1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the internal per-function state used for llvm translation.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
14 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
15 
16 #include "CGBuilder.h"
17 #include "CGDebugInfo.h"
18 #include "CGLoopInfo.h"
19 #include "CGValue.h"
20 #include "CodeGenModule.h"
21 #include "CodeGenPGO.h"
22 #include "EHScopeStack.h"
23 #include "VarBypassDetector.h"
24 #include "clang/AST/CharUnits.h"
25 #include "clang/AST/CurrentSourceLocExprScope.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/ExprObjC.h"
28 #include "clang/AST/ExprOpenMP.h"
29 #include "clang/AST/Type.h"
30 #include "clang/Basic/ABI.h"
31 #include "clang/Basic/CapturedStmt.h"
32 #include "clang/Basic/CodeGenOptions.h"
33 #include "clang/Basic/OpenMPKinds.h"
34 #include "clang/Basic/TargetInfo.h"
35 #include "llvm/ADT/ArrayRef.h"
36 #include "llvm/ADT/DenseMap.h"
37 #include "llvm/ADT/MapVector.h"
38 #include "llvm/ADT/SmallVector.h"
39 #include "llvm/IR/ValueHandle.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Transforms/Utils/SanitizerStats.h"
42 
43 namespace llvm {
44 class BasicBlock;
45 class LLVMContext;
46 class MDNode;
47 class Module;
48 class SwitchInst;
49 class Twine;
50 class Value;
51 }
52 
53 namespace clang {
54 class ASTContext;
55 class BlockDecl;
56 class CXXDestructorDecl;
57 class CXXForRangeStmt;
58 class CXXTryStmt;
59 class Decl;
60 class LabelDecl;
61 class EnumConstantDecl;
62 class FunctionDecl;
63 class FunctionProtoType;
64 class LabelStmt;
65 class ObjCContainerDecl;
66 class ObjCInterfaceDecl;
67 class ObjCIvarDecl;
68 class ObjCMethodDecl;
69 class ObjCImplementationDecl;
70 class ObjCPropertyImplDecl;
71 class TargetInfo;
72 class VarDecl;
73 class ObjCForCollectionStmt;
74 class ObjCAtTryStmt;
75 class ObjCAtThrowStmt;
76 class ObjCAtSynchronizedStmt;
77 class ObjCAutoreleasePoolStmt;
78 
79 namespace analyze_os_log {
80 class OSLogBufferLayout;
81 }
82 
83 namespace CodeGen {
84 class CodeGenTypes;
85 class CGCallee;
86 class CGFunctionInfo;
87 class CGRecordLayout;
88 class CGBlockInfo;
89 class CGCXXABI;
90 class BlockByrefHelpers;
91 class BlockByrefInfo;
92 class BlockFlags;
93 class BlockFieldFlags;
94 class RegionCodeGenTy;
95 class TargetCodeGenInfo;
96 struct OMPTaskDataTy;
97 struct CGCoroData;
98 
99 /// The kind of evaluation to perform on values of a particular
100 /// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
101 /// CGExprAgg?
102 ///
103 /// TODO: should vectors maybe be split out into their own thing?
104 enum TypeEvaluationKind {
105   TEK_Scalar,
106   TEK_Complex,
107   TEK_Aggregate
108 };
109 
110 #define LIST_SANITIZER_CHECKS                                                  \
111   SANITIZER_CHECK(AddOverflow, add_overflow, 0)                                \
112   SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0)                  \
113   SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0)                             \
114   SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0)                          \
115   SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0)            \
116   SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0)                   \
117   SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 0)             \
118   SANITIZER_CHECK(ImplicitConversion, implicit_conversion, 0)                  \
119   SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0)                          \
120   SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0)                     \
121   SANITIZER_CHECK(MissingReturn, missing_return, 0)                            \
122   SANITIZER_CHECK(MulOverflow, mul_overflow, 0)                                \
123   SANITIZER_CHECK(NegateOverflow, negate_overflow, 0)                          \
124   SANITIZER_CHECK(NullabilityArg, nullability_arg, 0)                          \
125   SANITIZER_CHECK(NullabilityReturn, nullability_return, 1)                    \
126   SANITIZER_CHECK(NonnullArg, nonnull_arg, 0)                                  \
127   SANITIZER_CHECK(NonnullReturn, nonnull_return, 1)                            \
128   SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0)                               \
129   SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0)                        \
130   SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0)                    \
131   SANITIZER_CHECK(SubOverflow, sub_overflow, 0)                                \
132   SANITIZER_CHECK(TypeMismatch, type_mismatch, 1)                              \
133   SANITIZER_CHECK(AlignmentAssumption, alignment_assumption, 0)                \
134   SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0)
135 
136 enum SanitizerHandler {
137 #define SANITIZER_CHECK(Enum, Name, Version) Enum,
138   LIST_SANITIZER_CHECKS
139 #undef SANITIZER_CHECK
140 };
141 
142 /// Helper class with most of the code for saving a value for a
143 /// conditional expression cleanup.
144 struct DominatingLLVMValue {
145   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
146 
147   /// Answer whether the given value needs extra work to be saved.
148   static bool needsSaving(llvm::Value *value) {
149     // If it's not an instruction, we don't need to save.
150     if (!isa<llvm::Instruction>(value)) return false;
151 
152     // If it's an instruction in the entry block, we don't need to save.
153     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
154     return (block != &block->getParent()->getEntryBlock());
155   }
156 
157   static saved_type save(CodeGenFunction &CGF, llvm::Value *value);
158   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value);
159 };
160 
161 /// A partial specialization of DominatingValue for llvm::Values that
162 /// might be llvm::Instructions.
163 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
164   typedef T *type;
165   static type restore(CodeGenFunction &CGF, saved_type value) {
166     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
167   }
168 };
169 
170 /// A specialization of DominatingValue for Address.
171 template <> struct DominatingValue<Address> {
172   typedef Address type;
173 
174   struct saved_type {
175     DominatingLLVMValue::saved_type SavedValue;
176     CharUnits Alignment;
177   };
178 
179   static bool needsSaving(type value) {
180     return DominatingLLVMValue::needsSaving(value.getPointer());
181   }
182   static saved_type save(CodeGenFunction &CGF, type value) {
183     return { DominatingLLVMValue::save(CGF, value.getPointer()),
184              value.getAlignment() };
185   }
186   static type restore(CodeGenFunction &CGF, saved_type value) {
187     return Address(DominatingLLVMValue::restore(CGF, value.SavedValue),
188                    value.Alignment);
189   }
190 };
191 
192 /// A specialization of DominatingValue for RValue.
193 template <> struct DominatingValue<RValue> {
194   typedef RValue type;
195   class saved_type {
196     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
197                 AggregateAddress, ComplexAddress };
198 
199     llvm::Value *Value;
200     unsigned K : 3;
201     unsigned Align : 29;
202     saved_type(llvm::Value *v, Kind k, unsigned a = 0)
203       : Value(v), K(k), Align(a) {}
204 
205   public:
206     static bool needsSaving(RValue value);
207     static saved_type save(CodeGenFunction &CGF, RValue value);
208     RValue restore(CodeGenFunction &CGF);
209 
210     // implementations in CGCleanup.cpp
211   };
212 
213   static bool needsSaving(type value) {
214     return saved_type::needsSaving(value);
215   }
216   static saved_type save(CodeGenFunction &CGF, type value) {
217     return saved_type::save(CGF, value);
218   }
219   static type restore(CodeGenFunction &CGF, saved_type value) {
220     return value.restore(CGF);
221   }
222 };
223 
224 /// CodeGenFunction - This class organizes the per-function state that is used
225 /// while generating LLVM code.
226 class CodeGenFunction : public CodeGenTypeCache {
227   CodeGenFunction(const CodeGenFunction &) = delete;
228   void operator=(const CodeGenFunction &) = delete;
229 
230   friend class CGCXXABI;
231 public:
232   /// A jump destination is an abstract label, branching to which may
233   /// require a jump out through normal cleanups.
234   struct JumpDest {
235     JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {}
236     JumpDest(llvm::BasicBlock *Block,
237              EHScopeStack::stable_iterator Depth,
238              unsigned Index)
239       : Block(Block), ScopeDepth(Depth), Index(Index) {}
240 
241     bool isValid() const { return Block != nullptr; }
242     llvm::BasicBlock *getBlock() const { return Block; }
243     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
244     unsigned getDestIndex() const { return Index; }
245 
246     // This should be used cautiously.
247     void setScopeDepth(EHScopeStack::stable_iterator depth) {
248       ScopeDepth = depth;
249     }
250 
251   private:
252     llvm::BasicBlock *Block;
253     EHScopeStack::stable_iterator ScopeDepth;
254     unsigned Index;
255   };
256 
257   CodeGenModule &CGM;  // Per-module state.
258   const TargetInfo &Target;
259 
260   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
261   LoopInfoStack LoopStack;
262   CGBuilderTy Builder;
263 
264   // Stores variables for which we can't generate correct lifetime markers
265   // because of jumps.
266   VarBypassDetector Bypasses;
267 
268   // CodeGen lambda for loops and support for ordered clause
269   typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &,
270                                   JumpDest)>
271       CodeGenLoopTy;
272   typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation,
273                                   const unsigned, const bool)>
274       CodeGenOrderedTy;
275 
276   // Codegen lambda for loop bounds in worksharing loop constructs
277   typedef llvm::function_ref<std::pair<LValue, LValue>(
278       CodeGenFunction &, const OMPExecutableDirective &S)>
279       CodeGenLoopBoundsTy;
280 
281   // Codegen lambda for loop bounds in dispatch-based loop implementation
282   typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>(
283       CodeGenFunction &, const OMPExecutableDirective &S, Address LB,
284       Address UB)>
285       CodeGenDispatchBoundsTy;
286 
287   /// CGBuilder insert helper. This function is called after an
288   /// instruction is created using Builder.
289   void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
290                     llvm::BasicBlock *BB,
291                     llvm::BasicBlock::iterator InsertPt) const;
292 
293   /// CurFuncDecl - Holds the Decl for the current outermost
294   /// non-closure context.
295   const Decl *CurFuncDecl;
296   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
297   const Decl *CurCodeDecl;
298   const CGFunctionInfo *CurFnInfo;
299   QualType FnRetTy;
300   llvm::Function *CurFn = nullptr;
301 
302   // Holds coroutine data if the current function is a coroutine. We use a
303   // wrapper to manage its lifetime, so that we don't have to define CGCoroData
304   // in this header.
305   struct CGCoroInfo {
306     std::unique_ptr<CGCoroData> Data;
307     CGCoroInfo();
308     ~CGCoroInfo();
309   };
310   CGCoroInfo CurCoro;
311 
312   bool isCoroutine() const {
313     return CurCoro.Data != nullptr;
314   }
315 
316   /// CurGD - The GlobalDecl for the current function being compiled.
317   GlobalDecl CurGD;
318 
319   /// PrologueCleanupDepth - The cleanup depth enclosing all the
320   /// cleanups associated with the parameters.
321   EHScopeStack::stable_iterator PrologueCleanupDepth;
322 
323   /// ReturnBlock - Unified return block.
324   JumpDest ReturnBlock;
325 
326   /// ReturnValue - The temporary alloca to hold the return
327   /// value. This is invalid iff the function has no return value.
328   Address ReturnValue = Address::invalid();
329 
330   /// Return true if a label was seen in the current scope.
331   bool hasLabelBeenSeenInCurrentScope() const {
332     if (CurLexicalScope)
333       return CurLexicalScope->hasLabels();
334     return !LabelMap.empty();
335   }
336 
337   /// AllocaInsertPoint - This is an instruction in the entry block before which
338   /// we prefer to insert allocas.
339   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
340 
341   /// API for captured statement code generation.
342   class CGCapturedStmtInfo {
343   public:
344     explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default)
345         : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
346     explicit CGCapturedStmtInfo(const CapturedStmt &S,
347                                 CapturedRegionKind K = CR_Default)
348       : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
349 
350       RecordDecl::field_iterator Field =
351         S.getCapturedRecordDecl()->field_begin();
352       for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
353                                                 E = S.capture_end();
354            I != E; ++I, ++Field) {
355         if (I->capturesThis())
356           CXXThisFieldDecl = *Field;
357         else if (I->capturesVariable())
358           CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
359         else if (I->capturesVariableByCopy())
360           CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
361       }
362     }
363 
364     virtual ~CGCapturedStmtInfo();
365 
366     CapturedRegionKind getKind() const { return Kind; }
367 
368     virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
369     // Retrieve the value of the context parameter.
370     virtual llvm::Value *getContextValue() const { return ThisValue; }
371 
372     /// Lookup the captured field decl for a variable.
373     virtual const FieldDecl *lookup(const VarDecl *VD) const {
374       return CaptureFields.lookup(VD->getCanonicalDecl());
375     }
376 
377     bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
378     virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
379 
380     static bool classof(const CGCapturedStmtInfo *) {
381       return true;
382     }
383 
384     /// Emit the captured statement body.
385     virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
386       CGF.incrementProfileCounter(S);
387       CGF.EmitStmt(S);
388     }
389 
390     /// Get the name of the capture helper.
391     virtual StringRef getHelperName() const { return "__captured_stmt"; }
392 
393   private:
394     /// The kind of captured statement being generated.
395     CapturedRegionKind Kind;
396 
397     /// Keep the map between VarDecl and FieldDecl.
398     llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
399 
400     /// The base address of the captured record, passed in as the first
401     /// argument of the parallel region function.
402     llvm::Value *ThisValue;
403 
404     /// Captured 'this' type.
405     FieldDecl *CXXThisFieldDecl;
406   };
407   CGCapturedStmtInfo *CapturedStmtInfo = nullptr;
408 
409   /// RAII for correct setting/restoring of CapturedStmtInfo.
410   class CGCapturedStmtRAII {
411   private:
412     CodeGenFunction &CGF;
413     CGCapturedStmtInfo *PrevCapturedStmtInfo;
414   public:
415     CGCapturedStmtRAII(CodeGenFunction &CGF,
416                        CGCapturedStmtInfo *NewCapturedStmtInfo)
417         : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) {
418       CGF.CapturedStmtInfo = NewCapturedStmtInfo;
419     }
420     ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; }
421   };
422 
423   /// An abstract representation of regular/ObjC call/message targets.
424   class AbstractCallee {
425     /// The function declaration of the callee.
426     const Decl *CalleeDecl;
427 
428   public:
429     AbstractCallee() : CalleeDecl(nullptr) {}
430     AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {}
431     AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {}
432     bool hasFunctionDecl() const {
433       return dyn_cast_or_null<FunctionDecl>(CalleeDecl);
434     }
435     const Decl *getDecl() const { return CalleeDecl; }
436     unsigned getNumParams() const {
437       if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
438         return FD->getNumParams();
439       return cast<ObjCMethodDecl>(CalleeDecl)->param_size();
440     }
441     const ParmVarDecl *getParamDecl(unsigned I) const {
442       if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
443         return FD->getParamDecl(I);
444       return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I);
445     }
446   };
447 
448   /// Sanitizers enabled for this function.
449   SanitizerSet SanOpts;
450 
451   /// True if CodeGen currently emits code implementing sanitizer checks.
452   bool IsSanitizerScope = false;
453 
454   /// RAII object to set/unset CodeGenFunction::IsSanitizerScope.
455   class SanitizerScope {
456     CodeGenFunction *CGF;
457   public:
458     SanitizerScope(CodeGenFunction *CGF);
459     ~SanitizerScope();
460   };
461 
462   /// In C++, whether we are code generating a thunk.  This controls whether we
463   /// should emit cleanups.
464   bool CurFuncIsThunk = false;
465 
466   /// In ARC, whether we should autorelease the return value.
467   bool AutoreleaseResult = false;
468 
469   /// Whether we processed a Microsoft-style asm block during CodeGen. These can
470   /// potentially set the return value.
471   bool SawAsmBlock = false;
472 
473   const NamedDecl *CurSEHParent = nullptr;
474 
475   /// True if the current function is an outlined SEH helper. This can be a
476   /// finally block or filter expression.
477   bool IsOutlinedSEHHelper = false;
478 
479   const CodeGen::CGBlockInfo *BlockInfo = nullptr;
480   llvm::Value *BlockPointer = nullptr;
481 
482   llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
483   FieldDecl *LambdaThisCaptureField = nullptr;
484 
485   /// A mapping from NRVO variables to the flags used to indicate
486   /// when the NRVO has been applied to this variable.
487   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
488 
489   EHScopeStack EHStack;
490   llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
491   llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack;
492 
493   llvm::Instruction *CurrentFuncletPad = nullptr;
494 
495   class CallLifetimeEnd final : public EHScopeStack::Cleanup {
496     llvm::Value *Addr;
497     llvm::Value *Size;
498 
499   public:
500     CallLifetimeEnd(Address addr, llvm::Value *size)
501         : Addr(addr.getPointer()), Size(size) {}
502 
503     void Emit(CodeGenFunction &CGF, Flags flags) override {
504       CGF.EmitLifetimeEnd(Size, Addr);
505     }
506   };
507 
508   /// Header for data within LifetimeExtendedCleanupStack.
509   struct LifetimeExtendedCleanupHeader {
510     /// The size of the following cleanup object.
511     unsigned Size;
512     /// The kind of cleanup to push: a value from the CleanupKind enumeration.
513     unsigned Kind : 31;
514     /// Whether this is a conditional cleanup.
515     unsigned IsConditional : 1;
516 
517     size_t getSize() const { return Size; }
518     CleanupKind getKind() const { return (CleanupKind)Kind; }
519     bool isConditional() const { return IsConditional; }
520   };
521 
522   /// i32s containing the indexes of the cleanup destinations.
523   Address NormalCleanupDest = Address::invalid();
524 
525   unsigned NextCleanupDestIndex = 1;
526 
527   /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
528   CGBlockInfo *FirstBlockInfo = nullptr;
529 
530   /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
531   llvm::BasicBlock *EHResumeBlock = nullptr;
532 
533   /// The exception slot.  All landing pads write the current exception pointer
534   /// into this alloca.
535   llvm::Value *ExceptionSlot = nullptr;
536 
537   /// The selector slot.  Under the MandatoryCleanup model, all landing pads
538   /// write the current selector value into this alloca.
539   llvm::AllocaInst *EHSelectorSlot = nullptr;
540 
541   /// A stack of exception code slots. Entering an __except block pushes a slot
542   /// on the stack and leaving pops one. The __exception_code() intrinsic loads
543   /// a value from the top of the stack.
544   SmallVector<Address, 1> SEHCodeSlotStack;
545 
546   /// Value returned by __exception_info intrinsic.
547   llvm::Value *SEHInfo = nullptr;
548 
549   /// Emits a landing pad for the current EH stack.
550   llvm::BasicBlock *EmitLandingPad();
551 
552   llvm::BasicBlock *getInvokeDestImpl();
553 
554   template <class T>
555   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
556     return DominatingValue<T>::save(*this, value);
557   }
558 
559 public:
560   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
561   /// rethrows.
562   SmallVector<llvm::Value*, 8> ObjCEHValueStack;
563 
564   /// A class controlling the emission of a finally block.
565   class FinallyInfo {
566     /// Where the catchall's edge through the cleanup should go.
567     JumpDest RethrowDest;
568 
569     /// A function to call to enter the catch.
570     llvm::FunctionCallee BeginCatchFn;
571 
572     /// An i1 variable indicating whether or not the @finally is
573     /// running for an exception.
574     llvm::AllocaInst *ForEHVar;
575 
576     /// An i8* variable into which the exception pointer to rethrow
577     /// has been saved.
578     llvm::AllocaInst *SavedExnVar;
579 
580   public:
581     void enter(CodeGenFunction &CGF, const Stmt *Finally,
582                llvm::FunctionCallee beginCatchFn,
583                llvm::FunctionCallee endCatchFn, llvm::FunctionCallee rethrowFn);
584     void exit(CodeGenFunction &CGF);
585   };
586 
587   /// Returns true inside SEH __try blocks.
588   bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }
589 
590   /// Returns true while emitting a cleanuppad.
591   bool isCleanupPadScope() const {
592     return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad);
593   }
594 
595   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
596   /// current full-expression.  Safe against the possibility that
597   /// we're currently inside a conditionally-evaluated expression.
598   template <class T, class... As>
599   void pushFullExprCleanup(CleanupKind kind, As... A) {
600     // If we're not in a conditional branch, or if none of the
601     // arguments requires saving, then use the unconditional cleanup.
602     if (!isInConditionalBranch())
603       return EHStack.pushCleanup<T>(kind, A...);
604 
605     // Stash values in a tuple so we can guarantee the order of saves.
606     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
607     SavedTuple Saved{saveValueInCond(A)...};
608 
609     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
610     EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
611     initFullExprCleanup();
612   }
613 
614   /// Queue a cleanup to be pushed after finishing the current
615   /// full-expression.
