1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the internal per-function state used for llvm translation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef CLANG_CODEGEN_CODEGENFUNCTION_H
15 #define CLANG_CODEGEN_CODEGENFUNCTION_H
16 
17 #include "CGBuilder.h"
18 #include "CGDebugInfo.h"
19 #include "CGValue.h"
20 #include "CodeGenModule.h"
21 #include "clang/AST/CharUnits.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/AST/ExprObjC.h"
24 #include "clang/AST/Type.h"
25 #include "clang/Basic/ABI.h"
26 #include "clang/Basic/TargetInfo.h"
27 #include "clang/Frontend/CodeGenOptions.h"
28 #include "llvm/ADT/ArrayRef.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/ValueHandle.h"
33 
34 namespace llvm {
35   class BasicBlock;
36   class LLVMContext;
37   class MDNode;
38   class Module;
39   class SwitchInst;
40   class Twine;
41   class Value;
42   class CallSite;
43 }
44 
45 namespace clang {
46   class ASTContext;
47   class BlockDecl;
48   class CXXDestructorDecl;
49   class CXXForRangeStmt;
50   class CXXTryStmt;
51   class Decl;
52   class LabelDecl;
53   class EnumConstantDecl;
54   class FunctionDecl;
55   class FunctionProtoType;
56   class LabelStmt;
57   class ObjCContainerDecl;
58   class ObjCInterfaceDecl;
59   class ObjCIvarDecl;
60   class ObjCMethodDecl;
61   class ObjCImplementationDecl;
62   class ObjCPropertyImplDecl;
63   class TargetInfo;
64   class TargetCodeGenInfo;
65   class VarDecl;
66   class ObjCForCollectionStmt;
67   class ObjCAtTryStmt;
68   class ObjCAtThrowStmt;
69   class ObjCAtSynchronizedStmt;
70   class ObjCAutoreleasePoolStmt;
71 
72 namespace CodeGen {
73   class CodeGenTypes;
74   class CGFunctionInfo;
75   class CGRecordLayout;
76   class CGBlockInfo;
77   class CGCXXABI;
78   class BlockFlags;
79   class BlockFieldFlags;
80 
81 /// A branch fixup.  These are required when emitting a goto to a
82 /// label which hasn't been emitted yet.  The goto is optimistically
83 /// emitted as a branch to the basic block for the label, and (if it
84 /// occurs in a scope with non-trivial cleanups) a fixup is added to
85 /// the innermost cleanup.  When a (normal) cleanup is popped, any
86 /// unresolved fixups in that scope are threaded through the cleanup.
87 struct BranchFixup {
88   /// The block containing the terminator which needs to be modified
89   /// into a switch if this fixup is resolved into the current scope.
90   /// If null, LatestBranch points directly to the destination.
91   llvm::BasicBlock *OptimisticBranchBlock;
92 
93   /// The ultimate destination of the branch.
94   ///
95   /// This can be set to null to indicate that this fixup was
96   /// successfully resolved.
97   llvm::BasicBlock *Destination;
98 
99   /// The destination index value.
100   unsigned DestinationIndex;
101 
102   /// The initial branch of the fixup.
103   llvm::BranchInst *InitialBranch;
104 };
105 
106 template <class T> struct InvariantValue {
107   typedef T type;
108   typedef T saved_type;
109   static bool needsSaving(type value) { return false; }
110   static saved_type save(CodeGenFunction &CGF, type value) { return value; }
111   static type restore(CodeGenFunction &CGF, saved_type value) { return value; }
112 };
113 
114 /// A metaprogramming class for ensuring that a value will dominate an
115 /// arbitrary position in a function.
116 template <class T> struct DominatingValue : InvariantValue<T> {};
117 
118 template <class T, bool mightBeInstruction =
119             llvm::is_base_of<llvm::Value, T>::value &&
120             !llvm::is_base_of<llvm::Constant, T>::value &&
121             !llvm::is_base_of<llvm::BasicBlock, T>::value>
122 struct DominatingPointer;
123 template <class T> struct DominatingPointer<T,false> : InvariantValue<T*> {};
124 // template <class T> struct DominatingPointer<T,true> at end of file
125 
126 template <class T> struct DominatingValue<T*> : DominatingPointer<T> {};
127 
128 enum CleanupKind {
129   EHCleanup = 0x1,
130   NormalCleanup = 0x2,
131   NormalAndEHCleanup = EHCleanup | NormalCleanup,
132 
133   InactiveCleanup = 0x4,
134   InactiveEHCleanup = EHCleanup | InactiveCleanup,
135   InactiveNormalCleanup = NormalCleanup | InactiveCleanup,
136   InactiveNormalAndEHCleanup = NormalAndEHCleanup | InactiveCleanup
137 };
138 
139 /// A stack of scopes which respond to exceptions, including cleanups
140 /// and catch blocks.
141 class EHScopeStack {
142 public:
143   /// A saved depth on the scope stack.  This is necessary because
144   /// pushing scopes onto the stack invalidates iterators.
145   class stable_iterator {
146     friend class EHScopeStack;
147 
148     /// Offset from StartOfData to EndOfBuffer.
149     ptrdiff_t Size;
150 
151     stable_iterator(ptrdiff_t Size) : Size(Size) {}
152 
153   public:
154     static stable_iterator invalid() { return stable_iterator(-1); }
155     stable_iterator() : Size(-1) {}
156 
157     bool isValid() const { return Size >= 0; }
158 
159     /// Returns true if this scope encloses I.
160     /// Returns false if I is invalid.
161     /// This scope must be valid.
162     bool encloses(stable_iterator I) const { return Size <= I.Size; }
163 
164     /// Returns true if this scope strictly encloses I: that is,
165     /// if it encloses I and is not I.
166     /// Returns false is I is invalid.
167     /// This scope must be valid.
168     bool strictlyEncloses(stable_iterator I) const { return Size < I.Size; }
169 
170     friend bool operator==(stable_iterator A, stable_iterator B) {
171       return A.Size == B.Size;
172     }
173     friend bool operator!=(stable_iterator A, stable_iterator B) {
174       return A.Size != B.Size;
175     }
176   };
177 
178   /// Information for lazily generating a cleanup.  Subclasses must be
179   /// POD-like: cleanups will not be destructed, and they will be
180   /// allocated on the cleanup stack and freely copied and moved
181   /// around.
182   ///
183   /// Cleanup implementations should generally be declared in an
184   /// anonymous namespace.
185   class Cleanup {
186     // Anchor the construction vtable.
187     virtual void anchor();
188   public:
189     /// Generation flags.
190     class Flags {
191       enum {
192         F_IsForEH             = 0x1,
193         F_IsNormalCleanupKind = 0x2,
194         F_IsEHCleanupKind     = 0x4
195       };
196       unsigned flags;
197 
198     public:
199       Flags() : flags(0) {}
200 
201       /// isForEH - true if the current emission is for an EH cleanup.
202       bool isForEHCleanup() const { return flags & F_IsForEH; }
203       bool isForNormalCleanup() const { return !isForEHCleanup(); }
204       void setIsForEHCleanup() { flags |= F_IsForEH; }
205 
206       bool isNormalCleanupKind() const { return flags & F_IsNormalCleanupKind; }
207       void setIsNormalCleanupKind() { flags |= F_IsNormalCleanupKind; }
208 
209       /// isEHCleanupKind - true if the cleanup was pushed as an EH
210       /// cleanup.
211       bool isEHCleanupKind() const { return flags & F_IsEHCleanupKind; }
212       void setIsEHCleanupKind() { flags |= F_IsEHCleanupKind; }
213     };
214 
215     // Provide a virtual destructor to suppress a very common warning
216     // that unfortunately cannot be suppressed without this.  Cleanups
217     // should not rely on this destructor ever being called.
218     virtual ~Cleanup() {}
219 
220     /// Emit the cleanup.  For normal cleanups, this is run in the
221     /// same EH context as when the cleanup was pushed, i.e. the
222     /// immediately-enclosing context of the cleanup scope.  For
223     /// EH cleanups, this is run in a terminate context.
224     ///
225     // \param flags cleanup kind.
226     virtual void Emit(CodeGenFunction &CGF, Flags flags) = 0;
227   };
228 
229   /// ConditionalCleanupN stores the saved form of its N parameters,
230   /// then restores them and performs the cleanup.
231   template <class T, class A0>
232   class ConditionalCleanup1 : public Cleanup {
233     typedef typename DominatingValue<A0>::saved_type A0_saved;
234     A0_saved a0_saved;
235 
236     void Emit(CodeGenFunction &CGF, Flags flags) {
237       A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
238       T(a0).Emit(CGF, flags);
239     }
240 
241   public:
242     ConditionalCleanup1(A0_saved a0)
243       : a0_saved(a0) {}
244   };
245 
246   template <class T, class A0, class A1>
247   class ConditionalCleanup2 : public Cleanup {
248     typedef typename DominatingValue<A0>::saved_type A0_saved;
249     typedef typename DominatingValue<A1>::saved_type A1_saved;
250     A0_saved a0_saved;
251     A1_saved a1_saved;
252 
253     void Emit(CodeGenFunction &CGF, Flags flags) {
254       A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
255       A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
256       T(a0, a1).Emit(CGF, flags);
257     }
258 
259   public:
260     ConditionalCleanup2(A0_saved a0, A1_saved a1)
261       : a0_saved(a0), a1_saved(a1) {}
262   };
263 
264   template <class T, class A0, class A1, class A2>
265   class ConditionalCleanup3 : public Cleanup {
266     typedef typename DominatingValue<A0>::saved_type A0_saved;
267     typedef typename DominatingValue<A1>::saved_type A1_saved;
268     typedef typename DominatingValue<A2>::saved_type A2_saved;
269     A0_saved a0_saved;
270     A1_saved a1_saved;
271     A2_saved a2_saved;
272 
273     void Emit(CodeGenFunction &CGF, Flags flags) {
274       A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
275       A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
276       A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved);
277       T(a0, a1, a2).Emit(CGF, flags);
278     }
279 
280   public:
281     ConditionalCleanup3(A0_saved a0, A1_saved a1, A2_saved a2)
282       : a0_saved(a0), a1_saved(a1), a2_saved(a2) {}
283   };
284 
285   template <class T, class A0, class A1, class A2, class A3>
286   class ConditionalCleanup4 : public Cleanup {
287     typedef typename DominatingValue<A0>::saved_type A0_saved;
288     typedef typename DominatingValue<A1>::saved_type A1_saved;
289     typedef typename DominatingValue<A2>::saved_type A2_saved;
290     typedef typename DominatingValue<A3>::saved_type A3_saved;
291     A0_saved a0_saved;
292     A1_saved a1_saved;
293     A2_saved a2_saved;
294     A3_saved a3_saved;
295 
296     void Emit(CodeGenFunction &CGF, Flags flags) {
297       A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
298       A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
299       A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved);
300       A3 a3 = DominatingValue<A3>::restore(CGF, a3_saved);
301       T(a0, a1, a2, a3).Emit(CGF, flags);
302     }
303 
304   public:
305     ConditionalCleanup4(A0_saved a0, A1_saved a1, A2_saved a2, A3_saved a3)
306       : a0_saved(a0), a1_saved(a1), a2_saved(a2), a3_saved(a3) {}
307   };
308 
309 private:
310   // The implementation for this class is in CGException.h and
311   // CGException.cpp; the definition is here because it's used as a
312   // member of CodeGenFunction.
313 
314   /// The start of the scope-stack buffer, i.e. the allocated pointer
315   /// for the buffer.  All of these pointers are either simultaneously
316   /// null or simultaneously valid.
317   char *StartOfBuffer;
318 
319   /// The end of the buffer.
320   char *EndOfBuffer;
321 
322   /// The first valid entry in the buffer.
323   char *StartOfData;
324 
325   /// The innermost normal cleanup on the stack.
326   stable_iterator InnermostNormalCleanup;
327 
328   /// The innermost EH scope on the stack.
329   stable_iterator InnermostEHScope;
330 
331   /// The current set of branch fixups.  A branch fixup is a jump to
332   /// an as-yet unemitted label, i.e. a label for which we don't yet
333   /// know the EH stack depth.  Whenever we pop a cleanup, we have
334   /// to thread all the current branch fixups through it.
335   ///
336   /// Fixups are recorded as the Use of the respective branch or
337   /// switch statement.  The use points to the final destination.
338   /// When popping out of a cleanup, these uses are threaded through
339   /// the cleanup and adjusted to point to the new cleanup.
340   ///
341   /// Note that branches are allowed to jump into protected scopes
342   /// in certain situations;  e.g. the following code is legal:
343   ///     struct A { ~A(); }; // trivial ctor, non-trivial dtor
344   ///     goto foo;
345   ///     A a;
346   ///    foo:
347   ///     bar();
348   SmallVector<BranchFixup, 8> BranchFixups;
349 
350   char *allocate(size_t Size);
351 
352   void *pushCleanup(CleanupKind K, size_t DataSize);
353 
354 public:
355   EHScopeStack() : StartOfBuffer(0), EndOfBuffer(0), StartOfData(0),
356                    InnermostNormalCleanup(stable_end()),
357                    InnermostEHScope(stable_end()) {}
358   ~EHScopeStack() { delete[] StartOfBuffer; }
359 
360   // Variadic templates would make this not terrible.
