1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the internal per-function state used for llvm translation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef CLANG_CODEGEN_CODEGENFUNCTION_H 15 #define CLANG_CODEGEN_CODEGENFUNCTION_H 16 17 #include "clang/AST/Type.h" 18 #include "clang/AST/ExprCXX.h" 19 #include "clang/AST/ExprObjC.h" 20 #include "clang/AST/CharUnits.h" 21 #include "clang/Basic/ABI.h" 22 #include "clang/Basic/TargetInfo.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/Support/ValueHandle.h" 26 #include "CodeGenModule.h" 27 #include "CGBuilder.h" 28 #include "CGValue.h" 29 30 namespace llvm { 31 class BasicBlock; 32 class LLVMContext; 33 class MDNode; 34 class Module; 35 class SwitchInst; 36 class Twine; 37 class Value; 38 class CallSite; 39 } 40 41 namespace clang { 42 class APValue; 43 class ASTContext; 44 class CXXDestructorDecl; 45 class CXXForRangeStmt; 46 class CXXTryStmt; 47 class Decl; 48 class LabelDecl; 49 class EnumConstantDecl; 50 class FunctionDecl; 51 class FunctionProtoType; 52 class LabelStmt; 53 class ObjCContainerDecl; 54 class ObjCInterfaceDecl; 55 class ObjCIvarDecl; 56 class ObjCMethodDecl; 57 class ObjCImplementationDecl; 58 class ObjCPropertyImplDecl; 59 class TargetInfo; 60 class TargetCodeGenInfo; 61 class VarDecl; 62 class ObjCForCollectionStmt; 63 class ObjCAtTryStmt; 64 class ObjCAtThrowStmt; 65 class ObjCAtSynchronizedStmt; 66 67 namespace CodeGen { 68 class CodeGenTypes; 69 class CGDebugInfo; 70 class CGFunctionInfo; 71 class CGRecordLayout; 72 class CGBlockInfo; 73 class CGCXXABI; 74 class BlockFlags; 75 class BlockFieldFlags; 76 77 /// A branch fixup. These are required when emitting a goto to a 78 /// label which hasn't been emitted yet. The goto is optimistically 79 /// emitted as a branch to the basic block for the label, and (if it 80 /// occurs in a scope with non-trivial cleanups) a fixup is added to 81 /// the innermost cleanup. When a (normal) cleanup is popped, any 82 /// unresolved fixups in that scope are threaded through the cleanup. 83 struct BranchFixup { 84 /// The block containing the terminator which needs to be modified 85 /// into a switch if this fixup is resolved into the current scope. 86 /// If null, LatestBranch points directly to the destination. 87 llvm::BasicBlock *OptimisticBranchBlock; 88 89 /// The ultimate destination of the branch. 90 /// 91 /// This can be set to null to indicate that this fixup was 92 /// successfully resolved. 93 llvm::BasicBlock *Destination; 94 95 /// The destination index value. 96 unsigned DestinationIndex; 97 98 /// The initial branch of the fixup. 99 llvm::BranchInst *InitialBranch; 100 }; 101 102 template <class T> struct InvariantValue { 103 typedef T type; 104 typedef T saved_type; 105 static bool needsSaving(type value) { return false; } 106 static saved_type save(CodeGenFunction &CGF, type value) { return value; } 107 static type restore(CodeGenFunction &CGF, saved_type value) { return value; } 108 }; 109 110 /// A metaprogramming class for ensuring that a value will dominate an 111 /// arbitrary position in a function. 112 template <class T> struct DominatingValue : InvariantValue<T> {}; 113 114 template <class T, bool mightBeInstruction = 115 llvm::is_base_of<llvm::Value, T>::value && 116 !llvm::is_base_of<llvm::Constant, T>::value && 117 !llvm::is_base_of<llvm::BasicBlock, T>::value> 118 struct DominatingPointer; 119 template <class T> struct DominatingPointer<T,false> : InvariantValue<T*> {}; 120 // template <class T> struct DominatingPointer<T,true> at end of file 121 122 template <class T> struct DominatingValue<T*> : DominatingPointer<T> {}; 123 124 enum CleanupKind { 125 EHCleanup = 0x1, 126 NormalCleanup = 0x2, 127 NormalAndEHCleanup = EHCleanup | NormalCleanup, 128 129 InactiveCleanup = 0x4, 130 InactiveEHCleanup = EHCleanup | InactiveCleanup, 131 InactiveNormalCleanup = NormalCleanup | InactiveCleanup, 132 InactiveNormalAndEHCleanup = NormalAndEHCleanup | InactiveCleanup 133 }; 134 135 /// A stack of scopes which respond to exceptions, including cleanups 136 /// and catch blocks. 137 class EHScopeStack { 138 public: 139 /// A saved depth on the scope stack. This is necessary because 140 /// pushing scopes onto the stack invalidates iterators. 141 class stable_iterator { 142 friend class EHScopeStack; 143 144 /// Offset from StartOfData to EndOfBuffer. 145 ptrdiff_t Size; 146 147 stable_iterator(ptrdiff_t Size) : Size(Size) {} 148 149 public: 150 static stable_iterator invalid() { return stable_iterator(-1); } 151 stable_iterator() : Size(-1) {} 152 153 bool isValid() const { return Size >= 0; } 154 155 /// Returns true if this scope encloses I. 156 /// Returns false if I is invalid. 157 /// This scope must be valid. 158 bool encloses(stable_iterator I) const { return Size <= I.Size; } 159 160 /// Returns true if this scope strictly encloses I: that is, 161 /// if it encloses I and is not I. 162 /// Returns false is I is invalid. 163 /// This scope must be valid. 164 bool strictlyEncloses(stable_iterator I) const { return Size < I.Size; } 165 166 friend bool operator==(stable_iterator A, stable_iterator B) { 167 return A.Size == B.Size; 168 } 169 friend bool operator!=(stable_iterator A, stable_iterator B) { 170 return A.Size != B.Size; 171 } 172 }; 173 174 /// Information for lazily generating a cleanup. Subclasses must be 175 /// POD-like: cleanups will not be destructed, and they will be 176 /// allocated on the cleanup stack and freely copied and moved 177 /// around. 178 /// 179 /// Cleanup implementations should generally be declared in an 180 /// anonymous namespace. 181 class Cleanup { 182 public: 183 // Anchor the construction vtable. We use the destructor because 184 // gcc gives an obnoxious warning if there are virtual methods 185 // with an accessible non-virtual destructor. Unfortunately, 186 // declaring this destructor makes it non-trivial, but there 187 // doesn't seem to be any other way around this warning. 188 // 189 // This destructor will never be called. 190 virtual ~Cleanup(); 191 192 /// Emit the cleanup. For normal cleanups, this is run in the 193 /// same EH context as when the cleanup was pushed, i.e. the 194 /// immediately-enclosing context of the cleanup scope. For 195 /// EH cleanups, this is run in a terminate context. 196 /// 197 // \param IsForEHCleanup true if this is for an EH cleanup, false 198 /// if for a normal cleanup. 199 virtual void Emit(CodeGenFunction &CGF, bool IsForEHCleanup) = 0; 200 }; 201 202 /// UnconditionalCleanupN stores its N parameters and just passes 203 /// them to the real cleanup function. 204 template <class T, class A0> 205 class UnconditionalCleanup1 : public Cleanup { 206 A0 a0; 207 public: 208 UnconditionalCleanup1(A0 a0) : a0(a0) {} 209 void Emit(CodeGenFunction &CGF, bool IsForEHCleanup) { 210 T::Emit(CGF, IsForEHCleanup, a0); 211 } 212 }; 213 214 template <class T, class A0, class A1> 215 class UnconditionalCleanup2 : public Cleanup { 216 A0 a0; A1 a1; 217 public: 218 UnconditionalCleanup2(A0 a0, A1 a1) : a0(a0), a1(a1) {} 219 void Emit(CodeGenFunction &CGF, bool IsForEHCleanup) { 220 T::Emit(CGF, IsForEHCleanup, a0, a1); 221 } 222 }; 223 224 /// ConditionalCleanupN stores the saved form of its N parameters, 225 /// then restores them and performs the cleanup. 226 template <class T, class A0> 227 class ConditionalCleanup1 : public Cleanup { 228 typedef typename DominatingValue<A0>::saved_type A0_saved; 229 A0_saved a0_saved; 230 231 void Emit(CodeGenFunction &CGF, bool IsForEHCleanup) { 232 A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); 233 T::Emit(CGF, IsForEHCleanup, a0); 234 } 235 236 public: 237 ConditionalCleanup1(A0_saved a0) 238 : a0_saved(a0) {} 239 }; 240 241 template <class T, class A0, class A1> 242 class ConditionalCleanup2 : public Cleanup { 243 typedef typename DominatingValue<A0>::saved_type A0_saved; 244 typedef typename DominatingValue<A1>::saved_type A1_saved; 245 A0_saved a0_saved; 246 A1_saved a1_saved; 247 248 void Emit(CodeGenFunction &CGF, bool IsForEHCleanup) { 249 A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); 250 A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved); 251 T::Emit(CGF, IsForEHCleanup, a0, a1); 252 } 253 254 public: 255 ConditionalCleanup2(A0_saved a0, A1_saved a1) 256 : a0_saved(a0), a1_saved(a1) {} 257 }; 258 259 private: 260 // The implementation for this class is in CGException.h and 261 // CGException.cpp; the definition is here because it's used as a 262 // member of CodeGenFunction. 263 264 /// The start of the scope-stack buffer, i.e. the allocated pointer 265 /// for the buffer. All of these pointers are either simultaneously 266 /// null or simultaneously valid. 267 char *StartOfBuffer; 268 269 /// The end of the buffer. 270 char *EndOfBuffer; 271 272 /// The first valid entry in the buffer. 273 char *StartOfData; 274 275 /// The innermost normal cleanup on the stack. 276 stable_iterator InnermostNormalCleanup; 277 278 /// The innermost EH cleanup on the stack. 279 stable_iterator InnermostEHCleanup; 280 281 /// The number of catches on the stack. 282 unsigned CatchDepth; 283 284 /// The current EH destination index. Reset to FirstCatchIndex 285 /// whenever the last EH cleanup is popped. 286 unsigned NextEHDestIndex; 287 enum { FirstEHDestIndex = 1 }; 288 289 /// The current set of branch fixups. A branch fixup is a jump to 290 /// an as-yet unemitted label, i.e. a label for which we don't yet 291 /// know the EH stack depth. Whenever we pop a cleanup, we have 292 /// to thread all the current branch fixups through it. 293 /// 294 /// Fixups are recorded as the Use of the respective branch or 295 /// switch statement. The use points to the final destination. 296 /// When popping out of a cleanup, these uses are threaded through 297 /// the cleanup and adjusted to point to the new cleanup. 298 /// 299 /// Note that branches are allowed to jump into protected scopes 300 /// in certain situations; e.g. the following code is legal: 301 /// struct A { ~A(); }; // trivial ctor, non-trivial dtor 302 /// goto foo; 303 /// A a; 304 /// foo: 305 /// bar(); 306 llvm::SmallVector<BranchFixup, 8> BranchFixups; 307 308 char *allocate(size_t Size); 309 310 void *pushCleanup(CleanupKind K, size_t DataSize); 311 312 public: 313 EHScopeStack() : StartOfBuffer(0), EndOfBuffer(0), StartOfData(0), 314 InnermostNormalCleanup(stable_end()), 315 InnermostEHCleanup(stable_end()), 316 CatchDepth(0), NextEHDestIndex(FirstEHDestIndex) {} 317 ~EHScopeStack() { delete[] StartOfBuffer; } 318 319 // Variadic templates would make this not terrible. 320 321 /// Push a lazily-created cleanup on the stack. 322 template <class T> 323 void pushCleanup(CleanupKind Kind) { 324 void *Buffer = pushCleanup(Kind, sizeof(T)); 325 Cleanup *Obj = new(Buffer) T(); 326 (void) Obj; 327 } 328 329 /// Push a lazily-created cleanup on the stack. 