1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the internal per-function state used for llvm translation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 14 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 15 16 #include "CGBuilder.h" 17 #include "CGDebugInfo.h" 18 #include "CGLoopInfo.h" 19 #include "CGValue.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenPGO.h" 22 #include "EHScopeStack.h" 23 #include "VarBypassDetector.h" 24 #include "clang/AST/CharUnits.h" 25 #include "clang/AST/CurrentSourceLocExprScope.h" 26 #include "clang/AST/ExprCXX.h" 27 #include "clang/AST/ExprObjC.h" 28 #include "clang/AST/ExprOpenMP.h" 29 #include "clang/AST/StmtOpenMP.h" 30 #include "clang/AST/Type.h" 31 #include "clang/Basic/ABI.h" 32 #include "clang/Basic/CapturedStmt.h" 33 #include "clang/Basic/CodeGenOptions.h" 34 #include "clang/Basic/OpenMPKinds.h" 35 #include "clang/Basic/TargetInfo.h" 36 #include "llvm/ADT/ArrayRef.h" 37 #include "llvm/ADT/DenseMap.h" 38 #include "llvm/ADT/MapVector.h" 39 #include "llvm/ADT/SmallVector.h" 40 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 41 #include "llvm/IR/ValueHandle.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Transforms/Utils/SanitizerStats.h" 44 45 namespace llvm { 46 class BasicBlock; 47 class LLVMContext; 48 class MDNode; 49 class SwitchInst; 50 class Twine; 51 class Value; 52 class CanonicalLoopInfo; 53 } 54 55 namespace clang { 56 class ASTContext; 57 class CXXDestructorDecl; 58 class CXXForRangeStmt; 59 class CXXTryStmt; 60 class Decl; 61 class LabelDecl; 62 class FunctionDecl; 63 class FunctionProtoType; 64 class LabelStmt; 65 class ObjCContainerDecl; 66 class ObjCInterfaceDecl; 67 class ObjCIvarDecl; 68 class ObjCMethodDecl; 69 class ObjCImplementationDecl; 70 class ObjCPropertyImplDecl; 71 class TargetInfo; 72 class VarDecl; 73 class ObjCForCollectionStmt; 74 class ObjCAtTryStmt; 75 class ObjCAtThrowStmt; 76 class ObjCAtSynchronizedStmt; 77 class ObjCAutoreleasePoolStmt; 78 class OMPUseDevicePtrClause; 79 class OMPUseDeviceAddrClause; 80 class SVETypeFlags; 81 class OMPExecutableDirective; 82 83 namespace analyze_os_log { 84 class OSLogBufferLayout; 85 } 86 87 namespace CodeGen { 88 class CodeGenTypes; 89 class CGCallee; 90 class CGFunctionInfo; 91 class CGBlockInfo; 92 class CGCXXABI; 93 class BlockByrefHelpers; 94 class BlockByrefInfo; 95 class BlockFieldFlags; 96 class RegionCodeGenTy; 97 class TargetCodeGenInfo; 98 struct OMPTaskDataTy; 99 struct CGCoroData; 100 101 /// The kind of evaluation to perform on values of a particular 102 /// type. Basically, is the code in CGExprScalar, CGExprComplex, or 103 /// CGExprAgg? 104 /// 105 /// TODO: should vectors maybe be split out into their own thing? 106 enum TypeEvaluationKind { 107 TEK_Scalar, 108 TEK_Complex, 109 TEK_Aggregate 110 }; 111 112 #define LIST_SANITIZER_CHECKS \ 113 SANITIZER_CHECK(AddOverflow, add_overflow, 0) \ 114 SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0) \ 115 SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0) \ 116 SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0) \ 117 SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0) \ 118 SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0) \ 119 SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 1) \ 120 SANITIZER_CHECK(ImplicitConversion, implicit_conversion, 0) \ 121 SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0) \ 122 SANITIZER_CHECK(InvalidObjCCast, invalid_objc_cast, 0) \ 123 SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0) \ 124 SANITIZER_CHECK(MissingReturn, missing_return, 0) \ 125 SANITIZER_CHECK(MulOverflow, mul_overflow, 0) \ 126 SANITIZER_CHECK(NegateOverflow, negate_overflow, 0) \ 127 SANITIZER_CHECK(NullabilityArg, nullability_arg, 0) \ 128 SANITIZER_CHECK(NullabilityReturn, nullability_return, 1) \ 129 SANITIZER_CHECK(NonnullArg, nonnull_arg, 0) \ 130 SANITIZER_CHECK(NonnullReturn, nonnull_return, 1) \ 131 SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0) \ 132 SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0) \ 133 SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0) \ 134 SANITIZER_CHECK(SubOverflow, sub_overflow, 0) \ 135 SANITIZER_CHECK(TypeMismatch, type_mismatch, 1) \ 136 SANITIZER_CHECK(AlignmentAssumption, alignment_assumption, 0) \ 137 SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0) 138 139 enum SanitizerHandler { 140 #define SANITIZER_CHECK(Enum, Name, Version) Enum, 141 LIST_SANITIZER_CHECKS 142 #undef SANITIZER_CHECK 143 }; 144 145 /// Helper class with most of the code for saving a value for a 146 /// conditional expression cleanup. 147 struct DominatingLLVMValue { 148 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 149 150 /// Answer whether the given value needs extra work to be saved. 151 static bool needsSaving(llvm::Value *value) { 152 // If it's not an instruction, we don't need to save. 153 if (!isa<llvm::Instruction>(value)) return false; 154 155 // If it's an instruction in the entry block, we don't need to save. 156 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 157 return (block != &block->getParent()->getEntryBlock()); 158 } 159 160 static saved_type save(CodeGenFunction &CGF, llvm::Value *value); 161 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value); 162 }; 163 164 /// A partial specialization of DominatingValue for llvm::Values that 165 /// might be llvm::Instructions. 166 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 167 typedef T *type; 168 static type restore(CodeGenFunction &CGF, saved_type value) { 169 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 170 } 171 }; 172 173 /// A specialization of DominatingValue for Address. 174 template <> struct DominatingValue<Address> { 175 typedef Address type; 176 177 struct saved_type { 178 DominatingLLVMValue::saved_type SavedValue; 179 llvm::Type *ElementType; 180 CharUnits Alignment; 181 }; 182 183 static bool needsSaving(type value) { 184 return DominatingLLVMValue::needsSaving(value.getPointer()); 185 } 186 static saved_type save(CodeGenFunction &CGF, type value) { 187 return { DominatingLLVMValue::save(CGF, value.getPointer()), 188 value.getElementType(), value.getAlignment() }; 189 } 190 static type restore(CodeGenFunction &CGF, saved_type value) { 191 return Address(DominatingLLVMValue::restore(CGF, value.SavedValue), 192 value.ElementType, value.Alignment); 193 } 194 }; 195 196 /// A specialization of DominatingValue for RValue. 197 template <> struct DominatingValue<RValue> { 198 typedef RValue type; 199 class saved_type { 200 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 201 AggregateAddress, ComplexAddress }; 202 203 llvm::Value *Value; 204 unsigned K : 3; 205 unsigned Align : 29; 206 saved_type(llvm::Value *v, Kind k, unsigned a = 0) 207 : Value(v), K(k), Align(a) {} 208 209 public: 210 static bool needsSaving(RValue value); 211 static saved_type save(CodeGenFunction &CGF, RValue value); 212 RValue restore(CodeGenFunction &CGF); 213 214 // implementations in CGCleanup.cpp 215 }; 216 217 static bool needsSaving(type value) { 218 return saved_type::needsSaving(value); 219 } 220 static saved_type save(CodeGenFunction &CGF, type value) { 221 return saved_type::save(CGF, value); 222 } 223 static type restore(CodeGenFunction &CGF, saved_type value) { 224 return value.restore(CGF); 225 } 226 }; 227 228 /// CodeGenFunction - This class organizes the per-function state that is used 229 /// while generating LLVM code. 230 class CodeGenFunction : public CodeGenTypeCache { 231 CodeGenFunction(const CodeGenFunction &) = delete; 232 void operator=(const CodeGenFunction &) = delete; 233 234 friend class CGCXXABI; 235 public: 236 /// A jump destination is an abstract label, branching to which may 237 /// require a jump out through normal cleanups. 238 struct JumpDest { 239 JumpDest() : Block(nullptr), Index(0) {} 240 JumpDest(llvm::BasicBlock *Block, EHScopeStack::stable_iterator Depth, 241 unsigned Index) 242 : Block(Block), ScopeDepth(Depth), Index(Index) {} 243 244 bool isValid() const { return Block != nullptr; } 245 llvm::BasicBlock *getBlock() const { return Block; } 246 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 247 unsigned getDestIndex() const { return Index; } 248 249 // This should be used cautiously. 250 void setScopeDepth(EHScopeStack::stable_iterator depth) { 251 ScopeDepth = depth; 252 } 253 254 private: 255 llvm::BasicBlock *Block; 256 EHScopeStack::stable_iterator ScopeDepth; 257 unsigned Index; 258 }; 259 260 CodeGenModule &CGM; // Per-module state. 261 const TargetInfo &Target; 262 263 // For EH/SEH outlined funclets, this field points to parent's CGF 264 CodeGenFunction *ParentCGF = nullptr; 265 266 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 267 LoopInfoStack LoopStack; 268 CGBuilderTy Builder; 269 270 // Stores variables for which we can't generate correct lifetime markers 271 // because of jumps. 272 VarBypassDetector Bypasses; 273 274 /// List of recently emitted OMPCanonicalLoops. 275 /// 276 /// Since OMPCanonicalLoops are nested inside other statements (in particular 277 /// CapturedStmt generated by OMPExecutableDirective and non-perfectly nested 278 /// loops), we cannot directly call OMPEmitOMPCanonicalLoop and receive its 279 /// llvm::CanonicalLoopInfo. Instead, we call EmitStmt and any 280 /// OMPEmitOMPCanonicalLoop called by it will add its CanonicalLoopInfo to 281 /// this stack when done. Entering a new loop requires clearing this list; it 282 /// either means we start parsing a new loop nest (in which case the previous 283 /// loop nest goes out of scope) or a second loop in the same level in which 284 /// case it would be ambiguous into which of the two (or more) loops the loop 285 /// nest would extend. 286 SmallVector<llvm::CanonicalLoopInfo *, 4> OMPLoopNestStack; 287 288 /// Number of nested loop to be consumed by the last surrounding 289 /// loop-associated directive. 290 int ExpectedOMPLoopDepth = 0; 291 292 // CodeGen lambda for loops and support for ordered clause 293 typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &, 294 JumpDest)> 295 CodeGenLoopTy; 296 typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation, 297 const unsigned, const bool)> 298 CodeGenOrderedTy; 299 300 // Codegen lambda for loop bounds in worksharing loop constructs 301 typedef llvm::function_ref<std::pair<LValue, LValue>( 302 CodeGenFunction &, const OMPExecutableDirective &S)> 303 CodeGenLoopBoundsTy; 304 305 // Codegen lambda for loop bounds in dispatch-based loop implementation 306 typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>( 307 CodeGenFunction &, const OMPExecutableDirective &S, Address LB, 308 Address UB)> 309 CodeGenDispatchBoundsTy; 310 311 /// CGBuilder insert helper. This function is called after an 312 /// instruction is created using Builder. 313 void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name, 314 llvm::BasicBlock *BB, 315 llvm::BasicBlock::iterator InsertPt) const; 316 317 /// CurFuncDecl - Holds the Decl for the current outermost 318 /// non-closure context. 319 const Decl *CurFuncDecl; 320 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 321 const Decl *CurCodeDecl; 322 const CGFunctionInfo *CurFnInfo; 323 QualType FnRetTy; 324 llvm::Function *CurFn = nullptr; 325 326 /// Save Parameter Decl for coroutine. 327 llvm::SmallVector<const ParmVarDecl *, 4> FnArgs; 328 329 // Holds coroutine data if the current function is a coroutine. We use a 330 // wrapper to manage its lifetime, so that we don't have to define CGCoroData 331 // in this header. 332 struct CGCoroInfo { 333 std::unique_ptr<CGCoroData> Data; 334 CGCoroInfo(); 335 ~CGCoroInfo(); 336 }; 337 CGCoroInfo CurCoro; 338 339 bool isCoroutine() const { 340 return CurCoro.Data != nullptr; 341 } 342 343 /// CurGD - The GlobalDecl for the current function being compiled. 344 GlobalDecl CurGD; 345 346 /// PrologueCleanupDepth - The cleanup depth enclosing all the 347 /// cleanups associated with the parameters. 348 EHScopeStack::stable_iterator PrologueCleanupDepth; 349 350 /// ReturnBlock - Unified return block. 351 JumpDest ReturnBlock; 352 353 /// ReturnValue - The temporary alloca to hold the return 354 /// value. This is invalid iff the function has no return value. 355 Address ReturnValue = Address::invalid(); 356 357 /// ReturnValuePointer - The temporary alloca to hold a pointer to sret. 358 /// This is invalid if sret is not in use. 359 Address ReturnValuePointer = Address::invalid(); 360 361 /// If a return statement is being visited, this holds the return statment's 362 /// result expression. 363 const Expr *RetExpr = nullptr; 364 365 /// Return true if a label was seen in the current scope. 366 bool hasLabelBeenSeenInCurrentScope() const { 367 if (CurLexicalScope) 368 return CurLexicalScope->hasLabels(); 369 return !LabelMap.empty(); 370 } 371 372 /// AllocaInsertPoint - This is an instruction in the entry block before which 373 /// we prefer to insert allocas. 374 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 375 376 private: 377 /// PostAllocaInsertPt - This is a place in the prologue where code can be 378 /// inserted that will be dominated by all the static allocas. This helps 379 /// achieve two things: 380 /// 1. Contiguity of all static allocas (within the prologue) is maintained. 381 /// 2. All other prologue code (which are dominated by static allocas) do 382 /// appear in the source order immediately after all static allocas. 383 /// 384 /// PostAllocaInsertPt will be lazily created when it is *really* required. 385 llvm::AssertingVH<llvm::Instruction> PostAllocaInsertPt = nullptr; 386 387 public: 388 /// Return PostAllocaInsertPt. If it is not yet created, then insert it 389 /// immediately after AllocaInsertPt. 390 llvm::Instruction *getPostAllocaInsertPoint() { 391 if (!PostAllocaInsertPt) { 392 assert(AllocaInsertPt && 393 "Expected static alloca insertion point at function prologue"); 394 assert(AllocaInsertPt->getParent()->isEntryBlock() && 395 "EBB should be entry block of the current code gen function"); 396 PostAllocaInsertPt = AllocaInsertPt->clone(); 397 PostAllocaInsertPt->setName("postallocapt"); 398 PostAllocaInsertPt->insertAfter(AllocaInsertPt); 399 } 400 401 return PostAllocaInsertPt; 402 } 403 404 /// API for captured statement code generation. 405 class CGCapturedStmtInfo { 406 public: 407 explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default) 408 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {} 409 explicit CGCapturedStmtInfo(const CapturedStmt &S, 410 CapturedRegionKind K = CR_Default) 411 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) { 412 413 RecordDecl::field_iterator Field = 414 S.getCapturedRecordDecl()->field_begin(); 415 for (CapturedStmt::const_capture_iterator I = S.capture_begin(), 416 E = S.capture_end(); 417 I != E; ++I, ++Field) { 418 if (I->capturesThis()) 419 CXXThisFieldDecl = *Field; 420 else if (I->capturesVariable()) 421 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 422 else if (I->capturesVariableByCopy()) 423 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 424 } 425 } 426 427 virtual ~CGCapturedStmtInfo(); 428 429 CapturedRegionKind getKind() const { return Kind; } 430 431 virtual void setContextValue(llvm::Value *V) { ThisValue = V; } 432 // Retrieve the value of the context parameter. 433 virtual llvm::Value *getContextValue() const { return ThisValue; } 434 435 /// Lookup the captured field decl for a variable. 436 virtual const FieldDecl *lookup(const VarDecl *VD) const { 437 return CaptureFields.lookup(VD->getCanonicalDecl()); 438 } 439 440 bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; } 441 virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; } 442 443 static bool classof(const CGCapturedStmtInfo *) { 444 return true; 445 } 446 447 /// Emit the captured statement body. 448 virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) { 449 CGF.incrementProfileCounter(S); 450 CGF.EmitStmt(S); 451 } 452 453 /// Get the name of the capture helper. 454 virtual StringRef getHelperName() const { return "__captured_stmt"; } 455 456 /// Get the CaptureFields 457 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> getCaptureFields() { 458 return CaptureFields; 459 } 460 461 private: 462 /// The kind of captured statement being generated. 463 CapturedRegionKind Kind; 464 465 /// Keep the map between VarDecl and FieldDecl. 466 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields; 467 468 /// The base address of the captured record, passed in as the first 469 /// argument of the parallel region function. 470 llvm::Value *ThisValue; 471 472 /// Captured 'this' type. 473 FieldDecl *CXXThisFieldDecl; 474 }; 475 CGCapturedStmtInfo *CapturedStmtInfo = nullptr; 476 477 /// RAII for correct setting/restoring of CapturedStmtInfo. 478 class CGCapturedStmtRAII { 479 private: 480 CodeGenFunction &CGF; 481 CGCapturedStmtInfo *PrevCapturedStmtInfo; 482 public: 483 CGCapturedStmtRAII(CodeGenFunction &CGF, 484 CGCapturedStmtInfo *NewCapturedStmtInfo) 485 : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) { 486 CGF.CapturedStmtInfo = NewCapturedStmtInfo; 487 } 488 ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; } 489 }; 490 491 /// An abstract representation of regular/ObjC call/message targets. 492 class AbstractCallee { 493 /// The function declaration of the callee. 494 const Decl *CalleeDecl; 495 496 public: 497 AbstractCallee() : CalleeDecl(nullptr) {} 498 AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {} 499 AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {} 500 bool hasFunctionDecl() const { 501 return isa_and_nonnull<FunctionDecl>(CalleeDecl); 502 } 503 const Decl *getDecl() const { return CalleeDecl; } 504 unsigned getNumParams() const { 505 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 506 return FD->getNumParams(); 507 return cast<ObjCMethodDecl>(CalleeDecl)->param_size(); 508 } 509 const ParmVarDecl *getParamDecl(unsigned I) const { 510 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 511 return FD->getParamDecl(I); 512 return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I); 513 } 514 }; 515 516 /// Sanitizers enabled for this function. 517 SanitizerSet SanOpts; 518 519 /// True if CodeGen currently emits code implementing sanitizer checks. 520 bool IsSanitizerScope = false; 521 522 /// RAII object to set/unset CodeGenFunction::IsSanitizerScope. 523 class SanitizerScope { 524 CodeGenFunction *CGF; 525 public: 526 SanitizerScope(CodeGenFunction *CGF); 527 ~SanitizerScope(); 528 }; 529 530 /// In C++, whether we are code generating a thunk. This controls whether we 531 /// should emit cleanups. 532 bool CurFuncIsThunk = false; 533 534 /// In ARC, whether we should autorelease the return value. 535 bool AutoreleaseResult = false; 536 537 /// Whether we processed a Microsoft-style asm block during CodeGen. These can 538 /// potentially set the return value. 539 bool SawAsmBlock = false; 540 541 const NamedDecl *CurSEHParent = nullptr; 542 543 /// True if the current function is an outlined SEH helper. This can be a 544 /// finally block or filter expression. 545 bool IsOutlinedSEHHelper = false; 546 547 /// True if CodeGen currently emits code inside presereved access index 548 /// region. 549 bool IsInPreservedAIRegion = false; 550 551 /// True if the current statement has nomerge attribute. 552 bool InNoMergeAttributedStmt = false; 553 554 /// True if the current statement has noinline attribute. 555 bool InNoInlineAttributedStmt = false; 556 557 // The CallExpr within the current statement that the musttail attribute 558 // applies to. nullptr if there is no 'musttail' on the current statement. 559 const CallExpr *MustTailCall = nullptr; 560 561 /// Returns true if a function must make progress, which means the 562 /// mustprogress attribute can be added. 563 bool checkIfFunctionMustProgress() { 564 if (CGM.getCodeGenOpts().getFiniteLoops() == 565 CodeGenOptions::FiniteLoopsKind::Never) 566 return false; 567 568 // C++11 and later guarantees that a thread eventually will do one of the 569 // following (6.9.2.3.1 in C++11): 570 // - terminate, 571 // - make a call to a library I/O function, 572 // - perform an access through a volatile glvalue, or 573 // - perform a synchronization operation or an atomic operation. 574 // 575 // Hence each function is 'mustprogress' in C++11 or later. 576 return getLangOpts().CPlusPlus11; 577 } 578 579 /// Returns true if a loop must make progress, which means the mustprogress 580 /// attribute can be added. \p HasConstantCond indicates whether the branch 581 /// condition is a known constant. 582 bool checkIfLoopMustProgress(bool HasConstantCond) { 583 if (CGM.getCodeGenOpts().getFiniteLoops() == 584 CodeGenOptions::FiniteLoopsKind::Always) 585 return true; 586 if (CGM.getCodeGenOpts().getFiniteLoops() == 587 CodeGenOptions::FiniteLoopsKind::Never) 588 return false; 589 590 // If the containing function must make progress, loops also must make 591 // progress (as in C++11 and later). 592 if (checkIfFunctionMustProgress()) 593 return true; 594 595 // Now apply rules for plain C (see 6.8.5.6 in C11). 596 // Loops with constant conditions do not have to make progress in any C 597 // version. 598 if (HasConstantCond) 599 return false; 600 601 // Loops with non-constant conditions must make progress in C11 and later. 602 return getLangOpts().C11; 603 } 604 605 const CodeGen::CGBlockInfo *BlockInfo = nullptr; 606 llvm::Value *BlockPointer = nullptr; 607 608 llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; 609 FieldDecl *LambdaThisCaptureField = nullptr; 610 611 /// A mapping from NRVO variables to the flags used to indicate 612 /// when the NRVO has been applied to this variable. 613 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 614 615 EHScopeStack EHStack; 616 llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack; 617 llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack; 618 619 llvm::Instruction *CurrentFuncletPad = nullptr; 620 621 class CallLifetimeEnd final : public EHScopeStack::Cleanup { 622 bool isRedundantBeforeReturn() override { return true; } 623 624 llvm::Value *Addr; 625 llvm::Value *Size; 626 627 public: 628 CallLifetimeEnd(Address addr, llvm::Value *size) 629 : Addr(addr.getPointer()), Size(size) {} 630 631 void Emit(CodeGenFunction &CGF, Flags flags) override { 632 CGF.EmitLifetimeEnd(Size, Addr); 633 } 634 }; 635 636 /// Header for data within LifetimeExtendedCleanupStack. 637 struct LifetimeExtendedCleanupHeader { 638 /// The size of the following cleanup object. 639 unsigned Size; 640 /// The kind of cleanup to push: a value from the CleanupKind enumeration. 641 unsigned Kind : 31; 642 /// Whether this is a conditional cleanup. 643 unsigned IsConditional : 1; 644 645 size_t getSize() const { return Size; } 646 CleanupKind getKind() const { return (CleanupKind)Kind; } 647 bool isConditional() const { return IsConditional; } 648 }; 649 650 /// i32s containing the indexes of the cleanup destinations. 651 Address NormalCleanupDest = Address::invalid(); 652 653 unsigned NextCleanupDestIndex = 1; 654 655 /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. 656 llvm::BasicBlock *EHResumeBlock = nullptr; 657 658 /// The exception slot. All landing pads write the current exception pointer 659 /// into this alloca. 660 llvm::Value *ExceptionSlot = nullptr; 661 662 /// The selector slot. Under the MandatoryCleanup model, all landing pads 663 /// write the current selector value into this alloca. 664 llvm::AllocaInst *EHSelectorSlot = nullptr; 665 666 /// A stack of exception code slots. Entering an __except block pushes a slot 667 /// on the stack and leaving pops one. The __exception_code() intrinsic loads 668 /// a value from the top of the stack. 669 SmallVector<Address, 1> SEHCodeSlotStack; 670 671 /// Value returned by __exception_info intrinsic. 672 llvm::Value *SEHInfo = nullptr; 673 674 /// Emits a landing pad for the current EH stack. 675 llvm::BasicBlock *EmitLandingPad(); 676 677 llvm::BasicBlock *getInvokeDestImpl(); 678 679 /// Parent loop-based directive for scan directive. 680 const OMPExecutableDirective *OMPParentLoopDirectiveForScan = nullptr; 681 llvm::BasicBlock *OMPBeforeScanBlock = nullptr; 682 llvm::BasicBlock *OMPAfterScanBlock = nullptr; 683 llvm::BasicBlock *OMPScanExitBlock = nullptr; 684 llvm::BasicBlock *OMPScanDispatch = nullptr; 685 bool OMPFirstScanLoop = false; 686 687 /// Manages parent directive for scan directives. 688 class ParentLoopDirectiveForScanRegion { 689 CodeGenFunction &CGF; 690 const OMPExecutableDirective *ParentLoopDirectiveForScan; 691 692 public: 693 ParentLoopDirectiveForScanRegion( 694 CodeGenFunction &CGF, 695 const OMPExecutableDirective &ParentLoopDirectiveForScan) 696 : CGF(CGF), 697 ParentLoopDirectiveForScan(CGF.OMPParentLoopDirectiveForScan) { 698 CGF.OMPParentLoopDirectiveForScan = &ParentLoopDirectiveForScan; 699 } 700 ~ParentLoopDirectiveForScanRegion() { 701 CGF.OMPParentLoopDirectiveForScan = ParentLoopDirectiveForScan; 702 } 703 }; 704 705 template <class T> 706 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 707 return DominatingValue<T>::save(*this, value); 708 } 709 710 class CGFPOptionsRAII { 711 public: 712 CGFPOptionsRAII(CodeGenFunction &CGF, FPOptions FPFeatures); 713 CGFPOptionsRAII(CodeGenFunction &CGF, const Expr *E); 714 ~CGFPOptionsRAII(); 715 716 private: 717 void ConstructorHelper(FPOptions FPFeatures); 718 CodeGenFunction &CGF; 719 FPOptions OldFPFeatures; 720 llvm::fp::ExceptionBehavior OldExcept; 721 llvm::RoundingMode OldRounding; 722 Optional<CGBuilderTy::FastMathFlagGuard> FMFGuard; 723 }; 724 FPOptions CurFPFeatures; 725 726 public: 727 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 728 /// rethrows. 