361 
362   /// Push a lazily-created cleanup on the stack.
363   template <class T>
364   void pushCleanup(CleanupKind Kind) {
365     void *Buffer = pushCleanup(Kind, sizeof(T));
366     Cleanup *Obj = new(Buffer) T();
367     (void) Obj;
368   }
369 
370   /// Push a lazily-created cleanup on the stack.
371   template <class T, class A0>
372   void pushCleanup(CleanupKind Kind, A0 a0) {
373     void *Buffer = pushCleanup(Kind, sizeof(T));
374     Cleanup *Obj = new(Buffer) T(a0);
375     (void) Obj;
376   }
377 
378   /// Push a lazily-created cleanup on the stack.
379   template <class T, class A0, class A1>
380   void pushCleanup(CleanupKind Kind, A0 a0, A1 a1) {
381     void *Buffer = pushCleanup(Kind, sizeof(T));
382     Cleanup *Obj = new(Buffer) T(a0, a1);
383     (void) Obj;
384   }
385 
386   /// Push a lazily-created cleanup on the stack.
387   template <class T, class A0, class A1, class A2>
388   void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2) {
389     void *Buffer = pushCleanup(Kind, sizeof(T));
390     Cleanup *Obj = new(Buffer) T(a0, a1, a2);
391     (void) Obj;
392   }
393 
394   /// Push a lazily-created cleanup on the stack.
395   template <class T, class A0, class A1, class A2, class A3>
396   void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) {
397     void *Buffer = pushCleanup(Kind, sizeof(T));
398     Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3);
399     (void) Obj;
400   }
401 
402   /// Push a lazily-created cleanup on the stack.
403   template <class T, class A0, class A1, class A2, class A3, class A4>
404   void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3, A4 a4) {
405     void *Buffer = pushCleanup(Kind, sizeof(T));
406     Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3, a4);
407     (void) Obj;
408   }
409 
410   // Feel free to add more variants of the following:
411 
412   /// Push a cleanup with non-constant storage requirements on the
413   /// stack.  The cleanup type must provide an additional static method:
414   ///   static size_t getExtraSize(size_t);
415   /// The argument to this method will be the value N, which will also
416   /// be passed as the first argument to the constructor.
417   ///
418   /// The data stored in the extra storage must obey the same
419   /// restrictions as normal cleanup member data.
420   ///
421   /// The pointer returned from this method is valid until the cleanup
422   /// stack is modified.
423   template <class T, class A0, class A1, class A2>
424   T *pushCleanupWithExtra(CleanupKind Kind, size_t N, A0 a0, A1 a1, A2 a2) {
425     void *Buffer = pushCleanup(Kind, sizeof(T) + T::getExtraSize(N));
426     return new (Buffer) T(N, a0, a1, a2);
427   }
428 
429   /// Pops a cleanup scope off the stack.  This is private to CGCleanup.cpp.
430   void popCleanup();
431 
432   /// Push a set of catch handlers on the stack.  The catch is
433   /// uninitialized and will need to have the given number of handlers
434   /// set on it.
435   class EHCatchScope *pushCatch(unsigned NumHandlers);
436 
437   /// Pops a catch scope off the stack.  This is private to CGException.cpp.
438   void popCatch();
439 
440   /// Push an exceptions filter on the stack.
441   class EHFilterScope *pushFilter(unsigned NumFilters);
442 
443   /// Pops an exceptions filter off the stack.
444   void popFilter();
445 
446   /// Push a terminate handler on the stack.
447   void pushTerminate();
448 
449   /// Pops a terminate handler off the stack.
450   void popTerminate();
451 
452   /// Determines whether the exception-scopes stack is empty.
453   bool empty() const { return StartOfData == EndOfBuffer; }
454 
455   bool requiresLandingPad() const {
456     return InnermostEHScope != stable_end();
457   }
458 
459   /// Determines whether there are any normal cleanups on the stack.
460   bool hasNormalCleanups() const {
461     return InnermostNormalCleanup != stable_end();
462   }
463 
464   /// Returns the innermost normal cleanup on the stack, or
465   /// stable_end() if there are no normal cleanups.
466   stable_iterator getInnermostNormalCleanup() const {
467     return InnermostNormalCleanup;
468   }
469   stable_iterator getInnermostActiveNormalCleanup() const;
470 
471   stable_iterator getInnermostEHScope() const {
472     return InnermostEHScope;
473   }
474 
475   stable_iterator getInnermostActiveEHScope() const;
476 
477   /// An unstable reference to a scope-stack depth.  Invalidated by
478   /// pushes but not pops.
479   class iterator;
480 
481   /// Returns an iterator pointing to the innermost EH scope.
482   iterator begin() const;
483 
484   /// Returns an iterator pointing to the outermost EH scope.
485   iterator end() const;
486 
487   /// Create a stable reference to the top of the EH stack.  The
488   /// returned reference is valid until that scope is popped off the
489   /// stack.
490   stable_iterator stable_begin() const {
491     return stable_iterator(EndOfBuffer - StartOfData);
492   }
493 
494   /// Create a stable reference to the bottom of the EH stack.
495   static stable_iterator stable_end() {
496     return stable_iterator(0);
497   }
498 
499   /// Translates an iterator into a stable_iterator.
500   stable_iterator stabilize(iterator it) const;
501 
502   /// Turn a stable reference to a scope depth into a unstable pointer
503   /// to the EH stack.
504   iterator find(stable_iterator save) const;
505 
506   /// Removes the cleanup pointed to by the given stable_iterator.
507   void removeCleanup(stable_iterator save);
508 
509   /// Add a branch fixup to the current cleanup scope.
510   BranchFixup &addBranchFixup() {
511     assert(hasNormalCleanups() && "adding fixup in scope without cleanups");
512     BranchFixups.push_back(BranchFixup());
513     return BranchFixups.back();
514   }
515 
516   unsigned getNumBranchFixups() const { return BranchFixups.size(); }
517   BranchFixup &getBranchFixup(unsigned I) {
518     assert(I < getNumBranchFixups());
519     return BranchFixups[I];
520   }
521 
522   /// Pops lazily-removed fixups from the end of the list.  This
523   /// should only be called by procedures which have just popped a
524   /// cleanup or resolved one or more fixups.
525   void popNullFixups();
526 
527   /// Clears the branch-fixups list.  This should only be called by
528   /// ResolveAllBranchFixups.
529   void clearFixups() { BranchFixups.clear(); }
530 };
531 
532 /// CodeGenFunction - This class organizes the per-function state that is used
533 /// while generating LLVM code.
534 class CodeGenFunction : public CodeGenTypeCache {
535   CodeGenFunction(const CodeGenFunction &) LLVM_DELETED_FUNCTION;
536   void operator=(const CodeGenFunction &) LLVM_DELETED_FUNCTION;
537 
538   friend class CGCXXABI;
539 public:
540   /// A jump destination is an abstract label, branching to which may
541   /// require a jump out through normal cleanups.
542   struct JumpDest {
543     JumpDest() : Block(0), ScopeDepth(), Index(0) {}
544     JumpDest(llvm::BasicBlock *Block,
545              EHScopeStack::stable_iterator Depth,
546              unsigned Index)
547       : Block(Block), ScopeDepth(Depth), Index(Index) {}
548 
549     bool isValid() const { return Block != 0; }
550     llvm::BasicBlock *getBlock() const { return Block; }
551     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
552     unsigned getDestIndex() const { return Index; }
553 
554   private:
555     llvm::BasicBlock *Block;
556     EHScopeStack::stable_iterator ScopeDepth;
557     unsigned Index;
558   };
559 
560   CodeGenModule &CGM;  // Per-module state.
561   const TargetInfo &Target;
562 
563   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
564   CGBuilderTy Builder;
565 
566   /// CurFuncDecl - Holds the Decl for the current function or ObjC method.
567   /// This excludes BlockDecls.
568   const Decl *CurFuncDecl;
569   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
570   const Decl *CurCodeDecl;
571   const CGFunctionInfo *CurFnInfo;
572   QualType FnRetTy;
573   llvm::Function *CurFn;
574 
575   /// CurGD - The GlobalDecl for the current function being compiled.
576   GlobalDecl CurGD;
577 
578   /// PrologueCleanupDepth - The cleanup depth enclosing all the
579   /// cleanups associated with the parameters.
580   EHScopeStack::stable_iterator PrologueCleanupDepth;
581 
582   /// ReturnBlock - Unified return block.
583   JumpDest ReturnBlock;
584 
585   /// ReturnValue - The temporary alloca to hold the return value. This is null
586   /// iff the function has no return value.
587   llvm::Value *ReturnValue;
588 
589   /// AllocaInsertPoint - This is an instruction in the entry block before which
590   /// we prefer to insert allocas.
591   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
592 
593   /// BoundsChecking - Emit run-time bounds checks. Higher values mean
594   /// potentially higher performance penalties.
595   unsigned char BoundsChecking;
596 
597   /// \brief Whether any type-checking sanitizers are enabled. If \c false,
598   /// calls to EmitTypeCheck can be skipped.
599   bool SanitizePerformTypeCheck;
600 
601   /// \brief Sanitizer options to use for this function.
602   const SanitizerOptions *SanOpts;
603 
604   /// In ARC, whether we should autorelease the return value.
605   bool AutoreleaseResult;
606 
607   const CodeGen::CGBlockInfo *BlockInfo;
608   llvm::Value *BlockPointer;
609 
610   llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
611   FieldDecl *LambdaThisCaptureField;
612 
613   /// \brief A mapping from NRVO variables to the flags used to indicate
614   /// when the NRVO has been applied to this variable.
615   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
616 
617   EHScopeStack EHStack;
618 
619   /// i32s containing the indexes of the cleanup destinations.
620   llvm::AllocaInst *NormalCleanupDest;
621 
622   unsigned NextCleanupDestIndex;
623 
624   /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
625   CGBlockInfo *FirstBlockInfo;
626 
627   /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
628   llvm::BasicBlock *EHResumeBlock;
629 
630   /// The exception slot.  All landing pads write the current exception pointer
631   /// into this alloca.
632   llvm::Value *ExceptionSlot;
633 
634   /// The selector slot.  Under the MandatoryCleanup model, all landing pads
635   /// write the current selector value into this alloca.
636   llvm::AllocaInst *EHSelectorSlot;
637 
638   /// Emits a landing pad for the current EH stack.
639   llvm::BasicBlock *EmitLandingPad();
640 
641   llvm::BasicBlock *getInvokeDestImpl();
642 
643   template <class T>
644   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
645     return DominatingValue<T>::save(*this, value);
646   }
647 
648 public:
649   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
650   /// rethrows.
651   SmallVector<llvm::Value*, 8> ObjCEHValueStack;
652 
653   /// A class controlling the emission of a finally block.
654   class FinallyInfo {
655     /// Where the catchall's edge through the cleanup should go.
656     JumpDest RethrowDest;
657 
658     /// A function to call to enter the catch.
659     llvm::Constant *BeginCatchFn;
660 
661     /// An i1 variable indicating whether or not the @finally is
662     /// running for an exception.
663     llvm::AllocaInst *ForEHVar;
664 
665     /// An i8* variable into which the exception pointer to rethrow
666     /// has been saved.
667     llvm::AllocaInst *SavedExnVar;
668 
669   public:
670     void enter(CodeGenFunction &CGF, const Stmt *Finally,
671                llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
672                llvm::Constant *rethrowFn);
673     void exit(CodeGenFunction &CGF);
674   };
675 
676   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
677   /// current full-expression.  Safe against the possibility that
678   /// we're currently inside a conditionally-evaluated expression.
679   template <class T, class A0>
680   void pushFullExprCleanup(CleanupKind kind, A0 a0) {
681     // If we're not in a conditional branch, or if none of the
682     // arguments requires saving, then use the unconditional cleanup.
683     if (!isInConditionalBranch())
684       return EHStack.pushCleanup<T>(kind, a0);
685 
686     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
687 
688     typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType;
689     EHStack.pushCleanup<CleanupType>(kind, a0_saved);
690     initFullExprCleanup();
691   }
692 
693   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
694   /// current full-expression.  Safe against the possibility that
695   /// we're currently inside a conditionally-evaluated expression.
696   template <class T, class A0, class A1>
697   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) {
698     // If we're not in a conditional branch, or if none of the
699     // arguments requires saving, then use the unconditional cleanup.
700     if (!isInConditionalBranch())
701       return EHStack.pushCleanup<T>(kind, a0, a1);
702 
703     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
704     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
705 
706     typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType;
707     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved);
708     initFullExprCleanup();
709   }
710 
711   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
712   /// current full-expression.  Safe against the possibility that
713   /// we're currently inside a conditionally-evaluated expression.
714   template <class T, class A0, class A1, class A2>
715   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2) {
716     // If we're not in a conditional branch, or if none of the
717     // arguments requires saving, then use the unconditional cleanup.
