImplementationDecl; 68 class ObjCPropertyImplDecl; 69 class TargetInfo; 70 class TargetCodeGenInfo; 71 class VarDecl; 72 class ObjCForCollectionStmt; 73 class ObjCAtTryStmt; 74 class ObjCAtThrowStmt; 75 class ObjCAtSynchronizedStmt; 76 class ObjCAutoreleasePoolStmt; 77 78 namespace CodeGen { 79 class CodeGenTypes; 80 class CGFunctionInfo; 81 class CGRecordLayout; 82 class CGBlockInfo; 83 class CGCXXABI; 84 class BlockByrefHelpers; 85 class BlockByrefInfo; 86 class BlockFlags; 87 class BlockFieldFlags; 88 89 /// The kind of evaluation to perform on values of a particular 90 /// type. Basically, is the code in CGExprScalar, CGExprComplex, or 91 /// CGExprAgg? 92 /// 93 /// TODO: should vectors maybe be split out into their own thing? 94 enum TypeEvaluationKind { 95 TEK_Scalar, 96 TEK_Complex, 97 TEK_Aggregate 98 }; 99 100 /// CodeGenFunction - This class organizes the per-function state that is used 101 /// while generating LLVM code. 102 class CodeGenFunction : public CodeGenTypeCache { 103 CodeGenFunction(const CodeGenFunction &) = delete; 104 void operator=(const CodeGenFunction &) = delete; 105 106 friend class CGCXXABI; 107 public: 108 /// A jump destination is an abstract label, branching to which may 109 /// require a jump out through normal cleanups. 110 struct JumpDest { 111 JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {} 112 JumpDest(llvm::BasicBlock *Block, 113 EHScopeStack::stable_iterator Depth, 114 unsigned Index) 115 : Block(Block), ScopeDepth(Depth), Index(Index) {} 116 117 bool isValid() const { return Block != nullptr; } 118 llvm::BasicBlock *getBlock() const { return Block; } 119 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 120 unsigned getDestIndex() const { return Index; } 121 122 // This should be used cautiously. 123 void setScopeDepth(EHScopeStack::stable_iterator depth) { 124 ScopeDepth = depth; 125 } 126 127 private: 128 llvm::BasicBlock *Block; 129 EHScopeStack::stable_iterator ScopeDepth; 130 unsigned Index; 131 }; 132 133 CodeGenModule &CGM; // Per-module state. 134 const TargetInfo &Target; 135 136 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 137 LoopInfoStack LoopStack; 138 CGBuilderTy Builder; 139 140 /// \brief CGBuilder insert helper. This function is called after an 141 /// instruction is created using Builder. 142 void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name, 143 llvm::BasicBlock *BB, 144 llvm::BasicBlock::iterator InsertPt) const; 145 146 /// CurFuncDecl - Holds the Decl for the current outermost 147 /// non-closure context. 148 const Decl *CurFuncDecl; 149 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 150 const Decl *CurCodeDecl; 151 const CGFunctionInfo *CurFnInfo; 152 QualType FnRetTy; 153 llvm::Function *CurFn; 154 155 /// CurGD - The GlobalDecl for the current function being compiled. 156 GlobalDecl CurGD; 157 158 /// PrologueCleanupDepth - The cleanup depth enclosing all the 159 /// cleanups associated with the parameters. 160 EHScopeStack::stable_iterator PrologueCleanupDepth; 161 162 /// ReturnBlock - Unified return block. 163 JumpDest ReturnBlock; 164 165 /// ReturnValue - The temporary alloca to hold the return 166 /// value. This is invalid iff the function has no return value. 167 Address ReturnValue; 168 169 /// AllocaInsertPoint - This is an instruction in the entry block before which 170 /// we prefer to insert allocas. 171 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 172 173 /// \brief API for captured statement code generation. 174 class CGCapturedStmtInfo { 175 public: 176 explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default) 177 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {} 178 explicit CGCapturedStmtInfo(const CapturedStmt &S, 179 CapturedRegionKind K = CR_Default) 180 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) { 181 182 RecordDecl::field_iterator Field = 183 S.getCapturedRecordDecl()->field_begin(); 184 for (CapturedStmt::const_capture_iterator I = S.capture_begin(), 185 E = S.capture_end(); 186 I != E; ++I, ++Field) { 187 if (I->capturesThis()) 188 CXXThisFieldDecl = *Field; 189 else if (I->capturesVariable()) 190 CaptureFields[I->getCapturedVar()] = *Field; 191 } 192 } 193 194 virtual ~CGCapturedStmtInfo(); 195 196 CapturedRegionKind getKind() const { return Kind; } 197 198 virtual void setContextValue(llvm::Value *V) { ThisValue = V; } 199 // \brief Retrieve the value of the context parameter. 200 virtual llvm::Value *getContextValue() const { return ThisValue; } 201 202 /// \brief Lookup the captured field decl for a variable. 203 virtual const FieldDecl *lookup(const VarDecl *VD) const { 204 return CaptureFields.lookup(VD); 205 } 206 207 bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; } 208 virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; } 209 210 static bool classof(const CGCapturedStmtInfo *) { 211 return true; 212 } 213 214 /// \brief Emit the captured statement body. 215 virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) { 216 CGF.incrementProfileCounter(S); 217 CGF.EmitStmt(S); 218 } 219 220 /// \brief Get the name of the capture helper. 221 virtual StringRef getHelperName() const { return "__captured_stmt"; } 222 223 private: 224 /// \brief The kind of captured statement being generated. 225 CapturedRegionKind Kind; 226 227 /// \brief Keep the map between VarDecl and FieldDecl. 228 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields; 229 230 /// \brief The base address of the captured record, passed in as the first 231 /// argument of the parallel region function. 232 llvm::Value *ThisValue; 233 234 /// \brief Captured 'this' type. 235 FieldDecl *CXXThisFieldDecl; 236 }; 237 CGCapturedStmtInfo *CapturedStmtInfo; 238 239 /// \brief RAII for correct setting/restoring of CapturedStmtInfo. 240 class CGCapturedStmtRAII { 241 private: 242 CodeGenFunction &CGF; 243 CGCapturedStmtInfo *PrevCapturedStmtInfo; 244 public: 245 CGCapturedStmtRAII(CodeGenFunction &CGF, 246 CGCapturedStmtInfo *NewCapturedStmtInfo) 247 : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) { 248 CGF.CapturedStmtInfo = NewCapturedStmtInfo; 249 } 250 ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; } 251 }; 252 253 /// \brief Sanitizers enabled for this function. 254 SanitizerSet SanOpts; 255 256 /// \brief True if CodeGen currently emits code implementing sanitizer checks. 257 bool IsSanitizerScope; 258 259 /// \brief RAII object to set/unset CodeGenFunction::IsSanitizerScope. 260 class SanitizerScope { 261 CodeGenFunction *CGF; 262 public: 263 SanitizerScope(CodeGenFunction *CGF); 264 ~SanitizerScope(); 265 }; 266 267 /// In C++, whether we are code generating a thunk. This controls whether we 268 /// should emit cleanups. 269 bool CurFuncIsThunk; 270 271 /// In ARC, whether we should autorelease the return value. 272 bool AutoreleaseResult; 273 274 /// Whether we processed a Microsoft-style asm block during CodeGen. These can 275 /// potentially set the return value. 276 bool SawAsmBlock; 277 278 /// True if the current function is an outlined SEH helper. This can be a 279 /// finally block or filter expression. 280 bool IsOutlinedSEHHelper; 281 282 bool IsCleanupPadScope = false; 283 284 const CodeGen::CGBlockInfo *BlockInfo; 285 llvm::Value *BlockPointer; 286 287 llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; 288 FieldDecl *LambdaThisCaptureField; 289 290 /// \brief A mapping from NRVO variables to the flags used to indicate 291 /// when the NRVO has been applied to this variable. 292 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 293 294 EHScopeStack EHStack; 295 llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack; 296 llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack; 297 298 /// Header for data within LifetimeExtendedCleanupStack. 299 struct LifetimeExtendedCleanupHeader { 300 /// The size of the following cleanup object. 301 unsigned Size; 302 /// The kind of cleanup to push: a value from the CleanupKind enumeration. 303 CleanupKind Kind; 304 305 size_t getSize() const { return Size; } 306 CleanupKind getKind() const { return Kind; } 307 }; 308 309 /// i32s containing the indexes of the cleanup destinations. 310 llvm::AllocaInst *NormalCleanupDest; 311 312 unsigned NextCleanupDestIndex; 313 314 /// FirstBlockInfo - The head of a singly-linked-list of block layouts. 315 CGBlockInfo *FirstBlockInfo; 316 317 /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. 318 llvm::BasicBlock *EHResumeBlock; 319 320 /// The exception slot. All landing pads write the current exception pointer 321 /// into this alloca. 322 llvm::Value *ExceptionSlot; 323 324 /// The selector slot. Under the MandatoryCleanup model, all landing pads 325 /// write the current selector value into this alloca. 326 llvm::AllocaInst *EHSelectorSlot; 327 328 /// A stack of exception code slots. Entering an __except block pushes a slot 329 /// on the stack and leaving pops one. The __exception_code() intrinsic loads 330 /// a value from the top of the stack. 331 SmallVector<Address, 1> SEHCodeSlotStack; 332 333 /// Value returned by __exception_info intrinsic. 334 llvm::Value *SEHInfo = nullptr; 335 336 /// Emits a landing pad for the current EH stack. 337 llvm::BasicBlock *EmitLandingPad(); 338 339 llvm::BasicBlock *getInvokeDestImpl(); 340 341 template <class T> 342 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 343 return DominatingValue<T>::save(*this, value); 344 } 345 346 public: 347 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 348 /// rethrows. 349 SmallVector<llvm::Value*, 8> ObjCEHValueStack; 350 351 /// A class controlling the emission of a finally block. 352 class FinallyInfo { 353 /// Where the catchall's edge through the cleanup should go. 354 JumpDest RethrowDest; 355 356 /// A function to call to enter the catch. 357 llvm::Constant *BeginCatchFn; 358 359 /// An i1 variable indicating whether or not the @finally is 360 /// running for an exception. 361 llvm::AllocaInst *ForEHVar; 362 363 /// An i8* variable into which the exception pointer to rethrow 364 /// has been saved. 365 llvm::AllocaInst *SavedExnVar; 366 367 public: 368 void enter(CodeGenFunction &CGF, const Stmt *Finally, 369 llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn, 370 llvm::Constant *rethrowFn); 371 void exit(CodeGenFunction &CGF); 372 }; 373 374 /// Returns true inside SEH __try blocks. 375 bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); } 376 377 /// Returns true while emitting a cleanuppad. 378 bool isCleanupPadScope() const { return IsCleanupPadScope; } 379 380 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 381 /// current full-expression. Safe against the possibility that 382 /// we're currently inside a conditionally-evaluated expression. 383 template <class T, class... As> 384 void pushFullExprCleanup(CleanupKind kind, As... A) { 385 // If we're not in a conditional branch, or if none of the 386 // arguments requires saving, then use the unconditional cleanup. 387 if (!isInConditionalBranch()) 388 return EHStack.pushCleanup<T>(kind, A...); 389 390 // Stash values in a tuple so we can guarantee the order of saves. 391 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 392 SavedTuple Saved{saveValueInCond(A)...}; 393 394 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 395 EHStack.pushCleanupTuple<CleanupType>(kind, Saved); 396 initFullExprCleanup(); 397 } 398 399 /// \brief Queue a cleanup to be pushed after finishing the current 400 /// full-expression. 401 template <class T, class... As> 402 void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) { 403 assert(!isInConditionalBranch() && "can't defer conditional cleanup"); 404 405 LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind }; 406 407 size_t OldSize = LifetimeExtendedCleanupStack.size(); 408 LifetimeExtendedCleanupStack.resize( 409 LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size); 410 411 static_assert(sizeof(Header) % llvm::AlignOf<T>::Alignment == 0, 412 "Cleanup will be allocated on misaligned address"); 413 char *Buffer = &LifetimeExtendedCleanupStack[OldSize]; 414 new (Buffer) LifetimeExtendedCleanupHeader(Header); 415 new (Buffer + sizeof(Header)) T(A...); 416 } 417 418 /// Set up the last cleaup that was pushed as a conditional 419 /// full-expression cleanup. 420 void initFullExprCleanup(); 421 422 /// PushDestructorCleanup - Push a cleanup to call the 423 /// complete-object destructor of an object of the given type at the 424 /// given address. Does nothing if T is not a C++ class type with a 425 /// non-trivial destructor. 426 void PushDestructorCleanup(QualType T, Address Addr); 427 428 /// PushDestructorCleanup - Push a cleanup to call the 429 /// complete-object variant of the given destructor on the object at 430 /// the given address. 431 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, Address Addr); 432 433 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 434 /// process all branch fixups. 435 void PopCleanupBlock(bool FallThroughIsBranchThrough = false); 436 437 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 438 /// The block cannot be reactivated. Pops it if it's the top of the 439 /// stack. 440 /// 441 /// \param DominatingIP - An instruction which is known to 442 /// dominate the current IP (if set) and which lies along 443 /// all paths of execution between the current IP and the 444 /// the point at which the cleanup comes into scope. 445 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 446 llvm::Instruction *DominatingIP); 447 448 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 449 /// Cannot be used to resurrect a deactivated cleanup. 450 /// 451 /// \param DominatingIP - An instruction which is known to 452 /// dominate the current IP (if set) and which lies along 453 /// all paths of execution between the current IP and the 454 /// the point at which the cleanup comes into scope. 455 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 456 llvm::Instruction *DominatingIP); 457 458 /// \brief Enters a new scope for capturing cleanups, all of which 459 /// will be executed once the scope is exited. 460 class RunCleanupsScope { 461 EHScopeStack::stable_iterator CleanupStackDepth; 462 size_t LifetimeExtendedCleanupStackSize; 463 bool OldDidCallStackSave; 464 protected: 465 bool PerformCleanup; 466 private: 467 468 RunCleanupsScope(const RunCleanupsScope &) = delete; 469 void operator=(const RunCleanupsScope &) = delete; 470 471 protected: 472 CodeGenFunction& CGF; 473 474 public: 475 /// \brief Enter a new cleanup scope. 476 explicit RunCleanupsScope(CodeGenFunction &CGF) 477 : PerformCleanup(true), CGF(CGF) 478 { 479 CleanupStackDepth = CGF.EHStack.stable_begin(); 480 LifetimeExtendedCleanupStackSize = 481 CGF.LifetimeExtendedCleanupStack.size(); 482 OldDidCallStackSave = CGF.DidCallStackSave; 483 CGF.DidCallStackSave = false; 484 } 485 486 /// \brief Exit this cleanup scope, emitting any accumulated 487 /// cleanups. 488 ~RunCleanupsScope() { 489 if (PerformCleanup) { 490 CGF.DidCallStackSave = OldDidCallStackSave; 491 CGF.PopCleanupBlocks(CleanupStackDepth, 492 LifetimeExtendedCleanupStackSize); 493 } 494 } 495 496 /// \brief Determine whether this scope requires any cleanups. 497 bool requiresCleanups() const { 498 return CGF.EHStack.stable_begin() != CleanupStackDepth; 499 } 500 501 /// \brief Force the emission of cleanups now, instead of waiting 502 /// until this object is destroyed. 503 void ForceCleanup() { 504 assert(PerformCleanup && "Already forced cleanup"); 505 CGF.DidCallStackSave = OldDidCallStackSave; 506 CGF.PopCleanupBlocks(CleanupStackDepth, 507 LifetimeExtendedCleanupStackSize); 508 PerformCleanup = false; 509 } 510 }; 511 512 class LexicalScope : public RunCleanupsScope { 513 SourceRange Range; 514 SmallVector<const LabelDecl*, 4> Labels; 515 LexicalScope *ParentScope; 516 517 LexicalScope(const LexicalScope &) = delete; 518 void operator=(const LexicalScope &) = delete; 519 520 public: 521 /// \brief Enter a new cleanup scope. 522 explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) 523 : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) { 524 CGF.CurLexicalScope = this; 525 if (CGDebugInfo *DI = CGF.getDebugInfo()) 526 DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); 527 } 528 529 void addLabel(const LabelDecl *label) { 530 assert(PerformCleanup && "adding label to dead scope?"); 531 Labels.push_back(label); 532 } 533 534 /// \brief Exit this cleanup scope, emitting any accumulated 535 /// cleanups. 