1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the internal per-function state used for llvm translation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef CLANG_CODEGEN_CODEGENFUNCTION_H
15 #define CLANG_CODEGEN_CODEGENFUNCTION_H
16 
17 #include "clang/AST/Type.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/ExprObjC.h"
20 #include "clang/AST/CharUnits.h"
21 #include "clang/Frontend/CodeGenOptions.h"
22 #include "clang/Basic/ABI.h"
23 #include "clang/Basic/TargetInfo.h"
24 #include "llvm/ADT/ArrayRef.h"
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/Support/ValueHandle.h"
28 #include "llvm/Support/Debug.h"
29 #include "CodeGenModule.h"
30 #include "CGBuilder.h"
31 #include "CGDebugInfo.h"
32 #include "CGValue.h"
33 
34 namespace llvm {
35   class BasicBlock;
36   class LLVMContext;
37   class MDNode;
38   class Module;
39   class SwitchInst;
40   class Twine;
41   class Value;
42   class CallSite;
43 }
44 
45 namespace clang {
46   class APValue;
47   class ASTContext;
48   class CXXDestructorDecl;
49   class CXXForRangeStmt;
50   class CXXTryStmt;
51   class Decl;
52   class LabelDecl;
53   class EnumConstantDecl;
54   class FunctionDecl;
55   class FunctionProtoType;
56   class LabelStmt;
57   class ObjCContainerDecl;
58   class ObjCInterfaceDecl;
59   class ObjCIvarDecl;
60   class ObjCMethodDecl;
61   class ObjCImplementationDecl;
62   class ObjCPropertyImplDecl;
63   class TargetInfo;
64   class TargetCodeGenInfo;
65   class VarDecl;
66   class ObjCForCollectionStmt;
67   class ObjCAtTryStmt;
68   class ObjCAtThrowStmt;
69   class ObjCAtSynchronizedStmt;
70   class ObjCAutoreleasePoolStmt;
71 
72 namespace CodeGen {
73   class CodeGenTypes;
74   class CGFunctionInfo;
75   class CGRecordLayout;
76   class CGBlockInfo;
77   class CGCXXABI;
78   class BlockFlags;
79   class BlockFieldFlags;
80 
81 /// A branch fixup.  These are required when emitting a goto to a
82 /// label which hasn't been emitted yet.  The goto is optimistically
83 /// emitted as a branch to the basic block for the label, and (if it
84 /// occurs in a scope with non-trivial cleanups) a fixup is added to
85 /// the innermost cleanup.  When a (normal) cleanup is popped, any
86 /// unresolved fixups in that scope are threaded through the cleanup.
87 struct BranchFixup {
88   /// The block containing the terminator which needs to be modified
89   /// into a switch if this fixup is resolved into the current scope.
90   /// If null, LatestBranch points directly to the destination.
91   llvm::BasicBlock *OptimisticBranchBlock;
92 
93   /// The ultimate destination of the branch.
94   ///
95   /// This can be set to null to indicate that this fixup was
96   /// successfully resolved.
97   llvm::BasicBlock *Destination;
98 
99   /// The destination index value.
100   unsigned DestinationIndex;
101 
102   /// The initial branch of the fixup.
103   llvm::BranchInst *InitialBranch;
104 };
105 
106 template <class T> struct InvariantValue {
107   typedef T type;
108   typedef T saved_type;
109   static bool needsSaving(type value) { return false; }
110   static saved_type save(CodeGenFunction &CGF, type value) { return value; }
111   static type restore(CodeGenFunction &CGF, saved_type value) { return value; }
112 };
113 
114 /// A metaprogramming class for ensuring that a value will dominate an
115 /// arbitrary position in a function.
116 template <class T> struct DominatingValue : InvariantValue<T> {};
117 
118 template <class T, bool mightBeInstruction =
119             llvm::is_base_of<llvm::Value, T>::value &&
120             !llvm::is_base_of<llvm::Constant, T>::value &&
121             !llvm::is_base_of<llvm::BasicBlock, T>::value>
122 struct DominatingPointer;
123 template <class T> struct DominatingPointer<T,false> : InvariantValue<T*> {};
124 // template <class T> struct DominatingPointer<T,true> at end of file
125 
126 template <class T> struct DominatingValue<T*> : DominatingPointer<T> {};
127 
128 enum CleanupKind {
129   EHCleanup = 0x1,
130   NormalCleanup = 0x2,
131   NormalAndEHCleanup = EHCleanup | NormalCleanup,
132 
133   InactiveCleanup = 0x4,
134   InactiveEHCleanup = EHCleanup | InactiveCleanup,
135   InactiveNormalCleanup = NormalCleanup | InactiveCleanup,
136   InactiveNormalAndEHCleanup = NormalAndEHCleanup | InactiveCleanup
137 };
138 
139 /// A stack of scopes which respond to exceptions, including cleanups
140 /// and catch blocks.
141 class EHScopeStack {
142 public:
143   /// A saved depth on the scope stack.  This is necessary because
144   /// pushing scopes onto the stack invalidates iterators.
145   class stable_iterator {
146     friend class EHScopeStack;
147 
148     /// Offset from StartOfData to EndOfBuffer.
149     ptrdiff_t Size;
150 
151     stable_iterator(ptrdiff_t Size) : Size(Size) {}
152 
153   public:
154     static stable_iterator invalid() { return stable_iterator(-1); }
155     stable_iterator() : Size(-1) {}
156 
157     bool isValid() const { return Size >= 0; }
158 
159     /// Returns true if this scope encloses I.
160     /// Returns false if I is invalid.
161     /// This scope must be valid.
162     bool encloses(stable_iterator I) const { return Size <= I.Size; }
163 
164     /// Returns true if this scope strictly encloses I: that is,
165     /// if it encloses I and is not I.
166     /// Returns false is I is invalid.
167     /// This scope must be valid.
168     bool strictlyEncloses(stable_iterator I) const { return Size < I.Size; }
169 
170     friend bool operator==(stable_iterator A, stable_iterator B) {
171       return A.Size == B.Size;
172     }
173     friend bool operator!=(stable_iterator A, stable_iterator B) {
174       return A.Size != B.Size;
175     }
176   };
177 
178   /// Information for lazily generating a cleanup.  Subclasses must be
179   /// POD-like: cleanups will not be destructed, and they will be
180   /// allocated on the cleanup stack and freely copied and moved
181   /// around.
182   ///
183   /// Cleanup implementations should generally be declared in an
184   /// anonymous namespace.
185   class Cleanup {
186     // Anchor the construction vtable.
187     virtual void anchor();
188   public:
189     /// Generation flags.
190     class Flags {
191       enum {
192         F_IsForEH             = 0x1,
193         F_IsNormalCleanupKind = 0x2,
194         F_IsEHCleanupKind     = 0x4
195       };
196       unsigned flags;
197 
198     public:
199       Flags() : flags(0) {}
200 
201       /// isForEH - true if the current emission is for an EH cleanup.
202       bool isForEHCleanup() const { return flags & F_IsForEH; }
203       bool isForNormalCleanup() const { return !isForEHCleanup(); }
204       void setIsForEHCleanup() { flags |= F_IsForEH; }
205 
206       bool isNormalCleanupKind() const { return flags & F_IsNormalCleanupKind; }
207       void setIsNormalCleanupKind() { flags |= F_IsNormalCleanupKind; }
208 
209       /// isEHCleanupKind - true if the cleanup was pushed as an EH
210       /// cleanup.
211       bool isEHCleanupKind() const { return flags & F_IsEHCleanupKind; }
212       void setIsEHCleanupKind() { flags |= F_IsEHCleanupKind; }
213     };
214 
215     // Provide a virtual destructor to suppress a very common warning
216     // that unfortunately cannot be suppressed without this.  Cleanups
217     // should not rely on this destructor ever being called.
218     virtual ~Cleanup() {}
219 
220     /// Emit the cleanup.  For normal cleanups, this is run in the
221     /// same EH context as when the cleanup was pushed, i.e. the
222     /// immediately-enclosing context of the cleanup scope.  For
223     /// EH cleanups, this is run in a terminate context.
224     ///
225     // \param IsForEHCleanup true if this is for an EH cleanup, false
226     ///  if for a normal cleanup.
227     virtual void Emit(CodeGenFunction &CGF, Flags flags) = 0;
228   };
229 
230   /// ConditionalCleanupN stores the saved form of its N parameters,
231   /// then restores them and performs the cleanup.
232   template <class T, class A0>
233   class ConditionalCleanup1 : public Cleanup {
234     typedef typename DominatingValue<A0>::saved_type A0_saved;
235     A0_saved a0_saved;
236 
237     void Emit(CodeGenFunction &CGF, Flags flags) {
238       A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
239       T(a0).Emit(CGF, flags);
240     }
241 
242   public:
243     ConditionalCleanup1(A0_saved a0)
244       : a0_saved(a0) {}
245   };
246 
247   template <class T, class A0, class A1>
248   class ConditionalCleanup2 : public Cleanup {
249     typedef typename DominatingValue<A0>::saved_type A0_saved;
250     typedef typename DominatingValue<A1>::saved_type A1_saved;
251     A0_saved a0_saved;
252     A1_saved a1_saved;
253 
254     void Emit(CodeGenFunction &CGF, Flags flags) {
255       A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
256       A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
257       T(a0, a1).Emit(CGF, flags);
258     }
259 
260   public:
261     ConditionalCleanup2(A0_saved a0, A1_saved a1)
262       : a0_saved(a0), a1_saved(a1) {}
263   };
264 
265   template <class T, class A0, class A1, class A2>
266   class ConditionalCleanup3 : public Cleanup {
267     typedef typename DominatingValue<A0>::saved_type A0_saved;
268     typedef typename DominatingValue<A1>::saved_type A1_saved;
269     typedef typename DominatingValue<A2>::saved_type A2_saved;
270     A0_saved a0_saved;
271     A1_saved a1_saved;
272     A2_saved a2_saved;
273 
274     void Emit(CodeGenFunction &CGF, Flags flags) {
275       A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
276       A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
277       A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved);
278       T(a0, a1, a2).Emit(CGF, flags);
279     }
280 
281   public:
282     ConditionalCleanup3(A0_saved a0, A1_saved a1, A2_saved a2)
283       : a0_saved(a0), a1_saved(a1), a2_saved(a2) {}
284   };
285 
286   template <class T, class A0, class A1, class A2, class A3>
287   class ConditionalCleanup4 : public Cleanup {
288     typedef typename DominatingValue<A0>::saved_type A0_saved;
289     typedef typename DominatingValue<A1>::saved_type A1_saved;
290     typedef typename DominatingValue<A2>::saved_type A2_saved;
291     typedef typename DominatingValue<A3>::saved_type A3_saved;
292     A0_saved a0_saved;
293     A1_saved a1_saved;
294     A2_saved a2_saved;
295     A3_saved a3_saved;
296 
297     void Emit(CodeGenFunction &CGF, Flags flags) {
298       A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
299       A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
300       A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved);
301       A3 a3 = DominatingValue<A3>::restore(CGF, a3_saved);
302       T(a0, a1, a2, a3).Emit(CGF, flags);
303     }
304 
305   public:
306     ConditionalCleanup4(A0_saved a0, A1_saved a1, A2_saved a2, A3_saved a3)
307       : a0_saved(a0), a1_saved(a1), a2_saved(a2), a3_saved(a3) {}
308   };
309 
310 private:
311   // The implementation for this class is in CGException.h and
312   // CGException.cpp; the definition is here because it's used as a
313   // member of CodeGenFunction.
314 
315   /// The start of the scope-stack buffer, i.e. the allocated pointer
316   /// for the buffer.  All of these pointers are either simultaneously
317   /// null or simultaneously valid.
318   char *StartOfBuffer;
319 
320   /// The end of the buffer.
321   char *EndOfBuffer;
322 
323   /// The first valid entry in the buffer.
324   char *StartOfData;
325 
326   /// The innermost normal cleanup on the stack.
327   stable_iterator InnermostNormalCleanup;
328 
329   /// The innermost EH scope on the stack.