718     if (!isInConditionalBranch()) {
719       return EHStack.pushCleanup<T>(kind, a0, a1, a2);
720     }
721 
722     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
723     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
724     typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
725 
726     typedef EHScopeStack::ConditionalCleanup3<T, A0, A1, A2> CleanupType;
727     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, a2_saved);
728     initFullExprCleanup();
729   }
730 
731   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
732   /// current full-expression.  Safe against the possibility that
733   /// we're currently inside a conditionally-evaluated expression.
734   template <class T, class A0, class A1, class A2, class A3>
735   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2, A3 a3) {
736     // If we're not in a conditional branch, or if none of the
737     // arguments requires saving, then use the unconditional cleanup.
738     if (!isInConditionalBranch()) {
739       return EHStack.pushCleanup<T>(kind, a0, a1, a2, a3);
740     }
741 
742     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
743     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
744     typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
745     typename DominatingValue<A3>::saved_type a3_saved = saveValueInCond(a3);
746 
747     typedef EHScopeStack::ConditionalCleanup4<T, A0, A1, A2, A3> CleanupType;
748     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved,
749                                      a2_saved, a3_saved);
750     initFullExprCleanup();
751   }
752 
753   /// Set up the last cleaup that was pushed as a conditional
754   /// full-expression cleanup.
755   void initFullExprCleanup();
756 
757   /// PushDestructorCleanup - Push a cleanup to call the
758   /// complete-object destructor of an object of the given type at the
759   /// given address.  Does nothing if T is not a C++ class type with a
760   /// non-trivial destructor.
761   void PushDestructorCleanup(QualType T, llvm::Value *Addr);
762 
763   /// PushDestructorCleanup - Push a cleanup to call the
764   /// complete-object variant of the given destructor on the object at
765   /// the given address.
766   void PushDestructorCleanup(const CXXDestructorDecl *Dtor,
767                              llvm::Value *Addr);
768 
769   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
770   /// process all branch fixups.
771   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
772 
773   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
774   /// The block cannot be reactivated.  Pops it if it's the top of the
775   /// stack.
776   ///
777   /// \param DominatingIP - An instruction which is known to
778   ///   dominate the current IP (if set) and which lies along
779   ///   all paths of execution between the current IP and the
780   ///   the point at which the cleanup comes into scope.
781   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
782                               llvm::Instruction *DominatingIP);
783 
784   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
785   /// Cannot be used to resurrect a deactivated cleanup.
786   ///
787   /// \param DominatingIP - An instruction which is known to
788   ///   dominate the current IP (if set) and which lies along
789   ///   all paths of execution between the current IP and the
790   ///   the point at which the cleanup comes into scope.
791   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
792                             llvm::Instruction *DominatingIP);
793 
794   /// \brief Enters a new scope for capturing cleanups, all of which
795   /// will be executed once the scope is exited.
796   class RunCleanupsScope {
797     EHScopeStack::stable_iterator CleanupStackDepth;
798     bool OldDidCallStackSave;
799     bool PerformCleanup;
800 
801     RunCleanupsScope(const RunCleanupsScope &) LLVM_DELETED_FUNCTION;
802     void operator=(const RunCleanupsScope &) LLVM_DELETED_FUNCTION;
803 
804   protected:
805     CodeGenFunction& CGF;
806 
807   public:
808     /// \brief Enter a new cleanup scope.
809     explicit RunCleanupsScope(CodeGenFunction &CGF)
810       : PerformCleanup(true), CGF(CGF)
811     {
812       CleanupStackDepth = CGF.EHStack.stable_begin();
813       OldDidCallStackSave = CGF.DidCallStackSave;
814       CGF.DidCallStackSave = false;
815     }
816 
817     /// \brief Exit this cleanup scope, emitting any accumulated
818     /// cleanups.
819     ~RunCleanupsScope() {
820       if (PerformCleanup) {
821         CGF.DidCallStackSave = OldDidCallStackSave;
822         CGF.PopCleanupBlocks(CleanupStackDepth);
823       }
824     }
825 
826     /// \brief Determine whether this scope requires any cleanups.
827     bool requiresCleanups() const {
828       return CGF.EHStack.stable_begin() != CleanupStackDepth;
829     }
830 
831     /// \brief Force the emission of cleanups now, instead of waiting
832     /// until this object is destroyed.
833     void ForceCleanup() {
834       assert(PerformCleanup && "Already forced cleanup");
835       CGF.DidCallStackSave = OldDidCallStackSave;
836       CGF.PopCleanupBlocks(CleanupStackDepth);
837       PerformCleanup = false;
838     }
839   };
840 
841   class LexicalScope: protected RunCleanupsScope {
842     SourceRange Range;
843     bool PopDebugStack;
844 
845     LexicalScope(const LexicalScope &) LLVM_DELETED_FUNCTION;
846     void operator=(const LexicalScope &) LLVM_DELETED_FUNCTION;
847 
848   public:
849     /// \brief Enter a new cleanup scope.
850     explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
851       : RunCleanupsScope(CGF), Range(Range), PopDebugStack(true) {
852       if (CGDebugInfo *DI = CGF.getDebugInfo())
853         DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
854     }
855 
856     /// \brief Exit this cleanup scope, emitting any accumulated
857     /// cleanups.
858     ~LexicalScope() {
859       if (PopDebugStack) {
860         CGDebugInfo *DI = CGF.getDebugInfo();
861         if (DI) DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
862       }
863     }
864 
865     /// \brief Force the emission of cleanups now, instead of waiting
866     /// until this object is destroyed.
867     void ForceCleanup() {
868       RunCleanupsScope::ForceCleanup();
869       if (CGDebugInfo *DI = CGF.getDebugInfo()) {
870         DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
871         PopDebugStack = false;
872       }
873     }
874   };
875 
876 
877   /// PopCleanupBlocks - Takes the old cleanup stack size and emits
878   /// the cleanup blocks that have been added.
879   void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize);
880 
881   void ResolveBranchFixups(llvm::BasicBlock *Target);
882 
883   /// The given basic block lies in the current EH scope, but may be a
884   /// target of a potentially scope-crossing jump; get a stable handle
885   /// to which we can perform this jump later.
886   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
887     return JumpDest(Target,
888                     EHStack.getInnermostNormalCleanup(),
889                     NextCleanupDestIndex++);
890   }
891 
892   /// The given basic block lies in the current EH scope, but may be a
893   /// target of a potentially scope-crossing jump; get a stable handle
894   /// to which we can perform this jump later.
895   JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
896     return getJumpDestInCurrentScope(createBasicBlock(Name));
897   }
898 
899   /// EmitBranchThroughCleanup - Emit a branch from the current insert
900   /// block through the normal cleanup handling code (if any) and then
901   /// on to \arg Dest.
902   void EmitBranchThroughCleanup(JumpDest Dest);
903 
904   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
905   /// specified destination obviously has no cleanups to run.  'false' is always
906   /// a conservatively correct answer for this method.
907   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
908 
909   /// popCatchScope - Pops the catch scope at the top of the EHScope
910   /// stack, emitting any required code (other than the catch handlers
911   /// themselves).
912   void popCatchScope();
913 
914   llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
915   llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
916 
917   /// An object to manage conditionally-evaluated expressions.
918   class ConditionalEvaluation {
919     llvm::BasicBlock *StartBB;
920 
921   public:
922     ConditionalEvaluation(CodeGenFunction &CGF)
923       : StartBB(CGF.Builder.GetInsertBlock()) {}
924 
925     void begin(CodeGenFunction &CGF) {
926       assert(CGF.OutermostConditional != this);
927       if (!CGF.OutermostConditional)
928         CGF.OutermostConditional = this;
929     }
930 
931     void end(CodeGenFunction &CGF) {
932       assert(CGF.OutermostConditional != 0);
933       if (CGF.OutermostConditional == this)
934         CGF.OutermostConditional = 0;
935     }
936 
937     /// Returns a block which will be executed prior to each
938     /// evaluation of the conditional code.
939     llvm::BasicBlock *getStartingBlock() const {
940       return StartBB;
941     }
942   };
943 
944   /// isInConditionalBranch - Return true if we're currently emitting
945   /// one branch or the other of a conditional expression.
946   bool isInConditionalBranch() const { return OutermostConditional != 0; }
947 
948   void setBeforeOutermostConditional(llvm::Value *value, llvm::Value *addr) {
949     assert(isInConditionalBranch());
950     llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
951     new llvm::StoreInst(value, addr, &block->back());
952   }
953 
954   /// An RAII object to record that we're evaluating a statement
955   /// expression.
956   class StmtExprEvaluation {
957     CodeGenFunction &CGF;
958 
959     /// We have to save the outermost conditional: cleanups in a
960     /// statement expression aren't conditional just because the
961     /// StmtExpr is.
962     ConditionalEvaluation *SavedOutermostConditional;
963 
964   public:
965     StmtExprEvaluation(CodeGenFunction &CGF)
966       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
967       CGF.OutermostConditional = 0;
968     }
969 
970     ~StmtExprEvaluation() {
971       CGF.OutermostConditional = SavedOutermostConditional;
972       CGF.EnsureInsertPoint();
973     }
974   };
975 
976   /// An object which temporarily prevents a value from being
977   /// destroyed by aggressive peephole optimizations that assume that
978   /// all uses of a value have been realized in the IR.
979   class PeepholeProtection {
980     llvm::Instruction *Inst;
981     friend class CodeGenFunction;
982 
983   public:
984     PeepholeProtection() : Inst(0) {}
985   };
986 
987   /// A non-RAII class containing all the information about a bound
988   /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
989   /// this which makes individual mappings very simple; using this
990   /// class directly is useful when you have a variable number of
991   /// opaque values or don't want the RAII functionality for some
992   /// reason.
993   class OpaqueValueMappingData {
994     const OpaqueValueExpr *OpaqueValue;
995     bool BoundLValue;
996     CodeGenFunction::PeepholeProtection Protection;
997 
998     OpaqueValueMappingData(const OpaqueValueExpr *ov,
999                            bool boundLValue)
1000       : OpaqueValue(ov), BoundLValue(boundLValue) {}
1001   public:
1002     OpaqueValueMappingData() : OpaqueValue(0) {}
1003 
1004     static bool shouldBindAsLValue(const Expr *expr) {
1005       // gl-values should be bound as l-values for obvious reasons.
1006       // Records should be bound as l-values because IR generation
1007       // always keeps them in memory.  Expressions of function type
1008       // act exactly like l-values but are formally required to be
1009       // r-values in C.
1010       return expr->isGLValue() ||
1011              expr->getType()->isRecordType() ||
1012              expr->getType()->isFunctionType();
1013     }
1014 
1015     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1016                                        const OpaqueValueExpr *ov,
1017                                        const Expr *e) {
1018       if (shouldBindAsLValue(ov))
1019         return bind(CGF, ov, CGF.EmitLValue(e));
1020       return bind(CGF, ov, CGF.EmitAnyExpr(e));
1021     }
1022 
1023     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1024                                        const OpaqueValueExpr *ov,
1025                                        const LValue &lv) {
1026       assert(shouldBindAsLValue(ov));
1027       CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
1028       return OpaqueValueMappingData(ov, true);
1029     }
1030 
1031     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1032                                        const OpaqueValueExpr *ov,
1033                                        const RValue &rv) {
1034       assert(!shouldBindAsLValue(ov));
1035       CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
1036 
1037       OpaqueValueMappingData data(ov, false);
1038 
1039       // Work around an extremely aggressive peephole optimization in
1040       // EmitScalarConversion which assumes that all other uses of a
1041       // value are extant.
1042       data.Protection = CGF.protectFromPeepholes(rv);
1043 
1044       return data;
1045     }
1046 
1047     bool isValid() const { return OpaqueValue != 0; }
1048     void clear() { OpaqueValue = 0; }
1049 
1050     void unbind(CodeGenFunction &CGF) {
1051       assert(OpaqueValue && "no data to unbind!");
1052 
1053       if (BoundLValue) {
1054         CGF.OpaqueLValues.erase(OpaqueValue);
1055       } else {
1056         CGF.OpaqueRValues.erase(OpaqueValue);
1057         CGF.unprotectFromPeepholes(Protection);
1058       }
1059     }
1060   };
1061 
1062   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
1063   class OpaqueValueMapping {
1064     CodeGenFunction &CGF;
1065     OpaqueValueMappingData Data;
1066 
1067   public:
1068     static bool shouldBindAsLValue(const Expr *expr) {
1069       return OpaqueValueMappingData::shouldBindAsLValue(expr);
1070     }
1071 
1072     /// Build the opaque value mapping for the given conditional
1073     /// operator if it's the GNU ?: extension.  This is a common
1074     /// enough pattern that the convenience operator is really
1075     /// helpful.
1076     ///
1077     OpaqueValueMapping(CodeGenFunction &CGF,
1078                        const AbstractConditionalOperator *op) : CGF(CGF) {
1079       if (isa<ConditionalOperator>(op))
1080         // Leave Data empty.