536 ~LexicalScope() { 537 if (CGDebugInfo *DI = CGF.getDebugInfo()) 538 DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 539 540 // If we should perform a cleanup, force them now. Note that 541 // this ends the cleanup scope before rescoping any labels. 542 if (PerformCleanup) { 543 ApplyDebugLocation DL(CGF, Range.getEnd()); 544 ForceCleanup(); 545 } 546 } 547 548 /// \brief Force the emission of cleanups now, instead of waiting 549 /// until this object is destroyed. 550 void ForceCleanup() { 551 CGF.CurLexicalScope = ParentScope; 552 RunCleanupsScope::ForceCleanup(); 553 554 if (!Labels.empty()) 555 rescopeLabels(); 556 } 557 558 void rescopeLabels(); 559 }; 560 561 typedef llvm::DenseMap<const Decl *, Address> DeclMapTy; 562 563 /// \brief The scope used to remap some variables as private in the OpenMP 564 /// loop body (or other captured region emitted without outlining), and to 565 /// restore old vars back on exit. 566 class OMPPrivateScope : public RunCleanupsScope { 567 DeclMapTy SavedLocals; 568 DeclMapTy SavedPrivates; 569 570 private: 571 OMPPrivateScope(const OMPPrivateScope &) = delete; 572 void operator=(const OMPPrivateScope &) = delete; 573 574 public: 575 /// \brief Enter a new OpenMP private scope. 576 explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {} 577 578 /// \brief Registers \a LocalVD variable as a private and apply \a 579 /// PrivateGen function for it to generate corresponding private variable. 580 /// \a PrivateGen returns an address of the generated private variable. 581 /// \return true if the variable is registered as private, false if it has 582 /// been privatized already. 583 bool 584 addPrivate(const VarDecl *LocalVD, 585 llvm::function_ref<Address()> PrivateGen) { 586 assert(PerformCleanup && "adding private to dead scope"); 587 588 // Only save it once. 589 if (SavedLocals.count(LocalVD)) return false; 590 591 // Copy the existing local entry to SavedLocals. 592 auto it = CGF.LocalDeclMap.find(LocalVD); 593 if (it != CGF.LocalDeclMap.end()) { 594 SavedLocals.insert({LocalVD, it->second}); 595 } else { 596 SavedLocals.insert({LocalVD, Address::invalid()}); 597 } 598 599 // Generate the private entry. 600 Address Addr = PrivateGen(); 601 QualType VarTy = LocalVD->getType(); 602 if (VarTy->isReferenceType()) { 603 Address Temp = CGF.CreateMemTemp(VarTy); 604 CGF.Builder.CreateStore(Addr.getPointer(), Temp); 605 Addr = Temp; 606 } 607 SavedPrivates.insert({LocalVD, Addr}); 608 609 return true; 610 } 611 612 /// \brief Privatizes local variables previously registered as private. 613 /// Registration is separate from the actual privatization to allow 614 /// initializers use values of the original variables, not the private one. 615 /// This is important, for example, if the private variable is a class 616 /// variable initialized by a constructor that references other private 617 /// variables. But at initialization original variables must be used, not 618 /// private copies. 619 /// \return true if at least one variable was privatized, false otherwise. 620 bool Privatize() { 621 copyInto(SavedPrivates, CGF.LocalDeclMap); 622 SavedPrivates.clear(); 623 return !SavedLocals.empty(); 624 } 625 626 void ForceCleanup() { 627 RunCleanupsScope::ForceCleanup(); 628 copyInto(SavedLocals, CGF.LocalDeclMap); 629 SavedLocals.clear(); 630 } 631 632 /// \brief Exit scope - all the mapped variables are restored. 633 ~OMPPrivateScope() { 634 if (PerformCleanup) 635 ForceCleanup(); 636 } 637 638 private: 639 /// Copy all the entries in the source map over the corresponding 640 /// entries in the destination, which must exist. 641 static void copyInto(const DeclMapTy &src, DeclMapTy &dest) { 642 for (auto &pair : src) { 643 if (!pair.second.isValid()) { 644 dest.erase(pair.first); 645 continue; 646 } 647 648 auto it = dest.find(pair.first); 649 if (it != dest.end()) { 650 it->second = pair.second; 651 } else { 652 dest.insert(pair); 653 } 654 } 655 } 656 }; 657 658 /// \brief Takes the old cleanup stack size and emits the cleanup blocks 659 /// that have been added. 660 void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize); 661 662 /// \brief Takes the old cleanup stack size and emits the cleanup blocks 663 /// that have been added, then adds all lifetime-extended cleanups from 664 /// the given position to the stack. 665 void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 666 size_t OldLifetimeExtendedStackSize); 667 668 void ResolveBranchFixups(llvm::BasicBlock *Target); 669 670 /// The given basic block lies in the current EH scope, but may be a 671 /// target of a potentially scope-crossing jump; get a stable handle 672 /// to which we can perform this jump later. 673 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 674 return JumpDest(Target, 675 EHStack.getInnermostNormalCleanup(), 676 NextCleanupDestIndex++); 677 } 678 679 /// The given basic block lies in the current EH scope, but may be a 680 /// target of a potentially scope-crossing jump; get a stable handle 681 /// to which we can perform this jump later. 682 JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { 683 return getJumpDestInCurrentScope(createBasicBlock(Name)); 684 } 685 686 /// EmitBranchThroughCleanup - Emit a branch from the current insert 687 /// block through the normal cleanup handling code (if any) and then 688 /// on to \arg Dest. 689 void EmitBranchThroughCleanup(JumpDest Dest); 690 691 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 692 /// specified destination obviously has no cleanups to run. 'false' is always 693 /// a conservatively correct answer for this method. 694 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 695 696 /// popCatchScope - Pops the catch scope at the top of the EHScope 697 /// stack, emitting any required code (other than the catch handlers 698 /// themselves). 699 void popCatchScope(); 700 701 llvm::BasicBlock *getEHResumeBlock(bool isCleanup); 702 llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); 703 llvm::BasicBlock *getMSVCDispatchBlock(EHScopeStack::stable_iterator scope); 704 705 /// An object to manage conditionally-evaluated expressions. 706 class ConditionalEvaluation { 707 llvm::BasicBlock *StartBB; 708 709 public: 710 ConditionalEvaluation(CodeGenFunction &CGF) 711 : StartBB(CGF.Builder.GetInsertBlock()) {} 712 713 void begin(CodeGenFunction &CGF) { 714 assert(CGF.OutermostConditional != this); 715 if (!CGF.OutermostConditional) 716 CGF.OutermostConditional = this; 717 } 718 719 void end(CodeGenFunction &CGF) { 720 assert(CGF.OutermostConditional != nullptr); 721 if (CGF.OutermostConditional == this) 722 CGF.OutermostConditional = nullptr; 723 } 724 725 /// Returns a block which will be executed prior to each 726 /// evaluation of the conditional code. 727 llvm::BasicBlock *getStartingBlock() const { 728 return StartBB; 729 } 730 }; 731 732 /// isInConditionalBranch - Return true if we're currently emitting 733 /// one branch or the other of a conditional expression. 734 bool isInConditionalBranch() const { return OutermostConditional != nullptr; } 735 736 void setBeforeOutermostConditional(llvm::Value *value, Address addr) { 737 assert(isInConditionalBranch()); 738 llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); 739 auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back()); 740 store->setAlignment(addr.getAlignment().getQuantity()); 741 } 742 743 /// An RAII object to record that we're evaluating a statement 744 /// expression. 745 class StmtExprEvaluation { 746 CodeGenFunction &CGF; 747 748 /// We have to save the outermost conditional: cleanups in a 749 /// statement expression aren't conditional just because the 750 /// StmtExpr is. 751 ConditionalEvaluation *SavedOutermostConditional; 752 753 public: 754 StmtExprEvaluation(CodeGenFunction &CGF) 755 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 756 CGF.OutermostConditional = nullptr; 757 } 758 759 ~StmtExprEvaluation() { 760 CGF.OutermostConditional = SavedOutermostConditional; 761 CGF.EnsureInsertPoint(); 762 } 763 }; 764 765 /// An object which temporarily prevents a value from being 766 /// destroyed by aggressive peephole optimizations that assume that 767 /// all uses of a value have been realized in the IR. 768 class PeepholeProtection { 769 llvm::Instruction *Inst; 770 friend class CodeGenFunction; 771 772 public: 773 PeepholeProtection() : Inst(nullptr) {} 774 }; 775 776 /// A non-RAII class containing all the information about a bound 777 /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for 778 /// this which makes individual mappings very simple; using this 779 /// class directly is useful when you have a variable number of 780 /// opaque values or don't want the RAII functionality for some 781 /// reason. 782 class OpaqueValueMappingData { 783 const OpaqueValueExpr *OpaqueValue; 784 bool BoundLValue; 785 CodeGenFunction::PeepholeProtection Protection; 786 787 OpaqueValueMappingData(const OpaqueValueExpr *ov, 788 bool boundLValue) 789 : OpaqueValue(ov), BoundLValue(boundLValue) {} 790 public: 791 OpaqueValueMappingData() : OpaqueValue(nullptr) {} 792 793 static bool shouldBindAsLValue(const Expr *expr) { 794 // gl-values should be bound as l-values for obvious reasons. 795 // Records should be bound as l-values because IR generation 796 // always keeps them in memory. Expressions of function type 797 // act exactly like l-values but are formally required to be 798 // r-values in C. 799 return expr->isGLValue() || 800 expr->getType()->isFunctionType() || 801 hasAggregateEvaluationKind(expr->getType()); 802 } 803 804 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 805 const OpaqueValueExpr *ov, 806 const Expr *e) { 807 if (shouldBindAsLValue(ov)) 808 return bind(CGF, ov, CGF.EmitLValue(e)); 809 return bind(CGF, ov, CGF.EmitAnyExpr(e)); 810 } 811 812 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 813 const OpaqueValueExpr *ov, 814 const LValue &lv) { 815 assert(shouldBindAsLValue(ov)); 816 CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); 817 return OpaqueValueMappingData(ov, true); 818 } 819 820 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 821 const OpaqueValueExpr *ov, 822 const RValue &rv) { 823 assert(!shouldBindAsLValue(ov)); 824 CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); 825 826 OpaqueValueMappingData data(ov, false); 827 828 // Work around an extremely aggressive peephole optimization in 829 // EmitScalarConversion which assumes that all other uses of a 830 // value are extant. 831 data.Protection = CGF.protectFromPeepholes(rv); 832 833 return data; 834 } 835 836 bool isValid() const { return OpaqueValue != nullptr; } 837 void clear() { OpaqueValue = nullptr; } 838 839 void unbind(CodeGenFunction &CGF) { 840 assert(OpaqueValue && "no data to unbind!"); 841 842 if (BoundLValue) { 843 CGF.OpaqueLValues.erase(OpaqueValue); 844 } else { 845 CGF.OpaqueRValues.erase(OpaqueValue); 846 CGF.unprotectFromPeepholes(Protection); 847 } 848 } 849 }; 850 851 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 852 class OpaqueValueMapping { 853 CodeGenFunction &CGF; 854 OpaqueValueMappingData Data; 855 856 public: 857 static bool shouldBindAsLValue(const Expr *expr) { 858 return OpaqueValueMappingData::shouldBindAsLValue(expr); 859 } 860 861 /// Build the opaque value mapping for the given conditional 862 /// operator if it's the GNU ?: extension. This is a common 863 /// enough pattern that the convenience operator is really 864 /// helpful. 865 /// 866 OpaqueValueMapping(CodeGenFunction &CGF, 867 const AbstractConditionalOperator *op) : CGF(CGF) { 868 if (isa<ConditionalOperator>(op)) 869 // Leave Data empty. 870 return; 871 872 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 873 Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), 874 e->getCommon()); 875 } 876 877 OpaqueValueMapping(CodeGenFunction &CGF, 878 const OpaqueValueExpr *opaqueValue, 879 LValue lvalue) 880 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { 881 } 882 883 OpaqueValueMapping(CodeGenFunction &CGF, 884 const OpaqueValueExpr *opaqueValue, 885 RValue rvalue) 886 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { 887 } 888 889 void pop() { 890 Data.unbind(CGF); 891 Data.clear(); 892 } 893 894 ~OpaqueValueMapping() { 895 if (Data.isValid()) Data.unbind(CGF); 896 } 897 }; 898 899 private: 900 CGDebugInfo *DebugInfo; 901 bool DisableDebugInfo; 902 903 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 904 /// calling llvm.stacksave for multiple VLAs in the same scope. 905 bool DidCallStackSave; 906 907 /// IndirectBranch - The first time an indirect goto is seen we create a block 908 /// with an indirect branch. Every time we see the address of a label taken, 909 /// we add the label to the indirect goto. Every subsequent indirect goto is 910 /// codegen'd as a jump to the IndirectBranch's basic block. 911 llvm::IndirectBrInst *IndirectBranch; 912 913 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 914 /// decls. 915 DeclMapTy LocalDeclMap; 916 917 /// Track escaped local variables with auto storage. Used during SEH 918 /// outlining to produce a call to llvm.localescape. 919 llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals; 920 921 /// LabelMap - This keeps track of the LLVM basic block for each C label. 922 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 923 924 // BreakContinueStack - This keeps track of where break and continue 925 // statements should jump to. 926 struct BreakContinue { 927 BreakContinue(JumpDest Break, JumpDest Continue) 928 : BreakBlock(Break), ContinueBlock(Continue) {} 929 930 JumpDest BreakBlock; 931 JumpDest ContinueBlock; 932 }; 933 SmallVector<BreakContinue, 8> BreakContinueStack; 934 935 CodeGenPGO PGO; 936 937 /// Calculate branch weights appropriate for PGO data 938 llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount); 939 llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights); 940 llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond, 941 uint64_t LoopCount); 942 943 public: 944 /// Increment the profiler's counter for the given statement. 945 void incrementProfileCounter(const Stmt *S) { 946 if (CGM.getCodeGenOpts().ProfileInstrGenerate) 947 PGO.emitCounterIncrement(Builder, S); 948 PGO.setCurrentStmt(S); 949 } 950 951 /// Get the profiler's count for the given statement. 952 uint64_t getProfileCount(const Stmt *S) { 953 Optional<uint64_t> Count = PGO.getStmtCount(S); 954 if (!Count.hasValue()) 955 return 0; 956 return *Count; 957 } 958 959 /// Set the profiler's current count. 960 void setCurrentProfileCount(uint64_t Count) { 961 PGO.setCurrentRegionCount(Count); 962 } 963 964 /// Get the profiler's current count. This is generally the count for the most 965 /// recently incremented counter. 966 uint64_t getCurrentProfileCount() { 967 return PGO.getCurrentRegionCount(); 968 } 969 970 private: 971 972 /// SwitchInsn - This is nearest current switch instruction. It is null if 973 /// current context is not in a switch. 974 llvm::SwitchInst *SwitchInsn; 975 /// The branch weights of SwitchInsn when doing instrumentation based PGO. 976 SmallVector<uint64_t, 16> *SwitchWeights; 977 978 /// CaseRangeBlock - This block holds if condition check for last case 979 /// statement range in current switch instruction. 980 llvm::BasicBlock *CaseRangeBlock; 981 982 /// OpaqueLValues - Keeps track of the current set of opaque value 983 /// expressions. 984 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 985 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 986 987 // VLASizeMap - This keeps track of the associated size for each VLA type. 988 // We track this by the size expression rather than the type itself because 989 // in certain situations, like a const qualifier applied to an VLA typedef, 990 // multiple VLA types can share the same size expression. 991 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 992 // enter/leave scopes. 993 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 994 995 /// A block containing a single 'unreachable' instruction. Created 996 /// lazily by getUnreachableBlock(). 