330   stable_iterator InnermostEHScope;
331 
332   /// The current set of branch fixups.  A branch fixup is a jump to
333   /// an as-yet unemitted label, i.e. a label for which we don't yet
334   /// know the EH stack depth.  Whenever we pop a cleanup, we have
335   /// to thread all the current branch fixups through it.
336   ///
337   /// Fixups are recorded as the Use of the respective branch or
338   /// switch statement.  The use points to the final destination.
339   /// When popping out of a cleanup, these uses are threaded through
340   /// the cleanup and adjusted to point to the new cleanup.
341   ///
342   /// Note that branches are allowed to jump into protected scopes
343   /// in certain situations;  e.g. the following code is legal:
344   ///     struct A { ~A(); }; // trivial ctor, non-trivial dtor
345   ///     goto foo;
346   ///     A a;
347   ///    foo:
348   ///     bar();
349   SmallVector<BranchFixup, 8> BranchFixups;
350 
351   char *allocate(size_t Size);
352 
353   void *pushCleanup(CleanupKind K, size_t DataSize);
354 
355 public:
356   EHScopeStack() : StartOfBuffer(0), EndOfBuffer(0), StartOfData(0),
357                    InnermostNormalCleanup(stable_end()),
358                    InnermostEHScope(stable_end()) {}
359   ~EHScopeStack() { delete[] StartOfBuffer; }
360 
361   // Variadic templates would make this not terrible.
362 
363   /// Push a lazily-created cleanup on the stack.
364   template <class T>
365   void pushCleanup(CleanupKind Kind) {
366     void *Buffer = pushCleanup(Kind, sizeof(T));
367     Cleanup *Obj = new(Buffer) T();
368     (void) Obj;
369   }
370 
371   /// Push a lazily-created cleanup on the stack.
372   template <class T, class A0>
373   void pushCleanup(CleanupKind Kind, A0 a0) {
374     void *Buffer = pushCleanup(Kind, sizeof(T));
375     Cleanup *Obj = new(Buffer) T(a0);
376     (void) Obj;
377   }
378 
379   /// Push a lazily-created cleanup on the stack.
380   template <class T, class A0, class A1>
381   void pushCleanup(CleanupKind Kind, A0 a0, A1 a1) {
382     void *Buffer = pushCleanup(Kind, sizeof(T));
383     Cleanup *Obj = new(Buffer) T(a0, a1);
384     (void) Obj;
385   }
386 
387   /// Push a lazily-created cleanup on the stack.
388   template <class T, class A0, class A1, class A2>
389   void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2) {
390     void *Buffer = pushCleanup(Kind, sizeof(T));
391     Cleanup *Obj = new(Buffer) T(a0, a1, a2);
392     (void) Obj;
393   }
394 
395   /// Push a lazily-created cleanup on the stack.
396   template <class T, class A0, class A1, class A2, class A3>
397   void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) {
398     void *Buffer = pushCleanup(Kind, sizeof(T));
399     Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3);
400     (void) Obj;
401   }
402 
403   /// Push a lazily-created cleanup on the stack.
404   template <class T, class A0, class A1, class A2, class A3, class A4>
405   void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3, A4 a4) {
406     void *Buffer = pushCleanup(Kind, sizeof(T));
407     Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3, a4);
408     (void) Obj;
409   }
410 
411   // Feel free to add more variants of the following:
412 
413   /// Push a cleanup with non-constant storage requirements on the
414   /// stack.  The cleanup type must provide an additional static method:
415   ///   static size_t getExtraSize(size_t);
416   /// The argument to this method will be the value N, which will also
417   /// be passed as the first argument to the constructor.
418   ///
419   /// The data stored in the extra storage must obey the same
420   /// restrictions as normal cleanup member data.
421   ///
422   /// The pointer returned from this method is valid until the cleanup
423   /// stack is modified.
424   template <class T, class A0, class A1, class A2>
425   T *pushCleanupWithExtra(CleanupKind Kind, size_t N, A0 a0, A1 a1, A2 a2) {
426     void *Buffer = pushCleanup(Kind, sizeof(T) + T::getExtraSize(N));
427     return new (Buffer) T(N, a0, a1, a2);
428   }
429 
430   /// Pops a cleanup scope off the stack.  This is private to CGCleanup.cpp.
431   void popCleanup();
432 
433   /// Push a set of catch handlers on the stack.  The catch is
434   /// uninitialized and will need to have the given number of handlers
435   /// set on it.
436   class EHCatchScope *pushCatch(unsigned NumHandlers);
437 
438   /// Pops a catch scope off the stack.  This is private to CGException.cpp.
439   void popCatch();
440 
441   /// Push an exceptions filter on the stack.
442   class EHFilterScope *pushFilter(unsigned NumFilters);
443 
444   /// Pops an exceptions filter off the stack.
445   void popFilter();
446 
447   /// Push a terminate handler on the stack.
448   void pushTerminate();
449 
450   /// Pops a terminate handler off the stack.
451   void popTerminate();
452 
453   /// Determines whether the exception-scopes stack is empty.
454   bool empty() const { return StartOfData == EndOfBuffer; }
455 
456   bool requiresLandingPad() const {
457     return InnermostEHScope != stable_end();
458   }
459 
460   /// Determines whether there are any normal cleanups on the stack.
461   bool hasNormalCleanups() const {
462     return InnermostNormalCleanup != stable_end();
463   }
464 
465   /// Returns the innermost normal cleanup on the stack, or
466   /// stable_end() if there are no normal cleanups.
467   stable_iterator getInnermostNormalCleanup() const {
468     return InnermostNormalCleanup;
469   }
470   stable_iterator getInnermostActiveNormalCleanup() const;
471 
472   stable_iterator getInnermostEHScope() const {
473     return InnermostEHScope;
474   }
475 
476   stable_iterator getInnermostActiveEHScope() const;
477 
478   /// An unstable reference to a scope-stack depth.  Invalidated by
479   /// pushes but not pops.
480   class iterator;
481 
482   /// Returns an iterator pointing to the innermost EH scope.
483   iterator begin() const;
484 
485   /// Returns an iterator pointing to the outermost EH scope.
486   iterator end() const;
487 
488   /// Create a stable reference to the top of the EH stack.  The
489   /// returned reference is valid until that scope is popped off the
490   /// stack.
491   stable_iterator stable_begin() const {
492     return stable_iterator(EndOfBuffer - StartOfData);
493   }
494 
495   /// Create a stable reference to the bottom of the EH stack.
496   static stable_iterator stable_end() {
497     return stable_iterator(0);
498   }
499 
500   /// Translates an iterator into a stable_iterator.
501   stable_iterator stabilize(iterator it) const;
502 
503   /// Turn a stable reference to a scope depth into a unstable pointer
504   /// to the EH stack.
505   iterator find(stable_iterator save) const;
506 
507   /// Removes the cleanup pointed to by the given stable_iterator.
508   void removeCleanup(stable_iterator save);
509 
510   /// Add a branch fixup to the current cleanup scope.
511   BranchFixup &addBranchFixup() {
512     assert(hasNormalCleanups() && "adding fixup in scope without cleanups");
513     BranchFixups.push_back(BranchFixup());
514     return BranchFixups.back();
515   }
516 
517   unsigned getNumBranchFixups() const { return BranchFixups.size(); }
518   BranchFixup &getBranchFixup(unsigned I) {
519     assert(I < getNumBranchFixups());
520     return BranchFixups[I];
521   }
522 
523   /// Pops lazily-removed fixups from the end of the list.  This
524   /// should only be called by procedures which have just popped a
525   /// cleanup or resolved one or more fixups.
526   void popNullFixups();
527 
528   /// Clears the branch-fixups list.  This should only be called by
529   /// ResolveAllBranchFixups.
530   void clearFixups() { BranchFixups.clear(); }
531 };
532 
533 /// CodeGenFunction - This class organizes the per-function state that is used
534 /// while generating LLVM code.
535 class CodeGenFunction : public CodeGenTypeCache {
536   CodeGenFunction(const CodeGenFunction&); // DO NOT IMPLEMENT
537   void operator=(const CodeGenFunction&);  // DO NOT IMPLEMENT
538 
539   friend class CGCXXABI;
540 public:
541   /// A jump destination is an abstract label, branching to which may
542   /// require a jump out through normal cleanups.
543   struct JumpDest {
544     JumpDest() : Block(0), ScopeDepth(), Index(0) {}
545     JumpDest(llvm::BasicBlock *Block,
546              EHScopeStack::stable_iterator Depth,
547              unsigned Index)
548       : Block(Block), ScopeDepth(Depth), Index(Index) {}
549 
550     bool isValid() const { return Block != 0; }
551     llvm::BasicBlock *getBlock() const { return Block; }
552     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
553     unsigned getDestIndex() const { return Index; }
554 
555   private:
556     llvm::BasicBlock *Block;
557     EHScopeStack::stable_iterator ScopeDepth;
558     unsigned Index;
559   };
560 
561   CodeGenModule &CGM;  // Per-module state.
562   const TargetInfo &Target;
563 
564   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
565   CGBuilderTy Builder;
566 
567   /// CurFuncDecl - Holds the Decl for the current function or ObjC method.
568   /// This excludes BlockDecls.
569   const Decl *CurFuncDecl;
570   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
571   const Decl *CurCodeDecl;
572   const CGFunctionInfo *CurFnInfo;
573   QualType FnRetTy;
574   llvm::Function *CurFn;
575 
576   /// CurGD - The GlobalDecl for the current function being compiled.
577   GlobalDecl CurGD;
578 
579   /// PrologueCleanupDepth - The cleanup depth enclosing all the
580   /// cleanups associated with the parameters.
581   EHScopeStack::stable_iterator PrologueCleanupDepth;
582 
583   /// ReturnBlock - Unified return block.
584   JumpDest ReturnBlock;
585 
586   /// ReturnValue - The temporary alloca to hold the return value. This is null
587   /// iff the function has no return value.
588   llvm::Value *ReturnValue;
589 
590   /// AllocaInsertPoint - This is an instruction in the entry block before which
591   /// we prefer to insert allocas.
592   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
593 
594   bool CatchUndefined;
595 
596   /// In ARC, whether we should autorelease the return value.
597   bool AutoreleaseResult;
598 
599   const CodeGen::CGBlockInfo *BlockInfo;
600   llvm::Value *BlockPointer;
601 
602   /// \brief A mapping from NRVO variables to the flags used to indicate
603   /// when the NRVO has been applied to this variable.
604   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
605 
606   EHScopeStack EHStack;
607 
608   /// i32s containing the indexes of the cleanup destinations.
609   llvm::AllocaInst *NormalCleanupDest;
610 
611   unsigned NextCleanupDestIndex;
612 
613   /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
614   llvm::BasicBlock *EHResumeBlock;
615 
616   /// The exception slot.  All landing pads write the current exception pointer
617   /// into this alloca.
618   llvm::Value *ExceptionSlot;
619 
620   /// The selector slot.  Under the MandatoryCleanup model, all landing pads
621   /// write the current selector value into this alloca.
622   llvm::AllocaInst *EHSelectorSlot;
623 
624   /// Emits a landing pad for the current EH stack.
625   llvm::BasicBlock *EmitLandingPad();
626 
627   llvm::BasicBlock *getInvokeDestImpl();
628 
629   /// Set up the last cleaup that was pushed as a conditional
630   /// full-expression cleanup.
631   void initFullExprCleanup();
632 
633   template <class T>
634   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
635     return DominatingValue<T>::save(*this, value);
636   }
637 
638 public:
639   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
640   /// rethrows.
641   SmallVector<llvm::Value*, 8> ObjCEHValueStack;
642 
643   /// A class controlling the emission of a finally block.
644   class FinallyInfo {
645     /// Where the catchall's edge through the cleanup should go.
646     JumpDest RethrowDest;
647 
648     /// A function to call to enter the catch.
649     llvm::Constant *BeginCatchFn;
650 
651     /// An i1 variable indicating whether or not the @finally is
652     /// running for an exception.
653     llvm::AllocaInst *ForEHVar;
654 
655     /// An i8* variable into which the exception pointer to rethrow
656     /// has been saved.