1081         return;
1082 
1083       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
1084       Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
1085                                           e->getCommon());
1086     }
1087 
1088     OpaqueValueMapping(CodeGenFunction &CGF,
1089                        const OpaqueValueExpr *opaqueValue,
1090                        LValue lvalue)
1091       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
1092     }
1093 
1094     OpaqueValueMapping(CodeGenFunction &CGF,
1095                        const OpaqueValueExpr *opaqueValue,
1096                        RValue rvalue)
1097       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
1098     }
1099 
1100     void pop() {
1101       Data.unbind(CGF);
1102       Data.clear();
1103     }
1104 
1105     ~OpaqueValueMapping() {
1106       if (Data.isValid()) Data.unbind(CGF);
1107     }
1108   };
1109 
1110   /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field
1111   /// number that holds the value.
1112   unsigned getByRefValueLLVMField(const ValueDecl *VD) const;
1113 
1114   /// BuildBlockByrefAddress - Computes address location of the
1115   /// variable which is declared as __block.
1116   llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr,
1117                                       const VarDecl *V);
1118 private:
1119   CGDebugInfo *DebugInfo;
1120   bool DisableDebugInfo;
1121 
1122   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
1123   /// calling llvm.stacksave for multiple VLAs in the same scope.
1124   bool DidCallStackSave;
1125 
1126   /// IndirectBranch - The first time an indirect goto is seen we create a block
1127   /// with an indirect branch.  Every time we see the address of a label taken,
1128   /// we add the label to the indirect goto.  Every subsequent indirect goto is
1129   /// codegen'd as a jump to the IndirectBranch's basic block.
1130   llvm::IndirectBrInst *IndirectBranch;
1131 
1132   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1133   /// decls.
1134   typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy;
1135   DeclMapTy LocalDeclMap;
1136 
1137   /// LabelMap - This keeps track of the LLVM basic block for each C label.
1138   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1139 
1140   // BreakContinueStack - This keeps track of where break and continue
1141   // statements should jump to.
1142   struct BreakContinue {
1143     BreakContinue(JumpDest Break, JumpDest Continue)
1144       : BreakBlock(Break), ContinueBlock(Continue) {}
1145 
1146     JumpDest BreakBlock;
1147     JumpDest ContinueBlock;
1148   };
1149   SmallVector<BreakContinue, 8> BreakContinueStack;
1150 
1151   /// SwitchInsn - This is nearest current switch instruction. It is null if
1152   /// current context is not in a switch.
1153   llvm::SwitchInst *SwitchInsn;
1154 
1155   /// CaseRangeBlock - This block holds if condition check for last case
1156   /// statement range in current switch instruction.
1157   llvm::BasicBlock *CaseRangeBlock;
1158 
1159   /// OpaqueLValues - Keeps track of the current set of opaque value
1160   /// expressions.
1161   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1162   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1163 
1164   // VLASizeMap - This keeps track of the associated size for each VLA type.
1165   // We track this by the size expression rather than the type itself because
1166   // in certain situations, like a const qualifier applied to an VLA typedef,
1167   // multiple VLA types can share the same size expression.
1168   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1169   // enter/leave scopes.
1170   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1171 
1172   /// A block containing a single 'unreachable' instruction.  Created
1173   /// lazily by getUnreachableBlock().
1174   llvm::BasicBlock *UnreachableBlock;
1175 
1176   /// CXXThisDecl - When generating code for a C++ member function,
1177   /// this will hold the implicit 'this' declaration.
1178   ImplicitParamDecl *CXXABIThisDecl;
1179   llvm::Value *CXXABIThisValue;
1180   llvm::Value *CXXThisValue;
1181 
1182   /// CXXVTTDecl - When generating code for a base object constructor or
1183   /// base object destructor with virtual bases, this will hold the implicit
1184   /// VTT parameter.
1185   ImplicitParamDecl *CXXVTTDecl;
1186   llvm::Value *CXXVTTValue;
1187 
1188   /// OutermostConditional - Points to the outermost active
1189   /// conditional control.  This is used so that we know if a
1190   /// temporary should be destroyed conditionally.
1191   ConditionalEvaluation *OutermostConditional;
1192 
1193 
1194   /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM
1195   /// type as well as the field number that contains the actual data.
1196   llvm::DenseMap<const ValueDecl *, std::pair<llvm::Type *,
1197                                               unsigned> > ByRefValueInfo;
1198 
1199   llvm::BasicBlock *TerminateLandingPad;
1200   llvm::BasicBlock *TerminateHandler;
1201   llvm::BasicBlock *TrapBB;
1202 
1203   /// Add a kernel metadata node to the named metadata node 'opencl.kernels'.
1204   /// In the kernel metadata node, reference the kernel function and metadata
1205   /// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2):
1206   /// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string
1207   ///   "work_group_size_hint", and three 32-bit integers X, Y and Z.
1208   /// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string
1209   ///   "reqd_work_group_size", and three 32-bit integers X, Y and Z.
1210   void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
1211                                 llvm::Function *Fn);
1212 
1213 public:
1214   CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1215   ~CodeGenFunction();
1216 
1217   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1218   ASTContext &getContext() const { return CGM.getContext(); }
1219   /// Returns true if DebugInfo is actually initialized.
1220   bool maybeInitializeDebugInfo() {
1221     if (CGM.getModuleDebugInfo()) {
1222       DebugInfo = CGM.getModuleDebugInfo();
1223       return true;
1224     }
1225     return false;
1226   }
1227   CGDebugInfo *getDebugInfo() {
1228     if (DisableDebugInfo)
1229       return NULL;
1230     return DebugInfo;
1231   }
1232   void disableDebugInfo() { DisableDebugInfo = true; }
1233   void enableDebugInfo() { DisableDebugInfo = false; }
1234 
1235   bool shouldUseFusedARCCalls() {
1236     return CGM.getCodeGenOpts().OptimizationLevel == 0;
1237   }
1238 
1239   const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1240 
1241   /// Returns a pointer to the function's exception object and selector slot,
1242   /// which is assigned in every landing pad.
1243   llvm::Value *getExceptionSlot();
1244   llvm::Value *getEHSelectorSlot();
1245 
1246   /// Returns the contents of the function's exception object and selector
1247   /// slots.
1248   llvm::Value *getExceptionFromSlot();
1249   llvm::Value *getSelectorFromSlot();
1250 
1251   llvm::Value *getNormalCleanupDestSlot();
1252 
1253   llvm::BasicBlock *getUnreachableBlock() {
1254     if (!UnreachableBlock) {
1255       UnreachableBlock = createBasicBlock("unreachable");
1256       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1257     }
1258     return UnreachableBlock;
1259   }
1260 
1261   llvm::BasicBlock *getInvokeDest() {
1262     if (!EHStack.requiresLandingPad()) return 0;
1263     return getInvokeDestImpl();
1264   }
1265 
1266   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1267 
1268   //===--------------------------------------------------------------------===//
1269   //                                  Cleanups
1270   //===--------------------------------------------------------------------===//
1271 
1272   typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty);
1273 
1274   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1275                                         llvm::Value *arrayEndPointer,
1276                                         QualType elementType,
1277                                         Destroyer *destroyer);
1278   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1279                                       llvm::Value *arrayEnd,
1280                                       QualType elementType,
1281                                       Destroyer *destroyer);
1282 
1283   void pushDestroy(QualType::DestructionKind dtorKind,
1284                    llvm::Value *addr, QualType type);
1285   void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type,
1286                    Destroyer *destroyer, bool useEHCleanupForArray);
1287   void emitDestroy(llvm::Value *addr, QualType type, Destroyer *destroyer,
1288                    bool useEHCleanupForArray);
1289   llvm::Function *generateDestroyHelper(llvm::Constant *addr,
1290                                         QualType type,
1291                                         Destroyer *destroyer,
1292                                         bool useEHCleanupForArray);
1293   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1294                         QualType type, Destroyer *destroyer,
1295                         bool checkZeroLength, bool useEHCleanup);
1296 
1297   Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1298 
1299   /// Determines whether an EH cleanup is required to destroy a type
1300   /// with the given destruction kind.
1301   bool needsEHCleanup(QualType::DestructionKind kind) {
1302     switch (kind) {
1303     case QualType::DK_none:
1304       return false;
1305     case QualType::DK_cxx_destructor:
1306     case QualType::DK_objc_weak_lifetime:
1307       return getLangOpts().Exceptions;
1308     case QualType::DK_objc_strong_lifetime:
1309       return getLangOpts().Exceptions &&
1310              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1311     }
1312     llvm_unreachable("bad destruction kind");
1313   }
1314 
1315   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
1316     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1317   }
1318 
1319   //===--------------------------------------------------------------------===//
1320   //                                  Objective-C
1321   //===--------------------------------------------------------------------===//
1322 
1323   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1324 
1325   void StartObjCMethod(const ObjCMethodDecl *MD,
1326                        const ObjCContainerDecl *CD,
1327                        SourceLocation StartLoc);
1328 
1329   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1330   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1331                           const ObjCPropertyImplDecl *PID);
1332   void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1333                               const ObjCPropertyImplDecl *propImpl,
1334                               const ObjCMethodDecl *GetterMothodDecl,
1335                               llvm::Constant *AtomicHelperFn);
1336 
1337   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1338                                   ObjCMethodDecl *MD, bool ctor);
1339 
1340   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1341   /// for the given property.
1342   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1343                           const ObjCPropertyImplDecl *PID);
1344   void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1345                               const ObjCPropertyImplDecl *propImpl,
1346                               llvm::Constant *AtomicHelperFn);
1347   bool IndirectObjCSetterArg(const CGFunctionInfo &FI);
1348   bool IvarTypeWithAggrGCObjects(QualType Ty);
1349 
1350   //===--------------------------------------------------------------------===//
1351   //                                  Block Bits
1352   //===--------------------------------------------------------------------===//
1353 
1354   llvm::Value *EmitBlockLiteral(const BlockExpr *);
1355   llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
1356   static void destroyBlockInfos(CGBlockInfo *info);
1357   llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *,
1358                                            const CGBlockInfo &Info,
1359                                            llvm::StructType *,
1360                                            llvm::Constant *BlockVarLayout);
1361 
1362   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1363                                         const CGBlockInfo &Info,
1364                                         const Decl *OuterFuncDecl,
1365                                         const DeclMapTy &ldm,
1366                                         bool IsLambdaConversionToBlock);
1367 
1368   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1369   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1370   llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
1371                                              const ObjCPropertyImplDecl *PID);
1372   llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
1373                                              const ObjCPropertyImplDecl *PID);
1374   llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
1375 
1376   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
1377 
1378   class AutoVarEmission;
1379 
1380   void emitByrefStructureInit(const AutoVarEmission &emission);
1381   void enterByrefCleanup(const AutoVarEmission &emission);
1382 
1383   llvm::Value *LoadBlockStruct() {
1384     assert(BlockPointer && "no block pointer set!");
1385     return BlockPointer;
1386   }
1387 
1388   void AllocateBlockCXXThisPointer(const CXXThisExpr *E);
1389   void AllocateBlockDecl(const DeclRefExpr *E);
1390   llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
1391   llvm::Type *BuildByRefType(const VarDecl *var);
1392 
1393   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1394                     const CGFunctionInfo &FnInfo);
1395   void StartFunction(GlobalDecl GD, QualType RetTy,
1396                      llvm::Function *Fn,
1397                      const CGFunctionInfo &FnInfo,
1398                      const FunctionArgList &Args,
1399                      SourceLocation StartLoc);
1400 
1401   void EmitConstructorBody(FunctionArgList &Args);
1402   void EmitDestructorBody(FunctionArgList &Args);
1403   void EmitFunctionBody(FunctionArgList &Args);
1404 
1405   void EmitForwardingCallToLambda(const CXXRecordDecl *Lambda,
1406                                   CallArgList &CallArgs);
1407   void EmitLambdaToBlockPointerBody(FunctionArgList &Args);
1408   void EmitLambdaBlockInvokeBody();
1409   void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
1410   void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD);
1411 
1412   /// EmitReturnBlock - Emit the unified return block, trying to avoid its
1413   /// emission when possible.
1414   bool EmitReturnBlock();
1415 
1416   /// FinishFunction - Complete IR generation of the current function. It is
1417   /// legal to call this function even if there is no current insertion point.
1418   void FinishFunction(SourceLocation EndLoc=SourceLocation());
1419 
1420   /// GenerateThunk - Generate a thunk for the given method.
1421   void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1422                      GlobalDecl GD, const ThunkInfo &Thunk);
1423 
1424   void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1425                             GlobalDecl GD, const ThunkInfo &Thunk);
1426 
1427   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1428                         FunctionArgList &Args);
1429 
1430   void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init,
1431                                ArrayRef<VarDecl *> ArrayIndexes);
1432 
1433   /// InitializeVTablePointer - Initialize the vtable pointer of the given
1434   /// subobject.
