1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the internal per-function state used for llvm translation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 15 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 16 17 #include "CGBuilder.h" 18 #include "CGDebugInfo.h" 19 #include "CGLoopInfo.h" 20 #include "CGValue.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "EHScopeStack.h" 24 #include "VarBypassDetector.h" 25 #include "clang/AST/CharUnits.h" 26 #include "clang/AST/ExprCXX.h" 27 #include "clang/AST/ExprObjC.h" 28 #include "clang/AST/ExprOpenMP.h" 29 #include "clang/AST/Type.h" 30 #include "clang/Basic/ABI.h" 31 #include "clang/Basic/CapturedStmt.h" 32 #include "clang/Basic/OpenMPKinds.h" 33 #include "clang/Basic/TargetInfo.h" 34 #include "clang/Frontend/CodeGenOptions.h" 35 #include "llvm/ADT/ArrayRef.h" 36 #include "llvm/ADT/DenseMap.h" 37 #include "llvm/ADT/MapVector.h" 38 #include "llvm/ADT/SmallVector.h" 39 #include "llvm/IR/ValueHandle.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Transforms/Utils/SanitizerStats.h" 42 43 namespace llvm { 44 class BasicBlock; 45 class LLVMContext; 46 class MDNode; 47 class Module; 48 class SwitchInst; 49 class Twine; 50 class Value; 51 class CallSite; 52 } 53 54 namespace clang { 55 class ASTContext; 56 class BlockDecl; 57 class CXXDestructorDecl; 58 class CXXForRangeStmt; 59 class CXXTryStmt; 60 class Decl; 61 class LabelDecl; 62 class EnumConstantDecl; 63 class FunctionDecl; 64 class FunctionProtoType; 65 class LabelStmt; 66 class ObjCContainerDecl; 67 class ObjCInterfaceDecl; 68 class ObjCIvarDecl; 69 class ObjCMethodDecl; 70 class ObjCImplementationDecl; 71 class ObjCPropertyImplDecl; 72 class TargetInfo; 73 class VarDecl; 74 class ObjCForCollectionStmt; 75 class ObjCAtTryStmt; 76 class ObjCAtThrowStmt; 77 class ObjCAtSynchronizedStmt; 78 class ObjCAutoreleasePoolStmt; 79 80 namespace analyze_os_log { 81 class OSLogBufferLayout; 82 } 83 84 namespace CodeGen { 85 class CodeGenTypes; 86 class CGCallee; 87 class CGFunctionInfo; 88 class CGRecordLayout; 89 class CGBlockInfo; 90 class CGCXXABI; 91 class BlockByrefHelpers; 92 class BlockByrefInfo; 93 class BlockFlags; 94 class BlockFieldFlags; 95 class RegionCodeGenTy; 96 class TargetCodeGenInfo; 97 struct OMPTaskDataTy; 98 struct CGCoroData; 99 100 /// The kind of evaluation to perform on values of a particular 101 /// type. Basically, is the code in CGExprScalar, CGExprComplex, or 102 /// CGExprAgg? 103 /// 104 /// TODO: should vectors maybe be split out into their own thing? 105 enum TypeEvaluationKind { 106 TEK_Scalar, 107 TEK_Complex, 108 TEK_Aggregate 109 }; 110 111 #define LIST_SANITIZER_CHECKS \ 112 SANITIZER_CHECK(AddOverflow, add_overflow, 0) \ 113 SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0) \ 114 SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0) \ 115 SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0) \ 116 SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0) \ 117 SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0) \ 118 SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 0) \ 119 SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0) \ 120 SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0) \ 121 SANITIZER_CHECK(MissingReturn, missing_return, 0) \ 122 SANITIZER_CHECK(MulOverflow, mul_overflow, 0) \ 123 SANITIZER_CHECK(NegateOverflow, negate_overflow, 0) \ 124 SANITIZER_CHECK(NullabilityArg, nullability_arg, 0) \ 125 SANITIZER_CHECK(NullabilityReturn, nullability_return, 1) \ 126 SANITIZER_CHECK(NonnullArg, nonnull_arg, 0) \ 127 SANITIZER_CHECK(NonnullReturn, nonnull_return, 1) \ 128 SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0) \ 129 SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0) \ 130 SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0) \ 131 SANITIZER_CHECK(SubOverflow, sub_overflow, 0) \ 132 SANITIZER_CHECK(TypeMismatch, type_mismatch, 1) \ 133 SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0) 134 135 enum SanitizerHandler { 136 #define SANITIZER_CHECK(Enum, Name, Version) Enum, 137 LIST_SANITIZER_CHECKS 138 #undef SANITIZER_CHECK 139 }; 140 141 /// CodeGenFunction - This class organizes the per-function state that is used 142 /// while generating LLVM code. 143 class CodeGenFunction : public CodeGenTypeCache { 144 CodeGenFunction(const CodeGenFunction &) = delete; 145 void operator=(const CodeGenFunction &) = delete; 146 147 friend class CGCXXABI; 148 public: 149 /// A jump destination is an abstract label, branching to which may 150 /// require a jump out through normal cleanups. 151 struct JumpDest { 152 JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {} 153 JumpDest(llvm::BasicBlock *Block, 154 EHScopeStack::stable_iterator Depth, 155 unsigned Index) 156 : Block(Block), ScopeDepth(Depth), Index(Index) {} 157 158 bool isValid() const { return Block != nullptr; } 159 llvm::BasicBlock *getBlock() const { return Block; } 160 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 161 unsigned getDestIndex() const { return Index; } 162 163 // This should be used cautiously. 164 void setScopeDepth(EHScopeStack::stable_iterator depth) { 165 ScopeDepth = depth; 166 } 167 168 private: 169 llvm::BasicBlock *Block; 170 EHScopeStack::stable_iterator ScopeDepth; 171 unsigned Index; 172 }; 173 174 CodeGenModule &CGM; // Per-module state. 175 const TargetInfo &Target; 176 177 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 178 LoopInfoStack LoopStack; 179 CGBuilderTy Builder; 180 181 // Stores variables for which we can't generate correct lifetime markers 182 // because of jumps. 183 VarBypassDetector Bypasses; 184 185 // CodeGen lambda for loops and support for ordered clause 186 typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &, 187 JumpDest)> 188 CodeGenLoopTy; 189 typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation, 190 const unsigned, const bool)> 191 CodeGenOrderedTy; 192 193 // Codegen lambda for loop bounds in worksharing loop constructs 194 typedef llvm::function_ref<std::pair<LValue, LValue>( 195 CodeGenFunction &, const OMPExecutableDirective &S)> 196 CodeGenLoopBoundsTy; 197 198 // Codegen lambda for loop bounds in dispatch-based loop implementation 199 typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>( 200 CodeGenFunction &, const OMPExecutableDirective &S, Address LB, 201 Address UB)> 202 CodeGenDispatchBoundsTy; 203 204 /// \brief CGBuilder insert helper. This function is called after an 205 /// instruction is created using Builder. 206 void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name, 207 llvm::BasicBlock *BB, 208 llvm::BasicBlock::iterator InsertPt) const; 209 210 /// CurFuncDecl - Holds the Decl for the current outermost 211 /// non-closure context. 212 const Decl *CurFuncDecl; 213 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 214 const Decl *CurCodeDecl; 215 const CGFunctionInfo *CurFnInfo; 216 QualType FnRetTy; 217 llvm::Function *CurFn; 218 219 // Holds coroutine data if the current function is a coroutine. We use a 220 // wrapper to manage its lifetime, so that we don't have to define CGCoroData 221 // in this header. 222 struct CGCoroInfo { 223 std::unique_ptr<CGCoroData> Data; 224 CGCoroInfo(); 225 ~CGCoroInfo(); 226 }; 227 CGCoroInfo CurCoro; 228 229 bool isCoroutine() const { 230 return CurCoro.Data != nullptr; 231 } 232 233 /// CurGD - The GlobalDecl for the current function being compiled. 234 GlobalDecl CurGD; 235 236 /// PrologueCleanupDepth - The cleanup depth enclosing all the 237 /// cleanups associated with the parameters. 238 EHScopeStack::stable_iterator PrologueCleanupDepth; 239 240 /// ReturnBlock - Unified return block. 241 JumpDest ReturnBlock; 242 243 /// ReturnValue - The temporary alloca to hold the return 244 /// value. This is invalid iff the function has no return value. 245 Address ReturnValue; 246 247 /// Return true if a label was seen in the current scope. 248 bool hasLabelBeenSeenInCurrentScope() const { 249 if (CurLexicalScope) 250 return CurLexicalScope->hasLabels(); 251 return !LabelMap.empty(); 252 } 253 254 /// AllocaInsertPoint - This is an instruction in the entry block before which 255 /// we prefer to insert allocas. 256 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 257 258 /// \brief API for captured statement code generation. 259 class CGCapturedStmtInfo { 260 public: 261 explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default) 262 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {} 263 explicit CGCapturedStmtInfo(const CapturedStmt &S, 264 CapturedRegionKind K = CR_Default) 265 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) { 266 267 RecordDecl::field_iterator Field = 268 S.getCapturedRecordDecl()->field_begin(); 269 for (CapturedStmt::const_capture_iterator I = S.capture_begin(), 270 E = S.capture_end(); 271 I != E; ++I, ++Field) { 272 if (I->capturesThis()) 273 CXXThisFieldDecl = *Field; 274 else if (I->capturesVariable()) 275 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 276 else if (I->capturesVariableByCopy()) 277 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 278 } 279 } 280 281 virtual ~CGCapturedStmtInfo(); 282 283 CapturedRegionKind getKind() const { return Kind; } 284 285 virtual void setContextValue(llvm::Value *V) { ThisValue = V; } 286 // \brief Retrieve the value of the context parameter. 287 virtual llvm::Value *getContextValue() const { return ThisValue; } 288 289 /// \brief Lookup the captured field decl for a variable. 290 virtual const FieldDecl *lookup(const VarDecl *VD) const { 291 return CaptureFields.lookup(VD->getCanonicalDecl()); 292 } 293 294 bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; } 295 virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; } 296 297 static bool classof(const CGCapturedStmtInfo *) { 298 return true; 299 } 300 301 /// \brief Emit the captured statement body. 302 virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) { 303 CGF.incrementProfileCounter(S); 304 CGF.EmitStmt(S); 305 } 306 307 /// \brief Get the name of the capture helper. 308 virtual StringRef getHelperName() const { return "__captured_stmt"; } 309 310 private: 311 /// \brief The kind of captured statement being generated. 312 CapturedRegionKind Kind; 313 314 /// \brief Keep the map between VarDecl and FieldDecl. 315 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields; 316 317 /// \brief The base address of the captured record, passed in as the first 318 /// argument of the parallel region function. 319 llvm::Value *ThisValue; 320 321 /// \brief Captured 'this' type. 322 FieldDecl *CXXThisFieldDecl; 323 }; 324 CGCapturedStmtInfo *CapturedStmtInfo; 325 326 /// \brief RAII for correct setting/restoring of CapturedStmtInfo. 327 class CGCapturedStmtRAII { 328 private: 329 CodeGenFunction &CGF; 330 CGCapturedStmtInfo *PrevCapturedStmtInfo; 331 public: 332 CGCapturedStmtRAII(CodeGenFunction &CGF, 333 CGCapturedStmtInfo *NewCapturedStmtInfo) 334 : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) { 335 CGF.CapturedStmtInfo = NewCapturedStmtInfo; 336 } 337 ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; } 338 }; 339 340 /// An abstract representation of regular/ObjC call/message targets. 341 class AbstractCallee { 342 /// The function declaration of the callee. 343 const Decl *CalleeDecl; 344 345 public: 346 AbstractCallee() : CalleeDecl(nullptr) {} 347 AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {} 348 AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {} 349 bool hasFunctionDecl() const { 350 return dyn_cast_or_null<FunctionDecl>(CalleeDecl); 351 } 352 const Decl *getDecl() const { return CalleeDecl; } 353 unsigned getNumParams() const { 354 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 355 return FD->getNumParams(); 356 return cast<ObjCMethodDecl>(CalleeDecl)->param_size(); 357 } 358 const ParmVarDecl *getParamDecl(unsigned I) const { 359 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 360 return FD->getParamDecl(I); 361 return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I); 362 } 363 }; 364 365 /// \brief Sanitizers enabled for this function. 366 SanitizerSet SanOpts; 367 368 /// \brief True if CodeGen currently emits code implementing sanitizer checks. 369 bool IsSanitizerScope; 370 371 /// \brief RAII object to set/unset CodeGenFunction::IsSanitizerScope. 372 class SanitizerScope { 373 CodeGenFunction *CGF; 374 public: 375 SanitizerScope(CodeGenFunction *CGF); 376 ~SanitizerScope(); 377 }; 378 379 /// In C++, whether we are code generating a thunk. This controls whether we 380 /// should emit cleanups. 381 bool CurFuncIsThunk; 382 383 /// In ARC, whether we should autorelease the return value. 384 bool AutoreleaseResult; 385 386 /// Whether we processed a Microsoft-style asm block during CodeGen. These can 387 /// potentially set the return value. 388 bool SawAsmBlock; 389 390 const FunctionDecl *CurSEHParent = nullptr; 391 392 /// True if the current function is an outlined SEH helper. This can be a 393 /// finally block or filter expression. 394 bool IsOutlinedSEHHelper; 395 396 const CodeGen::CGBlockInfo *BlockInfo; 397 llvm::Value *BlockPointer; 398 399 llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; 400 FieldDecl *LambdaThisCaptureField; 401 402 /// \brief A mapping from NRVO variables to the flags used to indicate 403 /// when the NRVO has been applied to this variable. 404 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 405 406 EHScopeStack EHStack; 407 llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack; 408 llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack; 409 410 llvm::Instruction *CurrentFuncletPad = nullptr; 411 412 class CallLifetimeEnd final : public EHScopeStack::Cleanup { 413 llvm::Value *Addr; 414 llvm::Value *Size; 415 416 public: 417 CallLifetimeEnd(Address addr, llvm::Value *size) 418 : Addr(addr.getPointer()), Size(size) {} 419 420 void Emit(CodeGenFunction &CGF, Flags flags) override { 421 CGF.EmitLifetimeEnd(Size, Addr); 422 } 423 }; 424 425 /// Header for data within LifetimeExtendedCleanupStack. 426 struct LifetimeExtendedCleanupHeader { 427 /// The size of the following cleanup object. 428 unsigned Size; 429 /// The kind of cleanup to push: a value from the CleanupKind enumeration. 430 CleanupKind Kind; 431 432 size_t getSize() const { return Size; } 433 CleanupKind getKind() const { return Kind; } 434 }; 435 436 /// i32s containing the indexes of the cleanup destinations. 437 Address NormalCleanupDest; 438 439 unsigned NextCleanupDestIndex; 440 441 /// FirstBlockInfo - The head of a singly-linked-list of block layouts. 442 CGBlockInfo *FirstBlockInfo; 443 444 /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. 445 llvm::BasicBlock *EHResumeBlock; 446 447 /// The exception slot. All landing pads write the current exception pointer 448 /// into this alloca. 449 llvm::Value *ExceptionSlot; 450 451 /// The selector slot. Under the MandatoryCleanup model, all landing pads 452 /// write the current selector value into this alloca. 453 llvm::AllocaInst *EHSelectorSlot; 454 455 /// A stack of exception code slots. Entering an __except block pushes a slot 456 /// on the stack and leaving pops one. The __exception_code() intrinsic loads 457 /// a value from the top of the stack. 458 SmallVector<Address, 1> SEHCodeSlotStack; 459 460 /// Value returned by __exception_info intrinsic. 461 llvm::Value *SEHInfo = nullptr; 462 463 /// Emits a landing pad for the current EH stack. 464 llvm::BasicBlock *EmitLandingPad(); 465 466 llvm::BasicBlock *getInvokeDestImpl(); 467 468 template <class T> 469 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 470 return DominatingValue<T>::save(*this, value); 471 } 472 473 public: 474 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 475 /// rethrows. 476 SmallVector<llvm::Value*, 8> ObjCEHValueStack; 477 478 /// A class controlling the emission of a finally block. 479 class FinallyInfo { 480 /// Where the catchall's edge through the cleanup should go. 481 JumpDest RethrowDest; 482 483 /// A function to call to enter the catch. 484 llvm::Constant *BeginCatchFn; 485 486 /// An i1 variable indicating whether or not the @finally is 487 /// running for an exception. 488 llvm::AllocaInst *ForEHVar; 489 490 /// An i8* variable into which the exception pointer to rethrow 491 /// has been saved. 492 llvm::AllocaInst *SavedExnVar; 493 494 public: 495 void enter(CodeGenFunction &CGF, const Stmt *Finally, 496 llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn, 497 llvm::Constant *rethrowFn); 498 void exit(CodeGenFunction &CGF); 499 }; 500 501 /// Returns true inside SEH __try blocks. 502 bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); } 503 504 /// Returns true while emitting a cleanuppad. 505 bool isCleanupPadScope() const { 506 return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad); 507 } 508 509 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 510 /// current full-expression. Safe against the possibility that 511 /// we're currently inside a conditionally-evaluated expression. 512 template <class T, class... As> 513 void pushFullExprCleanup(CleanupKind kind, As... A) { 514 // If we're not in a conditional branch, or if none of the 515 // arguments requires saving, then use the unconditional cleanup. 516 if (!isInConditionalBranch()) 517 return EHStack.pushCleanup<T>(kind, A...); 518 519 // Stash values in a tuple so we can guarantee the order of saves. 520 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 521 SavedTuple Saved{saveValueInCond(A)...}; 522 523 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 524 EHStack.pushCleanupTuple<CleanupType>(kind, Saved); 525 initFullExprCleanup(); 526 } 527 528 /// \brief Queue a cleanup to be pushed after finishing the current 529 /// full-expression. 530 template <class T, class... As> 531 void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) { 532 assert(!isInConditionalBranch() && "can't defer conditional cleanup"); 533 534 LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind }; 535 536 size_t OldSize = LifetimeExtendedCleanupStack.size(); 537 LifetimeExtendedCleanupStack.resize( 538 LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size); 539 540 static_assert(sizeof(Header) % alignof(T) == 0, 541 "Cleanup will be allocated on misaligned address"); 542 char *Buffer = &LifetimeExtendedCleanupStack[OldSize]; 543 new (Buffer) LifetimeExtendedCleanupHeader(Header); 544 new (Buffer + sizeof(Header)) T(A...); 545 } 546 547 /// Set up the last cleaup that was pushed as a conditional 548 /// full-expression cleanup. 549 void initFullExprCleanup(); 550 551 /// PushDestructorCleanup - Push a cleanup to call the 552 /// complete-object destructor of an object of the given type at the 553 /// given address. Does nothing if T is not a C++ class type with a 554 /// non-trivial destructor. 555 void PushDestructorCleanup(QualType T, Address Addr); 556 557 /// PushDestructorCleanup - Push a cleanup to call the 558 /// complete-object variant of the given destructor on the object at 559 /// the given address. 560 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, Address Addr); 561 562 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 563 /// process all branch fixups. 564 void PopCleanupBlock(bool FallThroughIsBranchThrough = false); 565 566 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 567 /// The block cannot be reactivated. Pops it if it's the top of the 568 /// stack. 569 /// 570 /// \param DominatingIP - An instruction which is known to 571 /// dominate the current IP (if set) and which lies along 572 /// all paths of execution between the current IP and the 573 /// the point at which the cleanup comes into scope. 574 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 575 llvm::Instruction *DominatingIP); 576 577 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 578 /// Cannot be used to resurrect a deactivated cleanup. 579 /// 580 /// \param DominatingIP - An instruction which is known to 581 /// dominate the current IP (if set) and which lies along 582 /// all paths of execution between the current IP and the 583 /// the point at which the cleanup comes into scope. 584 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 585 llvm::Instruction *DominatingIP); 586 587 /// \brief Enters a new scope for capturing cleanups, all of which 588 /// will be executed once the scope is exited. 589 class RunCleanupsScope { 590 EHScopeStack::stable_iterator CleanupStackDepth; 591 size_t LifetimeExtendedCleanupStackSize; 592 bool OldDidCallStackSave; 593 protected: 594 bool PerformCleanup; 595 private: 596 597 RunCleanupsScope(const RunCleanupsScope &) = delete; 598 void operator=(const RunCleanupsScope &) = delete; 599 600 protected: 601 CodeGenFunction& CGF; 602 603 public: 604 /// \brief Enter a new cleanup scope. 605 explicit RunCleanupsScope(CodeGenFunction &CGF) 606 : PerformCleanup(true), CGF(CGF) 607 { 608 CleanupStackDepth = CGF.EHStack.stable_begin(); 609 LifetimeExtendedCleanupStackSize = 610 CGF.LifetimeExtendedCleanupStack.size(); 611 OldDidCallStackSave = CGF.DidCallStackSave; 612 CGF.DidCallStackSave = false; 613 } 614 615 /// \brief Exit this cleanup scope, emitting any accumulated cleanups. 