330 template <class T, class A0> 331 void pushCleanup(CleanupKind Kind, A0 a0) { 332 void *Buffer = pushCleanup(Kind, sizeof(T)); 333 Cleanup *Obj = new(Buffer) T(a0); 334 (void) Obj; 335 } 336 337 /// Push a lazily-created cleanup on the stack. 338 template <class T, class A0, class A1> 339 void pushCleanup(CleanupKind Kind, A0 a0, A1 a1) { 340 void *Buffer = pushCleanup(Kind, sizeof(T)); 341 Cleanup *Obj = new(Buffer) T(a0, a1); 342 (void) Obj; 343 } 344 345 /// Push a lazily-created cleanup on the stack. 346 template <class T, class A0, class A1, class A2> 347 void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2) { 348 void *Buffer = pushCleanup(Kind, sizeof(T)); 349 Cleanup *Obj = new(Buffer) T(a0, a1, a2); 350 (void) Obj; 351 } 352 353 /// Push a lazily-created cleanup on the stack. 354 template <class T, class A0, class A1, class A2, class A3> 355 void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) { 356 void *Buffer = pushCleanup(Kind, sizeof(T)); 357 Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3); 358 (void) Obj; 359 } 360 361 /// Push a lazily-created cleanup on the stack. 362 template <class T, class A0, class A1, class A2, class A3, class A4> 363 void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3, A4 a4) { 364 void *Buffer = pushCleanup(Kind, sizeof(T)); 365 Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3, a4); 366 (void) Obj; 367 } 368 369 // Feel free to add more variants of the following: 370 371 /// Push a cleanup with non-constant storage requirements on the 372 /// stack. The cleanup type must provide an additional static method: 373 /// static size_t getExtraSize(size_t); 374 /// The argument to this method will be the value N, which will also 375 /// be passed as the first argument to the constructor. 376 /// 377 /// The data stored in the extra storage must obey the same 378 /// restrictions as normal cleanup member data. 379 /// 380 /// The pointer returned from this method is valid until the cleanup 381 /// stack is modified. 382 template <class T, class A0, class A1, class A2> 383 T *pushCleanupWithExtra(CleanupKind Kind, size_t N, A0 a0, A1 a1, A2 a2) { 384 void *Buffer = pushCleanup(Kind, sizeof(T) + T::getExtraSize(N)); 385 return new (Buffer) T(N, a0, a1, a2); 386 } 387 388 /// Pops a cleanup scope off the stack. This should only be called 389 /// by CodeGenFunction::PopCleanupBlock. 390 void popCleanup(); 391 392 /// Push a set of catch handlers on the stack. The catch is 393 /// uninitialized and will need to have the given number of handlers 394 /// set on it. 395 class EHCatchScope *pushCatch(unsigned NumHandlers); 396 397 /// Pops a catch scope off the stack. 398 void popCatch(); 399 400 /// Push an exceptions filter on the stack. 401 class EHFilterScope *pushFilter(unsigned NumFilters); 402 403 /// Pops an exceptions filter off the stack. 404 void popFilter(); 405 406 /// Push a terminate handler on the stack. 407 void pushTerminate(); 408 409 /// Pops a terminate handler off the stack. 410 void popTerminate(); 411 412 /// Determines whether the exception-scopes stack is empty. 413 bool empty() const { return StartOfData == EndOfBuffer; } 414 415 bool requiresLandingPad() const { 416 return (CatchDepth || hasEHCleanups()); 417 } 418 419 /// Determines whether there are any normal cleanups on the stack. 420 bool hasNormalCleanups() const { 421 return InnermostNormalCleanup != stable_end(); 422 } 423 424 /// Returns the innermost normal cleanup on the stack, or 425 /// stable_end() if there are no normal cleanups. 426 stable_iterator getInnermostNormalCleanup() const { 427 return InnermostNormalCleanup; 428 } 429 stable_iterator getInnermostActiveNormalCleanup() const; // CGException.h 430 431 /// Determines whether there are any EH cleanups on the stack. 432 bool hasEHCleanups() const { 433 return InnermostEHCleanup != stable_end(); 434 } 435 436 /// Returns the innermost EH cleanup on the stack, or stable_end() 437 /// if there are no EH cleanups. 438 stable_iterator getInnermostEHCleanup() const { 439 return InnermostEHCleanup; 440 } 441 stable_iterator getInnermostActiveEHCleanup() const; // CGException.h 442 443 /// An unstable reference to a scope-stack depth. Invalidated by 444 /// pushes but not pops. 445 class iterator; 446 447 /// Returns an iterator pointing to the innermost EH scope. 448 iterator begin() const; 449 450 /// Returns an iterator pointing to the outermost EH scope. 451 iterator end() const; 452 453 /// Create a stable reference to the top of the EH stack. The 454 /// returned reference is valid until that scope is popped off the 455 /// stack. 456 stable_iterator stable_begin() const { 457 return stable_iterator(EndOfBuffer - StartOfData); 458 } 459 460 /// Create a stable reference to the bottom of the EH stack. 461 static stable_iterator stable_end() { 462 return stable_iterator(0); 463 } 464 465 /// Translates an iterator into a stable_iterator. 466 stable_iterator stabilize(iterator it) const; 467 468 /// Finds the nearest cleanup enclosing the given iterator. 469 /// Returns stable_iterator::invalid() if there are no such cleanups. 470 stable_iterator getEnclosingEHCleanup(iterator it) const; 471 472 /// Turn a stable reference to a scope depth into a unstable pointer 473 /// to the EH stack. 474 iterator find(stable_iterator save) const; 475 476 /// Removes the cleanup pointed to by the given stable_iterator. 477 void removeCleanup(stable_iterator save); 478 479 /// Add a branch fixup to the current cleanup scope. 480 BranchFixup &addBranchFixup() { 481 assert(hasNormalCleanups() && "adding fixup in scope without cleanups"); 482 BranchFixups.push_back(BranchFixup()); 483 return BranchFixups.back(); 484 } 485 486 unsigned getNumBranchFixups() const { return BranchFixups.size(); } 487 BranchFixup &getBranchFixup(unsigned I) { 488 assert(I < getNumBranchFixups()); 489 return BranchFixups[I]; 490 } 491 492 /// Pops lazily-removed fixups from the end of the list. This 493 /// should only be called by procedures which have just popped a 494 /// cleanup or resolved one or more fixups. 495 void popNullFixups(); 496 497 /// Clears the branch-fixups list. This should only be called by 498 /// ResolveAllBranchFixups. 499 void clearFixups() { BranchFixups.clear(); } 500 501 /// Gets the next EH destination index. 502 unsigned getNextEHDestIndex() { return NextEHDestIndex++; } 503 }; 504 505 /// CodeGenFunction - This class organizes the per-function state that is used 506 /// while generating LLVM code. 507 class CodeGenFunction : public CodeGenTypeCache { 508 CodeGenFunction(const CodeGenFunction&); // DO NOT IMPLEMENT 509 void operator=(const CodeGenFunction&); // DO NOT IMPLEMENT 510 511 friend class CGCXXABI; 512 public: 513 /// A jump destination is an abstract label, branching to which may 514 /// require a jump out through normal cleanups. 515 struct JumpDest { 516 JumpDest() : Block(0), ScopeDepth(), Index(0) {} 517 JumpDest(llvm::BasicBlock *Block, 518 EHScopeStack::stable_iterator Depth, 519 unsigned Index) 520 : Block(Block), ScopeDepth(Depth), Index(Index) {} 521 522 bool isValid() const { return Block != 0; } 523 llvm::BasicBlock *getBlock() const { return Block; } 524 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 525 unsigned getDestIndex() const { return Index; } 526 527 private: 528 llvm::BasicBlock *Block; 529 EHScopeStack::stable_iterator ScopeDepth; 530 unsigned Index; 531 }; 532 533 /// An unwind destination is an abstract label, branching to which 534 /// may require a jump out through EH cleanups. 535 struct UnwindDest { 536 UnwindDest() : Block(0), ScopeDepth(), Index(0) {} 537 UnwindDest(llvm::BasicBlock *Block, 538 EHScopeStack::stable_iterator Depth, 539 unsigned Index) 540 : Block(Block), ScopeDepth(Depth), Index(Index) {} 541 542 bool isValid() const { return Block != 0; } 543 llvm::BasicBlock *getBlock() const { return Block; } 544 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 545 unsigned getDestIndex() const { return Index; } 546 547 private: 548 llvm::BasicBlock *Block; 549 EHScopeStack::stable_iterator ScopeDepth; 550 unsigned Index; 551 }; 552 553 CodeGenModule &CGM; // Per-module state. 554 const TargetInfo &Target; 555 556 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 557 CGBuilderTy Builder; 558 559 /// CurFuncDecl - Holds the Decl for the current function or ObjC method. 560 /// This excludes BlockDecls. 561 const Decl *CurFuncDecl; 562 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 563 const Decl *CurCodeDecl; 564 const CGFunctionInfo *CurFnInfo; 565 QualType FnRetTy; 566 llvm::Function *CurFn; 567 568 /// CurGD - The GlobalDecl for the current function being compiled. 569 GlobalDecl CurGD; 570 571 /// ReturnBlock - Unified return block. 572 JumpDest ReturnBlock; 573 574 /// ReturnValue - The temporary alloca to hold the return value. This is null 575 /// iff the function has no return value. 576 llvm::Value *ReturnValue; 577 578 /// RethrowBlock - Unified rethrow block. 579 UnwindDest RethrowBlock; 580 581 /// AllocaInsertPoint - This is an instruction in the entry block before which 582 /// we prefer to insert allocas. 583 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 584 585 bool CatchUndefined; 586 587 const CodeGen::CGBlockInfo *BlockInfo; 588 llvm::Value *BlockPointer; 589 590 /// \brief A mapping from NRVO variables to the flags used to indicate 591 /// when the NRVO has been applied to this variable. 592 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 593 594 EHScopeStack EHStack; 595 596 /// i32s containing the indexes of the cleanup destinations. 597 llvm::AllocaInst *NormalCleanupDest; 598 llvm::AllocaInst *EHCleanupDest; 599 600 unsigned NextCleanupDestIndex; 601 602 /// The exception slot. All landing pads write the current 603 /// exception pointer into this alloca. 604 llvm::Value *ExceptionSlot; 605 606 /// Emits a landing pad for the current EH stack. 607 llvm::BasicBlock *EmitLandingPad(); 608 609 llvm::BasicBlock *getInvokeDestImpl(); 610 611 /// Set up the last cleaup that was pushed as a conditional 612 /// full-expression cleanup. 613 void initFullExprCleanup(); 614 615 template <class T> 616 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 617 return DominatingValue<T>::save(*this, value); 618 } 619 620 public: 621 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 622 /// rethrows. 623 llvm::SmallVector<llvm::Value*, 8> ObjCEHValueStack; 624 625 // A struct holding information about a finally block's IR 626 // generation. For now, doesn't actually hold anything. 627 struct FinallyInfo { 628 }; 629 630 FinallyInfo EnterFinallyBlock(const Stmt *Stmt, 631 llvm::Constant *BeginCatchFn, 632 llvm::Constant *EndCatchFn, 633 llvm::Constant *RethrowFn); 634 void ExitFinallyBlock(FinallyInfo &FinallyInfo); 635 636 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 637 /// current full-expression. Safe against the possibility that 638 /// we're currently inside a conditionally-evaluated expression. 