1435   ///
1436   void InitializeVTablePointer(BaseSubobject Base,
1437                                const CXXRecordDecl *NearestVBase,
1438                                CharUnits OffsetFromNearestVBase,
1439                                llvm::Constant *VTable,
1440                                const CXXRecordDecl *VTableClass);
1441 
1442   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1443   void InitializeVTablePointers(BaseSubobject Base,
1444                                 const CXXRecordDecl *NearestVBase,
1445                                 CharUnits OffsetFromNearestVBase,
1446                                 bool BaseIsNonVirtualPrimaryBase,
1447                                 llvm::Constant *VTable,
1448                                 const CXXRecordDecl *VTableClass,
1449                                 VisitedVirtualBasesSetTy& VBases);
1450 
1451   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1452 
1453   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1454   /// to by This.
1455   llvm::Value *GetVTablePtr(llvm::Value *This, llvm::Type *Ty);
1456 
1457   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1458   /// given phase of destruction for a destructor.  The end result
1459   /// should call destructors on members and base classes in reverse
1460   /// order of their construction.
1461   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1462 
1463   /// ShouldInstrumentFunction - Return true if the current function should be
1464   /// instrumented with __cyg_profile_func_* calls
1465   bool ShouldInstrumentFunction();
1466 
1467   /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
1468   /// instrumentation function with the current function and the call site, if
1469   /// function instrumentation is enabled.
1470   void EmitFunctionInstrumentation(const char *Fn);
1471 
1472   /// EmitMCountInstrumentation - Emit call to .mcount.
1473   void EmitMCountInstrumentation();
1474 
1475   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1476   /// arguments for the given function. This is also responsible for naming the
1477   /// LLVM function arguments.
1478   void EmitFunctionProlog(const CGFunctionInfo &FI,
1479                           llvm::Function *Fn,
1480                           const FunctionArgList &Args);
1481 
1482   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1483   /// given temporary.
1484   void EmitFunctionEpilog(const CGFunctionInfo &FI);
1485 
1486   /// EmitStartEHSpec - Emit the start of the exception spec.
1487   void EmitStartEHSpec(const Decl *D);
1488 
1489   /// EmitEndEHSpec - Emit the end of the exception spec.
1490   void EmitEndEHSpec(const Decl *D);
1491 
1492   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
1493   llvm::BasicBlock *getTerminateLandingPad();
1494 
1495   /// getTerminateHandler - Return a handler (not a landing pad, just
1496   /// a catch handler) that just calls terminate.  This is used when
1497   /// a terminate scope encloses a try.
1498   llvm::BasicBlock *getTerminateHandler();
1499 
1500   llvm::Type *ConvertTypeForMem(QualType T);
1501   llvm::Type *ConvertType(QualType T);
1502   llvm::Type *ConvertType(const TypeDecl *T) {
1503     return ConvertType(getContext().getTypeDeclType(T));
1504   }
1505 
1506   /// LoadObjCSelf - Load the value of self. This function is only valid while
1507   /// generating code for an Objective-C method.
1508   llvm::Value *LoadObjCSelf();
1509 
1510   /// TypeOfSelfObject - Return type of object that this self represents.
1511   QualType TypeOfSelfObject();
1512 
1513   /// hasAggregateLLVMType - Return true if the specified AST type will map into
1514   /// an aggregate LLVM type or is void.
1515   static bool hasAggregateLLVMType(QualType T);
1516 
1517   /// createBasicBlock - Create an LLVM basic block.
1518   llvm::BasicBlock *createBasicBlock(const Twine &name = "",
1519                                      llvm::Function *parent = 0,
1520                                      llvm::BasicBlock *before = 0) {
1521 #ifdef NDEBUG
1522     return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
1523 #else
1524     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
1525 #endif
1526   }
1527 
1528   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
1529   /// label maps to.
1530   JumpDest getJumpDestForLabel(const LabelDecl *S);
1531 
1532   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
1533   /// another basic block, simplify it. This assumes that no other code could
1534   /// potentially reference the basic block.
1535   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
1536 
1537   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
1538   /// adding a fall-through branch from the current insert block if
1539   /// necessary. It is legal to call this function even if there is no current
1540   /// insertion point.
1541   ///
1542   /// IsFinished - If true, indicates that the caller has finished emitting
1543   /// branches to the given block and does not expect to emit code into it. This
1544   /// means the block can be ignored if it is unreachable.
1545   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
1546 
1547   /// EmitBlockAfterUses - Emit the given block somewhere hopefully
1548   /// near its uses, and leave the insertion point in it.
1549   void EmitBlockAfterUses(llvm::BasicBlock *BB);
1550 
1551   /// EmitBranch - Emit a branch to the specified basic block from the current
1552   /// insert block, taking care to avoid creation of branches from dummy
1553   /// blocks. It is legal to call this function even if there is no current
1554   /// insertion point.
1555   ///
1556   /// This function clears the current insertion point. The caller should follow
1557   /// calls to this function with calls to Emit*Block prior to generation new
1558   /// code.
1559   void EmitBranch(llvm::BasicBlock *Block);
1560 
1561   /// HaveInsertPoint - True if an insertion point is defined. If not, this
1562   /// indicates that the current code being emitted is unreachable.
1563   bool HaveInsertPoint() const {
1564     return Builder.GetInsertBlock() != 0;
1565   }
1566 
1567   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
1568   /// emitted IR has a place to go. Note that by definition, if this function
1569   /// creates a block then that block is unreachable; callers may do better to
1570   /// detect when no insertion point is defined and simply skip IR generation.
1571   void EnsureInsertPoint() {
1572     if (!HaveInsertPoint())
1573       EmitBlock(createBasicBlock());
1574   }
1575 
1576   /// ErrorUnsupported - Print out an error that codegen doesn't support the
1577   /// specified stmt yet.
1578   void ErrorUnsupported(const Stmt *S, const char *Type,
1579                         bool OmitOnError=false);
1580 
1581   //===--------------------------------------------------------------------===//
1582   //                                  Helpers
1583   //===--------------------------------------------------------------------===//
1584 
1585   LValue MakeAddrLValue(llvm::Value *V, QualType T,
1586                         CharUnits Alignment = CharUnits()) {
1587     return LValue::MakeAddr(V, T, Alignment, getContext(),
1588                             CGM.getTBAAInfo(T));
1589   }
1590 
1591   LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
1592     CharUnits Alignment;
1593     if (!T->isIncompleteType())
1594       Alignment = getContext().getTypeAlignInChars(T);
1595     return LValue::MakeAddr(V, T, Alignment, getContext(),
1596                             CGM.getTBAAInfo(T));
1597   }
1598 
1599   /// CreateTempAlloca - This creates a alloca and inserts it into the entry
1600   /// block. The caller is responsible for setting an appropriate alignment on
1601   /// the alloca.
1602   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty,
1603                                      const Twine &Name = "tmp");
1604 
1605   /// InitTempAlloca - Provide an initial value for the given alloca.
1606   void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value);
1607 
1608   /// CreateIRTemp - Create a temporary IR object of the given type, with
1609   /// appropriate alignment. This routine should only be used when an temporary
1610   /// value needs to be stored into an alloca (for example, to avoid explicit
1611   /// PHI construction), but the type is the IR type, not the type appropriate
1612   /// for storing in memory.
1613   llvm::AllocaInst *CreateIRTemp(QualType T, const Twine &Name = "tmp");
1614 
1615   /// CreateMemTemp - Create a temporary memory object of the given type, with
1616   /// appropriate alignment.
1617   llvm::AllocaInst *CreateMemTemp(QualType T, const Twine &Name = "tmp");
1618 
1619   /// CreateAggTemp - Create a temporary memory object for the given
1620   /// aggregate type.
1621   AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
1622     CharUnits Alignment = getContext().getTypeAlignInChars(T);
1623     return AggValueSlot::forAddr(CreateMemTemp(T, Name), Alignment,
1624                                  T.getQualifiers(),
1625                                  AggValueSlot::IsNotDestructed,
1626                                  AggValueSlot::DoesNotNeedGCBarriers,
1627                                  AggValueSlot::IsNotAliased);
1628   }
1629 
1630   /// Emit a cast to void* in the appropriate address space.
1631   llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
1632 
1633   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
1634   /// expression and compare the result against zero, returning an Int1Ty value.
1635   llvm::Value *EvaluateExprAsBool(const Expr *E);
1636 
1637   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
1638   void EmitIgnoredExpr(const Expr *E);
1639 
1640   /// EmitAnyExpr - Emit code to compute the specified expression which can have
1641   /// any type.  The result is returned as an RValue struct.  If this is an
1642   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
1643   /// the result should be returned.
1644   ///
1645   /// \param ignoreResult True if the resulting value isn't used.
1646   RValue EmitAnyExpr(const Expr *E,
1647                      AggValueSlot aggSlot = AggValueSlot::ignored(),
1648                      bool ignoreResult = false);
1649 
1650   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
1651   // or the value of the expression, depending on how va_list is defined.
1652   llvm::Value *EmitVAListRef(const Expr *E);
1653 
1654   /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
1655   /// always be accessible even if no aggregate location is provided.
1656   RValue EmitAnyExprToTemp(const Expr *E);
1657 
1658   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
1659   /// arbitrary expression into the given memory location.
1660   void EmitAnyExprToMem(const Expr *E, llvm::Value *Location,
1661                         Qualifiers Quals, bool IsInitializer);
1662 
1663   /// EmitExprAsInit - Emits the code necessary to initialize a
1664   /// location in memory with the given initializer.
1665   void EmitExprAsInit(const Expr *init, const ValueDecl *D,
1666                       LValue lvalue, bool capturedByInit);
1667 
1668   /// hasVolatileMember - returns true if aggregate type has a volatile
1669   /// member.
1670   bool hasVolatileMember(QualType T) {
1671     if (const RecordType *RT = T->getAs<RecordType>()) {
1672       const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
1673       return RD->hasVolatileMember();
1674     }
1675     return false;
1676   }
1677   /// EmitAggregateCopy - Emit an aggrate assignment.
1678   ///
1679   /// The difference to EmitAggregateCopy is that tail padding is not copied.
1680   /// This is required for correctness when assigning non-POD structures in C++.
1681   void EmitAggregateAssign(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1682                            QualType EltTy) {
1683     bool IsVolatile = hasVolatileMember(EltTy);
1684     EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, CharUnits::Zero(),
1685                       true);
1686   }
1687 
1688   /// EmitAggregateCopy - Emit an aggrate copy.
1689   ///
1690   /// \param isVolatile - True iff either the source or the destination is
1691   /// volatile.
1692   /// \param isAssignment - If false, allow padding to be copied.  This often
1693   /// yields more efficient.
1694   void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1695                          QualType EltTy, bool isVolatile=false,
1696                          CharUnits Alignment = CharUnits::Zero(),
1697                          bool isAssignment = false);
1698 
1699   /// StartBlock - Start new block named N. If insert block is a dummy block
1700   /// then reuse it.
1701   void StartBlock(const char *N);
1702 
1703   /// GetAddrOfLocalVar - Return the address of a local variable.
1704   llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) {
1705     llvm::Value *Res = LocalDeclMap[VD];
1706     assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!");
1707     return Res;
1708   }
1709 
1710   /// getOpaqueLValueMapping - Given an opaque value expression (which
1711   /// must be mapped to an l-value), return its mapping.
1712   const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
1713     assert(OpaqueValueMapping::shouldBindAsLValue(e));
1714 
1715     llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
1716       it = OpaqueLValues.find(e);
1717     assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
1718     return it->second;
1719   }
1720 
1721   /// getOpaqueRValueMapping - Given an opaque value expression (which
1722   /// must be mapped to an r-value), return its mapping.
1723   const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
1724     assert(!OpaqueValueMapping::shouldBindAsLValue(e));
1725 
1726     llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
1727       it = OpaqueRValues.find(e);
1728     assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
1729     return it->second;
1730   }
1731 
1732   /// getAccessedFieldNo - Given an encoded value and a result number, return
1733   /// the input field number being accessed.
1734   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
1735 
1736   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
1737   llvm::BasicBlock *GetIndirectGotoBlock();
1738 
1739   /// EmitNullInitialization - Generate code to set a value of the given type to
1740   /// null, If the type contains data member pointers, they will be initialized
1741   /// to -1 in accordance with the Itanium C++ ABI.
1742   void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty);
1743 
1744   // EmitVAArg - Generate code to get an argument from the passed in pointer
1745   // and update it accordingly. The return value is a pointer to the argument.
1746   // FIXME: We should be able to get rid of this method and use the va_arg
1747   // instruction in LLVM instead once it works well enough.
1748   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty);
1749 
1750   /// emitArrayLength - Compute the length of an array, even if it's a
1751   /// VLA, and drill down to the base element type.
1752   llvm::Value *emitArrayLength(const ArrayType *arrayType,
1753                                QualType &baseType,
1754                                llvm::Value *&addr);
1755 
1756   /// EmitVLASize - Capture all the sizes for the VLA expressions in
1757   /// the given variably-modified type and store them in the VLASizeMap.
1758   ///
1759   /// This function can be called with a null (unreachable) insert point.
1760   void EmitVariablyModifiedType(QualType Ty);
1761 
1762   /// getVLASize - Returns an LLVM value that corresponds to the size,
1763   /// in non-variably-sized elements, of a variable length array type,
1764   /// plus that largest non-variably-sized element type.  Assumes that
1765   /// the type has already been emitted with EmitVariablyModifiedType.
