1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the internal per-function state used for llvm translation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 14 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 15 16 #include "CGBuilder.h" 17 #include "CGDebugInfo.h" 18 #include "CGLoopInfo.h" 19 #include "CGValue.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenPGO.h" 22 #include "EHScopeStack.h" 23 #include "VarBypassDetector.h" 24 #include "clang/AST/CharUnits.h" 25 #include "clang/AST/CurrentSourceLocExprScope.h" 26 #include "clang/AST/ExprCXX.h" 27 #include "clang/AST/ExprObjC.h" 28 #include "clang/AST/ExprOpenMP.h" 29 #include "clang/AST/StmtOpenMP.h" 30 #include "clang/AST/Type.h" 31 #include "clang/Basic/ABI.h" 32 #include "clang/Basic/CapturedStmt.h" 33 #include "clang/Basic/CodeGenOptions.h" 34 #include "clang/Basic/OpenMPKinds.h" 35 #include "clang/Basic/TargetInfo.h" 36 #include "llvm/ADT/ArrayRef.h" 37 #include "llvm/ADT/DenseMap.h" 38 #include "llvm/ADT/MapVector.h" 39 #include "llvm/ADT/SmallVector.h" 40 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 41 #include "llvm/IR/ValueHandle.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Transforms/Utils/SanitizerStats.h" 44 45 namespace llvm { 46 class BasicBlock; 47 class LLVMContext; 48 class MDNode; 49 class Module; 50 class SwitchInst; 51 class Twine; 52 class Value; 53 class CanonicalLoopInfo; 54 } 55 56 namespace clang { 57 class ASTContext; 58 class BlockDecl; 59 class CXXDestructorDecl; 60 class CXXForRangeStmt; 61 class CXXTryStmt; 62 class Decl; 63 class LabelDecl; 64 class EnumConstantDecl; 65 class FunctionDecl; 66 class FunctionProtoType; 67 class LabelStmt; 68 class ObjCContainerDecl; 69 class ObjCInterfaceDecl; 70 class ObjCIvarDecl; 71 class ObjCMethodDecl; 72 class ObjCImplementationDecl; 73 class ObjCPropertyImplDecl; 74 class TargetInfo; 75 class VarDecl; 76 class ObjCForCollectionStmt; 77 class ObjCAtTryStmt; 78 class ObjCAtThrowStmt; 79 class ObjCAtSynchronizedStmt; 80 class ObjCAutoreleasePoolStmt; 81 class OMPUseDevicePtrClause; 82 class OMPUseDeviceAddrClause; 83 class ReturnsNonNullAttr; 84 class SVETypeFlags; 85 class OMPExecutableDirective; 86 87 namespace analyze_os_log { 88 class OSLogBufferLayout; 89 } 90 91 namespace CodeGen { 92 class CodeGenTypes; 93 class CGCallee; 94 class CGFunctionInfo; 95 class CGRecordLayout; 96 class CGBlockInfo; 97 class CGCXXABI; 98 class BlockByrefHelpers; 99 class BlockByrefInfo; 100 class BlockFlags; 101 class BlockFieldFlags; 102 class RegionCodeGenTy; 103 class TargetCodeGenInfo; 104 struct OMPTaskDataTy; 105 struct CGCoroData; 106 107 /// The kind of evaluation to perform on values of a particular 108 /// type. Basically, is the code in CGExprScalar, CGExprComplex, or 109 /// CGExprAgg? 110 /// 111 /// TODO: should vectors maybe be split out into their own thing? 112 enum TypeEvaluationKind { 113 TEK_Scalar, 114 TEK_Complex, 115 TEK_Aggregate 116 }; 117 118 #define LIST_SANITIZER_CHECKS \ 119 SANITIZER_CHECK(AddOverflow, add_overflow, 0) \ 120 SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0) \ 121 SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0) \ 122 SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0) \ 123 SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0) \ 124 SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0) \ 125 SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 1) \ 126 SANITIZER_CHECK(ImplicitConversion, implicit_conversion, 0) \ 127 SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0) \ 128 SANITIZER_CHECK(InvalidObjCCast, invalid_objc_cast, 0) \ 129 SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0) \ 130 SANITIZER_CHECK(MissingReturn, missing_return, 0) \ 131 SANITIZER_CHECK(MulOverflow, mul_overflow, 0) \ 132 SANITIZER_CHECK(NegateOverflow, negate_overflow, 0) \ 133 SANITIZER_CHECK(NullabilityArg, nullability_arg, 0) \ 134 SANITIZER_CHECK(NullabilityReturn, nullability_return, 1) \ 135 SANITIZER_CHECK(NonnullArg, nonnull_arg, 0) \ 136 SANITIZER_CHECK(NonnullReturn, nonnull_return, 1) \ 137 SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0) \ 138 SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0) \ 139 SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0) \ 140 SANITIZER_CHECK(SubOverflow, sub_overflow, 0) \ 141 SANITIZER_CHECK(TypeMismatch, type_mismatch, 1) \ 142 SANITIZER_CHECK(AlignmentAssumption, alignment_assumption, 0) \ 143 SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0) 144 145 enum SanitizerHandler { 146 #define SANITIZER_CHECK(Enum, Name, Version) Enum, 147 LIST_SANITIZER_CHECKS 148 #undef SANITIZER_CHECK 149 }; 150 151 /// Helper class with most of the code for saving a value for a 152 /// conditional expression cleanup. 153 struct DominatingLLVMValue { 154 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 155 156 /// Answer whether the given value needs extra work to be saved. 157 static bool needsSaving(llvm::Value *value) { 158 // If it's not an instruction, we don't need to save. 159 if (!isa<llvm::Instruction>(value)) return false; 160 161 // If it's an instruction in the entry block, we don't need to save. 162 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 163 return (block != &block->getParent()->getEntryBlock()); 164 } 165 166 static saved_type save(CodeGenFunction &CGF, llvm::Value *value); 167 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value); 168 }; 169 170 /// A partial specialization of DominatingValue for llvm::Values that 171 /// might be llvm::Instructions. 172 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 173 typedef T *type; 174 static type restore(CodeGenFunction &CGF, saved_type value) { 175 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 176 } 177 }; 178 179 /// A specialization of DominatingValue for Address. 180 template <> struct DominatingValue<Address> { 181 typedef Address type; 182 183 struct saved_type { 184 DominatingLLVMValue::saved_type SavedValue; 185 CharUnits Alignment; 186 }; 187 188 static bool needsSaving(type value) { 189 return DominatingLLVMValue::needsSaving(value.getPointer()); 190 } 191 static saved_type save(CodeGenFunction &CGF, type value) { 192 return { DominatingLLVMValue::save(CGF, value.getPointer()), 193 value.getAlignment() }; 194 } 195 static type restore(CodeGenFunction &CGF, saved_type value) { 196 return Address(DominatingLLVMValue::restore(CGF, value.SavedValue), 197 value.Alignment); 198 } 199 }; 200 201 /// A specialization of DominatingValue for RValue. 202 template <> struct DominatingValue<RValue> { 203 typedef RValue type; 204 class saved_type { 205 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 206 AggregateAddress, ComplexAddress }; 207 208 llvm::Value *Value; 209 unsigned K : 3; 210 unsigned Align : 29; 211 saved_type(llvm::Value *v, Kind k, unsigned a = 0) 212 : Value(v), K(k), Align(a) {} 213 214 public: 215 static bool needsSaving(RValue value); 216 static saved_type save(CodeGenFunction &CGF, RValue value); 217 RValue restore(CodeGenFunction &CGF); 218 219 // implementations in CGCleanup.cpp 220 }; 221 222 static bool needsSaving(type value) { 223 return saved_type::needsSaving(value); 224 } 225 static saved_type save(CodeGenFunction &CGF, type value) { 226 return saved_type::save(CGF, value); 227 } 228 static type restore(CodeGenFunction &CGF, saved_type value) { 229 return value.restore(CGF); 230 } 231 }; 232 233 /// CodeGenFunction - This class organizes the per-function state that is used 234 /// while generating LLVM code. 235 class CodeGenFunction : public CodeGenTypeCache { 236 CodeGenFunction(const CodeGenFunction &) = delete; 237 void operator=(const CodeGenFunction &) = delete; 238 239 friend class CGCXXABI; 240 public: 241 /// A jump destination is an abstract label, branching to which may 242 /// require a jump out through normal cleanups. 243 struct JumpDest { 244 JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {} 245 JumpDest(llvm::BasicBlock *Block, 246 EHScopeStack::stable_iterator Depth, 247 unsigned Index) 248 : Block(Block), ScopeDepth(Depth), Index(Index) {} 249 250 bool isValid() const { return Block != nullptr; } 251 llvm::BasicBlock *getBlock() const { return Block; } 252 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 253 unsigned getDestIndex() const { return Index; } 254 255 // This should be used cautiously. 256 void setScopeDepth(EHScopeStack::stable_iterator depth) { 257 ScopeDepth = depth; 258 } 259 260 private: 261 llvm::BasicBlock *Block; 262 EHScopeStack::stable_iterator ScopeDepth; 263 unsigned Index; 264 }; 265 266 CodeGenModule &CGM; // Per-module state. 267 const TargetInfo &Target; 268 269 // For EH/SEH outlined funclets, this field points to parent's CGF 270 CodeGenFunction *ParentCGF = nullptr; 271 272 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 273 LoopInfoStack LoopStack; 274 CGBuilderTy Builder; 275 276 // Stores variables for which we can't generate correct lifetime markers 277 // because of jumps. 278 VarBypassDetector Bypasses; 279 280 /// List of recently emitted OMPCanonicalLoops. 281 /// 282 /// Since OMPCanonicalLoops are nested inside other statements (in particular 283 /// CapturedStmt generated by OMPExecutableDirective and non-perfectly nested 284 /// loops), we cannot directly call OMPEmitOMPCanonicalLoop and receive its 285 /// llvm::CanonicalLoopInfo. Instead, we call EmitStmt and any 286 /// OMPEmitOMPCanonicalLoop called by it will add its CanonicalLoopInfo to 287 /// this stack when done. Entering a new loop requires clearing this list; it 288 /// either means we start parsing a new loop nest (in which case the previous 289 /// loop nest goes out of scope) or a second loop in the same level in which 290 /// case it would be ambiguous into which of the two (or more) loops the loop 291 /// nest would extend. 292 SmallVector<llvm::CanonicalLoopInfo *, 4> OMPLoopNestStack; 293 294 // CodeGen lambda for loops and support for ordered clause 295 typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &, 296 JumpDest)> 297 CodeGenLoopTy; 298 typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation, 299 const unsigned, const bool)> 300 CodeGenOrderedTy; 301 302 // Codegen lambda for loop bounds in worksharing loop constructs 303 typedef llvm::function_ref<std::pair<LValue, LValue>( 304 CodeGenFunction &, const OMPExecutableDirective &S)> 305 CodeGenLoopBoundsTy; 306 307 // Codegen lambda for loop bounds in dispatch-based loop implementation 308 typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>( 309 CodeGenFunction &, const OMPExecutableDirective &S, Address LB, 310 Address UB)> 311 CodeGenDispatchBoundsTy; 312 313 /// CGBuilder insert helper. This function is called after an 314 /// instruction is created using Builder. 315 void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name, 316 llvm::BasicBlock *BB, 317 llvm::BasicBlock::iterator InsertPt) const; 318 319 /// CurFuncDecl - Holds the Decl for the current outermost 320 /// non-closure context. 321 const Decl *CurFuncDecl; 322 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 323 const Decl *CurCodeDecl; 324 const CGFunctionInfo *CurFnInfo; 325 QualType FnRetTy; 326 llvm::Function *CurFn = nullptr; 327 328 /// Save Parameter Decl for coroutine. 329 llvm::SmallVector<const ParmVarDecl *, 4> FnArgs; 330 331 // Holds coroutine data if the current function is a coroutine. We use a 332 // wrapper to manage its lifetime, so that we don't have to define CGCoroData 333 // in this header. 334 struct CGCoroInfo { 335 std::unique_ptr<CGCoroData> Data; 336 CGCoroInfo(); 337 ~CGCoroInfo(); 338 }; 339 CGCoroInfo CurCoro; 340 341 bool isCoroutine() const { 342 return CurCoro.Data != nullptr; 343 } 344 345 /// CurGD - The GlobalDecl for the current function being compiled. 346 GlobalDecl CurGD; 347 348 /// PrologueCleanupDepth - The cleanup depth enclosing all the 349 /// cleanups associated with the parameters. 350 EHScopeStack::stable_iterator PrologueCleanupDepth; 351 352 /// ReturnBlock - Unified return block. 353 JumpDest ReturnBlock; 354 355 /// ReturnValue - The temporary alloca to hold the return 356 /// value. This is invalid iff the function has no return value. 357 Address ReturnValue = Address::invalid(); 358 359 /// ReturnValuePointer - The temporary alloca to hold a pointer to sret. 360 /// This is invalid if sret is not in use. 361 Address ReturnValuePointer = Address::invalid(); 362 363 /// If a return statement is being visited, this holds the return statment's 364 /// result expression. 365 const Expr *RetExpr = nullptr; 366 367 /// Return true if a label was seen in the current scope. 368 bool hasLabelBeenSeenInCurrentScope() const { 369 if (CurLexicalScope) 370 return CurLexicalScope->hasLabels(); 371 return !LabelMap.empty(); 372 } 373 374 /// AllocaInsertPoint - This is an instruction in the entry block before which 375 /// we prefer to insert allocas. 376 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 377 378 /// API for captured statement code generation. 379 class CGCapturedStmtInfo { 380 public: 381 explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default) 382 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {} 383 explicit CGCapturedStmtInfo(const CapturedStmt &S, 384 CapturedRegionKind K = CR_Default) 385 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) { 386 387 RecordDecl::field_iterator Field = 388 S.getCapturedRecordDecl()->field_begin(); 389 for (CapturedStmt::const_capture_iterator I = S.capture_begin(), 390 E = S.capture_end(); 391 I != E; ++I, ++Field) { 392 if (I->capturesThis()) 393 CXXThisFieldDecl = *Field; 394 else if (I->capturesVariable()) 395 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 396 else if (I->capturesVariableByCopy()) 397 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 398 } 399 } 400 401 virtual ~CGCapturedStmtInfo(); 402 403 CapturedRegionKind getKind() const { return Kind; } 404 405 virtual void setContextValue(llvm::Value *V) { ThisValue = V; } 406 // Retrieve the value of the context parameter. 407 virtual llvm::Value *getContextValue() const { return ThisValue; } 408 409 /// Lookup the captured field decl for a variable. 410 virtual const FieldDecl *lookup(const VarDecl *VD) const { 411 return CaptureFields.lookup(VD->getCanonicalDecl()); 412 } 413 414 bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; } 415 virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; } 416 417 static bool classof(const CGCapturedStmtInfo *) { 418 return true; 419 } 420 421 /// Emit the captured statement body. 422 virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) { 423 CGF.incrementProfileCounter(S); 424 CGF.EmitStmt(S); 425 } 426 427 /// Get the name of the capture helper. 428 virtual StringRef getHelperName() const { return "__captured_stmt"; } 429 430 private: 431 /// The kind of captured statement being generated. 432 CapturedRegionKind Kind; 433 434 /// Keep the map between VarDecl and FieldDecl. 435 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields; 436 437 /// The base address of the captured record, passed in as the first 438 /// argument of the parallel region function. 439 llvm::Value *ThisValue; 440 441 /// Captured 'this' type. 442 FieldDecl *CXXThisFieldDecl; 443 }; 444 CGCapturedStmtInfo *CapturedStmtInfo = nullptr; 445 446 /// RAII for correct setting/restoring of CapturedStmtInfo. 447 class CGCapturedStmtRAII { 448 private: 449 CodeGenFunction &CGF; 450 CGCapturedStmtInfo *PrevCapturedStmtInfo; 451 public: 452 CGCapturedStmtRAII(CodeGenFunction &CGF, 453 CGCapturedStmtInfo *NewCapturedStmtInfo) 454 : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) { 455 CGF.CapturedStmtInfo = NewCapturedStmtInfo; 456 } 457 ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; } 458 }; 459 460 /// An abstract representation of regular/ObjC call/message targets. 461 class AbstractCallee { 462 /// The function declaration of the callee. 463 const Decl *CalleeDecl; 464 465 public: 466 AbstractCallee() : CalleeDecl(nullptr) {} 467 AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {} 468 AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {} 469 bool hasFunctionDecl() const { 470 return dyn_cast_or_null<FunctionDecl>(CalleeDecl); 471 } 472 const Decl *getDecl() const { return CalleeDecl; } 473 unsigned getNumParams() const { 474 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 475 return FD->getNumParams(); 476 return cast<ObjCMethodDecl>(CalleeDecl)->param_size(); 477 } 478 const ParmVarDecl *getParamDecl(unsigned I) const { 479 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 480 return FD->getParamDecl(I); 481 return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I); 482 } 483 }; 484 485 /// Sanitizers enabled for this function. 486 SanitizerSet SanOpts; 487 488 /// True if CodeGen currently emits code implementing sanitizer checks. 489 bool IsSanitizerScope = false; 490 491 /// RAII object to set/unset CodeGenFunction::IsSanitizerScope. 492 class SanitizerScope { 493 CodeGenFunction *CGF; 494 public: 495 SanitizerScope(CodeGenFunction *CGF); 496 ~SanitizerScope(); 497 }; 498 499 /// In C++, whether we are code generating a thunk. This controls whether we 500 /// should emit cleanups. 501 bool CurFuncIsThunk = false; 502 503 /// In ARC, whether we should autorelease the return value. 504 bool AutoreleaseResult = false; 505 506 /// Whether we processed a Microsoft-style asm block during CodeGen. These can 507 /// potentially set the return value. 508 bool SawAsmBlock = false; 509 510 const NamedDecl *CurSEHParent = nullptr; 511 512 /// True if the current function is an outlined SEH helper. This can be a 513 /// finally block or filter expression. 514 bool IsOutlinedSEHHelper = false; 515 516 /// True if CodeGen currently emits code inside presereved access index 517 /// region. 518 bool IsInPreservedAIRegion = false; 519 520 /// True if the current statement has nomerge attribute. 521 bool InNoMergeAttributedStmt = false; 522 523 // The CallExpr within the current statement that the musttail attribute 524 // applies to. nullptr if there is no 'musttail' on the current statement. 525 const CallExpr *MustTailCall = nullptr; 526 527 /// True if the current function should be marked mustprogress. 528 bool FnIsMustProgress = false; 529 530 /// True if the C++ Standard Requires Progress. 531 bool CPlusPlusWithProgress() { 532 if (CGM.getCodeGenOpts().getFiniteLoops() == 533 CodeGenOptions::FiniteLoopsKind::Never) 534 return false; 535 536 return getLangOpts().CPlusPlus11 || getLangOpts().CPlusPlus14 || 537 getLangOpts().CPlusPlus17 || getLangOpts().CPlusPlus20; 538 } 539 540 /// True if the C Standard Requires Progress. 541 bool CWithProgress() { 542 if (CGM.getCodeGenOpts().getFiniteLoops() == 543 CodeGenOptions::FiniteLoopsKind::Always) 544 return true; 545 if (CGM.getCodeGenOpts().getFiniteLoops() == 546 CodeGenOptions::FiniteLoopsKind::Never) 547 return false; 548 549 return getLangOpts().C11 || getLangOpts().C17 || getLangOpts().C2x; 550 } 551 552 /// True if the language standard requires progress in functions or 553 /// in infinite loops with non-constant conditionals. 554 bool LanguageRequiresProgress() { 555 return CWithProgress() || CPlusPlusWithProgress(); 556 } 557 558 const CodeGen::CGBlockInfo *BlockInfo = nullptr; 559 llvm::Value *BlockPointer = nullptr; 560 561 llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; 562 FieldDecl *LambdaThisCaptureField = nullptr; 563 564 /// A mapping from NRVO variables to the flags used to indicate 565 /// when the NRVO has been applied to this variable. 566 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 567 568 EHScopeStack EHStack; 569 llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack; 570 llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack; 571 572 llvm::Instruction *CurrentFuncletPad = nullptr; 573 574 class CallLifetimeEnd final : public EHScopeStack::Cleanup { 575 bool isRedundantBeforeReturn() override { return true; } 576 577 llvm::Value *Addr; 578 llvm::Value *Size; 579 580 public: 581 CallLifetimeEnd(Address addr, llvm::Value *size) 582 : Addr(addr.getPointer()), Size(size) {} 583 584 void Emit(CodeGenFunction &CGF, Flags flags) override { 585 CGF.EmitLifetimeEnd(Size, Addr); 586 } 587 }; 588 589 /// Header for data within LifetimeExtendedCleanupStack. 590 struct LifetimeExtendedCleanupHeader { 591 /// The size of the following cleanup object. 592 unsigned Size; 593 /// The kind of cleanup to push: a value from the CleanupKind enumeration. 594 unsigned Kind : 31; 595 /// Whether this is a conditional cleanup. 596 unsigned IsConditional : 1; 597 598 size_t getSize() const { return Size; } 599 CleanupKind getKind() const { return (CleanupKind)Kind; } 600 bool isConditional() const { return IsConditional; } 601 }; 602 603 /// i32s containing the indexes of the cleanup destinations. 604 Address NormalCleanupDest = Address::invalid(); 605 606 unsigned NextCleanupDestIndex = 1; 607 608 /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. 609 llvm::BasicBlock *EHResumeBlock = nullptr; 610 611 /// The exception slot. All landing pads write the current exception pointer 612 /// into this alloca. 613 llvm::Value *ExceptionSlot = nullptr; 614 615 /// The selector slot. Under the MandatoryCleanup model, all landing pads 616 /// write the current selector value into this alloca. 617 llvm::AllocaInst *EHSelectorSlot = nullptr; 618 619 /// A stack of exception code slots. Entering an __except block pushes a slot 620 /// on the stack and leaving pops one. The __exception_code() intrinsic loads 621 /// a value from the top of the stack. 622 SmallVector<Address, 1> SEHCodeSlotStack; 623 624 /// Value returned by __exception_info intrinsic. 625 llvm::Value *SEHInfo = nullptr; 626 627 /// Emits a landing pad for the current EH stack. 628 llvm::BasicBlock *EmitLandingPad(); 629 630 llvm::BasicBlock *getInvokeDestImpl(); 631 632 /// Parent loop-based directive for scan directive. 633 const OMPExecutableDirective *OMPParentLoopDirectiveForScan = nullptr; 634 llvm::BasicBlock *OMPBeforeScanBlock = nullptr; 635 llvm::BasicBlock *OMPAfterScanBlock = nullptr; 636 llvm::BasicBlock *OMPScanExitBlock = nullptr; 637 llvm::BasicBlock *OMPScanDispatch = nullptr; 638 bool OMPFirstScanLoop = false; 639 640 /// Manages parent directive for scan directives. 641 class ParentLoopDirectiveForScanRegion { 642 CodeGenFunction &CGF; 643 const OMPExecutableDirective *ParentLoopDirectiveForScan; 644 645 public: 646 ParentLoopDirectiveForScanRegion( 647 CodeGenFunction &CGF, 648 const OMPExecutableDirective &ParentLoopDirectiveForScan) 649 : CGF(CGF), 650 ParentLoopDirectiveForScan(CGF.OMPParentLoopDirectiveForScan) { 651 CGF.OMPParentLoopDirectiveForScan = &ParentLoopDirectiveForScan; 652 } 653 ~ParentLoopDirectiveForScanRegion() { 654 CGF.OMPParentLoopDirectiveForScan = ParentLoopDirectiveForScan; 655 } 656 }; 657 658 template <class T> 659 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 660 return DominatingValue<T>::save(*this, value); 661 } 662 663 class CGFPOptionsRAII { 664 public: 665 CGFPOptionsRAII(CodeGenFunction &CGF, FPOptions FPFeatures); 666 CGFPOptionsRAII(CodeGenFunction &CGF, const Expr *E); 667 ~CGFPOptionsRAII(); 668 669 private: 670 void ConstructorHelper(FPOptions FPFeatures); 671 CodeGenFunction &CGF; 672 FPOptions OldFPFeatures; 673 llvm::fp::ExceptionBehavior OldExcept; 674 llvm::RoundingMode OldRounding; 675 Optional<CGBuilderTy::FastMathFlagGuard> FMFGuard; 676 }; 677 FPOptions CurFPFeatures; 678 679 public: 680 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 681 /// rethrows. 682 SmallVector<llvm::Value*, 8> ObjCEHValueStack; 683 684 /// A class controlling the emission of a finally block. 685 class FinallyInfo { 686 /// Where the catchall's edge through the cleanup should go. 687 JumpDest RethrowDest; 688 689 /// A function to call to enter the catch. 690 llvm::FunctionCallee BeginCatchFn; 691 692 /// An i1 variable indicating whether or not the @finally is 693 /// running for an exception. 694 llvm::AllocaInst *ForEHVar; 695 696 /// An i8* variable into which the exception pointer to rethrow 697 /// has been saved. 698 llvm::AllocaInst *SavedExnVar; 699 700 public: 701 void enter(CodeGenFunction &CGF, const Stmt *Finally, 702 llvm::FunctionCallee beginCatchFn, 703 llvm::FunctionCallee endCatchFn, llvm::FunctionCallee rethrowFn); 704 void exit(CodeGenFunction &CGF); 705 }; 706 707 /// Returns true inside SEH __try blocks. 708 bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); } 709 710 /// Returns true while emitting a cleanuppad. 