616   template <class T, class... As>
617   void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
618     if (!isInConditionalBranch())
619       return pushCleanupAfterFullExprImpl<T>(Kind, Address::invalid(), A...);
620 
621     Address ActiveFlag = createCleanupActiveFlag();
622     assert(!DominatingValue<Address>::needsSaving(ActiveFlag) &&
623            "cleanup active flag should never need saving");
624 
625     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
626     SavedTuple Saved{saveValueInCond(A)...};
627 
628     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
629     pushCleanupAfterFullExprImpl<CleanupType>(Kind, ActiveFlag, Saved);
630   }
631 
632   template <class T, class... As>
633   void pushCleanupAfterFullExprImpl(CleanupKind Kind, Address ActiveFlag,
634                                     As... A) {
635     LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind,
636                                             ActiveFlag.isValid()};
637 
638     size_t OldSize = LifetimeExtendedCleanupStack.size();
639     LifetimeExtendedCleanupStack.resize(
640         LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size +
641         (Header.IsConditional ? sizeof(ActiveFlag) : 0));
642 
643     static_assert(sizeof(Header) % alignof(T) == 0,
644                   "Cleanup will be allocated on misaligned address");
645     char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
646     new (Buffer) LifetimeExtendedCleanupHeader(Header);
647     new (Buffer + sizeof(Header)) T(A...);
648     if (Header.IsConditional)
649       new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag);
650   }
651 
652   /// Set up the last cleanup that was pushed as a conditional
653   /// full-expression cleanup.
654   void initFullExprCleanup() {
655     initFullExprCleanupWithFlag(createCleanupActiveFlag());
656   }
657 
658   void initFullExprCleanupWithFlag(Address ActiveFlag);
659   Address createCleanupActiveFlag();
660 
661   /// PushDestructorCleanup - Push a cleanup to call the
662   /// complete-object destructor of an object of the given type at the
663   /// given address.  Does nothing if T is not a C++ class type with a
664   /// non-trivial destructor.
665   void PushDestructorCleanup(QualType T, Address Addr);
666 
667   /// PushDestructorCleanup - Push a cleanup to call the
668   /// complete-object variant of the given destructor on the object at
669   /// the given address.
670   void PushDestructorCleanup(const CXXDestructorDecl *Dtor, Address Addr);
671 
672   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
673   /// process all branch fixups.
674   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
675 
676   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
677   /// The block cannot be reactivated.  Pops it if it's the top of the
678   /// stack.
679   ///
680   /// \param DominatingIP - An instruction which is known to
681   ///   dominate the current IP (if set) and which lies along
682   ///   all paths of execution between the current IP and the
683   ///   the point at which the cleanup comes into scope.
684   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
685                               llvm::Instruction *DominatingIP);
686 
687   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
688   /// Cannot be used to resurrect a deactivated cleanup.
689   ///
690   /// \param DominatingIP - An instruction which is known to
691   ///   dominate the current IP (if set) and which lies along
692   ///   all paths of execution between the current IP and the
693   ///   the point at which the cleanup comes into scope.
694   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
695                             llvm::Instruction *DominatingIP);
696 
697   /// Enters a new scope for capturing cleanups, all of which
698   /// will be executed once the scope is exited.
699   class RunCleanupsScope {
700     EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth;
701     size_t LifetimeExtendedCleanupStackSize;
702     bool OldDidCallStackSave;
703   protected:
704     bool PerformCleanup;
705   private:
706 
707     RunCleanupsScope(const RunCleanupsScope &) = delete;
708     void operator=(const RunCleanupsScope &) = delete;
709 
710   protected:
711     CodeGenFunction& CGF;
712 
713   public:
714     /// Enter a new cleanup scope.
715     explicit RunCleanupsScope(CodeGenFunction &CGF)
716       : PerformCleanup(true), CGF(CGF)
717     {
718       CleanupStackDepth = CGF.EHStack.stable_begin();
719       LifetimeExtendedCleanupStackSize =
720           CGF.LifetimeExtendedCleanupStack.size();
721       OldDidCallStackSave = CGF.DidCallStackSave;
722       CGF.DidCallStackSave = false;
723       OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth;
724       CGF.CurrentCleanupScopeDepth = CleanupStackDepth;
725     }
726 
727     /// Exit this cleanup scope, emitting any accumulated cleanups.
728     ~RunCleanupsScope() {
729       if (PerformCleanup)
730         ForceCleanup();
731     }
732 
733     /// Determine whether this scope requires any cleanups.
734     bool requiresCleanups() const {
735       return CGF.EHStack.stable_begin() != CleanupStackDepth;
736     }
737 
738     /// Force the emission of cleanups now, instead of waiting
739     /// until this object is destroyed.
740     /// \param ValuesToReload - A list of values that need to be available at
741     /// the insertion point after cleanup emission. If cleanup emission created
742     /// a shared cleanup block, these value pointers will be rewritten.
743     /// Otherwise, they not will be modified.
744     void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) {
745       assert(PerformCleanup && "Already forced cleanup");
746       CGF.DidCallStackSave = OldDidCallStackSave;
747       CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize,
748                            ValuesToReload);
749       PerformCleanup = false;
750       CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth;
751     }
752   };
753 
754   // Cleanup stack depth of the RunCleanupsScope that was pushed most recently.
755   EHScopeStack::stable_iterator CurrentCleanupScopeDepth =
756       EHScopeStack::stable_end();
757 
758   class LexicalScope : public RunCleanupsScope {
759     SourceRange Range;
760     SmallVector<const LabelDecl*, 4> Labels;
761     LexicalScope *ParentScope;
762 
763     LexicalScope(const LexicalScope &) = delete;
764     void operator=(const LexicalScope &) = delete;
765 
766   public:
767     /// Enter a new cleanup scope.
768     explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
769       : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
770       CGF.CurLexicalScope = this;
771       if (CGDebugInfo *DI = CGF.getDebugInfo())
772         DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
773     }
774 
775     void addLabel(const LabelDecl *label) {
776       assert(PerformCleanup && "adding label to dead scope?");
777       Labels.push_back(label);
778     }
779 
780     /// Exit this cleanup scope, emitting any accumulated
781     /// cleanups.
782     ~LexicalScope() {
783       if (CGDebugInfo *DI = CGF.getDebugInfo())
784         DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
785 
786       // If we should perform a cleanup, force them now.  Note that
787       // this ends the cleanup scope before rescoping any labels.
788       if (PerformCleanup) {
789         ApplyDebugLocation DL(CGF, Range.getEnd());
790         ForceCleanup();
791       }
792     }
793 
794     /// Force the emission of cleanups now, instead of waiting
795     /// until this object is destroyed.
796     void ForceCleanup() {
797       CGF.CurLexicalScope = ParentScope;
798       RunCleanupsScope::ForceCleanup();
799 
800       if (!Labels.empty())
801         rescopeLabels();
802     }
803 
804     bool hasLabels() const {
805       return !Labels.empty();
806     }
807 
808     void rescopeLabels();
809   };
810 
811   typedef llvm::DenseMap<const Decl *, Address> DeclMapTy;
812 
813   /// The class used to assign some variables some temporarily addresses.
814   class OMPMapVars {
815     DeclMapTy SavedLocals;
816     DeclMapTy SavedTempAddresses;
817     OMPMapVars(const OMPMapVars &) = delete;
818     void operator=(const OMPMapVars &) = delete;
819 
820   public:
821     explicit OMPMapVars() = default;
822     ~OMPMapVars() {
823       assert(SavedLocals.empty() && "Did not restored original addresses.");
824     };
825 
826     /// Sets the address of the variable \p LocalVD to be \p TempAddr in
827     /// function \p CGF.
828     /// \return true if at least one variable was set already, false otherwise.
829     bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD,
830                     Address TempAddr) {
831       LocalVD = LocalVD->getCanonicalDecl();
832       // Only save it once.
833       if (SavedLocals.count(LocalVD)) return false;
834 
835       // Copy the existing local entry to SavedLocals.
836       auto it = CGF.LocalDeclMap.find(LocalVD);
837       if (it != CGF.LocalDeclMap.end())
838         SavedLocals.try_emplace(LocalVD, it->second);
839       else
840         SavedLocals.try_emplace(LocalVD, Address::invalid());
841 
842       // Generate the private entry.
843       QualType VarTy = LocalVD->getType();
844       if (VarTy->isReferenceType()) {
845         Address Temp = CGF.CreateMemTemp(VarTy);
846         CGF.Builder.CreateStore(TempAddr.getPointer(), Temp);
847         TempAddr = Temp;
848       }
849       SavedTempAddresses.try_emplace(LocalVD, TempAddr);
850 
851       return true;
852     }
853 
854     /// Applies new addresses to the list of the variables.
855     /// \return true if at least one variable is using new address, false
856     /// otherwise.
857     bool apply(CodeGenFunction &CGF) {
858       copyInto(SavedTempAddresses, CGF.LocalDeclMap);
859       SavedTempAddresses.clear();
860       return !SavedLocals.empty();
861     }
862 
863     /// Restores original addresses of the variables.
864     void restore(CodeGenFunction &CGF) {
865       if (!SavedLocals.empty()) {
866         copyInto(SavedLocals, CGF.LocalDeclMap);
867         SavedLocals.clear();
868       }
869     }
870 
871   private:
872     /// Copy all the entries in the source map over the corresponding
873     /// entries in the destination, which must exist.
874     static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) {
875       for (auto &Pair : Src) {
876         if (!Pair.second.isValid()) {
877           Dest.erase(Pair.first);
878           continue;
879         }
880 
881         auto I = Dest.find(Pair.first);
882         if (I != Dest.end())
883           I->second = Pair.second;
884         else
885           Dest.insert(Pair);
886       }
887     }
888   };
889 
890   /// The scope used to remap some variables as private in the OpenMP loop body
891   /// (or other captured region emitted without outlining), and to restore old
892   /// vars back on exit.
893   class OMPPrivateScope : public RunCleanupsScope {
894     OMPMapVars MappedVars;
895     OMPPrivateScope(const OMPPrivateScope &) = delete;
896     void operator=(const OMPPrivateScope &) = delete;
897 
898   public:
899     /// Enter a new OpenMP private scope.
900     explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}
901 
902     /// Registers \p LocalVD variable as a private and apply \p PrivateGen
903     /// function for it to generate corresponding private variable. \p
904     /// PrivateGen returns an address of the generated private variable.
905     /// \return true if the variable is registered as private, false if it has
906     /// been privatized already.
907     bool addPrivate(const VarDecl *LocalVD,
908                     const llvm::function_ref<Address()> PrivateGen) {
909       assert(PerformCleanup && "adding private to dead scope");
910       return MappedVars.setVarAddr(CGF, LocalVD, PrivateGen());
911     }
912 
913     /// Privatizes local variables previously registered as private.
914     /// Registration is separate from the actual privatization to allow
915     /// initializers use values of the original variables, not the private one.
916     /// This is important, for example, if the private variable is a class
917     /// variable initialized by a constructor that references other private
918     /// variables. But at initialization original variables must be used, not
919     /// private copies.
920     /// \return true if at least one variable was privatized, false otherwise.
921     bool Privatize() { return MappedVars.apply(CGF); }
922 
923     void ForceCleanup() {
924       RunCleanupsScope::ForceCleanup();
925       MappedVars.restore(CGF);
926     }
927 
928     /// Exit scope - all the mapped variables are restored.
929     ~OMPPrivateScope() {
930       if (PerformCleanup)
931         ForceCleanup();
932     }
933 
934     /// Checks if the global variable is captured in current function.
935     bool isGlobalVarCaptured(const VarDecl *VD) const {
936       VD = VD->getCanonicalDecl();
937       return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0;
938     }
939   };
940 
941   /// Takes the old cleanup stack size and emits the cleanup blocks
942   /// that have been added.
943   void
944   PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
945                    std::initializer_list<llvm::Value **> ValuesToReload = {});
946 
947   /// Takes the old cleanup stack size and emits the cleanup blocks
948   /// that have been added, then adds all lifetime-extended cleanups from
949   /// the given position to the stack.
950   void
951   PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
952                    size_t OldLifetimeExtendedStackSize,
953                    std::initializer_list<llvm::Value **> ValuesToReload = {});
954 
955   void ResolveBranchFixups(llvm::BasicBlock *Target);
956 
957   /// The given basic block lies in the current EH scope, but may be a
958   /// target of a potentially scope-crossing jump; get a stable handle
959   /// to which we can perform this jump later.
960   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
961     return JumpDest(Target,
962                     EHStack.getInnermostNormalCleanup(),
963                     NextCleanupDestIndex++);
964   }
965 
966   /// The given basic block lies in the current EH scope, but may be a
967   /// target of a potentially scope-crossing jump; get a stable handle
968   /// to which we can perform this jump later.
969   JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
970     return getJumpDestInCurrentScope(createBasicBlock(Name));
971   }
972 
973   /// EmitBranchThroughCleanup - Emit a branch from the current insert
974   /// block through the normal cleanup handling code (if any) and then
975   /// on to \arg Dest.
976   void EmitBranchThroughCleanup(JumpDest Dest);
977 
978   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
979   /// specified destination obviously has no cleanups to run.  'false' is always
980   /// a conservatively correct answer for this method.
981   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
982 
983   /// popCatchScope - Pops the catch scope at the top of the EHScope
984   /// stack, emitting any required code (other than the catch handlers
985   /// themselves).
986   void popCatchScope();
987 
988   llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
989   llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
990   llvm::BasicBlock *
991   getFuncletEHDispatchBlock(EHScopeStack::stable_iterator scope);
992 
993   /// An object to manage conditionally-evaluated expressions.
994   class ConditionalEvaluation {
995     llvm::BasicBlock *StartBB;
996 
997   public:
998     ConditionalEvaluation(CodeGenFunction &CGF)
999       : StartBB(CGF.Builder.GetInsertBlock()) {}
1000 
1001     void begin(CodeGenFunction &CGF) {
1002       assert(CGF.OutermostConditional != this);
1003       if (!CGF.OutermostConditional)
1004         CGF.OutermostConditional = this;
1005     }
1006 
1007     void end(CodeGenFunction &CGF) {
1008       assert(CGF.OutermostConditional != nullptr);
1009       if (CGF.OutermostConditional == this)
1010         CGF.OutermostConditional = nullptr;
1011     }
1012 
1013     /// Returns a block which will be executed prior to each
1014     /// evaluation of the conditional code.
1015     llvm::BasicBlock *getStartingBlock() const {
1016       return StartBB;
1017     }
1018   };
1019 
1020   /// isInConditionalBranch - Return true if we're currently emitting
1021   /// one branch or the other of a conditional expression.
1022   bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
1023 
1024   void setBeforeOutermostConditional(llvm::Value *value, Address addr) {
1025     assert(isInConditionalBranch());
1026     llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
1027     auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back());
1028     store->setAlignment(addr.getAlignment().getQuantity());
1029   }
1030 
1031   /// An RAII object to record that we're evaluating a statement
1032   /// expression.
1033   class StmtExprEvaluation {
1034     CodeGenFunction &CGF;
1035 
1036     /// We have to save the outermost conditional: cleanups in a
1037     /// statement expression aren't conditional just because the
1038     /// StmtExpr is.
1039     ConditionalEvaluation *SavedOutermostConditional;
1040 
1041   public:
1042     StmtExprEvaluation(CodeGenFunction &CGF)
1043       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
1044       CGF.OutermostConditional = nullptr;
1045     }
1046 
1047     ~StmtExprEvaluation() {
1048       CGF.OutermostConditional = SavedOutermostConditional;
1049       CGF.EnsureInsertPoint();
1050     }
1051   };
1052 
1053   /// An object which temporarily prevents a value from being
1054   /// destroyed by aggressive peephole optimizations that assume that
1055   /// all uses of a value have been realized in the IR.
1056   class PeepholeProtection {
1057     llvm::Instruction *Inst;
1058     friend class CodeGenFunction;
1059 
1060   public:
1061     PeepholeProtection() : Inst(nullptr) {}
1062   };
1063 
1064   /// A non-RAII class containing all the information about a bound
1065   /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
1066   /// this which makes individual mappings very simple; using this
1067   /// class directly is useful when you have a variable number of
1068   /// opaque values or don't want the RAII functionality for some
1069   /// reason.
1070   class OpaqueValueMappingData {
1071     const OpaqueValueExpr *OpaqueValue;
1072     bool BoundLValue;
1073     CodeGenFunction::PeepholeProtection Protection;
1074 
1075     OpaqueValueMappingData(const OpaqueValueExpr *ov,
1076                            bool boundLValue)
1077       : OpaqueValue(ov), BoundLValue(boundLValue) {}
1078   public:
1079     OpaqueValueMappingData() : OpaqueValue(nullptr) {}
1080 
1081     static bool shouldBindAsLValue(const Expr *expr) {
1082       // gl-values should be bound as l-values for obvious reasons.
1083       // Records should be bound as l-values because IR generation
1084       // always keeps them in memory.  Expressions of function type
1085       // act exactly like l-values but are formally required to be
1086       // r-values in C.
1087       return expr->isGLValue() ||
1088              expr->getType()->isFunctionType() ||
1089              hasAggregateEvaluationKind(expr->getType());
1090     }
1091 
1092     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1093                                        const OpaqueValueExpr *ov,
1094                                        const Expr *e) {
1095       if (shouldBindAsLValue(ov))
1096         return bind(CGF, ov, CGF.EmitLValue(e));
1097       return bind(CGF, ov, CGF.EmitAnyExpr(e));
1098     }
1099 
1100     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1101                                        const OpaqueValueExpr *ov,
1102                                        const LValue &lv) {
1103       assert(shouldBindAsLValue(ov));
1104       CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
1105       return OpaqueValueMappingData(ov, true);
1106     }
1107 
1108     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1109                                        const OpaqueValueExpr *ov,
1110                                        const RValue &rv) {
1111       assert(!shouldBindAsLValue(ov));
1112       CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
1113 
1114       OpaqueValueMappingData data(ov, false);
1115 
1116       // Work around an extremely aggressive peephole optimization in
1117       // EmitScalarConversion which assumes that all other uses of a
1118       // value are extant.
1119       data.Protection = CGF.protectFromPeepholes(rv);
1120 
1121       return data;
1122     }
1123 
1124     bool isValid() const { return OpaqueValue != nullptr; }
1125     void clear() { OpaqueValue = nullptr; }
1126 
1127     void unbind(CodeGenFunction &CGF) {
1128       assert(OpaqueValue && "no data to unbind!");
1129 
1130       if (BoundLValue) {
1131         CGF.OpaqueLValues.erase(OpaqueValue);
1132       } else {
1133         CGF.OpaqueRValues.erase(OpaqueValue);
1134         CGF.unprotectFromPeepholes(Protection);
1135       }
1136     }
1137   };
1138 
1139   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
1140   class OpaqueValueMapping {
1141     CodeGenFunction &CGF;
1142     OpaqueValueMappingData Data;
1143 
1144   public:
1145     static bool shouldBindAsLValue(const Expr *expr) {
1146       return OpaqueValueMappingData::shouldBindAsLValue(expr);
1147     }
1148 
1149     /// Build the opaque value mapping for the given conditional
1150     /// operator if it's the GNU ?: extension.  This is a common
1151     /// enough pattern that the convenience operator is really
1152     /// helpful.
1153     ///
1154     OpaqueValueMapping(CodeGenFunction &CGF,
1155                        const AbstractConditionalOperator *op) : CGF(CGF) {
1156       if (isa<ConditionalOperator>(op))
1157         // Leave Data empty.
1158         return;
1159 
1160       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
1161       Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
1162                                           e->getCommon());
1163     }
1164 
1165     /// Build the opaque value mapping for an OpaqueValueExpr whose source
1166     /// expression is set to the expression the OVE represents.
1167     OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV)
1168         : CGF(CGF) {
1169       if (OV) {
1170         assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used "
1171                                       "for OVE with no source expression");
1172         Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr());
1173       }
1174     }
1175 
1176     OpaqueValueMapping(CodeGenFunction &CGF,
1177                        const OpaqueValueExpr *opaqueValue,
1178                        LValue lvalue)
1179       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
1180     }
1181 
1182     OpaqueValueMapping(CodeGenFunction &CGF,
1183                        const OpaqueValueExpr *opaqueValue,
1184                        RValue rvalue)
1185       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
1186     }
1187 
1188     void pop() {
1189       Data.unbind(CGF);
1190       Data.clear();
1191     }
1192 
1193     ~OpaqueValueMapping() {
1194       if (Data.isValid()) Data.unbind(CGF);
1195     }
1196   };
1197 
1198 private:
1199   CGDebugInfo *DebugInfo;
1200   /// Used to create unique names for artificial VLA size debug info variables.
1201   unsigned VLAExprCounter = 0;
1202   bool DisableDebugInfo = false;
1203 
1204   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
1205   /// calling llvm.stacksave for multiple VLAs in the same scope.
1206   bool DidCallStackSave = false;
1207 
1208   /// IndirectBranch - The first time an indirect goto is seen we create a block
1209   /// with an indirect branch.  Every time we see the address of a label taken,
1210   /// we add the label to the indirect goto.  Every subsequent indirect goto is
1211   /// codegen'd as a jump to the IndirectBranch's basic block.