997 llvm::BasicBlock *UnreachableBlock; 998 999 /// Counts of the number return expressions in the function. 1000 unsigned NumReturnExprs; 1001 1002 /// Count the number of simple (constant) return expressions in the function. 1003 unsigned NumSimpleReturnExprs; 1004 1005 /// The last regular (non-return) debug location (breakpoint) in the function. 1006 SourceLocation LastStopPoint; 1007 1008 public: 1009 /// A scope within which we are constructing the fields of an object which 1010 /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use 1011 /// if we need to evaluate a CXXDefaultInitExpr within the evaluation. 1012 class FieldConstructionScope { 1013 public: 1014 FieldConstructionScope(CodeGenFunction &CGF, Address This) 1015 : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) { 1016 CGF.CXXDefaultInitExprThis = This; 1017 } 1018 ~FieldConstructionScope() { 1019 CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis; 1020 } 1021 1022 private: 1023 CodeGenFunction &CGF; 1024 Address OldCXXDefaultInitExprThis; 1025 }; 1026 1027 /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this' 1028 /// is overridden to be the object under construction. 1029 class CXXDefaultInitExprScope { 1030 public: 1031 CXXDefaultInitExprScope(CodeGenFunction &CGF) 1032 : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue), 1033 OldCXXThisAlignment(CGF.CXXThisAlignment) { 1034 CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer(); 1035 CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment(); 1036 } 1037 ~CXXDefaultInitExprScope() { 1038 CGF.CXXThisValue = OldCXXThisValue; 1039 CGF.CXXThisAlignment = OldCXXThisAlignment; 1040 } 1041 1042 public: 1043 CodeGenFunction &CGF; 1044 llvm::Value *OldCXXThisValue; 1045 CharUnits OldCXXThisAlignment; 1046 }; 1047 1048 private: 1049 /// CXXThisDecl - When generating code for a C++ member function, 1050 /// this will hold the implicit 'this' declaration. 1051 ImplicitParamDecl *CXXABIThisDecl; 1052 llvm::Value *CXXABIThisValue; 1053 llvm::Value *CXXThisValue; 1054 CharUnits CXXABIThisAlignment; 1055 CharUnits CXXThisAlignment; 1056 1057 /// The value of 'this' to use when evaluating CXXDefaultInitExprs within 1058 /// this expression. 1059 Address CXXDefaultInitExprThis = Address::invalid(); 1060 1061 /// CXXStructorImplicitParamDecl - When generating code for a constructor or 1062 /// destructor, this will hold the implicit argument (e.g. VTT). 1063 ImplicitParamDecl *CXXStructorImplicitParamDecl; 1064 llvm::Value *CXXStructorImplicitParamValue; 1065 1066 /// OutermostConditional - Points to the outermost active 1067 /// conditional control. This is used so that we know if a 1068 /// temporary should be destroyed conditionally. 1069 ConditionalEvaluation *OutermostConditional; 1070 1071 /// The current lexical scope. 1072 LexicalScope *CurLexicalScope; 1073 1074 /// The current source location that should be used for exception 1075 /// handling code. 1076 SourceLocation CurEHLocation; 1077 1078 /// BlockByrefInfos - For each __block variable, contains 1079 /// information about the layout of the variable. 1080 llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos; 1081 1082 llvm::BasicBlock *TerminateLandingPad; 1083 llvm::BasicBlock *TerminateHandler; 1084 llvm::BasicBlock *TrapBB; 1085 1086 /// Add a kernel metadata node to the named metadata node 'opencl.kernels'. 1087 /// In the kernel metadata node, reference the kernel function and metadata 1088 /// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2): 1089 /// - A node for the vec_type_hint(<type>) qualifier contains string 1090 /// "vec_type_hint", an undefined value of the <type> data type, 1091 /// and a Boolean that is true if the <type> is integer and signed. 1092 /// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string 1093 /// "work_group_size_hint", and three 32-bit integers X, Y and Z. 1094 /// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string 1095 /// "reqd_work_group_size", and three 32-bit integers X, Y and Z. 1096 void EmitOpenCLKernelMetadata(const FunctionDecl *FD, 1097 llvm::Function *Fn); 1098 1099 public: 1100 CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false); 1101 ~CodeGenFunction(); 1102 1103 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 1104 ASTContext &getContext() const { return CGM.getContext(); } 1105 CGDebugInfo *getDebugInfo() { 1106 if (DisableDebugInfo) 1107 return nullptr; 1108 return DebugInfo; 1109 } 1110 void disableDebugInfo() { DisableDebugInfo = true; } 1111 void enableDebugInfo() { DisableDebugInfo = false; } 1112 1113 bool shouldUseFusedARCCalls() { 1114 return CGM.getCodeGenOpts().OptimizationLevel == 0; 1115 } 1116 1117 const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } 1118 1119 /// Returns a pointer to the function's exception object and selector slot, 1120 /// which is assigned in every landing pad. 1121 Address getExceptionSlot(); 1122 Address getEHSelectorSlot(); 1123 1124 /// Returns the contents of the function's exception object and selector 1125 /// slots. 1126 llvm::Value *getExceptionFromSlot(); 1127 llvm::Value *getSelectorFromSlot(); 1128 1129 Address getNormalCleanupDestSlot(); 1130 1131 llvm::BasicBlock *getUnreachableBlock() { 1132 if (!UnreachableBlock) { 1133 UnreachableBlock = createBasicBlock("unreachable"); 1134 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 1135 } 1136 return UnreachableBlock; 1137 } 1138 1139 llvm::BasicBlock *getInvokeDest() { 1140 if (!EHStack.requiresLandingPad()) return nullptr; 1141 return getInvokeDestImpl(); 1142 } 1143 1144 bool currentFunctionUsesSEHTry() const { 1145 const auto *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl); 1146 return FD && FD->usesSEHTry(); 1147 } 1148 1149 const TargetInfo &getTarget() const { return Target; } 1150 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 1151 1152 //===--------------------------------------------------------------------===// 1153 // Cleanups 1154 //===--------------------------------------------------------------------===// 1155 1156 typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty); 1157 1158 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1159 Address arrayEndPointer, 1160 QualType elementType, 1161 CharUnits elementAlignment, 1162 Destroyer *destroyer); 1163 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1164 llvm::Value *arrayEnd, 1165 QualType elementType, 1166 CharUnits elementAlignment, 1167 Destroyer *destroyer); 1168 1169 void pushDestroy(QualType::DestructionKind dtorKind, 1170 Address addr, QualType type); 1171 void pushEHDestroy(QualType::DestructionKind dtorKind, 1172 Address addr, QualType type); 1173 void pushDestroy(CleanupKind kind, Address addr, QualType type, 1174 Destroyer *destroyer, bool useEHCleanupForArray); 1175 void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr, 1176 QualType type, Destroyer *destroyer, 1177 bool useEHCleanupForArray); 1178 void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 1179 llvm::Value *CompletePtr, 1180 QualType ElementType); 1181 void pushStackRestore(CleanupKind kind, Address SPMem); 1182 void emitDestroy(Address addr, QualType type, Destroyer *destroyer, 1183 bool useEHCleanupForArray); 1184 llvm::Function *generateDestroyHelper(Address addr, QualType type, 1185 Destroyer *destroyer, 1186 bool useEHCleanupForArray, 1187 const VarDecl *VD); 1188 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 1189 QualType elementType, CharUnits elementAlign, 1190 Destroyer *destroyer, 1191 bool checkZeroLength, bool useEHCleanup); 1192 1193 Destroyer *getDestroyer(QualType::DestructionKind destructionKind); 1194 1195 /// Determines whether an EH cleanup is required to destroy a type 1196 /// with the given destruction kind. 1197 bool needsEHCleanup(QualType::DestructionKind kind) { 1198 switch (kind) { 1199 case QualType::DK_none: 1200 return false; 1201 case QualType::DK_cxx_destructor: 1202 case QualType::DK_objc_weak_lifetime: 1203 return getLangOpts().Exceptions; 1204 case QualType::DK_objc_strong_lifetime: 1205 return getLangOpts().Exceptions && 1206 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 1207 } 1208 llvm_unreachable("bad destruction kind"); 1209 } 1210 1211 CleanupKind getCleanupKind(QualType::DestructionKind kind) { 1212 return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); 1213 } 1214 1215 //===--------------------------------------------------------------------===// 1216 // Objective-C 1217 //===--------------------------------------------------------------------===// 1218 1219 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 1220 1221 void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD); 1222 1223 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 1224 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 1225 const ObjCPropertyImplDecl *PID); 1226 void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 1227 const ObjCPropertyImplDecl *propImpl, 1228 const ObjCMethodDecl *GetterMothodDecl, 1229 llvm::Constant *AtomicHelperFn); 1230 1231 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1232 ObjCMethodDecl *MD, bool ctor); 1233 1234 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 1235 /// for the given property. 1236 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 1237 const ObjCPropertyImplDecl *PID); 1238 void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1239 const ObjCPropertyImplDecl *propImpl, 1240 llvm::Constant *AtomicHelperFn); 1241 1242 //===--------------------------------------------------------------------===// 1243 // Block Bits 1244 //===--------------------------------------------------------------------===// 1245 1246 llvm::Value *EmitBlockLiteral(const BlockExpr *); 1247 llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); 1248 static void destroyBlockInfos(CGBlockInfo *info); 1249 1250 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 1251 const CGBlockInfo &Info, 1252 const DeclMapTy &ldm, 1253 bool IsLambdaConversionToBlock); 1254 1255 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 1256 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 1257 llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( 1258 const ObjCPropertyImplDecl *PID); 1259 llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( 1260 const ObjCPropertyImplDecl *PID); 1261 llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); 1262 1263 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags); 1264 1265 class AutoVarEmission; 1266 1267 void emitByrefStructureInit(const AutoVarEmission &emission); 1268 void enterByrefCleanup(const AutoVarEmission &emission); 1269 1270 void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum, 1271 llvm::Value *ptr); 1272 1273 Address LoadBlockStruct(); 1274 Address GetAddrOfBlockDecl(const VarDecl *var, bool ByRef); 1275 1276 /// BuildBlockByrefAddress - Computes the location of the 1277 /// data in a variable which is declared as __block. 1278 Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V, 1279 bool followForward = true); 1280 Address emitBlockByrefAddress(Address baseAddr, 1281 const BlockByrefInfo &info, 1282 bool followForward, 1283 const llvm::Twine &name); 1284 1285 const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var); 1286 1287 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1288 const CGFunctionInfo &FnInfo); 1289 /// \brief Emit code for the start of a function. 1290 /// \param Loc The location to be associated with the function. 1291 /// \param StartLoc The location of the function body. 1292 void StartFunction(GlobalDecl GD, 1293 QualType RetTy, 1294 llvm::Function *Fn, 1295 const CGFunctionInfo &FnInfo, 1296 const FunctionArgList &Args, 1297 SourceLocation Loc = SourceLocation(), 1298 SourceLocation StartLoc = SourceLocation()); 1299 1300 void EmitConstructorBody(FunctionArgList &Args); 1301 void EmitDestructorBody(FunctionArgList &Args); 1302 void emitImplicitAssignmentOperatorBody(FunctionArgList &Args); 1303 void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body); 1304 void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S); 1305 1306 void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator, 1307 CallArgList &CallArgs); 1308 void EmitLambdaToBlockPointerBody(FunctionArgList &Args); 1309 void EmitLambdaBlockInvokeBody(); 1310 void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD); 1311 void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD); 1312 void EmitAsanPrologueOrEpilogue(bool Prologue); 1313 1314 /// \brief Emit the unified return block, trying to avoid its emission when 1315 /// possible. 1316 /// \return The debug location of the user written return statement if the 1317 /// return block is is avoided. 1318 llvm::DebugLoc EmitReturnBlock(); 1319 1320 /// FinishFunction - Complete IR generation of the current function. It is 1321 /// legal to call this function even if there is no current insertion point. 1322 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 1323 1324 void StartThunk(llvm::Function *Fn, GlobalDecl GD, 1325 const CGFunctionInfo &FnInfo); 1326 1327 void EmitCallAndReturnForThunk(llvm::Value *Callee, const ThunkInfo *Thunk); 1328 1329 void FinishThunk(); 1330 1331 /// Emit a musttail call for a thunk with a potentially adjusted this pointer. 1332 void EmitMustTailThunk(const CXXMethodDecl *MD, llvm::Value *AdjustedThisPtr, 1333 llvm::Value *Callee); 1334 1335 /// Generate a thunk for the given method. 1336 void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1337 GlobalDecl GD, const ThunkInfo &Thunk); 1338 1339 llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn, 1340 const CGFunctionInfo &FnInfo, 1341 GlobalDecl GD, const ThunkInfo &Thunk); 1342 1343 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 1344 FunctionArgList &Args); 1345 1346 void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init, 1347 ArrayRef<VarDecl *> ArrayIndexes); 1348 1349 /// Struct with all informations about dynamic [sub]class needed to set vptr. 1350 struct VPtr { 1351 BaseSubobject Base; 1352 const CXXRecordDecl *NearestVBase; 1353 CharUnits OffsetFromNearestVBase; 1354 const CXXRecordDecl *VTableClass; 1355 }; 1356 1357 /// Initialize the vtable pointer of the given subobject. 1358 void InitializeVTablePointer(const VPtr &vptr); 1359 1360 typedef llvm::SmallVector<VPtr, 4> VPtrsVector; 1361 1362 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 1363 VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass); 1364 1365 void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase, 1366 CharUnits OffsetFromNearestVBase, 1367 bool BaseIsNonVirtualPrimaryBase, 1368 const CXXRecordDecl *VTableClass, 1369 VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs); 1370 1371 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 1372 1373 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 1374 /// to by This. 1375 llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy, 1376 const CXXRecordDecl *VTableClass); 1377 1378 enum CFITypeCheckKind { 1379 CFITCK_VCall, 1380 CFITCK_NVCall, 1381 CFITCK_DerivedCast, 1382 CFITCK_UnrelatedCast, 1383 }; 1384 1385 /// \brief Derived is the presumed address of an object of type T after a 1386 /// cast. If T is a polymorphic class type, emit a check that the virtual 1387 /// table for Derived belongs to a class derived from T. 1388 void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived, 1389 bool MayBeNull, CFITypeCheckKind TCK, 1390 SourceLocation Loc); 1391 1392 /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable. 1393 /// If vptr CFI is enabled, emit a check that VTable is valid. 1394 void EmitVTablePtrCheckForCall(const CXXMethodDecl *MD, llvm::Value *VTable, 1395 CFITypeCheckKind TCK, SourceLocation Loc); 1396 1397 /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for 1398 /// RD using llvm.bitset.test. 1399 void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable, 1400 CFITypeCheckKind TCK, SourceLocation Loc); 1401 1402 /// CanDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given 1403 /// expr can be devirtualized. 1404 bool CanDevirtualizeMemberFunctionCall(const Expr *Base, 1405 const CXXMethodDecl *MD); 1406 1407 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 1408 /// given phase of destruction for a destructor. The end result 1409 /// should call destructors on members and base classes in reverse 1410 /// order of their construction. 