1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the internal per-function state used for llvm translation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 14 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 15 16 #include "CGBuilder.h" 17 #include "CGDebugInfo.h" 18 #include "CGLoopInfo.h" 19 #include "CGValue.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenPGO.h" 22 #include "EHScopeStack.h" 23 #include "VarBypassDetector.h" 24 #include "clang/AST/CharUnits.h" 25 #include "clang/AST/CurrentSourceLocExprScope.h" 26 #include "clang/AST/ExprCXX.h" 27 #include "clang/AST/ExprObjC.h" 28 #include "clang/AST/ExprOpenMP.h" 29 #include "clang/AST/StmtOpenMP.h" 30 #include "clang/AST/Type.h" 31 #include "clang/Basic/ABI.h" 32 #include "clang/Basic/CapturedStmt.h" 33 #include "clang/Basic/CodeGenOptions.h" 34 #include "clang/Basic/OpenMPKinds.h" 35 #include "clang/Basic/TargetInfo.h" 36 #include "llvm/ADT/ArrayRef.h" 37 #include "llvm/ADT/DenseMap.h" 38 #include "llvm/ADT/MapVector.h" 39 #include "llvm/ADT/SmallVector.h" 40 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 41 #include "llvm/IR/ValueHandle.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Transforms/Utils/SanitizerStats.h" 44 45 namespace llvm { 46 class BasicBlock; 47 class LLVMContext; 48 class MDNode; 49 class SwitchInst; 50 class Twine; 51 class Value; 52 class CanonicalLoopInfo; 53 } 54 55 namespace clang { 56 class ASTContext; 57 class CXXDestructorDecl; 58 class CXXForRangeStmt; 59 class CXXTryStmt; 60 class Decl; 61 class LabelDecl; 62 class FunctionDecl; 63 class FunctionProtoType; 64 class LabelStmt; 65 class ObjCContainerDecl; 66 class ObjCInterfaceDecl; 67 class ObjCIvarDecl; 68 class ObjCMethodDecl; 69 class ObjCImplementationDecl; 70 class ObjCPropertyImplDecl; 71 class TargetInfo; 72 class VarDecl; 73 class ObjCForCollectionStmt; 74 class ObjCAtTryStmt; 75 class ObjCAtThrowStmt; 76 class ObjCAtSynchronizedStmt; 77 class ObjCAutoreleasePoolStmt; 78 class OMPUseDevicePtrClause; 79 class OMPUseDeviceAddrClause; 80 class SVETypeFlags; 81 class OMPExecutableDirective; 82 83 namespace analyze_os_log { 84 class OSLogBufferLayout; 85 } 86 87 namespace CodeGen { 88 class CodeGenTypes; 89 class CGCallee; 90 class CGFunctionInfo; 91 class CGBlockInfo; 92 class CGCXXABI; 93 class BlockByrefHelpers; 94 class BlockByrefInfo; 95 class BlockFieldFlags; 96 class RegionCodeGenTy; 97 class TargetCodeGenInfo; 98 struct OMPTaskDataTy; 99 struct CGCoroData; 100 101 /// The kind of evaluation to perform on values of a particular 102 /// type. Basically, is the code in CGExprScalar, CGExprComplex, or 103 /// CGExprAgg? 104 /// 105 /// TODO: should vectors maybe be split out into their own thing? 106 enum TypeEvaluationKind { 107 TEK_Scalar, 108 TEK_Complex, 109 TEK_Aggregate 110 }; 111 112 #define LIST_SANITIZER_CHECKS \ 113 SANITIZER_CHECK(AddOverflow, add_overflow, 0) \ 114 SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0) \ 115 SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0) \ 116 SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0) \ 117 SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0) \ 118 SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0) \ 119 SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 1) \ 120 SANITIZER_CHECK(ImplicitConversion, implicit_conversion, 0) \ 121 SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0) \ 122 SANITIZER_CHECK(InvalidObjCCast, invalid_objc_cast, 0) \ 123 SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0) \ 124 SANITIZER_CHECK(MissingReturn, missing_return, 0) \ 125 SANITIZER_CHECK(MulOverflow, mul_overflow, 0) \ 126 SANITIZER_CHECK(NegateOverflow, negate_overflow, 0) \ 127 SANITIZER_CHECK(NullabilityArg, nullability_arg, 0) \ 128 SANITIZER_CHECK(NullabilityReturn, nullability_return, 1) \ 129 SANITIZER_CHECK(NonnullArg, nonnull_arg, 0) \ 130 SANITIZER_CHECK(NonnullReturn, nonnull_return, 1) \ 131 SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0) \ 132 SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0) \ 133 SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0) \ 134 SANITIZER_CHECK(SubOverflow, sub_overflow, 0) \ 135 SANITIZER_CHECK(TypeMismatch, type_mismatch, 1) \ 136 SANITIZER_CHECK(AlignmentAssumption, alignment_assumption, 0) \ 137 SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0) 138 139 enum SanitizerHandler { 140 #define SANITIZER_CHECK(Enum, Name, Version) Enum, 141 LIST_SANITIZER_CHECKS 142 #undef SANITIZER_CHECK 143 }; 144 145 /// Helper class with most of the code for saving a value for a 146 /// conditional expression cleanup. 147 struct DominatingLLVMValue { 148 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 149 150 /// Answer whether the given value needs extra work to be saved. 151 static bool needsSaving(llvm::Value *value) { 152 // If it's not an instruction, we don't need to save. 153 if (!isa<llvm::Instruction>(value)) return false; 154 155 // If it's an instruction in the entry block, we don't need to save. 156 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 157 return (block != &block->getParent()->getEntryBlock()); 158 } 159 160 static saved_type save(CodeGenFunction &CGF, llvm::Value *value); 161 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value); 162 }; 163 164 /// A partial specialization of DominatingValue for llvm::Values that 165 /// might be llvm::Instructions. 166 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 167 typedef T *type; 168 static type restore(CodeGenFunction &CGF, saved_type value) { 169 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 170 } 171 }; 172 173 /// A specialization of DominatingValue for Address. 174 template <> struct DominatingValue<Address> { 175 typedef Address type; 176 177 struct saved_type { 178 DominatingLLVMValue::saved_type SavedValue; 179 llvm::Type *ElementType; 180 CharUnits Alignment; 181 }; 182 183 static bool needsSaving(type value) { 184 return DominatingLLVMValue::needsSaving(value.getPointer()); 185 } 186 static saved_type save(CodeGenFunction &CGF, type value) { 187 return { DominatingLLVMValue::save(CGF, value.getPointer()), 188 value.getElementType(), value.getAlignment() }; 189 } 190 static type restore(CodeGenFunction &CGF, saved_type value) { 191 return Address(DominatingLLVMValue::restore(CGF, value.SavedValue), 192 value.ElementType, value.Alignment); 193 } 194 }; 195 196 /// A specialization of DominatingValue for RValue. 197 template <> struct DominatingValue<RValue> { 198 typedef RValue type; 199 class saved_type { 200 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 201 AggregateAddress, ComplexAddress }; 202 203 llvm::Value *Value; 204 llvm::Type *ElementType; 205 unsigned K : 3; 206 unsigned Align : 29; 207 saved_type(llvm::Value *v, llvm::Type *e, Kind k, unsigned a = 0) 208 : Value(v), ElementType(e), K(k), Align(a) {} 209 210 public: 211 static bool needsSaving(RValue value); 212 static saved_type save(CodeGenFunction &CGF, RValue value); 213 RValue restore(CodeGenFunction &CGF); 214 215 // implementations in CGCleanup.cpp 216 }; 217 218 static bool needsSaving(type value) { 219 return saved_type::needsSaving(value); 220 } 221 static saved_type save(CodeGenFunction &CGF, type value) { 222 return saved_type::save(CGF, value); 223 } 224 static type restore(CodeGenFunction &CGF, saved_type value) { 225 return value.restore(CGF); 226 } 227 }; 228 229 /// CodeGenFunction - This class organizes the per-function state that is used 230 /// while generating LLVM code. 231 class CodeGenFunction : public CodeGenTypeCache { 232 CodeGenFunction(const CodeGenFunction &) = delete; 233 void operator=(const CodeGenFunction &) = delete; 234 235 friend class CGCXXABI; 236 public: 237 /// A jump destination is an abstract label, branching to which may 238 /// require a jump out through normal cleanups. 239 struct JumpDest { 240 JumpDest() : Block(nullptr), Index(0) {} 241 JumpDest(llvm::BasicBlock *Block, EHScopeStack::stable_iterator Depth, 242 unsigned Index) 243 : Block(Block), ScopeDepth(Depth), Index(Index) {} 244 245 bool isValid() const { return Block != nullptr; } 246 llvm::BasicBlock *getBlock() const { return Block; } 247 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 248 unsigned getDestIndex() const { return Index; } 249 250 // This should be used cautiously. 251 void setScopeDepth(EHScopeStack::stable_iterator depth) { 252 ScopeDepth = depth; 253 } 254 255 private: 256 llvm::BasicBlock *Block; 257 EHScopeStack::stable_iterator ScopeDepth; 258 unsigned Index; 259 }; 260 261 CodeGenModule &CGM; // Per-module state. 262 const TargetInfo &Target; 263 264 // For EH/SEH outlined funclets, this field points to parent's CGF 265 CodeGenFunction *ParentCGF = nullptr; 266 267 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 268 LoopInfoStack LoopStack; 269 CGBuilderTy Builder; 270 271 // Stores variables for which we can't generate correct lifetime markers 272 // because of jumps. 273 VarBypassDetector Bypasses; 274 275 /// List of recently emitted OMPCanonicalLoops. 276 /// 277 /// Since OMPCanonicalLoops are nested inside other statements (in particular 278 /// CapturedStmt generated by OMPExecutableDirective and non-perfectly nested 279 /// loops), we cannot directly call OMPEmitOMPCanonicalLoop and receive its 280 /// llvm::CanonicalLoopInfo. Instead, we call EmitStmt and any 281 /// OMPEmitOMPCanonicalLoop called by it will add its CanonicalLoopInfo to 282 /// this stack when done. Entering a new loop requires clearing this list; it 283 /// either means we start parsing a new loop nest (in which case the previous 284 /// loop nest goes out of scope) or a second loop in the same level in which 285 /// case it would be ambiguous into which of the two (or more) loops the loop 286 /// nest would extend. 287 SmallVector<llvm::CanonicalLoopInfo *, 4> OMPLoopNestStack; 288 289 /// Number of nested loop to be consumed by the last surrounding 290 /// loop-associated directive. 291 int ExpectedOMPLoopDepth = 0; 292 293 // CodeGen lambda for loops and support for ordered clause 294 typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &, 295 JumpDest)> 296 CodeGenLoopTy; 297 typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation, 298 const unsigned, const bool)> 299 CodeGenOrderedTy; 300 301 // Codegen lambda for loop bounds in worksharing loop constructs 302 typedef llvm::function_ref<std::pair<LValue, LValue>( 303 CodeGenFunction &, const OMPExecutableDirective &S)> 304 CodeGenLoopBoundsTy; 305 306 // Codegen lambda for loop bounds in dispatch-based loop implementation 307 typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>( 308 CodeGenFunction &, const OMPExecutableDirective &S, Address LB, 309 Address UB)> 310 CodeGenDispatchBoundsTy; 311 312 /// CGBuilder insert helper. This function is called after an 313 /// instruction is created using Builder. 314 void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name, 315 llvm::BasicBlock *BB, 316 llvm::BasicBlock::iterator InsertPt) const; 317 318 /// CurFuncDecl - Holds the Decl for the current outermost 319 /// non-closure context. 320 const Decl *CurFuncDecl; 321 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 322 const Decl *CurCodeDecl; 323 const CGFunctionInfo *CurFnInfo; 324 QualType FnRetTy; 325 llvm::Function *CurFn = nullptr; 326 327 /// Save Parameter Decl for coroutine. 328 llvm::SmallVector<const ParmVarDecl *, 4> FnArgs; 329 330 // Holds coroutine data if the current function is a coroutine. We use a 331 // wrapper to manage its lifetime, so that we don't have to define CGCoroData 332 // in this header. 333 struct CGCoroInfo { 334 std::unique_ptr<CGCoroData> Data; 335 CGCoroInfo(); 336 ~CGCoroInfo(); 337 }; 338 CGCoroInfo CurCoro; 339 340 bool isCoroutine() const { 341 return CurCoro.Data != nullptr; 342 } 343 344 /// CurGD - The GlobalDecl for the current function being compiled. 345 GlobalDecl CurGD; 346 347 /// PrologueCleanupDepth - The cleanup depth enclosing all the 348 /// cleanups associated with the parameters. 349 EHScopeStack::stable_iterator PrologueCleanupDepth; 350 351 /// ReturnBlock - Unified return block. 352 JumpDest ReturnBlock; 353 354 /// ReturnValue - The temporary alloca to hold the return 355 /// value. This is invalid iff the function has no return value. 356 Address ReturnValue = Address::invalid(); 357 358 /// ReturnValuePointer - The temporary alloca to hold a pointer to sret. 359 /// This is invalid if sret is not in use. 360 Address ReturnValuePointer = Address::invalid(); 361 362 /// If a return statement is being visited, this holds the return statment's 363 /// result expression. 364 const Expr *RetExpr = nullptr; 365 366 /// Return true if a label was seen in the current scope. 367 bool hasLabelBeenSeenInCurrentScope() const { 368 if (CurLexicalScope) 369 return CurLexicalScope->hasLabels(); 370 return !LabelMap.empty(); 371 } 372 373 /// AllocaInsertPoint - This is an instruction in the entry block before which 374 /// we prefer to insert allocas. 375 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 376 377 private: 378 /// PostAllocaInsertPt - This is a place in the prologue where code can be 379 /// inserted that will be dominated by all the static allocas. This helps 380 /// achieve two things: 381 /// 1. Contiguity of all static allocas (within the prologue) is maintained. 382 /// 2. All other prologue code (which are dominated by static allocas) do 383 /// appear in the source order immediately after all static allocas. 384 /// 385 /// PostAllocaInsertPt will be lazily created when it is *really* required. 386 llvm::AssertingVH<llvm::Instruction> PostAllocaInsertPt = nullptr; 387 388 public: 389 /// Return PostAllocaInsertPt. If it is not yet created, then insert it 390 /// immediately after AllocaInsertPt. 391 llvm::Instruction *getPostAllocaInsertPoint() { 392 if (!PostAllocaInsertPt) { 393 assert(AllocaInsertPt && 394 "Expected static alloca insertion point at function prologue"); 395 assert(AllocaInsertPt->getParent()->isEntryBlock() && 396 "EBB should be entry block of the current code gen function"); 397 PostAllocaInsertPt = AllocaInsertPt->clone(); 398 PostAllocaInsertPt->setName("postallocapt"); 399 PostAllocaInsertPt->insertAfter(AllocaInsertPt); 400 } 401 402 return PostAllocaInsertPt; 403 } 404 405 /// API for captured statement code generation. 406 class CGCapturedStmtInfo { 407 public: 408 explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default) 409 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {} 410 explicit CGCapturedStmtInfo(const CapturedStmt &S, 411 CapturedRegionKind K = CR_Default) 412 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) { 413 414 RecordDecl::field_iterator Field = 415 S.getCapturedRecordDecl()->field_begin(); 416 for (CapturedStmt::const_capture_iterator I = S.capture_begin(), 417 E = S.capture_end(); 418 I != E; ++I, ++Field) { 419 if (I->capturesThis()) 420 CXXThisFieldDecl = *Field; 421 else if (I->capturesVariable()) 422 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 423 else if (I->capturesVariableByCopy()) 424 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 425 } 426 } 427 428 virtual ~CGCapturedStmtInfo(); 429 430 CapturedRegionKind getKind() const { return Kind; } 431 432 virtual void setContextValue(llvm::Value *V) { ThisValue = V; } 433 // Retrieve the value of the context parameter. 434 virtual llvm::Value *getContextValue() const { return ThisValue; } 435 436 /// Lookup the captured field decl for a variable. 437 virtual const FieldDecl *lookup(const VarDecl *VD) const { 438 return CaptureFields.lookup(VD->getCanonicalDecl()); 439 } 440 441 bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; } 442 virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; } 443 444 static bool classof(const CGCapturedStmtInfo *) { 445 return true; 446 } 447 448 /// Emit the captured statement body. 449 virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) { 450 CGF.incrementProfileCounter(S); 451 CGF.EmitStmt(S); 452 } 453 454 /// Get the name of the capture helper. 455 virtual StringRef getHelperName() const { return "__captured_stmt"; } 456 457 /// Get the CaptureFields 458 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> getCaptureFields() { 459 return CaptureFields; 460 } 461 462 private: 463 /// The kind of captured statement being generated. 464 CapturedRegionKind Kind; 465 466 /// Keep the map between VarDecl and FieldDecl. 467 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields; 468 469 /// The base address of the captured record, passed in as the first 470 /// argument of the parallel region function. 471 llvm::Value *ThisValue; 472 473 /// Captured 'this' type. 474 FieldDecl *CXXThisFieldDecl; 475 }; 476 CGCapturedStmtInfo *CapturedStmtInfo = nullptr; 477 478 /// RAII for correct setting/restoring of CapturedStmtInfo. 479 class CGCapturedStmtRAII { 480 private: 481 CodeGenFunction &CGF; 482 CGCapturedStmtInfo *PrevCapturedStmtInfo; 483 public: 484 CGCapturedStmtRAII(CodeGenFunction &CGF, 485 CGCapturedStmtInfo *NewCapturedStmtInfo) 486 : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) { 487 CGF.CapturedStmtInfo = NewCapturedStmtInfo; 488 } 489 ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; } 490 }; 491 492 /// An abstract representation of regular/ObjC call/message targets. 493 class AbstractCallee { 494 /// The function declaration of the callee. 495 const Decl *CalleeDecl; 496 497 public: 498 AbstractCallee() : CalleeDecl(nullptr) {} 499 AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {} 500 AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {} 501 bool hasFunctionDecl() const { 502 return isa_and_nonnull<FunctionDecl>(CalleeDecl); 503 } 504 const Decl *getDecl() const { return CalleeDecl; } 505 unsigned getNumParams() const { 506 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 507 return FD->getNumParams(); 508 return cast<ObjCMethodDecl>(CalleeDecl)->param_size(); 509 } 510 const ParmVarDecl *getParamDecl(unsigned I) const { 511 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 512 return FD->getParamDecl(I); 513 return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I); 514 } 515 }; 516 517 /// Sanitizers enabled for this function. 518 SanitizerSet SanOpts; 519 520 /// True if CodeGen currently emits code implementing sanitizer checks. 521 bool IsSanitizerScope = false; 522 523 /// RAII object to set/unset CodeGenFunction::IsSanitizerScope. 524 class SanitizerScope { 525 CodeGenFunction *CGF; 526 public: 527 SanitizerScope(CodeGenFunction *CGF); 528 ~SanitizerScope(); 529 }; 530 531 /// In C++, whether we are code generating a thunk. This controls whether we 532 /// should emit cleanups. 533 bool CurFuncIsThunk = false; 534 535 /// In ARC, whether we should autorelease the return value. 536 bool AutoreleaseResult = false; 537 538 /// Whether we processed a Microsoft-style asm block during CodeGen. These can 539 /// potentially set the return value. 540 bool SawAsmBlock = false; 541 542 const NamedDecl *CurSEHParent = nullptr; 543 544 /// True if the current function is an outlined SEH helper. This can be a 545 /// finally block or filter expression. 546 bool IsOutlinedSEHHelper = false; 547 548 /// True if CodeGen currently emits code inside presereved access index 549 /// region. 550 bool IsInPreservedAIRegion = false; 551 552 /// True if the current statement has nomerge attribute. 553 bool InNoMergeAttributedStmt = false; 554 555 /// True if the current statement has noinline attribute. 556 bool InNoInlineAttributedStmt = false; 557 558 /// True if the current statement has always_inline attribute. 559 bool InAlwaysInlineAttributedStmt = false; 560 561 // The CallExpr within the current statement that the musttail attribute 562 // applies to. nullptr if there is no 'musttail' on the current statement. 563 const CallExpr *MustTailCall = nullptr; 564 565 /// Returns true if a function must make progress, which means the 566 /// mustprogress attribute can be added. 567 bool checkIfFunctionMustProgress() { 568 if (CGM.getCodeGenOpts().getFiniteLoops() == 569 CodeGenOptions::FiniteLoopsKind::Never) 570 return false; 571 572 // C++11 and later guarantees that a thread eventually will do one of the 573 // following (6.9.2.3.1 in C++11): 574 // - terminate, 575 // - make a call to a library I/O function, 576 // - perform an access through a volatile glvalue, or 577 // - perform a synchronization operation or an atomic operation. 578 // 579 // Hence each function is 'mustprogress' in C++11 or later. 580 return getLangOpts().CPlusPlus11; 581 } 582 583 /// Returns true if a loop must make progress, which means the mustprogress 584 /// attribute can be added. \p HasConstantCond indicates whether the branch 585 /// condition is a known constant. 586 bool checkIfLoopMustProgress(bool HasConstantCond) { 587 if (CGM.getCodeGenOpts().getFiniteLoops() == 588 CodeGenOptions::FiniteLoopsKind::Always) 589 return true; 590 if (CGM.getCodeGenOpts().getFiniteLoops() == 591 CodeGenOptions::FiniteLoopsKind::Never) 592 return false; 593 594 // If the containing function must make progress, loops also must make 595 // progress (as in C++11 and later). 596 if (checkIfFunctionMustProgress()) 597 return true; 598 599 // Now apply rules for plain C (see 6.8.5.6 in C11). 600 // Loops with constant conditions do not have to make progress in any C 601 // version. 602 if (HasConstantCond) 603 return false; 604 605 // Loops with non-constant conditions must make progress in C11 and later. 606 return getLangOpts().C11; 607 } 608 609 const CodeGen::CGBlockInfo *BlockInfo = nullptr; 610 llvm::Value *BlockPointer = nullptr; 611 612 llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; 613 FieldDecl *LambdaThisCaptureField = nullptr; 614 615 /// A mapping from NRVO variables to the flags used to indicate 616 /// when the NRVO has been applied to this variable. 617 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 618 619 EHScopeStack EHStack; 620 llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack; 621 llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack; 622 623 llvm::Instruction *CurrentFuncletPad = nullptr; 624 625 class CallLifetimeEnd final : public EHScopeStack::Cleanup { 626 bool isRedundantBeforeReturn() override { return true; } 627 628 llvm::Value *Addr; 629 llvm::Value *Size; 630 631 public: 632 CallLifetimeEnd(Address addr, llvm::Value *size) 633 : Addr(addr.getPointer()), Size(size) {} 634 635 void Emit(CodeGenFunction &CGF, Flags flags) override { 636 CGF.EmitLifetimeEnd(Size, Addr); 637 } 638 }; 639 640 /// Header for data within LifetimeExtendedCleanupStack. 641 struct LifetimeExtendedCleanupHeader { 642 /// The size of the following cleanup object. 643 unsigned Size; 644 /// The kind of cleanup to push: a value from the CleanupKind enumeration. 645 unsigned Kind : 31; 646 /// Whether this is a conditional cleanup. 647 unsigned IsConditional : 1; 648 649 size_t getSize() const { return Size; } 650 CleanupKind getKind() const { return (CleanupKind)Kind; } 651 bool isConditional() const { return IsConditional; } 652 }; 653 654 /// i32s containing the indexes of the cleanup destinations. 655 Address NormalCleanupDest = Address::invalid(); 656 657 unsigned NextCleanupDestIndex = 1; 658 659 /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. 660 llvm::BasicBlock *EHResumeBlock = nullptr; 661 662 /// The exception slot. All landing pads write the current exception pointer 663 /// into this alloca. 664 llvm::Value *ExceptionSlot = nullptr; 665 666 /// The selector slot. Under the MandatoryCleanup model, all landing pads 667 /// write the current selector value into this alloca. 668 llvm::AllocaInst *EHSelectorSlot = nullptr; 669 670 /// A stack of exception code slots. Entering an __except block pushes a slot 671 /// on the stack and leaving pops one. The __exception_code() intrinsic loads 672 /// a value from the top of the stack. 673 SmallVector<Address, 1> SEHCodeSlotStack; 674 675 /// Value returned by __exception_info intrinsic. 676 llvm::Value *SEHInfo = nullptr; 677 678 /// Emits a landing pad for the current EH stack. 679 llvm::BasicBlock *EmitLandingPad(); 680 681 llvm::BasicBlock *getInvokeDestImpl(); 682 683 /// Parent loop-based directive for scan directive. 684 const OMPExecutableDirective *OMPParentLoopDirectiveForScan = nullptr; 685 llvm::BasicBlock *OMPBeforeScanBlock = nullptr; 686 llvm::BasicBlock *OMPAfterScanBlock = nullptr; 687 llvm::BasicBlock *OMPScanExitBlock = nullptr; 688 llvm::BasicBlock *OMPScanDispatch = nullptr; 689 bool OMPFirstScanLoop = false; 690 691 /// Manages parent directive for scan directives. 