1212   llvm::IndirectBrInst *IndirectBranch = nullptr;
1213 
1214   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1215   /// decls.
1216   DeclMapTy LocalDeclMap;
1217 
1218   // Keep track of the cleanups for callee-destructed parameters pushed to the
1219   // cleanup stack so that they can be deactivated later.
1220   llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator>
1221       CalleeDestructedParamCleanups;
1222 
1223   /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this
1224   /// will contain a mapping from said ParmVarDecl to its implicit "object_size"
1225   /// parameter.
1226   llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2>
1227       SizeArguments;
1228 
1229   /// Track escaped local variables with auto storage. Used during SEH
1230   /// outlining to produce a call to llvm.localescape.
1231   llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;
1232 
1233   /// LabelMap - This keeps track of the LLVM basic block for each C label.
1234   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1235 
1236   // BreakContinueStack - This keeps track of where break and continue
1237   // statements should jump to.
1238   struct BreakContinue {
1239     BreakContinue(JumpDest Break, JumpDest Continue)
1240       : BreakBlock(Break), ContinueBlock(Continue) {}
1241 
1242     JumpDest BreakBlock;
1243     JumpDest ContinueBlock;
1244   };
1245   SmallVector<BreakContinue, 8> BreakContinueStack;
1246 
1247   /// Handles cancellation exit points in OpenMP-related constructs.
1248   class OpenMPCancelExitStack {
1249     /// Tracks cancellation exit point and join point for cancel-related exit
1250     /// and normal exit.
1251     struct CancelExit {
1252       CancelExit() = default;
1253       CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock,
1254                  JumpDest ContBlock)
1255           : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {}
1256       OpenMPDirectiveKind Kind = OMPD_unknown;
1257       /// true if the exit block has been emitted already by the special
1258       /// emitExit() call, false if the default codegen is used.
1259       bool HasBeenEmitted = false;
1260       JumpDest ExitBlock;
1261       JumpDest ContBlock;
1262     };
1263 
1264     SmallVector<CancelExit, 8> Stack;
1265 
1266   public:
1267     OpenMPCancelExitStack() : Stack(1) {}
1268     ~OpenMPCancelExitStack() = default;
1269     /// Fetches the exit block for the current OpenMP construct.
1270     JumpDest getExitBlock() const { return Stack.back().ExitBlock; }
1271     /// Emits exit block with special codegen procedure specific for the related
1272     /// OpenMP construct + emits code for normal construct cleanup.
1273     void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
1274                   const llvm::function_ref<void(CodeGenFunction &)> CodeGen) {
1275       if (Stack.back().Kind == Kind && getExitBlock().isValid()) {
1276         assert(CGF.getOMPCancelDestination(Kind).isValid());
1277         assert(CGF.HaveInsertPoint());
1278         assert(!Stack.back().HasBeenEmitted);
1279         auto IP = CGF.Builder.saveAndClearIP();
1280         CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1281         CodeGen(CGF);
1282         CGF.EmitBranch(Stack.back().ContBlock.getBlock());
1283         CGF.Builder.restoreIP(IP);
1284         Stack.back().HasBeenEmitted = true;
1285       }
1286       CodeGen(CGF);
1287     }
1288     /// Enter the cancel supporting \a Kind construct.
1289     /// \param Kind OpenMP directive that supports cancel constructs.
1290     /// \param HasCancel true, if the construct has inner cancel directive,
1291     /// false otherwise.
1292     void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) {
1293       Stack.push_back({Kind,
1294                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit")
1295                                  : JumpDest(),
1296                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont")
1297                                  : JumpDest()});
1298     }
1299     /// Emits default exit point for the cancel construct (if the special one
1300     /// has not be used) + join point for cancel/normal exits.
1301     void exit(CodeGenFunction &CGF) {
1302       if (getExitBlock().isValid()) {
1303         assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid());
1304         bool HaveIP = CGF.HaveInsertPoint();
1305         if (!Stack.back().HasBeenEmitted) {
1306           if (HaveIP)
1307             CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1308           CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1309           CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1310         }
1311         CGF.EmitBlock(Stack.back().ContBlock.getBlock());
1312         if (!HaveIP) {
1313           CGF.Builder.CreateUnreachable();
1314           CGF.Builder.ClearInsertionPoint();
1315         }
1316       }
1317       Stack.pop_back();
1318     }
1319   };
1320   OpenMPCancelExitStack OMPCancelStack;
1321 
1322   CodeGenPGO PGO;
1323 
1324   /// Calculate branch weights appropriate for PGO data
1325   llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount);
1326   llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights);
1327   llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond,
1328                                             uint64_t LoopCount);
1329 
1330 public:
1331   /// Increment the profiler's counter for the given statement by \p StepV.
1332   /// If \p StepV is null, the default increment is 1.
1333   void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) {
1334     if (CGM.getCodeGenOpts().hasProfileClangInstr())
1335       PGO.emitCounterIncrement(Builder, S, StepV);
1336     PGO.setCurrentStmt(S);
1337   }
1338 
1339   /// Get the profiler's count for the given statement.
1340   uint64_t getProfileCount(const Stmt *S) {
1341     Optional<uint64_t> Count = PGO.getStmtCount(S);
1342     if (!Count.hasValue())
1343       return 0;
1344     return *Count;
1345   }
1346 
1347   /// Set the profiler's current count.
1348   void setCurrentProfileCount(uint64_t Count) {
1349     PGO.setCurrentRegionCount(Count);
1350   }
1351 
1352   /// Get the profiler's current count. This is generally the count for the most
1353   /// recently incremented counter.
1354   uint64_t getCurrentProfileCount() {
1355     return PGO.getCurrentRegionCount();
1356   }
1357 
1358 private:
1359 
1360   /// SwitchInsn - This is nearest current switch instruction. It is null if
1361   /// current context is not in a switch.
1362   llvm::SwitchInst *SwitchInsn = nullptr;
1363   /// The branch weights of SwitchInsn when doing instrumentation based PGO.
1364   SmallVector<uint64_t, 16> *SwitchWeights = nullptr;
1365 
1366   /// CaseRangeBlock - This block holds if condition check for last case
1367   /// statement range in current switch instruction.
1368   llvm::BasicBlock *CaseRangeBlock = nullptr;
1369 
1370   /// OpaqueLValues - Keeps track of the current set of opaque value
1371   /// expressions.
1372   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1373   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1374 
1375   // VLASizeMap - This keeps track of the associated size for each VLA type.
1376   // We track this by the size expression rather than the type itself because
1377   // in certain situations, like a const qualifier applied to an VLA typedef,
1378   // multiple VLA types can share the same size expression.
1379   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1380   // enter/leave scopes.
1381   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1382 
1383   /// A block containing a single 'unreachable' instruction.  Created
1384   /// lazily by getUnreachableBlock().
1385   llvm::BasicBlock *UnreachableBlock = nullptr;
1386 
1387   /// Counts of the number return expressions in the function.
1388   unsigned NumReturnExprs = 0;
1389 
1390   /// Count the number of simple (constant) return expressions in the function.
1391   unsigned NumSimpleReturnExprs = 0;
1392 
1393   /// The last regular (non-return) debug location (breakpoint) in the function.
1394   SourceLocation LastStopPoint;
1395 
1396 public:
1397   /// Source location information about the default argument or member
1398   /// initializer expression we're evaluating, if any.
1399   CurrentSourceLocExprScope CurSourceLocExprScope;
1400   using SourceLocExprScopeGuard =
1401       CurrentSourceLocExprScope::SourceLocExprScopeGuard;
1402 
1403   /// A scope within which we are constructing the fields of an object which
1404   /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
1405   /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
1406   class FieldConstructionScope {
1407   public:
1408     FieldConstructionScope(CodeGenFunction &CGF, Address This)
1409         : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
1410       CGF.CXXDefaultInitExprThis = This;
1411     }
1412     ~FieldConstructionScope() {
1413       CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
1414     }
1415 
1416   private:
1417     CodeGenFunction &CGF;
1418     Address OldCXXDefaultInitExprThis;
1419   };
1420 
1421   /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
1422   /// is overridden to be the object under construction.
1423   class CXXDefaultInitExprScope  {
1424   public:
1425     CXXDefaultInitExprScope(CodeGenFunction &CGF, const CXXDefaultInitExpr *E)
1426         : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue),
1427           OldCXXThisAlignment(CGF.CXXThisAlignment),
1428           SourceLocScope(E, CGF.CurSourceLocExprScope) {
1429       CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer();
1430       CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment();
1431     }
1432     ~CXXDefaultInitExprScope() {
1433       CGF.CXXThisValue = OldCXXThisValue;
1434       CGF.CXXThisAlignment = OldCXXThisAlignment;
1435     }
1436 
1437   public:
1438     CodeGenFunction &CGF;
1439     llvm::Value *OldCXXThisValue;
1440     CharUnits OldCXXThisAlignment;
1441     SourceLocExprScopeGuard SourceLocScope;
1442   };
1443 
1444   struct CXXDefaultArgExprScope : SourceLocExprScopeGuard {
1445     CXXDefaultArgExprScope(CodeGenFunction &CGF, const CXXDefaultArgExpr *E)
1446         : SourceLocExprScopeGuard(E, CGF.CurSourceLocExprScope) {}
1447   };
1448 
1449   /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the
1450   /// current loop index is overridden.
1451   class ArrayInitLoopExprScope {
1452   public:
1453     ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index)
1454       : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) {
1455       CGF.ArrayInitIndex = Index;
1456     }
1457     ~ArrayInitLoopExprScope() {
1458       CGF.ArrayInitIndex = OldArrayInitIndex;
1459     }
1460 
1461   private:
1462     CodeGenFunction &CGF;
1463     llvm::Value *OldArrayInitIndex;
1464   };
1465 
1466   class InlinedInheritingConstructorScope {
1467   public:
1468     InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD)
1469         : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl),
1470           OldCurCodeDecl(CGF.CurCodeDecl),
1471           OldCXXABIThisDecl(CGF.CXXABIThisDecl),
1472           OldCXXABIThisValue(CGF.CXXABIThisValue),
1473           OldCXXThisValue(CGF.CXXThisValue),
1474           OldCXXABIThisAlignment(CGF.CXXABIThisAlignment),
1475           OldCXXThisAlignment(CGF.CXXThisAlignment),
1476           OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy),
1477           OldCXXInheritedCtorInitExprArgs(
1478               std::move(CGF.CXXInheritedCtorInitExprArgs)) {
1479       CGF.CurGD = GD;
1480       CGF.CurFuncDecl = CGF.CurCodeDecl =
1481           cast<CXXConstructorDecl>(GD.getDecl());
1482       CGF.CXXABIThisDecl = nullptr;
1483       CGF.CXXABIThisValue = nullptr;
1484       CGF.CXXThisValue = nullptr;
1485       CGF.CXXABIThisAlignment = CharUnits();
1486       CGF.CXXThisAlignment = CharUnits();
1487       CGF.ReturnValue = Address::invalid();
1488       CGF.FnRetTy = QualType();
1489       CGF.CXXInheritedCtorInitExprArgs.clear();
1490     }
1491     ~InlinedInheritingConstructorScope() {
1492       CGF.CurGD = OldCurGD;
1493       CGF.CurFuncDecl = OldCurFuncDecl;
1494       CGF.CurCodeDecl = OldCurCodeDecl;
1495       CGF.CXXABIThisDecl = OldCXXABIThisDecl;
1496       CGF.CXXABIThisValue = OldCXXABIThisValue;
1497       CGF.CXXThisValue = OldCXXThisValue;
1498       CGF.CXXABIThisAlignment = OldCXXABIThisAlignment;
1499       CGF.CXXThisAlignment = OldCXXThisAlignment;
1500       CGF.ReturnValue = OldReturnValue;
1501       CGF.FnRetTy = OldFnRetTy;
1502       CGF.CXXInheritedCtorInitExprArgs =
1503           std::move(OldCXXInheritedCtorInitExprArgs);
1504     }
1505 
1506   private:
1507     CodeGenFunction &CGF;
1508     GlobalDecl OldCurGD;
1509     const Decl *OldCurFuncDecl;
1510     const Decl *OldCurCodeDecl;
1511     ImplicitParamDecl *OldCXXABIThisDecl;
1512     llvm::Value *OldCXXABIThisValue;
1513     llvm::Value *OldCXXThisValue;
1514     CharUnits OldCXXABIThisAlignment;
1515     CharUnits OldCXXThisAlignment;
1516     Address OldReturnValue;
1517     QualType OldFnRetTy;
1518     CallArgList OldCXXInheritedCtorInitExprArgs;
1519   };
1520 
1521 private:
1522   /// CXXThisDecl - When generating code for a C++ member function,
1523   /// this will hold the implicit 'this' declaration.
1524   ImplicitParamDecl *CXXABIThisDecl = nullptr;
1525   llvm::Value *CXXABIThisValue = nullptr;
1526   llvm::Value *CXXThisValue = nullptr;
1527   CharUnits CXXABIThisAlignment;
1528   CharUnits CXXThisAlignment;
1529 
1530   /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
1531   /// this expression.
1532   Address CXXDefaultInitExprThis = Address::invalid();
1533 
1534   /// The current array initialization index when evaluating an
1535   /// ArrayInitIndexExpr within an ArrayInitLoopExpr.
1536   llvm::Value *ArrayInitIndex = nullptr;
1537 
1538   /// The values of function arguments to use when evaluating
1539   /// CXXInheritedCtorInitExprs within this context.
1540   CallArgList CXXInheritedCtorInitExprArgs;
1541 
1542   /// CXXStructorImplicitParamDecl - When generating code for a constructor or
1543   /// destructor, this will hold the implicit argument (e.g. VTT).
1544   ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr;
1545   llvm::Value *CXXStructorImplicitParamValue = nullptr;
1546 
1547   /// OutermostConditional - Points to the outermost active
1548   /// conditional control.  This is used so that we know if a
1549   /// temporary should be destroyed conditionally.
1550   ConditionalEvaluation *OutermostConditional = nullptr;
1551 
1552   /// The current lexical scope.
1553   LexicalScope *CurLexicalScope = nullptr;
1554 
1555   /// The current source location that should be used for exception
1556   /// handling code.
1557   SourceLocation CurEHLocation;
1558 
1559   /// BlockByrefInfos - For each __block variable, contains
1560   /// information about the layout of the variable.
1561   llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos;
1562 
1563   /// Used by -fsanitize=nullability-return to determine whether the return
1564   /// value can be checked.
1565   llvm::Value *RetValNullabilityPrecondition = nullptr;
1566 
1567   /// Check if -fsanitize=nullability-return instrumentation is required for
1568   /// this function.
1569   bool requiresReturnValueNullabilityCheck() const {
1570     return RetValNullabilityPrecondition;
1571   }
1572 
1573   /// Used to store precise source locations for return statements by the
1574   /// runtime return value checks.
1575   Address ReturnLocation = Address::invalid();
1576 
1577   /// Check if the return value of this function requires sanitization.
1578   bool requiresReturnValueCheck() const {
1579     return requiresReturnValueNullabilityCheck() ||
1580            (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
1581             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>());
1582   }
1583 
1584   llvm::BasicBlock *TerminateLandingPad = nullptr;
1585   llvm::BasicBlock *TerminateHandler = nullptr;
1586   llvm::BasicBlock *TrapBB = nullptr;
1587 
1588   /// Terminate funclets keyed by parent funclet pad.
1589   llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets;
1590 
1591   /// Largest vector width used in ths function. Will be used to create a
1592   /// function attribute.
1593   unsigned LargestVectorWidth = 0;
1594 
1595   /// True if we need emit the life-time markers.
1596   const bool ShouldEmitLifetimeMarkers;
1597 
1598   /// Add OpenCL kernel arg metadata and the kernel attribute metadata to
1599   /// the function metadata.
1600   void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
1601                                 llvm::Function *Fn);
1602 
1603 public:
1604   CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1605   ~CodeGenFunction();
1606 
1607   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1608   ASTContext &getContext() const { return CGM.getContext(); }
1609   CGDebugInfo *getDebugInfo() {
1610     if (DisableDebugInfo)
1611       return nullptr;
1612     return DebugInfo;
1613   }
1614   void disableDebugInfo() { DisableDebugInfo = true; }
1615   void enableDebugInfo() { DisableDebugInfo = false; }
1616 
1617   bool shouldUseFusedARCCalls() {
1618     return CGM.getCodeGenOpts().OptimizationLevel == 0;
1619   }
1620 
1621   const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1622 
1623   /// Returns a pointer to the function's exception object and selector slot,
1624   /// which is assigned in every landing pad.
1625   Address getExceptionSlot();
1626   Address getEHSelectorSlot();
1627 
1628   /// Returns the contents of the function's exception object and selector
1629   /// slots.
1630   llvm::Value *getExceptionFromSlot();
1631   llvm::Value *getSelectorFromSlot();
1632 
1633   Address getNormalCleanupDestSlot();
1634 
1635   llvm::BasicBlock *getUnreachableBlock() {
1636     if (!UnreachableBlock) {
1637       UnreachableBlock = createBasicBlock("unreachable");
1638       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1639     }
1640     return UnreachableBlock;
1641   }
1642 
1643   llvm::BasicBlock *getInvokeDest() {
1644     if (!EHStack.requiresLandingPad()) return nullptr;
1645     return getInvokeDestImpl();
1646   }
1647 
1648   bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; }
1649 
1650   const TargetInfo &getTarget() const { return Target; }
1651   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1652   const TargetCodeGenInfo &getTargetHooks() const {
1653     return CGM.getTargetCodeGenInfo();
1654   }
1655 
1656   //===--------------------------------------------------------------------===//
1657   //                                  Cleanups
1658   //===--------------------------------------------------------------------===//
1659 
1660   typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty);
1661 
1662   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1663                                         Address arrayEndPointer,
1664                                         QualType elementType,
1665                                         CharUnits elementAlignment,
1666                                         Destroyer *destroyer);
1667   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1668                                       llvm::Value *arrayEnd,
1669                                       QualType elementType,
1670                                       CharUnits elementAlignment,
1671                                       Destroyer *destroyer);
1672 
1673   void pushDestroy(QualType::DestructionKind dtorKind,
1674                    Address addr, QualType type);
1675   void pushEHDestroy(QualType::DestructionKind dtorKind,
1676                      Address addr, QualType type);
1677   void pushDestroy(CleanupKind kind, Address addr, QualType type,
1678                    Destroyer *destroyer, bool useEHCleanupForArray);
1679   void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr,
1680                                    QualType type, Destroyer *destroyer,
1681                                    bool useEHCleanupForArray);
1682   void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1683                                    llvm::Value *CompletePtr,
1684                                    QualType ElementType);
1685   void pushStackRestore(CleanupKind kind, Address SPMem);
1686   void emitDestroy(Address addr, QualType type, Destroyer *destroyer,
1687                    bool useEHCleanupForArray);
1688   llvm::Function *generateDestroyHelper(Address addr, QualType type,
1689                                         Destroyer *destroyer,
1690                                         bool useEHCleanupForArray,
1691                                         const VarDecl *VD);
1692   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1693                         QualType elementType, CharUnits elementAlign,
1694                         Destroyer *destroyer,
1695                         bool checkZeroLength, bool useEHCleanup);
1696 
1697   Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1698 
1699   /// Determines whether an EH cleanup is required to destroy a type
1700   /// with the given destruction kind.
1701   bool needsEHCleanup(QualType::DestructionKind kind) {
1702     switch (kind) {
1703     case QualType::DK_none:
1704       return false;
1705     case QualType::DK_cxx_destructor:
1706     case QualType::DK_objc_weak_lifetime:
1707     case QualType::DK_nontrivial_c_struct:
1708       return getLangOpts().Exceptions;
1709     case QualType::DK_objc_strong_lifetime:
1710       return getLangOpts().Exceptions &&
1711              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1712     }
1713     llvm_unreachable("bad destruction kind");
1714   }
1715 
1716   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
1717     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1718   }
1719 
1720   //===--------------------------------------------------------------------===//
1721   //                                  Objective-C
1722   //===--------------------------------------------------------------------===//
1723 
1724   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1725 
1726   void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
1727 
1728   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1729   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1730                           const ObjCPropertyImplDecl *PID);
1731   void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1732                               const ObjCPropertyImplDecl *propImpl,
1733                               const ObjCMethodDecl *GetterMothodDecl,
1734                               llvm::Constant *AtomicHelperFn);
1735 
1736   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1737                                   ObjCMethodDecl *MD, bool ctor);
1738 
1739   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1740   /// for the given property.
1741   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1742                           const ObjCPropertyImplDecl *PID);
1743   void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1744                               const ObjCPropertyImplDecl *propImpl,
1745                               llvm::Constant *AtomicHelperFn);
1746 
1747   //===--------------------------------------------------------------------===//
1748   //                                  Block Bits
1749   //===--------------------------------------------------------------------===//
1750 
1751   /// Emit block literal.