616 ~RunCleanupsScope() { 617 if (PerformCleanup) 618 ForceCleanup(); 619 } 620 621 /// \brief Determine whether this scope requires any cleanups. 622 bool requiresCleanups() const { 623 return CGF.EHStack.stable_begin() != CleanupStackDepth; 624 } 625 626 /// \brief Force the emission of cleanups now, instead of waiting 627 /// until this object is destroyed. 628 /// \param ValuesToReload - A list of values that need to be available at 629 /// the insertion point after cleanup emission. If cleanup emission created 630 /// a shared cleanup block, these value pointers will be rewritten. 631 /// Otherwise, they not will be modified. 632 void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) { 633 assert(PerformCleanup && "Already forced cleanup"); 634 CGF.DidCallStackSave = OldDidCallStackSave; 635 CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize, 636 ValuesToReload); 637 PerformCleanup = false; 638 } 639 }; 640 641 class LexicalScope : public RunCleanupsScope { 642 SourceRange Range; 643 SmallVector<const LabelDecl*, 4> Labels; 644 LexicalScope *ParentScope; 645 646 LexicalScope(const LexicalScope &) = delete; 647 void operator=(const LexicalScope &) = delete; 648 649 public: 650 /// \brief Enter a new cleanup scope. 651 explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) 652 : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) { 653 CGF.CurLexicalScope = this; 654 if (CGDebugInfo *DI = CGF.getDebugInfo()) 655 DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); 656 } 657 658 void addLabel(const LabelDecl *label) { 659 assert(PerformCleanup && "adding label to dead scope?"); 660 Labels.push_back(label); 661 } 662 663 /// \brief Exit this cleanup scope, emitting any accumulated 664 /// cleanups. 665 ~LexicalScope() { 666 if (CGDebugInfo *DI = CGF.getDebugInfo()) 667 DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 668 669 // If we should perform a cleanup, force them now. Note that 670 // this ends the cleanup scope before rescoping any labels. 671 if (PerformCleanup) { 672 ApplyDebugLocation DL(CGF, Range.getEnd()); 673 ForceCleanup(); 674 } 675 } 676 677 /// \brief Force the emission of cleanups now, instead of waiting 678 /// until this object is destroyed. 679 void ForceCleanup() { 680 CGF.CurLexicalScope = ParentScope; 681 RunCleanupsScope::ForceCleanup(); 682 683 if (!Labels.empty()) 684 rescopeLabels(); 685 } 686 687 bool hasLabels() const { 688 return !Labels.empty(); 689 } 690 691 void rescopeLabels(); 692 }; 693 694 typedef llvm::DenseMap<const Decl *, Address> DeclMapTy; 695 696 /// \brief The scope used to remap some variables as private in the OpenMP 697 /// loop body (or other captured region emitted without outlining), and to 698 /// restore old vars back on exit. 699 class OMPPrivateScope : public RunCleanupsScope { 700 DeclMapTy SavedLocals; 701 DeclMapTy SavedPrivates; 702 703 private: 704 OMPPrivateScope(const OMPPrivateScope &) = delete; 705 void operator=(const OMPPrivateScope &) = delete; 706 707 public: 708 /// \brief Enter a new OpenMP private scope. 709 explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {} 710 711 /// \brief Registers \a LocalVD variable as a private and apply \a 712 /// PrivateGen function for it to generate corresponding private variable. 713 /// \a PrivateGen returns an address of the generated private variable. 714 /// \return true if the variable is registered as private, false if it has 715 /// been privatized already. 716 bool 717 addPrivate(const VarDecl *LocalVD, 718 llvm::function_ref<Address()> PrivateGen) { 719 assert(PerformCleanup && "adding private to dead scope"); 720 721 LocalVD = LocalVD->getCanonicalDecl(); 722 // Only save it once. 723 if (SavedLocals.count(LocalVD)) return false; 724 725 // Copy the existing local entry to SavedLocals. 726 auto it = CGF.LocalDeclMap.find(LocalVD); 727 if (it != CGF.LocalDeclMap.end()) { 728 SavedLocals.insert({LocalVD, it->second}); 729 } else { 730 SavedLocals.insert({LocalVD, Address::invalid()}); 731 } 732 733 // Generate the private entry. 734 Address Addr = PrivateGen(); 735 QualType VarTy = LocalVD->getType(); 736 if (VarTy->isReferenceType()) { 737 Address Temp = CGF.CreateMemTemp(VarTy); 738 CGF.Builder.CreateStore(Addr.getPointer(), Temp); 739 Addr = Temp; 740 } 741 SavedPrivates.insert({LocalVD, Addr}); 742 743 return true; 744 } 745 746 /// \brief Privatizes local variables previously registered as private. 747 /// Registration is separate from the actual privatization to allow 748 /// initializers use values of the original variables, not the private one. 749 /// This is important, for example, if the private variable is a class 750 /// variable initialized by a constructor that references other private 751 /// variables. But at initialization original variables must be used, not 752 /// private copies. 753 /// \return true if at least one variable was privatized, false otherwise. 754 bool Privatize() { 755 copyInto(SavedPrivates, CGF.LocalDeclMap); 756 SavedPrivates.clear(); 757 return !SavedLocals.empty(); 758 } 759 760 void ForceCleanup() { 761 RunCleanupsScope::ForceCleanup(); 762 copyInto(SavedLocals, CGF.LocalDeclMap); 763 SavedLocals.clear(); 764 } 765 766 /// \brief Exit scope - all the mapped variables are restored. 767 ~OMPPrivateScope() { 768 if (PerformCleanup) 769 ForceCleanup(); 770 } 771 772 /// Checks if the global variable is captured in current function. 773 bool isGlobalVarCaptured(const VarDecl *VD) const { 774 VD = VD->getCanonicalDecl(); 775 return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0; 776 } 777 778 private: 779 /// Copy all the entries in the source map over the corresponding 780 /// entries in the destination, which must exist. 781 static void copyInto(const DeclMapTy &src, DeclMapTy &dest) { 782 for (auto &pair : src) { 783 if (!pair.second.isValid()) { 784 dest.erase(pair.first); 785 continue; 786 } 787 788 auto it = dest.find(pair.first); 789 if (it != dest.end()) { 790 it->second = pair.second; 791 } else { 792 dest.insert(pair); 793 } 794 } 795 } 796 }; 797 798 /// \brief Takes the old cleanup stack size and emits the cleanup blocks 799 /// that have been added. 800 void 801 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 802 std::initializer_list<llvm::Value **> ValuesToReload = {}); 803 804 /// \brief Takes the old cleanup stack size and emits the cleanup blocks 805 /// that have been added, then adds all lifetime-extended cleanups from 806 /// the given position to the stack. 807 void 808 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 809 size_t OldLifetimeExtendedStackSize, 810 std::initializer_list<llvm::Value **> ValuesToReload = {}); 811 812 void ResolveBranchFixups(llvm::BasicBlock *Target); 813 814 /// The given basic block lies in the current EH scope, but may be a 815 /// target of a potentially scope-crossing jump; get a stable handle 816 /// to which we can perform this jump later. 817 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 818 return JumpDest(Target, 819 EHStack.getInnermostNormalCleanup(), 820 NextCleanupDestIndex++); 821 } 822 823 /// The given basic block lies in the current EH scope, but may be a 824 /// target of a potentially scope-crossing jump; get a stable handle 825 /// to which we can perform this jump later. 826 JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { 827 return getJumpDestInCurrentScope(createBasicBlock(Name)); 828 } 829 830 /// EmitBranchThroughCleanup - Emit a branch from the current insert 831 /// block through the normal cleanup handling code (if any) and then 832 /// on to \arg Dest. 833 void EmitBranchThroughCleanup(JumpDest Dest); 834 835 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 836 /// specified destination obviously has no cleanups to run. 'false' is always 837 /// a conservatively correct answer for this method. 838 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 839 840 /// popCatchScope - Pops the catch scope at the top of the EHScope 841 /// stack, emitting any required code (other than the catch handlers 842 /// themselves). 843 void popCatchScope(); 844 845 llvm::BasicBlock *getEHResumeBlock(bool isCleanup); 846 llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); 847 llvm::BasicBlock *getMSVCDispatchBlock(EHScopeStack::stable_iterator scope); 848 849 /// An object to manage conditionally-evaluated expressions. 850 class ConditionalEvaluation { 851 llvm::BasicBlock *StartBB; 852 853 public: 854 ConditionalEvaluation(CodeGenFunction &CGF) 855 : StartBB(CGF.Builder.GetInsertBlock()) {} 856 857 void begin(CodeGenFunction &CGF) { 858 assert(CGF.OutermostConditional != this); 859 if (!CGF.OutermostConditional) 860 CGF.OutermostConditional = this; 861 } 862 863 void end(CodeGenFunction &CGF) { 864 assert(CGF.OutermostConditional != nullptr); 865 if (CGF.OutermostConditional == this) 866 CGF.OutermostConditional = nullptr; 867 } 868 869 /// Returns a block which will be executed prior to each 870 /// evaluation of the conditional code. 871 llvm::BasicBlock *getStartingBlock() const { 872 return StartBB; 873 } 874 }; 875 876 /// isInConditionalBranch - Return true if we're currently emitting 877 /// one branch or the other of a conditional expression. 878 bool isInConditionalBranch() const { return OutermostConditional != nullptr; } 879 880 void setBeforeOutermostConditional(llvm::Value *value, Address addr) { 881 assert(isInConditionalBranch()); 882 llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); 883 auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back()); 884 store->setAlignment(addr.getAlignment().getQuantity()); 885 } 886 887 /// An RAII object to record that we're evaluating a statement 888 /// expression. 889 class StmtExprEvaluation { 890 CodeGenFunction &CGF; 891 892 /// We have to save the outermost conditional: cleanups in a 893 /// statement expression aren't conditional just because the 894 /// StmtExpr is. 895 ConditionalEvaluation *SavedOutermostConditional; 896 897 public: 898 StmtExprEvaluation(CodeGenFunction &CGF) 899 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 900 CGF.OutermostConditional = nullptr; 901 } 902 903 ~StmtExprEvaluation() { 904 CGF.OutermostConditional = SavedOutermostConditional; 905 CGF.EnsureInsertPoint(); 906 } 907 }; 908 909 /// An object which temporarily prevents a value from being 910 /// destroyed by aggressive peephole optimizations that assume that 911 /// all uses of a value have been realized in the IR. 912 class PeepholeProtection { 913 llvm::Instruction *Inst; 914 friend class CodeGenFunction; 915 916 public: 917 PeepholeProtection() : Inst(nullptr) {} 918 }; 919 920 /// A non-RAII class containing all the information about a bound 921 /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for 922 /// this which makes individual mappings very simple; using this 923 /// class directly is useful when you have a variable number of 924 /// opaque values or don't want the RAII functionality for some 925 /// reason. 926 class OpaqueValueMappingData { 927 const OpaqueValueExpr *OpaqueValue; 928 bool BoundLValue; 929 CodeGenFunction::PeepholeProtection Protection; 930 931 OpaqueValueMappingData(const OpaqueValueExpr *ov, 932 bool boundLValue) 933 : OpaqueValue(ov), BoundLValue(boundLValue) {} 934 public: 935 OpaqueValueMappingData() : OpaqueValue(nullptr) {} 936 937 static bool shouldBindAsLValue(const Expr *expr) { 938 // gl-values should be bound as l-values for obvious reasons. 939 // Records should be bound as l-values because IR generation 940 // always keeps them in memory. Expressions of function type 941 // act exactly like l-values but are formally required to be 942 // r-values in C. 943 return expr->isGLValue() || 944 expr->getType()->isFunctionType() || 945 hasAggregateEvaluationKind(expr->getType()); 946 } 947 948 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 949 const OpaqueValueExpr *ov, 950 const Expr *e) { 951 if (shouldBindAsLValue(ov)) 952 return bind(CGF, ov, CGF.EmitLValue(e)); 953 return bind(CGF, ov, CGF.EmitAnyExpr(e)); 954 } 955 956 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 957 const OpaqueValueExpr *ov, 958 const LValue &lv) { 959 assert(shouldBindAsLValue(ov)); 960 CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); 961 return OpaqueValueMappingData(ov, true); 962 } 963 964 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 965 const OpaqueValueExpr *ov, 966 const RValue &rv) { 967 assert(!shouldBindAsLValue(ov)); 968 CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); 969 970 OpaqueValueMappingData data(ov, false); 971 972 // Work around an extremely aggressive peephole optimization in 973 // EmitScalarConversion which assumes that all other uses of a 974 // value are extant. 975 data.Protection = CGF.protectFromPeepholes(rv); 976 977 return data; 978 } 979 980 bool isValid() const { return OpaqueValue != nullptr; } 981 void clear() { OpaqueValue = nullptr; } 982 983 void unbind(CodeGenFunction &CGF) { 984 assert(OpaqueValue && "no data to unbind!"); 985 986 if (BoundLValue) { 987 CGF.OpaqueLValues.erase(OpaqueValue); 988 } else { 989 CGF.OpaqueRValues.erase(OpaqueValue); 990 CGF.unprotectFromPeepholes(Protection); 991 } 992 } 993 }; 994 995 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 996 class OpaqueValueMapping { 997 CodeGenFunction &CGF; 998 OpaqueValueMappingData Data; 999 1000 public: 1001 static bool shouldBindAsLValue(const Expr *expr) { 1002 return OpaqueValueMappingData::shouldBindAsLValue(expr); 1003 } 1004 1005 /// Build the opaque value mapping for the given conditional 1006 /// operator if it's the GNU ?: extension. This is a common 1007 /// enough pattern that the convenience operator is really 1008 /// helpful. 1009 /// 1010 OpaqueValueMapping(CodeGenFunction &CGF, 1011 const AbstractConditionalOperator *op) : CGF(CGF) { 1012 if (isa<ConditionalOperator>(op)) 1013 // Leave Data empty. 1014 return; 1015 1016 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 1017 Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), 1018 e->getCommon()); 1019 } 1020 1021 /// Build the opaque value mapping for an OpaqueValueExpr whose source 1022 /// expression is set to the expression the OVE represents. 1023 OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV) 1024 : CGF(CGF) { 1025 if (OV) { 1026 assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used " 1027 "for OVE with no source expression"); 1028 Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr()); 1029 } 1030 } 1031 1032 OpaqueValueMapping(CodeGenFunction &CGF, 1033 const OpaqueValueExpr *opaqueValue, 1034 LValue lvalue) 1035 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { 1036 } 1037 1038 OpaqueValueMapping(CodeGenFunction &CGF, 1039 const OpaqueValueExpr *opaqueValue, 1040 RValue rvalue) 1041 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { 1042 } 1043 1044 void pop() { 1045 Data.unbind(CGF); 1046 Data.clear(); 1047 } 1048 1049 ~OpaqueValueMapping() { 1050 if (Data.isValid()) Data.unbind(CGF); 1051 } 1052 }; 1053 1054 private: 1055 CGDebugInfo *DebugInfo; 1056 bool DisableDebugInfo; 1057 1058 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 1059 /// calling llvm.stacksave for multiple VLAs in the same scope. 1060 bool DidCallStackSave; 1061 1062 /// IndirectBranch - The first time an indirect goto is seen we create a block 1063 /// with an indirect branch. Every time we see the address of a label taken, 1064 /// we add the label to the indirect goto. Every subsequent indirect goto is 1065 /// codegen'd as a jump to the IndirectBranch's basic block. 1066 llvm::IndirectBrInst *IndirectBranch; 1067 1068 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 1069 /// decls. 1070 DeclMapTy LocalDeclMap; 1071 1072 /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this 1073 /// will contain a mapping from said ParmVarDecl to its implicit "object_size" 1074 /// parameter. 1075 llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2> 1076 SizeArguments; 1077 1078 /// Track escaped local variables with auto storage. Used during SEH 1079 /// outlining to produce a call to llvm.localescape. 1080 llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals; 1081 1082 /// LabelMap - This keeps track of the LLVM basic block for each C label. 1083 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 1084 1085 // BreakContinueStack - This keeps track of where break and continue 1086 // statements should jump to. 1087 struct BreakContinue { 1088 BreakContinue(JumpDest Break, JumpDest Continue) 1089 : BreakBlock(Break), ContinueBlock(Continue) {} 1090 1091 JumpDest BreakBlock; 1092 JumpDest ContinueBlock; 1093 }; 1094 SmallVector<BreakContinue, 8> BreakContinueStack; 1095 1096 /// Handles cancellation exit points in OpenMP-related constructs. 1097 class OpenMPCancelExitStack { 1098 /// Tracks cancellation exit point and join point for cancel-related exit 1099 /// and normal exit. 1100 struct CancelExit { 1101 CancelExit() = default; 1102 CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock, 1103 JumpDest ContBlock) 1104 : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {} 1105 OpenMPDirectiveKind Kind = OMPD_unknown; 1106 /// true if the exit block has been emitted already by the special 1107 /// emitExit() call, false if the default codegen is used. 1108 bool HasBeenEmitted = false; 1109 JumpDest ExitBlock; 1110 JumpDest ContBlock; 1111 }; 1112 1113 SmallVector<CancelExit, 8> Stack; 1114 1115 public: 1116 OpenMPCancelExitStack() : Stack(1) {} 1117 ~OpenMPCancelExitStack() = default; 1118 /// Fetches the exit block for the current OpenMP construct. 1119 JumpDest getExitBlock() const { return Stack.back().ExitBlock; } 1120 /// Emits exit block with special codegen procedure specific for the related 1121 /// OpenMP construct + emits code for normal construct cleanup. 1122 void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 1123 const llvm::function_ref<void(CodeGenFunction &)> &CodeGen) { 1124 if (Stack.back().Kind == Kind && getExitBlock().isValid()) { 1125 assert(CGF.getOMPCancelDestination(Kind).isValid()); 1126 assert(CGF.HaveInsertPoint()); 1127 assert(!Stack.back().HasBeenEmitted); 1128 auto IP = CGF.Builder.saveAndClearIP(); 1129 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1130 CodeGen(CGF); 1131 CGF.EmitBranch(Stack.back().ContBlock.getBlock()); 1132 CGF.Builder.restoreIP(IP); 1133 Stack.back().HasBeenEmitted = true; 1134 } 1135 CodeGen(CGF); 1136 } 1137 /// Enter the cancel supporting \a Kind construct. 1138 /// \param Kind OpenMP directive that supports cancel constructs. 1139 /// \param HasCancel true, if the construct has inner cancel directive, 1140 /// false otherwise. 1141 void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) { 1142 Stack.push_back({Kind, 1143 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit") 1144 : JumpDest(), 1145 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont") 1146 : JumpDest()}); 1147 } 1148 /// Emits default exit point for the cancel construct (if the special one 1149 /// has not be used) + join point for cancel/normal exits. 1150 void exit(CodeGenFunction &CGF) { 1151 if (getExitBlock().isValid()) { 1152 assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid()); 1153 bool HaveIP = CGF.HaveInsertPoint(); 1154 if (!Stack.back().HasBeenEmitted) { 1155 if (HaveIP) 1156 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1157 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1158 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1159 } 1160 CGF.EmitBlock(Stack.back().ContBlock.getBlock()); 1161 if (!HaveIP) { 1162 CGF.Builder.CreateUnreachable(); 1163 CGF.Builder.ClearInsertionPoint(); 1164 } 1165 } 1166 Stack.pop_back(); 1167 } 1168 }; 1169 OpenMPCancelExitStack OMPCancelStack; 1170 1171 CodeGenPGO PGO; 1172 1173 /// Calculate branch weights appropriate for PGO data 1174 llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount); 1175 llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights); 1176 llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond, 1177 uint64_t LoopCount); 1178 1179 public: 1180 /// Increment the profiler's counter for the given statement by \p StepV. 1181 /// If \p StepV is null, the default increment is 1. 1182 void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) { 1183 if (CGM.getCodeGenOpts().hasProfileClangInstr()) 1184 PGO.emitCounterIncrement(Builder, S, StepV); 1185 PGO.setCurrentStmt(S); 1186 } 1187 1188 /// Get the profiler's count for the given statement. 1189 uint64_t getProfileCount(const Stmt *S) { 1190 Optional<uint64_t> Count = PGO.getStmtCount(S); 1191 if (!Count.hasValue()) 1192 return 0; 1193 return *Count; 1194 } 1195 1196 /// Set the profiler's current count. 1197 void setCurrentProfileCount(uint64_t Count) { 1198 PGO.setCurrentRegionCount(Count); 1199 } 1200 1201 /// Get the profiler's current count. This is generally the count for the most 1202 /// recently incremented counter. 