711 bool isCleanupPadScope() const { 712 return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad); 713 } 714 715 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 716 /// current full-expression. Safe against the possibility that 717 /// we're currently inside a conditionally-evaluated expression. 718 template <class T, class... As> 719 void pushFullExprCleanup(CleanupKind kind, As... A) { 720 // If we're not in a conditional branch, or if none of the 721 // arguments requires saving, then use the unconditional cleanup. 722 if (!isInConditionalBranch()) 723 return EHStack.pushCleanup<T>(kind, A...); 724 725 // Stash values in a tuple so we can guarantee the order of saves. 726 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 727 SavedTuple Saved{saveValueInCond(A)...}; 728 729 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 730 EHStack.pushCleanupTuple<CleanupType>(kind, Saved); 731 initFullExprCleanup(); 732 } 733 734 /// Queue a cleanup to be pushed after finishing the current full-expression, 735 /// potentially with an active flag. 736 template <class T, class... As> 737 void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) { 738 if (!isInConditionalBranch()) 739 return pushCleanupAfterFullExprWithActiveFlag<T>(Kind, Address::invalid(), 740 A...); 741 742 Address ActiveFlag = createCleanupActiveFlag(); 743 assert(!DominatingValue<Address>::needsSaving(ActiveFlag) && 744 "cleanup active flag should never need saving"); 745 746 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 747 SavedTuple Saved{saveValueInCond(A)...}; 748 749 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 750 pushCleanupAfterFullExprWithActiveFlag<CleanupType>(Kind, ActiveFlag, Saved); 751 } 752 753 template <class T, class... As> 754 void pushCleanupAfterFullExprWithActiveFlag(CleanupKind Kind, 755 Address ActiveFlag, As... A) { 756 LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind, 757 ActiveFlag.isValid()}; 758 759 size_t OldSize = LifetimeExtendedCleanupStack.size(); 760 LifetimeExtendedCleanupStack.resize( 761 LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size + 762 (Header.IsConditional ? sizeof(ActiveFlag) : 0)); 763 764 static_assert(sizeof(Header) % alignof(T) == 0, 765 "Cleanup will be allocated on misaligned address"); 766 char *Buffer = &LifetimeExtendedCleanupStack[OldSize]; 767 new (Buffer) LifetimeExtendedCleanupHeader(Header); 768 new (Buffer + sizeof(Header)) T(A...); 769 if (Header.IsConditional) 770 new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag); 771 } 772 773 /// Set up the last cleanup that was pushed as a conditional 774 /// full-expression cleanup. 775 void initFullExprCleanup() { 776 initFullExprCleanupWithFlag(createCleanupActiveFlag()); 777 } 778 779 void initFullExprCleanupWithFlag(Address ActiveFlag); 780 Address createCleanupActiveFlag(); 781 782 /// PushDestructorCleanup - Push a cleanup to call the 783 /// complete-object destructor of an object of the given type at the 784 /// given address. Does nothing if T is not a C++ class type with a 785 /// non-trivial destructor. 786 void PushDestructorCleanup(QualType T, Address Addr); 787 788 /// PushDestructorCleanup - Push a cleanup to call the 789 /// complete-object variant of the given destructor on the object at 790 /// the given address. 791 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, QualType T, 792 Address Addr); 793 794 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 795 /// process all branch fixups. 796 void PopCleanupBlock(bool FallThroughIsBranchThrough = false); 797 798 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 799 /// The block cannot be reactivated. Pops it if it's the top of the 800 /// stack. 801 /// 802 /// \param DominatingIP - An instruction which is known to 803 /// dominate the current IP (if set) and which lies along 804 /// all paths of execution between the current IP and the 805 /// the point at which the cleanup comes into scope. 806 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 807 llvm::Instruction *DominatingIP); 808 809 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 810 /// Cannot be used to resurrect a deactivated cleanup. 811 /// 812 /// \param DominatingIP - An instruction which is known to 813 /// dominate the current IP (if set) and which lies along 814 /// all paths of execution between the current IP and the 815 /// the point at which the cleanup comes into scope. 816 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 817 llvm::Instruction *DominatingIP); 818 819 /// Enters a new scope for capturing cleanups, all of which 820 /// will be executed once the scope is exited. 821 class RunCleanupsScope { 822 EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth; 823 size_t LifetimeExtendedCleanupStackSize; 824 bool OldDidCallStackSave; 825 protected: 826 bool PerformCleanup; 827 private: 828 829 RunCleanupsScope(const RunCleanupsScope &) = delete; 830 void operator=(const RunCleanupsScope &) = delete; 831 832 protected: 833 CodeGenFunction& CGF; 834 835 public: 836 /// Enter a new cleanup scope. 837 explicit RunCleanupsScope(CodeGenFunction &CGF) 838 : PerformCleanup(true), CGF(CGF) 839 { 840 CleanupStackDepth = CGF.EHStack.stable_begin(); 841 LifetimeExtendedCleanupStackSize = 842 CGF.LifetimeExtendedCleanupStack.size(); 843 OldDidCallStackSave = CGF.DidCallStackSave; 844 CGF.DidCallStackSave = false; 845 OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth; 846 CGF.CurrentCleanupScopeDepth = CleanupStackDepth; 847 } 848 849 /// Exit this cleanup scope, emitting any accumulated cleanups. 850 ~RunCleanupsScope() { 851 if (PerformCleanup) 852 ForceCleanup(); 853 } 854 855 /// Determine whether this scope requires any cleanups. 856 bool requiresCleanups() const { 857 return CGF.EHStack.stable_begin() != CleanupStackDepth; 858 } 859 860 /// Force the emission of cleanups now, instead of waiting 861 /// until this object is destroyed. 862 /// \param ValuesToReload - A list of values that need to be available at 863 /// the insertion point after cleanup emission. If cleanup emission created 864 /// a shared cleanup block, these value pointers will be rewritten. 865 /// Otherwise, they not will be modified. 866 void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) { 867 assert(PerformCleanup && "Already forced cleanup"); 868 CGF.DidCallStackSave = OldDidCallStackSave; 869 CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize, 870 ValuesToReload); 871 PerformCleanup = false; 872 CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth; 873 } 874 }; 875 876 // Cleanup stack depth of the RunCleanupsScope that was pushed most recently. 877 EHScopeStack::stable_iterator CurrentCleanupScopeDepth = 878 EHScopeStack::stable_end(); 879 880 class LexicalScope : public RunCleanupsScope { 881 SourceRange Range; 882 SmallVector<const LabelDecl*, 4> Labels; 883 LexicalScope *ParentScope; 884 885 LexicalScope(const LexicalScope &) = delete; 886 void operator=(const LexicalScope &) = delete; 887 888 public: 889 /// Enter a new cleanup scope. 890 explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) 891 : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) { 892 CGF.CurLexicalScope = this; 893 if (CGDebugInfo *DI = CGF.getDebugInfo()) 894 DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); 895 } 896 897 void addLabel(const LabelDecl *label) { 898 assert(PerformCleanup && "adding label to dead scope?"); 899 Labels.push_back(label); 900 } 901 902 /// Exit this cleanup scope, emitting any accumulated 903 /// cleanups. 904 ~LexicalScope() { 905 if (CGDebugInfo *DI = CGF.getDebugInfo()) 906 DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 907 908 // If we should perform a cleanup, force them now. Note that 909 // this ends the cleanup scope before rescoping any labels. 910 if (PerformCleanup) { 911 ApplyDebugLocation DL(CGF, Range.getEnd()); 912 ForceCleanup(); 913 } 914 } 915 916 /// Force the emission of cleanups now, instead of waiting 917 /// until this object is destroyed. 918 void ForceCleanup() { 919 CGF.CurLexicalScope = ParentScope; 920 RunCleanupsScope::ForceCleanup(); 921 922 if (!Labels.empty()) 923 rescopeLabels(); 924 } 925 926 bool hasLabels() const { 927 return !Labels.empty(); 928 } 929 930 void rescopeLabels(); 931 }; 932 933 typedef llvm::DenseMap<const Decl *, Address> DeclMapTy; 934 935 /// The class used to assign some variables some temporarily addresses. 936 class OMPMapVars { 937 DeclMapTy SavedLocals; 938 DeclMapTy SavedTempAddresses; 939 OMPMapVars(const OMPMapVars &) = delete; 940 void operator=(const OMPMapVars &) = delete; 941 942 public: 943 explicit OMPMapVars() = default; 944 ~OMPMapVars() { 945 assert(SavedLocals.empty() && "Did not restored original addresses."); 946 }; 947 948 /// Sets the address of the variable \p LocalVD to be \p TempAddr in 949 /// function \p CGF. 950 /// \return true if at least one variable was set already, false otherwise. 951 bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD, 952 Address TempAddr) { 953 LocalVD = LocalVD->getCanonicalDecl(); 954 // Only save it once. 955 if (SavedLocals.count(LocalVD)) return false; 956 957 // Copy the existing local entry to SavedLocals. 958 auto it = CGF.LocalDeclMap.find(LocalVD); 959 if (it != CGF.LocalDeclMap.end()) 960 SavedLocals.try_emplace(LocalVD, it->second); 961 else 962 SavedLocals.try_emplace(LocalVD, Address::invalid()); 963 964 // Generate the private entry. 965 QualType VarTy = LocalVD->getType(); 966 if (VarTy->isReferenceType()) { 967 Address Temp = CGF.CreateMemTemp(VarTy); 968 CGF.Builder.CreateStore(TempAddr.getPointer(), Temp); 969 TempAddr = Temp; 970 } 971 SavedTempAddresses.try_emplace(LocalVD, TempAddr); 972 973 return true; 974 } 975 976 /// Applies new addresses to the list of the variables. 977 /// \return true if at least one variable is using new address, false 978 /// otherwise. 979 bool apply(CodeGenFunction &CGF) { 980 copyInto(SavedTempAddresses, CGF.LocalDeclMap); 981 SavedTempAddresses.clear(); 982 return !SavedLocals.empty(); 983 } 984 985 /// Restores original addresses of the variables. 986 void restore(CodeGenFunction &CGF) { 987 if (!SavedLocals.empty()) { 988 copyInto(SavedLocals, CGF.LocalDeclMap); 989 SavedLocals.clear(); 990 } 991 } 992 993 private: 994 /// Copy all the entries in the source map over the corresponding 995 /// entries in the destination, which must exist. 996 static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) { 997 for (auto &Pair : Src) { 998 if (!Pair.second.isValid()) { 999 Dest.erase(Pair.first); 1000 continue; 1001 } 1002 1003 auto I = Dest.find(Pair.first); 1004 if (I != Dest.end()) 1005 I->second = Pair.second; 1006 else 1007 Dest.insert(Pair); 1008 } 1009 } 1010 }; 1011 1012 /// The scope used to remap some variables as private in the OpenMP loop body 1013 /// (or other captured region emitted without outlining), and to restore old 1014 /// vars back on exit. 1015 class OMPPrivateScope : public RunCleanupsScope { 1016 OMPMapVars MappedVars; 1017 OMPPrivateScope(const OMPPrivateScope &) = delete; 1018 void operator=(const OMPPrivateScope &) = delete; 1019 1020 public: 1021 /// Enter a new OpenMP private scope. 1022 explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {} 1023 1024 /// Registers \p LocalVD variable as a private and apply \p PrivateGen 1025 /// function for it to generate corresponding private variable. \p 1026 /// PrivateGen returns an address of the generated private variable. 1027 /// \return true if the variable is registered as private, false if it has 1028 /// been privatized already. 1029 bool addPrivate(const VarDecl *LocalVD, 1030 const llvm::function_ref<Address()> PrivateGen) { 1031 assert(PerformCleanup && "adding private to dead scope"); 1032 return MappedVars.setVarAddr(CGF, LocalVD, PrivateGen()); 1033 } 1034 1035 /// Privatizes local variables previously registered as private. 1036 /// Registration is separate from the actual privatization to allow 1037 /// initializers use values of the original variables, not the private one. 1038 /// This is important, for example, if the private variable is a class 1039 /// variable initialized by a constructor that references other private 1040 /// variables. But at initialization original variables must be used, not 1041 /// private copies. 1042 /// \return true if at least one variable was privatized, false otherwise. 1043 bool Privatize() { return MappedVars.apply(CGF); } 1044 1045 void ForceCleanup() { 1046 RunCleanupsScope::ForceCleanup(); 1047 MappedVars.restore(CGF); 1048 } 1049 1050 /// Exit scope - all the mapped variables are restored. 1051 ~OMPPrivateScope() { 1052 if (PerformCleanup) 1053 ForceCleanup(); 1054 } 1055 1056 /// Checks if the global variable is captured in current function. 1057 bool isGlobalVarCaptured(const VarDecl *VD) const { 1058 VD = VD->getCanonicalDecl(); 1059 return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0; 1060 } 1061 }; 1062 1063 /// Save/restore original map of previously emitted local vars in case when we 1064 /// need to duplicate emission of the same code several times in the same 1065 /// function for OpenMP code. 1066 class OMPLocalDeclMapRAII { 1067 CodeGenFunction &CGF; 1068 DeclMapTy SavedMap; 1069 1070 public: 1071 OMPLocalDeclMapRAII(CodeGenFunction &CGF) 1072 : CGF(CGF), SavedMap(CGF.LocalDeclMap) {} 1073 ~OMPLocalDeclMapRAII() { SavedMap.swap(CGF.LocalDeclMap); } 1074 }; 1075 1076 /// Takes the old cleanup stack size and emits the cleanup blocks 1077 /// that have been added. 1078 void 1079 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 1080 std::initializer_list<llvm::Value **> ValuesToReload = {}); 1081 1082 /// Takes the old cleanup stack size and emits the cleanup blocks 1083 /// that have been added, then adds all lifetime-extended cleanups from 1084 /// the given position to the stack. 1085 void 1086 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 1087 size_t OldLifetimeExtendedStackSize, 1088 std::initializer_list<llvm::Value **> ValuesToReload = {}); 1089 1090 void ResolveBranchFixups(llvm::BasicBlock *Target); 1091 1092 /// The given basic block lies in the current EH scope, but may be a 1093 /// target of a potentially scope-crossing jump; get a stable handle 1094 /// to which we can perform this jump later. 1095 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 1096 return JumpDest(Target, 1097 EHStack.getInnermostNormalCleanup(), 1098 NextCleanupDestIndex++); 1099 } 1100 1101 /// The given basic block lies in the current EH scope, but may be a 1102 /// target of a potentially scope-crossing jump; get a stable handle 1103 /// to which we can perform this jump later. 1104 JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { 1105 return getJumpDestInCurrentScope(createBasicBlock(Name)); 1106 } 1107 1108 /// EmitBranchThroughCleanup - Emit a branch from the current insert 1109 /// block through the normal cleanup handling code (if any) and then 1110 /// on to \arg Dest. 1111 void EmitBranchThroughCleanup(JumpDest Dest); 1112 1113 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 1114 /// specified destination obviously has no cleanups to run. 'false' is always 1115 /// a conservatively correct answer for this method. 1116 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 1117 1118 /// popCatchScope - Pops the catch scope at the top of the EHScope 1119 /// stack, emitting any required code (other than the catch handlers 1120 /// themselves). 1121 void popCatchScope(); 1122 1123 llvm::BasicBlock *getEHResumeBlock(bool isCleanup); 1124 llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); 1125 llvm::BasicBlock * 1126 getFuncletEHDispatchBlock(EHScopeStack::stable_iterator scope); 1127 1128 /// An object to manage conditionally-evaluated expressions. 1129 class ConditionalEvaluation { 1130 llvm::BasicBlock *StartBB; 1131 1132 public: 1133 ConditionalEvaluation(CodeGenFunction &CGF) 1134 : StartBB(CGF.Builder.GetInsertBlock()) {} 1135 1136 void begin(CodeGenFunction &CGF) { 1137 assert(CGF.OutermostConditional != this); 1138 if (!CGF.OutermostConditional) 1139 CGF.OutermostConditional = this; 1140 } 1141 1142 void end(CodeGenFunction &CGF) { 1143 assert(CGF.OutermostConditional != nullptr); 1144 if (CGF.OutermostConditional == this) 1145 CGF.OutermostConditional = nullptr; 1146 } 1147 1148 /// Returns a block which will be executed prior to each 1149 /// evaluation of the conditional code. 1150 llvm::BasicBlock *getStartingBlock() const { 1151 return StartBB; 1152 } 1153 }; 1154 1155 /// isInConditionalBranch - Return true if we're currently emitting 1156 /// one branch or the other of a conditional expression. 1157 bool isInConditionalBranch() const { return OutermostConditional != nullptr; } 1158 1159 void setBeforeOutermostConditional(llvm::Value *value, Address addr) { 1160 assert(isInConditionalBranch()); 1161 llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); 1162 auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back()); 1163 store->setAlignment(addr.getAlignment().getAsAlign()); 1164 } 1165 1166 /// An RAII object to record that we're evaluating a statement 1167 /// expression. 1168 class StmtExprEvaluation { 1169 CodeGenFunction &CGF; 1170 1171 /// We have to save the outermost conditional: cleanups in a 1172 /// statement expression aren't conditional just because the 1173 /// StmtExpr is. 1174 ConditionalEvaluation *SavedOutermostConditional; 1175 1176 public: 1177 StmtExprEvaluation(CodeGenFunction &CGF) 1178 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 1179 CGF.OutermostConditional = nullptr; 1180 } 1181 1182 ~StmtExprEvaluation() { 1183 CGF.OutermostConditional = SavedOutermostConditional; 1184 CGF.EnsureInsertPoint(); 1185 } 1186 }; 1187 1188 /// An object which temporarily prevents a value from being 1189 /// destroyed by aggressive peephole optimizations that assume that 1190 /// all uses of a value have been realized in the IR. 1191 class PeepholeProtection { 1192 llvm::Instruction *Inst; 1193 friend class CodeGenFunction; 1194 1195 public: 1196 PeepholeProtection() : Inst(nullptr) {} 1197 }; 1198 1199 /// A non-RAII class containing all the information about a bound 1200 /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for 1201 /// this which makes individual mappings very simple; using this 1202 /// class directly is useful when you have a variable number of 1203 /// opaque values or don't want the RAII functionality for some 1204 /// reason. 1205 class OpaqueValueMappingData { 1206 const OpaqueValueExpr *OpaqueValue; 1207 bool BoundLValue; 1208 CodeGenFunction::PeepholeProtection Protection; 1209 1210 OpaqueValueMappingData(const OpaqueValueExpr *ov, 1211 bool boundLValue) 1212 : OpaqueValue(ov), BoundLValue(boundLValue) {} 1213 public: 1214 OpaqueValueMappingData() : OpaqueValue(nullptr) {} 1215 1216 static bool shouldBindAsLValue(const Expr *expr) { 1217 // gl-values should be bound as l-values for obvious reasons. 1218 // Records should be bound as l-values because IR generation 1219 // always keeps them in memory. Expressions of function type 1220 // act exactly like l-values but are formally required to be 1221 // r-values in C. 1222 return expr->isGLValue() || 1223 expr->getType()->isFunctionType() || 1224 hasAggregateEvaluationKind(expr->getType()); 1225 } 1226 1227 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1228 const OpaqueValueExpr *ov, 1229 const Expr *e) { 1230 if (shouldBindAsLValue(ov)) 1231 return bind(CGF, ov, CGF.EmitLValue(e)); 1232 return bind(CGF, ov, CGF.EmitAnyExpr(e)); 1233 } 1234 1235 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1236 const OpaqueValueExpr *ov, 1237 const LValue &lv) { 1238 assert(shouldBindAsLValue(ov)); 1239 CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); 1240 return OpaqueValueMappingData(ov, true); 1241 } 1242 1243 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1244 const OpaqueValueExpr *ov, 1245 const RValue &rv) { 1246 assert(!shouldBindAsLValue(ov)); 1247 CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); 1248 1249 OpaqueValueMappingData data(ov, false); 1250 1251 // Work around an extremely aggressive peephole optimization in 1252 // EmitScalarConversion which assumes that all other uses of a 1253 // value are extant. 1254 data.Protection = CGF.protectFromPeepholes(rv); 1255 1256 return data; 1257 } 1258 1259 bool isValid() const { return OpaqueValue != nullptr; } 1260 void clear() { OpaqueValue = nullptr; } 1261 1262 void unbind(CodeGenFunction &CGF) { 1263 assert(OpaqueValue && "no data to unbind!"); 1264 1265 if (BoundLValue) { 1266 CGF.OpaqueLValues.erase(OpaqueValue); 1267 } else { 1268 CGF.OpaqueRValues.erase(OpaqueValue); 1269 CGF.unprotectFromPeepholes(Protection); 1270 } 1271 } 1272 }; 1273 1274 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 1275 class OpaqueValueMapping { 1276 CodeGenFunction &CGF; 1277 OpaqueValueMappingData Data; 1278 1279 public: 1280 static bool shouldBindAsLValue(const Expr *expr) { 1281 return OpaqueValueMappingData::shouldBindAsLValue(expr); 1282 } 1283 1284 /// Build the opaque value mapping for the given conditional 1285 /// operator if it's the GNU ?: extension. This is a common 1286 /// enough pattern that the convenience operator is really 1287 /// helpful. 1288 /// 1289 OpaqueValueMapping(CodeGenFunction &CGF, 1290 const AbstractConditionalOperator *op) : CGF(CGF) { 1291 if (isa<ConditionalOperator>(op)) 1292 // Leave Data empty. 1293 return; 1294 1295 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 1296 Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), 1297 e->getCommon()); 1298 } 1299 1300 /// Build the opaque value mapping for an OpaqueValueExpr whose source 1301 /// expression is set to the expression the OVE represents. 1302 OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV) 1303 : CGF(CGF) { 1304 if (OV) { 1305 assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used " 1306 "for OVE with no source expression"); 1307 Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr()); 1308 } 1309 } 1310 1311 OpaqueValueMapping(CodeGenFunction &CGF, 1312 const OpaqueValueExpr *opaqueValue, 1313 LValue lvalue) 1314 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { 1315 } 1316 1317 OpaqueValueMapping(CodeGenFunction &CGF, 1318 const OpaqueValueExpr *opaqueValue, 1319 RValue rvalue) 1320 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { 1321 } 1322 1323 void pop() { 1324 Data.unbind(CGF); 1325 Data.clear(); 1326 } 1327 1328 ~OpaqueValueMapping() { 1329 if (Data.isValid()) Data.unbind(CGF); 1330 } 1331 }; 1332 1333 private: 1334 CGDebugInfo *DebugInfo; 1335 /// Used to create unique names for artificial VLA size debug info variables. 1336 unsigned VLAExprCounter = 0; 1337 bool DisableDebugInfo = false; 1338 1339 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 1340 /// calling llvm.stacksave for multiple VLAs in the same scope. 1341 bool DidCallStackSave = false; 1342 1343 /// IndirectBranch - The first time an indirect goto is seen we create a block 1344 /// with an indirect branch. Every time we see the address of a label taken, 1345 /// we add the label to the indirect goto. Every subsequent indirect goto is 1346 /// codegen'd as a jump to the IndirectBranch's basic block. 1347 llvm::IndirectBrInst *IndirectBranch = nullptr; 1348 1349 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 1350 /// decls. 1351 DeclMapTy LocalDeclMap; 1352 1353 // Keep track of the cleanups for callee-destructed parameters pushed to the 1354 // cleanup stack so that they can be deactivated later. 1355 llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator> 1356 CalleeDestructedParamCleanups; 1357 1358 /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this 1359 /// will contain a mapping from said ParmVarDecl to its implicit "object_size" 1360 /// parameter. 1361 llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2> 1362 SizeArguments; 1363 1364 /// Track escaped local variables with auto storage. Used during SEH 1365 /// outlining to produce a call to llvm.localescape. 1366 llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals; 1367 1368 /// LabelMap - This keeps track of the LLVM basic block for each C label. 1369 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 1370 1371 // BreakContinueStack - This keeps track of where break and continue 1372 // statements should jump to. 1373 struct BreakContinue { 1374 BreakContinue(JumpDest Break, JumpDest Continue) 1375 : BreakBlock(Break), ContinueBlock(Continue) {} 1376 1377 JumpDest BreakBlock; 1378 JumpDest ContinueBlock; 1379 }; 1380 SmallVector<BreakContinue, 8> BreakContinueStack; 1381 1382 /// Handles cancellation exit points in OpenMP-related constructs. 