1766   std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla);
1767   std::pair<llvm::Value*,QualType> getVLASize(QualType vla);
1768 
1769   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
1770   /// generating code for an C++ member function.
1771   llvm::Value *LoadCXXThis() {
1772     assert(CXXThisValue && "no 'this' value for this function");
1773     return CXXThisValue;
1774   }
1775 
1776   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
1777   /// virtual bases.
1778   llvm::Value *LoadCXXVTT() {
1779     assert(CXXVTTValue && "no VTT value for this function");
1780     return CXXVTTValue;
1781   }
1782 
1783   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
1784   /// complete class to the given direct base.
1785   llvm::Value *
1786   GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value,
1787                                         const CXXRecordDecl *Derived,
1788                                         const CXXRecordDecl *Base,
1789                                         bool BaseIsVirtual);
1790 
1791   /// GetAddressOfBaseClass - This function will add the necessary delta to the
1792   /// load of 'this' and returns address of the base class.
1793   llvm::Value *GetAddressOfBaseClass(llvm::Value *Value,
1794                                      const CXXRecordDecl *Derived,
1795                                      CastExpr::path_const_iterator PathBegin,
1796                                      CastExpr::path_const_iterator PathEnd,
1797                                      bool NullCheckValue);
1798 
1799   llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value,
1800                                         const CXXRecordDecl *Derived,
1801                                         CastExpr::path_const_iterator PathBegin,
1802                                         CastExpr::path_const_iterator PathEnd,
1803                                         bool NullCheckValue);
1804 
1805   llvm::Value *GetVirtualBaseClassOffset(llvm::Value *This,
1806                                          const CXXRecordDecl *ClassDecl,
1807                                          const CXXRecordDecl *BaseClassDecl);
1808 
1809   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
1810                                       CXXCtorType CtorType,
1811                                       const FunctionArgList &Args);
1812   // It's important not to confuse this and the previous function. Delegating
1813   // constructors are the C++0x feature. The constructor delegate optimization
1814   // is used to reduce duplication in the base and complete consturctors where
1815   // they are substantially the same.
1816   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
1817                                         const FunctionArgList &Args);
1818   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
1819                               bool ForVirtualBase, llvm::Value *This,
1820                               CallExpr::const_arg_iterator ArgBeg,
1821                               CallExpr::const_arg_iterator ArgEnd);
1822 
1823   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
1824                               llvm::Value *This, llvm::Value *Src,
1825                               CallExpr::const_arg_iterator ArgBeg,
1826                               CallExpr::const_arg_iterator ArgEnd);
1827 
1828   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1829                                   const ConstantArrayType *ArrayTy,
1830                                   llvm::Value *ArrayPtr,
1831                                   CallExpr::const_arg_iterator ArgBeg,
1832                                   CallExpr::const_arg_iterator ArgEnd,
1833                                   bool ZeroInitialization = false);
1834 
1835   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1836                                   llvm::Value *NumElements,
1837                                   llvm::Value *ArrayPtr,
1838                                   CallExpr::const_arg_iterator ArgBeg,
1839                                   CallExpr::const_arg_iterator ArgEnd,
1840                                   bool ZeroInitialization = false);
1841 
1842   static Destroyer destroyCXXObject;
1843 
1844   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
1845                              bool ForVirtualBase, llvm::Value *This);
1846 
1847   void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
1848                                llvm::Value *NewPtr, llvm::Value *NumElements);
1849 
1850   void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
1851                         llvm::Value *Ptr);
1852 
1853   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
1854   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
1855 
1856   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
1857                       QualType DeleteTy);
1858 
1859   llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E);
1860   llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE);
1861   llvm::Value* EmitCXXUuidofExpr(const CXXUuidofExpr *E);
1862 
1863   void MaybeEmitStdInitializerListCleanup(llvm::Value *loc, const Expr *init);
1864   void EmitStdInitializerListCleanup(llvm::Value *loc,
1865                                      const InitListExpr *init);
1866 
1867   /// \brief Situations in which we might emit a check for the suitability of a
1868   ///        pointer or glvalue.
1869   enum TypeCheckKind {
1870     /// Checking the operand of a load. Must be suitably sized and aligned.
1871     TCK_Load,
1872     /// Checking the destination of a store. Must be suitably sized and aligned.
1873     TCK_Store,
1874     /// Checking the bound value in a reference binding. Must be suitably sized
1875     /// and aligned, but is not required to refer to an object (until the
1876     /// reference is used), per core issue 453.
1877     TCK_ReferenceBinding,
1878     /// Checking the object expression in a non-static data member access. Must
1879     /// be an object within its lifetime.
1880     TCK_MemberAccess,
1881     /// Checking the 'this' pointer for a call to a non-static member function.
1882     /// Must be an object within its lifetime.
1883     TCK_MemberCall,
1884     /// Checking the 'this' pointer for a constructor call.
1885     TCK_ConstructorCall
1886   };
1887 
1888   /// \brief Emit a check that \p V is the address of storage of the
1889   /// appropriate size and alignment for an object of type \p Type.
1890   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
1891                      QualType Type, CharUnits Alignment = CharUnits::Zero());
1892 
1893   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1894                                        bool isInc, bool isPre);
1895   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1896                                          bool isInc, bool isPre);
1897   //===--------------------------------------------------------------------===//
1898   //                            Declaration Emission
1899   //===--------------------------------------------------------------------===//
1900 
1901   /// EmitDecl - Emit a declaration.
1902   ///
1903   /// This function can be called with a null (unreachable) insert point.
1904   void EmitDecl(const Decl &D);
1905 
1906   /// EmitVarDecl - Emit a local variable declaration.
1907   ///
1908   /// This function can be called with a null (unreachable) insert point.
1909   void EmitVarDecl(const VarDecl &D);
1910 
1911   void EmitScalarInit(const Expr *init, const ValueDecl *D,
1912                       LValue lvalue, bool capturedByInit);
1913   void EmitScalarInit(llvm::Value *init, LValue lvalue);
1914 
1915   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
1916                              llvm::Value *Address);
1917 
1918   /// EmitAutoVarDecl - Emit an auto variable declaration.
1919   ///
1920   /// This function can be called with a null (unreachable) insert point.
1921   void EmitAutoVarDecl(const VarDecl &D);
1922 
1923   class AutoVarEmission {
1924     friend class CodeGenFunction;
1925 
1926     const VarDecl *Variable;
1927 
1928     /// The alignment of the variable.
1929     CharUnits Alignment;
1930 
1931     /// The address of the alloca.  Null if the variable was emitted
1932     /// as a global constant.
1933     llvm::Value *Address;
1934 
1935     llvm::Value *NRVOFlag;
1936 
1937     /// True if the variable is a __block variable.
1938     bool IsByRef;
1939 
1940     /// True if the variable is of aggregate type and has a constant
1941     /// initializer.
1942     bool IsConstantAggregate;
1943 
1944     struct Invalid {};
1945     AutoVarEmission(Invalid) : Variable(0) {}
1946 
1947     AutoVarEmission(const VarDecl &variable)
1948       : Variable(&variable), Address(0), NRVOFlag(0),
1949         IsByRef(false), IsConstantAggregate(false) {}
1950 
1951     bool wasEmittedAsGlobal() const { return Address == 0; }
1952 
1953   public:
1954     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
1955 
1956     /// Returns the address of the object within this declaration.
1957     /// Note that this does not chase the forwarding pointer for
1958     /// __block decls.
1959     llvm::Value *getObjectAddress(CodeGenFunction &CGF) const {
1960       if (!IsByRef) return Address;
1961 
1962       return CGF.Builder.CreateStructGEP(Address,
1963                                          CGF.getByRefValueLLVMField(Variable),
1964                                          Variable->getNameAsString());
1965     }
1966   };
1967   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
1968   void EmitAutoVarInit(const AutoVarEmission &emission);
1969   void EmitAutoVarCleanups(const AutoVarEmission &emission);
1970   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
1971                               QualType::DestructionKind dtorKind);
1972 
1973   void EmitStaticVarDecl(const VarDecl &D,
1974                          llvm::GlobalValue::LinkageTypes Linkage);
1975 
1976   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
1977   void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, unsigned ArgNo);
1978 
1979   /// protectFromPeepholes - Protect a value that we're intending to
1980   /// store to the side, but which will probably be used later, from
1981   /// aggressive peepholing optimizations that might delete it.
1982   ///
1983   /// Pass the result to unprotectFromPeepholes to declare that
1984   /// protection is no longer required.
1985   ///
1986   /// There's no particular reason why this shouldn't apply to
1987   /// l-values, it's just that no existing peepholes work on pointers.
1988   PeepholeProtection protectFromPeepholes(RValue rvalue);
1989   void unprotectFromPeepholes(PeepholeProtection protection);
1990 
1991   //===--------------------------------------------------------------------===//
1992   //                             Statement Emission
1993   //===--------------------------------------------------------------------===//
1994 
1995   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
1996   void EmitStopPoint(const Stmt *S);
1997 
1998   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
1999   /// this function even if there is no current insertion point.
2000   ///
2001   /// This function may clear the current insertion point; callers should use
2002   /// EnsureInsertPoint if they wish to subsequently generate code without first
2003   /// calling EmitBlock, EmitBranch, or EmitStmt.
2004   void EmitStmt(const Stmt *S);
2005 
2006   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
2007   /// necessarily require an insertion point or debug information; typically
2008   /// because the statement amounts to a jump or a container of other
2009   /// statements.
2010   ///
2011   /// \return True if the statement was handled.
2012   bool EmitSimpleStmt(const Stmt *S);
2013 
2014   RValue EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
2015                           AggValueSlot AVS = AggValueSlot::ignored());
2016   RValue EmitCompoundStmtWithoutScope(const CompoundStmt &S,
2017                                       bool GetLast = false, AggValueSlot AVS =
2018                                           AggValueSlot::ignored());
2019 
2020   /// EmitLabel - Emit the block for the given label. It is legal to call this
2021   /// function even if there is no current insertion point.
2022   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
2023 
2024   void EmitLabelStmt(const LabelStmt &S);
2025   void EmitAttributedStmt(const AttributedStmt &S);
2026   void EmitGotoStmt(const GotoStmt &S);
2027   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
2028   void EmitIfStmt(const IfStmt &S);
2029   void EmitWhileStmt(const WhileStmt &S);
2030   void EmitDoStmt(const DoStmt &S);
2031   void EmitForStmt(const ForStmt &S);
2032   void EmitReturnStmt(const ReturnStmt &S);
2033   void EmitDeclStmt(const DeclStmt &S);
2034   void EmitBreakStmt(const BreakStmt &S);
2035   void EmitContinueStmt(const ContinueStmt &S);
2036   void EmitSwitchStmt(const SwitchStmt &S);
2037   void EmitDefaultStmt(const DefaultStmt &S);
2038   void EmitCaseStmt(const CaseStmt &S);
2039   void EmitCaseStmtRange(const CaseStmt &S);
2040   void EmitAsmStmt(const AsmStmt &S);
2041 
2042   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
2043   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
2044   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
2045   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
2046   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
2047 
2048   llvm::Constant *getUnwindResumeFn();
2049   llvm::Constant *getUnwindResumeOrRethrowFn();
2050   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2051   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2052 
2053   void EmitCXXTryStmt(const CXXTryStmt &S);
2054   void EmitCXXForRangeStmt(const CXXForRangeStmt &S);
2055 
2056   //===--------------------------------------------------------------------===//
2057   //                         LValue Expression Emission
2058   //===--------------------------------------------------------------------===//
2059 
2060   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
2061   RValue GetUndefRValue(QualType Ty);
2062 
2063   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
2064   /// and issue an ErrorUnsupported style diagnostic (using the
2065   /// provided Name).
2066   RValue EmitUnsupportedRValue(const Expr *E,
2067                                const char *Name);
2068 
2069   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
2070   /// an ErrorUnsupported style diagnostic (using the provided Name).
2071   LValue EmitUnsupportedLValue(const Expr *E,
2072                                const char *Name);
2073 
2074   /// EmitLValue - Emit code to compute a designator that specifies the location
2075   /// of the expression.
2076   ///
2077   /// This can return one of two things: a simple address or a bitfield
2078   /// reference.  In either case, the LLVM Value* in the LValue structure is
2079   /// guaranteed to be an LLVM pointer type.
2080   ///
2081   /// If this returns a bitfield reference, nothing about the pointee type of
2082   /// the LLVM value is known: For example, it may not be a pointer to an
2083   /// integer.
2084   ///
2085   /// If this returns a normal address, and if the lvalue's C type is fixed
2086   /// size, this method guarantees that the returned pointer type will point to
2087   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
2088   /// variable length type, this is not possible.
2089   ///
2090   LValue EmitLValue(const Expr *E);
2091 
2092   /// \brief Same as EmitLValue but additionally we generate checking code to
2093   /// guard against undefined behavior.  This is only suitable when we know
2094   /// that the address will be used to access the object.