692 class ParentLoopDirectiveForScanRegion { 693 CodeGenFunction &CGF; 694 const OMPExecutableDirective *ParentLoopDirectiveForScan; 695 696 public: 697 ParentLoopDirectiveForScanRegion( 698 CodeGenFunction &CGF, 699 const OMPExecutableDirective &ParentLoopDirectiveForScan) 700 : CGF(CGF), 701 ParentLoopDirectiveForScan(CGF.OMPParentLoopDirectiveForScan) { 702 CGF.OMPParentLoopDirectiveForScan = &ParentLoopDirectiveForScan; 703 } 704 ~ParentLoopDirectiveForScanRegion() { 705 CGF.OMPParentLoopDirectiveForScan = ParentLoopDirectiveForScan; 706 } 707 }; 708 709 template <class T> 710 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 711 return DominatingValue<T>::save(*this, value); 712 } 713 714 class CGFPOptionsRAII { 715 public: 716 CGFPOptionsRAII(CodeGenFunction &CGF, FPOptions FPFeatures); 717 CGFPOptionsRAII(CodeGenFunction &CGF, const Expr *E); 718 ~CGFPOptionsRAII(); 719 720 private: 721 void ConstructorHelper(FPOptions FPFeatures); 722 CodeGenFunction &CGF; 723 FPOptions OldFPFeatures; 724 llvm::fp::ExceptionBehavior OldExcept; 725 llvm::RoundingMode OldRounding; 726 Optional<CGBuilderTy::FastMathFlagGuard> FMFGuard; 727 }; 728 FPOptions CurFPFeatures; 729 730 public: 731 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 732 /// rethrows. 733 SmallVector<llvm::Value*, 8> ObjCEHValueStack; 734 735 /// A class controlling the emission of a finally block. 736 class FinallyInfo { 737 /// Where the catchall's edge through the cleanup should go. 738 JumpDest RethrowDest; 739 740 /// A function to call to enter the catch. 741 llvm::FunctionCallee BeginCatchFn; 742 743 /// An i1 variable indicating whether or not the @finally is 744 /// running for an exception. 745 llvm::AllocaInst *ForEHVar; 746 747 /// An i8* variable into which the exception pointer to rethrow 748 /// has been saved. 749 llvm::AllocaInst *SavedExnVar; 750 751 public: 752 void enter(CodeGenFunction &CGF, const Stmt *Finally, 753 llvm::FunctionCallee beginCatchFn, 754 llvm::FunctionCallee endCatchFn, llvm::FunctionCallee rethrowFn); 755 void exit(CodeGenFunction &CGF); 756 }; 757 758 /// Returns true inside SEH __try blocks. 759 bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); } 760 761 /// Returns true while emitting a cleanuppad. 762 bool isCleanupPadScope() const { 763 return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad); 764 } 765 766 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 767 /// current full-expression. Safe against the possibility that 768 /// we're currently inside a conditionally-evaluated expression. 769 template <class T, class... As> 770 void pushFullExprCleanup(CleanupKind kind, As... A) { 771 // If we're not in a conditional branch, or if none of the 772 // arguments requires saving, then use the unconditional cleanup. 773 if (!isInConditionalBranch()) 774 return EHStack.pushCleanup<T>(kind, A...); 775 776 // Stash values in a tuple so we can guarantee the order of saves. 777 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 778 SavedTuple Saved{saveValueInCond(A)...}; 779 780 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 781 EHStack.pushCleanupTuple<CleanupType>(kind, Saved); 782 initFullExprCleanup(); 783 } 784 785 /// Queue a cleanup to be pushed after finishing the current full-expression, 786 /// potentially with an active flag. 787 template <class T, class... As> 788 void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) { 789 if (!isInConditionalBranch()) 790 return pushCleanupAfterFullExprWithActiveFlag<T>(Kind, Address::invalid(), 791 A...); 792 793 Address ActiveFlag = createCleanupActiveFlag(); 794 assert(!DominatingValue<Address>::needsSaving(ActiveFlag) && 795 "cleanup active flag should never need saving"); 796 797 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 798 SavedTuple Saved{saveValueInCond(A)...}; 799 800 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 801 pushCleanupAfterFullExprWithActiveFlag<CleanupType>(Kind, ActiveFlag, Saved); 802 } 803 804 template <class T, class... As> 805 void pushCleanupAfterFullExprWithActiveFlag(CleanupKind Kind, 806 Address ActiveFlag, As... A) { 807 LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind, 808 ActiveFlag.isValid()}; 809 810 size_t OldSize = LifetimeExtendedCleanupStack.size(); 811 LifetimeExtendedCleanupStack.resize( 812 LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size + 813 (Header.IsConditional ? sizeof(ActiveFlag) : 0)); 814 815 static_assert(sizeof(Header) % alignof(T) == 0, 816 "Cleanup will be allocated on misaligned address"); 817 char *Buffer = &LifetimeExtendedCleanupStack[OldSize]; 818 new (Buffer) LifetimeExtendedCleanupHeader(Header); 819 new (Buffer + sizeof(Header)) T(A...); 820 if (Header.IsConditional) 821 new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag); 822 } 823 824 /// Set up the last cleanup that was pushed as a conditional 825 /// full-expression cleanup. 826 void initFullExprCleanup() { 827 initFullExprCleanupWithFlag(createCleanupActiveFlag()); 828 } 829 830 void initFullExprCleanupWithFlag(Address ActiveFlag); 831 Address createCleanupActiveFlag(); 832 833 /// PushDestructorCleanup - Push a cleanup to call the 834 /// complete-object destructor of an object of the given type at the 835 /// given address. Does nothing if T is not a C++ class type with a 836 /// non-trivial destructor. 837 void PushDestructorCleanup(QualType T, Address Addr); 838 839 /// PushDestructorCleanup - Push a cleanup to call the 840 /// complete-object variant of the given destructor on the object at 841 /// the given address. 842 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, QualType T, 843 Address Addr); 844 845 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 846 /// process all branch fixups. 847 void PopCleanupBlock(bool FallThroughIsBranchThrough = false); 848 849 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 850 /// The block cannot be reactivated. Pops it if it's the top of the 851 /// stack. 852 /// 853 /// \param DominatingIP - An instruction which is known to 854 /// dominate the current IP (if set) and which lies along 855 /// all paths of execution between the current IP and the 856 /// the point at which the cleanup comes into scope. 857 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 858 llvm::Instruction *DominatingIP); 859 860 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 861 /// Cannot be used to resurrect a deactivated cleanup. 862 /// 863 /// \param DominatingIP - An instruction which is known to 864 /// dominate the current IP (if set) and which lies along 865 /// all paths of execution between the current IP and the 866 /// the point at which the cleanup comes into scope. 867 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 868 llvm::Instruction *DominatingIP); 869 870 /// Enters a new scope for capturing cleanups, all of which 871 /// will be executed once the scope is exited. 872 class RunCleanupsScope { 873 EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth; 874 size_t LifetimeExtendedCleanupStackSize; 875 bool OldDidCallStackSave; 876 protected: 877 bool PerformCleanup; 878 private: 879 880 RunCleanupsScope(const RunCleanupsScope &) = delete; 881 void operator=(const RunCleanupsScope &) = delete; 882 883 protected: 884 CodeGenFunction& CGF; 885 886 public: 887 /// Enter a new cleanup scope. 888 explicit RunCleanupsScope(CodeGenFunction &CGF) 889 : PerformCleanup(true), CGF(CGF) 890 { 891 CleanupStackDepth = CGF.EHStack.stable_begin(); 892 LifetimeExtendedCleanupStackSize = 893 CGF.LifetimeExtendedCleanupStack.size(); 894 OldDidCallStackSave = CGF.DidCallStackSave; 895 CGF.DidCallStackSave = false; 896 OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth; 897 CGF.CurrentCleanupScopeDepth = CleanupStackDepth; 898 } 899 900 /// Exit this cleanup scope, emitting any accumulated cleanups. 901 ~RunCleanupsScope() { 902 if (PerformCleanup) 903 ForceCleanup(); 904 } 905 906 /// Determine whether this scope requires any cleanups. 907 bool requiresCleanups() const { 908 return CGF.EHStack.stable_begin() != CleanupStackDepth; 909 } 910 911 /// Force the emission of cleanups now, instead of waiting 912 /// until this object is destroyed. 913 /// \param ValuesToReload - A list of values that need to be available at 914 /// the insertion point after cleanup emission. If cleanup emission created 915 /// a shared cleanup block, these value pointers will be rewritten. 916 /// Otherwise, they not will be modified. 917 void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) { 918 assert(PerformCleanup && "Already forced cleanup"); 919 CGF.DidCallStackSave = OldDidCallStackSave; 920 CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize, 921 ValuesToReload); 922 PerformCleanup = false; 923 CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth; 924 } 925 }; 926 927 // Cleanup stack depth of the RunCleanupsScope that was pushed most recently. 928 EHScopeStack::stable_iterator CurrentCleanupScopeDepth = 929 EHScopeStack::stable_end(); 930 931 class LexicalScope : public RunCleanupsScope { 932 SourceRange Range; 933 SmallVector<const LabelDecl*, 4> Labels; 934 LexicalScope *ParentScope; 935 936 LexicalScope(const LexicalScope &) = delete; 937 void operator=(const LexicalScope &) = delete; 938 939 public: 940 /// Enter a new cleanup scope. 941 explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) 942 : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) { 943 CGF.CurLexicalScope = this; 944 if (CGDebugInfo *DI = CGF.getDebugInfo()) 945 DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); 946 } 947 948 void addLabel(const LabelDecl *label) { 949 assert(PerformCleanup && "adding label to dead scope?"); 950 Labels.push_back(label); 951 } 952 953 /// Exit this cleanup scope, emitting any accumulated 954 /// cleanups. 955 ~LexicalScope() { 956 if (CGDebugInfo *DI = CGF.getDebugInfo()) 957 DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 958 959 // If we should perform a cleanup, force them now. Note that 960 // this ends the cleanup scope before rescoping any labels. 961 if (PerformCleanup) { 962 ApplyDebugLocation DL(CGF, Range.getEnd()); 963 ForceCleanup(); 964 } 965 } 966 967 /// Force the emission of cleanups now, instead of waiting 968 /// until this object is destroyed. 969 void ForceCleanup() { 970 CGF.CurLexicalScope = ParentScope; 971 RunCleanupsScope::ForceCleanup(); 972 973 if (!Labels.empty()) 974 rescopeLabels(); 975 } 976 977 bool hasLabels() const { 978 return !Labels.empty(); 979 } 980 981 void rescopeLabels(); 982 }; 983 984 typedef llvm::DenseMap<const Decl *, Address> DeclMapTy; 985 986 /// The class used to assign some variables some temporarily addresses. 987 class OMPMapVars { 988 DeclMapTy SavedLocals; 989 DeclMapTy SavedTempAddresses; 990 OMPMapVars(const OMPMapVars &) = delete; 991 void operator=(const OMPMapVars &) = delete; 992 993 public: 994 explicit OMPMapVars() = default; 995 ~OMPMapVars() { 996 assert(SavedLocals.empty() && "Did not restored original addresses."); 997 }; 998 999 /// Sets the address of the variable \p LocalVD to be \p TempAddr in 1000 /// function \p CGF. 1001 /// \return true if at least one variable was set already, false otherwise. 1002 bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD, 1003 Address TempAddr) { 1004 LocalVD = LocalVD->getCanonicalDecl(); 1005 // Only save it once. 1006 if (SavedLocals.count(LocalVD)) return false; 1007 1008 // Copy the existing local entry to SavedLocals. 1009 auto it = CGF.LocalDeclMap.find(LocalVD); 1010 if (it != CGF.LocalDeclMap.end()) 1011 SavedLocals.try_emplace(LocalVD, it->second); 1012 else 1013 SavedLocals.try_emplace(LocalVD, Address::invalid()); 1014 1015 // Generate the private entry. 1016 QualType VarTy = LocalVD->getType(); 1017 if (VarTy->isReferenceType()) { 1018 Address Temp = CGF.CreateMemTemp(VarTy); 1019 CGF.Builder.CreateStore(TempAddr.getPointer(), Temp); 1020 TempAddr = Temp; 1021 } 1022 SavedTempAddresses.try_emplace(LocalVD, TempAddr); 1023 1024 return true; 1025 } 1026 1027 /// Applies new addresses to the list of the variables. 1028 /// \return true if at least one variable is using new address, false 1029 /// otherwise. 1030 bool apply(CodeGenFunction &CGF) { 1031 copyInto(SavedTempAddresses, CGF.LocalDeclMap); 1032 SavedTempAddresses.clear(); 1033 return !SavedLocals.empty(); 1034 } 1035 1036 /// Restores original addresses of the variables. 1037 void restore(CodeGenFunction &CGF) { 1038 if (!SavedLocals.empty()) { 1039 copyInto(SavedLocals, CGF.LocalDeclMap); 1040 SavedLocals.clear(); 1041 } 1042 } 1043 1044 private: 1045 /// Copy all the entries in the source map over the corresponding 1046 /// entries in the destination, which must exist. 1047 static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) { 1048 for (auto &Pair : Src) { 1049 if (!Pair.second.isValid()) { 1050 Dest.erase(Pair.first); 1051 continue; 1052 } 1053 1054 auto I = Dest.find(Pair.first); 1055 if (I != Dest.end()) 1056 I->second = Pair.second; 1057 else 1058 Dest.insert(Pair); 1059 } 1060 } 1061 }; 1062 1063 /// The scope used to remap some variables as private in the OpenMP loop body 1064 /// (or other captured region emitted without outlining), and to restore old 1065 /// vars back on exit. 1066 class OMPPrivateScope : public RunCleanupsScope { 1067 OMPMapVars MappedVars; 1068 OMPPrivateScope(const OMPPrivateScope &) = delete; 1069 void operator=(const OMPPrivateScope &) = delete; 1070 1071 public: 1072 /// Enter a new OpenMP private scope. 1073 explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {} 1074 1075 /// Registers \p LocalVD variable as a private with \p Addr as the address 1076 /// of the corresponding private variable. \p 1077 /// PrivateGen is the address of the generated private variable. 1078 /// \return true if the variable is registered as private, false if it has 1079 /// been privatized already. 1080 bool addPrivate(const VarDecl *LocalVD, Address Addr) { 1081 assert(PerformCleanup && "adding private to dead scope"); 1082 return MappedVars.setVarAddr(CGF, LocalVD, Addr); 1083 } 1084 1085 /// Privatizes local variables previously registered as private. 1086 /// Registration is separate from the actual privatization to allow 1087 /// initializers use values of the original variables, not the private one. 1088 /// This is important, for example, if the private variable is a class 1089 /// variable initialized by a constructor that references other private 1090 /// variables. But at initialization original variables must be used, not 1091 /// private copies. 1092 /// \return true if at least one variable was privatized, false otherwise. 1093 bool Privatize() { return MappedVars.apply(CGF); } 1094 1095 void ForceCleanup() { 1096 RunCleanupsScope::ForceCleanup(); 1097 MappedVars.restore(CGF); 1098 } 1099 1100 /// Exit scope - all the mapped variables are restored. 1101 ~OMPPrivateScope() { 1102 if (PerformCleanup) 1103 ForceCleanup(); 1104 } 1105 1106 /// Checks if the global variable is captured in current function. 1107 bool isGlobalVarCaptured(const VarDecl *VD) const { 1108 VD = VD->getCanonicalDecl(); 1109 return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0; 1110 } 1111 }; 1112 1113 /// Save/restore original map of previously emitted local vars in case when we 1114 /// need to duplicate emission of the same code several times in the same 1115 /// function for OpenMP code. 1116 class OMPLocalDeclMapRAII { 1117 CodeGenFunction &CGF; 1118 DeclMapTy SavedMap; 1119 1120 public: 1121 OMPLocalDeclMapRAII(CodeGenFunction &CGF) 1122 : CGF(CGF), SavedMap(CGF.LocalDeclMap) {} 1123 ~OMPLocalDeclMapRAII() { SavedMap.swap(CGF.LocalDeclMap); } 1124 }; 1125 1126 /// Takes the old cleanup stack size and emits the cleanup blocks 1127 /// that have been added. 1128 void 1129 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 1130 std::initializer_list<llvm::Value **> ValuesToReload = {}); 1131 1132 /// Takes the old cleanup stack size and emits the cleanup blocks 1133 /// that have been added, then adds all lifetime-extended cleanups from 1134 /// the given position to the stack. 1135 void 1136 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 1137 size_t OldLifetimeExtendedStackSize, 1138 std::initializer_list<llvm::Value **> ValuesToReload = {}); 1139 1140 void ResolveBranchFixups(llvm::BasicBlock *Target); 1141 1142 /// The given basic block lies in the current EH scope, but may be a 1143 /// target of a potentially scope-crossing jump; get a stable handle 1144 /// to which we can perform this jump later. 1145 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 1146 return JumpDest(Target, 1147 EHStack.getInnermostNormalCleanup(), 1148 NextCleanupDestIndex++); 1149 } 1150 1151 /// The given basic block lies in the current EH scope, but may be a 1152 /// target of a potentially scope-crossing jump; get a stable handle 1153 /// to which we can perform this jump later. 1154 JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { 1155 return getJumpDestInCurrentScope(createBasicBlock(Name)); 1156 } 1157 1158 /// EmitBranchThroughCleanup - Emit a branch from the current insert 1159 /// block through the normal cleanup handling code (if any) and then 1160 /// on to \arg Dest. 1161 void EmitBranchThroughCleanup(JumpDest Dest); 1162 1163 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 1164 /// specified destination obviously has no cleanups to run. 'false' is always 1165 /// a conservatively correct answer for this method. 1166 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 1167 1168 /// popCatchScope - Pops the catch scope at the top of the EHScope 1169 /// stack, emitting any required code (other than the catch handlers 1170 /// themselves). 1171 void popCatchScope(); 1172 1173 llvm::BasicBlock *getEHResumeBlock(bool isCleanup); 1174 llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); 1175 llvm::BasicBlock * 1176 getFuncletEHDispatchBlock(EHScopeStack::stable_iterator scope); 1177 1178 /// An object to manage conditionally-evaluated expressions. 1179 class ConditionalEvaluation { 1180 llvm::BasicBlock *StartBB; 1181 1182 public: 1183 ConditionalEvaluation(CodeGenFunction &CGF) 1184 : StartBB(CGF.Builder.GetInsertBlock()) {} 1185 1186 void begin(CodeGenFunction &CGF) { 1187 assert(CGF.OutermostConditional != this); 1188 if (!CGF.OutermostConditional) 1189 CGF.OutermostConditional = this; 1190 } 1191 1192 void end(CodeGenFunction &CGF) { 1193 assert(CGF.OutermostConditional != nullptr); 1194 if (CGF.OutermostConditional == this) 1195 CGF.OutermostConditional = nullptr; 1196 } 1197 1198 /// Returns a block which will be executed prior to each 1199 /// evaluation of the conditional code. 1200 llvm::BasicBlock *getStartingBlock() const { 1201 return StartBB; 1202 } 1203 }; 1204 1205 /// isInConditionalBranch - Return true if we're currently emitting 1206 /// one branch or the other of a conditional expression. 1207 bool isInConditionalBranch() const { return OutermostConditional != nullptr; } 1208 1209 void setBeforeOutermostConditional(llvm::Value *value, Address addr) { 1210 assert(isInConditionalBranch()); 1211 llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); 1212 auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back()); 1213 store->setAlignment(addr.getAlignment().getAsAlign()); 1214 } 1215 1216 /// An RAII object to record that we're evaluating a statement 1217 /// expression. 1218 class StmtExprEvaluation { 1219 CodeGenFunction &CGF; 1220 1221 /// We have to save the outermost conditional: cleanups in a 1222 /// statement expression aren't conditional just because the 1223 /// StmtExpr is. 1224 ConditionalEvaluation *SavedOutermostConditional; 1225 1226 public: 1227 StmtExprEvaluation(CodeGenFunction &CGF) 1228 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 1229 CGF.OutermostConditional = nullptr; 1230 } 1231 1232 ~StmtExprEvaluation() { 1233 CGF.OutermostConditional = SavedOutermostConditional; 1234 CGF.EnsureInsertPoint(); 1235 } 1236 }; 1237 1238 /// An object which temporarily prevents a value from being 1239 /// destroyed by aggressive peephole optimizations that assume that 1240 /// all uses of a value have been realized in the IR. 1241 class PeepholeProtection { 1242 llvm::Instruction *Inst; 1243 friend class CodeGenFunction; 1244 1245 public: 1246 PeepholeProtection() : Inst(nullptr) {} 1247 }; 1248 1249 /// A non-RAII class containing all the information about a bound 1250 /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for 1251 /// this which makes individual mappings very simple; using this 1252 /// class directly is useful when you have a variable number of 1253 /// opaque values or don't want the RAII functionality for some 1254 /// reason. 1255 class OpaqueValueMappingData { 1256 const OpaqueValueExpr *OpaqueValue; 1257 bool BoundLValue; 1258 CodeGenFunction::PeepholeProtection Protection; 1259 1260 OpaqueValueMappingData(const OpaqueValueExpr *ov, 1261 bool boundLValue) 1262 : OpaqueValue(ov), BoundLValue(boundLValue) {} 1263 public: 1264 OpaqueValueMappingData() : OpaqueValue(nullptr) {} 1265 1266 static bool shouldBindAsLValue(const Expr *expr) { 1267 // gl-values should be bound as l-values for obvious reasons. 1268 // Records should be bound as l-values because IR generation 1269 // always keeps them in memory. Expressions of function type 1270 // act exactly like l-values but are formally required to be 1271 // r-values in C. 1272 return expr->isGLValue() || 1273 expr->getType()->isFunctionType() || 1274 hasAggregateEvaluationKind(expr->getType()); 1275 } 1276 1277 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1278 const OpaqueValueExpr *ov, 1279 const Expr *e) { 1280 if (shouldBindAsLValue(ov)) 1281 return bind(CGF, ov, CGF.EmitLValue(e)); 1282 return bind(CGF, ov, CGF.EmitAnyExpr(e)); 1283 } 1284 1285 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1286 const OpaqueValueExpr *ov, 1287 const LValue &lv) { 1288 assert(shouldBindAsLValue(ov)); 1289 CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); 1290 return OpaqueValueMappingData(ov, true); 1291 } 1292 1293 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1294 const OpaqueValueExpr *ov, 1295 const RValue &rv) { 1296 assert(!shouldBindAsLValue(ov)); 1297 CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); 1298 1299 OpaqueValueMappingData data(ov, false); 1300 1301 // Work around an extremely aggressive peephole optimization in 1302 // EmitScalarConversion which assumes that all other uses of a 1303 // value are extant. 1304 data.Protection = CGF.protectFromPeepholes(rv); 1305 1306 return data; 1307 } 1308 1309 bool isValid() const { return OpaqueValue != nullptr; } 1310 void clear() { OpaqueValue = nullptr; } 1311 1312 void unbind(CodeGenFunction &CGF) { 1313 assert(OpaqueValue && "no data to unbind!"); 1314 1315 if (BoundLValue) { 1316 CGF.OpaqueLValues.erase(OpaqueValue); 1317 } else { 1318 CGF.OpaqueRValues.erase(OpaqueValue); 1319 CGF.unprotectFromPeepholes(Protection); 1320 } 1321 } 1322 }; 1323 1324 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 1325 class OpaqueValueMapping { 1326 CodeGenFunction &CGF; 1327 OpaqueValueMappingData Data; 1328 1329 public: 1330 static bool shouldBindAsLValue(const Expr *expr) { 1331 return OpaqueValueMappingData::shouldBindAsLValue(expr); 1332 } 1333 1334 /// Build the opaque value mapping for the given conditional 1335 /// operator if it's the GNU ?: extension. This is a common 1336 /// enough pattern that the convenience operator is really 1337 /// helpful. 1338 /// 1339 OpaqueValueMapping(CodeGenFunction &CGF, 1340 const AbstractConditionalOperator *op) : CGF(CGF) { 1341 if (isa<ConditionalOperator>(op)) 1342 // Leave Data empty. 1343 return; 1344 1345 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 1346 Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), 1347 e->getCommon()); 1348 } 1349 1350 /// Build the opaque value mapping for an OpaqueValueExpr whose source 1351 /// expression is set to the expression the OVE represents. 1352 OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV) 1353 : CGF(CGF) { 1354 if (OV) { 1355 assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used " 1356 "for OVE with no source expression"); 1357 Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr()); 1358 } 1359 } 1360 1361 OpaqueValueMapping(CodeGenFunction &CGF, 1362 const OpaqueValueExpr *opaqueValue, 1363 LValue lvalue) 1364 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { 1365 } 1366 1367 OpaqueValueMapping(CodeGenFunction &CGF, 1368 const OpaqueValueExpr *opaqueValue, 1369 RValue rvalue) 1370 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { 1371 } 1372 1373 void pop() { 1374 Data.unbind(CGF); 1375 Data.clear(); 1376 } 1377 1378 ~OpaqueValueMapping() { 1379 if (Data.isValid()) Data.unbind(CGF); 1380 } 1381 }; 1382 1383 private: 1384 CGDebugInfo *DebugInfo; 1385 /// Used to create unique names for artificial VLA size debug info variables. 1386 unsigned VLAExprCounter = 0; 1387 bool DisableDebugInfo = false; 1388 1389 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 1390 /// calling llvm.stacksave for multiple VLAs in the same scope. 1391 bool DidCallStackSave = false; 1392 1393 /// IndirectBranch - The first time an indirect goto is seen we create a block 1394 /// with an indirect branch. Every time we see the address of a label taken, 1395 /// we add the label to the indirect goto. Every subsequent indirect goto is 1396 /// codegen'd as a jump to the IndirectBranch's basic block. 1397 llvm::IndirectBrInst *IndirectBranch = nullptr; 1398 1399 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 1400 /// decls. 1401 DeclMapTy LocalDeclMap; 1402 1403 // Keep track of the cleanups for callee-destructed parameters pushed to the 1404 // cleanup stack so that they can be deactivated later. 