657     llvm::AllocaInst *SavedExnVar;
658 
659   public:
660     void enter(CodeGenFunction &CGF, const Stmt *Finally,
661                llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
662                llvm::Constant *rethrowFn);
663     void exit(CodeGenFunction &CGF);
664   };
665 
666   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
667   /// current full-expression.  Safe against the possibility that
668   /// we're currently inside a conditionally-evaluated expression.
669   template <class T, class A0>
670   void pushFullExprCleanup(CleanupKind kind, A0 a0) {
671     // If we're not in a conditional branch, or if none of the
672     // arguments requires saving, then use the unconditional cleanup.
673     if (!isInConditionalBranch())
674       return EHStack.pushCleanup<T>(kind, a0);
675 
676     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
677 
678     typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType;
679     EHStack.pushCleanup<CleanupType>(kind, a0_saved);
680     initFullExprCleanup();
681   }
682 
683   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
684   /// current full-expression.  Safe against the possibility that
685   /// we're currently inside a conditionally-evaluated expression.
686   template <class T, class A0, class A1>
687   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) {
688     // If we're not in a conditional branch, or if none of the
689     // arguments requires saving, then use the unconditional cleanup.
690     if (!isInConditionalBranch())
691       return EHStack.pushCleanup<T>(kind, a0, a1);
692 
693     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
694     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
695 
696     typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType;
697     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved);
698     initFullExprCleanup();
699   }
700 
701   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
702   /// current full-expression.  Safe against the possibility that
703   /// we're currently inside a conditionally-evaluated expression.
704   template <class T, class A0, class A1, class A2>
705   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2) {
706     // If we're not in a conditional branch, or if none of the
707     // arguments requires saving, then use the unconditional cleanup.
708     if (!isInConditionalBranch()) {
709       return EHStack.pushCleanup<T>(kind, a0, a1, a2);
710     }
711 
712     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
713     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
714     typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
715 
716     typedef EHScopeStack::ConditionalCleanup3<T, A0, A1, A2> CleanupType;
717     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, a2_saved);
718     initFullExprCleanup();
719   }
720 
721   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
722   /// current full-expression.  Safe against the possibility that
723   /// we're currently inside a conditionally-evaluated expression.
724   template <class T, class A0, class A1, class A2, class A3>
725   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2, A3 a3) {
726     // If we're not in a conditional branch, or if none of the
727     // arguments requires saving, then use the unconditional cleanup.
728     if (!isInConditionalBranch()) {
729       return EHStack.pushCleanup<T>(kind, a0, a1, a2, a3);
730     }
731 
732     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
733     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
734     typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
735     typename DominatingValue<A3>::saved_type a3_saved = saveValueInCond(a3);
736 
737     typedef EHScopeStack::ConditionalCleanup4<T, A0, A1, A2, A3> CleanupType;
738     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved,
739                                      a2_saved, a3_saved);
740     initFullExprCleanup();
741   }
742 
743   /// PushDestructorCleanup - Push a cleanup to call the
744   /// complete-object destructor of an object of the given type at the
745   /// given address.  Does nothing if T is not a C++ class type with a
746   /// non-trivial destructor.
747   void PushDestructorCleanup(QualType T, llvm::Value *Addr);
748 
749   /// PushDestructorCleanup - Push a cleanup to call the
750   /// complete-object variant of the given destructor on the object at
751   /// the given address.
752   void PushDestructorCleanup(const CXXDestructorDecl *Dtor,
753                              llvm::Value *Addr);
754 
755   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
756   /// process all branch fixups.
757   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
758 
759   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
760   /// The block cannot be reactivated.  Pops it if it's the top of the
761   /// stack.
762   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup);
763 
764   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
765   /// Cannot be used to resurrect a deactivated cleanup.
766   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup);
767 
768   /// \brief Enters a new scope for capturing cleanups, all of which
769   /// will be executed once the scope is exited.
770   class RunCleanupsScope {
771     EHScopeStack::stable_iterator CleanupStackDepth;
772     bool OldDidCallStackSave;
773     bool PerformCleanup;
774 
775     RunCleanupsScope(const RunCleanupsScope &); // DO NOT IMPLEMENT
776     RunCleanupsScope &operator=(const RunCleanupsScope &); // DO NOT IMPLEMENT
777 
778   protected:
779     CodeGenFunction& CGF;
780 
781   public:
782     /// \brief Enter a new cleanup scope.
783     explicit RunCleanupsScope(CodeGenFunction &CGF)
784       : PerformCleanup(true), CGF(CGF)
785     {
786       CleanupStackDepth = CGF.EHStack.stable_begin();
787       OldDidCallStackSave = CGF.DidCallStackSave;
788       CGF.DidCallStackSave = false;
789     }
790 
791     /// \brief Exit this cleanup scope, emitting any accumulated
792     /// cleanups.
793     ~RunCleanupsScope() {
794       if (PerformCleanup) {
795         CGF.DidCallStackSave = OldDidCallStackSave;
796         CGF.PopCleanupBlocks(CleanupStackDepth);
797       }
798     }
799 
800     /// \brief Determine whether this scope requires any cleanups.
801     bool requiresCleanups() const {
802       return CGF.EHStack.stable_begin() != CleanupStackDepth;
803     }
804 
805     /// \brief Force the emission of cleanups now, instead of waiting
806     /// until this object is destroyed.
807     void ForceCleanup() {
808       assert(PerformCleanup && "Already forced cleanup");
809       CGF.DidCallStackSave = OldDidCallStackSave;
810       CGF.PopCleanupBlocks(CleanupStackDepth);
811       PerformCleanup = false;
812     }
813   };
814 
815   class LexicalScope: protected RunCleanupsScope {
816     SourceRange Range;
817     bool PopDebugStack;
818 
819     LexicalScope(const LexicalScope &); // DO NOT IMPLEMENT THESE
820     LexicalScope &operator=(const LexicalScope &);
821 
822   public:
823     /// \brief Enter a new cleanup scope.
824     explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
825       : RunCleanupsScope(CGF), Range(Range), PopDebugStack(true) {
826       if (CGDebugInfo *DI = CGF.getDebugInfo())
827         DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
828     }
829 
830     /// \brief Exit this cleanup scope, emitting any accumulated
831     /// cleanups.
832     ~LexicalScope() {
833       if (PopDebugStack) {
834         CGDebugInfo *DI = CGF.getDebugInfo();
835         if (DI) DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
836       }
837     }
838 
839     /// \brief Force the emission of cleanups now, instead of waiting
840     /// until this object is destroyed.
841     void ForceCleanup() {
842       RunCleanupsScope::ForceCleanup();
843       if (CGDebugInfo *DI = CGF.getDebugInfo()) {
844         DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
845         PopDebugStack = false;
846       }
847     }
848   };
849 
850 
851   /// PopCleanupBlocks - Takes the old cleanup stack size and emits
852   /// the cleanup blocks that have been added.
853   void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize);
854 
855   void ResolveBranchFixups(llvm::BasicBlock *Target);
856 
857   /// The given basic block lies in the current EH scope, but may be a
858   /// target of a potentially scope-crossing jump; get a stable handle
859   /// to which we can perform this jump later.
860   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
861     return JumpDest(Target,
862                     EHStack.getInnermostNormalCleanup(),
863                     NextCleanupDestIndex++);
864   }
865 
866   /// The given basic block lies in the current EH scope, but may be a
867   /// target of a potentially scope-crossing jump; get a stable handle
868   /// to which we can perform this jump later.
869   JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
870     return getJumpDestInCurrentScope(createBasicBlock(Name));
871   }
872 
873   /// EmitBranchThroughCleanup - Emit a branch from the current insert
874   /// block through the normal cleanup handling code (if any) and then
875   /// on to \arg Dest.
876   void EmitBranchThroughCleanup(JumpDest Dest);
877 
878   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
879   /// specified destination obviously has no cleanups to run.  'false' is always
880   /// a conservatively correct answer for this method.
881   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
882 
883   /// popCatchScope - Pops the catch scope at the top of the EHScope
884   /// stack, emitting any required code (other than the catch handlers
885   /// themselves).
886   void popCatchScope();
887 
888   llvm::BasicBlock *getEHResumeBlock();
889   llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
890 
891   /// An object to manage conditionally-evaluated expressions.
892   class ConditionalEvaluation {
893     llvm::BasicBlock *StartBB;
894 
895   public:
896     ConditionalEvaluation(CodeGenFunction &CGF)
897       : StartBB(CGF.Builder.GetInsertBlock()) {}
898 
899     void begin(CodeGenFunction &CGF) {
900       assert(CGF.OutermostConditional != this);
901       if (!CGF.OutermostConditional)
902         CGF.OutermostConditional = this;
903     }
904 
905     void end(CodeGenFunction &CGF) {
906       assert(CGF.OutermostConditional != 0);
907       if (CGF.OutermostConditional == this)
908         CGF.OutermostConditional = 0;
909     }
910 
911     /// Returns a block which will be executed prior to each
912     /// evaluation of the conditional code.
913     llvm::BasicBlock *getStartingBlock() const {
914       return StartBB;
915     }
916   };
917 
918   /// isInConditionalBranch - Return true if we're currently emitting
919   /// one branch or the other of a conditional expression.
920   bool isInConditionalBranch() const { return OutermostConditional != 0; }
921 
922   /// An RAII object to record that we're evaluating a statement
923   /// expression.
924   class StmtExprEvaluation {
925     CodeGenFunction &CGF;
926 
927     /// We have to save the outermost conditional: cleanups in a
928     /// statement expression aren't conditional just because the
929     /// StmtExpr is.
930     ConditionalEvaluation *SavedOutermostConditional;
931 
932   public:
933     StmtExprEvaluation(CodeGenFunction &CGF)
934       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
935       CGF.OutermostConditional = 0;
936     }
937 
938     ~StmtExprEvaluation() {
939       CGF.OutermostConditional = SavedOutermostConditional;
940       CGF.EnsureInsertPoint();
941     }
942   };
943 
944   /// An object which temporarily prevents a value from being
945   /// destroyed by aggressive peephole optimizations that assume that
946   /// all uses of a value have been realized in the IR.
947   class PeepholeProtection {
948     llvm::Instruction *Inst;
949     friend class CodeGenFunction;
950 
951   public:
952     PeepholeProtection() : Inst(0) {}
953   };
954 
955   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
956   class OpaqueValueMapping {
957     CodeGenFunction &CGF;
958     const OpaqueValueExpr *OpaqueValue;
959     bool BoundLValue;
960     CodeGenFunction::PeepholeProtection Protection;
961 
962   public:
963     static bool shouldBindAsLValue(const Expr *expr) {
964       return expr->isGLValue() || expr->getType()->isRecordType();
965     }
966 
967     /// Build the opaque value mapping for the given conditional
968     /// operator if it's the GNU ?: extension.  This is a common
969     /// enough pattern that the convenience operator is really
970     /// helpful.