1383 class OpenMPCancelExitStack { 1384 /// Tracks cancellation exit point and join point for cancel-related exit 1385 /// and normal exit. 1386 struct CancelExit { 1387 CancelExit() = default; 1388 CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock, 1389 JumpDest ContBlock) 1390 : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {} 1391 OpenMPDirectiveKind Kind = llvm::omp::OMPD_unknown; 1392 /// true if the exit block has been emitted already by the special 1393 /// emitExit() call, false if the default codegen is used. 1394 bool HasBeenEmitted = false; 1395 JumpDest ExitBlock; 1396 JumpDest ContBlock; 1397 }; 1398 1399 SmallVector<CancelExit, 8> Stack; 1400 1401 public: 1402 OpenMPCancelExitStack() : Stack(1) {} 1403 ~OpenMPCancelExitStack() = default; 1404 /// Fetches the exit block for the current OpenMP construct. 1405 JumpDest getExitBlock() const { return Stack.back().ExitBlock; } 1406 /// Emits exit block with special codegen procedure specific for the related 1407 /// OpenMP construct + emits code for normal construct cleanup. 1408 void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 1409 const llvm::function_ref<void(CodeGenFunction &)> CodeGen) { 1410 if (Stack.back().Kind == Kind && getExitBlock().isValid()) { 1411 assert(CGF.getOMPCancelDestination(Kind).isValid()); 1412 assert(CGF.HaveInsertPoint()); 1413 assert(!Stack.back().HasBeenEmitted); 1414 auto IP = CGF.Builder.saveAndClearIP(); 1415 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1416 CodeGen(CGF); 1417 CGF.EmitBranch(Stack.back().ContBlock.getBlock()); 1418 CGF.Builder.restoreIP(IP); 1419 Stack.back().HasBeenEmitted = true; 1420 } 1421 CodeGen(CGF); 1422 } 1423 /// Enter the cancel supporting \a Kind construct. 1424 /// \param Kind OpenMP directive that supports cancel constructs. 1425 /// \param HasCancel true, if the construct has inner cancel directive, 1426 /// false otherwise. 1427 void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) { 1428 Stack.push_back({Kind, 1429 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit") 1430 : JumpDest(), 1431 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont") 1432 : JumpDest()}); 1433 } 1434 /// Emits default exit point for the cancel construct (if the special one 1435 /// has not be used) + join point for cancel/normal exits. 1436 void exit(CodeGenFunction &CGF) { 1437 if (getExitBlock().isValid()) { 1438 assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid()); 1439 bool HaveIP = CGF.HaveInsertPoint(); 1440 if (!Stack.back().HasBeenEmitted) { 1441 if (HaveIP) 1442 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1443 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1444 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1445 } 1446 CGF.EmitBlock(Stack.back().ContBlock.getBlock()); 1447 if (!HaveIP) { 1448 CGF.Builder.CreateUnreachable(); 1449 CGF.Builder.ClearInsertionPoint(); 1450 } 1451 } 1452 Stack.pop_back(); 1453 } 1454 }; 1455 OpenMPCancelExitStack OMPCancelStack; 1456 1457 /// Lower the Likelihood knowledge about the \p Cond via llvm.expect intrin. 1458 llvm::Value *emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond, 1459 Stmt::Likelihood LH); 1460 1461 CodeGenPGO PGO; 1462 1463 /// Calculate branch weights appropriate for PGO data 1464 llvm::MDNode *createProfileWeights(uint64_t TrueCount, 1465 uint64_t FalseCount) const; 1466 llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights) const; 1467 llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond, 1468 uint64_t LoopCount) const; 1469 1470 public: 1471 /// Increment the profiler's counter for the given statement by \p StepV. 1472 /// If \p StepV is null, the default increment is 1. 1473 void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) { 1474 if (CGM.getCodeGenOpts().hasProfileClangInstr() && 1475 !CurFn->hasFnAttribute(llvm::Attribute::NoProfile)) 1476 PGO.emitCounterIncrement(Builder, S, StepV); 1477 PGO.setCurrentStmt(S); 1478 } 1479 1480 /// Get the profiler's count for the given statement. 1481 uint64_t getProfileCount(const Stmt *S) { 1482 Optional<uint64_t> Count = PGO.getStmtCount(S); 1483 if (!Count.hasValue()) 1484 return 0; 1485 return *Count; 1486 } 1487 1488 /// Set the profiler's current count. 1489 void setCurrentProfileCount(uint64_t Count) { 1490 PGO.setCurrentRegionCount(Count); 1491 } 1492 1493 /// Get the profiler's current count. This is generally the count for the most 1494 /// recently incremented counter. 1495 uint64_t getCurrentProfileCount() { 1496 return PGO.getCurrentRegionCount(); 1497 } 1498 1499 private: 1500 1501 /// SwitchInsn - This is nearest current switch instruction. It is null if 1502 /// current context is not in a switch. 1503 llvm::SwitchInst *SwitchInsn = nullptr; 1504 /// The branch weights of SwitchInsn when doing instrumentation based PGO. 1505 SmallVector<uint64_t, 16> *SwitchWeights = nullptr; 1506 1507 /// The likelihood attributes of the SwitchCase. 1508 SmallVector<Stmt::Likelihood, 16> *SwitchLikelihood = nullptr; 1509 1510 /// CaseRangeBlock - This block holds if condition check for last case 1511 /// statement range in current switch instruction. 1512 llvm::BasicBlock *CaseRangeBlock = nullptr; 1513 1514 /// OpaqueLValues - Keeps track of the current set of opaque value 1515 /// expressions. 1516 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 1517 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 1518 1519 // VLASizeMap - This keeps track of the associated size for each VLA type. 1520 // We track this by the size expression rather than the type itself because 1521 // in certain situations, like a const qualifier applied to an VLA typedef, 1522 // multiple VLA types can share the same size expression. 1523 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 1524 // enter/leave scopes. 1525 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 1526 1527 /// A block containing a single 'unreachable' instruction. Created 1528 /// lazily by getUnreachableBlock(). 1529 llvm::BasicBlock *UnreachableBlock = nullptr; 1530 1531 /// Counts of the number return expressions in the function. 1532 unsigned NumReturnExprs = 0; 1533 1534 /// Count the number of simple (constant) return expressions in the function. 1535 unsigned NumSimpleReturnExprs = 0; 1536 1537 /// The last regular (non-return) debug location (breakpoint) in the function. 1538 SourceLocation LastStopPoint; 1539 1540 public: 1541 /// Source location information about the default argument or member 1542 /// initializer expression we're evaluating, if any. 1543 CurrentSourceLocExprScope CurSourceLocExprScope; 1544 using SourceLocExprScopeGuard = 1545 CurrentSourceLocExprScope::SourceLocExprScopeGuard; 1546 1547 /// A scope within which we are constructing the fields of an object which 1548 /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use 1549 /// if we need to evaluate a CXXDefaultInitExpr within the evaluation. 1550 class FieldConstructionScope { 1551 public: 1552 FieldConstructionScope(CodeGenFunction &CGF, Address This) 1553 : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) { 1554 CGF.CXXDefaultInitExprThis = This; 1555 } 1556 ~FieldConstructionScope() { 1557 CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis; 1558 } 1559 1560 private: 1561 CodeGenFunction &CGF; 1562 Address OldCXXDefaultInitExprThis; 1563 }; 1564 1565 /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this' 1566 /// is overridden to be the object under construction. 1567 class CXXDefaultInitExprScope { 1568 public: 1569 CXXDefaultInitExprScope(CodeGenFunction &CGF, const CXXDefaultInitExpr *E) 1570 : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue), 1571 OldCXXThisAlignment(CGF.CXXThisAlignment), 1572 SourceLocScope(E, CGF.CurSourceLocExprScope) { 1573 CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer(); 1574 CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment(); 1575 } 1576 ~CXXDefaultInitExprScope() { 1577 CGF.CXXThisValue = OldCXXThisValue; 1578 CGF.CXXThisAlignment = OldCXXThisAlignment; 1579 } 1580 1581 public: 1582 CodeGenFunction &CGF; 1583 llvm::Value *OldCXXThisValue; 1584 CharUnits OldCXXThisAlignment; 1585 SourceLocExprScopeGuard SourceLocScope; 1586 }; 1587 1588 struct CXXDefaultArgExprScope : SourceLocExprScopeGuard { 1589 CXXDefaultArgExprScope(CodeGenFunction &CGF, const CXXDefaultArgExpr *E) 1590 : SourceLocExprScopeGuard(E, CGF.CurSourceLocExprScope) {} 1591 }; 1592 1593 /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the 1594 /// current loop index is overridden. 1595 class ArrayInitLoopExprScope { 1596 public: 1597 ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index) 1598 : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) { 1599 CGF.ArrayInitIndex = Index; 1600 } 1601 ~ArrayInitLoopExprScope() { 1602 CGF.ArrayInitIndex = OldArrayInitIndex; 1603 } 1604 1605 private: 1606 CodeGenFunction &CGF; 1607 llvm::Value *OldArrayInitIndex; 1608 }; 1609 1610 class InlinedInheritingConstructorScope { 1611 public: 1612 InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD) 1613 : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl), 1614 OldCurCodeDecl(CGF.CurCodeDecl), 1615 OldCXXABIThisDecl(CGF.CXXABIThisDecl), 1616 OldCXXABIThisValue(CGF.CXXABIThisValue), 1617 OldCXXThisValue(CGF.CXXThisValue), 1618 OldCXXABIThisAlignment(CGF.CXXABIThisAlignment), 1619 OldCXXThisAlignment(CGF.CXXThisAlignment), 1620 OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy), 1621 OldCXXInheritedCtorInitExprArgs( 1622 std::move(CGF.CXXInheritedCtorInitExprArgs)) { 1623 CGF.CurGD = GD; 1624 CGF.CurFuncDecl = CGF.CurCodeDecl = 1625 cast<CXXConstructorDecl>(GD.getDecl()); 1626 CGF.CXXABIThisDecl = nullptr; 1627 CGF.CXXABIThisValue = nullptr; 1628 CGF.CXXThisValue = nullptr; 1629 CGF.CXXABIThisAlignment = CharUnits(); 1630 CGF.CXXThisAlignment = CharUnits(); 1631 CGF.ReturnValue = Address::invalid(); 1632 CGF.FnRetTy = QualType(); 1633 CGF.CXXInheritedCtorInitExprArgs.clear(); 1634 } 1635 ~InlinedInheritingConstructorScope() { 1636 CGF.CurGD = OldCurGD; 1637 CGF.CurFuncDecl = OldCurFuncDecl; 1638 CGF.CurCodeDecl = OldCurCodeDecl; 1639 CGF.CXXABIThisDecl = OldCXXABIThisDecl; 1640 CGF.CXXABIThisValue = OldCXXABIThisValue; 1641 CGF.CXXThisValue = OldCXXThisValue; 1642 CGF.CXXABIThisAlignment = OldCXXABIThisAlignment; 1643 CGF.CXXThisAlignment = OldCXXThisAlignment; 1644 CGF.ReturnValue = OldReturnValue; 1645 CGF.FnRetTy = OldFnRetTy; 1646 CGF.CXXInheritedCtorInitExprArgs = 1647 std::move(OldCXXInheritedCtorInitExprArgs); 1648 } 1649 1650 private: 1651 CodeGenFunction &CGF; 1652 GlobalDecl OldCurGD; 1653 const Decl *OldCurFuncDecl; 1654 const Decl *OldCurCodeDecl; 1655 ImplicitParamDecl *OldCXXABIThisDecl; 1656 llvm::Value *OldCXXABIThisValue; 1657 llvm::Value *OldCXXThisValue; 1658 CharUnits OldCXXABIThisAlignment; 1659 CharUnits OldCXXThisAlignment; 1660 Address OldReturnValue; 1661 QualType OldFnRetTy; 1662 CallArgList OldCXXInheritedCtorInitExprArgs; 1663 }; 1664 1665 // Helper class for the OpenMP IR Builder. Allows reusability of code used for 1666 // region body, and finalization codegen callbacks. This will class will also 1667 // contain privatization functions used by the privatization call backs 1668 // 1669 // TODO: this is temporary class for things that are being moved out of 1670 // CGOpenMPRuntime, new versions of current CodeGenFunction methods, or 1671 // utility function for use with the OMPBuilder. Once that move to use the 1672 // OMPBuilder is done, everything here will either become part of CodeGenFunc. 1673 // directly, or a new helper class that will contain functions used by both 1674 // this and the OMPBuilder 1675 1676 struct OMPBuilderCBHelpers { 1677 1678 OMPBuilderCBHelpers() = delete; 1679 OMPBuilderCBHelpers(const OMPBuilderCBHelpers &) = delete; 1680 OMPBuilderCBHelpers &operator=(const OMPBuilderCBHelpers &) = delete; 1681 1682 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 1683 1684 /// Cleanup action for allocate support. 1685 class OMPAllocateCleanupTy final : public EHScopeStack::Cleanup { 1686 1687 private: 1688 llvm::CallInst *RTLFnCI; 1689 1690 public: 1691 OMPAllocateCleanupTy(llvm::CallInst *RLFnCI) : RTLFnCI(RLFnCI) { 1692 RLFnCI->removeFromParent(); 1693 } 1694 1695 void Emit(CodeGenFunction &CGF, Flags /*flags*/) override { 1696 if (!CGF.HaveInsertPoint()) 1697 return; 1698 CGF.Builder.Insert(RTLFnCI); 1699 } 1700 }; 1701 1702 /// Returns address of the threadprivate variable for the current 1703 /// thread. This Also create any necessary OMP runtime calls. 1704 /// 1705 /// \param VD VarDecl for Threadprivate variable. 1706 /// \param VDAddr Address of the Vardecl 1707 /// \param Loc The location where the barrier directive was encountered 1708 static Address getAddrOfThreadPrivate(CodeGenFunction &CGF, 1709 const VarDecl *VD, Address VDAddr, 1710 SourceLocation Loc); 1711 1712 /// Gets the OpenMP-specific address of the local variable /p VD. 1713 static Address getAddressOfLocalVariable(CodeGenFunction &CGF, 1714 const VarDecl *VD); 1715 /// Get the platform-specific name separator. 1716 /// \param Parts different parts of the final name that needs separation 1717 /// \param FirstSeparator First separator used between the initial two 1718 /// parts of the name. 1719 /// \param Separator separator used between all of the rest consecutinve 1720 /// parts of the name 1721 static std::string getNameWithSeparators(ArrayRef<StringRef> Parts, 1722 StringRef FirstSeparator = ".", 1723 StringRef Separator = "."); 1724 /// Emit the Finalization for an OMP region 1725 /// \param CGF The Codegen function this belongs to 1726 /// \param IP Insertion point for generating the finalization code. 1727 static void FinalizeOMPRegion(CodeGenFunction &CGF, InsertPointTy IP) { 1728 CGBuilderTy::InsertPointGuard IPG(CGF.Builder); 1729 assert(IP.getBlock()->end() != IP.getPoint() && 1730 "OpenMP IR Builder should cause terminated block!"); 1731 1732 llvm::BasicBlock *IPBB = IP.getBlock(); 1733 llvm::BasicBlock *DestBB = IPBB->getUniqueSuccessor(); 1734 assert(DestBB && "Finalization block should have one successor!"); 1735 1736 // erase and replace with cleanup branch. 1737 IPBB->getTerminator()->eraseFromParent(); 1738 CGF.Builder.SetInsertPoint(IPBB); 1739 CodeGenFunction::JumpDest Dest = CGF.getJumpDestInCurrentScope(DestBB); 1740 CGF.EmitBranchThroughCleanup(Dest); 1741 } 1742 1743 /// Emit the body of an OMP region 1744 /// \param CGF The Codegen function this belongs to 1745 /// \param RegionBodyStmt The body statement for the OpenMP region being 1746 /// generated 1747 /// \param CodeGenIP Insertion point for generating the body code. 1748 /// \param FiniBB The finalization basic block 1749 static void EmitOMPRegionBody(CodeGenFunction &CGF, 1750 const Stmt *RegionBodyStmt, 1751 InsertPointTy CodeGenIP, 1752 llvm::BasicBlock &FiniBB) { 1753 llvm::BasicBlock *CodeGenIPBB = CodeGenIP.getBlock(); 1754 if (llvm::Instruction *CodeGenIPBBTI = CodeGenIPBB->getTerminator()) 1755 CodeGenIPBBTI->eraseFromParent(); 1756 1757 CGF.Builder.SetInsertPoint(CodeGenIPBB); 1758 1759 CGF.EmitStmt(RegionBodyStmt); 1760 1761 if (CGF.Builder.saveIP().isSet()) 1762 CGF.Builder.CreateBr(&FiniBB); 1763 } 1764 1765 /// RAII for preserving necessary info during Outlined region body codegen. 1766 class OutlinedRegionBodyRAII { 1767 1768 llvm::AssertingVH<llvm::Instruction> OldAllocaIP; 1769 CodeGenFunction::JumpDest OldReturnBlock; 1770 CGBuilderTy::InsertPoint IP; 1771 CodeGenFunction &CGF; 1772 1773 public: 1774 OutlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP, 1775 llvm::BasicBlock &RetBB) 1776 : CGF(cgf) { 1777 assert(AllocaIP.isSet() && 1778 "Must specify Insertion point for allocas of outlined function"); 1779 OldAllocaIP = CGF.AllocaInsertPt; 1780 CGF.AllocaInsertPt = &*AllocaIP.getPoint(); 1781 IP = CGF.Builder.saveIP(); 1782 1783 OldReturnBlock = CGF.ReturnBlock; 1784 CGF.ReturnBlock = CGF.getJumpDestInCurrentScope(&RetBB); 1785 } 1786 1787 ~OutlinedRegionBodyRAII() { 1788 CGF.AllocaInsertPt = OldAllocaIP; 1789 CGF.ReturnBlock = OldReturnBlock; 1790 CGF.Builder.restoreIP(IP); 1791 } 1792 }; 1793 1794 /// RAII for preserving necessary info during inlined region body codegen. 1795 class InlinedRegionBodyRAII { 1796 1797 llvm::AssertingVH<llvm::Instruction> OldAllocaIP; 1798 CodeGenFunction &CGF; 1799 1800 public: 1801 InlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP, 1802 llvm::BasicBlock &FiniBB) 1803 : CGF(cgf) { 1804 // Alloca insertion block should be in the entry block of the containing 1805 // function so it expects an empty AllocaIP in which case will reuse the 1806 // old alloca insertion point, or a new AllocaIP in the same block as 1807 // the old one 1808 assert((!AllocaIP.isSet() || 1809 CGF.AllocaInsertPt->getParent() == AllocaIP.getBlock()) && 1810 "Insertion point should be in the entry block of containing " 1811 "function!"); 1812 OldAllocaIP = CGF.AllocaInsertPt; 1813 if (AllocaIP.isSet()) 1814 CGF.AllocaInsertPt = &*AllocaIP.getPoint(); 1815 1816 // TODO: Remove the call, after making sure the counter is not used by 1817 // the EHStack. 1818 // Since this is an inlined region, it should not modify the 1819 // ReturnBlock, and should reuse the one for the enclosing outlined 1820 // region. So, the JumpDest being return by the function is discarded 1821 (void)CGF.getJumpDestInCurrentScope(&FiniBB); 1822 } 1823 1824 ~InlinedRegionBodyRAII() { CGF.AllocaInsertPt = OldAllocaIP; } 1825 }; 1826 }; 1827 1828 private: 1829 /// CXXThisDecl - When generating code for a C++ member function, 1830 /// this will hold the implicit 'this' declaration. 1831 ImplicitParamDecl *CXXABIThisDecl = nullptr; 1832 llvm::Value *CXXABIThisValue = nullptr; 1833 llvm::Value *CXXThisValue = nullptr; 1834 CharUnits CXXABIThisAlignment; 1835 CharUnits CXXThisAlignment; 1836 1837 /// The value of 'this' to use when evaluating CXXDefaultInitExprs within 1838 /// this expression. 1839 Address CXXDefaultInitExprThis = Address::invalid(); 1840 1841 /// The current array initialization index when evaluating an 1842 /// ArrayInitIndexExpr within an ArrayInitLoopExpr. 1843 llvm::Value *ArrayInitIndex = nullptr; 1844 1845 /// The values of function arguments to use when evaluating 1846 /// CXXInheritedCtorInitExprs within this context. 1847 CallArgList CXXInheritedCtorInitExprArgs; 1848 1849 /// CXXStructorImplicitParamDecl - When generating code for a constructor or 1850 /// destructor, this will hold the implicit argument (e.g. VTT). 1851 ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr; 1852 llvm::Value *CXXStructorImplicitParamValue = nullptr; 1853 1854 /// OutermostConditional - Points to the outermost active 1855 /// conditional control. This is used so that we know if a 1856 /// temporary should be destroyed conditionally. 1857 ConditionalEvaluation *OutermostConditional = nullptr; 1858 1859 /// The current lexical scope. 1860 LexicalScope *CurLexicalScope = nullptr; 1861 1862 /// The current source location that should be used for exception 1863 /// handling code. 1864 SourceLocation CurEHLocation; 1865 1866 /// BlockByrefInfos - For each __block variable, contains 1867 /// information about the layout of the variable. 1868 llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos; 1869 1870 /// Used by -fsanitize=nullability-return to determine whether the return 1871 /// value can be checked. 1872 llvm::Value *RetValNullabilityPrecondition = nullptr; 1873 1874 /// Check if -fsanitize=nullability-return instrumentation is required for 1875 /// this function. 1876 bool requiresReturnValueNullabilityCheck() const { 1877 return RetValNullabilityPrecondition; 1878 } 1879 1880 /// Used to store precise source locations for return statements by the 1881 /// runtime return value checks. 1882 Address ReturnLocation = Address::invalid(); 1883 1884 /// Check if the return value of this function requires sanitization. 1885 bool requiresReturnValueCheck() const; 1886 1887 llvm::BasicBlock *TerminateLandingPad = nullptr; 1888 llvm::BasicBlock *TerminateHandler = nullptr; 1889 llvm::SmallVector<llvm::BasicBlock *, 2> TrapBBs; 1890 1891 /// Terminate funclets keyed by parent funclet pad. 1892 llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets; 1893 1894 /// Largest vector width used in ths function. Will be used to create a 1895 /// function attribute. 1896 unsigned LargestVectorWidth = 0; 1897 1898 /// True if we need emit the life-time markers. This is initially set in 1899 /// the constructor, but could be overwritten to true if this is a coroutine. 1900 bool ShouldEmitLifetimeMarkers; 1901 1902 /// Add OpenCL kernel arg metadata and the kernel attribute metadata to 1903 /// the function metadata. 1904 void EmitOpenCLKernelMetadata(const FunctionDecl *FD, 1905 llvm::Function *Fn); 1906 1907 public: 1908 CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false); 1909 ~CodeGenFunction(); 1910 1911 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 1912 ASTContext &getContext() const { return CGM.getContext(); } 1913 CGDebugInfo *getDebugInfo() { 1914 if (DisableDebugInfo) 1915 return nullptr; 1916 return DebugInfo; 1917 } 1918 void disableDebugInfo() { DisableDebugInfo = true; } 1919 void enableDebugInfo() { DisableDebugInfo = false; } 1920 1921 bool shouldUseFusedARCCalls() { 1922 return CGM.getCodeGenOpts().OptimizationLevel == 0; 1923 } 1924 1925 const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } 1926 1927 /// Returns a pointer to the function's exception object and selector slot, 1928 /// which is assigned in every landing pad. 1929 Address getExceptionSlot(); 1930 Address getEHSelectorSlot(); 1931 1932 /// Returns the contents of the function's exception object and selector 1933 /// slots. 1934 llvm::Value *getExceptionFromSlot(); 1935 llvm::Value *getSelectorFromSlot(); 1936 1937 Address getNormalCleanupDestSlot(); 1938 1939 llvm::BasicBlock *getUnreachableBlock() { 1940 if (!UnreachableBlock) { 1941 UnreachableBlock = createBasicBlock("unreachable"); 1942 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 1943 } 1944 return UnreachableBlock; 1945 } 1946 1947 llvm::BasicBlock *getInvokeDest() { 1948 if (!EHStack.requiresLandingPad()) return nullptr; 1949 return getInvokeDestImpl(); 1950 } 1951 1952 bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; } 1953 1954 const TargetInfo &getTarget() const { return Target; } 1955 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 1956 const TargetCodeGenInfo &getTargetHooks() const { 1957 return CGM.getTargetCodeGenInfo(); 1958 } 1959 1960 //===--------------------------------------------------------------------===// 1961 // Cleanups 1962 //===--------------------------------------------------------------------===// 1963 1964 typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty); 1965 1966 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1967 Address arrayEndPointer, 1968 QualType elementType, 1969 CharUnits elementAlignment, 1970 Destroyer *destroyer); 1971 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1972 llvm::Value *arrayEnd, 1973 QualType elementType, 1974 CharUnits elementAlignment, 1975 Destroyer *destroyer); 1976 1977 void pushDestroy(QualType::DestructionKind dtorKind, 1978 Address addr, QualType type); 1979 void pushEHDestroy(QualType::DestructionKind dtorKind, 1980 Address addr, QualType type); 1981 void pushDestroy(CleanupKind kind, Address addr, QualType type, 1982 Destroyer *destroyer, bool useEHCleanupForArray); 1983 void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr, 1984 QualType type, Destroyer *destroyer, 1985 bool useEHCleanupForArray); 1986 void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 1987 llvm::Value *CompletePtr, 1988 QualType ElementType); 1989 void pushStackRestore(CleanupKind kind, Address SPMem); 1990 void emitDestroy(Address addr, QualType type, Destroyer *destroyer, 1991 bool useEHCleanupForArray); 1992 llvm::Function *generateDestroyHelper(Address addr, QualType type, 1993 Destroyer *destroyer, 1994 bool useEHCleanupForArray, 1995 const VarDecl *VD); 1996 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 1997 QualType elementType, CharUnits elementAlign, 1998 Destroyer *destroyer, 1999 bool checkZeroLength, bool useEHCleanup); 2000 2001 Destroyer *getDestroyer(QualType::DestructionKind destructionKind); 2002 2003 /// Determines whether an EH cleanup is required to destroy a type 2004 /// with the given destruction kind. 2005 bool needsEHCleanup(QualType::DestructionKind kind) { 2006 switch (kind) { 2007 case QualType::DK_none: 2008 return false; 2009 case QualType::DK_cxx_destructor: 2010 case QualType::DK_objc_weak_lifetime: 2011 case QualType::DK_nontrivial_c_struct: 2012 return getLangOpts().Exceptions; 2013 case QualType::DK_objc_strong_lifetime: 2014 return getLangOpts().Exceptions && 2015 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 2016 } 2017 llvm_unreachable("bad destruction kind"); 2018 } 2019 2020 CleanupKind getCleanupKind(QualType::DestructionKind kind) { 2021 return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); 2022 } 2023 2024 //===--------------------------------------------------------------------===// 2025 // Objective-C 2026 //===--------------------------------------------------------------------===// 2027 2028 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 2029 2030 void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD); 2031 2032 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 2033 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 2034 const ObjCPropertyImplDecl *PID); 2035 void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 2036 const ObjCPropertyImplDecl *propImpl, 2037 const ObjCMethodDecl *GetterMothodDecl, 2038 llvm::Constant *AtomicHelperFn); 2039 2040 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 2041 ObjCMethodDecl *MD, bool ctor); 2042 2043 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 2044 /// for the given property. 