1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the internal per-function state used for llvm translation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
15 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
16 
17 #include "CGBuilder.h"
18 #include "CGDebugInfo.h"
19 #include "CGLoopInfo.h"
20 #include "CGValue.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "EHScopeStack.h"
24 #include "VarBypassDetector.h"
25 #include "clang/AST/CharUnits.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/ExprObjC.h"
28 #include "clang/AST/ExprOpenMP.h"
29 #include "clang/AST/Type.h"
30 #include "clang/Basic/ABI.h"
31 #include "clang/Basic/CapturedStmt.h"
32 #include "clang/Basic/OpenMPKinds.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "clang/Frontend/CodeGenOptions.h"
35 #include "llvm/ADT/ArrayRef.h"
36 #include "llvm/ADT/DenseMap.h"
37 #include "llvm/ADT/SmallVector.h"
38 #include "llvm/IR/ValueHandle.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Transforms/Utils/SanitizerStats.h"
41 
42 namespace llvm {
43 class BasicBlock;
44 class LLVMContext;
45 class MDNode;
46 class Module;
47 class SwitchInst;
48 class Twine;
49 class Value;
50 class CallSite;
51 }
52 
53 namespace clang {
54 class ASTContext;
55 class BlockDecl;
56 class CXXDestructorDecl;
57 class CXXForRangeStmt;
58 class CXXTryStmt;
59 class Decl;
60 class LabelDecl;
61 class EnumConstantDecl;
62 class FunctionDecl;
63 class FunctionProtoType;
64 class LabelStmt;
65 class ObjCContainerDecl;
66 class ObjCInterfaceDecl;
67 class ObjCIvarDecl;
68 class ObjCMethodDecl;
69 class ObjCImplementationDecl;
70 class ObjCPropertyImplDecl;
71 class TargetInfo;
72 class VarDecl;
73 class ObjCForCollectionStmt;
74 class ObjCAtTryStmt;
75 class ObjCAtThrowStmt;
76 class ObjCAtSynchronizedStmt;
77 class ObjCAutoreleasePoolStmt;
78 
79 namespace CodeGen {
80 class CodeGenTypes;
81 class CGCallee;
82 class CGFunctionInfo;
83 class CGRecordLayout;
84 class CGBlockInfo;
85 class CGCXXABI;
86 class BlockByrefHelpers;
87 class BlockByrefInfo;
88 class BlockFlags;
89 class BlockFieldFlags;
90 class RegionCodeGenTy;
91 class TargetCodeGenInfo;
92 struct OMPTaskDataTy;
93 struct CGCoroData;
94 
95 /// The kind of evaluation to perform on values of a particular
96 /// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
97 /// CGExprAgg?
98 ///
99 /// TODO: should vectors maybe be split out into their own thing?
100 enum TypeEvaluationKind {
101   TEK_Scalar,
102   TEK_Complex,
103   TEK_Aggregate
104 };
105 
106 /// CodeGenFunction - This class organizes the per-function state that is used
107 /// while generating LLVM code.
108 class CodeGenFunction : public CodeGenTypeCache {
109   CodeGenFunction(const CodeGenFunction &) = delete;
110   void operator=(const CodeGenFunction &) = delete;
111 
112   friend class CGCXXABI;
113 public:
114   /// A jump destination is an abstract label, branching to which may
115   /// require a jump out through normal cleanups.
116   struct JumpDest {
117     JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {}
118     JumpDest(llvm::BasicBlock *Block,
119              EHScopeStack::stable_iterator Depth,
120              unsigned Index)
121       : Block(Block), ScopeDepth(Depth), Index(Index) {}
122 
123     bool isValid() const { return Block != nullptr; }
124     llvm::BasicBlock *getBlock() const { return Block; }
125     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
126     unsigned getDestIndex() const { return Index; }
127 
128     // This should be used cautiously.
129     void setScopeDepth(EHScopeStack::stable_iterator depth) {
130       ScopeDepth = depth;
131     }
132 
133   private:
134     llvm::BasicBlock *Block;
135     EHScopeStack::stable_iterator ScopeDepth;
136     unsigned Index;
137   };
138 
139   CodeGenModule &CGM;  // Per-module state.
140   const TargetInfo &Target;
141 
142   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
143   LoopInfoStack LoopStack;
144   CGBuilderTy Builder;
145 
146   // Stores variables for which we can't generate correct lifetime markers
147   // because of jumps.
148   VarBypassDetector Bypasses;
149 
150   /// \brief CGBuilder insert helper. This function is called after an
151   /// instruction is created using Builder.
152   void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
153                     llvm::BasicBlock *BB,
154                     llvm::BasicBlock::iterator InsertPt) const;
155 
156   /// CurFuncDecl - Holds the Decl for the current outermost
157   /// non-closure context.
158   const Decl *CurFuncDecl;
159   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
160   const Decl *CurCodeDecl;
161   const CGFunctionInfo *CurFnInfo;
162   QualType FnRetTy;
163   llvm::Function *CurFn;
164 
165   // Holds coroutine data if the current function is a coroutine. We use a
166   // wrapper to manage its lifetime, so that we don't have to define CGCoroData
167   // in this header.
168   struct CGCoroInfo {
169     std::unique_ptr<CGCoroData> Data;
170     CGCoroInfo();
171     ~CGCoroInfo();
172   };
173   CGCoroInfo CurCoro;
174 
175   /// CurGD - The GlobalDecl for the current function being compiled.
176   GlobalDecl CurGD;
177 
178   /// PrologueCleanupDepth - The cleanup depth enclosing all the
179   /// cleanups associated with the parameters.
180   EHScopeStack::stable_iterator PrologueCleanupDepth;
181 
182   /// ReturnBlock - Unified return block.
183   JumpDest ReturnBlock;
184 
185   /// ReturnValue - The temporary alloca to hold the return
186   /// value. This is invalid iff the function has no return value.
187   Address ReturnValue;
188 
189   /// AllocaInsertPoint - This is an instruction in the entry block before which
190   /// we prefer to insert allocas.
191   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
192 
193   /// \brief API for captured statement code generation.
194   class CGCapturedStmtInfo {
195   public:
196     explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default)
197         : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
198     explicit CGCapturedStmtInfo(const CapturedStmt &S,
199                                 CapturedRegionKind K = CR_Default)
200       : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
201 
202       RecordDecl::field_iterator Field =
203         S.getCapturedRecordDecl()->field_begin();
204       for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
205                                                 E = S.capture_end();
206            I != E; ++I, ++Field) {
207         if (I->capturesThis())
208           CXXThisFieldDecl = *Field;
209         else if (I->capturesVariable())
210           CaptureFields[I->getCapturedVar()] = *Field;
211         else if (I->capturesVariableByCopy())
212           CaptureFields[I->getCapturedVar()] = *Field;
213       }
214     }
215 
216     virtual ~CGCapturedStmtInfo();
217 
218     CapturedRegionKind getKind() const { return Kind; }
219 
220     virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
221     // \brief Retrieve the value of the context parameter.
222     virtual llvm::Value *getContextValue() const { return ThisValue; }
223 
224     /// \brief Lookup the captured field decl for a variable.
225     virtual const FieldDecl *lookup(const VarDecl *VD) const {
226       return CaptureFields.lookup(VD);
227     }
228 
229     bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
230     virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
231 
232     static bool classof(const CGCapturedStmtInfo *) {
233       return true;
234     }
235 
236     /// \brief Emit the captured statement body.
237     virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
238       CGF.incrementProfileCounter(S);
239       CGF.EmitStmt(S);
240     }
241 
242     /// \brief Get the name of the capture helper.
243     virtual StringRef getHelperName() const { return "__captured_stmt"; }
244 
245   private:
246     /// \brief The kind of captured statement being generated.
247     CapturedRegionKind Kind;
248 
249     /// \brief Keep the map between VarDecl and FieldDecl.
250     llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
251 
252     /// \brief The base address of the captured record, passed in as the first
253     /// argument of the parallel region function.
254     llvm::Value *ThisValue;
255 
256     /// \brief Captured 'this' type.
257     FieldDecl *CXXThisFieldDecl;
258   };
259   CGCapturedStmtInfo *CapturedStmtInfo;
260 
261   /// \brief RAII for correct setting/restoring of CapturedStmtInfo.
262   class CGCapturedStmtRAII {
263   private:
264     CodeGenFunction &CGF;
265     CGCapturedStmtInfo *PrevCapturedStmtInfo;
266   public:
267     CGCapturedStmtRAII(CodeGenFunction &CGF,
268                        CGCapturedStmtInfo *NewCapturedStmtInfo)
269         : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) {
270       CGF.CapturedStmtInfo = NewCapturedStmtInfo;
271     }
272     ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; }
273   };
274 
275   /// \brief Sanitizers enabled for this function.
276   SanitizerSet SanOpts;
277 
278   /// \brief True if CodeGen currently emits code implementing sanitizer checks.
279   bool IsSanitizerScope;
280 
281   /// \brief RAII object to set/unset CodeGenFunction::IsSanitizerScope.
282   class SanitizerScope {
283     CodeGenFunction *CGF;
284   public:
285     SanitizerScope(CodeGenFunction *CGF);
286     ~SanitizerScope();
287   };
288 
289   /// In C++, whether we are code generating a thunk.  This controls whether we
290   /// should emit cleanups.
291   bool CurFuncIsThunk;
292 
293   /// In ARC, whether we should autorelease the return value.
294   bool AutoreleaseResult;
295 
296   /// Whether we processed a Microsoft-style asm block during CodeGen. These can
297   /// potentially set the return value.
298   bool SawAsmBlock;
299 
300   const FunctionDecl *CurSEHParent = nullptr;
301 
302   /// True if the current function is an outlined SEH helper. This can be a
303   /// finally block or filter expression.
304   bool IsOutlinedSEHHelper;
305 
306   const CodeGen::CGBlockInfo *BlockInfo;
307   llvm::Value *BlockPointer;
308 
309   llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
310   FieldDecl *LambdaThisCaptureField;
311 
312   /// \brief A mapping from NRVO variables to the flags used to indicate
313   /// when the NRVO has been applied to this variable.
314   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
315 
316   EHScopeStack EHStack;
317   llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
318   llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack;
319 
320   llvm::Instruction *CurrentFuncletPad = nullptr;
321 
322   class CallLifetimeEnd final : public EHScopeStack::Cleanup {
323     llvm::Value *Addr;
324     llvm::Value *Size;
325 
326   public:
327     CallLifetimeEnd(Address addr, llvm::Value *size)
328         : Addr(addr.getPointer()), Size(size) {}
329 
330     void Emit(CodeGenFunction &CGF, Flags flags) override {
331       CGF.EmitLifetimeEnd(Size, Addr);
332     }
333   };
334 
335   /// Header for data within LifetimeExtendedCleanupStack.
336   struct LifetimeExtendedCleanupHeader {
337     /// The size of the following cleanup object.
338     unsigned Size;
339     /// The kind of cleanup to push: a value from the CleanupKind enumeration.
340     CleanupKind Kind;
341 
342     size_t getSize() const { return Size; }
343     CleanupKind getKind() const { return Kind; }
344   };
345 
346   /// i32s containing the indexes of the cleanup destinations.
347   llvm::AllocaInst *NormalCleanupDest;
348 
349   unsigned NextCleanupDestIndex;
350 
351   /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
352   CGBlockInfo *FirstBlockInfo;
353 
354   /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
355   llvm::BasicBlock *EHResumeBlock;
356 
357   /// The exception slot.  All landing pads write the current exception pointer
358   /// into this alloca.
359   llvm::Value *ExceptionSlot;
360 
361   /// The selector slot.  Under the MandatoryCleanup model, all landing pads
362   /// write the current selector value into this alloca.
363   llvm::AllocaInst *EHSelectorSlot;
364 
365   /// A stack of exception code slots. Entering an __except block pushes a slot
366   /// on the stack and leaving pops one. The __exception_code() intrinsic loads
367   /// a value from the top of the stack.
368   SmallVector<Address, 1> SEHCodeSlotStack;
369 
370   /// Value returned by __exception_info intrinsic.
371   llvm::Value *SEHInfo = nullptr;
372 
373   /// Emits a landing pad for the current EH stack.
374   llvm::BasicBlock *EmitLandingPad();
375 
376   llvm::BasicBlock *getInvokeDestImpl();
377 
378   template <class T>
379   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
380     return DominatingValue<T>::save(*this, value);
381   }
382 
383 public:
384   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
385   /// rethrows.
386   SmallVector<llvm::Value*, 8> ObjCEHValueStack;
387 
388   /// A class controlling the emission of a finally block.
389   class FinallyInfo {
390     /// Where the catchall's edge through the cleanup should go.
391     JumpDest RethrowDest;
392 
393     /// A function to call to enter the catch.
394     llvm::Constant *BeginCatchFn;
395 
396     /// An i1 variable indicating whether or not the @finally is
397     /// running for an exception.
398     llvm::AllocaInst *ForEHVar;
399 
400     /// An i8* variable into which the exception pointer to rethrow
401     /// has been saved.
402     llvm::AllocaInst *SavedExnVar;
403 
404   public:
405     void enter(CodeGenFunction &CGF, const Stmt *Finally,
406                llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
407                llvm::Constant *rethrowFn);
408     void exit(CodeGenFunction &CGF);
409   };
410 
411   /// Returns true inside SEH __try blocks.
412   bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }
413 
414   /// Returns true while emitting a cleanuppad.
415   bool isCleanupPadScope() const {
416     return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad);
417   }
418 
419   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
420   /// current full-expression.  Safe against the possibility that
421   /// we're currently inside a conditionally-evaluated expression.
422   template <class T, class... As>
423   void pushFullExprCleanup(CleanupKind kind, As... A) {
424     // If we're not in a conditional branch, or if none of the
425     // arguments requires saving, then use the unconditional cleanup.
426     if (!isInConditionalBranch())
427       return EHStack.pushCleanup<T>(kind, A...);
428 
429     // Stash values in a tuple so we can guarantee the order of saves.
430     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
431     SavedTuple Saved{saveValueInCond(A)...};
432 
433     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
434     EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
435     initFullExprCleanup();
436   }
437 
438   /// \brief Queue a cleanup to be pushed after finishing the current
439   /// full-expression.
440   template <class T, class... As>
441   void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
442     assert(!isInConditionalBranch() && "can't defer conditional cleanup");
443 
444     LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind };
445 
446     size_t OldSize = LifetimeExtendedCleanupStack.size();
447     LifetimeExtendedCleanupStack.resize(
448         LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size);
449 
450     static_assert(sizeof(Header) % alignof(T) == 0,
451                   "Cleanup will be allocated on misaligned address");
452     char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
453     new (Buffer) LifetimeExtendedCleanupHeader(Header);
454     new (Buffer + sizeof(Header)) T(A...);
455   }
456 
457   /// Set up the last cleaup that was pushed as a conditional
458   /// full-expression cleanup.
459   void initFullExprCleanup();
460 
461   /// PushDestructorCleanup - Push a cleanup to call the
462   /// complete-object destructor of an object of the given type at the
463   /// given address.  Does nothing if T is not a C++ class type with a
464   /// non-trivial destructor.
465   void PushDestructorCleanup(QualType T, Address Addr);
466 
467   /// PushDestructorCleanup - Push a cleanup to call the
468   /// complete-object variant of the given destructor on the object at
469   /// the given address.
470   void PushDestructorCleanup(const CXXDestructorDecl *Dtor, Address Addr);
471 
472   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
473   /// process all branch fixups.
474   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
475 
476   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
477   /// The block cannot be reactivated.  Pops it if it's the top of the
478   /// stack.
479   ///
480   /// \param DominatingIP - An instruction which is known to
481   ///   dominate the current IP (if set) and which lies along
482   ///   all paths of execution between the current IP and the
483   ///   the point at which the cleanup comes into scope.
484   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
485                               llvm::Instruction *DominatingIP);
486 
487   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
488   /// Cannot be used to resurrect a deactivated cleanup.
489   ///
490   /// \param DominatingIP - An instruction which is known to
491   ///   dominate the current IP (if set) and which lies along
492   ///   all paths of execution between the current IP and the
493   ///   the point at which the cleanup comes into scope.
494   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
495                             llvm::Instruction *DominatingIP);
496 
497   /// \brief Enters a new scope for capturing cleanups, all of which
498   /// will be executed once the scope is exited.
499   class RunCleanupsScope {
500     EHScopeStack::stable_iterator CleanupStackDepth;
501     size_t LifetimeExtendedCleanupStackSize;
502     bool OldDidCallStackSave;
503   protected:
504     bool PerformCleanup;
505   private:
506 
507     RunCleanupsScope(const RunCleanupsScope &) = delete;
508     void operator=(const RunCleanupsScope &) = delete;
509 
510   protected:
511     CodeGenFunction& CGF;
512 
513   public:
514     /// \brief Enter a new cleanup scope.