1203 uint64_t getCurrentProfileCount() { 1204 return PGO.getCurrentRegionCount(); 1205 } 1206 1207 private: 1208 1209 /// SwitchInsn - This is nearest current switch instruction. It is null if 1210 /// current context is not in a switch. 1211 llvm::SwitchInst *SwitchInsn; 1212 /// The branch weights of SwitchInsn when doing instrumentation based PGO. 1213 SmallVector<uint64_t, 16> *SwitchWeights; 1214 1215 /// CaseRangeBlock - This block holds if condition check for last case 1216 /// statement range in current switch instruction. 1217 llvm::BasicBlock *CaseRangeBlock; 1218 1219 /// OpaqueLValues - Keeps track of the current set of opaque value 1220 /// expressions. 1221 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 1222 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 1223 1224 // VLASizeMap - This keeps track of the associated size for each VLA type. 1225 // We track this by the size expression rather than the type itself because 1226 // in certain situations, like a const qualifier applied to an VLA typedef, 1227 // multiple VLA types can share the same size expression. 1228 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 1229 // enter/leave scopes. 1230 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 1231 1232 /// A block containing a single 'unreachable' instruction. Created 1233 /// lazily by getUnreachableBlock(). 1234 llvm::BasicBlock *UnreachableBlock; 1235 1236 /// Counts of the number return expressions in the function. 1237 unsigned NumReturnExprs; 1238 1239 /// Count the number of simple (constant) return expressions in the function. 1240 unsigned NumSimpleReturnExprs; 1241 1242 /// The last regular (non-return) debug location (breakpoint) in the function. 1243 SourceLocation LastStopPoint; 1244 1245 public: 1246 /// A scope within which we are constructing the fields of an object which 1247 /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use 1248 /// if we need to evaluate a CXXDefaultInitExpr within the evaluation. 1249 class FieldConstructionScope { 1250 public: 1251 FieldConstructionScope(CodeGenFunction &CGF, Address This) 1252 : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) { 1253 CGF.CXXDefaultInitExprThis = This; 1254 } 1255 ~FieldConstructionScope() { 1256 CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis; 1257 } 1258 1259 private: 1260 CodeGenFunction &CGF; 1261 Address OldCXXDefaultInitExprThis; 1262 }; 1263 1264 /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this' 1265 /// is overridden to be the object under construction. 1266 class CXXDefaultInitExprScope { 1267 public: 1268 CXXDefaultInitExprScope(CodeGenFunction &CGF) 1269 : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue), 1270 OldCXXThisAlignment(CGF.CXXThisAlignment) { 1271 CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer(); 1272 CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment(); 1273 } 1274 ~CXXDefaultInitExprScope() { 1275 CGF.CXXThisValue = OldCXXThisValue; 1276 CGF.CXXThisAlignment = OldCXXThisAlignment; 1277 } 1278 1279 public: 1280 CodeGenFunction &CGF; 1281 llvm::Value *OldCXXThisValue; 1282 CharUnits OldCXXThisAlignment; 1283 }; 1284 1285 /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the 1286 /// current loop index is overridden. 1287 class ArrayInitLoopExprScope { 1288 public: 1289 ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index) 1290 : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) { 1291 CGF.ArrayInitIndex = Index; 1292 } 1293 ~ArrayInitLoopExprScope() { 1294 CGF.ArrayInitIndex = OldArrayInitIndex; 1295 } 1296 1297 private: 1298 CodeGenFunction &CGF; 1299 llvm::Value *OldArrayInitIndex; 1300 }; 1301 1302 class InlinedInheritingConstructorScope { 1303 public: 1304 InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD) 1305 : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl), 1306 OldCurCodeDecl(CGF.CurCodeDecl), 1307 OldCXXABIThisDecl(CGF.CXXABIThisDecl), 1308 OldCXXABIThisValue(CGF.CXXABIThisValue), 1309 OldCXXThisValue(CGF.CXXThisValue), 1310 OldCXXABIThisAlignment(CGF.CXXABIThisAlignment), 1311 OldCXXThisAlignment(CGF.CXXThisAlignment), 1312 OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy), 1313 OldCXXInheritedCtorInitExprArgs( 1314 std::move(CGF.CXXInheritedCtorInitExprArgs)) { 1315 CGF.CurGD = GD; 1316 CGF.CurFuncDecl = CGF.CurCodeDecl = 1317 cast<CXXConstructorDecl>(GD.getDecl()); 1318 CGF.CXXABIThisDecl = nullptr; 1319 CGF.CXXABIThisValue = nullptr; 1320 CGF.CXXThisValue = nullptr; 1321 CGF.CXXABIThisAlignment = CharUnits(); 1322 CGF.CXXThisAlignment = CharUnits(); 1323 CGF.ReturnValue = Address::invalid(); 1324 CGF.FnRetTy = QualType(); 1325 CGF.CXXInheritedCtorInitExprArgs.clear(); 1326 } 1327 ~InlinedInheritingConstructorScope() { 1328 CGF.CurGD = OldCurGD; 1329 CGF.CurFuncDecl = OldCurFuncDecl; 1330 CGF.CurCodeDecl = OldCurCodeDecl; 1331 CGF.CXXABIThisDecl = OldCXXABIThisDecl; 1332 CGF.CXXABIThisValue = OldCXXABIThisValue; 1333 CGF.CXXThisValue = OldCXXThisValue; 1334 CGF.CXXABIThisAlignment = OldCXXABIThisAlignment; 1335 CGF.CXXThisAlignment = OldCXXThisAlignment; 1336 CGF.ReturnValue = OldReturnValue; 1337 CGF.FnRetTy = OldFnRetTy; 1338 CGF.CXXInheritedCtorInitExprArgs = 1339 std::move(OldCXXInheritedCtorInitExprArgs); 1340 } 1341 1342 private: 1343 CodeGenFunction &CGF; 1344 GlobalDecl OldCurGD; 1345 const Decl *OldCurFuncDecl; 1346 const Decl *OldCurCodeDecl; 1347 ImplicitParamDecl *OldCXXABIThisDecl; 1348 llvm::Value *OldCXXABIThisValue; 1349 llvm::Value *OldCXXThisValue; 1350 CharUnits OldCXXABIThisAlignment; 1351 CharUnits OldCXXThisAlignment; 1352 Address OldReturnValue; 1353 QualType OldFnRetTy; 1354 CallArgList OldCXXInheritedCtorInitExprArgs; 1355 }; 1356 1357 private: 1358 /// CXXThisDecl - When generating code for a C++ member function, 1359 /// this will hold the implicit 'this' declaration. 1360 ImplicitParamDecl *CXXABIThisDecl; 1361 llvm::Value *CXXABIThisValue; 1362 llvm::Value *CXXThisValue; 1363 CharUnits CXXABIThisAlignment; 1364 CharUnits CXXThisAlignment; 1365 1366 /// The value of 'this' to use when evaluating CXXDefaultInitExprs within 1367 /// this expression. 1368 Address CXXDefaultInitExprThis = Address::invalid(); 1369 1370 /// The current array initialization index when evaluating an 1371 /// ArrayInitIndexExpr within an ArrayInitLoopExpr. 1372 llvm::Value *ArrayInitIndex = nullptr; 1373 1374 /// The values of function arguments to use when evaluating 1375 /// CXXInheritedCtorInitExprs within this context. 1376 CallArgList CXXInheritedCtorInitExprArgs; 1377 1378 /// CXXStructorImplicitParamDecl - When generating code for a constructor or 1379 /// destructor, this will hold the implicit argument (e.g. VTT). 1380 ImplicitParamDecl *CXXStructorImplicitParamDecl; 1381 llvm::Value *CXXStructorImplicitParamValue; 1382 1383 /// OutermostConditional - Points to the outermost active 1384 /// conditional control. This is used so that we know if a 1385 /// temporary should be destroyed conditionally. 1386 ConditionalEvaluation *OutermostConditional; 1387 1388 /// The current lexical scope. 1389 LexicalScope *CurLexicalScope; 1390 1391 /// The current source location that should be used for exception 1392 /// handling code. 1393 SourceLocation CurEHLocation; 1394 1395 /// BlockByrefInfos - For each __block variable, contains 1396 /// information about the layout of the variable. 1397 llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos; 1398 1399 /// Used by -fsanitize=nullability-return to determine whether the return 1400 /// value can be checked. 1401 llvm::Value *RetValNullabilityPrecondition = nullptr; 1402 1403 /// Check if -fsanitize=nullability-return instrumentation is required for 1404 /// this function. 1405 bool requiresReturnValueNullabilityCheck() const { 1406 return RetValNullabilityPrecondition; 1407 } 1408 1409 /// Used to store precise source locations for return statements by the 1410 /// runtime return value checks. 1411 Address ReturnLocation = Address::invalid(); 1412 1413 /// Check if the return value of this function requires sanitization. 1414 bool requiresReturnValueCheck() const { 1415 return requiresReturnValueNullabilityCheck() || 1416 (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 1417 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()); 1418 } 1419 1420 llvm::BasicBlock *TerminateLandingPad; 1421 llvm::BasicBlock *TerminateHandler; 1422 llvm::BasicBlock *TrapBB; 1423 1424 /// Terminate funclets keyed by parent funclet pad. 1425 llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets; 1426 1427 /// True if we need emit the life-time markers. 1428 const bool ShouldEmitLifetimeMarkers; 1429 1430 /// Add OpenCL kernel arg metadata and the kernel attribute meatadata to 1431 /// the function metadata. 1432 void EmitOpenCLKernelMetadata(const FunctionDecl *FD, 1433 llvm::Function *Fn); 1434 1435 public: 1436 CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false); 1437 ~CodeGenFunction(); 1438 1439 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 1440 ASTContext &getContext() const { return CGM.getContext(); } 1441 CGDebugInfo *getDebugInfo() { 1442 if (DisableDebugInfo) 1443 return nullptr; 1444 return DebugInfo; 1445 } 1446 void disableDebugInfo() { DisableDebugInfo = true; } 1447 void enableDebugInfo() { DisableDebugInfo = false; } 1448 1449 bool shouldUseFusedARCCalls() { 1450 return CGM.getCodeGenOpts().OptimizationLevel == 0; 1451 } 1452 1453 const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } 1454 1455 /// Returns a pointer to the function's exception object and selector slot, 1456 /// which is assigned in every landing pad. 1457 Address getExceptionSlot(); 1458 Address getEHSelectorSlot(); 1459 1460 /// Returns the contents of the function's exception object and selector 1461 /// slots. 1462 llvm::Value *getExceptionFromSlot(); 1463 llvm::Value *getSelectorFromSlot(); 1464 1465 Address getNormalCleanupDestSlot(); 1466 1467 llvm::BasicBlock *getUnreachableBlock() { 1468 if (!UnreachableBlock) { 1469 UnreachableBlock = createBasicBlock("unreachable"); 1470 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 1471 } 1472 return UnreachableBlock; 1473 } 1474 1475 llvm::BasicBlock *getInvokeDest() { 1476 if (!EHStack.requiresLandingPad()) return nullptr; 1477 return getInvokeDestImpl(); 1478 } 1479 1480 bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; } 1481 1482 const TargetInfo &getTarget() const { return Target; } 1483 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 1484 const TargetCodeGenInfo &getTargetHooks() const { 1485 return CGM.getTargetCodeGenInfo(); 1486 } 1487 1488 //===--------------------------------------------------------------------===// 1489 // Cleanups 1490 //===--------------------------------------------------------------------===// 1491 1492 typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty); 1493 1494 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1495 Address arrayEndPointer, 1496 QualType elementType, 1497 CharUnits elementAlignment, 1498 Destroyer *destroyer); 1499 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1500 llvm::Value *arrayEnd, 1501 QualType elementType, 1502 CharUnits elementAlignment, 1503 Destroyer *destroyer); 1504 1505 void pushDestroy(QualType::DestructionKind dtorKind, 1506 Address addr, QualType type); 1507 void pushEHDestroy(QualType::DestructionKind dtorKind, 1508 Address addr, QualType type); 1509 void pushDestroy(CleanupKind kind, Address addr, QualType type, 1510 Destroyer *destroyer, bool useEHCleanupForArray); 1511 void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr, 1512 QualType type, Destroyer *destroyer, 1513 bool useEHCleanupForArray); 1514 void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 1515 llvm::Value *CompletePtr, 1516 QualType ElementType); 1517 void pushStackRestore(CleanupKind kind, Address SPMem); 1518 void emitDestroy(Address addr, QualType type, Destroyer *destroyer, 1519 bool useEHCleanupForArray); 1520 llvm::Function *generateDestroyHelper(Address addr, QualType type, 1521 Destroyer *destroyer, 1522 bool useEHCleanupForArray, 1523 const VarDecl *VD); 1524 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 1525 QualType elementType, CharUnits elementAlign, 1526 Destroyer *destroyer, 1527 bool checkZeroLength, bool useEHCleanup); 1528 1529 Destroyer *getDestroyer(QualType::DestructionKind destructionKind); 1530 1531 /// Determines whether an EH cleanup is required to destroy a type 1532 /// with the given destruction kind. 1533 bool needsEHCleanup(QualType::DestructionKind kind) { 1534 switch (kind) { 1535 case QualType::DK_none: 1536 return false; 1537 case QualType::DK_cxx_destructor: 1538 case QualType::DK_objc_weak_lifetime: 1539 case QualType::DK_nontrivial_c_struct: 1540 return getLangOpts().Exceptions; 1541 case QualType::DK_objc_strong_lifetime: 1542 return getLangOpts().Exceptions && 1543 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 1544 } 1545 llvm_unreachable("bad destruction kind"); 1546 } 1547 1548 CleanupKind getCleanupKind(QualType::DestructionKind kind) { 1549 return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); 1550 } 1551 1552 //===--------------------------------------------------------------------===// 1553 // Objective-C 1554 //===--------------------------------------------------------------------===// 1555 1556 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 1557 1558 void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD); 1559 1560 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 1561 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 1562 const ObjCPropertyImplDecl *PID); 1563 void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 1564 const ObjCPropertyImplDecl *propImpl, 1565 const ObjCMethodDecl *GetterMothodDecl, 1566 llvm::Constant *AtomicHelperFn); 1567 1568 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1569 ObjCMethodDecl *MD, bool ctor); 1570 1571 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 1572 /// for the given property. 1573 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 1574 const ObjCPropertyImplDecl *PID); 1575 void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1576 const ObjCPropertyImplDecl *propImpl, 1577 llvm::Constant *AtomicHelperFn); 1578 1579 //===--------------------------------------------------------------------===// 1580 // Block Bits 1581 //===--------------------------------------------------------------------===// 1582 1583 /// Emit block literal. 1584 /// \return an LLVM value which is a pointer to a struct which contains 1585 /// information about the block, including the block invoke function, the 1586 /// captured variables, etc. 1587 llvm::Value *EmitBlockLiteral(const BlockExpr *); 1588 static void destroyBlockInfos(CGBlockInfo *info); 1589 1590 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 1591 const CGBlockInfo &Info, 1592 const DeclMapTy &ldm, 1593 bool IsLambdaConversionToBlock, 1594 bool BuildGlobalBlock); 1595 1596 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 1597 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 1598 llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( 1599 const ObjCPropertyImplDecl *PID); 1600 llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( 1601 const ObjCPropertyImplDecl *PID); 1602 llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); 1603 1604 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags); 1605 1606 class AutoVarEmission; 1607 1608 void emitByrefStructureInit(const AutoVarEmission &emission); 1609 void enterByrefCleanup(const AutoVarEmission &emission); 1610 1611 void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum, 1612 llvm::Value *ptr); 1613 1614 Address LoadBlockStruct(); 1615 Address GetAddrOfBlockDecl(const VarDecl *var, bool ByRef); 1616 1617 /// BuildBlockByrefAddress - Computes the location of the 1618 /// data in a variable which is declared as __block. 1619 Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V, 1620 bool followForward = true); 1621 Address emitBlockByrefAddress(Address baseAddr, 1622 const BlockByrefInfo &info, 1623 bool followForward, 1624 const llvm::Twine &name); 1625 1626 const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var); 1627 1628 QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args); 1629 1630 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1631 const CGFunctionInfo &FnInfo); 1632 /// \brief Emit code for the start of a function. 1633 /// \param Loc The location to be associated with the function. 1634 /// \param StartLoc The location of the function body. 1635 void StartFunction(GlobalDecl GD, 1636 QualType RetTy, 1637 llvm::Function *Fn, 1638 const CGFunctionInfo &FnInfo, 1639 const FunctionArgList &Args, 1640 SourceLocation Loc = SourceLocation(), 1641 SourceLocation StartLoc = SourceLocation()); 1642 1643 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor); 1644 1645 void EmitConstructorBody(FunctionArgList &Args); 1646 void EmitDestructorBody(FunctionArgList &Args); 1647 void emitImplicitAssignmentOperatorBody(FunctionArgList &Args); 1648 void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body); 1649 void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S); 1650 1651 void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator, 1652 CallArgList &CallArgs); 1653 void EmitLambdaBlockInvokeBody(); 1654 void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD); 1655 void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD); 1656 void EmitAsanPrologueOrEpilogue(bool Prologue); 1657 1658 /// \brief Emit the unified return block, trying to avoid its emission when 1659 /// possible. 1660 /// \return The debug location of the user written return statement if the 1661 /// return block is is avoided. 1662 llvm::DebugLoc EmitReturnBlock(); 1663 1664 /// FinishFunction - Complete IR generation of the current function. It is 1665 /// legal to call this function even if there is no current insertion point. 1666 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 1667 1668 void StartThunk(llvm::Function *Fn, GlobalDecl GD, 1669 const CGFunctionInfo &FnInfo); 1670 1671 void EmitCallAndReturnForThunk(llvm::Constant *Callee, 1672 const ThunkInfo *Thunk); 1673 1674 void FinishThunk(); 1675 1676 /// Emit a musttail call for a thunk with a potentially adjusted this pointer. 1677 void EmitMustTailThunk(const CXXMethodDecl *MD, llvm::Value *AdjustedThisPtr, 1678 llvm::Value *Callee); 1679 1680 /// Generate a thunk for the given method. 1681 void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1682 GlobalDecl GD, const ThunkInfo &Thunk); 1683 1684 llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn, 1685 const CGFunctionInfo &FnInfo, 1686 GlobalDecl GD, const ThunkInfo &Thunk); 1687 1688 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 1689 FunctionArgList &Args); 1690 1691 void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init); 1692 1693 /// Struct with all informations about dynamic [sub]class needed to set vptr. 1694 struct VPtr { 1695 BaseSubobject Base; 1696 const CXXRecordDecl *NearestVBase; 1697 CharUnits OffsetFromNearestVBase; 1698 const CXXRecordDecl *VTableClass; 1699 }; 1700 1701 /// Initialize the vtable pointer of the given subobject. 1702 void InitializeVTablePointer(const VPtr &vptr); 1703 1704 typedef llvm::SmallVector<VPtr, 4> VPtrsVector; 1705 1706 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 1707 VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass); 1708 1709 void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase, 1710 CharUnits OffsetFromNearestVBase, 1711 bool BaseIsNonVirtualPrimaryBase, 1712 const CXXRecordDecl *VTableClass, 1713 VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs); 1714 1715 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 1716 1717 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 1718 /// to by This. 1719 llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy, 1720 const CXXRecordDecl *VTableClass); 1721 1722 enum CFITypeCheckKind { 1723 CFITCK_VCall, 1724 CFITCK_NVCall, 1725 CFITCK_DerivedCast, 1726 CFITCK_UnrelatedCast, 1727 CFITCK_ICall, 1728 }; 1729 1730 /// \brief Derived is the presumed address of an object of type T after a 1731 /// cast. If T is a polymorphic class type, emit a check that the virtual 1732 /// table for Derived belongs to a class derived from T. 1733 void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived, 1734 bool MayBeNull, CFITypeCheckKind TCK, 1735 SourceLocation Loc); 1736 1737 /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable. 1738 /// If vptr CFI is enabled, emit a check that VTable is valid. 1739 void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable, 1740 CFITypeCheckKind TCK, SourceLocation Loc); 1741 1742 /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for 1743 /// RD using llvm.type.test. 1744 void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable, 1745 CFITypeCheckKind TCK, SourceLocation Loc); 1746 1747 /// If whole-program virtual table optimization is enabled, emit an assumption 1748 /// that VTable is a member of RD's type identifier. Or, if vptr CFI is 1749 /// enabled, emit a check that VTable is a member of RD's type identifier. 