1405 llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator> 1406 CalleeDestructedParamCleanups; 1407 1408 /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this 1409 /// will contain a mapping from said ParmVarDecl to its implicit "object_size" 1410 /// parameter. 1411 llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2> 1412 SizeArguments; 1413 1414 /// Track escaped local variables with auto storage. Used during SEH 1415 /// outlining to produce a call to llvm.localescape. 1416 llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals; 1417 1418 /// LabelMap - This keeps track of the LLVM basic block for each C label. 1419 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 1420 1421 // BreakContinueStack - This keeps track of where break and continue 1422 // statements should jump to. 1423 struct BreakContinue { 1424 BreakContinue(JumpDest Break, JumpDest Continue) 1425 : BreakBlock(Break), ContinueBlock(Continue) {} 1426 1427 JumpDest BreakBlock; 1428 JumpDest ContinueBlock; 1429 }; 1430 SmallVector<BreakContinue, 8> BreakContinueStack; 1431 1432 /// Handles cancellation exit points in OpenMP-related constructs. 1433 class OpenMPCancelExitStack { 1434 /// Tracks cancellation exit point and join point for cancel-related exit 1435 /// and normal exit. 1436 struct CancelExit { 1437 CancelExit() = default; 1438 CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock, 1439 JumpDest ContBlock) 1440 : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {} 1441 OpenMPDirectiveKind Kind = llvm::omp::OMPD_unknown; 1442 /// true if the exit block has been emitted already by the special 1443 /// emitExit() call, false if the default codegen is used. 1444 bool HasBeenEmitted = false; 1445 JumpDest ExitBlock; 1446 JumpDest ContBlock; 1447 }; 1448 1449 SmallVector<CancelExit, 8> Stack; 1450 1451 public: 1452 OpenMPCancelExitStack() : Stack(1) {} 1453 ~OpenMPCancelExitStack() = default; 1454 /// Fetches the exit block for the current OpenMP construct. 1455 JumpDest getExitBlock() const { return Stack.back().ExitBlock; } 1456 /// Emits exit block with special codegen procedure specific for the related 1457 /// OpenMP construct + emits code for normal construct cleanup. 1458 void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 1459 const llvm::function_ref<void(CodeGenFunction &)> CodeGen) { 1460 if (Stack.back().Kind == Kind && getExitBlock().isValid()) { 1461 assert(CGF.getOMPCancelDestination(Kind).isValid()); 1462 assert(CGF.HaveInsertPoint()); 1463 assert(!Stack.back().HasBeenEmitted); 1464 auto IP = CGF.Builder.saveAndClearIP(); 1465 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1466 CodeGen(CGF); 1467 CGF.EmitBranch(Stack.back().ContBlock.getBlock()); 1468 CGF.Builder.restoreIP(IP); 1469 Stack.back().HasBeenEmitted = true; 1470 } 1471 CodeGen(CGF); 1472 } 1473 /// Enter the cancel supporting \a Kind construct. 1474 /// \param Kind OpenMP directive that supports cancel constructs. 1475 /// \param HasCancel true, if the construct has inner cancel directive, 1476 /// false otherwise. 1477 void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) { 1478 Stack.push_back({Kind, 1479 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit") 1480 : JumpDest(), 1481 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont") 1482 : JumpDest()}); 1483 } 1484 /// Emits default exit point for the cancel construct (if the special one 1485 /// has not be used) + join point for cancel/normal exits. 1486 void exit(CodeGenFunction &CGF) { 1487 if (getExitBlock().isValid()) { 1488 assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid()); 1489 bool HaveIP = CGF.HaveInsertPoint(); 1490 if (!Stack.back().HasBeenEmitted) { 1491 if (HaveIP) 1492 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1493 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1494 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1495 } 1496 CGF.EmitBlock(Stack.back().ContBlock.getBlock()); 1497 if (!HaveIP) { 1498 CGF.Builder.CreateUnreachable(); 1499 CGF.Builder.ClearInsertionPoint(); 1500 } 1501 } 1502 Stack.pop_back(); 1503 } 1504 }; 1505 OpenMPCancelExitStack OMPCancelStack; 1506 1507 /// Lower the Likelihood knowledge about the \p Cond via llvm.expect intrin. 1508 llvm::Value *emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond, 1509 Stmt::Likelihood LH); 1510 1511 CodeGenPGO PGO; 1512 1513 /// Calculate branch weights appropriate for PGO data 1514 llvm::MDNode *createProfileWeights(uint64_t TrueCount, 1515 uint64_t FalseCount) const; 1516 llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights) const; 1517 llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond, 1518 uint64_t LoopCount) const; 1519 1520 public: 1521 /// Increment the profiler's counter for the given statement by \p StepV. 1522 /// If \p StepV is null, the default increment is 1. 1523 void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) { 1524 if (CGM.getCodeGenOpts().hasProfileClangInstr() && 1525 !CurFn->hasFnAttribute(llvm::Attribute::NoProfile)) 1526 PGO.emitCounterIncrement(Builder, S, StepV); 1527 PGO.setCurrentStmt(S); 1528 } 1529 1530 /// Get the profiler's count for the given statement. 1531 uint64_t getProfileCount(const Stmt *S) { 1532 Optional<uint64_t> Count = PGO.getStmtCount(S); 1533 if (!Count.hasValue()) 1534 return 0; 1535 return *Count; 1536 } 1537 1538 /// Set the profiler's current count. 1539 void setCurrentProfileCount(uint64_t Count) { 1540 PGO.setCurrentRegionCount(Count); 1541 } 1542 1543 /// Get the profiler's current count. This is generally the count for the most 1544 /// recently incremented counter. 1545 uint64_t getCurrentProfileCount() { 1546 return PGO.getCurrentRegionCount(); 1547 } 1548 1549 private: 1550 1551 /// SwitchInsn - This is nearest current switch instruction. It is null if 1552 /// current context is not in a switch. 1553 llvm::SwitchInst *SwitchInsn = nullptr; 1554 /// The branch weights of SwitchInsn when doing instrumentation based PGO. 1555 SmallVector<uint64_t, 16> *SwitchWeights = nullptr; 1556 1557 /// The likelihood attributes of the SwitchCase. 1558 SmallVector<Stmt::Likelihood, 16> *SwitchLikelihood = nullptr; 1559 1560 /// CaseRangeBlock - This block holds if condition check for last case 1561 /// statement range in current switch instruction. 1562 llvm::BasicBlock *CaseRangeBlock = nullptr; 1563 1564 /// OpaqueLValues - Keeps track of the current set of opaque value 1565 /// expressions. 1566 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 1567 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 1568 1569 // VLASizeMap - This keeps track of the associated size for each VLA type. 1570 // We track this by the size expression rather than the type itself because 1571 // in certain situations, like a const qualifier applied to an VLA typedef, 1572 // multiple VLA types can share the same size expression. 1573 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 1574 // enter/leave scopes. 1575 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 1576 1577 /// A block containing a single 'unreachable' instruction. Created 1578 /// lazily by getUnreachableBlock(). 1579 llvm::BasicBlock *UnreachableBlock = nullptr; 1580 1581 /// Counts of the number return expressions in the function. 1582 unsigned NumReturnExprs = 0; 1583 1584 /// Count the number of simple (constant) return expressions in the function. 1585 unsigned NumSimpleReturnExprs = 0; 1586 1587 /// The last regular (non-return) debug location (breakpoint) in the function. 1588 SourceLocation LastStopPoint; 1589 1590 public: 1591 /// Source location information about the default argument or member 1592 /// initializer expression we're evaluating, if any. 1593 CurrentSourceLocExprScope CurSourceLocExprScope; 1594 using SourceLocExprScopeGuard = 1595 CurrentSourceLocExprScope::SourceLocExprScopeGuard; 1596 1597 /// A scope within which we are constructing the fields of an object which 1598 /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use 1599 /// if we need to evaluate a CXXDefaultInitExpr within the evaluation. 1600 class FieldConstructionScope { 1601 public: 1602 FieldConstructionScope(CodeGenFunction &CGF, Address This) 1603 : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) { 1604 CGF.CXXDefaultInitExprThis = This; 1605 } 1606 ~FieldConstructionScope() { 1607 CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis; 1608 } 1609 1610 private: 1611 CodeGenFunction &CGF; 1612 Address OldCXXDefaultInitExprThis; 1613 }; 1614 1615 /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this' 1616 /// is overridden to be the object under construction. 1617 class CXXDefaultInitExprScope { 1618 public: 1619 CXXDefaultInitExprScope(CodeGenFunction &CGF, const CXXDefaultInitExpr *E) 1620 : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue), 1621 OldCXXThisAlignment(CGF.CXXThisAlignment), 1622 SourceLocScope(E, CGF.CurSourceLocExprScope) { 1623 CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer(); 1624 CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment(); 1625 } 1626 ~CXXDefaultInitExprScope() { 1627 CGF.CXXThisValue = OldCXXThisValue; 1628 CGF.CXXThisAlignment = OldCXXThisAlignment; 1629 } 1630 1631 public: 1632 CodeGenFunction &CGF; 1633 llvm::Value *OldCXXThisValue; 1634 CharUnits OldCXXThisAlignment; 1635 SourceLocExprScopeGuard SourceLocScope; 1636 }; 1637 1638 struct CXXDefaultArgExprScope : SourceLocExprScopeGuard { 1639 CXXDefaultArgExprScope(CodeGenFunction &CGF, const CXXDefaultArgExpr *E) 1640 : SourceLocExprScopeGuard(E, CGF.CurSourceLocExprScope) {} 1641 }; 1642 1643 /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the 1644 /// current loop index is overridden. 1645 class ArrayInitLoopExprScope { 1646 public: 1647 ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index) 1648 : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) { 1649 CGF.ArrayInitIndex = Index; 1650 } 1651 ~ArrayInitLoopExprScope() { 1652 CGF.ArrayInitIndex = OldArrayInitIndex; 1653 } 1654 1655 private: 1656 CodeGenFunction &CGF; 1657 llvm::Value *OldArrayInitIndex; 1658 }; 1659 1660 class InlinedInheritingConstructorScope { 1661 public: 1662 InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD) 1663 : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl), 1664 OldCurCodeDecl(CGF.CurCodeDecl), 1665 OldCXXABIThisDecl(CGF.CXXABIThisDecl), 1666 OldCXXABIThisValue(CGF.CXXABIThisValue), 1667 OldCXXThisValue(CGF.CXXThisValue), 1668 OldCXXABIThisAlignment(CGF.CXXABIThisAlignment), 1669 OldCXXThisAlignment(CGF.CXXThisAlignment), 1670 OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy), 1671 OldCXXInheritedCtorInitExprArgs( 1672 std::move(CGF.CXXInheritedCtorInitExprArgs)) { 1673 CGF.CurGD = GD; 1674 CGF.CurFuncDecl = CGF.CurCodeDecl = 1675 cast<CXXConstructorDecl>(GD.getDecl()); 1676 CGF.CXXABIThisDecl = nullptr; 1677 CGF.CXXABIThisValue = nullptr; 1678 CGF.CXXThisValue = nullptr; 1679 CGF.CXXABIThisAlignment = CharUnits(); 1680 CGF.CXXThisAlignment = CharUnits(); 1681 CGF.ReturnValue = Address::invalid(); 1682 CGF.FnRetTy = QualType(); 1683 CGF.CXXInheritedCtorInitExprArgs.clear(); 1684 } 1685 ~InlinedInheritingConstructorScope() { 1686 CGF.CurGD = OldCurGD; 1687 CGF.CurFuncDecl = OldCurFuncDecl; 1688 CGF.CurCodeDecl = OldCurCodeDecl; 1689 CGF.CXXABIThisDecl = OldCXXABIThisDecl; 1690 CGF.CXXABIThisValue = OldCXXABIThisValue; 1691 CGF.CXXThisValue = OldCXXThisValue; 1692 CGF.CXXABIThisAlignment = OldCXXABIThisAlignment; 1693 CGF.CXXThisAlignment = OldCXXThisAlignment; 1694 CGF.ReturnValue = OldReturnValue; 1695 CGF.FnRetTy = OldFnRetTy; 1696 CGF.CXXInheritedCtorInitExprArgs = 1697 std::move(OldCXXInheritedCtorInitExprArgs); 1698 } 1699 1700 private: 1701 CodeGenFunction &CGF; 1702 GlobalDecl OldCurGD; 1703 const Decl *OldCurFuncDecl; 1704 const Decl *OldCurCodeDecl; 1705 ImplicitParamDecl *OldCXXABIThisDecl; 1706 llvm::Value *OldCXXABIThisValue; 1707 llvm::Value *OldCXXThisValue; 1708 CharUnits OldCXXABIThisAlignment; 1709 CharUnits OldCXXThisAlignment; 1710 Address OldReturnValue; 1711 QualType OldFnRetTy; 1712 CallArgList OldCXXInheritedCtorInitExprArgs; 1713 }; 1714 1715 // Helper class for the OpenMP IR Builder. Allows reusability of code used for 1716 // region body, and finalization codegen callbacks. This will class will also 1717 // contain privatization functions used by the privatization call backs 1718 // 1719 // TODO: this is temporary class for things that are being moved out of 1720 // CGOpenMPRuntime, new versions of current CodeGenFunction methods, or 1721 // utility function for use with the OMPBuilder. Once that move to use the 1722 // OMPBuilder is done, everything here will either become part of CodeGenFunc. 1723 // directly, or a new helper class that will contain functions used by both 1724 // this and the OMPBuilder 1725 1726 struct OMPBuilderCBHelpers { 1727 1728 OMPBuilderCBHelpers() = delete; 1729 OMPBuilderCBHelpers(const OMPBuilderCBHelpers &) = delete; 1730 OMPBuilderCBHelpers &operator=(const OMPBuilderCBHelpers &) = delete; 1731 1732 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 1733 1734 /// Cleanup action for allocate support. 1735 class OMPAllocateCleanupTy final : public EHScopeStack::Cleanup { 1736 1737 private: 1738 llvm::CallInst *RTLFnCI; 1739 1740 public: 1741 OMPAllocateCleanupTy(llvm::CallInst *RLFnCI) : RTLFnCI(RLFnCI) { 1742 RLFnCI->removeFromParent(); 1743 } 1744 1745 void Emit(CodeGenFunction &CGF, Flags /*flags*/) override { 1746 if (!CGF.HaveInsertPoint()) 1747 return; 1748 CGF.Builder.Insert(RTLFnCI); 1749 } 1750 }; 1751 1752 /// Returns address of the threadprivate variable for the current 1753 /// thread. This Also create any necessary OMP runtime calls. 1754 /// 1755 /// \param VD VarDecl for Threadprivate variable. 1756 /// \param VDAddr Address of the Vardecl 1757 /// \param Loc The location where the barrier directive was encountered 1758 static Address getAddrOfThreadPrivate(CodeGenFunction &CGF, 1759 const VarDecl *VD, Address VDAddr, 1760 SourceLocation Loc); 1761 1762 /// Gets the OpenMP-specific address of the local variable /p VD. 1763 static Address getAddressOfLocalVariable(CodeGenFunction &CGF, 1764 const VarDecl *VD); 1765 /// Get the platform-specific name separator. 1766 /// \param Parts different parts of the final name that needs separation 1767 /// \param FirstSeparator First separator used between the initial two 1768 /// parts of the name. 1769 /// \param Separator separator used between all of the rest consecutinve 1770 /// parts of the name 1771 static std::string getNameWithSeparators(ArrayRef<StringRef> Parts, 1772 StringRef FirstSeparator = ".", 1773 StringRef Separator = "."); 1774 /// Emit the Finalization for an OMP region 1775 /// \param CGF The Codegen function this belongs to 1776 /// \param IP Insertion point for generating the finalization code. 1777 static void FinalizeOMPRegion(CodeGenFunction &CGF, InsertPointTy IP) { 1778 CGBuilderTy::InsertPointGuard IPG(CGF.Builder); 1779 assert(IP.getBlock()->end() != IP.getPoint() && 1780 "OpenMP IR Builder should cause terminated block!"); 1781 1782 llvm::BasicBlock *IPBB = IP.getBlock(); 1783 llvm::BasicBlock *DestBB = IPBB->getUniqueSuccessor(); 1784 assert(DestBB && "Finalization block should have one successor!"); 1785 1786 // erase and replace with cleanup branch. 1787 IPBB->getTerminator()->eraseFromParent(); 1788 CGF.Builder.SetInsertPoint(IPBB); 1789 CodeGenFunction::JumpDest Dest = CGF.getJumpDestInCurrentScope(DestBB); 1790 CGF.EmitBranchThroughCleanup(Dest); 1791 } 1792 1793 /// Emit the body of an OMP region 1794 /// \param CGF The Codegen function this belongs to 1795 /// \param RegionBodyStmt The body statement for the OpenMP region being 1796 /// generated 1797 /// \param CodeGenIP Insertion point for generating the body code. 1798 /// \param FiniBB The finalization basic block 1799 static void EmitOMPRegionBody(CodeGenFunction &CGF, 1800 const Stmt *RegionBodyStmt, 1801 InsertPointTy CodeGenIP, 1802 llvm::BasicBlock &FiniBB) { 1803 llvm::BasicBlock *CodeGenIPBB = CodeGenIP.getBlock(); 1804 if (llvm::Instruction *CodeGenIPBBTI = CodeGenIPBB->getTerminator()) 1805 CodeGenIPBBTI->eraseFromParent(); 1806 1807 CGF.Builder.SetInsertPoint(CodeGenIPBB); 1808 1809 CGF.EmitStmt(RegionBodyStmt); 1810 1811 if (CGF.Builder.saveIP().isSet()) 1812 CGF.Builder.CreateBr(&FiniBB); 1813 } 1814 1815 static void EmitCaptureStmt(CodeGenFunction &CGF, InsertPointTy CodeGenIP, 1816 llvm::BasicBlock &FiniBB, llvm::Function *Fn, 1817 ArrayRef<llvm::Value *> Args) { 1818 llvm::BasicBlock *CodeGenIPBB = CodeGenIP.getBlock(); 1819 if (llvm::Instruction *CodeGenIPBBTI = CodeGenIPBB->getTerminator()) 1820 CodeGenIPBBTI->eraseFromParent(); 1821 1822 CGF.Builder.SetInsertPoint(CodeGenIPBB); 1823 1824 if (Fn->doesNotThrow()) 1825 CGF.EmitNounwindRuntimeCall(Fn, Args); 1826 else 1827 CGF.EmitRuntimeCall(Fn, Args); 1828 1829 if (CGF.Builder.saveIP().isSet()) 1830 CGF.Builder.CreateBr(&FiniBB); 1831 } 1832 1833 /// RAII for preserving necessary info during Outlined region body codegen. 1834 class OutlinedRegionBodyRAII { 1835 1836 llvm::AssertingVH<llvm::Instruction> OldAllocaIP; 1837 CodeGenFunction::JumpDest OldReturnBlock; 1838 CGBuilderTy::InsertPoint IP; 1839 CodeGenFunction &CGF; 1840 1841 public: 1842 OutlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP, 1843 llvm::BasicBlock &RetBB) 1844 : CGF(cgf) { 1845 assert(AllocaIP.isSet() && 1846 "Must specify Insertion point for allocas of outlined function"); 1847 OldAllocaIP = CGF.AllocaInsertPt; 1848 CGF.AllocaInsertPt = &*AllocaIP.getPoint(); 1849 IP = CGF.Builder.saveIP(); 1850 1851 OldReturnBlock = CGF.ReturnBlock; 1852 CGF.ReturnBlock = CGF.getJumpDestInCurrentScope(&RetBB); 1853 } 1854 1855 ~OutlinedRegionBodyRAII() { 1856 CGF.AllocaInsertPt = OldAllocaIP; 1857 CGF.ReturnBlock = OldReturnBlock; 1858 CGF.Builder.restoreIP(IP); 1859 } 1860 }; 1861 1862 /// RAII for preserving necessary info during inlined region body codegen. 1863 class InlinedRegionBodyRAII { 1864 1865 llvm::AssertingVH<llvm::Instruction> OldAllocaIP; 1866 CodeGenFunction &CGF; 1867 1868 public: 1869 InlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP, 1870 llvm::BasicBlock &FiniBB) 1871 : CGF(cgf) { 1872 // Alloca insertion block should be in the entry block of the containing 1873 // function so it expects an empty AllocaIP in which case will reuse the 1874 // old alloca insertion point, or a new AllocaIP in the same block as 1875 // the old one 1876 assert((!AllocaIP.isSet() || 1877 CGF.AllocaInsertPt->getParent() == AllocaIP.getBlock()) && 1878 "Insertion point should be in the entry block of containing " 1879 "function!"); 1880 OldAllocaIP = CGF.AllocaInsertPt; 1881 if (AllocaIP.isSet()) 1882 CGF.AllocaInsertPt = &*AllocaIP.getPoint(); 1883 1884 // TODO: Remove the call, after making sure the counter is not used by 1885 // the EHStack. 1886 // Since this is an inlined region, it should not modify the 1887 // ReturnBlock, and should reuse the one for the enclosing outlined 1888 // region. So, the JumpDest being return by the function is discarded 1889 (void)CGF.getJumpDestInCurrentScope(&FiniBB); 1890 } 1891 1892 ~InlinedRegionBodyRAII() { CGF.AllocaInsertPt = OldAllocaIP; } 1893 }; 1894 }; 1895 1896 private: 1897 /// CXXThisDecl - When generating code for a C++ member function, 1898 /// this will hold the implicit 'this' declaration. 1899 ImplicitParamDecl *CXXABIThisDecl = nullptr; 1900 llvm::Value *CXXABIThisValue = nullptr; 1901 llvm::Value *CXXThisValue = nullptr; 1902 CharUnits CXXABIThisAlignment; 1903 CharUnits CXXThisAlignment; 1904 1905 /// The value of 'this' to use when evaluating CXXDefaultInitExprs within 1906 /// this expression. 1907 Address CXXDefaultInitExprThis = Address::invalid(); 1908 1909 /// The current array initialization index when evaluating an 1910 /// ArrayInitIndexExpr within an ArrayInitLoopExpr. 1911 llvm::Value *ArrayInitIndex = nullptr; 1912 1913 /// The values of function arguments to use when evaluating 1914 /// CXXInheritedCtorInitExprs within this context. 1915 CallArgList CXXInheritedCtorInitExprArgs; 1916 1917 /// CXXStructorImplicitParamDecl - When generating code for a constructor or 1918 /// destructor, this will hold the implicit argument (e.g. VTT). 1919 ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr; 1920 llvm::Value *CXXStructorImplicitParamValue = nullptr; 1921 1922 /// OutermostConditional - Points to the outermost active 1923 /// conditional control. This is used so that we know if a 1924 /// temporary should be destroyed conditionally. 1925 ConditionalEvaluation *OutermostConditional = nullptr; 1926 1927 /// The current lexical scope. 1928 LexicalScope *CurLexicalScope = nullptr; 1929 1930 /// The current source location that should be used for exception 1931 /// handling code. 1932 SourceLocation CurEHLocation; 1933 1934 /// BlockByrefInfos - For each __block variable, contains 1935 /// information about the layout of the variable. 1936 llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos; 1937 1938 /// Used by -fsanitize=nullability-return to determine whether the return 1939 /// value can be checked. 1940 llvm::Value *RetValNullabilityPrecondition = nullptr; 1941 1942 /// Check if -fsanitize=nullability-return instrumentation is required for 1943 /// this function. 1944 bool requiresReturnValueNullabilityCheck() const { 1945 return RetValNullabilityPrecondition; 1946 } 1947 1948 /// Used to store precise source locations for return statements by the 1949 /// runtime return value checks. 1950 Address ReturnLocation = Address::invalid(); 1951 1952 /// Check if the return value of this function requires sanitization. 1953 bool requiresReturnValueCheck() const; 1954 1955 llvm::BasicBlock *TerminateLandingPad = nullptr; 1956 llvm::BasicBlock *TerminateHandler = nullptr; 1957 llvm::SmallVector<llvm::BasicBlock *, 2> TrapBBs; 1958 1959 /// Terminate funclets keyed by parent funclet pad. 1960 llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets; 1961 1962 /// Largest vector width used in ths function. Will be used to create a 1963 /// function attribute. 1964 unsigned LargestVectorWidth = 0; 1965 1966 /// True if we need emit the life-time markers. This is initially set in 1967 /// the constructor, but could be overwritten to true if this is a coroutine. 1968 bool ShouldEmitLifetimeMarkers; 1969 1970 /// Add OpenCL kernel arg metadata and the kernel attribute metadata to 1971 /// the function metadata. 1972 void EmitOpenCLKernelMetadata(const FunctionDecl *FD, 1973 llvm::Function *Fn); 1974 1975 public: 1976 CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false); 1977 ~CodeGenFunction(); 1978 1979 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 1980 ASTContext &getContext() const { return CGM.getContext(); } 1981 CGDebugInfo *getDebugInfo() { 1982 if (DisableDebugInfo) 1983 return nullptr; 1984 return DebugInfo; 1985 } 1986 void disableDebugInfo() { DisableDebugInfo = true; } 1987 void enableDebugInfo() { DisableDebugInfo = false; } 1988 1989 bool shouldUseFusedARCCalls() { 1990 return CGM.getCodeGenOpts().OptimizationLevel == 0; 1991 } 1992 1993 const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } 1994 1995 /// Returns a pointer to the function's exception object and selector slot, 1996 /// which is assigned in every landing pad. 1997 Address getExceptionSlot(); 1998 Address getEHSelectorSlot(); 1999 2000 /// Returns the contents of the function's exception object and selector 2001 /// slots. 