729 SmallVector<llvm::Value*, 8> ObjCEHValueStack; 730 731 /// A class controlling the emission of a finally block. 732 class FinallyInfo { 733 /// Where the catchall's edge through the cleanup should go. 734 JumpDest RethrowDest; 735 736 /// A function to call to enter the catch. 737 llvm::FunctionCallee BeginCatchFn; 738 739 /// An i1 variable indicating whether or not the @finally is 740 /// running for an exception. 741 llvm::AllocaInst *ForEHVar; 742 743 /// An i8* variable into which the exception pointer to rethrow 744 /// has been saved. 745 llvm::AllocaInst *SavedExnVar; 746 747 public: 748 void enter(CodeGenFunction &CGF, const Stmt *Finally, 749 llvm::FunctionCallee beginCatchFn, 750 llvm::FunctionCallee endCatchFn, llvm::FunctionCallee rethrowFn); 751 void exit(CodeGenFunction &CGF); 752 }; 753 754 /// Returns true inside SEH __try blocks. 755 bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); } 756 757 /// Returns true while emitting a cleanuppad. 758 bool isCleanupPadScope() const { 759 return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad); 760 } 761 762 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 763 /// current full-expression. Safe against the possibility that 764 /// we're currently inside a conditionally-evaluated expression. 765 template <class T, class... As> 766 void pushFullExprCleanup(CleanupKind kind, As... A) { 767 // If we're not in a conditional branch, or if none of the 768 // arguments requires saving, then use the unconditional cleanup. 769 if (!isInConditionalBranch()) 770 return EHStack.pushCleanup<T>(kind, A...); 771 772 // Stash values in a tuple so we can guarantee the order of saves. 773 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 774 SavedTuple Saved{saveValueInCond(A)...}; 775 776 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 777 EHStack.pushCleanupTuple<CleanupType>(kind, Saved); 778 initFullExprCleanup(); 779 } 780 781 /// Queue a cleanup to be pushed after finishing the current full-expression, 782 /// potentially with an active flag. 783 template <class T, class... As> 784 void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) { 785 if (!isInConditionalBranch()) 786 return pushCleanupAfterFullExprWithActiveFlag<T>(Kind, Address::invalid(), 787 A...); 788 789 Address ActiveFlag = createCleanupActiveFlag(); 790 assert(!DominatingValue<Address>::needsSaving(ActiveFlag) && 791 "cleanup active flag should never need saving"); 792 793 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 794 SavedTuple Saved{saveValueInCond(A)...}; 795 796 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 797 pushCleanupAfterFullExprWithActiveFlag<CleanupType>(Kind, ActiveFlag, Saved); 798 } 799 800 template <class T, class... As> 801 void pushCleanupAfterFullExprWithActiveFlag(CleanupKind Kind, 802 Address ActiveFlag, As... A) { 803 LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind, 804 ActiveFlag.isValid()}; 805 806 size_t OldSize = LifetimeExtendedCleanupStack.size(); 807 LifetimeExtendedCleanupStack.resize( 808 LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size + 809 (Header.IsConditional ? sizeof(ActiveFlag) : 0)); 810 811 static_assert(sizeof(Header) % alignof(T) == 0, 812 "Cleanup will be allocated on misaligned address"); 813 char *Buffer = &LifetimeExtendedCleanupStack[OldSize]; 814 new (Buffer) LifetimeExtendedCleanupHeader(Header); 815 new (Buffer + sizeof(Header)) T(A...); 816 if (Header.IsConditional) 817 new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag); 818 } 819 820 /// Set up the last cleanup that was pushed as a conditional 821 /// full-expression cleanup. 822 void initFullExprCleanup() { 823 initFullExprCleanupWithFlag(createCleanupActiveFlag()); 824 } 825 826 void initFullExprCleanupWithFlag(Address ActiveFlag); 827 Address createCleanupActiveFlag(); 828 829 /// PushDestructorCleanup - Push a cleanup to call the 830 /// complete-object destructor of an object of the given type at the 831 /// given address. Does nothing if T is not a C++ class type with a 832 /// non-trivial destructor. 833 void PushDestructorCleanup(QualType T, Address Addr); 834 835 /// PushDestructorCleanup - Push a cleanup to call the 836 /// complete-object variant of the given destructor on the object at 837 /// the given address. 838 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, QualType T, 839 Address Addr); 840 841 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 842 /// process all branch fixups. 843 void PopCleanupBlock(bool FallThroughIsBranchThrough = false); 844 845 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 846 /// The block cannot be reactivated. Pops it if it's the top of the 847 /// stack. 848 /// 849 /// \param DominatingIP - An instruction which is known to 850 /// dominate the current IP (if set) and which lies along 851 /// all paths of execution between the current IP and the 852 /// the point at which the cleanup comes into scope. 853 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 854 llvm::Instruction *DominatingIP); 855 856 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 857 /// Cannot be used to resurrect a deactivated cleanup. 858 /// 859 /// \param DominatingIP - An instruction which is known to 860 /// dominate the current IP (if set) and which lies along 861 /// all paths of execution between the current IP and the 862 /// the point at which the cleanup comes into scope. 863 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 864 llvm::Instruction *DominatingIP); 865 866 /// Enters a new scope for capturing cleanups, all of which 867 /// will be executed once the scope is exited. 868 class RunCleanupsScope { 869 EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth; 870 size_t LifetimeExtendedCleanupStackSize; 871 bool OldDidCallStackSave; 872 protected: 873 bool PerformCleanup; 874 private: 875 876 RunCleanupsScope(const RunCleanupsScope &) = delete; 877 void operator=(const RunCleanupsScope &) = delete; 878 879 protected: 880 CodeGenFunction& CGF; 881 882 public: 883 /// Enter a new cleanup scope. 884 explicit RunCleanupsScope(CodeGenFunction &CGF) 885 : PerformCleanup(true), CGF(CGF) 886 { 887 CleanupStackDepth = CGF.EHStack.stable_begin(); 888 LifetimeExtendedCleanupStackSize = 889 CGF.LifetimeExtendedCleanupStack.size(); 890 OldDidCallStackSave = CGF.DidCallStackSave; 891 CGF.DidCallStackSave = false; 892 OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth; 893 CGF.CurrentCleanupScopeDepth = CleanupStackDepth; 894 } 895 896 /// Exit this cleanup scope, emitting any accumulated cleanups. 897 ~RunCleanupsScope() { 898 if (PerformCleanup) 899 ForceCleanup(); 900 } 901 902 /// Determine whether this scope requires any cleanups. 903 bool requiresCleanups() const { 904 return CGF.EHStack.stable_begin() != CleanupStackDepth; 905 } 906 907 /// Force the emission of cleanups now, instead of waiting 908 /// until this object is destroyed. 909 /// \param ValuesToReload - A list of values that need to be available at 910 /// the insertion point after cleanup emission. If cleanup emission created 911 /// a shared cleanup block, these value pointers will be rewritten. 912 /// Otherwise, they not will be modified. 913 void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) { 914 assert(PerformCleanup && "Already forced cleanup"); 915 CGF.DidCallStackSave = OldDidCallStackSave; 916 CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize, 917 ValuesToReload); 918 PerformCleanup = false; 919 CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth; 920 } 921 }; 922 923 // Cleanup stack depth of the RunCleanupsScope that was pushed most recently. 924 EHScopeStack::stable_iterator CurrentCleanupScopeDepth = 925 EHScopeStack::stable_end(); 926 927 class LexicalScope : public RunCleanupsScope { 928 SourceRange Range; 929 SmallVector<const LabelDecl*, 4> Labels; 930 LexicalScope *ParentScope; 931 932 LexicalScope(const LexicalScope &) = delete; 933 void operator=(const LexicalScope &) = delete; 934 935 public: 936 /// Enter a new cleanup scope. 937 explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) 938 : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) { 939 CGF.CurLexicalScope = this; 940 if (CGDebugInfo *DI = CGF.getDebugInfo()) 941 DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); 942 } 943 944 void addLabel(const LabelDecl *label) { 945 assert(PerformCleanup && "adding label to dead scope?"); 946 Labels.push_back(label); 947 } 948 949 /// Exit this cleanup scope, emitting any accumulated 950 /// cleanups. 951 ~LexicalScope() { 952 if (CGDebugInfo *DI = CGF.getDebugInfo()) 953 DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 954 955 // If we should perform a cleanup, force them now. Note that 956 // this ends the cleanup scope before rescoping any labels. 957 if (PerformCleanup) { 958 ApplyDebugLocation DL(CGF, Range.getEnd()); 959 ForceCleanup(); 960 } 961 } 962 963 /// Force the emission of cleanups now, instead of waiting 964 /// until this object is destroyed. 965 void ForceCleanup() { 966 CGF.CurLexicalScope = ParentScope; 967 RunCleanupsScope::ForceCleanup(); 968 969 if (!Labels.empty()) 970 rescopeLabels(); 971 } 972 973 bool hasLabels() const { 974 return !Labels.empty(); 975 } 976 977 void rescopeLabels(); 978 }; 979 980 typedef llvm::DenseMap<const Decl *, Address> DeclMapTy; 981 982 /// The class used to assign some variables some temporarily addresses. 983 class OMPMapVars { 984 DeclMapTy SavedLocals; 985 DeclMapTy SavedTempAddresses; 986 OMPMapVars(const OMPMapVars &) = delete; 987 void operator=(const OMPMapVars &) = delete; 988 989 public: 990 explicit OMPMapVars() = default; 991 ~OMPMapVars() { 992 assert(SavedLocals.empty() && "Did not restored original addresses."); 993 }; 994 995 /// Sets the address of the variable \p LocalVD to be \p TempAddr in 996 /// function \p CGF. 997 /// \return true if at least one variable was set already, false otherwise. 998 bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD, 999 Address TempAddr) { 1000 LocalVD = LocalVD->getCanonicalDecl(); 1001 // Only save it once. 1002 if (SavedLocals.count(LocalVD)) return false; 1003 1004 // Copy the existing local entry to SavedLocals. 1005 auto it = CGF.LocalDeclMap.find(LocalVD); 1006 if (it != CGF.LocalDeclMap.end()) 1007 SavedLocals.try_emplace(LocalVD, it->second); 1008 else 1009 SavedLocals.try_emplace(LocalVD, Address::invalid()); 1010 1011 // Generate the private entry. 1012 QualType VarTy = LocalVD->getType(); 1013 if (VarTy->isReferenceType()) { 1014 Address Temp = CGF.CreateMemTemp(VarTy); 1015 CGF.Builder.CreateStore(TempAddr.getPointer(), Temp); 1016 TempAddr = Temp; 1017 } 1018 SavedTempAddresses.try_emplace(LocalVD, TempAddr); 1019 1020 return true; 1021 } 1022 1023 /// Applies new addresses to the list of the variables. 1024 /// \return true if at least one variable is using new address, false 1025 /// otherwise. 1026 bool apply(CodeGenFunction &CGF) { 1027 copyInto(SavedTempAddresses, CGF.LocalDeclMap); 1028 SavedTempAddresses.clear(); 1029 return !SavedLocals.empty(); 1030 } 1031 1032 /// Restores original addresses of the variables. 1033 void restore(CodeGenFunction &CGF) { 1034 if (!SavedLocals.empty()) { 1035 copyInto(SavedLocals, CGF.LocalDeclMap); 1036 SavedLocals.clear(); 1037 } 1038 } 1039 1040 private: 1041 /// Copy all the entries in the source map over the corresponding 1042 /// entries in the destination, which must exist. 1043 static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) { 1044 for (auto &Pair : Src) { 1045 if (!Pair.second.isValid()) { 1046 Dest.erase(Pair.first); 1047 continue; 1048 } 1049 1050 auto I = Dest.find(Pair.first); 1051 if (I != Dest.end()) 1052 I->second = Pair.second; 1053 else 1054 Dest.insert(Pair); 1055 } 1056 } 1057 }; 1058 1059 /// The scope used to remap some variables as private in the OpenMP loop body 1060 /// (or other captured region emitted without outlining), and to restore old 1061 /// vars back on exit. 1062 class OMPPrivateScope : public RunCleanupsScope { 1063 OMPMapVars MappedVars; 1064 OMPPrivateScope(const OMPPrivateScope &) = delete; 1065 void operator=(const OMPPrivateScope &) = delete; 1066 1067 public: 1068 /// Enter a new OpenMP private scope. 1069 explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {} 1070 1071 /// Registers \p LocalVD variable as a private and apply \p PrivateGen 1072 /// function for it to generate corresponding private variable. \p 1073 /// PrivateGen returns an address of the generated private variable. 1074 /// \return true if the variable is registered as private, false if it has 1075 /// been privatized already. 1076 bool addPrivate(const VarDecl *LocalVD, 1077 const llvm::function_ref<Address()> PrivateGen) { 1078 assert(PerformCleanup && "adding private to dead scope"); 1079 return MappedVars.setVarAddr(CGF, LocalVD, PrivateGen()); 1080 } 1081 1082 /// Privatizes local variables previously registered as private. 1083 /// Registration is separate from the actual privatization to allow 1084 /// initializers use values of the original variables, not the private one. 1085 /// This is important, for example, if the private variable is a class 1086 /// variable initialized by a constructor that references other private 1087 /// variables. But at initialization original variables must be used, not 1088 /// private copies. 1089 /// \return true if at least one variable was privatized, false otherwise. 1090 bool Privatize() { return MappedVars.apply(CGF); } 1091 1092 void ForceCleanup() { 1093 RunCleanupsScope::ForceCleanup(); 1094 MappedVars.restore(CGF); 1095 } 1096 1097 /// Exit scope - all the mapped variables are restored. 1098 ~OMPPrivateScope() { 1099 if (PerformCleanup) 1100 ForceCleanup(); 1101 } 1102 1103 /// Checks if the global variable is captured in current function. 1104 bool isGlobalVarCaptured(const VarDecl *VD) const { 1105 VD = VD->getCanonicalDecl(); 1106 return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0; 1107 } 1108 }; 1109 1110 /// Save/restore original map of previously emitted local vars in case when we 1111 /// need to duplicate emission of the same code several times in the same 1112 /// function for OpenMP code. 1113 class OMPLocalDeclMapRAII { 1114 CodeGenFunction &CGF; 1115 DeclMapTy SavedMap; 1116 1117 public: 1118 OMPLocalDeclMapRAII(CodeGenFunction &CGF) 1119 : CGF(CGF), SavedMap(CGF.LocalDeclMap) {} 1120 ~OMPLocalDeclMapRAII() { SavedMap.swap(CGF.LocalDeclMap); } 1121 }; 1122 1123 /// Takes the old cleanup stack size and emits the cleanup blocks 1124 /// that have been added. 1125 void 1126 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 1127 std::initializer_list<llvm::Value **> ValuesToReload = {}); 1128 1129 /// Takes the old cleanup stack size and emits the cleanup blocks 1130 /// that have been added, then adds all lifetime-extended cleanups from 1131 /// the given position to the stack. 1132 void 1133 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 1134 size_t OldLifetimeExtendedStackSize, 1135 std::initializer_list<llvm::Value **> ValuesToReload = {}); 1136 1137 void ResolveBranchFixups(llvm::BasicBlock *Target); 1138 1139 /// The given basic block lies in the current EH scope, but may be a 1140 /// target of a potentially scope-crossing jump; get a stable handle 1141 /// to which we can perform this jump later. 1142 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 1143 return JumpDest(Target, 1144 EHStack.getInnermostNormalCleanup(), 1145 NextCleanupDestIndex++); 1146 } 1147 1148 /// The given basic block lies in the current EH scope, but may be a 1149 /// target of a potentially scope-crossing jump; get a stable handle 1150 /// to which we can perform this jump later. 1151 JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { 1152 return getJumpDestInCurrentScope(createBasicBlock(Name)); 1153 } 1154 1155 /// EmitBranchThroughCleanup - Emit a branch from the current insert 1156 /// block through the normal cleanup handling code (if any) and then 1157 /// on to \arg Dest. 1158 void EmitBranchThroughCleanup(JumpDest Dest); 1159 1160 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 1161 /// specified destination obviously has no cleanups to run. 'false' is always 1162 /// a conservatively correct answer for this method. 1163 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 1164 1165 /// popCatchScope - Pops the catch scope at the top of the EHScope 1166 /// stack, emitting any required code (other than the catch handlers 1167 /// themselves). 1168 void popCatchScope(); 1169 1170 llvm::BasicBlock *getEHResumeBlock(bool isCleanup); 1171 llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); 1172 llvm::BasicBlock * 1173 getFuncletEHDispatchBlock(EHScopeStack::stable_iterator scope); 1174 1175 /// An object to manage conditionally-evaluated expressions. 1176 class ConditionalEvaluation { 1177 llvm::BasicBlock *StartBB; 1178 1179 public: 1180 ConditionalEvaluation(CodeGenFunction &CGF) 1181 : StartBB(CGF.Builder.GetInsertBlock()) {} 1182 1183 void begin(CodeGenFunction &CGF) { 1184 assert(CGF.OutermostConditional != this); 1185 if (!CGF.OutermostConditional) 1186 CGF.OutermostConditional = this; 1187 } 1188 1189 void end(CodeGenFunction &CGF) { 1190 assert(CGF.OutermostConditional != nullptr); 1191 if (CGF.OutermostConditional == this) 1192 CGF.OutermostConditional = nullptr; 1193 } 1194 1195 /// Returns a block which will be executed prior to each 1196 /// evaluation of the conditional code. 1197 llvm::BasicBlock *getStartingBlock() const { 1198 return StartBB; 1199 } 1200 }; 1201 1202 /// isInConditionalBranch - Return true if we're currently emitting 1203 /// one branch or the other of a conditional expression. 1204 bool isInConditionalBranch() const { return OutermostConditional != nullptr; } 1205 1206 void setBeforeOutermostConditional(llvm::Value *value, Address addr) { 1207 assert(isInConditionalBranch()); 1208 llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); 1209 auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back()); 1210 store->setAlignment(addr.getAlignment().getAsAlign()); 1211 } 1212 1213 /// An RAII object to record that we're evaluating a statement 1214 /// expression. 1215 class StmtExprEvaluation { 1216 CodeGenFunction &CGF; 1217 1218 /// We have to save the outermost conditional: cleanups in a 1219 /// statement expression aren't conditional just because the 1220 /// StmtExpr is. 1221 ConditionalEvaluation *SavedOutermostConditional; 1222 1223 public: 1224 StmtExprEvaluation(CodeGenFunction &CGF) 1225 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 1226 CGF.OutermostConditional = nullptr; 1227 } 1228 1229 ~StmtExprEvaluation() { 1230 CGF.OutermostConditional = SavedOutermostConditional; 1231 CGF.EnsureInsertPoint(); 1232 } 1233 }; 1234 1235 /// An object which temporarily prevents a value from being 1236 /// destroyed by aggressive peephole optimizations that assume that 1237 /// all uses of a value have been realized in the IR. 1238 class PeepholeProtection { 1239 llvm::Instruction *Inst; 1240 friend class CodeGenFunction; 1241 1242 public: 1243 PeepholeProtection() : Inst(nullptr) {} 1244 }; 1245 1246 /// A non-RAII class containing all the information about a bound 1247 /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for 1248 /// this which makes individual mappings very simple; using this 1249 /// class directly is useful when you have a variable number of 1250 /// opaque values or don't want the RAII functionality for some 1251 /// reason. 1252 class OpaqueValueMappingData { 1253 const OpaqueValueExpr *OpaqueValue; 1254 bool BoundLValue; 1255 CodeGenFunction::PeepholeProtection Protection; 1256 1257 OpaqueValueMappingData(const OpaqueValueExpr *ov, 1258 bool boundLValue) 1259 : OpaqueValue(ov), BoundLValue(boundLValue) {} 1260 public: 1261 OpaqueValueMappingData() : OpaqueValue(nullptr) {} 1262 1263 static bool shouldBindAsLValue(const Expr *expr) { 1264 // gl-values should be bound as l-values for obvious reasons. 1265 // Records should be bound as l-values because IR generation 1266 // always keeps them in memory. Expressions of function type 1267 // act exactly like l-values but are formally required to be 1268 // r-values in C. 1269 return expr->isGLValue() || 1270 expr->getType()->isFunctionType() || 1271 hasAggregateEvaluationKind(expr->getType()); 1272 } 1273 1274 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1275 const OpaqueValueExpr *ov, 1276 const Expr *e) { 1277 if (shouldBindAsLValue(ov)) 1278 return bind(CGF, ov, CGF.EmitLValue(e)); 1279 return bind(CGF, ov, CGF.EmitAnyExpr(e)); 1280 } 1281 1282 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1283 const OpaqueValueExpr *ov, 1284 const LValue &lv) { 1285 assert(shouldBindAsLValue(ov)); 1286 CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); 1287 return OpaqueValueMappingData(ov, true); 1288 } 1289 1290 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1291 const OpaqueValueExpr *ov, 1292 const RValue &rv) { 1293 assert(!shouldBindAsLValue(ov)); 1294 CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); 1295 1296 OpaqueValueMappingData data(ov, false); 1297 1298 // Work around an extremely aggressive peephole optimization in 1299 // EmitScalarConversion which assumes that all other uses of a 1300 // value are extant. 1301 data.Protection = CGF.protectFromPeepholes(rv); 1302 1303 return data; 1304 } 1305 1306 bool isValid() const { return OpaqueValue != nullptr; } 1307 void clear() { OpaqueValue = nullptr; } 1308 1309 void unbind(CodeGenFunction &CGF) { 1310 assert(OpaqueValue && "no data to unbind!"); 1311 1312 if (BoundLValue) { 1313 CGF.OpaqueLValues.erase(OpaqueValue); 1314 } else { 1315 CGF.OpaqueRValues.erase(OpaqueValue); 1316 CGF.unprotectFromPeepholes(Protection); 1317 } 1318 } 1319 }; 1320 1321 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 1322 class OpaqueValueMapping { 1323 CodeGenFunction &CGF; 1324 OpaqueValueMappingData Data; 1325 1326 public: 1327 static bool shouldBindAsLValue(const Expr *expr) { 1328 return OpaqueValueMappingData::shouldBindAsLValue(expr); 1329 } 1330 1331 /// Build the opaque value mapping for the given conditional 1332 /// operator if it's the GNU ?: extension. This is a common 1333 /// enough pattern that the convenience operator is really 1334 /// helpful. 1335 /// 1336 OpaqueValueMapping(CodeGenFunction &CGF, 1337 const AbstractConditionalOperator *op) : CGF(CGF) { 1338 if (isa<ConditionalOperator>(op)) 1339 // Leave Data empty. 1340 return; 1341 1342 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 1343 Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), 1344 e->getCommon()); 1345 } 1346 1347 /// Build the opaque value mapping for an OpaqueValueExpr whose source 1348 /// expression is set to the expression the OVE represents. 1349 OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV) 1350 : CGF(CGF) { 1351 if (OV) { 1352 assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used " 1353 "for OVE with no source expression"); 1354 Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr()); 1355 } 1356 } 1357 1358 OpaqueValueMapping(CodeGenFunction &CGF, 1359 const OpaqueValueExpr *opaqueValue, 1360 LValue lvalue) 1361 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { 1362 } 1363 1364 OpaqueValueMapping(CodeGenFunction &CGF, 1365 const OpaqueValueExpr *opaqueValue, 1366 RValue rvalue) 1367 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { 1368 } 1369 1370 void pop() { 1371 Data.unbind(CGF); 1372 Data.clear(); 1373 } 1374 1375 ~OpaqueValueMapping() { 1376 if (Data.isValid()) Data.unbind(CGF); 1377 } 1378 }; 1379 1380 private: 1381 CGDebugInfo *DebugInfo; 1382 /// Used to create unique names for artificial VLA size debug info variables. 1383 unsigned VLAExprCounter = 0; 1384 bool DisableDebugInfo = false; 1385 1386 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 1387 /// calling llvm.stacksave for multiple VLAs in the same scope. 1388 bool DidCallStackSave = false; 1389 1390 /// IndirectBranch - The first time an indirect goto is seen we create a block 1391 /// with an indirect branch. Every time we see the address of a label taken, 1392 /// we add the label to the indirect goto. Every subsequent indirect goto is 1393 /// codegen'd as a jump to the IndirectBranch's basic block. 1394 llvm::IndirectBrInst *IndirectBranch = nullptr; 1395 1396 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 1397 /// decls. 1398 DeclMapTy LocalDeclMap; 1399 1400 // Keep track of the cleanups for callee-destructed parameters pushed to the 1401 // cleanup stack so that they can be deactivated later. 