2045 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 2046 const ObjCPropertyImplDecl *PID); 2047 void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 2048 const ObjCPropertyImplDecl *propImpl, 2049 llvm::Constant *AtomicHelperFn); 2050 2051 //===--------------------------------------------------------------------===// 2052 // Block Bits 2053 //===--------------------------------------------------------------------===// 2054 2055 /// Emit block literal. 2056 /// \return an LLVM value which is a pointer to a struct which contains 2057 /// information about the block, including the block invoke function, the 2058 /// captured variables, etc. 2059 llvm::Value *EmitBlockLiteral(const BlockExpr *); 2060 2061 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 2062 const CGBlockInfo &Info, 2063 const DeclMapTy &ldm, 2064 bool IsLambdaConversionToBlock, 2065 bool BuildGlobalBlock); 2066 2067 /// Check if \p T is a C++ class that has a destructor that can throw. 2068 static bool cxxDestructorCanThrow(QualType T); 2069 2070 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 2071 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 2072 llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( 2073 const ObjCPropertyImplDecl *PID); 2074 llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( 2075 const ObjCPropertyImplDecl *PID); 2076 llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); 2077 2078 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags, 2079 bool CanThrow); 2080 2081 class AutoVarEmission; 2082 2083 void emitByrefStructureInit(const AutoVarEmission &emission); 2084 2085 /// Enter a cleanup to destroy a __block variable. Note that this 2086 /// cleanup should be a no-op if the variable hasn't left the stack 2087 /// yet; if a cleanup is required for the variable itself, that needs 2088 /// to be done externally. 2089 /// 2090 /// \param Kind Cleanup kind. 2091 /// 2092 /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block 2093 /// structure that will be passed to _Block_object_dispose. When 2094 /// \p LoadBlockVarAddr is true, the address of the field of the block 2095 /// structure that holds the address of the __block structure. 2096 /// 2097 /// \param Flags The flag that will be passed to _Block_object_dispose. 2098 /// 2099 /// \param LoadBlockVarAddr Indicates whether we need to emit a load from 2100 /// \p Addr to get the address of the __block structure. 2101 void enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags, 2102 bool LoadBlockVarAddr, bool CanThrow); 2103 2104 void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum, 2105 llvm::Value *ptr); 2106 2107 Address LoadBlockStruct(); 2108 Address GetAddrOfBlockDecl(const VarDecl *var); 2109 2110 /// BuildBlockByrefAddress - Computes the location of the 2111 /// data in a variable which is declared as __block. 2112 Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V, 2113 bool followForward = true); 2114 Address emitBlockByrefAddress(Address baseAddr, 2115 const BlockByrefInfo &info, 2116 bool followForward, 2117 const llvm::Twine &name); 2118 2119 const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var); 2120 2121 QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args); 2122 2123 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 2124 const CGFunctionInfo &FnInfo); 2125 2126 /// Annotate the function with an attribute that disables TSan checking at 2127 /// runtime. 2128 void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn); 2129 2130 /// Emit code for the start of a function. 2131 /// \param Loc The location to be associated with the function. 2132 /// \param StartLoc The location of the function body. 2133 void StartFunction(GlobalDecl GD, 2134 QualType RetTy, 2135 llvm::Function *Fn, 2136 const CGFunctionInfo &FnInfo, 2137 const FunctionArgList &Args, 2138 SourceLocation Loc = SourceLocation(), 2139 SourceLocation StartLoc = SourceLocation()); 2140 2141 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor); 2142 2143 void EmitConstructorBody(FunctionArgList &Args); 2144 void EmitDestructorBody(FunctionArgList &Args); 2145 void emitImplicitAssignmentOperatorBody(FunctionArgList &Args); 2146 void EmitFunctionBody(const Stmt *Body); 2147 void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S); 2148 2149 void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator, 2150 CallArgList &CallArgs); 2151 void EmitLambdaBlockInvokeBody(); 2152 void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD); 2153 void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD); 2154 void EmitLambdaVLACapture(const VariableArrayType *VAT, LValue LV) { 2155 EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); 2156 } 2157 void EmitAsanPrologueOrEpilogue(bool Prologue); 2158 2159 /// Emit the unified return block, trying to avoid its emission when 2160 /// possible. 2161 /// \return The debug location of the user written return statement if the 2162 /// return block is is avoided. 2163 llvm::DebugLoc EmitReturnBlock(); 2164 2165 /// FinishFunction - Complete IR generation of the current function. It is 2166 /// legal to call this function even if there is no current insertion point. 2167 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 2168 2169 void StartThunk(llvm::Function *Fn, GlobalDecl GD, 2170 const CGFunctionInfo &FnInfo, bool IsUnprototyped); 2171 2172 void EmitCallAndReturnForThunk(llvm::FunctionCallee Callee, 2173 const ThunkInfo *Thunk, bool IsUnprototyped); 2174 2175 void FinishThunk(); 2176 2177 /// Emit a musttail call for a thunk with a potentially adjusted this pointer. 2178 void EmitMustTailThunk(GlobalDecl GD, llvm::Value *AdjustedThisPtr, 2179 llvm::FunctionCallee Callee); 2180 2181 /// Generate a thunk for the given method. 2182 void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 2183 GlobalDecl GD, const ThunkInfo &Thunk, 2184 bool IsUnprototyped); 2185 2186 llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn, 2187 const CGFunctionInfo &FnInfo, 2188 GlobalDecl GD, const ThunkInfo &Thunk); 2189 2190 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 2191 FunctionArgList &Args); 2192 2193 void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init); 2194 2195 /// Struct with all information about dynamic [sub]class needed to set vptr. 2196 struct VPtr { 2197 BaseSubobject Base; 2198 const CXXRecordDecl *NearestVBase; 2199 CharUnits OffsetFromNearestVBase; 2200 const CXXRecordDecl *VTableClass; 2201 }; 2202 2203 /// Initialize the vtable pointer of the given subobject. 2204 void InitializeVTablePointer(const VPtr &vptr); 2205 2206 typedef llvm::SmallVector<VPtr, 4> VPtrsVector; 2207 2208 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 2209 VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass); 2210 2211 void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase, 2212 CharUnits OffsetFromNearestVBase, 2213 bool BaseIsNonVirtualPrimaryBase, 2214 const CXXRecordDecl *VTableClass, 2215 VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs); 2216 2217 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 2218 2219 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 2220 /// to by This. 2221 llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy, 2222 const CXXRecordDecl *VTableClass); 2223 2224 enum CFITypeCheckKind { 2225 CFITCK_VCall, 2226 CFITCK_NVCall, 2227 CFITCK_DerivedCast, 2228 CFITCK_UnrelatedCast, 2229 CFITCK_ICall, 2230 CFITCK_NVMFCall, 2231 CFITCK_VMFCall, 2232 }; 2233 2234 /// Derived is the presumed address of an object of type T after a 2235 /// cast. If T is a polymorphic class type, emit a check that the virtual 2236 /// table for Derived belongs to a class derived from T. 2237 void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived, 2238 bool MayBeNull, CFITypeCheckKind TCK, 2239 SourceLocation Loc); 2240 2241 /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable. 2242 /// If vptr CFI is enabled, emit a check that VTable is valid. 2243 void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable, 2244 CFITypeCheckKind TCK, SourceLocation Loc); 2245 2246 /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for 2247 /// RD using llvm.type.test. 2248 void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable, 2249 CFITypeCheckKind TCK, SourceLocation Loc); 2250 2251 /// If whole-program virtual table optimization is enabled, emit an assumption 2252 /// that VTable is a member of RD's type identifier. Or, if vptr CFI is 2253 /// enabled, emit a check that VTable is a member of RD's type identifier. 2254 void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, 2255 llvm::Value *VTable, SourceLocation Loc); 2256 2257 /// Returns whether we should perform a type checked load when loading a 2258 /// virtual function for virtual calls to members of RD. This is generally 2259 /// true when both vcall CFI and whole-program-vtables are enabled. 2260 bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD); 2261 2262 /// Emit a type checked load from the given vtable. 2263 llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable, 2264 uint64_t VTableByteOffset); 2265 2266 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 2267 /// given phase of destruction for a destructor. The end result 2268 /// should call destructors on members and base classes in reverse 2269 /// order of their construction. 2270 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 2271 2272 /// ShouldInstrumentFunction - Return true if the current function should be 2273 /// instrumented with __cyg_profile_func_* calls 2274 bool ShouldInstrumentFunction(); 2275 2276 /// ShouldXRayInstrument - Return true if the current function should be 2277 /// instrumented with XRay nop sleds. 2278 bool ShouldXRayInstrumentFunction() const; 2279 2280 /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit 2281 /// XRay custom event handling calls. 2282 bool AlwaysEmitXRayCustomEvents() const; 2283 2284 /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit 2285 /// XRay typed event handling calls. 2286 bool AlwaysEmitXRayTypedEvents() const; 2287 2288 /// Encode an address into a form suitable for use in a function prologue. 2289 llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F, 2290 llvm::Constant *Addr); 2291 2292 /// Decode an address used in a function prologue, encoded by \c 2293 /// EncodeAddrForUseInPrologue. 2294 llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F, 2295 llvm::Value *EncodedAddr); 2296 2297 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 2298 /// arguments for the given function. This is also responsible for naming the 2299 /// LLVM function arguments. 2300 void EmitFunctionProlog(const CGFunctionInfo &FI, 2301 llvm::Function *Fn, 2302 const FunctionArgList &Args); 2303 2304 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 2305 /// given temporary. 2306 void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc, 2307 SourceLocation EndLoc); 2308 2309 /// Emit a test that checks if the return value \p RV is nonnull. 2310 void EmitReturnValueCheck(llvm::Value *RV); 2311 2312 /// EmitStartEHSpec - Emit the start of the exception spec. 2313 void EmitStartEHSpec(const Decl *D); 2314 2315 /// EmitEndEHSpec - Emit the end of the exception spec. 2316 void EmitEndEHSpec(const Decl *D); 2317 2318 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 2319 llvm::BasicBlock *getTerminateLandingPad(); 2320 2321 /// getTerminateLandingPad - Return a cleanup funclet that just calls 2322 /// terminate. 2323 llvm::BasicBlock *getTerminateFunclet(); 2324 2325 /// getTerminateHandler - Return a handler (not a landing pad, just 2326 /// a catch handler) that just calls terminate. This is used when 2327 /// a terminate scope encloses a try. 2328 llvm::BasicBlock *getTerminateHandler(); 2329 2330 llvm::Type *ConvertTypeForMem(QualType T); 2331 llvm::Type *ConvertType(QualType T); 2332 llvm::Type *ConvertType(const TypeDecl *T) { 2333 return ConvertType(getContext().getTypeDeclType(T)); 2334 } 2335 2336 /// LoadObjCSelf - Load the value of self. This function is only valid while 2337 /// generating code for an Objective-C method. 2338 llvm::Value *LoadObjCSelf(); 2339 2340 /// TypeOfSelfObject - Return type of object that this self represents. 2341 QualType TypeOfSelfObject(); 2342 2343 /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T. 2344 static TypeEvaluationKind getEvaluationKind(QualType T); 2345 2346 static bool hasScalarEvaluationKind(QualType T) { 2347 return getEvaluationKind(T) == TEK_Scalar; 2348 } 2349 2350 static bool hasAggregateEvaluationKind(QualType T) { 2351 return getEvaluationKind(T) == TEK_Aggregate; 2352 } 2353 2354 /// createBasicBlock - Create an LLVM basic block. 2355 llvm::BasicBlock *createBasicBlock(const Twine &name = "", 2356 llvm::Function *parent = nullptr, 2357 llvm::BasicBlock *before = nullptr) { 2358 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 2359 } 2360 2361 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 2362 /// label maps to. 2363 JumpDest getJumpDestForLabel(const LabelDecl *S); 2364 2365 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 2366 /// another basic block, simplify it. This assumes that no other code could 2367 /// potentially reference the basic block. 2368 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 2369 2370 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 2371 /// adding a fall-through branch from the current insert block if 2372 /// necessary. It is legal to call this function even if there is no current 2373 /// insertion point. 2374 /// 2375 /// IsFinished - If true, indicates that the caller has finished emitting 2376 /// branches to the given block and does not expect to emit code into it. This 2377 /// means the block can be ignored if it is unreachable. 2378 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 2379 2380 /// EmitBlockAfterUses - Emit the given block somewhere hopefully 2381 /// near its uses, and leave the insertion point in it. 2382 void EmitBlockAfterUses(llvm::BasicBlock *BB); 2383 2384 /// EmitBranch - Emit a branch to the specified basic block from the current 2385 /// insert block, taking care to avoid creation of branches from dummy 2386 /// blocks. It is legal to call this function even if there is no current 2387 /// insertion point. 2388 /// 2389 /// This function clears the current insertion point. The caller should follow 2390 /// calls to this function with calls to Emit*Block prior to generation new 2391 /// code. 2392 void EmitBranch(llvm::BasicBlock *Block); 2393 2394 /// HaveInsertPoint - True if an insertion point is defined. If not, this 2395 /// indicates that the current code being emitted is unreachable. 2396 bool HaveInsertPoint() const { 2397 return Builder.GetInsertBlock() != nullptr; 2398 } 2399 2400 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 2401 /// emitted IR has a place to go. Note that by definition, if this function 2402 /// creates a block then that block is unreachable; callers may do better to 2403 /// detect when no insertion point is defined and simply skip IR generation. 2404 void EnsureInsertPoint() { 2405 if (!HaveInsertPoint()) 2406 EmitBlock(createBasicBlock()); 2407 } 2408 2409 /// ErrorUnsupported - Print out an error that codegen doesn't support the 2410 /// specified stmt yet. 2411 void ErrorUnsupported(const Stmt *S, const char *Type); 2412 2413 //===--------------------------------------------------------------------===// 2414 // Helpers 2415 //===--------------------------------------------------------------------===// 2416 2417 LValue MakeAddrLValue(Address Addr, QualType T, 2418 AlignmentSource Source = AlignmentSource::Type) { 2419 return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source), 2420 CGM.getTBAAAccessInfo(T)); 2421 } 2422 2423 LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo, 2424 TBAAAccessInfo TBAAInfo) { 2425 return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo); 2426 } 2427 2428 LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 2429 AlignmentSource Source = AlignmentSource::Type) { 2430 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), 2431 LValueBaseInfo(Source), CGM.getTBAAAccessInfo(T)); 2432 } 2433 2434 LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 2435 LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) { 2436 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), 2437 BaseInfo, TBAAInfo); 2438 } 2439 2440 LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T); 2441 LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T); 2442 2443 Address EmitLoadOfReference(LValue RefLVal, 2444 LValueBaseInfo *PointeeBaseInfo = nullptr, 2445 TBAAAccessInfo *PointeeTBAAInfo = nullptr); 2446 LValue EmitLoadOfReferenceLValue(LValue RefLVal); 2447 LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy, 2448 AlignmentSource Source = 2449 AlignmentSource::Type) { 2450 LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source), 2451 CGM.getTBAAAccessInfo(RefTy)); 2452 return EmitLoadOfReferenceLValue(RefLVal); 2453 } 2454 2455 Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy, 2456 LValueBaseInfo *BaseInfo = nullptr, 2457 TBAAAccessInfo *TBAAInfo = nullptr); 2458 LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy); 2459 2460 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 2461 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 2462 /// insertion point of the builder. The caller is responsible for setting an 2463 /// appropriate alignment on 2464 /// the alloca. 2465 /// 2466 /// \p ArraySize is the number of array elements to be allocated if it 2467 /// is not nullptr. 2468 /// 2469 /// LangAS::Default is the address space of pointers to local variables and 2470 /// temporaries, as exposed in the source language. In certain 2471 /// configurations, this is not the same as the alloca address space, and a 2472 /// cast is needed to lift the pointer from the alloca AS into 2473 /// LangAS::Default. This can happen when the target uses a restricted 2474 /// address space for the stack but the source language requires 2475 /// LangAS::Default to be a generic address space. The latter condition is 2476 /// common for most programming languages; OpenCL is an exception in that 2477 /// LangAS::Default is the private address space, which naturally maps 2478 /// to the stack. 2479 /// 2480 /// Because the address of a temporary is often exposed to the program in 2481 /// various ways, this function will perform the cast. The original alloca 2482 /// instruction is returned through \p Alloca if it is not nullptr. 2483 /// 2484 /// The cast is not performaed in CreateTempAllocaWithoutCast. This is 2485 /// more efficient if the caller knows that the address will not be exposed. 2486 llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp", 2487 llvm::Value *ArraySize = nullptr); 2488 Address CreateTempAlloca(llvm::Type *Ty, CharUnits align, 2489 const Twine &Name = "tmp", 2490 llvm::Value *ArraySize = nullptr, 2491 Address *Alloca = nullptr); 2492 Address CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align, 2493 const Twine &Name = "tmp", 2494 llvm::Value *ArraySize = nullptr); 2495 2496 /// CreateDefaultAlignedTempAlloca - This creates an alloca with the 2497 /// default ABI alignment of the given LLVM type. 2498 /// 2499 /// IMPORTANT NOTE: This is *not* generally the right alignment for 2500 /// any given AST type that happens to have been lowered to the 2501 /// given IR type. This should only ever be used for function-local, 2502 /// IR-driven manipulations like saving and restoring a value. Do 2503 /// not hand this address off to arbitrary IRGen routines, and especially 2504 /// do not pass it as an argument to a function that might expect a 2505 /// properly ABI-aligned value. 2506 Address CreateDefaultAlignTempAlloca(llvm::Type *Ty, 2507 const Twine &Name = "tmp"); 2508 2509 /// InitTempAlloca - Provide an initial value for the given alloca which 2510 /// will be observable at all locations in the function. 2511 /// 2512 /// The address should be something that was returned from one of 2513 /// the CreateTempAlloca or CreateMemTemp routines, and the 2514 /// initializer must be valid in the entry block (i.e. it must 2515 /// either be a constant or an argument value). 2516 void InitTempAlloca(Address Alloca, llvm::Value *Value); 2517 2518 /// CreateIRTemp - Create a temporary IR object of the given type, with 2519 /// appropriate alignment. This routine should only be used when an temporary 2520 /// value needs to be stored into an alloca (for example, to avoid explicit 2521 /// PHI construction), but the type is the IR type, not the type appropriate 2522 /// for storing in memory. 2523 /// 2524 /// That is, this is exactly equivalent to CreateMemTemp, but calling 2525 /// ConvertType instead of ConvertTypeForMem. 2526 Address CreateIRTemp(QualType T, const Twine &Name = "tmp"); 2527 2528 /// CreateMemTemp - Create a temporary memory object of the given type, with 2529 /// appropriate alignmen and cast it to the default address space. Returns 2530 /// the original alloca instruction by \p Alloca if it is not nullptr. 2531 Address CreateMemTemp(QualType T, const Twine &Name = "tmp", 2532 Address *Alloca = nullptr); 2533 Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp", 2534 Address *Alloca = nullptr); 2535 2536 /// CreateMemTemp - Create a temporary memory object of the given type, with 2537 /// appropriate alignmen without casting it to the default address space. 2538 Address CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp"); 2539 Address CreateMemTempWithoutCast(QualType T, CharUnits Align, 2540 const Twine &Name = "tmp"); 2541 2542 /// CreateAggTemp - Create a temporary memory object for the given 2543 /// aggregate type. 2544 AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp", 2545 Address *Alloca = nullptr) { 2546 return AggValueSlot::forAddr(CreateMemTemp(T, Name, Alloca), 2547 T.getQualifiers(), 2548 AggValueSlot::IsNotDestructed, 2549 AggValueSlot::DoesNotNeedGCBarriers, 2550 AggValueSlot::IsNotAliased, 2551 AggValueSlot::DoesNotOverlap); 2552 } 2553 2554 /// Emit a cast to void* in the appropriate address space. 2555 llvm::Value *EmitCastToVoidPtr(llvm::Value *value); 2556 2557 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 2558 /// expression and compare the result against zero, returning an Int1Ty value. 2559 llvm::Value *EvaluateExprAsBool(const Expr *E); 2560 2561 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 2562 void EmitIgnoredExpr(const Expr *E); 2563 2564 /// EmitAnyExpr - Emit code to compute the specified expression which can have 2565 /// any type. The result is returned as an RValue struct. If this is an 2566 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 2567 /// the result should be returned. 2568 /// 2569 /// \param ignoreResult True if the resulting value isn't used. 2570 RValue EmitAnyExpr(const Expr *E, 2571 AggValueSlot aggSlot = AggValueSlot::ignored(), 2572 bool ignoreResult = false); 2573 2574 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 2575 // or the value of the expression, depending on how va_list is defined. 2576 Address EmitVAListRef(const Expr *E); 2577 2578 /// Emit a "reference" to a __builtin_ms_va_list; this is 2579 /// always the value of the expression, because a __builtin_ms_va_list is a 2580 /// pointer to a char. 2581 Address EmitMSVAListRef(const Expr *E); 2582 2583 /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will 2584 /// always be accessible even if no aggregate location is provided. 