2002 llvm::Value *getExceptionFromSlot(); 2003 llvm::Value *getSelectorFromSlot(); 2004 2005 Address getNormalCleanupDestSlot(); 2006 2007 llvm::BasicBlock *getUnreachableBlock() { 2008 if (!UnreachableBlock) { 2009 UnreachableBlock = createBasicBlock("unreachable"); 2010 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 2011 } 2012 return UnreachableBlock; 2013 } 2014 2015 llvm::BasicBlock *getInvokeDest() { 2016 if (!EHStack.requiresLandingPad()) return nullptr; 2017 return getInvokeDestImpl(); 2018 } 2019 2020 bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; } 2021 2022 const TargetInfo &getTarget() const { return Target; } 2023 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 2024 const TargetCodeGenInfo &getTargetHooks() const { 2025 return CGM.getTargetCodeGenInfo(); 2026 } 2027 2028 //===--------------------------------------------------------------------===// 2029 // Cleanups 2030 //===--------------------------------------------------------------------===// 2031 2032 typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty); 2033 2034 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 2035 Address arrayEndPointer, 2036 QualType elementType, 2037 CharUnits elementAlignment, 2038 Destroyer *destroyer); 2039 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 2040 llvm::Value *arrayEnd, 2041 QualType elementType, 2042 CharUnits elementAlignment, 2043 Destroyer *destroyer); 2044 2045 void pushDestroy(QualType::DestructionKind dtorKind, 2046 Address addr, QualType type); 2047 void pushEHDestroy(QualType::DestructionKind dtorKind, 2048 Address addr, QualType type); 2049 void pushDestroy(CleanupKind kind, Address addr, QualType type, 2050 Destroyer *destroyer, bool useEHCleanupForArray); 2051 void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr, 2052 QualType type, Destroyer *destroyer, 2053 bool useEHCleanupForArray); 2054 void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 2055 llvm::Value *CompletePtr, 2056 QualType ElementType); 2057 void pushStackRestore(CleanupKind kind, Address SPMem); 2058 void emitDestroy(Address addr, QualType type, Destroyer *destroyer, 2059 bool useEHCleanupForArray); 2060 llvm::Function *generateDestroyHelper(Address addr, QualType type, 2061 Destroyer *destroyer, 2062 bool useEHCleanupForArray, 2063 const VarDecl *VD); 2064 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 2065 QualType elementType, CharUnits elementAlign, 2066 Destroyer *destroyer, 2067 bool checkZeroLength, bool useEHCleanup); 2068 2069 Destroyer *getDestroyer(QualType::DestructionKind destructionKind); 2070 2071 /// Determines whether an EH cleanup is required to destroy a type 2072 /// with the given destruction kind. 2073 bool needsEHCleanup(QualType::DestructionKind kind) { 2074 switch (kind) { 2075 case QualType::DK_none: 2076 return false; 2077 case QualType::DK_cxx_destructor: 2078 case QualType::DK_objc_weak_lifetime: 2079 case QualType::DK_nontrivial_c_struct: 2080 return getLangOpts().Exceptions; 2081 case QualType::DK_objc_strong_lifetime: 2082 return getLangOpts().Exceptions && 2083 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 2084 } 2085 llvm_unreachable("bad destruction kind"); 2086 } 2087 2088 CleanupKind getCleanupKind(QualType::DestructionKind kind) { 2089 return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); 2090 } 2091 2092 //===--------------------------------------------------------------------===// 2093 // Objective-C 2094 //===--------------------------------------------------------------------===// 2095 2096 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 2097 2098 void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD); 2099 2100 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 2101 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 2102 const ObjCPropertyImplDecl *PID); 2103 void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 2104 const ObjCPropertyImplDecl *propImpl, 2105 const ObjCMethodDecl *GetterMothodDecl, 2106 llvm::Constant *AtomicHelperFn); 2107 2108 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 2109 ObjCMethodDecl *MD, bool ctor); 2110 2111 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 2112 /// for the given property. 2113 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 2114 const ObjCPropertyImplDecl *PID); 2115 void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 2116 const ObjCPropertyImplDecl *propImpl, 2117 llvm::Constant *AtomicHelperFn); 2118 2119 //===--------------------------------------------------------------------===// 2120 // Block Bits 2121 //===--------------------------------------------------------------------===// 2122 2123 /// Emit block literal. 2124 /// \return an LLVM value which is a pointer to a struct which contains 2125 /// information about the block, including the block invoke function, the 2126 /// captured variables, etc. 2127 llvm::Value *EmitBlockLiteral(const BlockExpr *); 2128 2129 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 2130 const CGBlockInfo &Info, 2131 const DeclMapTy &ldm, 2132 bool IsLambdaConversionToBlock, 2133 bool BuildGlobalBlock); 2134 2135 /// Check if \p T is a C++ class that has a destructor that can throw. 2136 static bool cxxDestructorCanThrow(QualType T); 2137 2138 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 2139 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 2140 llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( 2141 const ObjCPropertyImplDecl *PID); 2142 llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( 2143 const ObjCPropertyImplDecl *PID); 2144 llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); 2145 2146 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags, 2147 bool CanThrow); 2148 2149 class AutoVarEmission; 2150 2151 void emitByrefStructureInit(const AutoVarEmission &emission); 2152 2153 /// Enter a cleanup to destroy a __block variable. Note that this 2154 /// cleanup should be a no-op if the variable hasn't left the stack 2155 /// yet; if a cleanup is required for the variable itself, that needs 2156 /// to be done externally. 2157 /// 2158 /// \param Kind Cleanup kind. 2159 /// 2160 /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block 2161 /// structure that will be passed to _Block_object_dispose. When 2162 /// \p LoadBlockVarAddr is true, the address of the field of the block 2163 /// structure that holds the address of the __block structure. 2164 /// 2165 /// \param Flags The flag that will be passed to _Block_object_dispose. 2166 /// 2167 /// \param LoadBlockVarAddr Indicates whether we need to emit a load from 2168 /// \p Addr to get the address of the __block structure. 2169 void enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags, 2170 bool LoadBlockVarAddr, bool CanThrow); 2171 2172 void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum, 2173 llvm::Value *ptr); 2174 2175 Address LoadBlockStruct(); 2176 Address GetAddrOfBlockDecl(const VarDecl *var); 2177 2178 /// BuildBlockByrefAddress - Computes the location of the 2179 /// data in a variable which is declared as __block. 2180 Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V, 2181 bool followForward = true); 2182 Address emitBlockByrefAddress(Address baseAddr, 2183 const BlockByrefInfo &info, 2184 bool followForward, 2185 const llvm::Twine &name); 2186 2187 const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var); 2188 2189 QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args); 2190 2191 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 2192 const CGFunctionInfo &FnInfo); 2193 2194 /// Annotate the function with an attribute that disables TSan checking at 2195 /// runtime. 2196 void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn); 2197 2198 /// Emit code for the start of a function. 2199 /// \param Loc The location to be associated with the function. 2200 /// \param StartLoc The location of the function body. 2201 void StartFunction(GlobalDecl GD, 2202 QualType RetTy, 2203 llvm::Function *Fn, 2204 const CGFunctionInfo &FnInfo, 2205 const FunctionArgList &Args, 2206 SourceLocation Loc = SourceLocation(), 2207 SourceLocation StartLoc = SourceLocation()); 2208 2209 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor); 2210 2211 void EmitConstructorBody(FunctionArgList &Args); 2212 void EmitDestructorBody(FunctionArgList &Args); 2213 void emitImplicitAssignmentOperatorBody(FunctionArgList &Args); 2214 void EmitFunctionBody(const Stmt *Body); 2215 void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S); 2216 2217 void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator, 2218 CallArgList &CallArgs); 2219 void EmitLambdaBlockInvokeBody(); 2220 void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD); 2221 void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD); 2222 void EmitLambdaVLACapture(const VariableArrayType *VAT, LValue LV) { 2223 EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); 2224 } 2225 void EmitAsanPrologueOrEpilogue(bool Prologue); 2226 2227 /// Emit the unified return block, trying to avoid its emission when 2228 /// possible. 2229 /// \return The debug location of the user written return statement if the 2230 /// return block is is avoided. 2231 llvm::DebugLoc EmitReturnBlock(); 2232 2233 /// FinishFunction - Complete IR generation of the current function. It is 2234 /// legal to call this function even if there is no current insertion point. 2235 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 2236 2237 void StartThunk(llvm::Function *Fn, GlobalDecl GD, 2238 const CGFunctionInfo &FnInfo, bool IsUnprototyped); 2239 2240 void EmitCallAndReturnForThunk(llvm::FunctionCallee Callee, 2241 const ThunkInfo *Thunk, bool IsUnprototyped); 2242 2243 void FinishThunk(); 2244 2245 /// Emit a musttail call for a thunk with a potentially adjusted this pointer. 2246 void EmitMustTailThunk(GlobalDecl GD, llvm::Value *AdjustedThisPtr, 2247 llvm::FunctionCallee Callee); 2248 2249 /// Generate a thunk for the given method. 2250 void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 2251 GlobalDecl GD, const ThunkInfo &Thunk, 2252 bool IsUnprototyped); 2253 2254 llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn, 2255 const CGFunctionInfo &FnInfo, 2256 GlobalDecl GD, const ThunkInfo &Thunk); 2257 2258 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 2259 FunctionArgList &Args); 2260 2261 void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init); 2262 2263 /// Struct with all information about dynamic [sub]class needed to set vptr. 2264 struct VPtr { 2265 BaseSubobject Base; 2266 const CXXRecordDecl *NearestVBase; 2267 CharUnits OffsetFromNearestVBase; 2268 const CXXRecordDecl *VTableClass; 2269 }; 2270 2271 /// Initialize the vtable pointer of the given subobject. 2272 void InitializeVTablePointer(const VPtr &vptr); 2273 2274 typedef llvm::SmallVector<VPtr, 4> VPtrsVector; 2275 2276 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 2277 VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass); 2278 2279 void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase, 2280 CharUnits OffsetFromNearestVBase, 2281 bool BaseIsNonVirtualPrimaryBase, 2282 const CXXRecordDecl *VTableClass, 2283 VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs); 2284 2285 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 2286 2287 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 2288 /// to by This. 2289 llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy, 2290 const CXXRecordDecl *VTableClass); 2291 2292 enum CFITypeCheckKind { 2293 CFITCK_VCall, 2294 CFITCK_NVCall, 2295 CFITCK_DerivedCast, 2296 CFITCK_UnrelatedCast, 2297 CFITCK_ICall, 2298 CFITCK_NVMFCall, 2299 CFITCK_VMFCall, 2300 }; 2301 2302 /// Derived is the presumed address of an object of type T after a 2303 /// cast. If T is a polymorphic class type, emit a check that the virtual 2304 /// table for Derived belongs to a class derived from T. 2305 void EmitVTablePtrCheckForCast(QualType T, Address Derived, bool MayBeNull, 2306 CFITypeCheckKind TCK, SourceLocation Loc); 2307 2308 /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable. 2309 /// If vptr CFI is enabled, emit a check that VTable is valid. 2310 void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable, 2311 CFITypeCheckKind TCK, SourceLocation Loc); 2312 2313 /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for 2314 /// RD using llvm.type.test. 2315 void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable, 2316 CFITypeCheckKind TCK, SourceLocation Loc); 2317 2318 /// If whole-program virtual table optimization is enabled, emit an assumption 2319 /// that VTable is a member of RD's type identifier. Or, if vptr CFI is 2320 /// enabled, emit a check that VTable is a member of RD's type identifier. 2321 void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, 2322 llvm::Value *VTable, SourceLocation Loc); 2323 2324 /// Returns whether we should perform a type checked load when loading a 2325 /// virtual function for virtual calls to members of RD. This is generally 2326 /// true when both vcall CFI and whole-program-vtables are enabled. 2327 bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD); 2328 2329 /// Emit a type checked load from the given vtable. 2330 llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, 2331 llvm::Value *VTable, 2332 llvm::Type *VTableTy, 2333 uint64_t VTableByteOffset); 2334 2335 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 2336 /// given phase of destruction for a destructor. The end result 2337 /// should call destructors on members and base classes in reverse 2338 /// order of their construction. 2339 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 2340 2341 /// ShouldInstrumentFunction - Return true if the current function should be 2342 /// instrumented with __cyg_profile_func_* calls 2343 bool ShouldInstrumentFunction(); 2344 2345 /// ShouldSkipSanitizerInstrumentation - Return true if the current function 2346 /// should not be instrumented with sanitizers. 2347 bool ShouldSkipSanitizerInstrumentation(); 2348 2349 /// ShouldXRayInstrument - Return true if the current function should be 2350 /// instrumented with XRay nop sleds. 2351 bool ShouldXRayInstrumentFunction() const; 2352 2353 /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit 2354 /// XRay custom event handling calls. 2355 bool AlwaysEmitXRayCustomEvents() const; 2356 2357 /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit 2358 /// XRay typed event handling calls. 2359 bool AlwaysEmitXRayTypedEvents() const; 2360 2361 /// Encode an address into a form suitable for use in a function prologue. 2362 llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F, 2363 llvm::Constant *Addr); 2364 2365 /// Decode an address used in a function prologue, encoded by \c 2366 /// EncodeAddrForUseInPrologue. 2367 llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F, 2368 llvm::Value *EncodedAddr); 2369 2370 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 2371 /// arguments for the given function. This is also responsible for naming the 2372 /// LLVM function arguments. 2373 void EmitFunctionProlog(const CGFunctionInfo &FI, 2374 llvm::Function *Fn, 2375 const FunctionArgList &Args); 2376 2377 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 2378 /// given temporary. 2379 void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc, 2380 SourceLocation EndLoc); 2381 2382 /// Emit a test that checks if the return value \p RV is nonnull. 2383 void EmitReturnValueCheck(llvm::Value *RV); 2384 2385 /// EmitStartEHSpec - Emit the start of the exception spec. 2386 void EmitStartEHSpec(const Decl *D); 2387 2388 /// EmitEndEHSpec - Emit the end of the exception spec. 2389 void EmitEndEHSpec(const Decl *D); 2390 2391 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 2392 llvm::BasicBlock *getTerminateLandingPad(); 2393 2394 /// getTerminateLandingPad - Return a cleanup funclet that just calls 2395 /// terminate. 2396 llvm::BasicBlock *getTerminateFunclet(); 2397 2398 /// getTerminateHandler - Return a handler (not a landing pad, just 2399 /// a catch handler) that just calls terminate. This is used when 2400 /// a terminate scope encloses a try. 2401 llvm::BasicBlock *getTerminateHandler(); 2402 2403 llvm::Type *ConvertTypeForMem(QualType T); 2404 llvm::Type *ConvertType(QualType T); 2405 llvm::Type *ConvertType(const TypeDecl *T) { 2406 return ConvertType(getContext().getTypeDeclType(T)); 2407 } 2408 2409 /// LoadObjCSelf - Load the value of self. This function is only valid while 2410 /// generating code for an Objective-C method. 2411 llvm::Value *LoadObjCSelf(); 2412 2413 /// TypeOfSelfObject - Return type of object that this self represents. 2414 QualType TypeOfSelfObject(); 2415 2416 /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T. 2417 static TypeEvaluationKind getEvaluationKind(QualType T); 2418 2419 static bool hasScalarEvaluationKind(QualType T) { 2420 return getEvaluationKind(T) == TEK_Scalar; 2421 } 2422 2423 static bool hasAggregateEvaluationKind(QualType T) { 2424 return getEvaluationKind(T) == TEK_Aggregate; 2425 } 2426 2427 /// createBasicBlock - Create an LLVM basic block. 2428 llvm::BasicBlock *createBasicBlock(const Twine &name = "", 2429 llvm::Function *parent = nullptr, 2430 llvm::BasicBlock *before = nullptr) { 2431 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 2432 } 2433 2434 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 2435 /// label maps to. 2436 JumpDest getJumpDestForLabel(const LabelDecl *S); 2437 2438 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 2439 /// another basic block, simplify it. This assumes that no other code could 2440 /// potentially reference the basic block. 2441 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 2442 2443 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 2444 /// adding a fall-through branch from the current insert block if 2445 /// necessary. It is legal to call this function even if there is no current 2446 /// insertion point. 2447 /// 2448 /// IsFinished - If true, indicates that the caller has finished emitting 2449 /// branches to the given block and does not expect to emit code into it. This 2450 /// means the block can be ignored if it is unreachable. 2451 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 2452 2453 /// EmitBlockAfterUses - Emit the given block somewhere hopefully 2454 /// near its uses, and leave the insertion point in it. 2455 void EmitBlockAfterUses(llvm::BasicBlock *BB); 2456 2457 /// EmitBranch - Emit a branch to the specified basic block from the current 2458 /// insert block, taking care to avoid creation of branches from dummy 2459 /// blocks. It is legal to call this function even if there is no current 2460 /// insertion point. 2461 /// 2462 /// This function clears the current insertion point. The caller should follow 2463 /// calls to this function with calls to Emit*Block prior to generation new 2464 /// code. 2465 void EmitBranch(llvm::BasicBlock *Block); 2466 2467 /// HaveInsertPoint - True if an insertion point is defined. If not, this 2468 /// indicates that the current code being emitted is unreachable. 2469 bool HaveInsertPoint() const { 2470 return Builder.GetInsertBlock() != nullptr; 2471 } 2472 2473 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 2474 /// emitted IR has a place to go. Note that by definition, if this function 2475 /// creates a block then that block is unreachable; callers may do better to 2476 /// detect when no insertion point is defined and simply skip IR generation. 2477 void EnsureInsertPoint() { 2478 if (!HaveInsertPoint()) 2479 EmitBlock(createBasicBlock()); 2480 } 2481 2482 /// ErrorUnsupported - Print out an error that codegen doesn't support the 2483 /// specified stmt yet. 2484 void ErrorUnsupported(const Stmt *S, const char *Type); 2485 2486 //===--------------------------------------------------------------------===// 2487 // Helpers 2488 //===--------------------------------------------------------------------===// 2489 2490 LValue MakeAddrLValue(Address Addr, QualType T, 2491 AlignmentSource Source = AlignmentSource::Type) { 2492 return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source), 2493 CGM.getTBAAAccessInfo(T)); 2494 } 2495 2496 LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo, 2497 TBAAAccessInfo TBAAInfo) { 2498 return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo); 2499 } 2500 2501 LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 2502 AlignmentSource Source = AlignmentSource::Type) { 2503 Address Addr(V, ConvertTypeForMem(T), Alignment); 2504 return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source), 2505 CGM.getTBAAAccessInfo(T)); 2506 } 2507 2508 LValue 2509 MakeAddrLValueWithoutTBAA(Address Addr, QualType T, 2510 AlignmentSource Source = AlignmentSource::Type) { 2511 return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source), 2512 TBAAAccessInfo()); 2513 } 2514 2515 LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T); 2516 LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T); 2517 2518 Address EmitLoadOfReference(LValue RefLVal, 2519 LValueBaseInfo *PointeeBaseInfo = nullptr, 2520 TBAAAccessInfo *PointeeTBAAInfo = nullptr); 2521 LValue EmitLoadOfReferenceLValue(LValue RefLVal); 2522 LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy, 2523 AlignmentSource Source = 2524 AlignmentSource::Type) { 2525 LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source), 2526 CGM.getTBAAAccessInfo(RefTy)); 2527 return EmitLoadOfReferenceLValue(RefLVal); 2528 } 2529 2530 /// Load a pointer with type \p PtrTy stored at address \p Ptr. 2531 /// Note that \p PtrTy is the type of the loaded pointer, not the addresses 2532 /// it is loaded from. 2533 Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy, 2534 LValueBaseInfo *BaseInfo = nullptr, 2535 TBAAAccessInfo *TBAAInfo = nullptr); 2536 LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy); 2537 2538 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 2539 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 2540 /// insertion point of the builder. The caller is responsible for setting an 2541 /// appropriate alignment on 2542 /// the alloca. 2543 /// 2544 /// \p ArraySize is the number of array elements to be allocated if it 2545 /// is not nullptr. 2546 /// 2547 /// LangAS::Default is the address space of pointers to local variables and 2548 /// temporaries, as exposed in the source language. In certain 2549 /// configurations, this is not the same as the alloca address space, and a 2550 /// cast is needed to lift the pointer from the alloca AS into 2551 /// LangAS::Default. This can happen when the target uses a restricted 2552 /// address space for the stack but the source language requires 2553 /// LangAS::Default to be a generic address space. The latter condition is 2554 /// common for most programming languages; OpenCL is an exception in that 2555 /// LangAS::Default is the private address space, which naturally maps 2556 /// to the stack. 2557 /// 2558 /// Because the address of a temporary is often exposed to the program in 2559 /// various ways, this function will perform the cast. The original alloca 2560 /// instruction is returned through \p Alloca if it is not nullptr. 2561 /// 2562 /// The cast is not performaed in CreateTempAllocaWithoutCast. This is 2563 /// more efficient if the caller knows that the address will not be exposed. 2564 llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp", 2565 llvm::Value *ArraySize = nullptr); 2566 Address CreateTempAlloca(llvm::Type *Ty, CharUnits align, 2567 const Twine &Name = "tmp", 2568 llvm::Value *ArraySize = nullptr, 2569 Address *Alloca = nullptr); 2570 Address CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align, 2571 const Twine &Name = "tmp", 2572 llvm::Value *ArraySize = nullptr); 2573 2574 /// CreateDefaultAlignedTempAlloca - This creates an alloca with the 2575 /// default ABI alignment of the given LLVM type. 2576 /// 2577 /// IMPORTANT NOTE: This is *not* generally the right alignment for 2578 /// any given AST type that happens to have been lowered to the 2579 /// given IR type. This should only ever be used for function-local, 2580 /// IR-driven manipulations like saving and restoring a value. Do 2581 /// not hand this address off to arbitrary IRGen routines, and especially 2582 /// do not pass it as an argument to a function that might expect a 2583 /// properly ABI-aligned value. 2584 Address CreateDefaultAlignTempAlloca(llvm::Type *Ty, 2585 const Twine &Name = "tmp"); 2586 2587 /// CreateIRTemp - Create a temporary IR object of the given type, with 2588 /// appropriate alignment. This routine should only be used when an temporary 2589 /// value needs to be stored into an alloca (for example, to avoid explicit 2590 /// PHI construction), but the type is the IR type, not the type appropriate 2591 /// for storing in memory. 2592 /// 2593 /// That is, this is exactly equivalent to CreateMemTemp, but calling 2594 /// ConvertType instead of ConvertTypeForMem. 2595 Address CreateIRTemp(QualType T, const Twine &Name = "tmp"); 2596 2597 /// CreateMemTemp - Create a temporary memory object of the given type, with 2598 /// appropriate alignmen and cast it to the default address space. Returns 2599 /// the original alloca instruction by \p Alloca if it is not nullptr. 2600 Address CreateMemTemp(QualType T, const Twine &Name = "tmp", 2601 Address *Alloca = nullptr); 2602 Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp", 2603 Address *Alloca = nullptr); 2604 2605 /// CreateMemTemp - Create a temporary memory object of the given type, with 2606 /// appropriate alignmen without casting it to the default address space. 2607 Address CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp"); 2608 Address CreateMemTempWithoutCast(QualType T, CharUnits Align, 2609 const Twine &Name = "tmp"); 2610 2611 /// CreateAggTemp - Create a temporary memory object for the given 2612 /// aggregate type. 2613 AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp", 2614 Address *Alloca = nullptr) { 2615 return AggValueSlot::forAddr(CreateMemTemp(T, Name, Alloca), 2616 T.getQualifiers(), 2617 AggValueSlot::IsNotDestructed, 2618 AggValueSlot::DoesNotNeedGCBarriers, 2619 AggValueSlot::IsNotAliased, 2620 AggValueSlot::DoesNotOverlap); 2621 } 2622 2623 /// Emit a cast to void* in the appropriate address space. 2624 llvm::Value *EmitCastToVoidPtr(llvm::Value *value); 2625 2626 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 2627 /// expression and compare the result against zero, returning an Int1Ty value. 2628 llvm::Value *EvaluateExprAsBool(const Expr *E); 2629 2630 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 2631 void EmitIgnoredExpr(const Expr *E); 2632 2633 /// EmitAnyExpr - Emit code to compute the specified expression which can have 2634 /// any type. The result is returned as an RValue struct. If this is an 2635 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 2636 /// the result should be returned. 