1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the internal per-function state used for llvm translation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
15 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
16 
17 #include "CGBuilder.h"
18 #include "CGDebugInfo.h"
19 #include "CGLoopInfo.h"
20 #include "CGValue.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "EHScopeStack.h"
24 #include "VarBypassDetector.h"
25 #include "clang/AST/CharUnits.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/ExprObjC.h"
28 #include "clang/AST/ExprOpenMP.h"
29 #include "clang/AST/Type.h"
30 #include "clang/Basic/ABI.h"
31 #include "clang/Basic/CapturedStmt.h"
32 #include "clang/Basic/OpenMPKinds.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "clang/Frontend/CodeGenOptions.h"
35 #include "llvm/ADT/ArrayRef.h"
36 #include "llvm/ADT/DenseMap.h"
37 #include "llvm/ADT/MapVector.h"
38 #include "llvm/ADT/SmallVector.h"
39 #include "llvm/IR/ValueHandle.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Transforms/Utils/SanitizerStats.h"
42 
43 namespace llvm {
44 class BasicBlock;
45 class LLVMContext;
46 class MDNode;
47 class Module;
48 class SwitchInst;
49 class Twine;
50 class Value;
51 class CallSite;
52 }
53 
54 namespace clang {
55 class ASTContext;
56 class BlockDecl;
57 class CXXDestructorDecl;
58 class CXXForRangeStmt;
59 class CXXTryStmt;
60 class Decl;
61 class LabelDecl;
62 class EnumConstantDecl;
63 class FunctionDecl;
64 class FunctionProtoType;
65 class LabelStmt;
66 class ObjCContainerDecl;
67 class ObjCInterfaceDecl;
68 class ObjCIvarDecl;
69 class ObjCMethodDecl;
70 class ObjCImplementationDecl;
71 class ObjCPropertyImplDecl;
72 class TargetInfo;
73 class VarDecl;
74 class ObjCForCollectionStmt;
75 class ObjCAtTryStmt;
76 class ObjCAtThrowStmt;
77 class ObjCAtSynchronizedStmt;
78 class ObjCAutoreleasePoolStmt;
79 
80 namespace analyze_os_log {
81 class OSLogBufferLayout;
82 }
83 
84 namespace CodeGen {
85 class CodeGenTypes;
86 class CGCallee;
87 class CGFunctionInfo;
88 class CGRecordLayout;
89 class CGBlockInfo;
90 class CGCXXABI;
91 class BlockByrefHelpers;
92 class BlockByrefInfo;
93 class BlockFlags;
94 class BlockFieldFlags;
95 class RegionCodeGenTy;
96 class TargetCodeGenInfo;
97 struct OMPTaskDataTy;
98 struct CGCoroData;
99 
100 /// The kind of evaluation to perform on values of a particular
101 /// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
102 /// CGExprAgg?
103 ///
104 /// TODO: should vectors maybe be split out into their own thing?
105 enum TypeEvaluationKind {
106   TEK_Scalar,
107   TEK_Complex,
108   TEK_Aggregate
109 };
110 
111 #define LIST_SANITIZER_CHECKS                                                  \
112   SANITIZER_CHECK(AddOverflow, add_overflow, 0)                                \
113   SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0)                  \
114   SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0)                             \
115   SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0)                          \
116   SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0)            \
117   SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0)                   \
118   SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 0)             \
119   SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0)                          \
120   SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0)                     \
121   SANITIZER_CHECK(MissingReturn, missing_return, 0)                            \
122   SANITIZER_CHECK(MulOverflow, mul_overflow, 0)                                \
123   SANITIZER_CHECK(NegateOverflow, negate_overflow, 0)                          \
124   SANITIZER_CHECK(NullabilityArg, nullability_arg, 0)                          \
125   SANITIZER_CHECK(NullabilityReturn, nullability_return, 1)                    \
126   SANITIZER_CHECK(NonnullArg, nonnull_arg, 0)                                  \
127   SANITIZER_CHECK(NonnullReturn, nonnull_return, 1)                            \
128   SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0)                               \
129   SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0)                        \
130   SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0)                    \
131   SANITIZER_CHECK(SubOverflow, sub_overflow, 0)                                \
132   SANITIZER_CHECK(TypeMismatch, type_mismatch, 1)                              \
133   SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0)
134 
135 enum SanitizerHandler {
136 #define SANITIZER_CHECK(Enum, Name, Version) Enum,
137   LIST_SANITIZER_CHECKS
138 #undef SANITIZER_CHECK
139 };
140 
141 /// CodeGenFunction - This class organizes the per-function state that is used
142 /// while generating LLVM code.
143 class CodeGenFunction : public CodeGenTypeCache {
144   CodeGenFunction(const CodeGenFunction &) = delete;
145   void operator=(const CodeGenFunction &) = delete;
146 
147   friend class CGCXXABI;
148 public:
149   /// A jump destination is an abstract label, branching to which may
150   /// require a jump out through normal cleanups.
151   struct JumpDest {
152     JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {}
153     JumpDest(llvm::BasicBlock *Block,
154              EHScopeStack::stable_iterator Depth,
155              unsigned Index)
156       : Block(Block), ScopeDepth(Depth), Index(Index) {}
157 
158     bool isValid() const { return Block != nullptr; }
159     llvm::BasicBlock *getBlock() const { return Block; }
160     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
161     unsigned getDestIndex() const { return Index; }
162 
163     // This should be used cautiously.
164     void setScopeDepth(EHScopeStack::stable_iterator depth) {
165       ScopeDepth = depth;
166     }
167 
168   private:
169     llvm::BasicBlock *Block;
170     EHScopeStack::stable_iterator ScopeDepth;
171     unsigned Index;
172   };
173 
174   CodeGenModule &CGM;  // Per-module state.
175   const TargetInfo &Target;
176 
177   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
178   LoopInfoStack LoopStack;
179   CGBuilderTy Builder;
180 
181   // Stores variables for which we can't generate correct lifetime markers
182   // because of jumps.
183   VarBypassDetector Bypasses;
184 
185   // CodeGen lambda for loops and support for ordered clause
186   typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &,
187                                   JumpDest)>
188       CodeGenLoopTy;
189   typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation,
190                                   const unsigned, const bool)>
191       CodeGenOrderedTy;
192 
193   // Codegen lambda for loop bounds in worksharing loop constructs
194   typedef llvm::function_ref<std::pair<LValue, LValue>(
195       CodeGenFunction &, const OMPExecutableDirective &S)>
196       CodeGenLoopBoundsTy;
197 
198   // Codegen lambda for loop bounds in dispatch-based loop implementation
199   typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>(
200       CodeGenFunction &, const OMPExecutableDirective &S, Address LB,
201       Address UB)>
202       CodeGenDispatchBoundsTy;
203 
204   /// \brief CGBuilder insert helper. This function is called after an
205   /// instruction is created using Builder.
206   void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
207                     llvm::BasicBlock *BB,
208                     llvm::BasicBlock::iterator InsertPt) const;
209 
210   /// CurFuncDecl - Holds the Decl for the current outermost
211   /// non-closure context.
212   const Decl *CurFuncDecl;
213   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
214   const Decl *CurCodeDecl;
215   const CGFunctionInfo *CurFnInfo;
216   QualType FnRetTy;
217   llvm::Function *CurFn;
218 
219   // Holds coroutine data if the current function is a coroutine. We use a
220   // wrapper to manage its lifetime, so that we don't have to define CGCoroData
221   // in this header.
222   struct CGCoroInfo {
223     std::unique_ptr<CGCoroData> Data;
224     CGCoroInfo();
225     ~CGCoroInfo();
226   };
227   CGCoroInfo CurCoro;
228 
229   bool isCoroutine() const {
230     return CurCoro.Data != nullptr;
231   }
232 
233   /// CurGD - The GlobalDecl for the current function being compiled.
234   GlobalDecl CurGD;
235 
236   /// PrologueCleanupDepth - The cleanup depth enclosing all the
237   /// cleanups associated with the parameters.
238   EHScopeStack::stable_iterator PrologueCleanupDepth;
239 
240   /// ReturnBlock - Unified return block.
241   JumpDest ReturnBlock;
242 
243   /// ReturnValue - The temporary alloca to hold the return
244   /// value. This is invalid iff the function has no return value.
245   Address ReturnValue;
246 
247   /// Return true if a label was seen in the current scope.
248   bool hasLabelBeenSeenInCurrentScope() const {
249     if (CurLexicalScope)
250       return CurLexicalScope->hasLabels();
251     return !LabelMap.empty();
252   }
253 
254   /// AllocaInsertPoint - This is an instruction in the entry block before which
255   /// we prefer to insert allocas.
256   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
257 
258   /// \brief API for captured statement code generation.
259   class CGCapturedStmtInfo {
260   public:
261     explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default)
262         : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
263     explicit CGCapturedStmtInfo(const CapturedStmt &S,
264                                 CapturedRegionKind K = CR_Default)
265       : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
266 
267       RecordDecl::field_iterator Field =
268         S.getCapturedRecordDecl()->field_begin();
269       for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
270                                                 E = S.capture_end();
271            I != E; ++I, ++Field) {
272         if (I->capturesThis())
273           CXXThisFieldDecl = *Field;
274         else if (I->capturesVariable())
275           CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
276         else if (I->capturesVariableByCopy())
277           CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
278       }
279     }
280 
281     virtual ~CGCapturedStmtInfo();
282 
283     CapturedRegionKind getKind() const { return Kind; }
284 
285     virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
286     // \brief Retrieve the value of the context parameter.
287     virtual llvm::Value *getContextValue() const { return ThisValue; }
288 
289     /// \brief Lookup the captured field decl for a variable.
290     virtual const FieldDecl *lookup(const VarDecl *VD) const {
291       return CaptureFields.lookup(VD->getCanonicalDecl());
292     }
293 
294     bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
295     virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
296 
297     static bool classof(const CGCapturedStmtInfo *) {
298       return true;
299     }
300 
301     /// \brief Emit the captured statement body.
302     virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
303       CGF.incrementProfileCounter(S);
304       CGF.EmitStmt(S);
305     }
306 
307     /// \brief Get the name of the capture helper.
308     virtual StringRef getHelperName() const { return "__captured_stmt"; }
309 
310   private:
311     /// \brief The kind of captured statement being generated.
312     CapturedRegionKind Kind;
313 
314     /// \brief Keep the map between VarDecl and FieldDecl.
315     llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
316 
317     /// \brief The base address of the captured record, passed in as the first
318     /// argument of the parallel region function.
319     llvm::Value *ThisValue;
320 
321     /// \brief Captured 'this' type.
322     FieldDecl *CXXThisFieldDecl;
323   };
324   CGCapturedStmtInfo *CapturedStmtInfo;
325 
326   /// \brief RAII for correct setting/restoring of CapturedStmtInfo.
327   class CGCapturedStmtRAII {
328   private:
329     CodeGenFunction &CGF;
330     CGCapturedStmtInfo *PrevCapturedStmtInfo;
331   public:
332     CGCapturedStmtRAII(CodeGenFunction &CGF,
333                        CGCapturedStmtInfo *NewCapturedStmtInfo)
334         : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) {
335       CGF.CapturedStmtInfo = NewCapturedStmtInfo;
336     }
337     ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; }
338   };
339 
340   /// An abstract representation of regular/ObjC call/message targets.
341   class AbstractCallee {
342     /// The function declaration of the callee.
343     const Decl *CalleeDecl;
344 
345   public:
346     AbstractCallee() : CalleeDecl(nullptr) {}
347     AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {}
348     AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {}
349     bool hasFunctionDecl() const {
350       return dyn_cast_or_null<FunctionDecl>(CalleeDecl);
351     }
352     const Decl *getDecl() const { return CalleeDecl; }
353     unsigned getNumParams() const {
354       if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
355         return FD->getNumParams();
356       return cast<ObjCMethodDecl>(CalleeDecl)->param_size();
357     }
358     const ParmVarDecl *getParamDecl(unsigned I) const {
359       if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
360         return FD->getParamDecl(I);
361       return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I);
362     }
363   };
364 
365   /// \brief Sanitizers enabled for this function.
366   SanitizerSet SanOpts;
367 
368   /// \brief True if CodeGen currently emits code implementing sanitizer checks.
369   bool IsSanitizerScope;
370 
371   /// \brief RAII object to set/unset CodeGenFunction::IsSanitizerScope.
372   class SanitizerScope {
373     CodeGenFunction *CGF;
374   public:
375     SanitizerScope(CodeGenFunction *CGF);
376     ~SanitizerScope();
377   };
378 
379   /// In C++, whether we are code generating a thunk.  This controls whether we
380   /// should emit cleanups.
381   bool CurFuncIsThunk;
382 
383   /// In ARC, whether we should autorelease the return value.
384   bool AutoreleaseResult;
385 
386   /// Whether we processed a Microsoft-style asm block during CodeGen. These can
387   /// potentially set the return value.
388   bool SawAsmBlock;
389 
390   const FunctionDecl *CurSEHParent = nullptr;
391 
392   /// True if the current function is an outlined SEH helper. This can be a
393   /// finally block or filter expression.
394   bool IsOutlinedSEHHelper;
395 
396   const CodeGen::CGBlockInfo *BlockInfo;
397   llvm::Value *BlockPointer;
398 
399   llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
400   FieldDecl *LambdaThisCaptureField;
401 
402   /// \brief A mapping from NRVO variables to the flags used to indicate
403   /// when the NRVO has been applied to this variable.
404   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
405 
406   EHScopeStack EHStack;
407   llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
408   llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack;
409 
410   llvm::Instruction *CurrentFuncletPad = nullptr;
411 
412   class CallLifetimeEnd final : public EHScopeStack::Cleanup {
413     llvm::Value *Addr;
414     llvm::Value *Size;
415 
416   public:
417     CallLifetimeEnd(Address addr, llvm::Value *size)
418         : Addr(addr.getPointer()), Size(size) {}
419 
420     void Emit(CodeGenFunction &CGF, Flags flags) override {
421       CGF.EmitLifetimeEnd(Size, Addr);
422     }
423   };
424 
425   /// Header for data within LifetimeExtendedCleanupStack.
426   struct LifetimeExtendedCleanupHeader {
427     /// The size of the following cleanup object.
428     unsigned Size;
429     /// The kind of cleanup to push: a value from the CleanupKind enumeration.
430     CleanupKind Kind;
431 
432     size_t getSize() const { return Size; }
433     CleanupKind getKind() const { return Kind; }
434   };
435 
436   /// i32s containing the indexes of the cleanup destinations.
437   Address NormalCleanupDest;
438 
439   unsigned NextCleanupDestIndex;
440 
441   /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
442   CGBlockInfo *FirstBlockInfo;
443 
444   /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
445   llvm::BasicBlock *EHResumeBlock;
446 
447   /// The exception slot.  All landing pads write the current exception pointer
448   /// into this alloca.
449   llvm::Value *ExceptionSlot;
450 
451   /// The selector slot.  Under the MandatoryCleanup model, all landing pads
452   /// write the current selector value into this alloca.
453   llvm::AllocaInst *EHSelectorSlot;
454 
455   /// A stack of exception code slots. Entering an __except block pushes a slot
456   /// on the stack and leaving pops one. The __exception_code() intrinsic loads
457   /// a value from the top of the stack.
458   SmallVector<Address, 1> SEHCodeSlotStack;
459 
460   /// Value returned by __exception_info intrinsic.
461   llvm::Value *SEHInfo = nullptr;
462 
463   /// Emits a landing pad for the current EH stack.
464   llvm::BasicBlock *EmitLandingPad();
465 
466   llvm::BasicBlock *getInvokeDestImpl();
467 
468   template <class T>
469   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
470     return DominatingValue<T>::save(*this, value);
471   }
472 
473 public:
474   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
475   /// rethrows.
476   SmallVector<llvm::Value*, 8> ObjCEHValueStack;
477 
478   /// A class controlling the emission of a finally block.
479   class FinallyInfo {
480     /// Where the catchall's edge through the cleanup should go.
481     JumpDest RethrowDest;
482 
483     /// A function to call to enter the catch.
484     llvm::Constant *BeginCatchFn;
485 
486     /// An i1 variable indicating whether or not the @finally is
487     /// running for an exception.
488     llvm::AllocaInst *ForEHVar;
489 
490     /// An i8* variable into which the exception pointer to rethrow
491     /// has been saved.
492     llvm::AllocaInst *SavedExnVar;
493 
494   public:
495     void enter(CodeGenFunction &CGF, const Stmt *Finally,
496                llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
497                llvm::Constant *rethrowFn);
498     void exit(CodeGenFunction &CGF);
499   };
500 
501   /// Returns true inside SEH __try blocks.
502   bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }
503 
504   /// Returns true while emitting a cleanuppad.
505   bool isCleanupPadScope() const {
506     return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad);
507   }
508 
509   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
510   /// current full-expression.  Safe against the possibility that
511   /// we're currently inside a conditionally-evaluated expression.
512   template <class T, class... As>
513   void pushFullExprCleanup(CleanupKind kind, As... A) {
514     // If we're not in a conditional branch, or if none of the
515     // arguments requires saving, then use the unconditional cleanup.
516     if (!isInConditionalBranch())
517       return EHStack.pushCleanup<T>(kind, A...);
518 
519     // Stash values in a tuple so we can guarantee the order of saves.
520     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
521     SavedTuple Saved{saveValueInCond(A)...};
522 
523     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
524     EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
525     initFullExprCleanup();
526   }
527 
528   /// \brief Queue a cleanup to be pushed after finishing the current
529   /// full-expression.
530   template <class T, class... As>
531   void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
532     assert(!isInConditionalBranch() && "can't defer conditional cleanup");
533 
534     LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind };
535 
536     size_t OldSize = LifetimeExtendedCleanupStack.size();
537     LifetimeExtendedCleanupStack.resize(
538         LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size);
539 
540     static_assert(sizeof(Header) % alignof(T) == 0,
541                   "Cleanup will be allocated on misaligned address");
542     char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
543     new (Buffer) LifetimeExtendedCleanupHeader(Header);
544     new (Buffer + sizeof(Header)) T(A...);
545   }
546 
547   /// Set up the last cleaup that was pushed as a conditional
548   /// full-expression cleanup.
549   void initFullExprCleanup();
550 
551   /// PushDestructorCleanup - Push a cleanup to call the
552   /// complete-object destructor of an object of the given type at the
553   /// given address.  Does nothing if T is not a C++ class type with a
554   /// non-trivial destructor.
555   void PushDestructorCleanup(QualType T, Address Addr);
556 
557   /// PushDestructorCleanup - Push a cleanup to call the
558   /// complete-object variant of the given destructor on the object at
559   /// the given address.
560   void PushDestructorCleanup(const CXXDestructorDecl *Dtor, Address Addr);
561 
562   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
563   /// process all branch fixups.
564   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
565 
566   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
567   /// The block cannot be reactivated.  Pops it if it's the top of the
568   /// stack.
569   ///
570   /// \param DominatingIP - An instruction which is known to
571   ///   dominate the current IP (if set) and which lies along
572   ///   all paths of execution between the current IP and the
573   ///   the point at which the cleanup comes into scope.
574   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
575                               llvm::Instruction *DominatingIP);
576 
577   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
578   /// Cannot be used to resurrect a deactivated cleanup.
579   ///
580   /// \param DominatingIP - An instruction which is known to
581   ///   dominate the current IP (if set) and which lies along
582   ///   all paths of execution between the current IP and the
583   ///   the point at which the cleanup comes into scope.
584   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
585                             llvm::Instruction *DominatingIP);
586 
587   /// \brief Enters a new scope for capturing cleanups, all of which
588   /// will be executed once the scope is exited.