1402 llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator> 1403 CalleeDestructedParamCleanups; 1404 1405 /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this 1406 /// will contain a mapping from said ParmVarDecl to its implicit "object_size" 1407 /// parameter. 1408 llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2> 1409 SizeArguments; 1410 1411 /// Track escaped local variables with auto storage. Used during SEH 1412 /// outlining to produce a call to llvm.localescape. 1413 llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals; 1414 1415 /// LabelMap - This keeps track of the LLVM basic block for each C label. 1416 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 1417 1418 // BreakContinueStack - This keeps track of where break and continue 1419 // statements should jump to. 1420 struct BreakContinue { 1421 BreakContinue(JumpDest Break, JumpDest Continue) 1422 : BreakBlock(Break), ContinueBlock(Continue) {} 1423 1424 JumpDest BreakBlock; 1425 JumpDest ContinueBlock; 1426 }; 1427 SmallVector<BreakContinue, 8> BreakContinueStack; 1428 1429 /// Handles cancellation exit points in OpenMP-related constructs. 1430 class OpenMPCancelExitStack { 1431 /// Tracks cancellation exit point and join point for cancel-related exit 1432 /// and normal exit. 1433 struct CancelExit { 1434 CancelExit() = default; 1435 CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock, 1436 JumpDest ContBlock) 1437 : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {} 1438 OpenMPDirectiveKind Kind = llvm::omp::OMPD_unknown; 1439 /// true if the exit block has been emitted already by the special 1440 /// emitExit() call, false if the default codegen is used. 1441 bool HasBeenEmitted = false; 1442 JumpDest ExitBlock; 1443 JumpDest ContBlock; 1444 }; 1445 1446 SmallVector<CancelExit, 8> Stack; 1447 1448 public: 1449 OpenMPCancelExitStack() : Stack(1) {} 1450 ~OpenMPCancelExitStack() = default; 1451 /// Fetches the exit block for the current OpenMP construct. 1452 JumpDest getExitBlock() const { return Stack.back().ExitBlock; } 1453 /// Emits exit block with special codegen procedure specific for the related 1454 /// OpenMP construct + emits code for normal construct cleanup. 1455 void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 1456 const llvm::function_ref<void(CodeGenFunction &)> CodeGen) { 1457 if (Stack.back().Kind == Kind && getExitBlock().isValid()) { 1458 assert(CGF.getOMPCancelDestination(Kind).isValid()); 1459 assert(CGF.HaveInsertPoint()); 1460 assert(!Stack.back().HasBeenEmitted); 1461 auto IP = CGF.Builder.saveAndClearIP(); 1462 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1463 CodeGen(CGF); 1464 CGF.EmitBranch(Stack.back().ContBlock.getBlock()); 1465 CGF.Builder.restoreIP(IP); 1466 Stack.back().HasBeenEmitted = true; 1467 } 1468 CodeGen(CGF); 1469 } 1470 /// Enter the cancel supporting \a Kind construct. 1471 /// \param Kind OpenMP directive that supports cancel constructs. 1472 /// \param HasCancel true, if the construct has inner cancel directive, 1473 /// false otherwise. 1474 void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) { 1475 Stack.push_back({Kind, 1476 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit") 1477 : JumpDest(), 1478 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont") 1479 : JumpDest()}); 1480 } 1481 /// Emits default exit point for the cancel construct (if the special one 1482 /// has not be used) + join point for cancel/normal exits. 1483 void exit(CodeGenFunction &CGF) { 1484 if (getExitBlock().isValid()) { 1485 assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid()); 1486 bool HaveIP = CGF.HaveInsertPoint(); 1487 if (!Stack.back().HasBeenEmitted) { 1488 if (HaveIP) 1489 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1490 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1491 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1492 } 1493 CGF.EmitBlock(Stack.back().ContBlock.getBlock()); 1494 if (!HaveIP) { 1495 CGF.Builder.CreateUnreachable(); 1496 CGF.Builder.ClearInsertionPoint(); 1497 } 1498 } 1499 Stack.pop_back(); 1500 } 1501 }; 1502 OpenMPCancelExitStack OMPCancelStack; 1503 1504 /// Lower the Likelihood knowledge about the \p Cond via llvm.expect intrin. 1505 llvm::Value *emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond, 1506 Stmt::Likelihood LH); 1507 1508 CodeGenPGO PGO; 1509 1510 /// Calculate branch weights appropriate for PGO data 1511 llvm::MDNode *createProfileWeights(uint64_t TrueCount, 1512 uint64_t FalseCount) const; 1513 llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights) const; 1514 llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond, 1515 uint64_t LoopCount) const; 1516 1517 public: 1518 /// Increment the profiler's counter for the given statement by \p StepV. 1519 /// If \p StepV is null, the default increment is 1. 1520 void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) { 1521 if (CGM.getCodeGenOpts().hasProfileClangInstr() && 1522 !CurFn->hasFnAttribute(llvm::Attribute::NoProfile)) 1523 PGO.emitCounterIncrement(Builder, S, StepV); 1524 PGO.setCurrentStmt(S); 1525 } 1526 1527 /// Get the profiler's count for the given statement. 1528 uint64_t getProfileCount(const Stmt *S) { 1529 Optional<uint64_t> Count = PGO.getStmtCount(S); 1530 if (!Count.hasValue()) 1531 return 0; 1532 return *Count; 1533 } 1534 1535 /// Set the profiler's current count. 1536 void setCurrentProfileCount(uint64_t Count) { 1537 PGO.setCurrentRegionCount(Count); 1538 } 1539 1540 /// Get the profiler's current count. This is generally the count for the most 1541 /// recently incremented counter. 1542 uint64_t getCurrentProfileCount() { 1543 return PGO.getCurrentRegionCount(); 1544 } 1545 1546 private: 1547 1548 /// SwitchInsn - This is nearest current switch instruction. It is null if 1549 /// current context is not in a switch. 1550 llvm::SwitchInst *SwitchInsn = nullptr; 1551 /// The branch weights of SwitchInsn when doing instrumentation based PGO. 1552 SmallVector<uint64_t, 16> *SwitchWeights = nullptr; 1553 1554 /// The likelihood attributes of the SwitchCase. 1555 SmallVector<Stmt::Likelihood, 16> *SwitchLikelihood = nullptr; 1556 1557 /// CaseRangeBlock - This block holds if condition check for last case 1558 /// statement range in current switch instruction. 1559 llvm::BasicBlock *CaseRangeBlock = nullptr; 1560 1561 /// OpaqueLValues - Keeps track of the current set of opaque value 1562 /// expressions. 1563 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 1564 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 1565 1566 // VLASizeMap - This keeps track of the associated size for each VLA type. 1567 // We track this by the size expression rather than the type itself because 1568 // in certain situations, like a const qualifier applied to an VLA typedef, 1569 // multiple VLA types can share the same size expression. 1570 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 1571 // enter/leave scopes. 1572 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 1573 1574 /// A block containing a single 'unreachable' instruction. Created 1575 /// lazily by getUnreachableBlock(). 1576 llvm::BasicBlock *UnreachableBlock = nullptr; 1577 1578 /// Counts of the number return expressions in the function. 1579 unsigned NumReturnExprs = 0; 1580 1581 /// Count the number of simple (constant) return expressions in the function. 1582 unsigned NumSimpleReturnExprs = 0; 1583 1584 /// The last regular (non-return) debug location (breakpoint) in the function. 1585 SourceLocation LastStopPoint; 1586 1587 public: 1588 /// Source location information about the default argument or member 1589 /// initializer expression we're evaluating, if any. 1590 CurrentSourceLocExprScope CurSourceLocExprScope; 1591 using SourceLocExprScopeGuard = 1592 CurrentSourceLocExprScope::SourceLocExprScopeGuard; 1593 1594 /// A scope within which we are constructing the fields of an object which 1595 /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use 1596 /// if we need to evaluate a CXXDefaultInitExpr within the evaluation. 1597 class FieldConstructionScope { 1598 public: 1599 FieldConstructionScope(CodeGenFunction &CGF, Address This) 1600 : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) { 1601 CGF.CXXDefaultInitExprThis = This; 1602 } 1603 ~FieldConstructionScope() { 1604 CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis; 1605 } 1606 1607 private: 1608 CodeGenFunction &CGF; 1609 Address OldCXXDefaultInitExprThis; 1610 }; 1611 1612 /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this' 1613 /// is overridden to be the object under construction. 1614 class CXXDefaultInitExprScope { 1615 public: 1616 CXXDefaultInitExprScope(CodeGenFunction &CGF, const CXXDefaultInitExpr *E) 1617 : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue), 1618 OldCXXThisAlignment(CGF.CXXThisAlignment), 1619 SourceLocScope(E, CGF.CurSourceLocExprScope) { 1620 CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer(); 1621 CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment(); 1622 } 1623 ~CXXDefaultInitExprScope() { 1624 CGF.CXXThisValue = OldCXXThisValue; 1625 CGF.CXXThisAlignment = OldCXXThisAlignment; 1626 } 1627 1628 public: 1629 CodeGenFunction &CGF; 1630 llvm::Value *OldCXXThisValue; 1631 CharUnits OldCXXThisAlignment; 1632 SourceLocExprScopeGuard SourceLocScope; 1633 }; 1634 1635 struct CXXDefaultArgExprScope : SourceLocExprScopeGuard { 1636 CXXDefaultArgExprScope(CodeGenFunction &CGF, const CXXDefaultArgExpr *E) 1637 : SourceLocExprScopeGuard(E, CGF.CurSourceLocExprScope) {} 1638 }; 1639 1640 /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the 1641 /// current loop index is overridden. 1642 class ArrayInitLoopExprScope { 1643 public: 1644 ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index) 1645 : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) { 1646 CGF.ArrayInitIndex = Index; 1647 } 1648 ~ArrayInitLoopExprScope() { 1649 CGF.ArrayInitIndex = OldArrayInitIndex; 1650 } 1651 1652 private: 1653 CodeGenFunction &CGF; 1654 llvm::Value *OldArrayInitIndex; 1655 }; 1656 1657 class InlinedInheritingConstructorScope { 1658 public: 1659 InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD) 1660 : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl), 1661 OldCurCodeDecl(CGF.CurCodeDecl), 1662 OldCXXABIThisDecl(CGF.CXXABIThisDecl), 1663 OldCXXABIThisValue(CGF.CXXABIThisValue), 1664 OldCXXThisValue(CGF.CXXThisValue), 1665 OldCXXABIThisAlignment(CGF.CXXABIThisAlignment), 1666 OldCXXThisAlignment(CGF.CXXThisAlignment), 1667 OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy), 1668 OldCXXInheritedCtorInitExprArgs( 1669 std::move(CGF.CXXInheritedCtorInitExprArgs)) { 1670 CGF.CurGD = GD; 1671 CGF.CurFuncDecl = CGF.CurCodeDecl = 1672 cast<CXXConstructorDecl>(GD.getDecl()); 1673 CGF.CXXABIThisDecl = nullptr; 1674 CGF.CXXABIThisValue = nullptr; 1675 CGF.CXXThisValue = nullptr; 1676 CGF.CXXABIThisAlignment = CharUnits(); 1677 CGF.CXXThisAlignment = CharUnits(); 1678 CGF.ReturnValue = Address::invalid(); 1679 CGF.FnRetTy = QualType(); 1680 CGF.CXXInheritedCtorInitExprArgs.clear(); 1681 } 1682 ~InlinedInheritingConstructorScope() { 1683 CGF.CurGD = OldCurGD; 1684 CGF.CurFuncDecl = OldCurFuncDecl; 1685 CGF.CurCodeDecl = OldCurCodeDecl; 1686 CGF.CXXABIThisDecl = OldCXXABIThisDecl; 1687 CGF.CXXABIThisValue = OldCXXABIThisValue; 1688 CGF.CXXThisValue = OldCXXThisValue; 1689 CGF.CXXABIThisAlignment = OldCXXABIThisAlignment; 1690 CGF.CXXThisAlignment = OldCXXThisAlignment; 1691 CGF.ReturnValue = OldReturnValue; 1692 CGF.FnRetTy = OldFnRetTy; 1693 CGF.CXXInheritedCtorInitExprArgs = 1694 std::move(OldCXXInheritedCtorInitExprArgs); 1695 } 1696 1697 private: 1698 CodeGenFunction &CGF; 1699 GlobalDecl OldCurGD; 1700 const Decl *OldCurFuncDecl; 1701 const Decl *OldCurCodeDecl; 1702 ImplicitParamDecl *OldCXXABIThisDecl; 1703 llvm::Value *OldCXXABIThisValue; 1704 llvm::Value *OldCXXThisValue; 1705 CharUnits OldCXXABIThisAlignment; 1706 CharUnits OldCXXThisAlignment; 1707 Address OldReturnValue; 1708 QualType OldFnRetTy; 1709 CallArgList OldCXXInheritedCtorInitExprArgs; 1710 }; 1711 1712 // Helper class for the OpenMP IR Builder. Allows reusability of code used for 1713 // region body, and finalization codegen callbacks. This will class will also 1714 // contain privatization functions used by the privatization call backs 1715 // 1716 // TODO: this is temporary class for things that are being moved out of 1717 // CGOpenMPRuntime, new versions of current CodeGenFunction methods, or 1718 // utility function for use with the OMPBuilder. Once that move to use the 1719 // OMPBuilder is done, everything here will either become part of CodeGenFunc. 1720 // directly, or a new helper class that will contain functions used by both 1721 // this and the OMPBuilder 1722 1723 struct OMPBuilderCBHelpers { 1724 1725 OMPBuilderCBHelpers() = delete; 1726 OMPBuilderCBHelpers(const OMPBuilderCBHelpers &) = delete; 1727 OMPBuilderCBHelpers &operator=(const OMPBuilderCBHelpers &) = delete; 1728 1729 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 1730 1731 /// Cleanup action for allocate support. 1732 class OMPAllocateCleanupTy final : public EHScopeStack::Cleanup { 1733 1734 private: 1735 llvm::CallInst *RTLFnCI; 1736 1737 public: 1738 OMPAllocateCleanupTy(llvm::CallInst *RLFnCI) : RTLFnCI(RLFnCI) { 1739 RLFnCI->removeFromParent(); 1740 } 1741 1742 void Emit(CodeGenFunction &CGF, Flags /*flags*/) override { 1743 if (!CGF.HaveInsertPoint()) 1744 return; 1745 CGF.Builder.Insert(RTLFnCI); 1746 } 1747 }; 1748 1749 /// Returns address of the threadprivate variable for the current 1750 /// thread. This Also create any necessary OMP runtime calls. 1751 /// 1752 /// \param VD VarDecl for Threadprivate variable. 1753 /// \param VDAddr Address of the Vardecl 1754 /// \param Loc The location where the barrier directive was encountered 1755 static Address getAddrOfThreadPrivate(CodeGenFunction &CGF, 1756 const VarDecl *VD, Address VDAddr, 1757 SourceLocation Loc); 1758 1759 /// Gets the OpenMP-specific address of the local variable /p VD. 1760 static Address getAddressOfLocalVariable(CodeGenFunction &CGF, 1761 const VarDecl *VD); 1762 /// Get the platform-specific name separator. 1763 /// \param Parts different parts of the final name that needs separation 1764 /// \param FirstSeparator First separator used between the initial two 1765 /// parts of the name. 1766 /// \param Separator separator used between all of the rest consecutinve 1767 /// parts of the name 1768 static std::string getNameWithSeparators(ArrayRef<StringRef> Parts, 1769 StringRef FirstSeparator = ".", 1770 StringRef Separator = "."); 1771 /// Emit the Finalization for an OMP region 1772 /// \param CGF The Codegen function this belongs to 1773 /// \param IP Insertion point for generating the finalization code. 1774 static void FinalizeOMPRegion(CodeGenFunction &CGF, InsertPointTy IP) { 1775 CGBuilderTy::InsertPointGuard IPG(CGF.Builder); 1776 assert(IP.getBlock()->end() != IP.getPoint() && 1777 "OpenMP IR Builder should cause terminated block!"); 1778 1779 llvm::BasicBlock *IPBB = IP.getBlock(); 1780 llvm::BasicBlock *DestBB = IPBB->getUniqueSuccessor(); 1781 assert(DestBB && "Finalization block should have one successor!"); 1782 1783 // erase and replace with cleanup branch. 1784 IPBB->getTerminator()->eraseFromParent(); 1785 CGF.Builder.SetInsertPoint(IPBB); 1786 CodeGenFunction::JumpDest Dest = CGF.getJumpDestInCurrentScope(DestBB); 1787 CGF.EmitBranchThroughCleanup(Dest); 1788 } 1789 1790 /// Emit the body of an OMP region 1791 /// \param CGF The Codegen function this belongs to 1792 /// \param RegionBodyStmt The body statement for the OpenMP region being 1793 /// generated 1794 /// \param CodeGenIP Insertion point for generating the body code. 1795 /// \param FiniBB The finalization basic block 1796 static void EmitOMPRegionBody(CodeGenFunction &CGF, 1797 const Stmt *RegionBodyStmt, 1798 InsertPointTy CodeGenIP, 1799 llvm::BasicBlock &FiniBB) { 1800 llvm::BasicBlock *CodeGenIPBB = CodeGenIP.getBlock(); 1801 if (llvm::Instruction *CodeGenIPBBTI = CodeGenIPBB->getTerminator()) 1802 CodeGenIPBBTI->eraseFromParent(); 1803 1804 CGF.Builder.SetInsertPoint(CodeGenIPBB); 1805 1806 CGF.EmitStmt(RegionBodyStmt); 1807 1808 if (CGF.Builder.saveIP().isSet()) 1809 CGF.Builder.CreateBr(&FiniBB); 1810 } 1811 1812 static void EmitCaptureStmt(CodeGenFunction &CGF, InsertPointTy CodeGenIP, 1813 llvm::BasicBlock &FiniBB, llvm::Function *Fn, 1814 ArrayRef<llvm::Value *> Args) { 1815 llvm::BasicBlock *CodeGenIPBB = CodeGenIP.getBlock(); 1816 if (llvm::Instruction *CodeGenIPBBTI = CodeGenIPBB->getTerminator()) 1817 CodeGenIPBBTI->eraseFromParent(); 1818 1819 CGF.Builder.SetInsertPoint(CodeGenIPBB); 1820 1821 if (Fn->doesNotThrow()) 1822 CGF.EmitNounwindRuntimeCall(Fn, Args); 1823 else 1824 CGF.EmitRuntimeCall(Fn, Args); 1825 1826 if (CGF.Builder.saveIP().isSet()) 1827 CGF.Builder.CreateBr(&FiniBB); 1828 } 1829 1830 /// RAII for preserving necessary info during Outlined region body codegen. 1831 class OutlinedRegionBodyRAII { 1832 1833 llvm::AssertingVH<llvm::Instruction> OldAllocaIP; 1834 CodeGenFunction::JumpDest OldReturnBlock; 1835 CGBuilderTy::InsertPoint IP; 1836 CodeGenFunction &CGF; 1837 1838 public: 1839 OutlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP, 1840 llvm::BasicBlock &RetBB) 1841 : CGF(cgf) { 1842 assert(AllocaIP.isSet() && 1843 "Must specify Insertion point for allocas of outlined function"); 1844 OldAllocaIP = CGF.AllocaInsertPt; 1845 CGF.AllocaInsertPt = &*AllocaIP.getPoint(); 1846 IP = CGF.Builder.saveIP(); 1847 1848 OldReturnBlock = CGF.ReturnBlock; 1849 CGF.ReturnBlock = CGF.getJumpDestInCurrentScope(&RetBB); 1850 } 1851 1852 ~OutlinedRegionBodyRAII() { 1853 CGF.AllocaInsertPt = OldAllocaIP; 1854 CGF.ReturnBlock = OldReturnBlock; 1855 CGF.Builder.restoreIP(IP); 1856 } 1857 }; 1858 1859 /// RAII for preserving necessary info during inlined region body codegen. 1860 class InlinedRegionBodyRAII { 1861 1862 llvm::AssertingVH<llvm::Instruction> OldAllocaIP; 1863 CodeGenFunction &CGF; 1864 1865 public: 1866 InlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP, 1867 llvm::BasicBlock &FiniBB) 1868 : CGF(cgf) { 1869 // Alloca insertion block should be in the entry block of the containing 1870 // function so it expects an empty AllocaIP in which case will reuse the 1871 // old alloca insertion point, or a new AllocaIP in the same block as 1872 // the old one 1873 assert((!AllocaIP.isSet() || 1874 CGF.AllocaInsertPt->getParent() == AllocaIP.getBlock()) && 1875 "Insertion point should be in the entry block of containing " 1876 "function!"); 1877 OldAllocaIP = CGF.AllocaInsertPt; 1878 if (AllocaIP.isSet()) 1879 CGF.AllocaInsertPt = &*AllocaIP.getPoint(); 1880 1881 // TODO: Remove the call, after making sure the counter is not used by 1882 // the EHStack. 1883 // Since this is an inlined region, it should not modify the 1884 // ReturnBlock, and should reuse the one for the enclosing outlined 1885 // region. So, the JumpDest being return by the function is discarded 1886 (void)CGF.getJumpDestInCurrentScope(&FiniBB); 1887 } 1888 1889 ~InlinedRegionBodyRAII() { CGF.AllocaInsertPt = OldAllocaIP; } 1890 }; 1891 }; 1892 1893 private: 1894 /// CXXThisDecl - When generating code for a C++ member function, 1895 /// this will hold the implicit 'this' declaration. 1896 ImplicitParamDecl *CXXABIThisDecl = nullptr; 1897 llvm::Value *CXXABIThisValue = nullptr; 1898 llvm::Value *CXXThisValue = nullptr; 1899 CharUnits CXXABIThisAlignment; 1900 CharUnits CXXThisAlignment; 1901 1902 /// The value of 'this' to use when evaluating CXXDefaultInitExprs within 1903 /// this expression. 1904 Address CXXDefaultInitExprThis = Address::invalid(); 1905 1906 /// The current array initialization index when evaluating an 1907 /// ArrayInitIndexExpr within an ArrayInitLoopExpr. 1908 llvm::Value *ArrayInitIndex = nullptr; 1909 1910 /// The values of function arguments to use when evaluating 1911 /// CXXInheritedCtorInitExprs within this context. 1912 CallArgList CXXInheritedCtorInitExprArgs; 1913 1914 /// CXXStructorImplicitParamDecl - When generating code for a constructor or 1915 /// destructor, this will hold the implicit argument (e.g. VTT). 1916 ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr; 1917 llvm::Value *CXXStructorImplicitParamValue = nullptr; 1918 1919 /// OutermostConditional - Points to the outermost active 1920 /// conditional control. This is used so that we know if a 1921 /// temporary should be destroyed conditionally. 1922 ConditionalEvaluation *OutermostConditional = nullptr; 1923 1924 /// The current lexical scope. 1925 LexicalScope *CurLexicalScope = nullptr; 1926 1927 /// The current source location that should be used for exception 1928 /// handling code. 1929 SourceLocation CurEHLocation; 1930 1931 /// BlockByrefInfos - For each __block variable, contains 1932 /// information about the layout of the variable. 1933 llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos; 1934 1935 /// Used by -fsanitize=nullability-return to determine whether the return 1936 /// value can be checked. 1937 llvm::Value *RetValNullabilityPrecondition = nullptr; 1938 1939 /// Check if -fsanitize=nullability-return instrumentation is required for 1940 /// this function. 1941 bool requiresReturnValueNullabilityCheck() const { 1942 return RetValNullabilityPrecondition; 1943 } 1944 1945 /// Used to store precise source locations for return statements by the 1946 /// runtime return value checks. 1947 Address ReturnLocation = Address::invalid(); 1948 1949 /// Check if the return value of this function requires sanitization. 1950 bool requiresReturnValueCheck() const; 1951 1952 llvm::BasicBlock *TerminateLandingPad = nullptr; 1953 llvm::BasicBlock *TerminateHandler = nullptr; 1954 llvm::SmallVector<llvm::BasicBlock *, 2> TrapBBs; 1955 1956 /// Terminate funclets keyed by parent funclet pad. 1957 llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets; 1958 1959 /// Largest vector width used in ths function. Will be used to create a 1960 /// function attribute. 1961 unsigned LargestVectorWidth = 0; 1962 1963 /// True if we need emit the life-time markers. This is initially set in 1964 /// the constructor, but could be overwritten to true if this is a coroutine. 1965 bool ShouldEmitLifetimeMarkers; 1966 1967 /// Add OpenCL kernel arg metadata and the kernel attribute metadata to 1968 /// the function metadata. 1969 void EmitOpenCLKernelMetadata(const FunctionDecl *FD, 1970 llvm::Function *Fn); 1971 1972 public: 1973 CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false); 1974 ~CodeGenFunction(); 1975 1976 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 1977 ASTContext &getContext() const { return CGM.getContext(); } 1978 CGDebugInfo *getDebugInfo() { 1979 if (DisableDebugInfo) 1980 return nullptr; 1981 return DebugInfo; 1982 } 1983 void disableDebugInfo() { DisableDebugInfo = true; } 1984 void enableDebugInfo() { DisableDebugInfo = false; } 1985 1986 bool shouldUseFusedARCCalls() { 1987 return CGM.getCodeGenOpts().OptimizationLevel == 0; 1988 } 1989 1990 const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } 1991 1992 /// Returns a pointer to the function's exception object and selector slot, 1993 /// which is assigned in every landing pad. 1994 Address getExceptionSlot(); 1995 Address getEHSelectorSlot(); 1996 1997 /// Returns the contents of the function's exception object and selector 1998 /// slots. 