971     ///
972     OpaqueValueMapping(CodeGenFunction &CGF,
973                        const AbstractConditionalOperator *op) : CGF(CGF) {
974       if (isa<ConditionalOperator>(op)) {
975         OpaqueValue = 0;
976         BoundLValue = false;
977         return;
978       }
979 
980       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
981       init(e->getOpaqueValue(), e->getCommon());
982     }
983 
984     OpaqueValueMapping(CodeGenFunction &CGF,
985                        const OpaqueValueExpr *opaqueValue,
986                        LValue lvalue)
987       : CGF(CGF), OpaqueValue(opaqueValue), BoundLValue(true) {
988       assert(opaqueValue && "no opaque value expression!");
989       assert(shouldBindAsLValue(opaqueValue));
990       initLValue(lvalue);
991     }
992 
993     OpaqueValueMapping(CodeGenFunction &CGF,
994                        const OpaqueValueExpr *opaqueValue,
995                        RValue rvalue)
996       : CGF(CGF), OpaqueValue(opaqueValue), BoundLValue(false) {
997       assert(opaqueValue && "no opaque value expression!");
998       assert(!shouldBindAsLValue(opaqueValue));
999       initRValue(rvalue);
1000     }
1001 
1002     void pop() {
1003       assert(OpaqueValue && "mapping already popped!");
1004       popImpl();
1005       OpaqueValue = 0;
1006     }
1007 
1008     ~OpaqueValueMapping() {
1009       if (OpaqueValue) popImpl();
1010     }
1011 
1012   private:
1013     void popImpl() {
1014       if (BoundLValue)
1015         CGF.OpaqueLValues.erase(OpaqueValue);
1016       else {
1017         CGF.OpaqueRValues.erase(OpaqueValue);
1018         CGF.unprotectFromPeepholes(Protection);
1019       }
1020     }
1021 
1022     void init(const OpaqueValueExpr *ov, const Expr *e) {
1023       OpaqueValue = ov;
1024       BoundLValue = shouldBindAsLValue(ov);
1025       assert(BoundLValue == shouldBindAsLValue(e)
1026              && "inconsistent expression value kinds!");
1027       if (BoundLValue)
1028         initLValue(CGF.EmitLValue(e));
1029       else
1030         initRValue(CGF.EmitAnyExpr(e));
1031     }
1032 
1033     void initLValue(const LValue &lv) {
1034       CGF.OpaqueLValues.insert(std::make_pair(OpaqueValue, lv));
1035     }
1036 
1037     void initRValue(const RValue &rv) {
1038       // Work around an extremely aggressive peephole optimization in
1039       // EmitScalarConversion which assumes that all other uses of a
1040       // value are extant.
1041       Protection = CGF.protectFromPeepholes(rv);
1042       CGF.OpaqueRValues.insert(std::make_pair(OpaqueValue, rv));
1043     }
1044   };
1045 
1046   /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field
1047   /// number that holds the value.
1048   unsigned getByRefValueLLVMField(const ValueDecl *VD) const;
1049 
1050   /// BuildBlockByrefAddress - Computes address location of the
1051   /// variable which is declared as __block.
1052   llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr,
1053                                       const VarDecl *V);
1054 private:
1055   CGDebugInfo *DebugInfo;
1056   bool DisableDebugInfo;
1057 
1058   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
1059   /// calling llvm.stacksave for multiple VLAs in the same scope.
1060   bool DidCallStackSave;
1061 
1062   /// IndirectBranch - The first time an indirect goto is seen we create a block
1063   /// with an indirect branch.  Every time we see the address of a label taken,
1064   /// we add the label to the indirect goto.  Every subsequent indirect goto is
1065   /// codegen'd as a jump to the IndirectBranch's basic block.
1066   llvm::IndirectBrInst *IndirectBranch;
1067 
1068   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1069   /// decls.
1070   typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy;
1071   DeclMapTy LocalDeclMap;
1072 
1073   /// LabelMap - This keeps track of the LLVM basic block for each C label.
1074   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1075 
1076   // BreakContinueStack - This keeps track of where break and continue
1077   // statements should jump to.
1078   struct BreakContinue {
1079     BreakContinue(JumpDest Break, JumpDest Continue)
1080       : BreakBlock(Break), ContinueBlock(Continue) {}
1081 
1082     JumpDest BreakBlock;
1083     JumpDest ContinueBlock;
1084   };
1085   SmallVector<BreakContinue, 8> BreakContinueStack;
1086 
1087   /// SwitchInsn - This is nearest current switch instruction. It is null if if
1088   /// current context is not in a switch.
1089   llvm::SwitchInst *SwitchInsn;
1090 
1091   /// CaseRangeBlock - This block holds if condition check for last case
1092   /// statement range in current switch instruction.
1093   llvm::BasicBlock *CaseRangeBlock;
1094 
1095   /// OpaqueLValues - Keeps track of the current set of opaque value
1096   /// expressions.
1097   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1098   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1099 
1100   // VLASizeMap - This keeps track of the associated size for each VLA type.
1101   // We track this by the size expression rather than the type itself because
1102   // in certain situations, like a const qualifier applied to an VLA typedef,
1103   // multiple VLA types can share the same size expression.
1104   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1105   // enter/leave scopes.
1106   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1107 
1108   /// A block containing a single 'unreachable' instruction.  Created
1109   /// lazily by getUnreachableBlock().
1110   llvm::BasicBlock *UnreachableBlock;
1111 
1112   /// CXXThisDecl - When generating code for a C++ member function,
1113   /// this will hold the implicit 'this' declaration.
1114   ImplicitParamDecl *CXXThisDecl;
1115   llvm::Value *CXXThisValue;
1116 
1117   /// CXXVTTDecl - When generating code for a base object constructor or
1118   /// base object destructor with virtual bases, this will hold the implicit
1119   /// VTT parameter.
1120   ImplicitParamDecl *CXXVTTDecl;
1121   llvm::Value *CXXVTTValue;
1122 
1123   /// OutermostConditional - Points to the outermost active
1124   /// conditional control.  This is used so that we know if a
1125   /// temporary should be destroyed conditionally.
1126   ConditionalEvaluation *OutermostConditional;
1127 
1128 
1129   /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM
1130   /// type as well as the field number that contains the actual data.
1131   llvm::DenseMap<const ValueDecl *, std::pair<llvm::Type *,
1132                                               unsigned> > ByRefValueInfo;
1133 
1134   llvm::BasicBlock *TerminateLandingPad;
1135   llvm::BasicBlock *TerminateHandler;
1136   llvm::BasicBlock *TrapBB;
1137 
1138 public:
1139   CodeGenFunction(CodeGenModule &cgm);
1140 
1141   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1142   ASTContext &getContext() const { return CGM.getContext(); }
1143   CGDebugInfo *getDebugInfo() {
1144     if (DisableDebugInfo)
1145       return NULL;
1146     return DebugInfo;
1147   }
1148   void disableDebugInfo() { DisableDebugInfo = true; }
1149   void enableDebugInfo() { DisableDebugInfo = false; }
1150 
1151   bool shouldUseFusedARCCalls() {
1152     return CGM.getCodeGenOpts().OptimizationLevel == 0;
1153   }
1154 
1155   const LangOptions &getLangOptions() const { return CGM.getLangOptions(); }
1156 
1157   /// Returns a pointer to the function's exception object and selector slot,
1158   /// which is assigned in every landing pad.
1159   llvm::Value *getExceptionSlot();
1160   llvm::Value *getEHSelectorSlot();
1161 
1162   /// Returns the contents of the function's exception object and selector
1163   /// slots.
1164   llvm::Value *getExceptionFromSlot();
1165   llvm::Value *getSelectorFromSlot();
1166 
1167   llvm::Value *getNormalCleanupDestSlot();
1168 
1169   llvm::BasicBlock *getUnreachableBlock() {
1170     if (!UnreachableBlock) {
1171       UnreachableBlock = createBasicBlock("unreachable");
1172       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1173     }
1174     return UnreachableBlock;
1175   }
1176 
1177   llvm::BasicBlock *getInvokeDest() {
1178     if (!EHStack.requiresLandingPad()) return 0;
1179     return getInvokeDestImpl();
1180   }
1181 
1182   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1183 
1184   //===--------------------------------------------------------------------===//
1185   //                                  Cleanups
1186   //===--------------------------------------------------------------------===//
1187 
1188   typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty);
1189 
1190   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1191                                         llvm::Value *arrayEndPointer,
1192                                         QualType elementType,
1193                                         Destroyer &destroyer);
1194   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1195                                       llvm::Value *arrayEnd,
1196                                       QualType elementType,
1197                                       Destroyer &destroyer);
1198 
1199   void pushDestroy(QualType::DestructionKind dtorKind,
1200                    llvm::Value *addr, QualType type);
1201   void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type,
1202                    Destroyer &destroyer, bool useEHCleanupForArray);
1203   void emitDestroy(llvm::Value *addr, QualType type, Destroyer &destroyer,
1204                    bool useEHCleanupForArray);
1205   llvm::Function *generateDestroyHelper(llvm::Constant *addr,
1206                                         QualType type,
1207                                         Destroyer &destroyer,
1208                                         bool useEHCleanupForArray);
1209   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1210                         QualType type, Destroyer &destroyer,
1211                         bool checkZeroLength, bool useEHCleanup);
1212 
1213   Destroyer &getDestroyer(QualType::DestructionKind destructionKind);
1214 
1215   /// Determines whether an EH cleanup is required to destroy a type
1216   /// with the given destruction kind.
1217   bool needsEHCleanup(QualType::DestructionKind kind) {
1218     switch (kind) {
1219     case QualType::DK_none:
1220       return false;
1221     case QualType::DK_cxx_destructor:
1222     case QualType::DK_objc_weak_lifetime:
1223       return getLangOptions().Exceptions;
1224     case QualType::DK_objc_strong_lifetime:
1225       return getLangOptions().Exceptions &&
1226              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1227     }
1228     llvm_unreachable("bad destruction kind");
1229   }
1230 
1231   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
1232     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1233   }
1234 
1235   //===--------------------------------------------------------------------===//
1236   //                                  Objective-C
1237   //===--------------------------------------------------------------------===//
1238 
1239   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1240 
1241   void StartObjCMethod(const ObjCMethodDecl *MD,
1242                        const ObjCContainerDecl *CD,
1243                        SourceLocation StartLoc);
1244 
1245   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1246   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1247                           const ObjCPropertyImplDecl *PID);
1248   void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1249                               const ObjCPropertyImplDecl *propImpl);
1250 
1251   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1252                                   ObjCMethodDecl *MD, bool ctor);
1253 
1254   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1255   /// for the given property.
1256   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1257                           const ObjCPropertyImplDecl *PID);
1258   void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1259                               const ObjCPropertyImplDecl *propImpl);
1260   bool IndirectObjCSetterArg(const CGFunctionInfo &FI);
1261   bool IvarTypeWithAggrGCObjects(QualType Ty);
1262 
1263   //===--------------------------------------------------------------------===//
1264   //                                  Block Bits
1265   //===--------------------------------------------------------------------===//
1266 
1267   llvm::Value *EmitBlockLiteral(const BlockExpr *);
1268   llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *,
1269                                            const CGBlockInfo &Info,
1270                                            llvm::StructType *,
1271                                            llvm::Constant *BlockVarLayout);
1272 
1273   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1274                                         const CGBlockInfo &Info,
1275                                         const Decl *OuterFuncDecl,
1276                                         const DeclMapTy &ldm);
1277 
1278   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1279   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1280 
1281   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
1282 
1283   class AutoVarEmission;
1284 
1285   void emitByrefStructureInit(const AutoVarEmission &emission);
1286   void enterByrefCleanup(const AutoVarEmission &emission);
1287 
1288   llvm::Value *LoadBlockStruct() {
1289     assert(BlockPointer && "no block pointer set!");
1290     return BlockPointer;
1291   }
1292 
1293   void AllocateBlockCXXThisPointer(const CXXThisExpr *E);
1294   void AllocateBlockDecl(const BlockDeclRefExpr *E);
1295   llvm::Value *GetAddrOfBlockDecl(const BlockDeclRefExpr *E) {
1296     return GetAddrOfBlockDecl(E->getDecl(), E->isByRef());
1297   }
1298   llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
1299   llvm::Type *BuildByRefType(const VarDecl *var);
1300 
1301   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1302                     const CGFunctionInfo &FnInfo);
1303   void StartFunction(GlobalDecl GD, QualType RetTy,
1304                      llvm::Function *Fn,
1305                      const CGFunctionInfo &FnInfo,
1306                      const FunctionArgList &Args,
1307                      SourceLocation StartLoc);
1308 
1309   void EmitConstructorBody(FunctionArgList &Args);
1310   void EmitDestructorBody(FunctionArgList &Args);
1311   void EmitFunctionBody(FunctionArgList &Args);
1312 
1313   /// EmitReturnBlock - Emit the unified return block, trying to avoid its
1314   /// emission when possible.
1315   void EmitReturnBlock();
1316 
1317   /// FinishFunction - Complete IR generation of the current function. It is
1318   /// legal to call this function even if there is no current insertion point.
1319   void FinishFunction(SourceLocation EndLoc=SourceLocation());
1320 
1321   /// GenerateThunk - Generate a thunk for the given method.