639 template <class T, class A0> 640 void pushFullExprCleanup(CleanupKind kind, A0 a0) { 641 // If we're not in a conditional branch, or if none of the 642 // arguments requires saving, then use the unconditional cleanup. 643 if (!isInConditionalBranch()) { 644 typedef EHScopeStack::UnconditionalCleanup1<T, A0> CleanupType; 645 return EHStack.pushCleanup<CleanupType>(kind, a0); 646 } 647 648 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 649 650 typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType; 651 EHStack.pushCleanup<CleanupType>(kind, a0_saved); 652 initFullExprCleanup(); 653 } 654 655 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 656 /// current full-expression. Safe against the possibility that 657 /// we're currently inside a conditionally-evaluated expression. 658 template <class T, class A0, class A1> 659 void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) { 660 // If we're not in a conditional branch, or if none of the 661 // arguments requires saving, then use the unconditional cleanup. 662 if (!isInConditionalBranch()) { 663 typedef EHScopeStack::UnconditionalCleanup2<T, A0, A1> CleanupType; 664 return EHStack.pushCleanup<CleanupType>(kind, a0, a1); 665 } 666 667 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 668 typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); 669 670 typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType; 671 EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved); 672 initFullExprCleanup(); 673 } 674 675 /// PushDestructorCleanup - Push a cleanup to call the 676 /// complete-object destructor of an object of the given type at the 677 /// given address. Does nothing if T is not a C++ class type with a 678 /// non-trivial destructor. 679 void PushDestructorCleanup(QualType T, llvm::Value *Addr); 680 681 /// PushDestructorCleanup - Push a cleanup to call the 682 /// complete-object variant of the given destructor on the object at 683 /// the given address. 684 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, 685 llvm::Value *Addr); 686 687 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 688 /// process all branch fixups. 689 void PopCleanupBlock(bool FallThroughIsBranchThrough = false); 690 691 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 692 /// The block cannot be reactivated. Pops it if it's the top of the 693 /// stack. 694 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup); 695 696 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 697 /// Cannot be used to resurrect a deactivated cleanup. 698 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup); 699 700 /// \brief Enters a new scope for capturing cleanups, all of which 701 /// will be executed once the scope is exited. 702 class RunCleanupsScope { 703 CodeGenFunction& CGF; 704 EHScopeStack::stable_iterator CleanupStackDepth; 705 bool OldDidCallStackSave; 706 bool PerformCleanup; 707 708 RunCleanupsScope(const RunCleanupsScope &); // DO NOT IMPLEMENT 709 RunCleanupsScope &operator=(const RunCleanupsScope &); // DO NOT IMPLEMENT 710 711 public: 712 /// \brief Enter a new cleanup scope. 713 explicit RunCleanupsScope(CodeGenFunction &CGF) 714 : CGF(CGF), PerformCleanup(true) 715 { 716 CleanupStackDepth = CGF.EHStack.stable_begin(); 717 OldDidCallStackSave = CGF.DidCallStackSave; 718 CGF.DidCallStackSave = false; 719 } 720 721 /// \brief Exit this cleanup scope, emitting any accumulated 722 /// cleanups. 723 ~RunCleanupsScope() { 724 if (PerformCleanup) { 725 CGF.DidCallStackSave = OldDidCallStackSave; 726 CGF.PopCleanupBlocks(CleanupStackDepth); 727 } 728 } 729 730 /// \brief Determine whether this scope requires any cleanups. 731 bool requiresCleanups() const { 732 return CGF.EHStack.stable_begin() != CleanupStackDepth; 733 } 734 735 /// \brief Force the emission of cleanups now, instead of waiting 736 /// until this object is destroyed. 737 void ForceCleanup() { 738 assert(PerformCleanup && "Already forced cleanup"); 739 CGF.DidCallStackSave = OldDidCallStackSave; 740 CGF.PopCleanupBlocks(CleanupStackDepth); 741 PerformCleanup = false; 742 } 743 }; 744 745 746 /// PopCleanupBlocks - Takes the old cleanup stack size and emits 747 /// the cleanup blocks that have been added. 748 void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize); 749 750 void ResolveBranchFixups(llvm::BasicBlock *Target); 751 752 /// The given basic block lies in the current EH scope, but may be a 753 /// target of a potentially scope-crossing jump; get a stable handle 754 /// to which we can perform this jump later. 755 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 756 return JumpDest(Target, 757 EHStack.getInnermostNormalCleanup(), 758 NextCleanupDestIndex++); 759 } 760 761 /// The given basic block lies in the current EH scope, but may be a 762 /// target of a potentially scope-crossing jump; get a stable handle 763 /// to which we can perform this jump later. 764 JumpDest getJumpDestInCurrentScope(llvm::StringRef Name = llvm::StringRef()) { 765 return getJumpDestInCurrentScope(createBasicBlock(Name)); 766 } 767 768 /// EmitBranchThroughCleanup - Emit a branch from the current insert 769 /// block through the normal cleanup handling code (if any) and then 770 /// on to \arg Dest. 771 void EmitBranchThroughCleanup(JumpDest Dest); 772 773 /// EmitBranchThroughEHCleanup - Emit a branch from the current 774 /// insert block through the EH cleanup handling code (if any) and 775 /// then on to \arg Dest. 776 void EmitBranchThroughEHCleanup(UnwindDest Dest); 777 778 /// getRethrowDest - Returns the unified outermost-scope rethrow 779 /// destination. 780 UnwindDest getRethrowDest(); 781 782 /// An object to manage conditionally-evaluated expressions. 783 class ConditionalEvaluation { 784 llvm::BasicBlock *StartBB; 785 786 public: 787 ConditionalEvaluation(CodeGenFunction &CGF) 788 : StartBB(CGF.Builder.GetInsertBlock()) {} 789 790 void begin(CodeGenFunction &CGF) { 791 assert(CGF.OutermostConditional != this); 792 if (!CGF.OutermostConditional) 793 CGF.OutermostConditional = this; 794 } 795 796 void end(CodeGenFunction &CGF) { 797 assert(CGF.OutermostConditional != 0); 798 if (CGF.OutermostConditional == this) 799 CGF.OutermostConditional = 0; 800 } 801 802 /// Returns a block which will be executed prior to each 803 /// evaluation of the conditional code. 804 llvm::BasicBlock *getStartingBlock() const { 805 return StartBB; 806 } 807 }; 808 809 /// isInConditionalBranch - Return true if we're currently emitting 810 /// one branch or the other of a conditional expression. 811 bool isInConditionalBranch() const { return OutermostConditional != 0; } 812 813 /// An RAII object to record that we're evaluating a statement 814 /// expression. 815 class StmtExprEvaluation { 816 CodeGenFunction &CGF; 817 818 /// We have to save the outermost conditional: cleanups in a 819 /// statement expression aren't conditional just because the 820 /// StmtExpr is. 821 ConditionalEvaluation *SavedOutermostConditional; 822 823 public: 824 StmtExprEvaluation(CodeGenFunction &CGF) 825 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 826 CGF.OutermostConditional = 0; 827 } 828 829 ~StmtExprEvaluation() { 830 CGF.OutermostConditional = SavedOutermostConditional; 831 CGF.EnsureInsertPoint(); 832 } 833 }; 834 835 /// An object which temporarily prevents a value from being 836 /// destroyed by aggressive peephole optimizations that assume that 837 /// all uses of a value have been realized in the IR. 838 class PeepholeProtection { 839 llvm::Instruction *Inst; 840 friend class CodeGenFunction; 841 842 public: 843 PeepholeProtection() : Inst(0) {} 844 }; 845 846 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 847 class OpaqueValueMapping { 848 CodeGenFunction &CGF; 849 const OpaqueValueExpr *OpaqueValue; 850 bool BoundLValue; 851 CodeGenFunction::PeepholeProtection Protection; 852 853 public: 854 static bool shouldBindAsLValue(const Expr *expr) { 855 return expr->isGLValue() || expr->getType()->isRecordType(); 856 } 857 858 /// Build the opaque value mapping for the given conditional 859 /// operator if it's the GNU ?: extension. This is a common 860 /// enough pattern that the convenience operator is really 861 /// helpful. 862 /// 863 OpaqueValueMapping(CodeGenFunction &CGF, 864 const AbstractConditionalOperator *op) : CGF(CGF) { 865 if (isa<ConditionalOperator>(op)) { 866 OpaqueValue = 0; 867 BoundLValue = false; 868 return; 869 } 870 871 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 872 init(e->getOpaqueValue(), e->getCommon()); 873 } 874 875 OpaqueValueMapping(CodeGenFunction &CGF, 876 const OpaqueValueExpr *opaqueValue, 877 LValue lvalue) 878 : CGF(CGF), OpaqueValue(opaqueValue), BoundLValue(true) { 879 assert(opaqueValue && "no opaque value expression!"); 880 assert(shouldBindAsLValue(opaqueValue)); 881 initLValue(lvalue); 882 } 883 884 OpaqueValueMapping(CodeGenFunction &CGF, 885 const OpaqueValueExpr *opaqueValue, 886 RValue rvalue) 887 : CGF(CGF), OpaqueValue(opaqueValue), BoundLValue(false) { 888 assert(opaqueValue && "no opaque value expression!"); 889 assert(!shouldBindAsLValue(opaqueValue)); 890 initRValue(rvalue); 891 } 892 893 void pop() { 894 assert(OpaqueValue && "mapping already popped!"); 895 popImpl(); 896 OpaqueValue = 0; 897 } 898 899 ~OpaqueValueMapping() { 900 if (OpaqueValue) popImpl(); 901 } 902 903 private: 904 void popImpl() { 905 if (BoundLValue) 906 CGF.OpaqueLValues.erase(OpaqueValue); 907 else { 908 CGF.OpaqueRValues.erase(OpaqueValue); 909 CGF.unprotectFromPeepholes(Protection); 910 } 911 } 912 913 void init(const OpaqueValueExpr *ov, const Expr *e) { 914 OpaqueValue = ov; 915 BoundLValue = shouldBindAsLValue(ov); 916 assert(BoundLValue == shouldBindAsLValue(e) 917 && "inconsistent expression value kinds!"); 918 if (BoundLValue) 919 initLValue(CGF.EmitLValue(e)); 920 else 921 initRValue(CGF.EmitAnyExpr(e)); 922 } 923 924 void initLValue(const LValue &lv) { 925 CGF.OpaqueLValues.insert(std::make_pair(OpaqueValue, lv)); 926 } 927 928 void initRValue(const RValue &rv) { 929 // Work around an extremely aggressive peephole optimization in 930 // EmitScalarConversion which assumes that all other uses of a 931 // value are extant. 932 Protection = CGF.protectFromPeepholes(rv); 933 CGF.OpaqueRValues.insert(std::make_pair(OpaqueValue, rv)); 934 } 935 }; 936 937 /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field 938 /// number that holds the value. 939 unsigned getByRefValueLLVMField(const ValueDecl *VD) const; 940 941 /// BuildBlockByrefAddress - Computes address location of the 942 /// variable which is declared as __block. 943 llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr, 944 const VarDecl *V); 945 private: 946 CGDebugInfo *DebugInfo; 947 bool DisableDebugInfo; 948 949 /// IndirectBranch - The first time an indirect goto is seen we create a block 950 /// with an indirect branch. Every time we see the address of a label taken, 951 /// we add the label to the indirect goto. Every subsequent indirect goto is 952 /// codegen'd as a jump to the IndirectBranch's basic block. 