1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the internal per-function state used for llvm translation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 14 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 15 16 #include "CGBuilder.h" 17 #include "CGDebugInfo.h" 18 #include "CGLoopInfo.h" 19 #include "CGValue.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenPGO.h" 22 #include "EHScopeStack.h" 23 #include "VarBypassDetector.h" 24 #include "clang/AST/CharUnits.h" 25 #include "clang/AST/CurrentSourceLocExprScope.h" 26 #include "clang/AST/ExprCXX.h" 27 #include "clang/AST/ExprObjC.h" 28 #include "clang/AST/ExprOpenMP.h" 29 #include "clang/AST/StmtOpenMP.h" 30 #include "clang/AST/Type.h" 31 #include "clang/Basic/ABI.h" 32 #include "clang/Basic/CapturedStmt.h" 33 #include "clang/Basic/CodeGenOptions.h" 34 #include "clang/Basic/OpenMPKinds.h" 35 #include "clang/Basic/TargetInfo.h" 36 #include "llvm/ADT/ArrayRef.h" 37 #include "llvm/ADT/DenseMap.h" 38 #include "llvm/ADT/MapVector.h" 39 #include "llvm/ADT/SmallVector.h" 40 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 41 #include "llvm/IR/ValueHandle.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Transforms/Utils/SanitizerStats.h" 44 45 namespace llvm { 46 class BasicBlock; 47 class LLVMContext; 48 class MDNode; 49 class SwitchInst; 50 class Twine; 51 class Value; 52 class CanonicalLoopInfo; 53 } 54 55 namespace clang { 56 class ASTContext; 57 class CXXDestructorDecl; 58 class CXXForRangeStmt; 59 class CXXTryStmt; 60 class Decl; 61 class LabelDecl; 62 class FunctionDecl; 63 class FunctionProtoType; 64 class LabelStmt; 65 class ObjCContainerDecl; 66 class ObjCInterfaceDecl; 67 class ObjCIvarDecl; 68 class ObjCMethodDecl; 69 class ObjCImplementationDecl; 70 class ObjCPropertyImplDecl; 71 class TargetInfo; 72 class VarDecl; 73 class ObjCForCollectionStmt; 74 class ObjCAtTryStmt; 75 class ObjCAtThrowStmt; 76 class ObjCAtSynchronizedStmt; 77 class ObjCAutoreleasePoolStmt; 78 class OMPUseDevicePtrClause; 79 class OMPUseDeviceAddrClause; 80 class SVETypeFlags; 81 class OMPExecutableDirective; 82 83 namespace analyze_os_log { 84 class OSLogBufferLayout; 85 } 86 87 namespace CodeGen { 88 class CodeGenTypes; 89 class CGCallee; 90 class CGFunctionInfo; 91 class CGBlockInfo; 92 class CGCXXABI; 93 class BlockByrefHelpers; 94 class BlockByrefInfo; 95 class BlockFieldFlags; 96 class RegionCodeGenTy; 97 class TargetCodeGenInfo; 98 struct OMPTaskDataTy; 99 struct CGCoroData; 100 101 /// The kind of evaluation to perform on values of a particular 102 /// type. Basically, is the code in CGExprScalar, CGExprComplex, or 103 /// CGExprAgg? 104 /// 105 /// TODO: should vectors maybe be split out into their own thing? 106 enum TypeEvaluationKind { 107 TEK_Scalar, 108 TEK_Complex, 109 TEK_Aggregate 110 }; 111 112 #define LIST_SANITIZER_CHECKS \ 113 SANITIZER_CHECK(AddOverflow, add_overflow, 0) \ 114 SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0) \ 115 SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0) \ 116 SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0) \ 117 SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0) \ 118 SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0) \ 119 SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 1) \ 120 SANITIZER_CHECK(ImplicitConversion, implicit_conversion, 0) \ 121 SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0) \ 122 SANITIZER_CHECK(InvalidObjCCast, invalid_objc_cast, 0) \ 123 SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0) \ 124 SANITIZER_CHECK(MissingReturn, missing_return, 0) \ 125 SANITIZER_CHECK(MulOverflow, mul_overflow, 0) \ 126 SANITIZER_CHECK(NegateOverflow, negate_overflow, 0) \ 127 SANITIZER_CHECK(NullabilityArg, nullability_arg, 0) \ 128 SANITIZER_CHECK(NullabilityReturn, nullability_return, 1) \ 129 SANITIZER_CHECK(NonnullArg, nonnull_arg, 0) \ 130 SANITIZER_CHECK(NonnullReturn, nonnull_return, 1) \ 131 SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0) \ 132 SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0) \ 133 SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0) \ 134 SANITIZER_CHECK(SubOverflow, sub_overflow, 0) \ 135 SANITIZER_CHECK(TypeMismatch, type_mismatch, 1) \ 136 SANITIZER_CHECK(AlignmentAssumption, alignment_assumption, 0) \ 137 SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0) 138 139 enum SanitizerHandler { 140 #define SANITIZER_CHECK(Enum, Name, Version) Enum, 141 LIST_SANITIZER_CHECKS 142 #undef SANITIZER_CHECK 143 }; 144 145 /// Helper class with most of the code for saving a value for a 146 /// conditional expression cleanup. 147 struct DominatingLLVMValue { 148 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 149 150 /// Answer whether the given value needs extra work to be saved. 