589   class RunCleanupsScope {
590     EHScopeStack::stable_iterator CleanupStackDepth;
591     size_t LifetimeExtendedCleanupStackSize;
592     bool OldDidCallStackSave;
593   protected:
594     bool PerformCleanup;
595   private:
596 
597     RunCleanupsScope(const RunCleanupsScope &) = delete;
598     void operator=(const RunCleanupsScope &) = delete;
599 
600   protected:
601     CodeGenFunction& CGF;
602 
603   public:
604     /// \brief Enter a new cleanup scope.
605     explicit RunCleanupsScope(CodeGenFunction &CGF)
606       : PerformCleanup(true), CGF(CGF)
607     {
608       CleanupStackDepth = CGF.EHStack.stable_begin();
609       LifetimeExtendedCleanupStackSize =
610           CGF.LifetimeExtendedCleanupStack.size();
611       OldDidCallStackSave = CGF.DidCallStackSave;
612       CGF.DidCallStackSave = false;
613     }
614 
615     /// \brief Exit this cleanup scope, emitting any accumulated cleanups.
616     ~RunCleanupsScope() {
617       if (PerformCleanup)
618         ForceCleanup();
619     }
620 
621     /// \brief Determine whether this scope requires any cleanups.
622     bool requiresCleanups() const {
623       return CGF.EHStack.stable_begin() != CleanupStackDepth;
624     }
625 
626     /// \brief Force the emission of cleanups now, instead of waiting
627     /// until this object is destroyed.
628     /// \param ValuesToReload - A list of values that need to be available at
629     /// the insertion point after cleanup emission. If cleanup emission created
630     /// a shared cleanup block, these value pointers will be rewritten.
631     /// Otherwise, they not will be modified.
632     void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) {
633       assert(PerformCleanup && "Already forced cleanup");
634       CGF.DidCallStackSave = OldDidCallStackSave;
635       CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize,
636                            ValuesToReload);
637       PerformCleanup = false;
638     }
639   };
640 
641   class LexicalScope : public RunCleanupsScope {
642     SourceRange Range;
643     SmallVector<const LabelDecl*, 4> Labels;
644     LexicalScope *ParentScope;
645 
646     LexicalScope(const LexicalScope &) = delete;
647     void operator=(const LexicalScope &) = delete;
648 
649   public:
650     /// \brief Enter a new cleanup scope.
651     explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
652       : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
653       CGF.CurLexicalScope = this;
654       if (CGDebugInfo *DI = CGF.getDebugInfo())
655         DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
656     }
657 
658     void addLabel(const LabelDecl *label) {
659       assert(PerformCleanup && "adding label to dead scope?");
660       Labels.push_back(label);
661     }
662 
663     /// \brief Exit this cleanup scope, emitting any accumulated
664     /// cleanups.
665     ~LexicalScope() {
666       if (CGDebugInfo *DI = CGF.getDebugInfo())
667         DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
668 
669       // If we should perform a cleanup, force them now.  Note that
670       // this ends the cleanup scope before rescoping any labels.
671       if (PerformCleanup) {
672         ApplyDebugLocation DL(CGF, Range.getEnd());
673         ForceCleanup();
674       }
675     }
676 
677     /// \brief Force the emission of cleanups now, instead of waiting
678     /// until this object is destroyed.
679     void ForceCleanup() {
680       CGF.CurLexicalScope = ParentScope;
681       RunCleanupsScope::ForceCleanup();
682 
683       if (!Labels.empty())
684         rescopeLabels();
685     }
686 
687     bool hasLabels() const {
688       return !Labels.empty();
689     }
690 
691     void rescopeLabels();
692   };
693 
694   typedef llvm::DenseMap<const Decl *, Address> DeclMapTy;
695 
696   /// \brief The scope used to remap some variables as private in the OpenMP
697   /// loop body (or other captured region emitted without outlining), and to
698   /// restore old vars back on exit.
699   class OMPPrivateScope : public RunCleanupsScope {
700     DeclMapTy SavedLocals;
701     DeclMapTy SavedPrivates;
702 
703   private:
704     OMPPrivateScope(const OMPPrivateScope &) = delete;
705     void operator=(const OMPPrivateScope &) = delete;
706 
707   public:
708     /// \brief Enter a new OpenMP private scope.
709     explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}
710 
711     /// \brief Registers \a LocalVD variable as a private and apply \a
712     /// PrivateGen function for it to generate corresponding private variable.
713     /// \a PrivateGen returns an address of the generated private variable.
714     /// \return true if the variable is registered as private, false if it has
715     /// been privatized already.
716     bool
717     addPrivate(const VarDecl *LocalVD,
718                llvm::function_ref<Address()> PrivateGen) {
719       assert(PerformCleanup && "adding private to dead scope");
720 
721       LocalVD = LocalVD->getCanonicalDecl();
722       // Only save it once.
723       if (SavedLocals.count(LocalVD)) return false;
724 
725       // Copy the existing local entry to SavedLocals.
726       auto it = CGF.LocalDeclMap.find(LocalVD);
727       if (it != CGF.LocalDeclMap.end()) {
728         SavedLocals.insert({LocalVD, it->second});
729       } else {
730         SavedLocals.insert({LocalVD, Address::invalid()});
731       }
732 
733       // Generate the private entry.
734       Address Addr = PrivateGen();
735       QualType VarTy = LocalVD->getType();
736       if (VarTy->isReferenceType()) {
737         Address Temp = CGF.CreateMemTemp(VarTy);
738         CGF.Builder.CreateStore(Addr.getPointer(), Temp);
739         Addr = Temp;
740       }
741       SavedPrivates.insert({LocalVD, Addr});
742 
743       return true;
744     }
745 
746     /// \brief Privatizes local variables previously registered as private.
747     /// Registration is separate from the actual privatization to allow
748     /// initializers use values of the original variables, not the private one.
749     /// This is important, for example, if the private variable is a class
750     /// variable initialized by a constructor that references other private
751     /// variables. But at initialization original variables must be used, not
752     /// private copies.
753     /// \return true if at least one variable was privatized, false otherwise.
754     bool Privatize() {
755       copyInto(SavedPrivates, CGF.LocalDeclMap);
756       SavedPrivates.clear();
757       return !SavedLocals.empty();
758     }
759 
760     void ForceCleanup() {
761       RunCleanupsScope::ForceCleanup();
762       copyInto(SavedLocals, CGF.LocalDeclMap);
763       SavedLocals.clear();
764     }
765 
766     /// \brief Exit scope - all the mapped variables are restored.
767     ~OMPPrivateScope() {
768       if (PerformCleanup)
769         ForceCleanup();
770     }
771 
772     /// Checks if the global variable is captured in current function.
773     bool isGlobalVarCaptured(const VarDecl *VD) const {
774       VD = VD->getCanonicalDecl();
775       return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0;
776     }
777 
778   private:
779     /// Copy all the entries in the source map over the corresponding
780     /// entries in the destination, which must exist.
781     static void copyInto(const DeclMapTy &src, DeclMapTy &dest) {
782       for (auto &pair : src) {
783         if (!pair.second.isValid()) {
784           dest.erase(pair.first);
785           continue;
786         }
787 
788         auto it = dest.find(pair.first);
789         if (it != dest.end()) {
790           it->second = pair.second;
791         } else {
792           dest.insert(pair);
793         }
794       }
795     }
796   };
797 
798   /// \brief Takes the old cleanup stack size and emits the cleanup blocks
799   /// that have been added.
800   void
801   PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
802                    std::initializer_list<llvm::Value **> ValuesToReload = {});
803 
804   /// \brief Takes the old cleanup stack size and emits the cleanup blocks
805   /// that have been added, then adds all lifetime-extended cleanups from
806   /// the given position to the stack.
807   void
808   PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
809                    size_t OldLifetimeExtendedStackSize,
810                    std::initializer_list<llvm::Value **> ValuesToReload = {});
811 
812   void ResolveBranchFixups(llvm::BasicBlock *Target);
813 
814   /// The given basic block lies in the current EH scope, but may be a
815   /// target of a potentially scope-crossing jump; get a stable handle
816   /// to which we can perform this jump later.
817   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
818     return JumpDest(Target,
819                     EHStack.getInnermostNormalCleanup(),
820                     NextCleanupDestIndex++);
821   }
822 
823   /// The given basic block lies in the current EH scope, but may be a
824   /// target of a potentially scope-crossing jump; get a stable handle
825   /// to which we can perform this jump later.
826   JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
827     return getJumpDestInCurrentScope(createBasicBlock(Name));
828   }
829 
830   /// EmitBranchThroughCleanup - Emit a branch from the current insert
831   /// block through the normal cleanup handling code (if any) and then
832   /// on to \arg Dest.
833   void EmitBranchThroughCleanup(JumpDest Dest);
834 
835   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
836   /// specified destination obviously has no cleanups to run.  'false' is always
837   /// a conservatively correct answer for this method.
838   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
839 
840   /// popCatchScope - Pops the catch scope at the top of the EHScope
841   /// stack, emitting any required code (other than the catch handlers
842   /// themselves).
843   void popCatchScope();
844 
845   llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
846   llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
847   llvm::BasicBlock *getMSVCDispatchBlock(EHScopeStack::stable_iterator scope);
848 
849   /// An object to manage conditionally-evaluated expressions.
850   class ConditionalEvaluation {
851     llvm::BasicBlock *StartBB;
852 
853   public:
854     ConditionalEvaluation(CodeGenFunction &CGF)
855       : StartBB(CGF.Builder.GetInsertBlock()) {}
856 
857     void begin(CodeGenFunction &CGF) {
858       assert(CGF.OutermostConditional != this);
859       if (!CGF.OutermostConditional)
860         CGF.OutermostConditional = this;
861     }
862 
863     void end(CodeGenFunction &CGF) {
864       assert(CGF.OutermostConditional != nullptr);
865       if (CGF.OutermostConditional == this)
866         CGF.OutermostConditional = nullptr;
867     }
868 
869     /// Returns a block which will be executed prior to each
870     /// evaluation of the conditional code.
871     llvm::BasicBlock *getStartingBlock() const {
872       return StartBB;
873     }
874   };
875 
876   /// isInConditionalBranch - Return true if we're currently emitting
877   /// one branch or the other of a conditional expression.
878   bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
879 
880   void setBeforeOutermostConditional(llvm::Value *value, Address addr) {
881     assert(isInConditionalBranch());
882     llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
883     auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back());
884     store->setAlignment(addr.getAlignment().getQuantity());
885   }
886 
887   /// An RAII object to record that we're evaluating a statement
888   /// expression.
889   class StmtExprEvaluation {
890     CodeGenFunction &CGF;
891 
892     /// We have to save the outermost conditional: cleanups in a
893     /// statement expression aren't conditional just because the
894     /// StmtExpr is.
895     ConditionalEvaluation *SavedOutermostConditional;
896 
897   public:
898     StmtExprEvaluation(CodeGenFunction &CGF)
899       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
900       CGF.OutermostConditional = nullptr;
901     }
902 
903     ~StmtExprEvaluation() {
904       CGF.OutermostConditional = SavedOutermostConditional;
905       CGF.EnsureInsertPoint();
906     }
907   };
908 
909   /// An object which temporarily prevents a value from being
910   /// destroyed by aggressive peephole optimizations that assume that
911   /// all uses of a value have been realized in the IR.
912   class PeepholeProtection {
913     llvm::Instruction *Inst;
914     friend class CodeGenFunction;
915 
916   public:
917     PeepholeProtection() : Inst(nullptr) {}
918   };
919 
920   /// A non-RAII class containing all the information about a bound
921   /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
922   /// this which makes individual mappings very simple; using this
923   /// class directly is useful when you have a variable number of
924   /// opaque values or don't want the RAII functionality for some
925   /// reason.
926   class OpaqueValueMappingData {
927     const OpaqueValueExpr *OpaqueValue;
928     bool BoundLValue;
929     CodeGenFunction::PeepholeProtection Protection;
930 
931     OpaqueValueMappingData(const OpaqueValueExpr *ov,
932                            bool boundLValue)
933       : OpaqueValue(ov), BoundLValue(boundLValue) {}
934   public:
935     OpaqueValueMappingData() : OpaqueValue(nullptr) {}
936 
937     static bool shouldBindAsLValue(const Expr *expr) {
938       // gl-values should be bound as l-values for obvious reasons.
939       // Records should be bound as l-values because IR generation
940       // always keeps them in memory.  Expressions of function type
941       // act exactly like l-values but are formally required to be
942       // r-values in C.
943       return expr->isGLValue() ||
944              expr->getType()->isFunctionType() ||
945              hasAggregateEvaluationKind(expr->getType());
946     }
947 
948     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
949                                        const OpaqueValueExpr *ov,
950                                        const Expr *e) {
951       if (shouldBindAsLValue(ov))
952         return bind(CGF, ov, CGF.EmitLValue(e));
953       return bind(CGF, ov, CGF.EmitAnyExpr(e));
954     }
955 
956     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
957                                        const OpaqueValueExpr *ov,
958                                        const LValue &lv) {
959       assert(shouldBindAsLValue(ov));
960       CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
961       return OpaqueValueMappingData(ov, true);
962     }
963 
964     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
965                                        const OpaqueValueExpr *ov,
966                                        const RValue &rv) {
967       assert(!shouldBindAsLValue(ov));
968       CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
969 
970       OpaqueValueMappingData data(ov, false);
971 
972       // Work around an extremely aggressive peephole optimization in
973       // EmitScalarConversion which assumes that all other uses of a
974       // value are extant.
975       data.Protection = CGF.protectFromPeepholes(rv);
976 
977       return data;
978     }
979 
980     bool isValid() const { return OpaqueValue != nullptr; }
981     void clear() { OpaqueValue = nullptr; }
982 
983     void unbind(CodeGenFunction &CGF) {
984       assert(OpaqueValue && "no data to unbind!");
985 
986       if (BoundLValue) {
987         CGF.OpaqueLValues.erase(OpaqueValue);
988       } else {
989         CGF.OpaqueRValues.erase(OpaqueValue);
990         CGF.unprotectFromPeepholes(Protection);
991       }
992     }
993   };
994 
995   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
996   class OpaqueValueMapping {
997     CodeGenFunction &CGF;
998     OpaqueValueMappingData Data;
999 
1000   public:
1001     static bool shouldBindAsLValue(const Expr *expr) {
1002       return OpaqueValueMappingData::shouldBindAsLValue(expr);
1003     }
1004 
1005     /// Build the opaque value mapping for the given conditional
1006     /// operator if it's the GNU ?: extension.  This is a common
1007     /// enough pattern that the convenience operator is really
1008     /// helpful.
1009     ///
1010     OpaqueValueMapping(CodeGenFunction &CGF,
1011                        const AbstractConditionalOperator *op) : CGF(CGF) {
1012       if (isa<ConditionalOperator>(op))
1013         // Leave Data empty.
1014         return;
1015 
1016       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
1017       Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
1018                                           e->getCommon());
1019     }
1020 
1021     /// Build the opaque value mapping for an OpaqueValueExpr whose source
1022     /// expression is set to the expression the OVE represents.
1023     OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV)
1024         : CGF(CGF) {
1025       if (OV) {
1026         assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used "
1027                                       "for OVE with no source expression");
1028         Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr());
1029       }
1030     }
1031 
1032     OpaqueValueMapping(CodeGenFunction &CGF,
1033                        const OpaqueValueExpr *opaqueValue,
1034                        LValue lvalue)
1035       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
1036     }
1037 
1038     OpaqueValueMapping(CodeGenFunction &CGF,
1039                        const OpaqueValueExpr *opaqueValue,
1040                        RValue rvalue)
1041       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
1042     }
1043 
1044     void pop() {
1045       Data.unbind(CGF);
1046       Data.clear();
1047     }
1048 
1049     ~OpaqueValueMapping() {
1050       if (Data.isValid()) Data.unbind(CGF);
1051     }
1052   };
1053 
1054 private:
1055   CGDebugInfo *DebugInfo;
1056   bool DisableDebugInfo;
1057 
1058   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
1059   /// calling llvm.stacksave for multiple VLAs in the same scope.
1060   bool DidCallStackSave;
1061 
1062   /// IndirectBranch - The first time an indirect goto is seen we create a block
1063   /// with an indirect branch.  Every time we see the address of a label taken,
1064   /// we add the label to the indirect goto.  Every subsequent indirect goto is
1065   /// codegen'd as a jump to the IndirectBranch's basic block.
1066   llvm::IndirectBrInst *IndirectBranch;
1067 
1068   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1069   /// decls.
1070   DeclMapTy LocalDeclMap;
1071 
1072   /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this
1073   /// will contain a mapping from said ParmVarDecl to its implicit "object_size"
1074   /// parameter.
1075   llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2>
1076       SizeArguments;
1077 
1078   /// Track escaped local variables with auto storage. Used during SEH
1079   /// outlining to produce a call to llvm.localescape.
1080   llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;
1081 
1082   /// LabelMap - This keeps track of the LLVM basic block for each C label.
1083   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1084 
1085   // BreakContinueStack - This keeps track of where break and continue
1086   // statements should jump to.
1087   struct BreakContinue {
1088     BreakContinue(JumpDest Break, JumpDest Continue)
1089       : BreakBlock(Break), ContinueBlock(Continue) {}
1090 
1091     JumpDest BreakBlock;
1092     JumpDest ContinueBlock;
1093   };
1094   SmallVector<BreakContinue, 8> BreakContinueStack;
1095 
1096   /// Handles cancellation exit points in OpenMP-related constructs.
1097   class OpenMPCancelExitStack {
1098     /// Tracks cancellation exit point and join point for cancel-related exit
1099     /// and normal exit.
1100     struct CancelExit {
1101       CancelExit() = default;
1102       CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock,
1103                  JumpDest ContBlock)
1104           : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {}
1105       OpenMPDirectiveKind Kind = OMPD_unknown;
1106       /// true if the exit block has been emitted already by the special
1107       /// emitExit() call, false if the default codegen is used.
1108       bool HasBeenEmitted = false;
1109       JumpDest ExitBlock;
1110       JumpDest ContBlock;
1111     };
1112 
1113     SmallVector<CancelExit, 8> Stack;
1114 
1115   public:
1116     OpenMPCancelExitStack() : Stack(1) {}
1117     ~OpenMPCancelExitStack() = default;
1118     /// Fetches the exit block for the current OpenMP construct.
1119     JumpDest getExitBlock() const { return Stack.back().ExitBlock; }
1120     /// Emits exit block with special codegen procedure specific for the related
1121     /// OpenMP construct + emits code for normal construct cleanup.
1122     void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
1123                   const llvm::function_ref<void(CodeGenFunction &)> &CodeGen) {
1124       if (Stack.back().Kind == Kind && getExitBlock().isValid()) {
1125         assert(CGF.getOMPCancelDestination(Kind).isValid());
1126         assert(CGF.HaveInsertPoint());
1127         assert(!Stack.back().HasBeenEmitted);
1128         auto IP = CGF.Builder.saveAndClearIP();
1129         CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1130         CodeGen(CGF);
1131         CGF.EmitBranch(Stack.back().ContBlock.getBlock());
1132         CGF.Builder.restoreIP(IP);
1133         Stack.back().HasBeenEmitted = true;
1134       }
1135       CodeGen(CGF);
1136     }
1137     /// Enter the cancel supporting \a Kind construct.
1138     /// \param Kind OpenMP directive that supports cancel constructs.
1139     /// \param HasCancel true, if the construct has inner cancel directive,
1140     /// false otherwise.