953 llvm::IndirectBrInst *IndirectBranch; 954 955 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 956 /// decls. 957 typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy; 958 DeclMapTy LocalDeclMap; 959 960 /// LabelMap - This keeps track of the LLVM basic block for each C label. 961 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 962 963 // BreakContinueStack - This keeps track of where break and continue 964 // statements should jump to. 965 struct BreakContinue { 966 BreakContinue(JumpDest Break, JumpDest Continue) 967 : BreakBlock(Break), ContinueBlock(Continue) {} 968 969 JumpDest BreakBlock; 970 JumpDest ContinueBlock; 971 }; 972 llvm::SmallVector<BreakContinue, 8> BreakContinueStack; 973 974 /// SwitchInsn - This is nearest current switch instruction. It is null if if 975 /// current context is not in a switch. 976 llvm::SwitchInst *SwitchInsn; 977 978 /// CaseRangeBlock - This block holds if condition check for last case 979 /// statement range in current switch instruction. 980 llvm::BasicBlock *CaseRangeBlock; 981 982 /// OpaqueLValues - Keeps track of the current set of opaque value 983 /// expressions. 984 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 985 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 986 987 // VLASizeMap - This keeps track of the associated size for each VLA type. 988 // We track this by the size expression rather than the type itself because 989 // in certain situations, like a const qualifier applied to an VLA typedef, 990 // multiple VLA types can share the same size expression. 991 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 992 // enter/leave scopes. 993 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 994 995 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 996 /// calling llvm.stacksave for multiple VLAs in the same scope. 997 bool DidCallStackSave; 998 999 /// A block containing a single 'unreachable' instruction. Created 1000 /// lazily by getUnreachableBlock(). 1001 llvm::BasicBlock *UnreachableBlock; 1002 1003 /// CXXThisDecl - When generating code for a C++ member function, 1004 /// this will hold the implicit 'this' declaration. 1005 ImplicitParamDecl *CXXThisDecl; 1006 llvm::Value *CXXThisValue; 1007 1008 /// CXXVTTDecl - When generating code for a base object constructor or 1009 /// base object destructor with virtual bases, this will hold the implicit 1010 /// VTT parameter. 1011 ImplicitParamDecl *CXXVTTDecl; 1012 llvm::Value *CXXVTTValue; 1013 1014 /// OutermostConditional - Points to the outermost active 1015 /// conditional control. This is used so that we know if a 1016 /// temporary should be destroyed conditionally. 1017 ConditionalEvaluation *OutermostConditional; 1018 1019 1020 /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM 1021 /// type as well as the field number that contains the actual data. 1022 llvm::DenseMap<const ValueDecl *, std::pair<const llvm::Type *, 1023 unsigned> > ByRefValueInfo; 1024 1025 llvm::BasicBlock *TerminateLandingPad; 1026 llvm::BasicBlock *TerminateHandler; 1027 llvm::BasicBlock *TrapBB; 1028 1029 public: 1030 CodeGenFunction(CodeGenModule &cgm); 1031 1032 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 1033 ASTContext &getContext() const; 1034 CGDebugInfo *getDebugInfo() { 1035 if (DisableDebugInfo) 1036 return NULL; 1037 return DebugInfo; 1038 } 1039 void disableDebugInfo() { DisableDebugInfo = true; } 1040 void enableDebugInfo() { DisableDebugInfo = false; } 1041 1042 1043 const LangOptions &getLangOptions() const { return CGM.getLangOptions(); } 1044 1045 /// Returns a pointer to the function's exception object slot, which 1046 /// is assigned in every landing pad. 1047 llvm::Value *getExceptionSlot(); 1048 1049 llvm::Value *getNormalCleanupDestSlot(); 1050 llvm::Value *getEHCleanupDestSlot(); 1051 1052 llvm::BasicBlock *getUnreachableBlock() { 1053 if (!UnreachableBlock) { 1054 UnreachableBlock = createBasicBlock("unreachable"); 1055 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 1056 } 1057 return UnreachableBlock; 1058 } 1059 1060 llvm::BasicBlock *getInvokeDest() { 1061 if (!EHStack.requiresLandingPad()) return 0; 1062 return getInvokeDestImpl(); 1063 } 1064 1065 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 1066 1067 //===--------------------------------------------------------------------===// 1068 // Objective-C 1069 //===--------------------------------------------------------------------===// 1070 1071 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 1072 1073 void StartObjCMethod(const ObjCMethodDecl *MD, 1074 const ObjCContainerDecl *CD); 1075 1076 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 1077 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 1078 const ObjCPropertyImplDecl *PID); 1079 void GenerateObjCGetterBody(ObjCIvarDecl *Ivar, bool IsAtomic, bool IsStrong); 1080 void GenerateObjCAtomicSetterBody(ObjCMethodDecl *OMD, 1081 ObjCIvarDecl *Ivar); 1082 1083 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1084 ObjCMethodDecl *MD, bool ctor); 1085 1086 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 1087 /// for the given property. 1088 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 1089 const ObjCPropertyImplDecl *PID); 1090 bool IndirectObjCSetterArg(const CGFunctionInfo &FI); 1091 bool IvarTypeWithAggrGCObjects(QualType Ty); 1092 1093 //===--------------------------------------------------------------------===// 1094 // Block Bits 1095 //===--------------------------------------------------------------------===// 1096 1097 llvm::Value *EmitBlockLiteral(const BlockExpr *); 1098 llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *, 1099 const CGBlockInfo &Info, 1100 const llvm::StructType *, 1101 llvm::Constant *BlockVarLayout); 1102 1103 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 1104 const CGBlockInfo &Info, 1105 const Decl *OuterFuncDecl, 1106 const DeclMapTy &ldm); 1107 1108 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 1109 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 1110 1111 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags); 1112 1113 class AutoVarEmission; 1114 1115 void emitByrefStructureInit(const AutoVarEmission &emission); 1116 void enterByrefCleanup(const AutoVarEmission &emission); 1117 1118 llvm::Value *LoadBlockStruct() { 1119 assert(BlockPointer && "no block pointer set!"); 1120 return BlockPointer; 1121 } 1122 1123 void AllocateBlockCXXThisPointer(const CXXThisExpr *E); 1124 void AllocateBlockDecl(const BlockDeclRefExpr *E); 1125 llvm::Value *GetAddrOfBlockDecl(const BlockDeclRefExpr *E) { 1126 return GetAddrOfBlockDecl(E->getDecl(), E->isByRef()); 1127 } 1128 llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef); 1129 const llvm::Type *BuildByRefType(const VarDecl *var); 1130 1131 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1132 const CGFunctionInfo &FnInfo); 1133 void StartFunction(GlobalDecl GD, QualType RetTy, 1134 llvm::Function *Fn, 1135 const CGFunctionInfo &FnInfo, 1136 const FunctionArgList &Args, 1137 SourceLocation StartLoc); 1138 1139 void EmitConstructorBody(FunctionArgList &Args); 1140 void EmitDestructorBody(FunctionArgList &Args); 1141 void EmitFunctionBody(FunctionArgList &Args); 1142 1143 /// EmitReturnBlock - Emit the unified return block, trying to avoid its 1144 /// emission when possible. 1145 void EmitReturnBlock(); 1146 1147 /// FinishFunction - Complete IR generation of the current function. It is 1148 /// legal to call this function even if there is no current insertion point. 1149 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 1150 1151 /// GenerateThunk - Generate a thunk for the given method. 1152 void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1153 GlobalDecl GD, const ThunkInfo &Thunk); 1154 1155 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 1156 FunctionArgList &Args); 1157 1158 /// InitializeVTablePointer - Initialize the vtable pointer of the given 1159 /// subobject. 1160 /// 1161 void InitializeVTablePointer(BaseSubobject Base, 1162 const CXXRecordDecl *NearestVBase, 1163 CharUnits OffsetFromNearestVBase, 1164 llvm::Constant *VTable, 1165 const CXXRecordDecl *VTableClass); 1166 1167 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 1168 void InitializeVTablePointers(BaseSubobject Base, 1169 const CXXRecordDecl *NearestVBase, 1170 CharUnits OffsetFromNearestVBase, 1171 bool BaseIsNonVirtualPrimaryBase, 1172 llvm::Constant *VTable, 1173 const CXXRecordDecl *VTableClass, 1174 VisitedVirtualBasesSetTy& VBases); 1175 1176 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 1177 1178 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 1179 /// to by This. 1180 llvm::Value *GetVTablePtr(llvm::Value *This, const llvm::Type *Ty); 1181 1182 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 1183 /// given phase of destruction for a destructor. The end result 1184 /// should call destructors on members and base classes in reverse 1185 /// order of their construction. 1186 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 1187 1188 /// ShouldInstrumentFunction - Return true if the current function should be 1189 /// instrumented with __cyg_profile_func_* calls 1190 bool ShouldInstrumentFunction(); 1191 1192 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 1193 /// instrumentation function with the current function and the call site, if 1194 /// function instrumentation is enabled. 1195 void EmitFunctionInstrumentation(const char *Fn); 1196 1197 /// EmitMCountInstrumentation - Emit call to .mcount. 1198 void EmitMCountInstrumentation(); 1199 1200 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 1201 /// arguments for the given function. This is also responsible for naming the 1202 /// LLVM function arguments. 1203 void EmitFunctionProlog(const CGFunctionInfo &FI, 1204 llvm::Function *Fn, 1205 const FunctionArgList &Args); 1206 1207 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 1208 /// given temporary. 1209 void EmitFunctionEpilog(const CGFunctionInfo &FI); 1210 1211 /// EmitStartEHSpec - Emit the start of the exception spec. 1212 void EmitStartEHSpec(const Decl *D); 1213 1214 /// EmitEndEHSpec - Emit the end of the exception spec. 1215 void EmitEndEHSpec(const Decl *D); 1216 1217 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 1218 llvm::BasicBlock *getTerminateLandingPad(); 1219 1220 /// getTerminateHandler - Return a handler (not a landing pad, just 1221 /// a catch handler) that just calls terminate. This is used when 1222 /// a terminate scope encloses a try. 1223 llvm::BasicBlock *getTerminateHandler(); 1224 1225 const llvm::Type *ConvertTypeForMem(QualType T); 1226 const llvm::Type *ConvertType(QualType T); 1227 const llvm::Type *ConvertType(const TypeDecl *T) { 1228 return ConvertType(getContext().getTypeDeclType(T)); 1229 } 1230 1231 /// LoadObjCSelf - Load the value of self. This function is only valid while 1232 /// generating code for an Objective-C method. 