1999 llvm::Value *getExceptionFromSlot(); 2000 llvm::Value *getSelectorFromSlot(); 2001 2002 Address getNormalCleanupDestSlot(); 2003 2004 llvm::BasicBlock *getUnreachableBlock() { 2005 if (!UnreachableBlock) { 2006 UnreachableBlock = createBasicBlock("unreachable"); 2007 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 2008 } 2009 return UnreachableBlock; 2010 } 2011 2012 llvm::BasicBlock *getInvokeDest() { 2013 if (!EHStack.requiresLandingPad()) return nullptr; 2014 return getInvokeDestImpl(); 2015 } 2016 2017 bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; } 2018 2019 const TargetInfo &getTarget() const { return Target; } 2020 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 2021 const TargetCodeGenInfo &getTargetHooks() const { 2022 return CGM.getTargetCodeGenInfo(); 2023 } 2024 2025 //===--------------------------------------------------------------------===// 2026 // Cleanups 2027 //===--------------------------------------------------------------------===// 2028 2029 typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty); 2030 2031 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 2032 Address arrayEndPointer, 2033 QualType elementType, 2034 CharUnits elementAlignment, 2035 Destroyer *destroyer); 2036 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 2037 llvm::Value *arrayEnd, 2038 QualType elementType, 2039 CharUnits elementAlignment, 2040 Destroyer *destroyer); 2041 2042 void pushDestroy(QualType::DestructionKind dtorKind, 2043 Address addr, QualType type); 2044 void pushEHDestroy(QualType::DestructionKind dtorKind, 2045 Address addr, QualType type); 2046 void pushDestroy(CleanupKind kind, Address addr, QualType type, 2047 Destroyer *destroyer, bool useEHCleanupForArray); 2048 void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr, 2049 QualType type, Destroyer *destroyer, 2050 bool useEHCleanupForArray); 2051 void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 2052 llvm::Value *CompletePtr, 2053 QualType ElementType); 2054 void pushStackRestore(CleanupKind kind, Address SPMem); 2055 void emitDestroy(Address addr, QualType type, Destroyer *destroyer, 2056 bool useEHCleanupForArray); 2057 llvm::Function *generateDestroyHelper(Address addr, QualType type, 2058 Destroyer *destroyer, 2059 bool useEHCleanupForArray, 2060 const VarDecl *VD); 2061 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 2062 QualType elementType, CharUnits elementAlign, 2063 Destroyer *destroyer, 2064 bool checkZeroLength, bool useEHCleanup); 2065 2066 Destroyer *getDestroyer(QualType::DestructionKind destructionKind); 2067 2068 /// Determines whether an EH cleanup is required to destroy a type 2069 /// with the given destruction kind. 2070 bool needsEHCleanup(QualType::DestructionKind kind) { 2071 switch (kind) { 2072 case QualType::DK_none: 2073 return false; 2074 case QualType::DK_cxx_destructor: 2075 case QualType::DK_objc_weak_lifetime: 2076 case QualType::DK_nontrivial_c_struct: 2077 return getLangOpts().Exceptions; 2078 case QualType::DK_objc_strong_lifetime: 2079 return getLangOpts().Exceptions && 2080 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 2081 } 2082 llvm_unreachable("bad destruction kind"); 2083 } 2084 2085 CleanupKind getCleanupKind(QualType::DestructionKind kind) { 2086 return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); 2087 } 2088 2089 //===--------------------------------------------------------------------===// 2090 // Objective-C 2091 //===--------------------------------------------------------------------===// 2092 2093 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 2094 2095 void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD); 2096 2097 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 2098 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 2099 const ObjCPropertyImplDecl *PID); 2100 void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 2101 const ObjCPropertyImplDecl *propImpl, 2102 const ObjCMethodDecl *GetterMothodDecl, 2103 llvm::Constant *AtomicHelperFn); 2104 2105 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 2106 ObjCMethodDecl *MD, bool ctor); 2107 2108 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 2109 /// for the given property. 2110 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 2111 const ObjCPropertyImplDecl *PID); 2112 void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 2113 const ObjCPropertyImplDecl *propImpl, 2114 llvm::Constant *AtomicHelperFn); 2115 2116 //===--------------------------------------------------------------------===// 2117 // Block Bits 2118 //===--------------------------------------------------------------------===// 2119 2120 /// Emit block literal. 2121 /// \return an LLVM value which is a pointer to a struct which contains 2122 /// information about the block, including the block invoke function, the 2123 /// captured variables, etc. 2124 llvm::Value *EmitBlockLiteral(const BlockExpr *); 2125 2126 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 2127 const CGBlockInfo &Info, 2128 const DeclMapTy &ldm, 2129 bool IsLambdaConversionToBlock, 2130 bool BuildGlobalBlock); 2131 2132 /// Check if \p T is a C++ class that has a destructor that can throw. 2133 static bool cxxDestructorCanThrow(QualType T); 2134 2135 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 2136 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 2137 llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( 2138 const ObjCPropertyImplDecl *PID); 2139 llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( 2140 const ObjCPropertyImplDecl *PID); 2141 llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); 2142 2143 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags, 2144 bool CanThrow); 2145 2146 class AutoVarEmission; 2147 2148 void emitByrefStructureInit(const AutoVarEmission &emission); 2149 2150 /// Enter a cleanup to destroy a __block variable. Note that this 2151 /// cleanup should be a no-op if the variable hasn't left the stack 2152 /// yet; if a cleanup is required for the variable itself, that needs 2153 /// to be done externally. 2154 /// 2155 /// \param Kind Cleanup kind. 2156 /// 2157 /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block 2158 /// structure that will be passed to _Block_object_dispose. When 2159 /// \p LoadBlockVarAddr is true, the address of the field of the block 2160 /// structure that holds the address of the __block structure. 2161 /// 2162 /// \param Flags The flag that will be passed to _Block_object_dispose. 2163 /// 2164 /// \param LoadBlockVarAddr Indicates whether we need to emit a load from 2165 /// \p Addr to get the address of the __block structure. 2166 void enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags, 2167 bool LoadBlockVarAddr, bool CanThrow); 2168 2169 void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum, 2170 llvm::Value *ptr); 2171 2172 Address LoadBlockStruct(); 2173 Address GetAddrOfBlockDecl(const VarDecl *var); 2174 2175 /// BuildBlockByrefAddress - Computes the location of the 2176 /// data in a variable which is declared as __block. 2177 Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V, 2178 bool followForward = true); 2179 Address emitBlockByrefAddress(Address baseAddr, 2180 const BlockByrefInfo &info, 2181 bool followForward, 2182 const llvm::Twine &name); 2183 2184 const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var); 2185 2186 QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args); 2187 2188 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 2189 const CGFunctionInfo &FnInfo); 2190 2191 /// Annotate the function with an attribute that disables TSan checking at 2192 /// runtime. 2193 void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn); 2194 2195 /// Emit code for the start of a function. 2196 /// \param Loc The location to be associated with the function. 2197 /// \param StartLoc The location of the function body. 2198 void StartFunction(GlobalDecl GD, 2199 QualType RetTy, 2200 llvm::Function *Fn, 2201 const CGFunctionInfo &FnInfo, 2202 const FunctionArgList &Args, 2203 SourceLocation Loc = SourceLocation(), 2204 SourceLocation StartLoc = SourceLocation()); 2205 2206 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor); 2207 2208 void EmitConstructorBody(FunctionArgList &Args); 2209 void EmitDestructorBody(FunctionArgList &Args); 2210 void emitImplicitAssignmentOperatorBody(FunctionArgList &Args); 2211 void EmitFunctionBody(const Stmt *Body); 2212 void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S); 2213 2214 void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator, 2215 CallArgList &CallArgs); 2216 void EmitLambdaBlockInvokeBody(); 2217 void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD); 2218 void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD); 2219 void EmitLambdaVLACapture(const VariableArrayType *VAT, LValue LV) { 2220 EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); 2221 } 2222 void EmitAsanPrologueOrEpilogue(bool Prologue); 2223 2224 /// Emit the unified return block, trying to avoid its emission when 2225 /// possible. 2226 /// \return The debug location of the user written return statement if the 2227 /// return block is is avoided. 2228 llvm::DebugLoc EmitReturnBlock(); 2229 2230 /// FinishFunction - Complete IR generation of the current function. It is 2231 /// legal to call this function even if there is no current insertion point. 2232 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 2233 2234 void StartThunk(llvm::Function *Fn, GlobalDecl GD, 2235 const CGFunctionInfo &FnInfo, bool IsUnprototyped); 2236 2237 void EmitCallAndReturnForThunk(llvm::FunctionCallee Callee, 2238 const ThunkInfo *Thunk, bool IsUnprototyped); 2239 2240 void FinishThunk(); 2241 2242 /// Emit a musttail call for a thunk with a potentially adjusted this pointer. 2243 void EmitMustTailThunk(GlobalDecl GD, llvm::Value *AdjustedThisPtr, 2244 llvm::FunctionCallee Callee); 2245 2246 /// Generate a thunk for the given method. 2247 void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 2248 GlobalDecl GD, const ThunkInfo &Thunk, 2249 bool IsUnprototyped); 2250 2251 llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn, 2252 const CGFunctionInfo &FnInfo, 2253 GlobalDecl GD, const ThunkInfo &Thunk); 2254 2255 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 2256 FunctionArgList &Args); 2257 2258 void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init); 2259 2260 /// Struct with all information about dynamic [sub]class needed to set vptr. 2261 struct VPtr { 2262 BaseSubobject Base; 2263 const CXXRecordDecl *NearestVBase; 2264 CharUnits OffsetFromNearestVBase; 2265 const CXXRecordDecl *VTableClass; 2266 }; 2267 2268 /// Initialize the vtable pointer of the given subobject. 2269 void InitializeVTablePointer(const VPtr &vptr); 2270 2271 typedef llvm::SmallVector<VPtr, 4> VPtrsVector; 2272 2273 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 2274 VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass); 2275 2276 void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase, 2277 CharUnits OffsetFromNearestVBase, 2278 bool BaseIsNonVirtualPrimaryBase, 2279 const CXXRecordDecl *VTableClass, 2280 VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs); 2281 2282 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 2283 2284 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 2285 /// to by This. 2286 llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy, 2287 const CXXRecordDecl *VTableClass); 2288 2289 enum CFITypeCheckKind { 2290 CFITCK_VCall, 2291 CFITCK_NVCall, 2292 CFITCK_DerivedCast, 2293 CFITCK_UnrelatedCast, 2294 CFITCK_ICall, 2295 CFITCK_NVMFCall, 2296 CFITCK_VMFCall, 2297 }; 2298 2299 /// Derived is the presumed address of an object of type T after a 2300 /// cast. If T is a polymorphic class type, emit a check that the virtual 2301 /// table for Derived belongs to a class derived from T. 2302 void EmitVTablePtrCheckForCast(QualType T, Address Derived, bool MayBeNull, 2303 CFITypeCheckKind TCK, SourceLocation Loc); 2304 2305 /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable. 2306 /// If vptr CFI is enabled, emit a check that VTable is valid. 2307 void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable, 2308 CFITypeCheckKind TCK, SourceLocation Loc); 2309 2310 /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for 2311 /// RD using llvm.type.test. 2312 void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable, 2313 CFITypeCheckKind TCK, SourceLocation Loc); 2314 2315 /// If whole-program virtual table optimization is enabled, emit an assumption 2316 /// that VTable is a member of RD's type identifier. Or, if vptr CFI is 2317 /// enabled, emit a check that VTable is a member of RD's type identifier. 2318 void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, 2319 llvm::Value *VTable, SourceLocation Loc); 2320 2321 /// Returns whether we should perform a type checked load when loading a 2322 /// virtual function for virtual calls to members of RD. This is generally 2323 /// true when both vcall CFI and whole-program-vtables are enabled. 2324 bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD); 2325 2326 /// Emit a type checked load from the given vtable. 2327 llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, 2328 llvm::Value *VTable, 2329 llvm::Type *VTableTy, 2330 uint64_t VTableByteOffset); 2331 2332 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 2333 /// given phase of destruction for a destructor. The end result 2334 /// should call destructors on members and base classes in reverse 2335 /// order of their construction. 2336 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 2337 2338 /// ShouldInstrumentFunction - Return true if the current function should be 2339 /// instrumented with __cyg_profile_func_* calls 2340 bool ShouldInstrumentFunction(); 2341 2342 /// ShouldSkipSanitizerInstrumentation - Return true if the current function 2343 /// should not be instrumented with sanitizers. 2344 bool ShouldSkipSanitizerInstrumentation(); 2345 2346 /// ShouldXRayInstrument - Return true if the current function should be 2347 /// instrumented with XRay nop sleds. 2348 bool ShouldXRayInstrumentFunction() const; 2349 2350 /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit 2351 /// XRay custom event handling calls. 2352 bool AlwaysEmitXRayCustomEvents() const; 2353 2354 /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit 2355 /// XRay typed event handling calls. 2356 bool AlwaysEmitXRayTypedEvents() const; 2357 2358 /// Encode an address into a form suitable for use in a function prologue. 2359 llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F, 2360 llvm::Constant *Addr); 2361 2362 /// Decode an address used in a function prologue, encoded by \c 2363 /// EncodeAddrForUseInPrologue. 2364 llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F, 2365 llvm::Value *EncodedAddr); 2366 2367 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 2368 /// arguments for the given function. This is also responsible for naming the 2369 /// LLVM function arguments. 2370 void EmitFunctionProlog(const CGFunctionInfo &FI, 2371 llvm::Function *Fn, 2372 const FunctionArgList &Args); 2373 2374 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 2375 /// given temporary. 2376 void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc, 2377 SourceLocation EndLoc); 2378 2379 /// Emit a test that checks if the return value \p RV is nonnull. 2380 void EmitReturnValueCheck(llvm::Value *RV); 2381 2382 /// EmitStartEHSpec - Emit the start of the exception spec. 2383 void EmitStartEHSpec(const Decl *D); 2384 2385 /// EmitEndEHSpec - Emit the end of the exception spec. 2386 void EmitEndEHSpec(const Decl *D); 2387 2388 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 2389 llvm::BasicBlock *getTerminateLandingPad(); 2390 2391 /// getTerminateLandingPad - Return a cleanup funclet that just calls 2392 /// terminate. 2393 llvm::BasicBlock *getTerminateFunclet(); 2394 2395 /// getTerminateHandler - Return a handler (not a landing pad, just 2396 /// a catch handler) that just calls terminate. This is used when 2397 /// a terminate scope encloses a try. 2398 llvm::BasicBlock *getTerminateHandler(); 2399 2400 llvm::Type *ConvertTypeForMem(QualType T); 2401 llvm::Type *ConvertType(QualType T); 2402 llvm::Type *ConvertType(const TypeDecl *T) { 2403 return ConvertType(getContext().getTypeDeclType(T)); 2404 } 2405 2406 /// LoadObjCSelf - Load the value of self. This function is only valid while 2407 /// generating code for an Objective-C method. 2408 llvm::Value *LoadObjCSelf(); 2409 2410 /// TypeOfSelfObject - Return type of object that this self represents. 2411 QualType TypeOfSelfObject(); 2412 2413 /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T. 2414 static TypeEvaluationKind getEvaluationKind(QualType T); 2415 2416 static bool hasScalarEvaluationKind(QualType T) { 2417 return getEvaluationKind(T) == TEK_Scalar; 2418 } 2419 2420 static bool hasAggregateEvaluationKind(QualType T) { 2421 return getEvaluationKind(T) == TEK_Aggregate; 2422 } 2423 2424 /// createBasicBlock - Create an LLVM basic block. 2425 llvm::BasicBlock *createBasicBlock(const Twine &name = "", 2426 llvm::Function *parent = nullptr, 2427 llvm::BasicBlock *before = nullptr) { 2428 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 2429 } 2430 2431 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 2432 /// label maps to. 2433 JumpDest getJumpDestForLabel(const LabelDecl *S); 2434 2435 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 2436 /// another basic block, simplify it. This assumes that no other code could 2437 /// potentially reference the basic block. 2438 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 2439 2440 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 2441 /// adding a fall-through branch from the current insert block if 2442 /// necessary. It is legal to call this function even if there is no current 2443 /// insertion point. 2444 /// 2445 /// IsFinished - If true, indicates that the caller has finished emitting 2446 /// branches to the given block and does not expect to emit code into it. This 2447 /// means the block can be ignored if it is unreachable. 2448 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 2449 2450 /// EmitBlockAfterUses - Emit the given block somewhere hopefully 2451 /// near its uses, and leave the insertion point in it. 2452 void EmitBlockAfterUses(llvm::BasicBlock *BB); 2453 2454 /// EmitBranch - Emit a branch to the specified basic block from the current 2455 /// insert block, taking care to avoid creation of branches from dummy 2456 /// blocks. It is legal to call this function even if there is no current 2457 /// insertion point. 2458 /// 2459 /// This function clears the current insertion point. The caller should follow 2460 /// calls to this function with calls to Emit*Block prior to generation new 2461 /// code. 2462 void EmitBranch(llvm::BasicBlock *Block); 2463 2464 /// HaveInsertPoint - True if an insertion point is defined. If not, this 2465 /// indicates that the current code being emitted is unreachable. 2466 bool HaveInsertPoint() const { 2467 return Builder.GetInsertBlock() != nullptr; 2468 } 2469 2470 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 2471 /// emitted IR has a place to go. Note that by definition, if this function 2472 /// creates a block then that block is unreachable; callers may do better to 2473 /// detect when no insertion point is defined and simply skip IR generation. 2474 void EnsureInsertPoint() { 2475 if (!HaveInsertPoint()) 2476 EmitBlock(createBasicBlock()); 2477 } 2478 2479 /// ErrorUnsupported - Print out an error that codegen doesn't support the 2480 /// specified stmt yet. 2481 void ErrorUnsupported(const Stmt *S, const char *Type); 2482 2483 //===--------------------------------------------------------------------===// 2484 // Helpers 2485 //===--------------------------------------------------------------------===// 2486 2487 LValue MakeAddrLValue(Address Addr, QualType T, 2488 AlignmentSource Source = AlignmentSource::Type) { 2489 return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source), 2490 CGM.getTBAAAccessInfo(T)); 2491 } 2492 2493 LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo, 2494 TBAAAccessInfo TBAAInfo) { 2495 return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo); 2496 } 2497 2498 LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 2499 AlignmentSource Source = AlignmentSource::Type) { 2500 Address Addr(V, ConvertTypeForMem(T), Alignment); 2501 return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source), 2502 CGM.getTBAAAccessInfo(T)); 2503 } 2504 2505 LValue 2506 MakeAddrLValueWithoutTBAA(Address Addr, QualType T, 2507 AlignmentSource Source = AlignmentSource::Type) { 2508 return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source), 2509 TBAAAccessInfo()); 2510 } 2511 2512 LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T); 2513 LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T); 2514 2515 Address EmitLoadOfReference(LValue RefLVal, 2516 LValueBaseInfo *PointeeBaseInfo = nullptr, 2517 TBAAAccessInfo *PointeeTBAAInfo = nullptr); 2518 LValue EmitLoadOfReferenceLValue(LValue RefLVal); 2519 LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy, 2520 AlignmentSource Source = 2521 AlignmentSource::Type) { 2522 LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source), 2523 CGM.getTBAAAccessInfo(RefTy)); 2524 return EmitLoadOfReferenceLValue(RefLVal); 2525 } 2526 2527 Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy, 2528 LValueBaseInfo *BaseInfo = nullptr, 2529 TBAAAccessInfo *TBAAInfo = nullptr); 2530 LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy); 2531 2532 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 2533 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 2534 /// insertion point of the builder. The caller is responsible for setting an 2535 /// appropriate alignment on 2536 /// the alloca. 2537 /// 2538 /// \p ArraySize is the number of array elements to be allocated if it 2539 /// is not nullptr. 2540 /// 2541 /// LangAS::Default is the address space of pointers to local variables and 2542 /// temporaries, as exposed in the source language. In certain 2543 /// configurations, this is not the same as the alloca address space, and a 2544 /// cast is needed to lift the pointer from the alloca AS into 2545 /// LangAS::Default. This can happen when the target uses a restricted 2546 /// address space for the stack but the source language requires 2547 /// LangAS::Default to be a generic address space. The latter condition is 2548 /// common for most programming languages; OpenCL is an exception in that 2549 /// LangAS::Default is the private address space, which naturally maps 2550 /// to the stack. 2551 /// 2552 /// Because the address of a temporary is often exposed to the program in 2553 /// various ways, this function will perform the cast. The original alloca 2554 /// instruction is returned through \p Alloca if it is not nullptr. 2555 /// 2556 /// The cast is not performaed in CreateTempAllocaWithoutCast. This is 2557 /// more efficient if the caller knows that the address will not be exposed. 2558 llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp", 2559 llvm::Value *ArraySize = nullptr); 2560 Address CreateTempAlloca(llvm::Type *Ty, CharUnits align, 2561 const Twine &Name = "tmp", 2562 llvm::Value *ArraySize = nullptr, 2563 Address *Alloca = nullptr); 2564 Address CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align, 2565 const Twine &Name = "tmp", 2566 llvm::Value *ArraySize = nullptr); 2567 2568 /// CreateDefaultAlignedTempAlloca - This creates an alloca with the 2569 /// default ABI alignment of the given LLVM type. 2570 /// 2571 /// IMPORTANT NOTE: This is *not* generally the right alignment for 2572 /// any given AST type that happens to have been lowered to the 2573 /// given IR type. This should only ever be used for function-local, 2574 /// IR-driven manipulations like saving and restoring a value. Do 2575 /// not hand this address off to arbitrary IRGen routines, and especially 2576 /// do not pass it as an argument to a function that might expect a 2577 /// properly ABI-aligned value. 2578 Address CreateDefaultAlignTempAlloca(llvm::Type *Ty, 2579 const Twine &Name = "tmp"); 2580 2581 /// CreateIRTemp - Create a temporary IR object of the given type, with 2582 /// appropriate alignment. This routine should only be used when an temporary 2583 /// value needs to be stored into an alloca (for example, to avoid explicit 2584 /// PHI construction), but the type is the IR type, not the type appropriate 2585 /// for storing in memory. 2586 /// 2587 /// That is, this is exactly equivalent to CreateMemTemp, but calling 2588 /// ConvertType instead of ConvertTypeForMem. 2589 Address CreateIRTemp(QualType T, const Twine &Name = "tmp"); 2590 2591 /// CreateMemTemp - Create a temporary memory object of the given type, with 2592 /// appropriate alignmen and cast it to the default address space. Returns 2593 /// the original alloca instruction by \p Alloca if it is not nullptr. 2594 Address CreateMemTemp(QualType T, const Twine &Name = "tmp", 2595 Address *Alloca = nullptr); 2596 Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp", 2597 Address *Alloca = nullptr); 2598 2599 /// CreateMemTemp - Create a temporary memory object of the given type, with 2600 /// appropriate alignmen without casting it to the default address space. 2601 Address CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp"); 2602 Address CreateMemTempWithoutCast(QualType T, CharUnits Align, 2603 const Twine &Name = "tmp"); 2604 2605 /// CreateAggTemp - Create a temporary memory object for the given 2606 /// aggregate type. 2607 AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp", 2608 Address *Alloca = nullptr) { 2609 return AggValueSlot::forAddr(CreateMemTemp(T, Name, Alloca), 2610 T.getQualifiers(), 2611 AggValueSlot::IsNotDestructed, 2612 AggValueSlot::DoesNotNeedGCBarriers, 2613 AggValueSlot::IsNotAliased, 2614 AggValueSlot::DoesNotOverlap); 2615 } 2616 2617 /// Emit a cast to void* in the appropriate address space. 2618 llvm::Value *EmitCastToVoidPtr(llvm::Value *value); 2619 2620 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 2621 /// expression and compare the result against zero, returning an Int1Ty value. 2622 llvm::Value *EvaluateExprAsBool(const Expr *E); 2623 2624 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 2625 void EmitIgnoredExpr(const Expr *E); 2626 2627 /// EmitAnyExpr - Emit code to compute the specified expression which can have 2628 /// any type. The result is returned as an RValue struct. If this is an 2629 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 2630 /// the result should be returned. 