515     explicit RunCleanupsScope(CodeGenFunction &CGF)
516       : PerformCleanup(true), CGF(CGF)
517     {
518       CleanupStackDepth = CGF.EHStack.stable_begin();
519       LifetimeExtendedCleanupStackSize =
520           CGF.LifetimeExtendedCleanupStack.size();
521       OldDidCallStackSave = CGF.DidCallStackSave;
522       CGF.DidCallStackSave = false;
523     }
524 
525     /// \brief Exit this cleanup scope, emitting any accumulated
526     /// cleanups.
527     ~RunCleanupsScope() {
528       if (PerformCleanup) {
529         CGF.DidCallStackSave = OldDidCallStackSave;
530         CGF.PopCleanupBlocks(CleanupStackDepth,
531                              LifetimeExtendedCleanupStackSize);
532       }
533     }
534 
535     /// \brief Determine whether this scope requires any cleanups.
536     bool requiresCleanups() const {
537       return CGF.EHStack.stable_begin() != CleanupStackDepth;
538     }
539 
540     /// \brief Force the emission of cleanups now, instead of waiting
541     /// until this object is destroyed.
542     void ForceCleanup() {
543       assert(PerformCleanup && "Already forced cleanup");
544       CGF.DidCallStackSave = OldDidCallStackSave;
545       CGF.PopCleanupBlocks(CleanupStackDepth,
546                            LifetimeExtendedCleanupStackSize);
547       PerformCleanup = false;
548     }
549   };
550 
551   class LexicalScope : public RunCleanupsScope {
552     SourceRange Range;
553     SmallVector<const LabelDecl*, 4> Labels;
554     LexicalScope *ParentScope;
555 
556     LexicalScope(const LexicalScope &) = delete;
557     void operator=(const LexicalScope &) = delete;
558 
559   public:
560     /// \brief Enter a new cleanup scope.
561     explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
562       : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
563       CGF.CurLexicalScope = this;
564       if (CGDebugInfo *DI = CGF.getDebugInfo())
565         DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
566     }
567 
568     void addLabel(const LabelDecl *label) {
569       assert(PerformCleanup && "adding label to dead scope?");
570       Labels.push_back(label);
571     }
572 
573     /// \brief Exit this cleanup scope, emitting any accumulated
574     /// cleanups.
575     ~LexicalScope() {
576       if (CGDebugInfo *DI = CGF.getDebugInfo())
577         DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
578 
579       // If we should perform a cleanup, force them now.  Note that
580       // this ends the cleanup scope before rescoping any labels.
581       if (PerformCleanup) {
582         ApplyDebugLocation DL(CGF, Range.getEnd());
583         ForceCleanup();
584       }
585     }
586 
587     /// \brief Force the emission of cleanups now, instead of waiting
588     /// until this object is destroyed.
589     void ForceCleanup() {
590       CGF.CurLexicalScope = ParentScope;
591       RunCleanupsScope::ForceCleanup();
592 
593       if (!Labels.empty())
594         rescopeLabels();
595     }
596 
597     void rescopeLabels();
598   };
599 
600   typedef llvm::DenseMap<const Decl *, Address> DeclMapTy;
601 
602   /// \brief The scope used to remap some variables as private in the OpenMP
603   /// loop body (or other captured region emitted without outlining), and to
604   /// restore old vars back on exit.
605   class OMPPrivateScope : public RunCleanupsScope {
606     DeclMapTy SavedLocals;
607     DeclMapTy SavedPrivates;
608 
609   private:
610     OMPPrivateScope(const OMPPrivateScope &) = delete;
611     void operator=(const OMPPrivateScope &) = delete;
612 
613   public:
614     /// \brief Enter a new OpenMP private scope.
615     explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}
616 
617     /// \brief Registers \a LocalVD variable as a private and apply \a
618     /// PrivateGen function for it to generate corresponding private variable.
619     /// \a PrivateGen returns an address of the generated private variable.
620     /// \return true if the variable is registered as private, false if it has
621     /// been privatized already.
622     bool
623     addPrivate(const VarDecl *LocalVD,
624                llvm::function_ref<Address()> PrivateGen) {
625       assert(PerformCleanup && "adding private to dead scope");
626 
627       // Only save it once.
628       if (SavedLocals.count(LocalVD)) return false;
629 
630       // Copy the existing local entry to SavedLocals.
631       auto it = CGF.LocalDeclMap.find(LocalVD);
632       if (it != CGF.LocalDeclMap.end()) {
633         SavedLocals.insert({LocalVD, it->second});
634       } else {
635         SavedLocals.insert({LocalVD, Address::invalid()});
636       }
637 
638       // Generate the private entry.
639       Address Addr = PrivateGen();
640       QualType VarTy = LocalVD->getType();
641       if (VarTy->isReferenceType()) {
642         Address Temp = CGF.CreateMemTemp(VarTy);
643         CGF.Builder.CreateStore(Addr.getPointer(), Temp);
644         Addr = Temp;
645       }
646       SavedPrivates.insert({LocalVD, Addr});
647 
648       return true;
649     }
650 
651     /// \brief Privatizes local variables previously registered as private.
652     /// Registration is separate from the actual privatization to allow
653     /// initializers use values of the original variables, not the private one.
654     /// This is important, for example, if the private variable is a class
655     /// variable initialized by a constructor that references other private
656     /// variables. But at initialization original variables must be used, not
657     /// private copies.
658     /// \return true if at least one variable was privatized, false otherwise.
659     bool Privatize() {
660       copyInto(SavedPrivates, CGF.LocalDeclMap);
661       SavedPrivates.clear();
662       return !SavedLocals.empty();
663     }
664 
665     void ForceCleanup() {
666       RunCleanupsScope::ForceCleanup();
667       copyInto(SavedLocals, CGF.LocalDeclMap);
668       SavedLocals.clear();
669     }
670 
671     /// \brief Exit scope - all the mapped variables are restored.
672     ~OMPPrivateScope() {
673       if (PerformCleanup)
674         ForceCleanup();
675     }
676 
677     /// Checks if the global variable is captured in current function.
678     bool isGlobalVarCaptured(const VarDecl *VD) const {
679       return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0;
680     }
681 
682   private:
683     /// Copy all the entries in the source map over the corresponding
684     /// entries in the destination, which must exist.
685     static void copyInto(const DeclMapTy &src, DeclMapTy &dest) {
686       for (auto &pair : src) {
687         if (!pair.second.isValid()) {
688           dest.erase(pair.first);
689           continue;
690         }
691 
692         auto it = dest.find(pair.first);
693         if (it != dest.end()) {
694           it->second = pair.second;
695         } else {
696           dest.insert(pair);
697         }
698       }
699     }
700   };
701 
702   /// \brief Takes the old cleanup stack size and emits the cleanup blocks
703   /// that have been added.
704   void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize);
705 
706   /// \brief Takes the old cleanup stack size and emits the cleanup blocks
707   /// that have been added, then adds all lifetime-extended cleanups from
708   /// the given position to the stack.
709   void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
710                         size_t OldLifetimeExtendedStackSize);
711 
712   void ResolveBranchFixups(llvm::BasicBlock *Target);
713 
714   /// The given basic block lies in the current EH scope, but may be a
715   /// target of a potentially scope-crossing jump; get a stable handle
716   /// to which we can perform this jump later.
717   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
718     return JumpDest(Target,
719                     EHStack.getInnermostNormalCleanup(),
720                     NextCleanupDestIndex++);
721   }
722 
723   /// The given basic block lies in the current EH scope, but may be a
724   /// target of a potentially scope-crossing jump; get a stable handle
725   /// to which we can perform this jump later.
726   JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
727     return getJumpDestInCurrentScope(createBasicBlock(Name));
728   }
729 
730   /// EmitBranchThroughCleanup - Emit a branch from the current insert
731   /// block through the normal cleanup handling code (if any) and then
732   /// on to \arg Dest.
733   void EmitBranchThroughCleanup(JumpDest Dest);
734 
735   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
736   /// specified destination obviously has no cleanups to run.  'false' is always
737   /// a conservatively correct answer for this method.
738   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
739 
740   /// popCatchScope - Pops the catch scope at the top of the EHScope
741   /// stack, emitting any required code (other than the catch handlers
742   /// themselves).
743   void popCatchScope();
744 
745   llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
746   llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
747   llvm::BasicBlock *getMSVCDispatchBlock(EHScopeStack::stable_iterator scope);
748 
749   /// An object to manage conditionally-evaluated expressions.
750   class ConditionalEvaluation {
751     llvm::BasicBlock *StartBB;
752 
753   public:
754     ConditionalEvaluation(CodeGenFunction &CGF)
755       : StartBB(CGF.Builder.GetInsertBlock()) {}
756 
757     void begin(CodeGenFunction &CGF) {
758       assert(CGF.OutermostConditional != this);
759       if (!CGF.OutermostConditional)
760         CGF.OutermostConditional = this;
761     }
762 
763     void end(CodeGenFunction &CGF) {
764       assert(CGF.OutermostConditional != nullptr);
765       if (CGF.OutermostConditional == this)
766         CGF.OutermostConditional = nullptr;
767     }
768 
769     /// Returns a block which will be executed prior to each
770     /// evaluation of the conditional code.
771     llvm::BasicBlock *getStartingBlock() const {
772       return StartBB;
773     }
774   };
775 
776   /// isInConditionalBranch - Return true if we're currently emitting
777   /// one branch or the other of a conditional expression.
778   bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
779 
780   void setBeforeOutermostConditional(llvm::Value *value, Address addr) {
781     assert(isInConditionalBranch());
782     llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
783     auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back());
784     store->setAlignment(addr.getAlignment().getQuantity());
785   }
786 
787   /// An RAII object to record that we're evaluating a statement
788   /// expression.
789   class StmtExprEvaluation {
790     CodeGenFunction &CGF;
791 
792     /// We have to save the outermost conditional: cleanups in a
793     /// statement expression aren't conditional just because the
794     /// StmtExpr is.
795     ConditionalEvaluation *SavedOutermostConditional;
796 
797   public:
798     StmtExprEvaluation(CodeGenFunction &CGF)
799       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
800       CGF.OutermostConditional = nullptr;
801     }
802 
803     ~StmtExprEvaluation() {
804       CGF.OutermostConditional = SavedOutermostConditional;
805       CGF.EnsureInsertPoint();
806     }
807   };
808 
809   /// An object which temporarily prevents a value from being
810   /// destroyed by aggressive peephole optimizations that assume that
811   /// all uses of a value have been realized in the IR.
812   class PeepholeProtection {
813     llvm::Instruction *Inst;
814     friend class CodeGenFunction;
815 
816   public:
817     PeepholeProtection() : Inst(nullptr) {}
818   };
819 
820   /// A non-RAII class containing all the information about a bound
821   /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
822   /// this which makes individual mappings very simple; using this
823   /// class directly is useful when you have a variable number of
824   /// opaque values or don't want the RAII functionality for some
825   /// reason.
826   class OpaqueValueMappingData {
827     const OpaqueValueExpr *OpaqueValue;
828     bool BoundLValue;
829     CodeGenFunction::PeepholeProtection Protection;
830 
831     OpaqueValueMappingData(const OpaqueValueExpr *ov,
832                            bool boundLValue)
833       : OpaqueValue(ov), BoundLValue(boundLValue) {}
834   public:
835     OpaqueValueMappingData() : OpaqueValue(nullptr) {}
836 
837     static bool shouldBindAsLValue(const Expr *expr) {
838       // gl-values should be bound as l-values for obvious reasons.
839       // Records should be bound as l-values because IR generation
840       // always keeps them in memory.  Expressions of function type
841       // act exactly like l-values but are formally required to be
842       // r-values in C.
843       return expr->isGLValue() ||
844              expr->getType()->isFunctionType() ||
845              hasAggregateEvaluationKind(expr->getType());
846     }
847 
848     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
849                                        const OpaqueValueExpr *ov,
850                                        const Expr *e) {
851       if (shouldBindAsLValue(ov))
852         return bind(CGF, ov, CGF.EmitLValue(e));
853       return bind(CGF, ov, CGF.EmitAnyExpr(e));
854     }
855 
856     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
857                                        const OpaqueValueExpr *ov,
858                                        const LValue &lv) {
859       assert(shouldBindAsLValue(ov));
860       CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
861       return OpaqueValueMappingData(ov, true);
862     }
863 
864     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
865                                        const OpaqueValueExpr *ov,
866                                        const RValue &rv) {
867       assert(!shouldBindAsLValue(ov));
868       CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
869 
870       OpaqueValueMappingData data(ov, false);
871 
872       // Work around an extremely aggressive peephole optimization in
873       // EmitScalarConversion which assumes that all other uses of a
874       // value are extant.
875       data.Protection = CGF.protectFromPeepholes(rv);
876 
877       return data;
878     }
879 
880     bool isValid() const { return OpaqueValue != nullptr; }
881     void clear() { OpaqueValue = nullptr; }
882 
883     void unbind(CodeGenFunction &CGF) {
884       assert(OpaqueValue && "no data to unbind!");
885 
886       if (BoundLValue) {
887         CGF.OpaqueLValues.erase(OpaqueValue);
888       } else {
889         CGF.OpaqueRValues.erase(OpaqueValue);
890         CGF.unprotectFromPeepholes(Protection);
891       }
892     }
893   };
894 
895   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
896   class OpaqueValueMapping {
897     CodeGenFunction &CGF;
898     OpaqueValueMappingData Data;
899 
900   public:
901     static bool shouldBindAsLValue(const Expr *expr) {
902       return OpaqueValueMappingData::shouldBindAsLValue(expr);
903     }
904 
905     /// Build the opaque value mapping for the given conditional
906     /// operator if it's the GNU ?: extension.  This is a common
907     /// enough pattern that the convenience operator is really
908     /// helpful.
909     ///
910     OpaqueValueMapping(CodeGenFunction &CGF,
911                        const AbstractConditionalOperator *op) : CGF(CGF) {
912       if (isa<ConditionalOperator>(op))
913         // Leave Data empty.
914         return;
915 
916       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
917       Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
918                                           e->getCommon());
919     }
920 
921     OpaqueValueMapping(CodeGenFunction &CGF,
922                        const OpaqueValueExpr *opaqueValue,
923                        LValue lvalue)
924       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
925     }
926 
927     OpaqueValueMapping(CodeGenFunction &CGF,
928                        const OpaqueValueExpr *opaqueValue,
929                        RValue rvalue)
930       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
931     }
932 
933     void pop() {
934       Data.unbind(CGF);
935       Data.clear();
936     }
937 
938     ~OpaqueValueMapping() {
939       if (Data.isValid()) Data.unbind(CGF);
940     }
941   };
942 
943 private:
944   CGDebugInfo *DebugInfo;
945   bool DisableDebugInfo;
946 
947   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
948   /// calling llvm.stacksave for multiple VLAs in the same scope.
949   bool DidCallStackSave;
950 
951   /// IndirectBranch - The first time an indirect goto is seen we create a block
952   /// with an indirect branch.  Every time we see the address of a label taken,
953   /// we add the label to the indirect goto.  Every subsequent indirect goto is
954   /// codegen'd as a jump to the IndirectBranch's basic block.
955   llvm::IndirectBrInst *IndirectBranch;
956 
957   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
958   /// decls.
959   DeclMapTy LocalDeclMap;
960 
961   /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this
962   /// will contain a mapping from said ParmVarDecl to its implicit "object_size"
963   /// parameter.
964   llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2>
965       SizeArguments;
966 
967   /// Track escaped local variables with auto storage. Used during SEH
968   /// outlining to produce a call to llvm.localescape.
969   llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;
970 
971   /// LabelMap - This keeps track of the LLVM basic block for each C label.
972   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
973 
974   // BreakContinueStack - This keeps track of where break and continue
975   // statements should jump to.
976   struct BreakContinue {
977     BreakContinue(JumpDest Break, JumpDest Continue)
978       : BreakBlock(Break), ContinueBlock(Continue) {}
979 
980     JumpDest BreakBlock;
981     JumpDest ContinueBlock;
982   };
983   SmallVector<BreakContinue, 8> BreakContinueStack;
984 
985   /// Handles cancellation exit points in OpenMP-related constructs.
986   class OpenMPCancelExitStack {
987     /// Tracks cancellation exit point and join point for cancel-related exit
988     /// and normal exit.
989     struct CancelExit {
990       CancelExit() = default;
991       CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock,
992                  JumpDest ContBlock)
993           : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {}
994       OpenMPDirectiveKind Kind = OMPD_unknown;
995       /// true if the exit block has been emitted already by the special
996       /// emitExit() call, false if the default codegen is used.
997       bool HasBeenEmitted = false;
998       JumpDest ExitBlock;
999       JumpDest ContBlock;
1000     };
1001 
1002     SmallVector<CancelExit, 8> Stack;
1003 
1004   public:
1005     OpenMPCancelExitStack() : Stack(1) {}
1006     ~OpenMPCancelExitStack() = default;
1007     /// Fetches the exit block for the current OpenMP construct.
1008     JumpDest getExitBlock() const { return Stack.back().ExitBlock; }
1009     /// Emits exit block with special codegen procedure specific for the related
1010     /// OpenMP construct + emits code for normal construct cleanup.