1750 void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, 1751 llvm::Value *VTable, SourceLocation Loc); 1752 1753 /// Returns whether we should perform a type checked load when loading a 1754 /// virtual function for virtual calls to members of RD. This is generally 1755 /// true when both vcall CFI and whole-program-vtables are enabled. 1756 bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD); 1757 1758 /// Emit a type checked load from the given vtable. 1759 llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable, 1760 uint64_t VTableByteOffset); 1761 1762 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 1763 /// given phase of destruction for a destructor. The end result 1764 /// should call destructors on members and base classes in reverse 1765 /// order of their construction. 1766 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 1767 1768 /// ShouldInstrumentFunction - Return true if the current function should be 1769 /// instrumented with __cyg_profile_func_* calls 1770 bool ShouldInstrumentFunction(); 1771 1772 /// ShouldXRayInstrument - Return true if the current function should be 1773 /// instrumented with XRay nop sleds. 1774 bool ShouldXRayInstrumentFunction() const; 1775 1776 /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit 1777 /// XRay custom event handling calls. 1778 bool AlwaysEmitXRayCustomEvents() const; 1779 1780 /// Encode an address into a form suitable for use in a function prologue. 1781 llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F, 1782 llvm::Constant *Addr); 1783 1784 /// Decode an address used in a function prologue, encoded by \c 1785 /// EncodeAddrForUseInPrologue. 1786 llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F, 1787 llvm::Value *EncodedAddr); 1788 1789 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 1790 /// arguments for the given function. This is also responsible for naming the 1791 /// LLVM function arguments. 1792 void EmitFunctionProlog(const CGFunctionInfo &FI, 1793 llvm::Function *Fn, 1794 const FunctionArgList &Args); 1795 1796 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 1797 /// given temporary. 1798 void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc, 1799 SourceLocation EndLoc); 1800 1801 /// Emit a test that checks if the return value \p RV is nonnull. 1802 void EmitReturnValueCheck(llvm::Value *RV); 1803 1804 /// EmitStartEHSpec - Emit the start of the exception spec. 1805 void EmitStartEHSpec(const Decl *D); 1806 1807 /// EmitEndEHSpec - Emit the end of the exception spec. 1808 void EmitEndEHSpec(const Decl *D); 1809 1810 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 1811 llvm::BasicBlock *getTerminateLandingPad(); 1812 1813 /// getTerminateLandingPad - Return a cleanup funclet that just calls 1814 /// terminate. 1815 llvm::BasicBlock *getTerminateFunclet(); 1816 1817 /// getTerminateHandler - Return a handler (not a landing pad, just 1818 /// a catch handler) that just calls terminate. This is used when 1819 /// a terminate scope encloses a try. 1820 llvm::BasicBlock *getTerminateHandler(); 1821 1822 llvm::Type *ConvertTypeForMem(QualType T); 1823 llvm::Type *ConvertType(QualType T); 1824 llvm::Type *ConvertType(const TypeDecl *T) { 1825 return ConvertType(getContext().getTypeDeclType(T)); 1826 } 1827 1828 /// LoadObjCSelf - Load the value of self. This function is only valid while 1829 /// generating code for an Objective-C method. 1830 llvm::Value *LoadObjCSelf(); 1831 1832 /// TypeOfSelfObject - Return type of object that this self represents. 1833 QualType TypeOfSelfObject(); 1834 1835 /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T. 1836 static TypeEvaluationKind getEvaluationKind(QualType T); 1837 1838 static bool hasScalarEvaluationKind(QualType T) { 1839 return getEvaluationKind(T) == TEK_Scalar; 1840 } 1841 1842 static bool hasAggregateEvaluationKind(QualType T) { 1843 return getEvaluationKind(T) == TEK_Aggregate; 1844 } 1845 1846 /// createBasicBlock - Create an LLVM basic block. 1847 llvm::BasicBlock *createBasicBlock(const Twine &name = "", 1848 llvm::Function *parent = nullptr, 1849 llvm::BasicBlock *before = nullptr) { 1850 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 1851 } 1852 1853 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 1854 /// label maps to. 1855 JumpDest getJumpDestForLabel(const LabelDecl *S); 1856 1857 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 1858 /// another basic block, simplify it. This assumes that no other code could 1859 /// potentially reference the basic block. 1860 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 1861 1862 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 1863 /// adding a fall-through branch from the current insert block if 1864 /// necessary. It is legal to call this function even if there is no current 1865 /// insertion point. 1866 /// 1867 /// IsFinished - If true, indicates that the caller has finished emitting 1868 /// branches to the given block and does not expect to emit code into it. This 1869 /// means the block can be ignored if it is unreachable. 1870 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 1871 1872 /// EmitBlockAfterUses - Emit the given block somewhere hopefully 1873 /// near its uses, and leave the insertion point in it. 1874 void EmitBlockAfterUses(llvm::BasicBlock *BB); 1875 1876 /// EmitBranch - Emit a branch to the specified basic block from the current 1877 /// insert block, taking care to avoid creation of branches from dummy 1878 /// blocks. It is legal to call this function even if there is no current 1879 /// insertion point. 1880 /// 1881 /// This function clears the current insertion point. The caller should follow 1882 /// calls to this function with calls to Emit*Block prior to generation new 1883 /// code. 1884 void EmitBranch(llvm::BasicBlock *Block); 1885 1886 /// HaveInsertPoint - True if an insertion point is defined. If not, this 1887 /// indicates that the current code being emitted is unreachable. 1888 bool HaveInsertPoint() const { 1889 return Builder.GetInsertBlock() != nullptr; 1890 } 1891 1892 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 1893 /// emitted IR has a place to go. Note that by definition, if this function 1894 /// creates a block then that block is unreachable; callers may do better to 1895 /// detect when no insertion point is defined and simply skip IR generation. 1896 void EnsureInsertPoint() { 1897 if (!HaveInsertPoint()) 1898 EmitBlock(createBasicBlock()); 1899 } 1900 1901 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1902 /// specified stmt yet. 1903 void ErrorUnsupported(const Stmt *S, const char *Type); 1904 1905 //===--------------------------------------------------------------------===// 1906 // Helpers 1907 //===--------------------------------------------------------------------===// 1908 1909 LValue MakeAddrLValue(Address Addr, QualType T, 1910 AlignmentSource Source = AlignmentSource::Type) { 1911 return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source), 1912 CGM.getTBAAAccessInfo(T)); 1913 } 1914 1915 LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo, 1916 TBAAAccessInfo TBAAInfo) { 1917 return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo); 1918 } 1919 1920 LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 1921 AlignmentSource Source = AlignmentSource::Type) { 1922 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), 1923 LValueBaseInfo(Source), CGM.getTBAAAccessInfo(T)); 1924 } 1925 1926 LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 1927 LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) { 1928 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), 1929 BaseInfo, TBAAInfo); 1930 } 1931 1932 LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T); 1933 LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T); 1934 CharUnits getNaturalTypeAlignment(QualType T, 1935 LValueBaseInfo *BaseInfo = nullptr, 1936 TBAAAccessInfo *TBAAInfo = nullptr, 1937 bool forPointeeType = false); 1938 CharUnits getNaturalPointeeTypeAlignment(QualType T, 1939 LValueBaseInfo *BaseInfo = nullptr, 1940 TBAAAccessInfo *TBAAInfo = nullptr); 1941 1942 Address EmitLoadOfReference(LValue RefLVal, 1943 LValueBaseInfo *PointeeBaseInfo = nullptr, 1944 TBAAAccessInfo *PointeeTBAAInfo = nullptr); 1945 LValue EmitLoadOfReferenceLValue(LValue RefLVal); 1946 LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy, 1947 AlignmentSource Source = 1948 AlignmentSource::Type) { 1949 LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source), 1950 CGM.getTBAAAccessInfo(RefTy)); 1951 return EmitLoadOfReferenceLValue(RefLVal); 1952 } 1953 1954 Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy, 1955 LValueBaseInfo *BaseInfo = nullptr, 1956 TBAAAccessInfo *TBAAInfo = nullptr); 1957 LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy); 1958 1959 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 1960 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 1961 /// insertion point of the builder. The caller is responsible for setting an 1962 /// appropriate alignment on 1963 /// the alloca. 1964 /// 1965 /// \p ArraySize is the number of array elements to be allocated if it 1966 /// is not nullptr. 1967 /// 1968 /// LangAS::Default is the address space of pointers to local variables and 1969 /// temporaries, as exposed in the source language. In certain 1970 /// configurations, this is not the same as the alloca address space, and a 1971 /// cast is needed to lift the pointer from the alloca AS into 1972 /// LangAS::Default. This can happen when the target uses a restricted 1973 /// address space for the stack but the source language requires 1974 /// LangAS::Default to be a generic address space. The latter condition is 1975 /// common for most programming languages; OpenCL is an exception in that 1976 /// LangAS::Default is the private address space, which naturally maps 1977 /// to the stack. 1978 /// 1979 /// Because the address of a temporary is often exposed to the program in 1980 /// various ways, this function will perform the cast by default. The cast 1981 /// may be avoided by passing false as \p CastToDefaultAddrSpace; this is 1982 /// more efficient if the caller knows that the address will not be exposed. 1983 llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp", 1984 llvm::Value *ArraySize = nullptr); 1985 Address CreateTempAlloca(llvm::Type *Ty, CharUnits align, 1986 const Twine &Name = "tmp", 1987 llvm::Value *ArraySize = nullptr, 1988 bool CastToDefaultAddrSpace = true); 1989 1990 /// CreateDefaultAlignedTempAlloca - This creates an alloca with the 1991 /// default ABI alignment of the given LLVM type. 1992 /// 1993 /// IMPORTANT NOTE: This is *not* generally the right alignment for 1994 /// any given AST type that happens to have been lowered to the 1995 /// given IR type. This should only ever be used for function-local, 1996 /// IR-driven manipulations like saving and restoring a value. Do 1997 /// not hand this address off to arbitrary IRGen routines, and especially 1998 /// do not pass it as an argument to a function that might expect a 1999 /// properly ABI-aligned value. 2000 Address CreateDefaultAlignTempAlloca(llvm::Type *Ty, 2001 const Twine &Name = "tmp"); 2002 2003 /// InitTempAlloca - Provide an initial value for the given alloca which 2004 /// will be observable at all locations in the function. 2005 /// 2006 /// The address should be something that was returned from one of 2007 /// the CreateTempAlloca or CreateMemTemp routines, and the 2008 /// initializer must be valid in the entry block (i.e. it must 2009 /// either be a constant or an argument value). 2010 void InitTempAlloca(Address Alloca, llvm::Value *Value); 2011 2012 /// CreateIRTemp - Create a temporary IR object of the given type, with 2013 /// appropriate alignment. This routine should only be used when an temporary 2014 /// value needs to be stored into an alloca (for example, to avoid explicit 2015 /// PHI construction), but the type is the IR type, not the type appropriate 2016 /// for storing in memory. 2017 /// 2018 /// That is, this is exactly equivalent to CreateMemTemp, but calling 2019 /// ConvertType instead of ConvertTypeForMem. 2020 Address CreateIRTemp(QualType T, const Twine &Name = "tmp"); 2021 2022 /// CreateMemTemp - Create a temporary memory object of the given type, with 2023 /// appropriate alignment. Cast it to the default address space if 2024 /// \p CastToDefaultAddrSpace is true. 2025 Address CreateMemTemp(QualType T, const Twine &Name = "tmp", 2026 bool CastToDefaultAddrSpace = true); 2027 Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp", 2028 bool CastToDefaultAddrSpace = true); 2029 2030 /// CreateAggTemp - Create a temporary memory object for the given 2031 /// aggregate type. 2032 AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") { 2033 return AggValueSlot::forAddr(CreateMemTemp(T, Name), 2034 T.getQualifiers(), 2035 AggValueSlot::IsNotDestructed, 2036 AggValueSlot::DoesNotNeedGCBarriers, 2037 AggValueSlot::IsNotAliased); 2038 } 2039 2040 /// Emit a cast to void* in the appropriate address space. 2041 llvm::Value *EmitCastToVoidPtr(llvm::Value *value); 2042 2043 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 2044 /// expression and compare the result against zero, returning an Int1Ty value. 2045 llvm::Value *EvaluateExprAsBool(const Expr *E); 2046 2047 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 2048 void EmitIgnoredExpr(const Expr *E); 2049 2050 /// EmitAnyExpr - Emit code to compute the specified expression which can have 2051 /// any type. The result is returned as an RValue struct. If this is an 2052 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 2053 /// the result should be returned. 2054 /// 2055 /// \param ignoreResult True if the resulting value isn't used. 2056 RValue EmitAnyExpr(const Expr *E, 2057 AggValueSlot aggSlot = AggValueSlot::ignored(), 2058 bool ignoreResult = false); 2059 2060 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 2061 // or the value of the expression, depending on how va_list is defined. 2062 Address EmitVAListRef(const Expr *E); 2063 2064 /// Emit a "reference" to a __builtin_ms_va_list; this is 2065 /// always the value of the expression, because a __builtin_ms_va_list is a 2066 /// pointer to a char. 2067 Address EmitMSVAListRef(const Expr *E); 2068 2069 /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will 2070 /// always be accessible even if no aggregate location is provided. 2071 RValue EmitAnyExprToTemp(const Expr *E); 2072 2073 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 2074 /// arbitrary expression into the given memory location. 2075 void EmitAnyExprToMem(const Expr *E, Address Location, 2076 Qualifiers Quals, bool IsInitializer); 2077 2078 void EmitAnyExprToExn(const Expr *E, Address Addr); 2079 2080 /// EmitExprAsInit - Emits the code necessary to initialize a 2081 /// location in memory with the given initializer. 2082 void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2083 bool capturedByInit); 2084 2085 /// hasVolatileMember - returns true if aggregate type has a volatile 2086 /// member. 2087 bool hasVolatileMember(QualType T) { 2088 if (const RecordType *RT = T->getAs<RecordType>()) { 2089 const RecordDecl *RD = cast<RecordDecl>(RT->getDecl()); 2090 return RD->hasVolatileMember(); 2091 } 2092 return false; 2093 } 2094 /// EmitAggregateCopy - Emit an aggregate assignment. 2095 /// 2096 /// The difference to EmitAggregateCopy is that tail padding is not copied. 2097 /// This is required for correctness when assigning non-POD structures in C++. 2098 void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) { 2099 bool IsVolatile = hasVolatileMember(EltTy); 2100 EmitAggregateCopy(Dest, Src, EltTy, IsVolatile, /* isAssignment= */ true); 2101 } 2102 2103 void EmitAggregateCopyCtor(LValue Dest, LValue Src) { 2104 EmitAggregateCopy(Dest, Src, Src.getType(), 2105 /* IsVolatile= */ false, /* IsAssignment= */ false); 2106 } 2107 2108 /// EmitAggregateCopy - Emit an aggregate copy. 2109 /// 2110 /// \param isVolatile - True iff either the source or the destination is 2111 /// volatile. 2112 /// \param isAssignment - If false, allow padding to be copied. This often 2113 /// yields more efficient. 2114 void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy, 2115 bool isVolatile = false, bool isAssignment = false); 2116 2117 /// GetAddrOfLocalVar - Return the address of a local variable. 2118 Address GetAddrOfLocalVar(const VarDecl *VD) { 2119 auto it = LocalDeclMap.find(VD); 2120 assert(it != LocalDeclMap.end() && 2121 "Invalid argument to GetAddrOfLocalVar(), no decl!"); 2122 return it->second; 2123 } 2124 2125 /// getOpaqueLValueMapping - Given an opaque value expression (which 2126 /// must be mapped to an l-value), return its mapping. 2127 const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) { 2128 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 2129 2130 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 2131 it = OpaqueLValues.find(e); 2132 assert(it != OpaqueLValues.end() && "no mapping for opaque value!"); 2133 return it->second; 2134 } 2135 2136 /// getOpaqueRValueMapping - Given an opaque value expression (which 2137 /// must be mapped to an r-value), return its mapping. 2138 const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) { 2139 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 2140 2141 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 2142 it = OpaqueRValues.find(e); 2143 assert(it != OpaqueRValues.end() && "no mapping for opaque value!"); 2144 return it->second; 2145 } 2146 2147 /// Get the index of the current ArrayInitLoopExpr, if any. 2148 llvm::Value *getArrayInitIndex() { return ArrayInitIndex; } 2149 2150 /// getAccessedFieldNo - Given an encoded value and a result number, return 2151 /// the input field number being accessed. 2152 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 2153 2154 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 2155 llvm::BasicBlock *GetIndirectGotoBlock(); 2156 2157 /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts. 2158 static bool IsWrappedCXXThis(const Expr *E); 2159 2160 /// EmitNullInitialization - Generate code to set a value of the given type to 2161 /// null, If the type contains data member pointers, they will be initialized 2162 /// to -1 in accordance with the Itanium C++ ABI. 2163 void EmitNullInitialization(Address DestPtr, QualType Ty); 2164 2165 /// Emits a call to an LLVM variable-argument intrinsic, either 2166 /// \c llvm.va_start or \c llvm.va_end. 2167 /// \param ArgValue A reference to the \c va_list as emitted by either 2168 /// \c EmitVAListRef or \c EmitMSVAListRef. 2169 /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise, 2170 /// calls \c llvm.va_end. 2171 llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart); 2172 2173 /// Generate code to get an argument from the passed in pointer 2174 /// and update it accordingly. 2175 /// \param VE The \c VAArgExpr for which to generate code. 2176 /// \param VAListAddr Receives a reference to the \c va_list as emitted by 2177 /// either \c EmitVAListRef or \c EmitMSVAListRef. 2178 /// \returns A pointer to the argument. 2179 // FIXME: We should be able to get rid of this method and use the va_arg 2180 // instruction in LLVM instead once it works well enough. 2181 Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr); 2182 2183 /// emitArrayLength - Compute the length of an array, even if it's a 2184 /// VLA, and drill down to the base element type. 2185 llvm::Value *emitArrayLength(const ArrayType *arrayType, 2186 QualType &baseType, 2187 Address &addr); 2188 2189 /// EmitVLASize - Capture all the sizes for the VLA expressions in 2190 /// the given variably-modified type and store them in the VLASizeMap. 2191 /// 2192 /// This function can be called with a null (unreachable) insert point. 2193 void EmitVariablyModifiedType(QualType Ty); 2194 2195 struct VlaSizePair { 2196 llvm::Value *NumElts; 2197 QualType Type; 2198 2199 VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {} 2200 }; 2201 2202 /// Return the number of elements for a single dimension 2203 /// for the given array type. 2204 VlaSizePair getVLAElements1D(const VariableArrayType *vla); 2205 VlaSizePair getVLAElements1D(QualType vla); 2206 2207 /// Returns an LLVM value that corresponds to the size, 2208 /// in non-variably-sized elements, of a variable length array type, 2209 /// plus that largest non-variably-sized element type. Assumes that 2210 /// the type has already been emitted with EmitVariablyModifiedType. 2211 VlaSizePair getVLASize(const VariableArrayType *vla); 2212 VlaSizePair getVLASize(QualType vla); 2213 2214 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 2215 /// generating code for an C++ member function. 2216 llvm::Value *LoadCXXThis() { 2217 assert(CXXThisValue && "no 'this' value for this function"); 2218 return CXXThisValue; 2219 } 2220 Address LoadCXXThisAddress(); 2221 2222 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 2223 /// virtual bases. 