2631 /// 2632 /// \param ignoreResult True if the resulting value isn't used. 2633 RValue EmitAnyExpr(const Expr *E, 2634 AggValueSlot aggSlot = AggValueSlot::ignored(), 2635 bool ignoreResult = false); 2636 2637 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 2638 // or the value of the expression, depending on how va_list is defined. 2639 Address EmitVAListRef(const Expr *E); 2640 2641 /// Emit a "reference" to a __builtin_ms_va_list; this is 2642 /// always the value of the expression, because a __builtin_ms_va_list is a 2643 /// pointer to a char. 2644 Address EmitMSVAListRef(const Expr *E); 2645 2646 /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will 2647 /// always be accessible even if no aggregate location is provided. 2648 RValue EmitAnyExprToTemp(const Expr *E); 2649 2650 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 2651 /// arbitrary expression into the given memory location. 2652 void EmitAnyExprToMem(const Expr *E, Address Location, 2653 Qualifiers Quals, bool IsInitializer); 2654 2655 void EmitAnyExprToExn(const Expr *E, Address Addr); 2656 2657 /// EmitExprAsInit - Emits the code necessary to initialize a 2658 /// location in memory with the given initializer. 2659 void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2660 bool capturedByInit); 2661 2662 /// hasVolatileMember - returns true if aggregate type has a volatile 2663 /// member. 2664 bool hasVolatileMember(QualType T) { 2665 if (const RecordType *RT = T->getAs<RecordType>()) { 2666 const RecordDecl *RD = cast<RecordDecl>(RT->getDecl()); 2667 return RD->hasVolatileMember(); 2668 } 2669 return false; 2670 } 2671 2672 /// Determine whether a return value slot may overlap some other object. 2673 AggValueSlot::Overlap_t getOverlapForReturnValue() { 2674 // FIXME: Assuming no overlap here breaks guaranteed copy elision for base 2675 // class subobjects. These cases may need to be revisited depending on the 2676 // resolution of the relevant core issue. 2677 return AggValueSlot::DoesNotOverlap; 2678 } 2679 2680 /// Determine whether a field initialization may overlap some other object. 2681 AggValueSlot::Overlap_t getOverlapForFieldInit(const FieldDecl *FD); 2682 2683 /// Determine whether a base class initialization may overlap some other 2684 /// object. 2685 AggValueSlot::Overlap_t getOverlapForBaseInit(const CXXRecordDecl *RD, 2686 const CXXRecordDecl *BaseRD, 2687 bool IsVirtual); 2688 2689 /// Emit an aggregate assignment. 2690 void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) { 2691 bool IsVolatile = hasVolatileMember(EltTy); 2692 EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile); 2693 } 2694 2695 void EmitAggregateCopyCtor(LValue Dest, LValue Src, 2696 AggValueSlot::Overlap_t MayOverlap) { 2697 EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap); 2698 } 2699 2700 /// EmitAggregateCopy - Emit an aggregate copy. 2701 /// 2702 /// \param isVolatile \c true iff either the source or the destination is 2703 /// volatile. 2704 /// \param MayOverlap Whether the tail padding of the destination might be 2705 /// occupied by some other object. More efficient code can often be 2706 /// generated if not. 2707 void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy, 2708 AggValueSlot::Overlap_t MayOverlap, 2709 bool isVolatile = false); 2710 2711 /// GetAddrOfLocalVar - Return the address of a local variable. 2712 Address GetAddrOfLocalVar(const VarDecl *VD) { 2713 auto it = LocalDeclMap.find(VD); 2714 assert(it != LocalDeclMap.end() && 2715 "Invalid argument to GetAddrOfLocalVar(), no decl!"); 2716 return it->second; 2717 } 2718 2719 /// Given an opaque value expression, return its LValue mapping if it exists, 2720 /// otherwise create one. 2721 LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e); 2722 2723 /// Given an opaque value expression, return its RValue mapping if it exists, 2724 /// otherwise create one. 2725 RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e); 2726 2727 /// Get the index of the current ArrayInitLoopExpr, if any. 2728 llvm::Value *getArrayInitIndex() { return ArrayInitIndex; } 2729 2730 /// getAccessedFieldNo - Given an encoded value and a result number, return 2731 /// the input field number being accessed. 2732 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 2733 2734 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 2735 llvm::BasicBlock *GetIndirectGotoBlock(); 2736 2737 /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts. 2738 static bool IsWrappedCXXThis(const Expr *E); 2739 2740 /// EmitNullInitialization - Generate code to set a value of the given type to 2741 /// null, If the type contains data member pointers, they will be initialized 2742 /// to -1 in accordance with the Itanium C++ ABI. 2743 void EmitNullInitialization(Address DestPtr, QualType Ty); 2744 2745 /// Emits a call to an LLVM variable-argument intrinsic, either 2746 /// \c llvm.va_start or \c llvm.va_end. 2747 /// \param ArgValue A reference to the \c va_list as emitted by either 2748 /// \c EmitVAListRef or \c EmitMSVAListRef. 2749 /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise, 2750 /// calls \c llvm.va_end. 2751 llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart); 2752 2753 /// Generate code to get an argument from the passed in pointer 2754 /// and update it accordingly. 2755 /// \param VE The \c VAArgExpr for which to generate code. 2756 /// \param VAListAddr Receives a reference to the \c va_list as emitted by 2757 /// either \c EmitVAListRef or \c EmitMSVAListRef. 2758 /// \returns A pointer to the argument. 2759 // FIXME: We should be able to get rid of this method and use the va_arg 2760 // instruction in LLVM instead once it works well enough. 2761 Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr); 2762 2763 /// emitArrayLength - Compute the length of an array, even if it's a 2764 /// VLA, and drill down to the base element type. 2765 llvm::Value *emitArrayLength(const ArrayType *arrayType, 2766 QualType &baseType, 2767 Address &addr); 2768 2769 /// EmitVLASize - Capture all the sizes for the VLA expressions in 2770 /// the given variably-modified type and store them in the VLASizeMap. 2771 /// 2772 /// This function can be called with a null (unreachable) insert point. 2773 void EmitVariablyModifiedType(QualType Ty); 2774 2775 struct VlaSizePair { 2776 llvm::Value *NumElts; 2777 QualType Type; 2778 2779 VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {} 2780 }; 2781 2782 /// Return the number of elements for a single dimension 2783 /// for the given array type. 2784 VlaSizePair getVLAElements1D(const VariableArrayType *vla); 2785 VlaSizePair getVLAElements1D(QualType vla); 2786 2787 /// Returns an LLVM value that corresponds to the size, 2788 /// in non-variably-sized elements, of a variable length array type, 2789 /// plus that largest non-variably-sized element type. Assumes that 2790 /// the type has already been emitted with EmitVariablyModifiedType. 2791 VlaSizePair getVLASize(const VariableArrayType *vla); 2792 VlaSizePair getVLASize(QualType vla); 2793 2794 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 2795 /// generating code for an C++ member function. 2796 llvm::Value *LoadCXXThis() { 2797 assert(CXXThisValue && "no 'this' value for this function"); 2798 return CXXThisValue; 2799 } 2800 Address LoadCXXThisAddress(); 2801 2802 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 2803 /// virtual bases. 2804 // FIXME: Every place that calls LoadCXXVTT is something 2805 // that needs to be abstracted properly. 2806 llvm::Value *LoadCXXVTT() { 2807 assert(CXXStructorImplicitParamValue && "no VTT value for this function"); 2808 return CXXStructorImplicitParamValue; 2809 } 2810 2811 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 2812 /// complete class to the given direct base. 2813 Address 2814 GetAddressOfDirectBaseInCompleteClass(Address Value, 2815 const CXXRecordDecl *Derived, 2816 const CXXRecordDecl *Base, 2817 bool BaseIsVirtual); 2818 2819 static bool ShouldNullCheckClassCastValue(const CastExpr *Cast); 2820 2821 /// GetAddressOfBaseClass - This function will add the necessary delta to the 2822 /// load of 'this' and returns address of the base class. 2823 Address GetAddressOfBaseClass(Address Value, 2824 const CXXRecordDecl *Derived, 2825 CastExpr::path_const_iterator PathBegin, 2826 CastExpr::path_const_iterator PathEnd, 2827 bool NullCheckValue, SourceLocation Loc); 2828 2829 Address GetAddressOfDerivedClass(Address Value, 2830 const CXXRecordDecl *Derived, 2831 CastExpr::path_const_iterator PathBegin, 2832 CastExpr::path_const_iterator PathEnd, 2833 bool NullCheckValue); 2834 2835 /// GetVTTParameter - Return the VTT parameter that should be passed to a 2836 /// base constructor/destructor with virtual bases. 2837 /// FIXME: VTTs are Itanium ABI-specific, so the definition should move 2838 /// to ItaniumCXXABI.cpp together with all the references to VTT. 2839 llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase, 2840 bool Delegating); 2841 2842 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 2843 CXXCtorType CtorType, 2844 const FunctionArgList &Args, 2845 SourceLocation Loc); 2846 // It's important not to confuse this and the previous function. Delegating 2847 // constructors are the C++0x feature. The constructor delegate optimization 2848 // is used to reduce duplication in the base and complete consturctors where 2849 // they are substantially the same. 2850 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2851 const FunctionArgList &Args); 2852 2853 /// Emit a call to an inheriting constructor (that is, one that invokes a 2854 /// constructor inherited from a base class) by inlining its definition. This 2855 /// is necessary if the ABI does not support forwarding the arguments to the 2856 /// base class constructor (because they're variadic or similar). 2857 void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2858 CXXCtorType CtorType, 2859 bool ForVirtualBase, 2860 bool Delegating, 2861 CallArgList &Args); 2862 2863 /// Emit a call to a constructor inherited from a base class, passing the 2864 /// current constructor's arguments along unmodified (without even making 2865 /// a copy). 2866 void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D, 2867 bool ForVirtualBase, Address This, 2868 bool InheritedFromVBase, 2869 const CXXInheritedCtorInitExpr *E); 2870 2871 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2872 bool ForVirtualBase, bool Delegating, 2873 AggValueSlot ThisAVS, const CXXConstructExpr *E); 2874 2875 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2876 bool ForVirtualBase, bool Delegating, 2877 Address This, CallArgList &Args, 2878 AggValueSlot::Overlap_t Overlap, 2879 SourceLocation Loc, bool NewPointerIsChecked); 2880 2881 /// Emit assumption load for all bases. Requires to be be called only on 2882 /// most-derived class and not under construction of the object. 2883 void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This); 2884 2885 /// Emit assumption that vptr load == global vtable. 2886 void EmitVTableAssumptionLoad(const VPtr &vptr, Address This); 2887 2888 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 2889 Address This, Address Src, 2890 const CXXConstructExpr *E); 2891 2892 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2893 const ArrayType *ArrayTy, 2894 Address ArrayPtr, 2895 const CXXConstructExpr *E, 2896 bool NewPointerIsChecked, 2897 bool ZeroInitialization = false); 2898 2899 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2900 llvm::Value *NumElements, 2901 Address ArrayPtr, 2902 const CXXConstructExpr *E, 2903 bool NewPointerIsChecked, 2904 bool ZeroInitialization = false); 2905 2906 static Destroyer destroyCXXObject; 2907 2908 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 2909 bool ForVirtualBase, bool Delegating, Address This, 2910 QualType ThisTy); 2911 2912 void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, 2913 llvm::Type *ElementTy, Address NewPtr, 2914 llvm::Value *NumElements, 2915 llvm::Value *AllocSizeWithoutCookie); 2916 2917 void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, 2918 Address Ptr); 2919 2920 void EmitSehCppScopeBegin(); 2921 void EmitSehCppScopeEnd(); 2922 void EmitSehTryScopeBegin(); 2923 void EmitSehTryScopeEnd(); 2924 2925 llvm::Value *EmitLifetimeStart(llvm::TypeSize Size, llvm::Value *Addr); 2926 void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr); 2927 2928 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 2929 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 2930 2931 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 2932 QualType DeleteTy, llvm::Value *NumElements = nullptr, 2933 CharUnits CookieSize = CharUnits()); 2934 2935 RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 2936 const CallExpr *TheCallExpr, bool IsDelete); 2937 2938 llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E); 2939 llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE); 2940 Address EmitCXXUuidofExpr(const CXXUuidofExpr *E); 2941 2942 /// Situations in which we might emit a check for the suitability of a 2943 /// pointer or glvalue. Needs to be kept in sync with ubsan_handlers.cpp in 2944 /// compiler-rt. 2945 enum TypeCheckKind { 2946 /// Checking the operand of a load. Must be suitably sized and aligned. 2947 TCK_Load, 2948 /// Checking the destination of a store. Must be suitably sized and aligned. 2949 TCK_Store, 2950 /// Checking the bound value in a reference binding. Must be suitably sized 2951 /// and aligned, but is not required to refer to an object (until the 2952 /// reference is used), per core issue 453. 2953 TCK_ReferenceBinding, 2954 /// Checking the object expression in a non-static data member access. Must 2955 /// be an object within its lifetime. 2956 TCK_MemberAccess, 2957 /// Checking the 'this' pointer for a call to a non-static member function. 2958 /// Must be an object within its lifetime. 2959 TCK_MemberCall, 2960 /// Checking the 'this' pointer for a constructor call. 2961 TCK_ConstructorCall, 2962 /// Checking the operand of a static_cast to a derived pointer type. Must be 2963 /// null or an object within its lifetime. 2964 TCK_DowncastPointer, 2965 /// Checking the operand of a static_cast to a derived reference type. Must 2966 /// be an object within its lifetime. 2967 TCK_DowncastReference, 2968 /// Checking the operand of a cast to a base object. Must be suitably sized 2969 /// and aligned. 2970 TCK_Upcast, 2971 /// Checking the operand of a cast to a virtual base object. Must be an 2972 /// object within its lifetime. 2973 TCK_UpcastToVirtualBase, 2974 /// Checking the value assigned to a _Nonnull pointer. Must not be null. 2975 TCK_NonnullAssign, 2976 /// Checking the operand of a dynamic_cast or a typeid expression. Must be 2977 /// null or an object within its lifetime. 2978 TCK_DynamicOperation 2979 }; 2980 2981 /// Determine whether the pointer type check \p TCK permits null pointers. 2982 static bool isNullPointerAllowed(TypeCheckKind TCK); 2983 2984 /// Determine whether the pointer type check \p TCK requires a vptr check. 2985 static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty); 2986 2987 /// Whether any type-checking sanitizers are enabled. If \c false, 2988 /// calls to EmitTypeCheck can be skipped. 2989 bool sanitizePerformTypeCheck() const; 2990 2991 /// Emit a check that \p V is the address of storage of the 2992 /// appropriate size and alignment for an object of type \p Type 2993 /// (or if ArraySize is provided, for an array of that bound). 2994 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, 2995 QualType Type, CharUnits Alignment = CharUnits::Zero(), 2996 SanitizerSet SkippedChecks = SanitizerSet(), 2997 llvm::Value *ArraySize = nullptr); 2998 2999 /// Emit a check that \p Base points into an array object, which 3000 /// we can access at index \p Index. \p Accessed should be \c false if we 3001 /// this expression is used as an lvalue, for instance in "&Arr[Idx]". 3002 void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, 3003 QualType IndexType, bool Accessed); 3004 3005 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 3006 bool isInc, bool isPre); 3007 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 3008 bool isInc, bool isPre); 3009 3010 /// Converts Location to a DebugLoc, if debug information is enabled. 3011 llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location); 3012 3013 /// Get the record field index as represented in debug info. 3014 unsigned getDebugInfoFIndex(const RecordDecl *Rec, unsigned FieldIndex); 3015 3016 3017 //===--------------------------------------------------------------------===// 3018 // Declaration Emission 3019 //===--------------------------------------------------------------------===// 3020 3021 /// EmitDecl - Emit a declaration. 3022 /// 3023 /// This function can be called with a null (unreachable) insert point. 3024 void EmitDecl(const Decl &D); 3025 3026 /// EmitVarDecl - Emit a local variable declaration. 3027 /// 3028 /// This function can be called with a null (unreachable) insert point. 3029 void EmitVarDecl(const VarDecl &D); 3030 3031 void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue, 3032 bool capturedByInit); 3033 3034 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 3035 llvm::Value *Address); 3036 3037 /// Determine whether the given initializer is trivial in the sense 3038 /// that it requires no code to be generated. 3039 bool isTrivialInitializer(const Expr *Init); 3040 3041 /// EmitAutoVarDecl - Emit an auto variable declaration. 3042 /// 3043 /// This function can be called with a null (unreachable) insert point. 3044 void EmitAutoVarDecl(const VarDecl &D); 3045 3046 class AutoVarEmission { 3047 friend class CodeGenFunction; 3048 3049 const VarDecl *Variable; 3050 3051 /// The address of the alloca for languages with explicit address space 3052 /// (e.g. OpenCL) or alloca casted to generic pointer for address space 3053 /// agnostic languages (e.g. C++). Invalid if the variable was emitted 3054 /// as a global constant. 3055 Address Addr; 3056 3057 llvm::Value *NRVOFlag; 3058 3059 /// True if the variable is a __block variable that is captured by an 3060 /// escaping block. 3061 bool IsEscapingByRef; 3062 3063 /// True if the variable is of aggregate type and has a constant 3064 /// initializer. 3065 bool IsConstantAggregate; 3066 3067 /// Non-null if we should use lifetime annotations. 3068 llvm::Value *SizeForLifetimeMarkers; 3069 3070 /// Address with original alloca instruction. Invalid if the variable was 3071 /// emitted as a global constant. 3072 Address AllocaAddr; 3073 3074 struct Invalid {}; 3075 AutoVarEmission(Invalid) 3076 : Variable(nullptr), Addr(Address::invalid()), 3077 AllocaAddr(Address::invalid()) {} 3078 3079 AutoVarEmission(const VarDecl &variable) 3080 : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr), 3081 IsEscapingByRef(false), IsConstantAggregate(false), 3082 SizeForLifetimeMarkers(nullptr), AllocaAddr(Address::invalid()) {} 3083 3084 bool wasEmittedAsGlobal() const { return !Addr.isValid(); } 3085 3086 public: 3087 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 3088 3089 bool useLifetimeMarkers() const { 3090 return SizeForLifetimeMarkers != nullptr; 3091 } 3092 llvm::Value *getSizeForLifetimeMarkers() const { 3093 assert(useLifetimeMarkers()); 3094 return SizeForLifetimeMarkers; 3095 } 3096 3097 /// Returns the raw, allocated address, which is not necessarily 3098 /// the address of the object itself. It is casted to default 3099 /// address space for address space agnostic languages. 3100 Address getAllocatedAddress() const { 3101 return Addr; 3102 } 3103 3104 /// Returns the address for the original alloca instruction. 3105 Address getOriginalAllocatedAddress() const { return AllocaAddr; } 3106 3107 /// Returns the address of the object within this declaration. 3108 /// Note that this does not chase the forwarding pointer for 3109 /// __block decls. 3110 Address getObjectAddress(CodeGenFunction &CGF) const { 3111 if (!IsEscapingByRef) return Addr; 3112 3113 return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false); 3114 } 3115 }; 3116 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 3117 void EmitAutoVarInit(const AutoVarEmission &emission); 3118 void EmitAutoVarCleanups(const AutoVarEmission &emission); 3119 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 3120 QualType::DestructionKind dtorKind); 3121 3122 /// Emits the alloca and debug information for the size expressions for each 3123 /// dimension of an array. It registers the association of its (1-dimensional) 3124 /// QualTypes and size expression's debug node, so that CGDebugInfo can 3125 /// reference this node when creating the DISubrange object to describe the 3126 /// array types. 3127 void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI, 3128 const VarDecl &D, 3129 bool EmitDebugInfo); 3130 3131 void EmitStaticVarDecl(const VarDecl &D, 3132 llvm::GlobalValue::LinkageTypes Linkage); 3133 3134 class ParamValue { 3135 llvm::Value *Value; 3136 llvm::Type *ElementType; 3137 unsigned Alignment; 3138 ParamValue(llvm::Value *V, llvm::Type *T, unsigned A) 3139 : Value(V), ElementType(T), Alignment(A) {} 3140 public: 3141 static ParamValue forDirect(llvm::Value *value) { 3142 return ParamValue(value, nullptr, 0); 3143 } 3144 static ParamValue forIndirect(Address addr) { 3145 assert(!addr.getAlignment().isZero()); 3146 return ParamValue(addr.getPointer(), addr.getElementType(), 3147 addr.getAlignment().getQuantity()); 3148 } 3149 3150 bool isIndirect() const { return Alignment != 0; } 3151 llvm::Value *getAnyValue() const { return Value; } 3152 3153 llvm::Value *getDirectValue() const { 3154 assert(!isIndirect()); 3155 return Value; 3156 } 3157 3158 Address getIndirectAddress() const { 3159 assert(isIndirect()); 3160 return Address(Value, ElementType, CharUnits::fromQuantity(Alignment)); 3161 } 3162 }; 3163 3164 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 3165 void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo); 3166 3167 /// protectFromPeepholes - Protect a value that we're intending to 3168 /// store to the side, but which will probably be used later, from 3169 /// aggressive peepholing optimizations that might delete it. 3170 /// 3171 /// Pass the result to unprotectFromPeepholes to declare that 3172 /// protection is no longer required. 3173 /// 3174 /// There's no particular reason why this shouldn't apply to 3175 /// l-values, it's just that no existing peepholes work on pointers. 3176 PeepholeProtection protectFromPeepholes(RValue rvalue); 3177 void unprotectFromPeepholes(PeepholeProtection protection); 3178 3179 void emitAlignmentAssumptionCheck(llvm::Value *Ptr, QualType Ty, 3180 SourceLocation Loc, 3181 SourceLocation AssumptionLoc, 3182 llvm::Value *Alignment, 3183 llvm::Value *OffsetValue, 3184 llvm::Value *TheCheck, 3185 llvm::Instruction *Assumption); 3186 3187 void emitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty, 3188 SourceLocation Loc, SourceLocation AssumptionLoc, 3189 llvm::Value *Alignment, 3190 llvm::Value *OffsetValue = nullptr); 3191 3192 void emitAlignmentAssumption(llvm::Value *PtrValue, const Expr *E, 3193 SourceLocation AssumptionLoc, 3194 llvm::Value *Alignment, 3195 llvm::Value *OffsetValue = nullptr); 3196 3197 //===--------------------------------------------------------------------===// 3198 // Statement Emission 3199 //===--------------------------------------------------------------------===// 3200 3201 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 3202 void EmitStopPoint(const Stmt *S); 3203 3204 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 3205 /// this function even if there is no current insertion point. 3206 /// 3207 /// This function may clear the current insertion point; callers should use 3208 /// EnsureInsertPoint if they wish to subsequently generate code without first 3209 /// calling EmitBlock, EmitBranch, or EmitStmt. 3210 void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None); 3211 3212 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 3213 /// necessarily require an insertion point or debug information; typically 3214 /// because the statement amounts to a jump or a container of other 3215 /// statements. 3216 /// 3217 /// \return True if the statement was handled. 3218 bool EmitSimpleStmt(const Stmt *S, ArrayRef<const Attr *> Attrs); 3219 3220 Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 3221 AggValueSlot AVS = AggValueSlot::ignored()); 3222 Address EmitCompoundStmtWithoutScope(const CompoundStmt &S, 3223 bool GetLast = false, 3224 AggValueSlot AVS = 3225 AggValueSlot::ignored()); 3226 3227 /// EmitLabel - Emit the block for the given label. It is legal to call this 3228 /// function even if there is no current insertion point. 