1752   /// \return an LLVM value which is a pointer to a struct which contains
1753   /// information about the block, including the block invoke function, the
1754   /// captured variables, etc.
1755   llvm::Value *EmitBlockLiteral(const BlockExpr *);
1756   static void destroyBlockInfos(CGBlockInfo *info);
1757 
1758   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1759                                         const CGBlockInfo &Info,
1760                                         const DeclMapTy &ldm,
1761                                         bool IsLambdaConversionToBlock,
1762                                         bool BuildGlobalBlock);
1763 
1764   /// Check if \p T is a C++ class that has a destructor that can throw.
1765   static bool cxxDestructorCanThrow(QualType T);
1766 
1767   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1768   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1769   llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
1770                                              const ObjCPropertyImplDecl *PID);
1771   llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
1772                                              const ObjCPropertyImplDecl *PID);
1773   llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
1774 
1775   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags,
1776                          bool CanThrow);
1777 
1778   class AutoVarEmission;
1779 
1780   void emitByrefStructureInit(const AutoVarEmission &emission);
1781 
1782   /// Enter a cleanup to destroy a __block variable.  Note that this
1783   /// cleanup should be a no-op if the variable hasn't left the stack
1784   /// yet; if a cleanup is required for the variable itself, that needs
1785   /// to be done externally.
1786   ///
1787   /// \param Kind Cleanup kind.
1788   ///
1789   /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block
1790   /// structure that will be passed to _Block_object_dispose. When
1791   /// \p LoadBlockVarAddr is true, the address of the field of the block
1792   /// structure that holds the address of the __block structure.
1793   ///
1794   /// \param Flags The flag that will be passed to _Block_object_dispose.
1795   ///
1796   /// \param LoadBlockVarAddr Indicates whether we need to emit a load from
1797   /// \p Addr to get the address of the __block structure.
1798   void enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags,
1799                          bool LoadBlockVarAddr, bool CanThrow);
1800 
1801   void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum,
1802                                 llvm::Value *ptr);
1803 
1804   Address LoadBlockStruct();
1805   Address GetAddrOfBlockDecl(const VarDecl *var);
1806 
1807   /// BuildBlockByrefAddress - Computes the location of the
1808   /// data in a variable which is declared as __block.
1809   Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V,
1810                                 bool followForward = true);
1811   Address emitBlockByrefAddress(Address baseAddr,
1812                                 const BlockByrefInfo &info,
1813                                 bool followForward,
1814                                 const llvm::Twine &name);
1815 
1816   const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var);
1817 
1818   QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args);
1819 
1820   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1821                     const CGFunctionInfo &FnInfo);
1822 
1823   /// Annotate the function with an attribute that disables TSan checking at
1824   /// runtime.
1825   void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn);
1826 
1827   /// Emit code for the start of a function.
1828   /// \param Loc       The location to be associated with the function.
1829   /// \param StartLoc  The location of the function body.
1830   void StartFunction(GlobalDecl GD,
1831                      QualType RetTy,
1832                      llvm::Function *Fn,
1833                      const CGFunctionInfo &FnInfo,
1834                      const FunctionArgList &Args,
1835                      SourceLocation Loc = SourceLocation(),
1836                      SourceLocation StartLoc = SourceLocation());
1837 
1838   static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor);
1839 
1840   void EmitConstructorBody(FunctionArgList &Args);
1841   void EmitDestructorBody(FunctionArgList &Args);
1842   void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
1843   void EmitFunctionBody(const Stmt *Body);
1844   void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S);
1845 
1846   void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
1847                                   CallArgList &CallArgs);
1848   void EmitLambdaBlockInvokeBody();
1849   void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
1850   void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD);
1851   void EmitLambdaVLACapture(const VariableArrayType *VAT, LValue LV) {
1852     EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
1853   }
1854   void EmitAsanPrologueOrEpilogue(bool Prologue);
1855 
1856   /// Emit the unified return block, trying to avoid its emission when
1857   /// possible.
1858   /// \return The debug location of the user written return statement if the
1859   /// return block is is avoided.
1860   llvm::DebugLoc EmitReturnBlock();
1861 
1862   /// FinishFunction - Complete IR generation of the current function. It is
1863   /// legal to call this function even if there is no current insertion point.
1864   void FinishFunction(SourceLocation EndLoc=SourceLocation());
1865 
1866   void StartThunk(llvm::Function *Fn, GlobalDecl GD,
1867                   const CGFunctionInfo &FnInfo, bool IsUnprototyped);
1868 
1869   void EmitCallAndReturnForThunk(llvm::FunctionCallee Callee,
1870                                  const ThunkInfo *Thunk, bool IsUnprototyped);
1871 
1872   void FinishThunk();
1873 
1874   /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
1875   void EmitMustTailThunk(GlobalDecl GD, llvm::Value *AdjustedThisPtr,
1876                          llvm::FunctionCallee Callee);
1877 
1878   /// Generate a thunk for the given method.
1879   void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1880                      GlobalDecl GD, const ThunkInfo &Thunk,
1881                      bool IsUnprototyped);
1882 
1883   llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn,
1884                                        const CGFunctionInfo &FnInfo,
1885                                        GlobalDecl GD, const ThunkInfo &Thunk);
1886 
1887   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1888                         FunctionArgList &Args);
1889 
1890   void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init);
1891 
1892   /// Struct with all information about dynamic [sub]class needed to set vptr.
1893   struct VPtr {
1894     BaseSubobject Base;
1895     const CXXRecordDecl *NearestVBase;
1896     CharUnits OffsetFromNearestVBase;
1897     const CXXRecordDecl *VTableClass;
1898   };
1899 
1900   /// Initialize the vtable pointer of the given subobject.
1901   void InitializeVTablePointer(const VPtr &vptr);
1902 
1903   typedef llvm::SmallVector<VPtr, 4> VPtrsVector;
1904 
1905   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1906   VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass);
1907 
1908   void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase,
1909                          CharUnits OffsetFromNearestVBase,
1910                          bool BaseIsNonVirtualPrimaryBase,
1911                          const CXXRecordDecl *VTableClass,
1912                          VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs);
1913 
1914   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1915 
1916   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1917   /// to by This.
1918   llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy,
1919                             const CXXRecordDecl *VTableClass);
1920 
1921   enum CFITypeCheckKind {
1922     CFITCK_VCall,
1923     CFITCK_NVCall,
1924     CFITCK_DerivedCast,
1925     CFITCK_UnrelatedCast,
1926     CFITCK_ICall,
1927     CFITCK_NVMFCall,
1928     CFITCK_VMFCall,
1929   };
1930 
1931   /// Derived is the presumed address of an object of type T after a
1932   /// cast. If T is a polymorphic class type, emit a check that the virtual
1933   /// table for Derived belongs to a class derived from T.
1934   void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived,
1935                                  bool MayBeNull, CFITypeCheckKind TCK,
1936                                  SourceLocation Loc);
1937 
1938   /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
1939   /// If vptr CFI is enabled, emit a check that VTable is valid.
1940   void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable,
1941                                  CFITypeCheckKind TCK, SourceLocation Loc);
1942 
1943   /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
1944   /// RD using llvm.type.test.
1945   void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable,
1946                           CFITypeCheckKind TCK, SourceLocation Loc);
1947 
1948   /// If whole-program virtual table optimization is enabled, emit an assumption
1949   /// that VTable is a member of RD's type identifier. Or, if vptr CFI is
1950   /// enabled, emit a check that VTable is a member of RD's type identifier.
1951   void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
1952                                     llvm::Value *VTable, SourceLocation Loc);
1953 
1954   /// Returns whether we should perform a type checked load when loading a
1955   /// virtual function for virtual calls to members of RD. This is generally
1956   /// true when both vcall CFI and whole-program-vtables are enabled.
1957   bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD);
1958 
1959   /// Emit a type checked load from the given vtable.
1960   llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable,
1961                                          uint64_t VTableByteOffset);
1962 
1963   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1964   /// given phase of destruction for a destructor.  The end result
1965   /// should call destructors on members and base classes in reverse
1966   /// order of their construction.
1967   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1968 
1969   /// ShouldInstrumentFunction - Return true if the current function should be
1970   /// instrumented with __cyg_profile_func_* calls
1971   bool ShouldInstrumentFunction();
1972 
1973   /// ShouldXRayInstrument - Return true if the current function should be
1974   /// instrumented with XRay nop sleds.
1975   bool ShouldXRayInstrumentFunction() const;
1976 
1977   /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit
1978   /// XRay custom event handling calls.
1979   bool AlwaysEmitXRayCustomEvents() const;
1980 
1981   /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit
1982   /// XRay typed event handling calls.
1983   bool AlwaysEmitXRayTypedEvents() const;
1984 
1985   /// Encode an address into a form suitable for use in a function prologue.
1986   llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F,
1987                                              llvm::Constant *Addr);
1988 
1989   /// Decode an address used in a function prologue, encoded by \c
1990   /// EncodeAddrForUseInPrologue.
1991   llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F,
1992                                         llvm::Value *EncodedAddr);
1993 
1994   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1995   /// arguments for the given function. This is also responsible for naming the
1996   /// LLVM function arguments.
1997   void EmitFunctionProlog(const CGFunctionInfo &FI,
1998                           llvm::Function *Fn,
1999                           const FunctionArgList &Args);
2000 
2001   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
2002   /// given temporary.
2003   void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
2004                           SourceLocation EndLoc);
2005 
2006   /// Emit a test that checks if the return value \p RV is nonnull.
2007   void EmitReturnValueCheck(llvm::Value *RV);
2008 
2009   /// EmitStartEHSpec - Emit the start of the exception spec.
2010   void EmitStartEHSpec(const Decl *D);
2011 
2012   /// EmitEndEHSpec - Emit the end of the exception spec.
2013   void EmitEndEHSpec(const Decl *D);
2014 
2015   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
2016   llvm::BasicBlock *getTerminateLandingPad();
2017 
2018   /// getTerminateLandingPad - Return a cleanup funclet that just calls
2019   /// terminate.
2020   llvm::BasicBlock *getTerminateFunclet();
2021 
2022   /// getTerminateHandler - Return a handler (not a landing pad, just
2023   /// a catch handler) that just calls terminate.  This is used when
2024   /// a terminate scope encloses a try.
2025   llvm::BasicBlock *getTerminateHandler();
2026 
2027   llvm::Type *ConvertTypeForMem(QualType T);
2028   llvm::Type *ConvertType(QualType T);
2029   llvm::Type *ConvertType(const TypeDecl *T) {
2030     return ConvertType(getContext().getTypeDeclType(T));
2031   }
2032 
2033   /// LoadObjCSelf - Load the value of self. This function is only valid while
2034   /// generating code for an Objective-C method.
2035   llvm::Value *LoadObjCSelf();
2036 
2037   /// TypeOfSelfObject - Return type of object that this self represents.
2038   QualType TypeOfSelfObject();
2039 
2040   /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T.
2041   static TypeEvaluationKind getEvaluationKind(QualType T);
2042 
2043   static bool hasScalarEvaluationKind(QualType T) {
2044     return getEvaluationKind(T) == TEK_Scalar;
2045   }
2046 
2047   static bool hasAggregateEvaluationKind(QualType T) {
2048     return getEvaluationKind(T) == TEK_Aggregate;
2049   }
2050 
2051   /// createBasicBlock - Create an LLVM basic block.
2052   llvm::BasicBlock *createBasicBlock(const Twine &name = "",
2053                                      llvm::Function *parent = nullptr,
2054                                      llvm::BasicBlock *before = nullptr) {
2055     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
2056   }
2057 
2058   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
2059   /// label maps to.
2060   JumpDest getJumpDestForLabel(const LabelDecl *S);
2061 
2062   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
2063   /// another basic block, simplify it. This assumes that no other code could
2064   /// potentially reference the basic block.
2065   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
2066 
2067   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
2068   /// adding a fall-through branch from the current insert block if
2069   /// necessary. It is legal to call this function even if there is no current
2070   /// insertion point.
2071   ///
2072   /// IsFinished - If true, indicates that the caller has finished emitting
2073   /// branches to the given block and does not expect to emit code into it. This
2074   /// means the block can be ignored if it is unreachable.
2075   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
2076 
2077   /// EmitBlockAfterUses - Emit the given block somewhere hopefully
2078   /// near its uses, and leave the insertion point in it.
2079   void EmitBlockAfterUses(llvm::BasicBlock *BB);
2080 
2081   /// EmitBranch - Emit a branch to the specified basic block from the current
2082   /// insert block, taking care to avoid creation of branches from dummy
2083   /// blocks. It is legal to call this function even if there is no current
2084   /// insertion point.
2085   ///
2086   /// This function clears the current insertion point. The caller should follow
2087   /// calls to this function with calls to Emit*Block prior to generation new
2088   /// code.
2089   void EmitBranch(llvm::BasicBlock *Block);
2090 
2091   /// HaveInsertPoint - True if an insertion point is defined. If not, this
2092   /// indicates that the current code being emitted is unreachable.
2093   bool HaveInsertPoint() const {
2094     return Builder.GetInsertBlock() != nullptr;
2095   }
2096 
2097   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
2098   /// emitted IR has a place to go. Note that by definition, if this function
2099   /// creates a block then that block is unreachable; callers may do better to
2100   /// detect when no insertion point is defined and simply skip IR generation.
2101   void EnsureInsertPoint() {
2102     if (!HaveInsertPoint())
2103       EmitBlock(createBasicBlock());
2104   }
2105 
2106   /// ErrorUnsupported - Print out an error that codegen doesn't support the
2107   /// specified stmt yet.
2108   void ErrorUnsupported(const Stmt *S, const char *Type);
2109 
2110   //===--------------------------------------------------------------------===//
2111   //                                  Helpers
2112   //===--------------------------------------------------------------------===//
2113 
2114   LValue MakeAddrLValue(Address Addr, QualType T,
2115                         AlignmentSource Source = AlignmentSource::Type) {
2116     return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
2117                             CGM.getTBAAAccessInfo(T));
2118   }
2119 
2120   LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo,
2121                         TBAAAccessInfo TBAAInfo) {
2122     return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo);
2123   }
2124 
2125   LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
2126                         AlignmentSource Source = AlignmentSource::Type) {
2127     return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
2128                             LValueBaseInfo(Source), CGM.getTBAAAccessInfo(T));
2129   }
2130 
2131   LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
2132                         LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) {
2133     return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
2134                             BaseInfo, TBAAInfo);
2135   }
2136 
2137   LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T);
2138   LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T);
2139   CharUnits getNaturalTypeAlignment(QualType T,
2140                                     LValueBaseInfo *BaseInfo = nullptr,
2141                                     TBAAAccessInfo *TBAAInfo = nullptr,
2142                                     bool forPointeeType = false);
2143   CharUnits getNaturalPointeeTypeAlignment(QualType T,
2144                                            LValueBaseInfo *BaseInfo = nullptr,
2145                                            TBAAAccessInfo *TBAAInfo = nullptr);
2146 
2147   Address EmitLoadOfReference(LValue RefLVal,
2148                               LValueBaseInfo *PointeeBaseInfo = nullptr,
2149                               TBAAAccessInfo *PointeeTBAAInfo = nullptr);
2150   LValue EmitLoadOfReferenceLValue(LValue RefLVal);
2151   LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy,
2152                                    AlignmentSource Source =
2153                                        AlignmentSource::Type) {
2154     LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source),
2155                                     CGM.getTBAAAccessInfo(RefTy));
2156     return EmitLoadOfReferenceLValue(RefLVal);
2157   }
2158 
2159   Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy,
2160                             LValueBaseInfo *BaseInfo = nullptr,
2161                             TBAAAccessInfo *TBAAInfo = nullptr);
2162   LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy);
2163 
2164   /// CreateTempAlloca - This creates an alloca and inserts it into the entry
2165   /// block if \p ArraySize is nullptr, otherwise inserts it at the current
2166   /// insertion point of the builder. The caller is responsible for setting an
2167   /// appropriate alignment on
2168   /// the alloca.
2169   ///
2170   /// \p ArraySize is the number of array elements to be allocated if it
2171   ///    is not nullptr.
2172   ///
2173   /// LangAS::Default is the address space of pointers to local variables and
2174   /// temporaries, as exposed in the source language. In certain
2175   /// configurations, this is not the same as the alloca address space, and a
2176   /// cast is needed to lift the pointer from the alloca AS into
2177   /// LangAS::Default. This can happen when the target uses a restricted
2178   /// address space for the stack but the source language requires
2179   /// LangAS::Default to be a generic address space. The latter condition is
2180   /// common for most programming languages; OpenCL is an exception in that
2181   /// LangAS::Default is the private address space, which naturally maps
2182   /// to the stack.
2183   ///
2184   /// Because the address of a temporary is often exposed to the program in
2185   /// various ways, this function will perform the cast. The original alloca
2186   /// instruction is returned through \p Alloca if it is not nullptr.
2187   ///
2188   /// The cast is not performaed in CreateTempAllocaWithoutCast. This is
2189   /// more efficient if the caller knows that the address will not be exposed.
2190   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp",
2191                                      llvm::Value *ArraySize = nullptr);
2192   Address CreateTempAlloca(llvm::Type *Ty, CharUnits align,
2193                            const Twine &Name = "tmp",
2194                            llvm::Value *ArraySize = nullptr,
2195                            Address *Alloca = nullptr);
2196   Address CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align,
2197                                       const Twine &Name = "tmp",
2198                                       llvm::Value *ArraySize = nullptr);
2199 
2200   /// CreateDefaultAlignedTempAlloca - This creates an alloca with the
2201   /// default ABI alignment of the given LLVM type.
2202   ///
2203   /// IMPORTANT NOTE: This is *not* generally the right alignment for
2204   /// any given AST type that happens to have been lowered to the
2205   /// given IR type.  This should only ever be used for function-local,
2206   /// IR-driven manipulations like saving and restoring a value.  Do
2207   /// not hand this address off to arbitrary IRGen routines, and especially
2208   /// do not pass it as an argument to a function that might expect a
2209   /// properly ABI-aligned value.
2210   Address CreateDefaultAlignTempAlloca(llvm::Type *Ty,
2211                                        const Twine &Name = "tmp");
2212 
2213   /// InitTempAlloca - Provide an initial value for the given alloca which
2214   /// will be observable at all locations in the function.
2215   ///
2216   /// The address should be something that was returned from one of
2217   /// the CreateTempAlloca or CreateMemTemp routines, and the
2218   /// initializer must be valid in the entry block (i.e. it must
2219   /// either be a constant or an argument value).
2220   void InitTempAlloca(Address Alloca, llvm::Value *Value);
2221 
2222   /// CreateIRTemp - Create a temporary IR object of the given type, with
2223   /// appropriate alignment. This routine should only be used when an temporary
2224   /// value needs to be stored into an alloca (for example, to avoid explicit
2225   /// PHI construction), but the type is the IR type, not the type appropriate
2226   /// for storing in memory.
2227   ///
2228   /// That is, this is exactly equivalent to CreateMemTemp, but calling
2229   /// ConvertType instead of ConvertTypeForMem.
2230   Address CreateIRTemp(QualType T, const Twine &Name = "tmp");
2231 
2232   /// CreateMemTemp - Create a temporary memory object of the given type, with
2233   /// appropriate alignmen and cast it to the default address space. Returns
2234   /// the original alloca instruction by \p Alloca if it is not nullptr.
2235   Address CreateMemTemp(QualType T, const Twine &Name = "tmp",
2236                         Address *Alloca = nullptr);
2237   Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp",
2238                         Address *Alloca = nullptr);
2239 
2240   /// CreateMemTemp - Create a temporary memory object of the given type, with
2241   /// appropriate alignmen without casting it to the default address space.
2242   Address CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp");
2243   Address CreateMemTempWithoutCast(QualType T, CharUnits Align,
2244                                    const Twine &Name = "tmp");
2245 
2246   /// CreateAggTemp - Create a temporary memory object for the given
2247   /// aggregate type.
2248   AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
2249     return AggValueSlot::forAddr(CreateMemTemp(T, Name),
2250                                  T.getQualifiers(),
2251                                  AggValueSlot::IsNotDestructed,
2252                                  AggValueSlot::DoesNotNeedGCBarriers,
2253                                  AggValueSlot::IsNotAliased,
2254                                  AggValueSlot::DoesNotOverlap);
2255   }
2256 
2257   /// Emit a cast to void* in the appropriate address space.
2258   llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
2259 
2260   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
2261   /// expression and compare the result against zero, returning an Int1Ty value.
2262   llvm::Value *EvaluateExprAsBool(const Expr *E);
2263 
2264   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
2265   void EmitIgnoredExpr(const Expr *E);
2266 
2267   /// EmitAnyExpr - Emit code to compute the specified expression which can have
2268   /// any type.  The result is returned as an RValue struct.  If this is an
2269   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
2270   /// the result should be returned.
2271   ///
2272   /// \param ignoreResult True if the resulting value isn't used.