151 static bool needsSaving(llvm::Value *value) { 152 // If it's not an instruction, we don't need to save. 153 if (!isa<llvm::Instruction>(value)) return false; 154 155 // If it's an instruction in the entry block, we don't need to save. 156 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 157 return (block != &block->getParent()->getEntryBlock()); 158 } 159 160 static saved_type save(CodeGenFunction &CGF, llvm::Value *value); 161 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value); 162 }; 163 164 /// A partial specialization of DominatingValue for llvm::Values that 165 /// might be llvm::Instructions. 166 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 167 typedef T *type; 168 static type restore(CodeGenFunction &CGF, saved_type value) { 169 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 170 } 171 }; 172 173 /// A specialization of DominatingValue for Address. 174 template <> struct DominatingValue<Address> { 175 typedef Address type; 176 177 struct saved_type { 178 DominatingLLVMValue::saved_type SavedValue; 179 llvm::Type *ElementType; 180 CharUnits Alignment; 181 }; 182 183 static bool needsSaving(type value) { 184 return DominatingLLVMValue::needsSaving(value.getPointer()); 185 } 186 static saved_type save(CodeGenFunction &CGF, type value) { 187 return { DominatingLLVMValue::save(CGF, value.getPointer()), 188 value.getElementType(), value.getAlignment() }; 189 } 190 static type restore(CodeGenFunction &CGF, saved_type value) { 191 return Address(DominatingLLVMValue::restore(CGF, value.SavedValue), 192 value.ElementType, value.Alignment); 193 } 194 }; 195 196 /// A specialization of DominatingValue for RValue. 197 template <> struct DominatingValue<RValue> { 198 typedef RValue type; 199 class saved_type { 200 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 201 AggregateAddress, ComplexAddress }; 202 203 llvm::Value *Value; 204 unsigned K : 3; 205 unsigned Align : 29; 206 saved_type(llvm::Value *v, Kind k, unsigned a = 0) 207 : Value(v), K(k), Align(a) {} 208 209 public: 210 static bool needsSaving(RValue value); 211 static saved_type save(CodeGenFunction &CGF, RValue value); 212 RValue restore(CodeGenFunction &CGF); 213 214 // implementations in CGCleanup.cpp 215 }; 216 217 static bool needsSaving(type value) { 218 return saved_type::needsSaving(value); 219 } 220 static saved_type save(CodeGenFunction &CGF, type value) { 221 return saved_type::save(CGF, value); 222 } 223 static type restore(CodeGenFunction &CGF, saved_type value) { 224 return value.restore(CGF); 225 } 226 }; 227 228 /// CodeGenFunction - This class organizes the per-function state that is used 229 /// while generating LLVM code. 230 class CodeGenFunction : public CodeGenTypeCache { 231 CodeGenFunction(const CodeGenFunction &) = delete; 232 void operator=(const CodeGenFunction &) = delete; 233 234 friend class CGCXXABI; 235 public: 236 /// A jump destination is an abstract label, branching to which may 237 /// require a jump out through normal cleanups. 238 struct JumpDest { 239 JumpDest() : Block(nullptr), Index(0) {} 240 JumpDest(llvm::BasicBlock *Block, EHScopeStack::stable_iterator Depth, 241 unsigned Index) 242 : Block(Block), ScopeDepth(Depth), Index(Index) {} 243 244 bool isValid() const { return Block != nullptr; } 245 llvm::BasicBlock *getBlock() const { return Block; } 246 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 247 unsigned getDestIndex() const { return Index; } 248 249 // This should be used cautiously. 250 void setScopeDepth(EHScopeStack::stable_iterator depth) { 251 ScopeDepth = depth; 252 } 253 254 private: 255 llvm::BasicBlock *Block; 256 EHScopeStack::stable_iterator ScopeDepth; 257 unsigned Index; 258 }; 259 260 CodeGenModule &CGM; // Per-module state. 261 const TargetInfo &Target; 262 263 // For EH/SEH outlined funclets, this field points to parent's CGF 264 CodeGenFunction *ParentCGF = nullptr; 265 266 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 267 LoopInfoStack LoopStack; 268 CGBuilderTy Builder; 269 270 // Stores variables for which we can't generate correct lifetime markers 271 // because of jumps. 272 VarBypassDetector Bypasses; 273 274 /// List of recently emitted OMPCanonicalLoops. 275 /// 276 /// Since OMPCanonicalLoops are nested inside other statements (in particular 277 /// CapturedStmt generated by OMPExecutableDirective and non-perfectly nested 278 /// loops), we cannot directly call OMPEmitOMPCanonicalLoop and receive its 279 /// llvm::CanonicalLoopInfo. Instead, we call EmitStmt and any 280 /// OMPEmitOMPCanonicalLoop called by it will add its CanonicalLoopInfo to 281 /// this stack when done. Entering a new loop requires clearing this list; it 282 /// either means we start parsing a new loop nest (in which case the previous 283 /// loop nest goes out of scope) or a second loop in the same level in which 284 /// case it would be ambiguous into which of the two (or more) loops the loop 285 /// nest would extend. 286 SmallVector<llvm::CanonicalLoopInfo *, 4> OMPLoopNestStack; 287 288 /// Number of nested loop to be consumed by the last surrounding 289 /// loop-associated directive. 