2224 // FIXME: Every place that calls LoadCXXVTT is something 2225 // that needs to be abstracted properly. 2226 llvm::Value *LoadCXXVTT() { 2227 assert(CXXStructorImplicitParamValue && "no VTT value for this function"); 2228 return CXXStructorImplicitParamValue; 2229 } 2230 2231 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 2232 /// complete class to the given direct base. 2233 Address 2234 GetAddressOfDirectBaseInCompleteClass(Address Value, 2235 const CXXRecordDecl *Derived, 2236 const CXXRecordDecl *Base, 2237 bool BaseIsVirtual); 2238 2239 static bool ShouldNullCheckClassCastValue(const CastExpr *Cast); 2240 2241 /// GetAddressOfBaseClass - This function will add the necessary delta to the 2242 /// load of 'this' and returns address of the base class. 2243 Address GetAddressOfBaseClass(Address Value, 2244 const CXXRecordDecl *Derived, 2245 CastExpr::path_const_iterator PathBegin, 2246 CastExpr::path_const_iterator PathEnd, 2247 bool NullCheckValue, SourceLocation Loc); 2248 2249 Address GetAddressOfDerivedClass(Address Value, 2250 const CXXRecordDecl *Derived, 2251 CastExpr::path_const_iterator PathBegin, 2252 CastExpr::path_const_iterator PathEnd, 2253 bool NullCheckValue); 2254 2255 /// GetVTTParameter - Return the VTT parameter that should be passed to a 2256 /// base constructor/destructor with virtual bases. 2257 /// FIXME: VTTs are Itanium ABI-specific, so the definition should move 2258 /// to ItaniumCXXABI.cpp together with all the references to VTT. 2259 llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase, 2260 bool Delegating); 2261 2262 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 2263 CXXCtorType CtorType, 2264 const FunctionArgList &Args, 2265 SourceLocation Loc); 2266 // It's important not to confuse this and the previous function. Delegating 2267 // constructors are the C++0x feature. The constructor delegate optimization 2268 // is used to reduce duplication in the base and complete consturctors where 2269 // they are substantially the same. 2270 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2271 const FunctionArgList &Args); 2272 2273 /// Emit a call to an inheriting constructor (that is, one that invokes a 2274 /// constructor inherited from a base class) by inlining its definition. This 2275 /// is necessary if the ABI does not support forwarding the arguments to the 2276 /// base class constructor (because they're variadic or similar). 2277 void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2278 CXXCtorType CtorType, 2279 bool ForVirtualBase, 2280 bool Delegating, 2281 CallArgList &Args); 2282 2283 /// Emit a call to a constructor inherited from a base class, passing the 2284 /// current constructor's arguments along unmodified (without even making 2285 /// a copy). 2286 void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D, 2287 bool ForVirtualBase, Address This, 2288 bool InheritedFromVBase, 2289 const CXXInheritedCtorInitExpr *E); 2290 2291 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2292 bool ForVirtualBase, bool Delegating, 2293 Address This, const CXXConstructExpr *E); 2294 2295 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2296 bool ForVirtualBase, bool Delegating, 2297 Address This, CallArgList &Args); 2298 2299 /// Emit assumption load for all bases. Requires to be be called only on 2300 /// most-derived class and not under construction of the object. 2301 void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This); 2302 2303 /// Emit assumption that vptr load == global vtable. 2304 void EmitVTableAssumptionLoad(const VPtr &vptr, Address This); 2305 2306 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 2307 Address This, Address Src, 2308 const CXXConstructExpr *E); 2309 2310 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2311 const ArrayType *ArrayTy, 2312 Address ArrayPtr, 2313 const CXXConstructExpr *E, 2314 bool ZeroInitialization = false); 2315 2316 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2317 llvm::Value *NumElements, 2318 Address ArrayPtr, 2319 const CXXConstructExpr *E, 2320 bool ZeroInitialization = false); 2321 2322 static Destroyer destroyCXXObject; 2323 2324 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 2325 bool ForVirtualBase, bool Delegating, 2326 Address This); 2327 2328 void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, 2329 llvm::Type *ElementTy, Address NewPtr, 2330 llvm::Value *NumElements, 2331 llvm::Value *AllocSizeWithoutCookie); 2332 2333 void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, 2334 Address Ptr); 2335 2336 llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr); 2337 void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr); 2338 2339 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 2340 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 2341 2342 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 2343 QualType DeleteTy, llvm::Value *NumElements = nullptr, 2344 CharUnits CookieSize = CharUnits()); 2345 2346 RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 2347 const Expr *Arg, bool IsDelete); 2348 2349 llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E); 2350 llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE); 2351 Address EmitCXXUuidofExpr(const CXXUuidofExpr *E); 2352 2353 /// \brief Situations in which we might emit a check for the suitability of a 2354 /// pointer or glvalue. 2355 enum TypeCheckKind { 2356 /// Checking the operand of a load. Must be suitably sized and aligned. 2357 TCK_Load, 2358 /// Checking the destination of a store. Must be suitably sized and aligned. 2359 TCK_Store, 2360 /// Checking the bound value in a reference binding. Must be suitably sized 2361 /// and aligned, but is not required to refer to an object (until the 2362 /// reference is used), per core issue 453. 2363 TCK_ReferenceBinding, 2364 /// Checking the object expression in a non-static data member access. Must 2365 /// be an object within its lifetime. 2366 TCK_MemberAccess, 2367 /// Checking the 'this' pointer for a call to a non-static member function. 2368 /// Must be an object within its lifetime. 2369 TCK_MemberCall, 2370 /// Checking the 'this' pointer for a constructor call. 2371 TCK_ConstructorCall, 2372 /// Checking the operand of a static_cast to a derived pointer type. Must be 2373 /// null or an object within its lifetime. 2374 TCK_DowncastPointer, 2375 /// Checking the operand of a static_cast to a derived reference type. Must 2376 /// be an object within its lifetime. 2377 TCK_DowncastReference, 2378 /// Checking the operand of a cast to a base object. Must be suitably sized 2379 /// and aligned. 2380 TCK_Upcast, 2381 /// Checking the operand of a cast to a virtual base object. Must be an 2382 /// object within its lifetime. 2383 TCK_UpcastToVirtualBase, 2384 /// Checking the value assigned to a _Nonnull pointer. Must not be null. 2385 TCK_NonnullAssign, 2386 /// Checking the operand of a dynamic_cast or a typeid expression. Must be 2387 /// null or an object within its lifetime. 2388 TCK_DynamicOperation 2389 }; 2390 2391 /// Determine whether the pointer type check \p TCK permits null pointers. 2392 static bool isNullPointerAllowed(TypeCheckKind TCK); 2393 2394 /// Determine whether the pointer type check \p TCK requires a vptr check. 2395 static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty); 2396 2397 /// \brief Whether any type-checking sanitizers are enabled. If \c false, 2398 /// calls to EmitTypeCheck can be skipped. 2399 bool sanitizePerformTypeCheck() const; 2400 2401 /// \brief Emit a check that \p V is the address of storage of the 2402 /// appropriate size and alignment for an object of type \p Type. 2403 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, 2404 QualType Type, CharUnits Alignment = CharUnits::Zero(), 2405 SanitizerSet SkippedChecks = SanitizerSet()); 2406 2407 /// \brief Emit a check that \p Base points into an array object, which 2408 /// we can access at index \p Index. \p Accessed should be \c false if we 2409 /// this expression is used as an lvalue, for instance in "&Arr[Idx]". 2410 void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, 2411 QualType IndexType, bool Accessed); 2412 2413 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 2414 bool isInc, bool isPre); 2415 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 2416 bool isInc, bool isPre); 2417 2418 void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment, 2419 llvm::Value *OffsetValue = nullptr) { 2420 Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment, 2421 OffsetValue); 2422 } 2423 2424 /// Converts Location to a DebugLoc, if debug information is enabled. 2425 llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location); 2426 2427 2428 //===--------------------------------------------------------------------===// 2429 // Declaration Emission 2430 //===--------------------------------------------------------------------===// 2431 2432 /// EmitDecl - Emit a declaration. 2433 /// 2434 /// This function can be called with a null (unreachable) insert point. 2435 void EmitDecl(const Decl &D); 2436 2437 /// EmitVarDecl - Emit a local variable declaration. 2438 /// 2439 /// This function can be called with a null (unreachable) insert point. 2440 void EmitVarDecl(const VarDecl &D); 2441 2442 void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2443 bool capturedByInit); 2444 2445 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 2446 llvm::Value *Address); 2447 2448 /// \brief Determine whether the given initializer is trivial in the sense 2449 /// that it requires no code to be generated. 2450 bool isTrivialInitializer(const Expr *Init); 2451 2452 /// EmitAutoVarDecl - Emit an auto variable declaration. 2453 /// 2454 /// This function can be called with a null (unreachable) insert point. 2455 void EmitAutoVarDecl(const VarDecl &D); 2456 2457 class AutoVarEmission { 2458 friend class CodeGenFunction; 2459 2460 const VarDecl *Variable; 2461 2462 /// The address of the alloca. Invalid if the variable was emitted 2463 /// as a global constant. 2464 Address Addr; 2465 2466 llvm::Value *NRVOFlag; 2467 2468 /// True if the variable is a __block variable. 2469 bool IsByRef; 2470 2471 /// True if the variable is of aggregate type and has a constant 2472 /// initializer. 2473 bool IsConstantAggregate; 2474 2475 /// Non-null if we should use lifetime annotations. 2476 llvm::Value *SizeForLifetimeMarkers; 2477 2478 struct Invalid {}; 2479 AutoVarEmission(Invalid) : Variable(nullptr), Addr(Address::invalid()) {} 2480 2481 AutoVarEmission(const VarDecl &variable) 2482 : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr), 2483 IsByRef(false), IsConstantAggregate(false), 2484 SizeForLifetimeMarkers(nullptr) {} 2485 2486 bool wasEmittedAsGlobal() const { return !Addr.isValid(); } 2487 2488 public: 2489 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 2490 2491 bool useLifetimeMarkers() const { 2492 return SizeForLifetimeMarkers != nullptr; 2493 } 2494 llvm::Value *getSizeForLifetimeMarkers() const { 2495 assert(useLifetimeMarkers()); 2496 return SizeForLifetimeMarkers; 2497 } 2498 2499 /// Returns the raw, allocated address, which is not necessarily 2500 /// the address of the object itself. 2501 Address getAllocatedAddress() const { 2502 return Addr; 2503 } 2504 2505 /// Returns the address of the object within this declaration. 2506 /// Note that this does not chase the forwarding pointer for 2507 /// __block decls. 2508 Address getObjectAddress(CodeGenFunction &CGF) const { 2509 if (!IsByRef) return Addr; 2510 2511 return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false); 2512 } 2513 }; 2514 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 2515 void EmitAutoVarInit(const AutoVarEmission &emission); 2516 void EmitAutoVarCleanups(const AutoVarEmission &emission); 2517 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 2518 QualType::DestructionKind dtorKind); 2519 2520 /// Emits the alloca and debug information for the size expressions for each 2521 /// dimension of an array. It registers the association of its (1-dimensional) 2522 /// QualTypes and size expression's debug node, so that CGDebugInfo can 2523 /// reference this node when creating the DISubrange object to describe the 2524 /// array types. 2525 void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI, 2526 const VarDecl &D, 2527 bool EmitDebugInfo); 2528 2529 void EmitStaticVarDecl(const VarDecl &D, 2530 llvm::GlobalValue::LinkageTypes Linkage); 2531 2532 class ParamValue { 2533 llvm::Value *Value; 2534 unsigned Alignment; 2535 ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {} 2536 public: 2537 static ParamValue forDirect(llvm::Value *value) { 2538 return ParamValue(value, 0); 2539 } 2540 static ParamValue forIndirect(Address addr) { 2541 assert(!addr.getAlignment().isZero()); 2542 return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity()); 2543 } 2544 2545 bool isIndirect() const { return Alignment != 0; } 2546 llvm::Value *getAnyValue() const { return Value; } 2547 2548 llvm::Value *getDirectValue() const { 2549 assert(!isIndirect()); 2550 return Value; 2551 } 2552 2553 Address getIndirectAddress() const { 2554 assert(isIndirect()); 2555 return Address(Value, CharUnits::fromQuantity(Alignment)); 2556 } 2557 }; 2558 2559 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 2560 void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo); 2561 2562 /// protectFromPeepholes - Protect a value that we're intending to 2563 /// store to the side, but which will probably be used later, from 2564 /// aggressive peepholing optimizations that might delete it. 2565 /// 2566 /// Pass the result to unprotectFromPeepholes to declare that 2567 /// protection is no longer required. 2568 /// 2569 /// There's no particular reason why this shouldn't apply to 2570 /// l-values, it's just that no existing peepholes work on pointers. 2571 PeepholeProtection protectFromPeepholes(RValue rvalue); 2572 void unprotectFromPeepholes(PeepholeProtection protection); 2573 2574 void EmitAlignmentAssumption(llvm::Value *PtrValue, llvm::Value *Alignment, 2575 llvm::Value *OffsetValue = nullptr) { 2576 Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment, 2577 OffsetValue); 2578 } 2579 2580 //===--------------------------------------------------------------------===// 2581 // Statement Emission 2582 //===--------------------------------------------------------------------===// 2583 2584 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 2585 void EmitStopPoint(const Stmt *S); 2586 2587 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 2588 /// this function even if there is no current insertion point. 2589 /// 2590 /// This function may clear the current insertion point; callers should use 2591 /// EnsureInsertPoint if they wish to subsequently generate code without first 2592 /// calling EmitBlock, EmitBranch, or EmitStmt. 2593 void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None); 2594 2595 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 2596 /// necessarily require an insertion point or debug information; typically 2597 /// because the statement amounts to a jump or a container of other 2598 /// statements. 2599 /// 2600 /// \return True if the statement was handled. 2601 bool EmitSimpleStmt(const Stmt *S); 2602 2603 Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 2604 AggValueSlot AVS = AggValueSlot::ignored()); 2605 Address EmitCompoundStmtWithoutScope(const CompoundStmt &S, 2606 bool GetLast = false, 2607 AggValueSlot AVS = 2608 AggValueSlot::ignored()); 2609 2610 /// EmitLabel - Emit the block for the given label. It is legal to call this 2611 /// function even if there is no current insertion point. 2612 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 2613 2614 void EmitLabelStmt(const LabelStmt &S); 2615 void EmitAttributedStmt(const AttributedStmt &S); 2616 void EmitGotoStmt(const GotoStmt &S); 2617 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 2618 void EmitIfStmt(const IfStmt &S); 2619 2620 void EmitWhileStmt(const WhileStmt &S, 2621 ArrayRef<const Attr *> Attrs = None); 2622 void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None); 2623 void EmitForStmt(const ForStmt &S, 2624 ArrayRef<const Attr *> Attrs = None); 2625 void EmitReturnStmt(const ReturnStmt &S); 2626 void EmitDeclStmt(const DeclStmt &S); 2627 void EmitBreakStmt(const BreakStmt &S); 2628 void EmitContinueStmt(const ContinueStmt &S); 2629 void EmitSwitchStmt(const SwitchStmt &S); 2630 void EmitDefaultStmt(const DefaultStmt &S); 2631 void EmitCaseStmt(const CaseStmt &S); 2632 void EmitCaseStmtRange(const CaseStmt &S); 2633 void EmitAsmStmt(const AsmStmt &S); 2634 2635 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 2636 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 2637 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 2638 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 2639 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 2640 2641 void EmitCoroutineBody(const CoroutineBodyStmt &S); 2642 void EmitCoreturnStmt(const CoreturnStmt &S); 2643 RValue EmitCoawaitExpr(const CoawaitExpr &E, 2644 AggValueSlot aggSlot = AggValueSlot::ignored(), 2645 bool ignoreResult = false); 2646 LValue EmitCoawaitLValue(const CoawaitExpr *E); 2647 RValue EmitCoyieldExpr(const CoyieldExpr &E, 2648 AggValueSlot aggSlot = AggValueSlot::ignored(), 2649 bool ignoreResult = false); 2650 LValue EmitCoyieldLValue(const CoyieldExpr *E); 2651 RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID); 2652 2653 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 2654 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 2655 2656 void EmitCXXTryStmt(const CXXTryStmt &S); 2657 void EmitSEHTryStmt(const SEHTryStmt &S); 2658 void EmitSEHLeaveStmt(const SEHLeaveStmt &S); 2659 void EnterSEHTryStmt(const SEHTryStmt &S); 2660 void ExitSEHTryStmt(const SEHTryStmt &S); 2661 2662 void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter, 2663 const Stmt *OutlinedStmt); 2664 2665 llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF, 2666 const SEHExceptStmt &Except); 2667 2668 llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF, 2669 const SEHFinallyStmt &Finally); 2670 2671 void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF, 2672 llvm::Value *ParentFP, 2673 llvm::Value *EntryEBP); 2674 llvm::Value *EmitSEHExceptionCode(); 2675 llvm::Value *EmitSEHExceptionInfo(); 2676 llvm::Value *EmitSEHAbnormalTermination(); 2677 2678 /// Emit simple code for OpenMP directives in Simd-only mode. 2679 void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D); 2680 2681 /// Scan the outlined statement for captures from the parent function. For 2682 /// each capture, mark the capture as escaped and emit a call to 2683 /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap. 2684 void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt, 2685 bool IsFilter); 2686 2687 /// Recovers the address of a local in a parent function. ParentVar is the 2688 /// address of the variable used in the immediate parent function. It can 2689 /// either be an alloca or a call to llvm.localrecover if there are nested 2690 /// outlined functions. ParentFP is the frame pointer of the outermost parent 2691 /// frame. 2692 Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF, 2693 Address ParentVar, 2694 llvm::Value *ParentFP); 2695 2696 void EmitCXXForRangeStmt(const CXXForRangeStmt &S, 2697 ArrayRef<const Attr *> Attrs = None); 2698 2699 /// Controls insertion of cancellation exit blocks in worksharing constructs. 2700 class OMPCancelStackRAII { 2701 CodeGenFunction &CGF; 2702 2703 public: 2704 OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 2705 bool HasCancel) 2706 : CGF(CGF) { 2707 CGF.OMPCancelStack.enter(CGF, Kind, HasCancel); 2708 } 2709 ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); } 2710 }; 2711 2712 /// Returns calculated size of the specified type. 2713 llvm::Value *getTypeSize(QualType Ty); 2714 LValue InitCapturedStruct(const CapturedStmt &S); 2715 llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K); 2716 llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S); 2717 Address GenerateCapturedStmtArgument(const CapturedStmt &S); 2718 llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S); 2719 void GenerateOpenMPCapturedVars(const CapturedStmt &S, 2720 SmallVectorImpl<llvm::Value *> &CapturedVars); 2721 void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy, 2722 SourceLocation Loc); 2723 /// \brief Perform element by element copying of arrays with type \a 2724 /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure 2725 /// generated by \a CopyGen. 2726 /// 2727 /// \param DestAddr Address of the destination array. 2728 /// \param SrcAddr Address of the source array. 2729 /// \param OriginalType Type of destination and source arrays. 2730 /// \param CopyGen Copying procedure that copies value of single array element 2731 /// to another single array element. 2732 void EmitOMPAggregateAssign( 2733 Address DestAddr, Address SrcAddr, QualType OriginalType, 2734 const llvm::function_ref<void(Address, Address)> &CopyGen); 2735 /// \brief Emit proper copying of data from one variable to another. 