2273   RValue EmitAnyExpr(const Expr *E,
2274                      AggValueSlot aggSlot = AggValueSlot::ignored(),
2275                      bool ignoreResult = false);
2276 
2277   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
2278   // or the value of the expression, depending on how va_list is defined.
2279   Address EmitVAListRef(const Expr *E);
2280 
2281   /// Emit a "reference" to a __builtin_ms_va_list; this is
2282   /// always the value of the expression, because a __builtin_ms_va_list is a
2283   /// pointer to a char.
2284   Address EmitMSVAListRef(const Expr *E);
2285 
2286   /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will
2287   /// always be accessible even if no aggregate location is provided.
2288   RValue EmitAnyExprToTemp(const Expr *E);
2289 
2290   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
2291   /// arbitrary expression into the given memory location.
2292   void EmitAnyExprToMem(const Expr *E, Address Location,
2293                         Qualifiers Quals, bool IsInitializer);
2294 
2295   void EmitAnyExprToExn(const Expr *E, Address Addr);
2296 
2297   /// EmitExprAsInit - Emits the code necessary to initialize a
2298   /// location in memory with the given initializer.
2299   void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2300                       bool capturedByInit);
2301 
2302   /// hasVolatileMember - returns true if aggregate type has a volatile
2303   /// member.
2304   bool hasVolatileMember(QualType T) {
2305     if (const RecordType *RT = T->getAs<RecordType>()) {
2306       const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
2307       return RD->hasVolatileMember();
2308     }
2309     return false;
2310   }
2311 
2312   /// Determine whether a return value slot may overlap some other object.
2313   AggValueSlot::Overlap_t overlapForReturnValue() {
2314     // FIXME: Assuming no overlap here breaks guaranteed copy elision for base
2315     // class subobjects. These cases may need to be revisited depending on the
2316     // resolution of the relevant core issue.
2317     return AggValueSlot::DoesNotOverlap;
2318   }
2319 
2320   /// Determine whether a field initialization may overlap some other object.
2321   AggValueSlot::Overlap_t overlapForFieldInit(const FieldDecl *FD) {
2322     // FIXME: These cases can result in overlap as a result of P0840R0's
2323     // [[no_unique_address]] attribute. We can still infer NoOverlap in the
2324     // presence of that attribute if the field is within the nvsize of its
2325     // containing class, because non-virtual subobjects are initialized in
2326     // address order.
2327     return AggValueSlot::DoesNotOverlap;
2328   }
2329 
2330   /// Determine whether a base class initialization may overlap some other
2331   /// object.
2332   AggValueSlot::Overlap_t overlapForBaseInit(const CXXRecordDecl *RD,
2333                                              const CXXRecordDecl *BaseRD,
2334                                              bool IsVirtual);
2335 
2336   /// Emit an aggregate assignment.
2337   void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) {
2338     bool IsVolatile = hasVolatileMember(EltTy);
2339     EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile);
2340   }
2341 
2342   void EmitAggregateCopyCtor(LValue Dest, LValue Src,
2343                              AggValueSlot::Overlap_t MayOverlap) {
2344     EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap);
2345   }
2346 
2347   /// EmitAggregateCopy - Emit an aggregate copy.
2348   ///
2349   /// \param isVolatile \c true iff either the source or the destination is
2350   ///        volatile.
2351   /// \param MayOverlap Whether the tail padding of the destination might be
2352   ///        occupied by some other object. More efficient code can often be
2353   ///        generated if not.
2354   void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy,
2355                          AggValueSlot::Overlap_t MayOverlap,
2356                          bool isVolatile = false);
2357 
2358   /// GetAddrOfLocalVar - Return the address of a local variable.
2359   Address GetAddrOfLocalVar(const VarDecl *VD) {
2360     auto it = LocalDeclMap.find(VD);
2361     assert(it != LocalDeclMap.end() &&
2362            "Invalid argument to GetAddrOfLocalVar(), no decl!");
2363     return it->second;
2364   }
2365 
2366   /// Given an opaque value expression, return its LValue mapping if it exists,
2367   /// otherwise create one.
2368   LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e);
2369 
2370   /// Given an opaque value expression, return its RValue mapping if it exists,
2371   /// otherwise create one.
2372   RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e);
2373 
2374   /// Get the index of the current ArrayInitLoopExpr, if any.
2375   llvm::Value *getArrayInitIndex() { return ArrayInitIndex; }
2376 
2377   /// getAccessedFieldNo - Given an encoded value and a result number, return
2378   /// the input field number being accessed.
2379   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
2380 
2381   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
2382   llvm::BasicBlock *GetIndirectGotoBlock();
2383 
2384   /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts.
2385   static bool IsWrappedCXXThis(const Expr *E);
2386 
2387   /// EmitNullInitialization - Generate code to set a value of the given type to
2388   /// null, If the type contains data member pointers, they will be initialized
2389   /// to -1 in accordance with the Itanium C++ ABI.
2390   void EmitNullInitialization(Address DestPtr, QualType Ty);
2391 
2392   /// Emits a call to an LLVM variable-argument intrinsic, either
2393   /// \c llvm.va_start or \c llvm.va_end.
2394   /// \param ArgValue A reference to the \c va_list as emitted by either
2395   /// \c EmitVAListRef or \c EmitMSVAListRef.
2396   /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise,
2397   /// calls \c llvm.va_end.
2398   llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart);
2399 
2400   /// Generate code to get an argument from the passed in pointer
2401   /// and update it accordingly.
2402   /// \param VE The \c VAArgExpr for which to generate code.
2403   /// \param VAListAddr Receives a reference to the \c va_list as emitted by
2404   /// either \c EmitVAListRef or \c EmitMSVAListRef.
2405   /// \returns A pointer to the argument.
2406   // FIXME: We should be able to get rid of this method and use the va_arg
2407   // instruction in LLVM instead once it works well enough.
2408   Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr);
2409 
2410   /// emitArrayLength - Compute the length of an array, even if it's a
2411   /// VLA, and drill down to the base element type.
2412   llvm::Value *emitArrayLength(const ArrayType *arrayType,
2413                                QualType &baseType,
2414                                Address &addr);
2415 
2416   /// EmitVLASize - Capture all the sizes for the VLA expressions in
2417   /// the given variably-modified type and store them in the VLASizeMap.
2418   ///
2419   /// This function can be called with a null (unreachable) insert point.
2420   void EmitVariablyModifiedType(QualType Ty);
2421 
2422   struct VlaSizePair {
2423     llvm::Value *NumElts;
2424     QualType Type;
2425 
2426     VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {}
2427   };
2428 
2429   /// Return the number of elements for a single dimension
2430   /// for the given array type.
2431   VlaSizePair getVLAElements1D(const VariableArrayType *vla);
2432   VlaSizePair getVLAElements1D(QualType vla);
2433 
2434   /// Returns an LLVM value that corresponds to the size,
2435   /// in non-variably-sized elements, of a variable length array type,
2436   /// plus that largest non-variably-sized element type.  Assumes that
2437   /// the type has already been emitted with EmitVariablyModifiedType.
2438   VlaSizePair getVLASize(const VariableArrayType *vla);
2439   VlaSizePair getVLASize(QualType vla);
2440 
2441   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
2442   /// generating code for an C++ member function.
2443   llvm::Value *LoadCXXThis() {
2444     assert(CXXThisValue && "no 'this' value for this function");
2445     return CXXThisValue;
2446   }
2447   Address LoadCXXThisAddress();
2448 
2449   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
2450   /// virtual bases.
2451   // FIXME: Every place that calls LoadCXXVTT is something
2452   // that needs to be abstracted properly.
2453   llvm::Value *LoadCXXVTT() {
2454     assert(CXXStructorImplicitParamValue && "no VTT value for this function");
2455     return CXXStructorImplicitParamValue;
2456   }
2457 
2458   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
2459   /// complete class to the given direct base.
2460   Address
2461   GetAddressOfDirectBaseInCompleteClass(Address Value,
2462                                         const CXXRecordDecl *Derived,
2463                                         const CXXRecordDecl *Base,
2464                                         bool BaseIsVirtual);
2465 
2466   static bool ShouldNullCheckClassCastValue(const CastExpr *Cast);
2467 
2468   /// GetAddressOfBaseClass - This function will add the necessary delta to the
2469   /// load of 'this' and returns address of the base class.
2470   Address GetAddressOfBaseClass(Address Value,
2471                                 const CXXRecordDecl *Derived,
2472                                 CastExpr::path_const_iterator PathBegin,
2473                                 CastExpr::path_const_iterator PathEnd,
2474                                 bool NullCheckValue, SourceLocation Loc);
2475 
2476   Address GetAddressOfDerivedClass(Address Value,
2477                                    const CXXRecordDecl *Derived,
2478                                    CastExpr::path_const_iterator PathBegin,
2479                                    CastExpr::path_const_iterator PathEnd,
2480                                    bool NullCheckValue);
2481 
2482   /// GetVTTParameter - Return the VTT parameter that should be passed to a
2483   /// base constructor/destructor with virtual bases.
2484   /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
2485   /// to ItaniumCXXABI.cpp together with all the references to VTT.
2486   llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
2487                                bool Delegating);
2488 
2489   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
2490                                       CXXCtorType CtorType,
2491                                       const FunctionArgList &Args,
2492                                       SourceLocation Loc);
2493   // It's important not to confuse this and the previous function. Delegating
2494   // constructors are the C++0x feature. The constructor delegate optimization
2495   // is used to reduce duplication in the base and complete consturctors where
2496   // they are substantially the same.
2497   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2498                                         const FunctionArgList &Args);
2499 
2500   /// Emit a call to an inheriting constructor (that is, one that invokes a
2501   /// constructor inherited from a base class) by inlining its definition. This
2502   /// is necessary if the ABI does not support forwarding the arguments to the
2503   /// base class constructor (because they're variadic or similar).
2504   void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2505                                                CXXCtorType CtorType,
2506                                                bool ForVirtualBase,
2507                                                bool Delegating,
2508                                                CallArgList &Args);
2509 
2510   /// Emit a call to a constructor inherited from a base class, passing the
2511   /// current constructor's arguments along unmodified (without even making
2512   /// a copy).
2513   void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D,
2514                                        bool ForVirtualBase, Address This,
2515                                        bool InheritedFromVBase,
2516                                        const CXXInheritedCtorInitExpr *E);
2517 
2518   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2519                               bool ForVirtualBase, bool Delegating,
2520                               AggValueSlot ThisAVS, const CXXConstructExpr *E);
2521 
2522   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2523                               bool ForVirtualBase, bool Delegating,
2524                               Address This, CallArgList &Args,
2525                               AggValueSlot::Overlap_t Overlap,
2526                               SourceLocation Loc, bool NewPointerIsChecked);
2527 
2528   /// Emit assumption load for all bases. Requires to be be called only on
2529   /// most-derived class and not under construction of the object.
2530   void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This);
2531 
2532   /// Emit assumption that vptr load == global vtable.
2533   void EmitVTableAssumptionLoad(const VPtr &vptr, Address This);
2534 
2535   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
2536                                       Address This, Address Src,
2537                                       const CXXConstructExpr *E);
2538 
2539   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2540                                   const ArrayType *ArrayTy,
2541                                   Address ArrayPtr,
2542                                   const CXXConstructExpr *E,
2543                                   bool NewPointerIsChecked,
2544                                   bool ZeroInitialization = false);
2545 
2546   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2547                                   llvm::Value *NumElements,
2548                                   Address ArrayPtr,
2549                                   const CXXConstructExpr *E,
2550                                   bool NewPointerIsChecked,
2551                                   bool ZeroInitialization = false);
2552 
2553   static Destroyer destroyCXXObject;
2554 
2555   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
2556                              bool ForVirtualBase, bool Delegating,
2557                              Address This);
2558 
2559   void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
2560                                llvm::Type *ElementTy, Address NewPtr,
2561                                llvm::Value *NumElements,
2562                                llvm::Value *AllocSizeWithoutCookie);
2563 
2564   void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
2565                         Address Ptr);
2566 
2567   llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr);
2568   void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr);
2569 
2570   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
2571   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
2572 
2573   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
2574                       QualType DeleteTy, llvm::Value *NumElements = nullptr,
2575                       CharUnits CookieSize = CharUnits());
2576 
2577   RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
2578                                   const CallExpr *TheCallExpr, bool IsDelete);
2579 
2580   llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E);
2581   llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE);
2582   Address EmitCXXUuidofExpr(const CXXUuidofExpr *E);
2583 
2584   /// Situations in which we might emit a check for the suitability of a
2585   ///        pointer or glvalue.
2586   enum TypeCheckKind {
2587     /// Checking the operand of a load. Must be suitably sized and aligned.
2588     TCK_Load,
2589     /// Checking the destination of a store. Must be suitably sized and aligned.
2590     TCK_Store,
2591     /// Checking the bound value in a reference binding. Must be suitably sized
2592     /// and aligned, but is not required to refer to an object (until the
2593     /// reference is used), per core issue 453.
2594     TCK_ReferenceBinding,
2595     /// Checking the object expression in a non-static data member access. Must
2596     /// be an object within its lifetime.
2597     TCK_MemberAccess,
2598     /// Checking the 'this' pointer for a call to a non-static member function.
2599     /// Must be an object within its lifetime.
2600     TCK_MemberCall,
2601     /// Checking the 'this' pointer for a constructor call.
2602     TCK_ConstructorCall,
2603     /// Checking the operand of a static_cast to a derived pointer type. Must be
2604     /// null or an object within its lifetime.
2605     TCK_DowncastPointer,
2606     /// Checking the operand of a static_cast to a derived reference type. Must
2607     /// be an object within its lifetime.
2608     TCK_DowncastReference,
2609     /// Checking the operand of a cast to a base object. Must be suitably sized
2610     /// and aligned.
2611     TCK_Upcast,
2612     /// Checking the operand of a cast to a virtual base object. Must be an
2613     /// object within its lifetime.
2614     TCK_UpcastToVirtualBase,
2615     /// Checking the value assigned to a _Nonnull pointer. Must not be null.
2616     TCK_NonnullAssign,
2617     /// Checking the operand of a dynamic_cast or a typeid expression.  Must be
2618     /// null or an object within its lifetime.
2619     TCK_DynamicOperation
2620   };
2621 
2622   /// Determine whether the pointer type check \p TCK permits null pointers.
2623   static bool isNullPointerAllowed(TypeCheckKind TCK);
2624 
2625   /// Determine whether the pointer type check \p TCK requires a vptr check.
2626   static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty);
2627 
2628   /// Whether any type-checking sanitizers are enabled. If \c false,
2629   /// calls to EmitTypeCheck can be skipped.
2630   bool sanitizePerformTypeCheck() const;
2631 
2632   /// Emit a check that \p V is the address of storage of the
2633   /// appropriate size and alignment for an object of type \p Type
2634   /// (or if ArraySize is provided, for an array of that bound).
2635   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
2636                      QualType Type, CharUnits Alignment = CharUnits::Zero(),
2637                      SanitizerSet SkippedChecks = SanitizerSet(),
2638                      llvm::Value *ArraySize = nullptr);
2639 
2640   /// Emit a check that \p Base points into an array object, which
2641   /// we can access at index \p Index. \p Accessed should be \c false if we
2642   /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
2643   void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
2644                        QualType IndexType, bool Accessed);
2645 
2646   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2647                                        bool isInc, bool isPre);
2648   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
2649                                          bool isInc, bool isPre);
2650 
2651   /// Converts Location to a DebugLoc, if debug information is enabled.
2652   llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location);
2653 
2654 
2655   //===--------------------------------------------------------------------===//
2656   //                            Declaration Emission
2657   //===--------------------------------------------------------------------===//
2658 
2659   /// EmitDecl - Emit a declaration.
2660   ///
2661   /// This function can be called with a null (unreachable) insert point.
2662   void EmitDecl(const Decl &D);
2663 
2664   /// EmitVarDecl - Emit a local variable declaration.
2665   ///
2666   /// This function can be called with a null (unreachable) insert point.
2667   void EmitVarDecl(const VarDecl &D);
2668 
2669   void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2670                       bool capturedByInit);
2671 
2672   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
2673                              llvm::Value *Address);
2674 
2675   /// Determine whether the given initializer is trivial in the sense
2676   /// that it requires no code to be generated.
2677   bool isTrivialInitializer(const Expr *Init);
2678 
2679   /// EmitAutoVarDecl - Emit an auto variable declaration.
2680   ///
2681   /// This function can be called with a null (unreachable) insert point.
2682   void EmitAutoVarDecl(const VarDecl &D);
2683 
2684   class AutoVarEmission {
2685     friend class CodeGenFunction;
2686 
2687     const VarDecl *Variable;
2688 
2689     /// The address of the alloca for languages with explicit address space
2690     /// (e.g. OpenCL) or alloca casted to generic pointer for address space
2691     /// agnostic languages (e.g. C++). Invalid if the variable was emitted
2692     /// as a global constant.
2693     Address Addr;
2694 
2695     llvm::Value *NRVOFlag;
2696 
2697     /// True if the variable is a __block variable that is captured by an
2698     /// escaping block.
2699     bool IsEscapingByRef;
2700 
2701     /// True if the variable is of aggregate type and has a constant
2702     /// initializer.
2703     bool IsConstantAggregate;
2704 
2705     /// Non-null if we should use lifetime annotations.
2706     llvm::Value *SizeForLifetimeMarkers;
2707 
2708     /// Address with original alloca instruction. Invalid if the variable was
2709     /// emitted as a global constant.
2710     Address AllocaAddr;
2711 
2712     struct Invalid {};
2713     AutoVarEmission(Invalid)
2714         : Variable(nullptr), Addr(Address::invalid()),
2715           AllocaAddr(Address::invalid()) {}
2716 
2717     AutoVarEmission(const VarDecl &variable)
2718         : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr),
2719           IsEscapingByRef(false), IsConstantAggregate(false),
2720           SizeForLifetimeMarkers(nullptr), AllocaAddr(Address::invalid()) {}
2721 
2722     bool wasEmittedAsGlobal() const { return !Addr.isValid(); }
2723 
2724   public:
2725     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
2726 
2727     bool useLifetimeMarkers() const {
2728       return SizeForLifetimeMarkers != nullptr;
2729     }
2730     llvm::Value *getSizeForLifetimeMarkers() const {
2731       assert(useLifetimeMarkers());
2732       return SizeForLifetimeMarkers;
2733     }
2734 
2735     /// Returns the raw, allocated address, which is not necessarily
2736     /// the address of the object itself. It is casted to default
2737     /// address space for address space agnostic languages.
2738     Address getAllocatedAddress() const {
2739       return Addr;
2740     }
2741 
2742     /// Returns the address for the original alloca instruction.
2743     Address getOriginalAllocatedAddress() const { return AllocaAddr; }
2744 
2745     /// Returns the address of the object within this declaration.
2746     /// Note that this does not chase the forwarding pointer for
2747     /// __block decls.
2748     Address getObjectAddress(CodeGenFunction &CGF) const {
2749       if (!IsEscapingByRef) return Addr;
2750 
2751       return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false);
2752     }
2753   };
2754   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
2755   void EmitAutoVarInit(const AutoVarEmission &emission);
2756   void EmitAutoVarCleanups(const AutoVarEmission &emission);
2757   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
2758                               QualType::DestructionKind dtorKind);
2759 
2760   /// Emits the alloca and debug information for the size expressions for each
2761   /// dimension of an array. It registers the association of its (1-dimensional)
2762   /// QualTypes and size expression's debug node, so that CGDebugInfo can
2763   /// reference this node when creating the DISubrange object to describe the
2764   /// array types.
2765   void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI,
2766                                               const VarDecl &D,
2767                                               bool EmitDebugInfo);
2768 
2769   void EmitStaticVarDecl(const VarDecl &D,
2770                          llvm::GlobalValue::LinkageTypes Linkage);
2771 
2772   class ParamValue {
2773     llvm::Value *Value;
2774     unsigned Alignment;
2775     ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {}
2776   public:
2777     static ParamValue forDirect(llvm::Value *value) {
2778       return ParamValue(value, 0);
2779     }
2780     static ParamValue forIndirect(Address addr) {
2781       assert(!addr.getAlignment().isZero());
2782       return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity());
2783     }
2784 
2785     bool isIndirect() const { return Alignment != 0; }
2786     llvm::Value *getAnyValue() const { return Value; }
2787 
2788     llvm::Value *getDirectValue() const {
2789       assert(!isIndirect());
2790       return Value;
2791     }
2792 
2793     Address getIndirectAddress() const {
2794       assert(isIndirect());
2795       return Address(Value, CharUnits::fromQuantity(Alignment));
2796     }
2797   };
2798 
2799   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
2800   void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo);
2801 
2802   /// protectFromPeepholes - Protect a value that we're intending to
2803   /// store to the side, but which will probably be used later, from
2804   /// aggressive peepholing optimizations that might delete it.
2805   ///
2806   /// Pass the result to unprotectFromPeepholes to declare that
2807   /// protection is no longer required.