1233 llvm::Value *LoadObjCSelf(); 1234 1235 /// TypeOfSelfObject - Return type of object that this self represents. 1236 QualType TypeOfSelfObject(); 1237 1238 /// hasAggregateLLVMType - Return true if the specified AST type will map into 1239 /// an aggregate LLVM type or is void. 1240 static bool hasAggregateLLVMType(QualType T); 1241 1242 /// createBasicBlock - Create an LLVM basic block. 1243 llvm::BasicBlock *createBasicBlock(llvm::StringRef name = "", 1244 llvm::Function *parent = 0, 1245 llvm::BasicBlock *before = 0) { 1246 #ifdef NDEBUG 1247 return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before); 1248 #else 1249 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 1250 #endif 1251 } 1252 1253 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 1254 /// label maps to. 1255 JumpDest getJumpDestForLabel(const LabelDecl *S); 1256 1257 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 1258 /// another basic block, simplify it. This assumes that no other code could 1259 /// potentially reference the basic block. 1260 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 1261 1262 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 1263 /// adding a fall-through branch from the current insert block if 1264 /// necessary. It is legal to call this function even if there is no current 1265 /// insertion point. 1266 /// 1267 /// IsFinished - If true, indicates that the caller has finished emitting 1268 /// branches to the given block and does not expect to emit code into it. This 1269 /// means the block can be ignored if it is unreachable. 1270 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 1271 1272 /// EmitBranch - Emit a branch to the specified basic block from the current 1273 /// insert block, taking care to avoid creation of branches from dummy 1274 /// blocks. It is legal to call this function even if there is no current 1275 /// insertion point. 1276 /// 1277 /// This function clears the current insertion point. The caller should follow 1278 /// calls to this function with calls to Emit*Block prior to generation new 1279 /// code. 1280 void EmitBranch(llvm::BasicBlock *Block); 1281 1282 /// HaveInsertPoint - True if an insertion point is defined. If not, this 1283 /// indicates that the current code being emitted is unreachable. 1284 bool HaveInsertPoint() const { 1285 return Builder.GetInsertBlock() != 0; 1286 } 1287 1288 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 1289 /// emitted IR has a place to go. Note that by definition, if this function 1290 /// creates a block then that block is unreachable; callers may do better to 1291 /// detect when no insertion point is defined and simply skip IR generation. 1292 void EnsureInsertPoint() { 1293 if (!HaveInsertPoint()) 1294 EmitBlock(createBasicBlock()); 1295 } 1296 1297 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1298 /// specified stmt yet. 1299 void ErrorUnsupported(const Stmt *S, const char *Type, 1300 bool OmitOnError=false); 1301 1302 //===--------------------------------------------------------------------===// 1303 // Helpers 1304 //===--------------------------------------------------------------------===// 1305 1306 LValue MakeAddrLValue(llvm::Value *V, QualType T, unsigned Alignment = 0) { 1307 return LValue::MakeAddr(V, T, Alignment, getContext(), 1308 CGM.getTBAAInfo(T)); 1309 } 1310 1311 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 1312 /// block. The caller is responsible for setting an appropriate alignment on 1313 /// the alloca. 1314 llvm::AllocaInst *CreateTempAlloca(const llvm::Type *Ty, 1315 const llvm::Twine &Name = "tmp"); 1316 1317 /// InitTempAlloca - Provide an initial value for the given alloca. 1318 void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value); 1319 1320 /// CreateIRTemp - Create a temporary IR object of the given type, with 1321 /// appropriate alignment. This routine should only be used when an temporary 1322 /// value needs to be stored into an alloca (for example, to avoid explicit 1323 /// PHI construction), but the type is the IR type, not the type appropriate 1324 /// for storing in memory. 1325 llvm::AllocaInst *CreateIRTemp(QualType T, const llvm::Twine &Name = "tmp"); 1326 1327 /// CreateMemTemp - Create a temporary memory object of the given type, with 1328 /// appropriate alignment. 1329 llvm::AllocaInst *CreateMemTemp(QualType T, const llvm::Twine &Name = "tmp"); 1330 1331 /// CreateAggTemp - Create a temporary memory object for the given 1332 /// aggregate type. 1333 AggValueSlot CreateAggTemp(QualType T, const llvm::Twine &Name = "tmp") { 1334 return AggValueSlot::forAddr(CreateMemTemp(T, Name), false, false); 1335 } 1336 1337 /// Emit a cast to void* in the appropriate address space. 1338 llvm::Value *EmitCastToVoidPtr(llvm::Value *value); 1339 1340 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 1341 /// expression and compare the result against zero, returning an Int1Ty value. 1342 llvm::Value *EvaluateExprAsBool(const Expr *E); 1343 1344 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 1345 void EmitIgnoredExpr(const Expr *E); 1346 1347 /// EmitAnyExpr - Emit code to compute the specified expression which can have 1348 /// any type. The result is returned as an RValue struct. If this is an 1349 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 1350 /// the result should be returned. 1351 /// 1352 /// \param IgnoreResult - True if the resulting value isn't used. 1353 RValue EmitAnyExpr(const Expr *E, 1354 AggValueSlot AggSlot = AggValueSlot::ignored(), 1355 bool IgnoreResult = false); 1356 1357 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 1358 // or the value of the expression, depending on how va_list is defined. 1359 llvm::Value *EmitVAListRef(const Expr *E); 1360 1361 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 1362 /// always be accessible even if no aggregate location is provided. 1363 RValue EmitAnyExprToTemp(const Expr *E); 1364 1365 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 1366 /// arbitrary expression into the given memory location. 1367 void EmitAnyExprToMem(const Expr *E, llvm::Value *Location, 1368 bool IsLocationVolatile, 1369 bool IsInitializer); 1370 1371 /// EmitExprAsInit - Emits the code necessary to initialize a 1372 /// location in memory with the given initializer. 1373 void EmitExprAsInit(const Expr *init, const VarDecl *var, 1374 llvm::Value *loc, CharUnits alignment, 1375 bool capturedByInit); 1376 1377 /// EmitAggregateCopy - Emit an aggrate copy. 1378 /// 1379 /// \param isVolatile - True iff either the source or the destination is 1380 /// volatile. 1381 void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr, 1382 QualType EltTy, bool isVolatile=false); 1383 1384 /// StartBlock - Start new block named N. If insert block is a dummy block 1385 /// then reuse it. 1386 void StartBlock(const char *N); 1387 1388 /// GetAddrOfStaticLocalVar - Return the address of a static local variable. 1389 llvm::Constant *GetAddrOfStaticLocalVar(const VarDecl *BVD) { 1390 return cast<llvm::Constant>(GetAddrOfLocalVar(BVD)); 1391 } 1392 1393 /// GetAddrOfLocalVar - Return the address of a local variable. 1394 llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) { 1395 llvm::Value *Res = LocalDeclMap[VD]; 1396 assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!"); 1397 return Res; 1398 } 1399 1400 /// getOpaqueLValueMapping - Given an opaque value expression (which 1401 /// must be mapped to an l-value), return its mapping. 1402 const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) { 1403 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 1404 1405 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 1406 it = OpaqueLValues.find(e); 1407 assert(it != OpaqueLValues.end() && "no mapping for opaque value!"); 1408 return it->second; 1409 } 1410 1411 /// getOpaqueRValueMapping - Given an opaque value expression (which 1412 /// must be mapped to an r-value), return its mapping. 1413 const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) { 1414 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 1415 1416 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 1417 it = OpaqueRValues.find(e); 1418 assert(it != OpaqueRValues.end() && "no mapping for opaque value!"); 1419 return it->second; 1420 } 1421 1422 /// getAccessedFieldNo - Given an encoded value and a result number, return 1423 /// the input field number being accessed. 1424 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 1425 1426 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 1427 llvm::BasicBlock *GetIndirectGotoBlock(); 1428 1429 /// EmitNullInitialization - Generate code to set a value of the given type to 1430 /// null, If the type contains data member pointers, they will be initialized 1431 /// to -1 in accordance with the Itanium C++ ABI. 1432 void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty); 1433 1434 // EmitVAArg - Generate code to get an argument from the passed in pointer 1435 // and update it accordingly. The return value is a pointer to the argument. 1436 // FIXME: We should be able to get rid of this method and use the va_arg 1437 // instruction in LLVM instead once it works well enough. 1438 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty); 1439 1440 /// EmitVLASize - Generate code for any VLA size expressions that might occur 1441 /// in a variably modified type. If Ty is a VLA, will return the value that 1442 /// corresponds to the size in bytes of the VLA type. Will return 0 otherwise. 1443 /// 1444 /// This function can be called with a null (unreachable) insert point. 1445 llvm::Value *EmitVLASize(QualType Ty); 1446 1447 // GetVLASize - Returns an LLVM value that corresponds to the size in bytes 1448 // of a variable length array type. 1449 llvm::Value *GetVLASize(const VariableArrayType *); 1450 1451 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 1452 /// generating code for an C++ member function. 1453 llvm::Value *LoadCXXThis() { 1454 assert(CXXThisValue && "no 'this' value for this function"); 1455 return CXXThisValue; 1456 } 1457 1458 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 1459 /// virtual bases. 1460 llvm::Value *LoadCXXVTT() { 1461 assert(CXXVTTValue && "no VTT value for this function"); 1462 return CXXVTTValue; 1463 } 1464 1465 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 1466 /// complete class to the given direct base. 1467 llvm::Value * 1468 GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value, 1469 const CXXRecordDecl *Derived, 1470 const CXXRecordDecl *Base, 1471 bool BaseIsVirtual); 1472 1473 /// GetAddressOfBaseClass - This function will add the necessary delta to the 1474 /// load of 'this' and returns address of the base class. 