2637 /// 2638 /// \param ignoreResult True if the resulting value isn't used. 2639 RValue EmitAnyExpr(const Expr *E, 2640 AggValueSlot aggSlot = AggValueSlot::ignored(), 2641 bool ignoreResult = false); 2642 2643 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 2644 // or the value of the expression, depending on how va_list is defined. 2645 Address EmitVAListRef(const Expr *E); 2646 2647 /// Emit a "reference" to a __builtin_ms_va_list; this is 2648 /// always the value of the expression, because a __builtin_ms_va_list is a 2649 /// pointer to a char. 2650 Address EmitMSVAListRef(const Expr *E); 2651 2652 /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will 2653 /// always be accessible even if no aggregate location is provided. 2654 RValue EmitAnyExprToTemp(const Expr *E); 2655 2656 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 2657 /// arbitrary expression into the given memory location. 2658 void EmitAnyExprToMem(const Expr *E, Address Location, 2659 Qualifiers Quals, bool IsInitializer); 2660 2661 void EmitAnyExprToExn(const Expr *E, Address Addr); 2662 2663 /// EmitExprAsInit - Emits the code necessary to initialize a 2664 /// location in memory with the given initializer. 2665 void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2666 bool capturedByInit); 2667 2668 /// hasVolatileMember - returns true if aggregate type has a volatile 2669 /// member. 2670 bool hasVolatileMember(QualType T) { 2671 if (const RecordType *RT = T->getAs<RecordType>()) { 2672 const RecordDecl *RD = cast<RecordDecl>(RT->getDecl()); 2673 return RD->hasVolatileMember(); 2674 } 2675 return false; 2676 } 2677 2678 /// Determine whether a return value slot may overlap some other object. 2679 AggValueSlot::Overlap_t getOverlapForReturnValue() { 2680 // FIXME: Assuming no overlap here breaks guaranteed copy elision for base 2681 // class subobjects. These cases may need to be revisited depending on the 2682 // resolution of the relevant core issue. 2683 return AggValueSlot::DoesNotOverlap; 2684 } 2685 2686 /// Determine whether a field initialization may overlap some other object. 2687 AggValueSlot::Overlap_t getOverlapForFieldInit(const FieldDecl *FD); 2688 2689 /// Determine whether a base class initialization may overlap some other 2690 /// object. 2691 AggValueSlot::Overlap_t getOverlapForBaseInit(const CXXRecordDecl *RD, 2692 const CXXRecordDecl *BaseRD, 2693 bool IsVirtual); 2694 2695 /// Emit an aggregate assignment. 2696 void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) { 2697 bool IsVolatile = hasVolatileMember(EltTy); 2698 EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile); 2699 } 2700 2701 void EmitAggregateCopyCtor(LValue Dest, LValue Src, 2702 AggValueSlot::Overlap_t MayOverlap) { 2703 EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap); 2704 } 2705 2706 /// EmitAggregateCopy - Emit an aggregate copy. 2707 /// 2708 /// \param isVolatile \c true iff either the source or the destination is 2709 /// volatile. 2710 /// \param MayOverlap Whether the tail padding of the destination might be 2711 /// occupied by some other object. More efficient code can often be 2712 /// generated if not. 2713 void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy, 2714 AggValueSlot::Overlap_t MayOverlap, 2715 bool isVolatile = false); 2716 2717 /// GetAddrOfLocalVar - Return the address of a local variable. 2718 Address GetAddrOfLocalVar(const VarDecl *VD) { 2719 auto it = LocalDeclMap.find(VD); 2720 assert(it != LocalDeclMap.end() && 2721 "Invalid argument to GetAddrOfLocalVar(), no decl!"); 2722 return it->second; 2723 } 2724 2725 /// Given an opaque value expression, return its LValue mapping if it exists, 2726 /// otherwise create one. 2727 LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e); 2728 2729 /// Given an opaque value expression, return its RValue mapping if it exists, 2730 /// otherwise create one. 2731 RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e); 2732 2733 /// Get the index of the current ArrayInitLoopExpr, if any. 2734 llvm::Value *getArrayInitIndex() { return ArrayInitIndex; } 2735 2736 /// getAccessedFieldNo - Given an encoded value and a result number, return 2737 /// the input field number being accessed. 2738 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 2739 2740 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 2741 llvm::BasicBlock *GetIndirectGotoBlock(); 2742 2743 /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts. 2744 static bool IsWrappedCXXThis(const Expr *E); 2745 2746 /// EmitNullInitialization - Generate code to set a value of the given type to 2747 /// null, If the type contains data member pointers, they will be initialized 2748 /// to -1 in accordance with the Itanium C++ ABI. 2749 void EmitNullInitialization(Address DestPtr, QualType Ty); 2750 2751 /// Emits a call to an LLVM variable-argument intrinsic, either 2752 /// \c llvm.va_start or \c llvm.va_end. 2753 /// \param ArgValue A reference to the \c va_list as emitted by either 2754 /// \c EmitVAListRef or \c EmitMSVAListRef. 2755 /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise, 2756 /// calls \c llvm.va_end. 2757 llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart); 2758 2759 /// Generate code to get an argument from the passed in pointer 2760 /// and update it accordingly. 2761 /// \param VE The \c VAArgExpr for which to generate code. 2762 /// \param VAListAddr Receives a reference to the \c va_list as emitted by 2763 /// either \c EmitVAListRef or \c EmitMSVAListRef. 2764 /// \returns A pointer to the argument. 2765 // FIXME: We should be able to get rid of this method and use the va_arg 2766 // instruction in LLVM instead once it works well enough. 2767 Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr); 2768 2769 /// emitArrayLength - Compute the length of an array, even if it's a 2770 /// VLA, and drill down to the base element type. 2771 llvm::Value *emitArrayLength(const ArrayType *arrayType, 2772 QualType &baseType, 2773 Address &addr); 2774 2775 /// EmitVLASize - Capture all the sizes for the VLA expressions in 2776 /// the given variably-modified type and store them in the VLASizeMap. 2777 /// 2778 /// This function can be called with a null (unreachable) insert point. 2779 void EmitVariablyModifiedType(QualType Ty); 2780 2781 struct VlaSizePair { 2782 llvm::Value *NumElts; 2783 QualType Type; 2784 2785 VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {} 2786 }; 2787 2788 /// Return the number of elements for a single dimension 2789 /// for the given array type. 2790 VlaSizePair getVLAElements1D(const VariableArrayType *vla); 2791 VlaSizePair getVLAElements1D(QualType vla); 2792 2793 /// Returns an LLVM value that corresponds to the size, 2794 /// in non-variably-sized elements, of a variable length array type, 2795 /// plus that largest non-variably-sized element type. Assumes that 2796 /// the type has already been emitted with EmitVariablyModifiedType. 2797 VlaSizePair getVLASize(const VariableArrayType *vla); 2798 VlaSizePair getVLASize(QualType vla); 2799 2800 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 2801 /// generating code for an C++ member function. 2802 llvm::Value *LoadCXXThis() { 2803 assert(CXXThisValue && "no 'this' value for this function"); 2804 return CXXThisValue; 2805 } 2806 Address LoadCXXThisAddress(); 2807 2808 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 2809 /// virtual bases. 2810 // FIXME: Every place that calls LoadCXXVTT is something 2811 // that needs to be abstracted properly. 2812 llvm::Value *LoadCXXVTT() { 2813 assert(CXXStructorImplicitParamValue && "no VTT value for this function"); 2814 return CXXStructorImplicitParamValue; 2815 } 2816 2817 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 2818 /// complete class to the given direct base. 2819 Address 2820 GetAddressOfDirectBaseInCompleteClass(Address Value, 2821 const CXXRecordDecl *Derived, 2822 const CXXRecordDecl *Base, 2823 bool BaseIsVirtual); 2824 2825 static bool ShouldNullCheckClassCastValue(const CastExpr *Cast); 2826 2827 /// GetAddressOfBaseClass - This function will add the necessary delta to the 2828 /// load of 'this' and returns address of the base class. 2829 Address GetAddressOfBaseClass(Address Value, 2830 const CXXRecordDecl *Derived, 2831 CastExpr::path_const_iterator PathBegin, 2832 CastExpr::path_const_iterator PathEnd, 2833 bool NullCheckValue, SourceLocation Loc); 2834 2835 Address GetAddressOfDerivedClass(Address Value, 2836 const CXXRecordDecl *Derived, 2837 CastExpr::path_const_iterator PathBegin, 2838 CastExpr::path_const_iterator PathEnd, 2839 bool NullCheckValue); 2840 2841 /// GetVTTParameter - Return the VTT parameter that should be passed to a 2842 /// base constructor/destructor with virtual bases. 2843 /// FIXME: VTTs are Itanium ABI-specific, so the definition should move 2844 /// to ItaniumCXXABI.cpp together with all the references to VTT. 2845 llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase, 2846 bool Delegating); 2847 2848 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 2849 CXXCtorType CtorType, 2850 const FunctionArgList &Args, 2851 SourceLocation Loc); 2852 // It's important not to confuse this and the previous function. Delegating 2853 // constructors are the C++0x feature. The constructor delegate optimization 2854 // is used to reduce duplication in the base and complete consturctors where 2855 // they are substantially the same. 2856 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2857 const FunctionArgList &Args); 2858 2859 /// Emit a call to an inheriting constructor (that is, one that invokes a 2860 /// constructor inherited from a base class) by inlining its definition. This 2861 /// is necessary if the ABI does not support forwarding the arguments to the 2862 /// base class constructor (because they're variadic or similar). 2863 void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2864 CXXCtorType CtorType, 2865 bool ForVirtualBase, 2866 bool Delegating, 2867 CallArgList &Args); 2868 2869 /// Emit a call to a constructor inherited from a base class, passing the 2870 /// current constructor's arguments along unmodified (without even making 2871 /// a copy). 2872 void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D, 2873 bool ForVirtualBase, Address This, 2874 bool InheritedFromVBase, 2875 const CXXInheritedCtorInitExpr *E); 2876 2877 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2878 bool ForVirtualBase, bool Delegating, 2879 AggValueSlot ThisAVS, const CXXConstructExpr *E); 2880 2881 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2882 bool ForVirtualBase, bool Delegating, 2883 Address This, CallArgList &Args, 2884 AggValueSlot::Overlap_t Overlap, 2885 SourceLocation Loc, bool NewPointerIsChecked); 2886 2887 /// Emit assumption load for all bases. Requires to be be called only on 2888 /// most-derived class and not under construction of the object. 2889 void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This); 2890 2891 /// Emit assumption that vptr load == global vtable. 2892 void EmitVTableAssumptionLoad(const VPtr &vptr, Address This); 2893 2894 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 2895 Address This, Address Src, 2896 const CXXConstructExpr *E); 2897 2898 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2899 const ArrayType *ArrayTy, 2900 Address ArrayPtr, 2901 const CXXConstructExpr *E, 2902 bool NewPointerIsChecked, 2903 bool ZeroInitialization = false); 2904 2905 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2906 llvm::Value *NumElements, 2907 Address ArrayPtr, 2908 const CXXConstructExpr *E, 2909 bool NewPointerIsChecked, 2910 bool ZeroInitialization = false); 2911 2912 static Destroyer destroyCXXObject; 2913 2914 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 2915 bool ForVirtualBase, bool Delegating, Address This, 2916 QualType ThisTy); 2917 2918 void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, 2919 llvm::Type *ElementTy, Address NewPtr, 2920 llvm::Value *NumElements, 2921 llvm::Value *AllocSizeWithoutCookie); 2922 2923 void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, 2924 Address Ptr); 2925 2926 void EmitSehCppScopeBegin(); 2927 void EmitSehCppScopeEnd(); 2928 void EmitSehTryScopeBegin(); 2929 void EmitSehTryScopeEnd(); 2930 2931 llvm::Value *EmitLifetimeStart(llvm::TypeSize Size, llvm::Value *Addr); 2932 void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr); 2933 2934 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 2935 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 2936 2937 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 2938 QualType DeleteTy, llvm::Value *NumElements = nullptr, 2939 CharUnits CookieSize = CharUnits()); 2940 2941 RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 2942 const CallExpr *TheCallExpr, bool IsDelete); 2943 2944 llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E); 2945 llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE); 2946 Address EmitCXXUuidofExpr(const CXXUuidofExpr *E); 2947 2948 /// Situations in which we might emit a check for the suitability of a 2949 /// pointer or glvalue. Needs to be kept in sync with ubsan_handlers.cpp in 2950 /// compiler-rt. 2951 enum TypeCheckKind { 2952 /// Checking the operand of a load. Must be suitably sized and aligned. 2953 TCK_Load, 2954 /// Checking the destination of a store. Must be suitably sized and aligned. 2955 TCK_Store, 2956 /// Checking the bound value in a reference binding. Must be suitably sized 2957 /// and aligned, but is not required to refer to an object (until the 2958 /// reference is used), per core issue 453. 2959 TCK_ReferenceBinding, 2960 /// Checking the object expression in a non-static data member access. Must 2961 /// be an object within its lifetime. 2962 TCK_MemberAccess, 2963 /// Checking the 'this' pointer for a call to a non-static member function. 2964 /// Must be an object within its lifetime. 2965 TCK_MemberCall, 2966 /// Checking the 'this' pointer for a constructor call. 2967 TCK_ConstructorCall, 2968 /// Checking the operand of a static_cast to a derived pointer type. Must be 2969 /// null or an object within its lifetime. 2970 TCK_DowncastPointer, 2971 /// Checking the operand of a static_cast to a derived reference type. Must 2972 /// be an object within its lifetime. 2973 TCK_DowncastReference, 2974 /// Checking the operand of a cast to a base object. Must be suitably sized 2975 /// and aligned. 2976 TCK_Upcast, 2977 /// Checking the operand of a cast to a virtual base object. Must be an 2978 /// object within its lifetime. 2979 TCK_UpcastToVirtualBase, 2980 /// Checking the value assigned to a _Nonnull pointer. Must not be null. 2981 TCK_NonnullAssign, 2982 /// Checking the operand of a dynamic_cast or a typeid expression. Must be 2983 /// null or an object within its lifetime. 2984 TCK_DynamicOperation 2985 }; 2986 2987 /// Determine whether the pointer type check \p TCK permits null pointers. 2988 static bool isNullPointerAllowed(TypeCheckKind TCK); 2989 2990 /// Determine whether the pointer type check \p TCK requires a vptr check. 2991 static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty); 2992 2993 /// Whether any type-checking sanitizers are enabled. If \c false, 2994 /// calls to EmitTypeCheck can be skipped. 2995 bool sanitizePerformTypeCheck() const; 2996 2997 /// Emit a check that \p V is the address of storage of the 2998 /// appropriate size and alignment for an object of type \p Type 2999 /// (or if ArraySize is provided, for an array of that bound). 3000 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, 3001 QualType Type, CharUnits Alignment = CharUnits::Zero(), 3002 SanitizerSet SkippedChecks = SanitizerSet(), 3003 llvm::Value *ArraySize = nullptr); 3004 3005 /// Emit a check that \p Base points into an array object, which 3006 /// we can access at index \p Index. \p Accessed should be \c false if we 3007 /// this expression is used as an lvalue, for instance in "&Arr[Idx]". 3008 void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, 3009 QualType IndexType, bool Accessed); 3010 3011 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 3012 bool isInc, bool isPre); 3013 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 3014 bool isInc, bool isPre); 3015 3016 /// Converts Location to a DebugLoc, if debug information is enabled. 3017 llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location); 3018 3019 /// Get the record field index as represented in debug info. 3020 unsigned getDebugInfoFIndex(const RecordDecl *Rec, unsigned FieldIndex); 3021 3022 3023 //===--------------------------------------------------------------------===// 3024 // Declaration Emission 3025 //===--------------------------------------------------------------------===// 3026 3027 /// EmitDecl - Emit a declaration. 3028 /// 3029 /// This function can be called with a null (unreachable) insert point. 3030 void EmitDecl(const Decl &D); 3031 3032 /// EmitVarDecl - Emit a local variable declaration. 3033 /// 3034 /// This function can be called with a null (unreachable) insert point. 3035 void EmitVarDecl(const VarDecl &D); 3036 3037 void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue, 3038 bool capturedByInit); 3039 3040 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 3041 llvm::Value *Address); 3042 3043 /// Determine whether the given initializer is trivial in the sense 3044 /// that it requires no code to be generated. 3045 bool isTrivialInitializer(const Expr *Init); 3046 3047 /// EmitAutoVarDecl - Emit an auto variable declaration. 3048 /// 3049 /// This function can be called with a null (unreachable) insert point. 3050 void EmitAutoVarDecl(const VarDecl &D); 3051 3052 class AutoVarEmission { 3053 friend class CodeGenFunction; 3054 3055 const VarDecl *Variable; 3056 3057 /// The address of the alloca for languages with explicit address space 3058 /// (e.g. OpenCL) or alloca casted to generic pointer for address space 3059 /// agnostic languages (e.g. C++). Invalid if the variable was emitted 3060 /// as a global constant. 3061 Address Addr; 3062 3063 llvm::Value *NRVOFlag; 3064 3065 /// True if the variable is a __block variable that is captured by an 3066 /// escaping block. 3067 bool IsEscapingByRef; 3068 3069 /// True if the variable is of aggregate type and has a constant 3070 /// initializer. 3071 bool IsConstantAggregate; 3072 3073 /// Non-null if we should use lifetime annotations. 3074 llvm::Value *SizeForLifetimeMarkers; 3075 3076 /// Address with original alloca instruction. Invalid if the variable was 3077 /// emitted as a global constant. 3078 Address AllocaAddr; 3079 3080 struct Invalid {}; 3081 AutoVarEmission(Invalid) 3082 : Variable(nullptr), Addr(Address::invalid()), 3083 AllocaAddr(Address::invalid()) {} 3084 3085 AutoVarEmission(const VarDecl &variable) 3086 : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr), 3087 IsEscapingByRef(false), IsConstantAggregate(false), 3088 SizeForLifetimeMarkers(nullptr), AllocaAddr(Address::invalid()) {} 3089 3090 bool wasEmittedAsGlobal() const { return !Addr.isValid(); } 3091 3092 public: 3093 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 3094 3095 bool useLifetimeMarkers() const { 3096 return SizeForLifetimeMarkers != nullptr; 3097 } 3098 llvm::Value *getSizeForLifetimeMarkers() const { 3099 assert(useLifetimeMarkers()); 3100 return SizeForLifetimeMarkers; 3101 } 3102 3103 /// Returns the raw, allocated address, which is not necessarily 3104 /// the address of the object itself. It is casted to default 3105 /// address space for address space agnostic languages. 3106 Address getAllocatedAddress() const { 3107 return Addr; 3108 } 3109 3110 /// Returns the address for the original alloca instruction. 3111 Address getOriginalAllocatedAddress() const { return AllocaAddr; } 3112 3113 /// Returns the address of the object within this declaration. 3114 /// Note that this does not chase the forwarding pointer for 3115 /// __block decls. 3116 Address getObjectAddress(CodeGenFunction &CGF) const { 3117 if (!IsEscapingByRef) return Addr; 3118 3119 return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false); 3120 } 3121 }; 3122 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 3123 void EmitAutoVarInit(const AutoVarEmission &emission); 3124 void EmitAutoVarCleanups(const AutoVarEmission &emission); 3125 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 3126 QualType::DestructionKind dtorKind); 3127 3128 /// Emits the alloca and debug information for the size expressions for each 3129 /// dimension of an array. It registers the association of its (1-dimensional) 3130 /// QualTypes and size expression's debug node, so that CGDebugInfo can 3131 /// reference this node when creating the DISubrange object to describe the 3132 /// array types. 3133 void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI, 3134 const VarDecl &D, 3135 bool EmitDebugInfo); 3136 3137 void EmitStaticVarDecl(const VarDecl &D, 3138 llvm::GlobalValue::LinkageTypes Linkage); 3139 3140 class ParamValue { 3141 llvm::Value *Value; 3142 llvm::Type *ElementType; 3143 unsigned Alignment; 3144 ParamValue(llvm::Value *V, llvm::Type *T, unsigned A) 3145 : Value(V), ElementType(T), Alignment(A) {} 3146 public: 3147 static ParamValue forDirect(llvm::Value *value) { 3148 return ParamValue(value, nullptr, 0); 3149 } 3150 static ParamValue forIndirect(Address addr) { 3151 assert(!addr.getAlignment().isZero()); 3152 return ParamValue(addr.getPointer(), addr.getElementType(), 3153 addr.getAlignment().getQuantity()); 3154 } 3155 3156 bool isIndirect() const { return Alignment != 0; } 3157 llvm::Value *getAnyValue() const { return Value; } 3158 3159 llvm::Value *getDirectValue() const { 3160 assert(!isIndirect()); 3161 return Value; 3162 } 3163 3164 Address getIndirectAddress() const { 3165 assert(isIndirect()); 3166 return Address(Value, ElementType, CharUnits::fromQuantity(Alignment)); 3167 } 3168 }; 3169 3170 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 3171 void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo); 3172 3173 /// protectFromPeepholes - Protect a value that we're intending to 3174 /// store to the side, but which will probably be used later, from 3175 /// aggressive peepholing optimizations that might delete it. 3176 /// 3177 /// Pass the result to unprotectFromPeepholes to declare that 3178 /// protection is no longer required. 3179 /// 3180 /// There's no particular reason why this shouldn't apply to 3181 /// l-values, it's just that no existing peepholes work on pointers. 3182 PeepholeProtection protectFromPeepholes(RValue rvalue); 3183 void unprotectFromPeepholes(PeepholeProtection protection); 3184 3185 void emitAlignmentAssumptionCheck(llvm::Value *Ptr, QualType Ty, 3186 SourceLocation Loc, 3187 SourceLocation AssumptionLoc, 3188 llvm::Value *Alignment, 3189 llvm::Value *OffsetValue, 3190 llvm::Value *TheCheck, 3191 llvm::Instruction *Assumption); 3192 3193 void emitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty, 3194 SourceLocation Loc, SourceLocation AssumptionLoc, 3195 llvm::Value *Alignment, 3196 llvm::Value *OffsetValue = nullptr); 3197 3198 void emitAlignmentAssumption(llvm::Value *PtrValue, const Expr *E, 3199 SourceLocation AssumptionLoc, 3200 llvm::Value *Alignment, 3201 llvm::Value *OffsetValue = nullptr); 3202 3203 //===--------------------------------------------------------------------===// 3204 // Statement Emission 3205 //===--------------------------------------------------------------------===// 3206 3207 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 3208 void EmitStopPoint(const Stmt *S); 3209 3210 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 3211 /// this function even if there is no current insertion point. 3212 /// 3213 /// This function may clear the current insertion point; callers should use 3214 /// EnsureInsertPoint if they wish to subsequently generate code without first 3215 /// calling EmitBlock, EmitBranch, or EmitStmt. 3216 void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None); 3217 3218 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 3219 /// necessarily require an insertion point or debug information; typically 3220 /// because the statement amounts to a jump or a container of other 3221 /// statements. 3222 /// 3223 /// \return True if the statement was handled. 3224 bool EmitSimpleStmt(const Stmt *S, ArrayRef<const Attr *> Attrs); 3225 3226 Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 3227 AggValueSlot AVS = AggValueSlot::ignored()); 3228 Address EmitCompoundStmtWithoutScope(const CompoundStmt &S, 3229 bool GetLast = false, 3230 AggValueSlot AVS = 3231 AggValueSlot::ignored()); 3232 3233 /// EmitLabel - Emit the block for the given label. It is legal to call this 3234 /// function even if there is no current insertion point. 