1411 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 1412 1413 /// ShouldInstrumentFunction - Return true if the current function should be 1414 /// instrumented with __cyg_profile_func_* calls 1415 bool ShouldInstrumentFunction(); 1416 1417 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 1418 /// instrumentation function with the current function and the call site, if 1419 /// function instrumentation is enabled. 1420 void EmitFunctionInstrumentation(const char *Fn); 1421 1422 /// EmitMCountInstrumentation - Emit call to .mcount. 1423 void EmitMCountInstrumentation(); 1424 1425 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 1426 /// arguments for the given function. This is also responsible for naming the 1427 /// LLVM function arguments. 1428 void EmitFunctionProlog(const CGFunctionInfo &FI, 1429 llvm::Function *Fn, 1430 const FunctionArgList &Args); 1431 1432 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 1433 /// given temporary. 1434 void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc, 1435 SourceLocation EndLoc); 1436 1437 /// EmitStartEHSpec - Emit the start of the exception spec. 1438 void EmitStartEHSpec(const Decl *D); 1439 1440 /// EmitEndEHSpec - Emit the end of the exception spec. 1441 void EmitEndEHSpec(const Decl *D); 1442 1443 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 1444 llvm::BasicBlock *getTerminateLandingPad(); 1445 1446 /// getTerminateHandler - Return a handler (not a landing pad, just 1447 /// a catch handler) that just calls terminate. This is used when 1448 /// a terminate scope encloses a try. 1449 llvm::BasicBlock *getTerminateHandler(); 1450 1451 llvm::Type *ConvertTypeForMem(QualType T); 1452 llvm::Type *ConvertType(QualType T); 1453 llvm::Type *ConvertType(const TypeDecl *T) { 1454 return ConvertType(getContext().getTypeDeclType(T)); 1455 } 1456 1457 /// LoadObjCSelf - Load the value of self. This function is only valid while 1458 /// generating code for an Objective-C method. 1459 llvm::Value *LoadObjCSelf(); 1460 1461 /// TypeOfSelfObject - Return type of object that this self represents. 1462 QualType TypeOfSelfObject(); 1463 1464 /// hasAggregateLLVMType - Return true if the specified AST type will map into 1465 /// an aggregate LLVM type or is void. 1466 static TypeEvaluationKind getEvaluationKind(QualType T); 1467 1468 static bool hasScalarEvaluationKind(QualType T) { 1469 return getEvaluationKind(T) == TEK_Scalar; 1470 } 1471 1472 static bool hasAggregateEvaluationKind(QualType T) { 1473 return getEvaluationKind(T) == TEK_Aggregate; 1474 } 1475 1476 /// createBasicBlock - Create an LLVM basic block. 1477 llvm::BasicBlock *createBasicBlock(const Twine &name = "", 1478 llvm::Function *parent = nullptr, 1479 llvm::BasicBlock *before = nullptr) { 1480 #ifdef NDEBUG 1481 return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before); 1482 #else 1483 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 1484 #endif 1485 } 1486 1487 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 1488 /// label maps to. 1489 JumpDest getJumpDestForLabel(const LabelDecl *S); 1490 1491 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 1492 /// another basic block, simplify it. This assumes that no other code could 1493 /// potentially reference the basic block. 1494 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 1495 1496 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 1497 /// adding a fall-through branch from the current insert block if 1498 /// necessary. It is legal to call this function even if there is no current 1499 /// insertion point. 1500 /// 1501 /// IsFinished - If true, indicates that the caller has finished emitting 1502 /// branches to the given block and does not expect to emit code into it. This 1503 /// means the block can be ignored if it is unreachable. 1504 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 1505 1506 /// EmitBlockAfterUses - Emit the given block somewhere hopefully 1507 /// near its uses, and leave the insertion point in it. 1508 void EmitBlockAfterUses(llvm::BasicBlock *BB); 1509 1510 /// EmitBranch - Emit a branch to the specified basic block from the current 1511 /// insert block, taking care to avoid creation of branches from dummy 1512 /// blocks. It is legal to call this function even if there is no current 1513 /// insertion point. 1514 /// 1515 /// This function clears the current insertion point. The caller should follow 1516 /// calls to this function with calls to Emit*Block prior to generation new 1517 /// code. 1518 void EmitBranch(llvm::BasicBlock *Block); 1519 1520 /// HaveInsertPoint - True if an insertion point is defined. If not, this 1521 /// indicates that the current code being emitted is unreachable. 1522 bool HaveInsertPoint() const { 1523 return Builder.GetInsertBlock() != nullptr; 1524 } 1525 1526 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 1527 /// emitted IR has a place to go. Note that by definition, if this function 1528 /// creates a block then that block is unreachable; callers may do better to 1529 /// detect when no insertion point is defined and simply skip IR generation. 1530 void EnsureInsertPoint() { 1531 if (!HaveInsertPoint()) 1532 EmitBlock(createBasicBlock()); 1533 } 1534 1535 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1536 /// specified stmt yet. 1537 void ErrorUnsupported(const Stmt *S, const char *Type); 1538 1539 //===--------------------------------------------------------------------===// 1540 // Helpers 1541 //===--------------------------------------------------------------------===// 1542 1543 LValue MakeAddrLValue(Address Addr, QualType T, 1544 AlignmentSource AlignSource = AlignmentSource::Type) { 1545 return LValue::MakeAddr(Addr, T, getContext(), AlignSource, 1546 CGM.getTBAAInfo(T)); 1547 } 1548 1549 LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 1550 AlignmentSource AlignSource = AlignmentSource::Type) { 1551 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), 1552 AlignSource, CGM.getTBAAInfo(T)); 1553 } 1554 1555 LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T); 1556 LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T); 1557 CharUnits getNaturalTypeAlignment(QualType T, 1558 AlignmentSource *Source = nullptr, 1559 bool forPointeeType = false); 1560 CharUnits getNaturalPointeeTypeAlignment(QualType T, 1561 AlignmentSource *Source = nullptr); 1562 1563 Address EmitLoadOfReference(Address Ref, const ReferenceType *RefTy, 1564 AlignmentSource *Source = nullptr); 1565 LValue EmitLoadOfReferenceLValue(Address Ref, const ReferenceType *RefTy); 1566 1567 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 1568 /// block. The caller is responsible for setting an appropriate alignment on 1569 /// the alloca. 1570 llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, 1571 const Twine &Name = "tmp"); 1572 Address CreateTempAlloca(llvm::Type *Ty, CharUnits align, 1573 const Twine &Name = "tmp"); 1574 1575 /// CreateDefaultAlignedTempAlloca - This creates an alloca with the 1576 /// default ABI alignment of the given LLVM type. 1577 /// 1578 /// IMPORTANT NOTE: This is *not* generally the right alignment for 1579 /// any given AST type that happens to have been lowered to the 1580 /// given IR type. This should only ever be used for function-local, 1581 /// IR-driven manipulations like saving and restoring a value. Do 1582 /// not hand this address off to arbitrary IRGen routines, and especially 1583 /// do not pass it as an argument to a function that might expect a 1584 /// properly ABI-aligned value. 1585 Address CreateDefaultAlignTempAlloca(llvm::Type *Ty, 1586 const Twine &Name = "tmp"); 1587 1588 /// InitTempAlloca - Provide an initial value for the given alloca which 1589 /// will be observable at all locations in the function. 1590 /// 1591 /// The address should be something that was returned from one of 1592 /// the CreateTempAlloca or CreateMemTemp routines, and the 1593 /// initializer must be valid in the entry block (i.e. it must 1594 /// either be a constant or an argument value). 1595 void InitTempAlloca(Address Alloca, llvm::Value *Value); 1596 1597 /// CreateIRTemp - Create a temporary IR object of the given type, with 1598 /// appropriate alignment. This routine should only be used when an temporary 1599 /// value needs to be stored into an alloca (for example, to avoid explicit 1600 /// PHI construction), but the type is the IR type, not the type appropriate 1601 /// for storing in memory. 1602 /// 1603 /// That is, this is exactly equivalent to CreateMemTemp, but calling 1604 /// ConvertType instead of ConvertTypeForMem. 1605 Address CreateIRTemp(QualType T, const Twine &Name = "tmp"); 1606 1607 /// CreateMemTemp - Create a temporary memory object of the given type, with 1608 /// appropriate alignment. 1609 Address CreateMemTemp(QualType T, const Twine &Name = "tmp"); 1610 Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp"); 1611 1612 /// CreateAggTemp - Create a temporary memory object for the given 1613 /// aggregate type. 1614 AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") { 1615 return AggValueSlot::forAddr(CreateMemTemp(T, Name), 1616 T.getQualifiers(), 1617 AggValueSlot::IsNotDestructed, 1618 AggValueSlot::DoesNotNeedGCBarriers, 1619 AggValueSlot::IsNotAliased); 1620 } 1621 1622 /// Emit a cast to void* in the appropriate address space. 1623 llvm::Value *EmitCastToVoidPtr(llvm::Value *value); 1624 1625 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 1626 /// expression and compare the result against zero, returning an Int1Ty value. 1627 llvm::Value *EvaluateExprAsBool(const Expr *E); 1628 1629 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 1630 void EmitIgnoredExpr(const Expr *E); 1631 1632 /// EmitAnyExpr - Emit code to compute the specified expression which can have 1633 /// any type. The result is returned as an RValue struct. If this is an 1634 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 1635 /// the result should be returned. 1636 /// 1637 /// \param ignoreResult True if the resulting value isn't used. 1638 RValue EmitAnyExpr(const Expr *E, 1639 AggValueSlot aggSlot = AggValueSlot::ignored(), 1640 bool ignoreResult = false); 1641 1642 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 1643 // or the value of the expression, depending on how va_list is defined. 1644 Address EmitVAListRef(const Expr *E); 1645 1646 /// Emit a "reference" to a __builtin_ms_va_list; this is 1647 /// always the value of the expression, because a __builtin_ms_va_list is a 1648 /// pointer to a char. 1649 Address EmitMSVAListRef(const Expr *E); 1650 1651 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 1652 /// always be accessible even if no aggregate location is provided. 1653 RValue EmitAnyExprToTemp(const Expr *E); 1654 1655 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 1656 /// arbitrary expression into the given memory location. 1657 void EmitAnyExprToMem(const Expr *E, Address Location, 1658 Qualifiers Quals, bool IsInitializer); 1659 1660 void EmitAnyExprToExn(const Expr *E, Address Addr); 1661 1662 /// EmitExprAsInit - Emits the code necessary to initialize a 1663 /// location in memory with the given initializer. 1664 void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue, 1665 bool capturedByInit); 1666 1667 /// hasVolatileMember - returns true if aggregate type has a volatile 1668 /// member. 1669 bool hasVolatileMember(QualType T) { 1670 if (const RecordType *RT = T->getAs<RecordType>()) { 1671 const RecordDecl *RD = cast<RecordDecl>(RT->getDecl()); 1672 return RD->hasVolatileMember(); 1673 } 1674 return false; 1675 } 1676 /// EmitAggregateCopy - Emit an aggregate assignment. 1677 /// 1678 /// The difference to EmitAggregateCopy is that tail padding is not copied. 1679 /// This is required for correctness when assigning non-POD structures in C++. 1680 void EmitAggregateAssign(Address DestPtr, Address SrcPtr, 1681 QualType EltTy) { 1682 bool IsVolatile = hasVolatileMember(EltTy); 1683 EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, true); 1684 } 1685 1686 void EmitAggregateCopyCtor(Address DestPtr, Address SrcPtr, 1687 QualType DestTy, QualType SrcTy) { 1688 EmitAggregateCopy(DestPtr, SrcPtr, SrcTy, /*IsVolatile=*/false, 1689 /*IsAssignment=*/false); 1690 } 1691 1692 /// EmitAggregateCopy - Emit an aggregate copy. 1693 /// 1694 /// \param isVolatile - True iff either the source or the destination is 1695 /// volatile. 1696 /// \param isAssignment - If false, allow padding to be copied. This often 1697 /// yields more efficient. 1698 void EmitAggregateCopy(Address DestPtr, Address SrcPtr, 1699 QualType EltTy, bool isVolatile=false, 1700 bool isAssignment = false); 1701 1702 /// GetAddrOfLocalVar - Return the address of a local variable. 1703 Address GetAddrOfLocalVar(const VarDecl *VD) { 1704 auto it = LocalDeclMap.find(VD); 1705 assert(it != LocalDeclMap.end() && 1706 "Invalid argument to GetAddrOfLocalVar(), no decl!"); 1707 return it->second; 1708 } 1709 1710 /// getOpaqueLValueMapping - Given an opaque value expression (which 1711 /// must be mapped to an l-value), return its mapping. 1712 const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) { 1713 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 1714 1715 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 1716 it = OpaqueLValues.find(e); 1717 assert(it != OpaqueLValues.end() && "no mapping for opaque value!"); 1718 return it->second; 1719 } 1720 1721 /// getOpaqueRValueMapping - Given an opaque value expression (which 1722 /// must be mapped to an r-value), return its mapping. 1723 const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) { 1724 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 1725 1726 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 1727 it = OpaqueRValues.find(e); 1728 assert(it != OpaqueRValues.end() && "no mapping for opaque value!"); 1729 return it->second; 1730 } 1731 1732 /// getAccessedFieldNo - Given an encoded value and a result number, return 1733 /// the input field number being accessed. 1734 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 1735 1736 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 1737 llvm::BasicBlock *GetIndirectGotoBlock(); 1738 1739 /// EmitNullInitialization - Generate code to set a value of the given type to 1740 /// null, If the type contains data member pointers, they will be initialized 1741 /// to -1 in accordance with the Itanium C++ ABI. 1742 void EmitNullInitialization(Address DestPtr, QualType Ty); 1743 1744 /// Emits a call to an LLVM variable-argument intrinsic, either 1745 /// \c llvm.va_start or \c llvm.va_end. 1746 /// \param ArgValue A reference to the \c va_list as emitted by either 1747 /// \c EmitVAListRef or \c EmitMSVAListRef. 1748 /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise, 1749 /// calls \c llvm.va_end. 1750 llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart); 1751 1752 /// Generate code to get an argument from the passed in pointer 1753 /// and update it accordingly. 1754 /// \param VE The \c VAArgExpr for which to generate code. 1755 /// \param VAListAddr Receives a reference to the \c va_list as emitted by 1756 /// either \c EmitVAListRef or \c EmitMSVAListRef. 1757 /// \returns A pointer to the argument. 1758 // FIXME: We should be able to get rid of this method and use the va_arg 1759 // instruction in LLVM instead once it works well enough. 1760 Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr); 1761 1762 /// emitArrayLength - Compute the length of an array, even if it's a 1763 /// VLA, and drill down to the base element type. 1764 llvm::Value *emitArrayLength(const ArrayType *arrayType, 1765 QualType &baseType, 1766 Address &addr); 1767 1768 /// EmitVLASize - Capture all the sizes for the VLA expressions in 1769 /// the given variably-modified type and store them in the VLASizeMap. 1770 /// 1771 /// This function can be called with a null (unreachable) insert point. 1772 void EmitVariablyModifiedType(QualType Ty); 1773 1774 /// getVLASize - Returns an LLVM value that corresponds to the size, 1775 /// in non-variably-sized elements, of a variable length array type, 1776 /// plus that largest non-variably-sized element type. Assumes that 1777 /// the type has already been emitted with EmitVariablyModifiedType. 