290 int ExpectedOMPLoopDepth = 0; 291 292 // CodeGen lambda for loops and support for ordered clause 293 typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &, 294 JumpDest)> 295 CodeGenLoopTy; 296 typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation, 297 const unsigned, const bool)> 298 CodeGenOrderedTy; 299 300 // Codegen lambda for loop bounds in worksharing loop constructs 301 typedef llvm::function_ref<std::pair<LValue, LValue>( 302 CodeGenFunction &, const OMPExecutableDirective &S)> 303 CodeGenLoopBoundsTy; 304 305 // Codegen lambda for loop bounds in dispatch-based loop implementation 306 typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>( 307 CodeGenFunction &, const OMPExecutableDirective &S, Address LB, 308 Address UB)> 309 CodeGenDispatchBoundsTy; 310 311 /// CGBuilder insert helper. This function is called after an 312 /// instruction is created using Builder. 313 void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name, 314 llvm::BasicBlock *BB, 315 llvm::BasicBlock::iterator InsertPt) const; 316 317 /// CurFuncDecl - Holds the Decl for the current outermost 318 /// non-closure context. 319 const Decl *CurFuncDecl; 320 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 321 const Decl *CurCodeDecl; 322 const CGFunctionInfo *CurFnInfo; 323 QualType FnRetTy; 324 llvm::Function *CurFn = nullptr; 325 326 /// Save Parameter Decl for coroutine. 327 llvm::SmallVector<const ParmVarDecl *, 4> FnArgs; 328 329 // Holds coroutine data if the current function is a coroutine. We use a 330 // wrapper to manage its lifetime, so that we don't have to define CGCoroData 331 // in this header. 332 struct CGCoroInfo { 333 std::unique_ptr<CGCoroData> Data; 334 CGCoroInfo(); 335 ~CGCoroInfo(); 336 }; 337 CGCoroInfo CurCoro; 338 339 bool isCoroutine() const { 340 return CurCoro.Data != nullptr; 341 } 342 343 /// CurGD - The GlobalDecl for the current function being compiled. 344 GlobalDecl CurGD; 345 346 /// PrologueCleanupDepth - The cleanup depth enclosing all the 347 /// cleanups associated with the parameters. 348 EHScopeStack::stable_iterator PrologueCleanupDepth; 349 350 /// ReturnBlock - Unified return block. 351 JumpDest ReturnBlock; 352 353 /// ReturnValue - The temporary alloca to hold the return 354 /// value. This is invalid iff the function has no return value. 355 Address ReturnValue = Address::invalid(); 356 357 /// ReturnValuePointer - The temporary alloca to hold a pointer to sret. 358 /// This is invalid if sret is not in use. 359 Address ReturnValuePointer = Address::invalid(); 360 361 /// If a return statement is being visited, this holds the return statment's 362 /// result expression. 363 const Expr *RetExpr = nullptr; 364 365 /// Return true if a label was seen in the current scope. 366 bool hasLabelBeenSeenInCurrentScope() const { 367 if (CurLexicalScope) 368 return CurLexicalScope->hasLabels(); 369 return !LabelMap.empty(); 370 } 371 372 /// AllocaInsertPoint - This is an instruction in the entry block before which 373 /// we prefer to insert allocas. 374 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 375 376 private: 377 /// PostAllocaInsertPt - This is a place in the prologue where code can be 378 /// inserted that will be dominated by all the static allocas. This helps 379 /// achieve two things: 380 /// 1. Contiguity of all static allocas (within the prologue) is maintained. 381 /// 2. All other prologue code (which are dominated by static allocas) do 382 /// appear in the source order immediately after all static allocas. 383 /// 384 /// PostAllocaInsertPt will be lazily created when it is *really* required. 385 llvm::AssertingVH<llvm::Instruction> PostAllocaInsertPt = nullptr; 386 387 public: 388 /// Return PostAllocaInsertPt. If it is not yet created, then insert it 389 /// immediately after AllocaInsertPt. 390 llvm::Instruction *getPostAllocaInsertPoint() { 391 if (!PostAllocaInsertPt) { 392 assert(AllocaInsertPt && 393 "Expected static alloca insertion point at function prologue"); 394 assert(AllocaInsertPt->getParent()->isEntryBlock() && 395 "EBB should be entry block of the current code gen function"); 396 PostAllocaInsertPt = AllocaInsertPt->clone(); 397 PostAllocaInsertPt->setName("postallocapt"); 398 PostAllocaInsertPt->insertAfter(AllocaInsertPt); 399 } 400 401 return PostAllocaInsertPt; 402 } 403 404 /// API for captured statement code generation. 405 class CGCapturedStmtInfo { 406 public: 407 explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default) 408 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {} 409 explicit CGCapturedStmtInfo(const CapturedStmt &S, 410 CapturedRegionKind K = CR_Default) 411 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) { 412 413 RecordDecl::field_iterator Field = 414 S.getCapturedRecordDecl()->field_begin(); 415 for (CapturedStmt::const_capture_iterator I = S.capture_begin(), 416 E = S.capture_end(); 417 I != E; ++I, ++Field) { 418 if (I->capturesThis()) 419 CXXThisFieldDecl = *Field; 420 else if (I->capturesVariable()) 421 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 422 else if (I->capturesVariableByCopy()) 423 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 424 } 425 } 426 427 virtual ~CGCapturedStmtInfo(); 428 429 CapturedRegionKind getKind() const { return Kind; } 430 431 virtual void setContextValue(llvm::Value *V) { ThisValue = V; } 432 // Retrieve the value of the context parameter. 