1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the internal per-function state used for llvm translation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 15 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 16 17 #include "CGBuilder.h" 18 #include "CGDebugInfo.h" 19 #include "CGLoopInfo.h" 20 #include "CGValue.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "EHScopeStack.h" 24 #include "VarBypassDetector.h" 25 #include "clang/AST/CharUnits.h" 26 #include "clang/AST/ExprCXX.h" 27 #include "clang/AST/ExprObjC.h" 28 #include "clang/AST/ExprOpenMP.h" 29 #include "clang/AST/Type.h" 30 #include "clang/Basic/ABI.h" 31 #include "clang/Basic/CapturedStmt.h" 32 #include "clang/Basic/OpenMPKinds.h" 33 #include "clang/Basic/TargetInfo.h" 34 #include "clang/Frontend/CodeGenOptions.h" 35 #include "llvm/ADT/ArrayRef.h" 36 #include "llvm/ADT/DenseMap.h" 37 #include "llvm/ADT/SmallVector.h" 38 #include "llvm/IR/ValueHandle.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Transforms/Utils/SanitizerStats.h" 41 42 namespace llvm { 43 class BasicBlock; 44 class LLVMContext; 45 class MDNode; 46 class Module; 47 class SwitchInst; 48 class Twine; 49 class Value; 50 class CallSite; 51 } 52 53 namespace clang { 54 class ASTContext; 55 class BlockDecl; 56 class CXXDestructorDecl; 57 class CXXForRangeStmt; 58 class CXXTryStmt; 59 class Decl; 60 class LabelDecl; 61 class EnumConstantDecl; 62 class FunctionDecl; 63 class FunctionProtoType; 64 class LabelStmt; 65 class ObjCContainerDecl; 66 class ObjCInterfaceDecl; 67 class ObjCIvarDecl; 68 class ObjCMethodDecl; 69 class ObjCImplementationDecl; 70 class ObjCPropertyImplDecl; 71 class TargetInfo; 72 class VarDecl; 73 class ObjCForCollectionStmt; 74 class ObjCAtTryStmt; 75 class ObjCAtThrowStmt; 76 class ObjCAtSynchronizedStmt; 77 class ObjCAutoreleasePoolStmt; 78 79 namespace CodeGen { 80 class CodeGenTypes; 81 class CGCallee; 82 class CGFunctionInfo; 83 class CGRecordLayout; 84 class CGBlockInfo; 85 class CGCXXABI; 86 class BlockByrefHelpers; 87 class BlockByrefInfo; 88 class BlockFlags; 89 class BlockFieldFlags; 90 class RegionCodeGenTy; 91 class TargetCodeGenInfo; 92 struct OMPTaskDataTy; 93 struct CGCoroData; 94 95 /// The kind of evaluation to perform on values of a particular 96 /// type. Basically, is the code in CGExprScalar, CGExprComplex, or 97 /// CGExprAgg? 98 /// 99 /// TODO: should vectors maybe be split out into their own thing? 100 enum TypeEvaluationKind { 101 TEK_Scalar, 102 TEK_Complex, 103 TEK_Aggregate 104 }; 105 106 #define LIST_SANITIZER_CHECKS \ 107 SANITIZER_CHECK(AddOverflow, add_overflow, 0) \ 108 SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0) \ 109 SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0) \ 110 SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0) \ 111 SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0) \ 112 SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0) \ 113 SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 0) \ 114 SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0) \ 115 SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0) \ 116 SANITIZER_CHECK(MissingReturn, missing_return, 0) \ 117 SANITIZER_CHECK(MulOverflow, mul_overflow, 0) \ 118 SANITIZER_CHECK(NegateOverflow, negate_overflow, 0) \ 119 SANITIZER_CHECK(NullabilityArg, nullability_arg, 0) \ 120 SANITIZER_CHECK(NullabilityReturn, nullability_return, 1) \ 121 SANITIZER_CHECK(NonnullArg, nonnull_arg, 0) \ 122 SANITIZER_CHECK(NonnullReturn, nonnull_return, 1) \ 123 SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0) \ 124 SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0) \ 125 SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0) \ 126 SANITIZER_CHECK(SubOverflow, sub_overflow, 0) \ 127 SANITIZER_CHECK(TypeMismatch, type_mismatch, 1) \ 128 SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0) 129 130 enum SanitizerHandler { 131 #define SANITIZER_CHECK(Enum, Name, Version) Enum, 132 LIST_SANITIZER_CHECKS 133 #undef SANITIZER_CHECK 134 }; 135 136 /// CodeGenFunction - This class organizes the per-function state that is used 137 /// while generating LLVM code. 138 class CodeGenFunction : public CodeGenTypeCache { 139 CodeGenFunction(const CodeGenFunction &) = delete; 140 void operator=(const CodeGenFunction &) = delete; 141 142 friend class CGCXXABI; 143 public: 144 /// A jump destination is an abstract label, branching to which may 145 /// require a jump out through normal cleanups. 146 struct JumpDest { 147 JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {} 148 JumpDest(llvm::BasicBlock *Block, 149 EHScopeStack::stable_iterator Depth, 150 unsigned Index) 151 : Block(Block), ScopeDepth(Depth), Index(Index) {} 152 153 bool isValid() const { return Block != nullptr; } 154 llvm::BasicBlock *getBlock() const { return Block; } 155 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 156 unsigned getDestIndex() const { return Index; } 157 158 // This should be used cautiously. 159 void setScopeDepth(EHScopeStack::stable_iterator depth) { 160 ScopeDepth = depth; 161 } 162 163 private: 164 llvm::BasicBlock *Block; 165 EHScopeStack::stable_iterator ScopeDepth; 166 unsigned Index; 167 }; 168 169 CodeGenModule &CGM; // Per-module state. 170 const TargetInfo &Target; 171 172 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 173 LoopInfoStack LoopStack; 174 CGBuilderTy Builder; 175 176 // Stores variables for which we can't generate correct lifetime markers 177 // because of jumps. 178 VarBypassDetector Bypasses; 179 180 // CodeGen lambda for loops and support for ordered clause 181 typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &, 182 JumpDest)> 183 CodeGenLoopTy; 184 typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation, 185 const unsigned, const bool)> 186 CodeGenOrderedTy; 187 188 // Codegen lambda for loop bounds in worksharing loop constructs 189 typedef llvm::function_ref<std::pair<LValue, LValue>( 190 CodeGenFunction &, const OMPExecutableDirective &S)> 191 CodeGenLoopBoundsTy; 192 193 // Codegen lambda for loop bounds in dispatch-based loop implementation 194 typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>( 195 CodeGenFunction &, const OMPExecutableDirective &S, Address LB, 196 Address UB)> 197 CodeGenDispatchBoundsTy; 198 199 /// \brief CGBuilder insert helper. This function is called after an 200 /// instruction is created using Builder. 201 void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name, 202 llvm::BasicBlock *BB, 203 llvm::BasicBlock::iterator InsertPt) const; 204 205 /// CurFuncDecl - Holds the Decl for the current outermost 206 /// non-closure context. 207 const Decl *CurFuncDecl; 208 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 209 const Decl *CurCodeDecl; 210 const CGFunctionInfo *CurFnInfo; 211 QualType FnRetTy; 212 llvm::Function *CurFn; 213 214 // Holds coroutine data if the current function is a coroutine. We use a 215 // wrapper to manage its lifetime, so that we don't have to define CGCoroData 216 // in this header. 217 struct CGCoroInfo { 218 std::unique_ptr<CGCoroData> Data; 219 CGCoroInfo(); 220 ~CGCoroInfo(); 221 }; 222 CGCoroInfo CurCoro; 223 224 /// CurGD - The GlobalDecl for the current function being compiled. 225 GlobalDecl CurGD; 226 227 /// PrologueCleanupDepth - The cleanup depth enclosing all the 228 /// cleanups associated with the parameters. 229 EHScopeStack::stable_iterator PrologueCleanupDepth; 230 231 /// ReturnBlock - Unified return block. 232 JumpDest ReturnBlock; 233 234 /// ReturnValue - The temporary alloca to hold the return 235 /// value. This is invalid iff the function has no return value. 236 Address ReturnValue; 237 238 /// Return true if a label was seen in the current scope. 239 bool hasLabelBeenSeenInCurrentScope() const { 240 if (CurLexicalScope) 241 return CurLexicalScope->hasLabels(); 242 return !LabelMap.empty(); 243 } 244 245 /// AllocaInsertPoint - This is an instruction in the entry block before which 246 /// we prefer to insert allocas. 247 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 248 249 /// \brief API for captured statement code generation. 250 class CGCapturedStmtInfo { 251 public: 252 explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default) 253 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {} 254 explicit CGCapturedStmtInfo(const CapturedStmt &S, 255 CapturedRegionKind K = CR_Default) 256 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) { 257 258 RecordDecl::field_iterator Field = 259 S.getCapturedRecordDecl()->field_begin(); 260 for (CapturedStmt::const_capture_iterator I = S.capture_begin(), 261 E = S.capture_end(); 262 I != E; ++I, ++Field) { 263 if (I->capturesThis()) 264 CXXThisFieldDecl = *Field; 265 else if (I->capturesVariable()) 266 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 267 else if (I->capturesVariableByCopy()) 268 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 269 } 270 } 271 272 virtual ~CGCapturedStmtInfo(); 273 274 CapturedRegionKind getKind() const { return Kind; } 275 276 virtual void setContextValue(llvm::Value *V) { ThisValue = V; } 277 // \brief Retrieve the value of the context parameter. 278 virtual llvm::Value *getContextValue() const { return ThisValue; } 279 280 /// \brief Lookup the captured field decl for a variable. 281 virtual const FieldDecl *lookup(const VarDecl *VD) const { 282 return CaptureFields.lookup(VD->getCanonicalDecl()); 283 } 284 285 bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; } 286 virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; } 287 288 static bool classof(const CGCapturedStmtInfo *) { 289 return true; 290 } 291 292 /// \brief Emit the captured statement body. 293 virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) { 294 CGF.incrementProfileCounter(S); 295 CGF.EmitStmt(S); 296 } 297 298 /// \brief Get the name of the capture helper. 299 virtual StringRef getHelperName() const { return "__captured_stmt"; } 300 301 private: 302 /// \brief The kind of captured statement being generated. 303 CapturedRegionKind Kind; 304 305 /// \brief Keep the map between VarDecl and FieldDecl. 306 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields; 307 308 /// \brief The base address of the captured record, passed in as the first 309 /// argument of the parallel region function. 310 llvm::Value *ThisValue; 311 312 /// \brief Captured 'this' type. 313 FieldDecl *CXXThisFieldDecl; 314 }; 315 CGCapturedStmtInfo *CapturedStmtInfo; 316 317 /// \brief RAII for correct setting/restoring of CapturedStmtInfo. 318 class CGCapturedStmtRAII { 319 private: 320 CodeGenFunction &CGF; 321 CGCapturedStmtInfo *PrevCapturedStmtInfo; 322 public: 323 CGCapturedStmtRAII(CodeGenFunction &CGF, 324 CGCapturedStmtInfo *NewCapturedStmtInfo) 325 : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) { 326 CGF.CapturedStmtInfo = NewCapturedStmtInfo; 327 } 328 ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; } 329 }; 330 331 /// An abstract representation of regular/ObjC call/message targets. 332 class AbstractCallee { 333 /// The function declaration of the callee. 334 const Decl *CalleeDecl; 335 336 public: 337 AbstractCallee() : CalleeDecl(nullptr) {} 338 AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {} 339 AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {} 340 bool hasFunctionDecl() const { 341 return dyn_cast_or_null<FunctionDecl>(CalleeDecl); 342 } 343 const Decl *getDecl() const { return CalleeDecl; } 344 unsigned getNumParams() const { 345 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 346 return FD->getNumParams(); 347 return cast<ObjCMethodDecl>(CalleeDecl)->param_size(); 348 } 349 const ParmVarDecl *getParamDecl(unsigned I) const { 350 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 351 return FD->getParamDecl(I); 352 return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I); 353 } 354 }; 355 356 /// \brief Sanitizers enabled for this function. 357 SanitizerSet SanOpts; 358 359 /// \brief True if CodeGen currently emits code implementing sanitizer checks. 360 bool IsSanitizerScope; 361 362 /// \brief RAII object to set/unset CodeGenFunction::IsSanitizerScope. 363 class SanitizerScope { 364 CodeGenFunction *CGF; 365 public: 366 SanitizerScope(CodeGenFunction *CGF); 367 ~SanitizerScope(); 368 }; 369 370 /// In C++, whether we are code generating a thunk. This controls whether we 371 /// should emit cleanups. 372 bool CurFuncIsThunk; 373 374 /// In ARC, whether we should autorelease the return value. 375 bool AutoreleaseResult; 376 377 /// Whether we processed a Microsoft-style asm block during CodeGen. These can 378 /// potentially set the return value. 379 bool SawAsmBlock; 380 381 const FunctionDecl *CurSEHParent = nullptr; 382 383 /// True if the current function is an outlined SEH helper. This can be a 384 /// finally block or filter expression. 385 bool IsOutlinedSEHHelper; 386 387 const CodeGen::CGBlockInfo *BlockInfo; 388 llvm::Value *BlockPointer; 389 390 llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; 391 FieldDecl *LambdaThisCaptureField; 392 393 /// \brief A mapping from NRVO variables to the flags used to indicate 394 /// when the NRVO has been applied to this variable. 395 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 396 397 EHScopeStack EHStack; 398 llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack; 399 llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack; 400 401 llvm::Instruction *CurrentFuncletPad = nullptr; 402 403 class CallLifetimeEnd final : public EHScopeStack::Cleanup { 404 llvm::Value *Addr; 405 llvm::Value *Size; 406 407 public: 408 CallLifetimeEnd(Address addr, llvm::Value *size) 409 : Addr(addr.getPointer()), Size(size) {} 410 411 void Emit(CodeGenFunction &CGF, Flags flags) override { 412 CGF.EmitLifetimeEnd(Size, Addr); 413 } 414 }; 415 416 /// Header for data within LifetimeExtendedCleanupStack. 417 struct LifetimeExtendedCleanupHeader { 418 /// The size of the following cleanup object. 419 unsigned Size; 420 /// The kind of cleanup to push: a value from the CleanupKind enumeration. 421 CleanupKind Kind; 422 423 size_t getSize() const { return Size; } 424 CleanupKind getKind() const { return Kind; } 425 }; 426 427 /// i32s containing the indexes of the cleanup destinations. 428 llvm::AllocaInst *NormalCleanupDest; 429 430 unsigned NextCleanupDestIndex; 431 432 /// FirstBlockInfo - The head of a singly-linked-list of block layouts. 433 CGBlockInfo *FirstBlockInfo; 434 435 /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. 436 llvm::BasicBlock *EHResumeBlock; 437 438 /// The exception slot. All landing pads write the current exception pointer 439 /// into this alloca. 440 llvm::Value *ExceptionSlot; 441 442 /// The selector slot. Under the MandatoryCleanup model, all landing pads 443 /// write the current selector value into this alloca. 444 llvm::AllocaInst *EHSelectorSlot; 445 446 /// A stack of exception code slots. Entering an __except block pushes a slot 447 /// on the stack and leaving pops one. The __exception_code() intrinsic loads 448 /// a value from the top of the stack. 449 SmallVector<Address, 1> SEHCodeSlotStack; 450 451 /// Value returned by __exception_info intrinsic. 452 llvm::Value *SEHInfo = nullptr; 453 454 /// Emits a landing pad for the current EH stack. 455 llvm::BasicBlock *EmitLandingPad(); 456 457 llvm::BasicBlock *getInvokeDestImpl(); 458 459 template <class T> 460 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 461 return DominatingValue<T>::save(*this, value); 462 } 463 464 public: 465 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 466 /// rethrows. 467 SmallVector<llvm::Value*, 8> ObjCEHValueStack; 468 469 /// A class controlling the emission of a finally block. 470 class FinallyInfo { 471 /// Where the catchall's edge through the cleanup should go. 472 JumpDest RethrowDest; 473 474 /// A function to call to enter the catch. 475 llvm::Constant *BeginCatchFn; 476 477 /// An i1 variable indicating whether or not the @finally is 478 /// running for an exception. 479 llvm::AllocaInst *ForEHVar; 480 481 /// An i8* variable into which the exception pointer to rethrow 482 /// has been saved. 483 llvm::AllocaInst *SavedExnVar; 484 485 public: 486 void enter(CodeGenFunction &CGF, const Stmt *Finally, 487 llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn, 488 llvm::Constant *rethrowFn); 489 void exit(CodeGenFunction &CGF); 490 }; 491 492 /// Returns true inside SEH __try blocks. 493 bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); } 494 495 /// Returns true while emitting a cleanuppad. 496 bool isCleanupPadScope() const { 497 return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad); 498 } 499 500 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 501 /// current full-expression. Safe against the possibility that 502 /// we're currently inside a conditionally-evaluated expression. 503 template <class T, class... As> 504 void pushFullExprCleanup(CleanupKind kind, As... A) { 505 // If we're not in a conditional branch, or if none of the 506 // arguments requires saving, then use the unconditional cleanup. 507 if (!isInConditionalBranch()) 508 return EHStack.pushCleanup<T>(kind, A...); 509 510 // Stash values in a tuple so we can guarantee the order of saves. 511 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 512 SavedTuple Saved{saveValueInCond(A)...}; 513 514 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 515 EHStack.pushCleanupTuple<CleanupType>(kind, Saved); 516 initFullExprCleanup(); 517 } 518 519 /// \brief Queue a cleanup to be pushed after finishing the current 520 /// full-expression. 521 template <class T, class... As> 522 void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) { 523 assert(!isInConditionalBranch() && "can't defer conditional cleanup"); 524 525 LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind }; 526 527 size_t OldSize = LifetimeExtendedCleanupStack.size(); 528 LifetimeExtendedCleanupStack.resize( 529 LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size); 530 531 static_assert(sizeof(Header) % alignof(T) == 0, 532 "Cleanup will be allocated on misaligned address"); 533 char *Buffer = &LifetimeExtendedCleanupStack[OldSize]; 534 new (Buffer) LifetimeExtendedCleanupHeader(Header); 535 new (Buffer + sizeof(Header)) T(A...); 536 } 537 538 /// Set up the last cleaup that was pushed as a conditional 539 /// full-expression cleanup. 540 void initFullExprCleanup(); 541 542 /// PushDestructorCleanup - Push a cleanup to call the 543 /// complete-object destructor of an object of the given type at the 544 /// given address. Does nothing if T is not a C++ class type with a 545 /// non-trivial destructor. 546 void PushDestructorCleanup(QualType T, Address Addr); 547 548 /// PushDestructorCleanup - Push a cleanup to call the 549 /// complete-object variant of the given destructor on the object at 550 /// the given address. 551 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, Address Addr); 552 553 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 554 /// process all branch fixups. 555 void PopCleanupBlock(bool FallThroughIsBranchThrough = false); 556 557 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 558 /// The block cannot be reactivated. Pops it if it's the top of the 559 /// stack. 560 /// 561 /// \param DominatingIP - An instruction which is known to 562 /// dominate the current IP (if set) and which lies along 563 /// all paths of execution between the current IP and the 564 /// the point at which the cleanup comes into scope. 565 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 566 llvm::Instruction *DominatingIP); 567 568 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 569 /// Cannot be used to resurrect a deactivated cleanup. 570 /// 571 /// \param DominatingIP - An instruction which is known to 572 /// dominate the current IP (if set) and which lies along 573 /// all paths of execution between the current IP and the 574 /// the point at which the cleanup comes into scope. 