2585 RValue EmitAnyExprToTemp(const Expr *E); 2586 2587 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 2588 /// arbitrary expression into the given memory location. 2589 void EmitAnyExprToMem(const Expr *E, Address Location, 2590 Qualifiers Quals, bool IsInitializer); 2591 2592 void EmitAnyExprToExn(const Expr *E, Address Addr); 2593 2594 /// EmitExprAsInit - Emits the code necessary to initialize a 2595 /// location in memory with the given initializer. 2596 void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2597 bool capturedByInit); 2598 2599 /// hasVolatileMember - returns true if aggregate type has a volatile 2600 /// member. 2601 bool hasVolatileMember(QualType T) { 2602 if (const RecordType *RT = T->getAs<RecordType>()) { 2603 const RecordDecl *RD = cast<RecordDecl>(RT->getDecl()); 2604 return RD->hasVolatileMember(); 2605 } 2606 return false; 2607 } 2608 2609 /// Determine whether a return value slot may overlap some other object. 2610 AggValueSlot::Overlap_t getOverlapForReturnValue() { 2611 // FIXME: Assuming no overlap here breaks guaranteed copy elision for base 2612 // class subobjects. These cases may need to be revisited depending on the 2613 // resolution of the relevant core issue. 2614 return AggValueSlot::DoesNotOverlap; 2615 } 2616 2617 /// Determine whether a field initialization may overlap some other object. 2618 AggValueSlot::Overlap_t getOverlapForFieldInit(const FieldDecl *FD); 2619 2620 /// Determine whether a base class initialization may overlap some other 2621 /// object. 2622 AggValueSlot::Overlap_t getOverlapForBaseInit(const CXXRecordDecl *RD, 2623 const CXXRecordDecl *BaseRD, 2624 bool IsVirtual); 2625 2626 /// Emit an aggregate assignment. 2627 void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) { 2628 bool IsVolatile = hasVolatileMember(EltTy); 2629 EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile); 2630 } 2631 2632 void EmitAggregateCopyCtor(LValue Dest, LValue Src, 2633 AggValueSlot::Overlap_t MayOverlap) { 2634 EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap); 2635 } 2636 2637 /// EmitAggregateCopy - Emit an aggregate copy. 2638 /// 2639 /// \param isVolatile \c true iff either the source or the destination is 2640 /// volatile. 2641 /// \param MayOverlap Whether the tail padding of the destination might be 2642 /// occupied by some other object. More efficient code can often be 2643 /// generated if not. 2644 void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy, 2645 AggValueSlot::Overlap_t MayOverlap, 2646 bool isVolatile = false); 2647 2648 /// GetAddrOfLocalVar - Return the address of a local variable. 2649 Address GetAddrOfLocalVar(const VarDecl *VD) { 2650 auto it = LocalDeclMap.find(VD); 2651 assert(it != LocalDeclMap.end() && 2652 "Invalid argument to GetAddrOfLocalVar(), no decl!"); 2653 return it->second; 2654 } 2655 2656 /// Given an opaque value expression, return its LValue mapping if it exists, 2657 /// otherwise create one. 2658 LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e); 2659 2660 /// Given an opaque value expression, return its RValue mapping if it exists, 2661 /// otherwise create one. 2662 RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e); 2663 2664 /// Get the index of the current ArrayInitLoopExpr, if any. 2665 llvm::Value *getArrayInitIndex() { return ArrayInitIndex; } 2666 2667 /// getAccessedFieldNo - Given an encoded value and a result number, return 2668 /// the input field number being accessed. 2669 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 2670 2671 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 2672 llvm::BasicBlock *GetIndirectGotoBlock(); 2673 2674 /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts. 2675 static bool IsWrappedCXXThis(const Expr *E); 2676 2677 /// EmitNullInitialization - Generate code to set a value of the given type to 2678 /// null, If the type contains data member pointers, they will be initialized 2679 /// to -1 in accordance with the Itanium C++ ABI. 2680 void EmitNullInitialization(Address DestPtr, QualType Ty); 2681 2682 /// Emits a call to an LLVM variable-argument intrinsic, either 2683 /// \c llvm.va_start or \c llvm.va_end. 2684 /// \param ArgValue A reference to the \c va_list as emitted by either 2685 /// \c EmitVAListRef or \c EmitMSVAListRef. 2686 /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise, 2687 /// calls \c llvm.va_end. 2688 llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart); 2689 2690 /// Generate code to get an argument from the passed in pointer 2691 /// and update it accordingly. 2692 /// \param VE The \c VAArgExpr for which to generate code. 2693 /// \param VAListAddr Receives a reference to the \c va_list as emitted by 2694 /// either \c EmitVAListRef or \c EmitMSVAListRef. 2695 /// \returns A pointer to the argument. 2696 // FIXME: We should be able to get rid of this method and use the va_arg 2697 // instruction in LLVM instead once it works well enough. 2698 Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr); 2699 2700 /// emitArrayLength - Compute the length of an array, even if it's a 2701 /// VLA, and drill down to the base element type. 2702 llvm::Value *emitArrayLength(const ArrayType *arrayType, 2703 QualType &baseType, 2704 Address &addr); 2705 2706 /// EmitVLASize - Capture all the sizes for the VLA expressions in 2707 /// the given variably-modified type and store them in the VLASizeMap. 2708 /// 2709 /// This function can be called with a null (unreachable) insert point. 2710 void EmitVariablyModifiedType(QualType Ty); 2711 2712 struct VlaSizePair { 2713 llvm::Value *NumElts; 2714 QualType Type; 2715 2716 VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {} 2717 }; 2718 2719 /// Return the number of elements for a single dimension 2720 /// for the given array type. 2721 VlaSizePair getVLAElements1D(const VariableArrayType *vla); 2722 VlaSizePair getVLAElements1D(QualType vla); 2723 2724 /// Returns an LLVM value that corresponds to the size, 2725 /// in non-variably-sized elements, of a variable length array type, 2726 /// plus that largest non-variably-sized element type. Assumes that 2727 /// the type has already been emitted with EmitVariablyModifiedType. 2728 VlaSizePair getVLASize(const VariableArrayType *vla); 2729 VlaSizePair getVLASize(QualType vla); 2730 2731 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 2732 /// generating code for an C++ member function. 2733 llvm::Value *LoadCXXThis() { 2734 assert(CXXThisValue && "no 'this' value for this function"); 2735 return CXXThisValue; 2736 } 2737 Address LoadCXXThisAddress(); 2738 2739 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 2740 /// virtual bases. 2741 // FIXME: Every place that calls LoadCXXVTT is something 2742 // that needs to be abstracted properly. 2743 llvm::Value *LoadCXXVTT() { 2744 assert(CXXStructorImplicitParamValue && "no VTT value for this function"); 2745 return CXXStructorImplicitParamValue; 2746 } 2747 2748 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 2749 /// complete class to the given direct base. 2750 Address 2751 GetAddressOfDirectBaseInCompleteClass(Address Value, 2752 const CXXRecordDecl *Derived, 2753 const CXXRecordDecl *Base, 2754 bool BaseIsVirtual); 2755 2756 static bool ShouldNullCheckClassCastValue(const CastExpr *Cast); 2757 2758 /// GetAddressOfBaseClass - This function will add the necessary delta to the 2759 /// load of 'this' and returns address of the base class. 2760 Address GetAddressOfBaseClass(Address Value, 2761 const CXXRecordDecl *Derived, 2762 CastExpr::path_const_iterator PathBegin, 2763 CastExpr::path_const_iterator PathEnd, 2764 bool NullCheckValue, SourceLocation Loc); 2765 2766 Address GetAddressOfDerivedClass(Address Value, 2767 const CXXRecordDecl *Derived, 2768 CastExpr::path_const_iterator PathBegin, 2769 CastExpr::path_const_iterator PathEnd, 2770 bool NullCheckValue); 2771 2772 /// GetVTTParameter - Return the VTT parameter that should be passed to a 2773 /// base constructor/destructor with virtual bases. 2774 /// FIXME: VTTs are Itanium ABI-specific, so the definition should move 2775 /// to ItaniumCXXABI.cpp together with all the references to VTT. 2776 llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase, 2777 bool Delegating); 2778 2779 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 2780 CXXCtorType CtorType, 2781 const FunctionArgList &Args, 2782 SourceLocation Loc); 2783 // It's important not to confuse this and the previous function. Delegating 2784 // constructors are the C++0x feature. The constructor delegate optimization 2785 // is used to reduce duplication in the base and complete consturctors where 2786 // they are substantially the same. 2787 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2788 const FunctionArgList &Args); 2789 2790 /// Emit a call to an inheriting constructor (that is, one that invokes a 2791 /// constructor inherited from a base class) by inlining its definition. This 2792 /// is necessary if the ABI does not support forwarding the arguments to the 2793 /// base class constructor (because they're variadic or similar). 2794 void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2795 CXXCtorType CtorType, 2796 bool ForVirtualBase, 2797 bool Delegating, 2798 CallArgList &Args); 2799 2800 /// Emit a call to a constructor inherited from a base class, passing the 2801 /// current constructor's arguments along unmodified (without even making 2802 /// a copy). 2803 void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D, 2804 bool ForVirtualBase, Address This, 2805 bool InheritedFromVBase, 2806 const CXXInheritedCtorInitExpr *E); 2807 2808 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2809 bool ForVirtualBase, bool Delegating, 2810 AggValueSlot ThisAVS, const CXXConstructExpr *E); 2811 2812 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2813 bool ForVirtualBase, bool Delegating, 2814 Address This, CallArgList &Args, 2815 AggValueSlot::Overlap_t Overlap, 2816 SourceLocation Loc, bool NewPointerIsChecked); 2817 2818 /// Emit assumption load for all bases. Requires to be be called only on 2819 /// most-derived class and not under construction of the object. 2820 void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This); 2821 2822 /// Emit assumption that vptr load == global vtable. 2823 void EmitVTableAssumptionLoad(const VPtr &vptr, Address This); 2824 2825 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 2826 Address This, Address Src, 2827 const CXXConstructExpr *E); 2828 2829 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2830 const ArrayType *ArrayTy, 2831 Address ArrayPtr, 2832 const CXXConstructExpr *E, 2833 bool NewPointerIsChecked, 2834 bool ZeroInitialization = false); 2835 2836 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2837 llvm::Value *NumElements, 2838 Address ArrayPtr, 2839 const CXXConstructExpr *E, 2840 bool NewPointerIsChecked, 2841 bool ZeroInitialization = false); 2842 2843 static Destroyer destroyCXXObject; 2844 2845 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 2846 bool ForVirtualBase, bool Delegating, Address This, 2847 QualType ThisTy); 2848 2849 void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, 2850 llvm::Type *ElementTy, Address NewPtr, 2851 llvm::Value *NumElements, 2852 llvm::Value *AllocSizeWithoutCookie); 2853 2854 void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, 2855 Address Ptr); 2856 2857 llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr); 2858 void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr); 2859 2860 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 2861 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 2862 2863 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 2864 QualType DeleteTy, llvm::Value *NumElements = nullptr, 2865 CharUnits CookieSize = CharUnits()); 2866 2867 RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 2868 const CallExpr *TheCallExpr, bool IsDelete); 2869 2870 llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E); 2871 llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE); 2872 Address EmitCXXUuidofExpr(const CXXUuidofExpr *E); 2873 2874 /// Situations in which we might emit a check for the suitability of a 2875 /// pointer or glvalue. Needs to be kept in sync with ubsan_handlers.cpp in 2876 /// compiler-rt. 2877 enum TypeCheckKind { 2878 /// Checking the operand of a load. Must be suitably sized and aligned. 2879 TCK_Load, 2880 /// Checking the destination of a store. Must be suitably sized and aligned. 2881 TCK_Store, 2882 /// Checking the bound value in a reference binding. Must be suitably sized 2883 /// and aligned, but is not required to refer to an object (until the 2884 /// reference is used), per core issue 453. 2885 TCK_ReferenceBinding, 2886 /// Checking the object expression in a non-static data member access. Must 2887 /// be an object within its lifetime. 2888 TCK_MemberAccess, 2889 /// Checking the 'this' pointer for a call to a non-static member function. 2890 /// Must be an object within its lifetime. 2891 TCK_MemberCall, 2892 /// Checking the 'this' pointer for a constructor call. 2893 TCK_ConstructorCall, 2894 /// Checking the operand of a static_cast to a derived pointer type. Must be 2895 /// null or an object within its lifetime. 2896 TCK_DowncastPointer, 2897 /// Checking the operand of a static_cast to a derived reference type. Must 2898 /// be an object within its lifetime. 2899 TCK_DowncastReference, 2900 /// Checking the operand of a cast to a base object. Must be suitably sized 2901 /// and aligned. 2902 TCK_Upcast, 2903 /// Checking the operand of a cast to a virtual base object. Must be an 2904 /// object within its lifetime. 2905 TCK_UpcastToVirtualBase, 2906 /// Checking the value assigned to a _Nonnull pointer. Must not be null. 2907 TCK_NonnullAssign, 2908 /// Checking the operand of a dynamic_cast or a typeid expression. Must be 2909 /// null or an object within its lifetime. 2910 TCK_DynamicOperation 2911 }; 2912 2913 /// Determine whether the pointer type check \p TCK permits null pointers. 2914 static bool isNullPointerAllowed(TypeCheckKind TCK); 2915 2916 /// Determine whether the pointer type check \p TCK requires a vptr check. 2917 static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty); 2918 2919 /// Whether any type-checking sanitizers are enabled. If \c false, 2920 /// calls to EmitTypeCheck can be skipped. 2921 bool sanitizePerformTypeCheck() const; 2922 2923 /// Emit a check that \p V is the address of storage of the 2924 /// appropriate size and alignment for an object of type \p Type 2925 /// (or if ArraySize is provided, for an array of that bound). 2926 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, 2927 QualType Type, CharUnits Alignment = CharUnits::Zero(), 2928 SanitizerSet SkippedChecks = SanitizerSet(), 2929 llvm::Value *ArraySize = nullptr); 2930 2931 /// Emit a check that \p Base points into an array object, which 2932 /// we can access at index \p Index. \p Accessed should be \c false if we 2933 /// this expression is used as an lvalue, for instance in "&Arr[Idx]". 2934 void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, 2935 QualType IndexType, bool Accessed); 2936 2937 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 2938 bool isInc, bool isPre); 2939 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 2940 bool isInc, bool isPre); 2941 2942 /// Converts Location to a DebugLoc, if debug information is enabled. 2943 llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location); 2944 2945 /// Get the record field index as represented in debug info. 2946 unsigned getDebugInfoFIndex(const RecordDecl *Rec, unsigned FieldIndex); 2947 2948 2949 //===--------------------------------------------------------------------===// 2950 // Declaration Emission 2951 //===--------------------------------------------------------------------===// 2952 2953 /// EmitDecl - Emit a declaration. 2954 /// 2955 /// This function can be called with a null (unreachable) insert point. 2956 void EmitDecl(const Decl &D); 2957 2958 /// EmitVarDecl - Emit a local variable declaration. 2959 /// 2960 /// This function can be called with a null (unreachable) insert point. 2961 void EmitVarDecl(const VarDecl &D); 2962 2963 void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2964 bool capturedByInit); 2965 2966 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 2967 llvm::Value *Address); 2968 2969 /// Determine whether the given initializer is trivial in the sense 2970 /// that it requires no code to be generated. 2971 bool isTrivialInitializer(const Expr *Init); 2972 2973 /// EmitAutoVarDecl - Emit an auto variable declaration. 2974 /// 2975 /// This function can be called with a null (unreachable) insert point. 2976 void EmitAutoVarDecl(const VarDecl &D); 2977 2978 class AutoVarEmission { 2979 friend class CodeGenFunction; 2980 2981 const VarDecl *Variable; 2982 2983 /// The address of the alloca for languages with explicit address space 2984 /// (e.g. OpenCL) or alloca casted to generic pointer for address space 2985 /// agnostic languages (e.g. C++). Invalid if the variable was emitted 2986 /// as a global constant. 2987 Address Addr; 2988 2989 llvm::Value *NRVOFlag; 2990 2991 /// True if the variable is a __block variable that is captured by an 2992 /// escaping block. 2993 bool IsEscapingByRef; 2994 2995 /// True if the variable is of aggregate type and has a constant 2996 /// initializer. 2997 bool IsConstantAggregate; 2998 2999 /// Non-null if we should use lifetime annotations. 3000 llvm::Value *SizeForLifetimeMarkers; 3001 3002 /// Address with original alloca instruction. Invalid if the variable was 3003 /// emitted as a global constant. 3004 Address AllocaAddr; 3005 3006 struct Invalid {}; 3007 AutoVarEmission(Invalid) 3008 : Variable(nullptr), Addr(Address::invalid()), 3009 AllocaAddr(Address::invalid()) {} 3010 3011 AutoVarEmission(const VarDecl &variable) 3012 : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr), 3013 IsEscapingByRef(false), IsConstantAggregate(false), 3014 SizeForLifetimeMarkers(nullptr), AllocaAddr(Address::invalid()) {} 3015 3016 bool wasEmittedAsGlobal() const { return !Addr.isValid(); } 3017 3018 public: 3019 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 3020 3021 bool useLifetimeMarkers() const { 3022 return SizeForLifetimeMarkers != nullptr; 3023 } 3024 llvm::Value *getSizeForLifetimeMarkers() const { 3025 assert(useLifetimeMarkers()); 3026 return SizeForLifetimeMarkers; 3027 } 3028 3029 /// Returns the raw, allocated address, which is not necessarily 3030 /// the address of the object itself. It is casted to default 3031 /// address space for address space agnostic languages. 3032 Address getAllocatedAddress() const { 3033 return Addr; 3034 } 3035 3036 /// Returns the address for the original alloca instruction. 3037 Address getOriginalAllocatedAddress() const { return AllocaAddr; } 3038 3039 /// Returns the address of the object within this declaration. 3040 /// Note that this does not chase the forwarding pointer for 3041 /// __block decls. 3042 Address getObjectAddress(CodeGenFunction &CGF) const { 3043 if (!IsEscapingByRef) return Addr; 3044 3045 return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false); 3046 } 3047 }; 3048 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 3049 void EmitAutoVarInit(const AutoVarEmission &emission); 3050 void EmitAutoVarCleanups(const AutoVarEmission &emission); 3051 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 3052 QualType::DestructionKind dtorKind); 3053 3054 /// Emits the alloca and debug information for the size expressions for each 3055 /// dimension of an array. It registers the association of its (1-dimensional) 3056 /// QualTypes and size expression's debug node, so that CGDebugInfo can 3057 /// reference this node when creating the DISubrange object to describe the 3058 /// array types. 3059 void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI, 3060 const VarDecl &D, 3061 bool EmitDebugInfo); 3062 3063 void EmitStaticVarDecl(const VarDecl &D, 3064 llvm::GlobalValue::LinkageTypes Linkage); 3065 3066 class ParamValue { 3067 llvm::Value *Value; 3068 unsigned Alignment; 3069 ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {} 3070 public: 3071 static ParamValue forDirect(llvm::Value *value) { 3072 return ParamValue(value, 0); 3073 } 3074 static ParamValue forIndirect(Address addr) { 3075 assert(!addr.getAlignment().isZero()); 3076 return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity()); 3077 } 3078 3079 bool isIndirect() const { return Alignment != 0; } 3080 llvm::Value *getAnyValue() const { return Value; } 3081 3082 llvm::Value *getDirectValue() const { 3083 assert(!isIndirect()); 3084 return Value; 3085 } 3086 3087 Address getIndirectAddress() const { 3088 assert(isIndirect()); 3089 return Address(Value, CharUnits::fromQuantity(Alignment)); 3090 } 3091 }; 3092 3093 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 3094 void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo); 3095 3096 /// protectFromPeepholes - Protect a value that we're intending to 3097 /// store to the side, but which will probably be used later, from 3098 /// aggressive peepholing optimizations that might delete it. 3099 /// 3100 /// Pass the result to unprotectFromPeepholes to declare that 3101 /// protection is no longer required. 3102 /// 3103 /// There's no particular reason why this shouldn't apply to 3104 /// l-values, it's just that no existing peepholes work on pointers. 3105 PeepholeProtection protectFromPeepholes(RValue rvalue); 3106 void unprotectFromPeepholes(PeepholeProtection protection); 3107 3108 void emitAlignmentAssumptionCheck(llvm::Value *Ptr, QualType Ty, 3109 SourceLocation Loc, 3110 SourceLocation AssumptionLoc, 3111 llvm::Value *Alignment, 3112 llvm::Value *OffsetValue, 3113 llvm::Value *TheCheck, 3114 llvm::Instruction *Assumption); 3115 3116 void emitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty, 3117 SourceLocation Loc, SourceLocation AssumptionLoc, 3118 llvm::Value *Alignment, 3119 llvm::Value *OffsetValue = nullptr); 3120 3121 void emitAlignmentAssumption(llvm::Value *PtrValue, const Expr *E, 3122 SourceLocation AssumptionLoc, 3123 llvm::Value *Alignment, 3124 llvm::Value *OffsetValue = nullptr); 3125 3126 //===--------------------------------------------------------------------===// 3127 // Statement Emission 3128 //===--------------------------------------------------------------------===// 3129 3130 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 3131 void EmitStopPoint(const Stmt *S); 3132 3133 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 3134 /// this function even if there is no current insertion point. 3135 /// 3136 /// This function may clear the current insertion point; callers should use 3137 /// EnsureInsertPoint if they wish to subsequently generate code without first 3138 /// calling EmitBlock, EmitBranch, or EmitStmt. 3139 void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None); 3140 3141 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 3142 /// necessarily require an insertion point or debug information; typically 3143 /// because the statement amounts to a jump or a container of other 3144 /// statements. 3145 /// 3146 /// \return True if the statement was handled. 3147 bool EmitSimpleStmt(const Stmt *S, ArrayRef<const Attr *> Attrs); 3148 3149 Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 3150 AggValueSlot AVS = AggValueSlot::ignored()); 3151 Address EmitCompoundStmtWithoutScope(const CompoundStmt &S, 3152 bool GetLast = false, 3153 AggValueSlot AVS = 3154 AggValueSlot::ignored()); 3155 3156 /// EmitLabel - Emit the block for the given label. It is legal to call this 3157 /// function even if there is no current insertion point. 