433 virtual llvm::Value *getContextValue() const { return ThisValue; } 434 435 /// Lookup the captured field decl for a variable. 436 virtual const FieldDecl *lookup(const VarDecl *VD) const { 437 return CaptureFields.lookup(VD->getCanonicalDecl()); 438 } 439 440 bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; } 441 virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; } 442 443 static bool classof(const CGCapturedStmtInfo *) { 444 return true; 445 } 446 447 /// Emit the captured statement body. 448 virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) { 449 CGF.incrementProfileCounter(S); 450 CGF.EmitStmt(S); 451 } 452 453 /// Get the name of the capture helper. 454 virtual StringRef getHelperName() const { return "__captured_stmt"; } 455 456 /// Get the CaptureFields 457 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> getCaptureFields() { 458 return CaptureFields; 459 } 460 461 private: 462 /// The kind of captured statement being generated. 463 CapturedRegionKind Kind; 464 465 /// Keep the map between VarDecl and FieldDecl. 466 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields; 467 468 /// The base address of the captured record, passed in as the first 469 /// argument of the parallel region function. 470 llvm::Value *ThisValue; 471 472 /// Captured 'this' type. 473 FieldDecl *CXXThisFieldDecl; 474 }; 475 CGCapturedStmtInfo *CapturedStmtInfo = nullptr; 476 477 /// RAII for correct setting/restoring of CapturedStmtInfo. 478 class CGCapturedStmtRAII { 479 private: 480 CodeGenFunction &CGF; 481 CGCapturedStmtInfo *PrevCapturedStmtInfo; 482 public: 483 CGCapturedStmtRAII(CodeGenFunction &CGF, 484 CGCapturedStmtInfo *NewCapturedStmtInfo) 485 : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) { 486 CGF.CapturedStmtInfo = NewCapturedStmtInfo; 487 } 488 ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; } 489 }; 490 491 /// An abstract representation of regular/ObjC call/message targets. 492 class AbstractCallee { 493 /// The function declaration of the callee. 494 const Decl *CalleeDecl; 495 496 public: 497 AbstractCallee() : CalleeDecl(nullptr) {} 498 AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {} 499 AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {} 500 bool hasFunctionDecl() const { 501 return isa_and_nonnull<FunctionDecl>(CalleeDecl); 502 } 503 const Decl *getDecl() const { return CalleeDecl; } 504 unsigned getNumParams() const { 505 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 506 return FD->getNumParams(); 507 return cast<ObjCMethodDecl>(CalleeDecl)->param_size(); 508 } 509 const ParmVarDecl *getParamDecl(unsigned I) const { 510 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 511 return FD->getParamDecl(I); 512 return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I); 513 } 514 }; 515 516 /// Sanitizers enabled for this function. 517 SanitizerSet SanOpts; 518 519 /// True if CodeGen currently emits code implementing sanitizer checks. 520 bool IsSanitizerScope = false; 521 522 /// RAII object to set/unset CodeGenFunction::IsSanitizerScope. 523 class SanitizerScope { 524 CodeGenFunction *CGF; 525 public: 526 SanitizerScope(CodeGenFunction *CGF); 527 ~SanitizerScope(); 528 }; 529 530 /// In C++, whether we are code generating a thunk. This controls whether we 531 /// should emit cleanups. 532 bool CurFuncIsThunk = false; 533 534 /// In ARC, whether we should autorelease the return value. 535 bool AutoreleaseResult = false; 536 537 /// Whether we processed a Microsoft-style asm block during CodeGen. These can 538 /// potentially set the return value. 539 bool SawAsmBlock = false; 540 541 const NamedDecl *CurSEHParent = nullptr; 542 543 /// True if the current function is an outlined SEH helper. This can be a 544 /// finally block or filter expression. 545 bool IsOutlinedSEHHelper = false; 546 547 /// True if CodeGen currently emits code inside presereved access index 548 /// region. 549 bool IsInPreservedAIRegion = false; 550 551 /// True if the current statement has nomerge attribute. 552 bool InNoMergeAttributedStmt = false; 553 554 /// True if the current statement has noinline attribute. 555 bool InNoInlineAttributedStmt = false; 556 557 // The CallExpr within the current statement that the musttail attribute 558 // applies to. nullptr if there is no 'musttail' on the current statement. 559 const CallExpr *MustTailCall = nullptr; 560 561 /// Returns true if a function must make progress, which means the 562 /// mustprogress attribute can be added. 563 bool checkIfFunctionMustProgress() { 564 if (CGM.getCodeGenOpts().getFiniteLoops() == 565 CodeGenOptions::FiniteLoopsKind::Never) 566 return false; 567 568 // C++11 and later guarantees that a thread eventually will do one of the 569 // following (6.9.2.3.1 in C++11): 570 // - terminate, 571 // - make a call to a library I/O function, 572 // - perform an access through a volatile glvalue, or 573 // - perform a synchronization operation or an atomic operation. 