575 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 576 llvm::Instruction *DominatingIP); 577 578 /// \brief Enters a new scope for capturing cleanups, all of which 579 /// will be executed once the scope is exited. 580 class RunCleanupsScope { 581 EHScopeStack::stable_iterator CleanupStackDepth; 582 size_t LifetimeExtendedCleanupStackSize; 583 bool OldDidCallStackSave; 584 protected: 585 bool PerformCleanup; 586 private: 587 588 RunCleanupsScope(const RunCleanupsScope &) = delete; 589 void operator=(const RunCleanupsScope &) = delete; 590 591 protected: 592 CodeGenFunction& CGF; 593 594 public: 595 /// \brief Enter a new cleanup scope. 596 explicit RunCleanupsScope(CodeGenFunction &CGF) 597 : PerformCleanup(true), CGF(CGF) 598 { 599 CleanupStackDepth = CGF.EHStack.stable_begin(); 600 LifetimeExtendedCleanupStackSize = 601 CGF.LifetimeExtendedCleanupStack.size(); 602 OldDidCallStackSave = CGF.DidCallStackSave; 603 CGF.DidCallStackSave = false; 604 } 605 606 /// \brief Exit this cleanup scope, emitting any accumulated cleanups. 607 ~RunCleanupsScope() { 608 if (PerformCleanup) 609 ForceCleanup(); 610 } 611 612 /// \brief Determine whether this scope requires any cleanups. 613 bool requiresCleanups() const { 614 return CGF.EHStack.stable_begin() != CleanupStackDepth; 615 } 616 617 /// \brief Force the emission of cleanups now, instead of waiting 618 /// until this object is destroyed. 619 /// \param ValuesToReload - A list of values that need to be available at 620 /// the insertion point after cleanup emission. If cleanup emission created 621 /// a shared cleanup block, these value pointers will be rewritten. 622 /// Otherwise, they not will be modified. 623 void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) { 624 assert(PerformCleanup && "Already forced cleanup"); 625 CGF.DidCallStackSave = OldDidCallStackSave; 626 CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize, 627 ValuesToReload); 628 PerformCleanup = false; 629 } 630 }; 631 632 class LexicalScope : public RunCleanupsScope { 633 SourceRange Range; 634 SmallVector<const LabelDecl*, 4> Labels; 635 LexicalScope *ParentScope; 636 637 LexicalScope(const LexicalScope &) = delete; 638 void operator=(const LexicalScope &) = delete; 639 640 public: 641 /// \brief Enter a new cleanup scope. 642 explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) 643 : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) { 644 CGF.CurLexicalScope = this; 645 if (CGDebugInfo *DI = CGF.getDebugInfo()) 646 DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); 647 } 648 649 void addLabel(const LabelDecl *label) { 650 assert(PerformCleanup && "adding label to dead scope?"); 651 Labels.push_back(label); 652 } 653 654 /// \brief Exit this cleanup scope, emitting any accumulated 655 /// cleanups. 656 ~LexicalScope() { 657 if (CGDebugInfo *DI = CGF.getDebugInfo()) 658 DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 659 660 // If we should perform a cleanup, force them now. Note that 661 // this ends the cleanup scope before rescoping any labels. 662 if (PerformCleanup) { 663 ApplyDebugLocation DL(CGF, Range.getEnd()); 664 ForceCleanup(); 665 } 666 } 667 668 /// \brief Force the emission of cleanups now, instead of waiting 669 /// until this object is destroyed. 670 void ForceCleanup() { 671 CGF.CurLexicalScope = ParentScope; 672 RunCleanupsScope::ForceCleanup(); 673 674 if (!Labels.empty()) 675 rescopeLabels(); 676 } 677 678 bool hasLabels() const { 679 return !Labels.empty(); 680 } 681 682 void rescopeLabels(); 683 }; 684 685 typedef llvm::DenseMap<const Decl *, Address> DeclMapTy; 686 687 /// \brief The scope used to remap some variables as private in the OpenMP 688 /// loop body (or other captured region emitted without outlining), and to 689 /// restore old vars back on exit. 690 class OMPPrivateScope : public RunCleanupsScope { 691 DeclMapTy SavedLocals; 692 DeclMapTy SavedPrivates; 693 694 private: 695 OMPPrivateScope(const OMPPrivateScope &) = delete; 696 void operator=(const OMPPrivateScope &) = delete; 697 698 public: 699 /// \brief Enter a new OpenMP private scope. 700 explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {} 701 702 /// \brief Registers \a LocalVD variable as a private and apply \a 703 /// PrivateGen function for it to generate corresponding private variable. 704 /// \a PrivateGen returns an address of the generated private variable. 705 /// \return true if the variable is registered as private, false if it has 706 /// been privatized already. 707 bool 708 addPrivate(const VarDecl *LocalVD, 709 llvm::function_ref<Address()> PrivateGen) { 710 assert(PerformCleanup && "adding private to dead scope"); 711 712 LocalVD = LocalVD->getCanonicalDecl(); 713 // Only save it once. 714 if (SavedLocals.count(LocalVD)) return false; 715 716 // Copy the existing local entry to SavedLocals. 717 auto it = CGF.LocalDeclMap.find(LocalVD); 718 if (it != CGF.LocalDeclMap.end()) { 719 SavedLocals.insert({LocalVD, it->second}); 720 } else { 721 SavedLocals.insert({LocalVD, Address::invalid()}); 722 } 723 724 // Generate the private entry. 725 Address Addr = PrivateGen(); 726 QualType VarTy = LocalVD->getType(); 727 if (VarTy->isReferenceType()) { 728 Address Temp = CGF.CreateMemTemp(VarTy); 729 CGF.Builder.CreateStore(Addr.getPointer(), Temp); 730 Addr = Temp; 731 } 732 SavedPrivates.insert({LocalVD, Addr}); 733 734 return true; 735 } 736 737 /// \brief Privatizes local variables previously registered as private. 738 /// Registration is separate from the actual privatization to allow 739 /// initializers use values of the original variables, not the private one. 740 /// This is important, for example, if the private variable is a class 741 /// variable initialized by a constructor that references other private 742 /// variables. But at initialization original variables must be used, not 743 /// private copies. 744 /// \return true if at least one variable was privatized, false otherwise. 745 bool Privatize() { 746 copyInto(SavedPrivates, CGF.LocalDeclMap); 747 SavedPrivates.clear(); 748 return !SavedLocals.empty(); 749 } 750 751 void ForceCleanup() { 752 RunCleanupsScope::ForceCleanup(); 753 copyInto(SavedLocals, CGF.LocalDeclMap); 754 SavedLocals.clear(); 755 } 756 757 /// \brief Exit scope - all the mapped variables are restored. 758 ~OMPPrivateScope() { 759 if (PerformCleanup) 760 ForceCleanup(); 761 } 762 763 /// Checks if the global variable is captured in current function. 764 bool isGlobalVarCaptured(const VarDecl *VD) const { 765 VD = VD->getCanonicalDecl(); 766 return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0; 767 } 768 769 private: 770 /// Copy all the entries in the source map over the corresponding 771 /// entries in the destination, which must exist. 772 static void copyInto(const DeclMapTy &src, DeclMapTy &dest) { 773 for (auto &pair : src) { 774 if (!pair.second.isValid()) { 775 dest.erase(pair.first); 776 continue; 777 } 778 779 auto it = dest.find(pair.first); 780 if (it != dest.end()) { 781 it->second = pair.second; 782 } else { 783 dest.insert(pair); 784 } 785 } 786 } 787 }; 788 789 /// \brief Takes the old cleanup stack size and emits the cleanup blocks 790 /// that have been added. 791 void 792 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 793 std::initializer_list<llvm::Value **> ValuesToReload = {}); 794 795 /// \brief Takes the old cleanup stack size and emits the cleanup blocks 796 /// that have been added, then adds all lifetime-extended cleanups from 797 /// the given position to the stack. 798 void 799 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 800 size_t OldLifetimeExtendedStackSize, 801 std::initializer_list<llvm::Value **> ValuesToReload = {}); 802 803 void ResolveBranchFixups(llvm::BasicBlock *Target); 804 805 /// The given basic block lies in the current EH scope, but may be a 806 /// target of a potentially scope-crossing jump; get a stable handle 807 /// to which we can perform this jump later. 808 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 809 return JumpDest(Target, 810 EHStack.getInnermostNormalCleanup(), 811 NextCleanupDestIndex++); 812 } 813 814 /// The given basic block lies in the current EH scope, but may be a 815 /// target of a potentially scope-crossing jump; get a stable handle 816 /// to which we can perform this jump later. 817 JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { 818 return getJumpDestInCurrentScope(createBasicBlock(Name)); 819 } 820 821 /// EmitBranchThroughCleanup - Emit a branch from the current insert 822 /// block through the normal cleanup handling code (if any) and then 823 /// on to \arg Dest. 824 void EmitBranchThroughCleanup(JumpDest Dest); 825 826 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 827 /// specified destination obviously has no cleanups to run. 'false' is always 828 /// a conservatively correct answer for this method. 829 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 830 831 /// popCatchScope - Pops the catch scope at the top of the EHScope 832 /// stack, emitting any required code (other than the catch handlers 833 /// themselves). 834 void popCatchScope(); 835 836 llvm::BasicBlock *getEHResumeBlock(bool isCleanup); 837 llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); 838 llvm::BasicBlock *getMSVCDispatchBlock(EHScopeStack::stable_iterator scope); 839 840 /// An object to manage conditionally-evaluated expressions. 841 class ConditionalEvaluation { 842 llvm::BasicBlock *StartBB; 843 844 public: 845 ConditionalEvaluation(CodeGenFunction &CGF) 846 : StartBB(CGF.Builder.GetInsertBlock()) {} 847 848 void begin(CodeGenFunction &CGF) { 849 assert(CGF.OutermostConditional != this); 850 if (!CGF.OutermostConditional) 851 CGF.OutermostConditional = this; 852 } 853 854 void end(CodeGenFunction &CGF) { 855 assert(CGF.OutermostConditional != nullptr); 856 if (CGF.OutermostConditional == this) 857 CGF.OutermostConditional = nullptr; 858 } 859 860 /// Returns a block which will be executed prior to each 861 /// evaluation of the conditional code. 862 llvm::BasicBlock *getStartingBlock() const { 863 return StartBB; 864 } 865 }; 866 867 /// isInConditionalBranch - Return true if we're currently emitting 868 /// one branch or the other of a conditional expression. 869 bool isInConditionalBranch() const { return OutermostConditional != nullptr; } 870 871 void setBeforeOutermostConditional(llvm::Value *value, Address addr) { 872 assert(isInConditionalBranch()); 873 llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); 874 auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back()); 875 store->setAlignment(addr.getAlignment().getQuantity()); 876 } 877 878 /// An RAII object to record that we're evaluating a statement 879 /// expression. 880 class StmtExprEvaluation { 881 CodeGenFunction &CGF; 882 883 /// We have to save the outermost conditional: cleanups in a 884 /// statement expression aren't conditional just because the 885 /// StmtExpr is. 886 ConditionalEvaluation *SavedOutermostConditional; 887 888 public: 889 StmtExprEvaluation(CodeGenFunction &CGF) 890 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 891 CGF.OutermostConditional = nullptr; 892 } 893 894 ~StmtExprEvaluation() { 895 CGF.OutermostConditional = SavedOutermostConditional; 896 CGF.EnsureInsertPoint(); 897 } 898 }; 899 900 /// An object which temporarily prevents a value from being 901 /// destroyed by aggressive peephole optimizations that assume that 902 /// all uses of a value have been realized in the IR. 903 class PeepholeProtection { 904 llvm::Instruction *Inst; 905 friend class CodeGenFunction; 906 907 public: 908 PeepholeProtection() : Inst(nullptr) {} 909 }; 910 911 /// A non-RAII class containing all the information about a bound 912 /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for 913 /// this which makes individual mappings very simple; using this 914 /// class directly is useful when you have a variable number of 915 /// opaque values or don't want the RAII functionality for some 916 /// reason. 917 class OpaqueValueMappingData { 918 const OpaqueValueExpr *OpaqueValue; 919 bool BoundLValue; 920 CodeGenFunction::PeepholeProtection Protection; 921 922 OpaqueValueMappingData(const OpaqueValueExpr *ov, 923 bool boundLValue) 924 : OpaqueValue(ov), BoundLValue(boundLValue) {} 925 public: 926 OpaqueValueMappingData() : OpaqueValue(nullptr) {} 927 928 static bool shouldBindAsLValue(const Expr *expr) { 929 // gl-values should be bound as l-values for obvious reasons. 930 // Records should be bound as l-values because IR generation 931 // always keeps them in memory. Expressions of function type 932 // act exactly like l-values but are formally required to be 933 // r-values in C. 934 return expr->isGLValue() || 935 expr->getType()->isFunctionType() || 936 hasAggregateEvaluationKind(expr->getType()); 937 } 938 939 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 940 const OpaqueValueExpr *ov, 941 const Expr *e) { 942 if (shouldBindAsLValue(ov)) 943 return bind(CGF, ov, CGF.EmitLValue(e)); 944 return bind(CGF, ov, CGF.EmitAnyExpr(e)); 945 } 946 947 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 948 const OpaqueValueExpr *ov, 949 const LValue &lv) { 950 assert(shouldBindAsLValue(ov)); 951 CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); 952 return OpaqueValueMappingData(ov, true); 953 } 954 955 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 956 const OpaqueValueExpr *ov, 957 const RValue &rv) { 958 assert(!shouldBindAsLValue(ov)); 959 CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); 960 961 OpaqueValueMappingData data(ov, false); 962 963 // Work around an extremely aggressive peephole optimization in 964 // EmitScalarConversion which assumes that all other uses of a 965 // value are extant. 966 data.Protection = CGF.protectFromPeepholes(rv); 967 968 return data; 969 } 970 971 bool isValid() const { return OpaqueValue != nullptr; } 972 void clear() { OpaqueValue = nullptr; } 973 974 void unbind(CodeGenFunction &CGF) { 975 assert(OpaqueValue && "no data to unbind!"); 976 977 if (BoundLValue) { 978 CGF.OpaqueLValues.erase(OpaqueValue); 979 } else { 980 CGF.OpaqueRValues.erase(OpaqueValue); 981 CGF.unprotectFromPeepholes(Protection); 982 } 983 } 984 }; 985 986 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 987 class OpaqueValueMapping { 988 CodeGenFunction &CGF; 989 OpaqueValueMappingData Data; 990 991 public: 992 static bool shouldBindAsLValue(const Expr *expr) { 993 return OpaqueValueMappingData::shouldBindAsLValue(expr); 994 } 995 996 /// Build the opaque value mapping for the given conditional 997 /// operator if it's the GNU ?: extension. This is a common 998 /// enough pattern that the convenience operator is really 999 /// helpful. 1000 /// 1001 OpaqueValueMapping(CodeGenFunction &CGF, 1002 const AbstractConditionalOperator *op) : CGF(CGF) { 1003 if (isa<ConditionalOperator>(op)) 1004 // Leave Data empty. 1005 return; 1006 1007 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 1008 Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), 1009 e->getCommon()); 1010 } 1011 1012 /// Build the opaque value mapping for an OpaqueValueExpr whose source 1013 /// expression is set to the expression the OVE represents. 1014 OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV) 1015 : CGF(CGF) { 1016 if (OV) { 1017 assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used " 1018 "for OVE with no source expression"); 1019 Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr()); 1020 } 1021 } 1022 1023 OpaqueValueMapping(CodeGenFunction &CGF, 1024 const OpaqueValueExpr *opaqueValue, 1025 LValue lvalue) 1026 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { 1027 } 1028 1029 OpaqueValueMapping(CodeGenFunction &CGF, 1030 const OpaqueValueExpr *opaqueValue, 1031 RValue rvalue) 1032 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { 1033 } 1034 1035 void pop() { 1036 Data.unbind(CGF); 1037 Data.clear(); 1038 } 1039 1040 ~OpaqueValueMapping() { 1041 if (Data.isValid()) Data.unbind(CGF); 1042 } 1043 }; 1044 1045 private: 1046 CGDebugInfo *DebugInfo; 1047 bool DisableDebugInfo; 1048 1049 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 1050 /// calling llvm.stacksave for multiple VLAs in the same scope. 1051 bool DidCallStackSave; 1052 1053 /// IndirectBranch - The first time an indirect goto is seen we create a block 1054 /// with an indirect branch. Every time we see the address of a label taken, 1055 /// we add the label to the indirect goto. Every subsequent indirect goto is 1056 /// codegen'd as a jump to the IndirectBranch's basic block. 1057 llvm::IndirectBrInst *IndirectBranch; 1058 1059 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 1060 /// decls. 1061 DeclMapTy LocalDeclMap; 1062 1063 /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this 1064 /// will contain a mapping from said ParmVarDecl to its implicit "object_size" 1065 /// parameter. 1066 llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2> 1067 SizeArguments; 1068 1069 /// Track escaped local variables with auto storage. Used during SEH 1070 /// outlining to produce a call to llvm.localescape. 1071 llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals; 1072 1073 /// LabelMap - This keeps track of the LLVM basic block for each C label. 1074 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 1075 1076 // BreakContinueStack - This keeps track of where break and continue 1077 // statements should jump to. 1078 struct BreakContinue { 1079 BreakContinue(JumpDest Break, JumpDest Continue) 1080 : BreakBlock(Break), ContinueBlock(Continue) {} 1081 1082 JumpDest BreakBlock; 1083 JumpDest ContinueBlock; 1084 }; 1085 SmallVector<BreakContinue, 8> BreakContinueStack; 1086 1087 /// Handles cancellation exit points in OpenMP-related constructs. 1088 class OpenMPCancelExitStack { 1089 /// Tracks cancellation exit point and join point for cancel-related exit 1090 /// and normal exit. 1091 struct CancelExit { 1092 CancelExit() = default; 1093 CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock, 1094 JumpDest ContBlock) 1095 : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {} 1096 OpenMPDirectiveKind Kind = OMPD_unknown; 1097 /// true if the exit block has been emitted already by the special 1098 /// emitExit() call, false if the default codegen is used. 1099 bool HasBeenEmitted = false; 1100 JumpDest ExitBlock; 1101 JumpDest ContBlock; 1102 }; 1103 1104 SmallVector<CancelExit, 8> Stack; 1105 1106 public: 1107 OpenMPCancelExitStack() : Stack(1) {} 1108 ~OpenMPCancelExitStack() = default; 1109 /// Fetches the exit block for the current OpenMP construct. 1110 JumpDest getExitBlock() const { return Stack.back().ExitBlock; } 1111 /// Emits exit block with special codegen procedure specific for the related 1112 /// OpenMP construct + emits code for normal construct cleanup. 1113 void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 1114 const llvm::function_ref<void(CodeGenFunction &)> &CodeGen) { 1115 if (Stack.back().Kind == Kind && getExitBlock().isValid()) { 1116 assert(CGF.getOMPCancelDestination(Kind).isValid()); 1117 assert(CGF.HaveInsertPoint()); 1118 assert(!Stack.back().HasBeenEmitted); 1119 auto IP = CGF.Builder.saveAndClearIP(); 1120 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1121 CodeGen(CGF); 1122 CGF.EmitBranch(Stack.back().ContBlock.getBlock()); 1123 CGF.Builder.restoreIP(IP); 1124 Stack.back().HasBeenEmitted = true; 1125 } 1126 CodeGen(CGF); 1127 } 1128 /// Enter the cancel supporting \a Kind construct. 1129 /// \param Kind OpenMP directive that supports cancel constructs. 1130 /// \param HasCancel true, if the construct has inner cancel directive, 1131 /// false otherwise. 1132 void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) { 1133 Stack.push_back({Kind, 1134 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit") 1135 : JumpDest(), 1136 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont") 1137 : JumpDest()}); 1138 } 1139 /// Emits default exit point for the cancel construct (if the special one 1140 /// has not be used) + join point for cancel/normal exits. 