1011     void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
1012                   const llvm::function_ref<void(CodeGenFunction &)> &CodeGen) {
1013       if (Stack.back().Kind == Kind && getExitBlock().isValid()) {
1014         assert(CGF.getOMPCancelDestination(Kind).isValid());
1015         assert(CGF.HaveInsertPoint());
1016         assert(!Stack.back().HasBeenEmitted);
1017         auto IP = CGF.Builder.saveAndClearIP();
1018         CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1019         CodeGen(CGF);
1020         CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1021         CGF.Builder.restoreIP(IP);
1022         Stack.back().HasBeenEmitted = true;
1023       }
1024       CodeGen(CGF);
1025     }
1026     /// Enter the cancel supporting \a Kind construct.
1027     /// \param Kind OpenMP directive that supports cancel constructs.
1028     /// \param HasCancel true, if the construct has inner cancel directive,
1029     /// false otherwise.
1030     void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) {
1031       Stack.push_back({Kind,
1032                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit")
1033                                  : JumpDest(),
1034                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont")
1035                                  : JumpDest()});
1036     }
1037     /// Emits default exit point for the cancel construct (if the special one
1038     /// has not be used) + join point for cancel/normal exits.
1039     void exit(CodeGenFunction &CGF) {
1040       if (getExitBlock().isValid()) {
1041         assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid());
1042         bool HaveIP = CGF.HaveInsertPoint();
1043         if (!Stack.back().HasBeenEmitted) {
1044           if (HaveIP)
1045             CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1046           CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1047           CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1048         }
1049         CGF.EmitBlock(Stack.back().ContBlock.getBlock());
1050         if (!HaveIP) {
1051           CGF.Builder.CreateUnreachable();
1052           CGF.Builder.ClearInsertionPoint();
1053         }
1054       }
1055       Stack.pop_back();
1056     }
1057   };
1058   OpenMPCancelExitStack OMPCancelStack;
1059 
1060   /// Controls insertion of cancellation exit blocks in worksharing constructs.
1061   class OMPCancelStackRAII {
1062     CodeGenFunction &CGF;
1063 
1064   public:
1065     OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
1066                        bool HasCancel)
1067         : CGF(CGF) {
1068       CGF.OMPCancelStack.enter(CGF, Kind, HasCancel);
1069     }
1070     ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); }
1071   };
1072 
1073   CodeGenPGO PGO;
1074 
1075   /// Calculate branch weights appropriate for PGO data
1076   llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount);
1077   llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights);
1078   llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond,
1079                                             uint64_t LoopCount);
1080 
1081 public:
1082   /// Increment the profiler's counter for the given statement.
1083   void incrementProfileCounter(const Stmt *S) {
1084     if (CGM.getCodeGenOpts().hasProfileClangInstr())
1085       PGO.emitCounterIncrement(Builder, S);
1086     PGO.setCurrentStmt(S);
1087   }
1088 
1089   /// Get the profiler's count for the given statement.
1090   uint64_t getProfileCount(const Stmt *S) {
1091     Optional<uint64_t> Count = PGO.getStmtCount(S);
1092     if (!Count.hasValue())
1093       return 0;
1094     return *Count;
1095   }
1096 
1097   /// Set the profiler's current count.
1098   void setCurrentProfileCount(uint64_t Count) {
1099     PGO.setCurrentRegionCount(Count);
1100   }
1101 
1102   /// Get the profiler's current count. This is generally the count for the most
1103   /// recently incremented counter.
1104   uint64_t getCurrentProfileCount() {
1105     return PGO.getCurrentRegionCount();
1106   }
1107 
1108 private:
1109 
1110   /// SwitchInsn - This is nearest current switch instruction. It is null if
1111   /// current context is not in a switch.
1112   llvm::SwitchInst *SwitchInsn;
1113   /// The branch weights of SwitchInsn when doing instrumentation based PGO.
1114   SmallVector<uint64_t, 16> *SwitchWeights;
1115 
1116   /// CaseRangeBlock - This block holds if condition check for last case
1117   /// statement range in current switch instruction.
1118   llvm::BasicBlock *CaseRangeBlock;
1119 
1120   /// OpaqueLValues - Keeps track of the current set of opaque value
1121   /// expressions.
1122   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1123   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1124 
1125   // VLASizeMap - This keeps track of the associated size for each VLA type.
1126   // We track this by the size expression rather than the type itself because
1127   // in certain situations, like a const qualifier applied to an VLA typedef,
1128   // multiple VLA types can share the same size expression.
1129   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1130   // enter/leave scopes.
1131   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1132 
1133   /// A block containing a single 'unreachable' instruction.  Created
1134   /// lazily by getUnreachableBlock().
1135   llvm::BasicBlock *UnreachableBlock;
1136 
1137   /// Counts of the number return expressions in the function.
1138   unsigned NumReturnExprs;
1139 
1140   /// Count the number of simple (constant) return expressions in the function.
1141   unsigned NumSimpleReturnExprs;
1142 
1143   /// The last regular (non-return) debug location (breakpoint) in the function.
1144   SourceLocation LastStopPoint;
1145 
1146 public:
1147   /// A scope within which we are constructing the fields of an object which
1148   /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
1149   /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
1150   class FieldConstructionScope {
1151   public:
1152     FieldConstructionScope(CodeGenFunction &CGF, Address This)
1153         : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
1154       CGF.CXXDefaultInitExprThis = This;
1155     }
1156     ~FieldConstructionScope() {
1157       CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
1158     }
1159 
1160   private:
1161     CodeGenFunction &CGF;
1162     Address OldCXXDefaultInitExprThis;
1163   };
1164 
1165   /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
1166   /// is overridden to be the object under construction.
1167   class CXXDefaultInitExprScope {
1168   public:
1169     CXXDefaultInitExprScope(CodeGenFunction &CGF)
1170       : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue),
1171         OldCXXThisAlignment(CGF.CXXThisAlignment) {
1172       CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer();
1173       CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment();
1174     }
1175     ~CXXDefaultInitExprScope() {
1176       CGF.CXXThisValue = OldCXXThisValue;
1177       CGF.CXXThisAlignment = OldCXXThisAlignment;
1178     }
1179 
1180   public:
1181     CodeGenFunction &CGF;
1182     llvm::Value *OldCXXThisValue;
1183     CharUnits OldCXXThisAlignment;
1184   };
1185 
1186   class InlinedInheritingConstructorScope {
1187   public:
1188     InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD)
1189         : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl),
1190           OldCurCodeDecl(CGF.CurCodeDecl),
1191           OldCXXABIThisDecl(CGF.CXXABIThisDecl),
1192           OldCXXABIThisValue(CGF.CXXABIThisValue),
1193           OldCXXThisValue(CGF.CXXThisValue),
1194           OldCXXABIThisAlignment(CGF.CXXABIThisAlignment),
1195           OldCXXThisAlignment(CGF.CXXThisAlignment),
1196           OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy),
1197           OldCXXInheritedCtorInitExprArgs(
1198               std::move(CGF.CXXInheritedCtorInitExprArgs)) {
1199       CGF.CurGD = GD;
1200       CGF.CurFuncDecl = CGF.CurCodeDecl =
1201           cast<CXXConstructorDecl>(GD.getDecl());
1202       CGF.CXXABIThisDecl = nullptr;
1203       CGF.CXXABIThisValue = nullptr;
1204       CGF.CXXThisValue = nullptr;
1205       CGF.CXXABIThisAlignment = CharUnits();
1206       CGF.CXXThisAlignment = CharUnits();
1207       CGF.ReturnValue = Address::invalid();
1208       CGF.FnRetTy = QualType();
1209       CGF.CXXInheritedCtorInitExprArgs.clear();
1210     }
1211     ~InlinedInheritingConstructorScope() {
1212       CGF.CurGD = OldCurGD;
1213       CGF.CurFuncDecl = OldCurFuncDecl;
1214       CGF.CurCodeDecl = OldCurCodeDecl;
1215       CGF.CXXABIThisDecl = OldCXXABIThisDecl;
1216       CGF.CXXABIThisValue = OldCXXABIThisValue;
1217       CGF.CXXThisValue = OldCXXThisValue;
1218       CGF.CXXABIThisAlignment = OldCXXABIThisAlignment;
1219       CGF.CXXThisAlignment = OldCXXThisAlignment;
1220       CGF.ReturnValue = OldReturnValue;
1221       CGF.FnRetTy = OldFnRetTy;
1222       CGF.CXXInheritedCtorInitExprArgs =
1223           std::move(OldCXXInheritedCtorInitExprArgs);
1224     }
1225 
1226   private:
1227     CodeGenFunction &CGF;
1228     GlobalDecl OldCurGD;
1229     const Decl *OldCurFuncDecl;
1230     const Decl *OldCurCodeDecl;
1231     ImplicitParamDecl *OldCXXABIThisDecl;
1232     llvm::Value *OldCXXABIThisValue;
1233     llvm::Value *OldCXXThisValue;
1234     CharUnits OldCXXABIThisAlignment;
1235     CharUnits OldCXXThisAlignment;
1236     Address OldReturnValue;
1237     QualType OldFnRetTy;
1238     CallArgList OldCXXInheritedCtorInitExprArgs;
1239   };
1240 
1241 private:
1242   /// CXXThisDecl - When generating code for a C++ member function,
1243   /// this will hold the implicit 'this' declaration.
1244   ImplicitParamDecl *CXXABIThisDecl;
1245   llvm::Value *CXXABIThisValue;
1246   llvm::Value *CXXThisValue;
1247   CharUnits CXXABIThisAlignment;
1248   CharUnits CXXThisAlignment;
1249 
1250   /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
1251   /// this expression.
1252   Address CXXDefaultInitExprThis = Address::invalid();
1253 
1254   /// The values of function arguments to use when evaluating
1255   /// CXXInheritedCtorInitExprs within this context.
1256   CallArgList CXXInheritedCtorInitExprArgs;
1257 
1258   /// CXXStructorImplicitParamDecl - When generating code for a constructor or
1259   /// destructor, this will hold the implicit argument (e.g. VTT).
1260   ImplicitParamDecl *CXXStructorImplicitParamDecl;
1261   llvm::Value *CXXStructorImplicitParamValue;
1262 
1263   /// OutermostConditional - Points to the outermost active
1264   /// conditional control.  This is used so that we know if a
1265   /// temporary should be destroyed conditionally.
1266   ConditionalEvaluation *OutermostConditional;
1267 
1268   /// The current lexical scope.
1269   LexicalScope *CurLexicalScope;
1270 
1271   /// The current source location that should be used for exception
1272   /// handling code.
1273   SourceLocation CurEHLocation;
1274 
1275   /// BlockByrefInfos - For each __block variable, contains
1276   /// information about the layout of the variable.
1277   llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos;
1278 
1279   llvm::BasicBlock *TerminateLandingPad;
1280   llvm::BasicBlock *TerminateHandler;
1281   llvm::BasicBlock *TrapBB;
1282 
1283   /// True if we need emit the life-time markers.
1284   const bool ShouldEmitLifetimeMarkers;
1285 
1286   /// Add a kernel metadata node to the named metadata node 'opencl.kernels'.
1287   /// In the kernel metadata node, reference the kernel function and metadata
1288   /// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2):
1289   /// - A node for the vec_type_hint(<type>) qualifier contains string
1290   ///   "vec_type_hint", an undefined value of the <type> data type,
1291   ///   and a Boolean that is true if the <type> is integer and signed.
1292   /// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string
1293   ///   "work_group_size_hint", and three 32-bit integers X, Y and Z.
1294   /// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string
1295   ///   "reqd_work_group_size", and three 32-bit integers X, Y and Z.
1296   void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
1297                                 llvm::Function *Fn);
1298 
1299 public:
1300   CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1301   ~CodeGenFunction();
1302 
1303   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1304   ASTContext &getContext() const { return CGM.getContext(); }
1305   CGDebugInfo *getDebugInfo() {
1306     if (DisableDebugInfo)
1307       return nullptr;
1308     return DebugInfo;
1309   }
1310   void disableDebugInfo() { DisableDebugInfo = true; }
1311   void enableDebugInfo() { DisableDebugInfo = false; }
1312 
1313   bool shouldUseFusedARCCalls() {
1314     return CGM.getCodeGenOpts().OptimizationLevel == 0;
1315   }
1316 
1317   const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1318 
1319   /// Returns a pointer to the function's exception object and selector slot,
1320   /// which is assigned in every landing pad.
1321   Address getExceptionSlot();
1322   Address getEHSelectorSlot();
1323 
1324   /// Returns the contents of the function's exception object and selector
1325   /// slots.
1326   llvm::Value *getExceptionFromSlot();
1327   llvm::Value *getSelectorFromSlot();
1328 
1329   Address getNormalCleanupDestSlot();
1330 
1331   llvm::BasicBlock *getUnreachableBlock() {
1332     if (!UnreachableBlock) {
1333       UnreachableBlock = createBasicBlock("unreachable");
1334       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1335     }
1336     return UnreachableBlock;
1337   }
1338 
1339   llvm::BasicBlock *getInvokeDest() {
1340     if (!EHStack.requiresLandingPad()) return nullptr;
1341     return getInvokeDestImpl();
1342   }
1343 
1344   bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; }
1345 
1346   const TargetInfo &getTarget() const { return Target; }
1347   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1348 
1349   //===--------------------------------------------------------------------===//
1350   //                                  Cleanups
1351   //===--------------------------------------------------------------------===//
1352 
1353   typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty);
1354 
1355   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1356                                         Address arrayEndPointer,
1357                                         QualType elementType,
1358                                         CharUnits elementAlignment,
1359                                         Destroyer *destroyer);
1360   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1361                                       llvm::Value *arrayEnd,
1362                                       QualType elementType,
1363                                       CharUnits elementAlignment,
1364                                       Destroyer *destroyer);
1365 
1366   void pushDestroy(QualType::DestructionKind dtorKind,
1367                    Address addr, QualType type);
1368   void pushEHDestroy(QualType::DestructionKind dtorKind,
1369                      Address addr, QualType type);
1370   void pushDestroy(CleanupKind kind, Address addr, QualType type,
1371                    Destroyer *destroyer, bool useEHCleanupForArray);
1372   void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr,
1373                                    QualType type, Destroyer *destroyer,
1374                                    bool useEHCleanupForArray);
1375   void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1376                                    llvm::Value *CompletePtr,
1377                                    QualType ElementType);
1378   void pushStackRestore(CleanupKind kind, Address SPMem);
1379   void emitDestroy(Address addr, QualType type, Destroyer *destroyer,
1380                    bool useEHCleanupForArray);
1381   llvm::Function *generateDestroyHelper(Address addr, QualType type,
1382                                         Destroyer *destroyer,
1383                                         bool useEHCleanupForArray,
1384                                         const VarDecl *VD);
1385   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1386                         QualType elementType, CharUnits elementAlign,
1387                         Destroyer *destroyer,
1388                         bool checkZeroLength, bool useEHCleanup);
1389 
1390   Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1391 
1392   /// Determines whether an EH cleanup is required to destroy a type
1393   /// with the given destruction kind.
1394   bool needsEHCleanup(QualType::DestructionKind kind) {
1395     switch (kind) {
1396     case QualType::DK_none:
1397       return false;
1398     case QualType::DK_cxx_destructor:
1399     case QualType::DK_objc_weak_lifetime:
1400       return getLangOpts().Exceptions;
1401     case QualType::DK_objc_strong_lifetime:
1402       return getLangOpts().Exceptions &&
1403              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1404     }
1405     llvm_unreachable("bad destruction kind");
1406   }
1407 
1408   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
1409     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1410   }
1411 
1412   //===--------------------------------------------------------------------===//
1413   //                                  Objective-C
1414   //===--------------------------------------------------------------------===//
1415 
1416   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1417 
1418   void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
1419 
1420   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1421   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1422                           const ObjCPropertyImplDecl *PID);
1423   void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1424                               const ObjCPropertyImplDecl *propImpl,
1425                               const ObjCMethodDecl *GetterMothodDecl,
1426                               llvm::Constant *AtomicHelperFn);
1427 
1428   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1429                                   ObjCMethodDecl *MD, bool ctor);
1430 
1431   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1432   /// for the given property.
1433   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1434                           const ObjCPropertyImplDecl *PID);
1435   void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1436                               const ObjCPropertyImplDecl *propImpl,
1437                               llvm::Constant *AtomicHelperFn);
1438 
1439   //===--------------------------------------------------------------------===//
1440   //                                  Block Bits
1441   //===--------------------------------------------------------------------===//
1442 
1443   llvm::Value *EmitBlockLiteral(const BlockExpr *);
1444   llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
1445   static void destroyBlockInfos(CGBlockInfo *info);
1446 
1447   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1448                                         const CGBlockInfo &Info,
1449                                         const DeclMapTy &ldm,
1450                                         bool IsLambdaConversionToBlock);
1451 
1452   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1453   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1454   llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
1455                                              const ObjCPropertyImplDecl *PID);
1456   llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
1457                                              const ObjCPropertyImplDecl *PID);
1458   llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
1459 
1460   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
1461 
1462   class AutoVarEmission;
1463 
1464   void emitByrefStructureInit(const AutoVarEmission &emission);
1465   void enterByrefCleanup(const AutoVarEmission &emission);
1466 
1467   void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum,
1468                                 llvm::Value *ptr);
1469 
1470   Address LoadBlockStruct();
1471   Address GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
1472 
1473   /// BuildBlockByrefAddress - Computes the location of the
1474   /// data in a variable which is declared as __block.