1141     void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) {
1142       Stack.push_back({Kind,
1143                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit")
1144                                  : JumpDest(),
1145                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont")
1146                                  : JumpDest()});
1147     }
1148     /// Emits default exit point for the cancel construct (if the special one
1149     /// has not be used) + join point for cancel/normal exits.
1150     void exit(CodeGenFunction &CGF) {
1151       if (getExitBlock().isValid()) {
1152         assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid());
1153         bool HaveIP = CGF.HaveInsertPoint();
1154         if (!Stack.back().HasBeenEmitted) {
1155           if (HaveIP)
1156             CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1157           CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1158           CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1159         }
1160         CGF.EmitBlock(Stack.back().ContBlock.getBlock());
1161         if (!HaveIP) {
1162           CGF.Builder.CreateUnreachable();
1163           CGF.Builder.ClearInsertionPoint();
1164         }
1165       }
1166       Stack.pop_back();
1167     }
1168   };
1169   OpenMPCancelExitStack OMPCancelStack;
1170 
1171   CodeGenPGO PGO;
1172 
1173   /// Calculate branch weights appropriate for PGO data
1174   llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount);
1175   llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights);
1176   llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond,
1177                                             uint64_t LoopCount);
1178 
1179 public:
1180   /// Increment the profiler's counter for the given statement by \p StepV.
1181   /// If \p StepV is null, the default increment is 1.
1182   void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) {
1183     if (CGM.getCodeGenOpts().hasProfileClangInstr())
1184       PGO.emitCounterIncrement(Builder, S, StepV);
1185     PGO.setCurrentStmt(S);
1186   }
1187 
1188   /// Get the profiler's count for the given statement.
1189   uint64_t getProfileCount(const Stmt *S) {
1190     Optional<uint64_t> Count = PGO.getStmtCount(S);
1191     if (!Count.hasValue())
1192       return 0;
1193     return *Count;
1194   }
1195 
1196   /// Set the profiler's current count.
1197   void setCurrentProfileCount(uint64_t Count) {
1198     PGO.setCurrentRegionCount(Count);
1199   }
1200 
1201   /// Get the profiler's current count. This is generally the count for the most
1202   /// recently incremented counter.
1203   uint64_t getCurrentProfileCount() {
1204     return PGO.getCurrentRegionCount();
1205   }
1206 
1207 private:
1208 
1209   /// SwitchInsn - This is nearest current switch instruction. It is null if
1210   /// current context is not in a switch.
1211   llvm::SwitchInst *SwitchInsn;
1212   /// The branch weights of SwitchInsn when doing instrumentation based PGO.
1213   SmallVector<uint64_t, 16> *SwitchWeights;
1214 
1215   /// CaseRangeBlock - This block holds if condition check for last case
1216   /// statement range in current switch instruction.
1217   llvm::BasicBlock *CaseRangeBlock;
1218 
1219   /// OpaqueLValues - Keeps track of the current set of opaque value
1220   /// expressions.
1221   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1222   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1223 
1224   // VLASizeMap - This keeps track of the associated size for each VLA type.
1225   // We track this by the size expression rather than the type itself because
1226   // in certain situations, like a const qualifier applied to an VLA typedef,
1227   // multiple VLA types can share the same size expression.
1228   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1229   // enter/leave scopes.
1230   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1231 
1232   /// A block containing a single 'unreachable' instruction.  Created
1233   /// lazily by getUnreachableBlock().
1234   llvm::BasicBlock *UnreachableBlock;
1235 
1236   /// Counts of the number return expressions in the function.
1237   unsigned NumReturnExprs;
1238 
1239   /// Count the number of simple (constant) return expressions in the function.
1240   unsigned NumSimpleReturnExprs;
1241 
1242   /// The last regular (non-return) debug location (breakpoint) in the function.
1243   SourceLocation LastStopPoint;
1244 
1245 public:
1246   /// A scope within which we are constructing the fields of an object which
1247   /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
1248   /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
1249   class FieldConstructionScope {
1250   public:
1251     FieldConstructionScope(CodeGenFunction &CGF, Address This)
1252         : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
1253       CGF.CXXDefaultInitExprThis = This;
1254     }
1255     ~FieldConstructionScope() {
1256       CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
1257     }
1258 
1259   private:
1260     CodeGenFunction &CGF;
1261     Address OldCXXDefaultInitExprThis;
1262   };
1263 
1264   /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
1265   /// is overridden to be the object under construction.
1266   class CXXDefaultInitExprScope {
1267   public:
1268     CXXDefaultInitExprScope(CodeGenFunction &CGF)
1269       : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue),
1270         OldCXXThisAlignment(CGF.CXXThisAlignment) {
1271       CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer();
1272       CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment();
1273     }
1274     ~CXXDefaultInitExprScope() {
1275       CGF.CXXThisValue = OldCXXThisValue;
1276       CGF.CXXThisAlignment = OldCXXThisAlignment;
1277     }
1278 
1279   public:
1280     CodeGenFunction &CGF;
1281     llvm::Value *OldCXXThisValue;
1282     CharUnits OldCXXThisAlignment;
1283   };
1284 
1285   /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the
1286   /// current loop index is overridden.
1287   class ArrayInitLoopExprScope {
1288   public:
1289     ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index)
1290       : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) {
1291       CGF.ArrayInitIndex = Index;
1292     }
1293     ~ArrayInitLoopExprScope() {
1294       CGF.ArrayInitIndex = OldArrayInitIndex;
1295     }
1296 
1297   private:
1298     CodeGenFunction &CGF;
1299     llvm::Value *OldArrayInitIndex;
1300   };
1301 
1302   class InlinedInheritingConstructorScope {
1303   public:
1304     InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD)
1305         : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl),
1306           OldCurCodeDecl(CGF.CurCodeDecl),
1307           OldCXXABIThisDecl(CGF.CXXABIThisDecl),
1308           OldCXXABIThisValue(CGF.CXXABIThisValue),
1309           OldCXXThisValue(CGF.CXXThisValue),
1310           OldCXXABIThisAlignment(CGF.CXXABIThisAlignment),
1311           OldCXXThisAlignment(CGF.CXXThisAlignment),
1312           OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy),
1313           OldCXXInheritedCtorInitExprArgs(
1314               std::move(CGF.CXXInheritedCtorInitExprArgs)) {
1315       CGF.CurGD = GD;
1316       CGF.CurFuncDecl = CGF.CurCodeDecl =
1317           cast<CXXConstructorDecl>(GD.getDecl());
1318       CGF.CXXABIThisDecl = nullptr;
1319       CGF.CXXABIThisValue = nullptr;
1320       CGF.CXXThisValue = nullptr;
1321       CGF.CXXABIThisAlignment = CharUnits();
1322       CGF.CXXThisAlignment = CharUnits();
1323       CGF.ReturnValue = Address::invalid();
1324       CGF.FnRetTy = QualType();
1325       CGF.CXXInheritedCtorInitExprArgs.clear();
1326     }
1327     ~InlinedInheritingConstructorScope() {
1328       CGF.CurGD = OldCurGD;
1329       CGF.CurFuncDecl = OldCurFuncDecl;
1330       CGF.CurCodeDecl = OldCurCodeDecl;
1331       CGF.CXXABIThisDecl = OldCXXABIThisDecl;
1332       CGF.CXXABIThisValue = OldCXXABIThisValue;
1333       CGF.CXXThisValue = OldCXXThisValue;
1334       CGF.CXXABIThisAlignment = OldCXXABIThisAlignment;
1335       CGF.CXXThisAlignment = OldCXXThisAlignment;
1336       CGF.ReturnValue = OldReturnValue;
1337       CGF.FnRetTy = OldFnRetTy;
1338       CGF.CXXInheritedCtorInitExprArgs =
1339           std::move(OldCXXInheritedCtorInitExprArgs);
1340     }
1341 
1342   private:
1343     CodeGenFunction &CGF;
1344     GlobalDecl OldCurGD;
1345     const Decl *OldCurFuncDecl;
1346     const Decl *OldCurCodeDecl;
1347     ImplicitParamDecl *OldCXXABIThisDecl;
1348     llvm::Value *OldCXXABIThisValue;
1349     llvm::Value *OldCXXThisValue;
1350     CharUnits OldCXXABIThisAlignment;
1351     CharUnits OldCXXThisAlignment;
1352     Address OldReturnValue;
1353     QualType OldFnRetTy;
1354     CallArgList OldCXXInheritedCtorInitExprArgs;
1355   };
1356 
1357 private:
1358   /// CXXThisDecl - When generating code for a C++ member function,
1359   /// this will hold the implicit 'this' declaration.
1360   ImplicitParamDecl *CXXABIThisDecl;
1361   llvm::Value *CXXABIThisValue;
1362   llvm::Value *CXXThisValue;
1363   CharUnits CXXABIThisAlignment;
1364   CharUnits CXXThisAlignment;
1365 
1366   /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
1367   /// this expression.
1368   Address CXXDefaultInitExprThis = Address::invalid();
1369 
1370   /// The current array initialization index when evaluating an
1371   /// ArrayInitIndexExpr within an ArrayInitLoopExpr.
1372   llvm::Value *ArrayInitIndex = nullptr;
1373 
1374   /// The values of function arguments to use when evaluating
1375   /// CXXInheritedCtorInitExprs within this context.
1376   CallArgList CXXInheritedCtorInitExprArgs;
1377 
1378   /// CXXStructorImplicitParamDecl - When generating code for a constructor or
1379   /// destructor, this will hold the implicit argument (e.g. VTT).
1380   ImplicitParamDecl *CXXStructorImplicitParamDecl;
1381   llvm::Value *CXXStructorImplicitParamValue;
1382 
1383   /// OutermostConditional - Points to the outermost active
1384   /// conditional control.  This is used so that we know if a
1385   /// temporary should be destroyed conditionally.
1386   ConditionalEvaluation *OutermostConditional;
1387 
1388   /// The current lexical scope.
1389   LexicalScope *CurLexicalScope;
1390 
1391   /// The current source location that should be used for exception
1392   /// handling code.
1393   SourceLocation CurEHLocation;
1394 
1395   /// BlockByrefInfos - For each __block variable, contains
1396   /// information about the layout of the variable.
1397   llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos;
1398 
1399   /// Used by -fsanitize=nullability-return to determine whether the return
1400   /// value can be checked.
1401   llvm::Value *RetValNullabilityPrecondition = nullptr;
1402 
1403   /// Check if -fsanitize=nullability-return instrumentation is required for
1404   /// this function.
1405   bool requiresReturnValueNullabilityCheck() const {
1406     return RetValNullabilityPrecondition;
1407   }
1408 
1409   /// Used to store precise source locations for return statements by the
1410   /// runtime return value checks.
1411   Address ReturnLocation = Address::invalid();
1412 
1413   /// Check if the return value of this function requires sanitization.
1414   bool requiresReturnValueCheck() const {
1415     return requiresReturnValueNullabilityCheck() ||
1416            (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
1417             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>());
1418   }
1419 
1420   llvm::BasicBlock *TerminateLandingPad;
1421   llvm::BasicBlock *TerminateHandler;
1422   llvm::BasicBlock *TrapBB;
1423 
1424   /// Terminate funclets keyed by parent funclet pad.
1425   llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets;
1426 
1427   /// True if we need emit the life-time markers.
1428   const bool ShouldEmitLifetimeMarkers;
1429 
1430   /// Add OpenCL kernel arg metadata and the kernel attribute meatadata to
1431   /// the function metadata.
1432   void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
1433                                 llvm::Function *Fn);
1434 
1435 public:
1436   CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1437   ~CodeGenFunction();
1438 
1439   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1440   ASTContext &getContext() const { return CGM.getContext(); }
1441   CGDebugInfo *getDebugInfo() {
1442     if (DisableDebugInfo)
1443       return nullptr;
1444     return DebugInfo;
1445   }
1446   void disableDebugInfo() { DisableDebugInfo = true; }
1447   void enableDebugInfo() { DisableDebugInfo = false; }
1448 
1449   bool shouldUseFusedARCCalls() {
1450     return CGM.getCodeGenOpts().OptimizationLevel == 0;
1451   }
1452 
1453   const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1454 
1455   /// Returns a pointer to the function's exception object and selector slot,
1456   /// which is assigned in every landing pad.
1457   Address getExceptionSlot();
1458   Address getEHSelectorSlot();
1459 
1460   /// Returns the contents of the function's exception object and selector
1461   /// slots.
1462   llvm::Value *getExceptionFromSlot();
1463   llvm::Value *getSelectorFromSlot();
1464 
1465   Address getNormalCleanupDestSlot();
1466 
1467   llvm::BasicBlock *getUnreachableBlock() {
1468     if (!UnreachableBlock) {
1469       UnreachableBlock = createBasicBlock("unreachable");
1470       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1471     }
1472     return UnreachableBlock;
1473   }
1474 
1475   llvm::BasicBlock *getInvokeDest() {
1476     if (!EHStack.requiresLandingPad()) return nullptr;
1477     return getInvokeDestImpl();
1478   }
1479 
1480   bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; }
1481 
1482   const TargetInfo &getTarget() const { return Target; }
1483   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1484   const TargetCodeGenInfo &getTargetHooks() const {
1485     return CGM.getTargetCodeGenInfo();
1486   }
1487 
1488   //===--------------------------------------------------------------------===//
1489   //                                  Cleanups
1490   //===--------------------------------------------------------------------===//
1491 
1492   typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty);
1493 
1494   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1495                                         Address arrayEndPointer,
1496                                         QualType elementType,
1497                                         CharUnits elementAlignment,
1498                                         Destroyer *destroyer);
1499   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1500                                       llvm::Value *arrayEnd,
1501                                       QualType elementType,
1502                                       CharUnits elementAlignment,
1503                                       Destroyer *destroyer);
1504 
1505   void pushDestroy(QualType::DestructionKind dtorKind,
1506                    Address addr, QualType type);
1507   void pushEHDestroy(QualType::DestructionKind dtorKind,
1508                      Address addr, QualType type);
1509   void pushDestroy(CleanupKind kind, Address addr, QualType type,
1510                    Destroyer *destroyer, bool useEHCleanupForArray);
1511   void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr,
1512                                    QualType type, Destroyer *destroyer,
1513                                    bool useEHCleanupForArray);
1514   void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1515                                    llvm::Value *CompletePtr,
1516                                    QualType ElementType);
1517   void pushStackRestore(CleanupKind kind, Address SPMem);
1518   void emitDestroy(Address addr, QualType type, Destroyer *destroyer,
1519                    bool useEHCleanupForArray);
1520   llvm::Function *generateDestroyHelper(Address addr, QualType type,
1521                                         Destroyer *destroyer,
1522                                         bool useEHCleanupForArray,
1523                                         const VarDecl *VD);
1524   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1525                         QualType elementType, CharUnits elementAlign,
1526                         Destroyer *destroyer,
1527                         bool checkZeroLength, bool useEHCleanup);
1528 
1529   Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1530 
1531   /// Determines whether an EH cleanup is required to destroy a type
1532   /// with the given destruction kind.
1533   bool needsEHCleanup(QualType::DestructionKind kind) {
1534     switch (kind) {
1535     case QualType::DK_none:
1536       return false;
1537     case QualType::DK_cxx_destructor:
1538     case QualType::DK_objc_weak_lifetime:
1539     case QualType::DK_nontrivial_c_struct:
1540       return getLangOpts().Exceptions;
1541     case QualType::DK_objc_strong_lifetime:
1542       return getLangOpts().Exceptions &&
1543              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1544     }
1545     llvm_unreachable("bad destruction kind");
1546   }
1547 
1548   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
1549     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1550   }
1551 
1552   //===--------------------------------------------------------------------===//
1553   //                                  Objective-C
1554   //===--------------------------------------------------------------------===//
1555 
1556   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1557 
1558   void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
1559 
1560   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1561   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1562                           const ObjCPropertyImplDecl *PID);
1563   void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1564                               const ObjCPropertyImplDecl *propImpl,
1565                               const ObjCMethodDecl *GetterMothodDecl,
1566                               llvm::Constant *AtomicHelperFn);
1567 
1568   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1569                                   ObjCMethodDecl *MD, bool ctor);
1570 
1571   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1572   /// for the given property.
1573   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1574                           const ObjCPropertyImplDecl *PID);
1575   void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1576                               const ObjCPropertyImplDecl *propImpl,
1577                               llvm::Constant *AtomicHelperFn);
1578 
1579   //===--------------------------------------------------------------------===//
1580   //                                  Block Bits
1581   //===--------------------------------------------------------------------===//
1582 
1583   /// Emit block literal.
1584   /// \return an LLVM value which is a pointer to a struct which contains
1585   /// information about the block, including the block invoke function, the
1586   /// captured variables, etc.
1587   llvm::Value *EmitBlockLiteral(const BlockExpr *);
1588   static void destroyBlockInfos(CGBlockInfo *info);
1589 
1590   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1591                                         const CGBlockInfo &Info,
1592                                         const DeclMapTy &ldm,
1593                                         bool IsLambdaConversionToBlock,
1594                                         bool BuildGlobalBlock);
1595 
1596   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1597   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1598   llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
1599                                              const ObjCPropertyImplDecl *PID);
1600   llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
1601                                              const ObjCPropertyImplDecl *PID);
1602   llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
1603 
1604   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
1605 
1606   class AutoVarEmission;
1607 
1608   void emitByrefStructureInit(const AutoVarEmission &emission);
1609   void enterByrefCleanup(const AutoVarEmission &emission);
1610 
1611   void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum,
1612                                 llvm::Value *ptr);
1613 
1614   Address LoadBlockStruct();
1615   Address GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
1616 
1617   /// BuildBlockByrefAddress - Computes the location of the
1618   /// data in a variable which is declared as __block.
1619   Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V,
1620                                 bool followForward = true);
1621   Address emitBlockByrefAddress(Address baseAddr,
1622                                 const BlockByrefInfo &info,
1623                                 bool followForward,
1624                                 const llvm::Twine &name);
1625 
1626   const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var);
1627 
1628   QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args);
1629 
1630   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1631                     const CGFunctionInfo &FnInfo);
1632   /// \brief Emit code for the start of a function.
1633   /// \param Loc       The location to be associated with the function.
1634   /// \param StartLoc  The location of the function body.
1635   void StartFunction(GlobalDecl GD,
1636                      QualType RetTy,
1637                      llvm::Function *Fn,
1638                      const CGFunctionInfo &FnInfo,
1639                      const FunctionArgList &Args,
1640                      SourceLocation Loc = SourceLocation(),
1641                      SourceLocation StartLoc = SourceLocation());
1642 
1643   static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor);
1644 
1645   void EmitConstructorBody(FunctionArgList &Args);
1646   void EmitDestructorBody(FunctionArgList &Args);
1647   void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
1648   void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body);
1649   void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S);
1650 
1651   void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
1652                                   CallArgList &CallArgs);
1653   void EmitLambdaBlockInvokeBody();
1654   void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
1655   void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD);
1656   void EmitAsanPrologueOrEpilogue(bool Prologue);
1657 
1658   /// \brief Emit the unified return block, trying to avoid its emission when
1659   /// possible.
1660   /// \return The debug location of the user written return statement if the
1661   /// return block is is avoided.
1662   llvm::DebugLoc EmitReturnBlock();
1663 
1664   /// FinishFunction - Complete IR generation of the current function. It is
1665   /// legal to call this function even if there is no current insertion point.
1666   void FinishFunction(SourceLocation EndLoc=SourceLocation());
1667 
1668   void StartThunk(llvm::Function *Fn, GlobalDecl GD,
1669                   const CGFunctionInfo &FnInfo);
1670 
1671   void EmitCallAndReturnForThunk(llvm::Constant *Callee,
1672                                  const ThunkInfo *Thunk);
1673 
1674   void FinishThunk();
1675 
1676   /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
1677   void EmitMustTailThunk(const CXXMethodDecl *MD, llvm::Value *AdjustedThisPtr,
1678                          llvm::Value *Callee);
1679 
1680   /// Generate a thunk for the given method.