1778 std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla); 1779 std::pair<llvm::Value*,QualType> getVLASize(QualType vla); 1780 1781 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 1782 /// generating code for an C++ member function. 1783 llvm::Value *LoadCXXThis() { 1784 assert(CXXThisValue && "no 'this' value for this function"); 1785 return CXXThisValue; 1786 } 1787 Address LoadCXXThisAddress(); 1788 1789 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 1790 /// virtual bases. 1791 // FIXME: Every place that calls LoadCXXVTT is something 1792 // that needs to be abstracted properly. 1793 llvm::Value *LoadCXXVTT() { 1794 assert(CXXStructorImplicitParamValue && "no VTT value for this function"); 1795 return CXXStructorImplicitParamValue; 1796 } 1797 1798 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 1799 /// complete class to the given direct base. 1800 Address 1801 GetAddressOfDirectBaseInCompleteClass(Address Value, 1802 const CXXRecordDecl *Derived, 1803 const CXXRecordDecl *Base, 1804 bool BaseIsVirtual); 1805 1806 static bool ShouldNullCheckClassCastValue(const CastExpr *Cast); 1807 1808 /// GetAddressOfBaseClass - This function will add the necessary delta to the 1809 /// load of 'this' and returns address of the base class. 1810 Address GetAddressOfBaseClass(Address Value, 1811 const CXXRecordDecl *Derived, 1812 CastExpr::path_const_iterator PathBegin, 1813 CastExpr::path_const_iterator PathEnd, 1814 bool NullCheckValue, SourceLocation Loc); 1815 1816 Address GetAddressOfDerivedClass(Address Value, 1817 const CXXRecordDecl *Derived, 1818 CastExpr::path_const_iterator PathBegin, 1819 CastExpr::path_const_iterator PathEnd, 1820 bool NullCheckValue); 1821 1822 /// GetVTTParameter - Return the VTT parameter that should be passed to a 1823 /// base constructor/destructor with virtual bases. 1824 /// FIXME: VTTs are Itanium ABI-specific, so the definition should move 1825 /// to ItaniumCXXABI.cpp together with all the references to VTT. 1826 llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase, 1827 bool Delegating); 1828 1829 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 1830 CXXCtorType CtorType, 1831 const FunctionArgList &Args, 1832 SourceLocation Loc); 1833 // It's important not to confuse this and the previous function. Delegating 1834 // constructors are the C++0x feature. The constructor delegate optimization 1835 // is used to reduce duplication in the base and complete consturctors where 1836 // they are substantially the same. 1837 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 1838 const FunctionArgList &Args); 1839 1840 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 1841 bool ForVirtualBase, bool Delegating, 1842 Address This, const CXXConstructExpr *E); 1843 1844 /// Emit assumption load for all bases. Requires to be be called only on 1845 /// most-derived class and not under construction of the object. 1846 void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This); 1847 1848 /// Emit assumption that vptr load == global vtable. 1849 void EmitVTableAssumptionLoad(const VPtr &vptr, Address This); 1850 1851 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 1852 Address This, Address Src, 1853 const CXXConstructExpr *E); 1854 1855 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 1856 const ConstantArrayType *ArrayTy, 1857 Address ArrayPtr, 1858 const CXXConstructExpr *E, 1859 bool ZeroInitialization = false); 1860 1861 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 1862 llvm::Value *NumElements, 1863 Address ArrayPtr, 1864 const CXXConstructExpr *E, 1865 bool ZeroInitialization = false); 1866 1867 static Destroyer destroyCXXObject; 1868 1869 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 1870 bool ForVirtualBase, bool Delegating, 1871 Address This); 1872 1873 void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, 1874 llvm::Type *ElementTy, Address NewPtr, 1875 llvm::Value *NumElements, 1876 llvm::Value *AllocSizeWithoutCookie); 1877 1878 void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, 1879 Address Ptr); 1880 1881 llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr); 1882 void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr); 1883 1884 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 1885 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 1886 1887 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 1888 QualType DeleteTy); 1889 1890 RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 1891 const Expr *Arg, bool IsDelete); 1892 1893 llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E); 1894 llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE); 1895 Address EmitCXXUuidofExpr(const CXXUuidofExpr *E); 1896 1897 /// \brief Situations in which we might emit a check for the suitability of a 1898 /// pointer or glvalue. 1899 enum TypeCheckKind { 1900 /// Checking the operand of a load. Must be suitably sized and aligned. 1901 TCK_Load, 1902 /// Checking the destination of a store. Must be suitably sized and aligned. 1903 TCK_Store, 1904 /// Checking the bound value in a reference binding. Must be suitably sized 1905 /// and aligned, but is not required to refer to an object (until the 1906 /// reference is used), per core issue 453. 1907 TCK_ReferenceBinding, 1908 /// Checking the object expression in a non-static data member access. Must 1909 /// be an object within its lifetime. 1910 TCK_MemberAccess, 1911 /// Checking the 'this' pointer for a call to a non-static member function. 1912 /// Must be an object within its lifetime. 1913 TCK_MemberCall, 1914 /// Checking the 'this' pointer for a constructor call. 1915 TCK_ConstructorCall, 1916 /// Checking the operand of a static_cast to a derived pointer type. Must be 1917 /// null or an object within its lifetime. 1918 TCK_DowncastPointer, 1919 /// Checking the operand of a static_cast to a derived reference type. Must 1920 /// be an object within its lifetime. 1921 TCK_DowncastReference, 1922 /// Checking the operand of a cast to a base object. Must be suitably sized 1923 /// and aligned. 1924 TCK_Upcast, 1925 /// Checking the operand of a cast to a virtual base object. Must be an 1926 /// object within its lifetime. 1927 TCK_UpcastToVirtualBase 1928 }; 1929 1930 /// \brief Whether any type-checking sanitizers are enabled. If \c false, 1931 /// calls to EmitTypeCheck can be skipped. 1932 bool sanitizePerformTypeCheck() const; 1933 1934 /// \brief Emit a check that \p V is the address of storage of the 1935 /// appropriate size and alignment for an object of type \p Type. 1936 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, 1937 QualType Type, CharUnits Alignment = CharUnits::Zero(), 1938 bool SkipNullCheck = false); 1939 1940 /// \brief Emit a check that \p Base points into an array object, which 1941 /// we can access at index \p Index. \p Accessed should be \c false if we 1942 /// this expression is used as an lvalue, for instance in "&Arr[Idx]". 1943 void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, 1944 QualType IndexType, bool Accessed); 1945 1946 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 1947 bool isInc, bool isPre); 1948 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 1949 bool isInc, bool isPre); 1950 1951 void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment, 1952 llvm::Value *OffsetValue = nullptr) { 1953 Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment, 1954 OffsetValue); 1955 } 1956 1957 //===--------------------------------------------------------------------===// 1958 // Declaration Emission 1959 //===--------------------------------------------------------------------===// 1960 1961 /// EmitDecl - Emit a declaration. 1962 /// 1963 /// This function can be called with a null (unreachable) insert point. 1964 void EmitDecl(const Decl &D); 1965 1966 /// EmitVarDecl - Emit a local variable declaration. 1967 /// 1968 /// This function can be called with a null (unreachable) insert point. 1969 void EmitVarDecl(const VarDecl &D); 1970 1971 void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue, 1972 bool capturedByInit); 1973 void EmitScalarInit(llvm::Value *init, LValue lvalue); 1974 1975 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 1976 llvm::Value *Address); 1977 1978 /// \brief Determine whether the given initializer is trivial in the sense 1979 /// that it requires no code to be generated. 1980 bool isTrivialInitializer(const Expr *Init); 1981 1982 /// EmitAutoVarDecl - Emit an auto variable declaration. 1983 /// 1984 /// This function can be called with a null (unreachable) insert point. 1985 void EmitAutoVarDecl(const VarDecl &D); 1986 1987 class AutoVarEmission { 1988 friend class CodeGenFunction; 1989 1990 const VarDecl *Variable; 1991 1992 /// The address of the alloca. Invalid if the variable was emitted 1993 /// as a global constant. 1994 Address Addr; 1995 1996 llvm::Value *NRVOFlag; 1997 1998 /// True if the variable is a __block variable. 1999 bool IsByRef; 2000 2001 /// True if the variable is of aggregate type and has a constant 2002 /// initializer. 2003 bool IsConstantAggregate; 2004 2005 /// Non-null if we should use lifetime annotations. 2006 llvm::Value *SizeForLifetimeMarkers; 2007 2008 struct Invalid {}; 2009 AutoVarEmission(Invalid) : Variable(nullptr), Addr(Address::invalid()) {} 2010 2011 AutoVarEmission(const VarDecl &variable) 2012 : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr), 2013 IsByRef(false), IsConstantAggregate(false), 2014 SizeForLifetimeMarkers(nullptr) {} 2015 2016 bool wasEmittedAsGlobal() const { return !Addr.isValid(); } 2017 2018 public: 2019 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 2020 2021 bool useLifetimeMarkers() const { 2022 return SizeForLifetimeMarkers != nullptr; 2023 } 2024 llvm::Value *getSizeForLifetimeMarkers() const { 2025 assert(useLifetimeMarkers()); 2026 return SizeForLifetimeMarkers; 2027 } 2028 2029 /// Returns the raw, allocated address, which is not necessarily 2030 /// the address of the object itself. 2031 Address getAllocatedAddress() const { 2032 return Addr; 2033 } 2034 2035 /// Returns the address of the object within this declaration. 2036 /// Note that this does not chase the forwarding pointer for 2037 /// __block decls. 2038 Address getObjectAddress(CodeGenFunction &CGF) const { 2039 if (!IsByRef) return Addr; 2040 2041 return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false); 2042 } 2043 }; 2044 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 2045 void EmitAutoVarInit(const AutoVarEmission &emission); 2046 void EmitAutoVarCleanups(const AutoVarEmission &emission); 2047 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 2048 QualType::DestructionKind dtorKind); 2049 2050 void EmitStaticVarDecl(const VarDecl &D, 2051 llvm::GlobalValue::LinkageTypes Linkage); 2052 2053 class ParamValue { 2054 llvm::Value *Value; 2055 unsigned Alignment; 2056 ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {} 2057 public: 2058 static ParamValue forDirect(llvm::Value *value) { 2059 return ParamValue(value, 0); 2060 } 2061 static ParamValue forIndirect(Address addr) { 2062 assert(!addr.getAlignment().isZero()); 2063 return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity()); 2064 } 2065 2066 bool isIndirect() const { return Alignment != 0; } 2067 llvm::Value *getAnyValue() const { return Value; } 2068 2069 llvm::Value *getDirectValue() const { 2070 assert(!isIndirect()); 2071 return Value; 2072 } 2073 2074 Address getIndirectAddress() const { 2075 assert(isIndirect()); 2076 return Address(Value, CharUnits::fromQuantity(Alignment)); 2077 } 2078 }; 2079 2080 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 2081 void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo); 2082 2083 /// protectFromPeepholes - Protect a value that we're intending to 2084 /// store to the side, but which will probably be used later, from 2085 /// aggressive peepholing optimizations that might delete it. 2086 /// 2087 /// Pass the result to unprotectFromPeepholes to declare that 2088 /// protection is no longer required. 2089 /// 2090 /// There's no particular reason why this shouldn't apply to 2091 /// l-values, it's just that no existing peepholes work on pointers. 2092 PeepholeProtection protectFromPeepholes(RValue rvalue); 2093 void unprotectFromPeepholes(PeepholeProtection protection); 2094 2095 //===--------------------------------------------------------------------===// 2096 // Statement Emission 2097 //===--------------------------------------------------------------------===// 2098 2099 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 2100 void EmitStopPoint(const Stmt *S); 2101 2102 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 2103 /// this function even if there is no current insertion point. 2104 /// 2105 /// This function may clear the current insertion point; callers should use 2106 /// EnsureInsertPoint if they wish to subsequently generate code without first 2107 /// calling EmitBlock, EmitBranch, or EmitStmt. 2108 void EmitStmt(const Stmt *S); 2109 2110 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 2111 /// necessarily require an insertion point or debug information; typically 2112 /// because the statement amounts to a jump or a container of other 2113 /// statements. 2114 /// 2115 /// \return True if the statement was handled. 2116 bool EmitSimpleStmt(const Stmt *S); 2117 2118 Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 2119 AggValueSlot AVS = AggValueSlot::ignored()); 2120 Address EmitCompoundStmtWithoutScope(const CompoundStmt &S, 2121 bool GetLast = false, 2122 AggValueSlot AVS = 2123 AggValueSlot::ignored()); 2124 2125 /// EmitLabel - Emit the block for the given label. It is legal to call this 2126 /// function even if there is no current insertion point. 2127 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 2128 2129 void EmitLabelStmt(const LabelStmt &S); 2130 void EmitAttributedStmt(const AttributedStmt &S); 2131 void EmitGotoStmt(const GotoStmt &S); 2132 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 2133 void EmitIfStmt(const IfStmt &S); 2134 2135 void EmitWhileStmt(const WhileStmt &S, 2136 ArrayRef<const Attr *> Attrs = None); 2137 void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None); 2138 void EmitForStmt(const ForStmt &S, 2139 ArrayRef<const Attr *> Attrs = None); 2140 void EmitReturnStmt(const ReturnStmt &S); 2141 void EmitDeclStmt(const DeclStmt &S); 2142 void EmitBreakStmt(const BreakStmt &S); 2143 void EmitContinueStmt(const ContinueStmt &S); 2144 void EmitSwitchStmt(const SwitchStmt &S); 2145 void EmitDefaultStmt(const DefaultStmt &S); 2146 void EmitCaseStmt(const CaseStmt &S); 2147 void EmitCaseStmtRange(const CaseStmt &S); 2148 void EmitAsmStmt(const AsmStmt &S); 2149 2150 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 2151 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 2152 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 2153 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 2154 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 2155 2156 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 2157 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 2158 2159 void EmitCXXTryStmt(const CXXTryStmt &S); 2160 void EmitSEHTryStmt(const SEHTryStmt &S); 2161 void EmitSEHLeaveStmt(const SEHLeaveStmt &S); 2162 void EnterSEHTryStmt(const SEHTryStmt &S); 2163 void ExitSEHTryStmt(const SEHTryStmt &S); 2164 2165 void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter, 2166 const Stmt *OutlinedStmt); 2167 2168 llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF, 2169 const SEHExceptStmt &Except); 2170 2171 llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF, 2172 const SEHFinallyStmt &Finally); 2173 2174 void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF, 2175 llvm::Value *ParentFP, 2176 llvm::Value *EntryEBP); 2177 llvm::Value *EmitSEHExceptionCode(); 2178 llvm::Value *EmitSEHExceptionInfo(); 2179 llvm::Value *EmitSEHAbnormalTermination(); 2180 2181 /// Scan the outlined statement for captures from the parent function. For 2182 /// each capture, mark the capture as escaped and emit a call to 2183 /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap. 2184 void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt, 2185 bool IsFilter); 2186 2187 /// Recovers the address of a local in a parent function. ParentVar is the 2188 /// address of the variable used in the immediate parent function. It can 2189 /// either be an alloca or a call to llvm.localrecover if there are nested 2190 /// outlined functions. ParentFP is the frame pointer of the outermost parent 2191 /// frame. 