1475 llvm::Value *GetAddressOfBaseClass(llvm::Value *Value, 1476 const CXXRecordDecl *Derived, 1477 CastExpr::path_const_iterator PathBegin, 1478 CastExpr::path_const_iterator PathEnd, 1479 bool NullCheckValue); 1480 1481 llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value, 1482 const CXXRecordDecl *Derived, 1483 CastExpr::path_const_iterator PathBegin, 1484 CastExpr::path_const_iterator PathEnd, 1485 bool NullCheckValue); 1486 1487 llvm::Value *GetVirtualBaseClassOffset(llvm::Value *This, 1488 const CXXRecordDecl *ClassDecl, 1489 const CXXRecordDecl *BaseClassDecl); 1490 1491 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 1492 CXXCtorType CtorType, 1493 const FunctionArgList &Args); 1494 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 1495 bool ForVirtualBase, llvm::Value *This, 1496 CallExpr::const_arg_iterator ArgBeg, 1497 CallExpr::const_arg_iterator ArgEnd); 1498 1499 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 1500 llvm::Value *This, llvm::Value *Src, 1501 CallExpr::const_arg_iterator ArgBeg, 1502 CallExpr::const_arg_iterator ArgEnd); 1503 1504 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 1505 const ConstantArrayType *ArrayTy, 1506 llvm::Value *ArrayPtr, 1507 CallExpr::const_arg_iterator ArgBeg, 1508 CallExpr::const_arg_iterator ArgEnd, 1509 bool ZeroInitialization = false); 1510 1511 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 1512 llvm::Value *NumElements, 1513 llvm::Value *ArrayPtr, 1514 CallExpr::const_arg_iterator ArgBeg, 1515 CallExpr::const_arg_iterator ArgEnd, 1516 bool ZeroInitialization = false); 1517 1518 void EmitCXXAggrDestructorCall(const CXXDestructorDecl *D, 1519 const ArrayType *Array, 1520 llvm::Value *This); 1521 1522 void EmitCXXAggrDestructorCall(const CXXDestructorDecl *D, 1523 llvm::Value *NumElements, 1524 llvm::Value *This); 1525 1526 llvm::Function *GenerateCXXAggrDestructorHelper(const CXXDestructorDecl *D, 1527 const ArrayType *Array, 1528 llvm::Value *This); 1529 1530 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 1531 bool ForVirtualBase, llvm::Value *This); 1532 1533 void EmitNewArrayInitializer(const CXXNewExpr *E, llvm::Value *NewPtr, 1534 llvm::Value *NumElements); 1535 1536 void EmitCXXTemporary(const CXXTemporary *Temporary, llvm::Value *Ptr); 1537 1538 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 1539 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 1540 1541 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 1542 QualType DeleteTy); 1543 1544 llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E); 1545 llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE); 1546 1547 void EmitCheck(llvm::Value *, unsigned Size); 1548 1549 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 1550 bool isInc, bool isPre); 1551 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 1552 bool isInc, bool isPre); 1553 //===--------------------------------------------------------------------===// 1554 // Declaration Emission 1555 //===--------------------------------------------------------------------===// 1556 1557 /// EmitDecl - Emit a declaration. 1558 /// 1559 /// This function can be called with a null (unreachable) insert point. 1560 void EmitDecl(const Decl &D); 1561 1562 /// EmitVarDecl - Emit a local variable declaration. 1563 /// 1564 /// This function can be called with a null (unreachable) insert point. 1565 void EmitVarDecl(const VarDecl &D); 1566 1567 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 1568 llvm::Value *Address); 1569 1570 /// EmitAutoVarDecl - Emit an auto variable declaration. 1571 /// 1572 /// This function can be called with a null (unreachable) insert point. 1573 void EmitAutoVarDecl(const VarDecl &D); 1574 1575 class AutoVarEmission { 1576 friend class CodeGenFunction; 1577 1578 const VarDecl *Variable; 1579 1580 /// The alignment of the variable. 1581 CharUnits Alignment; 1582 1583 /// The address of the alloca. Null if the variable was emitted 1584 /// as a global constant. 1585 llvm::Value *Address; 1586 1587 llvm::Value *NRVOFlag; 1588 1589 /// True if the variable is a __block variable. 1590 bool IsByRef; 1591 1592 /// True if the variable is of aggregate type and has a constant 1593 /// initializer. 1594 bool IsConstantAggregate; 1595 1596 struct Invalid {}; 1597 AutoVarEmission(Invalid) : Variable(0) {} 1598 1599 AutoVarEmission(const VarDecl &variable) 1600 : Variable(&variable), Address(0), NRVOFlag(0), 1601 IsByRef(false), IsConstantAggregate(false) {} 1602 1603 bool wasEmittedAsGlobal() const { return Address == 0; } 1604 1605 public: 1606 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 1607 1608 /// Returns the address of the object within this declaration. 1609 /// Note that this does not chase the forwarding pointer for 1610 /// __block decls. 1611 llvm::Value *getObjectAddress(CodeGenFunction &CGF) const { 1612 if (!IsByRef) return Address; 1613 1614 return CGF.Builder.CreateStructGEP(Address, 1615 CGF.getByRefValueLLVMField(Variable), 1616 Variable->getNameAsString()); 1617 } 1618 }; 1619 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 1620 void EmitAutoVarInit(const AutoVarEmission &emission); 1621 void EmitAutoVarCleanups(const AutoVarEmission &emission); 1622 1623 void EmitStaticVarDecl(const VarDecl &D, 1624 llvm::GlobalValue::LinkageTypes Linkage); 1625 1626 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 1627 void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, unsigned ArgNo); 1628 1629 /// protectFromPeepholes - Protect a value that we're intending to 1630 /// store to the side, but which will probably be used later, from 1631 /// aggressive peepholing optimizations that might delete it. 1632 /// 1633 /// Pass the result to unprotectFromPeepholes to declare that 1634 /// protection is no longer required. 1635 /// 1636 /// There's no particular reason why this shouldn't apply to 1637 /// l-values, it's just that no existing peepholes work on pointers. 1638 PeepholeProtection protectFromPeepholes(RValue rvalue); 1639 void unprotectFromPeepholes(PeepholeProtection protection); 1640 1641 //===--------------------------------------------------------------------===// 1642 // Statement Emission 1643 //===--------------------------------------------------------------------===// 1644 1645 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 1646 void EmitStopPoint(const Stmt *S); 1647 1648 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 1649 /// this function even if there is no current insertion point. 1650 /// 1651 /// This function may clear the current insertion point; callers should use 1652 /// EnsureInsertPoint if they wish to subsequently generate code without first 1653 /// calling EmitBlock, EmitBranch, or EmitStmt. 1654 void EmitStmt(const Stmt *S); 1655 1656 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 1657 /// necessarily require an insertion point or debug information; typically 1658 /// because the statement amounts to a jump or a container of other 1659 /// statements. 1660 /// 1661 /// \return True if the statement was handled. 1662 bool EmitSimpleStmt(const Stmt *S); 1663 1664 RValue EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 1665 AggValueSlot AVS = AggValueSlot::ignored()); 1666 1667 /// EmitLabel - Emit the block for the given label. It is legal to call this 1668 /// function even if there is no current insertion point. 1669 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 1670 1671 void EmitLabelStmt(const LabelStmt &S); 1672 void EmitGotoStmt(const GotoStmt &S); 1673 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 1674 void EmitIfStmt(const IfStmt &S); 1675 void EmitWhileStmt(const WhileStmt &S); 1676 void EmitDoStmt(const DoStmt &S); 1677 void EmitForStmt(const ForStmt &S); 1678 void EmitReturnStmt(const ReturnStmt &S); 1679 void EmitDeclStmt(const DeclStmt &S); 1680 void EmitBreakStmt(const BreakStmt &S); 1681 void EmitContinueStmt(const ContinueStmt &S); 1682 void EmitSwitchStmt(const SwitchStmt &S); 1683 void EmitDefaultStmt(const DefaultStmt &S); 1684 void EmitCaseStmt(const CaseStmt &S); 1685 void EmitCaseStmtRange(const CaseStmt &S); 1686 void EmitAsmStmt(const AsmStmt &S); 1687 1688 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 1689 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 1690 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 1691 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 1692 1693 llvm::Constant *getUnwindResumeOrRethrowFn(); 1694 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 1695 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 1696 1697 void EmitCXXTryStmt(const CXXTryStmt &S); 1698 void EmitCXXForRangeStmt(const CXXForRangeStmt &S); 1699 1700 //===--------------------------------------------------------------------===// 1701 // LValue Expression Emission 1702 //===--------------------------------------------------------------------===// 1703 1704 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 1705 RValue GetUndefRValue(QualType Ty); 1706 1707 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 1708 /// and issue an ErrorUnsupported style diagnostic (using the 1709 /// provided Name). 1710 RValue EmitUnsupportedRValue(const Expr *E, 1711 const char *Name); 1712 1713 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 1714 /// an ErrorUnsupported style diagnostic (using the provided Name). 1715 LValue EmitUnsupportedLValue(const Expr *E, 1716 const char *Name); 1717 1718 /// EmitLValue - Emit code to compute a designator that specifies the location 1719 /// of the expression. 1720 /// 1721 /// This can return one of two things: a simple address or a bitfield 1722 /// reference. In either case, the LLVM Value* in the LValue structure is 1723 /// guaranteed to be an LLVM pointer type. 1724 /// 1725 /// If this returns a bitfield reference, nothing about the pointee type of 1726 /// the LLVM value is known: For example, it may not be a pointer to an 1727 /// integer. 1728 /// 1729 /// If this returns a normal address, and if the lvalue's C type is fixed 1730 /// size, this method guarantees that the returned pointer type will point to 1731 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 1732 /// variable length type, this is not possible. 1733 /// 1734 LValue EmitLValue(const Expr *E); 1735 1736 /// EmitCheckedLValue - Same as EmitLValue but additionally we generate 1737 /// checking code to guard against undefined behavior. This is only 1738 /// suitable when we know that the address will be used to access the 1739 /// object. 1740 LValue EmitCheckedLValue(const Expr *E); 1741 1742 /// EmitToMemory - Change a scalar value from its value 1743 /// representation to its in-memory representation. 1744 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 1745 1746 /// EmitFromMemory - Change a scalar value from its memory 1747 /// representation to its value representation. 