3229 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 3230 3231 void EmitLabelStmt(const LabelStmt &S); 3232 void EmitAttributedStmt(const AttributedStmt &S); 3233 void EmitGotoStmt(const GotoStmt &S); 3234 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 3235 void EmitIfStmt(const IfStmt &S); 3236 3237 void EmitWhileStmt(const WhileStmt &S, 3238 ArrayRef<const Attr *> Attrs = None); 3239 void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None); 3240 void EmitForStmt(const ForStmt &S, 3241 ArrayRef<const Attr *> Attrs = None); 3242 void EmitReturnStmt(const ReturnStmt &S); 3243 void EmitDeclStmt(const DeclStmt &S); 3244 void EmitBreakStmt(const BreakStmt &S); 3245 void EmitContinueStmt(const ContinueStmt &S); 3246 void EmitSwitchStmt(const SwitchStmt &S); 3247 void EmitDefaultStmt(const DefaultStmt &S, ArrayRef<const Attr *> Attrs); 3248 void EmitCaseStmt(const CaseStmt &S, ArrayRef<const Attr *> Attrs); 3249 void EmitCaseStmtRange(const CaseStmt &S, ArrayRef<const Attr *> Attrs); 3250 void EmitAsmStmt(const AsmStmt &S); 3251 3252 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 3253 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 3254 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 3255 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 3256 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 3257 3258 void EmitCoroutineBody(const CoroutineBodyStmt &S); 3259 void EmitCoreturnStmt(const CoreturnStmt &S); 3260 RValue EmitCoawaitExpr(const CoawaitExpr &E, 3261 AggValueSlot aggSlot = AggValueSlot::ignored(), 3262 bool ignoreResult = false); 3263 LValue EmitCoawaitLValue(const CoawaitExpr *E); 3264 RValue EmitCoyieldExpr(const CoyieldExpr &E, 3265 AggValueSlot aggSlot = AggValueSlot::ignored(), 3266 bool ignoreResult = false); 3267 LValue EmitCoyieldLValue(const CoyieldExpr *E); 3268 RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID); 3269 3270 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 3271 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 3272 3273 void EmitCXXTryStmt(const CXXTryStmt &S); 3274 void EmitSEHTryStmt(const SEHTryStmt &S); 3275 void EmitSEHLeaveStmt(const SEHLeaveStmt &S); 3276 void EnterSEHTryStmt(const SEHTryStmt &S); 3277 void ExitSEHTryStmt(const SEHTryStmt &S); 3278 void VolatilizeTryBlocks(llvm::BasicBlock *BB, 3279 llvm::SmallPtrSet<llvm::BasicBlock *, 10> &V); 3280 3281 void pushSEHCleanup(CleanupKind kind, 3282 llvm::Function *FinallyFunc); 3283 void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter, 3284 const Stmt *OutlinedStmt); 3285 3286 llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF, 3287 const SEHExceptStmt &Except); 3288 3289 llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF, 3290 const SEHFinallyStmt &Finally); 3291 3292 void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF, 3293 llvm::Value *ParentFP, 3294 llvm::Value *EntryEBP); 3295 llvm::Value *EmitSEHExceptionCode(); 3296 llvm::Value *EmitSEHExceptionInfo(); 3297 llvm::Value *EmitSEHAbnormalTermination(); 3298 3299 /// Emit simple code for OpenMP directives in Simd-only mode. 3300 void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D); 3301 3302 /// Scan the outlined statement for captures from the parent function. For 3303 /// each capture, mark the capture as escaped and emit a call to 3304 /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap. 3305 void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt, 3306 bool IsFilter); 3307 3308 /// Recovers the address of a local in a parent function. ParentVar is the 3309 /// address of the variable used in the immediate parent function. It can 3310 /// either be an alloca or a call to llvm.localrecover if there are nested 3311 /// outlined functions. ParentFP is the frame pointer of the outermost parent 3312 /// frame. 3313 Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF, 3314 Address ParentVar, 3315 llvm::Value *ParentFP); 3316 3317 void EmitCXXForRangeStmt(const CXXForRangeStmt &S, 3318 ArrayRef<const Attr *> Attrs = None); 3319 3320 /// Controls insertion of cancellation exit blocks in worksharing constructs. 3321 class OMPCancelStackRAII { 3322 CodeGenFunction &CGF; 3323 3324 public: 3325 OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 3326 bool HasCancel) 3327 : CGF(CGF) { 3328 CGF.OMPCancelStack.enter(CGF, Kind, HasCancel); 3329 } 3330 ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); } 3331 }; 3332 3333 /// Returns calculated size of the specified type. 3334 llvm::Value *getTypeSize(QualType Ty); 3335 LValue InitCapturedStruct(const CapturedStmt &S); 3336 llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K); 3337 llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S); 3338 Address GenerateCapturedStmtArgument(const CapturedStmt &S); 3339 llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S, 3340 SourceLocation Loc); 3341 void GenerateOpenMPCapturedVars(const CapturedStmt &S, 3342 SmallVectorImpl<llvm::Value *> &CapturedVars); 3343 void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy, 3344 SourceLocation Loc); 3345 /// Perform element by element copying of arrays with type \a 3346 /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure 3347 /// generated by \a CopyGen. 3348 /// 3349 /// \param DestAddr Address of the destination array. 3350 /// \param SrcAddr Address of the source array. 3351 /// \param OriginalType Type of destination and source arrays. 3352 /// \param CopyGen Copying procedure that copies value of single array element 3353 /// to another single array element. 3354 void EmitOMPAggregateAssign( 3355 Address DestAddr, Address SrcAddr, QualType OriginalType, 3356 const llvm::function_ref<void(Address, Address)> CopyGen); 3357 /// Emit proper copying of data from one variable to another. 3358 /// 3359 /// \param OriginalType Original type of the copied variables. 3360 /// \param DestAddr Destination address. 3361 /// \param SrcAddr Source address. 3362 /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has 3363 /// type of the base array element). 3364 /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of 3365 /// the base array element). 3366 /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a 3367 /// DestVD. 3368 void EmitOMPCopy(QualType OriginalType, 3369 Address DestAddr, Address SrcAddr, 3370 const VarDecl *DestVD, const VarDecl *SrcVD, 3371 const Expr *Copy); 3372 /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or 3373 /// \a X = \a E \a BO \a E. 3374 /// 3375 /// \param X Value to be updated. 3376 /// \param E Update value. 3377 /// \param BO Binary operation for update operation. 3378 /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update 3379 /// expression, false otherwise. 3380 /// \param AO Atomic ordering of the generated atomic instructions. 3381 /// \param CommonGen Code generator for complex expressions that cannot be 3382 /// expressed through atomicrmw instruction. 3383 /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was 3384 /// generated, <false, RValue::get(nullptr)> otherwise. 3385 std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr( 3386 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 3387 llvm::AtomicOrdering AO, SourceLocation Loc, 3388 const llvm::function_ref<RValue(RValue)> CommonGen); 3389 bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 3390 OMPPrivateScope &PrivateScope); 3391 void EmitOMPPrivateClause(const OMPExecutableDirective &D, 3392 OMPPrivateScope &PrivateScope); 3393 void EmitOMPUseDevicePtrClause( 3394 const OMPUseDevicePtrClause &C, OMPPrivateScope &PrivateScope, 3395 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap); 3396 void EmitOMPUseDeviceAddrClause( 3397 const OMPUseDeviceAddrClause &C, OMPPrivateScope &PrivateScope, 3398 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap); 3399 /// Emit code for copyin clause in \a D directive. The next code is 3400 /// generated at the start of outlined functions for directives: 3401 /// \code 3402 /// threadprivate_var1 = master_threadprivate_var1; 3403 /// operator=(threadprivate_var2, master_threadprivate_var2); 3404 /// ... 3405 /// __kmpc_barrier(&loc, global_tid); 3406 /// \endcode 3407 /// 3408 /// \param D OpenMP directive possibly with 'copyin' clause(s). 3409 /// \returns true if at least one copyin variable is found, false otherwise. 3410 bool EmitOMPCopyinClause(const OMPExecutableDirective &D); 3411 /// Emit initial code for lastprivate variables. If some variable is 3412 /// not also firstprivate, then the default initialization is used. Otherwise 3413 /// initialization of this variable is performed by EmitOMPFirstprivateClause 3414 /// method. 3415 /// 3416 /// \param D Directive that may have 'lastprivate' directives. 3417 /// \param PrivateScope Private scope for capturing lastprivate variables for 3418 /// proper codegen in internal captured statement. 3419 /// 3420 /// \returns true if there is at least one lastprivate variable, false 3421 /// otherwise. 3422 bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D, 3423 OMPPrivateScope &PrivateScope); 3424 /// Emit final copying of lastprivate values to original variables at 3425 /// the end of the worksharing or simd directive. 3426 /// 3427 /// \param D Directive that has at least one 'lastprivate' directives. 3428 /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if 3429 /// it is the last iteration of the loop code in associated directive, or to 3430 /// 'i1 false' otherwise. If this item is nullptr, no final check is required. 3431 void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D, 3432 bool NoFinals, 3433 llvm::Value *IsLastIterCond = nullptr); 3434 /// Emit initial code for linear clauses. 3435 void EmitOMPLinearClause(const OMPLoopDirective &D, 3436 CodeGenFunction::OMPPrivateScope &PrivateScope); 3437 /// Emit final code for linear clauses. 3438 /// \param CondGen Optional conditional code for final part of codegen for 3439 /// linear clause. 3440 void EmitOMPLinearClauseFinal( 3441 const OMPLoopDirective &D, 3442 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); 3443 /// Emit initial code for reduction variables. Creates reduction copies 3444 /// and initializes them with the values according to OpenMP standard. 3445 /// 3446 /// \param D Directive (possibly) with the 'reduction' clause. 3447 /// \param PrivateScope Private scope for capturing reduction variables for 3448 /// proper codegen in internal captured statement. 3449 /// 3450 void EmitOMPReductionClauseInit(const OMPExecutableDirective &D, 3451 OMPPrivateScope &PrivateScope, 3452 bool ForInscan = false); 3453 /// Emit final update of reduction values to original variables at 3454 /// the end of the directive. 3455 /// 3456 /// \param D Directive that has at least one 'reduction' directives. 3457 /// \param ReductionKind The kind of reduction to perform. 3458 void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D, 3459 const OpenMPDirectiveKind ReductionKind); 3460 /// Emit initial code for linear variables. Creates private copies 3461 /// and initializes them with the values according to OpenMP standard. 3462 /// 3463 /// \param D Directive (possibly) with the 'linear' clause. 3464 /// \return true if at least one linear variable is found that should be 3465 /// initialized with the value of the original variable, false otherwise. 3466 bool EmitOMPLinearClauseInit(const OMPLoopDirective &D); 3467 3468 typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/, 3469 llvm::Function * /*OutlinedFn*/, 3470 const OMPTaskDataTy & /*Data*/)> 3471 TaskGenTy; 3472 void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S, 3473 const OpenMPDirectiveKind CapturedRegion, 3474 const RegionCodeGenTy &BodyGen, 3475 const TaskGenTy &TaskGen, OMPTaskDataTy &Data); 3476 struct OMPTargetDataInfo { 3477 Address BasePointersArray = Address::invalid(); 3478 Address PointersArray = Address::invalid(); 3479 Address SizesArray = Address::invalid(); 3480 Address MappersArray = Address::invalid(); 3481 unsigned NumberOfTargetItems = 0; 3482 explicit OMPTargetDataInfo() = default; 3483 OMPTargetDataInfo(Address BasePointersArray, Address PointersArray, 3484 Address SizesArray, Address MappersArray, 3485 unsigned NumberOfTargetItems) 3486 : BasePointersArray(BasePointersArray), PointersArray(PointersArray), 3487 SizesArray(SizesArray), MappersArray(MappersArray), 3488 NumberOfTargetItems(NumberOfTargetItems) {} 3489 }; 3490 void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S, 3491 const RegionCodeGenTy &BodyGen, 3492 OMPTargetDataInfo &InputInfo); 3493 3494 void EmitOMPMetaDirective(const OMPMetaDirective &S); 3495 void EmitOMPParallelDirective(const OMPParallelDirective &S); 3496 void EmitOMPSimdDirective(const OMPSimdDirective &S); 3497 void EmitOMPTileDirective(const OMPTileDirective &S); 3498 void EmitOMPUnrollDirective(const OMPUnrollDirective &S); 3499 void EmitOMPForDirective(const OMPForDirective &S); 3500 void EmitOMPForSimdDirective(const OMPForSimdDirective &S); 3501 void EmitOMPSectionsDirective(const OMPSectionsDirective &S); 3502 void EmitOMPSectionDirective(const OMPSectionDirective &S); 3503 void EmitOMPSingleDirective(const OMPSingleDirective &S); 3504 void EmitOMPMasterDirective(const OMPMasterDirective &S); 3505 void EmitOMPMaskedDirective(const OMPMaskedDirective &S); 3506 void EmitOMPCriticalDirective(const OMPCriticalDirective &S); 3507 void EmitOMPParallelForDirective(const OMPParallelForDirective &S); 3508 void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S); 3509 void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S); 3510 void EmitOMPParallelMasterDirective(const OMPParallelMasterDirective &S); 3511 void EmitOMPTaskDirective(const OMPTaskDirective &S); 3512 void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S); 3513 void EmitOMPBarrierDirective(const OMPBarrierDirective &S); 3514 void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S); 3515 void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S); 3516 void EmitOMPFlushDirective(const OMPFlushDirective &S); 3517 void EmitOMPDepobjDirective(const OMPDepobjDirective &S); 3518 void EmitOMPScanDirective(const OMPScanDirective &S); 3519 void EmitOMPOrderedDirective(const OMPOrderedDirective &S); 3520 void EmitOMPAtomicDirective(const OMPAtomicDirective &S); 3521 void EmitOMPTargetDirective(const OMPTargetDirective &S); 3522 void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S); 3523 void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S); 3524 void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S); 3525 void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S); 3526 void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S); 3527 void 3528 EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S); 3529 void EmitOMPTeamsDirective(const OMPTeamsDirective &S); 3530 void 3531 EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S); 3532 void EmitOMPCancelDirective(const OMPCancelDirective &S); 3533 void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S); 3534 void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S); 3535 void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S); 3536 void EmitOMPMasterTaskLoopDirective(const OMPMasterTaskLoopDirective &S); 3537 void 3538 EmitOMPMasterTaskLoopSimdDirective(const OMPMasterTaskLoopSimdDirective &S); 3539 void EmitOMPParallelMasterTaskLoopDirective( 3540 const OMPParallelMasterTaskLoopDirective &S); 3541 void EmitOMPParallelMasterTaskLoopSimdDirective( 3542 const OMPParallelMasterTaskLoopSimdDirective &S); 3543 void EmitOMPDistributeDirective(const OMPDistributeDirective &S); 3544 void EmitOMPDistributeParallelForDirective( 3545 const OMPDistributeParallelForDirective &S); 3546 void EmitOMPDistributeParallelForSimdDirective( 3547 const OMPDistributeParallelForSimdDirective &S); 3548 void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S); 3549 void EmitOMPTargetParallelForSimdDirective( 3550 const OMPTargetParallelForSimdDirective &S); 3551 void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S); 3552 void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S); 3553 void 3554 EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S); 3555 void EmitOMPTeamsDistributeParallelForSimdDirective( 3556 const OMPTeamsDistributeParallelForSimdDirective &S); 3557 void EmitOMPTeamsDistributeParallelForDirective( 3558 const OMPTeamsDistributeParallelForDirective &S); 3559 void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S); 3560 void EmitOMPTargetTeamsDistributeDirective( 3561 const OMPTargetTeamsDistributeDirective &S); 3562 void EmitOMPTargetTeamsDistributeParallelForDirective( 3563 const OMPTargetTeamsDistributeParallelForDirective &S); 3564 void EmitOMPTargetTeamsDistributeParallelForSimdDirective( 3565 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 3566 void EmitOMPTargetTeamsDistributeSimdDirective( 3567 const OMPTargetTeamsDistributeSimdDirective &S); 3568 void EmitOMPGenericLoopDirective(const OMPGenericLoopDirective &S); 3569 void EmitOMPInteropDirective(const OMPInteropDirective &S); 3570 3571 /// Emit device code for the target directive. 3572 static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 3573 StringRef ParentName, 3574 const OMPTargetDirective &S); 3575 static void 3576 EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 3577 const OMPTargetParallelDirective &S); 3578 /// Emit device code for the target parallel for directive. 3579 static void EmitOMPTargetParallelForDeviceFunction( 3580 CodeGenModule &CGM, StringRef ParentName, 3581 const OMPTargetParallelForDirective &S); 3582 /// Emit device code for the target parallel for simd directive. 3583 static void EmitOMPTargetParallelForSimdDeviceFunction( 3584 CodeGenModule &CGM, StringRef ParentName, 3585 const OMPTargetParallelForSimdDirective &S); 3586 /// Emit device code for the target teams directive. 3587 static void 3588 EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 3589 const OMPTargetTeamsDirective &S); 3590 /// Emit device code for the target teams distribute directive. 3591 static void EmitOMPTargetTeamsDistributeDeviceFunction( 3592 CodeGenModule &CGM, StringRef ParentName, 3593 const OMPTargetTeamsDistributeDirective &S); 3594 /// Emit device code for the target teams distribute simd directive. 3595 static void EmitOMPTargetTeamsDistributeSimdDeviceFunction( 3596 CodeGenModule &CGM, StringRef ParentName, 3597 const OMPTargetTeamsDistributeSimdDirective &S); 3598 /// Emit device code for the target simd directive. 3599 static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM, 3600 StringRef ParentName, 3601 const OMPTargetSimdDirective &S); 3602 /// Emit device code for the target teams distribute parallel for simd 3603 /// directive. 3604 static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( 3605 CodeGenModule &CGM, StringRef ParentName, 3606 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 3607 3608 static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 3609 CodeGenModule &CGM, StringRef ParentName, 3610 const OMPTargetTeamsDistributeParallelForDirective &S); 3611 3612 /// Emit the Stmt \p S and return its topmost canonical loop, if any. 3613 /// TODO: The \p Depth paramter is not yet implemented and must be 1. In the 3614 /// future it is meant to be the number of loops expected in the loop nests 3615 /// (usually specified by the "collapse" clause) that are collapsed to a 3616 /// single loop by this function. 3617 llvm::CanonicalLoopInfo *EmitOMPCollapsedCanonicalLoopNest(const Stmt *S, 3618 int Depth); 3619 3620 /// Emit an OMPCanonicalLoop using the OpenMPIRBuilder. 3621 void EmitOMPCanonicalLoop(const OMPCanonicalLoop *S); 3622 3623 /// Emit inner loop of the worksharing/simd construct. 3624 /// 3625 /// \param S Directive, for which the inner loop must be emitted. 3626 /// \param RequiresCleanup true, if directive has some associated private 3627 /// variables. 3628 /// \param LoopCond Bollean condition for loop continuation. 3629 /// \param IncExpr Increment expression for loop control variable. 3630 /// \param BodyGen Generator for the inner body of the inner loop. 3631 /// \param PostIncGen Genrator for post-increment code (required for ordered 3632 /// loop directvies). 3633 void EmitOMPInnerLoop( 3634 const OMPExecutableDirective &S, bool RequiresCleanup, 3635 const Expr *LoopCond, const Expr *IncExpr, 3636 const llvm::function_ref<void(CodeGenFunction &)> BodyGen, 3637 const llvm::function_ref<void(CodeGenFunction &)> PostIncGen); 3638 3639 JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind); 3640 /// Emit initial code for loop counters of loop-based directives. 3641 void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S, 3642 OMPPrivateScope &LoopScope); 3643 3644 /// Helper for the OpenMP loop directives. 3645 void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit); 3646 3647 /// Emit code for the worksharing loop-based directive. 3648 /// \return true, if this construct has any lastprivate clause, false - 3649 /// otherwise. 3650 bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB, 3651 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 3652 const CodeGenDispatchBoundsTy &CGDispatchBounds); 3653 3654 /// Emit code for the distribute loop-based directive. 3655 void EmitOMPDistributeLoop(const OMPLoopDirective &S, 3656 const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr); 3657 3658 /// Helpers for the OpenMP loop directives. 3659 void EmitOMPSimdInit(const OMPLoopDirective &D); 3660 void EmitOMPSimdFinal( 3661 const OMPLoopDirective &D, 3662 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); 3663 3664 /// Emits the lvalue for the expression with possibly captured variable. 3665 LValue EmitOMPSharedLValue(const Expr *E); 3666 3667 private: 3668 /// Helpers for blocks. 3669 llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); 3670 3671 /// struct with the values to be passed to the OpenMP loop-related functions 3672 struct OMPLoopArguments { 3673 /// loop lower bound 3674 Address LB = Address::invalid(); 3675 /// loop upper bound 3676 Address UB = Address::invalid(); 3677 /// loop stride 3678 Address ST = Address::invalid(); 3679 /// isLastIteration argument for runtime functions 3680 Address IL = Address::invalid(); 3681 /// Chunk value generated by sema 3682 llvm::Value *Chunk = nullptr; 3683 /// EnsureUpperBound 3684 Expr *EUB = nullptr; 3685 /// IncrementExpression 3686 Expr *IncExpr = nullptr; 3687 /// Loop initialization 3688 Expr *Init = nullptr; 3689 /// Loop exit condition 3690 Expr *Cond = nullptr; 3691 /// Update of LB after a whole chunk has been executed 3692 Expr *NextLB = nullptr; 3693 /// Update of UB after a whole chunk has been executed 3694 Expr *NextUB = nullptr; 3695 OMPLoopArguments() = default; 3696 OMPLoopArguments(Address LB, Address UB, Address ST, Address IL, 3697 llvm::Value *Chunk = nullptr, Expr *EUB = nullptr, 3698 Expr *IncExpr = nullptr, Expr *Init = nullptr, 3699 Expr *Cond = nullptr, Expr *NextLB = nullptr, 3700 Expr *NextUB = nullptr) 3701 : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB), 3702 IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB), 3703 NextUB(NextUB) {} 3704 }; 3705 void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic, 3706 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, 3707 const OMPLoopArguments &LoopArgs, 3708 const CodeGenLoopTy &CodeGenLoop, 3709 const CodeGenOrderedTy &CodeGenOrdered); 3710 void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind, 3711 bool IsMonotonic, const OMPLoopDirective &S, 3712 OMPPrivateScope &LoopScope, bool Ordered, 3713 const OMPLoopArguments &LoopArgs, 3714 const CodeGenDispatchBoundsTy &CGDispatchBounds); 3715 void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind, 3716 const OMPLoopDirective &S, 3717 OMPPrivateScope &LoopScope, 3718 const OMPLoopArguments &LoopArgs, 3719 const CodeGenLoopTy &CodeGenLoopContent); 3720 /// Emit code for sections directive. 3721 void EmitSections(const OMPExecutableDirective &S); 3722 3723 public: 3724 3725 //===--------------------------------------------------------------------===// 3726 // LValue Expression Emission 3727 //===--------------------------------------------------------------------===// 3728 3729 /// Create a check that a scalar RValue is non-null. 3730 llvm::Value *EmitNonNullRValueCheck(RValue RV, QualType T); 3731 3732 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 3733 RValue GetUndefRValue(QualType Ty); 3734 3735 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 3736 /// and issue an ErrorUnsupported style diagnostic (using the 3737 /// provided Name). 3738 RValue EmitUnsupportedRValue(const Expr *E, 3739 const char *Name); 3740 3741 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 3742 /// an ErrorUnsupported style diagnostic (using the provided Name). 3743 LValue EmitUnsupportedLValue(const Expr *E, 3744 const char *Name); 3745 3746 /// EmitLValue - Emit code to compute a designator that specifies the location 3747 /// of the expression. 3748 /// 3749 /// This can return one of two things: a simple address or a bitfield 3750 /// reference. In either case, the LLVM Value* in the LValue structure is 3751 /// guaranteed to be an LLVM pointer type. 3752 /// 3753 /// If this returns a bitfield reference, nothing about the pointee type of 3754 /// the LLVM value is known: For example, it may not be a pointer to an 3755 /// integer. 