1141 void exit(CodeGenFunction &CGF) { 1142 if (getExitBlock().isValid()) { 1143 assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid()); 1144 bool HaveIP = CGF.HaveInsertPoint(); 1145 if (!Stack.back().HasBeenEmitted) { 1146 if (HaveIP) 1147 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1148 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1149 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1150 } 1151 CGF.EmitBlock(Stack.back().ContBlock.getBlock()); 1152 if (!HaveIP) { 1153 CGF.Builder.CreateUnreachable(); 1154 CGF.Builder.ClearInsertionPoint(); 1155 } 1156 } 1157 Stack.pop_back(); 1158 } 1159 }; 1160 OpenMPCancelExitStack OMPCancelStack; 1161 1162 /// Controls insertion of cancellation exit blocks in worksharing constructs. 1163 class OMPCancelStackRAII { 1164 CodeGenFunction &CGF; 1165 1166 public: 1167 OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 1168 bool HasCancel) 1169 : CGF(CGF) { 1170 CGF.OMPCancelStack.enter(CGF, Kind, HasCancel); 1171 } 1172 ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); } 1173 }; 1174 1175 CodeGenPGO PGO; 1176 1177 /// Calculate branch weights appropriate for PGO data 1178 llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount); 1179 llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights); 1180 llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond, 1181 uint64_t LoopCount); 1182 1183 public: 1184 /// Increment the profiler's counter for the given statement by \p StepV. 1185 /// If \p StepV is null, the default increment is 1. 1186 void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) { 1187 if (CGM.getCodeGenOpts().hasProfileClangInstr()) 1188 PGO.emitCounterIncrement(Builder, S, StepV); 1189 PGO.setCurrentStmt(S); 1190 } 1191 1192 /// Get the profiler's count for the given statement. 1193 uint64_t getProfileCount(const Stmt *S) { 1194 Optional<uint64_t> Count = PGO.getStmtCount(S); 1195 if (!Count.hasValue()) 1196 return 0; 1197 return *Count; 1198 } 1199 1200 /// Set the profiler's current count. 1201 void setCurrentProfileCount(uint64_t Count) { 1202 PGO.setCurrentRegionCount(Count); 1203 } 1204 1205 /// Get the profiler's current count. This is generally the count for the most 1206 /// recently incremented counter. 1207 uint64_t getCurrentProfileCount() { 1208 return PGO.getCurrentRegionCount(); 1209 } 1210 1211 private: 1212 1213 /// SwitchInsn - This is nearest current switch instruction. It is null if 1214 /// current context is not in a switch. 1215 llvm::SwitchInst *SwitchInsn; 1216 /// The branch weights of SwitchInsn when doing instrumentation based PGO. 1217 SmallVector<uint64_t, 16> *SwitchWeights; 1218 1219 /// CaseRangeBlock - This block holds if condition check for last case 1220 /// statement range in current switch instruction. 1221 llvm::BasicBlock *CaseRangeBlock; 1222 1223 /// OpaqueLValues - Keeps track of the current set of opaque value 1224 /// expressions. 1225 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 1226 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 1227 1228 // VLASizeMap - This keeps track of the associated size for each VLA type. 1229 // We track this by the size expression rather than the type itself because 1230 // in certain situations, like a const qualifier applied to an VLA typedef, 1231 // multiple VLA types can share the same size expression. 1232 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 1233 // enter/leave scopes. 1234 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 1235 1236 /// A block containing a single 'unreachable' instruction. Created 1237 /// lazily by getUnreachableBlock(). 1238 llvm::BasicBlock *UnreachableBlock; 1239 1240 /// Counts of the number return expressions in the function. 1241 unsigned NumReturnExprs; 1242 1243 /// Count the number of simple (constant) return expressions in the function. 1244 unsigned NumSimpleReturnExprs; 1245 1246 /// The last regular (non-return) debug location (breakpoint) in the function. 1247 SourceLocation LastStopPoint; 1248 1249 public: 1250 /// A scope within which we are constructing the fields of an object which 1251 /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use 1252 /// if we need to evaluate a CXXDefaultInitExpr within the evaluation. 1253 class FieldConstructionScope { 1254 public: 1255 FieldConstructionScope(CodeGenFunction &CGF, Address This) 1256 : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) { 1257 CGF.CXXDefaultInitExprThis = This; 1258 } 1259 ~FieldConstructionScope() { 1260 CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis; 1261 } 1262 1263 private: 1264 CodeGenFunction &CGF; 1265 Address OldCXXDefaultInitExprThis; 1266 }; 1267 1268 /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this' 1269 /// is overridden to be the object under construction. 1270 class CXXDefaultInitExprScope { 1271 public: 1272 CXXDefaultInitExprScope(CodeGenFunction &CGF) 1273 : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue), 1274 OldCXXThisAlignment(CGF.CXXThisAlignment) { 1275 CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer(); 1276 CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment(); 1277 } 1278 ~CXXDefaultInitExprScope() { 1279 CGF.CXXThisValue = OldCXXThisValue; 1280 CGF.CXXThisAlignment = OldCXXThisAlignment; 1281 } 1282 1283 public: 1284 CodeGenFunction &CGF; 1285 llvm::Value *OldCXXThisValue; 1286 CharUnits OldCXXThisAlignment; 1287 }; 1288 1289 /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the 1290 /// current loop index is overridden. 1291 class ArrayInitLoopExprScope { 1292 public: 1293 ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index) 1294 : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) { 1295 CGF.ArrayInitIndex = Index; 1296 } 1297 ~ArrayInitLoopExprScope() { 1298 CGF.ArrayInitIndex = OldArrayInitIndex; 1299 } 1300 1301 private: 1302 CodeGenFunction &CGF; 1303 llvm::Value *OldArrayInitIndex; 1304 }; 1305 1306 class InlinedInheritingConstructorScope { 1307 public: 1308 InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD) 1309 : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl), 1310 OldCurCodeDecl(CGF.CurCodeDecl), 1311 OldCXXABIThisDecl(CGF.CXXABIThisDecl), 1312 OldCXXABIThisValue(CGF.CXXABIThisValue), 1313 OldCXXThisValue(CGF.CXXThisValue), 1314 OldCXXABIThisAlignment(CGF.CXXABIThisAlignment), 1315 OldCXXThisAlignment(CGF.CXXThisAlignment), 1316 OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy), 1317 OldCXXInheritedCtorInitExprArgs( 1318 std::move(CGF.CXXInheritedCtorInitExprArgs)) { 1319 CGF.CurGD = GD; 1320 CGF.CurFuncDecl = CGF.CurCodeDecl = 1321 cast<CXXConstructorDecl>(GD.getDecl()); 1322 CGF.CXXABIThisDecl = nullptr; 1323 CGF.CXXABIThisValue = nullptr; 1324 CGF.CXXThisValue = nullptr; 1325 CGF.CXXABIThisAlignment = CharUnits(); 1326 CGF.CXXThisAlignment = CharUnits(); 1327 CGF.ReturnValue = Address::invalid(); 1328 CGF.FnRetTy = QualType(); 1329 CGF.CXXInheritedCtorInitExprArgs.clear(); 1330 } 1331 ~InlinedInheritingConstructorScope() { 1332 CGF.CurGD = OldCurGD; 1333 CGF.CurFuncDecl = OldCurFuncDecl; 1334 CGF.CurCodeDecl = OldCurCodeDecl; 1335 CGF.CXXABIThisDecl = OldCXXABIThisDecl; 1336 CGF.CXXABIThisValue = OldCXXABIThisValue; 1337 CGF.CXXThisValue = OldCXXThisValue; 1338 CGF.CXXABIThisAlignment = OldCXXABIThisAlignment; 1339 CGF.CXXThisAlignment = OldCXXThisAlignment; 1340 CGF.ReturnValue = OldReturnValue; 1341 CGF.FnRetTy = OldFnRetTy; 1342 CGF.CXXInheritedCtorInitExprArgs = 1343 std::move(OldCXXInheritedCtorInitExprArgs); 1344 } 1345 1346 private: 1347 CodeGenFunction &CGF; 1348 GlobalDecl OldCurGD; 1349 const Decl *OldCurFuncDecl; 1350 const Decl *OldCurCodeDecl; 1351 ImplicitParamDecl *OldCXXABIThisDecl; 1352 llvm::Value *OldCXXABIThisValue; 1353 llvm::Value *OldCXXThisValue; 1354 CharUnits OldCXXABIThisAlignment; 1355 CharUnits OldCXXThisAlignment; 1356 Address OldReturnValue; 1357 QualType OldFnRetTy; 1358 CallArgList OldCXXInheritedCtorInitExprArgs; 1359 }; 1360 1361 private: 1362 /// CXXThisDecl - When generating code for a C++ member function, 1363 /// this will hold the implicit 'this' declaration. 1364 ImplicitParamDecl *CXXABIThisDecl; 1365 llvm::Value *CXXABIThisValue; 1366 llvm::Value *CXXThisValue; 1367 CharUnits CXXABIThisAlignment; 1368 CharUnits CXXThisAlignment; 1369 1370 /// The value of 'this' to use when evaluating CXXDefaultInitExprs within 1371 /// this expression. 1372 Address CXXDefaultInitExprThis = Address::invalid(); 1373 1374 /// The current array initialization index when evaluating an 1375 /// ArrayInitIndexExpr within an ArrayInitLoopExpr. 1376 llvm::Value *ArrayInitIndex = nullptr; 1377 1378 /// The values of function arguments to use when evaluating 1379 /// CXXInheritedCtorInitExprs within this context. 1380 CallArgList CXXInheritedCtorInitExprArgs; 1381 1382 /// CXXStructorImplicitParamDecl - When generating code for a constructor or 1383 /// destructor, this will hold the implicit argument (e.g. VTT). 1384 ImplicitParamDecl *CXXStructorImplicitParamDecl; 1385 llvm::Value *CXXStructorImplicitParamValue; 1386 1387 /// OutermostConditional - Points to the outermost active 1388 /// conditional control. This is used so that we know if a 1389 /// temporary should be destroyed conditionally. 1390 ConditionalEvaluation *OutermostConditional; 1391 1392 /// The current lexical scope. 1393 LexicalScope *CurLexicalScope; 1394 1395 /// The current source location that should be used for exception 1396 /// handling code. 1397 SourceLocation CurEHLocation; 1398 1399 /// BlockByrefInfos - For each __block variable, contains 1400 /// information about the layout of the variable. 1401 llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos; 1402 1403 /// Used by -fsanitize=nullability-return to determine whether the return 1404 /// value can be checked. 1405 llvm::Value *RetValNullabilityPrecondition = nullptr; 1406 1407 /// Check if -fsanitize=nullability-return instrumentation is required for 1408 /// this function. 1409 bool requiresReturnValueNullabilityCheck() const { 1410 return RetValNullabilityPrecondition; 1411 } 1412 1413 /// Used to store precise source locations for return statements by the 1414 /// runtime return value checks. 1415 Address ReturnLocation = Address::invalid(); 1416 1417 /// Check if the return value of this function requires sanitization. 1418 bool requiresReturnValueCheck() const { 1419 return requiresReturnValueNullabilityCheck() || 1420 (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 1421 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()); 1422 } 1423 1424 llvm::BasicBlock *TerminateLandingPad; 1425 llvm::BasicBlock *TerminateHandler; 1426 llvm::BasicBlock *TrapBB; 1427 1428 /// True if we need emit the life-time markers. 1429 const bool ShouldEmitLifetimeMarkers; 1430 1431 /// Add OpenCL kernel arg metadata and the kernel attribute meatadata to 1432 /// the function metadata. 1433 void EmitOpenCLKernelMetadata(const FunctionDecl *FD, 1434 llvm::Function *Fn); 1435 1436 public: 1437 CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false); 1438 ~CodeGenFunction(); 1439 1440 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 1441 ASTContext &getContext() const { return CGM.getContext(); } 1442 CGDebugInfo *getDebugInfo() { 1443 if (DisableDebugInfo) 1444 return nullptr; 1445 return DebugInfo; 1446 } 1447 void disableDebugInfo() { DisableDebugInfo = true; } 1448 void enableDebugInfo() { DisableDebugInfo = false; } 1449 1450 bool shouldUseFusedARCCalls() { 1451 return CGM.getCodeGenOpts().OptimizationLevel == 0; 1452 } 1453 1454 const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } 1455 1456 /// Returns a pointer to the function's exception object and selector slot, 1457 /// which is assigned in every landing pad. 1458 Address getExceptionSlot(); 1459 Address getEHSelectorSlot(); 1460 1461 /// Returns the contents of the function's exception object and selector 1462 /// slots. 1463 llvm::Value *getExceptionFromSlot(); 1464 llvm::Value *getSelectorFromSlot(); 1465 1466 Address getNormalCleanupDestSlot(); 1467 1468 llvm::BasicBlock *getUnreachableBlock() { 1469 if (!UnreachableBlock) { 1470 UnreachableBlock = createBasicBlock("unreachable"); 1471 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 1472 } 1473 return UnreachableBlock; 1474 } 1475 1476 llvm::BasicBlock *getInvokeDest() { 1477 if (!EHStack.requiresLandingPad()) return nullptr; 1478 return getInvokeDestImpl(); 1479 } 1480 1481 bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; } 1482 1483 const TargetInfo &getTarget() const { return Target; } 1484 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 1485 const TargetCodeGenInfo &getTargetHooks() const { 1486 return CGM.getTargetCodeGenInfo(); 1487 } 1488 1489 //===--------------------------------------------------------------------===// 1490 // Cleanups 1491 //===--------------------------------------------------------------------===// 1492 1493 typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty); 1494 1495 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1496 Address arrayEndPointer, 1497 QualType elementType, 1498 CharUnits elementAlignment, 1499 Destroyer *destroyer); 1500 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1501 llvm::Value *arrayEnd, 1502 QualType elementType, 1503 CharUnits elementAlignment, 1504 Destroyer *destroyer); 1505 1506 void pushDestroy(QualType::DestructionKind dtorKind, 1507 Address addr, QualType type); 1508 void pushEHDestroy(QualType::DestructionKind dtorKind, 1509 Address addr, QualType type); 1510 void pushDestroy(CleanupKind kind, Address addr, QualType type, 1511 Destroyer *destroyer, bool useEHCleanupForArray); 1512 void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr, 1513 QualType type, Destroyer *destroyer, 1514 bool useEHCleanupForArray); 1515 void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 1516 llvm::Value *CompletePtr, 1517 QualType ElementType); 1518 void pushStackRestore(CleanupKind kind, Address SPMem); 1519 void emitDestroy(Address addr, QualType type, Destroyer *destroyer, 1520 bool useEHCleanupForArray); 1521 llvm::Function *generateDestroyHelper(Address addr, QualType type, 1522 Destroyer *destroyer, 1523 bool useEHCleanupForArray, 1524 const VarDecl *VD); 1525 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 1526 QualType elementType, CharUnits elementAlign, 1527 Destroyer *destroyer, 1528 bool checkZeroLength, bool useEHCleanup); 1529 1530 Destroyer *getDestroyer(QualType::DestructionKind destructionKind); 1531 1532 /// Determines whether an EH cleanup is required to destroy a type 1533 /// with the given destruction kind. 1534 bool needsEHCleanup(QualType::DestructionKind kind) { 1535 switch (kind) { 1536 case QualType::DK_none: 1537 return false; 1538 case QualType::DK_cxx_destructor: 1539 case QualType::DK_objc_weak_lifetime: 1540 return getLangOpts().Exceptions; 1541 case QualType::DK_objc_strong_lifetime: 1542 return getLangOpts().Exceptions && 1543 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 1544 } 1545 llvm_unreachable("bad destruction kind"); 1546 } 1547 1548 CleanupKind getCleanupKind(QualType::DestructionKind kind) { 1549 return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); 1550 } 1551 1552 //===--------------------------------------------------------------------===// 1553 // Objective-C 1554 //===--------------------------------------------------------------------===// 1555 1556 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 1557 1558 void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD); 1559 1560 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 1561 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 1562 const ObjCPropertyImplDecl *PID); 1563 void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 1564 const ObjCPropertyImplDecl *propImpl, 1565 const ObjCMethodDecl *GetterMothodDecl, 1566 llvm::Constant *AtomicHelperFn); 1567 1568 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1569 ObjCMethodDecl *MD, bool ctor); 1570 1571 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 1572 /// for the given property. 1573 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 1574 const ObjCPropertyImplDecl *PID); 1575 void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1576 const ObjCPropertyImplDecl *propImpl, 1577 llvm::Constant *AtomicHelperFn); 1578 1579 //===--------------------------------------------------------------------===// 1580 // Block Bits 1581 //===--------------------------------------------------------------------===// 1582 1583 llvm::Value *EmitBlockLiteral(const BlockExpr *); 1584 static void destroyBlockInfos(CGBlockInfo *info); 1585 1586 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 1587 const CGBlockInfo &Info, 1588 const DeclMapTy &ldm, 1589 bool IsLambdaConversionToBlock, 1590 bool BuildGlobalBlock); 1591 1592 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 1593 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 1594 llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( 1595 const ObjCPropertyImplDecl *PID); 1596 llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( 1597 const ObjCPropertyImplDecl *PID); 1598 llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); 1599 1600 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags); 1601 1602 class AutoVarEmission; 1603 1604 void emitByrefStructureInit(const AutoVarEmission &emission); 1605 void enterByrefCleanup(const AutoVarEmission &emission); 1606 1607 void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum, 1608 llvm::Value *ptr); 1609 1610 Address LoadBlockStruct(); 1611 Address GetAddrOfBlockDecl(const VarDecl *var, bool ByRef); 1612 1613 /// BuildBlockByrefAddress - Computes the location of the 1614 /// data in a variable which is declared as __block. 1615 Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V, 1616 bool followForward = true); 1617 Address emitBlockByrefAddress(Address baseAddr, 1618 const BlockByrefInfo &info, 1619 bool followForward, 1620 const llvm::Twine &name); 1621 1622 const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var); 1623 1624 QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args); 1625 1626 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1627 const CGFunctionInfo &FnInfo); 1628 /// \brief Emit code for the start of a function. 1629 /// \param Loc The location to be associated with the function. 1630 /// \param StartLoc The location of the function body. 1631 void StartFunction(GlobalDecl GD, 1632 QualType RetTy, 1633 llvm::Function *Fn, 1634 const CGFunctionInfo &FnInfo, 1635 const FunctionArgList &Args, 1636 SourceLocation Loc = SourceLocation(), 1637 SourceLocation StartLoc = SourceLocation()); 1638 1639 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor); 1640 1641 void EmitConstructorBody(FunctionArgList &Args); 1642 void EmitDestructorBody(FunctionArgList &Args); 1643 void emitImplicitAssignmentOperatorBody(FunctionArgList &Args); 1644 void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body); 1645 void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S); 1646 1647 void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator, 1648 CallArgList &CallArgs); 1649 void EmitLambdaBlockInvokeBody(); 1650 void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD); 1651 void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD); 1652 void EmitAsanPrologueOrEpilogue(bool Prologue); 1653 1654 /// \brief Emit the unified return block, trying to avoid its emission when 1655 /// possible. 1656 /// \return The debug location of the user written return statement if the 1657 /// return block is is avoided. 1658 llvm::DebugLoc EmitReturnBlock(); 1659 1660 /// FinishFunction - Complete IR generation of the current function. It is 1661 /// legal to call this function even if there is no current insertion point. 1662 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 1663 1664 void StartThunk(llvm::Function *Fn, GlobalDecl GD, 1665 const CGFunctionInfo &FnInfo); 1666 1667 void EmitCallAndReturnForThunk(llvm::Constant *Callee, 1668 const ThunkInfo *Thunk); 1669 1670 void FinishThunk(); 1671 1672 /// Emit a musttail call for a thunk with a potentially adjusted this pointer. 