2095   LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
2096 
2097   /// EmitToMemory - Change a scalar value from its value
2098   /// representation to its in-memory representation.
2099   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
2100 
2101   /// EmitFromMemory - Change a scalar value from its memory
2102   /// representation to its value representation.
2103   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
2104 
2105   /// EmitLoadOfScalar - Load a scalar value from an address, taking
2106   /// care to appropriately convert from the memory representation to
2107   /// the LLVM value representation.
2108   llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
2109                                 unsigned Alignment, QualType Ty,
2110                                 llvm::MDNode *TBAAInfo = 0);
2111 
2112   /// EmitLoadOfScalar - Load a scalar value from an address, taking
2113   /// care to appropriately convert from the memory representation to
2114   /// the LLVM value representation.  The l-value must be a simple
2115   /// l-value.
2116   llvm::Value *EmitLoadOfScalar(LValue lvalue);
2117 
2118   /// EmitStoreOfScalar - Store a scalar value to an address, taking
2119   /// care to appropriately convert from the memory representation to
2120   /// the LLVM value representation.
2121   void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
2122                          bool Volatile, unsigned Alignment, QualType Ty,
2123                          llvm::MDNode *TBAAInfo = 0, bool isInit=false);
2124 
2125   /// EmitStoreOfScalar - Store a scalar value to an address, taking
2126   /// care to appropriately convert from the memory representation to
2127   /// the LLVM value representation.  The l-value must be a simple
2128   /// l-value.  The isInit flag indicates whether this is an initialization.
2129   /// If so, atomic qualifiers are ignored and the store is always non-atomic.
2130   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
2131 
2132   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
2133   /// this method emits the address of the lvalue, then loads the result as an
2134   /// rvalue, returning the rvalue.
2135   RValue EmitLoadOfLValue(LValue V);
2136   RValue EmitLoadOfExtVectorElementLValue(LValue V);
2137   RValue EmitLoadOfBitfieldLValue(LValue LV);
2138 
2139   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
2140   /// lvalue, where both are guaranteed to the have the same type, and that type
2141   /// is 'Ty'.
2142   void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit=false);
2143   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
2144 
2145   /// EmitStoreThroughLValue - Store Src into Dst with same constraints as
2146   /// EmitStoreThroughLValue.
2147   ///
2148   /// \param Result [out] - If non-null, this will be set to a Value* for the
2149   /// bit-field contents after the store, appropriate for use as the result of
2150   /// an assignment to the bit-field.
2151   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2152                                       llvm::Value **Result=0);
2153 
2154   /// Emit an l-value for an assignment (simple or compound) of complex type.
2155   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
2156   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
2157 
2158   // Note: only available for agg return types
2159   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
2160   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
2161   // Note: only available for agg return types
2162   LValue EmitCallExprLValue(const CallExpr *E);
2163   // Note: only available for agg return types
2164   LValue EmitVAArgExprLValue(const VAArgExpr *E);
2165   LValue EmitDeclRefLValue(const DeclRefExpr *E);
2166   LValue EmitStringLiteralLValue(const StringLiteral *E);
2167   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
2168   LValue EmitPredefinedLValue(const PredefinedExpr *E);
2169   LValue EmitUnaryOpLValue(const UnaryOperator *E);
2170   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E);
2171   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
2172   LValue EmitMemberExpr(const MemberExpr *E);
2173   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
2174   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
2175   LValue EmitInitListLValue(const InitListExpr *E);
2176   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
2177   LValue EmitCastLValue(const CastExpr *E);
2178   LValue EmitNullInitializationLValue(const CXXScalarValueInitExpr *E);
2179   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
2180   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
2181 
2182   RValue EmitRValueForField(LValue LV, const FieldDecl *FD);
2183 
2184   class ConstantEmission {
2185     llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
2186     ConstantEmission(llvm::Constant *C, bool isReference)
2187       : ValueAndIsReference(C, isReference) {}
2188   public:
2189     ConstantEmission() {}
2190     static ConstantEmission forReference(llvm::Constant *C) {
2191       return ConstantEmission(C, true);
2192     }
2193     static ConstantEmission forValue(llvm::Constant *C) {
2194       return ConstantEmission(C, false);
2195     }
2196 
2197     operator bool() const { return ValueAndIsReference.getOpaqueValue() != 0; }
2198 
2199     bool isReference() const { return ValueAndIsReference.getInt(); }
2200     LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
2201       assert(isReference());
2202       return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
2203                                             refExpr->getType());
2204     }
2205 
2206     llvm::Constant *getValue() const {
2207       assert(!isReference());
2208       return ValueAndIsReference.getPointer();
2209     }
2210   };
2211 
2212   ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
2213 
2214   RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
2215                                 AggValueSlot slot = AggValueSlot::ignored());
2216   LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
2217 
2218   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
2219                               const ObjCIvarDecl *Ivar);
2220   LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
2221 
2222   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
2223   /// if the Field is a reference, this will return the address of the reference
2224   /// and not the address of the value stored in the reference.
2225   LValue EmitLValueForFieldInitialization(LValue Base,
2226                                           const FieldDecl* Field);
2227 
2228   LValue EmitLValueForIvar(QualType ObjectTy,
2229                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
2230                            unsigned CVRQualifiers);
2231 
2232   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
2233   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
2234   LValue EmitLambdaLValue(const LambdaExpr *E);
2235   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
2236   LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
2237 
2238   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
2239   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
2240   LValue EmitStmtExprLValue(const StmtExpr *E);
2241   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
2242   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
2243   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init);
2244 
2245   //===--------------------------------------------------------------------===//
2246   //                         Scalar Expression Emission
2247   //===--------------------------------------------------------------------===//
2248 
2249   /// EmitCall - Generate a call of the given function, expecting the given
2250   /// result type, and using the given argument list which specifies both the
2251   /// LLVM arguments and the types they were derived from.
2252   ///
2253   /// \param TargetDecl - If given, the decl of the function in a direct call;
2254   /// used to set attributes on the call (noreturn, etc.).
2255   RValue EmitCall(const CGFunctionInfo &FnInfo,
2256                   llvm::Value *Callee,
2257                   ReturnValueSlot ReturnValue,
2258                   const CallArgList &Args,
2259                   const Decl *TargetDecl = 0,
2260                   llvm::Instruction **callOrInvoke = 0);
2261 
2262   RValue EmitCall(QualType FnType, llvm::Value *Callee,
2263                   ReturnValueSlot ReturnValue,
2264                   CallExpr::const_arg_iterator ArgBeg,
2265                   CallExpr::const_arg_iterator ArgEnd,
2266                   const Decl *TargetDecl = 0);
2267   RValue EmitCallExpr(const CallExpr *E,
2268                       ReturnValueSlot ReturnValue = ReturnValueSlot());
2269 
2270   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2271                                   ArrayRef<llvm::Value *> Args,
2272                                   const Twine &Name = "");
2273   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2274                                   const Twine &Name = "");
2275 
2276   llvm::Value *BuildVirtualCall(const CXXMethodDecl *MD, llvm::Value *This,
2277                                 llvm::Type *Ty);
2278   llvm::Value *BuildVirtualCall(const CXXDestructorDecl *DD, CXXDtorType Type,
2279                                 llvm::Value *This, llvm::Type *Ty);
2280   llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
2281                                          NestedNameSpecifier *Qual,
2282                                          llvm::Type *Ty);
2283 
2284   llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
2285                                                    CXXDtorType Type,
2286                                                    const CXXRecordDecl *RD);
2287 
2288   RValue EmitCXXMemberCall(const CXXMethodDecl *MD,
2289                            SourceLocation CallLoc,
2290                            llvm::Value *Callee,
2291                            ReturnValueSlot ReturnValue,
2292                            llvm::Value *This,
2293                            llvm::Value *VTT,
2294                            CallExpr::const_arg_iterator ArgBeg,
2295                            CallExpr::const_arg_iterator ArgEnd);
2296   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
2297                                ReturnValueSlot ReturnValue);
2298   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
2299                                       ReturnValueSlot ReturnValue);
2300 
2301   llvm::Value *EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E,
2302                                            const CXXMethodDecl *MD,
2303                                            llvm::Value *This);
2304   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
2305                                        const CXXMethodDecl *MD,
2306                                        ReturnValueSlot ReturnValue);
2307 
2308   RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
2309                                 ReturnValueSlot ReturnValue);
2310 
2311 
2312   RValue EmitBuiltinExpr(const FunctionDecl *FD,
2313                          unsigned BuiltinID, const CallExpr *E);
2314 
2315   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
2316 
2317   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
2318   /// is unhandled by the current target.
2319   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2320 
2321   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2322   llvm::Value *EmitNeonCall(llvm::Function *F,
2323                             SmallVectorImpl<llvm::Value*> &O,
2324                             const char *name,
2325                             unsigned shift = 0, bool rightshift = false);
2326   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
2327   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
2328                                    bool negateForRightShift);
2329 
2330   llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
2331   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2332   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2333 
2334   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
2335   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
2336   llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
2337   llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
2338   llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
2339   llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
2340                                 const ObjCMethodDecl *MethodWithObjects);
2341   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
2342   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
2343                              ReturnValueSlot Return = ReturnValueSlot());
2344 
2345   /// Retrieves the default cleanup kind for an ARC cleanup.
2346   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
2347   CleanupKind getARCCleanupKind() {
2348     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
2349              ? NormalAndEHCleanup : NormalCleanup;
2350   }
2351 
2352   // ARC primitives.
2353   void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr);
2354   void EmitARCDestroyWeak(llvm::Value *addr);
2355   llvm::Value *EmitARCLoadWeak(llvm::Value *addr);
2356   llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr);
2357   llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr,
2358                                 bool ignored);
2359   void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src);
2360   void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src);
2361   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
2362   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
2363   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
2364                                   bool ignored);
2365   llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value,
2366                                       bool ignored);
2367   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
2368   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
2369   llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
2370   void EmitARCDestroyStrong(llvm::Value *addr, bool precise);
2371   void EmitARCRelease(llvm::Value *value, bool precise);
2372   llvm::Value *EmitARCAutorelease(llvm::Value *value);
2373   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
2374   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
2375   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
2376 
2377   std::pair<LValue,llvm::Value*>
2378   EmitARCStoreAutoreleasing(const BinaryOperator *e);
2379   std::pair<LValue,llvm::Value*>
2380   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
2381 
2382   llvm::Value *EmitObjCThrowOperand(const Expr *expr);
2383 
2384   llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr);
2385   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
2386   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
2387 
2388   llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
2389   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
2390   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
2391 
2392   static Destroyer destroyARCStrongImprecise;
2393   static Destroyer destroyARCStrongPrecise;
2394   static Destroyer destroyARCWeak;
2395 
2396   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
2397   llvm::Value *EmitObjCAutoreleasePoolPush();
2398   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
2399   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
2400   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
2401 
2402   /// EmitReferenceBindingToExpr - Emits a reference binding to the passed in
2403   /// expression. Will emit a temporary variable if E is not an LValue.
2404   RValue EmitReferenceBindingToExpr(const Expr* E,
2405                                     const NamedDecl *InitializedDecl);
2406 
2407   //===--------------------------------------------------------------------===//
2408   //                           Expression Emission
2409   //===--------------------------------------------------------------------===//
2410 
2411   // Expressions are broken into three classes: scalar, complex, aggregate.
2412 
2413   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
2414   /// scalar type, returning the result.
2415   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
2416 
2417   /// EmitScalarConversion - Emit a conversion from the specified type to the
2418   /// specified destination type, both of which are LLVM scalar types.
2419   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
2420                                     QualType DstTy);
2421 
2422   /// EmitComplexToScalarConversion - Emit a conversion from the specified
2423   /// complex type to the specified destination type, where the destination type
2424   /// is an LLVM scalar type.
2425   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
2426                                              QualType DstTy);
2427 
2428 
2429   /// EmitAggExpr - Emit the computation of the specified expression
2430   /// of aggregate type.  The result is computed into the given slot,
2431   /// which may be null to indicate that the value is not needed.
2432   void EmitAggExpr(const Expr *E, AggValueSlot AS);
2433 
2434   /// EmitAggExprToLValue - Emit the computation of the specified expression of
2435   /// aggregate type into a temporary LValue.
2436   LValue EmitAggExprToLValue(const Expr *E);
2437 
2438   /// EmitGCMemmoveCollectable - Emit special API for structs with object
2439   /// pointers.
2440   void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr,
2441                                 QualType Ty);
2442 
2443   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
2444   /// make sure it survives garbage collection until this point.
2445   void EmitExtendGCLifetime(llvm::Value *object);
2446 
2447   /// EmitComplexExpr - Emit the computation of the specified expression of
2448   /// complex type, returning the result.
2449   ComplexPairTy EmitComplexExpr(const Expr *E,
2450                                 bool IgnoreReal = false,
2451                                 bool IgnoreImag = false);
2452 
2453   /// EmitComplexExprIntoAddr - Emit the computation of the specified expression
2454   /// of complex type, storing into the specified Value*.
2455   void EmitComplexExprIntoAddr(const Expr *E, llvm::Value *DestAddr,
2456                                bool DestIsVolatile);
2457 
2458   /// StoreComplexToAddr - Store a complex number into the specified address.