3756 /// 3757 /// If this returns a normal address, and if the lvalue's C type is fixed 3758 /// size, this method guarantees that the returned pointer type will point to 3759 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 3760 /// variable length type, this is not possible. 3761 /// 3762 LValue EmitLValue(const Expr *E); 3763 3764 /// Same as EmitLValue but additionally we generate checking code to 3765 /// guard against undefined behavior. This is only suitable when we know 3766 /// that the address will be used to access the object. 3767 LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK); 3768 3769 RValue convertTempToRValue(Address addr, QualType type, 3770 SourceLocation Loc); 3771 3772 void EmitAtomicInit(Expr *E, LValue lvalue); 3773 3774 bool LValueIsSuitableForInlineAtomic(LValue Src); 3775 3776 RValue EmitAtomicLoad(LValue LV, SourceLocation SL, 3777 AggValueSlot Slot = AggValueSlot::ignored()); 3778 3779 RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc, 3780 llvm::AtomicOrdering AO, bool IsVolatile = false, 3781 AggValueSlot slot = AggValueSlot::ignored()); 3782 3783 void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit); 3784 3785 void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO, 3786 bool IsVolatile, bool isInit); 3787 3788 std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange( 3789 LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, 3790 llvm::AtomicOrdering Success = 3791 llvm::AtomicOrdering::SequentiallyConsistent, 3792 llvm::AtomicOrdering Failure = 3793 llvm::AtomicOrdering::SequentiallyConsistent, 3794 bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored()); 3795 3796 void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO, 3797 const llvm::function_ref<RValue(RValue)> &UpdateOp, 3798 bool IsVolatile); 3799 3800 /// EmitToMemory - Change a scalar value from its value 3801 /// representation to its in-memory representation. 3802 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 3803 3804 /// EmitFromMemory - Change a scalar value from its memory 3805 /// representation to its value representation. 3806 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 3807 3808 /// Check if the scalar \p Value is within the valid range for the given 3809 /// type \p Ty. 3810 /// 3811 /// Returns true if a check is needed (even if the range is unknown). 3812 bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 3813 SourceLocation Loc); 3814 3815 /// EmitLoadOfScalar - Load a scalar value from an address, taking 3816 /// care to appropriately convert from the memory representation to 3817 /// the LLVM value representation. 3818 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 3819 SourceLocation Loc, 3820 AlignmentSource Source = AlignmentSource::Type, 3821 bool isNontemporal = false) { 3822 return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source), 3823 CGM.getTBAAAccessInfo(Ty), isNontemporal); 3824 } 3825 3826 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 3827 SourceLocation Loc, LValueBaseInfo BaseInfo, 3828 TBAAAccessInfo TBAAInfo, 3829 bool isNontemporal = false); 3830 3831 /// EmitLoadOfScalar - Load a scalar value from an address, taking 3832 /// care to appropriately convert from the memory representation to 3833 /// the LLVM value representation. The l-value must be a simple 3834 /// l-value. 3835 llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc); 3836 3837 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3838 /// care to appropriately convert from the memory representation to 3839 /// the LLVM value representation. 3840 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 3841 bool Volatile, QualType Ty, 3842 AlignmentSource Source = AlignmentSource::Type, 3843 bool isInit = false, bool isNontemporal = false) { 3844 EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source), 3845 CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal); 3846 } 3847 3848 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 3849 bool Volatile, QualType Ty, 3850 LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo, 3851 bool isInit = false, bool isNontemporal = false); 3852 3853 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3854 /// care to appropriately convert from the memory representation to 3855 /// the LLVM value representation. The l-value must be a simple 3856 /// l-value. The isInit flag indicates whether this is an initialization. 3857 /// If so, atomic qualifiers are ignored and the store is always non-atomic. 3858 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); 3859 3860 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 3861 /// this method emits the address of the lvalue, then loads the result as an 3862 /// rvalue, returning the rvalue. 3863 RValue EmitLoadOfLValue(LValue V, SourceLocation Loc); 3864 RValue EmitLoadOfExtVectorElementLValue(LValue V); 3865 RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc); 3866 RValue EmitLoadOfGlobalRegLValue(LValue LV); 3867 3868 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 3869 /// lvalue, where both are guaranteed to the have the same type, and that type 3870 /// is 'Ty'. 3871 void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false); 3872 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 3873 void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst); 3874 3875 /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints 3876 /// as EmitStoreThroughLValue. 3877 /// 3878 /// \param Result [out] - If non-null, this will be set to a Value* for the 3879 /// bit-field contents after the store, appropriate for use as the result of 3880 /// an assignment to the bit-field. 3881 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 3882 llvm::Value **Result=nullptr); 3883 3884 /// Emit an l-value for an assignment (simple or compound) of complex type. 3885 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 3886 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 3887 LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 3888 llvm::Value *&Result); 3889 3890 // Note: only available for agg return types 3891 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 3892 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 3893 // Note: only available for agg return types 3894 LValue EmitCallExprLValue(const CallExpr *E); 3895 // Note: only available for agg return types 3896 LValue EmitVAArgExprLValue(const VAArgExpr *E); 3897 LValue EmitDeclRefLValue(const DeclRefExpr *E); 3898 LValue EmitStringLiteralLValue(const StringLiteral *E); 3899 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 3900 LValue EmitPredefinedLValue(const PredefinedExpr *E); 3901 LValue EmitUnaryOpLValue(const UnaryOperator *E); 3902 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3903 bool Accessed = false); 3904 LValue EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E); 3905 LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3906 bool IsLowerBound = true); 3907 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 3908 LValue EmitMemberExpr(const MemberExpr *E); 3909 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 3910 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 3911 LValue EmitInitListLValue(const InitListExpr *E); 3912 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 3913 LValue EmitCastLValue(const CastExpr *E); 3914 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 3915 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 3916 3917 Address EmitExtVectorElementLValue(LValue V); 3918 3919 RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc); 3920 3921 Address EmitArrayToPointerDecay(const Expr *Array, 3922 LValueBaseInfo *BaseInfo = nullptr, 3923 TBAAAccessInfo *TBAAInfo = nullptr); 3924 3925 class ConstantEmission { 3926 llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; 3927 ConstantEmission(llvm::Constant *C, bool isReference) 3928 : ValueAndIsReference(C, isReference) {} 3929 public: 3930 ConstantEmission() {} 3931 static ConstantEmission forReference(llvm::Constant *C) { 3932 return ConstantEmission(C, true); 3933 } 3934 static ConstantEmission forValue(llvm::Constant *C) { 3935 return ConstantEmission(C, false); 3936 } 3937 3938 explicit operator bool() const { 3939 return ValueAndIsReference.getOpaqueValue() != nullptr; 3940 } 3941 3942 bool isReference() const { return ValueAndIsReference.getInt(); } 3943 LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { 3944 assert(isReference()); 3945 return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), 3946 refExpr->getType()); 3947 } 3948 3949 llvm::Constant *getValue() const { 3950 assert(!isReference()); 3951 return ValueAndIsReference.getPointer(); 3952 } 3953 }; 3954 3955 ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); 3956 ConstantEmission tryEmitAsConstant(const MemberExpr *ME); 3957 llvm::Value *emitScalarConstant(const ConstantEmission &Constant, Expr *E); 3958 3959 RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, 3960 AggValueSlot slot = AggValueSlot::ignored()); 3961 LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); 3962 3963 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 3964 const ObjCIvarDecl *Ivar); 3965 LValue EmitLValueForField(LValue Base, const FieldDecl* Field); 3966 LValue EmitLValueForLambdaField(const FieldDecl *Field); 3967 3968 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 3969 /// if the Field is a reference, this will return the address of the reference 3970 /// and not the address of the value stored in the reference. 3971 LValue EmitLValueForFieldInitialization(LValue Base, 3972 const FieldDecl* Field); 3973 3974 LValue EmitLValueForIvar(QualType ObjectTy, 3975 llvm::Value* Base, const ObjCIvarDecl *Ivar, 3976 unsigned CVRQualifiers); 3977 3978 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 3979 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 3980 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 3981 LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E); 3982 3983 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 3984 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 3985 LValue EmitStmtExprLValue(const StmtExpr *E); 3986 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 3987 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 3988 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init); 3989 3990 //===--------------------------------------------------------------------===// 3991 // Scalar Expression Emission 3992 //===--------------------------------------------------------------------===// 3993 3994 /// EmitCall - Generate a call of the given function, expecting the given 3995 /// result type, and using the given argument list which specifies both the 3996 /// LLVM arguments and the types they were derived from. 3997 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 3998 ReturnValueSlot ReturnValue, const CallArgList &Args, 3999 llvm::CallBase **callOrInvoke, bool IsMustTail, 4000 SourceLocation Loc); 4001 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 4002 ReturnValueSlot ReturnValue, const CallArgList &Args, 4003 llvm::CallBase **callOrInvoke = nullptr, 4004 bool IsMustTail = false) { 4005 return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke, 4006 IsMustTail, SourceLocation()); 4007 } 4008 RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E, 4009 ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr); 4010 RValue EmitCallExpr(const CallExpr *E, 4011 ReturnValueSlot ReturnValue = ReturnValueSlot()); 4012 RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 4013 CGCallee EmitCallee(const Expr *E); 4014 4015 void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl); 4016 void checkTargetFeatures(SourceLocation Loc, const FunctionDecl *TargetDecl); 4017 4018 llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee, 4019 const Twine &name = ""); 4020 llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee, 4021 ArrayRef<llvm::Value *> args, 4022 const Twine &name = ""); 4023 llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4024 const Twine &name = ""); 4025 llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4026 ArrayRef<llvm::Value *> args, 4027 const Twine &name = ""); 4028 4029 SmallVector<llvm::OperandBundleDef, 1> 4030 getBundlesForFunclet(llvm::Value *Callee); 4031 4032 llvm::CallBase *EmitCallOrInvoke(llvm::FunctionCallee Callee, 4033 ArrayRef<llvm::Value *> Args, 4034 const Twine &Name = ""); 4035 llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4036 ArrayRef<llvm::Value *> args, 4037 const Twine &name = ""); 4038 llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4039 const Twine &name = ""); 4040 void EmitNoreturnRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4041 ArrayRef<llvm::Value *> args); 4042 4043 CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 4044 NestedNameSpecifier *Qual, 4045 llvm::Type *Ty); 4046 4047 CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 4048 CXXDtorType Type, 4049 const CXXRecordDecl *RD); 4050 4051 // Return the copy constructor name with the prefix "__copy_constructor_" 4052 // removed. 4053 static std::string getNonTrivialCopyConstructorStr(QualType QT, 4054 CharUnits Alignment, 4055 bool IsVolatile, 4056 ASTContext &Ctx); 4057 4058 // Return the destructor name with the prefix "__destructor_" removed. 4059 static std::string getNonTrivialDestructorStr(QualType QT, 4060 CharUnits Alignment, 4061 bool IsVolatile, 4062 ASTContext &Ctx); 4063 4064 // These functions emit calls to the special functions of non-trivial C 4065 // structs. 4066 void defaultInitNonTrivialCStructVar(LValue Dst); 4067 void callCStructDefaultConstructor(LValue Dst); 4068 void callCStructDestructor(LValue Dst); 4069 void callCStructCopyConstructor(LValue Dst, LValue Src); 4070 void callCStructMoveConstructor(LValue Dst, LValue Src); 4071 void callCStructCopyAssignmentOperator(LValue Dst, LValue Src); 4072 void callCStructMoveAssignmentOperator(LValue Dst, LValue Src); 4073 4074 RValue 4075 EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method, 4076 const CGCallee &Callee, 4077 ReturnValueSlot ReturnValue, llvm::Value *This, 4078 llvm::Value *ImplicitParam, 4079 QualType ImplicitParamTy, const CallExpr *E, 4080 CallArgList *RtlArgs); 4081 RValue EmitCXXDestructorCall(GlobalDecl Dtor, const CGCallee &Callee, 4082 llvm::Value *This, QualType ThisTy, 4083 llvm::Value *ImplicitParam, 4084 QualType ImplicitParamTy, const CallExpr *E); 4085 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 4086 ReturnValueSlot ReturnValue); 4087 RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE, 4088 const CXXMethodDecl *MD, 4089 ReturnValueSlot ReturnValue, 4090 bool HasQualifier, 4091 NestedNameSpecifier *Qualifier, 4092 bool IsArrow, const Expr *Base); 4093 // Compute the object pointer. 4094 Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base, 4095 llvm::Value *memberPtr, 4096 const MemberPointerType *memberPtrType, 4097 LValueBaseInfo *BaseInfo = nullptr, 4098 TBAAAccessInfo *TBAAInfo = nullptr); 4099 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 4100 ReturnValueSlot ReturnValue); 4101 4102 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 4103 const CXXMethodDecl *MD, 4104 ReturnValueSlot ReturnValue); 4105 RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E); 4106 4107 RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 4108 ReturnValueSlot ReturnValue); 4109 4110 RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E); 4111 RValue EmitAMDGPUDevicePrintfCallExpr(const CallExpr *E); 4112 RValue EmitOpenMPDevicePrintfCallExpr(const CallExpr *E); 4113 4114 RValue EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID, 4115 const CallExpr *E, ReturnValueSlot ReturnValue); 4116 4117 RValue emitRotate(const CallExpr *E, bool IsRotateRight); 4118 4119 /// Emit IR for __builtin_os_log_format. 4120 RValue emitBuiltinOSLogFormat(const CallExpr &E); 4121 4122 /// Emit IR for __builtin_is_aligned. 4123 RValue EmitBuiltinIsAligned(const CallExpr *E); 4124 /// Emit IR for __builtin_align_up/__builtin_align_down. 4125 RValue EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp); 4126 4127 llvm::Function *generateBuiltinOSLogHelperFunction( 4128 const analyze_os_log::OSLogBufferLayout &Layout, 4129 CharUnits BufferAlignment); 4130 4131 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 4132 4133 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 4134 /// is unhandled by the current target. 4135 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4136 ReturnValueSlot ReturnValue); 4137 4138 llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty, 4139 const llvm::CmpInst::Predicate Fp, 4140 const llvm::CmpInst::Predicate Ip, 4141 const llvm::Twine &Name = ""); 4142 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4143 ReturnValueSlot ReturnValue, 4144 llvm::Triple::ArchType Arch); 4145 llvm::Value *EmitARMMVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4146 ReturnValueSlot ReturnValue, 4147 llvm::Triple::ArchType Arch); 4148 llvm::Value *EmitARMCDEBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4149 ReturnValueSlot ReturnValue, 4150 llvm::Triple::ArchType Arch); 4151 llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::IntegerType *ITy, 4152 QualType RTy); 4153 llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::ArrayType *ATy, 4154 QualType RTy); 4155 4156 llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID, 4157 unsigned LLVMIntrinsic, 4158 unsigned AltLLVMIntrinsic, 4159 const char *NameHint, 4160 unsigned Modifier, 4161 const CallExpr *E, 4162 SmallVectorImpl<llvm::Value *> &Ops, 4163 Address PtrOp0, Address PtrOp1, 4164 llvm::Triple::ArchType Arch); 4165 4166 llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID, 4167 unsigned Modifier, llvm::Type *ArgTy, 4168 const CallExpr *E); 4169 llvm::Value *EmitNeonCall(llvm::Function *F, 4170 SmallVectorImpl<llvm::Value*> &O, 4171 const char *name, 4172 unsigned shift = 0, bool rightshift = false); 4173 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx, 4174 const llvm::ElementCount &Count); 4175 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 4176 llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, 4177 bool negateForRightShift); 4178 llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt, 4179 llvm::Type *Ty, bool usgn, const char *name); 4180 llvm::Value *vectorWrapScalar16(llvm::Value *Op); 4181 /// SVEBuiltinMemEltTy - Returns the memory element type for this memory 4182 /// access builtin. Only required if it can't be inferred from the base 4183 /// pointer operand. 4184 llvm::Type *SVEBuiltinMemEltTy(const SVETypeFlags &TypeFlags); 4185 4186 SmallVector<llvm::Type *, 2> 4187 getSVEOverloadTypes(const SVETypeFlags &TypeFlags, llvm::Type *ReturnType, 4188 ArrayRef<llvm::Value *> Ops); 4189 llvm::Type *getEltType(const SVETypeFlags &TypeFlags); 4190 llvm::ScalableVectorType *getSVEType(const SVETypeFlags &TypeFlags); 4191 llvm::ScalableVectorType *getSVEPredType(const SVETypeFlags &TypeFlags); 4192 llvm::Value *EmitSVEAllTruePred(const SVETypeFlags &TypeFlags); 4193 llvm::Value *EmitSVEDupX(llvm::Value *Scalar); 4194 llvm::Value *EmitSVEDupX(llvm::Value *Scalar, llvm::Type *Ty); 4195 llvm::Value *EmitSVEReinterpret(llvm::Value *Val, llvm::Type *Ty); 4196 llvm::Value *EmitSVEPMull(const SVETypeFlags &TypeFlags, 4197 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4198 unsigned BuiltinID); 4199 llvm::Value *EmitSVEMovl(const SVETypeFlags &TypeFlags, 4200 llvm::ArrayRef<llvm::Value *> Ops, 4201 unsigned BuiltinID); 4202 llvm::Value *EmitSVEPredicateCast(llvm::Value *Pred, 4203 llvm::ScalableVectorType *VTy); 4204 llvm::Value *EmitSVEGatherLoad(const SVETypeFlags &TypeFlags, 4205 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4206 unsigned IntID); 4207 llvm::Value *EmitSVEScatterStore(const SVETypeFlags &TypeFlags, 4208 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4209 unsigned IntID); 4210 llvm::Value *EmitSVEMaskedLoad(const CallExpr *, llvm::Type *ReturnTy, 4211 SmallVectorImpl<llvm::Value *> &Ops, 4212 unsigned BuiltinID, bool IsZExtReturn); 4213 llvm::Value *EmitSVEMaskedStore(const CallExpr *, 4214 SmallVectorImpl<llvm::Value *> &Ops, 4215 unsigned BuiltinID); 4216 llvm::Value *EmitSVEPrefetchLoad(const SVETypeFlags &TypeFlags, 4217 SmallVectorImpl<llvm::Value *> &Ops, 4218 unsigned BuiltinID); 4219 llvm::Value *EmitSVEGatherPrefetch(const SVETypeFlags &TypeFlags, 4220 SmallVectorImpl<llvm::Value *> &Ops, 4221 unsigned IntID); 4222 llvm::Value *EmitSVEStructLoad(const SVETypeFlags &TypeFlags, 4223 SmallVectorImpl<llvm::Value *> &Ops, 4224 unsigned IntID); 4225 llvm::Value *EmitSVEStructStore(const SVETypeFlags &TypeFlags, 4226 SmallVectorImpl<llvm::Value *> &Ops, 4227 unsigned IntID); 4228 llvm::Value *EmitAArch64SVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4229 4230 llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4231 llvm::Triple::ArchType Arch); 4232 llvm::Value *EmitBPFBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4233 4234 llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); 4235 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4236 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4237 llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4238 llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4239 llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4240 llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID, 4241 const CallExpr *E); 4242 llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4243 llvm::Value *EmitRISCVBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4244 ReturnValueSlot ReturnValue); 4245 bool ProcessOrderScopeAMDGCN(llvm::Value *Order, llvm::Value *Scope, 4246 llvm::AtomicOrdering &AO, 4247 llvm::SyncScope::ID &SSID); 4248 4249 enum class MSVCIntrin; 4250 llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E); 4251 4252 llvm::Value *EmitBuiltinAvailable(const VersionTuple &Version); 4253 4254 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 4255 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 4256 llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); 4257 llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); 4258 llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); 4259 llvm::Value *EmitObjCCollectionLiteral(const Expr *E, 4260 const ObjCMethodDecl *MethodWithObjects); 4261 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 4262 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 4263 ReturnValueSlot Return = ReturnValueSlot()); 4264 4265 /// Retrieves the default cleanup kind for an ARC cleanup. 4266 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. 4267 CleanupKind getARCCleanupKind() { 4268 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 4269 ? NormalAndEHCleanup : NormalCleanup; 4270 } 4271 4272 // ARC primitives. 4273 void EmitARCInitWeak(Address addr, llvm::Value *value); 4274 void EmitARCDestroyWeak(Address addr); 4275 llvm::Value *EmitARCLoadWeak(Address addr); 4276 llvm::Value *EmitARCLoadWeakRetained(Address addr); 4277 llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored); 4278 void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); 4279 void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); 4280 void EmitARCCopyWeak(Address dst, Address src); 4281 void EmitARCMoveWeak(Address dst, Address src); 4282 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 4283 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 4284 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 4285 bool resultIgnored); 4286 llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value, 4287 bool resultIgnored); 4288 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 4289 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 4290 llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); 4291 void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise); 4292 void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 4293 llvm::Value *EmitARCAutorelease(llvm::Value *value); 4294 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 4295 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 4296 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 4297 llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value); 4298 4299 llvm::Value *EmitObjCAutorelease(llvm::Value *value, llvm::Type *returnType); 4300 llvm::Value *EmitObjCRetainNonBlock(llvm::Value *value, 4301 llvm::Type *returnType); 4302 void EmitObjCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 4303 4304 std::pair<LValue,llvm::Value*> 4305 EmitARCStoreAutoreleasing(const BinaryOperator *e); 4306 std::pair<LValue,llvm::Value*> 4307 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 4308 std::pair<LValue,llvm::Value*> 4309 EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored); 4310 4311 llvm::Value *EmitObjCAlloc(llvm::Value *value, 4312 llvm::Type *returnType); 4313 llvm::Value *EmitObjCAllocWithZone(llvm::Value *value, 4314 llvm::Type *returnType); 4315 llvm::Value *EmitObjCAllocInit(llvm::Value *value, llvm::Type *resultType); 4316 4317 llvm::Value *EmitObjCThrowOperand(const Expr *expr); 4318 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 4319 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 4320 4321 llvm::Value *EmitARCExtendBlockObject(const Expr *expr); 4322 llvm::Value *EmitARCReclaimReturnedObject(const Expr *e, 4323 bool allowUnsafeClaim); 4324 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 4325 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 4326 llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr); 4327 4328 void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values); 4329 4330 void EmitARCNoopIntrinsicUse(ArrayRef<llvm::Value *> values); 4331 4332 static Destroyer destroyARCStrongImprecise; 4333 static Destroyer destroyARCStrongPrecise; 4334 static Destroyer destroyARCWeak; 4335 static Destroyer emitARCIntrinsicUse; 4336 static Destroyer destroyNonTrivialCStruct; 4337 4338 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 4339 llvm::Value *EmitObjCAutoreleasePoolPush(); 4340 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 4341 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 4342 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 4343 4344 /// Emits a reference binding to the passed in expression. 