574 // 575 // Hence each function is 'mustprogress' in C++11 or later. 576 return getLangOpts().CPlusPlus11; 577 } 578 579 /// Returns true if a loop must make progress, which means the mustprogress 580 /// attribute can be added. \p HasConstantCond indicates whether the branch 581 /// condition is a known constant. 582 bool checkIfLoopMustProgress(bool HasConstantCond) { 583 if (CGM.getCodeGenOpts().getFiniteLoops() == 584 CodeGenOptions::FiniteLoopsKind::Always) 585 return true; 586 if (CGM.getCodeGenOpts().getFiniteLoops() == 587 CodeGenOptions::FiniteLoopsKind::Never) 588 return false; 589 590 // If the containing function must make progress, loops also must make 591 // progress (as in C++11 and later). 592 if (checkIfFunctionMustProgress()) 593 return true; 594 595 // Now apply rules for plain C (see 6.8.5.6 in C11). 596 // Loops with constant conditions do not have to make progress in any C 597 // version. 598 if (HasConstantCond) 599 return false; 600 601 // Loops with non-constant conditions must make progress in C11 and later. 602 return getLangOpts().C11; 603 } 604 605 const CodeGen::CGBlockInfo *BlockInfo = nullptr; 606 llvm::Value *BlockPointer = nullptr; 607 608 llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; 609 FieldDecl *LambdaThisCaptureField = nullptr; 610 611 /// A mapping from NRVO variables to the flags used to indicate 612 /// when the NRVO has been applied to this variable. 613 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 614 615 EHScopeStack EHStack; 616 llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack; 617 llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack; 618 619 llvm::Instruction *CurrentFuncletPad = nullptr; 620 621 class CallLifetimeEnd final : public EHScopeStack::Cleanup { 622 bool isRedundantBeforeReturn() override { return true; } 623 624 llvm::Value *Addr; 625 llvm::Value *Size; 626 627 public: 628 CallLifetimeEnd(Address addr, llvm::Value *size) 629 : Addr(addr.getPointer()), Size(size) {} 630 631 void Emit(CodeGenFunction &CGF, Flags flags) override { 632 CGF.EmitLifetimeEnd(Size, Addr); 633 } 634 }; 635 636 /// Header for data within LifetimeExtendedCleanupStack. 637 struct LifetimeExtendedCleanupHeader { 638 /// The size of the following cleanup object. 639 unsigned Size; 640 /// The kind of cleanup to push: a value from the CleanupKind enumeration. 641 unsigned Kind : 31; 642 /// Whether this is a conditional cleanup. 643 unsigned IsConditional : 1; 644 645 size_t getSize() const { return Size; } 646 CleanupKind getKind() const { return (CleanupKind)Kind; } 647 bool isConditional() const { return IsConditional; } 648 }; 649 650 /// i32s containing the indexes of the cleanup destinations. 651 Address NormalCleanupDest = Address::invalid(); 652 653 unsigned NextCleanupDestIndex = 1; 654 655 /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. 656 llvm::BasicBlock *EHResumeBlock = nullptr; 657 658 /// The exception slot. All landing pads write the current exception pointer 659 /// into this alloca. 660 llvm::Value *ExceptionSlot = nullptr; 661 662 /// The selector slot. Under the MandatoryCleanup model, all landing pads 663 /// write the current selector value into this alloca. 664 llvm::AllocaInst *EHSelectorSlot = nullptr; 665 666 /// A stack of exception code slots. Entering an __except block pushes a slot 667 /// on the stack and leaving pops one. The __exception_code() intrinsic loads 668 /// a value from the top of the stack. 669 SmallVector<Address, 1> SEHCodeSlotStack; 670 671 /// Value returned by __exception_info intrinsic. 672 llvm::Value *SEHInfo = nullptr; 673 674 /// Emits a landing pad for the current EH stack. 675 llvm::BasicBlock *EmitLandingPad(); 676 677 llvm::BasicBlock *getInvokeDestImpl(); 678 679 /// Parent loop-based directive for scan directive. 680 const OMPExecutableDirective *OMPParentLoopDirectiveForScan = nullptr; 681 llvm::BasicBlock *OMPBeforeScanBlock = nullptr; 682 llvm::BasicBlock *OMPAfterScanBlock = nullptr; 683 llvm::BasicBlock *OMPScanExitBlock = nullptr; 684 llvm::BasicBlock *OMPScanDispatch = nullptr; 685 bool OMPFirstScanLoop = false; 686 687 /// Manages parent directive for scan directives. 688 class ParentLoopDirectiveForScanRegion { 689 CodeGenFunction &CGF; 690 const OMPExecutableDirective *ParentLoopDirectiveForScan; 691 692 public: 693 ParentLoopDirectiveForScanRegion( 694 CodeGenFunction &CGF, 695 const OMPExecutableDirective &ParentLoopDirectiveForScan) 696 : CGF(CGF), 697 ParentLoopDirectiveForScan(CGF.OMPParentLoopDirectiveForScan) { 698 CGF.OMPParentLoopDirectiveForScan = &ParentLoopDirectiveForScan; 699 } 700 ~ParentLoopDirectiveForScanRegion() { 701 CGF.OMPParentLoopDirectiveForScan = ParentLoopDirectiveForScan; 702 } 703 }; 704 705 template <class T> 706 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 707 return DominatingValue<T>::save(*this, value); 708 } 709 710 class CGFPOptionsRAII { 711 public: 712 CGFPOptionsRAII(CodeGenFunction &CGF, FPOptions FPFeatures); 713 CGFPOptionsRAII(CodeGenFunction &CGF, const Expr *E); 714 ~CGFPOptionsRAII(); 715 716 private: 717 void ConstructorHelper(FPOptions FPFeatures); 718 CodeGenFunction &CGF; 719 FPOptions OldFPFeatures; 720 llvm::fp::ExceptionBehavior OldExcept; 721 llvm::RoundingMode OldRounding; 722 Optional<CGBuilderTy::FastMathFlagGuard> FMFGuard; 723 }; 724 FPOptions CurFPFeatures; 725 726 public: 727 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 728 /// rethrows. 