1673 void EmitMustTailThunk(const CXXMethodDecl *MD, llvm::Value *AdjustedThisPtr, 1674 llvm::Value *Callee); 1675 1676 /// Generate a thunk for the given method. 1677 void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1678 GlobalDecl GD, const ThunkInfo &Thunk); 1679 1680 llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn, 1681 const CGFunctionInfo &FnInfo, 1682 GlobalDecl GD, const ThunkInfo &Thunk); 1683 1684 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 1685 FunctionArgList &Args); 1686 1687 void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init); 1688 1689 /// Struct with all informations about dynamic [sub]class needed to set vptr. 1690 struct VPtr { 1691 BaseSubobject Base; 1692 const CXXRecordDecl *NearestVBase; 1693 CharUnits OffsetFromNearestVBase; 1694 const CXXRecordDecl *VTableClass; 1695 }; 1696 1697 /// Initialize the vtable pointer of the given subobject. 1698 void InitializeVTablePointer(const VPtr &vptr); 1699 1700 typedef llvm::SmallVector<VPtr, 4> VPtrsVector; 1701 1702 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 1703 VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass); 1704 1705 void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase, 1706 CharUnits OffsetFromNearestVBase, 1707 bool BaseIsNonVirtualPrimaryBase, 1708 const CXXRecordDecl *VTableClass, 1709 VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs); 1710 1711 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 1712 1713 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 1714 /// to by This. 1715 llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy, 1716 const CXXRecordDecl *VTableClass); 1717 1718 enum CFITypeCheckKind { 1719 CFITCK_VCall, 1720 CFITCK_NVCall, 1721 CFITCK_DerivedCast, 1722 CFITCK_UnrelatedCast, 1723 CFITCK_ICall, 1724 }; 1725 1726 /// \brief Derived is the presumed address of an object of type T after a 1727 /// cast. If T is a polymorphic class type, emit a check that the virtual 1728 /// table for Derived belongs to a class derived from T. 1729 void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived, 1730 bool MayBeNull, CFITypeCheckKind TCK, 1731 SourceLocation Loc); 1732 1733 /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable. 1734 /// If vptr CFI is enabled, emit a check that VTable is valid. 1735 void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable, 1736 CFITypeCheckKind TCK, SourceLocation Loc); 1737 1738 /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for 1739 /// RD using llvm.type.test. 1740 void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable, 1741 CFITypeCheckKind TCK, SourceLocation Loc); 1742 1743 /// If whole-program virtual table optimization is enabled, emit an assumption 1744 /// that VTable is a member of RD's type identifier. Or, if vptr CFI is 1745 /// enabled, emit a check that VTable is a member of RD's type identifier. 1746 void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, 1747 llvm::Value *VTable, SourceLocation Loc); 1748 1749 /// Returns whether we should perform a type checked load when loading a 1750 /// virtual function for virtual calls to members of RD. This is generally 1751 /// true when both vcall CFI and whole-program-vtables are enabled. 1752 bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD); 1753 1754 /// Emit a type checked load from the given vtable. 1755 llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable, 1756 uint64_t VTableByteOffset); 1757 1758 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 1759 /// given phase of destruction for a destructor. The end result 1760 /// should call destructors on members and base classes in reverse 1761 /// order of their construction. 1762 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 1763 1764 /// ShouldInstrumentFunction - Return true if the current function should be 1765 /// instrumented with __cyg_profile_func_* calls 1766 bool ShouldInstrumentFunction(); 1767 1768 /// ShouldXRayInstrument - Return true if the current function should be 1769 /// instrumented with XRay nop sleds. 1770 bool ShouldXRayInstrumentFunction() const; 1771 1772 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 1773 /// instrumentation function with the current function and the call site, if 1774 /// function instrumentation is enabled. 1775 void EmitFunctionInstrumentation(const char *Fn); 1776 1777 /// EmitMCountInstrumentation - Emit call to .mcount. 1778 void EmitMCountInstrumentation(); 1779 1780 /// Encode an address into a form suitable for use in a function prologue. 1781 llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F, 1782 llvm::Constant *Addr); 1783 1784 /// Decode an address used in a function prologue, encoded by \c 1785 /// EncodeAddrForUseInPrologue. 1786 llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F, 1787 llvm::Value *EncodedAddr); 1788 1789 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 1790 /// arguments for the given function. This is also responsible for naming the 1791 /// LLVM function arguments. 1792 void EmitFunctionProlog(const CGFunctionInfo &FI, 1793 llvm::Function *Fn, 1794 const FunctionArgList &Args); 1795 1796 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 1797 /// given temporary. 1798 void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc, 1799 SourceLocation EndLoc); 1800 1801 /// Emit a test that checks if the return value \p RV is nonnull. 1802 void EmitReturnValueCheck(llvm::Value *RV); 1803 1804 /// EmitStartEHSpec - Emit the start of the exception spec. 1805 void EmitStartEHSpec(const Decl *D); 1806 1807 /// EmitEndEHSpec - Emit the end of the exception spec. 1808 void EmitEndEHSpec(const Decl *D); 1809 1810 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 1811 llvm::BasicBlock *getTerminateLandingPad(); 1812 1813 /// getTerminateHandler - Return a handler (not a landing pad, just 1814 /// a catch handler) that just calls terminate. This is used when 1815 /// a terminate scope encloses a try. 1816 llvm::BasicBlock *getTerminateHandler(); 1817 1818 llvm::Type *ConvertTypeForMem(QualType T); 1819 llvm::Type *ConvertType(QualType T); 1820 llvm::Type *ConvertType(const TypeDecl *T) { 1821 return ConvertType(getContext().getTypeDeclType(T)); 1822 } 1823 1824 /// LoadObjCSelf - Load the value of self. This function is only valid while 1825 /// generating code for an Objective-C method. 1826 llvm::Value *LoadObjCSelf(); 1827 1828 /// TypeOfSelfObject - Return type of object that this self represents. 1829 QualType TypeOfSelfObject(); 1830 1831 /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T. 1832 static TypeEvaluationKind getEvaluationKind(QualType T); 1833 1834 static bool hasScalarEvaluationKind(QualType T) { 1835 return getEvaluationKind(T) == TEK_Scalar; 1836 } 1837 1838 static bool hasAggregateEvaluationKind(QualType T) { 1839 return getEvaluationKind(T) == TEK_Aggregate; 1840 } 1841 1842 /// createBasicBlock - Create an LLVM basic block. 1843 llvm::BasicBlock *createBasicBlock(const Twine &name = "", 1844 llvm::Function *parent = nullptr, 1845 llvm::BasicBlock *before = nullptr) { 1846 #ifdef NDEBUG 1847 return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before); 1848 #else 1849 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 1850 #endif 1851 } 1852 1853 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 1854 /// label maps to. 1855 JumpDest getJumpDestForLabel(const LabelDecl *S); 1856 1857 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 1858 /// another basic block, simplify it. This assumes that no other code could 1859 /// potentially reference the basic block. 1860 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 1861 1862 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 1863 /// adding a fall-through branch from the current insert block if 1864 /// necessary. It is legal to call this function even if there is no current 1865 /// insertion point. 1866 /// 1867 /// IsFinished - If true, indicates that the caller has finished emitting 1868 /// branches to the given block and does not expect to emit code into it. This 1869 /// means the block can be ignored if it is unreachable. 1870 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 1871 1872 /// EmitBlockAfterUses - Emit the given block somewhere hopefully 1873 /// near its uses, and leave the insertion point in it. 1874 void EmitBlockAfterUses(llvm::BasicBlock *BB); 1875 1876 /// EmitBranch - Emit a branch to the specified basic block from the current 1877 /// insert block, taking care to avoid creation of branches from dummy 1878 /// blocks. It is legal to call this function even if there is no current 1879 /// insertion point. 1880 /// 1881 /// This function clears the current insertion point. The caller should follow 1882 /// calls to this function with calls to Emit*Block prior to generation new 1883 /// code. 1884 void EmitBranch(llvm::BasicBlock *Block); 1885 1886 /// HaveInsertPoint - True if an insertion point is defined. If not, this 1887 /// indicates that the current code being emitted is unreachable. 1888 bool HaveInsertPoint() const { 1889 return Builder.GetInsertBlock() != nullptr; 1890 } 1891 1892 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 1893 /// emitted IR has a place to go. Note that by definition, if this function 1894 /// creates a block then that block is unreachable; callers may do better to 1895 /// detect when no insertion point is defined and simply skip IR generation. 1896 void EnsureInsertPoint() { 1897 if (!HaveInsertPoint()) 1898 EmitBlock(createBasicBlock()); 1899 } 1900 1901 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1902 /// specified stmt yet. 1903 void ErrorUnsupported(const Stmt *S, const char *Type); 1904 1905 //===--------------------------------------------------------------------===// 1906 // Helpers 1907 //===--------------------------------------------------------------------===// 1908 1909 LValue MakeAddrLValue(Address Addr, QualType T, 1910 LValueBaseInfo BaseInfo = 1911 LValueBaseInfo(AlignmentSource::Type)) { 1912 return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, 1913 CGM.getTBAAInfo(T)); 1914 } 1915 1916 LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 1917 LValueBaseInfo BaseInfo = 1918 LValueBaseInfo(AlignmentSource::Type)) { 1919 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), 1920 BaseInfo, CGM.getTBAAInfo(T)); 1921 } 1922 1923 LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T); 1924 LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T); 1925 CharUnits getNaturalTypeAlignment(QualType T, 1926 LValueBaseInfo *BaseInfo = nullptr, 1927 bool forPointeeType = false); 1928 CharUnits getNaturalPointeeTypeAlignment(QualType T, 1929 LValueBaseInfo *BaseInfo = nullptr); 1930 1931 Address EmitLoadOfReference(Address Ref, const ReferenceType *RefTy, 1932 LValueBaseInfo *BaseInfo = nullptr); 1933 LValue EmitLoadOfReferenceLValue(Address Ref, const ReferenceType *RefTy); 1934 1935 Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy, 1936 LValueBaseInfo *BaseInfo = nullptr); 1937 LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy); 1938 1939 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 1940 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 1941 /// insertion point of the builder. The caller is responsible for setting an 1942 /// appropriate alignment on 1943 /// the alloca. 1944 /// 1945 /// \p ArraySize is the number of array elements to be allocated if it 1946 /// is not nullptr. 1947 /// 1948 /// LangAS::Default is the address space of pointers to local variables and 1949 /// temporaries, as exposed in the source language. In certain 1950 /// configurations, this is not the same as the alloca address space, and a 1951 /// cast is needed to lift the pointer from the alloca AS into 1952 /// LangAS::Default. This can happen when the target uses a restricted 1953 /// address space for the stack but the source language requires 1954 /// LangAS::Default to be a generic address space. The latter condition is 1955 /// common for most programming languages; OpenCL is an exception in that 1956 /// LangAS::Default is the private address space, which naturally maps 1957 /// to the stack. 1958 /// 1959 /// Because the address of a temporary is often exposed to the program in 1960 /// various ways, this function will perform the cast by default. The cast 1961 /// may be avoided by passing false as \p CastToDefaultAddrSpace; this is 1962 /// more efficient if the caller knows that the address will not be exposed. 1963 llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp", 1964 llvm::Value *ArraySize = nullptr); 1965 Address CreateTempAlloca(llvm::Type *Ty, CharUnits align, 1966 const Twine &Name = "tmp", 1967 llvm::Value *ArraySize = nullptr, 1968 bool CastToDefaultAddrSpace = true); 1969 1970 /// CreateDefaultAlignedTempAlloca - This creates an alloca with the 1971 /// default ABI alignment of the given LLVM type. 1972 /// 1973 /// IMPORTANT NOTE: This is *not* generally the right alignment for 1974 /// any given AST type that happens to have been lowered to the 1975 /// given IR type. This should only ever be used for function-local, 1976 /// IR-driven manipulations like saving and restoring a value. Do 1977 /// not hand this address off to arbitrary IRGen routines, and especially 1978 /// do not pass it as an argument to a function that might expect a 1979 /// properly ABI-aligned value. 1980 Address CreateDefaultAlignTempAlloca(llvm::Type *Ty, 1981 const Twine &Name = "tmp"); 1982 1983 /// InitTempAlloca - Provide an initial value for the given alloca which 1984 /// will be observable at all locations in the function. 1985 /// 1986 /// The address should be something that was returned from one of 1987 /// the CreateTempAlloca or CreateMemTemp routines, and the 1988 /// initializer must be valid in the entry block (i.e. it must 1989 /// either be a constant or an argument value). 1990 void InitTempAlloca(Address Alloca, llvm::Value *Value); 1991 1992 /// CreateIRTemp - Create a temporary IR object of the given type, with 1993 /// appropriate alignment. This routine should only be used when an temporary 1994 /// value needs to be stored into an alloca (for example, to avoid explicit 1995 /// PHI construction), but the type is the IR type, not the type appropriate 1996 /// for storing in memory. 1997 /// 1998 /// That is, this is exactly equivalent to CreateMemTemp, but calling 1999 /// ConvertType instead of ConvertTypeForMem. 2000 Address CreateIRTemp(QualType T, const Twine &Name = "tmp"); 2001 2002 /// CreateMemTemp - Create a temporary memory object of the given type, with 2003 /// appropriate alignment. Cast it to the default address space if 2004 /// \p CastToDefaultAddrSpace is true. 2005 Address CreateMemTemp(QualType T, const Twine &Name = "tmp", 2006 bool CastToDefaultAddrSpace = true); 2007 Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp", 2008 bool CastToDefaultAddrSpace = true); 2009 2010 /// CreateAggTemp - Create a temporary memory object for the given 2011 /// aggregate type. 2012 AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") { 2013 return AggValueSlot::forAddr(CreateMemTemp(T, Name), 2014 T.getQualifiers(), 2015 AggValueSlot::IsNotDestructed, 2016 AggValueSlot::DoesNotNeedGCBarriers, 2017 AggValueSlot::IsNotAliased); 2018 } 2019 2020 /// Emit a cast to void* in the appropriate address space. 2021 llvm::Value *EmitCastToVoidPtr(llvm::Value *value); 2022 2023 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 2024 /// expression and compare the result against zero, returning an Int1Ty value. 2025 llvm::Value *EvaluateExprAsBool(const Expr *E); 2026 2027 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 2028 void EmitIgnoredExpr(const Expr *E); 2029 2030 /// EmitAnyExpr - Emit code to compute the specified expression which can have 2031 /// any type. The result is returned as an RValue struct. If this is an 2032 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 2033 /// the result should be returned. 2034 /// 2035 /// \param ignoreResult True if the resulting value isn't used. 2036 RValue EmitAnyExpr(const Expr *E, 2037 AggValueSlot aggSlot = AggValueSlot::ignored(), 2038 bool ignoreResult = false); 2039 2040 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 2041 // or the value of the expression, depending on how va_list is defined. 2042 Address EmitVAListRef(const Expr *E); 2043 2044 /// Emit a "reference" to a __builtin_ms_va_list; this is 2045 /// always the value of the expression, because a __builtin_ms_va_list is a 2046 /// pointer to a char. 2047 Address EmitMSVAListRef(const Expr *E); 2048 2049 /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will 2050 /// always be accessible even if no aggregate location is provided. 2051 RValue EmitAnyExprToTemp(const Expr *E); 2052 2053 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 2054 /// arbitrary expression into the given memory location. 2055 void EmitAnyExprToMem(const Expr *E, Address Location, 2056 Qualifiers Quals, bool IsInitializer); 2057 2058 void EmitAnyExprToExn(const Expr *E, Address Addr); 2059 2060 /// EmitExprAsInit - Emits the code necessary to initialize a 2061 /// location in memory with the given initializer. 2062 void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2063 bool capturedByInit); 2064 2065 /// hasVolatileMember - returns true if aggregate type has a volatile 2066 /// member. 2067 bool hasVolatileMember(QualType T) { 2068 if (const RecordType *RT = T->getAs<RecordType>()) { 2069 const RecordDecl *RD = cast<RecordDecl>(RT->getDecl()); 2070 return RD->hasVolatileMember(); 2071 } 2072 return false; 2073 } 2074 /// EmitAggregateCopy - Emit an aggregate assignment. 2075 /// 2076 /// The difference to EmitAggregateCopy is that tail padding is not copied. 2077 /// This is required for correctness when assigning non-POD structures in C++. 2078 void EmitAggregateAssign(Address DestPtr, Address SrcPtr, 2079 QualType EltTy) { 2080 bool IsVolatile = hasVolatileMember(EltTy); 2081 EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, true); 2082 } 2083 2084 void EmitAggregateCopyCtor(Address DestPtr, Address SrcPtr, 2085 QualType DestTy, QualType SrcTy) { 2086 EmitAggregateCopy(DestPtr, SrcPtr, SrcTy, /*IsVolatile=*/false, 2087 /*IsAssignment=*/false); 2088 } 2089 2090 /// EmitAggregateCopy - Emit an aggregate copy. 2091 /// 2092 /// \param isVolatile - True iff either the source or the destination is 2093 /// volatile. 2094 /// \param isAssignment - If false, allow padding to be copied. This often 2095 /// yields more efficient. 2096 void EmitAggregateCopy(Address DestPtr, Address SrcPtr, 2097 QualType EltTy, bool isVolatile=false, 2098 bool isAssignment = false); 2099 2100 /// GetAddrOfLocalVar - Return the address of a local variable. 2101 Address GetAddrOfLocalVar(const VarDecl *VD) { 2102 auto it = LocalDeclMap.find(VD); 2103 assert(it != LocalDeclMap.end() && 2104 "Invalid argument to GetAddrOfLocalVar(), no decl!"); 2105 return it->second; 2106 } 2107 2108 /// getOpaqueLValueMapping - Given an opaque value expression (which 2109 /// must be mapped to an l-value), return its mapping. 2110 const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) { 2111 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 2112 2113 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 2114 it = OpaqueLValues.find(e); 2115 assert(it != OpaqueLValues.end() && "no mapping for opaque value!"); 2116 return it->second; 2117 } 2118 2119 /// getOpaqueRValueMapping - Given an opaque value expression (which 2120 /// must be mapped to an r-value), return its mapping. 2121 const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) { 2122 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 2123 2124 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 2125 it = OpaqueRValues.find(e); 2126 assert(it != OpaqueRValues.end() && "no mapping for opaque value!"); 2127 return it->second; 2128 } 2129 2130 /// Get the index of the current ArrayInitLoopExpr, if any. 2131 llvm::Value *getArrayInitIndex() { return ArrayInitIndex; } 2132 2133 /// getAccessedFieldNo - Given an encoded value and a result number, return 2134 /// the input field number being accessed. 