1322   void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1323                      GlobalDecl GD, const ThunkInfo &Thunk);
1324 
1325   void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1326                             GlobalDecl GD, const ThunkInfo &Thunk);
1327 
1328   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1329                         FunctionArgList &Args);
1330 
1331   /// InitializeVTablePointer - Initialize the vtable pointer of the given
1332   /// subobject.
1333   ///
1334   void InitializeVTablePointer(BaseSubobject Base,
1335                                const CXXRecordDecl *NearestVBase,
1336                                CharUnits OffsetFromNearestVBase,
1337                                llvm::Constant *VTable,
1338                                const CXXRecordDecl *VTableClass);
1339 
1340   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1341   void InitializeVTablePointers(BaseSubobject Base,
1342                                 const CXXRecordDecl *NearestVBase,
1343                                 CharUnits OffsetFromNearestVBase,
1344                                 bool BaseIsNonVirtualPrimaryBase,
1345                                 llvm::Constant *VTable,
1346                                 const CXXRecordDecl *VTableClass,
1347                                 VisitedVirtualBasesSetTy& VBases);
1348 
1349   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1350 
1351   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1352   /// to by This.
1353   llvm::Value *GetVTablePtr(llvm::Value *This, llvm::Type *Ty);
1354 
1355   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1356   /// given phase of destruction for a destructor.  The end result
1357   /// should call destructors on members and base classes in reverse
1358   /// order of their construction.
1359   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1360 
1361   /// ShouldInstrumentFunction - Return true if the current function should be
1362   /// instrumented with __cyg_profile_func_* calls
1363   bool ShouldInstrumentFunction();
1364 
1365   /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
1366   /// instrumentation function with the current function and the call site, if
1367   /// function instrumentation is enabled.
1368   void EmitFunctionInstrumentation(const char *Fn);
1369 
1370   /// EmitMCountInstrumentation - Emit call to .mcount.
1371   void EmitMCountInstrumentation();
1372 
1373   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1374   /// arguments for the given function. This is also responsible for naming the
1375   /// LLVM function arguments.
1376   void EmitFunctionProlog(const CGFunctionInfo &FI,
1377                           llvm::Function *Fn,
1378                           const FunctionArgList &Args);
1379 
1380   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1381   /// given temporary.
1382   void EmitFunctionEpilog(const CGFunctionInfo &FI);
1383 
1384   /// EmitStartEHSpec - Emit the start of the exception spec.
1385   void EmitStartEHSpec(const Decl *D);
1386 
1387   /// EmitEndEHSpec - Emit the end of the exception spec.
1388   void EmitEndEHSpec(const Decl *D);
1389 
1390   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
1391   llvm::BasicBlock *getTerminateLandingPad();
1392 
1393   /// getTerminateHandler - Return a handler (not a landing pad, just
1394   /// a catch handler) that just calls terminate.  This is used when
1395   /// a terminate scope encloses a try.
1396   llvm::BasicBlock *getTerminateHandler();
1397 
1398   llvm::Type *ConvertTypeForMem(QualType T);
1399   llvm::Type *ConvertType(QualType T);
1400   llvm::Type *ConvertType(const TypeDecl *T) {
1401     return ConvertType(getContext().getTypeDeclType(T));
1402   }
1403 
1404   /// LoadObjCSelf - Load the value of self. This function is only valid while
1405   /// generating code for an Objective-C method.
1406   llvm::Value *LoadObjCSelf();
1407 
1408   /// TypeOfSelfObject - Return type of object that this self represents.
1409   QualType TypeOfSelfObject();
1410 
1411   /// hasAggregateLLVMType - Return true if the specified AST type will map into
1412   /// an aggregate LLVM type or is void.
1413   static bool hasAggregateLLVMType(QualType T);
1414 
1415   /// createBasicBlock - Create an LLVM basic block.
1416   llvm::BasicBlock *createBasicBlock(StringRef name = "",
1417                                      llvm::Function *parent = 0,
1418                                      llvm::BasicBlock *before = 0) {
1419 #ifdef NDEBUG
1420     return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
1421 #else
1422     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
1423 #endif
1424   }
1425 
1426   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
1427   /// label maps to.
1428   JumpDest getJumpDestForLabel(const LabelDecl *S);
1429 
1430   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
1431   /// another basic block, simplify it. This assumes that no other code could
1432   /// potentially reference the basic block.
1433   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
1434 
1435   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
1436   /// adding a fall-through branch from the current insert block if
1437   /// necessary. It is legal to call this function even if there is no current
1438   /// insertion point.
1439   ///
1440   /// IsFinished - If true, indicates that the caller has finished emitting
1441   /// branches to the given block and does not expect to emit code into it. This
1442   /// means the block can be ignored if it is unreachable.
1443   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
1444 
1445   /// EmitBlockAfterUses - Emit the given block somewhere hopefully
1446   /// near its uses, and leave the insertion point in it.
1447   void EmitBlockAfterUses(llvm::BasicBlock *BB);
1448 
1449   /// EmitBranch - Emit a branch to the specified basic block from the current
1450   /// insert block, taking care to avoid creation of branches from dummy
1451   /// blocks. It is legal to call this function even if there is no current
1452   /// insertion point.
1453   ///
1454   /// This function clears the current insertion point. The caller should follow
1455   /// calls to this function with calls to Emit*Block prior to generation new
1456   /// code.
1457   void EmitBranch(llvm::BasicBlock *Block);
1458 
1459   /// HaveInsertPoint - True if an insertion point is defined. If not, this
1460   /// indicates that the current code being emitted is unreachable.
1461   bool HaveInsertPoint() const {
1462     return Builder.GetInsertBlock() != 0;
1463   }
1464 
1465   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
1466   /// emitted IR has a place to go. Note that by definition, if this function
1467   /// creates a block then that block is unreachable; callers may do better to
1468   /// detect when no insertion point is defined and simply skip IR generation.
1469   void EnsureInsertPoint() {
1470     if (!HaveInsertPoint())
1471       EmitBlock(createBasicBlock());
1472   }
1473 
1474   /// ErrorUnsupported - Print out an error that codegen doesn't support the
1475   /// specified stmt yet.
1476   void ErrorUnsupported(const Stmt *S, const char *Type,
1477                         bool OmitOnError=false);
1478 
1479   //===--------------------------------------------------------------------===//
1480   //                                  Helpers
1481   //===--------------------------------------------------------------------===//
1482 
1483   LValue MakeAddrLValue(llvm::Value *V, QualType T, unsigned Alignment = 0) {
1484     return LValue::MakeAddr(V, T, Alignment, getContext(),
1485                             CGM.getTBAAInfo(T));
1486   }
1487 
1488   /// CreateTempAlloca - This creates a alloca and inserts it into the entry
1489   /// block. The caller is responsible for setting an appropriate alignment on
1490   /// the alloca.
1491   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty,
1492                                      const Twine &Name = "tmp");
1493 
1494   /// InitTempAlloca - Provide an initial value for the given alloca.
1495   void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value);
1496 
1497   /// CreateIRTemp - Create a temporary IR object of the given type, with
1498   /// appropriate alignment. This routine should only be used when an temporary
1499   /// value needs to be stored into an alloca (for example, to avoid explicit
1500   /// PHI construction), but the type is the IR type, not the type appropriate
1501   /// for storing in memory.
1502   llvm::AllocaInst *CreateIRTemp(QualType T, const Twine &Name = "tmp");
1503 
1504   /// CreateMemTemp - Create a temporary memory object of the given type, with
1505   /// appropriate alignment.
1506   llvm::AllocaInst *CreateMemTemp(QualType T, const Twine &Name = "tmp");
1507 
1508   /// CreateAggTemp - Create a temporary memory object for the given
1509   /// aggregate type.
1510   AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
1511     return AggValueSlot::forAddr(CreateMemTemp(T, Name), T.getQualifiers(),
1512                                  AggValueSlot::IsNotDestructed,
1513                                  AggValueSlot::DoesNotNeedGCBarriers,
1514                                  AggValueSlot::IsNotAliased);
1515   }
1516 
1517   /// Emit a cast to void* in the appropriate address space.
1518   llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
1519 
1520   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
1521   /// expression and compare the result against zero, returning an Int1Ty value.
1522   llvm::Value *EvaluateExprAsBool(const Expr *E);
1523 
1524   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
1525   void EmitIgnoredExpr(const Expr *E);
1526 
1527   /// EmitAnyExpr - Emit code to compute the specified expression which can have
1528   /// any type.  The result is returned as an RValue struct.  If this is an
1529   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
1530   /// the result should be returned.
1531   ///
1532   /// \param IgnoreResult - True if the resulting value isn't used.
1533   RValue EmitAnyExpr(const Expr *E,
1534                      AggValueSlot AggSlot = AggValueSlot::ignored(),
1535                      bool IgnoreResult = false);
1536 
1537   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
1538   // or the value of the expression, depending on how va_list is defined.
1539   llvm::Value *EmitVAListRef(const Expr *E);
1540 
1541   /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
1542   /// always be accessible even if no aggregate location is provided.
1543   RValue EmitAnyExprToTemp(const Expr *E);
1544 
1545   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
1546   /// arbitrary expression into the given memory location.
1547   void EmitAnyExprToMem(const Expr *E, llvm::Value *Location,
1548                         Qualifiers Quals, bool IsInitializer);
1549 
1550   /// EmitExprAsInit - Emits the code necessary to initialize a
1551   /// location in memory with the given initializer.
1552   void EmitExprAsInit(const Expr *init, const ValueDecl *D,
1553                       LValue lvalue, bool capturedByInit);
1554 
1555   /// EmitAggregateCopy - Emit an aggrate copy.
1556   ///
1557   /// \param isVolatile - True iff either the source or the destination is
1558   /// volatile.
1559   void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1560                          QualType EltTy, bool isVolatile=false);
1561 
1562   /// StartBlock - Start new block named N. If insert block is a dummy block
1563   /// then reuse it.
1564   void StartBlock(const char *N);
1565 
1566   /// GetAddrOfStaticLocalVar - Return the address of a static local variable.
1567   llvm::Constant *GetAddrOfStaticLocalVar(const VarDecl *BVD) {
1568     return cast<llvm::Constant>(GetAddrOfLocalVar(BVD));
1569   }
1570 
1571   /// GetAddrOfLocalVar - Return the address of a local variable.
1572   llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) {
1573     llvm::Value *Res = LocalDeclMap[VD];
1574     assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!");
1575     return Res;
1576   }
1577 
1578   /// getOpaqueLValueMapping - Given an opaque value expression (which
1579   /// must be mapped to an l-value), return its mapping.
1580   const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
1581     assert(OpaqueValueMapping::shouldBindAsLValue(e));
1582 
1583     llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
1584       it = OpaqueLValues.find(e);
1585     assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
1586     return it->second;
1587   }
1588 
1589   /// getOpaqueRValueMapping - Given an opaque value expression (which
1590   /// must be mapped to an r-value), return its mapping.
1591   const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
1592     assert(!OpaqueValueMapping::shouldBindAsLValue(e));
1593 
1594     llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
1595       it = OpaqueRValues.find(e);
1596     assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
1597     return it->second;
1598   }
1599 
1600   /// getAccessedFieldNo - Given an encoded value and a result number, return
1601   /// the input field number being accessed.
1602   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
1603 
1604   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
1605   llvm::BasicBlock *GetIndirectGotoBlock();
1606 
1607   /// EmitNullInitialization - Generate code to set a value of the given type to
1608   /// null, If the type contains data member pointers, they will be initialized
1609   /// to -1 in accordance with the Itanium C++ ABI.
1610   void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty);
1611 
1612   // EmitVAArg - Generate code to get an argument from the passed in pointer
1613   // and update it accordingly. The return value is a pointer to the argument.
1614   // FIXME: We should be able to get rid of this method and use the va_arg
1615   // instruction in LLVM instead once it works well enough.
1616   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty);
1617 
1618   /// emitArrayLength - Compute the length of an array, even if it's a
1619   /// VLA, and drill down to the base element type.