3235 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 3236 3237 void EmitLabelStmt(const LabelStmt &S); 3238 void EmitAttributedStmt(const AttributedStmt &S); 3239 void EmitGotoStmt(const GotoStmt &S); 3240 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 3241 void EmitIfStmt(const IfStmt &S); 3242 3243 void EmitWhileStmt(const WhileStmt &S, 3244 ArrayRef<const Attr *> Attrs = None); 3245 void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None); 3246 void EmitForStmt(const ForStmt &S, 3247 ArrayRef<const Attr *> Attrs = None); 3248 void EmitReturnStmt(const ReturnStmt &S); 3249 void EmitDeclStmt(const DeclStmt &S); 3250 void EmitBreakStmt(const BreakStmt &S); 3251 void EmitContinueStmt(const ContinueStmt &S); 3252 void EmitSwitchStmt(const SwitchStmt &S); 3253 void EmitDefaultStmt(const DefaultStmt &S, ArrayRef<const Attr *> Attrs); 3254 void EmitCaseStmt(const CaseStmt &S, ArrayRef<const Attr *> Attrs); 3255 void EmitCaseStmtRange(const CaseStmt &S, ArrayRef<const Attr *> Attrs); 3256 void EmitAsmStmt(const AsmStmt &S); 3257 3258 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 3259 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 3260 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 3261 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 3262 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 3263 3264 void EmitCoroutineBody(const CoroutineBodyStmt &S); 3265 void EmitCoreturnStmt(const CoreturnStmt &S); 3266 RValue EmitCoawaitExpr(const CoawaitExpr &E, 3267 AggValueSlot aggSlot = AggValueSlot::ignored(), 3268 bool ignoreResult = false); 3269 LValue EmitCoawaitLValue(const CoawaitExpr *E); 3270 RValue EmitCoyieldExpr(const CoyieldExpr &E, 3271 AggValueSlot aggSlot = AggValueSlot::ignored(), 3272 bool ignoreResult = false); 3273 LValue EmitCoyieldLValue(const CoyieldExpr *E); 3274 RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID); 3275 3276 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 3277 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 3278 3279 void EmitCXXTryStmt(const CXXTryStmt &S); 3280 void EmitSEHTryStmt(const SEHTryStmt &S); 3281 void EmitSEHLeaveStmt(const SEHLeaveStmt &S); 3282 void EnterSEHTryStmt(const SEHTryStmt &S); 3283 void ExitSEHTryStmt(const SEHTryStmt &S); 3284 void VolatilizeTryBlocks(llvm::BasicBlock *BB, 3285 llvm::SmallPtrSet<llvm::BasicBlock *, 10> &V); 3286 3287 void pushSEHCleanup(CleanupKind kind, 3288 llvm::Function *FinallyFunc); 3289 void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter, 3290 const Stmt *OutlinedStmt); 3291 3292 llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF, 3293 const SEHExceptStmt &Except); 3294 3295 llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF, 3296 const SEHFinallyStmt &Finally); 3297 3298 void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF, 3299 llvm::Value *ParentFP, 3300 llvm::Value *EntryEBP); 3301 llvm::Value *EmitSEHExceptionCode(); 3302 llvm::Value *EmitSEHExceptionInfo(); 3303 llvm::Value *EmitSEHAbnormalTermination(); 3304 3305 /// Emit simple code for OpenMP directives in Simd-only mode. 3306 void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D); 3307 3308 /// Scan the outlined statement for captures from the parent function. For 3309 /// each capture, mark the capture as escaped and emit a call to 3310 /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap. 3311 void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt, 3312 bool IsFilter); 3313 3314 /// Recovers the address of a local in a parent function. ParentVar is the 3315 /// address of the variable used in the immediate parent function. It can 3316 /// either be an alloca or a call to llvm.localrecover if there are nested 3317 /// outlined functions. ParentFP is the frame pointer of the outermost parent 3318 /// frame. 3319 Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF, 3320 Address ParentVar, 3321 llvm::Value *ParentFP); 3322 3323 void EmitCXXForRangeStmt(const CXXForRangeStmt &S, 3324 ArrayRef<const Attr *> Attrs = None); 3325 3326 /// Controls insertion of cancellation exit blocks in worksharing constructs. 3327 class OMPCancelStackRAII { 3328 CodeGenFunction &CGF; 3329 3330 public: 3331 OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 3332 bool HasCancel) 3333 : CGF(CGF) { 3334 CGF.OMPCancelStack.enter(CGF, Kind, HasCancel); 3335 } 3336 ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); } 3337 }; 3338 3339 /// Returns calculated size of the specified type. 3340 llvm::Value *getTypeSize(QualType Ty); 3341 LValue InitCapturedStruct(const CapturedStmt &S); 3342 llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K); 3343 llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S); 3344 Address GenerateCapturedStmtArgument(const CapturedStmt &S); 3345 llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S, 3346 SourceLocation Loc); 3347 void GenerateOpenMPCapturedVars(const CapturedStmt &S, 3348 SmallVectorImpl<llvm::Value *> &CapturedVars); 3349 void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy, 3350 SourceLocation Loc); 3351 /// Perform element by element copying of arrays with type \a 3352 /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure 3353 /// generated by \a CopyGen. 3354 /// 3355 /// \param DestAddr Address of the destination array. 3356 /// \param SrcAddr Address of the source array. 3357 /// \param OriginalType Type of destination and source arrays. 3358 /// \param CopyGen Copying procedure that copies value of single array element 3359 /// to another single array element. 3360 void EmitOMPAggregateAssign( 3361 Address DestAddr, Address SrcAddr, QualType OriginalType, 3362 const llvm::function_ref<void(Address, Address)> CopyGen); 3363 /// Emit proper copying of data from one variable to another. 3364 /// 3365 /// \param OriginalType Original type of the copied variables. 3366 /// \param DestAddr Destination address. 3367 /// \param SrcAddr Source address. 3368 /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has 3369 /// type of the base array element). 3370 /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of 3371 /// the base array element). 3372 /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a 3373 /// DestVD. 3374 void EmitOMPCopy(QualType OriginalType, 3375 Address DestAddr, Address SrcAddr, 3376 const VarDecl *DestVD, const VarDecl *SrcVD, 3377 const Expr *Copy); 3378 /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or 3379 /// \a X = \a E \a BO \a E. 3380 /// 3381 /// \param X Value to be updated. 3382 /// \param E Update value. 3383 /// \param BO Binary operation for update operation. 3384 /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update 3385 /// expression, false otherwise. 3386 /// \param AO Atomic ordering of the generated atomic instructions. 3387 /// \param CommonGen Code generator for complex expressions that cannot be 3388 /// expressed through atomicrmw instruction. 3389 /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was 3390 /// generated, <false, RValue::get(nullptr)> otherwise. 3391 std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr( 3392 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 3393 llvm::AtomicOrdering AO, SourceLocation Loc, 3394 const llvm::function_ref<RValue(RValue)> CommonGen); 3395 bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 3396 OMPPrivateScope &PrivateScope); 3397 void EmitOMPPrivateClause(const OMPExecutableDirective &D, 3398 OMPPrivateScope &PrivateScope); 3399 void EmitOMPUseDevicePtrClause( 3400 const OMPUseDevicePtrClause &C, OMPPrivateScope &PrivateScope, 3401 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap); 3402 void EmitOMPUseDeviceAddrClause( 3403 const OMPUseDeviceAddrClause &C, OMPPrivateScope &PrivateScope, 3404 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap); 3405 /// Emit code for copyin clause in \a D directive. The next code is 3406 /// generated at the start of outlined functions for directives: 3407 /// \code 3408 /// threadprivate_var1 = master_threadprivate_var1; 3409 /// operator=(threadprivate_var2, master_threadprivate_var2); 3410 /// ... 3411 /// __kmpc_barrier(&loc, global_tid); 3412 /// \endcode 3413 /// 3414 /// \param D OpenMP directive possibly with 'copyin' clause(s). 3415 /// \returns true if at least one copyin variable is found, false otherwise. 3416 bool EmitOMPCopyinClause(const OMPExecutableDirective &D); 3417 /// Emit initial code for lastprivate variables. If some variable is 3418 /// not also firstprivate, then the default initialization is used. Otherwise 3419 /// initialization of this variable is performed by EmitOMPFirstprivateClause 3420 /// method. 3421 /// 3422 /// \param D Directive that may have 'lastprivate' directives. 3423 /// \param PrivateScope Private scope for capturing lastprivate variables for 3424 /// proper codegen in internal captured statement. 3425 /// 3426 /// \returns true if there is at least one lastprivate variable, false 3427 /// otherwise. 3428 bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D, 3429 OMPPrivateScope &PrivateScope); 3430 /// Emit final copying of lastprivate values to original variables at 3431 /// the end of the worksharing or simd directive. 3432 /// 3433 /// \param D Directive that has at least one 'lastprivate' directives. 3434 /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if 3435 /// it is the last iteration of the loop code in associated directive, or to 3436 /// 'i1 false' otherwise. If this item is nullptr, no final check is required. 3437 void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D, 3438 bool NoFinals, 3439 llvm::Value *IsLastIterCond = nullptr); 3440 /// Emit initial code for linear clauses. 3441 void EmitOMPLinearClause(const OMPLoopDirective &D, 3442 CodeGenFunction::OMPPrivateScope &PrivateScope); 3443 /// Emit final code for linear clauses. 3444 /// \param CondGen Optional conditional code for final part of codegen for 3445 /// linear clause. 3446 void EmitOMPLinearClauseFinal( 3447 const OMPLoopDirective &D, 3448 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); 3449 /// Emit initial code for reduction variables. Creates reduction copies 3450 /// and initializes them with the values according to OpenMP standard. 3451 /// 3452 /// \param D Directive (possibly) with the 'reduction' clause. 3453 /// \param PrivateScope Private scope for capturing reduction variables for 3454 /// proper codegen in internal captured statement. 3455 /// 3456 void EmitOMPReductionClauseInit(const OMPExecutableDirective &D, 3457 OMPPrivateScope &PrivateScope, 3458 bool ForInscan = false); 3459 /// Emit final update of reduction values to original variables at 3460 /// the end of the directive. 3461 /// 3462 /// \param D Directive that has at least one 'reduction' directives. 3463 /// \param ReductionKind The kind of reduction to perform. 3464 void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D, 3465 const OpenMPDirectiveKind ReductionKind); 3466 /// Emit initial code for linear variables. Creates private copies 3467 /// and initializes them with the values according to OpenMP standard. 3468 /// 3469 /// \param D Directive (possibly) with the 'linear' clause. 3470 /// \return true if at least one linear variable is found that should be 3471 /// initialized with the value of the original variable, false otherwise. 3472 bool EmitOMPLinearClauseInit(const OMPLoopDirective &D); 3473 3474 typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/, 3475 llvm::Function * /*OutlinedFn*/, 3476 const OMPTaskDataTy & /*Data*/)> 3477 TaskGenTy; 3478 void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S, 3479 const OpenMPDirectiveKind CapturedRegion, 3480 const RegionCodeGenTy &BodyGen, 3481 const TaskGenTy &TaskGen, OMPTaskDataTy &Data); 3482 struct OMPTargetDataInfo { 3483 Address BasePointersArray = Address::invalid(); 3484 Address PointersArray = Address::invalid(); 3485 Address SizesArray = Address::invalid(); 3486 Address MappersArray = Address::invalid(); 3487 unsigned NumberOfTargetItems = 0; 3488 explicit OMPTargetDataInfo() = default; 3489 OMPTargetDataInfo(Address BasePointersArray, Address PointersArray, 3490 Address SizesArray, Address MappersArray, 3491 unsigned NumberOfTargetItems) 3492 : BasePointersArray(BasePointersArray), PointersArray(PointersArray), 3493 SizesArray(SizesArray), MappersArray(MappersArray), 3494 NumberOfTargetItems(NumberOfTargetItems) {} 3495 }; 3496 void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S, 3497 const RegionCodeGenTy &BodyGen, 3498 OMPTargetDataInfo &InputInfo); 3499 3500 void EmitOMPMetaDirective(const OMPMetaDirective &S); 3501 void EmitOMPParallelDirective(const OMPParallelDirective &S); 3502 void EmitOMPSimdDirective(const OMPSimdDirective &S); 3503 void EmitOMPTileDirective(const OMPTileDirective &S); 3504 void EmitOMPUnrollDirective(const OMPUnrollDirective &S); 3505 void EmitOMPForDirective(const OMPForDirective &S); 3506 void EmitOMPForSimdDirective(const OMPForSimdDirective &S); 3507 void EmitOMPSectionsDirective(const OMPSectionsDirective &S); 3508 void EmitOMPSectionDirective(const OMPSectionDirective &S); 3509 void EmitOMPSingleDirective(const OMPSingleDirective &S); 3510 void EmitOMPMasterDirective(const OMPMasterDirective &S); 3511 void EmitOMPMaskedDirective(const OMPMaskedDirective &S); 3512 void EmitOMPCriticalDirective(const OMPCriticalDirective &S); 3513 void EmitOMPParallelForDirective(const OMPParallelForDirective &S); 3514 void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S); 3515 void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S); 3516 void EmitOMPParallelMasterDirective(const OMPParallelMasterDirective &S); 3517 void EmitOMPTaskDirective(const OMPTaskDirective &S); 3518 void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S); 3519 void EmitOMPBarrierDirective(const OMPBarrierDirective &S); 3520 void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S); 3521 void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S); 3522 void EmitOMPFlushDirective(const OMPFlushDirective &S); 3523 void EmitOMPDepobjDirective(const OMPDepobjDirective &S); 3524 void EmitOMPScanDirective(const OMPScanDirective &S); 3525 void EmitOMPOrderedDirective(const OMPOrderedDirective &S); 3526 void EmitOMPAtomicDirective(const OMPAtomicDirective &S); 3527 void EmitOMPTargetDirective(const OMPTargetDirective &S); 3528 void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S); 3529 void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S); 3530 void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S); 3531 void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S); 3532 void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S); 3533 void 3534 EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S); 3535 void EmitOMPTeamsDirective(const OMPTeamsDirective &S); 3536 void 3537 EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S); 3538 void EmitOMPCancelDirective(const OMPCancelDirective &S); 3539 void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S); 3540 void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S); 3541 void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S); 3542 void EmitOMPMasterTaskLoopDirective(const OMPMasterTaskLoopDirective &S); 3543 void 3544 EmitOMPMasterTaskLoopSimdDirective(const OMPMasterTaskLoopSimdDirective &S); 3545 void EmitOMPParallelMasterTaskLoopDirective( 3546 const OMPParallelMasterTaskLoopDirective &S); 3547 void EmitOMPParallelMasterTaskLoopSimdDirective( 3548 const OMPParallelMasterTaskLoopSimdDirective &S); 3549 void EmitOMPDistributeDirective(const OMPDistributeDirective &S); 3550 void EmitOMPDistributeParallelForDirective( 3551 const OMPDistributeParallelForDirective &S); 3552 void EmitOMPDistributeParallelForSimdDirective( 3553 const OMPDistributeParallelForSimdDirective &S); 3554 void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S); 3555 void EmitOMPTargetParallelForSimdDirective( 3556 const OMPTargetParallelForSimdDirective &S); 3557 void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S); 3558 void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S); 3559 void 3560 EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S); 3561 void EmitOMPTeamsDistributeParallelForSimdDirective( 3562 const OMPTeamsDistributeParallelForSimdDirective &S); 3563 void EmitOMPTeamsDistributeParallelForDirective( 3564 const OMPTeamsDistributeParallelForDirective &S); 3565 void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S); 3566 void EmitOMPTargetTeamsDistributeDirective( 3567 const OMPTargetTeamsDistributeDirective &S); 3568 void EmitOMPTargetTeamsDistributeParallelForDirective( 3569 const OMPTargetTeamsDistributeParallelForDirective &S); 3570 void EmitOMPTargetTeamsDistributeParallelForSimdDirective( 3571 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 3572 void EmitOMPTargetTeamsDistributeSimdDirective( 3573 const OMPTargetTeamsDistributeSimdDirective &S); 3574 void EmitOMPGenericLoopDirective(const OMPGenericLoopDirective &S); 3575 void EmitOMPInteropDirective(const OMPInteropDirective &S); 3576 3577 /// Emit device code for the target directive. 3578 static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 3579 StringRef ParentName, 3580 const OMPTargetDirective &S); 3581 static void 3582 EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 3583 const OMPTargetParallelDirective &S); 3584 /// Emit device code for the target parallel for directive. 3585 static void EmitOMPTargetParallelForDeviceFunction( 3586 CodeGenModule &CGM, StringRef ParentName, 3587 const OMPTargetParallelForDirective &S); 3588 /// Emit device code for the target parallel for simd directive. 3589 static void EmitOMPTargetParallelForSimdDeviceFunction( 3590 CodeGenModule &CGM, StringRef ParentName, 3591 const OMPTargetParallelForSimdDirective &S); 3592 /// Emit device code for the target teams directive. 3593 static void 3594 EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 3595 const OMPTargetTeamsDirective &S); 3596 /// Emit device code for the target teams distribute directive. 3597 static void EmitOMPTargetTeamsDistributeDeviceFunction( 3598 CodeGenModule &CGM, StringRef ParentName, 3599 const OMPTargetTeamsDistributeDirective &S); 3600 /// Emit device code for the target teams distribute simd directive. 3601 static void EmitOMPTargetTeamsDistributeSimdDeviceFunction( 3602 CodeGenModule &CGM, StringRef ParentName, 3603 const OMPTargetTeamsDistributeSimdDirective &S); 3604 /// Emit device code for the target simd directive. 3605 static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM, 3606 StringRef ParentName, 3607 const OMPTargetSimdDirective &S); 3608 /// Emit device code for the target teams distribute parallel for simd 3609 /// directive. 3610 static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( 3611 CodeGenModule &CGM, StringRef ParentName, 3612 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 3613 3614 static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 3615 CodeGenModule &CGM, StringRef ParentName, 3616 const OMPTargetTeamsDistributeParallelForDirective &S); 3617 3618 /// Emit the Stmt \p S and return its topmost canonical loop, if any. 3619 /// TODO: The \p Depth paramter is not yet implemented and must be 1. In the 3620 /// future it is meant to be the number of loops expected in the loop nests 3621 /// (usually specified by the "collapse" clause) that are collapsed to a 3622 /// single loop by this function. 3623 llvm::CanonicalLoopInfo *EmitOMPCollapsedCanonicalLoopNest(const Stmt *S, 3624 int Depth); 3625 3626 /// Emit an OMPCanonicalLoop using the OpenMPIRBuilder. 3627 void EmitOMPCanonicalLoop(const OMPCanonicalLoop *S); 3628 3629 /// Emit inner loop of the worksharing/simd construct. 3630 /// 3631 /// \param S Directive, for which the inner loop must be emitted. 3632 /// \param RequiresCleanup true, if directive has some associated private 3633 /// variables. 3634 /// \param LoopCond Bollean condition for loop continuation. 3635 /// \param IncExpr Increment expression for loop control variable. 3636 /// \param BodyGen Generator for the inner body of the inner loop. 3637 /// \param PostIncGen Genrator for post-increment code (required for ordered 3638 /// loop directvies). 3639 void EmitOMPInnerLoop( 3640 const OMPExecutableDirective &S, bool RequiresCleanup, 3641 const Expr *LoopCond, const Expr *IncExpr, 3642 const llvm::function_ref<void(CodeGenFunction &)> BodyGen, 3643 const llvm::function_ref<void(CodeGenFunction &)> PostIncGen); 3644 3645 JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind); 3646 /// Emit initial code for loop counters of loop-based directives. 3647 void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S, 3648 OMPPrivateScope &LoopScope); 3649 3650 /// Helper for the OpenMP loop directives. 3651 void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit); 3652 3653 /// Emit code for the worksharing loop-based directive. 3654 /// \return true, if this construct has any lastprivate clause, false - 3655 /// otherwise. 3656 bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB, 3657 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 3658 const CodeGenDispatchBoundsTy &CGDispatchBounds); 3659 3660 /// Emit code for the distribute loop-based directive. 3661 void EmitOMPDistributeLoop(const OMPLoopDirective &S, 3662 const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr); 3663 3664 /// Helpers for the OpenMP loop directives. 3665 void EmitOMPSimdInit(const OMPLoopDirective &D); 3666 void EmitOMPSimdFinal( 3667 const OMPLoopDirective &D, 3668 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); 3669 3670 /// Emits the lvalue for the expression with possibly captured variable. 3671 LValue EmitOMPSharedLValue(const Expr *E); 3672 3673 private: 3674 /// Helpers for blocks. 3675 llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); 3676 3677 /// struct with the values to be passed to the OpenMP loop-related functions 3678 struct OMPLoopArguments { 3679 /// loop lower bound 3680 Address LB = Address::invalid(); 3681 /// loop upper bound 3682 Address UB = Address::invalid(); 3683 /// loop stride 3684 Address ST = Address::invalid(); 3685 /// isLastIteration argument for runtime functions 3686 Address IL = Address::invalid(); 3687 /// Chunk value generated by sema 3688 llvm::Value *Chunk = nullptr; 3689 /// EnsureUpperBound 3690 Expr *EUB = nullptr; 3691 /// IncrementExpression 3692 Expr *IncExpr = nullptr; 3693 /// Loop initialization 3694 Expr *Init = nullptr; 3695 /// Loop exit condition 3696 Expr *Cond = nullptr; 3697 /// Update of LB after a whole chunk has been executed 3698 Expr *NextLB = nullptr; 3699 /// Update of UB after a whole chunk has been executed 3700 Expr *NextUB = nullptr; 3701 OMPLoopArguments() = default; 3702 OMPLoopArguments(Address LB, Address UB, Address ST, Address IL, 3703 llvm::Value *Chunk = nullptr, Expr *EUB = nullptr, 3704 Expr *IncExpr = nullptr, Expr *Init = nullptr, 3705 Expr *Cond = nullptr, Expr *NextLB = nullptr, 3706 Expr *NextUB = nullptr) 3707 : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB), 3708 IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB), 3709 NextUB(NextUB) {} 3710 }; 3711 void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic, 3712 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, 3713 const OMPLoopArguments &LoopArgs, 3714 const CodeGenLoopTy &CodeGenLoop, 3715 const CodeGenOrderedTy &CodeGenOrdered); 3716 void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind, 3717 bool IsMonotonic, const OMPLoopDirective &S, 3718 OMPPrivateScope &LoopScope, bool Ordered, 3719 const OMPLoopArguments &LoopArgs, 3720 const CodeGenDispatchBoundsTy &CGDispatchBounds); 3721 void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind, 3722 const OMPLoopDirective &S, 3723 OMPPrivateScope &LoopScope, 3724 const OMPLoopArguments &LoopArgs, 3725 const CodeGenLoopTy &CodeGenLoopContent); 3726 /// Emit code for sections directive. 3727 void EmitSections(const OMPExecutableDirective &S); 3728 3729 public: 3730 3731 //===--------------------------------------------------------------------===// 3732 // LValue Expression Emission 3733 //===--------------------------------------------------------------------===// 3734 3735 /// Create a check that a scalar RValue is non-null. 3736 llvm::Value *EmitNonNullRValueCheck(RValue RV, QualType T); 3737 3738 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 3739 RValue GetUndefRValue(QualType Ty); 3740 3741 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 3742 /// and issue an ErrorUnsupported style diagnostic (using the 3743 /// provided Name). 3744 RValue EmitUnsupportedRValue(const Expr *E, 3745 const char *Name); 3746 3747 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 3748 /// an ErrorUnsupported style diagnostic (using the provided Name). 3749 LValue EmitUnsupportedLValue(const Expr *E, 3750 const char *Name); 3751 3752 /// EmitLValue - Emit code to compute a designator that specifies the location 3753 /// of the expression. 3754 /// 3755 /// This can return one of two things: a simple address or a bitfield 3756 /// reference. In either case, the LLVM Value* in the LValue structure is 3757 /// guaranteed to be an LLVM pointer type. 3758 /// 3759 /// If this returns a bitfield reference, nothing about the pointee type of 3760 /// the LLVM value is known: For example, it may not be a pointer to an 3761 /// integer. 