2135 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 2136 2137 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 2138 llvm::BasicBlock *GetIndirectGotoBlock(); 2139 2140 /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts. 2141 static bool IsWrappedCXXThis(const Expr *E); 2142 2143 /// EmitNullInitialization - Generate code to set a value of the given type to 2144 /// null, If the type contains data member pointers, they will be initialized 2145 /// to -1 in accordance with the Itanium C++ ABI. 2146 void EmitNullInitialization(Address DestPtr, QualType Ty); 2147 2148 /// Emits a call to an LLVM variable-argument intrinsic, either 2149 /// \c llvm.va_start or \c llvm.va_end. 2150 /// \param ArgValue A reference to the \c va_list as emitted by either 2151 /// \c EmitVAListRef or \c EmitMSVAListRef. 2152 /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise, 2153 /// calls \c llvm.va_end. 2154 llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart); 2155 2156 /// Generate code to get an argument from the passed in pointer 2157 /// and update it accordingly. 2158 /// \param VE The \c VAArgExpr for which to generate code. 2159 /// \param VAListAddr Receives a reference to the \c va_list as emitted by 2160 /// either \c EmitVAListRef or \c EmitMSVAListRef. 2161 /// \returns A pointer to the argument. 2162 // FIXME: We should be able to get rid of this method and use the va_arg 2163 // instruction in LLVM instead once it works well enough. 2164 Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr); 2165 2166 /// emitArrayLength - Compute the length of an array, even if it's a 2167 /// VLA, and drill down to the base element type. 2168 llvm::Value *emitArrayLength(const ArrayType *arrayType, 2169 QualType &baseType, 2170 Address &addr); 2171 2172 /// EmitVLASize - Capture all the sizes for the VLA expressions in 2173 /// the given variably-modified type and store them in the VLASizeMap. 2174 /// 2175 /// This function can be called with a null (unreachable) insert point. 2176 void EmitVariablyModifiedType(QualType Ty); 2177 2178 /// getVLASize - Returns an LLVM value that corresponds to the size, 2179 /// in non-variably-sized elements, of a variable length array type, 2180 /// plus that largest non-variably-sized element type. Assumes that 2181 /// the type has already been emitted with EmitVariablyModifiedType. 2182 std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla); 2183 std::pair<llvm::Value*,QualType> getVLASize(QualType vla); 2184 2185 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 2186 /// generating code for an C++ member function. 2187 llvm::Value *LoadCXXThis() { 2188 assert(CXXThisValue && "no 'this' value for this function"); 2189 return CXXThisValue; 2190 } 2191 Address LoadCXXThisAddress(); 2192 2193 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 2194 /// virtual bases. 2195 // FIXME: Every place that calls LoadCXXVTT is something 2196 // that needs to be abstracted properly. 2197 llvm::Value *LoadCXXVTT() { 2198 assert(CXXStructorImplicitParamValue && "no VTT value for this function"); 2199 return CXXStructorImplicitParamValue; 2200 } 2201 2202 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 2203 /// complete class to the given direct base. 2204 Address 2205 GetAddressOfDirectBaseInCompleteClass(Address Value, 2206 const CXXRecordDecl *Derived, 2207 const CXXRecordDecl *Base, 2208 bool BaseIsVirtual); 2209 2210 static bool ShouldNullCheckClassCastValue(const CastExpr *Cast); 2211 2212 /// GetAddressOfBaseClass - This function will add the necessary delta to the 2213 /// load of 'this' and returns address of the base class. 2214 Address GetAddressOfBaseClass(Address Value, 2215 const CXXRecordDecl *Derived, 2216 CastExpr::path_const_iterator PathBegin, 2217 CastExpr::path_const_iterator PathEnd, 2218 bool NullCheckValue, SourceLocation Loc); 2219 2220 Address GetAddressOfDerivedClass(Address Value, 2221 const CXXRecordDecl *Derived, 2222 CastExpr::path_const_iterator PathBegin, 2223 CastExpr::path_const_iterator PathEnd, 2224 bool NullCheckValue); 2225 2226 /// GetVTTParameter - Return the VTT parameter that should be passed to a 2227 /// base constructor/destructor with virtual bases. 2228 /// FIXME: VTTs are Itanium ABI-specific, so the definition should move 2229 /// to ItaniumCXXABI.cpp together with all the references to VTT. 2230 llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase, 2231 bool Delegating); 2232 2233 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 2234 CXXCtorType CtorType, 2235 const FunctionArgList &Args, 2236 SourceLocation Loc); 2237 // It's important not to confuse this and the previous function. Delegating 2238 // constructors are the C++0x feature. The constructor delegate optimization 2239 // is used to reduce duplication in the base and complete consturctors where 2240 // they are substantially the same. 2241 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2242 const FunctionArgList &Args); 2243 2244 /// Emit a call to an inheriting constructor (that is, one that invokes a 2245 /// constructor inherited from a base class) by inlining its definition. This 2246 /// is necessary if the ABI does not support forwarding the arguments to the 2247 /// base class constructor (because they're variadic or similar). 2248 void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2249 CXXCtorType CtorType, 2250 bool ForVirtualBase, 2251 bool Delegating, 2252 CallArgList &Args); 2253 2254 /// Emit a call to a constructor inherited from a base class, passing the 2255 /// current constructor's arguments along unmodified (without even making 2256 /// a copy). 2257 void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D, 2258 bool ForVirtualBase, Address This, 2259 bool InheritedFromVBase, 2260 const CXXInheritedCtorInitExpr *E); 2261 2262 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2263 bool ForVirtualBase, bool Delegating, 2264 Address This, const CXXConstructExpr *E); 2265 2266 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2267 bool ForVirtualBase, bool Delegating, 2268 Address This, CallArgList &Args); 2269 2270 /// Emit assumption load for all bases. Requires to be be called only on 2271 /// most-derived class and not under construction of the object. 2272 void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This); 2273 2274 /// Emit assumption that vptr load == global vtable. 2275 void EmitVTableAssumptionLoad(const VPtr &vptr, Address This); 2276 2277 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 2278 Address This, Address Src, 2279 const CXXConstructExpr *E); 2280 2281 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2282 const ArrayType *ArrayTy, 2283 Address ArrayPtr, 2284 const CXXConstructExpr *E, 2285 bool ZeroInitialization = false); 2286 2287 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2288 llvm::Value *NumElements, 2289 Address ArrayPtr, 2290 const CXXConstructExpr *E, 2291 bool ZeroInitialization = false); 2292 2293 static Destroyer destroyCXXObject; 2294 2295 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 2296 bool ForVirtualBase, bool Delegating, 2297 Address This); 2298 2299 void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, 2300 llvm::Type *ElementTy, Address NewPtr, 2301 llvm::Value *NumElements, 2302 llvm::Value *AllocSizeWithoutCookie); 2303 2304 void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, 2305 Address Ptr); 2306 2307 llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr); 2308 void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr); 2309 2310 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 2311 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 2312 2313 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 2314 QualType DeleteTy, llvm::Value *NumElements = nullptr, 2315 CharUnits CookieSize = CharUnits()); 2316 2317 RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 2318 const Expr *Arg, bool IsDelete); 2319 2320 llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E); 2321 llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE); 2322 Address EmitCXXUuidofExpr(const CXXUuidofExpr *E); 2323 2324 /// \brief Situations in which we might emit a check for the suitability of a 2325 /// pointer or glvalue. 2326 enum TypeCheckKind { 2327 /// Checking the operand of a load. Must be suitably sized and aligned. 2328 TCK_Load, 2329 /// Checking the destination of a store. Must be suitably sized and aligned. 2330 TCK_Store, 2331 /// Checking the bound value in a reference binding. Must be suitably sized 2332 /// and aligned, but is not required to refer to an object (until the 2333 /// reference is used), per core issue 453. 2334 TCK_ReferenceBinding, 2335 /// Checking the object expression in a non-static data member access. Must 2336 /// be an object within its lifetime. 2337 TCK_MemberAccess, 2338 /// Checking the 'this' pointer for a call to a non-static member function. 2339 /// Must be an object within its lifetime. 2340 TCK_MemberCall, 2341 /// Checking the 'this' pointer for a constructor call. 2342 TCK_ConstructorCall, 2343 /// Checking the operand of a static_cast to a derived pointer type. Must be 2344 /// null or an object within its lifetime. 2345 TCK_DowncastPointer, 2346 /// Checking the operand of a static_cast to a derived reference type. Must 2347 /// be an object within its lifetime. 2348 TCK_DowncastReference, 2349 /// Checking the operand of a cast to a base object. Must be suitably sized 2350 /// and aligned. 2351 TCK_Upcast, 2352 /// Checking the operand of a cast to a virtual base object. Must be an 2353 /// object within its lifetime. 2354 TCK_UpcastToVirtualBase, 2355 /// Checking the value assigned to a _Nonnull pointer. Must not be null. 2356 TCK_NonnullAssign 2357 }; 2358 2359 /// \brief Whether any type-checking sanitizers are enabled. If \c false, 2360 /// calls to EmitTypeCheck can be skipped. 2361 bool sanitizePerformTypeCheck() const; 2362 2363 /// \brief Emit a check that \p V is the address of storage of the 2364 /// appropriate size and alignment for an object of type \p Type. 2365 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, 2366 QualType Type, CharUnits Alignment = CharUnits::Zero(), 2367 SanitizerSet SkippedChecks = SanitizerSet()); 2368 2369 /// \brief Emit a check that \p Base points into an array object, which 2370 /// we can access at index \p Index. \p Accessed should be \c false if we 2371 /// this expression is used as an lvalue, for instance in "&Arr[Idx]". 2372 void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, 2373 QualType IndexType, bool Accessed); 2374 2375 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 2376 bool isInc, bool isPre); 2377 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 2378 bool isInc, bool isPre); 2379 2380 void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment, 2381 llvm::Value *OffsetValue = nullptr) { 2382 Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment, 2383 OffsetValue); 2384 } 2385 2386 /// Converts Location to a DebugLoc, if debug information is enabled. 2387 llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location); 2388 2389 2390 //===--------------------------------------------------------------------===// 2391 // Declaration Emission 2392 //===--------------------------------------------------------------------===// 2393 2394 /// EmitDecl - Emit a declaration. 2395 /// 2396 /// This function can be called with a null (unreachable) insert point. 2397 void EmitDecl(const Decl &D); 2398 2399 /// EmitVarDecl - Emit a local variable declaration. 2400 /// 2401 /// This function can be called with a null (unreachable) insert point. 2402 void EmitVarDecl(const VarDecl &D); 2403 2404 void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2405 bool capturedByInit); 2406 2407 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 2408 llvm::Value *Address); 2409 2410 /// \brief Determine whether the given initializer is trivial in the sense 2411 /// that it requires no code to be generated. 2412 bool isTrivialInitializer(const Expr *Init); 2413 2414 /// EmitAutoVarDecl - Emit an auto variable declaration. 2415 /// 2416 /// This function can be called with a null (unreachable) insert point. 2417 void EmitAutoVarDecl(const VarDecl &D); 2418 2419 class AutoVarEmission { 2420 friend class CodeGenFunction; 2421 2422 const VarDecl *Variable; 2423 2424 /// The address of the alloca. Invalid if the variable was emitted 2425 /// as a global constant. 2426 Address Addr; 2427 2428 llvm::Value *NRVOFlag; 2429 2430 /// True if the variable is a __block variable. 2431 bool IsByRef; 2432 2433 /// True if the variable is of aggregate type and has a constant 2434 /// initializer. 2435 bool IsConstantAggregate; 2436 2437 /// Non-null if we should use lifetime annotations. 2438 llvm::Value *SizeForLifetimeMarkers; 2439 2440 struct Invalid {}; 2441 AutoVarEmission(Invalid) : Variable(nullptr), Addr(Address::invalid()) {} 2442 2443 AutoVarEmission(const VarDecl &variable) 2444 : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr), 2445 IsByRef(false), IsConstantAggregate(false), 2446 SizeForLifetimeMarkers(nullptr) {} 2447 2448 bool wasEmittedAsGlobal() const { return !Addr.isValid(); } 2449 2450 public: 2451 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 2452 2453 bool useLifetimeMarkers() const { 2454 return SizeForLifetimeMarkers != nullptr; 2455 } 2456 llvm::Value *getSizeForLifetimeMarkers() const { 2457 assert(useLifetimeMarkers()); 2458 return SizeForLifetimeMarkers; 2459 } 2460 2461 /// Returns the raw, allocated address, which is not necessarily 2462 /// the address of the object itself. 2463 Address getAllocatedAddress() const { 2464 return Addr; 2465 } 2466 2467 /// Returns the address of the object within this declaration. 2468 /// Note that this does not chase the forwarding pointer for 2469 /// __block decls. 2470 Address getObjectAddress(CodeGenFunction &CGF) const { 2471 if (!IsByRef) return Addr; 2472 2473 return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false); 2474 } 2475 }; 2476 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 2477 void EmitAutoVarInit(const AutoVarEmission &emission); 2478 void EmitAutoVarCleanups(const AutoVarEmission &emission); 2479 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 2480 QualType::DestructionKind dtorKind); 2481 2482 void EmitStaticVarDecl(const VarDecl &D, 2483 llvm::GlobalValue::LinkageTypes Linkage); 2484 2485 class ParamValue { 2486 llvm::Value *Value; 2487 unsigned Alignment; 2488 ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {} 2489 public: 2490 static ParamValue forDirect(llvm::Value *value) { 2491 return ParamValue(value, 0); 2492 } 2493 static ParamValue forIndirect(Address addr) { 2494 assert(!addr.getAlignment().isZero()); 2495 return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity()); 2496 } 2497 2498 bool isIndirect() const { return Alignment != 0; } 2499 llvm::Value *getAnyValue() const { return Value; } 2500 2501 llvm::Value *getDirectValue() const { 2502 assert(!isIndirect()); 2503 return Value; 2504 } 2505 2506 Address getIndirectAddress() const { 2507 assert(isIndirect()); 2508 return Address(Value, CharUnits::fromQuantity(Alignment)); 2509 } 2510 }; 2511 2512 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 2513 void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo); 2514 2515 /// protectFromPeepholes - Protect a value that we're intending to 2516 /// store to the side, but which will probably be used later, from 2517 /// aggressive peepholing optimizations that might delete it. 2518 /// 2519 /// Pass the result to unprotectFromPeepholes to declare that 2520 /// protection is no longer required. 2521 /// 2522 /// There's no particular reason why this shouldn't apply to 2523 /// l-values, it's just that no existing peepholes work on pointers. 2524 PeepholeProtection protectFromPeepholes(RValue rvalue); 2525 void unprotectFromPeepholes(PeepholeProtection protection); 2526 2527 void EmitAlignmentAssumption(llvm::Value *PtrValue, llvm::Value *Alignment, 2528 llvm::Value *OffsetValue = nullptr) { 2529 Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment, 2530 OffsetValue); 2531 } 2532 2533 //===--------------------------------------------------------------------===// 2534 // Statement Emission 2535 //===--------------------------------------------------------------------===// 2536 2537 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 2538 void EmitStopPoint(const Stmt *S); 2539 2540 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 2541 /// this function even if there is no current insertion point. 2542 /// 2543 /// This function may clear the current insertion point; callers should use 2544 /// EnsureInsertPoint if they wish to subsequently generate code without first 2545 /// calling EmitBlock, EmitBranch, or EmitStmt. 2546 void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None); 2547 2548 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 2549 /// necessarily require an insertion point or debug information; typically 2550 /// because the statement amounts to a jump or a container of other 2551 /// statements. 2552 /// 2553 /// \return True if the statement was handled. 2554 bool EmitSimpleStmt(const Stmt *S); 2555 2556 Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 2557 AggValueSlot AVS = AggValueSlot::ignored()); 2558 Address EmitCompoundStmtWithoutScope(const CompoundStmt &S, 2559 bool GetLast = false, 2560 AggValueSlot AVS = 2561 AggValueSlot::ignored()); 2562 2563 /// EmitLabel - Emit the block for the given label. It is legal to call this 2564 /// function even if there is no current insertion point. 2565 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 2566 2567 void EmitLabelStmt(const LabelStmt &S); 2568 void EmitAttributedStmt(const AttributedStmt &S); 2569 void EmitGotoStmt(const GotoStmt &S); 2570 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 2571 void EmitIfStmt(const IfStmt &S); 2572 2573 void EmitWhileStmt(const WhileStmt &S, 2574 ArrayRef<const Attr *> Attrs = None); 2575 void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None); 2576 void EmitForStmt(const ForStmt &S, 2577 ArrayRef<const Attr *> Attrs = None); 2578 void EmitReturnStmt(const ReturnStmt &S); 2579 void EmitDeclStmt(const DeclStmt &S); 2580 void EmitBreakStmt(const BreakStmt &S); 2581 void EmitContinueStmt(const ContinueStmt &S); 2582 void EmitSwitchStmt(const SwitchStmt &S); 2583 void EmitDefaultStmt(const DefaultStmt &S); 2584 void EmitCaseStmt(const CaseStmt &S); 2585 void EmitCaseStmtRange(const CaseStmt &S); 2586 void EmitAsmStmt(const AsmStmt &S); 2587 2588 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 2589 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 2590 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 2591 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 2592 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 2593 2594 void EmitCoroutineBody(const CoroutineBodyStmt &S); 2595 void EmitCoreturnStmt(const CoreturnStmt &S); 2596 RValue EmitCoawaitExpr(const CoawaitExpr &E, 2597 AggValueSlot aggSlot = AggValueSlot::ignored(), 2598 bool ignoreResult = false); 2599 LValue EmitCoawaitLValue(const CoawaitExpr *E); 2600 RValue EmitCoyieldExpr(const CoyieldExpr &E, 2601 AggValueSlot aggSlot = AggValueSlot::ignored(), 2602 bool ignoreResult = false); 2603 LValue EmitCoyieldLValue(const CoyieldExpr *E); 2604 RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID); 2605 2606 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 2607 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 2608 2609 void EmitCXXTryStmt(const CXXTryStmt &S); 2610 void EmitSEHTryStmt(const SEHTryStmt &S); 2611 void EmitSEHLeaveStmt(const SEHLeaveStmt &S); 2612 void EnterSEHTryStmt(const SEHTryStmt &S); 2613 void ExitSEHTryStmt(const SEHTryStmt &S); 2614 2615 void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter, 2616 const Stmt *OutlinedStmt); 2617 2618 llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF, 2619 const SEHExceptStmt &Except); 2620 2621 llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF, 2622 const SEHFinallyStmt &Finally); 2623 2624 void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF, 2625 llvm::Value *ParentFP, 2626 llvm::Value *EntryEBP); 2627 llvm::Value *EmitSEHExceptionCode(); 2628 llvm::Value *EmitSEHExceptionInfo(); 2629 llvm::Value *EmitSEHAbnormalTermination(); 2630 2631 /// Scan the outlined statement for captures from the parent function. For 2632 /// each capture, mark the capture as escaped and emit a call to 2633 /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap. 2634 void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt, 2635 bool IsFilter); 2636 2637 /// Recovers the address of a local in a parent function. ParentVar is the 2638 /// address of the variable used in the immediate parent function. It can 2639 /// either be an alloca or a call to llvm.localrecover if there are nested 2640 /// outlined functions. ParentFP is the frame pointer of the outermost parent 2641 /// frame. 