729 SmallVector<llvm::Value*, 8> ObjCEHValueStack; 730 731 /// A class controlling the emission of a finally block. 732 class FinallyInfo { 733 /// Where the catchall's edge through the cleanup should go. 734 JumpDest RethrowDest; 735 736 /// A function to call to enter the catch. 737 llvm::FunctionCallee BeginCatchFn; 738 739 /// An i1 variable indicating whether or not the @finally is 740 /// running for an exception. 741 llvm::AllocaInst *ForEHVar; 742 743 /// An i8* variable into which the exception pointer to rethrow 744 /// has been saved. 745 llvm::AllocaInst *SavedExnVar; 746 747 public: 748 void enter(CodeGenFunction &CGF, const Stmt *Finally, 749 llvm::FunctionCallee beginCatchFn, 750 llvm::FunctionCallee endCatchFn, llvm::FunctionCallee rethrowFn); 751 void exit(CodeGenFunction &CGF); 752 }; 753 754 /// Returns true inside SEH __try blocks. 755 bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); } 756 757 /// Returns true while emitting a cleanuppad. 758 bool isCleanupPadScope() const { 759 return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad); 760 } 761 762 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 763 /// current full-expression. Safe against the possibility that 764 /// we're currently inside a conditionally-evaluated expression. 765 template <class T, class... As> 766 void pushFullExprCleanup(CleanupKind kind, As... A) { 767 // If we're not in a conditional branch, or if none of the 768 // arguments requires saving, then use the unconditional cleanup. 769 if (!isInConditionalBranch()) 770 return EHStack.pushCleanup<T>(kind, A...); 771 772 // Stash values in a tuple so we can guarantee the order of saves. 773 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 774 SavedTuple Saved{saveValueInCond(A)...}; 775 776 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 777 EHStack.pushCleanupTuple<CleanupType>(kind, Saved); 778 initFullExprCleanup(); 779 } 780 781 /// Queue a cleanup to be pushed after finishing the current full-expression, 782 /// potentially with an active flag. 783 template <class T, class... As> 784 void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) { 785 if (!isInConditionalBranch()) 786 return pushCleanupAfterFullExprWithActiveFlag<T>(Kind, Address::invalid(), 787 A...); 788 789 Address ActiveFlag = createCleanupActiveFlag(); 790 assert(!DominatingValue<Address>::needsSaving(ActiveFlag) && 791 "cleanup active flag should never need saving"); 792 793 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 794 SavedTuple Saved{saveValueInCond(A)...}; 795 796 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 797 pushCleanupAfterFullExprWithActiveFlag<CleanupType>(Kind, ActiveFlag, Saved); 798 } 799 800 template <class T, class... As> 801 void pushCleanupAfterFullExprWithActiveFlag(CleanupKind Kind, 802 Address ActiveFlag, As... A) { 803 LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind, 804 ActiveFlag.isValid()}; 805 806 size_t OldSize = LifetimeExtendedCleanupStack.size(); 807 LifetimeExtendedCleanupStack.resize( 808 LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size + 809 (Header.IsConditional ? sizeof(ActiveFlag) : 0)); 810 811 static_assert(sizeof(Header) % alignof(T) == 0, 812 "Cleanup will be allocated on misaligned address"); 813 char *Buffer = &LifetimeExtendedCleanupStack[OldSize]; 814 new (Buffer) LifetimeExtendedCleanupHeader(Header); 815 new (Buffer + sizeof(Header)) T(A...); 816 if (Header.IsConditional) 817 new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag); 818 } 819 820 /// Set up the last cleanup that was pushed as a conditional 821 /// full-expression cleanup. 822 void initFullExprCleanup() { 823 initFullExprCleanupWithFlag(createCleanupActiveFlag()); 824 } 825 826 void initFullExprCleanupWithFlag(Address ActiveFlag); 827 Address createCleanupActiveFlag(); 828 829 /// PushDestructorCleanup - Push a cleanup to call the 830 /// complete-object destructor of an object of the given type at the 831 /// given address. Does nothing if T is not a C++ class type with a 832 /// non-trivial destructor. 833 void PushDestructorCleanup(QualType T, Address Addr); 834 835 /// PushDestructorCleanup - Push a cleanup to call the 836 /// complete-object variant of the given destructor on the object at 837 /// the given address. 838 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, QualType T, 839 Address Addr); 840 841 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 842 /// process all branch fixups. 