1681   void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1682                      GlobalDecl GD, const ThunkInfo &Thunk);
1683 
1684   llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn,
1685                                        const CGFunctionInfo &FnInfo,
1686                                        GlobalDecl GD, const ThunkInfo &Thunk);
1687 
1688   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1689                         FunctionArgList &Args);
1690 
1691   void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init);
1692 
1693   /// Struct with all informations about dynamic [sub]class needed to set vptr.
1694   struct VPtr {
1695     BaseSubobject Base;
1696     const CXXRecordDecl *NearestVBase;
1697     CharUnits OffsetFromNearestVBase;
1698     const CXXRecordDecl *VTableClass;
1699   };
1700 
1701   /// Initialize the vtable pointer of the given subobject.
1702   void InitializeVTablePointer(const VPtr &vptr);
1703 
1704   typedef llvm::SmallVector<VPtr, 4> VPtrsVector;
1705 
1706   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1707   VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass);
1708 
1709   void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase,
1710                          CharUnits OffsetFromNearestVBase,
1711                          bool BaseIsNonVirtualPrimaryBase,
1712                          const CXXRecordDecl *VTableClass,
1713                          VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs);
1714 
1715   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1716 
1717   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1718   /// to by This.
1719   llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy,
1720                             const CXXRecordDecl *VTableClass);
1721 
1722   enum CFITypeCheckKind {
1723     CFITCK_VCall,
1724     CFITCK_NVCall,
1725     CFITCK_DerivedCast,
1726     CFITCK_UnrelatedCast,
1727     CFITCK_ICall,
1728   };
1729 
1730   /// \brief Derived is the presumed address of an object of type T after a
1731   /// cast. If T is a polymorphic class type, emit a check that the virtual
1732   /// table for Derived belongs to a class derived from T.
1733   void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived,
1734                                  bool MayBeNull, CFITypeCheckKind TCK,
1735                                  SourceLocation Loc);
1736 
1737   /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
1738   /// If vptr CFI is enabled, emit a check that VTable is valid.
1739   void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable,
1740                                  CFITypeCheckKind TCK, SourceLocation Loc);
1741 
1742   /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
1743   /// RD using llvm.type.test.
1744   void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable,
1745                           CFITypeCheckKind TCK, SourceLocation Loc);
1746 
1747   /// If whole-program virtual table optimization is enabled, emit an assumption
1748   /// that VTable is a member of RD's type identifier. Or, if vptr CFI is
1749   /// enabled, emit a check that VTable is a member of RD's type identifier.
1750   void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
1751                                     llvm::Value *VTable, SourceLocation Loc);
1752 
1753   /// Returns whether we should perform a type checked load when loading a
1754   /// virtual function for virtual calls to members of RD. This is generally
1755   /// true when both vcall CFI and whole-program-vtables are enabled.
1756   bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD);
1757 
1758   /// Emit a type checked load from the given vtable.
1759   llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable,
1760                                          uint64_t VTableByteOffset);
1761 
1762   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1763   /// given phase of destruction for a destructor.  The end result
1764   /// should call destructors on members and base classes in reverse
1765   /// order of their construction.
1766   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1767 
1768   /// ShouldInstrumentFunction - Return true if the current function should be
1769   /// instrumented with __cyg_profile_func_* calls
1770   bool ShouldInstrumentFunction();
1771 
1772   /// ShouldXRayInstrument - Return true if the current function should be
1773   /// instrumented with XRay nop sleds.
1774   bool ShouldXRayInstrumentFunction() const;
1775 
1776   /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit
1777   /// XRay custom event handling calls.
1778   bool AlwaysEmitXRayCustomEvents() const;
1779 
1780   /// Encode an address into a form suitable for use in a function prologue.
1781   llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F,
1782                                              llvm::Constant *Addr);
1783 
1784   /// Decode an address used in a function prologue, encoded by \c
1785   /// EncodeAddrForUseInPrologue.
1786   llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F,
1787                                         llvm::Value *EncodedAddr);
1788 
1789   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1790   /// arguments for the given function. This is also responsible for naming the
1791   /// LLVM function arguments.
1792   void EmitFunctionProlog(const CGFunctionInfo &FI,
1793                           llvm::Function *Fn,
1794                           const FunctionArgList &Args);
1795 
1796   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1797   /// given temporary.
1798   void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
1799                           SourceLocation EndLoc);
1800 
1801   /// Emit a test that checks if the return value \p RV is nonnull.
1802   void EmitReturnValueCheck(llvm::Value *RV);
1803 
1804   /// EmitStartEHSpec - Emit the start of the exception spec.
1805   void EmitStartEHSpec(const Decl *D);
1806 
1807   /// EmitEndEHSpec - Emit the end of the exception spec.
1808   void EmitEndEHSpec(const Decl *D);
1809 
1810   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
1811   llvm::BasicBlock *getTerminateLandingPad();
1812 
1813   /// getTerminateLandingPad - Return a cleanup funclet that just calls
1814   /// terminate.
1815   llvm::BasicBlock *getTerminateFunclet();
1816 
1817   /// getTerminateHandler - Return a handler (not a landing pad, just
1818   /// a catch handler) that just calls terminate.  This is used when
1819   /// a terminate scope encloses a try.
1820   llvm::BasicBlock *getTerminateHandler();
1821 
1822   llvm::Type *ConvertTypeForMem(QualType T);
1823   llvm::Type *ConvertType(QualType T);
1824   llvm::Type *ConvertType(const TypeDecl *T) {
1825     return ConvertType(getContext().getTypeDeclType(T));
1826   }
1827 
1828   /// LoadObjCSelf - Load the value of self. This function is only valid while
1829   /// generating code for an Objective-C method.
1830   llvm::Value *LoadObjCSelf();
1831 
1832   /// TypeOfSelfObject - Return type of object that this self represents.
1833   QualType TypeOfSelfObject();
1834 
1835   /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T.
1836   static TypeEvaluationKind getEvaluationKind(QualType T);
1837 
1838   static bool hasScalarEvaluationKind(QualType T) {
1839     return getEvaluationKind(T) == TEK_Scalar;
1840   }
1841 
1842   static bool hasAggregateEvaluationKind(QualType T) {
1843     return getEvaluationKind(T) == TEK_Aggregate;
1844   }
1845 
1846   /// createBasicBlock - Create an LLVM basic block.
1847   llvm::BasicBlock *createBasicBlock(const Twine &name = "",
1848                                      llvm::Function *parent = nullptr,
1849                                      llvm::BasicBlock *before = nullptr) {
1850     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
1851   }
1852 
1853   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
1854   /// label maps to.
1855   JumpDest getJumpDestForLabel(const LabelDecl *S);
1856 
1857   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
1858   /// another basic block, simplify it. This assumes that no other code could
1859   /// potentially reference the basic block.
1860   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
1861 
1862   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
1863   /// adding a fall-through branch from the current insert block if
1864   /// necessary. It is legal to call this function even if there is no current
1865   /// insertion point.
1866   ///
1867   /// IsFinished - If true, indicates that the caller has finished emitting
1868   /// branches to the given block and does not expect to emit code into it. This
1869   /// means the block can be ignored if it is unreachable.
1870   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
1871 
1872   /// EmitBlockAfterUses - Emit the given block somewhere hopefully
1873   /// near its uses, and leave the insertion point in it.
1874   void EmitBlockAfterUses(llvm::BasicBlock *BB);
1875 
1876   /// EmitBranch - Emit a branch to the specified basic block from the current
1877   /// insert block, taking care to avoid creation of branches from dummy
1878   /// blocks. It is legal to call this function even if there is no current
1879   /// insertion point.
1880   ///
1881   /// This function clears the current insertion point. The caller should follow
1882   /// calls to this function with calls to Emit*Block prior to generation new
1883   /// code.
1884   void EmitBranch(llvm::BasicBlock *Block);
1885 
1886   /// HaveInsertPoint - True if an insertion point is defined. If not, this
1887   /// indicates that the current code being emitted is unreachable.
1888   bool HaveInsertPoint() const {
1889     return Builder.GetInsertBlock() != nullptr;
1890   }
1891 
1892   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
1893   /// emitted IR has a place to go. Note that by definition, if this function
1894   /// creates a block then that block is unreachable; callers may do better to
1895   /// detect when no insertion point is defined and simply skip IR generation.
1896   void EnsureInsertPoint() {
1897     if (!HaveInsertPoint())
1898       EmitBlock(createBasicBlock());
1899   }
1900 
1901   /// ErrorUnsupported - Print out an error that codegen doesn't support the
1902   /// specified stmt yet.
1903   void ErrorUnsupported(const Stmt *S, const char *Type);
1904 
1905   //===--------------------------------------------------------------------===//
1906   //                                  Helpers
1907   //===--------------------------------------------------------------------===//
1908 
1909   LValue MakeAddrLValue(Address Addr, QualType T,
1910                         AlignmentSource Source = AlignmentSource::Type) {
1911     return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
1912                             CGM.getTBAAAccessInfo(T));
1913   }
1914 
1915   LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo,
1916                         TBAAAccessInfo TBAAInfo) {
1917     return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo);
1918   }
1919 
1920   LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
1921                         AlignmentSource Source = AlignmentSource::Type) {
1922     return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
1923                             LValueBaseInfo(Source), CGM.getTBAAAccessInfo(T));
1924   }
1925 
1926   LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
1927                         LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) {
1928     return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
1929                             BaseInfo, TBAAInfo);
1930   }
1931 
1932   LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T);
1933   LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T);
1934   CharUnits getNaturalTypeAlignment(QualType T,
1935                                     LValueBaseInfo *BaseInfo = nullptr,
1936                                     TBAAAccessInfo *TBAAInfo = nullptr,
1937                                     bool forPointeeType = false);
1938   CharUnits getNaturalPointeeTypeAlignment(QualType T,
1939                                            LValueBaseInfo *BaseInfo = nullptr,
1940                                            TBAAAccessInfo *TBAAInfo = nullptr);
1941 
1942   Address EmitLoadOfReference(LValue RefLVal,
1943                               LValueBaseInfo *PointeeBaseInfo = nullptr,
1944                               TBAAAccessInfo *PointeeTBAAInfo = nullptr);
1945   LValue EmitLoadOfReferenceLValue(LValue RefLVal);
1946   LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy,
1947                                    AlignmentSource Source =
1948                                        AlignmentSource::Type) {
1949     LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source),
1950                                     CGM.getTBAAAccessInfo(RefTy));
1951     return EmitLoadOfReferenceLValue(RefLVal);
1952   }
1953 
1954   Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy,
1955                             LValueBaseInfo *BaseInfo = nullptr,
1956                             TBAAAccessInfo *TBAAInfo = nullptr);
1957   LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy);
1958 
1959   /// CreateTempAlloca - This creates an alloca and inserts it into the entry
1960   /// block if \p ArraySize is nullptr, otherwise inserts it at the current
1961   /// insertion point of the builder. The caller is responsible for setting an
1962   /// appropriate alignment on
1963   /// the alloca.
1964   ///
1965   /// \p ArraySize is the number of array elements to be allocated if it
1966   ///    is not nullptr.
1967   ///
1968   /// LangAS::Default is the address space of pointers to local variables and
1969   /// temporaries, as exposed in the source language. In certain
1970   /// configurations, this is not the same as the alloca address space, and a
1971   /// cast is needed to lift the pointer from the alloca AS into
1972   /// LangAS::Default. This can happen when the target uses a restricted
1973   /// address space for the stack but the source language requires
1974   /// LangAS::Default to be a generic address space. The latter condition is
1975   /// common for most programming languages; OpenCL is an exception in that
1976   /// LangAS::Default is the private address space, which naturally maps
1977   /// to the stack.
1978   ///
1979   /// Because the address of a temporary is often exposed to the program in
1980   /// various ways, this function will perform the cast by default. The cast
1981   /// may be avoided by passing false as \p CastToDefaultAddrSpace; this is
1982   /// more efficient if the caller knows that the address will not be exposed.
1983   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp",
1984                                      llvm::Value *ArraySize = nullptr);
1985   Address CreateTempAlloca(llvm::Type *Ty, CharUnits align,
1986                            const Twine &Name = "tmp",
1987                            llvm::Value *ArraySize = nullptr,
1988                            bool CastToDefaultAddrSpace = true);
1989 
1990   /// CreateDefaultAlignedTempAlloca - This creates an alloca with the
1991   /// default ABI alignment of the given LLVM type.
1992   ///
1993   /// IMPORTANT NOTE: This is *not* generally the right alignment for
1994   /// any given AST type that happens to have been lowered to the
1995   /// given IR type.  This should only ever be used for function-local,
1996   /// IR-driven manipulations like saving and restoring a value.  Do
1997   /// not hand this address off to arbitrary IRGen routines, and especially
1998   /// do not pass it as an argument to a function that might expect a
1999   /// properly ABI-aligned value.
2000   Address CreateDefaultAlignTempAlloca(llvm::Type *Ty,
2001                                        const Twine &Name = "tmp");
2002 
2003   /// InitTempAlloca - Provide an initial value for the given alloca which
2004   /// will be observable at all locations in the function.
2005   ///
2006   /// The address should be something that was returned from one of
2007   /// the CreateTempAlloca or CreateMemTemp routines, and the
2008   /// initializer must be valid in the entry block (i.e. it must
2009   /// either be a constant or an argument value).
2010   void InitTempAlloca(Address Alloca, llvm::Value *Value);
2011 
2012   /// CreateIRTemp - Create a temporary IR object of the given type, with
2013   /// appropriate alignment. This routine should only be used when an temporary
2014   /// value needs to be stored into an alloca (for example, to avoid explicit
2015   /// PHI construction), but the type is the IR type, not the type appropriate
2016   /// for storing in memory.
2017   ///
2018   /// That is, this is exactly equivalent to CreateMemTemp, but calling
2019   /// ConvertType instead of ConvertTypeForMem.
2020   Address CreateIRTemp(QualType T, const Twine &Name = "tmp");
2021 
2022   /// CreateMemTemp - Create a temporary memory object of the given type, with
2023   /// appropriate alignment. Cast it to the default address space if
2024   /// \p CastToDefaultAddrSpace is true.
2025   Address CreateMemTemp(QualType T, const Twine &Name = "tmp",
2026                         bool CastToDefaultAddrSpace = true);
2027   Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp",
2028                         bool CastToDefaultAddrSpace = true);
2029 
2030   /// CreateAggTemp - Create a temporary memory object for the given
2031   /// aggregate type.
2032   AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
2033     return AggValueSlot::forAddr(CreateMemTemp(T, Name),
2034                                  T.getQualifiers(),
2035                                  AggValueSlot::IsNotDestructed,
2036                                  AggValueSlot::DoesNotNeedGCBarriers,
2037                                  AggValueSlot::IsNotAliased);
2038   }
2039 
2040   /// Emit a cast to void* in the appropriate address space.
2041   llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
2042 
2043   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
2044   /// expression and compare the result against zero, returning an Int1Ty value.
2045   llvm::Value *EvaluateExprAsBool(const Expr *E);
2046 
2047   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
2048   void EmitIgnoredExpr(const Expr *E);
2049 
2050   /// EmitAnyExpr - Emit code to compute the specified expression which can have
2051   /// any type.  The result is returned as an RValue struct.  If this is an
2052   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
2053   /// the result should be returned.
2054   ///
2055   /// \param ignoreResult True if the resulting value isn't used.
2056   RValue EmitAnyExpr(const Expr *E,
2057                      AggValueSlot aggSlot = AggValueSlot::ignored(),
2058                      bool ignoreResult = false);
2059 
2060   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
2061   // or the value of the expression, depending on how va_list is defined.
2062   Address EmitVAListRef(const Expr *E);
2063 
2064   /// Emit a "reference" to a __builtin_ms_va_list; this is
2065   /// always the value of the expression, because a __builtin_ms_va_list is a
2066   /// pointer to a char.
2067   Address EmitMSVAListRef(const Expr *E);
2068 
2069   /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will
2070   /// always be accessible even if no aggregate location is provided.
2071   RValue EmitAnyExprToTemp(const Expr *E);
2072 
2073   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
2074   /// arbitrary expression into the given memory location.
2075   void EmitAnyExprToMem(const Expr *E, Address Location,
2076                         Qualifiers Quals, bool IsInitializer);
2077 
2078   void EmitAnyExprToExn(const Expr *E, Address Addr);
2079 
2080   /// EmitExprAsInit - Emits the code necessary to initialize a
2081   /// location in memory with the given initializer.
2082   void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2083                       bool capturedByInit);
2084 
2085   /// hasVolatileMember - returns true if aggregate type has a volatile
2086   /// member.
2087   bool hasVolatileMember(QualType T) {
2088     if (const RecordType *RT = T->getAs<RecordType>()) {
2089       const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
2090       return RD->hasVolatileMember();
2091     }
2092     return false;
2093   }
2094   /// EmitAggregateCopy - Emit an aggregate assignment.
2095   ///
2096   /// The difference to EmitAggregateCopy is that tail padding is not copied.
2097   /// This is required for correctness when assigning non-POD structures in C++.
2098   void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) {
2099     bool IsVolatile = hasVolatileMember(EltTy);
2100     EmitAggregateCopy(Dest, Src, EltTy, IsVolatile, /* isAssignment= */ true);
2101   }
2102 
2103   void EmitAggregateCopyCtor(LValue Dest, LValue Src) {
2104     EmitAggregateCopy(Dest, Src, Src.getType(),
2105                       /* IsVolatile= */ false, /* IsAssignment= */ false);
2106   }
2107 
2108   /// EmitAggregateCopy - Emit an aggregate copy.
2109   ///
2110   /// \param isVolatile - True iff either the source or the destination is
2111   /// volatile.
2112   /// \param isAssignment - If false, allow padding to be copied.  This often
2113   /// yields more efficient.
2114   void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy,
2115                          bool isVolatile = false, bool isAssignment = false);
2116 
2117   /// GetAddrOfLocalVar - Return the address of a local variable.
2118   Address GetAddrOfLocalVar(const VarDecl *VD) {
2119     auto it = LocalDeclMap.find(VD);
2120     assert(it != LocalDeclMap.end() &&
2121            "Invalid argument to GetAddrOfLocalVar(), no decl!");
2122     return it->second;
2123   }
2124 
2125   /// getOpaqueLValueMapping - Given an opaque value expression (which
2126   /// must be mapped to an l-value), return its mapping.
2127   const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
2128     assert(OpaqueValueMapping::shouldBindAsLValue(e));
2129 
2130     llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
2131       it = OpaqueLValues.find(e);
2132     assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
2133     return it->second;
2134   }
2135 
2136   /// getOpaqueRValueMapping - Given an opaque value expression (which
2137   /// must be mapped to an r-value), return its mapping.
2138   const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
2139     assert(!OpaqueValueMapping::shouldBindAsLValue(e));
2140 
2141     llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
2142       it = OpaqueRValues.find(e);
2143     assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
2144     return it->second;
2145   }
2146 
2147   /// Get the index of the current ArrayInitLoopExpr, if any.
2148   llvm::Value *getArrayInitIndex() { return ArrayInitIndex; }
2149 
2150   /// getAccessedFieldNo - Given an encoded value and a result number, return
2151   /// the input field number being accessed.
2152   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
2153 
2154   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
2155   llvm::BasicBlock *GetIndirectGotoBlock();
2156 
2157   /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts.