2642 Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF, 2643 Address ParentVar, 2644 llvm::Value *ParentFP); 2645 2646 void EmitCXXForRangeStmt(const CXXForRangeStmt &S, 2647 ArrayRef<const Attr *> Attrs = None); 2648 2649 /// Returns calculated size of the specified type. 2650 llvm::Value *getTypeSize(QualType Ty); 2651 LValue InitCapturedStruct(const CapturedStmt &S); 2652 llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K); 2653 llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S); 2654 Address GenerateCapturedStmtArgument(const CapturedStmt &S); 2655 llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S); 2656 void GenerateOpenMPCapturedVars(const CapturedStmt &S, 2657 SmallVectorImpl<llvm::Value *> &CapturedVars); 2658 void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy, 2659 SourceLocation Loc); 2660 /// \brief Perform element by element copying of arrays with type \a 2661 /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure 2662 /// generated by \a CopyGen. 2663 /// 2664 /// \param DestAddr Address of the destination array. 2665 /// \param SrcAddr Address of the source array. 2666 /// \param OriginalType Type of destination and source arrays. 2667 /// \param CopyGen Copying procedure that copies value of single array element 2668 /// to another single array element. 2669 void EmitOMPAggregateAssign( 2670 Address DestAddr, Address SrcAddr, QualType OriginalType, 2671 const llvm::function_ref<void(Address, Address)> &CopyGen); 2672 /// \brief Emit proper copying of data from one variable to another. 2673 /// 2674 /// \param OriginalType Original type of the copied variables. 2675 /// \param DestAddr Destination address. 2676 /// \param SrcAddr Source address. 2677 /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has 2678 /// type of the base array element). 2679 /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of 2680 /// the base array element). 2681 /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a 2682 /// DestVD. 2683 void EmitOMPCopy(QualType OriginalType, 2684 Address DestAddr, Address SrcAddr, 2685 const VarDecl *DestVD, const VarDecl *SrcVD, 2686 const Expr *Copy); 2687 /// \brief Emit atomic update code for constructs: \a X = \a X \a BO \a E or 2688 /// \a X = \a E \a BO \a E. 2689 /// 2690 /// \param X Value to be updated. 2691 /// \param E Update value. 2692 /// \param BO Binary operation for update operation. 2693 /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update 2694 /// expression, false otherwise. 2695 /// \param AO Atomic ordering of the generated atomic instructions. 2696 /// \param CommonGen Code generator for complex expressions that cannot be 2697 /// expressed through atomicrmw instruction. 2698 /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was 2699 /// generated, <false, RValue::get(nullptr)> otherwise. 2700 std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr( 2701 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 2702 llvm::AtomicOrdering AO, SourceLocation Loc, 2703 const llvm::function_ref<RValue(RValue)> &CommonGen); 2704 bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 2705 OMPPrivateScope &PrivateScope); 2706 void EmitOMPPrivateClause(const OMPExecutableDirective &D, 2707 OMPPrivateScope &PrivateScope); 2708 void EmitOMPUseDevicePtrClause( 2709 const OMPClause &C, OMPPrivateScope &PrivateScope, 2710 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap); 2711 /// \brief Emit code for copyin clause in \a D directive. The next code is 2712 /// generated at the start of outlined functions for directives: 2713 /// \code 2714 /// threadprivate_var1 = master_threadprivate_var1; 2715 /// operator=(threadprivate_var2, master_threadprivate_var2); 2716 /// ... 2717 /// __kmpc_barrier(&loc, global_tid); 2718 /// \endcode 2719 /// 2720 /// \param D OpenMP directive possibly with 'copyin' clause(s). 2721 /// \returns true if at least one copyin variable is found, false otherwise. 2722 bool EmitOMPCopyinClause(const OMPExecutableDirective &D); 2723 /// \brief Emit initial code for lastprivate variables. If some variable is 2724 /// not also firstprivate, then the default initialization is used. Otherwise 2725 /// initialization of this variable is performed by EmitOMPFirstprivateClause 2726 /// method. 2727 /// 2728 /// \param D Directive that may have 'lastprivate' directives. 2729 /// \param PrivateScope Private scope for capturing lastprivate variables for 2730 /// proper codegen in internal captured statement. 2731 /// 2732 /// \returns true if there is at least one lastprivate variable, false 2733 /// otherwise. 2734 bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D, 2735 OMPPrivateScope &PrivateScope); 2736 /// \brief Emit final copying of lastprivate values to original variables at 2737 /// the end of the worksharing or simd directive. 2738 /// 2739 /// \param D Directive that has at least one 'lastprivate' directives. 2740 /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if 2741 /// it is the last iteration of the loop code in associated directive, or to 2742 /// 'i1 false' otherwise. If this item is nullptr, no final check is required. 2743 void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D, 2744 bool NoFinals, 2745 llvm::Value *IsLastIterCond = nullptr); 2746 /// Emit initial code for linear clauses. 2747 void EmitOMPLinearClause(const OMPLoopDirective &D, 2748 CodeGenFunction::OMPPrivateScope &PrivateScope); 2749 /// Emit final code for linear clauses. 2750 /// \param CondGen Optional conditional code for final part of codegen for 2751 /// linear clause. 2752 void EmitOMPLinearClauseFinal( 2753 const OMPLoopDirective &D, 2754 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen); 2755 /// \brief Emit initial code for reduction variables. Creates reduction copies 2756 /// and initializes them with the values according to OpenMP standard. 2757 /// 2758 /// \param D Directive (possibly) with the 'reduction' clause. 2759 /// \param PrivateScope Private scope for capturing reduction variables for 2760 /// proper codegen in internal captured statement. 2761 /// 2762 void EmitOMPReductionClauseInit(const OMPExecutableDirective &D, 2763 OMPPrivateScope &PrivateScope); 2764 /// \brief Emit final update of reduction values to original variables at 2765 /// the end of the directive. 2766 /// 2767 /// \param D Directive that has at least one 'reduction' directives. 2768 /// \param ReductionKind The kind of reduction to perform. 2769 void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D, 2770 const OpenMPDirectiveKind ReductionKind); 2771 /// \brief Emit initial code for linear variables. Creates private copies 2772 /// and initializes them with the values according to OpenMP standard. 2773 /// 2774 /// \param D Directive (possibly) with the 'linear' clause. 2775 /// \return true if at least one linear variable is found that should be 2776 /// initialized with the value of the original variable, false otherwise. 2777 bool EmitOMPLinearClauseInit(const OMPLoopDirective &D); 2778 2779 typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/, 2780 llvm::Value * /*OutlinedFn*/, 2781 const OMPTaskDataTy & /*Data*/)> 2782 TaskGenTy; 2783 void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S, 2784 const RegionCodeGenTy &BodyGen, 2785 const TaskGenTy &TaskGen, OMPTaskDataTy &Data); 2786 2787 void EmitOMPParallelDirective(const OMPParallelDirective &S); 2788 void EmitOMPSimdDirective(const OMPSimdDirective &S); 2789 void EmitOMPForDirective(const OMPForDirective &S); 2790 void EmitOMPForSimdDirective(const OMPForSimdDirective &S); 2791 void EmitOMPSectionsDirective(const OMPSectionsDirective &S); 2792 void EmitOMPSectionDirective(const OMPSectionDirective &S); 2793 void EmitOMPSingleDirective(const OMPSingleDirective &S); 2794 void EmitOMPMasterDirective(const OMPMasterDirective &S); 2795 void EmitOMPCriticalDirective(const OMPCriticalDirective &S); 2796 void EmitOMPParallelForDirective(const OMPParallelForDirective &S); 2797 void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S); 2798 void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S); 2799 void EmitOMPTaskDirective(const OMPTaskDirective &S); 2800 void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S); 2801 void EmitOMPBarrierDirective(const OMPBarrierDirective &S); 2802 void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S); 2803 void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S); 2804 void EmitOMPFlushDirective(const OMPFlushDirective &S); 2805 void EmitOMPOrderedDirective(const OMPOrderedDirective &S); 2806 void EmitOMPAtomicDirective(const OMPAtomicDirective &S); 2807 void EmitOMPTargetDirective(const OMPTargetDirective &S); 2808 void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S); 2809 void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S); 2810 void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S); 2811 void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S); 2812 void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S); 2813 void 2814 EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S); 2815 void EmitOMPTeamsDirective(const OMPTeamsDirective &S); 2816 void 2817 EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S); 2818 void EmitOMPCancelDirective(const OMPCancelDirective &S); 2819 void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S); 2820 void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S); 2821 void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S); 2822 void EmitOMPDistributeDirective(const OMPDistributeDirective &S); 2823 void EmitOMPDistributeParallelForDirective( 2824 const OMPDistributeParallelForDirective &S); 2825 void EmitOMPDistributeParallelForSimdDirective( 2826 const OMPDistributeParallelForSimdDirective &S); 2827 void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S); 2828 void EmitOMPTargetParallelForSimdDirective( 2829 const OMPTargetParallelForSimdDirective &S); 2830 void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S); 2831 void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S); 2832 void 2833 EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S); 2834 void EmitOMPTeamsDistributeParallelForSimdDirective( 2835 const OMPTeamsDistributeParallelForSimdDirective &S); 2836 void EmitOMPTeamsDistributeParallelForDirective( 2837 const OMPTeamsDistributeParallelForDirective &S); 2838 void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S); 2839 void EmitOMPTargetTeamsDistributeDirective( 2840 const OMPTargetTeamsDistributeDirective &S); 2841 void EmitOMPTargetTeamsDistributeParallelForDirective( 2842 const OMPTargetTeamsDistributeParallelForDirective &S); 2843 void EmitOMPTargetTeamsDistributeParallelForSimdDirective( 2844 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 2845 void EmitOMPTargetTeamsDistributeSimdDirective( 2846 const OMPTargetTeamsDistributeSimdDirective &S); 2847 2848 /// Emit device code for the target directive. 2849 static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 2850 StringRef ParentName, 2851 const OMPTargetDirective &S); 2852 static void 2853 EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 2854 const OMPTargetParallelDirective &S); 2855 static void 2856 EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 2857 const OMPTargetTeamsDirective &S); 2858 /// \brief Emit inner loop of the worksharing/simd construct. 2859 /// 2860 /// \param S Directive, for which the inner loop must be emitted. 2861 /// \param RequiresCleanup true, if directive has some associated private 2862 /// variables. 2863 /// \param LoopCond Bollean condition for loop continuation. 2864 /// \param IncExpr Increment expression for loop control variable. 2865 /// \param BodyGen Generator for the inner body of the inner loop. 2866 /// \param PostIncGen Genrator for post-increment code (required for ordered 2867 /// loop directvies). 2868 void EmitOMPInnerLoop( 2869 const Stmt &S, bool RequiresCleanup, const Expr *LoopCond, 2870 const Expr *IncExpr, 2871 const llvm::function_ref<void(CodeGenFunction &)> &BodyGen, 2872 const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen); 2873 2874 JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind); 2875 /// Emit initial code for loop counters of loop-based directives. 2876 void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S, 2877 OMPPrivateScope &LoopScope); 2878 2879 /// Helper for the OpenMP loop directives. 2880 void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit); 2881 2882 /// \brief Emit code for the worksharing loop-based directive. 2883 /// \return true, if this construct has any lastprivate clause, false - 2884 /// otherwise. 2885 bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB, 2886 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 2887 const CodeGenDispatchBoundsTy &CGDispatchBounds); 2888 2889 /// Emits the lvalue for the expression with possibly captured variable. 2890 LValue EmitOMPSharedLValue(const Expr *E); 2891 2892 private: 2893 /// Helpers for blocks 2894 llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); 2895 2896 /// Helpers for the OpenMP loop directives. 2897 void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false); 2898 void EmitOMPSimdFinal( 2899 const OMPLoopDirective &D, 2900 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen); 2901 2902 void EmitOMPDistributeLoop(const OMPLoopDirective &S, 2903 const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr); 2904 2905 /// struct with the values to be passed to the OpenMP loop-related functions 2906 struct OMPLoopArguments { 2907 /// loop lower bound 2908 Address LB = Address::invalid(); 2909 /// loop upper bound 2910 Address UB = Address::invalid(); 2911 /// loop stride 2912 Address ST = Address::invalid(); 2913 /// isLastIteration argument for runtime functions 2914 Address IL = Address::invalid(); 2915 /// Chunk value generated by sema 2916 llvm::Value *Chunk = nullptr; 2917 /// EnsureUpperBound 2918 Expr *EUB = nullptr; 2919 /// IncrementExpression 2920 Expr *IncExpr = nullptr; 2921 /// Loop initialization 2922 Expr *Init = nullptr; 2923 /// Loop exit condition 2924 Expr *Cond = nullptr; 2925 /// Update of LB after a whole chunk has been executed 2926 Expr *NextLB = nullptr; 2927 /// Update of UB after a whole chunk has been executed 2928 Expr *NextUB = nullptr; 2929 OMPLoopArguments() = default; 2930 OMPLoopArguments(Address LB, Address UB, Address ST, Address IL, 2931 llvm::Value *Chunk = nullptr, Expr *EUB = nullptr, 2932 Expr *IncExpr = nullptr, Expr *Init = nullptr, 2933 Expr *Cond = nullptr, Expr *NextLB = nullptr, 2934 Expr *NextUB = nullptr) 2935 : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB), 2936 IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB), 2937 NextUB(NextUB) {} 2938 }; 2939 void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic, 2940 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, 2941 const OMPLoopArguments &LoopArgs, 2942 const CodeGenLoopTy &CodeGenLoop, 2943 const CodeGenOrderedTy &CodeGenOrdered); 2944 void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind, 2945 bool IsMonotonic, const OMPLoopDirective &S, 2946 OMPPrivateScope &LoopScope, bool Ordered, 2947 const OMPLoopArguments &LoopArgs, 2948 const CodeGenDispatchBoundsTy &CGDispatchBounds); 2949 void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind, 2950 const OMPLoopDirective &S, 2951 OMPPrivateScope &LoopScope, 2952 const OMPLoopArguments &LoopArgs, 2953 const CodeGenLoopTy &CodeGenLoopContent); 2954 /// \brief Emit code for sections directive. 2955 void EmitSections(const OMPExecutableDirective &S); 2956 2957 public: 2958 2959 //===--------------------------------------------------------------------===// 2960 // LValue Expression Emission 2961 //===--------------------------------------------------------------------===// 2962 2963 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 2964 RValue GetUndefRValue(QualType Ty); 2965 2966 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 2967 /// and issue an ErrorUnsupported style diagnostic (using the 2968 /// provided Name). 2969 RValue EmitUnsupportedRValue(const Expr *E, 2970 const char *Name); 2971 2972 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 2973 /// an ErrorUnsupported style diagnostic (using the provided Name). 2974 LValue EmitUnsupportedLValue(const Expr *E, 2975 const char *Name); 2976 2977 /// EmitLValue - Emit code to compute a designator that specifies the location 2978 /// of the expression. 2979 /// 2980 /// This can return one of two things: a simple address or a bitfield 2981 /// reference. In either case, the LLVM Value* in the LValue structure is 2982 /// guaranteed to be an LLVM pointer type. 2983 /// 2984 /// If this returns a bitfield reference, nothing about the pointee type of 2985 /// the LLVM value is known: For example, it may not be a pointer to an 2986 /// integer. 2987 /// 2988 /// If this returns a normal address, and if the lvalue's C type is fixed 2989 /// size, this method guarantees that the returned pointer type will point to 2990 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 2991 /// variable length type, this is not possible. 2992 /// 2993 LValue EmitLValue(const Expr *E); 2994 2995 /// \brief Same as EmitLValue but additionally we generate checking code to 2996 /// guard against undefined behavior. This is only suitable when we know 2997 /// that the address will be used to access the object. 2998 LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK); 2999 3000 RValue convertTempToRValue(Address addr, QualType type, 3001 SourceLocation Loc); 3002 3003 void EmitAtomicInit(Expr *E, LValue lvalue); 3004 3005 bool LValueIsSuitableForInlineAtomic(LValue Src); 3006 3007 RValue EmitAtomicLoad(LValue LV, SourceLocation SL, 3008 AggValueSlot Slot = AggValueSlot::ignored()); 3009 3010 RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc, 3011 llvm::AtomicOrdering AO, bool IsVolatile = false, 3012 AggValueSlot slot = AggValueSlot::ignored()); 3013 3014 void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit); 3015 3016 void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO, 3017 bool IsVolatile, bool isInit); 3018 3019 std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange( 3020 LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, 3021 llvm::AtomicOrdering Success = 3022 llvm::AtomicOrdering::SequentiallyConsistent, 3023 llvm::AtomicOrdering Failure = 3024 llvm::AtomicOrdering::SequentiallyConsistent, 3025 bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored()); 3026 3027 void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO, 3028 const llvm::function_ref<RValue(RValue)> &UpdateOp, 3029 bool IsVolatile); 3030 3031 /// EmitToMemory - Change a scalar value from its value 3032 /// representation to its in-memory representation. 3033 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 3034 3035 /// EmitFromMemory - Change a scalar value from its memory 3036 /// representation to its value representation. 