3762 /// 3763 /// If this returns a normal address, and if the lvalue's C type is fixed 3764 /// size, this method guarantees that the returned pointer type will point to 3765 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 3766 /// variable length type, this is not possible. 3767 /// 3768 LValue EmitLValue(const Expr *E); 3769 3770 /// Same as EmitLValue but additionally we generate checking code to 3771 /// guard against undefined behavior. This is only suitable when we know 3772 /// that the address will be used to access the object. 3773 LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK); 3774 3775 RValue convertTempToRValue(Address addr, QualType type, 3776 SourceLocation Loc); 3777 3778 void EmitAtomicInit(Expr *E, LValue lvalue); 3779 3780 bool LValueIsSuitableForInlineAtomic(LValue Src); 3781 3782 RValue EmitAtomicLoad(LValue LV, SourceLocation SL, 3783 AggValueSlot Slot = AggValueSlot::ignored()); 3784 3785 RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc, 3786 llvm::AtomicOrdering AO, bool IsVolatile = false, 3787 AggValueSlot slot = AggValueSlot::ignored()); 3788 3789 void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit); 3790 3791 void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO, 3792 bool IsVolatile, bool isInit); 3793 3794 std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange( 3795 LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, 3796 llvm::AtomicOrdering Success = 3797 llvm::AtomicOrdering::SequentiallyConsistent, 3798 llvm::AtomicOrdering Failure = 3799 llvm::AtomicOrdering::SequentiallyConsistent, 3800 bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored()); 3801 3802 void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO, 3803 const llvm::function_ref<RValue(RValue)> &UpdateOp, 3804 bool IsVolatile); 3805 3806 /// EmitToMemory - Change a scalar value from its value 3807 /// representation to its in-memory representation. 3808 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 3809 3810 /// EmitFromMemory - Change a scalar value from its memory 3811 /// representation to its value representation. 3812 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 3813 3814 /// Check if the scalar \p Value is within the valid range for the given 3815 /// type \p Ty. 3816 /// 3817 /// Returns true if a check is needed (even if the range is unknown). 3818 bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 3819 SourceLocation Loc); 3820 3821 /// EmitLoadOfScalar - Load a scalar value from an address, taking 3822 /// care to appropriately convert from the memory representation to 3823 /// the LLVM value representation. 3824 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 3825 SourceLocation Loc, 3826 AlignmentSource Source = AlignmentSource::Type, 3827 bool isNontemporal = false) { 3828 return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source), 3829 CGM.getTBAAAccessInfo(Ty), isNontemporal); 3830 } 3831 3832 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 3833 SourceLocation Loc, LValueBaseInfo BaseInfo, 3834 TBAAAccessInfo TBAAInfo, 3835 bool isNontemporal = false); 3836 3837 /// EmitLoadOfScalar - Load a scalar value from an address, taking 3838 /// care to appropriately convert from the memory representation to 3839 /// the LLVM value representation. The l-value must be a simple 3840 /// l-value. 3841 llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc); 3842 3843 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3844 /// care to appropriately convert from the memory representation to 3845 /// the LLVM value representation. 3846 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 3847 bool Volatile, QualType Ty, 3848 AlignmentSource Source = AlignmentSource::Type, 3849 bool isInit = false, bool isNontemporal = false) { 3850 EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source), 3851 CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal); 3852 } 3853 3854 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 3855 bool Volatile, QualType Ty, 3856 LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo, 3857 bool isInit = false, bool isNontemporal = false); 3858 3859 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3860 /// care to appropriately convert from the memory representation to 3861 /// the LLVM value representation. The l-value must be a simple 3862 /// l-value. The isInit flag indicates whether this is an initialization. 3863 /// If so, atomic qualifiers are ignored and the store is always non-atomic. 3864 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); 3865 3866 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 3867 /// this method emits the address of the lvalue, then loads the result as an 3868 /// rvalue, returning the rvalue. 3869 RValue EmitLoadOfLValue(LValue V, SourceLocation Loc); 3870 RValue EmitLoadOfExtVectorElementLValue(LValue V); 3871 RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc); 3872 RValue EmitLoadOfGlobalRegLValue(LValue LV); 3873 3874 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 3875 /// lvalue, where both are guaranteed to the have the same type, and that type 3876 /// is 'Ty'. 3877 void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false); 3878 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 3879 void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst); 3880 3881 /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints 3882 /// as EmitStoreThroughLValue. 3883 /// 3884 /// \param Result [out] - If non-null, this will be set to a Value* for the 3885 /// bit-field contents after the store, appropriate for use as the result of 3886 /// an assignment to the bit-field. 3887 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 3888 llvm::Value **Result=nullptr); 3889 3890 /// Emit an l-value for an assignment (simple or compound) of complex type. 3891 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 3892 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 3893 LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 3894 llvm::Value *&Result); 3895 3896 // Note: only available for agg return types 3897 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 3898 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 3899 // Note: only available for agg return types 3900 LValue EmitCallExprLValue(const CallExpr *E); 3901 // Note: only available for agg return types 3902 LValue EmitVAArgExprLValue(const VAArgExpr *E); 3903 LValue EmitDeclRefLValue(const DeclRefExpr *E); 3904 LValue EmitStringLiteralLValue(const StringLiteral *E); 3905 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 3906 LValue EmitPredefinedLValue(const PredefinedExpr *E); 3907 LValue EmitUnaryOpLValue(const UnaryOperator *E); 3908 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3909 bool Accessed = false); 3910 LValue EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E); 3911 LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3912 bool IsLowerBound = true); 3913 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 3914 LValue EmitMemberExpr(const MemberExpr *E); 3915 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 3916 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 3917 LValue EmitInitListLValue(const InitListExpr *E); 3918 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 3919 LValue EmitCastLValue(const CastExpr *E); 3920 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 3921 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 3922 3923 Address EmitExtVectorElementLValue(LValue V); 3924 3925 RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc); 3926 3927 Address EmitArrayToPointerDecay(const Expr *Array, 3928 LValueBaseInfo *BaseInfo = nullptr, 3929 TBAAAccessInfo *TBAAInfo = nullptr); 3930 3931 class ConstantEmission { 3932 llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; 3933 ConstantEmission(llvm::Constant *C, bool isReference) 3934 : ValueAndIsReference(C, isReference) {} 3935 public: 3936 ConstantEmission() {} 3937 static ConstantEmission forReference(llvm::Constant *C) { 3938 return ConstantEmission(C, true); 3939 } 3940 static ConstantEmission forValue(llvm::Constant *C) { 3941 return ConstantEmission(C, false); 3942 } 3943 3944 explicit operator bool() const { 3945 return ValueAndIsReference.getOpaqueValue() != nullptr; 3946 } 3947 3948 bool isReference() const { return ValueAndIsReference.getInt(); } 3949 LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { 3950 assert(isReference()); 3951 return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), 3952 refExpr->getType()); 3953 } 3954 3955 llvm::Constant *getValue() const { 3956 assert(!isReference()); 3957 return ValueAndIsReference.getPointer(); 3958 } 3959 }; 3960 3961 ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); 3962 ConstantEmission tryEmitAsConstant(const MemberExpr *ME); 3963 llvm::Value *emitScalarConstant(const ConstantEmission &Constant, Expr *E); 3964 3965 RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, 3966 AggValueSlot slot = AggValueSlot::ignored()); 3967 LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); 3968 3969 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 3970 const ObjCIvarDecl *Ivar); 3971 LValue EmitLValueForField(LValue Base, const FieldDecl* Field); 3972 LValue EmitLValueForLambdaField(const FieldDecl *Field); 3973 3974 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 3975 /// if the Field is a reference, this will return the address of the reference 3976 /// and not the address of the value stored in the reference. 3977 LValue EmitLValueForFieldInitialization(LValue Base, 3978 const FieldDecl* Field); 3979 3980 LValue EmitLValueForIvar(QualType ObjectTy, 3981 llvm::Value* Base, const ObjCIvarDecl *Ivar, 3982 unsigned CVRQualifiers); 3983 3984 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 3985 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 3986 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 3987 LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E); 3988 3989 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 3990 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 3991 LValue EmitStmtExprLValue(const StmtExpr *E); 3992 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 3993 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 3994 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init); 3995 3996 //===--------------------------------------------------------------------===// 3997 // Scalar Expression Emission 3998 //===--------------------------------------------------------------------===// 3999 4000 /// EmitCall - Generate a call of the given function, expecting the given 4001 /// result type, and using the given argument list which specifies both the 4002 /// LLVM arguments and the types they were derived from. 4003 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 4004 ReturnValueSlot ReturnValue, const CallArgList &Args, 4005 llvm::CallBase **callOrInvoke, bool IsMustTail, 4006 SourceLocation Loc); 4007 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 4008 ReturnValueSlot ReturnValue, const CallArgList &Args, 4009 llvm::CallBase **callOrInvoke = nullptr, 4010 bool IsMustTail = false) { 4011 return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke, 4012 IsMustTail, SourceLocation()); 4013 } 4014 RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E, 4015 ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr); 4016 RValue EmitCallExpr(const CallExpr *E, 4017 ReturnValueSlot ReturnValue = ReturnValueSlot()); 4018 RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 4019 CGCallee EmitCallee(const Expr *E); 4020 4021 void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl); 4022 void checkTargetFeatures(SourceLocation Loc, const FunctionDecl *TargetDecl); 4023 4024 llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee, 4025 const Twine &name = ""); 4026 llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee, 4027 ArrayRef<llvm::Value *> args, 4028 const Twine &name = ""); 4029 llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4030 const Twine &name = ""); 4031 llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4032 ArrayRef<llvm::Value *> args, 4033 const Twine &name = ""); 4034 4035 SmallVector<llvm::OperandBundleDef, 1> 4036 getBundlesForFunclet(llvm::Value *Callee); 4037 4038 llvm::CallBase *EmitCallOrInvoke(llvm::FunctionCallee Callee, 4039 ArrayRef<llvm::Value *> Args, 4040 const Twine &Name = ""); 4041 llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4042 ArrayRef<llvm::Value *> args, 4043 const Twine &name = ""); 4044 llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4045 const Twine &name = ""); 4046 void EmitNoreturnRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4047 ArrayRef<llvm::Value *> args); 4048 4049 CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 4050 NestedNameSpecifier *Qual, 4051 llvm::Type *Ty); 4052 4053 CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 4054 CXXDtorType Type, 4055 const CXXRecordDecl *RD); 4056 4057 // Return the copy constructor name with the prefix "__copy_constructor_" 4058 // removed. 4059 static std::string getNonTrivialCopyConstructorStr(QualType QT, 4060 CharUnits Alignment, 4061 bool IsVolatile, 4062 ASTContext &Ctx); 4063 4064 // Return the destructor name with the prefix "__destructor_" removed. 4065 static std::string getNonTrivialDestructorStr(QualType QT, 4066 CharUnits Alignment, 4067 bool IsVolatile, 4068 ASTContext &Ctx); 4069 4070 // These functions emit calls to the special functions of non-trivial C 4071 // structs. 4072 void defaultInitNonTrivialCStructVar(LValue Dst); 4073 void callCStructDefaultConstructor(LValue Dst); 4074 void callCStructDestructor(LValue Dst); 4075 void callCStructCopyConstructor(LValue Dst, LValue Src); 4076 void callCStructMoveConstructor(LValue Dst, LValue Src); 4077 void callCStructCopyAssignmentOperator(LValue Dst, LValue Src); 4078 void callCStructMoveAssignmentOperator(LValue Dst, LValue Src); 4079 4080 RValue 4081 EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method, 4082 const CGCallee &Callee, 4083 ReturnValueSlot ReturnValue, llvm::Value *This, 4084 llvm::Value *ImplicitParam, 4085 QualType ImplicitParamTy, const CallExpr *E, 4086 CallArgList *RtlArgs); 4087 RValue EmitCXXDestructorCall(GlobalDecl Dtor, const CGCallee &Callee, 4088 llvm::Value *This, QualType ThisTy, 4089 llvm::Value *ImplicitParam, 4090 QualType ImplicitParamTy, const CallExpr *E); 4091 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 4092 ReturnValueSlot ReturnValue); 4093 RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE, 4094 const CXXMethodDecl *MD, 4095 ReturnValueSlot ReturnValue, 4096 bool HasQualifier, 4097 NestedNameSpecifier *Qualifier, 4098 bool IsArrow, const Expr *Base); 4099 // Compute the object pointer. 4100 Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base, 4101 llvm::Value *memberPtr, 4102 const MemberPointerType *memberPtrType, 4103 LValueBaseInfo *BaseInfo = nullptr, 4104 TBAAAccessInfo *TBAAInfo = nullptr); 4105 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 4106 ReturnValueSlot ReturnValue); 4107 4108 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 4109 const CXXMethodDecl *MD, 4110 ReturnValueSlot ReturnValue); 4111 RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E); 4112 4113 RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 4114 ReturnValueSlot ReturnValue); 4115 4116 RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E); 4117 RValue EmitAMDGPUDevicePrintfCallExpr(const CallExpr *E); 4118 RValue EmitOpenMPDevicePrintfCallExpr(const CallExpr *E); 4119 4120 RValue EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID, 4121 const CallExpr *E, ReturnValueSlot ReturnValue); 4122 4123 RValue emitRotate(const CallExpr *E, bool IsRotateRight); 4124 4125 /// Emit IR for __builtin_os_log_format. 4126 RValue emitBuiltinOSLogFormat(const CallExpr &E); 4127 4128 /// Emit IR for __builtin_is_aligned. 4129 RValue EmitBuiltinIsAligned(const CallExpr *E); 4130 /// Emit IR for __builtin_align_up/__builtin_align_down. 4131 RValue EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp); 4132 4133 llvm::Function *generateBuiltinOSLogHelperFunction( 4134 const analyze_os_log::OSLogBufferLayout &Layout, 4135 CharUnits BufferAlignment); 4136 4137 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 4138 4139 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 4140 /// is unhandled by the current target. 4141 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4142 ReturnValueSlot ReturnValue); 4143 4144 llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty, 4145 const llvm::CmpInst::Predicate Fp, 4146 const llvm::CmpInst::Predicate Ip, 4147 const llvm::Twine &Name = ""); 4148 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4149 ReturnValueSlot ReturnValue, 4150 llvm::Triple::ArchType Arch); 4151 llvm::Value *EmitARMMVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4152 ReturnValueSlot ReturnValue, 4153 llvm::Triple::ArchType Arch); 4154 llvm::Value *EmitARMCDEBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4155 ReturnValueSlot ReturnValue, 4156 llvm::Triple::ArchType Arch); 4157 llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::IntegerType *ITy, 4158 QualType RTy); 4159 llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::ArrayType *ATy, 4160 QualType RTy); 4161 4162 llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID, 4163 unsigned LLVMIntrinsic, 4164 unsigned AltLLVMIntrinsic, 4165 const char *NameHint, 4166 unsigned Modifier, 4167 const CallExpr *E, 4168 SmallVectorImpl<llvm::Value *> &Ops, 4169 Address PtrOp0, Address PtrOp1, 4170 llvm::Triple::ArchType Arch); 4171 4172 llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID, 4173 unsigned Modifier, llvm::Type *ArgTy, 4174 const CallExpr *E); 4175 llvm::Value *EmitNeonCall(llvm::Function *F, 4176 SmallVectorImpl<llvm::Value*> &O, 4177 const char *name, 4178 unsigned shift = 0, bool rightshift = false); 4179 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx, 4180 const llvm::ElementCount &Count); 4181 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 4182 llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, 4183 bool negateForRightShift); 4184 llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt, 4185 llvm::Type *Ty, bool usgn, const char *name); 4186 llvm::Value *vectorWrapScalar16(llvm::Value *Op); 4187 /// SVEBuiltinMemEltTy - Returns the memory element type for this memory 4188 /// access builtin. Only required if it can't be inferred from the base 4189 /// pointer operand. 4190 llvm::Type *SVEBuiltinMemEltTy(const SVETypeFlags &TypeFlags); 4191 4192 SmallVector<llvm::Type *, 2> 4193 getSVEOverloadTypes(const SVETypeFlags &TypeFlags, llvm::Type *ReturnType, 4194 ArrayRef<llvm::Value *> Ops); 4195 llvm::Type *getEltType(const SVETypeFlags &TypeFlags); 4196 llvm::ScalableVectorType *getSVEType(const SVETypeFlags &TypeFlags); 4197 llvm::ScalableVectorType *getSVEPredType(const SVETypeFlags &TypeFlags); 4198 llvm::Value *EmitSVEAllTruePred(const SVETypeFlags &TypeFlags); 4199 llvm::Value *EmitSVEDupX(llvm::Value *Scalar); 4200 llvm::Value *EmitSVEDupX(llvm::Value *Scalar, llvm::Type *Ty); 4201 llvm::Value *EmitSVEReinterpret(llvm::Value *Val, llvm::Type *Ty); 4202 llvm::Value *EmitSVEPMull(const SVETypeFlags &TypeFlags, 4203 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4204 unsigned BuiltinID); 4205 llvm::Value *EmitSVEMovl(const SVETypeFlags &TypeFlags, 4206 llvm::ArrayRef<llvm::Value *> Ops, 4207 unsigned BuiltinID); 4208 llvm::Value *EmitSVEPredicateCast(llvm::Value *Pred, 4209 llvm::ScalableVectorType *VTy); 4210 llvm::Value *EmitSVEGatherLoad(const SVETypeFlags &TypeFlags, 4211 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4212 unsigned IntID); 4213 llvm::Value *EmitSVEScatterStore(const SVETypeFlags &TypeFlags, 4214 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4215 unsigned IntID); 4216 llvm::Value *EmitSVEMaskedLoad(const CallExpr *, llvm::Type *ReturnTy, 4217 SmallVectorImpl<llvm::Value *> &Ops, 4218 unsigned BuiltinID, bool IsZExtReturn); 4219 llvm::Value *EmitSVEMaskedStore(const CallExpr *, 4220 SmallVectorImpl<llvm::Value *> &Ops, 4221 unsigned BuiltinID); 4222 llvm::Value *EmitSVEPrefetchLoad(const SVETypeFlags &TypeFlags, 4223 SmallVectorImpl<llvm::Value *> &Ops, 4224 unsigned BuiltinID); 4225 llvm::Value *EmitSVEGatherPrefetch(const SVETypeFlags &TypeFlags, 4226 SmallVectorImpl<llvm::Value *> &Ops, 4227 unsigned IntID); 4228 llvm::Value *EmitSVEStructLoad(const SVETypeFlags &TypeFlags, 4229 SmallVectorImpl<llvm::Value *> &Ops, 4230 unsigned IntID); 4231 llvm::Value *EmitSVEStructStore(const SVETypeFlags &TypeFlags, 4232 SmallVectorImpl<llvm::Value *> &Ops, 4233 unsigned IntID); 4234 llvm::Value *EmitAArch64SVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4235 4236 llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4237 llvm::Triple::ArchType Arch); 4238 llvm::Value *EmitBPFBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4239 4240 llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); 4241 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4242 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4243 llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4244 llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4245 llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4246 llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID, 4247 const CallExpr *E); 4248 llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4249 llvm::Value *EmitRISCVBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4250 ReturnValueSlot ReturnValue); 4251 bool ProcessOrderScopeAMDGCN(llvm::Value *Order, llvm::Value *Scope, 4252 llvm::AtomicOrdering &AO, 4253 llvm::SyncScope::ID &SSID); 4254 4255 enum class MSVCIntrin; 4256 llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E); 4257 4258 llvm::Value *EmitBuiltinAvailable(const VersionTuple &Version); 4259 4260 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 4261 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 4262 llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); 4263 llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); 4264 llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); 4265 llvm::Value *EmitObjCCollectionLiteral(const Expr *E, 4266 const ObjCMethodDecl *MethodWithObjects); 4267 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 4268 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 4269 ReturnValueSlot Return = ReturnValueSlot()); 4270 4271 /// Retrieves the default cleanup kind for an ARC cleanup. 4272 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. 4273 CleanupKind getARCCleanupKind() { 4274 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 4275 ? NormalAndEHCleanup : NormalCleanup; 4276 } 4277 4278 // ARC primitives. 4279 void EmitARCInitWeak(Address addr, llvm::Value *value); 4280 void EmitARCDestroyWeak(Address addr); 4281 llvm::Value *EmitARCLoadWeak(Address addr); 4282 llvm::Value *EmitARCLoadWeakRetained(Address addr); 4283 llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored); 4284 void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); 4285 void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); 4286 void EmitARCCopyWeak(Address dst, Address src); 4287 void EmitARCMoveWeak(Address dst, Address src); 4288 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 4289 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 4290 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 4291 bool resultIgnored); 4292 llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value, 4293 bool resultIgnored); 4294 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 4295 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 4296 llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); 4297 void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise); 4298 void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 4299 llvm::Value *EmitARCAutorelease(llvm::Value *value); 4300 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 4301 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 4302 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 4303 llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value); 4304 4305 llvm::Value *EmitObjCAutorelease(llvm::Value *value, llvm::Type *returnType); 4306 llvm::Value *EmitObjCRetainNonBlock(llvm::Value *value, 4307 llvm::Type *returnType); 4308 void EmitObjCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 4309 4310 std::pair<LValue,llvm::Value*> 4311 EmitARCStoreAutoreleasing(const BinaryOperator *e); 4312 std::pair<LValue,llvm::Value*> 4313 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 4314 std::pair<LValue,llvm::Value*> 4315 EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored); 4316 4317 llvm::Value *EmitObjCAlloc(llvm::Value *value, 4318 llvm::Type *returnType); 4319 llvm::Value *EmitObjCAllocWithZone(llvm::Value *value, 4320 llvm::Type *returnType); 4321 llvm::Value *EmitObjCAllocInit(llvm::Value *value, llvm::Type *resultType); 4322 4323 llvm::Value *EmitObjCThrowOperand(const Expr *expr); 4324 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 4325 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 4326 4327 llvm::Value *EmitARCExtendBlockObject(const Expr *expr); 4328 llvm::Value *EmitARCReclaimReturnedObject(const Expr *e, 4329 bool allowUnsafeClaim); 4330 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 4331 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 4332 llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr); 4333 4334 void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values); 4335 4336 void EmitARCNoopIntrinsicUse(ArrayRef<llvm::Value *> values); 4337 4338 static Destroyer destroyARCStrongImprecise; 4339 static Destroyer destroyARCStrongPrecise; 4340 static Destroyer destroyARCWeak; 4341 static Destroyer emitARCIntrinsicUse; 4342 static Destroyer destroyNonTrivialCStruct; 4343 4344 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 4345 llvm::Value *EmitObjCAutoreleasePoolPush(); 4346 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 4347 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 4348 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 4349 4350 /// Emits a reference binding to the passed in expression. 