843 void PopCleanupBlock(bool FallThroughIsBranchThrough = false); 844 845 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 846 /// The block cannot be reactivated. Pops it if it's the top of the 847 /// stack. 848 /// 849 /// \param DominatingIP - An instruction which is known to 850 /// dominate the current IP (if set) and which lies along 851 /// all paths of execution between the current IP and the 852 /// the point at which the cleanup comes into scope. 853 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 854 llvm::Instruction *DominatingIP); 855 856 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 857 /// Cannot be used to resurrect a deactivated cleanup. 858 /// 859 /// \param DominatingIP - An instruction which is known to 860 /// dominate the current IP (if set) and which lies along 861 /// all paths of execution between the current IP and the 862 /// the point at which the cleanup comes into scope. 863 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 864 llvm::Instruction *DominatingIP); 865 866 /// Enters a new scope for capturing cleanups, all of which 867 /// will be executed once the scope is exited. 868 class RunCleanupsScope { 869 EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth; 870 size_t LifetimeExtendedCleanupStackSize; 871 bool OldDidCallStackSave; 872 protected: 873 bool PerformCleanup; 874 private: 875 876 RunCleanupsScope(const RunCleanupsScope &) = delete; 877 void operator=(const RunCleanupsScope &) = delete; 878 879 protected: 880 CodeGenFunction& CGF; 881 882 public: 883 /// Enter a new cleanup scope. 884 explicit RunCleanupsScope(CodeGenFunction &CGF) 885 : PerformCleanup(true), CGF(CGF) 886 { 887 CleanupStackDepth = CGF.EHStack.stable_begin(); 888 LifetimeExtendedCleanupStackSize = 889 CGF.LifetimeExtendedCleanupStack.size(); 890 OldDidCallStackSave = CGF.DidCallStackSave; 891 CGF.DidCallStackSave = false; 892 OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth; 893 CGF.CurrentCleanupScopeDepth = CleanupStackDepth; 894 } 895 896 /// Exit this cleanup scope, emitting any accumulated cleanups. 897 ~RunCleanupsScope() { 898 if (PerformCleanup) 899 ForceCleanup(); 900 } 901 902 /// Determine whether this scope requires any cleanups. 903 bool requiresCleanups() const { 904 return CGF.EHStack.stable_begin() != CleanupStackDepth; 905 } 906 907 /// Force the emission of cleanups now, instead of waiting 908 /// until this object is destroyed. 909 /// \param ValuesToReload - A list of values that need to be available at 910 /// the insertion point after cleanup emission. If cleanup emission created 911 /// a shared cleanup block, these value pointers will be rewritten. 912 /// Otherwise, they not will be modified. 913 void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) { 914 assert(PerformCleanup && "Already forced cleanup"); 915 CGF.DidCallStackSave = OldDidCallStackSave; 916 CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize, 917 ValuesToReload); 918 PerformCleanup = false; 919 CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth; 920 } 921 }; 922 923 // Cleanup stack depth of the RunCleanupsScope that was pushed most recently. 924 EHScopeStack::stable_iterator CurrentCleanupScopeDepth = 925 EHScopeStack::stable_end(); 926 927 class LexicalScope : public RunCleanupsScope { 928 SourceRange Range; 929 SmallVector<const LabelDecl*, 4> Labels; 930 LexicalScope *ParentScope; 931 932 LexicalScope(const LexicalScope &) = delete; 933 void operator=(const LexicalScope &) = delete; 934 935 public: 936 /// Enter a new cleanup scope. 937 explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) 938 : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) { 939 CGF.CurLexicalScope = this; 940 if (CGDebugInfo *DI = CGF.getDebugInfo()) 941 DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); 942 } 943 944 void addLabel(const LabelDecl *label) { 945 assert(PerformCleanup && "adding label to dead scope?"); 946 Labels.push_back(label); 947 } 948 949 /// Exit this cleanup scope, emitting any accumulated 950 /// cleanups. 951 ~LexicalScope() { 952 if (CGDebugInfo *DI = CGF.getDebugInfo()) 953 DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 954 955 // If we should perform a cleanup, force them now. Note that 956 // this ends the cleanup scope before rescoping any labels. 957 if (PerformCleanup) { 958 ApplyDebugLocation DL(CGF, Range.getEnd()); 959 ForceCleanup(); 960 } 961 } 962 963 /// Force the emission of cleanups now, instead of waiting 964 /// until this object is destroyed. 965 void ForceCleanup() { 966 CGF.CurLexicalScope = ParentScope; 967 RunCleanupsScope::ForceCleanup(); 968 969 if (!Labels.empty()) 970 rescopeLabels(); 971 } 972 973 bool hasLabels() const { 974 return !Labels.empty(); 975 } 976 977 void rescopeLabels(); 978 }; 979 980 typedef llvm::DenseMap<const Decl *, Address> DeclMapTy; 981 982 /// The class used to assign some variables some temporarily addresses. 