2158   static bool IsWrappedCXXThis(const Expr *E);
2159 
2160   /// EmitNullInitialization - Generate code to set a value of the given type to
2161   /// null, If the type contains data member pointers, they will be initialized
2162   /// to -1 in accordance with the Itanium C++ ABI.
2163   void EmitNullInitialization(Address DestPtr, QualType Ty);
2164 
2165   /// Emits a call to an LLVM variable-argument intrinsic, either
2166   /// \c llvm.va_start or \c llvm.va_end.
2167   /// \param ArgValue A reference to the \c va_list as emitted by either
2168   /// \c EmitVAListRef or \c EmitMSVAListRef.
2169   /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise,
2170   /// calls \c llvm.va_end.
2171   llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart);
2172 
2173   /// Generate code to get an argument from the passed in pointer
2174   /// and update it accordingly.
2175   /// \param VE The \c VAArgExpr for which to generate code.
2176   /// \param VAListAddr Receives a reference to the \c va_list as emitted by
2177   /// either \c EmitVAListRef or \c EmitMSVAListRef.
2178   /// \returns A pointer to the argument.
2179   // FIXME: We should be able to get rid of this method and use the va_arg
2180   // instruction in LLVM instead once it works well enough.
2181   Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr);
2182 
2183   /// emitArrayLength - Compute the length of an array, even if it's a
2184   /// VLA, and drill down to the base element type.
2185   llvm::Value *emitArrayLength(const ArrayType *arrayType,
2186                                QualType &baseType,
2187                                Address &addr);
2188 
2189   /// EmitVLASize - Capture all the sizes for the VLA expressions in
2190   /// the given variably-modified type and store them in the VLASizeMap.
2191   ///
2192   /// This function can be called with a null (unreachable) insert point.
2193   void EmitVariablyModifiedType(QualType Ty);
2194 
2195   struct VlaSizePair {
2196     llvm::Value *NumElts;
2197     QualType Type;
2198 
2199     VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {}
2200   };
2201 
2202   /// Return the number of elements for a single dimension
2203   /// for the given array type.
2204   VlaSizePair getVLAElements1D(const VariableArrayType *vla);
2205   VlaSizePair getVLAElements1D(QualType vla);
2206 
2207   /// Returns an LLVM value that corresponds to the size,
2208   /// in non-variably-sized elements, of a variable length array type,
2209   /// plus that largest non-variably-sized element type.  Assumes that
2210   /// the type has already been emitted with EmitVariablyModifiedType.
2211   VlaSizePair getVLASize(const VariableArrayType *vla);
2212   VlaSizePair getVLASize(QualType vla);
2213 
2214   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
2215   /// generating code for an C++ member function.
2216   llvm::Value *LoadCXXThis() {
2217     assert(CXXThisValue && "no 'this' value for this function");
2218     return CXXThisValue;
2219   }
2220   Address LoadCXXThisAddress();
2221 
2222   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
2223   /// virtual bases.
2224   // FIXME: Every place that calls LoadCXXVTT is something
2225   // that needs to be abstracted properly.
2226   llvm::Value *LoadCXXVTT() {
2227     assert(CXXStructorImplicitParamValue && "no VTT value for this function");
2228     return CXXStructorImplicitParamValue;
2229   }
2230 
2231   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
2232   /// complete class to the given direct base.
2233   Address
2234   GetAddressOfDirectBaseInCompleteClass(Address Value,
2235                                         const CXXRecordDecl *Derived,
2236                                         const CXXRecordDecl *Base,
2237                                         bool BaseIsVirtual);
2238 
2239   static bool ShouldNullCheckClassCastValue(const CastExpr *Cast);
2240 
2241   /// GetAddressOfBaseClass - This function will add the necessary delta to the
2242   /// load of 'this' and returns address of the base class.
2243   Address GetAddressOfBaseClass(Address Value,
2244                                 const CXXRecordDecl *Derived,
2245                                 CastExpr::path_const_iterator PathBegin,
2246                                 CastExpr::path_const_iterator PathEnd,
2247                                 bool NullCheckValue, SourceLocation Loc);
2248 
2249   Address GetAddressOfDerivedClass(Address Value,
2250                                    const CXXRecordDecl *Derived,
2251                                    CastExpr::path_const_iterator PathBegin,
2252                                    CastExpr::path_const_iterator PathEnd,
2253                                    bool NullCheckValue);
2254 
2255   /// GetVTTParameter - Return the VTT parameter that should be passed to a
2256   /// base constructor/destructor with virtual bases.
2257   /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
2258   /// to ItaniumCXXABI.cpp together with all the references to VTT.
2259   llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
2260                                bool Delegating);
2261 
2262   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
2263                                       CXXCtorType CtorType,
2264                                       const FunctionArgList &Args,
2265                                       SourceLocation Loc);
2266   // It's important not to confuse this and the previous function. Delegating
2267   // constructors are the C++0x feature. The constructor delegate optimization
2268   // is used to reduce duplication in the base and complete consturctors where
2269   // they are substantially the same.
2270   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2271                                         const FunctionArgList &Args);
2272 
2273   /// Emit a call to an inheriting constructor (that is, one that invokes a
2274   /// constructor inherited from a base class) by inlining its definition. This
2275   /// is necessary if the ABI does not support forwarding the arguments to the
2276   /// base class constructor (because they're variadic or similar).
2277   void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2278                                                CXXCtorType CtorType,
2279                                                bool ForVirtualBase,
2280                                                bool Delegating,
2281                                                CallArgList &Args);
2282 
2283   /// Emit a call to a constructor inherited from a base class, passing the
2284   /// current constructor's arguments along unmodified (without even making
2285   /// a copy).
2286   void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D,
2287                                        bool ForVirtualBase, Address This,
2288                                        bool InheritedFromVBase,
2289                                        const CXXInheritedCtorInitExpr *E);
2290 
2291   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2292                               bool ForVirtualBase, bool Delegating,
2293                               Address This, const CXXConstructExpr *E);
2294 
2295   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2296                               bool ForVirtualBase, bool Delegating,
2297                               Address This, CallArgList &Args);
2298 
2299   /// Emit assumption load for all bases. Requires to be be called only on
2300   /// most-derived class and not under construction of the object.
2301   void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This);
2302 
2303   /// Emit assumption that vptr load == global vtable.
2304   void EmitVTableAssumptionLoad(const VPtr &vptr, Address This);
2305 
2306   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
2307                                       Address This, Address Src,
2308                                       const CXXConstructExpr *E);
2309 
2310   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2311                                   const ArrayType *ArrayTy,
2312                                   Address ArrayPtr,
2313                                   const CXXConstructExpr *E,
2314                                   bool ZeroInitialization = false);
2315 
2316   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2317                                   llvm::Value *NumElements,
2318                                   Address ArrayPtr,
2319                                   const CXXConstructExpr *E,
2320                                   bool ZeroInitialization = false);
2321 
2322   static Destroyer destroyCXXObject;
2323 
2324   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
2325                              bool ForVirtualBase, bool Delegating,
2326                              Address This);
2327 
2328   void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
2329                                llvm::Type *ElementTy, Address NewPtr,
2330                                llvm::Value *NumElements,
2331                                llvm::Value *AllocSizeWithoutCookie);
2332 
2333   void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
2334                         Address Ptr);
2335 
2336   llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr);
2337   void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr);
2338 
2339   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
2340   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
2341 
2342   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
2343                       QualType DeleteTy, llvm::Value *NumElements = nullptr,
2344                       CharUnits CookieSize = CharUnits());
2345 
2346   RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
2347                                   const Expr *Arg, bool IsDelete);
2348 
2349   llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E);
2350   llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE);
2351   Address EmitCXXUuidofExpr(const CXXUuidofExpr *E);
2352 
2353   /// \brief Situations in which we might emit a check for the suitability of a
2354   ///        pointer or glvalue.
2355   enum TypeCheckKind {
2356     /// Checking the operand of a load. Must be suitably sized and aligned.
2357     TCK_Load,
2358     /// Checking the destination of a store. Must be suitably sized and aligned.
2359     TCK_Store,
2360     /// Checking the bound value in a reference binding. Must be suitably sized
2361     /// and aligned, but is not required to refer to an object (until the
2362     /// reference is used), per core issue 453.
2363     TCK_ReferenceBinding,
2364     /// Checking the object expression in a non-static data member access. Must
2365     /// be an object within its lifetime.
2366     TCK_MemberAccess,
2367     /// Checking the 'this' pointer for a call to a non-static member function.
2368     /// Must be an object within its lifetime.
2369     TCK_MemberCall,
2370     /// Checking the 'this' pointer for a constructor call.
2371     TCK_ConstructorCall,
2372     /// Checking the operand of a static_cast to a derived pointer type. Must be
2373     /// null or an object within its lifetime.
2374     TCK_DowncastPointer,
2375     /// Checking the operand of a static_cast to a derived reference type. Must
2376     /// be an object within its lifetime.
2377     TCK_DowncastReference,
2378     /// Checking the operand of a cast to a base object. Must be suitably sized
2379     /// and aligned.
2380     TCK_Upcast,
2381     /// Checking the operand of a cast to a virtual base object. Must be an
2382     /// object within its lifetime.
2383     TCK_UpcastToVirtualBase,
2384     /// Checking the value assigned to a _Nonnull pointer. Must not be null.
2385     TCK_NonnullAssign,
2386     /// Checking the operand of a dynamic_cast or a typeid expression.  Must be
2387     /// null or an object within its lifetime.
2388     TCK_DynamicOperation
2389   };
2390 
2391   /// Determine whether the pointer type check \p TCK permits null pointers.
2392   static bool isNullPointerAllowed(TypeCheckKind TCK);
2393 
2394   /// Determine whether the pointer type check \p TCK requires a vptr check.
2395   static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty);
2396 
2397   /// \brief Whether any type-checking sanitizers are enabled. If \c false,
2398   /// calls to EmitTypeCheck can be skipped.
2399   bool sanitizePerformTypeCheck() const;
2400 
2401   /// \brief Emit a check that \p V is the address of storage of the
2402   /// appropriate size and alignment for an object of type \p Type.
2403   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
2404                      QualType Type, CharUnits Alignment = CharUnits::Zero(),
2405                      SanitizerSet SkippedChecks = SanitizerSet());
2406 
2407   /// \brief Emit a check that \p Base points into an array object, which
2408   /// we can access at index \p Index. \p Accessed should be \c false if we
2409   /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
2410   void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
2411                        QualType IndexType, bool Accessed);
2412 
2413   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2414                                        bool isInc, bool isPre);
2415   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
2416                                          bool isInc, bool isPre);
2417 
2418   void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment,
2419                                llvm::Value *OffsetValue = nullptr) {
2420     Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment,
2421                                       OffsetValue);
2422   }
2423 
2424   /// Converts Location to a DebugLoc, if debug information is enabled.
2425   llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location);
2426 
2427 
2428   //===--------------------------------------------------------------------===//
2429   //                            Declaration Emission
2430   //===--------------------------------------------------------------------===//
2431 
2432   /// EmitDecl - Emit a declaration.
2433   ///
2434   /// This function can be called with a null (unreachable) insert point.
2435   void EmitDecl(const Decl &D);
2436 
2437   /// EmitVarDecl - Emit a local variable declaration.
2438   ///
2439   /// This function can be called with a null (unreachable) insert point.
2440   void EmitVarDecl(const VarDecl &D);
2441 
2442   void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2443                       bool capturedByInit);
2444 
2445   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
2446                              llvm::Value *Address);
2447 
2448   /// \brief Determine whether the given initializer is trivial in the sense
2449   /// that it requires no code to be generated.
2450   bool isTrivialInitializer(const Expr *Init);
2451 
2452   /// EmitAutoVarDecl - Emit an auto variable declaration.
2453   ///
2454   /// This function can be called with a null (unreachable) insert point.
2455   void EmitAutoVarDecl(const VarDecl &D);
2456 
2457   class AutoVarEmission {
2458     friend class CodeGenFunction;
2459 
2460     const VarDecl *Variable;
2461 
2462     /// The address of the alloca.  Invalid if the variable was emitted
2463     /// as a global constant.
2464     Address Addr;
2465 
2466     llvm::Value *NRVOFlag;
2467 
2468     /// True if the variable is a __block variable.
2469     bool IsByRef;
2470 
2471     /// True if the variable is of aggregate type and has a constant
2472     /// initializer.
2473     bool IsConstantAggregate;
2474 
2475     /// Non-null if we should use lifetime annotations.
2476     llvm::Value *SizeForLifetimeMarkers;
2477 
2478     struct Invalid {};
2479     AutoVarEmission(Invalid) : Variable(nullptr), Addr(Address::invalid()) {}
2480 
2481     AutoVarEmission(const VarDecl &variable)
2482       : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr),
2483         IsByRef(false), IsConstantAggregate(false),
2484         SizeForLifetimeMarkers(nullptr) {}
2485 
2486     bool wasEmittedAsGlobal() const { return !Addr.isValid(); }
2487 
2488   public:
2489     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
2490 
2491     bool useLifetimeMarkers() const {
2492       return SizeForLifetimeMarkers != nullptr;
2493     }
2494     llvm::Value *getSizeForLifetimeMarkers() const {
2495       assert(useLifetimeMarkers());
2496       return SizeForLifetimeMarkers;
2497     }
2498 
2499     /// Returns the raw, allocated address, which is not necessarily
2500     /// the address of the object itself.
2501     Address getAllocatedAddress() const {
2502       return Addr;
2503     }
2504 
2505     /// Returns the address of the object within this declaration.
2506     /// Note that this does not chase the forwarding pointer for
2507     /// __block decls.
2508     Address getObjectAddress(CodeGenFunction &CGF) const {
2509       if (!IsByRef) return Addr;
2510 
2511       return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false);
2512     }
2513   };
2514   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
2515   void EmitAutoVarInit(const AutoVarEmission &emission);
2516   void EmitAutoVarCleanups(const AutoVarEmission &emission);
2517   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
2518                               QualType::DestructionKind dtorKind);
2519 
2520   /// Emits the alloca and debug information for the size expressions for each
2521   /// dimension of an array. It registers the association of its (1-dimensional)
2522   /// QualTypes and size expression's debug node, so that CGDebugInfo can
2523   /// reference this node when creating the DISubrange object to describe the
2524   /// array types.
2525   void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI,
2526                                               const VarDecl &D,
2527                                               bool EmitDebugInfo);
2528 
2529   void EmitStaticVarDecl(const VarDecl &D,
2530                          llvm::GlobalValue::LinkageTypes Linkage);
2531 
2532   class ParamValue {
2533     llvm::Value *Value;
2534     unsigned Alignment;
2535     ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {}
2536   public:
2537     static ParamValue forDirect(llvm::Value *value) {
2538       return ParamValue(value, 0);
2539     }
2540     static ParamValue forIndirect(Address addr) {
2541       assert(!addr.getAlignment().isZero());
2542       return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity());
2543     }
2544 
2545     bool isIndirect() const { return Alignment != 0; }
2546     llvm::Value *getAnyValue() const { return Value; }
2547 
2548     llvm::Value *getDirectValue() const {
2549       assert(!isIndirect());
2550       return Value;
2551     }
2552 
2553     Address getIndirectAddress() const {
2554       assert(isIndirect());
2555       return Address(Value, CharUnits::fromQuantity(Alignment));
2556     }
2557   };
2558 
2559   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
2560   void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo);
2561 
2562   /// protectFromPeepholes - Protect a value that we're intending to
2563   /// store to the side, but which will probably be used later, from
2564   /// aggressive peepholing optimizations that might delete it.
2565   ///
2566   /// Pass the result to unprotectFromPeepholes to declare that
2567   /// protection is no longer required.
2568   ///
2569   /// There's no particular reason why this shouldn't apply to
2570   /// l-values, it's just that no existing peepholes work on pointers.
2571   PeepholeProtection protectFromPeepholes(RValue rvalue);
2572   void unprotectFromPeepholes(PeepholeProtection protection);
2573 
2574   void EmitAlignmentAssumption(llvm::Value *PtrValue, llvm::Value *Alignment,
2575                                llvm::Value *OffsetValue = nullptr) {
2576     Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment,
2577                                       OffsetValue);
2578   }
2579 
2580   //===--------------------------------------------------------------------===//
2581   //                             Statement Emission
2582   //===--------------------------------------------------------------------===//
2583 
2584   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
2585   void EmitStopPoint(const Stmt *S);
2586 
2587   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
2588   /// this function even if there is no current insertion point.
2589   ///
2590   /// This function may clear the current insertion point; callers should use
2591   /// EnsureInsertPoint if they wish to subsequently generate code without first
2592   /// calling EmitBlock, EmitBranch, or EmitStmt.
2593   void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None);
2594 
2595   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
2596   /// necessarily require an insertion point or debug information; typically
2597   /// because the statement amounts to a jump or a container of other
2598   /// statements.
2599   ///
2600   /// \return True if the statement was handled.
2601   bool EmitSimpleStmt(const Stmt *S);
2602 
2603   Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
2604                            AggValueSlot AVS = AggValueSlot::ignored());
2605   Address EmitCompoundStmtWithoutScope(const CompoundStmt &S,
2606                                        bool GetLast = false,
2607                                        AggValueSlot AVS =
2608                                                 AggValueSlot::ignored());
2609 
2610   /// EmitLabel - Emit the block for the given label. It is legal to call this
2611   /// function even if there is no current insertion point.
2612   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
2613 
2614   void EmitLabelStmt(const LabelStmt &S);
2615   void EmitAttributedStmt(const AttributedStmt &S);
2616   void EmitGotoStmt(const GotoStmt &S);
2617   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
2618   void EmitIfStmt(const IfStmt &S);
2619 
2620   void EmitWhileStmt(const WhileStmt &S,
2621                      ArrayRef<const Attr *> Attrs = None);
2622   void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None);
2623   void EmitForStmt(const ForStmt &S,
2624                    ArrayRef<const Attr *> Attrs = None);
2625   void EmitReturnStmt(const ReturnStmt &S);
2626   void EmitDeclStmt(const DeclStmt &S);
2627   void EmitBreakStmt(const BreakStmt &S);
2628   void EmitContinueStmt(const ContinueStmt &S);
2629   void EmitSwitchStmt(const SwitchStmt &S);
2630   void EmitDefaultStmt(const DefaultStmt &S);
2631   void EmitCaseStmt(const CaseStmt &S);
2632   void EmitCaseStmtRange(const CaseStmt &S);
2633   void EmitAsmStmt(const AsmStmt &S);
2634 
2635   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
2636   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
2637   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
2638   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
2639   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
2640 
2641   void EmitCoroutineBody(const CoroutineBodyStmt &S);
2642   void EmitCoreturnStmt(const CoreturnStmt &S);
2643   RValue EmitCoawaitExpr(const CoawaitExpr &E,
2644                          AggValueSlot aggSlot = AggValueSlot::ignored(),
2645                          bool ignoreResult = false);
2646   LValue EmitCoawaitLValue(const CoawaitExpr *E);
2647   RValue EmitCoyieldExpr(const CoyieldExpr &E,
2648                          AggValueSlot aggSlot = AggValueSlot::ignored(),
2649                          bool ignoreResult = false);
2650   LValue EmitCoyieldLValue(const CoyieldExpr *E);
2651   RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID);
2652 
2653   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2654   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2655 
2656   void EmitCXXTryStmt(const CXXTryStmt &S);
2657   void EmitSEHTryStmt(const SEHTryStmt &S);
2658   void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
2659   void EnterSEHTryStmt(const SEHTryStmt &S);
2660   void ExitSEHTryStmt(const SEHTryStmt &S);
2661 
2662   void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter,
2663                               const Stmt *OutlinedStmt);
2664 
2665   llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
2666                                             const SEHExceptStmt &Except);
2667 
2668   llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF,
2669                                              const SEHFinallyStmt &Finally);
2670 
2671   void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF,
2672                                 llvm::Value *ParentFP,
2673                                 llvm::Value *EntryEBP);
2674   llvm::Value *EmitSEHExceptionCode();
2675   llvm::Value *EmitSEHExceptionInfo();
2676   llvm::Value *EmitSEHAbnormalTermination();
2677 
2678   /// Emit simple code for OpenMP directives in Simd-only mode.