1620   llvm::Value *emitArrayLength(const ArrayType *arrayType,
1621                                QualType &baseType,
1622                                llvm::Value *&addr);
1623 
1624   /// EmitVLASize - Capture all the sizes for the VLA expressions in
1625   /// the given variably-modified type and store them in the VLASizeMap.
1626   ///
1627   /// This function can be called with a null (unreachable) insert point.
1628   void EmitVariablyModifiedType(QualType Ty);
1629 
1630   /// getVLASize - Returns an LLVM value that corresponds to the size,
1631   /// in non-variably-sized elements, of a variable length array type,
1632   /// plus that largest non-variably-sized element type.  Assumes that
1633   /// the type has already been emitted with EmitVariablyModifiedType.
1634   std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla);
1635   std::pair<llvm::Value*,QualType> getVLASize(QualType vla);
1636 
1637   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
1638   /// generating code for an C++ member function.
1639   llvm::Value *LoadCXXThis() {
1640     assert(CXXThisValue && "no 'this' value for this function");
1641     return CXXThisValue;
1642   }
1643 
1644   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
1645   /// virtual bases.
1646   llvm::Value *LoadCXXVTT() {
1647     assert(CXXVTTValue && "no VTT value for this function");
1648     return CXXVTTValue;
1649   }
1650 
1651   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
1652   /// complete class to the given direct base.
1653   llvm::Value *
1654   GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value,
1655                                         const CXXRecordDecl *Derived,
1656                                         const CXXRecordDecl *Base,
1657                                         bool BaseIsVirtual);
1658 
1659   /// GetAddressOfBaseClass - This function will add the necessary delta to the
1660   /// load of 'this' and returns address of the base class.
1661   llvm::Value *GetAddressOfBaseClass(llvm::Value *Value,
1662                                      const CXXRecordDecl *Derived,
1663                                      CastExpr::path_const_iterator PathBegin,
1664                                      CastExpr::path_const_iterator PathEnd,
1665                                      bool NullCheckValue);
1666 
1667   llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value,
1668                                         const CXXRecordDecl *Derived,
1669                                         CastExpr::path_const_iterator PathBegin,
1670                                         CastExpr::path_const_iterator PathEnd,
1671                                         bool NullCheckValue);
1672 
1673   llvm::Value *GetVirtualBaseClassOffset(llvm::Value *This,
1674                                          const CXXRecordDecl *ClassDecl,
1675                                          const CXXRecordDecl *BaseClassDecl);
1676 
1677   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
1678                                       CXXCtorType CtorType,
1679                                       const FunctionArgList &Args);
1680   // It's important not to confuse this and the previous function. Delegating
1681   // constructors are the C++0x feature. The constructor delegate optimization
1682   // is used to reduce duplication in the base and complete consturctors where
1683   // they are substantially the same.
1684   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
1685                                         const FunctionArgList &Args);
1686   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
1687                               bool ForVirtualBase, llvm::Value *This,
1688                               CallExpr::const_arg_iterator ArgBeg,
1689                               CallExpr::const_arg_iterator ArgEnd);
1690 
1691   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
1692                               llvm::Value *This, llvm::Value *Src,
1693                               CallExpr::const_arg_iterator ArgBeg,
1694                               CallExpr::const_arg_iterator ArgEnd);
1695 
1696   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1697                                   const ConstantArrayType *ArrayTy,
1698                                   llvm::Value *ArrayPtr,
1699                                   CallExpr::const_arg_iterator ArgBeg,
1700                                   CallExpr::const_arg_iterator ArgEnd,
1701                                   bool ZeroInitialization = false);
1702 
1703   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1704                                   llvm::Value *NumElements,
1705                                   llvm::Value *ArrayPtr,
1706                                   CallExpr::const_arg_iterator ArgBeg,
1707                                   CallExpr::const_arg_iterator ArgEnd,
1708                                   bool ZeroInitialization = false);
1709 
1710   static Destroyer destroyCXXObject;
1711 
1712   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
1713                              bool ForVirtualBase, llvm::Value *This);
1714 
1715   void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
1716                                llvm::Value *NewPtr, llvm::Value *NumElements);
1717 
1718   void EmitCXXTemporary(const CXXTemporary *Temporary, llvm::Value *Ptr);
1719 
1720   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
1721   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
1722 
1723   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
1724                       QualType DeleteTy);
1725 
1726   llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E);
1727   llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE);
1728 
1729   void EmitCheck(llvm::Value *, unsigned Size);
1730 
1731   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1732                                        bool isInc, bool isPre);
1733   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1734                                          bool isInc, bool isPre);
1735   //===--------------------------------------------------------------------===//
1736   //                            Declaration Emission
1737   //===--------------------------------------------------------------------===//
1738 
1739   /// EmitDecl - Emit a declaration.
1740   ///
1741   /// This function can be called with a null (unreachable) insert point.
1742   void EmitDecl(const Decl &D);
1743 
1744   /// EmitVarDecl - Emit a local variable declaration.
1745   ///
1746   /// This function can be called with a null (unreachable) insert point.
1747   void EmitVarDecl(const VarDecl &D);
1748 
1749   void EmitScalarInit(const Expr *init, const ValueDecl *D,
1750                       LValue lvalue, bool capturedByInit);
1751   void EmitScalarInit(llvm::Value *init, LValue lvalue);
1752 
1753   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
1754                              llvm::Value *Address);
1755 
1756   /// EmitAutoVarDecl - Emit an auto variable declaration.
1757   ///
1758   /// This function can be called with a null (unreachable) insert point.
1759   void EmitAutoVarDecl(const VarDecl &D);
1760 
1761   class AutoVarEmission {
1762     friend class CodeGenFunction;
1763 
1764     const VarDecl *Variable;
1765 
1766     /// The alignment of the variable.
1767     CharUnits Alignment;
1768 
1769     /// The address of the alloca.  Null if the variable was emitted
1770     /// as a global constant.
1771     llvm::Value *Address;
1772 
1773     llvm::Value *NRVOFlag;
1774 
1775     /// True if the variable is a __block variable.
1776     bool IsByRef;
1777 
1778     /// True if the variable is of aggregate type and has a constant
1779     /// initializer.
1780     bool IsConstantAggregate;
1781 
1782     struct Invalid {};
1783     AutoVarEmission(Invalid) : Variable(0) {}
1784 
1785     AutoVarEmission(const VarDecl &variable)
1786       : Variable(&variable), Address(0), NRVOFlag(0),
1787         IsByRef(false), IsConstantAggregate(false) {}
1788 
1789     bool wasEmittedAsGlobal() const { return Address == 0; }
1790 
1791   public:
1792     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
1793 
1794     /// Returns the address of the object within this declaration.
1795     /// Note that this does not chase the forwarding pointer for
1796     /// __block decls.
1797     llvm::Value *getObjectAddress(CodeGenFunction &CGF) const {
1798       if (!IsByRef) return Address;
1799 
1800       return CGF.Builder.CreateStructGEP(Address,
1801                                          CGF.getByRefValueLLVMField(Variable),
1802                                          Variable->getNameAsString());
1803     }
1804   };
1805   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
1806   void EmitAutoVarInit(const AutoVarEmission &emission);
1807   void EmitAutoVarCleanups(const AutoVarEmission &emission);
1808   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
1809                               QualType::DestructionKind dtorKind);
1810 
1811   void EmitStaticVarDecl(const VarDecl &D,
1812                          llvm::GlobalValue::LinkageTypes Linkage);
1813 
1814   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
1815   void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, unsigned ArgNo);
1816 
1817   /// protectFromPeepholes - Protect a value that we're intending to
1818   /// store to the side, but which will probably be used later, from
1819   /// aggressive peepholing optimizations that might delete it.
1820   ///
1821   /// Pass the result to unprotectFromPeepholes to declare that
1822   /// protection is no longer required.
1823   ///
1824   /// There's no particular reason why this shouldn't apply to
1825   /// l-values, it's just that no existing peepholes work on pointers.
1826   PeepholeProtection protectFromPeepholes(RValue rvalue);
1827   void unprotectFromPeepholes(PeepholeProtection protection);
1828 
1829   //===--------------------------------------------------------------------===//
1830   //                             Statement Emission
1831   //===--------------------------------------------------------------------===//
1832 
1833   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
1834   void EmitStopPoint(const Stmt *S);
1835 
1836   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
1837   /// this function even if there is no current insertion point.
1838   ///
1839   /// This function may clear the current insertion point; callers should use
1840   /// EnsureInsertPoint if they wish to subsequently generate code without first
1841   /// calling EmitBlock, EmitBranch, or EmitStmt.
1842   void EmitStmt(const Stmt *S);
1843 
1844   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
1845   /// necessarily require an insertion point or debug information; typically
1846   /// because the statement amounts to a jump or a container of other
1847   /// statements.
1848   ///
1849   /// \return True if the statement was handled.
1850   bool EmitSimpleStmt(const Stmt *S);
1851 
1852   RValue EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
1853                           AggValueSlot AVS = AggValueSlot::ignored());
1854 
1855   /// EmitLabel - Emit the block for the given label. It is legal to call this
1856   /// function even if there is no current insertion point.
1857   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
1858 
1859   void EmitLabelStmt(const LabelStmt &S);
1860   void EmitGotoStmt(const GotoStmt &S);
1861   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
1862   void EmitIfStmt(const IfStmt &S);
1863   void EmitWhileStmt(const WhileStmt &S);
1864   void EmitDoStmt(const DoStmt &S);
1865   void EmitForStmt(const ForStmt &S);
1866   void EmitReturnStmt(const ReturnStmt &S);
1867   void EmitDeclStmt(const DeclStmt &S);
1868   void EmitBreakStmt(const BreakStmt &S);
1869   void EmitContinueStmt(const ContinueStmt &S);
1870   void EmitSwitchStmt(const SwitchStmt &S);
1871   void EmitDefaultStmt(const DefaultStmt &S);
1872   void EmitCaseStmt(const CaseStmt &S);
1873   void EmitCaseStmtRange(const CaseStmt &S);
1874   void EmitAsmStmt(const AsmStmt &S);
1875 
1876   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
1877   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
1878   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
1879   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
1880   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
1881 
1882   llvm::Constant *getUnwindResumeFn();
1883   llvm::Constant *getUnwindResumeOrRethrowFn();
1884   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
1885   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
1886 
1887   void EmitCXXTryStmt(const CXXTryStmt &S);
1888   void EmitCXXForRangeStmt(const CXXForRangeStmt &S);
1889 
1890   //===--------------------------------------------------------------------===//
1891   //                         LValue Expression Emission
1892   //===--------------------------------------------------------------------===//
1893 
1894   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
1895   RValue GetUndefRValue(QualType Ty);
1896 
1897   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
1898   /// and issue an ErrorUnsupported style diagnostic (using the
1899   /// provided Name).
1900   RValue EmitUnsupportedRValue(const Expr *E,
1901                                const char *Name);
1902 
1903   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
1904   /// an ErrorUnsupported style diagnostic (using the provided Name).
1905   LValue EmitUnsupportedLValue(const Expr *E,
1906                                const char *Name);
1907 
1908   /// EmitLValue - Emit code to compute a designator that specifies the location
1909   /// of the expression.
1910   ///
1911   /// This can return one of two things: a simple address or a bitfield
1912   /// reference.  In either case, the LLVM Value* in the LValue structure is
1913   /// guaranteed to be an LLVM pointer type.
1914   ///
1915   /// If this returns a bitfield reference, nothing about the pointee type of
1916   /// the LLVM value is known: For example, it may not be a pointer to an
1917   /// integer.
1918   ///
1919   /// If this returns a normal address, and if the lvalue's C type is fixed
1920   /// size, this method guarantees that the returned pointer type will point to
1921   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
1922   /// variable length type, this is not possible.
1923   ///
1924   LValue EmitLValue(const Expr *E);
1925 
1926   /// EmitCheckedLValue - Same as EmitLValue but additionally we generate
1927   /// checking code to guard against undefined behavior.  This is only
1928   /// suitable when we know that the address will be used to access the
1929   /// object.
1930   LValue EmitCheckedLValue(const Expr *E);
1931 
1932   /// EmitToMemory - Change a scalar value from its value
1933   /// representation to its in-memory representation.