1748 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 1749 1750 /// EmitLoadOfScalar - Load a scalar value from an address, taking 1751 /// care to appropriately convert from the memory representation to 1752 /// the LLVM value representation. 1753 llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile, 1754 unsigned Alignment, QualType Ty, 1755 llvm::MDNode *TBAAInfo = 0); 1756 1757 /// EmitStoreOfScalar - Store a scalar value to an address, taking 1758 /// care to appropriately convert from the memory representation to 1759 /// the LLVM value representation. 1760 void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr, 1761 bool Volatile, unsigned Alignment, QualType Ty, 1762 llvm::MDNode *TBAAInfo = 0); 1763 1764 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 1765 /// this method emits the address of the lvalue, then loads the result as an 1766 /// rvalue, returning the rvalue. 1767 RValue EmitLoadOfLValue(LValue V, QualType LVType); 1768 RValue EmitLoadOfExtVectorElementLValue(LValue V, QualType LVType); 1769 RValue EmitLoadOfBitfieldLValue(LValue LV, QualType ExprType); 1770 RValue EmitLoadOfPropertyRefLValue(LValue LV, 1771 ReturnValueSlot Return = ReturnValueSlot()); 1772 1773 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 1774 /// lvalue, where both are guaranteed to the have the same type, and that type 1775 /// is 'Ty'. 1776 void EmitStoreThroughLValue(RValue Src, LValue Dst, QualType Ty); 1777 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst, 1778 QualType Ty); 1779 void EmitStoreThroughPropertyRefLValue(RValue Src, LValue Dst); 1780 1781 /// EmitStoreThroughLValue - Store Src into Dst with same constraints as 1782 /// EmitStoreThroughLValue. 1783 /// 1784 /// \param Result [out] - If non-null, this will be set to a Value* for the 1785 /// bit-field contents after the store, appropriate for use as the result of 1786 /// an assignment to the bit-field. 1787 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, QualType Ty, 1788 llvm::Value **Result=0); 1789 1790 /// Emit an l-value for an assignment (simple or compound) of complex type. 1791 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 1792 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 1793 1794 // Note: only available for agg return types 1795 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 1796 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 1797 // Note: only available for agg return types 1798 LValue EmitCallExprLValue(const CallExpr *E); 1799 // Note: only available for agg return types 1800 LValue EmitVAArgExprLValue(const VAArgExpr *E); 1801 LValue EmitDeclRefLValue(const DeclRefExpr *E); 1802 LValue EmitStringLiteralLValue(const StringLiteral *E); 1803 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 1804 LValue EmitPredefinedLValue(const PredefinedExpr *E); 1805 LValue EmitUnaryOpLValue(const UnaryOperator *E); 1806 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E); 1807 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 1808 LValue EmitMemberExpr(const MemberExpr *E); 1809 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 1810 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 1811 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 1812 LValue EmitCastLValue(const CastExpr *E); 1813 LValue EmitNullInitializationLValue(const CXXScalarValueInitExpr *E); 1814 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 1815 1816 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 1817 const ObjCIvarDecl *Ivar); 1818 LValue EmitLValueForAnonRecordField(llvm::Value* Base, 1819 const IndirectFieldDecl* Field, 1820 unsigned CVRQualifiers); 1821 LValue EmitLValueForField(llvm::Value* Base, const FieldDecl* Field, 1822 unsigned CVRQualifiers); 1823 1824 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 1825 /// if the Field is a reference, this will return the address of the reference 1826 /// and not the address of the value stored in the reference. 1827 LValue EmitLValueForFieldInitialization(llvm::Value* Base, 1828 const FieldDecl* Field, 1829 unsigned CVRQualifiers); 1830 1831 LValue EmitLValueForIvar(QualType ObjectTy, 1832 llvm::Value* Base, const ObjCIvarDecl *Ivar, 1833 unsigned CVRQualifiers); 1834 1835 LValue EmitLValueForBitfield(llvm::Value* Base, const FieldDecl* Field, 1836 unsigned CVRQualifiers); 1837 1838 LValue EmitBlockDeclRefLValue(const BlockDeclRefExpr *E); 1839 1840 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 1841 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 1842 LValue EmitExprWithCleanupsLValue(const ExprWithCleanups *E); 1843 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 1844 1845 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 1846 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 1847 LValue EmitObjCPropertyRefLValue(const ObjCPropertyRefExpr *E); 1848 LValue EmitStmtExprLValue(const StmtExpr *E); 1849 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 1850 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 1851 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init); 1852 1853 //===--------------------------------------------------------------------===// 1854 // Scalar Expression Emission 1855 //===--------------------------------------------------------------------===// 1856 1857 /// EmitCall - Generate a call of the given function, expecting the given 1858 /// result type, and using the given argument list which specifies both the 1859 /// LLVM arguments and the types they were derived from. 1860 /// 1861 /// \param TargetDecl - If given, the decl of the function in a direct call; 1862 /// used to set attributes on the call (noreturn, etc.). 1863 RValue EmitCall(const CGFunctionInfo &FnInfo, 1864 llvm::Value *Callee, 1865 ReturnValueSlot ReturnValue, 1866 const CallArgList &Args, 1867 const Decl *TargetDecl = 0, 1868 llvm::Instruction **callOrInvoke = 0); 1869 1870 RValue EmitCall(QualType FnType, llvm::Value *Callee, 1871 ReturnValueSlot ReturnValue, 1872 CallExpr::const_arg_iterator ArgBeg, 1873 CallExpr::const_arg_iterator ArgEnd, 1874 const Decl *TargetDecl = 0); 1875 RValue EmitCallExpr(const CallExpr *E, 1876 ReturnValueSlot ReturnValue = ReturnValueSlot()); 1877 1878 llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, 1879 llvm::Value * const *ArgBegin, 1880 llvm::Value * const *ArgEnd, 1881 const llvm::Twine &Name = ""); 1882 1883 llvm::Value *BuildVirtualCall(const CXXMethodDecl *MD, llvm::Value *This, 1884 const llvm::Type *Ty); 1885 llvm::Value *BuildVirtualCall(const CXXDestructorDecl *DD, CXXDtorType Type, 1886 llvm::Value *This, const llvm::Type *Ty); 1887 llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 1888 NestedNameSpecifier *Qual, 1889 const llvm::Type *Ty); 1890 1891 llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 1892 CXXDtorType Type, 1893 const CXXRecordDecl *RD); 1894 1895 RValue EmitCXXMemberCall(const CXXMethodDecl *MD, 1896 llvm::Value *Callee, 1897 ReturnValueSlot ReturnValue, 1898 llvm::Value *This, 1899 llvm::Value *VTT, 1900 CallExpr::const_arg_iterator ArgBeg, 1901 CallExpr::const_arg_iterator ArgEnd); 1902 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 1903 ReturnValueSlot ReturnValue); 1904 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 1905 ReturnValueSlot ReturnValue); 1906 1907 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 1908 const CXXMethodDecl *MD, 1909 ReturnValueSlot ReturnValue); 1910 1911 1912 RValue EmitBuiltinExpr(const FunctionDecl *FD, 1913 unsigned BuiltinID, const CallExpr *E); 1914 1915 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 1916 1917 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 1918 /// is unhandled by the current target. 1919 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 1920 1921 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 1922 llvm::Value *EmitNeonCall(llvm::Function *F, 1923 llvm::SmallVectorImpl<llvm::Value*> &O, 1924 const char *name, 1925 unsigned shift = 0, bool rightshift = false); 1926 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 1927 llvm::Value *EmitNeonShiftVector(llvm::Value *V, const llvm::Type *Ty, 1928 bool negateForRightShift); 1929 1930 llvm::Value *BuildVector(const llvm::SmallVectorImpl<llvm::Value*> &Ops); 1931 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 1932 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 1933 1934 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 1935 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 1936 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 1937 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 1938 ReturnValueSlot Return = ReturnValueSlot()); 1939 1940 /// EmitReferenceBindingToExpr - Emits a reference binding to the passed in 1941 /// expression. Will emit a temporary variable if E is not an LValue. 1942 RValue EmitReferenceBindingToExpr(const Expr* E, 1943 const NamedDecl *InitializedDecl); 1944 1945 //===--------------------------------------------------------------------===// 1946 // Expression Emission 1947 //===--------------------------------------------------------------------===// 1948 1949 // Expressions are broken into three classes: scalar, complex, aggregate. 1950 1951 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 1952 /// scalar type, returning the result. 1953 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 1954 1955 /// EmitScalarConversion - Emit a conversion from the specified type to the 1956 /// specified destination type, both of which are LLVM scalar types. 1957 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 1958 QualType DstTy); 1959 1960 /// EmitComplexToScalarConversion - Emit a conversion from the specified 1961 /// complex type to the specified destination type, where the destination type 1962 /// is an LLVM scalar type. 1963 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 1964 QualType DstTy); 1965 1966 1967 /// EmitAggExpr - Emit the computation of the specified expression 1968 /// of aggregate type. The result is computed into the given slot, 1969 /// which may be null to indicate that the value is not needed. 1970 void EmitAggExpr(const Expr *E, AggValueSlot AS, bool IgnoreResult = false); 1971 1972 /// EmitAggExprToLValue - Emit the computation of the specified expression of 1973 /// aggregate type into a temporary LValue. 1974 LValue EmitAggExprToLValue(const Expr *E); 1975 1976 /// EmitGCMemmoveCollectable - Emit special API for structs with object 1977 /// pointers. 1978 void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr, 1979 QualType Ty); 1980 1981 /// EmitComplexExpr - Emit the computation of the specified expression of 1982 /// complex type, returning the result. 1983 ComplexPairTy EmitComplexExpr(const Expr *E, 1984 bool IgnoreReal = false, 1985 bool IgnoreImag = false); 1986 1987 /// EmitComplexExprIntoAddr - Emit the computation of the specified expression 1988 /// of complex type, storing into the specified Value*. 