2192 Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF, 2193 Address ParentVar, 2194 llvm::Value *ParentFP); 2195 2196 void EmitCXXForRangeStmt(const CXXForRangeStmt &S, 2197 ArrayRef<const Attr *> Attrs = None); 2198 2199 LValue InitCapturedStruct(const CapturedStmt &S); 2200 llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K); 2201 llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S); 2202 Address GenerateCapturedStmtArgument(const CapturedStmt &S); 2203 llvm::Function * 2204 GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S, 2205 bool UseOnlyReferences = false); 2206 void GenerateOpenMPCapturedVars(const CapturedStmt &S, 2207 SmallVectorImpl<llvm::Value *> &CapturedVars, 2208 bool UseOnlyReferences = false); 2209 /// \brief Perform element by element copying of arrays with type \a 2210 /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure 2211 /// generated by \a CopyGen. 2212 /// 2213 /// \param DestAddr Address of the destination array. 2214 /// \param SrcAddr Address of the source array. 2215 /// \param OriginalType Type of destination and source arrays. 2216 /// \param CopyGen Copying procedure that copies value of single array element 2217 /// to another single array element. 2218 void EmitOMPAggregateAssign( 2219 Address DestAddr, Address SrcAddr, QualType OriginalType, 2220 const llvm::function_ref<void(Address, Address)> &CopyGen); 2221 /// \brief Emit proper copying of data from one variable to another. 2222 /// 2223 /// \param OriginalType Original type of the copied variables. 2224 /// \param DestAddr Destination address. 2225 /// \param SrcAddr Source address. 2226 /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has 2227 /// type of the base array element). 2228 /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of 2229 /// the base array element). 2230 /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a 2231 /// DestVD. 2232 void EmitOMPCopy(QualType OriginalType, 2233 Address DestAddr, Address SrcAddr, 2234 const VarDecl *DestVD, const VarDecl *SrcVD, 2235 const Expr *Copy); 2236 /// \brief Emit atomic update code for constructs: \a X = \a X \a BO \a E or 2237 /// \a X = \a E \a BO \a E. 2238 /// 2239 /// \param X Value to be updated. 2240 /// \param E Update value. 2241 /// \param BO Binary operation for update operation. 2242 /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update 2243 /// expression, false otherwise. 2244 /// \param AO Atomic ordering of the generated atomic instructions. 2245 /// \param CommonGen Code generator for complex expressions that cannot be 2246 /// expressed through atomicrmw instruction. 2247 /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was 2248 /// generated, <false, RValue::get(nullptr)> otherwise. 2249 std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr( 2250 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 2251 llvm::AtomicOrdering AO, SourceLocation Loc, 2252 const llvm::function_ref<RValue(RValue)> &CommonGen); 2253 bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 2254 OMPPrivateScope &PrivateScope); 2255 void EmitOMPPrivateClause(const OMPExecutableDirective &D, 2256 OMPPrivateScope &PrivateScope); 2257 /// \brief Emit code for copyin clause in \a D directive. The next code is 2258 /// generated at the start of outlined functions for directives: 2259 /// \code 2260 /// threadprivate_var1 = master_threadprivate_var1; 2261 /// operator=(threadprivate_var2, master_threadprivate_var2); 2262 /// ... 2263 /// __kmpc_barrier(&loc, global_tid); 2264 /// \endcode 2265 /// 2266 /// \param D OpenMP directive possibly with 'copyin' clause(s). 2267 /// \returns true if at least one copyin variable is found, false otherwise. 2268 bool EmitOMPCopyinClause(const OMPExecutableDirective &D); 2269 /// \brief Emit initial code for lastprivate variables. If some variable is 2270 /// not also firstprivate, then the default initialization is used. Otherwise 2271 /// initialization of this variable is performed by EmitOMPFirstprivateClause 2272 /// method. 2273 /// 2274 /// \param D Directive that may have 'lastprivate' directives. 2275 /// \param PrivateScope Private scope for capturing lastprivate variables for 2276 /// proper codegen in internal captured statement. 2277 /// 2278 /// \returns true if there is at least one lastprivate variable, false 2279 /// otherwise. 2280 bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D, 2281 OMPPrivateScope &PrivateScope); 2282 /// \brief Emit final copying of lastprivate values to original variables at 2283 /// the end of the worksharing or simd directive. 2284 /// 2285 /// \param D Directive that has at least one 'lastprivate' directives. 2286 /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if 2287 /// it is the last iteration of the loop code in associated directive, or to 2288 /// 'i1 false' otherwise. If this item is nullptr, no final check is required. 2289 void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D, 2290 llvm::Value *IsLastIterCond = nullptr); 2291 /// \brief Emit initial code for reduction variables. Creates reduction copies 2292 /// and initializes them with the values according to OpenMP standard. 2293 /// 2294 /// \param D Directive (possibly) with the 'reduction' clause. 2295 /// \param PrivateScope Private scope for capturing reduction variables for 2296 /// proper codegen in internal captured statement. 2297 /// 2298 void EmitOMPReductionClauseInit(const OMPExecutableDirective &D, 2299 OMPPrivateScope &PrivateScope); 2300 /// \brief Emit final update of reduction values to original variables at 2301 /// the end of the directive. 2302 /// 2303 /// \param D Directive that has at least one 'reduction' directives. 2304 void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D); 2305 /// \brief Emit initial code for linear variables. Creates private copies 2306 /// and initializes them with the values according to OpenMP standard. 2307 /// 2308 /// \param D Directive (possibly) with the 'linear' clause. 2309 void EmitOMPLinearClauseInit(const OMPLoopDirective &D); 2310 2311 void EmitOMPParallelDirective(const OMPParallelDirective &S); 2312 void EmitOMPSimdDirective(const OMPSimdDirective &S); 2313 void EmitOMPForDirective(const OMPForDirective &S); 2314 void EmitOMPForSimdDirective(const OMPForSimdDirective &S); 2315 void EmitOMPSectionsDirective(const OMPSectionsDirective &S); 2316 void EmitOMPSectionDirective(const OMPSectionDirective &S); 2317 void EmitOMPSingleDirective(const OMPSingleDirective &S); 2318 void EmitOMPMasterDirective(const OMPMasterDirective &S); 2319 void EmitOMPCriticalDirective(const OMPCriticalDirective &S); 2320 void EmitOMPParallelForDirective(const OMPParallelForDirective &S); 2321 void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S); 2322 void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S); 2323 void EmitOMPTaskDirective(const OMPTaskDirective &S); 2324 void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S); 2325 void EmitOMPBarrierDirective(const OMPBarrierDirective &S); 2326 void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S); 2327 void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S); 2328 void EmitOMPFlushDirective(const OMPFlushDirective &S); 2329 void EmitOMPOrderedDirective(const OMPOrderedDirective &S); 2330 void EmitOMPAtomicDirective(const OMPAtomicDirective &S); 2331 void EmitOMPTargetDirective(const OMPTargetDirective &S); 2332 void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S); 2333 void EmitOMPTeamsDirective(const OMPTeamsDirective &S); 2334 void 2335 EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S); 2336 void EmitOMPCancelDirective(const OMPCancelDirective &S); 2337 2338 /// \brief Emit inner loop of the worksharing/simd construct. 2339 /// 2340 /// \param S Directive, for which the inner loop must be emitted. 2341 /// \param RequiresCleanup true, if directive has some associated private 2342 /// variables. 2343 /// \param LoopCond Bollean condition for loop continuation. 2344 /// \param IncExpr Increment expression for loop control variable. 2345 /// \param BodyGen Generator for the inner body of the inner loop. 2346 /// \param PostIncGen Genrator for post-increment code (required for ordered 2347 /// loop directvies). 2348 void EmitOMPInnerLoop( 2349 const Stmt &S, bool RequiresCleanup, const Expr *LoopCond, 2350 const Expr *IncExpr, 2351 const llvm::function_ref<void(CodeGenFunction &)> &BodyGen, 2352 const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen); 2353 2354 JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind); 2355 2356 private: 2357 2358 /// Helpers for the OpenMP loop directives. 2359 void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit); 2360 void EmitOMPSimdInit(const OMPLoopDirective &D); 2361 void EmitOMPSimdFinal(const OMPLoopDirective &D); 2362 /// \brief Emit code for the worksharing loop-based directive. 2363 /// \return true, if this construct has any lastprivate clause, false - 2364 /// otherwise. 2365 bool EmitOMPWorksharingLoop(const OMPLoopDirective &S); 2366 void EmitOMPForOuterLoop(OpenMPScheduleClauseKind ScheduleKind, 2367 const OMPLoopDirective &S, 2368 OMPPrivateScope &LoopScope, bool Ordered, 2369 Address LB, Address UB, Address ST, 2370 Address IL, llvm::Value *Chunk); 2371 /// \brief Emit code for sections directive. 2372 OpenMPDirectiveKind EmitSections(const OMPExecutableDirective &S); 2373 2374 public: 2375 2376 //===--------------------------------------------------------------------===// 2377 // LValue Expression Emission 2378 //===--------------------------------------------------------------------===// 2379 2380 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 2381 RValue GetUndefRValue(QualType Ty); 2382 2383 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 2384 /// and issue an ErrorUnsupported style diagnostic (using the 2385 /// provided Name). 2386 RValue EmitUnsupportedRValue(const Expr *E, 2387 const char *Name); 2388 2389 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 2390 /// an ErrorUnsupported style diagnostic (using the provided Name). 2391 LValue EmitUnsupportedLValue(const Expr *E, 2392 const char *Name); 2393 2394 /// EmitLValue - Emit code to compute a designator that specifies the location 2395 /// of the expression. 2396 /// 2397 /// This can return one of two things: a simple address or a bitfield 2398 /// reference. In either case, the LLVM Value* in the LValue structure is 2399 /// guaranteed to be an LLVM pointer type. 2400 /// 2401 /// If this returns a bitfield reference, nothing about the pointee type of 2402 /// the LLVM value is known: For example, it may not be a pointer to an 2403 /// integer. 2404 /// 2405 /// If this returns a normal address, and if the lvalue's C type is fixed 2406 /// size, this method guarantees that the returned pointer type will point to 2407 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 2408 /// variable length type, this is not possible. 2409 /// 2410 LValue EmitLValue(const Expr *E); 2411 2412 /// \brief Same as EmitLValue but additionally we generate checking code to 2413 /// guard against undefined behavior. This is only suitable when we know 2414 /// that the address will be used to access the object. 2415 LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK); 2416 2417 RValue convertTempToRValue(Address addr, QualType type, 2418 SourceLocation Loc); 2419 2420 void EmitAtomicInit(Expr *E, LValue lvalue); 2421 2422 bool LValueIsSuitableForInlineAtomic(LValue Src); 2423 bool typeIsSuitableForInlineAtomic(QualType Ty, bool IsVolatile) const; 2424 2425 RValue EmitAtomicLoad(LValue LV, SourceLocation SL, 2426 AggValueSlot Slot = AggValueSlot::ignored()); 2427 2428 RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc, 2429 llvm::AtomicOrdering AO, bool IsVolatile = false, 2430 AggValueSlot slot = AggValueSlot::ignored()); 2431 2432 void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit); 2433 2434 void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO, 2435 bool IsVolatile, bool isInit); 2436 2437 std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange( 2438 LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, 2439 llvm::AtomicOrdering Success = llvm::SequentiallyConsistent, 2440 llvm::AtomicOrdering Failure = llvm::SequentiallyConsistent, 2441 bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored()); 2442 2443 void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO, 2444 const llvm::function_ref<RValue(RValue)> &UpdateOp, 2445 bool IsVolatile); 2446 2447 /// EmitToMemory - Change a scalar value from its value 2448 /// representation to its in-memory representation. 2449 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 2450 2451 /// EmitFromMemory - Change a scalar value from its memory 2452 /// representation to its value representation. 2453 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 2454 2455 /// EmitLoadOfScalar - Load a scalar value from an address, taking 2456 /// care to appropriately convert from the memory representation to 2457 /// the LLVM value representation. 2458 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 2459 SourceLocation Loc, 2460 AlignmentSource AlignSource = 2461 AlignmentSource::Type, 2462 llvm::MDNode *TBAAInfo = nullptr, 2463 QualType TBAABaseTy = QualType(), 2464 uint64_t TBAAOffset = 0, 2465 bool isNontemporal = false); 2466 2467 /// EmitLoadOfScalar - Load a scalar value from an address, taking 2468 /// care to appropriately convert from the memory representation to 2469 /// the LLVM value representation. The l-value must be a simple 2470 /// l-value. 2471 llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc); 2472 2473 /// EmitStoreOfScalar - Store a scalar value to an address, taking 2474 /// care to appropriately convert from the memory representation to 2475 /// the LLVM value representation. 2476 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 2477 bool Volatile, QualType Ty, 2478 AlignmentSource AlignSource = AlignmentSource::Type, 2479 llvm::MDNode *TBAAInfo = nullptr, bool isInit = false, 2480 QualType TBAABaseTy = QualType(), 2481 uint64_t TBAAOffset = 0, bool isNontemporal = false); 2482 2483 /// EmitStoreOfScalar - Store a scalar value to an address, taking 2484 /// care to appropriately convert from the memory representation to 2485 /// the LLVM value representation. The l-value must be a simple 2486 /// l-value. The isInit flag indicates whether this is an initialization. 2487 /// If so, atomic qualifiers are ignored and the store is always non-atomic. 2488 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); 2489 2490 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 2491 /// this method emits the address of the lvalue, then loads the result as an 2492 /// rvalue, returning the rvalue. 2493 RValue EmitLoadOfLValue(LValue V, SourceLocation Loc); 2494 RValue EmitLoadOfExtVectorElementLValue(LValue V); 2495 RValue EmitLoadOfBitfieldLValue(LValue LV); 2496 RValue EmitLoadOfGlobalRegLValue(LValue LV); 2497 2498 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 2499 /// lvalue, where both are guaranteed to the have the same type, and that type 2500 /// is 'Ty'. 2501 void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false); 2502 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 2503 void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst); 2504 2505 /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints 2506 /// as EmitStoreThroughLValue. 2507 /// 2508 /// \param Result [out] - If non-null, this will be set to a Value* for the 2509 /// bit-field contents after the store, appropriate for use as the result of 2510 /// an assignment to the bit-field. 