4345 RValue EmitReferenceBindingToExpr(const Expr *E); 4346 4347 //===--------------------------------------------------------------------===// 4348 // Expression Emission 4349 //===--------------------------------------------------------------------===// 4350 4351 // Expressions are broken into three classes: scalar, complex, aggregate. 4352 4353 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 4354 /// scalar type, returning the result. 4355 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 4356 4357 /// Emit a conversion from the specified type to the specified destination 4358 /// type, both of which are LLVM scalar types. 4359 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 4360 QualType DstTy, SourceLocation Loc); 4361 4362 /// Emit a conversion from the specified complex type to the specified 4363 /// destination type, where the destination type is an LLVM scalar type. 4364 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 4365 QualType DstTy, 4366 SourceLocation Loc); 4367 4368 /// EmitAggExpr - Emit the computation of the specified expression 4369 /// of aggregate type. The result is computed into the given slot, 4370 /// which may be null to indicate that the value is not needed. 4371 void EmitAggExpr(const Expr *E, AggValueSlot AS); 4372 4373 /// EmitAggExprToLValue - Emit the computation of the specified expression of 4374 /// aggregate type into a temporary LValue. 4375 LValue EmitAggExprToLValue(const Expr *E); 4376 4377 /// Build all the stores needed to initialize an aggregate at Dest with the 4378 /// value Val. 4379 void EmitAggregateStore(llvm::Value *Val, Address Dest, bool DestIsVolatile); 4380 4381 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 4382 /// make sure it survives garbage collection until this point. 4383 void EmitExtendGCLifetime(llvm::Value *object); 4384 4385 /// EmitComplexExpr - Emit the computation of the specified expression of 4386 /// complex type, returning the result. 4387 ComplexPairTy EmitComplexExpr(const Expr *E, 4388 bool IgnoreReal = false, 4389 bool IgnoreImag = false); 4390 4391 /// EmitComplexExprIntoLValue - Emit the given expression of complex 4392 /// type and place its result into the specified l-value. 4393 void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit); 4394 4395 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 4396 void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit); 4397 4398 /// EmitLoadOfComplex - Load a complex number from the specified l-value. 4399 ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc); 4400 4401 Address emitAddrOfRealComponent(Address complex, QualType complexType); 4402 Address emitAddrOfImagComponent(Address complex, QualType complexType); 4403 4404 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 4405 /// global variable that has already been created for it. If the initializer 4406 /// has a different type than GV does, this may free GV and return a different 4407 /// one. Otherwise it just returns GV. 4408 llvm::GlobalVariable * 4409 AddInitializerToStaticVarDecl(const VarDecl &D, 4410 llvm::GlobalVariable *GV); 4411 4412 // Emit an @llvm.invariant.start call for the given memory region. 4413 void EmitInvariantStart(llvm::Constant *Addr, CharUnits Size); 4414 4415 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 4416 /// variable with global storage. 4417 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::GlobalVariable *GV, 4418 bool PerformInit); 4419 4420 llvm::Function *createAtExitStub(const VarDecl &VD, llvm::FunctionCallee Dtor, 4421 llvm::Constant *Addr); 4422 4423 llvm::Function *createTLSAtExitStub(const VarDecl &VD, 4424 llvm::FunctionCallee Dtor, 4425 llvm::Constant *Addr, 4426 llvm::FunctionCallee &AtExit); 4427 4428 /// Call atexit() with a function that passes the given argument to 4429 /// the given function. 4430 void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::FunctionCallee fn, 4431 llvm::Constant *addr); 4432 4433 /// Call atexit() with function dtorStub. 4434 void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub); 4435 4436 /// Call unatexit() with function dtorStub. 4437 llvm::Value *unregisterGlobalDtorWithUnAtExit(llvm::Constant *dtorStub); 4438 4439 /// Emit code in this function to perform a guarded variable 4440 /// initialization. Guarded initializations are used when it's not 4441 /// possible to prove that an initialization will be done exactly 4442 /// once, e.g. with a static local variable or a static data member 4443 /// of a class template. 4444 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, 4445 bool PerformInit); 4446 4447 enum class GuardKind { VariableGuard, TlsGuard }; 4448 4449 /// Emit a branch to select whether or not to perform guarded initialization. 4450 void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit, 4451 llvm::BasicBlock *InitBlock, 4452 llvm::BasicBlock *NoInitBlock, 4453 GuardKind Kind, const VarDecl *D); 4454 4455 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 4456 /// variables. 4457 void 4458 GenerateCXXGlobalInitFunc(llvm::Function *Fn, 4459 ArrayRef<llvm::Function *> CXXThreadLocals, 4460 ConstantAddress Guard = ConstantAddress::invalid()); 4461 4462 /// GenerateCXXGlobalCleanUpFunc - Generates code for cleaning up global 4463 /// variables. 4464 void GenerateCXXGlobalCleanUpFunc( 4465 llvm::Function *Fn, 4466 ArrayRef<std::tuple<llvm::FunctionType *, llvm::WeakTrackingVH, 4467 llvm::Constant *>> 4468 DtorsOrStermFinalizers); 4469 4470 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 4471 const VarDecl *D, 4472 llvm::GlobalVariable *Addr, 4473 bool PerformInit); 4474 4475 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 4476 4477 void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp); 4478 4479 void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true); 4480 4481 RValue EmitAtomicExpr(AtomicExpr *E); 4482 4483 //===--------------------------------------------------------------------===// 4484 // Annotations Emission 4485 //===--------------------------------------------------------------------===// 4486 4487 /// Emit an annotation call (intrinsic). 4488 llvm::Value *EmitAnnotationCall(llvm::Function *AnnotationFn, 4489 llvm::Value *AnnotatedVal, 4490 StringRef AnnotationStr, 4491 SourceLocation Location, 4492 const AnnotateAttr *Attr); 4493 4494 /// Emit local annotations for the local variable V, declared by D. 4495 void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); 4496 4497 /// Emit field annotations for the given field & value. Returns the 4498 /// annotation result. 4499 Address EmitFieldAnnotations(const FieldDecl *D, Address V); 4500 4501 //===--------------------------------------------------------------------===// 4502 // Internal Helpers 4503 //===--------------------------------------------------------------------===// 4504 4505 /// ContainsLabel - Return true if the statement contains a label in it. If 4506 /// this statement is not executed normally, it not containing a label means 4507 /// that we can just remove the code. 4508 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 4509 4510 /// containsBreak - Return true if the statement contains a break out of it. 4511 /// If the statement (recursively) contains a switch or loop with a break 4512 /// inside of it, this is fine. 4513 static bool containsBreak(const Stmt *S); 4514 4515 /// Determine if the given statement might introduce a declaration into the 4516 /// current scope, by being a (possibly-labelled) DeclStmt. 4517 static bool mightAddDeclToScope(const Stmt *S); 4518 4519 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 4520 /// to a constant, or if it does but contains a label, return false. If it 4521 /// constant folds return true and set the boolean result in Result. 4522 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result, 4523 bool AllowLabels = false); 4524 4525 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 4526 /// to a constant, or if it does but contains a label, return false. If it 4527 /// constant folds return true and set the folded value. 4528 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result, 4529 bool AllowLabels = false); 4530 4531 /// isInstrumentedCondition - Determine whether the given condition is an 4532 /// instrumentable condition (i.e. no "&&" or "||"). 4533 static bool isInstrumentedCondition(const Expr *C); 4534 4535 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that 4536 /// increments a profile counter based on the semantics of the given logical 4537 /// operator opcode. This is used to instrument branch condition coverage 4538 /// for logical operators. 4539 void EmitBranchToCounterBlock(const Expr *Cond, BinaryOperator::Opcode LOp, 4540 llvm::BasicBlock *TrueBlock, 4541 llvm::BasicBlock *FalseBlock, 4542 uint64_t TrueCount = 0, 4543 Stmt::Likelihood LH = Stmt::LH_None, 4544 const Expr *CntrIdx = nullptr); 4545 4546 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 4547 /// if statement) to the specified blocks. Based on the condition, this might 4548 /// try to simplify the codegen of the conditional based on the branch. 4549 /// TrueCount should be the number of times we expect the condition to 4550 /// evaluate to true based on PGO data. 4551 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 4552 llvm::BasicBlock *FalseBlock, uint64_t TrueCount, 4553 Stmt::Likelihood LH = Stmt::LH_None); 4554 4555 /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is 4556 /// nonnull, if \p LHS is marked _Nonnull. 4557 void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc); 4558 4559 /// An enumeration which makes it easier to specify whether or not an 4560 /// operation is a subtraction. 4561 enum { NotSubtraction = false, IsSubtraction = true }; 4562 4563 /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to 4564 /// detect undefined behavior when the pointer overflow sanitizer is enabled. 4565 /// \p SignedIndices indicates whether any of the GEP indices are signed. 4566 /// \p IsSubtraction indicates whether the expression used to form the GEP 4567 /// is a subtraction. 4568 llvm::Value *EmitCheckedInBoundsGEP(llvm::Type *ElemTy, llvm::Value *Ptr, 4569 ArrayRef<llvm::Value *> IdxList, 4570 bool SignedIndices, 4571 bool IsSubtraction, 4572 SourceLocation Loc, 4573 const Twine &Name = ""); 4574 4575 /// Specifies which type of sanitizer check to apply when handling a 4576 /// particular builtin. 4577 enum BuiltinCheckKind { 4578 BCK_CTZPassedZero, 4579 BCK_CLZPassedZero, 4580 }; 4581 4582 /// Emits an argument for a call to a builtin. If the builtin sanitizer is 4583 /// enabled, a runtime check specified by \p Kind is also emitted. 4584 llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind); 4585 4586 /// Emit a description of a type in a format suitable for passing to 4587 /// a runtime sanitizer handler. 4588 llvm::Constant *EmitCheckTypeDescriptor(QualType T); 4589 4590 /// Convert a value into a format suitable for passing to a runtime 4591 /// sanitizer handler. 4592 llvm::Value *EmitCheckValue(llvm::Value *V); 4593 4594 /// Emit a description of a source location in a format suitable for 4595 /// passing to a runtime sanitizer handler. 4596 llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc); 4597 4598 /// Create a basic block that will either trap or call a handler function in 4599 /// the UBSan runtime with the provided arguments, and create a conditional 4600 /// branch to it. 4601 void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 4602 SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs, 4603 ArrayRef<llvm::Value *> DynamicArgs); 4604 4605 /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath 4606 /// if Cond if false. 4607 void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond, 4608 llvm::ConstantInt *TypeId, llvm::Value *Ptr, 4609 ArrayRef<llvm::Constant *> StaticArgs); 4610 4611 /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime 4612 /// checking is enabled. Otherwise, just emit an unreachable instruction. 4613 void EmitUnreachable(SourceLocation Loc); 4614 4615 /// Create a basic block that will call the trap intrinsic, and emit a 4616 /// conditional branch to it, for the -ftrapv checks. 4617 void EmitTrapCheck(llvm::Value *Checked, SanitizerHandler CheckHandlerID); 4618 4619 /// Emit a call to trap or debugtrap and attach function attribute 4620 /// "trap-func-name" if specified. 4621 llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID); 4622 4623 /// Emit a stub for the cross-DSO CFI check function. 4624 void EmitCfiCheckStub(); 4625 4626 /// Emit a cross-DSO CFI failure handling function. 4627 void EmitCfiCheckFail(); 4628 4629 /// Create a check for a function parameter that may potentially be 4630 /// declared as non-null. 4631 void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc, 4632 AbstractCallee AC, unsigned ParmNum); 4633 4634 /// EmitCallArg - Emit a single call argument. 4635 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 4636 4637 /// EmitDelegateCallArg - We are performing a delegate call; that 4638 /// is, the current function is delegating to another one. Produce 4639 /// a r-value suitable for passing the given parameter. 4640 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param, 4641 SourceLocation loc); 4642 4643 /// SetFPAccuracy - Set the minimum required accuracy of the given floating 4644 /// point operation, expressed as the maximum relative error in ulp. 4645 void SetFPAccuracy(llvm::Value *Val, float Accuracy); 4646 4647 /// Set the codegen fast-math flags. 4648 void SetFastMathFlags(FPOptions FPFeatures); 4649 4650 private: 4651 llvm::MDNode *getRangeForLoadFromType(QualType Ty); 4652 void EmitReturnOfRValue(RValue RV, QualType Ty); 4653 4654 void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New); 4655 4656 llvm::SmallVector<std::pair<llvm::WeakTrackingVH, llvm::Value *>, 4> 4657 DeferredReplacements; 4658 4659 /// Set the address of a local variable. 4660 void setAddrOfLocalVar(const VarDecl *VD, Address Addr) { 4661 assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!"); 4662 LocalDeclMap.insert({VD, Addr}); 4663 } 4664 4665 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 4666 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 4667 /// 4668 /// \param AI - The first function argument of the expansion. 4669 void ExpandTypeFromArgs(QualType Ty, LValue Dst, 4670 llvm::Function::arg_iterator &AI); 4671 4672 /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg 4673 /// Ty, into individual arguments on the provided vector \arg IRCallArgs, 4674 /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand. 4675 void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, 4676 SmallVectorImpl<llvm::Value *> &IRCallArgs, 4677 unsigned &IRCallArgPos); 4678 4679 std::pair<llvm::Value *, llvm::Type *> 4680 EmitAsmInput(const TargetInfo::ConstraintInfo &Info, const Expr *InputExpr, 4681 std::string &ConstraintStr); 4682 4683 std::pair<llvm::Value *, llvm::Type *> 4684 EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, LValue InputValue, 4685 QualType InputType, std::string &ConstraintStr, 4686 SourceLocation Loc); 4687 4688 /// Attempts to statically evaluate the object size of E. If that 4689 /// fails, emits code to figure the size of E out for us. This is 4690 /// pass_object_size aware. 4691 /// 4692 /// If EmittedExpr is non-null, this will use that instead of re-emitting E. 4693 llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type, 4694 llvm::IntegerType *ResType, 4695 llvm::Value *EmittedE, 4696 bool IsDynamic); 4697 4698 /// Emits the size of E, as required by __builtin_object_size. This 4699 /// function is aware of pass_object_size parameters, and will act accordingly 4700 /// if E is a parameter with the pass_object_size attribute. 4701 llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type, 4702 llvm::IntegerType *ResType, 4703 llvm::Value *EmittedE, 4704 bool IsDynamic); 4705 4706 void emitZeroOrPatternForAutoVarInit(QualType type, const VarDecl &D, 4707 Address Loc); 4708 4709 public: 4710 enum class EvaluationOrder { 4711 ///! No language constraints on evaluation order. 4712 Default, 4713 ///! Language semantics require left-to-right evaluation. 4714 ForceLeftToRight, 4715 ///! Language semantics require right-to-left evaluation. 4716 ForceRightToLeft 4717 }; 4718 4719 // Wrapper for function prototype sources. Wraps either a FunctionProtoType or 4720 // an ObjCMethodDecl. 4721 struct PrototypeWrapper { 4722 llvm::PointerUnion<const FunctionProtoType *, const ObjCMethodDecl *> P; 4723 4724 PrototypeWrapper(const FunctionProtoType *FT) : P(FT) {} 4725 PrototypeWrapper(const ObjCMethodDecl *MD) : P(MD) {} 4726 }; 4727 4728 void EmitCallArgs(CallArgList &Args, PrototypeWrapper Prototype, 4729 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 4730 AbstractCallee AC = AbstractCallee(), 4731 unsigned ParamsToSkip = 0, 4732 EvaluationOrder Order = EvaluationOrder::Default); 4733 4734 /// EmitPointerWithAlignment - Given an expression with a pointer type, 4735 /// emit the value and compute our best estimate of the alignment of the 4736 /// pointee. 4737 /// 4738 /// \param BaseInfo - If non-null, this will be initialized with 4739 /// information about the source of the alignment and the may-alias 4740 /// attribute. Note that this function will conservatively fall back on 4741 /// the type when it doesn't recognize the expression and may-alias will 4742 /// be set to false. 4743 /// 4744 /// One reasonable way to use this information is when there's a language 4745 /// guarantee that the pointer must be aligned to some stricter value, and 4746 /// we're simply trying to ensure that sufficiently obvious uses of under- 4747 /// aligned objects don't get miscompiled; for example, a placement new 4748 /// into the address of a local variable. In such a case, it's quite 4749 /// reasonable to just ignore the returned alignment when it isn't from an 4750 /// explicit source. 4751 Address EmitPointerWithAlignment(const Expr *Addr, 4752 LValueBaseInfo *BaseInfo = nullptr, 4753 TBAAAccessInfo *TBAAInfo = nullptr); 4754 4755 /// If \p E references a parameter with pass_object_size info or a constant 4756 /// array size modifier, emit the object size divided by the size of \p EltTy. 4757 /// Otherwise return null. 4758 llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy); 4759 4760 void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK); 4761 4762 struct MultiVersionResolverOption { 4763 llvm::Function *Function; 4764 struct Conds { 4765 StringRef Architecture; 4766 llvm::SmallVector<StringRef, 8> Features; 4767 4768 Conds(StringRef Arch, ArrayRef<StringRef> Feats) 4769 : Architecture(Arch), Features(Feats.begin(), Feats.end()) {} 4770 } Conditions; 4771 4772 MultiVersionResolverOption(llvm::Function *F, StringRef Arch, 4773 ArrayRef<StringRef> Feats) 4774 : Function(F), Conditions(Arch, Feats) {} 4775 }; 4776 4777 // Emits the body of a multiversion function's resolver. Assumes that the 4778 // options are already sorted in the proper order, with the 'default' option 4779 // last (if it exists). 4780 void EmitMultiVersionResolver(llvm::Function *Resolver, 4781 ArrayRef<MultiVersionResolverOption> Options); 4782 4783 private: 4784 QualType getVarArgType(const Expr *Arg); 4785 4786 void EmitDeclMetadata(); 4787 4788 BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType, 4789 const AutoVarEmission &emission); 4790 4791 void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); 4792 4793 llvm::Value *GetValueForARMHint(unsigned BuiltinID); 4794 llvm::Value *EmitX86CpuIs(const CallExpr *E); 4795 llvm::Value *EmitX86CpuIs(StringRef CPUStr); 4796 llvm::Value *EmitX86CpuSupports(const CallExpr *E); 4797 llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs); 4798 llvm::Value *EmitX86CpuSupports(uint64_t Mask); 4799 llvm::Value *EmitX86CpuInit(); 4800 llvm::Value *FormResolverCondition(const MultiVersionResolverOption &RO); 4801 }; 4802 4803 /// TargetFeatures - This class is used to check whether the builtin function 4804 /// has the required tagert specific features. It is able to support the 4805 /// combination of ','(and), '|'(or), and '()'. By default, the priority of 4806 /// ',' is higher than that of '|' . 4807 /// E.g: 4808 /// A,B|C means the builtin function requires both A and B, or C. 4809 /// If we want the builtin function requires both A and B, or both A and C, 4810 /// there are two ways: A,B|A,C or A,(B|C). 4811 /// The FeaturesList should not contain spaces, and brackets must appear in 4812 /// pairs. 4813 class TargetFeatures { 4814 struct FeatureListStatus { 4815 bool HasFeatures; 4816 StringRef CurFeaturesList; 4817 }; 4818 4819 const llvm::StringMap<bool> &CallerFeatureMap; 4820 4821 FeatureListStatus getAndFeatures(StringRef FeatureList) { 4822 int InParentheses = 0; 4823 bool HasFeatures = true; 4824 size_t SubexpressionStart = 0; 4825 for (size_t i = 0, e = FeatureList.size(); i < e; ++i) { 4826 char CurrentToken = FeatureList[i]; 4827 switch (CurrentToken) { 4828 default: 4829 break; 4830 case '(': 4831 if (InParentheses == 0) 4832 SubexpressionStart = i + 1; 4833 ++InParentheses; 4834 break; 4835 case ')': 4836 --InParentheses; 4837 assert(InParentheses >= 0 && "Parentheses are not in pair"); 4838 LLVM_FALLTHROUGH; 4839 case '|': 4840 case ',': 4841 if (InParentheses == 0) { 4842 if (HasFeatures && i != SubexpressionStart) { 4843 StringRef F = FeatureList.slice(SubexpressionStart, i); 4844 HasFeatures = CurrentToken == ')' ? hasRequiredFeatures(F) 4845 : CallerFeatureMap.lookup(F); 4846 } 4847 SubexpressionStart = i + 1; 4848 if (CurrentToken == '|') { 4849 return {HasFeatures, FeatureList.substr(SubexpressionStart)}; 4850 } 4851 } 4852 break; 4853 } 4854 } 4855 assert(InParentheses == 0 && "Parentheses are not in pair"); 4856 if (HasFeatures && SubexpressionStart != FeatureList.size()) 4857 HasFeatures = 4858 CallerFeatureMap.lookup(FeatureList.substr(SubexpressionStart)); 4859 return {HasFeatures, StringRef()}; 4860 } 4861 4862 public: 4863 bool hasRequiredFeatures(StringRef FeatureList) { 4864 FeatureListStatus FS = {false, FeatureList}; 4865 while (!FS.HasFeatures && !FS.CurFeaturesList.empty()) 4866 FS = getAndFeatures(FS.CurFeaturesList); 4867 return FS.HasFeatures; 4868 } 4869 4870 TargetFeatures(const llvm::StringMap<bool> &CallerFeatureMap) 4871 : CallerFeatureMap(CallerFeatureMap) {} 4872 }; 4873 4874 inline DominatingLLVMValue::saved_type 4875 DominatingLLVMValue::save(CodeGenFunction &CGF, llvm::Value *value) { 4876 if (!needsSaving(value)) return saved_type(value, false); 4877 4878 // Otherwise, we need an alloca. 4879 auto align = CharUnits::fromQuantity( 4880 CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType())); 4881 Address alloca = 4882 CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save"); 4883 CGF.Builder.CreateStore(value, alloca); 4884 4885 return saved_type(alloca.getPointer(), true); 4886 } 4887 4888 inline llvm::Value *DominatingLLVMValue::restore(CodeGenFunction &CGF, 4889 saved_type value) { 4890 // If the value says it wasn't saved, trust that it's still dominating. 4891 if (!value.getInt()) return value.getPointer(); 4892 4893 // Otherwise, it should be an alloca instruction, as set up in save(). 4894 auto alloca = cast<llvm::AllocaInst>(value.getPointer()); 4895 return CGF.Builder.CreateAlignedLoad(alloca->getAllocatedType(), alloca, 4896 alloca->getAlign()); 4897 } 4898 4899 } // end namespace CodeGen 4900 4901 // Map the LangOption for floating point exception behavior into 4902 // the corresponding enum in the IR. 4903 llvm::fp::ExceptionBehavior 4904 ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind); 4905 } // end namespace clang 4906 4907 #endif 4908