3037 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 3038 3039 /// Check if the scalar \p Value is within the valid range for the given 3040 /// type \p Ty. 3041 /// 3042 /// Returns true if a check is needed (even if the range is unknown). 3043 bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 3044 SourceLocation Loc); 3045 3046 /// EmitLoadOfScalar - Load a scalar value from an address, taking 3047 /// care to appropriately convert from the memory representation to 3048 /// the LLVM value representation. 3049 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 3050 SourceLocation Loc, 3051 LValueBaseInfo BaseInfo = 3052 LValueBaseInfo(AlignmentSource::Type), 3053 llvm::MDNode *TBAAInfo = nullptr, 3054 QualType TBAABaseTy = QualType(), 3055 uint64_t TBAAOffset = 0, 3056 bool isNontemporal = false); 3057 3058 /// EmitLoadOfScalar - Load a scalar value from an address, taking 3059 /// care to appropriately convert from the memory representation to 3060 /// the LLVM value representation. The l-value must be a simple 3061 /// l-value. 3062 llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc); 3063 3064 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3065 /// care to appropriately convert from the memory representation to 3066 /// the LLVM value representation. 3067 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 3068 bool Volatile, QualType Ty, 3069 LValueBaseInfo BaseInfo = 3070 LValueBaseInfo(AlignmentSource::Type), 3071 llvm::MDNode *TBAAInfo = nullptr, bool isInit = false, 3072 QualType TBAABaseTy = QualType(), 3073 uint64_t TBAAOffset = 0, bool isNontemporal = false); 3074 3075 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3076 /// care to appropriately convert from the memory representation to 3077 /// the LLVM value representation. The l-value must be a simple 3078 /// l-value. The isInit flag indicates whether this is an initialization. 3079 /// If so, atomic qualifiers are ignored and the store is always non-atomic. 3080 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); 3081 3082 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 3083 /// this method emits the address of the lvalue, then loads the result as an 3084 /// rvalue, returning the rvalue. 3085 RValue EmitLoadOfLValue(LValue V, SourceLocation Loc); 3086 RValue EmitLoadOfExtVectorElementLValue(LValue V); 3087 RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc); 3088 RValue EmitLoadOfGlobalRegLValue(LValue LV); 3089 3090 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 3091 /// lvalue, where both are guaranteed to the have the same type, and that type 3092 /// is 'Ty'. 3093 void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false); 3094 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 3095 void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst); 3096 3097 /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints 3098 /// as EmitStoreThroughLValue. 3099 /// 3100 /// \param Result [out] - If non-null, this will be set to a Value* for the 3101 /// bit-field contents after the store, appropriate for use as the result of 3102 /// an assignment to the bit-field. 3103 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 3104 llvm::Value **Result=nullptr); 3105 3106 /// Emit an l-value for an assignment (simple or compound) of complex type. 3107 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 3108 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 3109 LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 3110 llvm::Value *&Result); 3111 3112 // Note: only available for agg return types 3113 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 3114 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 3115 // Note: only available for agg return types 3116 LValue EmitCallExprLValue(const CallExpr *E); 3117 // Note: only available for agg return types 3118 LValue EmitVAArgExprLValue(const VAArgExpr *E); 3119 LValue EmitDeclRefLValue(const DeclRefExpr *E); 3120 LValue EmitStringLiteralLValue(const StringLiteral *E); 3121 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 3122 LValue EmitPredefinedLValue(const PredefinedExpr *E); 3123 LValue EmitUnaryOpLValue(const UnaryOperator *E); 3124 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3125 bool Accessed = false); 3126 LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3127 bool IsLowerBound = true); 3128 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 3129 LValue EmitMemberExpr(const MemberExpr *E); 3130 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 3131 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 3132 LValue EmitInitListLValue(const InitListExpr *E); 3133 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 3134 LValue EmitCastLValue(const CastExpr *E); 3135 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 3136 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 3137 3138 Address EmitExtVectorElementLValue(LValue V); 3139 3140 RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc); 3141 3142 Address EmitArrayToPointerDecay(const Expr *Array, 3143 LValueBaseInfo *BaseInfo = nullptr); 3144 3145 class ConstantEmission { 3146 llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; 3147 ConstantEmission(llvm::Constant *C, bool isReference) 3148 : ValueAndIsReference(C, isReference) {} 3149 public: 3150 ConstantEmission() {} 3151 static ConstantEmission forReference(llvm::Constant *C) { 3152 return ConstantEmission(C, true); 3153 } 3154 static ConstantEmission forValue(llvm::Constant *C) { 3155 return ConstantEmission(C, false); 3156 } 3157 3158 explicit operator bool() const { 3159 return ValueAndIsReference.getOpaqueValue() != nullptr; 3160 } 3161 3162 bool isReference() const { return ValueAndIsReference.getInt(); } 3163 LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { 3164 assert(isReference()); 3165 return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), 3166 refExpr->getType()); 3167 } 3168 3169 llvm::Constant *getValue() const { 3170 assert(!isReference()); 3171 return ValueAndIsReference.getPointer(); 3172 } 3173 }; 3174 3175 ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); 3176 ConstantEmission tryEmitAsConstant(const MemberExpr *ME); 3177 3178 RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, 3179 AggValueSlot slot = AggValueSlot::ignored()); 3180 LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); 3181 3182 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 3183 const ObjCIvarDecl *Ivar); 3184 LValue EmitLValueForField(LValue Base, const FieldDecl* Field); 3185 LValue EmitLValueForLambdaField(const FieldDecl *Field); 3186 3187 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 3188 /// if the Field is a reference, this will return the address of the reference 3189 /// and not the address of the value stored in the reference. 3190 LValue EmitLValueForFieldInitialization(LValue Base, 3191 const FieldDecl* Field); 3192 3193 LValue EmitLValueForIvar(QualType ObjectTy, 3194 llvm::Value* Base, const ObjCIvarDecl *Ivar, 3195 unsigned CVRQualifiers); 3196 3197 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 3198 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 3199 LValue EmitLambdaLValue(const LambdaExpr *E); 3200 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 3201 LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E); 3202 3203 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 3204 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 3205 LValue EmitStmtExprLValue(const StmtExpr *E); 3206 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 3207 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 3208 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init); 3209 3210 //===--------------------------------------------------------------------===// 3211 // Scalar Expression Emission 3212 //===--------------------------------------------------------------------===// 3213 3214 /// EmitCall - Generate a call of the given function, expecting the given 3215 /// result type, and using the given argument list which specifies both the 3216 /// LLVM arguments and the types they were derived from. 3217 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 3218 ReturnValueSlot ReturnValue, const CallArgList &Args, 3219 llvm::Instruction **callOrInvoke = nullptr); 3220 3221 RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E, 3222 ReturnValueSlot ReturnValue, 3223 llvm::Value *Chain = nullptr); 3224 RValue EmitCallExpr(const CallExpr *E, 3225 ReturnValueSlot ReturnValue = ReturnValueSlot()); 3226 RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 3227 CGCallee EmitCallee(const Expr *E); 3228 3229 void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl); 3230 3231 llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, 3232 const Twine &name = ""); 3233 llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, 3234 ArrayRef<llvm::Value*> args, 3235 const Twine &name = ""); 3236 llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, 3237 const Twine &name = ""); 3238 llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, 3239 ArrayRef<llvm::Value*> args, 3240 const Twine &name = ""); 3241 3242 llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, 3243 ArrayRef<llvm::Value *> Args, 3244 const Twine &Name = ""); 3245 llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, 3246 ArrayRef<llvm::Value*> args, 3247 const Twine &name = ""); 3248 llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, 3249 const Twine &name = ""); 3250 void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee, 3251 ArrayRef<llvm::Value*> args); 3252 3253 CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 3254 NestedNameSpecifier *Qual, 3255 llvm::Type *Ty); 3256 3257 CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 3258 CXXDtorType Type, 3259 const CXXRecordDecl *RD); 3260 3261 RValue 3262 EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method, 3263 const CGCallee &Callee, 3264 ReturnValueSlot ReturnValue, llvm::Value *This, 3265 llvm::Value *ImplicitParam, 3266 QualType ImplicitParamTy, const CallExpr *E, 3267 CallArgList *RtlArgs); 3268 RValue EmitCXXDestructorCall(const CXXDestructorDecl *DD, 3269 const CGCallee &Callee, 3270 llvm::Value *This, llvm::Value *ImplicitParam, 3271 QualType ImplicitParamTy, const CallExpr *E, 3272 StructorType Type); 3273 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 3274 ReturnValueSlot ReturnValue); 3275 RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE, 3276 const CXXMethodDecl *MD, 3277 ReturnValueSlot ReturnValue, 3278 bool HasQualifier, 3279 NestedNameSpecifier *Qualifier, 3280 bool IsArrow, const Expr *Base); 3281 // Compute the object pointer. 3282 Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base, 3283 llvm::Value *memberPtr, 3284 const MemberPointerType *memberPtrType, 3285 LValueBaseInfo *BaseInfo = nullptr); 3286 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 3287 ReturnValueSlot ReturnValue); 3288 3289 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 3290 const CXXMethodDecl *MD, 3291 ReturnValueSlot ReturnValue); 3292 RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E); 3293 3294 RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 3295 ReturnValueSlot ReturnValue); 3296 3297 RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E, 3298 ReturnValueSlot ReturnValue); 3299 3300 RValue EmitBuiltinExpr(const FunctionDecl *FD, 3301 unsigned BuiltinID, const CallExpr *E, 3302 ReturnValueSlot ReturnValue); 3303 3304 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 3305 3306 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 3307 /// is unhandled by the current target. 3308 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3309 3310 llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty, 3311 const llvm::CmpInst::Predicate Fp, 3312 const llvm::CmpInst::Predicate Ip, 3313 const llvm::Twine &Name = ""); 3314 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3315 3316 llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID, 3317 unsigned LLVMIntrinsic, 3318 unsigned AltLLVMIntrinsic, 3319 const char *NameHint, 3320 unsigned Modifier, 3321 const CallExpr *E, 3322 SmallVectorImpl<llvm::Value *> &Ops, 3323 Address PtrOp0, Address PtrOp1); 3324 llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID, 3325 unsigned Modifier, llvm::Type *ArgTy, 3326 const CallExpr *E); 3327 llvm::Value *EmitNeonCall(llvm::Function *F, 3328 SmallVectorImpl<llvm::Value*> &O, 3329 const char *name, 3330 unsigned shift = 0, bool rightshift = false); 3331 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 3332 llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, 3333 bool negateForRightShift); 3334 llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt, 3335 llvm::Type *Ty, bool usgn, const char *name); 3336 llvm::Value *vectorWrapScalar16(llvm::Value *Op); 3337 llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3338 3339 llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); 3340 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3341 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3342 llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3343 llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3344 llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3345 llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID, 3346 const CallExpr *E); 3347 3348 private: 3349 enum class MSVCIntrin; 3350 3351 public: 3352 llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E); 3353 3354 llvm::Value *EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args); 3355 3356 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 3357 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 3358 llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); 3359 llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); 3360 llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); 3361 llvm::Value *EmitObjCCollectionLiteral(const Expr *E, 3362 const ObjCMethodDecl *MethodWithObjects); 3363 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 3364 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 3365 ReturnValueSlot Return = ReturnValueSlot()); 3366 3367 /// Retrieves the default cleanup kind for an ARC cleanup. 3368 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. 3369 CleanupKind getARCCleanupKind() { 3370 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 3371 ? NormalAndEHCleanup : NormalCleanup; 3372 } 3373 3374 // ARC primitives. 3375 void EmitARCInitWeak(Address addr, llvm::Value *value); 3376 void EmitARCDestroyWeak(Address addr); 3377 llvm::Value *EmitARCLoadWeak(Address addr); 3378 llvm::Value *EmitARCLoadWeakRetained(Address addr); 3379 llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored); 3380 void EmitARCCopyWeak(Address dst, Address src); 3381 void EmitARCMoveWeak(Address dst, Address src); 3382 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 3383 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 3384 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 3385 bool resultIgnored); 3386 llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value, 3387 bool resultIgnored); 3388 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 3389 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 3390 llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); 3391 void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise); 3392 void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 3393 llvm::Value *EmitARCAutorelease(llvm::Value *value); 3394 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 3395 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 3396 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 3397 llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value); 3398 3399 std::pair<LValue,llvm::Value*> 3400 EmitARCStoreAutoreleasing(const BinaryOperator *e); 3401 std::pair<LValue,llvm::Value*> 3402 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 3403 std::pair<LValue,llvm::Value*> 3404 EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored); 3405 3406 llvm::Value *EmitObjCThrowOperand(const Expr *expr); 3407 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 3408 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 3409 3410 llvm::Value *EmitARCExtendBlockObject(const Expr *expr); 3411 llvm::Value *EmitARCReclaimReturnedObject(const Expr *e, 3412 bool allowUnsafeClaim); 3413 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 3414 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 3415 llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr); 3416 3417 void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values); 3418 3419 static Destroyer destroyARCStrongImprecise; 3420 static Destroyer destroyARCStrongPrecise; 3421 static Destroyer destroyARCWeak; 3422 static Destroyer emitARCIntrinsicUse; 3423 3424 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 3425 llvm::Value *EmitObjCAutoreleasePoolPush(); 3426 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 3427 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 3428 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 3429 3430 /// \brief Emits a reference binding to the passed in expression. 3431 RValue EmitReferenceBindingToExpr(const Expr *E); 3432 3433 //===--------------------------------------------------------------------===// 3434 // Expression Emission 3435 //===--------------------------------------------------------------------===// 3436 3437 // Expressions are broken into three classes: scalar, complex, aggregate. 3438 3439 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 3440 /// scalar type, returning the result. 3441 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 3442 3443 /// Emit a conversion from the specified type to the specified destination 3444 /// type, both of which are LLVM scalar types. 3445 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 3446 QualType DstTy, SourceLocation Loc); 3447 3448 /// Emit a conversion from the specified complex type to the specified 3449 /// destination type, where the destination type is an LLVM scalar type. 3450 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 3451 QualType DstTy, 3452 SourceLocation Loc); 3453 3454 /// EmitAggExpr - Emit the computation of the specified expression 3455 /// of aggregate type. The result is computed into the given slot, 3456 /// which may be null to indicate that the value is not needed. 3457 void EmitAggExpr(const Expr *E, AggValueSlot AS); 3458 3459 /// EmitAggExprToLValue - Emit the computation of the specified expression of 3460 /// aggregate type into a temporary LValue. 3461 LValue EmitAggExprToLValue(const Expr *E); 3462 3463 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 3464 /// make sure it survives garbage collection until this point. 3465 void EmitExtendGCLifetime(llvm::Value *object); 3466 3467 /// EmitComplexExpr - Emit the computation of the specified expression of 3468 /// complex type, returning the result. 3469 ComplexPairTy EmitComplexExpr(const Expr *E, 3470 bool IgnoreReal = false, 3471 bool IgnoreImag = false); 3472 3473 /// EmitComplexExprIntoLValue - Emit the given expression of complex 3474 /// type and place its result into the specified l-value. 3475 void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit); 3476 3477 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 3478 void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit); 3479 3480 /// EmitLoadOfComplex - Load a complex number from the specified l-value. 3481 ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc); 3482 3483 Address emitAddrOfRealComponent(Address complex, QualType complexType); 3484 Address emitAddrOfImagComponent(Address complex, QualType complexType); 3485 3486 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 3487 /// global variable that has already been created for it. If the initializer 3488 /// has a different type than GV does, this may free GV and return a different 3489 /// one. Otherwise it just returns GV. 3490 llvm::GlobalVariable * 3491 AddInitializerToStaticVarDecl(const VarDecl &D, 3492 llvm::GlobalVariable *GV); 3493 3494 3495 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 3496 /// variable with global storage. 