2459   void StoreComplexToAddr(ComplexPairTy V, llvm::Value *DestAddr,
2460                           bool DestIsVolatile);
2461   /// LoadComplexFromAddr - Load a complex number from the specified address.
2462   ComplexPairTy LoadComplexFromAddr(llvm::Value *SrcAddr, bool SrcIsVolatile);
2463 
2464   /// CreateStaticVarDecl - Create a zero-initialized LLVM global for
2465   /// a static local variable.
2466   llvm::GlobalVariable *CreateStaticVarDecl(const VarDecl &D,
2467                                             const char *Separator,
2468                                        llvm::GlobalValue::LinkageTypes Linkage);
2469 
2470   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
2471   /// global variable that has already been created for it.  If the initializer
2472   /// has a different type than GV does, this may free GV and return a different
2473   /// one.  Otherwise it just returns GV.
2474   llvm::GlobalVariable *
2475   AddInitializerToStaticVarDecl(const VarDecl &D,
2476                                 llvm::GlobalVariable *GV);
2477 
2478 
2479   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
2480   /// variable with global storage.
2481   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
2482                                 bool PerformInit);
2483 
2484   /// Call atexit() with a function that passes the given argument to
2485   /// the given function.
2486   void registerGlobalDtorWithAtExit(llvm::Constant *fn, llvm::Constant *addr);
2487 
2488   /// Emit code in this function to perform a guarded variable
2489   /// initialization.  Guarded initializations are used when it's not
2490   /// possible to prove that an initialization will be done exactly
2491   /// once, e.g. with a static local variable or a static data member
2492   /// of a class template.
2493   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
2494                           bool PerformInit);
2495 
2496   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
2497   /// variables.
2498   void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
2499                                  llvm::Constant **Decls,
2500                                  unsigned NumDecls);
2501 
2502   /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
2503   /// variables.
2504   void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn,
2505                                   const std::vector<std::pair<llvm::WeakVH,
2506                                   llvm::Constant*> > &DtorsAndObjects);
2507 
2508   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
2509                                         const VarDecl *D,
2510                                         llvm::GlobalVariable *Addr,
2511                                         bool PerformInit);
2512 
2513   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
2514 
2515   void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src,
2516                                   const Expr *Exp);
2517 
2518   void enterFullExpression(const ExprWithCleanups *E) {
2519     if (E->getNumObjects() == 0) return;
2520     enterNonTrivialFullExpression(E);
2521   }
2522   void enterNonTrivialFullExpression(const ExprWithCleanups *E);
2523 
2524   void EmitCXXThrowExpr(const CXXThrowExpr *E);
2525 
2526   void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest);
2527 
2528   RValue EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest = 0);
2529 
2530   //===--------------------------------------------------------------------===//
2531   //                         Annotations Emission
2532   //===--------------------------------------------------------------------===//
2533 
2534   /// Emit an annotation call (intrinsic or builtin).
2535   llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
2536                                   llvm::Value *AnnotatedVal,
2537                                   StringRef AnnotationStr,
2538                                   SourceLocation Location);
2539 
2540   /// Emit local annotations for the local variable V, declared by D.
2541   void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
2542 
2543   /// Emit field annotations for the given field & value. Returns the
2544   /// annotation result.
2545   llvm::Value *EmitFieldAnnotations(const FieldDecl *D, llvm::Value *V);
2546 
2547   //===--------------------------------------------------------------------===//
2548   //                             Internal Helpers
2549   //===--------------------------------------------------------------------===//
2550 
2551   /// ContainsLabel - Return true if the statement contains a label in it.  If
2552   /// this statement is not executed normally, it not containing a label means
2553   /// that we can just remove the code.
2554   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
2555 
2556   /// containsBreak - Return true if the statement contains a break out of it.
2557   /// If the statement (recursively) contains a switch or loop with a break
2558   /// inside of it, this is fine.
2559   static bool containsBreak(const Stmt *S);
2560 
2561   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2562   /// to a constant, or if it does but contains a label, return false.  If it
2563   /// constant folds return true and set the boolean result in Result.
2564   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result);
2565 
2566   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2567   /// to a constant, or if it does but contains a label, return false.  If it
2568   /// constant folds return true and set the folded value.
2569   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result);
2570 
2571   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
2572   /// if statement) to the specified blocks.  Based on the condition, this might
2573   /// try to simplify the codegen of the conditional based on the branch.
2574   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
2575                             llvm::BasicBlock *FalseBlock);
2576 
2577   /// \brief Emit a description of a type in a format suitable for passing to
2578   /// a runtime sanitizer handler.
2579   llvm::Constant *EmitCheckTypeDescriptor(QualType T);
2580 
2581   /// \brief Convert a value into a format suitable for passing to a runtime
2582   /// sanitizer handler.
2583   llvm::Value *EmitCheckValue(llvm::Value *V);
2584 
2585   /// \brief Emit a description of a source location in a format suitable for
2586   /// passing to a runtime sanitizer handler.
2587   llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
2588 
2589   /// \brief Specify under what conditions this check can be recovered
2590   enum CheckRecoverableKind {
2591     /// Always terminate program execution if this check fails
2592     CRK_Unrecoverable,
2593     /// Check supports recovering, allows user to specify which
2594     CRK_Recoverable,
2595     /// Runtime conditionally aborts, always need to support recovery.
2596     CRK_AlwaysRecoverable
2597   };
2598 
2599   /// \brief Create a basic block that will call a handler function in a
2600   /// sanitizer runtime with the provided arguments, and create a conditional
2601   /// branch to it.
2602   void EmitCheck(llvm::Value *Checked, StringRef CheckName,
2603                  ArrayRef<llvm::Constant *> StaticArgs,
2604                  ArrayRef<llvm::Value *> DynamicArgs,
2605                  CheckRecoverableKind Recoverable);
2606 
2607   /// \brief Create a basic block that will call the trap intrinsic, and emit a
2608   /// conditional branch to it, for the -ftrapv checks.
2609   void EmitTrapvCheck(llvm::Value *Checked);
2610 
2611   /// EmitCallArg - Emit a single call argument.
2612   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
2613 
2614   /// EmitDelegateCallArg - We are performing a delegate call; that
2615   /// is, the current function is delegating to another one.  Produce
2616   /// a r-value suitable for passing the given parameter.
2617   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param);
2618 
2619   /// SetFPAccuracy - Set the minimum required accuracy of the given floating
2620   /// point operation, expressed as the maximum relative error in ulp.
2621   void SetFPAccuracy(llvm::Value *Val, float Accuracy);
2622 
2623 private:
2624   llvm::MDNode *getRangeForLoadFromType(QualType Ty);
2625   void EmitReturnOfRValue(RValue RV, QualType Ty);
2626 
2627   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
2628   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
2629   ///
2630   /// \param AI - The first function argument of the expansion.
2631   /// \return The argument following the last expanded function
2632   /// argument.
2633   llvm::Function::arg_iterator
2634   ExpandTypeFromArgs(QualType Ty, LValue Dst,
2635                      llvm::Function::arg_iterator AI);
2636 
2637   /// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg
2638   /// Ty, into individual arguments on the provided vector \arg Args. See
2639   /// ABIArgInfo::Expand.
2640   void ExpandTypeToArgs(QualType Ty, RValue Src,
2641                         SmallVector<llvm::Value*, 16> &Args,
2642                         llvm::FunctionType *IRFuncTy);
2643 
2644   llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
2645                             const Expr *InputExpr, std::string &ConstraintStr);
2646 
2647   llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
2648                                   LValue InputValue, QualType InputType,
2649                                   std::string &ConstraintStr);
2650 
2651   /// EmitCallArgs - Emit call arguments for a function.
2652   /// The CallArgTypeInfo parameter is used for iterating over the known
2653   /// argument types of the function being called.
2654   template<typename T>
2655   void EmitCallArgs(CallArgList& Args, const T* CallArgTypeInfo,
2656                     CallExpr::const_arg_iterator ArgBeg,
2657                     CallExpr::const_arg_iterator ArgEnd) {
2658       CallExpr::const_arg_iterator Arg = ArgBeg;
2659 
2660     // First, use the argument types that the type info knows about
2661     if (CallArgTypeInfo) {
2662       for (typename T::arg_type_iterator I = CallArgTypeInfo->arg_type_begin(),
2663            E = CallArgTypeInfo->arg_type_end(); I != E; ++I, ++Arg) {
2664         assert(Arg != ArgEnd && "Running over edge of argument list!");
2665         QualType ArgType = *I;
2666 #ifndef NDEBUG
2667         QualType ActualArgType = Arg->getType();
2668         if (ArgType->isPointerType() && ActualArgType->isPointerType()) {
2669           QualType ActualBaseType =
2670             ActualArgType->getAs<PointerType>()->getPointeeType();
2671           QualType ArgBaseType =
2672             ArgType->getAs<PointerType>()->getPointeeType();
2673           if (ArgBaseType->isVariableArrayType()) {
2674             if (const VariableArrayType *VAT =
2675                 getContext().getAsVariableArrayType(ActualBaseType)) {
2676               if (!VAT->getSizeExpr())
2677                 ActualArgType = ArgType;
2678             }
2679           }
2680         }
2681         assert(getContext().getCanonicalType(ArgType.getNonReferenceType()).
2682                getTypePtr() ==
2683                getContext().getCanonicalType(ActualArgType).getTypePtr() &&
2684                "type mismatch in call argument!");
2685 #endif
2686         EmitCallArg(Args, *Arg, ArgType);
2687       }
2688 
2689       // Either we've emitted all the call args, or we have a call to a
2690       // variadic function.
2691       assert((Arg == ArgEnd || CallArgTypeInfo->isVariadic()) &&
2692              "Extra arguments in non-variadic function!");
2693 
2694     }
2695 
2696     // If we still have any arguments, emit them using the type of the argument.
2697     for (; Arg != ArgEnd; ++Arg)
2698       EmitCallArg(Args, *Arg, Arg->getType());
2699   }
2700 
2701   const TargetCodeGenInfo &getTargetHooks() const {
2702     return CGM.getTargetCodeGenInfo();
2703   }
2704 
2705   void EmitDeclMetadata();
2706 
2707   CodeGenModule::ByrefHelpers *
2708   buildByrefHelpers(llvm::StructType &byrefType,
2709                     const AutoVarEmission &emission);
2710 
2711   void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
2712 
2713   /// GetPointeeAlignment - Given an expression with a pointer type, emit the
2714   /// value and compute our best estimate of the alignment of the pointee.
2715   std::pair<llvm::Value*, unsigned> EmitPointerWithAlignment(const Expr *Addr);
2716 };
2717 
2718 /// Helper class with most of the code for saving a value for a
2719 /// conditional expression cleanup.
2720 struct DominatingLLVMValue {
2721   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
2722 
2723   /// Answer whether the given value needs extra work to be saved.
2724   static bool needsSaving(llvm::Value *value) {
2725     // If it's not an instruction, we don't need to save.
2726     if (!isa<llvm::Instruction>(value)) return false;
2727 
2728     // If it's an instruction in the entry block, we don't need to save.
2729     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
2730     return (block != &block->getParent()->getEntryBlock());
2731   }
2732 
2733   /// Try to save the given value.
2734   static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
2735     if (!needsSaving(value)) return saved_type(value, false);
2736 
2737     // Otherwise we need an alloca.
2738     llvm::Value *alloca =
2739       CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save");
2740     CGF.Builder.CreateStore(value, alloca);
2741 
2742     return saved_type(alloca, true);
2743   }
2744 
2745   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
2746     if (!value.getInt()) return value.getPointer();
2747     return CGF.Builder.CreateLoad(value.getPointer());
2748   }
2749 };
2750 
2751 /// A partial specialization of DominatingValue for llvm::Values that
2752 /// might be llvm::Instructions.
2753 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
2754   typedef T *type;
2755   static type restore(CodeGenFunction &CGF, saved_type value) {
2756     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
2757   }
2758 };
2759 
2760 /// A specialization of DominatingValue for RValue.
2761 template <> struct DominatingValue<RValue> {
2762   typedef RValue type;
2763   class saved_type {
2764     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
2765                 AggregateAddress, ComplexAddress };
2766 
2767     llvm::Value *Value;
2768     Kind K;
2769     saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {}
2770 
2771   public:
2772     static bool needsSaving(RValue value);
2773     static saved_type save(CodeGenFunction &CGF, RValue value);
2774     RValue restore(CodeGenFunction &CGF);
2775 
2776     // implementations in CGExprCXX.cpp
2777   };
2778 
2779   static bool needsSaving(type value) {
2780     return saved_type::needsSaving(value);
2781   }
2782   static saved_type save(CodeGenFunction &CGF, type value) {
2783     return saved_type::save(CGF, value);
2784   }
2785   static type restore(CodeGenFunction &CGF, saved_type value) {
2786     return value.restore(CGF);
2787   }
2788 };
2789 
2790 }  // end namespace CodeGen
2791 }  // end namespace clang
2792 
2793 #endif
2794