1475   Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V,
1476                                 bool followForward = true);
1477   Address emitBlockByrefAddress(Address baseAddr,
1478                                 const BlockByrefInfo &info,
1479                                 bool followForward,
1480                                 const llvm::Twine &name);
1481 
1482   const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var);
1483 
1484   QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args);
1485 
1486   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1487                     const CGFunctionInfo &FnInfo);
1488   /// \brief Emit code for the start of a function.
1489   /// \param Loc       The location to be associated with the function.
1490   /// \param StartLoc  The location of the function body.
1491   void StartFunction(GlobalDecl GD,
1492                      QualType RetTy,
1493                      llvm::Function *Fn,
1494                      const CGFunctionInfo &FnInfo,
1495                      const FunctionArgList &Args,
1496                      SourceLocation Loc = SourceLocation(),
1497                      SourceLocation StartLoc = SourceLocation());
1498 
1499   void EmitConstructorBody(FunctionArgList &Args);
1500   void EmitDestructorBody(FunctionArgList &Args);
1501   void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
1502   void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body);
1503   void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S);
1504 
1505   void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
1506                                   CallArgList &CallArgs);
1507   void EmitLambdaToBlockPointerBody(FunctionArgList &Args);
1508   void EmitLambdaBlockInvokeBody();
1509   void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
1510   void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD);
1511   void EmitAsanPrologueOrEpilogue(bool Prologue);
1512 
1513   /// \brief Emit the unified return block, trying to avoid its emission when
1514   /// possible.
1515   /// \return The debug location of the user written return statement if the
1516   /// return block is is avoided.
1517   llvm::DebugLoc EmitReturnBlock();
1518 
1519   /// FinishFunction - Complete IR generation of the current function. It is
1520   /// legal to call this function even if there is no current insertion point.
1521   void FinishFunction(SourceLocation EndLoc=SourceLocation());
1522 
1523   void StartThunk(llvm::Function *Fn, GlobalDecl GD,
1524                   const CGFunctionInfo &FnInfo);
1525 
1526   void EmitCallAndReturnForThunk(llvm::Constant *Callee,
1527                                  const ThunkInfo *Thunk);
1528 
1529   void FinishThunk();
1530 
1531   /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
1532   void EmitMustTailThunk(const CXXMethodDecl *MD, llvm::Value *AdjustedThisPtr,
1533                          llvm::Value *Callee);
1534 
1535   /// Generate a thunk for the given method.
1536   void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1537                      GlobalDecl GD, const ThunkInfo &Thunk);
1538 
1539   llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn,
1540                                        const CGFunctionInfo &FnInfo,
1541                                        GlobalDecl GD, const ThunkInfo &Thunk);
1542 
1543   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1544                         FunctionArgList &Args);
1545 
1546   void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init,
1547                                ArrayRef<VarDecl *> ArrayIndexes);
1548 
1549   /// Struct with all informations about dynamic [sub]class needed to set vptr.
1550   struct VPtr {
1551     BaseSubobject Base;
1552     const CXXRecordDecl *NearestVBase;
1553     CharUnits OffsetFromNearestVBase;
1554     const CXXRecordDecl *VTableClass;
1555   };
1556 
1557   /// Initialize the vtable pointer of the given subobject.
1558   void InitializeVTablePointer(const VPtr &vptr);
1559 
1560   typedef llvm::SmallVector<VPtr, 4> VPtrsVector;
1561 
1562   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1563   VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass);
1564 
1565   void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase,
1566                          CharUnits OffsetFromNearestVBase,
1567                          bool BaseIsNonVirtualPrimaryBase,
1568                          const CXXRecordDecl *VTableClass,
1569                          VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs);
1570 
1571   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1572 
1573   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1574   /// to by This.
1575   llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy,
1576                             const CXXRecordDecl *VTableClass);
1577 
1578   enum CFITypeCheckKind {
1579     CFITCK_VCall,
1580     CFITCK_NVCall,
1581     CFITCK_DerivedCast,
1582     CFITCK_UnrelatedCast,
1583     CFITCK_ICall,
1584   };
1585 
1586   /// \brief Derived is the presumed address of an object of type T after a
1587   /// cast. If T is a polymorphic class type, emit a check that the virtual
1588   /// table for Derived belongs to a class derived from T.
1589   void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived,
1590                                  bool MayBeNull, CFITypeCheckKind TCK,
1591                                  SourceLocation Loc);
1592 
1593   /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
1594   /// If vptr CFI is enabled, emit a check that VTable is valid.
1595   void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable,
1596                                  CFITypeCheckKind TCK, SourceLocation Loc);
1597 
1598   /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
1599   /// RD using llvm.type.test.
1600   void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable,
1601                           CFITypeCheckKind TCK, SourceLocation Loc);
1602 
1603   /// If whole-program virtual table optimization is enabled, emit an assumption
1604   /// that VTable is a member of RD's type identifier. Or, if vptr CFI is
1605   /// enabled, emit a check that VTable is a member of RD's type identifier.
1606   void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
1607                                     llvm::Value *VTable, SourceLocation Loc);
1608 
1609   /// Returns whether we should perform a type checked load when loading a
1610   /// virtual function for virtual calls to members of RD. This is generally
1611   /// true when both vcall CFI and whole-program-vtables are enabled.
1612   bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD);
1613 
1614   /// Emit a type checked load from the given vtable.
1615   llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable,
1616                                          uint64_t VTableByteOffset);
1617 
1618   /// CanDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given
1619   /// expr can be devirtualized.
1620   bool CanDevirtualizeMemberFunctionCall(const Expr *Base,
1621                                          const CXXMethodDecl *MD);
1622 
1623   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1624   /// given phase of destruction for a destructor.  The end result
1625   /// should call destructors on members and base classes in reverse
1626   /// order of their construction.
1627   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1628 
1629   /// ShouldInstrumentFunction - Return true if the current function should be
1630   /// instrumented with __cyg_profile_func_* calls
1631   bool ShouldInstrumentFunction();
1632 
1633   /// ShouldXRayInstrument - Return true if the current function should be
1634   /// instrumented with XRay nop sleds.
1635   bool ShouldXRayInstrumentFunction() const;
1636 
1637   /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
1638   /// instrumentation function with the current function and the call site, if
1639   /// function instrumentation is enabled.
1640   void EmitFunctionInstrumentation(const char *Fn);
1641 
1642   /// EmitMCountInstrumentation - Emit call to .mcount.
1643   void EmitMCountInstrumentation();
1644 
1645   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1646   /// arguments for the given function. This is also responsible for naming the
1647   /// LLVM function arguments.
1648   void EmitFunctionProlog(const CGFunctionInfo &FI,
1649                           llvm::Function *Fn,
1650                           const FunctionArgList &Args);
1651 
1652   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1653   /// given temporary.
1654   void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
1655                           SourceLocation EndLoc);
1656 
1657   /// EmitStartEHSpec - Emit the start of the exception spec.
1658   void EmitStartEHSpec(const Decl *D);
1659 
1660   /// EmitEndEHSpec - Emit the end of the exception spec.
1661   void EmitEndEHSpec(const Decl *D);
1662 
1663   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
1664   llvm::BasicBlock *getTerminateLandingPad();
1665 
1666   /// getTerminateHandler - Return a handler (not a landing pad, just
1667   /// a catch handler) that just calls terminate.  This is used when
1668   /// a terminate scope encloses a try.
1669   llvm::BasicBlock *getTerminateHandler();
1670 
1671   llvm::Type *ConvertTypeForMem(QualType T);
1672   llvm::Type *ConvertType(QualType T);
1673   llvm::Type *ConvertType(const TypeDecl *T) {
1674     return ConvertType(getContext().getTypeDeclType(T));
1675   }
1676 
1677   /// LoadObjCSelf - Load the value of self. This function is only valid while
1678   /// generating code for an Objective-C method.
1679   llvm::Value *LoadObjCSelf();
1680 
1681   /// TypeOfSelfObject - Return type of object that this self represents.
1682   QualType TypeOfSelfObject();
1683 
1684   /// hasAggregateLLVMType - Return true if the specified AST type will map into
1685   /// an aggregate LLVM type or is void.
1686   static TypeEvaluationKind getEvaluationKind(QualType T);
1687 
1688   static bool hasScalarEvaluationKind(QualType T) {
1689     return getEvaluationKind(T) == TEK_Scalar;
1690   }
1691 
1692   static bool hasAggregateEvaluationKind(QualType T) {
1693     return getEvaluationKind(T) == TEK_Aggregate;
1694   }
1695 
1696   /// createBasicBlock - Create an LLVM basic block.
1697   llvm::BasicBlock *createBasicBlock(const Twine &name = "",
1698                                      llvm::Function *parent = nullptr,
1699                                      llvm::BasicBlock *before = nullptr) {
1700 #ifdef NDEBUG
1701     return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
1702 #else
1703     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
1704 #endif
1705   }
1706 
1707   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
1708   /// label maps to.
1709   JumpDest getJumpDestForLabel(const LabelDecl *S);
1710 
1711   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
1712   /// another basic block, simplify it. This assumes that no other code could
1713   /// potentially reference the basic block.
1714   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
1715 
1716   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
1717   /// adding a fall-through branch from the current insert block if
1718   /// necessary. It is legal to call this function even if there is no current
1719   /// insertion point.
1720   ///
1721   /// IsFinished - If true, indicates that the caller has finished emitting
1722   /// branches to the given block and does not expect to emit code into it. This
1723   /// means the block can be ignored if it is unreachable.
1724   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
1725 
1726   /// EmitBlockAfterUses - Emit the given block somewhere hopefully
1727   /// near its uses, and leave the insertion point in it.
1728   void EmitBlockAfterUses(llvm::BasicBlock *BB);
1729 
1730   /// EmitBranch - Emit a branch to the specified basic block from the current
1731   /// insert block, taking care to avoid creation of branches from dummy
1732   /// blocks. It is legal to call this function even if there is no current
1733   /// insertion point.
1734   ///
1735   /// This function clears the current insertion point. The caller should follow
1736   /// calls to this function with calls to Emit*Block prior to generation new
1737   /// code.
1738   void EmitBranch(llvm::BasicBlock *Block);
1739 
1740   /// HaveInsertPoint - True if an insertion point is defined. If not, this
1741   /// indicates that the current code being emitted is unreachable.
1742   bool HaveInsertPoint() const {
1743     return Builder.GetInsertBlock() != nullptr;
1744   }
1745 
1746   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
1747   /// emitted IR has a place to go. Note that by definition, if this function
1748   /// creates a block then that block is unreachable; callers may do better to
1749   /// detect when no insertion point is defined and simply skip IR generation.
1750   void EnsureInsertPoint() {
1751     if (!HaveInsertPoint())
1752       EmitBlock(createBasicBlock());
1753   }
1754 
1755   /// ErrorUnsupported - Print out an error that codegen doesn't support the
1756   /// specified stmt yet.
1757   void ErrorUnsupported(const Stmt *S, const char *Type);
1758 
1759   //===--------------------------------------------------------------------===//
1760   //                                  Helpers
1761   //===--------------------------------------------------------------------===//
1762 
1763   LValue MakeAddrLValue(Address Addr, QualType T,
1764                         AlignmentSource AlignSource = AlignmentSource::Type) {
1765     return LValue::MakeAddr(Addr, T, getContext(), AlignSource,
1766                             CGM.getTBAAInfo(T));
1767   }
1768 
1769   LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
1770                         AlignmentSource AlignSource = AlignmentSource::Type) {
1771     return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
1772                             AlignSource, CGM.getTBAAInfo(T));
1773   }
1774 
1775   LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T);
1776   LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T);
1777   CharUnits getNaturalTypeAlignment(QualType T,
1778                                     AlignmentSource *Source = nullptr,
1779                                     bool forPointeeType = false);
1780   CharUnits getNaturalPointeeTypeAlignment(QualType T,
1781                                            AlignmentSource *Source = nullptr);
1782 
1783   Address EmitLoadOfReference(Address Ref, const ReferenceType *RefTy,
1784                               AlignmentSource *Source = nullptr);
1785   LValue EmitLoadOfReferenceLValue(Address Ref, const ReferenceType *RefTy);
1786 
1787   Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy,
1788                             AlignmentSource *Source = nullptr);
1789   LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy);
1790 
1791   /// CreateTempAlloca - This creates a alloca and inserts it into the entry
1792   /// block. The caller is responsible for setting an appropriate alignment on
1793   /// the alloca.
1794   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty,
1795                                      const Twine &Name = "tmp");
1796   Address CreateTempAlloca(llvm::Type *Ty, CharUnits align,
1797                            const Twine &Name = "tmp");
1798 
1799   /// CreateDefaultAlignedTempAlloca - This creates an alloca with the
1800   /// default ABI alignment of the given LLVM type.
1801   ///
1802   /// IMPORTANT NOTE: This is *not* generally the right alignment for
1803   /// any given AST type that happens to have been lowered to the
1804   /// given IR type.  This should only ever be used for function-local,
1805   /// IR-driven manipulations like saving and restoring a value.  Do
1806   /// not hand this address off to arbitrary IRGen routines, and especially
1807   /// do not pass it as an argument to a function that might expect a
1808   /// properly ABI-aligned value.
1809   Address CreateDefaultAlignTempAlloca(llvm::Type *Ty,
1810                                        const Twine &Name = "tmp");
1811 
1812   /// InitTempAlloca - Provide an initial value for the given alloca which
1813   /// will be observable at all locations in the function.
1814   ///
1815   /// The address should be something that was returned from one of
1816   /// the CreateTempAlloca or CreateMemTemp routines, and the
1817   /// initializer must be valid in the entry block (i.e. it must
1818   /// either be a constant or an argument value).
1819   void InitTempAlloca(Address Alloca, llvm::Value *Value);
1820 
1821   /// CreateIRTemp - Create a temporary IR object of the given type, with
1822   /// appropriate alignment. This routine should only be used when an temporary
1823   /// value needs to be stored into an alloca (for example, to avoid explicit
1824   /// PHI construction), but the type is the IR type, not the type appropriate
1825   /// for storing in memory.
1826   ///
1827   /// That is, this is exactly equivalent to CreateMemTemp, but calling
1828   /// ConvertType instead of ConvertTypeForMem.
1829   Address CreateIRTemp(QualType T, const Twine &Name = "tmp");
1830 
1831   /// CreateMemTemp - Create a temporary memory object of the given type, with
1832   /// appropriate alignment.
1833   Address CreateMemTemp(QualType T, const Twine &Name = "tmp");
1834   Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp");
1835 
1836   /// CreateAggTemp - Create a temporary memory object for the given
1837   /// aggregate type.
1838   AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
1839     return AggValueSlot::forAddr(CreateMemTemp(T, Name),
1840                                  T.getQualifiers(),
1841                                  AggValueSlot::IsNotDestructed,
1842                                  AggValueSlot::DoesNotNeedGCBarriers,
1843                                  AggValueSlot::IsNotAliased);
1844   }
1845 
1846   /// Emit a cast to void* in the appropriate address space.
1847   llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
1848 
1849   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
1850   /// expression and compare the result against zero, returning an Int1Ty value.
1851   llvm::Value *EvaluateExprAsBool(const Expr *E);
1852 
1853   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
1854   void EmitIgnoredExpr(const Expr *E);
1855 
1856   /// EmitAnyExpr - Emit code to compute the specified expression which can have
1857   /// any type.  The result is returned as an RValue struct.  If this is an
1858   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
1859   /// the result should be returned.
1860   ///
1861   /// \param ignoreResult True if the resulting value isn't used.
1862   RValue EmitAnyExpr(const Expr *E,
1863                      AggValueSlot aggSlot = AggValueSlot::ignored(),
1864                      bool ignoreResult = false);
1865 
1866   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
1867   // or the value of the expression, depending on how va_list is defined.
1868   Address EmitVAListRef(const Expr *E);
1869 
1870   /// Emit a "reference" to a __builtin_ms_va_list; this is
1871   /// always the value of the expression, because a __builtin_ms_va_list is a
1872   /// pointer to a char.
1873   Address EmitMSVAListRef(const Expr *E);
1874 
1875   /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
1876   /// always be accessible even if no aggregate location is provided.
1877   RValue EmitAnyExprToTemp(const Expr *E);
1878 
1879   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
1880   /// arbitrary expression into the given memory location.