3158 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 3159 3160 void EmitLabelStmt(const LabelStmt &S); 3161 void EmitAttributedStmt(const AttributedStmt &S); 3162 void EmitGotoStmt(const GotoStmt &S); 3163 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 3164 void EmitIfStmt(const IfStmt &S); 3165 3166 void EmitWhileStmt(const WhileStmt &S, 3167 ArrayRef<const Attr *> Attrs = None); 3168 void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None); 3169 void EmitForStmt(const ForStmt &S, 3170 ArrayRef<const Attr *> Attrs = None); 3171 void EmitReturnStmt(const ReturnStmt &S); 3172 void EmitDeclStmt(const DeclStmt &S); 3173 void EmitBreakStmt(const BreakStmt &S); 3174 void EmitContinueStmt(const ContinueStmt &S); 3175 void EmitSwitchStmt(const SwitchStmt &S); 3176 void EmitDefaultStmt(const DefaultStmt &S, ArrayRef<const Attr *> Attrs); 3177 void EmitCaseStmt(const CaseStmt &S, ArrayRef<const Attr *> Attrs); 3178 void EmitCaseStmtRange(const CaseStmt &S, ArrayRef<const Attr *> Attrs); 3179 void EmitAsmStmt(const AsmStmt &S); 3180 3181 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 3182 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 3183 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 3184 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 3185 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 3186 3187 void EmitCoroutineBody(const CoroutineBodyStmt &S); 3188 void EmitCoreturnStmt(const CoreturnStmt &S); 3189 RValue EmitCoawaitExpr(const CoawaitExpr &E, 3190 AggValueSlot aggSlot = AggValueSlot::ignored(), 3191 bool ignoreResult = false); 3192 LValue EmitCoawaitLValue(const CoawaitExpr *E); 3193 RValue EmitCoyieldExpr(const CoyieldExpr &E, 3194 AggValueSlot aggSlot = AggValueSlot::ignored(), 3195 bool ignoreResult = false); 3196 LValue EmitCoyieldLValue(const CoyieldExpr *E); 3197 RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID); 3198 3199 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 3200 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 3201 3202 void EmitCXXTryStmt(const CXXTryStmt &S); 3203 void EmitSEHTryStmt(const SEHTryStmt &S); 3204 void EmitSEHLeaveStmt(const SEHLeaveStmt &S); 3205 void EnterSEHTryStmt(const SEHTryStmt &S); 3206 void ExitSEHTryStmt(const SEHTryStmt &S); 3207 3208 void pushSEHCleanup(CleanupKind kind, 3209 llvm::Function *FinallyFunc); 3210 void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter, 3211 const Stmt *OutlinedStmt); 3212 3213 llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF, 3214 const SEHExceptStmt &Except); 3215 3216 llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF, 3217 const SEHFinallyStmt &Finally); 3218 3219 void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF, 3220 llvm::Value *ParentFP, 3221 llvm::Value *EntryEBP); 3222 llvm::Value *EmitSEHExceptionCode(); 3223 llvm::Value *EmitSEHExceptionInfo(); 3224 llvm::Value *EmitSEHAbnormalTermination(); 3225 3226 /// Emit simple code for OpenMP directives in Simd-only mode. 3227 void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D); 3228 3229 /// Scan the outlined statement for captures from the parent function. For 3230 /// each capture, mark the capture as escaped and emit a call to 3231 /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap. 3232 void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt, 3233 bool IsFilter); 3234 3235 /// Recovers the address of a local in a parent function. ParentVar is the 3236 /// address of the variable used in the immediate parent function. It can 3237 /// either be an alloca or a call to llvm.localrecover if there are nested 3238 /// outlined functions. ParentFP is the frame pointer of the outermost parent 3239 /// frame. 3240 Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF, 3241 Address ParentVar, 3242 llvm::Value *ParentFP); 3243 3244 void EmitCXXForRangeStmt(const CXXForRangeStmt &S, 3245 ArrayRef<const Attr *> Attrs = None); 3246 3247 /// Controls insertion of cancellation exit blocks in worksharing constructs. 3248 class OMPCancelStackRAII { 3249 CodeGenFunction &CGF; 3250 3251 public: 3252 OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 3253 bool HasCancel) 3254 : CGF(CGF) { 3255 CGF.OMPCancelStack.enter(CGF, Kind, HasCancel); 3256 } 3257 ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); } 3258 }; 3259 3260 /// Returns calculated size of the specified type. 3261 llvm::Value *getTypeSize(QualType Ty); 3262 LValue InitCapturedStruct(const CapturedStmt &S); 3263 llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K); 3264 llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S); 3265 Address GenerateCapturedStmtArgument(const CapturedStmt &S); 3266 llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S, 3267 SourceLocation Loc); 3268 void GenerateOpenMPCapturedVars(const CapturedStmt &S, 3269 SmallVectorImpl<llvm::Value *> &CapturedVars); 3270 void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy, 3271 SourceLocation Loc); 3272 /// Perform element by element copying of arrays with type \a 3273 /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure 3274 /// generated by \a CopyGen. 3275 /// 3276 /// \param DestAddr Address of the destination array. 3277 /// \param SrcAddr Address of the source array. 3278 /// \param OriginalType Type of destination and source arrays. 3279 /// \param CopyGen Copying procedure that copies value of single array element 3280 /// to another single array element. 3281 void EmitOMPAggregateAssign( 3282 Address DestAddr, Address SrcAddr, QualType OriginalType, 3283 const llvm::function_ref<void(Address, Address)> CopyGen); 3284 /// Emit proper copying of data from one variable to another. 3285 /// 3286 /// \param OriginalType Original type of the copied variables. 3287 /// \param DestAddr Destination address. 3288 /// \param SrcAddr Source address. 3289 /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has 3290 /// type of the base array element). 3291 /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of 3292 /// the base array element). 3293 /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a 3294 /// DestVD. 3295 void EmitOMPCopy(QualType OriginalType, 3296 Address DestAddr, Address SrcAddr, 3297 const VarDecl *DestVD, const VarDecl *SrcVD, 3298 const Expr *Copy); 3299 /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or 3300 /// \a X = \a E \a BO \a E. 3301 /// 3302 /// \param X Value to be updated. 3303 /// \param E Update value. 3304 /// \param BO Binary operation for update operation. 3305 /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update 3306 /// expression, false otherwise. 3307 /// \param AO Atomic ordering of the generated atomic instructions. 3308 /// \param CommonGen Code generator for complex expressions that cannot be 3309 /// expressed through atomicrmw instruction. 3310 /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was 3311 /// generated, <false, RValue::get(nullptr)> otherwise. 3312 std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr( 3313 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 3314 llvm::AtomicOrdering AO, SourceLocation Loc, 3315 const llvm::function_ref<RValue(RValue)> CommonGen); 3316 bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 3317 OMPPrivateScope &PrivateScope); 3318 void EmitOMPPrivateClause(const OMPExecutableDirective &D, 3319 OMPPrivateScope &PrivateScope); 3320 void EmitOMPUseDevicePtrClause( 3321 const OMPUseDevicePtrClause &C, OMPPrivateScope &PrivateScope, 3322 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap); 3323 void EmitOMPUseDeviceAddrClause( 3324 const OMPUseDeviceAddrClause &C, OMPPrivateScope &PrivateScope, 3325 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap); 3326 /// Emit code for copyin clause in \a D directive. The next code is 3327 /// generated at the start of outlined functions for directives: 3328 /// \code 3329 /// threadprivate_var1 = master_threadprivate_var1; 3330 /// operator=(threadprivate_var2, master_threadprivate_var2); 3331 /// ... 3332 /// __kmpc_barrier(&loc, global_tid); 3333 /// \endcode 3334 /// 3335 /// \param D OpenMP directive possibly with 'copyin' clause(s). 3336 /// \returns true if at least one copyin variable is found, false otherwise. 3337 bool EmitOMPCopyinClause(const OMPExecutableDirective &D); 3338 /// Emit initial code for lastprivate variables. If some variable is 3339 /// not also firstprivate, then the default initialization is used. Otherwise 3340 /// initialization of this variable is performed by EmitOMPFirstprivateClause 3341 /// method. 3342 /// 3343 /// \param D Directive that may have 'lastprivate' directives. 3344 /// \param PrivateScope Private scope for capturing lastprivate variables for 3345 /// proper codegen in internal captured statement. 3346 /// 3347 /// \returns true if there is at least one lastprivate variable, false 3348 /// otherwise. 3349 bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D, 3350 OMPPrivateScope &PrivateScope); 3351 /// Emit final copying of lastprivate values to original variables at 3352 /// the end of the worksharing or simd directive. 3353 /// 3354 /// \param D Directive that has at least one 'lastprivate' directives. 3355 /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if 3356 /// it is the last iteration of the loop code in associated directive, or to 3357 /// 'i1 false' otherwise. If this item is nullptr, no final check is required. 3358 void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D, 3359 bool NoFinals, 3360 llvm::Value *IsLastIterCond = nullptr); 3361 /// Emit initial code for linear clauses. 3362 void EmitOMPLinearClause(const OMPLoopDirective &D, 3363 CodeGenFunction::OMPPrivateScope &PrivateScope); 3364 /// Emit final code for linear clauses. 3365 /// \param CondGen Optional conditional code for final part of codegen for 3366 /// linear clause. 3367 void EmitOMPLinearClauseFinal( 3368 const OMPLoopDirective &D, 3369 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); 3370 /// Emit initial code for reduction variables. Creates reduction copies 3371 /// and initializes them with the values according to OpenMP standard. 3372 /// 3373 /// \param D Directive (possibly) with the 'reduction' clause. 3374 /// \param PrivateScope Private scope for capturing reduction variables for 3375 /// proper codegen in internal captured statement. 3376 /// 3377 void EmitOMPReductionClauseInit(const OMPExecutableDirective &D, 3378 OMPPrivateScope &PrivateScope, 3379 bool ForInscan = false); 3380 /// Emit final update of reduction values to original variables at 3381 /// the end of the directive. 3382 /// 3383 /// \param D Directive that has at least one 'reduction' directives. 3384 /// \param ReductionKind The kind of reduction to perform. 3385 void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D, 3386 const OpenMPDirectiveKind ReductionKind); 3387 /// Emit initial code for linear variables. Creates private copies 3388 /// and initializes them with the values according to OpenMP standard. 3389 /// 3390 /// \param D Directive (possibly) with the 'linear' clause. 3391 /// \return true if at least one linear variable is found that should be 3392 /// initialized with the value of the original variable, false otherwise. 3393 bool EmitOMPLinearClauseInit(const OMPLoopDirective &D); 3394 3395 typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/, 3396 llvm::Function * /*OutlinedFn*/, 3397 const OMPTaskDataTy & /*Data*/)> 3398 TaskGenTy; 3399 void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S, 3400 const OpenMPDirectiveKind CapturedRegion, 3401 const RegionCodeGenTy &BodyGen, 3402 const TaskGenTy &TaskGen, OMPTaskDataTy &Data); 3403 struct OMPTargetDataInfo { 3404 Address BasePointersArray = Address::invalid(); 3405 Address PointersArray = Address::invalid(); 3406 Address SizesArray = Address::invalid(); 3407 Address MappersArray = Address::invalid(); 3408 unsigned NumberOfTargetItems = 0; 3409 explicit OMPTargetDataInfo() = default; 3410 OMPTargetDataInfo(Address BasePointersArray, Address PointersArray, 3411 Address SizesArray, Address MappersArray, 3412 unsigned NumberOfTargetItems) 3413 : BasePointersArray(BasePointersArray), PointersArray(PointersArray), 3414 SizesArray(SizesArray), MappersArray(MappersArray), 3415 NumberOfTargetItems(NumberOfTargetItems) {} 3416 }; 3417 void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S, 3418 const RegionCodeGenTy &BodyGen, 3419 OMPTargetDataInfo &InputInfo); 3420 3421 void EmitOMPParallelDirective(const OMPParallelDirective &S); 3422 void EmitOMPSimdDirective(const OMPSimdDirective &S); 3423 void EmitOMPTileDirective(const OMPTileDirective &S); 3424 void EmitOMPForDirective(const OMPForDirective &S); 3425 void EmitOMPForSimdDirective(const OMPForSimdDirective &S); 3426 void EmitOMPSectionsDirective(const OMPSectionsDirective &S); 3427 void EmitOMPSectionDirective(const OMPSectionDirective &S); 3428 void EmitOMPSingleDirective(const OMPSingleDirective &S); 3429 void EmitOMPMasterDirective(const OMPMasterDirective &S); 3430 void EmitOMPMaskedDirective(const OMPMaskedDirective &S); 3431 void EmitOMPCriticalDirective(const OMPCriticalDirective &S); 3432 void EmitOMPParallelForDirective(const OMPParallelForDirective &S); 3433 void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S); 3434 void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S); 3435 void EmitOMPParallelMasterDirective(const OMPParallelMasterDirective &S); 3436 void EmitOMPTaskDirective(const OMPTaskDirective &S); 3437 void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S); 3438 void EmitOMPBarrierDirective(const OMPBarrierDirective &S); 3439 void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S); 3440 void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S); 3441 void EmitOMPFlushDirective(const OMPFlushDirective &S); 3442 void EmitOMPDepobjDirective(const OMPDepobjDirective &S); 3443 void EmitOMPScanDirective(const OMPScanDirective &S); 3444 void EmitOMPOrderedDirective(const OMPOrderedDirective &S); 3445 void EmitOMPAtomicDirective(const OMPAtomicDirective &S); 3446 void EmitOMPTargetDirective(const OMPTargetDirective &S); 3447 void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S); 3448 void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S); 3449 void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S); 3450 void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S); 3451 void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S); 3452 void 3453 EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S); 3454 void EmitOMPTeamsDirective(const OMPTeamsDirective &S); 3455 void 3456 EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S); 3457 void EmitOMPCancelDirective(const OMPCancelDirective &S); 3458 void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S); 3459 void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S); 3460 void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S); 3461 void EmitOMPMasterTaskLoopDirective(const OMPMasterTaskLoopDirective &S); 3462 void 3463 EmitOMPMasterTaskLoopSimdDirective(const OMPMasterTaskLoopSimdDirective &S); 3464 void EmitOMPParallelMasterTaskLoopDirective( 3465 const OMPParallelMasterTaskLoopDirective &S); 3466 void EmitOMPParallelMasterTaskLoopSimdDirective( 3467 const OMPParallelMasterTaskLoopSimdDirective &S); 3468 void EmitOMPDistributeDirective(const OMPDistributeDirective &S); 3469 void EmitOMPDistributeParallelForDirective( 3470 const OMPDistributeParallelForDirective &S); 3471 void EmitOMPDistributeParallelForSimdDirective( 3472 const OMPDistributeParallelForSimdDirective &S); 3473 void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S); 3474 void EmitOMPTargetParallelForSimdDirective( 3475 const OMPTargetParallelForSimdDirective &S); 3476 void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S); 3477 void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S); 3478 void 3479 EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S); 3480 void EmitOMPTeamsDistributeParallelForSimdDirective( 3481 const OMPTeamsDistributeParallelForSimdDirective &S); 3482 void EmitOMPTeamsDistributeParallelForDirective( 3483 const OMPTeamsDistributeParallelForDirective &S); 3484 void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S); 3485 void EmitOMPTargetTeamsDistributeDirective( 3486 const OMPTargetTeamsDistributeDirective &S); 3487 void EmitOMPTargetTeamsDistributeParallelForDirective( 3488 const OMPTargetTeamsDistributeParallelForDirective &S); 3489 void EmitOMPTargetTeamsDistributeParallelForSimdDirective( 3490 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 3491 void EmitOMPTargetTeamsDistributeSimdDirective( 3492 const OMPTargetTeamsDistributeSimdDirective &S); 3493 3494 /// Emit device code for the target directive. 3495 static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 3496 StringRef ParentName, 3497 const OMPTargetDirective &S); 3498 static void 3499 EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 3500 const OMPTargetParallelDirective &S); 3501 /// Emit device code for the target parallel for directive. 3502 static void EmitOMPTargetParallelForDeviceFunction( 3503 CodeGenModule &CGM, StringRef ParentName, 3504 const OMPTargetParallelForDirective &S); 3505 /// Emit device code for the target parallel for simd directive. 3506 static void EmitOMPTargetParallelForSimdDeviceFunction( 3507 CodeGenModule &CGM, StringRef ParentName, 3508 const OMPTargetParallelForSimdDirective &S); 3509 /// Emit device code for the target teams directive. 3510 static void 3511 EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 3512 const OMPTargetTeamsDirective &S); 3513 /// Emit device code for the target teams distribute directive. 3514 static void EmitOMPTargetTeamsDistributeDeviceFunction( 3515 CodeGenModule &CGM, StringRef ParentName, 3516 const OMPTargetTeamsDistributeDirective &S); 3517 /// Emit device code for the target teams distribute simd directive. 3518 static void EmitOMPTargetTeamsDistributeSimdDeviceFunction( 3519 CodeGenModule &CGM, StringRef ParentName, 3520 const OMPTargetTeamsDistributeSimdDirective &S); 3521 /// Emit device code for the target simd directive. 3522 static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM, 3523 StringRef ParentName, 3524 const OMPTargetSimdDirective &S); 3525 /// Emit device code for the target teams distribute parallel for simd 3526 /// directive. 3527 static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( 3528 CodeGenModule &CGM, StringRef ParentName, 3529 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 3530 3531 static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 3532 CodeGenModule &CGM, StringRef ParentName, 3533 const OMPTargetTeamsDistributeParallelForDirective &S); 3534 3535 /// Emit the Stmt \p S and return its topmost canonical loop, if any. 3536 /// TODO: The \p Depth paramter is not yet implemented and must be 1. In the 3537 /// future it is meant to be the number of loops expected in the loop nests 3538 /// (usually specified by the "collapse" clause) that are collapsed to a 3539 /// single loop by this function. 3540 llvm::CanonicalLoopInfo *EmitOMPCollapsedCanonicalLoopNest(const Stmt *S, 3541 int Depth); 3542 3543 /// Emit an OMPCanonicalLoop using the OpenMPIRBuilder. 3544 void EmitOMPCanonicalLoop(const OMPCanonicalLoop *S); 3545 3546 /// Emit inner loop of the worksharing/simd construct. 3547 /// 3548 /// \param S Directive, for which the inner loop must be emitted. 3549 /// \param RequiresCleanup true, if directive has some associated private 3550 /// variables. 3551 /// \param LoopCond Bollean condition for loop continuation. 3552 /// \param IncExpr Increment expression for loop control variable. 3553 /// \param BodyGen Generator for the inner body of the inner loop. 3554 /// \param PostIncGen Genrator for post-increment code (required for ordered 3555 /// loop directvies). 3556 void EmitOMPInnerLoop( 3557 const OMPExecutableDirective &S, bool RequiresCleanup, 3558 const Expr *LoopCond, const Expr *IncExpr, 3559 const llvm::function_ref<void(CodeGenFunction &)> BodyGen, 3560 const llvm::function_ref<void(CodeGenFunction &)> PostIncGen); 3561 3562 JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind); 3563 /// Emit initial code for loop counters of loop-based directives. 3564 void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S, 3565 OMPPrivateScope &LoopScope); 3566 3567 /// Helper for the OpenMP loop directives. 3568 void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit); 3569 3570 /// Emit code for the worksharing loop-based directive. 3571 /// \return true, if this construct has any lastprivate clause, false - 3572 /// otherwise. 3573 bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB, 3574 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 3575 const CodeGenDispatchBoundsTy &CGDispatchBounds); 3576 3577 /// Emit code for the distribute loop-based directive. 3578 void EmitOMPDistributeLoop(const OMPLoopDirective &S, 3579 const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr); 3580 3581 /// Helpers for the OpenMP loop directives. 3582 void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false); 3583 void EmitOMPSimdFinal( 3584 const OMPLoopDirective &D, 3585 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); 3586 3587 /// Emits the lvalue for the expression with possibly captured variable. 3588 LValue EmitOMPSharedLValue(const Expr *E); 3589 3590 private: 3591 /// Helpers for blocks. 3592 llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); 3593 3594 /// struct with the values to be passed to the OpenMP loop-related functions 3595 struct OMPLoopArguments { 3596 /// loop lower bound 3597 Address LB = Address::invalid(); 3598 /// loop upper bound 3599 Address UB = Address::invalid(); 3600 /// loop stride 3601 Address ST = Address::invalid(); 3602 /// isLastIteration argument for runtime functions 3603 Address IL = Address::invalid(); 3604 /// Chunk value generated by sema 3605 llvm::Value *Chunk = nullptr; 3606 /// EnsureUpperBound 3607 Expr *EUB = nullptr; 3608 /// IncrementExpression 3609 Expr *IncExpr = nullptr; 3610 /// Loop initialization 3611 Expr *Init = nullptr; 3612 /// Loop exit condition 3613 Expr *Cond = nullptr; 3614 /// Update of LB after a whole chunk has been executed 3615 Expr *NextLB = nullptr; 3616 /// Update of UB after a whole chunk has been executed 3617 Expr *NextUB = nullptr; 3618 OMPLoopArguments() = default; 3619 OMPLoopArguments(Address LB, Address UB, Address ST, Address IL, 3620 llvm::Value *Chunk = nullptr, Expr *EUB = nullptr, 3621 Expr *IncExpr = nullptr, Expr *Init = nullptr, 3622 Expr *Cond = nullptr, Expr *NextLB = nullptr, 3623 Expr *NextUB = nullptr) 3624 : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB), 3625 IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB), 3626 NextUB(NextUB) {} 3627 }; 3628 void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic, 3629 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, 3630 const OMPLoopArguments &LoopArgs, 3631 const CodeGenLoopTy &CodeGenLoop, 3632 const CodeGenOrderedTy &CodeGenOrdered); 3633 void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind, 3634 bool IsMonotonic, const OMPLoopDirective &S, 3635 OMPPrivateScope &LoopScope, bool Ordered, 3636 const OMPLoopArguments &LoopArgs, 3637 const CodeGenDispatchBoundsTy &CGDispatchBounds); 3638 void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind, 3639 const OMPLoopDirective &S, 3640 OMPPrivateScope &LoopScope, 3641 const OMPLoopArguments &LoopArgs, 3642 const CodeGenLoopTy &CodeGenLoopContent); 3643 /// Emit code for sections directive. 3644 void EmitSections(const OMPExecutableDirective &S); 3645 3646 public: 3647 3648 //===--------------------------------------------------------------------===// 3649 // LValue Expression Emission 3650 //===--------------------------------------------------------------------===// 3651 3652 /// Create a check that a scalar RValue is non-null. 3653 llvm::Value *EmitNonNullRValueCheck(RValue RV, QualType T); 3654 3655 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 3656 RValue GetUndefRValue(QualType Ty); 3657 3658 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 3659 /// and issue an ErrorUnsupported style diagnostic (using the 3660 /// provided Name). 3661 RValue EmitUnsupportedRValue(const Expr *E, 3662 const char *Name); 3663 3664 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 3665 /// an ErrorUnsupported style diagnostic (using the provided Name). 3666 LValue EmitUnsupportedLValue(const Expr *E, 3667 const char *Name); 3668 3669 /// EmitLValue - Emit code to compute a designator that specifies the location 3670 /// of the expression. 3671 /// 3672 /// This can return one of two things: a simple address or a bitfield 3673 /// reference. In either case, the LLVM Value* in the LValue structure is 3674 /// guaranteed to be an LLVM pointer type. 3675 /// 3676 /// If this returns a bitfield reference, nothing about the pointee type of 3677 /// the LLVM value is known: For example, it may not be a pointer to an 3678 /// integer. 3679 /// 3680 /// If this returns a normal address, and if the lvalue's C type is fixed 3681 /// size, this method guarantees that the returned pointer type will point to 3682 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 3683 /// variable length type, this is not possible. 3684 /// 3685 LValue EmitLValue(const Expr *E); 3686 3687 /// Same as EmitLValue but additionally we generate checking code to 3688 /// guard against undefined behavior. This is only suitable when we know 3689 /// that the address will be used to access the object. 