2679   void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D);
2680 
2681   /// Scan the outlined statement for captures from the parent function. For
2682   /// each capture, mark the capture as escaped and emit a call to
2683   /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap.
2684   void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
2685                           bool IsFilter);
2686 
2687   /// Recovers the address of a local in a parent function. ParentVar is the
2688   /// address of the variable used in the immediate parent function. It can
2689   /// either be an alloca or a call to llvm.localrecover if there are nested
2690   /// outlined functions. ParentFP is the frame pointer of the outermost parent
2691   /// frame.
2692   Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF,
2693                                     Address ParentVar,
2694                                     llvm::Value *ParentFP);
2695 
2696   void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
2697                            ArrayRef<const Attr *> Attrs = None);
2698 
2699   /// Controls insertion of cancellation exit blocks in worksharing constructs.
2700   class OMPCancelStackRAII {
2701     CodeGenFunction &CGF;
2702 
2703   public:
2704     OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
2705                        bool HasCancel)
2706         : CGF(CGF) {
2707       CGF.OMPCancelStack.enter(CGF, Kind, HasCancel);
2708     }
2709     ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); }
2710   };
2711 
2712   /// Returns calculated size of the specified type.
2713   llvm::Value *getTypeSize(QualType Ty);
2714   LValue InitCapturedStruct(const CapturedStmt &S);
2715   llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
2716   llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
2717   Address GenerateCapturedStmtArgument(const CapturedStmt &S);
2718   llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S);
2719   void GenerateOpenMPCapturedVars(const CapturedStmt &S,
2720                                   SmallVectorImpl<llvm::Value *> &CapturedVars);
2721   void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy,
2722                           SourceLocation Loc);
2723   /// \brief Perform element by element copying of arrays with type \a
2724   /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
2725   /// generated by \a CopyGen.
2726   ///
2727   /// \param DestAddr Address of the destination array.
2728   /// \param SrcAddr Address of the source array.
2729   /// \param OriginalType Type of destination and source arrays.
2730   /// \param CopyGen Copying procedure that copies value of single array element
2731   /// to another single array element.
2732   void EmitOMPAggregateAssign(
2733       Address DestAddr, Address SrcAddr, QualType OriginalType,
2734       const llvm::function_ref<void(Address, Address)> &CopyGen);
2735   /// \brief Emit proper copying of data from one variable to another.
2736   ///
2737   /// \param OriginalType Original type of the copied variables.
2738   /// \param DestAddr Destination address.
2739   /// \param SrcAddr Source address.
2740   /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
2741   /// type of the base array element).
2742   /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
2743   /// the base array element).
2744   /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
2745   /// DestVD.
2746   void EmitOMPCopy(QualType OriginalType,
2747                    Address DestAddr, Address SrcAddr,
2748                    const VarDecl *DestVD, const VarDecl *SrcVD,
2749                    const Expr *Copy);
2750   /// \brief Emit atomic update code for constructs: \a X = \a X \a BO \a E or
2751   /// \a X = \a E \a BO \a E.
2752   ///
2753   /// \param X Value to be updated.
2754   /// \param E Update value.
2755   /// \param BO Binary operation for update operation.
2756   /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
2757   /// expression, false otherwise.
2758   /// \param AO Atomic ordering of the generated atomic instructions.
2759   /// \param CommonGen Code generator for complex expressions that cannot be
2760   /// expressed through atomicrmw instruction.
2761   /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was
2762   /// generated, <false, RValue::get(nullptr)> otherwise.
2763   std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr(
2764       LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
2765       llvm::AtomicOrdering AO, SourceLocation Loc,
2766       const llvm::function_ref<RValue(RValue)> &CommonGen);
2767   bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
2768                                  OMPPrivateScope &PrivateScope);
2769   void EmitOMPPrivateClause(const OMPExecutableDirective &D,
2770                             OMPPrivateScope &PrivateScope);
2771   void EmitOMPUseDevicePtrClause(
2772       const OMPClause &C, OMPPrivateScope &PrivateScope,
2773       const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap);
2774   /// \brief Emit code for copyin clause in \a D directive. The next code is
2775   /// generated at the start of outlined functions for directives:
2776   /// \code
2777   /// threadprivate_var1 = master_threadprivate_var1;
2778   /// operator=(threadprivate_var2, master_threadprivate_var2);
2779   /// ...
2780   /// __kmpc_barrier(&loc, global_tid);
2781   /// \endcode
2782   ///
2783   /// \param D OpenMP directive possibly with 'copyin' clause(s).
2784   /// \returns true if at least one copyin variable is found, false otherwise.
2785   bool EmitOMPCopyinClause(const OMPExecutableDirective &D);
2786   /// \brief Emit initial code for lastprivate variables. If some variable is
2787   /// not also firstprivate, then the default initialization is used. Otherwise
2788   /// initialization of this variable is performed by EmitOMPFirstprivateClause
2789   /// method.
2790   ///
2791   /// \param D Directive that may have 'lastprivate' directives.
2792   /// \param PrivateScope Private scope for capturing lastprivate variables for
2793   /// proper codegen in internal captured statement.
2794   ///
2795   /// \returns true if there is at least one lastprivate variable, false
2796   /// otherwise.
2797   bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D,
2798                                     OMPPrivateScope &PrivateScope);
2799   /// \brief Emit final copying of lastprivate values to original variables at
2800   /// the end of the worksharing or simd directive.
2801   ///
2802   /// \param D Directive that has at least one 'lastprivate' directives.
2803   /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
2804   /// it is the last iteration of the loop code in associated directive, or to
2805   /// 'i1 false' otherwise. If this item is nullptr, no final check is required.
2806   void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D,
2807                                      bool NoFinals,
2808                                      llvm::Value *IsLastIterCond = nullptr);
2809   /// Emit initial code for linear clauses.
2810   void EmitOMPLinearClause(const OMPLoopDirective &D,
2811                            CodeGenFunction::OMPPrivateScope &PrivateScope);
2812   /// Emit final code for linear clauses.
2813   /// \param CondGen Optional conditional code for final part of codegen for
2814   /// linear clause.
2815   void EmitOMPLinearClauseFinal(
2816       const OMPLoopDirective &D,
2817       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen);
2818   /// \brief Emit initial code for reduction variables. Creates reduction copies
2819   /// and initializes them with the values according to OpenMP standard.
2820   ///
2821   /// \param D Directive (possibly) with the 'reduction' clause.
2822   /// \param PrivateScope Private scope for capturing reduction variables for
2823   /// proper codegen in internal captured statement.
2824   ///
2825   void EmitOMPReductionClauseInit(const OMPExecutableDirective &D,
2826                                   OMPPrivateScope &PrivateScope);
2827   /// \brief Emit final update of reduction values to original variables at
2828   /// the end of the directive.
2829   ///
2830   /// \param D Directive that has at least one 'reduction' directives.
2831   /// \param ReductionKind The kind of reduction to perform.
2832   void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D,
2833                                    const OpenMPDirectiveKind ReductionKind);
2834   /// \brief Emit initial code for linear variables. Creates private copies
2835   /// and initializes them with the values according to OpenMP standard.
2836   ///
2837   /// \param D Directive (possibly) with the 'linear' clause.
2838   /// \return true if at least one linear variable is found that should be
2839   /// initialized with the value of the original variable, false otherwise.
2840   bool EmitOMPLinearClauseInit(const OMPLoopDirective &D);
2841 
2842   typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/,
2843                                         llvm::Value * /*OutlinedFn*/,
2844                                         const OMPTaskDataTy & /*Data*/)>
2845       TaskGenTy;
2846   void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S,
2847                                  const OpenMPDirectiveKind CapturedRegion,
2848                                  const RegionCodeGenTy &BodyGen,
2849                                  const TaskGenTy &TaskGen, OMPTaskDataTy &Data);
2850   struct OMPTargetDataInfo {
2851     Address BasePointersArray = Address::invalid();
2852     Address PointersArray = Address::invalid();
2853     Address SizesArray = Address::invalid();
2854     unsigned NumberOfTargetItems = 0;
2855     explicit OMPTargetDataInfo() = default;
2856     OMPTargetDataInfo(Address BasePointersArray, Address PointersArray,
2857                       Address SizesArray, unsigned NumberOfTargetItems)
2858         : BasePointersArray(BasePointersArray), PointersArray(PointersArray),
2859           SizesArray(SizesArray), NumberOfTargetItems(NumberOfTargetItems) {}
2860   };
2861   void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S,
2862                                        const RegionCodeGenTy &BodyGen,
2863                                        OMPTargetDataInfo &InputInfo);
2864 
2865   void EmitOMPParallelDirective(const OMPParallelDirective &S);
2866   void EmitOMPSimdDirective(const OMPSimdDirective &S);
2867   void EmitOMPForDirective(const OMPForDirective &S);
2868   void EmitOMPForSimdDirective(const OMPForSimdDirective &S);
2869   void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
2870   void EmitOMPSectionDirective(const OMPSectionDirective &S);
2871   void EmitOMPSingleDirective(const OMPSingleDirective &S);
2872   void EmitOMPMasterDirective(const OMPMasterDirective &S);
2873   void EmitOMPCriticalDirective(const OMPCriticalDirective &S);
2874   void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
2875   void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S);
2876   void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
2877   void EmitOMPTaskDirective(const OMPTaskDirective &S);
2878   void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
2879   void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
2880   void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
2881   void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S);
2882   void EmitOMPFlushDirective(const OMPFlushDirective &S);
2883   void EmitOMPOrderedDirective(const OMPOrderedDirective &S);
2884   void EmitOMPAtomicDirective(const OMPAtomicDirective &S);
2885   void EmitOMPTargetDirective(const OMPTargetDirective &S);
2886   void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S);
2887   void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S);
2888   void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S);
2889   void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S);
2890   void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S);
2891   void
2892   EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S);
2893   void EmitOMPTeamsDirective(const OMPTeamsDirective &S);
2894   void
2895   EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S);
2896   void EmitOMPCancelDirective(const OMPCancelDirective &S);
2897   void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S);
2898   void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S);
2899   void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S);
2900   void EmitOMPDistributeDirective(const OMPDistributeDirective &S);
2901   void EmitOMPDistributeParallelForDirective(
2902       const OMPDistributeParallelForDirective &S);
2903   void EmitOMPDistributeParallelForSimdDirective(
2904       const OMPDistributeParallelForSimdDirective &S);
2905   void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S);
2906   void EmitOMPTargetParallelForSimdDirective(
2907       const OMPTargetParallelForSimdDirective &S);
2908   void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S);
2909   void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S);
2910   void
2911   EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S);
2912   void EmitOMPTeamsDistributeParallelForSimdDirective(
2913       const OMPTeamsDistributeParallelForSimdDirective &S);
2914   void EmitOMPTeamsDistributeParallelForDirective(
2915       const OMPTeamsDistributeParallelForDirective &S);
2916   void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S);
2917   void EmitOMPTargetTeamsDistributeDirective(
2918       const OMPTargetTeamsDistributeDirective &S);
2919   void EmitOMPTargetTeamsDistributeParallelForDirective(
2920       const OMPTargetTeamsDistributeParallelForDirective &S);
2921   void EmitOMPTargetTeamsDistributeParallelForSimdDirective(
2922       const OMPTargetTeamsDistributeParallelForSimdDirective &S);
2923   void EmitOMPTargetTeamsDistributeSimdDirective(
2924       const OMPTargetTeamsDistributeSimdDirective &S);
2925 
2926   /// Emit device code for the target directive.
2927   static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM,
2928                                           StringRef ParentName,
2929                                           const OMPTargetDirective &S);
2930   static void
2931   EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
2932                                       const OMPTargetParallelDirective &S);
2933   /// Emit device code for the target parallel for directive.
2934   static void EmitOMPTargetParallelForDeviceFunction(
2935       CodeGenModule &CGM, StringRef ParentName,
2936       const OMPTargetParallelForDirective &S);
2937   /// Emit device code for the target parallel for simd directive.
2938   static void EmitOMPTargetParallelForSimdDeviceFunction(
2939       CodeGenModule &CGM, StringRef ParentName,
2940       const OMPTargetParallelForSimdDirective &S);
2941   /// Emit device code for the target teams directive.
2942   static void
2943   EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
2944                                    const OMPTargetTeamsDirective &S);
2945   /// Emit device code for the target teams distribute directive.
2946   static void EmitOMPTargetTeamsDistributeDeviceFunction(
2947       CodeGenModule &CGM, StringRef ParentName,
2948       const OMPTargetTeamsDistributeDirective &S);
2949   /// Emit device code for the target teams distribute simd directive.
2950   static void EmitOMPTargetTeamsDistributeSimdDeviceFunction(
2951       CodeGenModule &CGM, StringRef ParentName,
2952       const OMPTargetTeamsDistributeSimdDirective &S);
2953   /// Emit device code for the target simd directive.
2954   static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM,
2955                                               StringRef ParentName,
2956                                               const OMPTargetSimdDirective &S);
2957   /// Emit device code for the target teams distribute parallel for simd
2958   /// directive.
2959   static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction(
2960       CodeGenModule &CGM, StringRef ParentName,
2961       const OMPTargetTeamsDistributeParallelForSimdDirective &S);
2962 
2963   static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction(
2964       CodeGenModule &CGM, StringRef ParentName,
2965       const OMPTargetTeamsDistributeParallelForDirective &S);
2966   /// \brief Emit inner loop of the worksharing/simd construct.
2967   ///
2968   /// \param S Directive, for which the inner loop must be emitted.
2969   /// \param RequiresCleanup true, if directive has some associated private
2970   /// variables.
2971   /// \param LoopCond Bollean condition for loop continuation.
2972   /// \param IncExpr Increment expression for loop control variable.
2973   /// \param BodyGen Generator for the inner body of the inner loop.
2974   /// \param PostIncGen Genrator for post-increment code (required for ordered
2975   /// loop directvies).
2976   void EmitOMPInnerLoop(
2977       const Stmt &S, bool RequiresCleanup, const Expr *LoopCond,
2978       const Expr *IncExpr,
2979       const llvm::function_ref<void(CodeGenFunction &)> &BodyGen,
2980       const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen);
2981 
2982   JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind);
2983   /// Emit initial code for loop counters of loop-based directives.
2984   void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S,
2985                                   OMPPrivateScope &LoopScope);
2986 
2987   /// Helper for the OpenMP loop directives.
2988   void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit);
2989 
2990   /// \brief Emit code for the worksharing loop-based directive.
2991   /// \return true, if this construct has any lastprivate clause, false -
2992   /// otherwise.
2993   bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB,
2994                               const CodeGenLoopBoundsTy &CodeGenLoopBounds,
2995                               const CodeGenDispatchBoundsTy &CGDispatchBounds);
2996 
2997   /// Emit code for the distribute loop-based directive.
2998   void EmitOMPDistributeLoop(const OMPLoopDirective &S,
2999                              const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr);
3000 
3001   /// Helpers for the OpenMP loop directives.
3002   void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false);
3003   void EmitOMPSimdFinal(
3004       const OMPLoopDirective &D,
3005       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen);
3006 
3007   /// Emits the lvalue for the expression with possibly captured variable.
3008   LValue EmitOMPSharedLValue(const Expr *E);
3009 
3010 private:
3011   /// Helpers for blocks.
3012   llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
3013 
3014   /// struct with the values to be passed to the OpenMP loop-related functions
3015   struct OMPLoopArguments {
3016     /// loop lower bound
3017     Address LB = Address::invalid();
3018     /// loop upper bound
3019     Address UB = Address::invalid();
3020     /// loop stride
3021     Address ST = Address::invalid();
3022     /// isLastIteration argument for runtime functions
3023     Address IL = Address::invalid();
3024     /// Chunk value generated by sema
3025     llvm::Value *Chunk = nullptr;
3026     /// EnsureUpperBound
3027     Expr *EUB = nullptr;
3028     /// IncrementExpression
3029     Expr *IncExpr = nullptr;
3030     /// Loop initialization
3031     Expr *Init = nullptr;
3032     /// Loop exit condition
3033     Expr *Cond = nullptr;
3034     /// Update of LB after a whole chunk has been executed
3035     Expr *NextLB = nullptr;
3036     /// Update of UB after a whole chunk has been executed
3037     Expr *NextUB = nullptr;
3038     OMPLoopArguments() = default;
3039     OMPLoopArguments(Address LB, Address UB, Address ST, Address IL,
3040                      llvm::Value *Chunk = nullptr, Expr *EUB = nullptr,
3041                      Expr *IncExpr = nullptr, Expr *Init = nullptr,
3042                      Expr *Cond = nullptr, Expr *NextLB = nullptr,
3043                      Expr *NextUB = nullptr)
3044         : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB),
3045           IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB),
3046           NextUB(NextUB) {}
3047   };
3048   void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic,
3049                         const OMPLoopDirective &S, OMPPrivateScope &LoopScope,
3050                         const OMPLoopArguments &LoopArgs,
3051                         const CodeGenLoopTy &CodeGenLoop,
3052                         const CodeGenOrderedTy &CodeGenOrdered);
3053   void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind,
3054                            bool IsMonotonic, const OMPLoopDirective &S,
3055                            OMPPrivateScope &LoopScope, bool Ordered,
3056                            const OMPLoopArguments &LoopArgs,
3057                            const CodeGenDispatchBoundsTy &CGDispatchBounds);
3058   void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind,
3059                                   const OMPLoopDirective &S,
3060                                   OMPPrivateScope &LoopScope,
3061                                   const OMPLoopArguments &LoopArgs,
3062                                   const CodeGenLoopTy &CodeGenLoopContent);
3063   /// \brief Emit code for sections directive.
3064   void EmitSections(const OMPExecutableDirective &S);
3065 
3066 public:
3067 
3068   //===--------------------------------------------------------------------===//
3069   //                         LValue Expression Emission
3070   //===--------------------------------------------------------------------===//
3071 
3072   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
3073   RValue GetUndefRValue(QualType Ty);
3074 
3075   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
3076   /// and issue an ErrorUnsupported style diagnostic (using the
3077   /// provided Name).
3078   RValue EmitUnsupportedRValue(const Expr *E,
3079                                const char *Name);
3080 
3081   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
3082   /// an ErrorUnsupported style diagnostic (using the provided Name).
3083   LValue EmitUnsupportedLValue(const Expr *E,
3084                                const char *Name);
3085 
3086   /// EmitLValue - Emit code to compute a designator that specifies the location
3087   /// of the expression.
3088   ///
3089   /// This can return one of two things: a simple address or a bitfield
3090   /// reference.  In either case, the LLVM Value* in the LValue structure is
3091   /// guaranteed to be an LLVM pointer type.
3092   ///
3093   /// If this returns a bitfield reference, nothing about the pointee type of
3094   /// the LLVM value is known: For example, it may not be a pointer to an
3095   /// integer.
3096   ///
3097   /// If this returns a normal address, and if the lvalue's C type is fixed
3098   /// size, this method guarantees that the returned pointer type will point to
3099   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
3100   /// variable length type, this is not possible.