2511 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 2512 llvm::Value **Result=nullptr); 2513 2514 /// Emit an l-value for an assignment (simple or compound) of complex type. 2515 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 2516 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 2517 LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 2518 llvm::Value *&Result); 2519 2520 // Note: only available for agg return types 2521 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 2522 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 2523 // Note: only available for agg return types 2524 LValue EmitCallExprLValue(const CallExpr *E); 2525 // Note: only available for agg return types 2526 LValue EmitVAArgExprLValue(const VAArgExpr *E); 2527 LValue EmitDeclRefLValue(const DeclRefExpr *E); 2528 LValue EmitStringLiteralLValue(const StringLiteral *E); 2529 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 2530 LValue EmitPredefinedLValue(const PredefinedExpr *E); 2531 LValue EmitUnaryOpLValue(const UnaryOperator *E); 2532 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 2533 bool Accessed = false); 2534 LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 2535 bool IsLowerBound = true); 2536 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 2537 LValue EmitMemberExpr(const MemberExpr *E); 2538 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 2539 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 2540 LValue EmitInitListLValue(const InitListExpr *E); 2541 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 2542 LValue EmitCastLValue(const CastExpr *E); 2543 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 2544 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 2545 2546 Address EmitExtVectorElementLValue(LValue V); 2547 2548 RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc); 2549 2550 Address EmitArrayToPointerDecay(const Expr *Array, 2551 AlignmentSource *AlignSource = nullptr); 2552 2553 class ConstantEmission { 2554 llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; 2555 ConstantEmission(llvm::Constant *C, bool isReference) 2556 : ValueAndIsReference(C, isReference) {} 2557 public: 2558 ConstantEmission() {} 2559 static ConstantEmission forReference(llvm::Constant *C) { 2560 return ConstantEmission(C, true); 2561 } 2562 static ConstantEmission forValue(llvm::Constant *C) { 2563 return ConstantEmission(C, false); 2564 } 2565 2566 explicit operator bool() const { 2567 return ValueAndIsReference.getOpaqueValue() != nullptr; 2568 } 2569 2570 bool isReference() const { return ValueAndIsReference.getInt(); } 2571 LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { 2572 assert(isReference()); 2573 return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), 2574 refExpr->getType()); 2575 } 2576 2577 llvm::Constant *getValue() const { 2578 assert(!isReference()); 2579 return ValueAndIsReference.getPointer(); 2580 } 2581 }; 2582 2583 ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); 2584 2585 RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, 2586 AggValueSlot slot = AggValueSlot::ignored()); 2587 LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); 2588 2589 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 2590 const ObjCIvarDecl *Ivar); 2591 LValue EmitLValueForField(LValue Base, const FieldDecl* Field); 2592 LValue EmitLValueForLambdaField(const FieldDecl *Field); 2593 2594 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 2595 /// if the Field is a reference, this will return the address of the reference 2596 /// and not the address of the value stored in the reference. 2597 LValue EmitLValueForFieldInitialization(LValue Base, 2598 const FieldDecl* Field); 2599 2600 LValue EmitLValueForIvar(QualType ObjectTy, 2601 llvm::Value* Base, const ObjCIvarDecl *Ivar, 2602 unsigned CVRQualifiers); 2603 2604 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 2605 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 2606 LValue EmitLambdaLValue(const LambdaExpr *E); 2607 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 2608 LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E); 2609 2610 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 2611 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 2612 LValue EmitStmtExprLValue(const StmtExpr *E); 2613 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 2614 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 2615 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init); 2616 2617 //===--------------------------------------------------------------------===// 2618 // Scalar Expression Emission 2619 //===--------------------------------------------------------------------===// 2620 2621 /// EmitCall - Generate a call of the given function, expecting the given 2622 /// result type, and using the given argument list which specifies both the 2623 /// LLVM arguments and the types they were derived from. 2624 /// 2625 /// \param TargetDecl - If given, the decl of the function in a direct call; 2626 /// used to set attributes on the call (noreturn, etc.). 2627 RValue EmitCall(const CGFunctionInfo &FnInfo, 2628 llvm::Value *Callee, 2629 ReturnValueSlot ReturnValue, 2630 const CallArgList &Args, 2631 const Decl *TargetDecl = nullptr, 2632 llvm::Instruction **callOrInvoke = nullptr); 2633 2634 RValue EmitCall(QualType FnType, llvm::Value *Callee, const CallExpr *E, 2635 ReturnValueSlot ReturnValue, 2636 const Decl *TargetDecl = nullptr, 2637 llvm::Value *Chain = nullptr); 2638 RValue EmitCallExpr(const CallExpr *E, 2639 ReturnValueSlot ReturnValue = ReturnValueSlot()); 2640 2641 void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl); 2642 2643 llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, 2644 const Twine &name = ""); 2645 llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, 2646 ArrayRef<llvm::Value*> args, 2647 const Twine &name = ""); 2648 llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, 2649 const Twine &name = ""); 2650 llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, 2651 ArrayRef<llvm::Value*> args, 2652 const Twine &name = ""); 2653 2654 llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, 2655 ArrayRef<llvm::Value *> Args, 2656 const Twine &Name = ""); 2657 llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, 2658 ArrayRef<llvm::Value*> args, 2659 const Twine &name = ""); 2660 llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, 2661 const Twine &name = ""); 2662 void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee, 2663 ArrayRef<llvm::Value*> args); 2664 2665 llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 2666 NestedNameSpecifier *Qual, 2667 llvm::Type *Ty); 2668 2669 llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 2670 CXXDtorType Type, 2671 const CXXRecordDecl *RD); 2672 2673 RValue 2674 EmitCXXMemberOrOperatorCall(const CXXMethodDecl *MD, llvm::Value *Callee, 2675 ReturnValueSlot ReturnValue, llvm::Value *This, 2676 llvm::Value *ImplicitParam, 2677 QualType ImplicitParamTy, const CallExpr *E); 2678 RValue EmitCXXStructorCall(const CXXMethodDecl *MD, llvm::Value *Callee, 2679 ReturnValueSlot ReturnValue, llvm::Value *This, 2680 llvm::Value *ImplicitParam, 2681 QualType ImplicitParamTy, const CallExpr *E, 2682 StructorType Type); 2683 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 2684 ReturnValueSlot ReturnValue); 2685 RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE, 2686 const CXXMethodDecl *MD, 2687 ReturnValueSlot ReturnValue, 2688 bool HasQualifier, 2689 NestedNameSpecifier *Qualifier, 2690 bool IsArrow, const Expr *Base); 2691 // Compute the object pointer. 2692 Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base, 2693 llvm::Value *memberPtr, 2694 const MemberPointerType *memberPtrType, 2695 AlignmentSource *AlignSource = nullptr); 2696 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 2697 ReturnValueSlot ReturnValue); 2698 2699 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 2700 const CXXMethodDecl *MD, 2701 ReturnValueSlot ReturnValue); 2702 2703 RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 2704 ReturnValueSlot ReturnValue); 2705 2706 2707 RValue EmitBuiltinExpr(const FunctionDecl *FD, 2708 unsigned BuiltinID, const CallExpr *E, 2709 ReturnValueSlot ReturnValue); 2710 2711 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 2712 2713 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 2714 /// is unhandled by the current target. 2715 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2716 2717 llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty, 2718 const llvm::CmpInst::Predicate Fp, 2719 const llvm::CmpInst::Predicate Ip, 2720 const llvm::Twine &Name = ""); 2721 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2722 2723 llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID, 2724 unsigned LLVMIntrinsic, 2725 unsigned AltLLVMIntrinsic, 2726 const char *NameHint, 2727 unsigned Modifier, 2728 const CallExpr *E, 2729 SmallVectorImpl<llvm::Value *> &Ops, 2730 Address PtrOp0, Address PtrOp1); 2731 llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID, 2732 unsigned Modifier, llvm::Type *ArgTy, 2733 const CallExpr *E); 2734 llvm::Value *EmitNeonCall(llvm::Function *F, 2735 SmallVectorImpl<llvm::Value*> &O, 2736 const char *name, 2737 unsigned shift = 0, bool rightshift = false); 2738 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 2739 llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, 2740 bool negateForRightShift); 2741 llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt, 2742 llvm::Type *Ty, bool usgn, const char *name); 2743 llvm::Value *vectorWrapScalar16(llvm::Value *Op); 2744 llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2745 2746 llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); 2747 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2748 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2749 llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2750 llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2751 llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2752 llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID, 2753 const CallExpr *E); 2754 2755 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 2756 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 2757 llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); 2758 llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); 2759 llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); 2760 llvm::Value *EmitObjCCollectionLiteral(const Expr *E, 2761 const ObjCMethodDecl *MethodWithObjects); 2762 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 2763 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 2764 ReturnValueSlot Return = ReturnValueSlot()); 2765 2766 /// Retrieves the default cleanup kind for an ARC cleanup. 2767 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. 2768 CleanupKind getARCCleanupKind() { 2769 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 2770 ? NormalAndEHCleanup : NormalCleanup; 2771 } 2772 2773 // ARC primitives. 2774 void EmitARCInitWeak(Address addr, llvm::Value *value); 2775 void EmitARCDestroyWeak(Address addr); 2776 llvm::Value *EmitARCLoadWeak(Address addr); 2777 llvm::Value *EmitARCLoadWeakRetained(Address addr); 2778 llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored); 2779 void EmitARCCopyWeak(Address dst, Address src); 2780 void EmitARCMoveWeak(Address dst, Address src); 2781 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 2782 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 2783 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 2784 bool resultIgnored); 2785 llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value, 2786 bool resultIgnored); 2787 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 2788 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 2789 llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); 2790 void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise); 2791 void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 2792 llvm::Value *EmitARCAutorelease(llvm::Value *value); 2793 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 2794 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 2795 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 2796 2797 std::pair<LValue,llvm::Value*> 2798 EmitARCStoreAutoreleasing(const BinaryOperator *e); 2799 std::pair<LValue,llvm::Value*> 2800 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 2801 2802 llvm::Value *EmitObjCThrowOperand(const Expr *expr); 2803 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 2804 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 2805 2806 llvm::Value *EmitARCExtendBlockObject(const Expr *expr); 2807 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 2808 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 2809 2810 void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values); 2811 2812 static Destroyer destroyARCStrongImprecise; 2813 static Destroyer destroyARCStrongPrecise; 2814 static Destroyer destroyARCWeak; 2815 2816 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 2817 llvm::Value *EmitObjCAutoreleasePoolPush(); 2818 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 2819 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 2820 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 2821 2822 /// \brief Emits a reference binding to the passed in expression. 2823 RValue EmitReferenceBindingToExpr(const Expr *E); 2824 2825 //===--------------------------------------------------------------------===// 2826 // Expression Emission 2827 //===--------------------------------------------------------------------===// 2828 2829 // Expressions are broken into three classes: scalar, complex, aggregate. 2830 2831 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 2832 /// scalar type, returning the result. 2833 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 2834 2835 /// Emit a conversion from the specified type to the specified destination 2836 /// type, both of which are LLVM scalar types. 2837 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 2838 QualType DstTy, SourceLocation Loc); 2839 2840 /// Emit a conversion from the specified complex type to the specified 2841 /// destination type, where the destination type is an LLVM scalar type. 2842 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 2843 QualType DstTy, 2844 SourceLocation Loc); 2845 2846 /// EmitAggExpr - Emit the computation of the specified expression 2847 /// of aggregate type. The result is computed into the given slot, 2848 /// which may be null to indicate that the value is not needed. 2849 void EmitAggExpr(const Expr *E, AggValueSlot AS); 2850 2851 /// EmitAggExprToLValue - Emit the computation of the specified expression of 2852 /// aggregate type into a temporary LValue. 2853 LValue EmitAggExprToLValue(const Expr *E); 2854 2855 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 2856 /// make sure it survives garbage collection until this point. 2857 void EmitExtendGCLifetime(llvm::Value *object); 2858 2859 /// EmitComplexExpr - Emit the computation of the specified expression of 2860 /// complex type, returning the result. 2861 ComplexPairTy EmitComplexExpr(const Expr *E, 2862 bool IgnoreReal = false, 2863 bool IgnoreImag = false); 2864 2865 /// EmitComplexExprIntoLValue - Emit the given expression of complex 2866 /// type and place its result into the specified l-value. 2867 void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit); 2868 2869 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 2870 void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit); 2871 2872 /// EmitLoadOfComplex - Load a complex number from the specified l-value. 2873 ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc); 2874 2875 Address emitAddrOfRealComponent(Address complex, QualType complexType); 2876 Address emitAddrOfImagComponent(Address complex, QualType complexType); 2877 2878 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 2879 /// global variable that has already been created for it. If the initializer 2880 /// has a different type than GV does, this may free GV and return a different 2881 /// one. Otherwise it just returns GV. 2882 llvm::GlobalVariable * 2883 AddInitializerToStaticVarDecl(const VarDecl &D, 2884 llvm::GlobalVariable *GV); 2885 2886 2887 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 2888 /// variable with global storage. 