4351 RValue EmitReferenceBindingToExpr(const Expr *E); 4352 4353 //===--------------------------------------------------------------------===// 4354 // Expression Emission 4355 //===--------------------------------------------------------------------===// 4356 4357 // Expressions are broken into three classes: scalar, complex, aggregate. 4358 4359 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 4360 /// scalar type, returning the result. 4361 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 4362 4363 /// Emit a conversion from the specified type to the specified destination 4364 /// type, both of which are LLVM scalar types. 4365 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 4366 QualType DstTy, SourceLocation Loc); 4367 4368 /// Emit a conversion from the specified complex type to the specified 4369 /// destination type, where the destination type is an LLVM scalar type. 4370 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 4371 QualType DstTy, 4372 SourceLocation Loc); 4373 4374 /// EmitAggExpr - Emit the computation of the specified expression 4375 /// of aggregate type. The result is computed into the given slot, 4376 /// which may be null to indicate that the value is not needed. 4377 void EmitAggExpr(const Expr *E, AggValueSlot AS); 4378 4379 /// EmitAggExprToLValue - Emit the computation of the specified expression of 4380 /// aggregate type into a temporary LValue. 4381 LValue EmitAggExprToLValue(const Expr *E); 4382 4383 /// Build all the stores needed to initialize an aggregate at Dest with the 4384 /// value Val. 4385 void EmitAggregateStore(llvm::Value *Val, Address Dest, bool DestIsVolatile); 4386 4387 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 4388 /// make sure it survives garbage collection until this point. 4389 void EmitExtendGCLifetime(llvm::Value *object); 4390 4391 /// EmitComplexExpr - Emit the computation of the specified expression of 4392 /// complex type, returning the result. 4393 ComplexPairTy EmitComplexExpr(const Expr *E, 4394 bool IgnoreReal = false, 4395 bool IgnoreImag = false); 4396 4397 /// EmitComplexExprIntoLValue - Emit the given expression of complex 4398 /// type and place its result into the specified l-value. 4399 void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit); 4400 4401 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 4402 void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit); 4403 4404 /// EmitLoadOfComplex - Load a complex number from the specified l-value. 4405 ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc); 4406 4407 Address emitAddrOfRealComponent(Address complex, QualType complexType); 4408 Address emitAddrOfImagComponent(Address complex, QualType complexType); 4409 4410 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 4411 /// global variable that has already been created for it. If the initializer 4412 /// has a different type than GV does, this may free GV and return a different 4413 /// one. Otherwise it just returns GV. 4414 llvm::GlobalVariable * 4415 AddInitializerToStaticVarDecl(const VarDecl &D, 4416 llvm::GlobalVariable *GV); 4417 4418 // Emit an @llvm.invariant.start call for the given memory region. 4419 void EmitInvariantStart(llvm::Constant *Addr, CharUnits Size); 4420 4421 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 4422 /// variable with global storage. 4423 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::GlobalVariable *GV, 4424 bool PerformInit); 4425 4426 llvm::Function *createAtExitStub(const VarDecl &VD, llvm::FunctionCallee Dtor, 4427 llvm::Constant *Addr); 4428 4429 llvm::Function *createTLSAtExitStub(const VarDecl &VD, 4430 llvm::FunctionCallee Dtor, 4431 llvm::Constant *Addr, 4432 llvm::FunctionCallee &AtExit); 4433 4434 /// Call atexit() with a function that passes the given argument to 4435 /// the given function. 4436 void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::FunctionCallee fn, 4437 llvm::Constant *addr); 4438 4439 /// Call atexit() with function dtorStub. 4440 void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub); 4441 4442 /// Call unatexit() with function dtorStub. 4443 llvm::Value *unregisterGlobalDtorWithUnAtExit(llvm::Constant *dtorStub); 4444 4445 /// Emit code in this function to perform a guarded variable 4446 /// initialization. Guarded initializations are used when it's not 4447 /// possible to prove that an initialization will be done exactly 4448 /// once, e.g. with a static local variable or a static data member 4449 /// of a class template. 4450 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, 4451 bool PerformInit); 4452 4453 enum class GuardKind { VariableGuard, TlsGuard }; 4454 4455 /// Emit a branch to select whether or not to perform guarded initialization. 4456 void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit, 4457 llvm::BasicBlock *InitBlock, 4458 llvm::BasicBlock *NoInitBlock, 4459 GuardKind Kind, const VarDecl *D); 4460 4461 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 4462 /// variables. 4463 void 4464 GenerateCXXGlobalInitFunc(llvm::Function *Fn, 4465 ArrayRef<llvm::Function *> CXXThreadLocals, 4466 ConstantAddress Guard = ConstantAddress::invalid()); 4467 4468 /// GenerateCXXGlobalCleanUpFunc - Generates code for cleaning up global 4469 /// variables. 4470 void GenerateCXXGlobalCleanUpFunc( 4471 llvm::Function *Fn, 4472 ArrayRef<std::tuple<llvm::FunctionType *, llvm::WeakTrackingVH, 4473 llvm::Constant *>> 4474 DtorsOrStermFinalizers); 4475 4476 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 4477 const VarDecl *D, 4478 llvm::GlobalVariable *Addr, 4479 bool PerformInit); 4480 4481 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 4482 4483 void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp); 4484 4485 void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true); 4486 4487 RValue EmitAtomicExpr(AtomicExpr *E); 4488 4489 //===--------------------------------------------------------------------===// 4490 // Annotations Emission 4491 //===--------------------------------------------------------------------===// 4492 4493 /// Emit an annotation call (intrinsic). 4494 llvm::Value *EmitAnnotationCall(llvm::Function *AnnotationFn, 4495 llvm::Value *AnnotatedVal, 4496 StringRef AnnotationStr, 4497 SourceLocation Location, 4498 const AnnotateAttr *Attr); 4499 4500 /// Emit local annotations for the local variable V, declared by D. 4501 void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); 4502 4503 /// Emit field annotations for the given field & value. Returns the 4504 /// annotation result. 4505 Address EmitFieldAnnotations(const FieldDecl *D, Address V); 4506 4507 //===--------------------------------------------------------------------===// 4508 // Internal Helpers 4509 //===--------------------------------------------------------------------===// 4510 4511 /// ContainsLabel - Return true if the statement contains a label in it. If 4512 /// this statement is not executed normally, it not containing a label means 4513 /// that we can just remove the code. 4514 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 4515 4516 /// containsBreak - Return true if the statement contains a break out of it. 4517 /// If the statement (recursively) contains a switch or loop with a break 4518 /// inside of it, this is fine. 4519 static bool containsBreak(const Stmt *S); 4520 4521 /// Determine if the given statement might introduce a declaration into the 4522 /// current scope, by being a (possibly-labelled) DeclStmt. 4523 static bool mightAddDeclToScope(const Stmt *S); 4524 4525 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 4526 /// to a constant, or if it does but contains a label, return false. If it 4527 /// constant folds return true and set the boolean result in Result. 4528 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result, 4529 bool AllowLabels = false); 4530 4531 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 4532 /// to a constant, or if it does but contains a label, return false. If it 4533 /// constant folds return true and set the folded value. 4534 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result, 4535 bool AllowLabels = false); 4536 4537 /// isInstrumentedCondition - Determine whether the given condition is an 4538 /// instrumentable condition (i.e. no "&&" or "||"). 4539 static bool isInstrumentedCondition(const Expr *C); 4540 4541 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that 4542 /// increments a profile counter based on the semantics of the given logical 4543 /// operator opcode. This is used to instrument branch condition coverage 4544 /// for logical operators. 4545 void EmitBranchToCounterBlock(const Expr *Cond, BinaryOperator::Opcode LOp, 4546 llvm::BasicBlock *TrueBlock, 4547 llvm::BasicBlock *FalseBlock, 4548 uint64_t TrueCount = 0, 4549 Stmt::Likelihood LH = Stmt::LH_None, 4550 const Expr *CntrIdx = nullptr); 4551 4552 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 4553 /// if statement) to the specified blocks. Based on the condition, this might 4554 /// try to simplify the codegen of the conditional based on the branch. 4555 /// TrueCount should be the number of times we expect the condition to 4556 /// evaluate to true based on PGO data. 4557 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 4558 llvm::BasicBlock *FalseBlock, uint64_t TrueCount, 4559 Stmt::Likelihood LH = Stmt::LH_None); 4560 4561 /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is 4562 /// nonnull, if \p LHS is marked _Nonnull. 4563 void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc); 4564 4565 /// An enumeration which makes it easier to specify whether or not an 4566 /// operation is a subtraction. 4567 enum { NotSubtraction = false, IsSubtraction = true }; 4568 4569 /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to 4570 /// detect undefined behavior when the pointer overflow sanitizer is enabled. 4571 /// \p SignedIndices indicates whether any of the GEP indices are signed. 4572 /// \p IsSubtraction indicates whether the expression used to form the GEP 4573 /// is a subtraction. 4574 llvm::Value *EmitCheckedInBoundsGEP(llvm::Type *ElemTy, llvm::Value *Ptr, 4575 ArrayRef<llvm::Value *> IdxList, 4576 bool SignedIndices, 4577 bool IsSubtraction, 4578 SourceLocation Loc, 4579 const Twine &Name = ""); 4580 4581 /// Specifies which type of sanitizer check to apply when handling a 4582 /// particular builtin. 4583 enum BuiltinCheckKind { 4584 BCK_CTZPassedZero, 4585 BCK_CLZPassedZero, 4586 }; 4587 4588 /// Emits an argument for a call to a builtin. If the builtin sanitizer is 4589 /// enabled, a runtime check specified by \p Kind is also emitted. 4590 llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind); 4591 4592 /// Emit a description of a type in a format suitable for passing to 4593 /// a runtime sanitizer handler. 4594 llvm::Constant *EmitCheckTypeDescriptor(QualType T); 4595 4596 /// Convert a value into a format suitable for passing to a runtime 4597 /// sanitizer handler. 4598 llvm::Value *EmitCheckValue(llvm::Value *V); 4599 4600 /// Emit a description of a source location in a format suitable for 4601 /// passing to a runtime sanitizer handler. 4602 llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc); 4603 4604 /// Create a basic block that will either trap or call a handler function in 4605 /// the UBSan runtime with the provided arguments, and create a conditional 4606 /// branch to it. 4607 void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 4608 SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs, 4609 ArrayRef<llvm::Value *> DynamicArgs); 4610 4611 /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath 4612 /// if Cond if false. 4613 void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond, 4614 llvm::ConstantInt *TypeId, llvm::Value *Ptr, 4615 ArrayRef<llvm::Constant *> StaticArgs); 4616 4617 /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime 4618 /// checking is enabled. Otherwise, just emit an unreachable instruction. 4619 void EmitUnreachable(SourceLocation Loc); 4620 4621 /// Create a basic block that will call the trap intrinsic, and emit a 4622 /// conditional branch to it, for the -ftrapv checks. 4623 void EmitTrapCheck(llvm::Value *Checked, SanitizerHandler CheckHandlerID); 4624 4625 /// Emit a call to trap or debugtrap and attach function attribute 4626 /// "trap-func-name" if specified. 4627 llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID); 4628 4629 /// Emit a stub for the cross-DSO CFI check function. 4630 void EmitCfiCheckStub(); 4631 4632 /// Emit a cross-DSO CFI failure handling function. 4633 void EmitCfiCheckFail(); 4634 4635 /// Create a check for a function parameter that may potentially be 4636 /// declared as non-null. 4637 void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc, 4638 AbstractCallee AC, unsigned ParmNum); 4639 4640 /// EmitCallArg - Emit a single call argument. 4641 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 4642 4643 /// EmitDelegateCallArg - We are performing a delegate call; that 4644 /// is, the current function is delegating to another one. Produce 4645 /// a r-value suitable for passing the given parameter. 4646 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param, 4647 SourceLocation loc); 4648 4649 /// SetFPAccuracy - Set the minimum required accuracy of the given floating 4650 /// point operation, expressed as the maximum relative error in ulp. 4651 void SetFPAccuracy(llvm::Value *Val, float Accuracy); 4652 4653 /// Set the codegen fast-math flags. 4654 void SetFastMathFlags(FPOptions FPFeatures); 4655 4656 // Truncate or extend a boolean vector to the requested number of elements. 4657 llvm::Value *emitBoolVecConversion(llvm::Value *SrcVec, 4658 unsigned NumElementsDst, 4659 const llvm::Twine &Name = ""); 4660 4661 private: 4662 llvm::MDNode *getRangeForLoadFromType(QualType Ty); 4663 void EmitReturnOfRValue(RValue RV, QualType Ty); 4664 4665 void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New); 4666 4667 llvm::SmallVector<std::pair<llvm::WeakTrackingVH, llvm::Value *>, 4> 4668 DeferredReplacements; 4669 4670 /// Set the address of a local variable. 4671 void setAddrOfLocalVar(const VarDecl *VD, Address Addr) { 4672 assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!"); 4673 LocalDeclMap.insert({VD, Addr}); 4674 } 4675 4676 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 4677 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 4678 /// 4679 /// \param AI - The first function argument of the expansion. 4680 void ExpandTypeFromArgs(QualType Ty, LValue Dst, 4681 llvm::Function::arg_iterator &AI); 4682 4683 /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg 4684 /// Ty, into individual arguments on the provided vector \arg IRCallArgs, 4685 /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand. 4686 void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, 4687 SmallVectorImpl<llvm::Value *> &IRCallArgs, 4688 unsigned &IRCallArgPos); 4689 4690 std::pair<llvm::Value *, llvm::Type *> 4691 EmitAsmInput(const TargetInfo::ConstraintInfo &Info, const Expr *InputExpr, 4692 std::string &ConstraintStr); 4693 4694 std::pair<llvm::Value *, llvm::Type *> 4695 EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, LValue InputValue, 4696 QualType InputType, std::string &ConstraintStr, 4697 SourceLocation Loc); 4698 4699 /// Attempts to statically evaluate the object size of E. If that 4700 /// fails, emits code to figure the size of E out for us. This is 4701 /// pass_object_size aware. 4702 /// 4703 /// If EmittedExpr is non-null, this will use that instead of re-emitting E. 4704 llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type, 4705 llvm::IntegerType *ResType, 4706 llvm::Value *EmittedE, 4707 bool IsDynamic); 4708 4709 /// Emits the size of E, as required by __builtin_object_size. This 4710 /// function is aware of pass_object_size parameters, and will act accordingly 4711 /// if E is a parameter with the pass_object_size attribute. 4712 llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type, 4713 llvm::IntegerType *ResType, 4714 llvm::Value *EmittedE, 4715 bool IsDynamic); 4716 4717 void emitZeroOrPatternForAutoVarInit(QualType type, const VarDecl &D, 4718 Address Loc); 4719 4720 public: 4721 enum class EvaluationOrder { 4722 ///! No language constraints on evaluation order. 4723 Default, 4724 ///! Language semantics require left-to-right evaluation. 4725 ForceLeftToRight, 4726 ///! Language semantics require right-to-left evaluation. 4727 ForceRightToLeft 4728 }; 4729 4730 // Wrapper for function prototype sources. Wraps either a FunctionProtoType or 4731 // an ObjCMethodDecl. 4732 struct PrototypeWrapper { 4733 llvm::PointerUnion<const FunctionProtoType *, const ObjCMethodDecl *> P; 4734 4735 PrototypeWrapper(const FunctionProtoType *FT) : P(FT) {} 4736 PrototypeWrapper(const ObjCMethodDecl *MD) : P(MD) {} 4737 }; 4738 4739 void EmitCallArgs(CallArgList &Args, PrototypeWrapper Prototype, 4740 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 4741 AbstractCallee AC = AbstractCallee(), 4742 unsigned ParamsToSkip = 0, 4743 EvaluationOrder Order = EvaluationOrder::Default); 4744 4745 /// EmitPointerWithAlignment - Given an expression with a pointer type, 4746 /// emit the value and compute our best estimate of the alignment of the 4747 /// pointee. 4748 /// 4749 /// \param BaseInfo - If non-null, this will be initialized with 4750 /// information about the source of the alignment and the may-alias 4751 /// attribute. Note that this function will conservatively fall back on 4752 /// the type when it doesn't recognize the expression and may-alias will 4753 /// be set to false. 4754 /// 4755 /// One reasonable way to use this information is when there's a language 4756 /// guarantee that the pointer must be aligned to some stricter value, and 4757 /// we're simply trying to ensure that sufficiently obvious uses of under- 4758 /// aligned objects don't get miscompiled; for example, a placement new 4759 /// into the address of a local variable. In such a case, it's quite 4760 /// reasonable to just ignore the returned alignment when it isn't from an 4761 /// explicit source. 4762 Address EmitPointerWithAlignment(const Expr *Addr, 4763 LValueBaseInfo *BaseInfo = nullptr, 4764 TBAAAccessInfo *TBAAInfo = nullptr); 4765 4766 /// If \p E references a parameter with pass_object_size info or a constant 4767 /// array size modifier, emit the object size divided by the size of \p EltTy. 4768 /// Otherwise return null. 4769 llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy); 4770 4771 void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK); 4772 4773 struct MultiVersionResolverOption { 4774 llvm::Function *Function; 4775 struct Conds { 4776 StringRef Architecture; 4777 llvm::SmallVector<StringRef, 8> Features; 4778 4779 Conds(StringRef Arch, ArrayRef<StringRef> Feats) 4780 : Architecture(Arch), Features(Feats.begin(), Feats.end()) {} 4781 } Conditions; 4782 4783 MultiVersionResolverOption(llvm::Function *F, StringRef Arch, 4784 ArrayRef<StringRef> Feats) 4785 : Function(F), Conditions(Arch, Feats) {} 4786 }; 4787 4788 // Emits the body of a multiversion function's resolver. Assumes that the 4789 // options are already sorted in the proper order, with the 'default' option 4790 // last (if it exists). 4791 void EmitMultiVersionResolver(llvm::Function *Resolver, 4792 ArrayRef<MultiVersionResolverOption> Options); 4793 4794 private: 4795 QualType getVarArgType(const Expr *Arg); 4796 4797 void EmitDeclMetadata(); 4798 4799 BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType, 4800 const AutoVarEmission &emission); 4801 4802 void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); 4803 4804 llvm::Value *GetValueForARMHint(unsigned BuiltinID); 4805 llvm::Value *EmitX86CpuIs(const CallExpr *E); 4806 llvm::Value *EmitX86CpuIs(StringRef CPUStr); 4807 llvm::Value *EmitX86CpuSupports(const CallExpr *E); 4808 llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs); 4809 llvm::Value *EmitX86CpuSupports(uint64_t Mask); 4810 llvm::Value *EmitX86CpuInit(); 4811 llvm::Value *FormResolverCondition(const MultiVersionResolverOption &RO); 4812 }; 4813 4814 /// TargetFeatures - This class is used to check whether the builtin function 4815 /// has the required tagert specific features. It is able to support the 4816 /// combination of ','(and), '|'(or), and '()'. By default, the priority of 4817 /// ',' is higher than that of '|' . 4818 /// E.g: 4819 /// A,B|C means the builtin function requires both A and B, or C. 4820 /// If we want the builtin function requires both A and B, or both A and C, 4821 /// there are two ways: A,B|A,C or A,(B|C). 4822 /// The FeaturesList should not contain spaces, and brackets must appear in 4823 /// pairs. 4824 class TargetFeatures { 4825 struct FeatureListStatus { 4826 bool HasFeatures; 4827 StringRef CurFeaturesList; 4828 }; 4829 4830 const llvm::StringMap<bool> &CallerFeatureMap; 4831 4832 FeatureListStatus getAndFeatures(StringRef FeatureList) { 4833 int InParentheses = 0; 4834 bool HasFeatures = true; 4835 size_t SubexpressionStart = 0; 4836 for (size_t i = 0, e = FeatureList.size(); i < e; ++i) { 4837 char CurrentToken = FeatureList[i]; 4838 switch (CurrentToken) { 4839 default: 4840 break; 4841 case '(': 4842 if (InParentheses == 0) 4843 SubexpressionStart = i + 1; 4844 ++InParentheses; 4845 break; 4846 case ')': 4847 --InParentheses; 4848 assert(InParentheses >= 0 && "Parentheses are not in pair"); 4849 LLVM_FALLTHROUGH; 4850 case '|': 4851 case ',': 4852 if (InParentheses == 0) { 4853 if (HasFeatures && i != SubexpressionStart) { 4854 StringRef F = FeatureList.slice(SubexpressionStart, i); 4855 HasFeatures = CurrentToken == ')' ? hasRequiredFeatures(F) 4856 : CallerFeatureMap.lookup(F); 4857 } 4858 SubexpressionStart = i + 1; 4859 if (CurrentToken == '|') { 4860 return {HasFeatures, FeatureList.substr(SubexpressionStart)}; 4861 } 4862 } 4863 break; 4864 } 4865 } 4866 assert(InParentheses == 0 && "Parentheses are not in pair"); 4867 if (HasFeatures && SubexpressionStart != FeatureList.size()) 4868 HasFeatures = 4869 CallerFeatureMap.lookup(FeatureList.substr(SubexpressionStart)); 4870 return {HasFeatures, StringRef()}; 4871 } 4872 4873 public: 4874 bool hasRequiredFeatures(StringRef FeatureList) { 4875 FeatureListStatus FS = {false, FeatureList}; 4876 while (!FS.HasFeatures && !FS.CurFeaturesList.empty()) 4877 FS = getAndFeatures(FS.CurFeaturesList); 4878 return FS.HasFeatures; 4879 } 4880 4881 TargetFeatures(const llvm::StringMap<bool> &CallerFeatureMap) 4882 : CallerFeatureMap(CallerFeatureMap) {} 4883 }; 4884 4885 inline DominatingLLVMValue::saved_type 4886 DominatingLLVMValue::save(CodeGenFunction &CGF, llvm::Value *value) { 4887 if (!needsSaving(value)) return saved_type(value, false); 4888 4889 // Otherwise, we need an alloca. 4890 auto align = CharUnits::fromQuantity( 4891 CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType())); 4892 Address alloca = 4893 CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save"); 4894 CGF.Builder.CreateStore(value, alloca); 4895 4896 return saved_type(alloca.getPointer(), true); 4897 } 4898 4899 inline llvm::Value *DominatingLLVMValue::restore(CodeGenFunction &CGF, 4900 saved_type value) { 4901 // If the value says it wasn't saved, trust that it's still dominating. 4902 if (!value.getInt()) return value.getPointer(); 4903 4904 // Otherwise, it should be an alloca instruction, as set up in save(). 4905 auto alloca = cast<llvm::AllocaInst>(value.getPointer()); 4906 return CGF.Builder.CreateAlignedLoad(alloca->getAllocatedType(), alloca, 4907 alloca->getAlign()); 4908 } 4909 4910 } // end namespace CodeGen 4911 4912 // Map the LangOption for floating point exception behavior into 4913 // the corresponding enum in the IR. 4914 llvm::fp::ExceptionBehavior 4915 ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind); 4916 } // end namespace clang 4917 4918 #endif 4919