2736 /// 2737 /// \param OriginalType Original type of the copied variables. 2738 /// \param DestAddr Destination address. 2739 /// \param SrcAddr Source address. 2740 /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has 2741 /// type of the base array element). 2742 /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of 2743 /// the base array element). 2744 /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a 2745 /// DestVD. 2746 void EmitOMPCopy(QualType OriginalType, 2747 Address DestAddr, Address SrcAddr, 2748 const VarDecl *DestVD, const VarDecl *SrcVD, 2749 const Expr *Copy); 2750 /// \brief Emit atomic update code for constructs: \a X = \a X \a BO \a E or 2751 /// \a X = \a E \a BO \a E. 2752 /// 2753 /// \param X Value to be updated. 2754 /// \param E Update value. 2755 /// \param BO Binary operation for update operation. 2756 /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update 2757 /// expression, false otherwise. 2758 /// \param AO Atomic ordering of the generated atomic instructions. 2759 /// \param CommonGen Code generator for complex expressions that cannot be 2760 /// expressed through atomicrmw instruction. 2761 /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was 2762 /// generated, <false, RValue::get(nullptr)> otherwise. 2763 std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr( 2764 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 2765 llvm::AtomicOrdering AO, SourceLocation Loc, 2766 const llvm::function_ref<RValue(RValue)> &CommonGen); 2767 bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 2768 OMPPrivateScope &PrivateScope); 2769 void EmitOMPPrivateClause(const OMPExecutableDirective &D, 2770 OMPPrivateScope &PrivateScope); 2771 void EmitOMPUseDevicePtrClause( 2772 const OMPClause &C, OMPPrivateScope &PrivateScope, 2773 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap); 2774 /// \brief Emit code for copyin clause in \a D directive. The next code is 2775 /// generated at the start of outlined functions for directives: 2776 /// \code 2777 /// threadprivate_var1 = master_threadprivate_var1; 2778 /// operator=(threadprivate_var2, master_threadprivate_var2); 2779 /// ... 2780 /// __kmpc_barrier(&loc, global_tid); 2781 /// \endcode 2782 /// 2783 /// \param D OpenMP directive possibly with 'copyin' clause(s). 2784 /// \returns true if at least one copyin variable is found, false otherwise. 2785 bool EmitOMPCopyinClause(const OMPExecutableDirective &D); 2786 /// \brief Emit initial code for lastprivate variables. If some variable is 2787 /// not also firstprivate, then the default initialization is used. Otherwise 2788 /// initialization of this variable is performed by EmitOMPFirstprivateClause 2789 /// method. 2790 /// 2791 /// \param D Directive that may have 'lastprivate' directives. 2792 /// \param PrivateScope Private scope for capturing lastprivate variables for 2793 /// proper codegen in internal captured statement. 2794 /// 2795 /// \returns true if there is at least one lastprivate variable, false 2796 /// otherwise. 2797 bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D, 2798 OMPPrivateScope &PrivateScope); 2799 /// \brief Emit final copying of lastprivate values to original variables at 2800 /// the end of the worksharing or simd directive. 2801 /// 2802 /// \param D Directive that has at least one 'lastprivate' directives. 2803 /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if 2804 /// it is the last iteration of the loop code in associated directive, or to 2805 /// 'i1 false' otherwise. If this item is nullptr, no final check is required. 2806 void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D, 2807 bool NoFinals, 2808 llvm::Value *IsLastIterCond = nullptr); 2809 /// Emit initial code for linear clauses. 2810 void EmitOMPLinearClause(const OMPLoopDirective &D, 2811 CodeGenFunction::OMPPrivateScope &PrivateScope); 2812 /// Emit final code for linear clauses. 2813 /// \param CondGen Optional conditional code for final part of codegen for 2814 /// linear clause. 2815 void EmitOMPLinearClauseFinal( 2816 const OMPLoopDirective &D, 2817 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen); 2818 /// \brief Emit initial code for reduction variables. Creates reduction copies 2819 /// and initializes them with the values according to OpenMP standard. 2820 /// 2821 /// \param D Directive (possibly) with the 'reduction' clause. 2822 /// \param PrivateScope Private scope for capturing reduction variables for 2823 /// proper codegen in internal captured statement. 2824 /// 2825 void EmitOMPReductionClauseInit(const OMPExecutableDirective &D, 2826 OMPPrivateScope &PrivateScope); 2827 /// \brief Emit final update of reduction values to original variables at 2828 /// the end of the directive. 2829 /// 2830 /// \param D Directive that has at least one 'reduction' directives. 2831 /// \param ReductionKind The kind of reduction to perform. 2832 void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D, 2833 const OpenMPDirectiveKind ReductionKind); 2834 /// \brief Emit initial code for linear variables. Creates private copies 2835 /// and initializes them with the values according to OpenMP standard. 2836 /// 2837 /// \param D Directive (possibly) with the 'linear' clause. 2838 /// \return true if at least one linear variable is found that should be 2839 /// initialized with the value of the original variable, false otherwise. 2840 bool EmitOMPLinearClauseInit(const OMPLoopDirective &D); 2841 2842 typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/, 2843 llvm::Value * /*OutlinedFn*/, 2844 const OMPTaskDataTy & /*Data*/)> 2845 TaskGenTy; 2846 void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S, 2847 const OpenMPDirectiveKind CapturedRegion, 2848 const RegionCodeGenTy &BodyGen, 2849 const TaskGenTy &TaskGen, OMPTaskDataTy &Data); 2850 struct OMPTargetDataInfo { 2851 Address BasePointersArray = Address::invalid(); 2852 Address PointersArray = Address::invalid(); 2853 Address SizesArray = Address::invalid(); 2854 unsigned NumberOfTargetItems = 0; 2855 explicit OMPTargetDataInfo() = default; 2856 OMPTargetDataInfo(Address BasePointersArray, Address PointersArray, 2857 Address SizesArray, unsigned NumberOfTargetItems) 2858 : BasePointersArray(BasePointersArray), PointersArray(PointersArray), 2859 SizesArray(SizesArray), NumberOfTargetItems(NumberOfTargetItems) {} 2860 }; 2861 void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S, 2862 const RegionCodeGenTy &BodyGen, 2863 OMPTargetDataInfo &InputInfo); 2864 2865 void EmitOMPParallelDirective(const OMPParallelDirective &S); 2866 void EmitOMPSimdDirective(const OMPSimdDirective &S); 2867 void EmitOMPForDirective(const OMPForDirective &S); 2868 void EmitOMPForSimdDirective(const OMPForSimdDirective &S); 2869 void EmitOMPSectionsDirective(const OMPSectionsDirective &S); 2870 void EmitOMPSectionDirective(const OMPSectionDirective &S); 2871 void EmitOMPSingleDirective(const OMPSingleDirective &S); 2872 void EmitOMPMasterDirective(const OMPMasterDirective &S); 2873 void EmitOMPCriticalDirective(const OMPCriticalDirective &S); 2874 void EmitOMPParallelForDirective(const OMPParallelForDirective &S); 2875 void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S); 2876 void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S); 2877 void EmitOMPTaskDirective(const OMPTaskDirective &S); 2878 void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S); 2879 void EmitOMPBarrierDirective(const OMPBarrierDirective &S); 2880 void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S); 2881 void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S); 2882 void EmitOMPFlushDirective(const OMPFlushDirective &S); 2883 void EmitOMPOrderedDirective(const OMPOrderedDirective &S); 2884 void EmitOMPAtomicDirective(const OMPAtomicDirective &S); 2885 void EmitOMPTargetDirective(const OMPTargetDirective &S); 2886 void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S); 2887 void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S); 2888 void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S); 2889 void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S); 2890 void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S); 2891 void 2892 EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S); 2893 void EmitOMPTeamsDirective(const OMPTeamsDirective &S); 2894 void 2895 EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S); 2896 void EmitOMPCancelDirective(const OMPCancelDirective &S); 2897 void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S); 2898 void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S); 2899 void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S); 2900 void EmitOMPDistributeDirective(const OMPDistributeDirective &S); 2901 void EmitOMPDistributeParallelForDirective( 2902 const OMPDistributeParallelForDirective &S); 2903 void EmitOMPDistributeParallelForSimdDirective( 2904 const OMPDistributeParallelForSimdDirective &S); 2905 void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S); 2906 void EmitOMPTargetParallelForSimdDirective( 2907 const OMPTargetParallelForSimdDirective &S); 2908 void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S); 2909 void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S); 2910 void 2911 EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S); 2912 void EmitOMPTeamsDistributeParallelForSimdDirective( 2913 const OMPTeamsDistributeParallelForSimdDirective &S); 2914 void EmitOMPTeamsDistributeParallelForDirective( 2915 const OMPTeamsDistributeParallelForDirective &S); 2916 void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S); 2917 void EmitOMPTargetTeamsDistributeDirective( 2918 const OMPTargetTeamsDistributeDirective &S); 2919 void EmitOMPTargetTeamsDistributeParallelForDirective( 2920 const OMPTargetTeamsDistributeParallelForDirective &S); 2921 void EmitOMPTargetTeamsDistributeParallelForSimdDirective( 2922 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 2923 void EmitOMPTargetTeamsDistributeSimdDirective( 2924 const OMPTargetTeamsDistributeSimdDirective &S); 2925 2926 /// Emit device code for the target directive. 2927 static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 2928 StringRef ParentName, 2929 const OMPTargetDirective &S); 2930 static void 2931 EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 2932 const OMPTargetParallelDirective &S); 2933 /// Emit device code for the target parallel for directive. 2934 static void EmitOMPTargetParallelForDeviceFunction( 2935 CodeGenModule &CGM, StringRef ParentName, 2936 const OMPTargetParallelForDirective &S); 2937 /// Emit device code for the target parallel for simd directive. 2938 static void EmitOMPTargetParallelForSimdDeviceFunction( 2939 CodeGenModule &CGM, StringRef ParentName, 2940 const OMPTargetParallelForSimdDirective &S); 2941 /// Emit device code for the target teams directive. 2942 static void 2943 EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 2944 const OMPTargetTeamsDirective &S); 2945 /// Emit device code for the target teams distribute directive. 2946 static void EmitOMPTargetTeamsDistributeDeviceFunction( 2947 CodeGenModule &CGM, StringRef ParentName, 2948 const OMPTargetTeamsDistributeDirective &S); 2949 /// Emit device code for the target teams distribute simd directive. 2950 static void EmitOMPTargetTeamsDistributeSimdDeviceFunction( 2951 CodeGenModule &CGM, StringRef ParentName, 2952 const OMPTargetTeamsDistributeSimdDirective &S); 2953 /// Emit device code for the target simd directive. 2954 static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM, 2955 StringRef ParentName, 2956 const OMPTargetSimdDirective &S); 2957 /// Emit device code for the target teams distribute parallel for simd 2958 /// directive. 2959 static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( 2960 CodeGenModule &CGM, StringRef ParentName, 2961 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 2962 2963 static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 2964 CodeGenModule &CGM, StringRef ParentName, 2965 const OMPTargetTeamsDistributeParallelForDirective &S); 2966 /// \brief Emit inner loop of the worksharing/simd construct. 2967 /// 2968 /// \param S Directive, for which the inner loop must be emitted. 2969 /// \param RequiresCleanup true, if directive has some associated private 2970 /// variables. 2971 /// \param LoopCond Bollean condition for loop continuation. 2972 /// \param IncExpr Increment expression for loop control variable. 2973 /// \param BodyGen Generator for the inner body of the inner loop. 2974 /// \param PostIncGen Genrator for post-increment code (required for ordered 2975 /// loop directvies). 2976 void EmitOMPInnerLoop( 2977 const Stmt &S, bool RequiresCleanup, const Expr *LoopCond, 2978 const Expr *IncExpr, 2979 const llvm::function_ref<void(CodeGenFunction &)> &BodyGen, 2980 const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen); 2981 2982 JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind); 2983 /// Emit initial code for loop counters of loop-based directives. 2984 void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S, 2985 OMPPrivateScope &LoopScope); 2986 2987 /// Helper for the OpenMP loop directives. 2988 void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit); 2989 2990 /// \brief Emit code for the worksharing loop-based directive. 2991 /// \return true, if this construct has any lastprivate clause, false - 2992 /// otherwise. 2993 bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB, 2994 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 2995 const CodeGenDispatchBoundsTy &CGDispatchBounds); 2996 2997 /// Emit code for the distribute loop-based directive. 2998 void EmitOMPDistributeLoop(const OMPLoopDirective &S, 2999 const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr); 3000 3001 /// Helpers for the OpenMP loop directives. 3002 void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false); 3003 void EmitOMPSimdFinal( 3004 const OMPLoopDirective &D, 3005 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen); 3006 3007 /// Emits the lvalue for the expression with possibly captured variable. 3008 LValue EmitOMPSharedLValue(const Expr *E); 3009 3010 private: 3011 /// Helpers for blocks. 3012 llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); 3013 3014 /// struct with the values to be passed to the OpenMP loop-related functions 3015 struct OMPLoopArguments { 3016 /// loop lower bound 3017 Address LB = Address::invalid(); 3018 /// loop upper bound 3019 Address UB = Address::invalid(); 3020 /// loop stride 3021 Address ST = Address::invalid(); 3022 /// isLastIteration argument for runtime functions 3023 Address IL = Address::invalid(); 3024 /// Chunk value generated by sema 3025 llvm::Value *Chunk = nullptr; 3026 /// EnsureUpperBound 3027 Expr *EUB = nullptr; 3028 /// IncrementExpression 3029 Expr *IncExpr = nullptr; 3030 /// Loop initialization 3031 Expr *Init = nullptr; 3032 /// Loop exit condition 3033 Expr *Cond = nullptr; 3034 /// Update of LB after a whole chunk has been executed 3035 Expr *NextLB = nullptr; 3036 /// Update of UB after a whole chunk has been executed 3037 Expr *NextUB = nullptr; 3038 OMPLoopArguments() = default; 3039 OMPLoopArguments(Address LB, Address UB, Address ST, Address IL, 3040 llvm::Value *Chunk = nullptr, Expr *EUB = nullptr, 3041 Expr *IncExpr = nullptr, Expr *Init = nullptr, 3042 Expr *Cond = nullptr, Expr *NextLB = nullptr, 3043 Expr *NextUB = nullptr) 3044 : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB), 3045 IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB), 3046 NextUB(NextUB) {} 3047 }; 3048 void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic, 3049 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, 3050 const OMPLoopArguments &LoopArgs, 3051 const CodeGenLoopTy &CodeGenLoop, 3052 const CodeGenOrderedTy &CodeGenOrdered); 3053 void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind, 3054 bool IsMonotonic, const OMPLoopDirective &S, 3055 OMPPrivateScope &LoopScope, bool Ordered, 3056 const OMPLoopArguments &LoopArgs, 3057 const CodeGenDispatchBoundsTy &CGDispatchBounds); 3058 void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind, 3059 const OMPLoopDirective &S, 3060 OMPPrivateScope &LoopScope, 3061 const OMPLoopArguments &LoopArgs, 3062 const CodeGenLoopTy &CodeGenLoopContent); 3063 /// \brief Emit code for sections directive. 3064 void EmitSections(const OMPExecutableDirective &S); 3065 3066 public: 3067 3068 //===--------------------------------------------------------------------===// 3069 // LValue Expression Emission 3070 //===--------------------------------------------------------------------===// 3071 3072 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 3073 RValue GetUndefRValue(QualType Ty); 3074 3075 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 3076 /// and issue an ErrorUnsupported style diagnostic (using the 3077 /// provided Name). 3078 RValue EmitUnsupportedRValue(const Expr *E, 3079 const char *Name); 3080 3081 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 3082 /// an ErrorUnsupported style diagnostic (using the provided Name). 3083 LValue EmitUnsupportedLValue(const Expr *E, 3084 const char *Name); 3085 3086 /// EmitLValue - Emit code to compute a designator that specifies the location 3087 /// of the expression. 3088 /// 3089 /// This can return one of two things: a simple address or a bitfield 3090 /// reference. In either case, the LLVM Value* in the LValue structure is 3091 /// guaranteed to be an LLVM pointer type. 3092 /// 3093 /// If this returns a bitfield reference, nothing about the pointee type of 3094 /// the LLVM value is known: For example, it may not be a pointer to an 3095 /// integer. 3096 /// 3097 /// If this returns a normal address, and if the lvalue's C type is fixed 3098 /// size, this method guarantees that the returned pointer type will point to 3099 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 3100 /// variable length type, this is not possible. 3101 /// 3102 LValue EmitLValue(const Expr *E); 3103 3104 /// \brief Same as EmitLValue but additionally we generate checking code to 3105 /// guard against undefined behavior. This is only suitable when we know 3106 /// that the address will be used to access the object. 3107 LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK); 3108 3109 RValue convertTempToRValue(Address addr, QualType type, 3110 SourceLocation Loc); 3111 3112 void EmitAtomicInit(Expr *E, LValue lvalue); 3113 3114 bool LValueIsSuitableForInlineAtomic(LValue Src); 3115 3116 RValue EmitAtomicLoad(LValue LV, SourceLocation SL, 3117 AggValueSlot Slot = AggValueSlot::ignored()); 3118 3119 RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc, 3120 llvm::AtomicOrdering AO, bool IsVolatile = false, 3121 AggValueSlot slot = AggValueSlot::ignored()); 3122 3123 void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit); 3124 3125 void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO, 3126 bool IsVolatile, bool isInit); 3127 3128 std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange( 3129 LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, 3130 llvm::AtomicOrdering Success = 3131 llvm::AtomicOrdering::SequentiallyConsistent, 3132 llvm::AtomicOrdering Failure = 3133 llvm::AtomicOrdering::SequentiallyConsistent, 3134 bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored()); 3135 3136 void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO, 3137 const llvm::function_ref<RValue(RValue)> &UpdateOp, 3138 bool IsVolatile); 3139 3140 /// EmitToMemory - Change a scalar value from its value 3141 /// representation to its in-memory representation. 3142 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 3143 3144 /// EmitFromMemory - Change a scalar value from its memory 3145 /// representation to its value representation. 3146 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 3147 3148 /// Check if the scalar \p Value is within the valid range for the given 3149 /// type \p Ty. 3150 /// 3151 /// Returns true if a check is needed (even if the range is unknown). 3152 bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 3153 SourceLocation Loc); 3154 3155 /// EmitLoadOfScalar - Load a scalar value from an address, taking 3156 /// care to appropriately convert from the memory representation to 3157 /// the LLVM value representation. 3158 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 3159 SourceLocation Loc, 3160 AlignmentSource Source = AlignmentSource::Type, 3161 bool isNontemporal = false) { 3162 return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source), 3163 CGM.getTBAAAccessInfo(Ty), isNontemporal); 3164 } 3165 3166 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 3167 SourceLocation Loc, LValueBaseInfo BaseInfo, 3168 TBAAAccessInfo TBAAInfo, 3169 bool isNontemporal = false); 3170 3171 /// EmitLoadOfScalar - Load a scalar value from an address, taking 3172 /// care to appropriately convert from the memory representation to 3173 /// the LLVM value representation. The l-value must be a simple 3174 /// l-value. 