2808   ///
2809   /// There's no particular reason why this shouldn't apply to
2810   /// l-values, it's just that no existing peepholes work on pointers.
2811   PeepholeProtection protectFromPeepholes(RValue rvalue);
2812   void unprotectFromPeepholes(PeepholeProtection protection);
2813 
2814   void EmitAlignmentAssumptionCheck(llvm::Value *Ptr, QualType Ty,
2815                                     SourceLocation Loc,
2816                                     SourceLocation AssumptionLoc,
2817                                     llvm::Value *Alignment,
2818                                     llvm::Value *OffsetValue,
2819                                     llvm::Value *TheCheck,
2820                                     llvm::Instruction *Assumption);
2821 
2822   void EmitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty,
2823                                SourceLocation Loc, SourceLocation AssumptionLoc,
2824                                llvm::Value *Alignment,
2825                                llvm::Value *OffsetValue = nullptr);
2826 
2827   void EmitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty,
2828                                SourceLocation Loc, SourceLocation AssumptionLoc,
2829                                unsigned Alignment,
2830                                llvm::Value *OffsetValue = nullptr);
2831 
2832   void EmitAlignmentAssumption(llvm::Value *PtrValue, const Expr *E,
2833                                SourceLocation AssumptionLoc, unsigned Alignment,
2834                                llvm::Value *OffsetValue = nullptr);
2835 
2836   //===--------------------------------------------------------------------===//
2837   //                             Statement Emission
2838   //===--------------------------------------------------------------------===//
2839 
2840   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
2841   void EmitStopPoint(const Stmt *S);
2842 
2843   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
2844   /// this function even if there is no current insertion point.
2845   ///
2846   /// This function may clear the current insertion point; callers should use
2847   /// EnsureInsertPoint if they wish to subsequently generate code without first
2848   /// calling EmitBlock, EmitBranch, or EmitStmt.
2849   void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None);
2850 
2851   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
2852   /// necessarily require an insertion point or debug information; typically
2853   /// because the statement amounts to a jump or a container of other
2854   /// statements.
2855   ///
2856   /// \return True if the statement was handled.
2857   bool EmitSimpleStmt(const Stmt *S);
2858 
2859   Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
2860                            AggValueSlot AVS = AggValueSlot::ignored());
2861   Address EmitCompoundStmtWithoutScope(const CompoundStmt &S,
2862                                        bool GetLast = false,
2863                                        AggValueSlot AVS =
2864                                                 AggValueSlot::ignored());
2865 
2866   /// EmitLabel - Emit the block for the given label. It is legal to call this
2867   /// function even if there is no current insertion point.
2868   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
2869 
2870   void EmitLabelStmt(const LabelStmt &S);
2871   void EmitAttributedStmt(const AttributedStmt &S);
2872   void EmitGotoStmt(const GotoStmt &S);
2873   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
2874   void EmitIfStmt(const IfStmt &S);
2875 
2876   void EmitWhileStmt(const WhileStmt &S,
2877                      ArrayRef<const Attr *> Attrs = None);
2878   void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None);
2879   void EmitForStmt(const ForStmt &S,
2880                    ArrayRef<const Attr *> Attrs = None);
2881   void EmitReturnStmt(const ReturnStmt &S);
2882   void EmitDeclStmt(const DeclStmt &S);
2883   void EmitBreakStmt(const BreakStmt &S);
2884   void EmitContinueStmt(const ContinueStmt &S);
2885   void EmitSwitchStmt(const SwitchStmt &S);
2886   void EmitDefaultStmt(const DefaultStmt &S);
2887   void EmitCaseStmt(const CaseStmt &S);
2888   void EmitCaseStmtRange(const CaseStmt &S);
2889   void EmitAsmStmt(const AsmStmt &S);
2890 
2891   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
2892   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
2893   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
2894   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
2895   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
2896 
2897   void EmitCoroutineBody(const CoroutineBodyStmt &S);
2898   void EmitCoreturnStmt(const CoreturnStmt &S);
2899   RValue EmitCoawaitExpr(const CoawaitExpr &E,
2900                          AggValueSlot aggSlot = AggValueSlot::ignored(),
2901                          bool ignoreResult = false);
2902   LValue EmitCoawaitLValue(const CoawaitExpr *E);
2903   RValue EmitCoyieldExpr(const CoyieldExpr &E,
2904                          AggValueSlot aggSlot = AggValueSlot::ignored(),
2905                          bool ignoreResult = false);
2906   LValue EmitCoyieldLValue(const CoyieldExpr *E);
2907   RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID);
2908 
2909   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2910   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2911 
2912   void EmitCXXTryStmt(const CXXTryStmt &S);
2913   void EmitSEHTryStmt(const SEHTryStmt &S);
2914   void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
2915   void EnterSEHTryStmt(const SEHTryStmt &S);
2916   void ExitSEHTryStmt(const SEHTryStmt &S);
2917 
2918   void pushSEHCleanup(CleanupKind kind,
2919                       llvm::Function *FinallyFunc);
2920   void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter,
2921                               const Stmt *OutlinedStmt);
2922 
2923   llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
2924                                             const SEHExceptStmt &Except);
2925 
2926   llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF,
2927                                              const SEHFinallyStmt &Finally);
2928 
2929   void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF,
2930                                 llvm::Value *ParentFP,
2931                                 llvm::Value *EntryEBP);
2932   llvm::Value *EmitSEHExceptionCode();
2933   llvm::Value *EmitSEHExceptionInfo();
2934   llvm::Value *EmitSEHAbnormalTermination();
2935 
2936   /// Emit simple code for OpenMP directives in Simd-only mode.
2937   void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D);
2938 
2939   /// Scan the outlined statement for captures from the parent function. For
2940   /// each capture, mark the capture as escaped and emit a call to
2941   /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap.
2942   void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
2943                           bool IsFilter);
2944 
2945   /// Recovers the address of a local in a parent function. ParentVar is the
2946   /// address of the variable used in the immediate parent function. It can
2947   /// either be an alloca or a call to llvm.localrecover if there are nested
2948   /// outlined functions. ParentFP is the frame pointer of the outermost parent
2949   /// frame.
2950   Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF,
2951                                     Address ParentVar,
2952                                     llvm::Value *ParentFP);
2953 
2954   void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
2955                            ArrayRef<const Attr *> Attrs = None);
2956 
2957   /// Controls insertion of cancellation exit blocks in worksharing constructs.
2958   class OMPCancelStackRAII {
2959     CodeGenFunction &CGF;
2960 
2961   public:
2962     OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
2963                        bool HasCancel)
2964         : CGF(CGF) {
2965       CGF.OMPCancelStack.enter(CGF, Kind, HasCancel);
2966     }
2967     ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); }
2968   };
2969 
2970   /// Returns calculated size of the specified type.
2971   llvm::Value *getTypeSize(QualType Ty);
2972   LValue InitCapturedStruct(const CapturedStmt &S);
2973   llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
2974   llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
2975   Address GenerateCapturedStmtArgument(const CapturedStmt &S);
2976   llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S);
2977   void GenerateOpenMPCapturedVars(const CapturedStmt &S,
2978                                   SmallVectorImpl<llvm::Value *> &CapturedVars);
2979   void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy,
2980                           SourceLocation Loc);
2981   /// Perform element by element copying of arrays with type \a
2982   /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
2983   /// generated by \a CopyGen.
2984   ///
2985   /// \param DestAddr Address of the destination array.
2986   /// \param SrcAddr Address of the source array.
2987   /// \param OriginalType Type of destination and source arrays.
2988   /// \param CopyGen Copying procedure that copies value of single array element
2989   /// to another single array element.
2990   void EmitOMPAggregateAssign(
2991       Address DestAddr, Address SrcAddr, QualType OriginalType,
2992       const llvm::function_ref<void(Address, Address)> CopyGen);
2993   /// Emit proper copying of data from one variable to another.
2994   ///
2995   /// \param OriginalType Original type of the copied variables.
2996   /// \param DestAddr Destination address.
2997   /// \param SrcAddr Source address.
2998   /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
2999   /// type of the base array element).
3000   /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
3001   /// the base array element).
3002   /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
3003   /// DestVD.
3004   void EmitOMPCopy(QualType OriginalType,
3005                    Address DestAddr, Address SrcAddr,
3006                    const VarDecl *DestVD, const VarDecl *SrcVD,
3007                    const Expr *Copy);
3008   /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or
3009   /// \a X = \a E \a BO \a E.
3010   ///
3011   /// \param X Value to be updated.
3012   /// \param E Update value.
3013   /// \param BO Binary operation for update operation.
3014   /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
3015   /// expression, false otherwise.
3016   /// \param AO Atomic ordering of the generated atomic instructions.
3017   /// \param CommonGen Code generator for complex expressions that cannot be
3018   /// expressed through atomicrmw instruction.
3019   /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was
3020   /// generated, <false, RValue::get(nullptr)> otherwise.
3021   std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr(
3022       LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
3023       llvm::AtomicOrdering AO, SourceLocation Loc,
3024       const llvm::function_ref<RValue(RValue)> CommonGen);
3025   bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
3026                                  OMPPrivateScope &PrivateScope);
3027   void EmitOMPPrivateClause(const OMPExecutableDirective &D,
3028                             OMPPrivateScope &PrivateScope);
3029   void EmitOMPUseDevicePtrClause(
3030       const OMPClause &C, OMPPrivateScope &PrivateScope,
3031       const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap);
3032   /// Emit code for copyin clause in \a D directive. The next code is
3033   /// generated at the start of outlined functions for directives:
3034   /// \code
3035   /// threadprivate_var1 = master_threadprivate_var1;
3036   /// operator=(threadprivate_var2, master_threadprivate_var2);
3037   /// ...
3038   /// __kmpc_barrier(&loc, global_tid);
3039   /// \endcode
3040   ///
3041   /// \param D OpenMP directive possibly with 'copyin' clause(s).
3042   /// \returns true if at least one copyin variable is found, false otherwise.
3043   bool EmitOMPCopyinClause(const OMPExecutableDirective &D);
3044   /// Emit initial code for lastprivate variables. If some variable is
3045   /// not also firstprivate, then the default initialization is used. Otherwise
3046   /// initialization of this variable is performed by EmitOMPFirstprivateClause
3047   /// method.
3048   ///
3049   /// \param D Directive that may have 'lastprivate' directives.
3050   /// \param PrivateScope Private scope for capturing lastprivate variables for
3051   /// proper codegen in internal captured statement.
3052   ///
3053   /// \returns true if there is at least one lastprivate variable, false
3054   /// otherwise.
3055   bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D,
3056                                     OMPPrivateScope &PrivateScope);
3057   /// Emit final copying of lastprivate values to original variables at
3058   /// the end of the worksharing or simd directive.
3059   ///
3060   /// \param D Directive that has at least one 'lastprivate' directives.
3061   /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
3062   /// it is the last iteration of the loop code in associated directive, or to
3063   /// 'i1 false' otherwise. If this item is nullptr, no final check is required.
3064   void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D,
3065                                      bool NoFinals,
3066                                      llvm::Value *IsLastIterCond = nullptr);
3067   /// Emit initial code for linear clauses.
3068   void EmitOMPLinearClause(const OMPLoopDirective &D,
3069                            CodeGenFunction::OMPPrivateScope &PrivateScope);
3070   /// Emit final code for linear clauses.
3071   /// \param CondGen Optional conditional code for final part of codegen for
3072   /// linear clause.
3073   void EmitOMPLinearClauseFinal(
3074       const OMPLoopDirective &D,
3075       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
3076   /// Emit initial code for reduction variables. Creates reduction copies
3077   /// and initializes them with the values according to OpenMP standard.
3078   ///
3079   /// \param D Directive (possibly) with the 'reduction' clause.
3080   /// \param PrivateScope Private scope for capturing reduction variables for
3081   /// proper codegen in internal captured statement.
3082   ///
3083   void EmitOMPReductionClauseInit(const OMPExecutableDirective &D,
3084                                   OMPPrivateScope &PrivateScope);
3085   /// Emit final update of reduction values to original variables at
3086   /// the end of the directive.
3087   ///
3088   /// \param D Directive that has at least one 'reduction' directives.
3089   /// \param ReductionKind The kind of reduction to perform.
3090   void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D,
3091                                    const OpenMPDirectiveKind ReductionKind);
3092   /// Emit initial code for linear variables. Creates private copies
3093   /// and initializes them with the values according to OpenMP standard.
3094   ///
3095   /// \param D Directive (possibly) with the 'linear' clause.
3096   /// \return true if at least one linear variable is found that should be
3097   /// initialized with the value of the original variable, false otherwise.
3098   bool EmitOMPLinearClauseInit(const OMPLoopDirective &D);
3099 
3100   typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/,
3101                                         llvm::Function * /*OutlinedFn*/,
3102                                         const OMPTaskDataTy & /*Data*/)>
3103       TaskGenTy;
3104   void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S,
3105                                  const OpenMPDirectiveKind CapturedRegion,
3106                                  const RegionCodeGenTy &BodyGen,
3107                                  const TaskGenTy &TaskGen, OMPTaskDataTy &Data);
3108   struct OMPTargetDataInfo {
3109     Address BasePointersArray = Address::invalid();
3110     Address PointersArray = Address::invalid();
3111     Address SizesArray = Address::invalid();
3112     unsigned NumberOfTargetItems = 0;
3113     explicit OMPTargetDataInfo() = default;
3114     OMPTargetDataInfo(Address BasePointersArray, Address PointersArray,
3115                       Address SizesArray, unsigned NumberOfTargetItems)
3116         : BasePointersArray(BasePointersArray), PointersArray(PointersArray),
3117           SizesArray(SizesArray), NumberOfTargetItems(NumberOfTargetItems) {}
3118   };
3119   void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S,
3120                                        const RegionCodeGenTy &BodyGen,
3121                                        OMPTargetDataInfo &InputInfo);
3122 
3123   void EmitOMPParallelDirective(const OMPParallelDirective &S);
3124   void EmitOMPSimdDirective(const OMPSimdDirective &S);
3125   void EmitOMPForDirective(const OMPForDirective &S);
3126   void EmitOMPForSimdDirective(const OMPForSimdDirective &S);
3127   void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
3128   void EmitOMPSectionDirective(const OMPSectionDirective &S);
3129   void EmitOMPSingleDirective(const OMPSingleDirective &S);
3130   void EmitOMPMasterDirective(const OMPMasterDirective &S);
3131   void EmitOMPCriticalDirective(const OMPCriticalDirective &S);
3132   void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
3133   void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S);
3134   void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
3135   void EmitOMPTaskDirective(const OMPTaskDirective &S);
3136   void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
3137   void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
3138   void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
3139   void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S);
3140   void EmitOMPFlushDirective(const OMPFlushDirective &S);
3141   void EmitOMPOrderedDirective(const OMPOrderedDirective &S);
3142   void EmitOMPAtomicDirective(const OMPAtomicDirective &S);
3143   void EmitOMPTargetDirective(const OMPTargetDirective &S);
3144   void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S);
3145   void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S);
3146   void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S);
3147   void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S);
3148   void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S);
3149   void
3150   EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S);
3151   void EmitOMPTeamsDirective(const OMPTeamsDirective &S);
3152   void
3153   EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S);
3154   void EmitOMPCancelDirective(const OMPCancelDirective &S);
3155   void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S);
3156   void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S);
3157   void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S);
3158   void EmitOMPDistributeDirective(const OMPDistributeDirective &S);
3159   void EmitOMPDistributeParallelForDirective(
3160       const OMPDistributeParallelForDirective &S);
3161   void EmitOMPDistributeParallelForSimdDirective(
3162       const OMPDistributeParallelForSimdDirective &S);
3163   void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S);
3164   void EmitOMPTargetParallelForSimdDirective(
3165       const OMPTargetParallelForSimdDirective &S);
3166   void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S);
3167   void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S);
3168   void
3169   EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S);
3170   void EmitOMPTeamsDistributeParallelForSimdDirective(
3171       const OMPTeamsDistributeParallelForSimdDirective &S);
3172   void EmitOMPTeamsDistributeParallelForDirective(
3173       const OMPTeamsDistributeParallelForDirective &S);
3174   void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S);
3175   void EmitOMPTargetTeamsDistributeDirective(
3176       const OMPTargetTeamsDistributeDirective &S);
3177   void EmitOMPTargetTeamsDistributeParallelForDirective(
3178       const OMPTargetTeamsDistributeParallelForDirective &S);
3179   void EmitOMPTargetTeamsDistributeParallelForSimdDirective(
3180       const OMPTargetTeamsDistributeParallelForSimdDirective &S);
3181   void EmitOMPTargetTeamsDistributeSimdDirective(
3182       const OMPTargetTeamsDistributeSimdDirective &S);
3183 
3184   /// Emit device code for the target directive.
3185   static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM,
3186                                           StringRef ParentName,
3187                                           const OMPTargetDirective &S);
3188   static void
3189   EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3190                                       const OMPTargetParallelDirective &S);
3191   /// Emit device code for the target parallel for directive.
3192   static void EmitOMPTargetParallelForDeviceFunction(
3193       CodeGenModule &CGM, StringRef ParentName,
3194       const OMPTargetParallelForDirective &S);
3195   /// Emit device code for the target parallel for simd directive.
3196   static void EmitOMPTargetParallelForSimdDeviceFunction(
3197       CodeGenModule &CGM, StringRef ParentName,
3198       const OMPTargetParallelForSimdDirective &S);
3199   /// Emit device code for the target teams directive.
3200   static void
3201   EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3202                                    const OMPTargetTeamsDirective &S);
3203   /// Emit device code for the target teams distribute directive.
3204   static void EmitOMPTargetTeamsDistributeDeviceFunction(
3205       CodeGenModule &CGM, StringRef ParentName,
3206       const OMPTargetTeamsDistributeDirective &S);
3207   /// Emit device code for the target teams distribute simd directive.
3208   static void EmitOMPTargetTeamsDistributeSimdDeviceFunction(
3209       CodeGenModule &CGM, StringRef ParentName,
3210       const OMPTargetTeamsDistributeSimdDirective &S);
3211   /// Emit device code for the target simd directive.
3212   static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM,
3213                                               StringRef ParentName,
3214                                               const OMPTargetSimdDirective &S);
3215   /// Emit device code for the target teams distribute parallel for simd
3216   /// directive.
3217   static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction(
3218       CodeGenModule &CGM, StringRef ParentName,
3219       const OMPTargetTeamsDistributeParallelForSimdDirective &S);
3220 
3221   static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction(
3222       CodeGenModule &CGM, StringRef ParentName,
3223       const OMPTargetTeamsDistributeParallelForDirective &S);
3224   /// Emit inner loop of the worksharing/simd construct.
3225   ///
3226   /// \param S Directive, for which the inner loop must be emitted.
3227   /// \param RequiresCleanup true, if directive has some associated private
3228   /// variables.
3229   /// \param LoopCond Bollean condition for loop continuation.
3230   /// \param IncExpr Increment expression for loop control variable.
3231   /// \param BodyGen Generator for the inner body of the inner loop.
3232   /// \param PostIncGen Genrator for post-increment code (required for ordered
3233   /// loop directvies).
3234   void EmitOMPInnerLoop(
3235       const Stmt &S, bool RequiresCleanup, const Expr *LoopCond,
3236       const Expr *IncExpr,
3237       const llvm::function_ref<void(CodeGenFunction &)> BodyGen,
3238       const llvm::function_ref<void(CodeGenFunction &)> PostIncGen);
3239 
3240   JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind);
3241   /// Emit initial code for loop counters of loop-based directives.
3242   void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S,
3243                                   OMPPrivateScope &LoopScope);
3244 
3245   /// Helper for the OpenMP loop directives.
3246   void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit);
3247 
3248   /// Emit code for the worksharing loop-based directive.
3249   /// \return true, if this construct has any lastprivate clause, false -
3250   /// otherwise.
3251   bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB,
3252                               const CodeGenLoopBoundsTy &CodeGenLoopBounds,
3253                               const CodeGenDispatchBoundsTy &CGDispatchBounds);
3254 
3255   /// Emit code for the distribute loop-based directive.
3256   void EmitOMPDistributeLoop(const OMPLoopDirective &S,
3257                              const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr);
3258 
3259   /// Helpers for the OpenMP loop directives.
3260   void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false);
3261   void EmitOMPSimdFinal(
3262       const OMPLoopDirective &D,
3263       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
3264 
3265   /// Emits the lvalue for the expression with possibly captured variable.
3266   LValue EmitOMPSharedLValue(const Expr *E);
3267 
3268 private:
3269   /// Helpers for blocks.