2889 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr, 2890 bool PerformInit); 2891 2892 llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::Constant *Dtor, 2893 llvm::Constant *Addr); 2894 2895 /// Call atexit() with a function that passes the given argument to 2896 /// the given function. 2897 void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn, 2898 llvm::Constant *addr); 2899 2900 /// Emit code in this function to perform a guarded variable 2901 /// initialization. Guarded initializations are used when it's not 2902 /// possible to prove that an initialization will be done exactly 2903 /// once, e.g. with a static local variable or a static data member 2904 /// of a class template. 2905 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, 2906 bool PerformInit); 2907 2908 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 2909 /// variables. 2910 void GenerateCXXGlobalInitFunc(llvm::Function *Fn, 2911 ArrayRef<llvm::Function *> CXXThreadLocals, 2912 Address Guard = Address::invalid()); 2913 2914 /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global 2915 /// variables. 2916 void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn, 2917 const std::vector<std::pair<llvm::WeakVH, 2918 llvm::Constant*> > &DtorsAndObjects); 2919 2920 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 2921 const VarDecl *D, 2922 llvm::GlobalVariable *Addr, 2923 bool PerformInit); 2924 2925 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 2926 2927 void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp); 2928 2929 void enterFullExpression(const ExprWithCleanups *E) { 2930 if (E->getNumObjects() == 0) return; 2931 enterNonTrivialFullExpression(E); 2932 } 2933 void enterNonTrivialFullExpression(const ExprWithCleanups *E); 2934 2935 void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true); 2936 2937 void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest); 2938 2939 RValue EmitAtomicExpr(AtomicExpr *E); 2940 2941 //===--------------------------------------------------------------------===// 2942 // Annotations Emission 2943 //===--------------------------------------------------------------------===// 2944 2945 /// Emit an annotation call (intrinsic or builtin). 2946 llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn, 2947 llvm::Value *AnnotatedVal, 2948 StringRef AnnotationStr, 2949 SourceLocation Location); 2950 2951 /// Emit local annotations for the local variable V, declared by D. 2952 void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); 2953 2954 /// Emit field annotations for the given field & value. Returns the 2955 /// annotation result. 2956 Address EmitFieldAnnotations(const FieldDecl *D, Address V); 2957 2958 //===--------------------------------------------------------------------===// 2959 // Internal Helpers 2960 //===--------------------------------------------------------------------===// 2961 2962 /// ContainsLabel - Return true if the statement contains a label in it. If 2963 /// this statement is not executed normally, it not containing a label means 2964 /// that we can just remove the code. 2965 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 2966 2967 /// containsBreak - Return true if the statement contains a break out of it. 2968 /// If the statement (recursively) contains a switch or loop with a break 2969 /// inside of it, this is fine. 2970 static bool containsBreak(const Stmt *S); 2971 2972 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 2973 /// to a constant, or if it does but contains a label, return false. If it 2974 /// constant folds return true and set the boolean result in Result. 2975 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result); 2976 2977 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 2978 /// to a constant, or if it does but contains a label, return false. If it 2979 /// constant folds return true and set the folded value. 2980 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result); 2981 2982 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 2983 /// if statement) to the specified blocks. Based on the condition, this might 2984 /// try to simplify the codegen of the conditional based on the branch. 2985 /// TrueCount should be the number of times we expect the condition to 2986 /// evaluate to true based on PGO data. 2987 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 2988 llvm::BasicBlock *FalseBlock, uint64_t TrueCount); 2989 2990 /// \brief Emit a description of a type in a format suitable for passing to 2991 /// a runtime sanitizer handler. 2992 llvm::Constant *EmitCheckTypeDescriptor(QualType T); 2993 2994 /// \brief Convert a value into a format suitable for passing to a runtime 2995 /// sanitizer handler. 2996 llvm::Value *EmitCheckValue(llvm::Value *V); 2997 2998 /// \brief Emit a description of a source location in a format suitable for 2999 /// passing to a runtime sanitizer handler. 3000 llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc); 3001 3002 /// \brief Create a basic block that will call a handler function in a 3003 /// sanitizer runtime with the provided arguments, and create a conditional 3004 /// branch to it. 3005 void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 3006 StringRef CheckName, ArrayRef<llvm::Constant *> StaticArgs, 3007 ArrayRef<llvm::Value *> DynamicArgs); 3008 3009 /// \brief Create a basic block that will call the trap intrinsic, and emit a 3010 /// conditional branch to it, for the -ftrapv checks. 3011 void EmitTrapCheck(llvm::Value *Checked); 3012 3013 /// \brief Emit a call to trap or debugtrap and attach function attribute 3014 /// "trap-func-name" if specified. 3015 llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID); 3016 3017 /// \brief Create a check for a function parameter that may potentially be 3018 /// declared as non-null. 3019 void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc, 3020 const FunctionDecl *FD, unsigned ParmNum); 3021 3022 /// EmitCallArg - Emit a single call argument. 3023 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 3024 3025 /// EmitDelegateCallArg - We are performing a delegate call; that 3026 /// is, the current function is delegating to another one. Produce 3027 /// a r-value suitable for passing the given parameter. 3028 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param, 3029 SourceLocation loc); 3030 3031 /// SetFPAccuracy - Set the minimum required accuracy of the given floating 3032 /// point operation, expressed as the maximum relative error in ulp. 3033 void SetFPAccuracy(llvm::Value *Val, float Accuracy); 3034 3035 private: 3036 llvm::MDNode *getRangeForLoadFromType(QualType Ty); 3037 void EmitReturnOfRValue(RValue RV, QualType Ty); 3038 3039 void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New); 3040 3041 llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4> 3042 DeferredReplacements; 3043 3044 /// Set the address of a local variable. 3045 void setAddrOfLocalVar(const VarDecl *VD, Address Addr) { 3046 assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!"); 3047 LocalDeclMap.insert({VD, Addr}); 3048 } 3049 3050 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 3051 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 3052 /// 3053 /// \param AI - The first function argument of the expansion. 3054 void ExpandTypeFromArgs(QualType Ty, LValue Dst, 3055 SmallVectorImpl<llvm::Argument *>::iterator &AI); 3056 3057 /// ExpandTypeToArgs - Expand an RValue \arg RV, with the LLVM type for \arg 3058 /// Ty, into individual arguments on the provided vector \arg IRCallArgs, 3059 /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand. 3060 void ExpandTypeToArgs(QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy, 3061 SmallVectorImpl<llvm::Value *> &IRCallArgs, 3062 unsigned &IRCallArgPos); 3063 3064 llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info, 3065 const Expr *InputExpr, std::string &ConstraintStr); 3066 3067 llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 3068 LValue InputValue, QualType InputType, 3069 std::string &ConstraintStr, 3070 SourceLocation Loc); 3071 3072 public: 3073 #ifndef NDEBUG 3074 // Determine whether the given argument is an Objective-C method 3075 // that may have type parameters in its signature. 3076 static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) { 3077 const DeclContext *dc = method->getDeclContext(); 3078 if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) { 3079 return classDecl->getTypeParamListAsWritten(); 3080 } 3081 3082 if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) { 3083 return catDecl->getTypeParamList(); 3084 } 3085 3086 return false; 3087 } 3088 3089 template<typename T> 3090 static bool isObjCMethodWithTypeParams(const T *) { return false; } 3091 #endif 3092 3093 /// EmitCallArgs - Emit call arguments for a function. 3094 template <typename T> 3095 void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo, 3096 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 3097 const FunctionDecl *CalleeDecl = nullptr, 3098 unsigned ParamsToSkip = 0) { 3099 SmallVector<QualType, 16> ArgTypes; 3100 CallExpr::const_arg_iterator Arg = ArgRange.begin(); 3101 3102 assert((ParamsToSkip == 0 || CallArgTypeInfo) && 3103 "Can't skip parameters if type info is not provided"); 3104 if (CallArgTypeInfo) { 3105 #ifndef NDEBUG 3106 bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo); 3107 #endif 3108 3109 // First, use the argument types that the type info knows about 3110 for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip, 3111 E = CallArgTypeInfo->param_type_end(); 3112 I != E; ++I, ++Arg) { 3113 assert(Arg != ArgRange.end() && "Running over edge of argument list!"); 3114 assert((isGenericMethod || 3115 ((*I)->isVariablyModifiedType() || 3116 (*I).getNonReferenceType()->isObjCRetainableType() || 3117 getContext() 3118 .getCanonicalType((*I).getNonReferenceType()) 3119 .getTypePtr() == 3120 getContext() 3121 .getCanonicalType((*Arg)->getType()) 3122 .getTypePtr())) && 3123 "type mismatch in call argument!"); 3124 ArgTypes.push_back(*I); 3125 } 3126 } 3127 3128 // Either we've emitted all the call args, or we have a call to variadic 3129 // function. 3130 assert((Arg == ArgRange.end() || !CallArgTypeInfo || 3131 CallArgTypeInfo->isVariadic()) && 3132 "Extra arguments in non-variadic function!"); 3133 3134 // If we still have any arguments, emit them using the type of the argument. 3135 for (auto *A : llvm::make_range(Arg, ArgRange.end())) 3136 ArgTypes.push_back(getVarArgType(A)); 3137 3138 EmitCallArgs(Args, ArgTypes, ArgRange, CalleeDecl, ParamsToSkip); 3139 } 3140 3141 void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes, 3142 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 3143 const FunctionDecl *CalleeDecl = nullptr, 3144 unsigned ParamsToSkip = 0); 3145 3146 /// EmitPointerWithAlignment - Given an expression with a pointer 3147 /// type, emit the value and compute our best estimate of the 3148 /// alignment of the pointee. 3149 /// 3150 /// Note that this function will conservatively fall back on the type 3151 /// when it doesn't 3152 /// 3153 /// \param Source - If non-null, this will be initialized with 3154 /// information about the source of the alignment. Note that this 3155 /// function will conservatively fall back on the type when it 3156 /// doesn't recognize the expression, which means that sometimes 3157 /// 3158 /// a worst-case One 3159 /// reasonable way to use this information is when there's a 3160 /// language guarantee that the pointer must be aligned to some 3161 /// stricter value, and we're simply trying to ensure that 3162 /// sufficiently obvious uses of under-aligned objects don't get 3163 /// miscompiled; for example, a placement new into the address of 3164 /// a local variable. In such a case, it's quite reasonable to 3165 /// just ignore the returned alignment when it isn't from an 3166 /// explicit source. 3167 Address EmitPointerWithAlignment(const Expr *Addr, 3168 AlignmentSource *Source = nullptr); 3169 3170 private: 3171 QualType getVarArgType(const Expr *Arg); 3172 3173 const TargetCodeGenInfo &getTargetHooks() const { 3174 return CGM.getTargetCodeGenInfo(); 3175 } 3176 3177 void EmitDeclMetadata(); 3178 3179 BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType, 3180 const AutoVarEmission &emission); 3181 3182 void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); 3183 3184 llvm::Value *GetValueForARMHint(unsigned BuiltinID); 3185 }; 3186 3187 /// Helper class with most of the code for saving a value for a 3188 /// conditional expression cleanup. 3189 struct DominatingLLVMValue { 3190 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 3191 3192 /// Answer whether the given value needs extra work to be saved. 3193 static bool needsSaving(llvm::Value *value) { 3194 // If it's not an instruction, we don't need to save. 3195 if (!isa<llvm::Instruction>(value)) return false; 3196 3197 // If it's an instruction in the entry block, we don't need to save. 3198 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 3199 return (block != &block->getParent()->getEntryBlock()); 3200 } 3201 3202 /// Try to save the given value. 3203 static saved_type save(CodeGenFunction &CGF, llvm::Value *value) { 3204 if (!needsSaving(value)) return saved_type(value, false); 3205 3206 // Otherwise, we need an alloca. 3207 auto align = CharUnits::fromQuantity( 3208 CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType())); 3209 Address alloca = 3210 CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save"); 3211 CGF.Builder.CreateStore(value, alloca); 3212 3213 return saved_type(alloca.getPointer(), true); 3214 } 3215 3216 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) { 3217 // If the value says it wasn't saved, trust that it's still dominating. 3218 if (!value.getInt()) return value.getPointer(); 3219 3220 // Otherwise, it should be an alloca instruction, as set up in save(). 3221 auto alloca = cast<llvm::AllocaInst>(value.getPointer()); 3222 return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlignment()); 3223 } 3224 }; 3225 3226 /// A partial specialization of DominatingValue for llvm::Values that 3227 /// might be llvm::Instructions. 3228 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 3229 typedef T *type; 3230 static type restore(CodeGenFunction &CGF, saved_type value) { 3231 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 3232 } 3233 }; 3234 3235 /// A specialization of DominatingValue for Address. 3236 template <> struct DominatingValue<Address> { 3237 typedef Address type; 3238 3239 struct saved_type { 3240 DominatingLLVMValue::saved_type SavedValue; 3241 CharUnits Alignment; 3242 }; 3243 3244 static bool needsSaving(type value) { 3245 return DominatingLLVMValue::needsSaving(value.getPointer()); 3246 } 3247 static saved_type save(CodeGenFunction &CGF, type value) { 3248 return { DominatingLLVMValue::save(CGF, value.getPointer()), 3249 value.getAlignment() }; 3250 } 3251 static type restore(CodeGenFunction &CGF, saved_type value) { 3252 return Address(DominatingLLVMValue::restore(CGF, value.SavedValue), 3253 value.Alignment); 3254 } 3255 }; 3256 3257 /// A specialization of DominatingValue for RValue. 3258 template <> struct DominatingValue<RValue> { 3259 typedef RValue type; 3260 class saved_type { 3261 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 3262 AggregateAddress, ComplexAddress }; 3263 3264 llvm::Value *Value; 3265 unsigned K : 3; 3266 unsigned Align : 29; 3267 saved_type(llvm::Value *v, Kind k, unsigned a = 0) 3268 : Value(v), K(k), Align(a) {} 3269 3270 public: 3271 static bool needsSaving(RValue value); 3272 static saved_type save(CodeGenFunction &CGF, RValue value); 3273 RValue restore(CodeGenFunction &CGF); 3274 3275 // implementations in CGCleanup.cpp 3276 }; 3277 3278 static bool needsSaving(type value) { 3279 return saved_type::needsSaving(value); 3280 } 3281 static saved_type save(CodeGenFunction &CGF, type value) { 3282 return saved_type::save(CGF, value); 3283 } 3284 static type restore(CodeGenFunction &CGF, saved_type value) { 3285 return value.restore(CGF); 3286 } 3287 }; 3288 3289 } // end namespace CodeGen 3290 } // end namespace clang 3291 3292 #endif 3293