1934   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
1935 
1936   /// EmitFromMemory - Change a scalar value from its memory
1937   /// representation to its value representation.
1938   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
1939 
1940   /// EmitLoadOfScalar - Load a scalar value from an address, taking
1941   /// care to appropriately convert from the memory representation to
1942   /// the LLVM value representation.
1943   llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
1944                                 unsigned Alignment, QualType Ty,
1945                                 llvm::MDNode *TBAAInfo = 0);
1946 
1947   /// EmitLoadOfScalar - Load a scalar value from an address, taking
1948   /// care to appropriately convert from the memory representation to
1949   /// the LLVM value representation.  The l-value must be a simple
1950   /// l-value.
1951   llvm::Value *EmitLoadOfScalar(LValue lvalue);
1952 
1953   /// EmitStoreOfScalar - Store a scalar value to an address, taking
1954   /// care to appropriately convert from the memory representation to
1955   /// the LLVM value representation.
1956   void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
1957                          bool Volatile, unsigned Alignment, QualType Ty,
1958                          llvm::MDNode *TBAAInfo = 0);
1959 
1960   /// EmitStoreOfScalar - Store a scalar value to an address, taking
1961   /// care to appropriately convert from the memory representation to
1962   /// the LLVM value representation.  The l-value must be a simple
1963   /// l-value.
1964   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue);
1965 
1966   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
1967   /// this method emits the address of the lvalue, then loads the result as an
1968   /// rvalue, returning the rvalue.
1969   RValue EmitLoadOfLValue(LValue V);
1970   RValue EmitLoadOfExtVectorElementLValue(LValue V);
1971   RValue EmitLoadOfBitfieldLValue(LValue LV);
1972   RValue EmitLoadOfPropertyRefLValue(LValue LV,
1973                                  ReturnValueSlot Return = ReturnValueSlot());
1974 
1975   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1976   /// lvalue, where both are guaranteed to the have the same type, and that type
1977   /// is 'Ty'.
1978   void EmitStoreThroughLValue(RValue Src, LValue Dst);
1979   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
1980   void EmitStoreThroughPropertyRefLValue(RValue Src, LValue Dst);
1981 
1982   /// EmitStoreThroughLValue - Store Src into Dst with same constraints as
1983   /// EmitStoreThroughLValue.
1984   ///
1985   /// \param Result [out] - If non-null, this will be set to a Value* for the
1986   /// bit-field contents after the store, appropriate for use as the result of
1987   /// an assignment to the bit-field.
1988   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1989                                       llvm::Value **Result=0);
1990 
1991   /// Emit an l-value for an assignment (simple or compound) of complex type.
1992   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
1993   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
1994 
1995   // Note: only available for agg return types
1996   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
1997   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
1998   // Note: only available for agg return types
1999   LValue EmitCallExprLValue(const CallExpr *E);
2000   // Note: only available for agg return types
2001   LValue EmitVAArgExprLValue(const VAArgExpr *E);
2002   LValue EmitDeclRefLValue(const DeclRefExpr *E);
2003   LValue EmitStringLiteralLValue(const StringLiteral *E);
2004   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
2005   LValue EmitPredefinedLValue(const PredefinedExpr *E);
2006   LValue EmitUnaryOpLValue(const UnaryOperator *E);
2007   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E);
2008   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
2009   LValue EmitMemberExpr(const MemberExpr *E);
2010   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
2011   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
2012   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
2013   LValue EmitCastLValue(const CastExpr *E);
2014   LValue EmitNullInitializationLValue(const CXXScalarValueInitExpr *E);
2015   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
2016   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
2017 
2018   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
2019                               const ObjCIvarDecl *Ivar);
2020   LValue EmitLValueForAnonRecordField(llvm::Value* Base,
2021                                       const IndirectFieldDecl* Field,
2022                                       unsigned CVRQualifiers);
2023   LValue EmitLValueForField(llvm::Value* Base, const FieldDecl* Field,
2024                             unsigned CVRQualifiers);
2025 
2026   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
2027   /// if the Field is a reference, this will return the address of the reference
2028   /// and not the address of the value stored in the reference.
2029   LValue EmitLValueForFieldInitialization(llvm::Value* Base,
2030                                           const FieldDecl* Field,
2031                                           unsigned CVRQualifiers);
2032 
2033   LValue EmitLValueForIvar(QualType ObjectTy,
2034                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
2035                            unsigned CVRQualifiers);
2036 
2037   LValue EmitLValueForBitfield(llvm::Value* Base, const FieldDecl* Field,
2038                                 unsigned CVRQualifiers);
2039 
2040   LValue EmitBlockDeclRefLValue(const BlockDeclRefExpr *E);
2041 
2042   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
2043   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
2044   LValue EmitExprWithCleanupsLValue(const ExprWithCleanups *E);
2045   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
2046 
2047   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
2048   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
2049   LValue EmitObjCPropertyRefLValue(const ObjCPropertyRefExpr *E);
2050   LValue EmitStmtExprLValue(const StmtExpr *E);
2051   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
2052   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
2053   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init);
2054 
2055   //===--------------------------------------------------------------------===//
2056   //                         Scalar Expression Emission
2057   //===--------------------------------------------------------------------===//
2058 
2059   /// EmitCall - Generate a call of the given function, expecting the given
2060   /// result type, and using the given argument list which specifies both the
2061   /// LLVM arguments and the types they were derived from.
2062   ///
2063   /// \param TargetDecl - If given, the decl of the function in a direct call;
2064   /// used to set attributes on the call (noreturn, etc.).
2065   RValue EmitCall(const CGFunctionInfo &FnInfo,
2066                   llvm::Value *Callee,
2067                   ReturnValueSlot ReturnValue,
2068                   const CallArgList &Args,
2069                   const Decl *TargetDecl = 0,
2070                   llvm::Instruction **callOrInvoke = 0);
2071 
2072   RValue EmitCall(QualType FnType, llvm::Value *Callee,
2073                   ReturnValueSlot ReturnValue,
2074                   CallExpr::const_arg_iterator ArgBeg,
2075                   CallExpr::const_arg_iterator ArgEnd,
2076                   const Decl *TargetDecl = 0);
2077   RValue EmitCallExpr(const CallExpr *E,
2078                       ReturnValueSlot ReturnValue = ReturnValueSlot());
2079 
2080   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2081                                   ArrayRef<llvm::Value *> Args,
2082                                   const Twine &Name = "");
2083   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2084                                   const Twine &Name = "");
2085 
2086   llvm::Value *BuildVirtualCall(const CXXMethodDecl *MD, llvm::Value *This,
2087                                 llvm::Type *Ty);
2088   llvm::Value *BuildVirtualCall(const CXXDestructorDecl *DD, CXXDtorType Type,
2089                                 llvm::Value *This, llvm::Type *Ty);
2090   llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
2091                                          NestedNameSpecifier *Qual,
2092                                          llvm::Type *Ty);
2093 
2094   llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
2095                                                    CXXDtorType Type,
2096                                                    const CXXRecordDecl *RD);
2097 
2098   RValue EmitCXXMemberCall(const CXXMethodDecl *MD,
2099                            llvm::Value *Callee,
2100                            ReturnValueSlot ReturnValue,
2101                            llvm::Value *This,
2102                            llvm::Value *VTT,
2103                            CallExpr::const_arg_iterator ArgBeg,
2104                            CallExpr::const_arg_iterator ArgEnd);
2105   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
2106                                ReturnValueSlot ReturnValue);
2107   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
2108                                       ReturnValueSlot ReturnValue);
2109 
2110   llvm::Value *EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E,
2111                                            const CXXMethodDecl *MD,
2112                                            llvm::Value *This);
2113   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
2114                                        const CXXMethodDecl *MD,
2115                                        ReturnValueSlot ReturnValue);
2116 
2117   RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
2118                                 ReturnValueSlot ReturnValue);
2119 
2120 
2121   RValue EmitBuiltinExpr(const FunctionDecl *FD,
2122                          unsigned BuiltinID, const CallExpr *E);
2123 
2124   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
2125 
2126   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
2127   /// is unhandled by the current target.
2128   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2129 
2130   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2131   llvm::Value *EmitNeonCall(llvm::Function *F,
2132                             SmallVectorImpl<llvm::Value*> &O,
2133                             const char *name,
2134                             unsigned shift = 0, bool rightshift = false);
2135   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
2136   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
2137                                    bool negateForRightShift);
2138 
2139   llvm::Value *BuildVector(const SmallVectorImpl<llvm::Value*> &Ops);
2140   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2141   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2142 
2143   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
2144   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
2145   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
2146   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
2147                              ReturnValueSlot Return = ReturnValueSlot());
2148 
2149   /// Retrieves the default cleanup kind for an ARC cleanup.
2150   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
2151   CleanupKind getARCCleanupKind() {
2152     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
2153              ? NormalAndEHCleanup : NormalCleanup;
2154   }
2155 
2156   // ARC primitives.
2157   void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr);
2158   void EmitARCDestroyWeak(llvm::Value *addr);
2159   llvm::Value *EmitARCLoadWeak(llvm::Value *addr);
2160   llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr);
2161   llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr,
2162                                 bool ignored);
2163   void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src);
2164   void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src);
2165   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
2166   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
2167   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
2168                                   bool ignored);
2169   llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value,
2170                                       bool ignored);
2171   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
2172   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
2173   llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
2174   void EmitARCRelease(llvm::Value *value, bool precise);
2175   llvm::Value *EmitARCAutorelease(llvm::Value *value);
2176   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
2177   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
2178   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
2179 
2180   std::pair<LValue,llvm::Value*>
2181   EmitARCStoreAutoreleasing(const BinaryOperator *e);
2182   std::pair<LValue,llvm::Value*>
2183   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
2184 
2185   llvm::Value *EmitObjCThrowOperand(const Expr *expr);
2186 
2187   llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr);
2188   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
2189   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
2190 
2191   llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
2192   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
2193   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
2194 
2195   static Destroyer destroyARCStrongImprecise;
2196   static Destroyer destroyARCStrongPrecise;
2197   static Destroyer destroyARCWeak;
2198 
2199   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
2200   llvm::Value *EmitObjCAutoreleasePoolPush();
2201   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
2202   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
2203   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
2204 
2205   /// EmitReferenceBindingToExpr - Emits a reference binding to the passed in
2206   /// expression. Will emit a temporary variable if E is not an LValue.
2207   RValue EmitReferenceBindingToExpr(const Expr* E,
2208                                     const NamedDecl *InitializedDecl);
2209 
2210   //===--------------------------------------------------------------------===//
2211   //                           Expression Emission
2212   //===--------------------------------------------------------------------===//
2213 
2214   // Expressions are broken into three classes: scalar, complex, aggregate.
2215 
2216   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
2217   /// scalar type, returning the result.
2218   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
2219 
2220   /// EmitScalarConversion - Emit a conversion from the specified type to the
2221   /// specified destination type, both of which are LLVM scalar types.
2222   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
2223                                     QualType DstTy);
2224 
2225   /// EmitComplexToScalarConversion - Emit a conversion from the specified
2226   /// complex type to the specified destination type, where the destination type
2227   /// is an LLVM scalar type.
2228   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
2229                                              QualType DstTy);
2230 
2231 
2232   /// EmitAggExpr - Emit the computation of the specified expression
2233   /// of aggregate type.  The result is computed into the given slot,
2234   /// which may be null to indicate that the value is not needed.
2235   void EmitAggExpr(const Expr *E, AggValueSlot AS, bool IgnoreResult = false);
2236 
2237   /// EmitAggExprToLValue - Emit the computation of the specified expression of
2238   /// aggregate type into a temporary LValue.
2239   LValue EmitAggExprToLValue(const Expr *E);
2240 
2241   /// EmitGCMemmoveCollectable - Emit special API for structs with object
2242   /// pointers.
2243   void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr,
2244                                 QualType Ty);
2245 
2246   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
2247   /// make sure it survives garbage collection until this point.
2248   void EmitExtendGCLifetime(llvm::Value *object);
2249 
2250   /// EmitComplexExpr - Emit the computation of the specified expression of
2251   /// complex type, returning the result.