3270   llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
3271 
3272   /// struct with the values to be passed to the OpenMP loop-related functions
3273   struct OMPLoopArguments {
3274     /// loop lower bound
3275     Address LB = Address::invalid();
3276     /// loop upper bound
3277     Address UB = Address::invalid();
3278     /// loop stride
3279     Address ST = Address::invalid();
3280     /// isLastIteration argument for runtime functions
3281     Address IL = Address::invalid();
3282     /// Chunk value generated by sema
3283     llvm::Value *Chunk = nullptr;
3284     /// EnsureUpperBound
3285     Expr *EUB = nullptr;
3286     /// IncrementExpression
3287     Expr *IncExpr = nullptr;
3288     /// Loop initialization
3289     Expr *Init = nullptr;
3290     /// Loop exit condition
3291     Expr *Cond = nullptr;
3292     /// Update of LB after a whole chunk has been executed
3293     Expr *NextLB = nullptr;
3294     /// Update of UB after a whole chunk has been executed
3295     Expr *NextUB = nullptr;
3296     OMPLoopArguments() = default;
3297     OMPLoopArguments(Address LB, Address UB, Address ST, Address IL,
3298                      llvm::Value *Chunk = nullptr, Expr *EUB = nullptr,
3299                      Expr *IncExpr = nullptr, Expr *Init = nullptr,
3300                      Expr *Cond = nullptr, Expr *NextLB = nullptr,
3301                      Expr *NextUB = nullptr)
3302         : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB),
3303           IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB),
3304           NextUB(NextUB) {}
3305   };
3306   void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic,
3307                         const OMPLoopDirective &S, OMPPrivateScope &LoopScope,
3308                         const OMPLoopArguments &LoopArgs,
3309                         const CodeGenLoopTy &CodeGenLoop,
3310                         const CodeGenOrderedTy &CodeGenOrdered);
3311   void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind,
3312                            bool IsMonotonic, const OMPLoopDirective &S,
3313                            OMPPrivateScope &LoopScope, bool Ordered,
3314                            const OMPLoopArguments &LoopArgs,
3315                            const CodeGenDispatchBoundsTy &CGDispatchBounds);
3316   void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind,
3317                                   const OMPLoopDirective &S,
3318                                   OMPPrivateScope &LoopScope,
3319                                   const OMPLoopArguments &LoopArgs,
3320                                   const CodeGenLoopTy &CodeGenLoopContent);
3321   /// Emit code for sections directive.
3322   void EmitSections(const OMPExecutableDirective &S);
3323 
3324 public:
3325 
3326   //===--------------------------------------------------------------------===//
3327   //                         LValue Expression Emission
3328   //===--------------------------------------------------------------------===//
3329 
3330   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
3331   RValue GetUndefRValue(QualType Ty);
3332 
3333   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
3334   /// and issue an ErrorUnsupported style diagnostic (using the
3335   /// provided Name).
3336   RValue EmitUnsupportedRValue(const Expr *E,
3337                                const char *Name);
3338 
3339   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
3340   /// an ErrorUnsupported style diagnostic (using the provided Name).
3341   LValue EmitUnsupportedLValue(const Expr *E,
3342                                const char *Name);
3343 
3344   /// EmitLValue - Emit code to compute a designator that specifies the location
3345   /// of the expression.
3346   ///
3347   /// This can return one of two things: a simple address or a bitfield
3348   /// reference.  In either case, the LLVM Value* in the LValue structure is
3349   /// guaranteed to be an LLVM pointer type.
3350   ///
3351   /// If this returns a bitfield reference, nothing about the pointee type of
3352   /// the LLVM value is known: For example, it may not be a pointer to an
3353   /// integer.
3354   ///
3355   /// If this returns a normal address, and if the lvalue's C type is fixed
3356   /// size, this method guarantees that the returned pointer type will point to
3357   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
3358   /// variable length type, this is not possible.
3359   ///
3360   LValue EmitLValue(const Expr *E);
3361 
3362   /// Same as EmitLValue but additionally we generate checking code to
3363   /// guard against undefined behavior.  This is only suitable when we know
3364   /// that the address will be used to access the object.
3365   LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
3366 
3367   RValue convertTempToRValue(Address addr, QualType type,
3368                              SourceLocation Loc);
3369 
3370   void EmitAtomicInit(Expr *E, LValue lvalue);
3371 
3372   bool LValueIsSuitableForInlineAtomic(LValue Src);
3373 
3374   RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
3375                         AggValueSlot Slot = AggValueSlot::ignored());
3376 
3377   RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
3378                         llvm::AtomicOrdering AO, bool IsVolatile = false,
3379                         AggValueSlot slot = AggValueSlot::ignored());
3380 
3381   void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
3382 
3383   void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
3384                        bool IsVolatile, bool isInit);
3385 
3386   std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
3387       LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
3388       llvm::AtomicOrdering Success =
3389           llvm::AtomicOrdering::SequentiallyConsistent,
3390       llvm::AtomicOrdering Failure =
3391           llvm::AtomicOrdering::SequentiallyConsistent,
3392       bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
3393 
3394   void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
3395                         const llvm::function_ref<RValue(RValue)> &UpdateOp,
3396                         bool IsVolatile);
3397 
3398   /// EmitToMemory - Change a scalar value from its value
3399   /// representation to its in-memory representation.
3400   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
3401 
3402   /// EmitFromMemory - Change a scalar value from its memory
3403   /// representation to its value representation.
3404   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
3405 
3406   /// Check if the scalar \p Value is within the valid range for the given
3407   /// type \p Ty.
3408   ///
3409   /// Returns true if a check is needed (even if the range is unknown).
3410   bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
3411                             SourceLocation Loc);
3412 
3413   /// EmitLoadOfScalar - Load a scalar value from an address, taking
3414   /// care to appropriately convert from the memory representation to
3415   /// the LLVM value representation.
3416   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3417                                 SourceLocation Loc,
3418                                 AlignmentSource Source = AlignmentSource::Type,
3419                                 bool isNontemporal = false) {
3420     return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source),
3421                             CGM.getTBAAAccessInfo(Ty), isNontemporal);
3422   }
3423 
3424   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3425                                 SourceLocation Loc, LValueBaseInfo BaseInfo,
3426                                 TBAAAccessInfo TBAAInfo,
3427                                 bool isNontemporal = false);
3428 
3429   /// EmitLoadOfScalar - Load a scalar value from an address, taking
3430   /// care to appropriately convert from the memory representation to
3431   /// the LLVM value representation.  The l-value must be a simple
3432   /// l-value.
3433   llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
3434 
3435   /// EmitStoreOfScalar - Store a scalar value to an address, taking
3436   /// care to appropriately convert from the memory representation to
3437   /// the LLVM value representation.
3438   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3439                          bool Volatile, QualType Ty,
3440                          AlignmentSource Source = AlignmentSource::Type,
3441                          bool isInit = false, bool isNontemporal = false) {
3442     EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source),
3443                       CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal);
3444   }
3445 
3446   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3447                          bool Volatile, QualType Ty,
3448                          LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo,
3449                          bool isInit = false, bool isNontemporal = false);
3450 
3451   /// EmitStoreOfScalar - Store a scalar value to an address, taking
3452   /// care to appropriately convert from the memory representation to
3453   /// the LLVM value representation.  The l-value must be a simple
3454   /// l-value.  The isInit flag indicates whether this is an initialization.
3455   /// If so, atomic qualifiers are ignored and the store is always non-atomic.
3456   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
3457 
3458   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
3459   /// this method emits the address of the lvalue, then loads the result as an
3460   /// rvalue, returning the rvalue.
3461   RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
3462   RValue EmitLoadOfExtVectorElementLValue(LValue V);
3463   RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc);
3464   RValue EmitLoadOfGlobalRegLValue(LValue LV);
3465 
3466   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
3467   /// lvalue, where both are guaranteed to the have the same type, and that type
3468   /// is 'Ty'.
3469   void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
3470   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
3471   void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
3472 
3473   /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
3474   /// as EmitStoreThroughLValue.
3475   ///
3476   /// \param Result [out] - If non-null, this will be set to a Value* for the
3477   /// bit-field contents after the store, appropriate for use as the result of
3478   /// an assignment to the bit-field.
3479   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
3480                                       llvm::Value **Result=nullptr);
3481 
3482   /// Emit an l-value for an assignment (simple or compound) of complex type.
3483   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
3484   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
3485   LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
3486                                              llvm::Value *&Result);
3487 
3488   // Note: only available for agg return types
3489   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
3490   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
3491   // Note: only available for agg return types
3492   LValue EmitCallExprLValue(const CallExpr *E);
3493   // Note: only available for agg return types
3494   LValue EmitVAArgExprLValue(const VAArgExpr *E);
3495   LValue EmitDeclRefLValue(const DeclRefExpr *E);
3496   LValue EmitStringLiteralLValue(const StringLiteral *E);
3497   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
3498   LValue EmitPredefinedLValue(const PredefinedExpr *E);
3499   LValue EmitUnaryOpLValue(const UnaryOperator *E);
3500   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3501                                 bool Accessed = false);
3502   LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3503                                  bool IsLowerBound = true);
3504   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
3505   LValue EmitMemberExpr(const MemberExpr *E);
3506   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
3507   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
3508   LValue EmitInitListLValue(const InitListExpr *E);
3509   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
3510   LValue EmitCastLValue(const CastExpr *E);
3511   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
3512   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
3513 
3514   Address EmitExtVectorElementLValue(LValue V);
3515 
3516   RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
3517 
3518   Address EmitArrayToPointerDecay(const Expr *Array,
3519                                   LValueBaseInfo *BaseInfo = nullptr,
3520                                   TBAAAccessInfo *TBAAInfo = nullptr);
3521 
3522   class ConstantEmission {
3523     llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
3524     ConstantEmission(llvm::Constant *C, bool isReference)
3525       : ValueAndIsReference(C, isReference) {}
3526   public:
3527     ConstantEmission() {}
3528     static ConstantEmission forReference(llvm::Constant *C) {
3529       return ConstantEmission(C, true);
3530     }
3531     static ConstantEmission forValue(llvm::Constant *C) {
3532       return ConstantEmission(C, false);
3533     }
3534 
3535     explicit operator bool() const {
3536       return ValueAndIsReference.getOpaqueValue() != nullptr;
3537     }
3538 
3539     bool isReference() const { return ValueAndIsReference.getInt(); }
3540     LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
3541       assert(isReference());
3542       return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
3543                                             refExpr->getType());
3544     }
3545 
3546     llvm::Constant *getValue() const {
3547       assert(!isReference());
3548       return ValueAndIsReference.getPointer();
3549     }
3550   };
3551 
3552   ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
3553   ConstantEmission tryEmitAsConstant(const MemberExpr *ME);
3554   llvm::Value *emitScalarConstant(const ConstantEmission &Constant, Expr *E);
3555 
3556   RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
3557                                 AggValueSlot slot = AggValueSlot::ignored());
3558   LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
3559 
3560   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3561                               const ObjCIvarDecl *Ivar);
3562   LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
3563   LValue EmitLValueForLambdaField(const FieldDecl *Field);
3564 
3565   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
3566   /// if the Field is a reference, this will return the address of the reference
3567   /// and not the address of the value stored in the reference.
3568   LValue EmitLValueForFieldInitialization(LValue Base,
3569                                           const FieldDecl* Field);
3570 
3571   LValue EmitLValueForIvar(QualType ObjectTy,
3572                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
3573                            unsigned CVRQualifiers);
3574 
3575   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
3576   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
3577   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
3578   LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
3579 
3580   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
3581   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
3582   LValue EmitStmtExprLValue(const StmtExpr *E);
3583   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
3584   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
3585   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init);
3586 
3587   //===--------------------------------------------------------------------===//
3588   //                         Scalar Expression Emission
3589   //===--------------------------------------------------------------------===//
3590 
3591   /// EmitCall - Generate a call of the given function, expecting the given
3592   /// result type, and using the given argument list which specifies both the
3593   /// LLVM arguments and the types they were derived from.
3594   RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
3595                   ReturnValueSlot ReturnValue, const CallArgList &Args,
3596                   llvm::CallBase **callOrInvoke, SourceLocation Loc);
3597   RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
3598                   ReturnValueSlot ReturnValue, const CallArgList &Args,
3599                   llvm::CallBase **callOrInvoke = nullptr) {
3600     return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke,
3601                     SourceLocation());
3602   }
3603   RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E,
3604                   ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr);
3605   RValue EmitCallExpr(const CallExpr *E,
3606                       ReturnValueSlot ReturnValue = ReturnValueSlot());
3607   RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
3608   CGCallee EmitCallee(const Expr *E);
3609 
3610   void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl);
3611 
3612   llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee,
3613                                   const Twine &name = "");
3614   llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee,
3615                                   ArrayRef<llvm::Value *> args,
3616                                   const Twine &name = "");
3617   llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
3618                                           const Twine &name = "");
3619   llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
3620                                           ArrayRef<llvm::Value *> args,
3621                                           const Twine &name = "");
3622 
3623   SmallVector<llvm::OperandBundleDef, 1>
3624   getBundlesForFunclet(llvm::Value *Callee);
3625 
3626   llvm::CallBase *EmitCallOrInvoke(llvm::FunctionCallee Callee,
3627                                    ArrayRef<llvm::Value *> Args,
3628                                    const Twine &Name = "");
3629   llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
3630                                           ArrayRef<llvm::Value *> args,
3631                                           const Twine &name = "");
3632   llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
3633                                           const Twine &name = "");
3634   void EmitNoreturnRuntimeCallOrInvoke(llvm::FunctionCallee callee,
3635                                        ArrayRef<llvm::Value *> args);
3636 
3637   CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
3638                                      NestedNameSpecifier *Qual,
3639                                      llvm::Type *Ty);
3640 
3641   CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
3642                                                CXXDtorType Type,
3643                                                const CXXRecordDecl *RD);
3644 
3645   // Return the copy constructor name with the prefix "__copy_constructor_"
3646   // removed.
3647   static std::string getNonTrivialCopyConstructorStr(QualType QT,
3648                                                      CharUnits Alignment,
3649                                                      bool IsVolatile,
3650                                                      ASTContext &Ctx);
3651 
3652   // Return the destructor name with the prefix "__destructor_" removed.
3653   static std::string getNonTrivialDestructorStr(QualType QT,
3654                                                 CharUnits Alignment,
3655                                                 bool IsVolatile,
3656                                                 ASTContext &Ctx);
3657 
3658   // These functions emit calls to the special functions of non-trivial C
3659   // structs.
3660   void defaultInitNonTrivialCStructVar(LValue Dst);
3661   void callCStructDefaultConstructor(LValue Dst);
3662   void callCStructDestructor(LValue Dst);
3663   void callCStructCopyConstructor(LValue Dst, LValue Src);
3664   void callCStructMoveConstructor(LValue Dst, LValue Src);
3665   void callCStructCopyAssignmentOperator(LValue Dst, LValue Src);
3666   void callCStructMoveAssignmentOperator(LValue Dst, LValue Src);
3667 
3668   RValue
3669   EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method,
3670                               const CGCallee &Callee,
3671                               ReturnValueSlot ReturnValue, llvm::Value *This,
3672                               llvm::Value *ImplicitParam,
3673                               QualType ImplicitParamTy, const CallExpr *E,
3674                               CallArgList *RtlArgs);
3675   RValue EmitCXXDestructorCall(GlobalDecl Dtor,
3676                                const CGCallee &Callee,
3677                                llvm::Value *This, llvm::Value *ImplicitParam,
3678                                QualType ImplicitParamTy, const CallExpr *E);
3679   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
3680                                ReturnValueSlot ReturnValue);
3681   RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE,
3682                                                const CXXMethodDecl *MD,
3683                                                ReturnValueSlot ReturnValue,
3684                                                bool HasQualifier,
3685                                                NestedNameSpecifier *Qualifier,
3686                                                bool IsArrow, const Expr *Base);
3687   // Compute the object pointer.
3688   Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
3689                                           llvm::Value *memberPtr,
3690                                           const MemberPointerType *memberPtrType,
3691                                           LValueBaseInfo *BaseInfo = nullptr,
3692                                           TBAAAccessInfo *TBAAInfo = nullptr);
3693   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
3694                                       ReturnValueSlot ReturnValue);
3695 
3696   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
3697                                        const CXXMethodDecl *MD,
3698                                        ReturnValueSlot ReturnValue);
3699   RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E);
3700 
3701   RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
3702                                 ReturnValueSlot ReturnValue);
3703 
3704   RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E,
3705                                        ReturnValueSlot ReturnValue);
3706 
3707   RValue EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID,
3708                          const CallExpr *E, ReturnValueSlot ReturnValue);
3709 
3710   RValue emitRotate(const CallExpr *E, bool IsRotateRight);
3711 
3712   /// Emit IR for __builtin_os_log_format.
3713   RValue emitBuiltinOSLogFormat(const CallExpr &E);
3714 
3715   llvm::Function *generateBuiltinOSLogHelperFunction(
3716       const analyze_os_log::OSLogBufferLayout &Layout,
3717       CharUnits BufferAlignment);
3718 
3719   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
3720 
3721   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
3722   /// is unhandled by the current target.
3723   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3724 
3725   llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
3726                                              const llvm::CmpInst::Predicate Fp,
3727                                              const llvm::CmpInst::Predicate Ip,
3728                                              const llvm::Twine &Name = "");
3729   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
3730                                   llvm::Triple::ArchType Arch);
3731 
3732   llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
3733                                          unsigned LLVMIntrinsic,
3734                                          unsigned AltLLVMIntrinsic,
3735                                          const char *NameHint,
3736                                          unsigned Modifier,
3737                                          const CallExpr *E,
3738                                          SmallVectorImpl<llvm::Value *> &Ops,
3739                                          Address PtrOp0, Address PtrOp1,
3740                                          llvm::Triple::ArchType Arch);
3741 
3742   llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
3743                                           unsigned Modifier, llvm::Type *ArgTy,
3744                                           const CallExpr *E);
3745   llvm::Value *EmitNeonCall(llvm::Function *F,
3746                             SmallVectorImpl<llvm::Value*> &O,
3747                             const char *name,
3748                             unsigned shift = 0, bool rightshift = false);
3749   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
3750   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
3751                                    bool negateForRightShift);
3752   llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
3753                                  llvm::Type *Ty, bool usgn, const char *name);
3754   llvm::Value *vectorWrapScalar16(llvm::Value *Op);
3755   llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E,
3756                                       llvm::Triple::ArchType Arch);
3757 
3758   llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
3759   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3760   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3761   llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3762   llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3763   llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3764   llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
3765                                           const CallExpr *E);
3766   llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3767 
3768 private:
3769   enum class MSVCIntrin;
3770 
3771 public:
3772   llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E);
3773 
3774   llvm::Value *EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args);
3775 
3776   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
3777   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
3778   llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
3779   llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
3780   llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
3781   llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
3782                                 const ObjCMethodDecl *MethodWithObjects);
3783   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
3784   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
3785                              ReturnValueSlot Return = ReturnValueSlot());
3786 
3787   /// Retrieves the default cleanup kind for an ARC cleanup.
3788   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
3789   CleanupKind getARCCleanupKind() {
3790     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
3791              ? NormalAndEHCleanup : NormalCleanup;
3792   }
3793 
3794   // ARC primitives.
3795   void EmitARCInitWeak(Address addr, llvm::Value *value);
3796   void EmitARCDestroyWeak(Address addr);
3797   llvm::Value *EmitARCLoadWeak(Address addr);
3798   llvm::Value *EmitARCLoadWeakRetained(Address addr);
3799   llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored);
3800   void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
3801   void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
3802   void EmitARCCopyWeak(Address dst, Address src);
3803   void EmitARCMoveWeak(Address dst, Address src);
3804   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
3805   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
3806   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
3807                                   bool resultIgnored);
3808   llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value,
3809                                       bool resultIgnored);
3810   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
3811   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
3812   llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
3813   void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise);
3814   void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
3815   llvm::Value *EmitARCAutorelease(llvm::Value *value);
3816   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
3817   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
3818   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
3819   llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value);
3820 
3821   llvm::Value *EmitObjCAutorelease(llvm::Value *value, llvm::Type *returnType);
3822   llvm::Value *EmitObjCRetainNonBlock(llvm::Value *value,
3823                                       llvm::Type *returnType);
3824   void EmitObjCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
3825 
3826   std::pair<LValue,llvm::Value*>
3827   EmitARCStoreAutoreleasing(const BinaryOperator *e);
3828   std::pair<LValue,llvm::Value*>
3829   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
3830   std::pair<LValue,llvm::Value*>
3831   EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored);
3832 
3833   llvm::Value *EmitObjCAlloc(llvm::Value *value,
3834                              llvm::Type *returnType);
3835   llvm::Value *EmitObjCAllocWithZone(llvm::Value *value,
3836                                      llvm::Type *returnType);
3837   llvm::Value *EmitObjCAllocInit(llvm::Value *value, llvm::Type *resultType);
3838 
3839   llvm::Value *EmitObjCThrowOperand(const Expr *expr);
3840   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
3841   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
3842 
3843   llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
3844   llvm::Value *EmitARCReclaimReturnedObject(const Expr *e,
3845                                             bool allowUnsafeClaim);
3846   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
3847   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
3848   llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr);
3849 
3850   void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
3851 
3852   static Destroyer destroyARCStrongImprecise;
3853   static Destroyer destroyARCStrongPrecise;
3854   static Destroyer destroyARCWeak;
3855   static Destroyer emitARCIntrinsicUse;
3856   static Destroyer destroyNonTrivialCStruct;
3857 
3858   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
3859   llvm::Value *EmitObjCAutoreleasePoolPush();
3860   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
3861   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
3862   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
3863 
3864   /// Emits a reference binding to the passed in expression.