3175 llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc); 3176 3177 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3178 /// care to appropriately convert from the memory representation to 3179 /// the LLVM value representation. 3180 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 3181 bool Volatile, QualType Ty, 3182 AlignmentSource Source = AlignmentSource::Type, 3183 bool isInit = false, bool isNontemporal = false) { 3184 EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source), 3185 CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal); 3186 } 3187 3188 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 3189 bool Volatile, QualType Ty, 3190 LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo, 3191 bool isInit = false, bool isNontemporal = false); 3192 3193 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3194 /// care to appropriately convert from the memory representation to 3195 /// the LLVM value representation. The l-value must be a simple 3196 /// l-value. The isInit flag indicates whether this is an initialization. 3197 /// If so, atomic qualifiers are ignored and the store is always non-atomic. 3198 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); 3199 3200 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 3201 /// this method emits the address of the lvalue, then loads the result as an 3202 /// rvalue, returning the rvalue. 3203 RValue EmitLoadOfLValue(LValue V, SourceLocation Loc); 3204 RValue EmitLoadOfExtVectorElementLValue(LValue V); 3205 RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc); 3206 RValue EmitLoadOfGlobalRegLValue(LValue LV); 3207 3208 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 3209 /// lvalue, where both are guaranteed to the have the same type, and that type 3210 /// is 'Ty'. 3211 void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false); 3212 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 3213 void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst); 3214 3215 /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints 3216 /// as EmitStoreThroughLValue. 3217 /// 3218 /// \param Result [out] - If non-null, this will be set to a Value* for the 3219 /// bit-field contents after the store, appropriate for use as the result of 3220 /// an assignment to the bit-field. 3221 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 3222 llvm::Value **Result=nullptr); 3223 3224 /// Emit an l-value for an assignment (simple or compound) of complex type. 3225 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 3226 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 3227 LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 3228 llvm::Value *&Result); 3229 3230 // Note: only available for agg return types 3231 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 3232 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 3233 // Note: only available for agg return types 3234 LValue EmitCallExprLValue(const CallExpr *E); 3235 // Note: only available for agg return types 3236 LValue EmitVAArgExprLValue(const VAArgExpr *E); 3237 LValue EmitDeclRefLValue(const DeclRefExpr *E); 3238 LValue EmitStringLiteralLValue(const StringLiteral *E); 3239 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 3240 LValue EmitPredefinedLValue(const PredefinedExpr *E); 3241 LValue EmitUnaryOpLValue(const UnaryOperator *E); 3242 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3243 bool Accessed = false); 3244 LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3245 bool IsLowerBound = true); 3246 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 3247 LValue EmitMemberExpr(const MemberExpr *E); 3248 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 3249 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 3250 LValue EmitInitListLValue(const InitListExpr *E); 3251 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 3252 LValue EmitCastLValue(const CastExpr *E); 3253 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 3254 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 3255 3256 Address EmitExtVectorElementLValue(LValue V); 3257 3258 RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc); 3259 3260 Address EmitArrayToPointerDecay(const Expr *Array, 3261 LValueBaseInfo *BaseInfo = nullptr, 3262 TBAAAccessInfo *TBAAInfo = nullptr); 3263 3264 class ConstantEmission { 3265 llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; 3266 ConstantEmission(llvm::Constant *C, bool isReference) 3267 : ValueAndIsReference(C, isReference) {} 3268 public: 3269 ConstantEmission() {} 3270 static ConstantEmission forReference(llvm::Constant *C) { 3271 return ConstantEmission(C, true); 3272 } 3273 static ConstantEmission forValue(llvm::Constant *C) { 3274 return ConstantEmission(C, false); 3275 } 3276 3277 explicit operator bool() const { 3278 return ValueAndIsReference.getOpaqueValue() != nullptr; 3279 } 3280 3281 bool isReference() const { return ValueAndIsReference.getInt(); } 3282 LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { 3283 assert(isReference()); 3284 return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), 3285 refExpr->getType()); 3286 } 3287 3288 llvm::Constant *getValue() const { 3289 assert(!isReference()); 3290 return ValueAndIsReference.getPointer(); 3291 } 3292 }; 3293 3294 ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); 3295 ConstantEmission tryEmitAsConstant(const MemberExpr *ME); 3296 3297 RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, 3298 AggValueSlot slot = AggValueSlot::ignored()); 3299 LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); 3300 3301 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 3302 const ObjCIvarDecl *Ivar); 3303 LValue EmitLValueForField(LValue Base, const FieldDecl* Field); 3304 LValue EmitLValueForLambdaField(const FieldDecl *Field); 3305 3306 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 3307 /// if the Field is a reference, this will return the address of the reference 3308 /// and not the address of the value stored in the reference. 3309 LValue EmitLValueForFieldInitialization(LValue Base, 3310 const FieldDecl* Field); 3311 3312 LValue EmitLValueForIvar(QualType ObjectTy, 3313 llvm::Value* Base, const ObjCIvarDecl *Ivar, 3314 unsigned CVRQualifiers); 3315 3316 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 3317 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 3318 LValue EmitLambdaLValue(const LambdaExpr *E); 3319 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 3320 LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E); 3321 3322 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 3323 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 3324 LValue EmitStmtExprLValue(const StmtExpr *E); 3325 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 3326 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 3327 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init); 3328 3329 //===--------------------------------------------------------------------===// 3330 // Scalar Expression Emission 3331 //===--------------------------------------------------------------------===// 3332 3333 /// EmitCall - Generate a call of the given function, expecting the given 3334 /// result type, and using the given argument list which specifies both the 3335 /// LLVM arguments and the types they were derived from. 3336 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 3337 ReturnValueSlot ReturnValue, const CallArgList &Args, 3338 llvm::Instruction **callOrInvoke, SourceLocation Loc); 3339 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 3340 ReturnValueSlot ReturnValue, const CallArgList &Args, 3341 llvm::Instruction **callOrInvoke = nullptr) { 3342 return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke, 3343 SourceLocation()); 3344 } 3345 RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E, 3346 ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr); 3347 RValue EmitCallExpr(const CallExpr *E, 3348 ReturnValueSlot ReturnValue = ReturnValueSlot()); 3349 RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 3350 CGCallee EmitCallee(const Expr *E); 3351 3352 void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl); 3353 3354 llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, 3355 const Twine &name = ""); 3356 llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, 3357 ArrayRef<llvm::Value*> args, 3358 const Twine &name = ""); 3359 llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, 3360 const Twine &name = ""); 3361 llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, 3362 ArrayRef<llvm::Value*> args, 3363 const Twine &name = ""); 3364 3365 SmallVector<llvm::OperandBundleDef, 1> 3366 getBundlesForFunclet(llvm::Value *Callee); 3367 3368 llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, 3369 ArrayRef<llvm::Value *> Args, 3370 const Twine &Name = ""); 3371 llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, 3372 ArrayRef<llvm::Value*> args, 3373 const Twine &name = ""); 3374 llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, 3375 const Twine &name = ""); 3376 void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee, 3377 ArrayRef<llvm::Value*> args); 3378 3379 CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 3380 NestedNameSpecifier *Qual, 3381 llvm::Type *Ty); 3382 3383 CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 3384 CXXDtorType Type, 3385 const CXXRecordDecl *RD); 3386 3387 // These functions emit calls to the special functions of non-trivial C 3388 // structs. 3389 void defaultInitNonTrivialCStructVar(LValue Dst); 3390 void callCStructDefaultConstructor(LValue Dst); 3391 void callCStructDestructor(LValue Dst); 3392 void callCStructCopyConstructor(LValue Dst, LValue Src); 3393 void callCStructMoveConstructor(LValue Dst, LValue Src); 3394 void callCStructCopyAssignmentOperator(LValue Dst, LValue Src); 3395 void callCStructMoveAssignmentOperator(LValue Dst, LValue Src); 3396 3397 RValue 3398 EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method, 3399 const CGCallee &Callee, 3400 ReturnValueSlot ReturnValue, llvm::Value *This, 3401 llvm::Value *ImplicitParam, 3402 QualType ImplicitParamTy, const CallExpr *E, 3403 CallArgList *RtlArgs); 3404 RValue EmitCXXDestructorCall(const CXXDestructorDecl *DD, 3405 const CGCallee &Callee, 3406 llvm::Value *This, llvm::Value *ImplicitParam, 3407 QualType ImplicitParamTy, const CallExpr *E, 3408 StructorType Type); 3409 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 3410 ReturnValueSlot ReturnValue); 3411 RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE, 3412 const CXXMethodDecl *MD, 3413 ReturnValueSlot ReturnValue, 3414 bool HasQualifier, 3415 NestedNameSpecifier *Qualifier, 3416 bool IsArrow, const Expr *Base); 3417 // Compute the object pointer. 3418 Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base, 3419 llvm::Value *memberPtr, 3420 const MemberPointerType *memberPtrType, 3421 LValueBaseInfo *BaseInfo = nullptr, 3422 TBAAAccessInfo *TBAAInfo = nullptr); 3423 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 3424 ReturnValueSlot ReturnValue); 3425 3426 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 3427 const CXXMethodDecl *MD, 3428 ReturnValueSlot ReturnValue); 3429 RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E); 3430 3431 RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 3432 ReturnValueSlot ReturnValue); 3433 3434 RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E, 3435 ReturnValueSlot ReturnValue); 3436 3437 RValue EmitBuiltinExpr(const FunctionDecl *FD, 3438 unsigned BuiltinID, const CallExpr *E, 3439 ReturnValueSlot ReturnValue); 3440 3441 /// Emit IR for __builtin_os_log_format. 3442 RValue emitBuiltinOSLogFormat(const CallExpr &E); 3443 3444 llvm::Function *generateBuiltinOSLogHelperFunction( 3445 const analyze_os_log::OSLogBufferLayout &Layout, 3446 CharUnits BufferAlignment); 3447 3448 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 3449 3450 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 3451 /// is unhandled by the current target. 3452 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3453 3454 llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty, 3455 const llvm::CmpInst::Predicate Fp, 3456 const llvm::CmpInst::Predicate Ip, 3457 const llvm::Twine &Name = ""); 3458 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 3459 llvm::Triple::ArchType Arch); 3460 3461 llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID, 3462 unsigned LLVMIntrinsic, 3463 unsigned AltLLVMIntrinsic, 3464 const char *NameHint, 3465 unsigned Modifier, 3466 const CallExpr *E, 3467 SmallVectorImpl<llvm::Value *> &Ops, 3468 Address PtrOp0, Address PtrOp1, 3469 llvm::Triple::ArchType Arch); 3470 llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID, 3471 unsigned Modifier, llvm::Type *ArgTy, 3472 const CallExpr *E); 3473 llvm::Value *EmitNeonCall(llvm::Function *F, 3474 SmallVectorImpl<llvm::Value*> &O, 3475 const char *name, 3476 unsigned shift = 0, bool rightshift = false); 3477 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 3478 llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, 3479 bool negateForRightShift); 3480 llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt, 3481 llvm::Type *Ty, bool usgn, const char *name); 3482 llvm::Value *vectorWrapScalar16(llvm::Value *Op); 3483 llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E, 3484 llvm::Triple::ArchType Arch); 3485 3486 llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); 3487 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3488 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3489 llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3490 llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3491 llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3492 llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID, 3493 const CallExpr *E); 3494 llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3495 3496 private: 3497 enum class MSVCIntrin; 3498 3499 public: 3500 llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E); 3501 3502 llvm::Value *EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args); 3503 3504 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 3505 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 3506 llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); 3507 llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); 3508 llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); 3509 llvm::Value *EmitObjCCollectionLiteral(const Expr *E, 3510 const ObjCMethodDecl *MethodWithObjects); 3511 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 3512 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 3513 ReturnValueSlot Return = ReturnValueSlot()); 3514 3515 /// Retrieves the default cleanup kind for an ARC cleanup. 3516 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. 3517 CleanupKind getARCCleanupKind() { 3518 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 3519 ? NormalAndEHCleanup : NormalCleanup; 3520 } 3521 3522 // ARC primitives. 3523 void EmitARCInitWeak(Address addr, llvm::Value *value); 3524 void EmitARCDestroyWeak(Address addr); 3525 llvm::Value *EmitARCLoadWeak(Address addr); 3526 llvm::Value *EmitARCLoadWeakRetained(Address addr); 3527 llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored); 3528 void EmitARCCopyWeak(Address dst, Address src); 3529 void EmitARCMoveWeak(Address dst, Address src); 3530 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 3531 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 3532 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 3533 bool resultIgnored); 3534 llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value, 3535 bool resultIgnored); 3536 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 3537 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 3538 llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); 3539 void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise); 3540 void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 3541 llvm::Value *EmitARCAutorelease(llvm::Value *value); 3542 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 3543 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 3544 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 3545 llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value); 3546 3547 std::pair<LValue,llvm::Value*> 3548 EmitARCStoreAutoreleasing(const BinaryOperator *e); 3549 std::pair<LValue,llvm::Value*> 3550 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 3551 std::pair<LValue,llvm::Value*> 3552 EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored); 3553 3554 llvm::Value *EmitObjCThrowOperand(const Expr *expr); 3555 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 3556 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 3557 3558 llvm::Value *EmitARCExtendBlockObject(const Expr *expr); 3559 llvm::Value *EmitARCReclaimReturnedObject(const Expr *e, 3560 bool allowUnsafeClaim); 3561 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 3562 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 3563 llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr); 3564 3565 void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values); 3566 3567 static Destroyer destroyARCStrongImprecise; 3568 static Destroyer destroyARCStrongPrecise; 3569 static Destroyer destroyARCWeak; 3570 static Destroyer emitARCIntrinsicUse; 3571 static Destroyer destroyNonTrivialCStruct; 3572 3573 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 3574 llvm::Value *EmitObjCAutoreleasePoolPush(); 3575 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 3576 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 3577 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 3578 3579 /// \brief Emits a reference binding to the passed in expression. 3580 RValue EmitReferenceBindingToExpr(const Expr *E); 3581 3582 //===--------------------------------------------------------------------===// 3583 // Expression Emission 3584 //===--------------------------------------------------------------------===// 3585 3586 // Expressions are broken into three classes: scalar, complex, aggregate. 3587 3588 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 3589 /// scalar type, returning the result. 3590 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 3591 3592 /// Emit a conversion from the specified type to the specified destination 3593 /// type, both of which are LLVM scalar types. 3594 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 3595 QualType DstTy, SourceLocation Loc); 3596 3597 /// Emit a conversion from the specified complex type to the specified 3598 /// destination type, where the destination type is an LLVM scalar type. 3599 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 3600 QualType DstTy, 3601 SourceLocation Loc); 3602 3603 /// EmitAggExpr - Emit the computation of the specified expression 3604 /// of aggregate type. The result is computed into the given slot, 3605 /// which may be null to indicate that the value is not needed. 3606 void EmitAggExpr(const Expr *E, AggValueSlot AS); 3607 3608 /// EmitAggExprToLValue - Emit the computation of the specified expression of 3609 /// aggregate type into a temporary LValue. 3610 LValue EmitAggExprToLValue(const Expr *E); 3611 3612 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 3613 /// make sure it survives garbage collection until this point. 3614 void EmitExtendGCLifetime(llvm::Value *object); 3615 3616 /// EmitComplexExpr - Emit the computation of the specified expression of 3617 /// complex type, returning the result. 3618 ComplexPairTy EmitComplexExpr(const Expr *E, 3619 bool IgnoreReal = false, 3620 bool IgnoreImag = false); 3621 3622 /// EmitComplexExprIntoLValue - Emit the given expression of complex 3623 /// type and place its result into the specified l-value. 3624 void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit); 3625 3626 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 3627 void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit); 3628 3629 /// EmitLoadOfComplex - Load a complex number from the specified l-value. 3630 ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc); 3631 3632 Address emitAddrOfRealComponent(Address complex, QualType complexType); 3633 Address emitAddrOfImagComponent(Address complex, QualType complexType); 3634 3635 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 3636 /// global variable that has already been created for it. If the initializer 3637 /// has a different type than GV does, this may free GV and return a different 3638 /// one. Otherwise it just returns GV. 3639 llvm::GlobalVariable * 3640 AddInitializerToStaticVarDecl(const VarDecl &D, 3641 llvm::GlobalVariable *GV); 3642 3643 3644 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 3645 /// variable with global storage. 3646 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr, 3647 bool PerformInit); 3648 3649 llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::Constant *Dtor, 3650 llvm::Constant *Addr); 3651 3652 /// Call atexit() with a function that passes the given argument to 3653 /// the given function. 