1881   void EmitAnyExprToMem(const Expr *E, Address Location,
1882                         Qualifiers Quals, bool IsInitializer);
1883 
1884   void EmitAnyExprToExn(const Expr *E, Address Addr);
1885 
1886   /// EmitExprAsInit - Emits the code necessary to initialize a
1887   /// location in memory with the given initializer.
1888   void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
1889                       bool capturedByInit);
1890 
1891   /// hasVolatileMember - returns true if aggregate type has a volatile
1892   /// member.
1893   bool hasVolatileMember(QualType T) {
1894     if (const RecordType *RT = T->getAs<RecordType>()) {
1895       const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
1896       return RD->hasVolatileMember();
1897     }
1898     return false;
1899   }
1900   /// EmitAggregateCopy - Emit an aggregate assignment.
1901   ///
1902   /// The difference to EmitAggregateCopy is that tail padding is not copied.
1903   /// This is required for correctness when assigning non-POD structures in C++.
1904   void EmitAggregateAssign(Address DestPtr, Address SrcPtr,
1905                            QualType EltTy) {
1906     bool IsVolatile = hasVolatileMember(EltTy);
1907     EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, true);
1908   }
1909 
1910   void EmitAggregateCopyCtor(Address DestPtr, Address SrcPtr,
1911                              QualType DestTy, QualType SrcTy) {
1912     EmitAggregateCopy(DestPtr, SrcPtr, SrcTy, /*IsVolatile=*/false,
1913                       /*IsAssignment=*/false);
1914   }
1915 
1916   /// EmitAggregateCopy - Emit an aggregate copy.
1917   ///
1918   /// \param isVolatile - True iff either the source or the destination is
1919   /// volatile.
1920   /// \param isAssignment - If false, allow padding to be copied.  This often
1921   /// yields more efficient.
1922   void EmitAggregateCopy(Address DestPtr, Address SrcPtr,
1923                          QualType EltTy, bool isVolatile=false,
1924                          bool isAssignment = false);
1925 
1926   /// GetAddrOfLocalVar - Return the address of a local variable.
1927   Address GetAddrOfLocalVar(const VarDecl *VD) {
1928     auto it = LocalDeclMap.find(VD);
1929     assert(it != LocalDeclMap.end() &&
1930            "Invalid argument to GetAddrOfLocalVar(), no decl!");
1931     return it->second;
1932   }
1933 
1934   /// getOpaqueLValueMapping - Given an opaque value expression (which
1935   /// must be mapped to an l-value), return its mapping.
1936   const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
1937     assert(OpaqueValueMapping::shouldBindAsLValue(e));
1938 
1939     llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
1940       it = OpaqueLValues.find(e);
1941     assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
1942     return it->second;
1943   }
1944 
1945   /// getOpaqueRValueMapping - Given an opaque value expression (which
1946   /// must be mapped to an r-value), return its mapping.
1947   const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
1948     assert(!OpaqueValueMapping::shouldBindAsLValue(e));
1949 
1950     llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
1951       it = OpaqueRValues.find(e);
1952     assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
1953     return it->second;
1954   }
1955 
1956   /// getAccessedFieldNo - Given an encoded value and a result number, return
1957   /// the input field number being accessed.
1958   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
1959 
1960   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
1961   llvm::BasicBlock *GetIndirectGotoBlock();
1962 
1963   /// EmitNullInitialization - Generate code to set a value of the given type to
1964   /// null, If the type contains data member pointers, they will be initialized
1965   /// to -1 in accordance with the Itanium C++ ABI.
1966   void EmitNullInitialization(Address DestPtr, QualType Ty);
1967 
1968   /// Emits a call to an LLVM variable-argument intrinsic, either
1969   /// \c llvm.va_start or \c llvm.va_end.
1970   /// \param ArgValue A reference to the \c va_list as emitted by either
1971   /// \c EmitVAListRef or \c EmitMSVAListRef.
1972   /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise,
1973   /// calls \c llvm.va_end.
1974   llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart);
1975 
1976   /// Generate code to get an argument from the passed in pointer
1977   /// and update it accordingly.
1978   /// \param VE The \c VAArgExpr for which to generate code.
1979   /// \param VAListAddr Receives a reference to the \c va_list as emitted by
1980   /// either \c EmitVAListRef or \c EmitMSVAListRef.
1981   /// \returns A pointer to the argument.
1982   // FIXME: We should be able to get rid of this method and use the va_arg
1983   // instruction in LLVM instead once it works well enough.
1984   Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr);
1985 
1986   /// emitArrayLength - Compute the length of an array, even if it's a
1987   /// VLA, and drill down to the base element type.
1988   llvm::Value *emitArrayLength(const ArrayType *arrayType,
1989                                QualType &baseType,
1990                                Address &addr);
1991 
1992   /// EmitVLASize - Capture all the sizes for the VLA expressions in
1993   /// the given variably-modified type and store them in the VLASizeMap.
1994   ///
1995   /// This function can be called with a null (unreachable) insert point.
1996   void EmitVariablyModifiedType(QualType Ty);
1997 
1998   /// getVLASize - Returns an LLVM value that corresponds to the size,
1999   /// in non-variably-sized elements, of a variable length array type,
2000   /// plus that largest non-variably-sized element type.  Assumes that
2001   /// the type has already been emitted with EmitVariablyModifiedType.
2002   std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla);
2003   std::pair<llvm::Value*,QualType> getVLASize(QualType vla);
2004 
2005   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
2006   /// generating code for an C++ member function.
2007   llvm::Value *LoadCXXThis() {
2008     assert(CXXThisValue && "no 'this' value for this function");
2009     return CXXThisValue;
2010   }
2011   Address LoadCXXThisAddress();
2012 
2013   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
2014   /// virtual bases.
2015   // FIXME: Every place that calls LoadCXXVTT is something
2016   // that needs to be abstracted properly.
2017   llvm::Value *LoadCXXVTT() {
2018     assert(CXXStructorImplicitParamValue && "no VTT value for this function");
2019     return CXXStructorImplicitParamValue;
2020   }
2021 
2022   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
2023   /// complete class to the given direct base.
2024   Address
2025   GetAddressOfDirectBaseInCompleteClass(Address Value,
2026                                         const CXXRecordDecl *Derived,
2027                                         const CXXRecordDecl *Base,
2028                                         bool BaseIsVirtual);
2029 
2030   static bool ShouldNullCheckClassCastValue(const CastExpr *Cast);
2031 
2032   /// GetAddressOfBaseClass - This function will add the necessary delta to the
2033   /// load of 'this' and returns address of the base class.
2034   Address GetAddressOfBaseClass(Address Value,
2035                                 const CXXRecordDecl *Derived,
2036                                 CastExpr::path_const_iterator PathBegin,
2037                                 CastExpr::path_const_iterator PathEnd,
2038                                 bool NullCheckValue, SourceLocation Loc);
2039 
2040   Address GetAddressOfDerivedClass(Address Value,
2041                                    const CXXRecordDecl *Derived,
2042                                    CastExpr::path_const_iterator PathBegin,
2043                                    CastExpr::path_const_iterator PathEnd,
2044                                    bool NullCheckValue);
2045 
2046   /// GetVTTParameter - Return the VTT parameter that should be passed to a
2047   /// base constructor/destructor with virtual bases.
2048   /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
2049   /// to ItaniumCXXABI.cpp together with all the references to VTT.
2050   llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
2051                                bool Delegating);
2052 
2053   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
2054                                       CXXCtorType CtorType,
2055                                       const FunctionArgList &Args,
2056                                       SourceLocation Loc);
2057   // It's important not to confuse this and the previous function. Delegating
2058   // constructors are the C++0x feature. The constructor delegate optimization
2059   // is used to reduce duplication in the base and complete consturctors where
2060   // they are substantially the same.
2061   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2062                                         const FunctionArgList &Args);
2063 
2064   /// Emit a call to an inheriting constructor (that is, one that invokes a
2065   /// constructor inherited from a base class) by inlining its definition. This
2066   /// is necessary if the ABI does not support forwarding the arguments to the
2067   /// base class constructor (because they're variadic or similar).
2068   void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2069                                                CXXCtorType CtorType,
2070                                                bool ForVirtualBase,
2071                                                bool Delegating,
2072                                                CallArgList &Args);
2073 
2074   /// Emit a call to a constructor inherited from a base class, passing the
2075   /// current constructor's arguments along unmodified (without even making
2076   /// a copy).
2077   void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D,
2078                                        bool ForVirtualBase, Address This,
2079                                        bool InheritedFromVBase,
2080                                        const CXXInheritedCtorInitExpr *E);
2081 
2082   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2083                               bool ForVirtualBase, bool Delegating,
2084                               Address This, const CXXConstructExpr *E);
2085 
2086   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2087                               bool ForVirtualBase, bool Delegating,
2088                               Address This, CallArgList &Args);
2089 
2090   /// Emit assumption load for all bases. Requires to be be called only on
2091   /// most-derived class and not under construction of the object.
2092   void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This);
2093 
2094   /// Emit assumption that vptr load == global vtable.
2095   void EmitVTableAssumptionLoad(const VPtr &vptr, Address This);
2096 
2097   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
2098                                       Address This, Address Src,
2099                                       const CXXConstructExpr *E);
2100 
2101   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2102                                   const ArrayType *ArrayTy,
2103                                   Address ArrayPtr,
2104                                   const CXXConstructExpr *E,
2105                                   bool ZeroInitialization = false);
2106 
2107   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2108                                   llvm::Value *NumElements,
2109                                   Address ArrayPtr,
2110                                   const CXXConstructExpr *E,
2111                                   bool ZeroInitialization = false);
2112 
2113   static Destroyer destroyCXXObject;
2114 
2115   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
2116                              bool ForVirtualBase, bool Delegating,
2117                              Address This);
2118 
2119   void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
2120                                llvm::Type *ElementTy, Address NewPtr,
2121                                llvm::Value *NumElements,
2122                                llvm::Value *AllocSizeWithoutCookie);
2123 
2124   void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
2125                         Address Ptr);
2126 
2127   llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr);
2128   void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr);
2129 
2130   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
2131   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
2132 
2133   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
2134                       QualType DeleteTy, llvm::Value *NumElements = nullptr,
2135                       CharUnits CookieSize = CharUnits());
2136 
2137   RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
2138                                   const Expr *Arg, bool IsDelete);
2139 
2140   llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E);
2141   llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE);
2142   Address EmitCXXUuidofExpr(const CXXUuidofExpr *E);
2143 
2144   /// \brief Situations in which we might emit a check for the suitability of a
2145   ///        pointer or glvalue.
2146   enum TypeCheckKind {
2147     /// Checking the operand of a load. Must be suitably sized and aligned.
2148     TCK_Load,
2149     /// Checking the destination of a store. Must be suitably sized and aligned.
2150     TCK_Store,
2151     /// Checking the bound value in a reference binding. Must be suitably sized
2152     /// and aligned, but is not required to refer to an object (until the
2153     /// reference is used), per core issue 453.
2154     TCK_ReferenceBinding,
2155     /// Checking the object expression in a non-static data member access. Must
2156     /// be an object within its lifetime.
2157     TCK_MemberAccess,
2158     /// Checking the 'this' pointer for a call to a non-static member function.
2159     /// Must be an object within its lifetime.
2160     TCK_MemberCall,
2161     /// Checking the 'this' pointer for a constructor call.
2162     TCK_ConstructorCall,
2163     /// Checking the operand of a static_cast to a derived pointer type. Must be
2164     /// null or an object within its lifetime.
2165     TCK_DowncastPointer,
2166     /// Checking the operand of a static_cast to a derived reference type. Must
2167     /// be an object within its lifetime.
2168     TCK_DowncastReference,
2169     /// Checking the operand of a cast to a base object. Must be suitably sized
2170     /// and aligned.
2171     TCK_Upcast,
2172     /// Checking the operand of a cast to a virtual base object. Must be an
2173     /// object within its lifetime.
2174     TCK_UpcastToVirtualBase
2175   };
2176 
2177   /// \brief Whether any type-checking sanitizers are enabled. If \c false,
2178   /// calls to EmitTypeCheck can be skipped.
2179   bool sanitizePerformTypeCheck() const;
2180 
2181   /// \brief Emit a check that \p V is the address of storage of the
2182   /// appropriate size and alignment for an object of type \p Type.
2183   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
2184                      QualType Type, CharUnits Alignment = CharUnits::Zero(),
2185                      bool SkipNullCheck = false);
2186 
2187   /// \brief Emit a check that \p Base points into an array object, which
2188   /// we can access at index \p Index. \p Accessed should be \c false if we
2189   /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
2190   void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
2191                        QualType IndexType, bool Accessed);
2192 
2193   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2194                                        bool isInc, bool isPre);
2195   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
2196                                          bool isInc, bool isPre);
2197 
2198   void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment,
2199                                llvm::Value *OffsetValue = nullptr) {
2200     Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment,
2201                                       OffsetValue);
2202   }
2203 
2204   /// Converts Location to a DebugLoc, if debug information is enabled.
2205   llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location);
2206 
2207 
2208   //===--------------------------------------------------------------------===//
2209   //                            Declaration Emission
2210   //===--------------------------------------------------------------------===//
2211 
2212   /// EmitDecl - Emit a declaration.
2213   ///
2214   /// This function can be called with a null (unreachable) insert point.
2215   void EmitDecl(const Decl &D);
2216 
2217   /// EmitVarDecl - Emit a local variable declaration.
2218   ///
2219   /// This function can be called with a null (unreachable) insert point.
2220   void EmitVarDecl(const VarDecl &D);
2221 
2222   void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2223                       bool capturedByInit);
2224 
2225   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
2226                              llvm::Value *Address);
2227 
2228   /// \brief Determine whether the given initializer is trivial in the sense
2229   /// that it requires no code to be generated.
2230   bool isTrivialInitializer(const Expr *Init);
2231 
2232   /// EmitAutoVarDecl - Emit an auto variable declaration.
2233   ///
2234   /// This function can be called with a null (unreachable) insert point.
2235   void EmitAutoVarDecl(const VarDecl &D);
2236 
2237   class AutoVarEmission {
2238     friend class CodeGenFunction;
2239 
2240     const VarDecl *Variable;
2241 
2242     /// The address of the alloca.  Invalid if the variable was emitted
2243     /// as a global constant.
2244     Address Addr;
2245 
2246     llvm::Value *NRVOFlag;
2247 
2248     /// True if the variable is a __block variable.
2249     bool IsByRef;
2250 
2251     /// True if the variable is of aggregate type and has a constant
2252     /// initializer.
2253     bool IsConstantAggregate;
2254 
2255     /// Non-null if we should use lifetime annotations.
2256     llvm::Value *SizeForLifetimeMarkers;
2257 
2258     struct Invalid {};
2259     AutoVarEmission(Invalid) : Variable(nullptr), Addr(Address::invalid()) {}
2260 
2261     AutoVarEmission(const VarDecl &variable)
2262       : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr),
2263         IsByRef(false), IsConstantAggregate(false),
2264         SizeForLifetimeMarkers(nullptr) {}
2265 
2266     bool wasEmittedAsGlobal() const { return !Addr.isValid(); }
2267 
2268   public:
2269     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
2270 
2271     bool useLifetimeMarkers() const {
2272       return SizeForLifetimeMarkers != nullptr;
2273     }
2274     llvm::Value *getSizeForLifetimeMarkers() const {
2275       assert(useLifetimeMarkers());
2276       return SizeForLifetimeMarkers;
2277     }
2278 
2279     /// Returns the raw, allocated address, which is not necessarily
2280     /// the address of the object itself.
2281     Address getAllocatedAddress() const {
2282       return Addr;
2283     }
2284 
2285     /// Returns the address of the object within this declaration.
2286     /// Note that this does not chase the forwarding pointer for
2287     /// __block decls.
2288     Address getObjectAddress(CodeGenFunction &CGF) const {
2289       if (!IsByRef) return Addr;
2290 
2291       return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false);
2292     }
2293   };
2294   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
2295   void EmitAutoVarInit(const AutoVarEmission &emission);
2296   void EmitAutoVarCleanups(const AutoVarEmission &emission);
2297   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
2298                               QualType::DestructionKind dtorKind);
2299 
2300   void EmitStaticVarDecl(const VarDecl &D,
2301                          llvm::GlobalValue::LinkageTypes Linkage);
2302 
2303   class ParamValue {
2304     llvm::Value *Value;
2305     unsigned Alignment;
2306     ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {}
2307   public:
2308     static ParamValue forDirect(llvm::Value *value) {
2309       return ParamValue(value, 0);
2310     }
2311     static ParamValue forIndirect(Address addr) {
2312       assert(!addr.getAlignment().isZero());
2313       return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity());
2314     }
2315 
2316     bool isIndirect() const { return Alignment != 0; }
2317     llvm::Value *getAnyValue() const { return Value; }
2318 
2319     llvm::Value *getDirectValue() const {
2320       assert(!isIndirect());
2321       return Value;
2322     }
2323 
2324     Address getIndirectAddress() const {
2325       assert(isIndirect());
2326       return Address(Value, CharUnits::fromQuantity(Alignment));
2327     }
2328   };
2329 
2330   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
2331   void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo);
2332 
2333   /// protectFromPeepholes - Protect a value that we're intending to
2334   /// store to the side, but which will probably be used later, from
2335   /// aggressive peepholing optimizations that might delete it.