1989 void EmitComplexExprIntoAddr(const Expr *E, llvm::Value *DestAddr, 1990 bool DestIsVolatile); 1991 1992 /// StoreComplexToAddr - Store a complex number into the specified address. 1993 void StoreComplexToAddr(ComplexPairTy V, llvm::Value *DestAddr, 1994 bool DestIsVolatile); 1995 /// LoadComplexFromAddr - Load a complex number from the specified address. 1996 ComplexPairTy LoadComplexFromAddr(llvm::Value *SrcAddr, bool SrcIsVolatile); 1997 1998 /// CreateStaticVarDecl - Create a zero-initialized LLVM global for 1999 /// a static local variable. 2000 llvm::GlobalVariable *CreateStaticVarDecl(const VarDecl &D, 2001 const char *Separator, 2002 llvm::GlobalValue::LinkageTypes Linkage); 2003 2004 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 2005 /// global variable that has already been created for it. If the initializer 2006 /// has a different type than GV does, this may free GV and return a different 2007 /// one. Otherwise it just returns GV. 2008 llvm::GlobalVariable * 2009 AddInitializerToStaticVarDecl(const VarDecl &D, 2010 llvm::GlobalVariable *GV); 2011 2012 2013 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 2014 /// variable with global storage. 2015 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr); 2016 2017 /// EmitCXXGlobalDtorRegistration - Emits a call to register the global ptr 2018 /// with the C++ runtime so that its destructor will be called at exit. 2019 void EmitCXXGlobalDtorRegistration(llvm::Constant *DtorFn, 2020 llvm::Constant *DeclPtr); 2021 2022 /// Emit code in this function to perform a guarded variable 2023 /// initialization. Guarded initializations are used when it's not 2024 /// possible to prove that an initialization will be done exactly 2025 /// once, e.g. with a static local variable or a static data member 2026 /// of a class template. 2027 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr); 2028 2029 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 2030 /// variables. 2031 void GenerateCXXGlobalInitFunc(llvm::Function *Fn, 2032 llvm::Constant **Decls, 2033 unsigned NumDecls); 2034 2035 /// GenerateCXXGlobalDtorFunc - Generates code for destroying global 2036 /// variables. 2037 void GenerateCXXGlobalDtorFunc(llvm::Function *Fn, 2038 const std::vector<std::pair<llvm::WeakVH, 2039 llvm::Constant*> > &DtorsAndObjects); 2040 2041 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 2042 const VarDecl *D, 2043 llvm::GlobalVariable *Addr); 2044 2045 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 2046 2047 void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src, 2048 const Expr *Exp); 2049 2050 RValue EmitExprWithCleanups(const ExprWithCleanups *E, 2051 AggValueSlot Slot =AggValueSlot::ignored()); 2052 2053 void EmitCXXThrowExpr(const CXXThrowExpr *E); 2054 2055 //===--------------------------------------------------------------------===// 2056 // Internal Helpers 2057 //===--------------------------------------------------------------------===// 2058 2059 /// ContainsLabel - Return true if the statement contains a label in it. If 2060 /// this statement is not executed normally, it not containing a label means 2061 /// that we can just remove the code. 2062 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 2063 2064 /// containsBreak - Return true if the statement contains a break out of it. 2065 /// If the statement (recursively) contains a switch or loop with a break 2066 /// inside of it, this is fine. 2067 static bool containsBreak(const Stmt *S); 2068 2069 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 2070 /// to a constant, or if it does but contains a label, return false. If it 2071 /// constant folds return true and set the boolean result in Result. 2072 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result); 2073 2074 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 2075 /// to a constant, or if it does but contains a label, return false. If it 2076 /// constant folds return true and set the folded value. 2077 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APInt &Result); 2078 2079 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 2080 /// if statement) to the specified blocks. Based on the condition, this might 2081 /// try to simplify the codegen of the conditional based on the branch. 2082 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 2083 llvm::BasicBlock *FalseBlock); 2084 2085 /// getTrapBB - Create a basic block that will call the trap intrinsic. We'll 2086 /// generate a branch around the created basic block as necessary. 2087 llvm::BasicBlock *getTrapBB(); 2088 2089 /// EmitCallArg - Emit a single call argument. 2090 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 2091 2092 /// EmitDelegateCallArg - We are performing a delegate call; that 2093 /// is, the current function is delegating to another one. Produce 2094 /// a r-value suitable for passing the given parameter. 2095 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param); 2096 2097 private: 2098 void EmitReturnOfRValue(RValue RV, QualType Ty); 2099 2100 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 2101 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 2102 /// 2103 /// \param AI - The first function argument of the expansion. 2104 /// \return The argument following the last expanded function 2105 /// argument. 2106 llvm::Function::arg_iterator 2107 ExpandTypeFromArgs(QualType Ty, LValue Dst, 2108 llvm::Function::arg_iterator AI); 2109 2110 /// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg 2111 /// Ty, into individual arguments on the provided vector \arg Args. See 2112 /// ABIArgInfo::Expand. 2113 void ExpandTypeToArgs(QualType Ty, RValue Src, 2114 llvm::SmallVector<llvm::Value*, 16> &Args); 2115 2116 llvm::Value* EmitAsmInput(const AsmStmt &S, 2117 const TargetInfo::ConstraintInfo &Info, 2118 const Expr *InputExpr, std::string &ConstraintStr); 2119 2120 llvm::Value* EmitAsmInputLValue(const AsmStmt &S, 2121 const TargetInfo::ConstraintInfo &Info, 2122 LValue InputValue, QualType InputType, 2123 std::string &ConstraintStr); 2124 2125 /// EmitCallArgs - Emit call arguments for a function. 2126 /// The CallArgTypeInfo parameter is used for iterating over the known 2127 /// argument types of the function being called. 2128 template<typename T> 2129 void EmitCallArgs(CallArgList& Args, const T* CallArgTypeInfo, 2130 CallExpr::const_arg_iterator ArgBeg, 2131 CallExpr::const_arg_iterator ArgEnd) { 2132 CallExpr::const_arg_iterator Arg = ArgBeg; 2133 2134 // First, use the argument types that the type info knows about 2135 if (CallArgTypeInfo) { 2136 for (typename T::arg_type_iterator I = CallArgTypeInfo->arg_type_begin(), 2137 E = CallArgTypeInfo->arg_type_end(); I != E; ++I, ++Arg) { 2138 assert(Arg != ArgEnd && "Running over edge of argument list!"); 2139 QualType ArgType = *I; 2140 #ifndef NDEBUG 2141 QualType ActualArgType = Arg->getType(); 2142 if (ArgType->isPointerType() && ActualArgType->isPointerType()) { 2143 QualType ActualBaseType = 2144 ActualArgType->getAs<PointerType>()->getPointeeType(); 2145 QualType ArgBaseType = 2146 ArgType->getAs<PointerType>()->getPointeeType(); 2147 if (ArgBaseType->isVariableArrayType()) { 2148 if (const VariableArrayType *VAT = 2149 getContext().getAsVariableArrayType(ActualBaseType)) { 2150 if (!VAT->getSizeExpr()) 2151 ActualArgType = ArgType; 2152 } 2153 } 2154 } 2155 assert(getContext().getCanonicalType(ArgType.getNonReferenceType()). 2156 getTypePtr() == 2157 getContext().getCanonicalType(ActualArgType).getTypePtr() && 2158 "type mismatch in call argument!"); 2159 #endif 2160 EmitCallArg(Args, *Arg, ArgType); 2161 } 2162 2163 // Either we've emitted all the call args, or we have a call to a 2164 // variadic function. 2165 assert((Arg == ArgEnd || CallArgTypeInfo->isVariadic()) && 2166 "Extra arguments in non-variadic function!"); 2167 2168 } 2169 2170 // If we still have any arguments, emit them using the type of the argument. 2171 for (; Arg != ArgEnd; ++Arg) 2172 EmitCallArg(Args, *Arg, Arg->getType()); 2173 } 2174 2175 const TargetCodeGenInfo &getTargetHooks() const { 2176 return CGM.getTargetCodeGenInfo(); 2177 } 2178 2179 void EmitDeclMetadata(); 2180 2181 CodeGenModule::ByrefHelpers * 2182 buildByrefHelpers(const llvm::StructType &byrefType, 2183 const AutoVarEmission &emission); 2184 }; 2185 2186 /// Helper class with most of the code for saving a value for a 2187 /// conditional expression cleanup. 2188 struct DominatingLLVMValue { 2189 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 2190 2191 /// Answer whether the given value needs extra work to be saved. 2192 static bool needsSaving(llvm::Value *value) { 2193 // If it's not an instruction, we don't need to save. 2194 if (!isa<llvm::Instruction>(value)) return false; 2195 2196 // If it's an instruction in the entry block, we don't need to save. 2197 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 2198 return (block != &block->getParent()->getEntryBlock()); 2199 } 2200 2201 /// Try to save the given value. 2202 static saved_type save(CodeGenFunction &CGF, llvm::Value *value) { 2203 if (!needsSaving(value)) return saved_type(value, false); 2204 2205 // Otherwise we need an alloca. 2206 llvm::Value *alloca = 2207 CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save"); 2208 CGF.Builder.CreateStore(value, alloca); 2209 2210 return saved_type(alloca, true); 2211 } 2212 2213 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) { 2214 if (!value.getInt()) return value.getPointer(); 2215 return CGF.Builder.CreateLoad(value.getPointer()); 2216 } 2217 }; 2218 2219 /// A partial specialization of DominatingValue for llvm::Values that 2220 /// might be llvm::Instructions. 2221 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 2222 typedef T *type; 2223 static type restore(CodeGenFunction &CGF, saved_type value) { 2224 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 2225 } 2226 }; 2227 2228 /// A specialization of DominatingValue for RValue. 2229 template <> struct DominatingValue<RValue> { 2230 typedef RValue type; 2231 class saved_type { 2232 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 2233 AggregateAddress, ComplexAddress }; 2234 2235 llvm::Value *Value; 2236 Kind K; 2237 saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {} 2238 2239 public: 2240 static bool needsSaving(RValue value); 2241 static saved_type save(CodeGenFunction &CGF, RValue value); 2242 RValue restore(CodeGenFunction &CGF); 2243 2244 // implementations in CGExprCXX.cpp 2245 }; 2246 2247 static bool needsSaving(type value) { 2248 return saved_type::needsSaving(value); 2249 } 2250 static saved_type save(CodeGenFunction &CGF, type value) { 2251 return saved_type::save(CGF, value); 2252 } 2253 static type restore(CodeGenFunction &CGF, saved_type value) { 2254 return value.restore(CGF); 2255 } 2256 }; 2257 2258 } // end namespace CodeGen 2259 } // end namespace clang 2260 2261 #endif 2262