3497 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr, 3498 bool PerformInit); 3499 3500 llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::Constant *Dtor, 3501 llvm::Constant *Addr); 3502 3503 /// Call atexit() with a function that passes the given argument to 3504 /// the given function. 3505 void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn, 3506 llvm::Constant *addr); 3507 3508 /// Emit code in this function to perform a guarded variable 3509 /// initialization. Guarded initializations are used when it's not 3510 /// possible to prove that an initialization will be done exactly 3511 /// once, e.g. with a static local variable or a static data member 3512 /// of a class template. 3513 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, 3514 bool PerformInit); 3515 3516 enum class GuardKind { VariableGuard, TlsGuard }; 3517 3518 /// Emit a branch to select whether or not to perform guarded initialization. 3519 void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit, 3520 llvm::BasicBlock *InitBlock, 3521 llvm::BasicBlock *NoInitBlock, 3522 GuardKind Kind, const VarDecl *D); 3523 3524 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 3525 /// variables. 3526 void GenerateCXXGlobalInitFunc(llvm::Function *Fn, 3527 ArrayRef<llvm::Function *> CXXThreadLocals, 3528 Address Guard = Address::invalid()); 3529 3530 /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global 3531 /// variables. 3532 void GenerateCXXGlobalDtorsFunc( 3533 llvm::Function *Fn, 3534 const std::vector<std::pair<llvm::WeakTrackingVH, llvm::Constant *>> 3535 &DtorsAndObjects); 3536 3537 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 3538 const VarDecl *D, 3539 llvm::GlobalVariable *Addr, 3540 bool PerformInit); 3541 3542 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 3543 3544 void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp); 3545 3546 void enterFullExpression(const ExprWithCleanups *E) { 3547 if (E->getNumObjects() == 0) return; 3548 enterNonTrivialFullExpression(E); 3549 } 3550 void enterNonTrivialFullExpression(const ExprWithCleanups *E); 3551 3552 void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true); 3553 3554 void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest); 3555 3556 RValue EmitAtomicExpr(AtomicExpr *E); 3557 3558 //===--------------------------------------------------------------------===// 3559 // Annotations Emission 3560 //===--------------------------------------------------------------------===// 3561 3562 /// Emit an annotation call (intrinsic or builtin). 3563 llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn, 3564 llvm::Value *AnnotatedVal, 3565 StringRef AnnotationStr, 3566 SourceLocation Location); 3567 3568 /// Emit local annotations for the local variable V, declared by D. 3569 void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); 3570 3571 /// Emit field annotations for the given field & value. Returns the 3572 /// annotation result. 3573 Address EmitFieldAnnotations(const FieldDecl *D, Address V); 3574 3575 //===--------------------------------------------------------------------===// 3576 // Internal Helpers 3577 //===--------------------------------------------------------------------===// 3578 3579 /// ContainsLabel - Return true if the statement contains a label in it. If 3580 /// this statement is not executed normally, it not containing a label means 3581 /// that we can just remove the code. 3582 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 3583 3584 /// containsBreak - Return true if the statement contains a break out of it. 3585 /// If the statement (recursively) contains a switch or loop with a break 3586 /// inside of it, this is fine. 3587 static bool containsBreak(const Stmt *S); 3588 3589 /// Determine if the given statement might introduce a declaration into the 3590 /// current scope, by being a (possibly-labelled) DeclStmt. 3591 static bool mightAddDeclToScope(const Stmt *S); 3592 3593 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 3594 /// to a constant, or if it does but contains a label, return false. If it 3595 /// constant folds return true and set the boolean result in Result. 3596 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result, 3597 bool AllowLabels = false); 3598 3599 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 3600 /// to a constant, or if it does but contains a label, return false. If it 3601 /// constant folds return true and set the folded value. 3602 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result, 3603 bool AllowLabels = false); 3604 3605 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 3606 /// if statement) to the specified blocks. Based on the condition, this might 3607 /// try to simplify the codegen of the conditional based on the branch. 3608 /// TrueCount should be the number of times we expect the condition to 3609 /// evaluate to true based on PGO data. 3610 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 3611 llvm::BasicBlock *FalseBlock, uint64_t TrueCount); 3612 3613 /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is 3614 /// nonnull, if \p LHS is marked _Nonnull. 3615 void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc); 3616 3617 /// An enumeration which makes it easier to specify whether or not an 3618 /// operation is a subtraction. 3619 enum { NotSubtraction = false, IsSubtraction = true }; 3620 3621 /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to 3622 /// detect undefined behavior when the pointer overflow sanitizer is enabled. 3623 /// \p SignedIndices indicates whether any of the GEP indices are signed. 3624 /// \p IsSubtraction indicates whether the expression used to form the GEP 3625 /// is a subtraction. 3626 llvm::Value *EmitCheckedInBoundsGEP(llvm::Value *Ptr, 3627 ArrayRef<llvm::Value *> IdxList, 3628 bool SignedIndices, 3629 bool IsSubtraction, 3630 SourceLocation Loc, 3631 const Twine &Name = ""); 3632 3633 /// Specifies which type of sanitizer check to apply when handling a 3634 /// particular builtin. 3635 enum BuiltinCheckKind { 3636 BCK_CTZPassedZero, 3637 BCK_CLZPassedZero, 3638 }; 3639 3640 /// Emits an argument for a call to a builtin. If the builtin sanitizer is 3641 /// enabled, a runtime check specified by \p Kind is also emitted. 3642 llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind); 3643 3644 /// \brief Emit a description of a type in a format suitable for passing to 3645 /// a runtime sanitizer handler. 3646 llvm::Constant *EmitCheckTypeDescriptor(QualType T); 3647 3648 /// \brief Convert a value into a format suitable for passing to a runtime 3649 /// sanitizer handler. 3650 llvm::Value *EmitCheckValue(llvm::Value *V); 3651 3652 /// \brief Emit a description of a source location in a format suitable for 3653 /// passing to a runtime sanitizer handler. 3654 llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc); 3655 3656 /// \brief Create a basic block that will call a handler function in a 3657 /// sanitizer runtime with the provided arguments, and create a conditional 3658 /// branch to it. 3659 void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 3660 SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs, 3661 ArrayRef<llvm::Value *> DynamicArgs); 3662 3663 /// \brief Emit a slow path cross-DSO CFI check which calls __cfi_slowpath 3664 /// if Cond if false. 3665 void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond, 3666 llvm::ConstantInt *TypeId, llvm::Value *Ptr, 3667 ArrayRef<llvm::Constant *> StaticArgs); 3668 3669 /// \brief Create a basic block that will call the trap intrinsic, and emit a 3670 /// conditional branch to it, for the -ftrapv checks. 3671 void EmitTrapCheck(llvm::Value *Checked); 3672 3673 /// \brief Emit a call to trap or debugtrap and attach function attribute 3674 /// "trap-func-name" if specified. 3675 llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID); 3676 3677 /// \brief Emit a stub for the cross-DSO CFI check function. 3678 void EmitCfiCheckStub(); 3679 3680 /// \brief Emit a cross-DSO CFI failure handling function. 3681 void EmitCfiCheckFail(); 3682 3683 /// \brief Create a check for a function parameter that may potentially be 3684 /// declared as non-null. 3685 void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc, 3686 AbstractCallee AC, unsigned ParmNum); 3687 3688 /// EmitCallArg - Emit a single call argument. 3689 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 3690 3691 /// EmitDelegateCallArg - We are performing a delegate call; that 3692 /// is, the current function is delegating to another one. Produce 3693 /// a r-value suitable for passing the given parameter. 3694 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param, 3695 SourceLocation loc); 3696 3697 /// SetFPAccuracy - Set the minimum required accuracy of the given floating 3698 /// point operation, expressed as the maximum relative error in ulp. 3699 void SetFPAccuracy(llvm::Value *Val, float Accuracy); 3700 3701 private: 3702 llvm::MDNode *getRangeForLoadFromType(QualType Ty); 3703 void EmitReturnOfRValue(RValue RV, QualType Ty); 3704 3705 void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New); 3706 3707 llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4> 3708 DeferredReplacements; 3709 3710 /// Set the address of a local variable. 3711 void setAddrOfLocalVar(const VarDecl *VD, Address Addr) { 3712 assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!"); 3713 LocalDeclMap.insert({VD, Addr}); 3714 } 3715 3716 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 3717 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 3718 /// 3719 /// \param AI - The first function argument of the expansion. 3720 void ExpandTypeFromArgs(QualType Ty, LValue Dst, 3721 SmallVectorImpl<llvm::Value *>::iterator &AI); 3722 3723 /// ExpandTypeToArgs - Expand an RValue \arg RV, with the LLVM type for \arg 3724 /// Ty, into individual arguments on the provided vector \arg IRCallArgs, 3725 /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand. 3726 void ExpandTypeToArgs(QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy, 3727 SmallVectorImpl<llvm::Value *> &IRCallArgs, 3728 unsigned &IRCallArgPos); 3729 3730 llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info, 3731 const Expr *InputExpr, std::string &ConstraintStr); 3732 3733 llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 3734 LValue InputValue, QualType InputType, 3735 std::string &ConstraintStr, 3736 SourceLocation Loc); 3737 3738 /// \brief Attempts to statically evaluate the object size of E. If that 3739 /// fails, emits code to figure the size of E out for us. This is 3740 /// pass_object_size aware. 3741 /// 3742 /// If EmittedExpr is non-null, this will use that instead of re-emitting E. 3743 llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type, 3744 llvm::IntegerType *ResType, 3745 llvm::Value *EmittedE); 3746 3747 /// \brief Emits the size of E, as required by __builtin_object_size. This 3748 /// function is aware of pass_object_size parameters, and will act accordingly 3749 /// if E is a parameter with the pass_object_size attribute. 3750 llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type, 3751 llvm::IntegerType *ResType, 3752 llvm::Value *EmittedE); 3753 3754 public: 3755 #ifndef NDEBUG 3756 // Determine whether the given argument is an Objective-C method 3757 // that may have type parameters in its signature. 3758 static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) { 3759 const DeclContext *dc = method->getDeclContext(); 3760 if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) { 3761 return classDecl->getTypeParamListAsWritten(); 3762 } 3763 3764 if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) { 3765 return catDecl->getTypeParamList(); 3766 } 3767 3768 return false; 3769 } 3770 3771 template<typename T> 3772 static bool isObjCMethodWithTypeParams(const T *) { return false; } 3773 #endif 3774 3775 enum class EvaluationOrder { 3776 ///! No language constraints on evaluation order. 3777 Default, 3778 ///! Language semantics require left-to-right evaluation. 3779 ForceLeftToRight, 3780 ///! Language semantics require right-to-left evaluation. 3781 ForceRightToLeft 3782 }; 3783 3784 /// EmitCallArgs - Emit call arguments for a function. 3785 template <typename T> 3786 void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo, 3787 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 3788 AbstractCallee AC = AbstractCallee(), 3789 unsigned ParamsToSkip = 0, 3790 EvaluationOrder Order = EvaluationOrder::Default) { 3791 SmallVector<QualType, 16> ArgTypes; 3792 CallExpr::const_arg_iterator Arg = ArgRange.begin(); 3793 3794 assert((ParamsToSkip == 0 || CallArgTypeInfo) && 3795 "Can't skip parameters if type info is not provided"); 3796 if (CallArgTypeInfo) { 3797 #ifndef NDEBUG 3798 bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo); 3799 #endif 3800 3801 // First, use the argument types that the type info knows about 3802 for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip, 3803 E = CallArgTypeInfo->param_type_end(); 3804 I != E; ++I, ++Arg) { 3805 assert(Arg != ArgRange.end() && "Running over edge of argument list!"); 3806 assert((isGenericMethod || 3807 ((*I)->isVariablyModifiedType() || 3808 (*I).getNonReferenceType()->isObjCRetainableType() || 3809 getContext() 3810 .getCanonicalType((*I).getNonReferenceType()) 3811 .getTypePtr() == 3812 getContext() 3813 .getCanonicalType((*Arg)->getType()) 3814 .getTypePtr())) && 3815 "type mismatch in call argument!"); 3816 ArgTypes.push_back(*I); 3817 } 3818 } 3819 3820 // Either we've emitted all the call args, or we have a call to variadic 3821 // function. 3822 assert((Arg == ArgRange.end() || !CallArgTypeInfo || 3823 CallArgTypeInfo->isVariadic()) && 3824 "Extra arguments in non-variadic function!"); 3825 3826 // If we still have any arguments, emit them using the type of the argument. 3827 for (auto *A : llvm::make_range(Arg, ArgRange.end())) 3828 ArgTypes.push_back(CallArgTypeInfo ? getVarArgType(A) : A->getType()); 3829 3830 EmitCallArgs(Args, ArgTypes, ArgRange, AC, ParamsToSkip, Order); 3831 } 3832 3833 void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes, 3834 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 3835 AbstractCallee AC = AbstractCallee(), 3836 unsigned ParamsToSkip = 0, 3837 EvaluationOrder Order = EvaluationOrder::Default); 3838 3839 /// EmitPointerWithAlignment - Given an expression with a pointer type, 3840 /// emit the value and compute our best estimate of the alignment of the 3841 /// pointee. 3842 /// 3843 /// \param BaseInfo - If non-null, this will be initialized with 3844 /// information about the source of the alignment and the may-alias 3845 /// attribute. Note that this function will conservatively fall back on 3846 /// the type when it doesn't recognize the expression and may-alias will 3847 /// be set to false. 3848 /// 3849 /// One reasonable way to use this information is when there's a language 3850 /// guarantee that the pointer must be aligned to some stricter value, and 3851 /// we're simply trying to ensure that sufficiently obvious uses of under- 3852 /// aligned objects don't get miscompiled; for example, a placement new 3853 /// into the address of a local variable. In such a case, it's quite 3854 /// reasonable to just ignore the returned alignment when it isn't from an 3855 /// explicit source. 3856 Address EmitPointerWithAlignment(const Expr *Addr, 3857 LValueBaseInfo *BaseInfo = nullptr); 3858 3859 void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK); 3860 3861 private: 3862 QualType getVarArgType(const Expr *Arg); 3863 3864 void EmitDeclMetadata(); 3865 3866 BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType, 3867 const AutoVarEmission &emission); 3868 3869 void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); 3870 3871 llvm::Value *GetValueForARMHint(unsigned BuiltinID); 3872 llvm::Value *EmitX86CpuIs(const CallExpr *E); 3873 llvm::Value *EmitX86CpuIs(StringRef CPUStr); 3874 llvm::Value *EmitX86CpuSupports(const CallExpr *E); 3875 llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs); 3876 }; 3877 3878 /// Helper class with most of the code for saving a value for a 3879 /// conditional expression cleanup. 3880 struct DominatingLLVMValue { 3881 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 3882 3883 /// Answer whether the given value needs extra work to be saved. 3884 static bool needsSaving(llvm::Value *value) { 3885 // If it's not an instruction, we don't need to save. 3886 if (!isa<llvm::Instruction>(value)) return false; 3887 3888 // If it's an instruction in the entry block, we don't need to save. 3889 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 3890 return (block != &block->getParent()->getEntryBlock()); 3891 } 3892 3893 /// Try to save the given value. 3894 static saved_type save(CodeGenFunction &CGF, llvm::Value *value) { 3895 if (!needsSaving(value)) return saved_type(value, false); 3896 3897 // Otherwise, we need an alloca. 3898 auto align = CharUnits::fromQuantity( 3899 CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType())); 3900 Address alloca = 3901 CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save"); 3902 CGF.Builder.CreateStore(value, alloca); 3903 3904 return saved_type(alloca.getPointer(), true); 3905 } 3906 3907 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) { 3908 // If the value says it wasn't saved, trust that it's still dominating. 3909 if (!value.getInt()) return value.getPointer(); 3910 3911 // Otherwise, it should be an alloca instruction, as set up in save(). 3912 auto alloca = cast<llvm::AllocaInst>(value.getPointer()); 3913 return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlignment()); 3914 } 3915 }; 3916 3917 /// A partial specialization of DominatingValue for llvm::Values that 3918 /// might be llvm::Instructions. 3919 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 3920 typedef T *type; 3921 static type restore(CodeGenFunction &CGF, saved_type value) { 3922 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 3923 } 3924 }; 3925 3926 /// A specialization of DominatingValue for Address. 3927 template <> struct DominatingValue<Address> { 3928 typedef Address type; 3929 3930 struct saved_type { 3931 DominatingLLVMValue::saved_type SavedValue; 3932 CharUnits Alignment; 3933 }; 3934 3935 static bool needsSaving(type value) { 3936 return DominatingLLVMValue::needsSaving(value.getPointer()); 3937 } 3938 static saved_type save(CodeGenFunction &CGF, type value) { 3939 return { DominatingLLVMValue::save(CGF, value.getPointer()), 3940 value.getAlignment() }; 3941 } 3942 static type restore(CodeGenFunction &CGF, saved_type value) { 3943 return Address(DominatingLLVMValue::restore(CGF, value.SavedValue), 3944 value.Alignment); 3945 } 3946 }; 3947 3948 /// A specialization of DominatingValue for RValue. 3949 template <> struct DominatingValue<RValue> { 3950 typedef RValue type; 3951 class saved_type { 3952 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 3953 AggregateAddress, ComplexAddress }; 3954 3955 llvm::Value *Value; 3956 unsigned K : 3; 3957 unsigned Align : 29; 3958 saved_type(llvm::Value *v, Kind k, unsigned a = 0) 3959 : Value(v), K(k), Align(a) {} 3960 3961 public: 3962 static bool needsSaving(RValue value); 3963 static saved_type save(CodeGenFunction &CGF, RValue value); 3964 RValue restore(CodeGenFunction &CGF); 3965 3966 // implementations in CGCleanup.cpp 3967 }; 3968 3969 static bool needsSaving(type value) { 3970 return saved_type::needsSaving(value); 3971 } 3972 static saved_type save(CodeGenFunction &CGF, type value) { 3973 return saved_type::save(CGF, value); 3974 } 3975 static type restore(CodeGenFunction &CGF, saved_type value) { 3976 return value.restore(CGF); 3977 } 3978 }; 3979 3980 } // end namespace CodeGen 3981 } // end namespace clang 3982 3983 #endif 3984