2336   ///
2337   /// Pass the result to unprotectFromPeepholes to declare that
2338   /// protection is no longer required.
2339   ///
2340   /// There's no particular reason why this shouldn't apply to
2341   /// l-values, it's just that no existing peepholes work on pointers.
2342   PeepholeProtection protectFromPeepholes(RValue rvalue);
2343   void unprotectFromPeepholes(PeepholeProtection protection);
2344 
2345   //===--------------------------------------------------------------------===//
2346   //                             Statement Emission
2347   //===--------------------------------------------------------------------===//
2348 
2349   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
2350   void EmitStopPoint(const Stmt *S);
2351 
2352   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
2353   /// this function even if there is no current insertion point.
2354   ///
2355   /// This function may clear the current insertion point; callers should use
2356   /// EnsureInsertPoint if they wish to subsequently generate code without first
2357   /// calling EmitBlock, EmitBranch, or EmitStmt.
2358   void EmitStmt(const Stmt *S);
2359 
2360   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
2361   /// necessarily require an insertion point or debug information; typically
2362   /// because the statement amounts to a jump or a container of other
2363   /// statements.
2364   ///
2365   /// \return True if the statement was handled.
2366   bool EmitSimpleStmt(const Stmt *S);
2367 
2368   Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
2369                            AggValueSlot AVS = AggValueSlot::ignored());
2370   Address EmitCompoundStmtWithoutScope(const CompoundStmt &S,
2371                                        bool GetLast = false,
2372                                        AggValueSlot AVS =
2373                                                 AggValueSlot::ignored());
2374 
2375   /// EmitLabel - Emit the block for the given label. It is legal to call this
2376   /// function even if there is no current insertion point.
2377   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
2378 
2379   void EmitLabelStmt(const LabelStmt &S);
2380   void EmitAttributedStmt(const AttributedStmt &S);
2381   void EmitGotoStmt(const GotoStmt &S);
2382   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
2383   void EmitIfStmt(const IfStmt &S);
2384 
2385   void EmitWhileStmt(const WhileStmt &S,
2386                      ArrayRef<const Attr *> Attrs = None);
2387   void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None);
2388   void EmitForStmt(const ForStmt &S,
2389                    ArrayRef<const Attr *> Attrs = None);
2390   void EmitReturnStmt(const ReturnStmt &S);
2391   void EmitDeclStmt(const DeclStmt &S);
2392   void EmitBreakStmt(const BreakStmt &S);
2393   void EmitContinueStmt(const ContinueStmt &S);
2394   void EmitSwitchStmt(const SwitchStmt &S);
2395   void EmitDefaultStmt(const DefaultStmt &S);
2396   void EmitCaseStmt(const CaseStmt &S);
2397   void EmitCaseStmtRange(const CaseStmt &S);
2398   void EmitAsmStmt(const AsmStmt &S);
2399 
2400   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
2401   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
2402   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
2403   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
2404   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
2405 
2406   void EmitCoroutineBody(const CoroutineBodyStmt &S);
2407   RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID);
2408 
2409   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2410   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2411 
2412   void EmitCXXTryStmt(const CXXTryStmt &S);
2413   void EmitSEHTryStmt(const SEHTryStmt &S);
2414   void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
2415   void EnterSEHTryStmt(const SEHTryStmt &S);
2416   void ExitSEHTryStmt(const SEHTryStmt &S);
2417 
2418   void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter,
2419                               const Stmt *OutlinedStmt);
2420 
2421   llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
2422                                             const SEHExceptStmt &Except);
2423 
2424   llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF,
2425                                              const SEHFinallyStmt &Finally);
2426 
2427   void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF,
2428                                 llvm::Value *ParentFP,
2429                                 llvm::Value *EntryEBP);
2430   llvm::Value *EmitSEHExceptionCode();
2431   llvm::Value *EmitSEHExceptionInfo();
2432   llvm::Value *EmitSEHAbnormalTermination();
2433 
2434   /// Scan the outlined statement for captures from the parent function. For
2435   /// each capture, mark the capture as escaped and emit a call to
2436   /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap.
2437   void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
2438                           bool IsFilter);
2439 
2440   /// Recovers the address of a local in a parent function. ParentVar is the
2441   /// address of the variable used in the immediate parent function. It can
2442   /// either be an alloca or a call to llvm.localrecover if there are nested
2443   /// outlined functions. ParentFP is the frame pointer of the outermost parent
2444   /// frame.
2445   Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF,
2446                                     Address ParentVar,
2447                                     llvm::Value *ParentFP);
2448 
2449   void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
2450                            ArrayRef<const Attr *> Attrs = None);
2451 
2452   /// Returns calculated size of the specified type.
2453   llvm::Value *getTypeSize(QualType Ty);
2454   LValue InitCapturedStruct(const CapturedStmt &S);
2455   llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
2456   llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
2457   Address GenerateCapturedStmtArgument(const CapturedStmt &S);
2458   llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S);
2459   void GenerateOpenMPCapturedVars(const CapturedStmt &S,
2460                                   SmallVectorImpl<llvm::Value *> &CapturedVars);
2461   void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy,
2462                           SourceLocation Loc);
2463   /// \brief Perform element by element copying of arrays with type \a
2464   /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
2465   /// generated by \a CopyGen.
2466   ///
2467   /// \param DestAddr Address of the destination array.
2468   /// \param SrcAddr Address of the source array.
2469   /// \param OriginalType Type of destination and source arrays.
2470   /// \param CopyGen Copying procedure that copies value of single array element
2471   /// to another single array element.
2472   void EmitOMPAggregateAssign(
2473       Address DestAddr, Address SrcAddr, QualType OriginalType,
2474       const llvm::function_ref<void(Address, Address)> &CopyGen);
2475   /// \brief Emit proper copying of data from one variable to another.
2476   ///
2477   /// \param OriginalType Original type of the copied variables.
2478   /// \param DestAddr Destination address.
2479   /// \param SrcAddr Source address.
2480   /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
2481   /// type of the base array element).
2482   /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
2483   /// the base array element).
2484   /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
2485   /// DestVD.
2486   void EmitOMPCopy(QualType OriginalType,
2487                    Address DestAddr, Address SrcAddr,
2488                    const VarDecl *DestVD, const VarDecl *SrcVD,
2489                    const Expr *Copy);
2490   /// \brief Emit atomic update code for constructs: \a X = \a X \a BO \a E or
2491   /// \a X = \a E \a BO \a E.
2492   ///
2493   /// \param X Value to be updated.
2494   /// \param E Update value.
2495   /// \param BO Binary operation for update operation.
2496   /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
2497   /// expression, false otherwise.
2498   /// \param AO Atomic ordering of the generated atomic instructions.
2499   /// \param CommonGen Code generator for complex expressions that cannot be
2500   /// expressed through atomicrmw instruction.
2501   /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was
2502   /// generated, <false, RValue::get(nullptr)> otherwise.
2503   std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr(
2504       LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
2505       llvm::AtomicOrdering AO, SourceLocation Loc,
2506       const llvm::function_ref<RValue(RValue)> &CommonGen);
2507   bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
2508                                  OMPPrivateScope &PrivateScope);
2509   void EmitOMPPrivateClause(const OMPExecutableDirective &D,
2510                             OMPPrivateScope &PrivateScope);
2511   void EmitOMPUseDevicePtrClause(
2512       const OMPClause &C, OMPPrivateScope &PrivateScope,
2513       const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap);
2514   /// \brief Emit code for copyin clause in \a D directive. The next code is
2515   /// generated at the start of outlined functions for directives:
2516   /// \code
2517   /// threadprivate_var1 = master_threadprivate_var1;
2518   /// operator=(threadprivate_var2, master_threadprivate_var2);
2519   /// ...
2520   /// __kmpc_barrier(&loc, global_tid);
2521   /// \endcode
2522   ///
2523   /// \param D OpenMP directive possibly with 'copyin' clause(s).
2524   /// \returns true if at least one copyin variable is found, false otherwise.
2525   bool EmitOMPCopyinClause(const OMPExecutableDirective &D);
2526   /// \brief Emit initial code for lastprivate variables. If some variable is
2527   /// not also firstprivate, then the default initialization is used. Otherwise
2528   /// initialization of this variable is performed by EmitOMPFirstprivateClause
2529   /// method.
2530   ///
2531   /// \param D Directive that may have 'lastprivate' directives.
2532   /// \param PrivateScope Private scope for capturing lastprivate variables for
2533   /// proper codegen in internal captured statement.
2534   ///
2535   /// \returns true if there is at least one lastprivate variable, false
2536   /// otherwise.
2537   bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D,
2538                                     OMPPrivateScope &PrivateScope);
2539   /// \brief Emit final copying of lastprivate values to original variables at
2540   /// the end of the worksharing or simd directive.
2541   ///
2542   /// \param D Directive that has at least one 'lastprivate' directives.
2543   /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
2544   /// it is the last iteration of the loop code in associated directive, or to
2545   /// 'i1 false' otherwise. If this item is nullptr, no final check is required.
2546   void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D,
2547                                      bool NoFinals,
2548                                      llvm::Value *IsLastIterCond = nullptr);
2549   /// Emit initial code for linear clauses.
2550   void EmitOMPLinearClause(const OMPLoopDirective &D,
2551                            CodeGenFunction::OMPPrivateScope &PrivateScope);
2552   /// Emit final code for linear clauses.
2553   /// \param CondGen Optional conditional code for final part of codegen for
2554   /// linear clause.
2555   void EmitOMPLinearClauseFinal(
2556       const OMPLoopDirective &D,
2557       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen);
2558   /// \brief Emit initial code for reduction variables. Creates reduction copies
2559   /// and initializes them with the values according to OpenMP standard.
2560   ///
2561   /// \param D Directive (possibly) with the 'reduction' clause.
2562   /// \param PrivateScope Private scope for capturing reduction variables for
2563   /// proper codegen in internal captured statement.
2564   ///
2565   void EmitOMPReductionClauseInit(const OMPExecutableDirective &D,
2566                                   OMPPrivateScope &PrivateScope);
2567   /// \brief Emit final update of reduction values to original variables at
2568   /// the end of the directive.
2569   ///
2570   /// \param D Directive that has at least one 'reduction' directives.
2571   void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D);
2572   /// \brief Emit initial code for linear variables. Creates private copies
2573   /// and initializes them with the values according to OpenMP standard.
2574   ///
2575   /// \param D Directive (possibly) with the 'linear' clause.
2576   void EmitOMPLinearClauseInit(const OMPLoopDirective &D);
2577 
2578   typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/,
2579                                         llvm::Value * /*OutlinedFn*/,
2580                                         const OMPTaskDataTy & /*Data*/)>
2581       TaskGenTy;
2582   void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S,
2583                                  const RegionCodeGenTy &BodyGen,
2584                                  const TaskGenTy &TaskGen, OMPTaskDataTy &Data);
2585 
2586   void EmitOMPParallelDirective(const OMPParallelDirective &S);
2587   void EmitOMPSimdDirective(const OMPSimdDirective &S);
2588   void EmitOMPForDirective(const OMPForDirective &S);
2589   void EmitOMPForSimdDirective(const OMPForSimdDirective &S);
2590   void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
2591   void EmitOMPSectionDirective(const OMPSectionDirective &S);
2592   void EmitOMPSingleDirective(const OMPSingleDirective &S);
2593   void EmitOMPMasterDirective(const OMPMasterDirective &S);
2594   void EmitOMPCriticalDirective(const OMPCriticalDirective &S);
2595   void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
2596   void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S);
2597   void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
2598   void EmitOMPTaskDirective(const OMPTaskDirective &S);
2599   void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
2600   void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
2601   void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
2602   void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S);
2603   void EmitOMPFlushDirective(const OMPFlushDirective &S);
2604   void EmitOMPOrderedDirective(const OMPOrderedDirective &S);
2605   void EmitOMPAtomicDirective(const OMPAtomicDirective &S);
2606   void EmitOMPTargetDirective(const OMPTargetDirective &S);
2607   void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S);
2608   void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S);
2609   void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S);
2610   void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S);
2611   void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S);
2612   void
2613   EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S);
2614   void EmitOMPTeamsDirective(const OMPTeamsDirective &S);
2615   void
2616   EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S);
2617   void EmitOMPCancelDirective(const OMPCancelDirective &S);
2618   void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S);
2619   void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S);
2620   void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S);
2621   void EmitOMPDistributeDirective(const OMPDistributeDirective &S);
2622   void EmitOMPDistributeLoop(const OMPDistributeDirective &S);
2623   void EmitOMPDistributeParallelForDirective(
2624       const OMPDistributeParallelForDirective &S);
2625   void EmitOMPDistributeParallelForSimdDirective(
2626       const OMPDistributeParallelForSimdDirective &S);
2627   void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S);
2628   void EmitOMPTargetParallelForSimdDirective(
2629       const OMPTargetParallelForSimdDirective &S);
2630   void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S);
2631   void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S);
2632   void
2633   EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S);
2634 
2635   /// Emit outlined function for the target directive.
2636   static std::pair<llvm::Function * /*OutlinedFn*/,
2637                    llvm::Constant * /*OutlinedFnID*/>
2638   EmitOMPTargetDirectiveOutlinedFunction(CodeGenModule &CGM,
2639                                          const OMPTargetDirective &S,
2640                                          StringRef ParentName,
2641                                          bool IsOffloadEntry);
2642   /// \brief Emit inner loop of the worksharing/simd construct.
2643   ///
2644   /// \param S Directive, for which the inner loop must be emitted.
2645   /// \param RequiresCleanup true, if directive has some associated private
2646   /// variables.
2647   /// \param LoopCond Bollean condition for loop continuation.
2648   /// \param IncExpr Increment expression for loop control variable.
2649   /// \param BodyGen Generator for the inner body of the inner loop.
2650   /// \param PostIncGen Genrator for post-increment code (required for ordered
2651   /// loop directvies).
2652   void EmitOMPInnerLoop(
2653       const Stmt &S, bool RequiresCleanup, const Expr *LoopCond,
2654       const Expr *IncExpr,
2655       const llvm::function_ref<void(CodeGenFunction &)> &BodyGen,
2656       const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen);
2657 
2658   JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind);
2659   /// Emit initial code for loop counters of loop-based directives.
2660   void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S,
2661                                   OMPPrivateScope &LoopScope);
2662 
2663 private:
2664   /// Helpers for the OpenMP loop directives.
2665   void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit);
2666   void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false);
2667   void EmitOMPSimdFinal(
2668       const OMPLoopDirective &D,
2669       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen);
2670   /// \brief Emit code for the worksharing loop-based directive.
2671   /// \return true, if this construct has any lastprivate clause, false -
2672   /// otherwise.
2673   bool EmitOMPWorksharingLoop(const OMPLoopDirective &S);
2674   void EmitOMPOuterLoop(bool IsMonotonic, bool DynamicOrOrdered,
2675       const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered,
2676       Address LB, Address UB, Address ST, Address IL, llvm::Value *Chunk);
2677   void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind,
2678                            bool IsMonotonic, const OMPLoopDirective &S,
2679                            OMPPrivateScope &LoopScope, bool Ordered, Address LB,
2680                            Address UB, Address ST, Address IL,
2681                            llvm::Value *Chunk);
2682   void EmitOMPDistributeOuterLoop(
2683       OpenMPDistScheduleClauseKind ScheduleKind,
2684       const OMPDistributeDirective &S, OMPPrivateScope &LoopScope,
2685       Address LB, Address UB, Address ST, Address IL, llvm::Value *Chunk);
2686   /// \brief Emit code for sections directive.
2687   void EmitSections(const OMPExecutableDirective &S);
2688 
2689 public:
2690 
2691   //===--------------------------------------------------------------------===//
2692   //                         LValue Expression Emission
2693   //===--------------------------------------------------------------------===//
2694 
2695   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
2696   RValue GetUndefRValue(QualType Ty);
2697 
2698   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
2699   /// and issue an ErrorUnsupported style diagnostic (using the
2700   /// provided Name).
2701   RValue EmitUnsupportedRValue(const Expr *E,
2702                                const char *Name);
2703 
2704   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
2705   /// an ErrorUnsupported style diagnostic (using the provided Name).
2706   LValue EmitUnsupportedLValue(const Expr *E,
2707                                const char *Name);
2708 
2709   /// EmitLValue - Emit code to compute a designator that specifies the location
2710   /// of the expression.
2711   ///
2712   /// This can return one of two things: a simple address or a bitfield
2713   /// reference.  In either case, the LLVM Value* in the LValue structure is
2714   /// guaranteed to be an LLVM pointer type.
2715   ///
2716   /// If this returns a bitfield reference, nothing about the pointee type of
2717   /// the LLVM value is known: For example, it may not be a pointer to an
2718   /// integer.