3101   ///
3102   LValue EmitLValue(const Expr *E);
3103 
3104   /// \brief Same as EmitLValue but additionally we generate checking code to
3105   /// guard against undefined behavior.  This is only suitable when we know
3106   /// that the address will be used to access the object.
3107   LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
3108 
3109   RValue convertTempToRValue(Address addr, QualType type,
3110                              SourceLocation Loc);
3111 
3112   void EmitAtomicInit(Expr *E, LValue lvalue);
3113 
3114   bool LValueIsSuitableForInlineAtomic(LValue Src);
3115 
3116   RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
3117                         AggValueSlot Slot = AggValueSlot::ignored());
3118 
3119   RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
3120                         llvm::AtomicOrdering AO, bool IsVolatile = false,
3121                         AggValueSlot slot = AggValueSlot::ignored());
3122 
3123   void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
3124 
3125   void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
3126                        bool IsVolatile, bool isInit);
3127 
3128   std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
3129       LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
3130       llvm::AtomicOrdering Success =
3131           llvm::AtomicOrdering::SequentiallyConsistent,
3132       llvm::AtomicOrdering Failure =
3133           llvm::AtomicOrdering::SequentiallyConsistent,
3134       bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
3135 
3136   void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
3137                         const llvm::function_ref<RValue(RValue)> &UpdateOp,
3138                         bool IsVolatile);
3139 
3140   /// EmitToMemory - Change a scalar value from its value
3141   /// representation to its in-memory representation.
3142   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
3143 
3144   /// EmitFromMemory - Change a scalar value from its memory
3145   /// representation to its value representation.
3146   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
3147 
3148   /// Check if the scalar \p Value is within the valid range for the given
3149   /// type \p Ty.
3150   ///
3151   /// Returns true if a check is needed (even if the range is unknown).
3152   bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
3153                             SourceLocation Loc);
3154 
3155   /// EmitLoadOfScalar - Load a scalar value from an address, taking
3156   /// care to appropriately convert from the memory representation to
3157   /// the LLVM value representation.
3158   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3159                                 SourceLocation Loc,
3160                                 AlignmentSource Source = AlignmentSource::Type,
3161                                 bool isNontemporal = false) {
3162     return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source),
3163                             CGM.getTBAAAccessInfo(Ty), isNontemporal);
3164   }
3165 
3166   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3167                                 SourceLocation Loc, LValueBaseInfo BaseInfo,
3168                                 TBAAAccessInfo TBAAInfo,
3169                                 bool isNontemporal = false);
3170 
3171   /// EmitLoadOfScalar - Load a scalar value from an address, taking
3172   /// care to appropriately convert from the memory representation to
3173   /// the LLVM value representation.  The l-value must be a simple
3174   /// l-value.
3175   llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
3176 
3177   /// EmitStoreOfScalar - Store a scalar value to an address, taking
3178   /// care to appropriately convert from the memory representation to
3179   /// the LLVM value representation.
3180   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3181                          bool Volatile, QualType Ty,
3182                          AlignmentSource Source = AlignmentSource::Type,
3183                          bool isInit = false, bool isNontemporal = false) {
3184     EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source),
3185                       CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal);
3186   }
3187 
3188   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3189                          bool Volatile, QualType Ty,
3190                          LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo,
3191                          bool isInit = false, bool isNontemporal = false);
3192 
3193   /// EmitStoreOfScalar - Store a scalar value to an address, taking
3194   /// care to appropriately convert from the memory representation to
3195   /// the LLVM value representation.  The l-value must be a simple
3196   /// l-value.  The isInit flag indicates whether this is an initialization.
3197   /// If so, atomic qualifiers are ignored and the store is always non-atomic.
3198   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
3199 
3200   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
3201   /// this method emits the address of the lvalue, then loads the result as an
3202   /// rvalue, returning the rvalue.
3203   RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
3204   RValue EmitLoadOfExtVectorElementLValue(LValue V);
3205   RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc);
3206   RValue EmitLoadOfGlobalRegLValue(LValue LV);
3207 
3208   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
3209   /// lvalue, where both are guaranteed to the have the same type, and that type
3210   /// is 'Ty'.
3211   void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
3212   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
3213   void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
3214 
3215   /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
3216   /// as EmitStoreThroughLValue.
3217   ///
3218   /// \param Result [out] - If non-null, this will be set to a Value* for the
3219   /// bit-field contents after the store, appropriate for use as the result of
3220   /// an assignment to the bit-field.
3221   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
3222                                       llvm::Value **Result=nullptr);
3223 
3224   /// Emit an l-value for an assignment (simple or compound) of complex type.
3225   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
3226   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
3227   LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
3228                                              llvm::Value *&Result);
3229 
3230   // Note: only available for agg return types
3231   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
3232   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
3233   // Note: only available for agg return types
3234   LValue EmitCallExprLValue(const CallExpr *E);
3235   // Note: only available for agg return types
3236   LValue EmitVAArgExprLValue(const VAArgExpr *E);
3237   LValue EmitDeclRefLValue(const DeclRefExpr *E);
3238   LValue EmitStringLiteralLValue(const StringLiteral *E);
3239   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
3240   LValue EmitPredefinedLValue(const PredefinedExpr *E);
3241   LValue EmitUnaryOpLValue(const UnaryOperator *E);
3242   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3243                                 bool Accessed = false);
3244   LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3245                                  bool IsLowerBound = true);
3246   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
3247   LValue EmitMemberExpr(const MemberExpr *E);
3248   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
3249   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
3250   LValue EmitInitListLValue(const InitListExpr *E);
3251   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
3252   LValue EmitCastLValue(const CastExpr *E);
3253   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
3254   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
3255 
3256   Address EmitExtVectorElementLValue(LValue V);
3257 
3258   RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
3259 
3260   Address EmitArrayToPointerDecay(const Expr *Array,
3261                                   LValueBaseInfo *BaseInfo = nullptr,
3262                                   TBAAAccessInfo *TBAAInfo = nullptr);
3263 
3264   class ConstantEmission {
3265     llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
3266     ConstantEmission(llvm::Constant *C, bool isReference)
3267       : ValueAndIsReference(C, isReference) {}
3268   public:
3269     ConstantEmission() {}
3270     static ConstantEmission forReference(llvm::Constant *C) {
3271       return ConstantEmission(C, true);
3272     }
3273     static ConstantEmission forValue(llvm::Constant *C) {
3274       return ConstantEmission(C, false);
3275     }
3276 
3277     explicit operator bool() const {
3278       return ValueAndIsReference.getOpaqueValue() != nullptr;
3279     }
3280 
3281     bool isReference() const { return ValueAndIsReference.getInt(); }
3282     LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
3283       assert(isReference());
3284       return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
3285                                             refExpr->getType());
3286     }
3287 
3288     llvm::Constant *getValue() const {
3289       assert(!isReference());
3290       return ValueAndIsReference.getPointer();
3291     }
3292   };
3293 
3294   ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
3295   ConstantEmission tryEmitAsConstant(const MemberExpr *ME);
3296 
3297   RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
3298                                 AggValueSlot slot = AggValueSlot::ignored());
3299   LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
3300 
3301   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3302                               const ObjCIvarDecl *Ivar);
3303   LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
3304   LValue EmitLValueForLambdaField(const FieldDecl *Field);
3305 
3306   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
3307   /// if the Field is a reference, this will return the address of the reference
3308   /// and not the address of the value stored in the reference.
3309   LValue EmitLValueForFieldInitialization(LValue Base,
3310                                           const FieldDecl* Field);
3311 
3312   LValue EmitLValueForIvar(QualType ObjectTy,
3313                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
3314                            unsigned CVRQualifiers);
3315 
3316   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
3317   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
3318   LValue EmitLambdaLValue(const LambdaExpr *E);
3319   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
3320   LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
3321 
3322   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
3323   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
3324   LValue EmitStmtExprLValue(const StmtExpr *E);
3325   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
3326   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
3327   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init);
3328 
3329   //===--------------------------------------------------------------------===//
3330   //                         Scalar Expression Emission
3331   //===--------------------------------------------------------------------===//
3332 
3333   /// EmitCall - Generate a call of the given function, expecting the given
3334   /// result type, and using the given argument list which specifies both the
3335   /// LLVM arguments and the types they were derived from.
3336   RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
3337                   ReturnValueSlot ReturnValue, const CallArgList &Args,
3338                   llvm::Instruction **callOrInvoke, SourceLocation Loc);
3339   RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
3340                   ReturnValueSlot ReturnValue, const CallArgList &Args,
3341                   llvm::Instruction **callOrInvoke = nullptr) {
3342     return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke,
3343                     SourceLocation());
3344   }
3345   RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E,
3346                   ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr);
3347   RValue EmitCallExpr(const CallExpr *E,
3348                       ReturnValueSlot ReturnValue = ReturnValueSlot());
3349   RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
3350   CGCallee EmitCallee(const Expr *E);
3351 
3352   void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl);
3353 
3354   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
3355                                   const Twine &name = "");
3356   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
3357                                   ArrayRef<llvm::Value*> args,
3358                                   const Twine &name = "");
3359   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
3360                                           const Twine &name = "");
3361   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
3362                                           ArrayRef<llvm::Value*> args,
3363                                           const Twine &name = "");
3364 
3365   SmallVector<llvm::OperandBundleDef, 1>
3366   getBundlesForFunclet(llvm::Value *Callee);
3367 
3368   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
3369                                   ArrayRef<llvm::Value *> Args,
3370                                   const Twine &Name = "");
3371   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
3372                                          ArrayRef<llvm::Value*> args,
3373                                          const Twine &name = "");
3374   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
3375                                          const Twine &name = "");
3376   void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
3377                                        ArrayRef<llvm::Value*> args);
3378 
3379   CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
3380                                      NestedNameSpecifier *Qual,
3381                                      llvm::Type *Ty);
3382 
3383   CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
3384                                                CXXDtorType Type,
3385                                                const CXXRecordDecl *RD);
3386 
3387   // These functions emit calls to the special functions of non-trivial C
3388   // structs.
3389   void defaultInitNonTrivialCStructVar(LValue Dst);
3390   void callCStructDefaultConstructor(LValue Dst);
3391   void callCStructDestructor(LValue Dst);
3392   void callCStructCopyConstructor(LValue Dst, LValue Src);
3393   void callCStructMoveConstructor(LValue Dst, LValue Src);
3394   void callCStructCopyAssignmentOperator(LValue Dst, LValue Src);
3395   void callCStructMoveAssignmentOperator(LValue Dst, LValue Src);
3396 
3397   RValue
3398   EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method,
3399                               const CGCallee &Callee,
3400                               ReturnValueSlot ReturnValue, llvm::Value *This,
3401                               llvm::Value *ImplicitParam,
3402                               QualType ImplicitParamTy, const CallExpr *E,
3403                               CallArgList *RtlArgs);
3404   RValue EmitCXXDestructorCall(const CXXDestructorDecl *DD,
3405                                const CGCallee &Callee,
3406                                llvm::Value *This, llvm::Value *ImplicitParam,
3407                                QualType ImplicitParamTy, const CallExpr *E,
3408                                StructorType Type);
3409   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
3410                                ReturnValueSlot ReturnValue);
3411   RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE,
3412                                                const CXXMethodDecl *MD,
3413                                                ReturnValueSlot ReturnValue,
3414                                                bool HasQualifier,
3415                                                NestedNameSpecifier *Qualifier,
3416                                                bool IsArrow, const Expr *Base);
3417   // Compute the object pointer.
3418   Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
3419                                           llvm::Value *memberPtr,
3420                                           const MemberPointerType *memberPtrType,
3421                                           LValueBaseInfo *BaseInfo = nullptr,
3422                                           TBAAAccessInfo *TBAAInfo = nullptr);
3423   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
3424                                       ReturnValueSlot ReturnValue);
3425 
3426   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
3427                                        const CXXMethodDecl *MD,
3428                                        ReturnValueSlot ReturnValue);
3429   RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E);
3430 
3431   RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
3432                                 ReturnValueSlot ReturnValue);
3433 
3434   RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E,
3435                                        ReturnValueSlot ReturnValue);
3436 
3437   RValue EmitBuiltinExpr(const FunctionDecl *FD,
3438                          unsigned BuiltinID, const CallExpr *E,
3439                          ReturnValueSlot ReturnValue);
3440 
3441   /// Emit IR for __builtin_os_log_format.
3442   RValue emitBuiltinOSLogFormat(const CallExpr &E);
3443 
3444   llvm::Function *generateBuiltinOSLogHelperFunction(
3445       const analyze_os_log::OSLogBufferLayout &Layout,
3446       CharUnits BufferAlignment);
3447 
3448   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
3449 
3450   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
3451   /// is unhandled by the current target.
3452   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3453 
3454   llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
3455                                              const llvm::CmpInst::Predicate Fp,
3456                                              const llvm::CmpInst::Predicate Ip,
3457                                              const llvm::Twine &Name = "");
3458   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
3459                                   llvm::Triple::ArchType Arch);
3460 
3461   llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
3462                                          unsigned LLVMIntrinsic,
3463                                          unsigned AltLLVMIntrinsic,
3464                                          const char *NameHint,
3465                                          unsigned Modifier,
3466                                          const CallExpr *E,
3467                                          SmallVectorImpl<llvm::Value *> &Ops,
3468                                          Address PtrOp0, Address PtrOp1,
3469                                          llvm::Triple::ArchType Arch);
3470   llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
3471                                           unsigned Modifier, llvm::Type *ArgTy,
3472                                           const CallExpr *E);
3473   llvm::Value *EmitNeonCall(llvm::Function *F,
3474                             SmallVectorImpl<llvm::Value*> &O,
3475                             const char *name,
3476                             unsigned shift = 0, bool rightshift = false);
3477   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
3478   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
3479                                    bool negateForRightShift);
3480   llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
3481                                  llvm::Type *Ty, bool usgn, const char *name);
3482   llvm::Value *vectorWrapScalar16(llvm::Value *Op);
3483   llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E,
3484                                       llvm::Triple::ArchType Arch);
3485 
3486   llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
3487   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3488   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3489   llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3490   llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3491   llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3492   llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
3493                                           const CallExpr *E);
3494   llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3495 
3496 private:
3497   enum class MSVCIntrin;
3498 
3499 public:
3500   llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E);
3501 
3502   llvm::Value *EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args);
3503 
3504   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
3505   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
3506   llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
3507   llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
3508   llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
3509   llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
3510                                 const ObjCMethodDecl *MethodWithObjects);
3511   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
3512   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
3513                              ReturnValueSlot Return = ReturnValueSlot());
3514 
3515   /// Retrieves the default cleanup kind for an ARC cleanup.
3516   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
3517   CleanupKind getARCCleanupKind() {
3518     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
3519              ? NormalAndEHCleanup : NormalCleanup;
3520   }
3521 
3522   // ARC primitives.
3523   void EmitARCInitWeak(Address addr, llvm::Value *value);
3524   void EmitARCDestroyWeak(Address addr);
3525   llvm::Value *EmitARCLoadWeak(Address addr);
3526   llvm::Value *EmitARCLoadWeakRetained(Address addr);
3527   llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored);
3528   void EmitARCCopyWeak(Address dst, Address src);
3529   void EmitARCMoveWeak(Address dst, Address src);
3530   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
3531   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
3532   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
3533                                   bool resultIgnored);
3534   llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value,
3535                                       bool resultIgnored);
3536   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
3537   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
3538   llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
3539   void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise);
3540   void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
3541   llvm::Value *EmitARCAutorelease(llvm::Value *value);
3542   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
3543   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
3544   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
3545   llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value);
3546 
3547   std::pair<LValue,llvm::Value*>
3548   EmitARCStoreAutoreleasing(const BinaryOperator *e);
3549   std::pair<LValue,llvm::Value*>
3550   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
3551   std::pair<LValue,llvm::Value*>
3552   EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored);
3553 
3554   llvm::Value *EmitObjCThrowOperand(const Expr *expr);
3555   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
3556   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
3557 
3558   llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
3559   llvm::Value *EmitARCReclaimReturnedObject(const Expr *e,
3560                                             bool allowUnsafeClaim);
3561   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
3562   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
3563   llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr);
3564 
3565   void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
3566 
3567   static Destroyer destroyARCStrongImprecise;
3568   static Destroyer destroyARCStrongPrecise;
3569   static Destroyer destroyARCWeak;
3570   static Destroyer emitARCIntrinsicUse;
3571   static Destroyer destroyNonTrivialCStruct;
3572 
3573   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
3574   llvm::Value *EmitObjCAutoreleasePoolPush();
3575   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
3576   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
3577   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
3578 
3579   /// \brief Emits a reference binding to the passed in expression.
3580   RValue EmitReferenceBindingToExpr(const Expr *E);
3581 
3582   //===--------------------------------------------------------------------===//
3583   //                           Expression Emission
3584   //===--------------------------------------------------------------------===//
3585 
3586   // Expressions are broken into three classes: scalar, complex, aggregate.
3587 
3588   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
3589   /// scalar type, returning the result.
3590   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
3591 
3592   /// Emit a conversion from the specified type to the specified destination
3593   /// type, both of which are LLVM scalar types.
3594   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
3595                                     QualType DstTy, SourceLocation Loc);
3596 
3597   /// Emit a conversion from the specified complex type to the specified
3598   /// destination type, where the destination type is an LLVM scalar type.
3599   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
3600                                              QualType DstTy,
3601                                              SourceLocation Loc);
3602 
3603   /// EmitAggExpr - Emit the computation of the specified expression
3604   /// of aggregate type.  The result is computed into the given slot,
3605   /// which may be null to indicate that the value is not needed.
3606   void EmitAggExpr(const Expr *E, AggValueSlot AS);
3607 
3608   /// EmitAggExprToLValue - Emit the computation of the specified expression of
3609   /// aggregate type into a temporary LValue.
3610   LValue EmitAggExprToLValue(const Expr *E);
3611 
3612   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
3613   /// make sure it survives garbage collection until this point.
3614   void EmitExtendGCLifetime(llvm::Value *object);
3615 
3616   /// EmitComplexExpr - Emit the computation of the specified expression of
3617   /// complex type, returning the result.
3618   ComplexPairTy EmitComplexExpr(const Expr *E,
3619                                 bool IgnoreReal = false,
3620                                 bool IgnoreImag = false);
3621 
3622   /// EmitComplexExprIntoLValue - Emit the given expression of complex
3623   /// type and place its result into the specified l-value.
3624   void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
3625 
3626   /// EmitStoreOfComplex - Store a complex number into the specified l-value.
3627   void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
3628 
3629   /// EmitLoadOfComplex - Load a complex number from the specified l-value.
3630   ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
3631 
3632   Address emitAddrOfRealComponent(Address complex, QualType complexType);
3633   Address emitAddrOfImagComponent(Address complex, QualType complexType);
3634 
3635   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
3636   /// global variable that has already been created for it.  If the initializer
3637   /// has a different type than GV does, this may free GV and return a different
3638   /// one.  Otherwise it just returns GV.
3639   llvm::GlobalVariable *
3640   AddInitializerToStaticVarDecl(const VarDecl &D,
3641                                 llvm::GlobalVariable *GV);
3642 
3643 
3644   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
3645   /// variable with global storage.
3646   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
3647                                 bool PerformInit);
3648 
3649   llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::Constant *Dtor,
3650                                    llvm::Constant *Addr);
3651 
3652   /// Call atexit() with a function that passes the given argument to
3653   /// the given function.
3654   void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn,
3655                                     llvm::Constant *addr);
3656 
3657   /// Emit code in this function to perform a guarded variable
3658   /// initialization.  Guarded initializations are used when it's not
3659   /// possible to prove that an initialization will be done exactly
3660   /// once, e.g. with a static local variable or a static data member
3661   /// of a class template.