3865   RValue EmitReferenceBindingToExpr(const Expr *E);
3866 
3867   //===--------------------------------------------------------------------===//
3868   //                           Expression Emission
3869   //===--------------------------------------------------------------------===//
3870 
3871   // Expressions are broken into three classes: scalar, complex, aggregate.
3872 
3873   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
3874   /// scalar type, returning the result.
3875   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
3876 
3877   /// Emit a conversion from the specified type to the specified destination
3878   /// type, both of which are LLVM scalar types.
3879   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
3880                                     QualType DstTy, SourceLocation Loc);
3881 
3882   /// Emit a conversion from the specified complex type to the specified
3883   /// destination type, where the destination type is an LLVM scalar type.
3884   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
3885                                              QualType DstTy,
3886                                              SourceLocation Loc);
3887 
3888   /// EmitAggExpr - Emit the computation of the specified expression
3889   /// of aggregate type.  The result is computed into the given slot,
3890   /// which may be null to indicate that the value is not needed.
3891   void EmitAggExpr(const Expr *E, AggValueSlot AS);
3892 
3893   /// EmitAggExprToLValue - Emit the computation of the specified expression of
3894   /// aggregate type into a temporary LValue.
3895   LValue EmitAggExprToLValue(const Expr *E);
3896 
3897   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
3898   /// make sure it survives garbage collection until this point.
3899   void EmitExtendGCLifetime(llvm::Value *object);
3900 
3901   /// EmitComplexExpr - Emit the computation of the specified expression of
3902   /// complex type, returning the result.
3903   ComplexPairTy EmitComplexExpr(const Expr *E,
3904                                 bool IgnoreReal = false,
3905                                 bool IgnoreImag = false);
3906 
3907   /// EmitComplexExprIntoLValue - Emit the given expression of complex
3908   /// type and place its result into the specified l-value.
3909   void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
3910 
3911   /// EmitStoreOfComplex - Store a complex number into the specified l-value.
3912   void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
3913 
3914   /// EmitLoadOfComplex - Load a complex number from the specified l-value.
3915   ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
3916 
3917   Address emitAddrOfRealComponent(Address complex, QualType complexType);
3918   Address emitAddrOfImagComponent(Address complex, QualType complexType);
3919 
3920   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
3921   /// global variable that has already been created for it.  If the initializer
3922   /// has a different type than GV does, this may free GV and return a different
3923   /// one.  Otherwise it just returns GV.
3924   llvm::GlobalVariable *
3925   AddInitializerToStaticVarDecl(const VarDecl &D,
3926                                 llvm::GlobalVariable *GV);
3927 
3928   // Emit an @llvm.invariant.start call for the given memory region.
3929   void EmitInvariantStart(llvm::Constant *Addr, CharUnits Size);
3930 
3931   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
3932   /// variable with global storage.
3933   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
3934                                 bool PerformInit);
3935 
3936   llvm::Function *createAtExitStub(const VarDecl &VD, llvm::FunctionCallee Dtor,
3937                                    llvm::Constant *Addr);
3938 
3939   /// Call atexit() with a function that passes the given argument to
3940   /// the given function.
3941   void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::FunctionCallee fn,
3942                                     llvm::Constant *addr);
3943 
3944   /// Call atexit() with function dtorStub.
3945   void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub);
3946 
3947   /// Emit code in this function to perform a guarded variable
3948   /// initialization.  Guarded initializations are used when it's not
3949   /// possible to prove that an initialization will be done exactly
3950   /// once, e.g. with a static local variable or a static data member
3951   /// of a class template.
3952   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
3953                           bool PerformInit);
3954 
3955   enum class GuardKind { VariableGuard, TlsGuard };
3956 
3957   /// Emit a branch to select whether or not to perform guarded initialization.
3958   void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit,
3959                                 llvm::BasicBlock *InitBlock,
3960                                 llvm::BasicBlock *NoInitBlock,
3961                                 GuardKind Kind, const VarDecl *D);
3962 
3963   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
3964   /// variables.
3965   void
3966   GenerateCXXGlobalInitFunc(llvm::Function *Fn,
3967                             ArrayRef<llvm::Function *> CXXThreadLocals,
3968                             ConstantAddress Guard = ConstantAddress::invalid());
3969 
3970   /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
3971   /// variables.
3972   void GenerateCXXGlobalDtorsFunc(
3973       llvm::Function *Fn,
3974       const std::vector<std::tuple<llvm::FunctionType *, llvm::WeakTrackingVH,
3975                                    llvm::Constant *>> &DtorsAndObjects);
3976 
3977   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
3978                                         const VarDecl *D,
3979                                         llvm::GlobalVariable *Addr,
3980                                         bool PerformInit);
3981 
3982   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
3983 
3984   void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp);
3985 
3986   void enterFullExpression(const FullExpr *E) {
3987     if (const auto *EWC = dyn_cast<ExprWithCleanups>(E))
3988       if (EWC->getNumObjects() == 0)
3989         return;
3990     enterNonTrivialFullExpression(E);
3991   }
3992   void enterNonTrivialFullExpression(const FullExpr *E);
3993 
3994   void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
3995 
3996   RValue EmitAtomicExpr(AtomicExpr *E);
3997 
3998   //===--------------------------------------------------------------------===//
3999   //                         Annotations Emission
4000   //===--------------------------------------------------------------------===//
4001 
4002   /// Emit an annotation call (intrinsic).
4003   llvm::Value *EmitAnnotationCall(llvm::Function *AnnotationFn,
4004                                   llvm::Value *AnnotatedVal,
4005                                   StringRef AnnotationStr,
4006                                   SourceLocation Location);
4007 
4008   /// Emit local annotations for the local variable V, declared by D.
4009   void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
4010 
4011   /// Emit field annotations for the given field & value. Returns the
4012   /// annotation result.
4013   Address EmitFieldAnnotations(const FieldDecl *D, Address V);
4014 
4015   //===--------------------------------------------------------------------===//
4016   //                             Internal Helpers
4017   //===--------------------------------------------------------------------===//
4018 
4019   /// ContainsLabel - Return true if the statement contains a label in it.  If
4020   /// this statement is not executed normally, it not containing a label means
4021   /// that we can just remove the code.
4022   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
4023 
4024   /// containsBreak - Return true if the statement contains a break out of it.
4025   /// If the statement (recursively) contains a switch or loop with a break
4026   /// inside of it, this is fine.
4027   static bool containsBreak(const Stmt *S);
4028 
4029   /// Determine if the given statement might introduce a declaration into the
4030   /// current scope, by being a (possibly-labelled) DeclStmt.
4031   static bool mightAddDeclToScope(const Stmt *S);
4032 
4033   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
4034   /// to a constant, or if it does but contains a label, return false.  If it
4035   /// constant folds return true and set the boolean result in Result.
4036   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result,
4037                                     bool AllowLabels = false);
4038 
4039   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
4040   /// to a constant, or if it does but contains a label, return false.  If it
4041   /// constant folds return true and set the folded value.
4042   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result,
4043                                     bool AllowLabels = false);
4044 
4045   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
4046   /// if statement) to the specified blocks.  Based on the condition, this might
4047   /// try to simplify the codegen of the conditional based on the branch.
4048   /// TrueCount should be the number of times we expect the condition to
4049   /// evaluate to true based on PGO data.
4050   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
4051                             llvm::BasicBlock *FalseBlock, uint64_t TrueCount);
4052 
4053   /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is
4054   /// nonnull, if \p LHS is marked _Nonnull.
4055   void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc);
4056 
4057   /// An enumeration which makes it easier to specify whether or not an
4058   /// operation is a subtraction.
4059   enum { NotSubtraction = false, IsSubtraction = true };
4060 
4061   /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to
4062   /// detect undefined behavior when the pointer overflow sanitizer is enabled.
4063   /// \p SignedIndices indicates whether any of the GEP indices are signed.
4064   /// \p IsSubtraction indicates whether the expression used to form the GEP
4065   /// is a subtraction.
4066   llvm::Value *EmitCheckedInBoundsGEP(llvm::Value *Ptr,
4067                                       ArrayRef<llvm::Value *> IdxList,
4068                                       bool SignedIndices,
4069                                       bool IsSubtraction,
4070                                       SourceLocation Loc,
4071                                       const Twine &Name = "");
4072 
4073   /// Specifies which type of sanitizer check to apply when handling a
4074   /// particular builtin.
4075   enum BuiltinCheckKind {
4076     BCK_CTZPassedZero,
4077     BCK_CLZPassedZero,
4078   };
4079 
4080   /// Emits an argument for a call to a builtin. If the builtin sanitizer is
4081   /// enabled, a runtime check specified by \p Kind is also emitted.
4082   llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind);
4083 
4084   /// Emit a description of a type in a format suitable for passing to
4085   /// a runtime sanitizer handler.
4086   llvm::Constant *EmitCheckTypeDescriptor(QualType T);
4087 
4088   /// Convert a value into a format suitable for passing to a runtime
4089   /// sanitizer handler.
4090   llvm::Value *EmitCheckValue(llvm::Value *V);
4091 
4092   /// Emit a description of a source location in a format suitable for
4093   /// passing to a runtime sanitizer handler.
4094   llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
4095 
4096   /// Create a basic block that will either trap or call a handler function in
4097   /// the UBSan runtime with the provided arguments, and create a conditional
4098   /// branch to it.
4099   void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
4100                  SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs,
4101                  ArrayRef<llvm::Value *> DynamicArgs);
4102 
4103   /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath
4104   /// if Cond if false.
4105   void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond,
4106                             llvm::ConstantInt *TypeId, llvm::Value *Ptr,
4107                             ArrayRef<llvm::Constant *> StaticArgs);
4108 
4109   /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime
4110   /// checking is enabled. Otherwise, just emit an unreachable instruction.
4111   void EmitUnreachable(SourceLocation Loc);
4112 
4113   /// Create a basic block that will call the trap intrinsic, and emit a
4114   /// conditional branch to it, for the -ftrapv checks.
4115   void EmitTrapCheck(llvm::Value *Checked);
4116 
4117   /// Emit a call to trap or debugtrap and attach function attribute
4118   /// "trap-func-name" if specified.
4119   llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID);
4120 
4121   /// Emit a stub for the cross-DSO CFI check function.
4122   void EmitCfiCheckStub();
4123 
4124   /// Emit a cross-DSO CFI failure handling function.
4125   void EmitCfiCheckFail();
4126 
4127   /// Create a check for a function parameter that may potentially be
4128   /// declared as non-null.
4129   void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc,
4130                            AbstractCallee AC, unsigned ParmNum);
4131 
4132   /// EmitCallArg - Emit a single call argument.
4133   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
4134 
4135   /// EmitDelegateCallArg - We are performing a delegate call; that
4136   /// is, the current function is delegating to another one.  Produce
4137   /// a r-value suitable for passing the given parameter.
4138   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
4139                            SourceLocation loc);
4140 
4141   /// SetFPAccuracy - Set the minimum required accuracy of the given floating
4142   /// point operation, expressed as the maximum relative error in ulp.
4143   void SetFPAccuracy(llvm::Value *Val, float Accuracy);
4144 
4145 private:
4146   llvm::MDNode *getRangeForLoadFromType(QualType Ty);
4147   void EmitReturnOfRValue(RValue RV, QualType Ty);
4148 
4149   void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
4150 
4151   llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4>
4152   DeferredReplacements;
4153 
4154   /// Set the address of a local variable.
4155   void setAddrOfLocalVar(const VarDecl *VD, Address Addr) {
4156     assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!");
4157     LocalDeclMap.insert({VD, Addr});
4158   }
4159 
4160   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
4161   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
4162   ///
4163   /// \param AI - The first function argument of the expansion.
4164   void ExpandTypeFromArgs(QualType Ty, LValue Dst,
4165                           SmallVectorImpl<llvm::Value *>::iterator &AI);
4166 
4167   /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg
4168   /// Ty, into individual arguments on the provided vector \arg IRCallArgs,
4169   /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand.
4170   void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
4171                         SmallVectorImpl<llvm::Value *> &IRCallArgs,
4172                         unsigned &IRCallArgPos);
4173 
4174   llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
4175                             const Expr *InputExpr, std::string &ConstraintStr);
4176 
4177   llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
4178                                   LValue InputValue, QualType InputType,
4179                                   std::string &ConstraintStr,
4180                                   SourceLocation Loc);
4181 
4182   /// Attempts to statically evaluate the object size of E. If that
4183   /// fails, emits code to figure the size of E out for us. This is
4184   /// pass_object_size aware.
4185   ///
4186   /// If EmittedExpr is non-null, this will use that instead of re-emitting E.
4187   llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
4188                                                llvm::IntegerType *ResType,
4189                                                llvm::Value *EmittedE,
4190                                                bool IsDynamic);
4191 
4192   /// Emits the size of E, as required by __builtin_object_size. This
4193   /// function is aware of pass_object_size parameters, and will act accordingly
4194   /// if E is a parameter with the pass_object_size attribute.
4195   llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type,
4196                                      llvm::IntegerType *ResType,
4197                                      llvm::Value *EmittedE,
4198                                      bool IsDynamic);
4199 
4200 public:
4201 #ifndef NDEBUG
4202   // Determine whether the given argument is an Objective-C method
4203   // that may have type parameters in its signature.
4204   static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) {
4205     const DeclContext *dc = method->getDeclContext();
4206     if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) {
4207       return classDecl->getTypeParamListAsWritten();
4208     }
4209 
4210     if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) {
4211       return catDecl->getTypeParamList();
4212     }
4213 
4214     return false;
4215   }
4216 
4217   template<typename T>
4218   static bool isObjCMethodWithTypeParams(const T *) { return false; }
4219 #endif
4220 
4221   enum class EvaluationOrder {
4222     ///! No language constraints on evaluation order.
4223     Default,
4224     ///! Language semantics require left-to-right evaluation.
4225     ForceLeftToRight,
4226     ///! Language semantics require right-to-left evaluation.
4227     ForceRightToLeft
4228   };
4229 
4230   /// EmitCallArgs - Emit call arguments for a function.
4231   template <typename T>
4232   void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo,
4233                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
4234                     AbstractCallee AC = AbstractCallee(),
4235                     unsigned ParamsToSkip = 0,
4236                     EvaluationOrder Order = EvaluationOrder::Default) {
4237     SmallVector<QualType, 16> ArgTypes;
4238     CallExpr::const_arg_iterator Arg = ArgRange.begin();
4239 
4240     assert((ParamsToSkip == 0 || CallArgTypeInfo) &&
4241            "Can't skip parameters if type info is not provided");
4242     if (CallArgTypeInfo) {
4243 #ifndef NDEBUG
4244       bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo);
4245 #endif
4246 
4247       // First, use the argument types that the type info knows about
4248       for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip,
4249                 E = CallArgTypeInfo->param_type_end();
4250            I != E; ++I, ++Arg) {
4251         assert(Arg != ArgRange.end() && "Running over edge of argument list!");
4252         assert((isGenericMethod ||
4253                 ((*I)->isVariablyModifiedType() ||
4254                  (*I).getNonReferenceType()->isObjCRetainableType() ||
4255                  getContext()
4256                          .getCanonicalType((*I).getNonReferenceType())
4257                          .getTypePtr() ==
4258                      getContext()
4259                          .getCanonicalType((*Arg)->getType())
4260                          .getTypePtr())) &&
4261                "type mismatch in call argument!");
4262         ArgTypes.push_back(*I);
4263       }
4264     }
4265 
4266     // Either we've emitted all the call args, or we have a call to variadic
4267     // function.
4268     assert((Arg == ArgRange.end() || !CallArgTypeInfo ||
4269             CallArgTypeInfo->isVariadic()) &&
4270            "Extra arguments in non-variadic function!");
4271 
4272     // If we still have any arguments, emit them using the type of the argument.
4273     for (auto *A : llvm::make_range(Arg, ArgRange.end()))
4274       ArgTypes.push_back(CallArgTypeInfo ? getVarArgType(A) : A->getType());
4275 
4276     EmitCallArgs(Args, ArgTypes, ArgRange, AC, ParamsToSkip, Order);
4277   }
4278 
4279   void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes,
4280                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
4281                     AbstractCallee AC = AbstractCallee(),
4282                     unsigned ParamsToSkip = 0,
4283                     EvaluationOrder Order = EvaluationOrder::Default);
4284 
4285   /// EmitPointerWithAlignment - Given an expression with a pointer type,
4286   /// emit the value and compute our best estimate of the alignment of the
4287   /// pointee.
4288   ///
4289   /// \param BaseInfo - If non-null, this will be initialized with
4290   /// information about the source of the alignment and the may-alias
4291   /// attribute.  Note that this function will conservatively fall back on
4292   /// the type when it doesn't recognize the expression and may-alias will
4293   /// be set to false.
4294   ///
4295   /// One reasonable way to use this information is when there's a language
4296   /// guarantee that the pointer must be aligned to some stricter value, and
4297   /// we're simply trying to ensure that sufficiently obvious uses of under-
4298   /// aligned objects don't get miscompiled; for example, a placement new
4299   /// into the address of a local variable.  In such a case, it's quite
4300   /// reasonable to just ignore the returned alignment when it isn't from an
4301   /// explicit source.
4302   Address EmitPointerWithAlignment(const Expr *Addr,
4303                                    LValueBaseInfo *BaseInfo = nullptr,
4304                                    TBAAAccessInfo *TBAAInfo = nullptr);
4305 
4306   /// If \p E references a parameter with pass_object_size info or a constant
4307   /// array size modifier, emit the object size divided by the size of \p EltTy.
4308   /// Otherwise return null.
4309   llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy);
4310 
4311   void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK);
4312 
4313   struct MultiVersionResolverOption {
4314     llvm::Function *Function;
4315     FunctionDecl *FD;
4316     struct Conds {
4317       StringRef Architecture;
4318       llvm::SmallVector<StringRef, 8> Features;
4319 
4320       Conds(StringRef Arch, ArrayRef<StringRef> Feats)
4321           : Architecture(Arch), Features(Feats.begin(), Feats.end()) {}
4322     } Conditions;
4323 
4324     MultiVersionResolverOption(llvm::Function *F, StringRef Arch,
4325                                ArrayRef<StringRef> Feats)
4326         : Function(F), Conditions(Arch, Feats) {}
4327   };
4328 
4329   // Emits the body of a multiversion function's resolver. Assumes that the
4330   // options are already sorted in the proper order, with the 'default' option
4331   // last (if it exists).
4332   void EmitMultiVersionResolver(llvm::Function *Resolver,
4333                                 ArrayRef<MultiVersionResolverOption> Options);
4334 
4335   static uint64_t GetX86CpuSupportsMask(ArrayRef<StringRef> FeatureStrs);
4336 
4337 private:
4338   QualType getVarArgType(const Expr *Arg);
4339 
4340   void EmitDeclMetadata();
4341 
4342   BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType,
4343                                   const AutoVarEmission &emission);
4344 
4345   void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
4346 
4347   llvm::Value *GetValueForARMHint(unsigned BuiltinID);
4348   llvm::Value *EmitX86CpuIs(const CallExpr *E);
4349   llvm::Value *EmitX86CpuIs(StringRef CPUStr);
4350   llvm::Value *EmitX86CpuSupports(const CallExpr *E);
4351   llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs);
4352   llvm::Value *EmitX86CpuSupports(uint64_t Mask);
4353   llvm::Value *EmitX86CpuInit();
4354   llvm::Value *FormResolverCondition(const MultiVersionResolverOption &RO);
4355 };
4356 
4357 inline DominatingLLVMValue::saved_type
4358 DominatingLLVMValue::save(CodeGenFunction &CGF, llvm::Value *value) {
4359   if (!needsSaving(value)) return saved_type(value, false);
4360 
4361   // Otherwise, we need an alloca.
4362   auto align = CharUnits::fromQuantity(
4363             CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType()));
4364   Address alloca =
4365     CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save");
4366   CGF.Builder.CreateStore(value, alloca);
4367 
4368   return saved_type(alloca.getPointer(), true);
4369 }
4370 
4371 inline llvm::Value *DominatingLLVMValue::restore(CodeGenFunction &CGF,
4372                                                  saved_type value) {
4373   // If the value says it wasn't saved, trust that it's still dominating.
4374   if (!value.getInt()) return value.getPointer();
4375 
4376   // Otherwise, it should be an alloca instruction, as set up in save().
4377   auto alloca = cast<llvm::AllocaInst>(value.getPointer());
4378   return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlignment());
4379 }
4380 
4381 }  // end namespace CodeGen
4382 }  // end namespace clang
4383 
4384 #endif
4385