2719   ///
2720   /// If this returns a normal address, and if the lvalue's C type is fixed
2721   /// size, this method guarantees that the returned pointer type will point to
2722   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
2723   /// variable length type, this is not possible.
2724   ///
2725   LValue EmitLValue(const Expr *E);
2726 
2727   /// \brief Same as EmitLValue but additionally we generate checking code to
2728   /// guard against undefined behavior.  This is only suitable when we know
2729   /// that the address will be used to access the object.
2730   LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
2731 
2732   RValue convertTempToRValue(Address addr, QualType type,
2733                              SourceLocation Loc);
2734 
2735   void EmitAtomicInit(Expr *E, LValue lvalue);
2736 
2737   bool LValueIsSuitableForInlineAtomic(LValue Src);
2738 
2739   RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
2740                         AggValueSlot Slot = AggValueSlot::ignored());
2741 
2742   RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
2743                         llvm::AtomicOrdering AO, bool IsVolatile = false,
2744                         AggValueSlot slot = AggValueSlot::ignored());
2745 
2746   void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
2747 
2748   void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
2749                        bool IsVolatile, bool isInit);
2750 
2751   std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
2752       LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
2753       llvm::AtomicOrdering Success =
2754           llvm::AtomicOrdering::SequentiallyConsistent,
2755       llvm::AtomicOrdering Failure =
2756           llvm::AtomicOrdering::SequentiallyConsistent,
2757       bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
2758 
2759   void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
2760                         const llvm::function_ref<RValue(RValue)> &UpdateOp,
2761                         bool IsVolatile);
2762 
2763   /// EmitToMemory - Change a scalar value from its value
2764   /// representation to its in-memory representation.
2765   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
2766 
2767   /// EmitFromMemory - Change a scalar value from its memory
2768   /// representation to its value representation.
2769   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
2770 
2771   /// EmitLoadOfScalar - Load a scalar value from an address, taking
2772   /// care to appropriately convert from the memory representation to
2773   /// the LLVM value representation.
2774   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
2775                                 SourceLocation Loc,
2776                                 AlignmentSource AlignSource =
2777                                   AlignmentSource::Type,
2778                                 llvm::MDNode *TBAAInfo = nullptr,
2779                                 QualType TBAABaseTy = QualType(),
2780                                 uint64_t TBAAOffset = 0,
2781                                 bool isNontemporal = false);
2782 
2783   /// EmitLoadOfScalar - Load a scalar value from an address, taking
2784   /// care to appropriately convert from the memory representation to
2785   /// the LLVM value representation.  The l-value must be a simple
2786   /// l-value.
2787   llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
2788 
2789   /// EmitStoreOfScalar - Store a scalar value to an address, taking
2790   /// care to appropriately convert from the memory representation to
2791   /// the LLVM value representation.
2792   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
2793                          bool Volatile, QualType Ty,
2794                          AlignmentSource AlignSource = AlignmentSource::Type,
2795                          llvm::MDNode *TBAAInfo = nullptr, bool isInit = false,
2796                          QualType TBAABaseTy = QualType(),
2797                          uint64_t TBAAOffset = 0, bool isNontemporal = false);
2798 
2799   /// EmitStoreOfScalar - Store a scalar value to an address, taking
2800   /// care to appropriately convert from the memory representation to
2801   /// the LLVM value representation.  The l-value must be a simple
2802   /// l-value.  The isInit flag indicates whether this is an initialization.
2803   /// If so, atomic qualifiers are ignored and the store is always non-atomic.
2804   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
2805 
2806   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
2807   /// this method emits the address of the lvalue, then loads the result as an
2808   /// rvalue, returning the rvalue.
2809   RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
2810   RValue EmitLoadOfExtVectorElementLValue(LValue V);
2811   RValue EmitLoadOfBitfieldLValue(LValue LV);
2812   RValue EmitLoadOfGlobalRegLValue(LValue LV);
2813 
2814   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
2815   /// lvalue, where both are guaranteed to the have the same type, and that type
2816   /// is 'Ty'.
2817   void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
2818   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
2819   void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
2820 
2821   /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
2822   /// as EmitStoreThroughLValue.
2823   ///
2824   /// \param Result [out] - If non-null, this will be set to a Value* for the
2825   /// bit-field contents after the store, appropriate for use as the result of
2826   /// an assignment to the bit-field.
2827   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2828                                       llvm::Value **Result=nullptr);
2829 
2830   /// Emit an l-value for an assignment (simple or compound) of complex type.
2831   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
2832   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
2833   LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
2834                                              llvm::Value *&Result);
2835 
2836   // Note: only available for agg return types
2837   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
2838   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
2839   // Note: only available for agg return types
2840   LValue EmitCallExprLValue(const CallExpr *E);
2841   // Note: only available for agg return types
2842   LValue EmitVAArgExprLValue(const VAArgExpr *E);
2843   LValue EmitDeclRefLValue(const DeclRefExpr *E);
2844   LValue EmitStringLiteralLValue(const StringLiteral *E);
2845   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
2846   LValue EmitPredefinedLValue(const PredefinedExpr *E);
2847   LValue EmitUnaryOpLValue(const UnaryOperator *E);
2848   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
2849                                 bool Accessed = false);
2850   LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
2851                                  bool IsLowerBound = true);
2852   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
2853   LValue EmitMemberExpr(const MemberExpr *E);
2854   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
2855   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
2856   LValue EmitInitListLValue(const InitListExpr *E);
2857   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
2858   LValue EmitCastLValue(const CastExpr *E);
2859   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
2860   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
2861 
2862   Address EmitExtVectorElementLValue(LValue V);
2863 
2864   RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
2865 
2866   Address EmitArrayToPointerDecay(const Expr *Array,
2867                                   AlignmentSource *AlignSource = nullptr);
2868 
2869   class ConstantEmission {
2870     llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
2871     ConstantEmission(llvm::Constant *C, bool isReference)
2872       : ValueAndIsReference(C, isReference) {}
2873   public:
2874     ConstantEmission() {}
2875     static ConstantEmission forReference(llvm::Constant *C) {
2876       return ConstantEmission(C, true);
2877     }
2878     static ConstantEmission forValue(llvm::Constant *C) {
2879       return ConstantEmission(C, false);
2880     }
2881 
2882     explicit operator bool() const {
2883       return ValueAndIsReference.getOpaqueValue() != nullptr;
2884     }
2885 
2886     bool isReference() const { return ValueAndIsReference.getInt(); }
2887     LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
2888       assert(isReference());
2889       return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
2890                                             refExpr->getType());
2891     }
2892 
2893     llvm::Constant *getValue() const {
2894       assert(!isReference());
2895       return ValueAndIsReference.getPointer();
2896     }
2897   };
2898 
2899   ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
2900 
2901   RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
2902                                 AggValueSlot slot = AggValueSlot::ignored());
2903   LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
2904 
2905   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
2906                               const ObjCIvarDecl *Ivar);
2907   LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
2908   LValue EmitLValueForLambdaField(const FieldDecl *Field);
2909 
2910   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
2911   /// if the Field is a reference, this will return the address of the reference
2912   /// and not the address of the value stored in the reference.
2913   LValue EmitLValueForFieldInitialization(LValue Base,
2914                                           const FieldDecl* Field);
2915 
2916   LValue EmitLValueForIvar(QualType ObjectTy,
2917                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
2918                            unsigned CVRQualifiers);
2919 
2920   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
2921   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
2922   LValue EmitLambdaLValue(const LambdaExpr *E);
2923   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
2924   LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
2925 
2926   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
2927   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
2928   LValue EmitStmtExprLValue(const StmtExpr *E);
2929   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
2930   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
2931   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init);
2932 
2933   //===--------------------------------------------------------------------===//
2934   //                         Scalar Expression Emission
2935   //===--------------------------------------------------------------------===//
2936 
2937   /// EmitCall - Generate a call of the given function, expecting the given
2938   /// result type, and using the given argument list which specifies both the
2939   /// LLVM arguments and the types they were derived from.
2940   RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
2941                   ReturnValueSlot ReturnValue, const CallArgList &Args,
2942                   llvm::Instruction **callOrInvoke = nullptr);
2943 
2944   RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E,
2945                   ReturnValueSlot ReturnValue,
2946                   llvm::Value *Chain = nullptr);
2947   RValue EmitCallExpr(const CallExpr *E,
2948                       ReturnValueSlot ReturnValue = ReturnValueSlot());
2949   RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
2950   CGCallee EmitCallee(const Expr *E);
2951 
2952   void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl);
2953 
2954   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
2955                                   const Twine &name = "");
2956   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
2957                                   ArrayRef<llvm::Value*> args,
2958                                   const Twine &name = "");
2959   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
2960                                           const Twine &name = "");
2961   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
2962                                           ArrayRef<llvm::Value*> args,
2963                                           const Twine &name = "");
2964 
2965   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2966                                   ArrayRef<llvm::Value *> Args,
2967                                   const Twine &Name = "");
2968   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
2969                                          ArrayRef<llvm::Value*> args,
2970                                          const Twine &name = "");
2971   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
2972                                          const Twine &name = "");
2973   void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
2974                                        ArrayRef<llvm::Value*> args);
2975 
2976   CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
2977                                      NestedNameSpecifier *Qual,
2978                                      llvm::Type *Ty);
2979 
2980   CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
2981                                                CXXDtorType Type,
2982                                                const CXXRecordDecl *RD);
2983 
2984   RValue
2985   EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method,
2986                               const CGCallee &Callee,
2987                               ReturnValueSlot ReturnValue, llvm::Value *This,
2988                               llvm::Value *ImplicitParam,
2989                               QualType ImplicitParamTy, const CallExpr *E,
2990                               CallArgList *RtlArgs);
2991   RValue EmitCXXDestructorCall(const CXXDestructorDecl *DD,
2992                                const CGCallee &Callee,
2993                                llvm::Value *This, llvm::Value *ImplicitParam,
2994                                QualType ImplicitParamTy, const CallExpr *E,
2995                                StructorType Type);
2996   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
2997                                ReturnValueSlot ReturnValue);
2998   RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE,
2999                                                const CXXMethodDecl *MD,
3000                                                ReturnValueSlot ReturnValue,
3001                                                bool HasQualifier,
3002                                                NestedNameSpecifier *Qualifier,
3003                                                bool IsArrow, const Expr *Base);
3004   // Compute the object pointer.
3005   Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
3006                                           llvm::Value *memberPtr,
3007                                           const MemberPointerType *memberPtrType,
3008                                           AlignmentSource *AlignSource = nullptr);
3009   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
3010                                       ReturnValueSlot ReturnValue);
3011 
3012   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
3013                                        const CXXMethodDecl *MD,
3014                                        ReturnValueSlot ReturnValue);
3015   RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E);
3016 
3017   RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
3018                                 ReturnValueSlot ReturnValue);
3019 
3020   RValue EmitCUDADevicePrintfCallExpr(const CallExpr *E,
3021                                       ReturnValueSlot ReturnValue);
3022 
3023   RValue EmitBuiltinExpr(const FunctionDecl *FD,
3024                          unsigned BuiltinID, const CallExpr *E,
3025                          ReturnValueSlot ReturnValue);
3026 
3027   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
3028 
3029   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
3030   /// is unhandled by the current target.
3031   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3032 
3033   llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
3034                                              const llvm::CmpInst::Predicate Fp,
3035                                              const llvm::CmpInst::Predicate Ip,
3036                                              const llvm::Twine &Name = "");
3037   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3038 
3039   llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
3040                                          unsigned LLVMIntrinsic,
3041                                          unsigned AltLLVMIntrinsic,
3042                                          const char *NameHint,
3043                                          unsigned Modifier,
3044                                          const CallExpr *E,
3045                                          SmallVectorImpl<llvm::Value *> &Ops,
3046                                          Address PtrOp0, Address PtrOp1);
3047   llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
3048                                           unsigned Modifier, llvm::Type *ArgTy,
3049                                           const CallExpr *E);
3050   llvm::Value *EmitNeonCall(llvm::Function *F,
3051                             SmallVectorImpl<llvm::Value*> &O,
3052                             const char *name,
3053                             unsigned shift = 0, bool rightshift = false);
3054   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
3055   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
3056                                    bool negateForRightShift);
3057   llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
3058                                  llvm::Type *Ty, bool usgn, const char *name);
3059   llvm::Value *vectorWrapScalar16(llvm::Value *Op);
3060   llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3061 
3062   llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
3063   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3064   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3065   llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3066   llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3067   llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3068   llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
3069                                           const CallExpr *E);
3070 
3071 private:
3072   enum class MSVCIntrin;
3073 
3074 public:
3075   llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E);
3076 
3077   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
3078   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
3079   llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
3080   llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
3081   llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
3082   llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
3083                                 const ObjCMethodDecl *MethodWithObjects);
3084   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
3085   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
3086                              ReturnValueSlot Return = ReturnValueSlot());
3087 
3088   /// Retrieves the default cleanup kind for an ARC cleanup.
3089   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
3090   CleanupKind getARCCleanupKind() {
3091     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
3092              ? NormalAndEHCleanup : NormalCleanup;
3093   }
3094 
3095   // ARC primitives.
3096   void EmitARCInitWeak(Address addr, llvm::Value *value);
3097   void EmitARCDestroyWeak(Address addr);
3098   llvm::Value *EmitARCLoadWeak(Address addr);
3099   llvm::Value *EmitARCLoadWeakRetained(Address addr);
3100   llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored);
3101   void EmitARCCopyWeak(Address dst, Address src);
3102   void EmitARCMoveWeak(Address dst, Address src);
3103   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
3104   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
3105   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
3106                                   bool resultIgnored);
3107   llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value,
3108                                       bool resultIgnored);
3109   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
3110   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
3111   llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
3112   void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise);
3113   void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
3114   llvm::Value *EmitARCAutorelease(llvm::Value *value);
3115   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
3116   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
3117   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
3118   llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value);
3119 
3120   std::pair<LValue,llvm::Value*>
3121   EmitARCStoreAutoreleasing(const BinaryOperator *e);
3122   std::pair<LValue,llvm::Value*>
3123   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
3124   std::pair<LValue,llvm::Value*>
3125   EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored);
3126 
3127   llvm::Value *EmitObjCThrowOperand(const Expr *expr);
3128   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
3129   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
3130 
3131   llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
3132   llvm::Value *EmitARCReclaimReturnedObject(const Expr *e,
3133                                             bool allowUnsafeClaim);
3134   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
3135   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
3136   llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr);
3137 
3138   void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
3139 
3140   static Destroyer destroyARCStrongImprecise;
3141   static Destroyer destroyARCStrongPrecise;
3142   static Destroyer destroyARCWeak;
3143 
3144   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
3145   llvm::Value *EmitObjCAutoreleasePoolPush();
3146   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
3147   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
3148   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
3149 
3150   /// \brief Emits a reference binding to the passed in expression.
3151   RValue EmitReferenceBindingToExpr(const Expr *E);
3152 
3153   //===--------------------------------------------------------------------===//
3154   //                           Expression Emission
3155   //===--------------------------------------------------------------------===//
3156 
3157   // Expressions are broken into three classes: scalar, complex, aggregate.
3158 
3159   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
3160   /// scalar type, returning the result.
3161   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
3162 
3163   /// Emit a conversion from the specified type to the specified destination
3164   /// type, both of which are LLVM scalar types.
3165   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
3166                                     QualType DstTy, SourceLocation Loc);
3167 
3168   /// Emit a conversion from the specified complex type to the specified
3169   /// destination type, where the destination type is an LLVM scalar type.
3170   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
3171                                              QualType DstTy,
3172                                              SourceLocation Loc);
3173 
3174   /// EmitAggExpr - Emit the computation of the specified expression
3175   /// of aggregate type.  The result is computed into the given slot,
3176   /// which may be null to indicate that the value is not needed.
3177   void EmitAggExpr(const Expr *E, AggValueSlot AS);
3178 
3179   /// EmitAggExprToLValue - Emit the computation of the specified expression of
3180   /// aggregate type into a temporary LValue.
3181   LValue EmitAggExprToLValue(const Expr *E);
3182 
3183   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
3184   /// make sure it survives garbage collection until this point.
3185   void EmitExtendGCLifetime(llvm::Value *object);
3186 
3187   /// EmitComplexExpr - Emit the computation of the specified expression of
3188   /// complex type, returning the result.
3189   ComplexPairTy EmitComplexExpr(const Expr *E,
3190                                 bool IgnoreReal = false,
3191                                 bool IgnoreImag = false);
3192 
3193   /// EmitComplexExprIntoLValue - Emit the given expression of complex
3194   /// type and place its result into the specified l-value.
3195   void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
3196 
3197   /// EmitStoreOfComplex - Store a complex number into the specified l-value.
3198   void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
3199 
3200   /// EmitLoadOfComplex - Load a complex number from the specified l-value.