3662   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
3663                           bool PerformInit);
3664 
3665   enum class GuardKind { VariableGuard, TlsGuard };
3666 
3667   /// Emit a branch to select whether or not to perform guarded initialization.
3668   void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit,
3669                                 llvm::BasicBlock *InitBlock,
3670                                 llvm::BasicBlock *NoInitBlock,
3671                                 GuardKind Kind, const VarDecl *D);
3672 
3673   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
3674   /// variables.
3675   void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
3676                                  ArrayRef<llvm::Function *> CXXThreadLocals,
3677                                  Address Guard = Address::invalid());
3678 
3679   /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
3680   /// variables.
3681   void GenerateCXXGlobalDtorsFunc(
3682       llvm::Function *Fn,
3683       const std::vector<std::pair<llvm::WeakTrackingVH, llvm::Constant *>>
3684           &DtorsAndObjects);
3685 
3686   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
3687                                         const VarDecl *D,
3688                                         llvm::GlobalVariable *Addr,
3689                                         bool PerformInit);
3690 
3691   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
3692 
3693   void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp);
3694 
3695   void enterFullExpression(const ExprWithCleanups *E) {
3696     if (E->getNumObjects() == 0) return;
3697     enterNonTrivialFullExpression(E);
3698   }
3699   void enterNonTrivialFullExpression(const ExprWithCleanups *E);
3700 
3701   void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
3702 
3703   void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest);
3704 
3705   RValue EmitAtomicExpr(AtomicExpr *E);
3706 
3707   //===--------------------------------------------------------------------===//
3708   //                         Annotations Emission
3709   //===--------------------------------------------------------------------===//
3710 
3711   /// Emit an annotation call (intrinsic or builtin).
3712   llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
3713                                   llvm::Value *AnnotatedVal,
3714                                   StringRef AnnotationStr,
3715                                   SourceLocation Location);
3716 
3717   /// Emit local annotations for the local variable V, declared by D.
3718   void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
3719 
3720   /// Emit field annotations for the given field & value. Returns the
3721   /// annotation result.
3722   Address EmitFieldAnnotations(const FieldDecl *D, Address V);
3723 
3724   //===--------------------------------------------------------------------===//
3725   //                             Internal Helpers
3726   //===--------------------------------------------------------------------===//
3727 
3728   /// ContainsLabel - Return true if the statement contains a label in it.  If
3729   /// this statement is not executed normally, it not containing a label means
3730   /// that we can just remove the code.
3731   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
3732 
3733   /// containsBreak - Return true if the statement contains a break out of it.
3734   /// If the statement (recursively) contains a switch or loop with a break
3735   /// inside of it, this is fine.
3736   static bool containsBreak(const Stmt *S);
3737 
3738   /// Determine if the given statement might introduce a declaration into the
3739   /// current scope, by being a (possibly-labelled) DeclStmt.
3740   static bool mightAddDeclToScope(const Stmt *S);
3741 
3742   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
3743   /// to a constant, or if it does but contains a label, return false.  If it
3744   /// constant folds return true and set the boolean result in Result.
3745   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result,
3746                                     bool AllowLabels = false);
3747 
3748   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
3749   /// to a constant, or if it does but contains a label, return false.  If it
3750   /// constant folds return true and set the folded value.
3751   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result,
3752                                     bool AllowLabels = false);
3753 
3754   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
3755   /// if statement) to the specified blocks.  Based on the condition, this might
3756   /// try to simplify the codegen of the conditional based on the branch.
3757   /// TrueCount should be the number of times we expect the condition to
3758   /// evaluate to true based on PGO data.
3759   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
3760                             llvm::BasicBlock *FalseBlock, uint64_t TrueCount);
3761 
3762   /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is
3763   /// nonnull, if \p LHS is marked _Nonnull.
3764   void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc);
3765 
3766   /// An enumeration which makes it easier to specify whether or not an
3767   /// operation is a subtraction.
3768   enum { NotSubtraction = false, IsSubtraction = true };
3769 
3770   /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to
3771   /// detect undefined behavior when the pointer overflow sanitizer is enabled.
3772   /// \p SignedIndices indicates whether any of the GEP indices are signed.
3773   /// \p IsSubtraction indicates whether the expression used to form the GEP
3774   /// is a subtraction.
3775   llvm::Value *EmitCheckedInBoundsGEP(llvm::Value *Ptr,
3776                                       ArrayRef<llvm::Value *> IdxList,
3777                                       bool SignedIndices,
3778                                       bool IsSubtraction,
3779                                       SourceLocation Loc,
3780                                       const Twine &Name = "");
3781 
3782   /// Specifies which type of sanitizer check to apply when handling a
3783   /// particular builtin.
3784   enum BuiltinCheckKind {
3785     BCK_CTZPassedZero,
3786     BCK_CLZPassedZero,
3787   };
3788 
3789   /// Emits an argument for a call to a builtin. If the builtin sanitizer is
3790   /// enabled, a runtime check specified by \p Kind is also emitted.
3791   llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind);
3792 
3793   /// \brief Emit a description of a type in a format suitable for passing to
3794   /// a runtime sanitizer handler.
3795   llvm::Constant *EmitCheckTypeDescriptor(QualType T);
3796 
3797   /// \brief Convert a value into a format suitable for passing to a runtime
3798   /// sanitizer handler.
3799   llvm::Value *EmitCheckValue(llvm::Value *V);
3800 
3801   /// \brief Emit a description of a source location in a format suitable for
3802   /// passing to a runtime sanitizer handler.
3803   llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
3804 
3805   /// \brief Create a basic block that will call a handler function in a
3806   /// sanitizer runtime with the provided arguments, and create a conditional
3807   /// branch to it.
3808   void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
3809                  SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs,
3810                  ArrayRef<llvm::Value *> DynamicArgs);
3811 
3812   /// \brief Emit a slow path cross-DSO CFI check which calls __cfi_slowpath
3813   /// if Cond if false.
3814   void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond,
3815                             llvm::ConstantInt *TypeId, llvm::Value *Ptr,
3816                             ArrayRef<llvm::Constant *> StaticArgs);
3817 
3818   /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime
3819   /// checking is enabled. Otherwise, just emit an unreachable instruction.
3820   void EmitUnreachable(SourceLocation Loc);
3821 
3822   /// \brief Create a basic block that will call the trap intrinsic, and emit a
3823   /// conditional branch to it, for the -ftrapv checks.
3824   void EmitTrapCheck(llvm::Value *Checked);
3825 
3826   /// \brief Emit a call to trap or debugtrap and attach function attribute
3827   /// "trap-func-name" if specified.
3828   llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID);
3829 
3830   /// \brief Emit a stub for the cross-DSO CFI check function.
3831   void EmitCfiCheckStub();
3832 
3833   /// \brief Emit a cross-DSO CFI failure handling function.
3834   void EmitCfiCheckFail();
3835 
3836   /// \brief Create a check for a function parameter that may potentially be
3837   /// declared as non-null.
3838   void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc,
3839                            AbstractCallee AC, unsigned ParmNum);
3840 
3841   /// EmitCallArg - Emit a single call argument.
3842   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
3843 
3844   /// EmitDelegateCallArg - We are performing a delegate call; that
3845   /// is, the current function is delegating to another one.  Produce
3846   /// a r-value suitable for passing the given parameter.
3847   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
3848                            SourceLocation loc);
3849 
3850   /// SetFPAccuracy - Set the minimum required accuracy of the given floating
3851   /// point operation, expressed as the maximum relative error in ulp.
3852   void SetFPAccuracy(llvm::Value *Val, float Accuracy);
3853 
3854 private:
3855   llvm::MDNode *getRangeForLoadFromType(QualType Ty);
3856   void EmitReturnOfRValue(RValue RV, QualType Ty);
3857 
3858   void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
3859 
3860   llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4>
3861   DeferredReplacements;
3862 
3863   /// Set the address of a local variable.
3864   void setAddrOfLocalVar(const VarDecl *VD, Address Addr) {
3865     assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!");
3866     LocalDeclMap.insert({VD, Addr});
3867   }
3868 
3869   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
3870   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
3871   ///
3872   /// \param AI - The first function argument of the expansion.
3873   void ExpandTypeFromArgs(QualType Ty, LValue Dst,
3874                           SmallVectorImpl<llvm::Value *>::iterator &AI);
3875 
3876   /// ExpandTypeToArgs - Expand an RValue \arg RV, with the LLVM type for \arg
3877   /// Ty, into individual arguments on the provided vector \arg IRCallArgs,
3878   /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand.
3879   void ExpandTypeToArgs(QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy,
3880                         SmallVectorImpl<llvm::Value *> &IRCallArgs,
3881                         unsigned &IRCallArgPos);
3882 
3883   llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
3884                             const Expr *InputExpr, std::string &ConstraintStr);
3885 
3886   llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
3887                                   LValue InputValue, QualType InputType,
3888                                   std::string &ConstraintStr,
3889                                   SourceLocation Loc);
3890 
3891   /// \brief Attempts to statically evaluate the object size of E. If that
3892   /// fails, emits code to figure the size of E out for us. This is
3893   /// pass_object_size aware.
3894   ///
3895   /// If EmittedExpr is non-null, this will use that instead of re-emitting E.
3896   llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
3897                                                llvm::IntegerType *ResType,
3898                                                llvm::Value *EmittedE);
3899 
3900   /// \brief Emits the size of E, as required by __builtin_object_size. This
3901   /// function is aware of pass_object_size parameters, and will act accordingly
3902   /// if E is a parameter with the pass_object_size attribute.
3903   llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type,
3904                                      llvm::IntegerType *ResType,
3905                                      llvm::Value *EmittedE);
3906 
3907 public:
3908 #ifndef NDEBUG
3909   // Determine whether the given argument is an Objective-C method
3910   // that may have type parameters in its signature.
3911   static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) {
3912     const DeclContext *dc = method->getDeclContext();
3913     if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) {
3914       return classDecl->getTypeParamListAsWritten();
3915     }
3916 
3917     if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) {
3918       return catDecl->getTypeParamList();
3919     }
3920 
3921     return false;
3922   }
3923 
3924   template<typename T>
3925   static bool isObjCMethodWithTypeParams(const T *) { return false; }
3926 #endif
3927 
3928   enum class EvaluationOrder {
3929     ///! No language constraints on evaluation order.
3930     Default,
3931     ///! Language semantics require left-to-right evaluation.
3932     ForceLeftToRight,
3933     ///! Language semantics require right-to-left evaluation.
3934     ForceRightToLeft
3935   };
3936 
3937   /// EmitCallArgs - Emit call arguments for a function.
3938   template <typename T>
3939   void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo,
3940                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3941                     AbstractCallee AC = AbstractCallee(),
3942                     unsigned ParamsToSkip = 0,
3943                     EvaluationOrder Order = EvaluationOrder::Default) {
3944     SmallVector<QualType, 16> ArgTypes;
3945     CallExpr::const_arg_iterator Arg = ArgRange.begin();
3946 
3947     assert((ParamsToSkip == 0 || CallArgTypeInfo) &&
3948            "Can't skip parameters if type info is not provided");
3949     if (CallArgTypeInfo) {
3950 #ifndef NDEBUG
3951       bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo);
3952 #endif
3953 
3954       // First, use the argument types that the type info knows about
3955       for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip,
3956                 E = CallArgTypeInfo->param_type_end();
3957            I != E; ++I, ++Arg) {
3958         assert(Arg != ArgRange.end() && "Running over edge of argument list!");
3959         assert((isGenericMethod ||
3960                 ((*I)->isVariablyModifiedType() ||
3961                  (*I).getNonReferenceType()->isObjCRetainableType() ||
3962                  getContext()
3963                          .getCanonicalType((*I).getNonReferenceType())
3964                          .getTypePtr() ==
3965                      getContext()
3966                          .getCanonicalType((*Arg)->getType())
3967                          .getTypePtr())) &&
3968                "type mismatch in call argument!");
3969         ArgTypes.push_back(*I);
3970       }
3971     }
3972 
3973     // Either we've emitted all the call args, or we have a call to variadic
3974     // function.
3975     assert((Arg == ArgRange.end() || !CallArgTypeInfo ||
3976             CallArgTypeInfo->isVariadic()) &&
3977            "Extra arguments in non-variadic function!");
3978 
3979     // If we still have any arguments, emit them using the type of the argument.
3980     for (auto *A : llvm::make_range(Arg, ArgRange.end()))
3981       ArgTypes.push_back(CallArgTypeInfo ? getVarArgType(A) : A->getType());
3982 
3983     EmitCallArgs(Args, ArgTypes, ArgRange, AC, ParamsToSkip, Order);
3984   }
3985 
3986   void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes,
3987                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3988                     AbstractCallee AC = AbstractCallee(),
3989                     unsigned ParamsToSkip = 0,
3990                     EvaluationOrder Order = EvaluationOrder::Default);
3991 
3992   /// EmitPointerWithAlignment - Given an expression with a pointer type,
3993   /// emit the value and compute our best estimate of the alignment of the
3994   /// pointee.
3995   ///
3996   /// \param BaseInfo - If non-null, this will be initialized with
3997   /// information about the source of the alignment and the may-alias
3998   /// attribute.  Note that this function will conservatively fall back on
3999   /// the type when it doesn't recognize the expression and may-alias will
4000   /// be set to false.
4001   ///
4002   /// One reasonable way to use this information is when there's a language
4003   /// guarantee that the pointer must be aligned to some stricter value, and
4004   /// we're simply trying to ensure that sufficiently obvious uses of under-
4005   /// aligned objects don't get miscompiled; for example, a placement new
4006   /// into the address of a local variable.  In such a case, it's quite
4007   /// reasonable to just ignore the returned alignment when it isn't from an
4008   /// explicit source.
4009   Address EmitPointerWithAlignment(const Expr *Addr,
4010                                    LValueBaseInfo *BaseInfo = nullptr,
4011                                    TBAAAccessInfo *TBAAInfo = nullptr);
4012 
4013   /// If \p E references a parameter with pass_object_size info or a constant
4014   /// array size modifier, emit the object size divided by the size of \p EltTy.
4015   /// Otherwise return null.
4016   llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy);
4017 
4018   void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK);
4019 
4020   struct MultiVersionResolverOption {
4021     llvm::Function *Function;
4022     TargetAttr::ParsedTargetAttr ParsedAttribute;
4023     unsigned Priority;
4024     MultiVersionResolverOption(const TargetInfo &TargInfo, llvm::Function *F,
4025                                const clang::TargetAttr::ParsedTargetAttr &PT)
4026         : Function(F), ParsedAttribute(PT), Priority(0u) {
4027       for (StringRef Feat : PT.Features)
4028         Priority = std::max(Priority,
4029                             TargInfo.multiVersionSortPriority(Feat.substr(1)));
4030 
4031       if (!PT.Architecture.empty())
4032         Priority = std::max(Priority,
4033                             TargInfo.multiVersionSortPriority(PT.Architecture));
4034     }
4035 
4036     bool operator>(const MultiVersionResolverOption &Other) const {
4037       return Priority > Other.Priority;
4038     }
4039   };
4040   void EmitMultiVersionResolver(llvm::Function *Resolver,
4041                                 ArrayRef<MultiVersionResolverOption> Options);
4042 
4043 private:
4044   QualType getVarArgType(const Expr *Arg);
4045 
4046   void EmitDeclMetadata();
4047 
4048   BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType,
4049                                   const AutoVarEmission &emission);
4050 
4051   void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
4052 
4053   llvm::Value *GetValueForARMHint(unsigned BuiltinID);
4054   llvm::Value *EmitX86CpuIs(const CallExpr *E);
4055   llvm::Value *EmitX86CpuIs(StringRef CPUStr);
4056   llvm::Value *EmitX86CpuSupports(const CallExpr *E);
4057   llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs);
4058   llvm::Value *EmitX86CpuInit();
4059   llvm::Value *FormResolverCondition(const MultiVersionResolverOption &RO);
4060 };
4061 
4062 /// Helper class with most of the code for saving a value for a
4063 /// conditional expression cleanup.
4064 struct DominatingLLVMValue {
4065   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
4066 
4067   /// Answer whether the given value needs extra work to be saved.
4068   static bool needsSaving(llvm::Value *value) {
4069     // If it's not an instruction, we don't need to save.
4070     if (!isa<llvm::Instruction>(value)) return false;
4071 
4072     // If it's an instruction in the entry block, we don't need to save.
4073     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
4074     return (block != &block->getParent()->getEntryBlock());
4075   }
4076 
4077   /// Try to save the given value.
4078   static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
4079     if (!needsSaving(value)) return saved_type(value, false);
4080 
4081     // Otherwise, we need an alloca.
4082     auto align = CharUnits::fromQuantity(
4083               CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType()));
4084     Address alloca =
4085       CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save");
4086     CGF.Builder.CreateStore(value, alloca);
4087 
4088     return saved_type(alloca.getPointer(), true);
4089   }
4090 
4091   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
4092     // If the value says it wasn't saved, trust that it's still dominating.
4093     if (!value.getInt()) return value.getPointer();
4094 
4095     // Otherwise, it should be an alloca instruction, as set up in save().
4096     auto alloca = cast<llvm::AllocaInst>(value.getPointer());
4097     return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlignment());
4098   }
4099 };
4100 
4101 /// A partial specialization of DominatingValue for llvm::Values that
4102 /// might be llvm::Instructions.
4103 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
4104   typedef T *type;
4105   static type restore(CodeGenFunction &CGF, saved_type value) {
4106     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
4107   }
4108 };
4109 
4110 /// A specialization of DominatingValue for Address.
4111 template <> struct DominatingValue<Address> {
4112   typedef Address type;
4113 
4114   struct saved_type {
4115     DominatingLLVMValue::saved_type SavedValue;
4116     CharUnits Alignment;
4117   };
4118 
4119   static bool needsSaving(type value) {
4120     return DominatingLLVMValue::needsSaving(value.getPointer());
4121   }
4122   static saved_type save(CodeGenFunction &CGF, type value) {
4123     return { DominatingLLVMValue::save(CGF, value.getPointer()),
4124              value.getAlignment() };
4125   }
4126   static type restore(CodeGenFunction &CGF, saved_type value) {
4127     return Address(DominatingLLVMValue::restore(CGF, value.SavedValue),
4128                    value.Alignment);
4129   }
4130 };
4131 
4132 /// A specialization of DominatingValue for RValue.
4133 template <> struct DominatingValue<RValue> {
4134   typedef RValue type;
4135   class saved_type {
4136     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
4137                 AggregateAddress, ComplexAddress };
4138 
4139     llvm::Value *Value;
4140     unsigned K : 3;
4141     unsigned Align : 29;
4142     saved_type(llvm::Value *v, Kind k, unsigned a = 0)
4143       : Value(v), K(k), Align(a) {}
4144 
4145   public:
4146     static bool needsSaving(RValue value);
4147     static saved_type save(CodeGenFunction &CGF, RValue value);
4148     RValue restore(CodeGenFunction &CGF);
4149 
4150     // implementations in CGCleanup.cpp
4151   };
4152 
4153   static bool needsSaving(type value) {
4154     return saved_type::needsSaving(value);
4155   }
4156   static saved_type save(CodeGenFunction &CGF, type value) {
4157     return saved_type::save(CGF, value);
4158   }
4159   static type restore(CodeGenFunction &CGF, saved_type value) {
4160     return value.restore(CGF);
4161   }
4162 };
4163 
4164 }  // end namespace CodeGen
4165 }  // end namespace clang
4166 
4167 #endif
4168