3690 LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK); 3691 3692 RValue convertTempToRValue(Address addr, QualType type, 3693 SourceLocation Loc); 3694 3695 void EmitAtomicInit(Expr *E, LValue lvalue); 3696 3697 bool LValueIsSuitableForInlineAtomic(LValue Src); 3698 3699 RValue EmitAtomicLoad(LValue LV, SourceLocation SL, 3700 AggValueSlot Slot = AggValueSlot::ignored()); 3701 3702 RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc, 3703 llvm::AtomicOrdering AO, bool IsVolatile = false, 3704 AggValueSlot slot = AggValueSlot::ignored()); 3705 3706 void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit); 3707 3708 void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO, 3709 bool IsVolatile, bool isInit); 3710 3711 std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange( 3712 LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, 3713 llvm::AtomicOrdering Success = 3714 llvm::AtomicOrdering::SequentiallyConsistent, 3715 llvm::AtomicOrdering Failure = 3716 llvm::AtomicOrdering::SequentiallyConsistent, 3717 bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored()); 3718 3719 void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO, 3720 const llvm::function_ref<RValue(RValue)> &UpdateOp, 3721 bool IsVolatile); 3722 3723 /// EmitToMemory - Change a scalar value from its value 3724 /// representation to its in-memory representation. 3725 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 3726 3727 /// EmitFromMemory - Change a scalar value from its memory 3728 /// representation to its value representation. 3729 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 3730 3731 /// Check if the scalar \p Value is within the valid range for the given 3732 /// type \p Ty. 3733 /// 3734 /// Returns true if a check is needed (even if the range is unknown). 3735 bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 3736 SourceLocation Loc); 3737 3738 /// EmitLoadOfScalar - Load a scalar value from an address, taking 3739 /// care to appropriately convert from the memory representation to 3740 /// the LLVM value representation. 3741 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 3742 SourceLocation Loc, 3743 AlignmentSource Source = AlignmentSource::Type, 3744 bool isNontemporal = false) { 3745 return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source), 3746 CGM.getTBAAAccessInfo(Ty), isNontemporal); 3747 } 3748 3749 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 3750 SourceLocation Loc, LValueBaseInfo BaseInfo, 3751 TBAAAccessInfo TBAAInfo, 3752 bool isNontemporal = false); 3753 3754 /// EmitLoadOfScalar - Load a scalar value from an address, taking 3755 /// care to appropriately convert from the memory representation to 3756 /// the LLVM value representation. The l-value must be a simple 3757 /// l-value. 3758 llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc); 3759 3760 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3761 /// care to appropriately convert from the memory representation to 3762 /// the LLVM value representation. 3763 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 3764 bool Volatile, QualType Ty, 3765 AlignmentSource Source = AlignmentSource::Type, 3766 bool isInit = false, bool isNontemporal = false) { 3767 EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source), 3768 CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal); 3769 } 3770 3771 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 3772 bool Volatile, QualType Ty, 3773 LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo, 3774 bool isInit = false, bool isNontemporal = false); 3775 3776 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3777 /// care to appropriately convert from the memory representation to 3778 /// the LLVM value representation. The l-value must be a simple 3779 /// l-value. The isInit flag indicates whether this is an initialization. 3780 /// If so, atomic qualifiers are ignored and the store is always non-atomic. 3781 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); 3782 3783 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 3784 /// this method emits the address of the lvalue, then loads the result as an 3785 /// rvalue, returning the rvalue. 3786 RValue EmitLoadOfLValue(LValue V, SourceLocation Loc); 3787 RValue EmitLoadOfExtVectorElementLValue(LValue V); 3788 RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc); 3789 RValue EmitLoadOfGlobalRegLValue(LValue LV); 3790 3791 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 3792 /// lvalue, where both are guaranteed to the have the same type, and that type 3793 /// is 'Ty'. 3794 void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false); 3795 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 3796 void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst); 3797 3798 /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints 3799 /// as EmitStoreThroughLValue. 3800 /// 3801 /// \param Result [out] - If non-null, this will be set to a Value* for the 3802 /// bit-field contents after the store, appropriate for use as the result of 3803 /// an assignment to the bit-field. 3804 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 3805 llvm::Value **Result=nullptr); 3806 3807 /// Emit an l-value for an assignment (simple or compound) of complex type. 3808 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 3809 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 3810 LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 3811 llvm::Value *&Result); 3812 3813 // Note: only available for agg return types 3814 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 3815 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 3816 // Note: only available for agg return types 3817 LValue EmitCallExprLValue(const CallExpr *E); 3818 // Note: only available for agg return types 3819 LValue EmitVAArgExprLValue(const VAArgExpr *E); 3820 LValue EmitDeclRefLValue(const DeclRefExpr *E); 3821 LValue EmitStringLiteralLValue(const StringLiteral *E); 3822 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 3823 LValue EmitPredefinedLValue(const PredefinedExpr *E); 3824 LValue EmitUnaryOpLValue(const UnaryOperator *E); 3825 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3826 bool Accessed = false); 3827 LValue EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E); 3828 LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3829 bool IsLowerBound = true); 3830 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 3831 LValue EmitMemberExpr(const MemberExpr *E); 3832 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 3833 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 3834 LValue EmitInitListLValue(const InitListExpr *E); 3835 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 3836 LValue EmitCastLValue(const CastExpr *E); 3837 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 3838 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 3839 3840 Address EmitExtVectorElementLValue(LValue V); 3841 3842 RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc); 3843 3844 Address EmitArrayToPointerDecay(const Expr *Array, 3845 LValueBaseInfo *BaseInfo = nullptr, 3846 TBAAAccessInfo *TBAAInfo = nullptr); 3847 3848 class ConstantEmission { 3849 llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; 3850 ConstantEmission(llvm::Constant *C, bool isReference) 3851 : ValueAndIsReference(C, isReference) {} 3852 public: 3853 ConstantEmission() {} 3854 static ConstantEmission forReference(llvm::Constant *C) { 3855 return ConstantEmission(C, true); 3856 } 3857 static ConstantEmission forValue(llvm::Constant *C) { 3858 return ConstantEmission(C, false); 3859 } 3860 3861 explicit operator bool() const { 3862 return ValueAndIsReference.getOpaqueValue() != nullptr; 3863 } 3864 3865 bool isReference() const { return ValueAndIsReference.getInt(); } 3866 LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { 3867 assert(isReference()); 3868 return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), 3869 refExpr->getType()); 3870 } 3871 3872 llvm::Constant *getValue() const { 3873 assert(!isReference()); 3874 return ValueAndIsReference.getPointer(); 3875 } 3876 }; 3877 3878 ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); 3879 ConstantEmission tryEmitAsConstant(const MemberExpr *ME); 3880 llvm::Value *emitScalarConstant(const ConstantEmission &Constant, Expr *E); 3881 3882 RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, 3883 AggValueSlot slot = AggValueSlot::ignored()); 3884 LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); 3885 3886 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 3887 const ObjCIvarDecl *Ivar); 3888 LValue EmitLValueForField(LValue Base, const FieldDecl* Field); 3889 LValue EmitLValueForLambdaField(const FieldDecl *Field); 3890 3891 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 3892 /// if the Field is a reference, this will return the address of the reference 3893 /// and not the address of the value stored in the reference. 3894 LValue EmitLValueForFieldInitialization(LValue Base, 3895 const FieldDecl* Field); 3896 3897 LValue EmitLValueForIvar(QualType ObjectTy, 3898 llvm::Value* Base, const ObjCIvarDecl *Ivar, 3899 unsigned CVRQualifiers); 3900 3901 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 3902 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 3903 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 3904 LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E); 3905 3906 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 3907 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 3908 LValue EmitStmtExprLValue(const StmtExpr *E); 3909 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 3910 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 3911 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init); 3912 3913 //===--------------------------------------------------------------------===// 3914 // Scalar Expression Emission 3915 //===--------------------------------------------------------------------===// 3916 3917 /// EmitCall - Generate a call of the given function, expecting the given 3918 /// result type, and using the given argument list which specifies both the 3919 /// LLVM arguments and the types they were derived from. 3920 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 3921 ReturnValueSlot ReturnValue, const CallArgList &Args, 3922 llvm::CallBase **callOrInvoke, bool IsMustTail, 3923 SourceLocation Loc); 3924 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 3925 ReturnValueSlot ReturnValue, const CallArgList &Args, 3926 llvm::CallBase **callOrInvoke = nullptr, 3927 bool IsMustTail = false) { 3928 return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke, 3929 IsMustTail, SourceLocation()); 3930 } 3931 RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E, 3932 ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr); 3933 RValue EmitCallExpr(const CallExpr *E, 3934 ReturnValueSlot ReturnValue = ReturnValueSlot()); 3935 RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 3936 CGCallee EmitCallee(const Expr *E); 3937 3938 void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl); 3939 void checkTargetFeatures(SourceLocation Loc, const FunctionDecl *TargetDecl); 3940 3941 llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee, 3942 const Twine &name = ""); 3943 llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee, 3944 ArrayRef<llvm::Value *> args, 3945 const Twine &name = ""); 3946 llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 3947 const Twine &name = ""); 3948 llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 3949 ArrayRef<llvm::Value *> args, 3950 const Twine &name = ""); 3951 3952 SmallVector<llvm::OperandBundleDef, 1> 3953 getBundlesForFunclet(llvm::Value *Callee); 3954 3955 llvm::CallBase *EmitCallOrInvoke(llvm::FunctionCallee Callee, 3956 ArrayRef<llvm::Value *> Args, 3957 const Twine &Name = ""); 3958 llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 3959 ArrayRef<llvm::Value *> args, 3960 const Twine &name = ""); 3961 llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 3962 const Twine &name = ""); 3963 void EmitNoreturnRuntimeCallOrInvoke(llvm::FunctionCallee callee, 3964 ArrayRef<llvm::Value *> args); 3965 3966 CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 3967 NestedNameSpecifier *Qual, 3968 llvm::Type *Ty); 3969 3970 CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 3971 CXXDtorType Type, 3972 const CXXRecordDecl *RD); 3973 3974 // Return the copy constructor name with the prefix "__copy_constructor_" 3975 // removed. 3976 static std::string getNonTrivialCopyConstructorStr(QualType QT, 3977 CharUnits Alignment, 3978 bool IsVolatile, 3979 ASTContext &Ctx); 3980 3981 // Return the destructor name with the prefix "__destructor_" removed. 3982 static std::string getNonTrivialDestructorStr(QualType QT, 3983 CharUnits Alignment, 3984 bool IsVolatile, 3985 ASTContext &Ctx); 3986 3987 // These functions emit calls to the special functions of non-trivial C 3988 // structs. 3989 void defaultInitNonTrivialCStructVar(LValue Dst); 3990 void callCStructDefaultConstructor(LValue Dst); 3991 void callCStructDestructor(LValue Dst); 3992 void callCStructCopyConstructor(LValue Dst, LValue Src); 3993 void callCStructMoveConstructor(LValue Dst, LValue Src); 3994 void callCStructCopyAssignmentOperator(LValue Dst, LValue Src); 3995 void callCStructMoveAssignmentOperator(LValue Dst, LValue Src); 3996 3997 RValue 3998 EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method, 3999 const CGCallee &Callee, 4000 ReturnValueSlot ReturnValue, llvm::Value *This, 4001 llvm::Value *ImplicitParam, 4002 QualType ImplicitParamTy, const CallExpr *E, 4003 CallArgList *RtlArgs); 4004 RValue EmitCXXDestructorCall(GlobalDecl Dtor, const CGCallee &Callee, 4005 llvm::Value *This, QualType ThisTy, 4006 llvm::Value *ImplicitParam, 4007 QualType ImplicitParamTy, const CallExpr *E); 4008 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 4009 ReturnValueSlot ReturnValue); 4010 RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE, 4011 const CXXMethodDecl *MD, 4012 ReturnValueSlot ReturnValue, 4013 bool HasQualifier, 4014 NestedNameSpecifier *Qualifier, 4015 bool IsArrow, const Expr *Base); 4016 // Compute the object pointer. 4017 Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base, 4018 llvm::Value *memberPtr, 4019 const MemberPointerType *memberPtrType, 4020 LValueBaseInfo *BaseInfo = nullptr, 4021 TBAAAccessInfo *TBAAInfo = nullptr); 4022 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 4023 ReturnValueSlot ReturnValue); 4024 4025 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 4026 const CXXMethodDecl *MD, 4027 ReturnValueSlot ReturnValue); 4028 RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E); 4029 4030 RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 4031 ReturnValueSlot ReturnValue); 4032 4033 RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E, 4034 ReturnValueSlot ReturnValue); 4035 RValue EmitAMDGPUDevicePrintfCallExpr(const CallExpr *E, 4036 ReturnValueSlot ReturnValue); 4037 4038 RValue EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID, 4039 const CallExpr *E, ReturnValueSlot ReturnValue); 4040 4041 RValue emitRotate(const CallExpr *E, bool IsRotateRight); 4042 4043 /// Emit IR for __builtin_os_log_format. 4044 RValue emitBuiltinOSLogFormat(const CallExpr &E); 4045 4046 /// Emit IR for __builtin_is_aligned. 4047 RValue EmitBuiltinIsAligned(const CallExpr *E); 4048 /// Emit IR for __builtin_align_up/__builtin_align_down. 4049 RValue EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp); 4050 4051 llvm::Function *generateBuiltinOSLogHelperFunction( 4052 const analyze_os_log::OSLogBufferLayout &Layout, 4053 CharUnits BufferAlignment); 4054 4055 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 4056 4057 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 4058 /// is unhandled by the current target. 4059 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4060 ReturnValueSlot ReturnValue); 4061 4062 llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty, 4063 const llvm::CmpInst::Predicate Fp, 4064 const llvm::CmpInst::Predicate Ip, 4065 const llvm::Twine &Name = ""); 4066 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4067 ReturnValueSlot ReturnValue, 4068 llvm::Triple::ArchType Arch); 4069 llvm::Value *EmitARMMVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4070 ReturnValueSlot ReturnValue, 4071 llvm::Triple::ArchType Arch); 4072 llvm::Value *EmitARMCDEBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4073 ReturnValueSlot ReturnValue, 4074 llvm::Triple::ArchType Arch); 4075 llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::IntegerType *ITy, 4076 QualType RTy); 4077 llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::ArrayType *ATy, 4078 QualType RTy); 4079 4080 llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID, 4081 unsigned LLVMIntrinsic, 4082 unsigned AltLLVMIntrinsic, 4083 const char *NameHint, 4084 unsigned Modifier, 4085 const CallExpr *E, 4086 SmallVectorImpl<llvm::Value *> &Ops, 4087 Address PtrOp0, Address PtrOp1, 4088 llvm::Triple::ArchType Arch); 4089 4090 llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID, 4091 unsigned Modifier, llvm::Type *ArgTy, 4092 const CallExpr *E); 4093 llvm::Value *EmitNeonCall(llvm::Function *F, 4094 SmallVectorImpl<llvm::Value*> &O, 4095 const char *name, 4096 unsigned shift = 0, bool rightshift = false); 4097 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx, 4098 const llvm::ElementCount &Count); 4099 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 4100 llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, 4101 bool negateForRightShift); 4102 llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt, 4103 llvm::Type *Ty, bool usgn, const char *name); 4104 llvm::Value *vectorWrapScalar16(llvm::Value *Op); 4105 /// SVEBuiltinMemEltTy - Returns the memory element type for this memory 4106 /// access builtin. Only required if it can't be inferred from the base 4107 /// pointer operand. 4108 llvm::Type *SVEBuiltinMemEltTy(SVETypeFlags TypeFlags); 4109 4110 SmallVector<llvm::Type *, 2> getSVEOverloadTypes(SVETypeFlags TypeFlags, 4111 llvm::Type *ReturnType, 4112 ArrayRef<llvm::Value *> Ops); 4113 llvm::Type *getEltType(SVETypeFlags TypeFlags); 4114 llvm::ScalableVectorType *getSVEType(const SVETypeFlags &TypeFlags); 4115 llvm::ScalableVectorType *getSVEPredType(SVETypeFlags TypeFlags); 4116 llvm::Value *EmitSVEAllTruePred(SVETypeFlags TypeFlags); 4117 llvm::Value *EmitSVEDupX(llvm::Value *Scalar); 4118 llvm::Value *EmitSVEDupX(llvm::Value *Scalar, llvm::Type *Ty); 4119 llvm::Value *EmitSVEReinterpret(llvm::Value *Val, llvm::Type *Ty); 4120 llvm::Value *EmitSVEPMull(SVETypeFlags TypeFlags, 4121 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4122 unsigned BuiltinID); 4123 llvm::Value *EmitSVEMovl(SVETypeFlags TypeFlags, 4124 llvm::ArrayRef<llvm::Value *> Ops, 4125 unsigned BuiltinID); 4126 llvm::Value *EmitSVEPredicateCast(llvm::Value *Pred, 4127 llvm::ScalableVectorType *VTy); 4128 llvm::Value *EmitSVEGatherLoad(SVETypeFlags TypeFlags, 4129 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4130 unsigned IntID); 4131 llvm::Value *EmitSVEScatterStore(SVETypeFlags TypeFlags, 4132 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4133 unsigned IntID); 4134 llvm::Value *EmitSVEMaskedLoad(const CallExpr *, llvm::Type *ReturnTy, 4135 SmallVectorImpl<llvm::Value *> &Ops, 4136 unsigned BuiltinID, bool IsZExtReturn); 4137 llvm::Value *EmitSVEMaskedStore(const CallExpr *, 4138 SmallVectorImpl<llvm::Value *> &Ops, 4139 unsigned BuiltinID); 4140 llvm::Value *EmitSVEPrefetchLoad(SVETypeFlags TypeFlags, 4141 SmallVectorImpl<llvm::Value *> &Ops, 4142 unsigned BuiltinID); 4143 llvm::Value *EmitSVEGatherPrefetch(SVETypeFlags TypeFlags, 4144 SmallVectorImpl<llvm::Value *> &Ops, 4145 unsigned IntID); 4146 llvm::Value *EmitSVEStructLoad(SVETypeFlags TypeFlags, 4147 SmallVectorImpl<llvm::Value *> &Ops, unsigned IntID); 4148 llvm::Value *EmitSVEStructStore(SVETypeFlags TypeFlags, 4149 SmallVectorImpl<llvm::Value *> &Ops, 4150 unsigned IntID); 4151 llvm::Value *EmitAArch64SVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4152 4153 llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4154 llvm::Triple::ArchType Arch); 4155 llvm::Value *EmitBPFBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4156 4157 llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); 4158 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4159 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4160 llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4161 llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4162 llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4163 llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID, 4164 const CallExpr *E); 4165 llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4166 llvm::Value *EmitRISCVBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4167 ReturnValueSlot ReturnValue); 4168 bool ProcessOrderScopeAMDGCN(llvm::Value *Order, llvm::Value *Scope, 4169 llvm::AtomicOrdering &AO, 4170 llvm::SyncScope::ID &SSID); 4171 4172 enum class MSVCIntrin; 4173 llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E); 4174 4175 llvm::Value *EmitBuiltinAvailable(const VersionTuple &Version); 4176 4177 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 4178 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 4179 llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); 4180 llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); 4181 llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); 4182 llvm::Value *EmitObjCCollectionLiteral(const Expr *E, 4183 const ObjCMethodDecl *MethodWithObjects); 4184 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 4185 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 4186 ReturnValueSlot Return = ReturnValueSlot()); 4187 4188 /// Retrieves the default cleanup kind for an ARC cleanup. 4189 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. 4190 CleanupKind getARCCleanupKind() { 4191 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 4192 ? NormalAndEHCleanup : NormalCleanup; 4193 } 4194 4195 // ARC primitives. 4196 void EmitARCInitWeak(Address addr, llvm::Value *value); 4197 void EmitARCDestroyWeak(Address addr); 4198 llvm::Value *EmitARCLoadWeak(Address addr); 4199 llvm::Value *EmitARCLoadWeakRetained(Address addr); 4200 llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored); 4201 void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); 4202 void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); 4203 void EmitARCCopyWeak(Address dst, Address src); 4204 void EmitARCMoveWeak(Address dst, Address src); 4205 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 4206 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 4207 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 4208 bool resultIgnored); 4209 llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value, 4210 bool resultIgnored); 4211 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 4212 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 4213 llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); 4214 void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise); 4215 void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 4216 llvm::Value *EmitARCAutorelease(llvm::Value *value); 4217 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 4218 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 4219 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 4220 llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value); 4221 4222 llvm::Value *EmitObjCAutorelease(llvm::Value *value, llvm::Type *returnType); 4223 llvm::Value *EmitObjCRetainNonBlock(llvm::Value *value, 4224 llvm::Type *returnType); 4225 void EmitObjCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 4226 4227 std::pair<LValue,llvm::Value*> 4228 EmitARCStoreAutoreleasing(const BinaryOperator *e); 4229 std::pair<LValue,llvm::Value*> 4230 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 4231 std::pair<LValue,llvm::Value*> 4232 EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored); 4233 4234 llvm::Value *EmitObjCAlloc(llvm::Value *value, 4235 llvm::Type *returnType); 4236 llvm::Value *EmitObjCAllocWithZone(llvm::Value *value, 4237 llvm::Type *returnType); 4238 llvm::Value *EmitObjCAllocInit(llvm::Value *value, llvm::Type *resultType); 4239 4240 llvm::Value *EmitObjCThrowOperand(const Expr *expr); 4241 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 4242 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 4243 4244 llvm::Value *EmitARCExtendBlockObject(const Expr *expr); 4245 llvm::Value *EmitARCReclaimReturnedObject(const Expr *e, 4246 bool allowUnsafeClaim); 4247 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 4248 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 4249 llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr); 4250 4251 void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values); 4252 4253 void EmitARCNoopIntrinsicUse(ArrayRef<llvm::Value *> values); 4254 4255 static Destroyer destroyARCStrongImprecise; 4256 static Destroyer destroyARCStrongPrecise; 4257 static Destroyer destroyARCWeak; 4258 static Destroyer emitARCIntrinsicUse; 4259 static Destroyer destroyNonTrivialCStruct; 4260 4261 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 4262 llvm::Value *EmitObjCAutoreleasePoolPush(); 4263 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 4264 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 4265 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 4266 4267 /// Emits a reference binding to the passed in expression. 