3654 void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn, 3655 llvm::Constant *addr); 3656 3657 /// Emit code in this function to perform a guarded variable 3658 /// initialization. Guarded initializations are used when it's not 3659 /// possible to prove that an initialization will be done exactly 3660 /// once, e.g. with a static local variable or a static data member 3661 /// of a class template. 3662 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, 3663 bool PerformInit); 3664 3665 enum class GuardKind { VariableGuard, TlsGuard }; 3666 3667 /// Emit a branch to select whether or not to perform guarded initialization. 3668 void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit, 3669 llvm::BasicBlock *InitBlock, 3670 llvm::BasicBlock *NoInitBlock, 3671 GuardKind Kind, const VarDecl *D); 3672 3673 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 3674 /// variables. 3675 void GenerateCXXGlobalInitFunc(llvm::Function *Fn, 3676 ArrayRef<llvm::Function *> CXXThreadLocals, 3677 Address Guard = Address::invalid()); 3678 3679 /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global 3680 /// variables. 3681 void GenerateCXXGlobalDtorsFunc( 3682 llvm::Function *Fn, 3683 const std::vector<std::pair<llvm::WeakTrackingVH, llvm::Constant *>> 3684 &DtorsAndObjects); 3685 3686 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 3687 const VarDecl *D, 3688 llvm::GlobalVariable *Addr, 3689 bool PerformInit); 3690 3691 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 3692 3693 void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp); 3694 3695 void enterFullExpression(const ExprWithCleanups *E) { 3696 if (E->getNumObjects() == 0) return; 3697 enterNonTrivialFullExpression(E); 3698 } 3699 void enterNonTrivialFullExpression(const ExprWithCleanups *E); 3700 3701 void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true); 3702 3703 void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest); 3704 3705 RValue EmitAtomicExpr(AtomicExpr *E); 3706 3707 //===--------------------------------------------------------------------===// 3708 // Annotations Emission 3709 //===--------------------------------------------------------------------===// 3710 3711 /// Emit an annotation call (intrinsic or builtin). 3712 llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn, 3713 llvm::Value *AnnotatedVal, 3714 StringRef AnnotationStr, 3715 SourceLocation Location); 3716 3717 /// Emit local annotations for the local variable V, declared by D. 3718 void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); 3719 3720 /// Emit field annotations for the given field & value. Returns the 3721 /// annotation result. 3722 Address EmitFieldAnnotations(const FieldDecl *D, Address V); 3723 3724 //===--------------------------------------------------------------------===// 3725 // Internal Helpers 3726 //===--------------------------------------------------------------------===// 3727 3728 /// ContainsLabel - Return true if the statement contains a label in it. If 3729 /// this statement is not executed normally, it not containing a label means 3730 /// that we can just remove the code. 3731 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 3732 3733 /// containsBreak - Return true if the statement contains a break out of it. 3734 /// If the statement (recursively) contains a switch or loop with a break 3735 /// inside of it, this is fine. 3736 static bool containsBreak(const Stmt *S); 3737 3738 /// Determine if the given statement might introduce a declaration into the 3739 /// current scope, by being a (possibly-labelled) DeclStmt. 3740 static bool mightAddDeclToScope(const Stmt *S); 3741 3742 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 3743 /// to a constant, or if it does but contains a label, return false. If it 3744 /// constant folds return true and set the boolean result in Result. 3745 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result, 3746 bool AllowLabels = false); 3747 3748 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 3749 /// to a constant, or if it does but contains a label, return false. If it 3750 /// constant folds return true and set the folded value. 3751 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result, 3752 bool AllowLabels = false); 3753 3754 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 3755 /// if statement) to the specified blocks. Based on the condition, this might 3756 /// try to simplify the codegen of the conditional based on the branch. 3757 /// TrueCount should be the number of times we expect the condition to 3758 /// evaluate to true based on PGO data. 3759 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 3760 llvm::BasicBlock *FalseBlock, uint64_t TrueCount); 3761 3762 /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is 3763 /// nonnull, if \p LHS is marked _Nonnull. 3764 void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc); 3765 3766 /// An enumeration which makes it easier to specify whether or not an 3767 /// operation is a subtraction. 3768 enum { NotSubtraction = false, IsSubtraction = true }; 3769 3770 /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to 3771 /// detect undefined behavior when the pointer overflow sanitizer is enabled. 3772 /// \p SignedIndices indicates whether any of the GEP indices are signed. 3773 /// \p IsSubtraction indicates whether the expression used to form the GEP 3774 /// is a subtraction. 3775 llvm::Value *EmitCheckedInBoundsGEP(llvm::Value *Ptr, 3776 ArrayRef<llvm::Value *> IdxList, 3777 bool SignedIndices, 3778 bool IsSubtraction, 3779 SourceLocation Loc, 3780 const Twine &Name = ""); 3781 3782 /// Specifies which type of sanitizer check to apply when handling a 3783 /// particular builtin. 3784 enum BuiltinCheckKind { 3785 BCK_CTZPassedZero, 3786 BCK_CLZPassedZero, 3787 }; 3788 3789 /// Emits an argument for a call to a builtin. If the builtin sanitizer is 3790 /// enabled, a runtime check specified by \p Kind is also emitted. 3791 llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind); 3792 3793 /// \brief Emit a description of a type in a format suitable for passing to 3794 /// a runtime sanitizer handler. 3795 llvm::Constant *EmitCheckTypeDescriptor(QualType T); 3796 3797 /// \brief Convert a value into a format suitable for passing to a runtime 3798 /// sanitizer handler. 3799 llvm::Value *EmitCheckValue(llvm::Value *V); 3800 3801 /// \brief Emit a description of a source location in a format suitable for 3802 /// passing to a runtime sanitizer handler. 3803 llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc); 3804 3805 /// \brief Create a basic block that will call a handler function in a 3806 /// sanitizer runtime with the provided arguments, and create a conditional 3807 /// branch to it. 3808 void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 3809 SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs, 3810 ArrayRef<llvm::Value *> DynamicArgs); 3811 3812 /// \brief Emit a slow path cross-DSO CFI check which calls __cfi_slowpath 3813 /// if Cond if false. 3814 void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond, 3815 llvm::ConstantInt *TypeId, llvm::Value *Ptr, 3816 ArrayRef<llvm::Constant *> StaticArgs); 3817 3818 /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime 3819 /// checking is enabled. Otherwise, just emit an unreachable instruction. 3820 void EmitUnreachable(SourceLocation Loc); 3821 3822 /// \brief Create a basic block that will call the trap intrinsic, and emit a 3823 /// conditional branch to it, for the -ftrapv checks. 3824 void EmitTrapCheck(llvm::Value *Checked); 3825 3826 /// \brief Emit a call to trap or debugtrap and attach function attribute 3827 /// "trap-func-name" if specified. 3828 llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID); 3829 3830 /// \brief Emit a stub for the cross-DSO CFI check function. 3831 void EmitCfiCheckStub(); 3832 3833 /// \brief Emit a cross-DSO CFI failure handling function. 3834 void EmitCfiCheckFail(); 3835 3836 /// \brief Create a check for a function parameter that may potentially be 3837 /// declared as non-null. 3838 void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc, 3839 AbstractCallee AC, unsigned ParmNum); 3840 3841 /// EmitCallArg - Emit a single call argument. 3842 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 3843 3844 /// EmitDelegateCallArg - We are performing a delegate call; that 3845 /// is, the current function is delegating to another one. Produce 3846 /// a r-value suitable for passing the given parameter. 3847 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param, 3848 SourceLocation loc); 3849 3850 /// SetFPAccuracy - Set the minimum required accuracy of the given floating 3851 /// point operation, expressed as the maximum relative error in ulp. 3852 void SetFPAccuracy(llvm::Value *Val, float Accuracy); 3853 3854 private: 3855 llvm::MDNode *getRangeForLoadFromType(QualType Ty); 3856 void EmitReturnOfRValue(RValue RV, QualType Ty); 3857 3858 void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New); 3859 3860 llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4> 3861 DeferredReplacements; 3862 3863 /// Set the address of a local variable. 3864 void setAddrOfLocalVar(const VarDecl *VD, Address Addr) { 3865 assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!"); 3866 LocalDeclMap.insert({VD, Addr}); 3867 } 3868 3869 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 3870 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 3871 /// 3872 /// \param AI - The first function argument of the expansion. 3873 void ExpandTypeFromArgs(QualType Ty, LValue Dst, 3874 SmallVectorImpl<llvm::Value *>::iterator &AI); 3875 3876 /// ExpandTypeToArgs - Expand an RValue \arg RV, with the LLVM type for \arg 3877 /// Ty, into individual arguments on the provided vector \arg IRCallArgs, 3878 /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand. 3879 void ExpandTypeToArgs(QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy, 3880 SmallVectorImpl<llvm::Value *> &IRCallArgs, 3881 unsigned &IRCallArgPos); 3882 3883 llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info, 3884 const Expr *InputExpr, std::string &ConstraintStr); 3885 3886 llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 3887 LValue InputValue, QualType InputType, 3888 std::string &ConstraintStr, 3889 SourceLocation Loc); 3890 3891 /// \brief Attempts to statically evaluate the object size of E. If that 3892 /// fails, emits code to figure the size of E out for us. This is 3893 /// pass_object_size aware. 3894 /// 3895 /// If EmittedExpr is non-null, this will use that instead of re-emitting E. 3896 llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type, 3897 llvm::IntegerType *ResType, 3898 llvm::Value *EmittedE); 3899 3900 /// \brief Emits the size of E, as required by __builtin_object_size. This 3901 /// function is aware of pass_object_size parameters, and will act accordingly 3902 /// if E is a parameter with the pass_object_size attribute. 3903 llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type, 3904 llvm::IntegerType *ResType, 3905 llvm::Value *EmittedE); 3906 3907 public: 3908 #ifndef NDEBUG 3909 // Determine whether the given argument is an Objective-C method 3910 // that may have type parameters in its signature. 3911 static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) { 3912 const DeclContext *dc = method->getDeclContext(); 3913 if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) { 3914 return classDecl->getTypeParamListAsWritten(); 3915 } 3916 3917 if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) { 3918 return catDecl->getTypeParamList(); 3919 } 3920 3921 return false; 3922 } 3923 3924 template<typename T> 3925 static bool isObjCMethodWithTypeParams(const T *) { return false; } 3926 #endif 3927 3928 enum class EvaluationOrder { 3929 ///! No language constraints on evaluation order. 3930 Default, 3931 ///! Language semantics require left-to-right evaluation. 3932 ForceLeftToRight, 3933 ///! Language semantics require right-to-left evaluation. 3934 ForceRightToLeft 3935 }; 3936 3937 /// EmitCallArgs - Emit call arguments for a function. 3938 template <typename T> 3939 void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo, 3940 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 3941 AbstractCallee AC = AbstractCallee(), 3942 unsigned ParamsToSkip = 0, 3943 EvaluationOrder Order = EvaluationOrder::Default) { 3944 SmallVector<QualType, 16> ArgTypes; 3945 CallExpr::const_arg_iterator Arg = ArgRange.begin(); 3946 3947 assert((ParamsToSkip == 0 || CallArgTypeInfo) && 3948 "Can't skip parameters if type info is not provided"); 3949 if (CallArgTypeInfo) { 3950 #ifndef NDEBUG 3951 bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo); 3952 #endif 3953 3954 // First, use the argument types that the type info knows about 3955 for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip, 3956 E = CallArgTypeInfo->param_type_end(); 3957 I != E; ++I, ++Arg) { 3958 assert(Arg != ArgRange.end() && "Running over edge of argument list!"); 3959 assert((isGenericMethod || 3960 ((*I)->isVariablyModifiedType() || 3961 (*I).getNonReferenceType()->isObjCRetainableType() || 3962 getContext() 3963 .getCanonicalType((*I).getNonReferenceType()) 3964 .getTypePtr() == 3965 getContext() 3966 .getCanonicalType((*Arg)->getType()) 3967 .getTypePtr())) && 3968 "type mismatch in call argument!"); 3969 ArgTypes.push_back(*I); 3970 } 3971 } 3972 3973 // Either we've emitted all the call args, or we have a call to variadic 3974 // function. 3975 assert((Arg == ArgRange.end() || !CallArgTypeInfo || 3976 CallArgTypeInfo->isVariadic()) && 3977 "Extra arguments in non-variadic function!"); 3978 3979 // If we still have any arguments, emit them using the type of the argument. 3980 for (auto *A : llvm::make_range(Arg, ArgRange.end())) 3981 ArgTypes.push_back(CallArgTypeInfo ? getVarArgType(A) : A->getType()); 3982 3983 EmitCallArgs(Args, ArgTypes, ArgRange, AC, ParamsToSkip, Order); 3984 } 3985 3986 void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes, 3987 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 3988 AbstractCallee AC = AbstractCallee(), 3989 unsigned ParamsToSkip = 0, 3990 EvaluationOrder Order = EvaluationOrder::Default); 3991 3992 /// EmitPointerWithAlignment - Given an expression with a pointer type, 3993 /// emit the value and compute our best estimate of the alignment of the 3994 /// pointee. 3995 /// 3996 /// \param BaseInfo - If non-null, this will be initialized with 3997 /// information about the source of the alignment and the may-alias 3998 /// attribute. Note that this function will conservatively fall back on 3999 /// the type when it doesn't recognize the expression and may-alias will 4000 /// be set to false. 4001 /// 4002 /// One reasonable way to use this information is when there's a language 4003 /// guarantee that the pointer must be aligned to some stricter value, and 4004 /// we're simply trying to ensure that sufficiently obvious uses of under- 4005 /// aligned objects don't get miscompiled; for example, a placement new 4006 /// into the address of a local variable. In such a case, it's quite 4007 /// reasonable to just ignore the returned alignment when it isn't from an 4008 /// explicit source. 4009 Address EmitPointerWithAlignment(const Expr *Addr, 4010 LValueBaseInfo *BaseInfo = nullptr, 4011 TBAAAccessInfo *TBAAInfo = nullptr); 4012 4013 /// If \p E references a parameter with pass_object_size info or a constant 4014 /// array size modifier, emit the object size divided by the size of \p EltTy. 4015 /// Otherwise return null. 4016 llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy); 4017 4018 void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK); 4019 4020 struct MultiVersionResolverOption { 4021 llvm::Function *Function; 4022 TargetAttr::ParsedTargetAttr ParsedAttribute; 4023 unsigned Priority; 4024 MultiVersionResolverOption(const TargetInfo &TargInfo, llvm::Function *F, 4025 const clang::TargetAttr::ParsedTargetAttr &PT) 4026 : Function(F), ParsedAttribute(PT), Priority(0u) { 4027 for (StringRef Feat : PT.Features) 4028 Priority = std::max(Priority, 4029 TargInfo.multiVersionSortPriority(Feat.substr(1))); 4030 4031 if (!PT.Architecture.empty()) 4032 Priority = std::max(Priority, 4033 TargInfo.multiVersionSortPriority(PT.Architecture)); 4034 } 4035 4036 bool operator>(const MultiVersionResolverOption &Other) const { 4037 return Priority > Other.Priority; 4038 } 4039 }; 4040 void EmitMultiVersionResolver(llvm::Function *Resolver, 4041 ArrayRef<MultiVersionResolverOption> Options); 4042 4043 private: 4044 QualType getVarArgType(const Expr *Arg); 4045 4046 void EmitDeclMetadata(); 4047 4048 BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType, 4049 const AutoVarEmission &emission); 4050 4051 void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); 4052 4053 llvm::Value *GetValueForARMHint(unsigned BuiltinID); 4054 llvm::Value *EmitX86CpuIs(const CallExpr *E); 4055 llvm::Value *EmitX86CpuIs(StringRef CPUStr); 4056 llvm::Value *EmitX86CpuSupports(const CallExpr *E); 4057 llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs); 4058 llvm::Value *EmitX86CpuInit(); 4059 llvm::Value *FormResolverCondition(const MultiVersionResolverOption &RO); 4060 }; 4061 4062 /// Helper class with most of the code for saving a value for a 4063 /// conditional expression cleanup. 4064 struct DominatingLLVMValue { 4065 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 4066 4067 /// Answer whether the given value needs extra work to be saved. 4068 static bool needsSaving(llvm::Value *value) { 4069 // If it's not an instruction, we don't need to save. 4070 if (!isa<llvm::Instruction>(value)) return false; 4071 4072 // If it's an instruction in the entry block, we don't need to save. 4073 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 4074 return (block != &block->getParent()->getEntryBlock()); 4075 } 4076 4077 /// Try to save the given value. 4078 static saved_type save(CodeGenFunction &CGF, llvm::Value *value) { 4079 if (!needsSaving(value)) return saved_type(value, false); 4080 4081 // Otherwise, we need an alloca. 4082 auto align = CharUnits::fromQuantity( 4083 CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType())); 4084 Address alloca = 4085 CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save"); 4086 CGF.Builder.CreateStore(value, alloca); 4087 4088 return saved_type(alloca.getPointer(), true); 4089 } 4090 4091 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) { 4092 // If the value says it wasn't saved, trust that it's still dominating. 4093 if (!value.getInt()) return value.getPointer(); 4094 4095 // Otherwise, it should be an alloca instruction, as set up in save(). 4096 auto alloca = cast<llvm::AllocaInst>(value.getPointer()); 4097 return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlignment()); 4098 } 4099 }; 4100 4101 /// A partial specialization of DominatingValue for llvm::Values that 4102 /// might be llvm::Instructions. 4103 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 4104 typedef T *type; 4105 static type restore(CodeGenFunction &CGF, saved_type value) { 4106 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 4107 } 4108 }; 4109 4110 /// A specialization of DominatingValue for Address. 4111 template <> struct DominatingValue<Address> { 4112 typedef Address type; 4113 4114 struct saved_type { 4115 DominatingLLVMValue::saved_type SavedValue; 4116 CharUnits Alignment; 4117 }; 4118 4119 static bool needsSaving(type value) { 4120 return DominatingLLVMValue::needsSaving(value.getPointer()); 4121 } 4122 static saved_type save(CodeGenFunction &CGF, type value) { 4123 return { DominatingLLVMValue::save(CGF, value.getPointer()), 4124 value.getAlignment() }; 4125 } 4126 static type restore(CodeGenFunction &CGF, saved_type value) { 4127 return Address(DominatingLLVMValue::restore(CGF, value.SavedValue), 4128 value.Alignment); 4129 } 4130 }; 4131 4132 /// A specialization of DominatingValue for RValue. 4133 template <> struct DominatingValue<RValue> { 4134 typedef RValue type; 4135 class saved_type { 4136 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 4137 AggregateAddress, ComplexAddress }; 4138 4139 llvm::Value *Value; 4140 unsigned K : 3; 4141 unsigned Align : 29; 4142 saved_type(llvm::Value *v, Kind k, unsigned a = 0) 4143 : Value(v), K(k), Align(a) {} 4144 4145 public: 4146 static bool needsSaving(RValue value); 4147 static saved_type save(CodeGenFunction &CGF, RValue value); 4148 RValue restore(CodeGenFunction &CGF); 4149 4150 // implementations in CGCleanup.cpp 4151 }; 4152 4153 static bool needsSaving(type value) { 4154 return saved_type::needsSaving(value); 4155 } 4156 static saved_type save(CodeGenFunction &CGF, type value) { 4157 return saved_type::save(CGF, value); 4158 } 4159 static type restore(CodeGenFunction &CGF, saved_type value) { 4160 return value.restore(CGF); 4161 } 4162 }; 4163 4164 } // end namespace CodeGen 4165 } // end namespace clang 4166 4167 #endif 4168