3201   ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
3202 
3203   Address emitAddrOfRealComponent(Address complex, QualType complexType);
3204   Address emitAddrOfImagComponent(Address complex, QualType complexType);
3205 
3206   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
3207   /// global variable that has already been created for it.  If the initializer
3208   /// has a different type than GV does, this may free GV and return a different
3209   /// one.  Otherwise it just returns GV.
3210   llvm::GlobalVariable *
3211   AddInitializerToStaticVarDecl(const VarDecl &D,
3212                                 llvm::GlobalVariable *GV);
3213 
3214 
3215   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
3216   /// variable with global storage.
3217   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
3218                                 bool PerformInit);
3219 
3220   llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::Constant *Dtor,
3221                                    llvm::Constant *Addr);
3222 
3223   /// Call atexit() with a function that passes the given argument to
3224   /// the given function.
3225   void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn,
3226                                     llvm::Constant *addr);
3227 
3228   /// Emit code in this function to perform a guarded variable
3229   /// initialization.  Guarded initializations are used when it's not
3230   /// possible to prove that an initialization will be done exactly
3231   /// once, e.g. with a static local variable or a static data member
3232   /// of a class template.
3233   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
3234                           bool PerformInit);
3235 
3236   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
3237   /// variables.
3238   void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
3239                                  ArrayRef<llvm::Function *> CXXThreadLocals,
3240                                  Address Guard = Address::invalid());
3241 
3242   /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
3243   /// variables.
3244   void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn,
3245                                   const std::vector<std::pair<llvm::WeakVH,
3246                                   llvm::Constant*> > &DtorsAndObjects);
3247 
3248   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
3249                                         const VarDecl *D,
3250                                         llvm::GlobalVariable *Addr,
3251                                         bool PerformInit);
3252 
3253   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
3254 
3255   void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp);
3256 
3257   void enterFullExpression(const ExprWithCleanups *E) {
3258     if (E->getNumObjects() == 0) return;
3259     enterNonTrivialFullExpression(E);
3260   }
3261   void enterNonTrivialFullExpression(const ExprWithCleanups *E);
3262 
3263   void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
3264 
3265   void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest);
3266 
3267   RValue EmitAtomicExpr(AtomicExpr *E);
3268 
3269   //===--------------------------------------------------------------------===//
3270   //                         Annotations Emission
3271   //===--------------------------------------------------------------------===//
3272 
3273   /// Emit an annotation call (intrinsic or builtin).
3274   llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
3275                                   llvm::Value *AnnotatedVal,
3276                                   StringRef AnnotationStr,
3277                                   SourceLocation Location);
3278 
3279   /// Emit local annotations for the local variable V, declared by D.
3280   void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
3281 
3282   /// Emit field annotations for the given field & value. Returns the
3283   /// annotation result.
3284   Address EmitFieldAnnotations(const FieldDecl *D, Address V);
3285 
3286   //===--------------------------------------------------------------------===//
3287   //                             Internal Helpers
3288   //===--------------------------------------------------------------------===//
3289 
3290   /// ContainsLabel - Return true if the statement contains a label in it.  If
3291   /// this statement is not executed normally, it not containing a label means
3292   /// that we can just remove the code.
3293   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
3294 
3295   /// containsBreak - Return true if the statement contains a break out of it.
3296   /// If the statement (recursively) contains a switch or loop with a break
3297   /// inside of it, this is fine.
3298   static bool containsBreak(const Stmt *S);
3299 
3300   /// Determine if the given statement might introduce a declaration into the
3301   /// current scope, by being a (possibly-labelled) DeclStmt.
3302   static bool mightAddDeclToScope(const Stmt *S);
3303 
3304   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
3305   /// to a constant, or if it does but contains a label, return false.  If it
3306   /// constant folds return true and set the boolean result in Result.
3307   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result,
3308                                     bool AllowLabels = false);
3309 
3310   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
3311   /// to a constant, or if it does but contains a label, return false.  If it
3312   /// constant folds return true and set the folded value.
3313   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result,
3314                                     bool AllowLabels = false);
3315 
3316   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
3317   /// if statement) to the specified blocks.  Based on the condition, this might
3318   /// try to simplify the codegen of the conditional based on the branch.
3319   /// TrueCount should be the number of times we expect the condition to
3320   /// evaluate to true based on PGO data.
3321   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
3322                             llvm::BasicBlock *FalseBlock, uint64_t TrueCount);
3323 
3324   /// \brief Emit a description of a type in a format suitable for passing to
3325   /// a runtime sanitizer handler.
3326   llvm::Constant *EmitCheckTypeDescriptor(QualType T);
3327 
3328   /// \brief Convert a value into a format suitable for passing to a runtime
3329   /// sanitizer handler.
3330   llvm::Value *EmitCheckValue(llvm::Value *V);
3331 
3332   /// \brief Emit a description of a source location in a format suitable for
3333   /// passing to a runtime sanitizer handler.
3334   llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
3335 
3336   /// \brief Create a basic block that will call a handler function in a
3337   /// sanitizer runtime with the provided arguments, and create a conditional
3338   /// branch to it.
3339   void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
3340                  StringRef CheckName, ArrayRef<llvm::Constant *> StaticArgs,
3341                  ArrayRef<llvm::Value *> DynamicArgs);
3342 
3343   /// \brief Emit a slow path cross-DSO CFI check which calls __cfi_slowpath
3344   /// if Cond if false.
3345   void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond,
3346                             llvm::ConstantInt *TypeId, llvm::Value *Ptr,
3347                             ArrayRef<llvm::Constant *> StaticArgs);
3348 
3349   /// \brief Create a basic block that will call the trap intrinsic, and emit a
3350   /// conditional branch to it, for the -ftrapv checks.
3351   void EmitTrapCheck(llvm::Value *Checked);
3352 
3353   /// \brief Emit a call to trap or debugtrap and attach function attribute
3354   /// "trap-func-name" if specified.
3355   llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID);
3356 
3357   /// \brief Emit a cross-DSO CFI failure handling function.
3358   void EmitCfiCheckFail();
3359 
3360   /// \brief Create a check for a function parameter that may potentially be
3361   /// declared as non-null.
3362   void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc,
3363                            const FunctionDecl *FD, unsigned ParmNum);
3364 
3365   /// EmitCallArg - Emit a single call argument.
3366   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
3367 
3368   /// EmitDelegateCallArg - We are performing a delegate call; that
3369   /// is, the current function is delegating to another one.  Produce
3370   /// a r-value suitable for passing the given parameter.
3371   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
3372                            SourceLocation loc);
3373 
3374   /// SetFPAccuracy - Set the minimum required accuracy of the given floating
3375   /// point operation, expressed as the maximum relative error in ulp.
3376   void SetFPAccuracy(llvm::Value *Val, float Accuracy);
3377 
3378 private:
3379   llvm::MDNode *getRangeForLoadFromType(QualType Ty);
3380   void EmitReturnOfRValue(RValue RV, QualType Ty);
3381 
3382   void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
3383 
3384   llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4>
3385   DeferredReplacements;
3386 
3387   /// Set the address of a local variable.
3388   void setAddrOfLocalVar(const VarDecl *VD, Address Addr) {
3389     assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!");
3390     LocalDeclMap.insert({VD, Addr});
3391   }
3392 
3393   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
3394   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
3395   ///
3396   /// \param AI - The first function argument of the expansion.
3397   void ExpandTypeFromArgs(QualType Ty, LValue Dst,
3398                           SmallVectorImpl<llvm::Value *>::iterator &AI);
3399 
3400   /// ExpandTypeToArgs - Expand an RValue \arg RV, with the LLVM type for \arg
3401   /// Ty, into individual arguments on the provided vector \arg IRCallArgs,
3402   /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand.
3403   void ExpandTypeToArgs(QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy,
3404                         SmallVectorImpl<llvm::Value *> &IRCallArgs,
3405                         unsigned &IRCallArgPos);
3406 
3407   llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
3408                             const Expr *InputExpr, std::string &ConstraintStr);
3409 
3410   llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
3411                                   LValue InputValue, QualType InputType,
3412                                   std::string &ConstraintStr,
3413                                   SourceLocation Loc);
3414 
3415   /// \brief Attempts to statically evaluate the object size of E. If that
3416   /// fails, emits code to figure the size of E out for us. This is
3417   /// pass_object_size aware.
3418   llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
3419                                                llvm::IntegerType *ResType);
3420 
3421   /// \brief Emits the size of E, as required by __builtin_object_size. This
3422   /// function is aware of pass_object_size parameters, and will act accordingly
3423   /// if E is a parameter with the pass_object_size attribute.
3424   llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type,
3425                                      llvm::IntegerType *ResType);
3426 
3427 public:
3428 #ifndef NDEBUG
3429   // Determine whether the given argument is an Objective-C method
3430   // that may have type parameters in its signature.
3431   static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) {
3432     const DeclContext *dc = method->getDeclContext();
3433     if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) {
3434       return classDecl->getTypeParamListAsWritten();
3435     }
3436 
3437     if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) {
3438       return catDecl->getTypeParamList();
3439     }
3440 
3441     return false;
3442   }
3443 
3444   template<typename T>
3445   static bool isObjCMethodWithTypeParams(const T *) { return false; }
3446 #endif
3447 
3448   enum class EvaluationOrder {
3449     ///! No language constraints on evaluation order.
3450     Default,
3451     ///! Language semantics require left-to-right evaluation.
3452     ForceLeftToRight,
3453     ///! Language semantics require right-to-left evaluation.
3454     ForceRightToLeft
3455   };
3456 
3457   /// EmitCallArgs - Emit call arguments for a function.
3458   template <typename T>
3459   void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo,
3460                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3461                     const FunctionDecl *CalleeDecl = nullptr,
3462                     unsigned ParamsToSkip = 0,
3463                     EvaluationOrder Order = EvaluationOrder::Default) {
3464     SmallVector<QualType, 16> ArgTypes;
3465     CallExpr::const_arg_iterator Arg = ArgRange.begin();
3466 
3467     assert((ParamsToSkip == 0 || CallArgTypeInfo) &&
3468            "Can't skip parameters if type info is not provided");
3469     if (CallArgTypeInfo) {
3470 #ifndef NDEBUG
3471       bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo);
3472 #endif
3473 
3474       // First, use the argument types that the type info knows about
3475       for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip,
3476                 E = CallArgTypeInfo->param_type_end();
3477            I != E; ++I, ++Arg) {
3478         assert(Arg != ArgRange.end() && "Running over edge of argument list!");
3479         assert((isGenericMethod ||
3480                 ((*I)->isVariablyModifiedType() ||
3481                  (*I).getNonReferenceType()->isObjCRetainableType() ||
3482                  getContext()
3483                          .getCanonicalType((*I).getNonReferenceType())
3484                          .getTypePtr() ==
3485                      getContext()
3486                          .getCanonicalType((*Arg)->getType())
3487                          .getTypePtr())) &&
3488                "type mismatch in call argument!");
3489         ArgTypes.push_back(*I);
3490       }
3491     }
3492 
3493     // Either we've emitted all the call args, or we have a call to variadic
3494     // function.
3495     assert((Arg == ArgRange.end() || !CallArgTypeInfo ||
3496             CallArgTypeInfo->isVariadic()) &&
3497            "Extra arguments in non-variadic function!");
3498 
3499     // If we still have any arguments, emit them using the type of the argument.
3500     for (auto *A : llvm::make_range(Arg, ArgRange.end()))
3501       ArgTypes.push_back(getVarArgType(A));
3502 
3503     EmitCallArgs(Args, ArgTypes, ArgRange, CalleeDecl, ParamsToSkip, Order);
3504   }
3505 
3506   void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes,
3507                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3508                     const FunctionDecl *CalleeDecl = nullptr,
3509                     unsigned ParamsToSkip = 0,
3510                     EvaluationOrder Order = EvaluationOrder::Default);
3511 
3512   /// EmitPointerWithAlignment - Given an expression with a pointer
3513   /// type, emit the value and compute our best estimate of the
3514   /// alignment of the pointee.
3515   ///
3516   /// Note that this function will conservatively fall back on the type
3517   /// when it doesn't
3518   ///
3519   /// \param Source - If non-null, this will be initialized with
3520   ///   information about the source of the alignment.  Note that this
3521   ///   function will conservatively fall back on the type when it
3522   ///   doesn't recognize the expression, which means that sometimes
3523   ///
3524   ///   a worst-case One
3525   ///   reasonable way to use this information is when there's a
3526   ///   language guarantee that the pointer must be aligned to some
3527   ///   stricter value, and we're simply trying to ensure that
3528   ///   sufficiently obvious uses of under-aligned objects don't get
3529   ///   miscompiled; for example, a placement new into the address of
3530   ///   a local variable.  In such a case, it's quite reasonable to
3531   ///   just ignore the returned alignment when it isn't from an
3532   ///   explicit source.
3533   Address EmitPointerWithAlignment(const Expr *Addr,
3534                                    AlignmentSource *Source = nullptr);
3535 
3536   void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK);
3537 
3538 private:
3539   QualType getVarArgType(const Expr *Arg);
3540 
3541   const TargetCodeGenInfo &getTargetHooks() const {
3542     return CGM.getTargetCodeGenInfo();
3543   }
3544 
3545   void EmitDeclMetadata();
3546 
3547   BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType,
3548                                   const AutoVarEmission &emission);
3549 
3550   void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
3551 
3552   llvm::Value *GetValueForARMHint(unsigned BuiltinID);
3553 };
3554 
3555 /// Helper class with most of the code for saving a value for a
3556 /// conditional expression cleanup.
3557 struct DominatingLLVMValue {
3558   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
3559 
3560   /// Answer whether the given value needs extra work to be saved.
3561   static bool needsSaving(llvm::Value *value) {
3562     // If it's not an instruction, we don't need to save.
3563     if (!isa<llvm::Instruction>(value)) return false;
3564 
3565     // If it's an instruction in the entry block, we don't need to save.
3566     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
3567     return (block != &block->getParent()->getEntryBlock());
3568   }
3569 
3570   /// Try to save the given value.
3571   static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
3572     if (!needsSaving(value)) return saved_type(value, false);
3573 
3574     // Otherwise, we need an alloca.
3575     auto align = CharUnits::fromQuantity(
3576               CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType()));
3577     Address alloca =
3578       CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save");
3579     CGF.Builder.CreateStore(value, alloca);
3580 
3581     return saved_type(alloca.getPointer(), true);
3582   }
3583 
3584   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
3585     // If the value says it wasn't saved, trust that it's still dominating.
3586     if (!value.getInt()) return value.getPointer();
3587 
3588     // Otherwise, it should be an alloca instruction, as set up in save().
3589     auto alloca = cast<llvm::AllocaInst>(value.getPointer());
3590     return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlignment());
3591   }
3592 };
3593 
3594 /// A partial specialization of DominatingValue for llvm::Values that
3595 /// might be llvm::Instructions.
3596 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
3597   typedef T *type;
3598   static type restore(CodeGenFunction &CGF, saved_type value) {
3599     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
3600   }
3601 };
3602 
3603 /// A specialization of DominatingValue for Address.
3604 template <> struct DominatingValue<Address> {
3605   typedef Address type;
3606 
3607   struct saved_type {
3608     DominatingLLVMValue::saved_type SavedValue;
3609     CharUnits Alignment;
3610   };
3611 
3612   static bool needsSaving(type value) {
3613     return DominatingLLVMValue::needsSaving(value.getPointer());
3614   }
3615   static saved_type save(CodeGenFunction &CGF, type value) {
3616     return { DominatingLLVMValue::save(CGF, value.getPointer()),
3617              value.getAlignment() };
3618   }
3619   static type restore(CodeGenFunction &CGF, saved_type value) {
3620     return Address(DominatingLLVMValue::restore(CGF, value.SavedValue),
3621                    value.Alignment);
3622   }
3623 };
3624 
3625 /// A specialization of DominatingValue for RValue.
3626 template <> struct DominatingValue<RValue> {
3627   typedef RValue type;
3628   class saved_type {
3629     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
3630                 AggregateAddress, ComplexAddress };
3631 
3632     llvm::Value *Value;
3633     unsigned K : 3;
3634     unsigned Align : 29;
3635     saved_type(llvm::Value *v, Kind k, unsigned a = 0)
3636       : Value(v), K(k), Align(a) {}
3637 
3638   public:
3639     static bool needsSaving(RValue value);
3640     static saved_type save(CodeGenFunction &CGF, RValue value);
3641     RValue restore(CodeGenFunction &CGF);
3642 
3643     // implementations in CGCleanup.cpp
3644   };
3645 
3646   static bool needsSaving(type value) {
3647     return saved_type::needsSaving(value);
3648   }
3649   static saved_type save(CodeGenFunction &CGF, type value) {
3650     return saved_type::save(CGF, value);
3651   }
3652   static type restore(CodeGenFunction &CGF, saved_type value) {
3653     return value.restore(CGF);
3654   }
3655 };
3656 
3657 }  // end namespace CodeGen
3658 }  // end namespace clang
3659 
3660 #endif
3661