4268 RValue EmitReferenceBindingToExpr(const Expr *E); 4269 4270 //===--------------------------------------------------------------------===// 4271 // Expression Emission 4272 //===--------------------------------------------------------------------===// 4273 4274 // Expressions are broken into three classes: scalar, complex, aggregate. 4275 4276 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 4277 /// scalar type, returning the result. 4278 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 4279 4280 /// Emit a conversion from the specified type to the specified destination 4281 /// type, both of which are LLVM scalar types. 4282 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 4283 QualType DstTy, SourceLocation Loc); 4284 4285 /// Emit a conversion from the specified complex type to the specified 4286 /// destination type, where the destination type is an LLVM scalar type. 4287 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 4288 QualType DstTy, 4289 SourceLocation Loc); 4290 4291 /// EmitAggExpr - Emit the computation of the specified expression 4292 /// of aggregate type. The result is computed into the given slot, 4293 /// which may be null to indicate that the value is not needed. 4294 void EmitAggExpr(const Expr *E, AggValueSlot AS); 4295 4296 /// EmitAggExprToLValue - Emit the computation of the specified expression of 4297 /// aggregate type into a temporary LValue. 4298 LValue EmitAggExprToLValue(const Expr *E); 4299 4300 /// Build all the stores needed to initialize an aggregate at Dest with the 4301 /// value Val. 4302 void EmitAggregateStore(llvm::Value *Val, Address Dest, bool DestIsVolatile); 4303 4304 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 4305 /// make sure it survives garbage collection until this point. 4306 void EmitExtendGCLifetime(llvm::Value *object); 4307 4308 /// EmitComplexExpr - Emit the computation of the specified expression of 4309 /// complex type, returning the result. 4310 ComplexPairTy EmitComplexExpr(const Expr *E, 4311 bool IgnoreReal = false, 4312 bool IgnoreImag = false); 4313 4314 /// EmitComplexExprIntoLValue - Emit the given expression of complex 4315 /// type and place its result into the specified l-value. 4316 void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit); 4317 4318 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 4319 void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit); 4320 4321 /// EmitLoadOfComplex - Load a complex number from the specified l-value. 4322 ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc); 4323 4324 Address emitAddrOfRealComponent(Address complex, QualType complexType); 4325 Address emitAddrOfImagComponent(Address complex, QualType complexType); 4326 4327 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 4328 /// global variable that has already been created for it. If the initializer 4329 /// has a different type than GV does, this may free GV and return a different 4330 /// one. Otherwise it just returns GV. 4331 llvm::GlobalVariable * 4332 AddInitializerToStaticVarDecl(const VarDecl &D, 4333 llvm::GlobalVariable *GV); 4334 4335 // Emit an @llvm.invariant.start call for the given memory region. 4336 void EmitInvariantStart(llvm::Constant *Addr, CharUnits Size); 4337 4338 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 4339 /// variable with global storage. 4340 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr, 4341 bool PerformInit); 4342 4343 llvm::Function *createAtExitStub(const VarDecl &VD, llvm::FunctionCallee Dtor, 4344 llvm::Constant *Addr); 4345 4346 /// Call atexit() with a function that passes the given argument to 4347 /// the given function. 4348 void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::FunctionCallee fn, 4349 llvm::Constant *addr); 4350 4351 /// Call atexit() with function dtorStub. 4352 void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub); 4353 4354 /// Call unatexit() with function dtorStub. 4355 llvm::Value *unregisterGlobalDtorWithUnAtExit(llvm::Constant *dtorStub); 4356 4357 /// Emit code in this function to perform a guarded variable 4358 /// initialization. Guarded initializations are used when it's not 4359 /// possible to prove that an initialization will be done exactly 4360 /// once, e.g. with a static local variable or a static data member 4361 /// of a class template. 4362 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, 4363 bool PerformInit); 4364 4365 enum class GuardKind { VariableGuard, TlsGuard }; 4366 4367 /// Emit a branch to select whether or not to perform guarded initialization. 4368 void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit, 4369 llvm::BasicBlock *InitBlock, 4370 llvm::BasicBlock *NoInitBlock, 4371 GuardKind Kind, const VarDecl *D); 4372 4373 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 4374 /// variables. 4375 void 4376 GenerateCXXGlobalInitFunc(llvm::Function *Fn, 4377 ArrayRef<llvm::Function *> CXXThreadLocals, 4378 ConstantAddress Guard = ConstantAddress::invalid()); 4379 4380 /// GenerateCXXGlobalCleanUpFunc - Generates code for cleaning up global 4381 /// variables. 4382 void GenerateCXXGlobalCleanUpFunc( 4383 llvm::Function *Fn, 4384 ArrayRef<std::tuple<llvm::FunctionType *, llvm::WeakTrackingVH, 4385 llvm::Constant *>> 4386 DtorsOrStermFinalizers); 4387 4388 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 4389 const VarDecl *D, 4390 llvm::GlobalVariable *Addr, 4391 bool PerformInit); 4392 4393 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 4394 4395 void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp); 4396 4397 void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true); 4398 4399 RValue EmitAtomicExpr(AtomicExpr *E); 4400 4401 //===--------------------------------------------------------------------===// 4402 // Annotations Emission 4403 //===--------------------------------------------------------------------===// 4404 4405 /// Emit an annotation call (intrinsic). 4406 llvm::Value *EmitAnnotationCall(llvm::Function *AnnotationFn, 4407 llvm::Value *AnnotatedVal, 4408 StringRef AnnotationStr, 4409 SourceLocation Location, 4410 const AnnotateAttr *Attr); 4411 4412 /// Emit local annotations for the local variable V, declared by D. 4413 void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); 4414 4415 /// Emit field annotations for the given field & value. Returns the 4416 /// annotation result. 4417 Address EmitFieldAnnotations(const FieldDecl *D, Address V); 4418 4419 //===--------------------------------------------------------------------===// 4420 // Internal Helpers 4421 //===--------------------------------------------------------------------===// 4422 4423 /// ContainsLabel - Return true if the statement contains a label in it. If 4424 /// this statement is not executed normally, it not containing a label means 4425 /// that we can just remove the code. 4426 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 4427 4428 /// containsBreak - Return true if the statement contains a break out of it. 4429 /// If the statement (recursively) contains a switch or loop with a break 4430 /// inside of it, this is fine. 4431 static bool containsBreak(const Stmt *S); 4432 4433 /// Determine if the given statement might introduce a declaration into the 4434 /// current scope, by being a (possibly-labelled) DeclStmt. 4435 static bool mightAddDeclToScope(const Stmt *S); 4436 4437 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 4438 /// to a constant, or if it does but contains a label, return false. If it 4439 /// constant folds return true and set the boolean result in Result. 4440 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result, 4441 bool AllowLabels = false); 4442 4443 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 4444 /// to a constant, or if it does but contains a label, return false. If it 4445 /// constant folds return true and set the folded value. 4446 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result, 4447 bool AllowLabels = false); 4448 4449 /// isInstrumentedCondition - Determine whether the given condition is an 4450 /// instrumentable condition (i.e. no "&&" or "||"). 4451 static bool isInstrumentedCondition(const Expr *C); 4452 4453 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that 4454 /// increments a profile counter based on the semantics of the given logical 4455 /// operator opcode. This is used to instrument branch condition coverage 4456 /// for logical operators. 4457 void EmitBranchToCounterBlock(const Expr *Cond, BinaryOperator::Opcode LOp, 4458 llvm::BasicBlock *TrueBlock, 4459 llvm::BasicBlock *FalseBlock, 4460 uint64_t TrueCount = 0, 4461 Stmt::Likelihood LH = Stmt::LH_None, 4462 const Expr *CntrIdx = nullptr); 4463 4464 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 4465 /// if statement) to the specified blocks. Based on the condition, this might 4466 /// try to simplify the codegen of the conditional based on the branch. 4467 /// TrueCount should be the number of times we expect the condition to 4468 /// evaluate to true based on PGO data. 4469 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 4470 llvm::BasicBlock *FalseBlock, uint64_t TrueCount, 4471 Stmt::Likelihood LH = Stmt::LH_None); 4472 4473 /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is 4474 /// nonnull, if \p LHS is marked _Nonnull. 4475 void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc); 4476 4477 /// An enumeration which makes it easier to specify whether or not an 4478 /// operation is a subtraction. 4479 enum { NotSubtraction = false, IsSubtraction = true }; 4480 4481 /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to 4482 /// detect undefined behavior when the pointer overflow sanitizer is enabled. 4483 /// \p SignedIndices indicates whether any of the GEP indices are signed. 4484 /// \p IsSubtraction indicates whether the expression used to form the GEP 4485 /// is a subtraction. 4486 llvm::Value *EmitCheckedInBoundsGEP(llvm::Value *Ptr, 4487 ArrayRef<llvm::Value *> IdxList, 4488 bool SignedIndices, 4489 bool IsSubtraction, 4490 SourceLocation Loc, 4491 const Twine &Name = ""); 4492 4493 /// Specifies which type of sanitizer check to apply when handling a 4494 /// particular builtin. 4495 enum BuiltinCheckKind { 4496 BCK_CTZPassedZero, 4497 BCK_CLZPassedZero, 4498 }; 4499 4500 /// Emits an argument for a call to a builtin. If the builtin sanitizer is 4501 /// enabled, a runtime check specified by \p Kind is also emitted. 4502 llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind); 4503 4504 /// Emit a description of a type in a format suitable for passing to 4505 /// a runtime sanitizer handler. 4506 llvm::Constant *EmitCheckTypeDescriptor(QualType T); 4507 4508 /// Convert a value into a format suitable for passing to a runtime 4509 /// sanitizer handler. 4510 llvm::Value *EmitCheckValue(llvm::Value *V); 4511 4512 /// Emit a description of a source location in a format suitable for 4513 /// passing to a runtime sanitizer handler. 4514 llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc); 4515 4516 /// Create a basic block that will either trap or call a handler function in 4517 /// the UBSan runtime with the provided arguments, and create a conditional 4518 /// branch to it. 4519 void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 4520 SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs, 4521 ArrayRef<llvm::Value *> DynamicArgs); 4522 4523 /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath 4524 /// if Cond if false. 4525 void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond, 4526 llvm::ConstantInt *TypeId, llvm::Value *Ptr, 4527 ArrayRef<llvm::Constant *> StaticArgs); 4528 4529 /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime 4530 /// checking is enabled. Otherwise, just emit an unreachable instruction. 4531 void EmitUnreachable(SourceLocation Loc); 4532 4533 /// Create a basic block that will call the trap intrinsic, and emit a 4534 /// conditional branch to it, for the -ftrapv checks. 4535 void EmitTrapCheck(llvm::Value *Checked, SanitizerHandler CheckHandlerID); 4536 4537 /// Emit a call to trap or debugtrap and attach function attribute 4538 /// "trap-func-name" if specified. 4539 llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID); 4540 4541 /// Emit a stub for the cross-DSO CFI check function. 4542 void EmitCfiCheckStub(); 4543 4544 /// Emit a cross-DSO CFI failure handling function. 4545 void EmitCfiCheckFail(); 4546 4547 /// Create a check for a function parameter that may potentially be 4548 /// declared as non-null. 4549 void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc, 4550 AbstractCallee AC, unsigned ParmNum); 4551 4552 /// EmitCallArg - Emit a single call argument. 4553 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 4554 4555 /// EmitDelegateCallArg - We are performing a delegate call; that 4556 /// is, the current function is delegating to another one. Produce 4557 /// a r-value suitable for passing the given parameter. 4558 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param, 4559 SourceLocation loc); 4560 4561 /// SetFPAccuracy - Set the minimum required accuracy of the given floating 4562 /// point operation, expressed as the maximum relative error in ulp. 4563 void SetFPAccuracy(llvm::Value *Val, float Accuracy); 4564 4565 /// SetFPModel - Control floating point behavior via fp-model settings. 4566 void SetFPModel(); 4567 4568 /// Set the codegen fast-math flags. 4569 void SetFastMathFlags(FPOptions FPFeatures); 4570 4571 private: 4572 llvm::MDNode *getRangeForLoadFromType(QualType Ty); 4573 void EmitReturnOfRValue(RValue RV, QualType Ty); 4574 4575 void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New); 4576 4577 llvm::SmallVector<std::pair<llvm::WeakTrackingVH, llvm::Value *>, 4> 4578 DeferredReplacements; 4579 4580 /// Set the address of a local variable. 4581 void setAddrOfLocalVar(const VarDecl *VD, Address Addr) { 4582 assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!"); 4583 LocalDeclMap.insert({VD, Addr}); 4584 } 4585 4586 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 4587 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 4588 /// 4589 /// \param AI - The first function argument of the expansion. 4590 void ExpandTypeFromArgs(QualType Ty, LValue Dst, 4591 llvm::Function::arg_iterator &AI); 4592 4593 /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg 4594 /// Ty, into individual arguments on the provided vector \arg IRCallArgs, 4595 /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand. 4596 void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, 4597 SmallVectorImpl<llvm::Value *> &IRCallArgs, 4598 unsigned &IRCallArgPos); 4599 4600 llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info, 4601 const Expr *InputExpr, std::string &ConstraintStr); 4602 4603 llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 4604 LValue InputValue, QualType InputType, 4605 std::string &ConstraintStr, 4606 SourceLocation Loc); 4607 4608 /// Attempts to statically evaluate the object size of E. If that 4609 /// fails, emits code to figure the size of E out for us. This is 4610 /// pass_object_size aware. 4611 /// 4612 /// If EmittedExpr is non-null, this will use that instead of re-emitting E. 4613 llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type, 4614 llvm::IntegerType *ResType, 4615 llvm::Value *EmittedE, 4616 bool IsDynamic); 4617 4618 /// Emits the size of E, as required by __builtin_object_size. This 4619 /// function is aware of pass_object_size parameters, and will act accordingly 4620 /// if E is a parameter with the pass_object_size attribute. 4621 llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type, 4622 llvm::IntegerType *ResType, 4623 llvm::Value *EmittedE, 4624 bool IsDynamic); 4625 4626 void emitZeroOrPatternForAutoVarInit(QualType type, const VarDecl &D, 4627 Address Loc); 4628 4629 public: 4630 enum class EvaluationOrder { 4631 ///! No language constraints on evaluation order. 4632 Default, 4633 ///! Language semantics require left-to-right evaluation. 4634 ForceLeftToRight, 4635 ///! Language semantics require right-to-left evaluation. 4636 ForceRightToLeft 4637 }; 4638 4639 // Wrapper for function prototype sources. Wraps either a FunctionProtoType or 4640 // an ObjCMethodDecl. 4641 struct PrototypeWrapper { 4642 llvm::PointerUnion<const FunctionProtoType *, const ObjCMethodDecl *> P; 4643 4644 PrototypeWrapper(const FunctionProtoType *FT) : P(FT) {} 4645 PrototypeWrapper(const ObjCMethodDecl *MD) : P(MD) {} 4646 }; 4647 4648 void EmitCallArgs(CallArgList &Args, PrototypeWrapper Prototype, 4649 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 4650 AbstractCallee AC = AbstractCallee(), 4651 unsigned ParamsToSkip = 0, 4652 EvaluationOrder Order = EvaluationOrder::Default); 4653 4654 /// EmitPointerWithAlignment - Given an expression with a pointer type, 4655 /// emit the value and compute our best estimate of the alignment of the 4656 /// pointee. 4657 /// 4658 /// \param BaseInfo - If non-null, this will be initialized with 4659 /// information about the source of the alignment and the may-alias 4660 /// attribute. Note that this function will conservatively fall back on 4661 /// the type when it doesn't recognize the expression and may-alias will 4662 /// be set to false. 4663 /// 4664 /// One reasonable way to use this information is when there's a language 4665 /// guarantee that the pointer must be aligned to some stricter value, and 4666 /// we're simply trying to ensure that sufficiently obvious uses of under- 4667 /// aligned objects don't get miscompiled; for example, a placement new 4668 /// into the address of a local variable. In such a case, it's quite 4669 /// reasonable to just ignore the returned alignment when it isn't from an 4670 /// explicit source. 4671 Address EmitPointerWithAlignment(const Expr *Addr, 4672 LValueBaseInfo *BaseInfo = nullptr, 4673 TBAAAccessInfo *TBAAInfo = nullptr); 4674 4675 /// If \p E references a parameter with pass_object_size info or a constant 4676 /// array size modifier, emit the object size divided by the size of \p EltTy. 4677 /// Otherwise return null. 4678 llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy); 4679 4680 void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK); 4681 4682 struct MultiVersionResolverOption { 4683 llvm::Function *Function; 4684 struct Conds { 4685 StringRef Architecture; 4686 llvm::SmallVector<StringRef, 8> Features; 4687 4688 Conds(StringRef Arch, ArrayRef<StringRef> Feats) 4689 : Architecture(Arch), Features(Feats.begin(), Feats.end()) {} 4690 } Conditions; 4691 4692 MultiVersionResolverOption(llvm::Function *F, StringRef Arch, 4693 ArrayRef<StringRef> Feats) 4694 : Function(F), Conditions(Arch, Feats) {} 4695 }; 4696 4697 // Emits the body of a multiversion function's resolver. Assumes that the 4698 // options are already sorted in the proper order, with the 'default' option 4699 // last (if it exists). 4700 void EmitMultiVersionResolver(llvm::Function *Resolver, 4701 ArrayRef<MultiVersionResolverOption> Options); 4702 4703 static uint64_t GetX86CpuSupportsMask(ArrayRef<StringRef> FeatureStrs); 4704 4705 private: 4706 QualType getVarArgType(const Expr *Arg); 4707 4708 void EmitDeclMetadata(); 4709 4710 BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType, 4711 const AutoVarEmission &emission); 4712 4713 void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); 4714 4715 llvm::Value *GetValueForARMHint(unsigned BuiltinID); 4716 llvm::Value *EmitX86CpuIs(const CallExpr *E); 4717 llvm::Value *EmitX86CpuIs(StringRef CPUStr); 4718 llvm::Value *EmitX86CpuSupports(const CallExpr *E); 4719 llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs); 4720 llvm::Value *EmitX86CpuSupports(uint64_t Mask); 4721 llvm::Value *EmitX86CpuInit(); 4722 llvm::Value *FormResolverCondition(const MultiVersionResolverOption &RO); 4723 }; 4724 4725 /// TargetFeatures - This class is used to check whether the builtin function 4726 /// has the required tagert specific features. It is able to support the 4727 /// combination of ','(and), '|'(or), and '()'. By default, the priority of 4728 /// ',' is higher than that of '|' . 4729 /// E.g: 4730 /// A,B|C means the builtin function requires both A and B, or C. 4731 /// If we want the builtin function requires both A and B, or both A and C, 4732 /// there are two ways: A,B|A,C or A,(B|C). 4733 /// The FeaturesList should not contain spaces, and brackets must appear in 4734 /// pairs. 4735 class TargetFeatures { 4736 struct FeatureListStatus { 4737 bool HasFeatures; 4738 StringRef CurFeaturesList; 4739 }; 4740 4741 const llvm::StringMap<bool> &CallerFeatureMap; 4742 4743 FeatureListStatus getAndFeatures(StringRef FeatureList) { 4744 int InParentheses = 0; 4745 bool HasFeatures = true; 4746 size_t SubexpressionStart = 0; 4747 for (size_t i = 0, e = FeatureList.size(); i < e; ++i) { 4748 char CurrentToken = FeatureList[i]; 4749 switch (CurrentToken) { 4750 default: 4751 break; 4752 case '(': 4753 if (InParentheses == 0) 4754 SubexpressionStart = i + 1; 4755 ++InParentheses; 4756 break; 4757 case ')': 4758 --InParentheses; 4759 assert(InParentheses >= 0 && "Parentheses are not in pair"); 4760 LLVM_FALLTHROUGH; 4761 case '|': 4762 case ',': 4763 if (InParentheses == 0) { 4764 if (HasFeatures && i != SubexpressionStart) { 4765 StringRef F = FeatureList.slice(SubexpressionStart, i); 4766 HasFeatures = CurrentToken == ')' ? hasRequiredFeatures(F) 4767 : CallerFeatureMap.lookup(F); 4768 } 4769 SubexpressionStart = i + 1; 4770 if (CurrentToken == '|') { 4771 return {HasFeatures, FeatureList.substr(SubexpressionStart)}; 4772 } 4773 } 4774 break; 4775 } 4776 } 4777 assert(InParentheses == 0 && "Parentheses are not in pair"); 4778 if (HasFeatures && SubexpressionStart != FeatureList.size()) 4779 HasFeatures = 4780 CallerFeatureMap.lookup(FeatureList.substr(SubexpressionStart)); 4781 return {HasFeatures, StringRef()}; 4782 } 4783 4784 public: 4785 bool hasRequiredFeatures(StringRef FeatureList) { 4786 FeatureListStatus FS = {false, FeatureList}; 4787 while (!FS.HasFeatures && !FS.CurFeaturesList.empty()) 4788 FS = getAndFeatures(FS.CurFeaturesList); 4789 return FS.HasFeatures; 4790 } 4791 4792 TargetFeatures(const llvm::StringMap<bool> &CallerFeatureMap) 4793 : CallerFeatureMap(CallerFeatureMap) {} 4794 }; 4795 4796 inline DominatingLLVMValue::saved_type 4797 DominatingLLVMValue::save(CodeGenFunction &CGF, llvm::Value *value) { 4798 if (!needsSaving(value)) return saved_type(value, false); 4799 4800 // Otherwise, we need an alloca. 4801 auto align = CharUnits::fromQuantity( 4802 CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType())); 4803 Address alloca = 4804 CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save"); 4805 CGF.Builder.CreateStore(value, alloca); 4806 4807 return saved_type(alloca.getPointer(), true); 4808 } 4809 4810 inline llvm::Value *DominatingLLVMValue::restore(CodeGenFunction &CGF, 4811 saved_type value) { 4812 // If the value says it wasn't saved, trust that it's still dominating. 4813 if (!value.getInt()) return value.getPointer(); 4814 4815 // Otherwise, it should be an alloca instruction, as set up in save(). 4816 auto alloca = cast<llvm::AllocaInst>(value.getPointer()); 4817 return CGF.Builder.CreateAlignedLoad(alloca->getAllocatedType(), alloca, 4818 alloca->getAlign()); 4819 } 4820 4821 } // end namespace CodeGen 4822 4823 // Map the LangOption for floating point exception behavior into 4824 // the corresponding enum in the IR. 4825 llvm::fp::ExceptionBehavior 4826 ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind); 4827 } // end namespace clang 4828 4829 #endif 4830