2252   ComplexPairTy EmitComplexExpr(const Expr *E,
2253                                 bool IgnoreReal = false,
2254                                 bool IgnoreImag = false);
2255 
2256   /// EmitComplexExprIntoAddr - Emit the computation of the specified expression
2257   /// of complex type, storing into the specified Value*.
2258   void EmitComplexExprIntoAddr(const Expr *E, llvm::Value *DestAddr,
2259                                bool DestIsVolatile);
2260 
2261   /// StoreComplexToAddr - Store a complex number into the specified address.
2262   void StoreComplexToAddr(ComplexPairTy V, llvm::Value *DestAddr,
2263                           bool DestIsVolatile);
2264   /// LoadComplexFromAddr - Load a complex number from the specified address.
2265   ComplexPairTy LoadComplexFromAddr(llvm::Value *SrcAddr, bool SrcIsVolatile);
2266 
2267   /// CreateStaticVarDecl - Create a zero-initialized LLVM global for
2268   /// a static local variable.
2269   llvm::GlobalVariable *CreateStaticVarDecl(const VarDecl &D,
2270                                             const char *Separator,
2271                                        llvm::GlobalValue::LinkageTypes Linkage);
2272 
2273   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
2274   /// global variable that has already been created for it.  If the initializer
2275   /// has a different type than GV does, this may free GV and return a different
2276   /// one.  Otherwise it just returns GV.
2277   llvm::GlobalVariable *
2278   AddInitializerToStaticVarDecl(const VarDecl &D,
2279                                 llvm::GlobalVariable *GV);
2280 
2281 
2282   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
2283   /// variable with global storage.
2284   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr);
2285 
2286   /// EmitCXXGlobalDtorRegistration - Emits a call to register the global ptr
2287   /// with the C++ runtime so that its destructor will be called at exit.
2288   void EmitCXXGlobalDtorRegistration(llvm::Constant *DtorFn,
2289                                      llvm::Constant *DeclPtr);
2290 
2291   /// Emit code in this function to perform a guarded variable
2292   /// initialization.  Guarded initializations are used when it's not
2293   /// possible to prove that an initialization will be done exactly
2294   /// once, e.g. with a static local variable or a static data member
2295   /// of a class template.
2296   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr);
2297 
2298   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
2299   /// variables.
2300   void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
2301                                  llvm::Constant **Decls,
2302                                  unsigned NumDecls);
2303 
2304   /// GenerateCXXGlobalDtorFunc - Generates code for destroying global
2305   /// variables.
2306   void GenerateCXXGlobalDtorFunc(llvm::Function *Fn,
2307                                  const std::vector<std::pair<llvm::WeakVH,
2308                                    llvm::Constant*> > &DtorsAndObjects);
2309 
2310   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
2311                                         const VarDecl *D,
2312                                         llvm::GlobalVariable *Addr);
2313 
2314   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
2315 
2316   void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src,
2317                                   const Expr *Exp);
2318 
2319   RValue EmitExprWithCleanups(const ExprWithCleanups *E,
2320                               AggValueSlot Slot =AggValueSlot::ignored());
2321 
2322   void EmitCXXThrowExpr(const CXXThrowExpr *E);
2323 
2324   RValue EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest = 0);
2325 
2326   //===--------------------------------------------------------------------===//
2327   //                         Annotations Emission
2328   //===--------------------------------------------------------------------===//
2329 
2330   /// Emit an annotation call (intrinsic or builtin).
2331   llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
2332                                   llvm::Value *AnnotatedVal,
2333                                   llvm::StringRef AnnotationStr,
2334                                   SourceLocation Location);
2335 
2336   /// Emit local annotations for the local variable V, declared by D.
2337   void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
2338 
2339   /// Emit field annotations for the given field & value. Returns the
2340   /// annotation result.
2341   llvm::Value *EmitFieldAnnotations(const FieldDecl *D, llvm::Value *V);
2342 
2343   //===--------------------------------------------------------------------===//
2344   //                             Internal Helpers
2345   //===--------------------------------------------------------------------===//
2346 
2347   /// ContainsLabel - Return true if the statement contains a label in it.  If
2348   /// this statement is not executed normally, it not containing a label means
2349   /// that we can just remove the code.
2350   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
2351 
2352   /// containsBreak - Return true if the statement contains a break out of it.
2353   /// If the statement (recursively) contains a switch or loop with a break
2354   /// inside of it, this is fine.
2355   static bool containsBreak(const Stmt *S);
2356 
2357   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2358   /// to a constant, or if it does but contains a label, return false.  If it
2359   /// constant folds return true and set the boolean result in Result.
2360   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result);
2361 
2362   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2363   /// to a constant, or if it does but contains a label, return false.  If it
2364   /// constant folds return true and set the folded value.
2365   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APInt &Result);
2366 
2367   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
2368   /// if statement) to the specified blocks.  Based on the condition, this might
2369   /// try to simplify the codegen of the conditional based on the branch.
2370   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
2371                             llvm::BasicBlock *FalseBlock);
2372 
2373   /// getTrapBB - Create a basic block that will call the trap intrinsic.  We'll
2374   /// generate a branch around the created basic block as necessary.
2375   llvm::BasicBlock *getTrapBB();
2376 
2377   /// EmitCallArg - Emit a single call argument.
2378   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
2379 
2380   /// EmitDelegateCallArg - We are performing a delegate call; that
2381   /// is, the current function is delegating to another one.  Produce
2382   /// a r-value suitable for passing the given parameter.
2383   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param);
2384 
2385   /// SetFPAccuracy - Set the minimum required accuracy of the given floating
2386   /// point operation, expressed as the maximum relative error in ulp.
2387   void SetFPAccuracy(llvm::Value *Val, unsigned AccuracyN,
2388                      unsigned AccuracyD = 1);
2389 
2390 private:
2391   void EmitReturnOfRValue(RValue RV, QualType Ty);
2392 
2393   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
2394   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
2395   ///
2396   /// \param AI - The first function argument of the expansion.
2397   /// \return The argument following the last expanded function
2398   /// argument.
2399   llvm::Function::arg_iterator
2400   ExpandTypeFromArgs(QualType Ty, LValue Dst,
2401                      llvm::Function::arg_iterator AI);
2402 
2403   /// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg
2404   /// Ty, into individual arguments on the provided vector \arg Args. See
2405   /// ABIArgInfo::Expand.
2406   void ExpandTypeToArgs(QualType Ty, RValue Src,
2407                         SmallVector<llvm::Value*, 16> &Args,
2408                         llvm::FunctionType *IRFuncTy);
2409 
2410   llvm::Value* EmitAsmInput(const AsmStmt &S,
2411                             const TargetInfo::ConstraintInfo &Info,
2412                             const Expr *InputExpr, std::string &ConstraintStr);
2413 
2414   llvm::Value* EmitAsmInputLValue(const AsmStmt &S,
2415                                   const TargetInfo::ConstraintInfo &Info,
2416                                   LValue InputValue, QualType InputType,
2417                                   std::string &ConstraintStr);
2418 
2419   /// EmitCallArgs - Emit call arguments for a function.
2420   /// The CallArgTypeInfo parameter is used for iterating over the known
2421   /// argument types of the function being called.
2422   template<typename T>
2423   void EmitCallArgs(CallArgList& Args, const T* CallArgTypeInfo,
2424                     CallExpr::const_arg_iterator ArgBeg,
2425                     CallExpr::const_arg_iterator ArgEnd) {
2426       CallExpr::const_arg_iterator Arg = ArgBeg;
2427 
2428     // First, use the argument types that the type info knows about
2429     if (CallArgTypeInfo) {
2430       for (typename T::arg_type_iterator I = CallArgTypeInfo->arg_type_begin(),
2431            E = CallArgTypeInfo->arg_type_end(); I != E; ++I, ++Arg) {
2432         assert(Arg != ArgEnd && "Running over edge of argument list!");
2433         QualType ArgType = *I;
2434 #ifndef NDEBUG
2435         QualType ActualArgType = Arg->getType();
2436         if (ArgType->isPointerType() && ActualArgType->isPointerType()) {
2437           QualType ActualBaseType =
2438             ActualArgType->getAs<PointerType>()->getPointeeType();
2439           QualType ArgBaseType =
2440             ArgType->getAs<PointerType>()->getPointeeType();
2441           if (ArgBaseType->isVariableArrayType()) {
2442             if (const VariableArrayType *VAT =
2443                 getContext().getAsVariableArrayType(ActualBaseType)) {
2444               if (!VAT->getSizeExpr())
2445                 ActualArgType = ArgType;
2446             }
2447           }
2448         }
2449         assert(getContext().getCanonicalType(ArgType.getNonReferenceType()).
2450                getTypePtr() ==
2451                getContext().getCanonicalType(ActualArgType).getTypePtr() &&
2452                "type mismatch in call argument!");
2453 #endif
2454         EmitCallArg(Args, *Arg, ArgType);
2455       }
2456 
2457       // Either we've emitted all the call args, or we have a call to a
2458       // variadic function.
2459       assert((Arg == ArgEnd || CallArgTypeInfo->isVariadic()) &&
2460              "Extra arguments in non-variadic function!");
2461 
2462     }
2463 
2464     // If we still have any arguments, emit them using the type of the argument.
2465     for (; Arg != ArgEnd; ++Arg)
2466       EmitCallArg(Args, *Arg, Arg->getType());
2467   }
2468 
2469   const TargetCodeGenInfo &getTargetHooks() const {
2470     return CGM.getTargetCodeGenInfo();
2471   }
2472 
2473   void EmitDeclMetadata();
2474 
2475   CodeGenModule::ByrefHelpers *
2476   buildByrefHelpers(llvm::StructType &byrefType,
2477                     const AutoVarEmission &emission);
2478 };
2479 
2480 /// Helper class with most of the code for saving a value for a
2481 /// conditional expression cleanup.
2482 struct DominatingLLVMValue {
2483   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
2484 
2485   /// Answer whether the given value needs extra work to be saved.
2486   static bool needsSaving(llvm::Value *value) {
2487     // If it's not an instruction, we don't need to save.
2488     if (!isa<llvm::Instruction>(value)) return false;
2489 
2490     // If it's an instruction in the entry block, we don't need to save.
2491     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
2492     return (block != &block->getParent()->getEntryBlock());
2493   }
2494 
2495   /// Try to save the given value.
2496   static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
2497     if (!needsSaving(value)) return saved_type(value, false);
2498 
2499     // Otherwise we need an alloca.
2500     llvm::Value *alloca =
2501       CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save");
2502     CGF.Builder.CreateStore(value, alloca);
2503 
2504     return saved_type(alloca, true);
2505   }
2506 
2507   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
2508     if (!value.getInt()) return value.getPointer();
2509     return CGF.Builder.CreateLoad(value.getPointer());
2510   }
2511 };
2512 
2513 /// A partial specialization of DominatingValue for llvm::Values that
2514 /// might be llvm::Instructions.
2515 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
2516   typedef T *type;
2517   static type restore(CodeGenFunction &CGF, saved_type value) {
2518     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
2519   }
2520 };
2521 
2522 /// A specialization of DominatingValue for RValue.
2523 template <> struct DominatingValue<RValue> {
2524   typedef RValue type;
2525   class saved_type {
2526     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
2527                 AggregateAddress, ComplexAddress };
2528 
2529     llvm::Value *Value;
2530     Kind K;
2531     saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {}
2532 
2533   public:
2534     static bool needsSaving(RValue value);
2535     static saved_type save(CodeGenFunction &CGF, RValue value);
2536     RValue restore(CodeGenFunction &CGF);
2537 
2538     // implementations in CGExprCXX.cpp
2539   };
2540 
2541   static bool needsSaving(type value) {
2542     return saved_type::needsSaving(value);
2543   }
2544   static saved_type save(CodeGenFunction &CGF, type value) {
2545     return saved_type::save(CGF, value);
2546   }
2547   static type restore(CodeGenFunction &CGF, saved_type value) {
2548     return value.restore(CGF);
2549   }
2550 };
2551 
2552 }  // end namespace CodeGen
2553 }  // end namespace clang
2554 
2555 #endif
2556