983 class OMPMapVars { 984 DeclMapTy SavedLocals; 985 DeclMapTy SavedTempAddresses; 986 OMPMapVars(const OMPMapVars &) = delete; 987 void operator=(const OMPMapVars &) = delete; 988 989 public: 990 explicit OMPMapVars() = default; 991 ~OMPMapVars() { 992 assert(SavedLocals.empty() && "Did not restored original addresses."); 993 }; 994 995 /// Sets the address of the variable \p LocalVD to be \p TempAddr in 996 /// function \p CGF. 997 /// \return true if at least one variable was set already, false otherwise. 998 bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD, 999 Address TempAddr) { 1000 LocalVD = LocalVD->getCanonicalDecl(); 1001 // Only save it once. 1002 if (SavedLocals.count(LocalVD)) return false; 1003 1004 // Copy the existing local entry to SavedLocals. 1005 auto it = CGF.LocalDeclMap.find(LocalVD); 1006 if (it != CGF.LocalDeclMap.end()) 1007 SavedLocals.try_emplace(LocalVD, it->second); 1008 else 1009 SavedLocals.try_emplace(LocalVD, Address::invalid()); 1010 1011 // Generate the private entry. 1012 QualType VarTy = LocalVD->getType(); 1013 if (VarTy->isReferenceType()) { 1014 Address Temp = CGF.CreateMemTemp(VarTy); 1015 CGF.Builder.CreateStore(TempAddr.getPointer(), Temp); 1016 TempAddr = Temp; 1017 } 1018 SavedTempAddresses.try_emplace(LocalVD, TempAddr); 1019 1020 return true; 1021 } 1022 1023 /// Applies new addresses to the list of the variables. 1024 /// \return true if at least one variable is using new address, false 1025 /// otherwise. 1026 bool apply(CodeGenFunction &CGF) { 1027 copyInto(SavedTempAddresses, CGF.LocalDeclMap); 1028 SavedTempAddresses.clear(); 1029 return !SavedLocals.empty(); 1030 } 1031 1032 /// Restores original addresses of the variables. 1033 void restore(CodeGenFunction &CGF) { 1034 if (!SavedLocals.empty()) { 1035 copyInto(SavedLocals, CGF.LocalDeclMap); 1036 SavedLocals.clear(); 1037 } 1038 } 1039 1040 private: 1041 /// Copy all the entries in the source map over the corresponding 1042 /// entries in the destination, which must exist. 1043 static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) { 1044 for (auto &Pair : Src) { 1045 if (!Pair.second.isValid()) { 1046 Dest.erase(Pair.first); 1047 continue; 1048 } 1049 1050 auto I = Dest.find(Pair.first); 1051 if (I != Dest.end()) 1052 I->second = Pair.second; 1053 else 1054 Dest.insert(Pair); 1055 } 1056 } 1057 }; 1058 1059 /// The scope used to remap some variables as private in the OpenMP loop body 1060 /// (or other captured region emitted without outlining), and to restore old 1061 /// vars back on exit. 1062 class OMPPrivateScope : public RunCleanupsScope { 1063 OMPMapVars MappedVars; 1064 OMPPrivateScope(const OMPPrivateScope &) = delete; 1065 void operator=(const OMPPrivateScope &) = delete; 1066 1067 public: 1068 /// Enter a new OpenMP private scope. 1069 explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {} 1070 1071 /// Registers \p LocalVD variable as a private with \p Addr as the address 1072 /// of the corresponding private variable. \p 1073 /// PrivateGen is the address of the generated private variable. 1074 /// \return true if the variable is registered as private, false if it has 1075 /// been privatized already. 1076 bool addPrivate(const VarDecl *LocalVD, Address Addr) { 1077 assert(PerformCleanup && "adding private to dead scope"); 1078 return MappedVars.setVarAddr(CGF, LocalVD, Addr); 1079 } 1080 1081 /// Privatizes local variables previously registered as private. 1082 /// Registration is separate from the actual privatization to allow 1083 /// initializers use values of the original variables, not the private one. 1084 /// This is important, for example, if the private variable is a class 1085 /// variable initialized by a constructor that references other private 1086 /// variables. But at initialization original variables must be used, not 1087 /// private copies. 1088 /// \return true if at least one variable was privatized, false otherwise. 1089 bool Privatize() { return MappedVars.apply(CGF); } 1090 1091 void ForceCleanup() { 1092 RunCleanupsScope::ForceCleanup(); 1093 MappedVars.restore(CGF); 1094 } 1095 1096 /// Exit scope - all the mapped variables are restored. 1097 ~OMPPrivateScope() { 1098 if (PerformCleanup) 1099 ForceCleanup(); 1100 } 1101 1102 /// Checks if the global variable is captured in current function. 1103 bool isGlobalVarCaptured(const VarDecl *VD) const { 1104 VD = VD->getCanonicalDecl(); 1105 return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0; 1106 } 1107 }; 1108 1109 /// Save/restore original map of previously emitted local vars in case when we 1110 /// need to duplicate emission of the same code several times in the same 1111 /// function for OpenMP code. 1112 class OMPLocalDeclMapRAII { 1113 CodeGenFunction &CGF; 1114 DeclMapTy SavedMap; 1115 1116 public: 1117 OMPLocalDeclMapRAII(CodeGenFunction &CGF) 1118 : CGF(CGF), SavedMap(CGF.LocalDeclMap) {} 1119 ~OMPLocalDeclMapRAII() { SavedMap.swap(CGF.LocalDeclMap); } 1120 }; 1121 1122 /// Takes the old cleanup stack size and emits the cleanup blocks 1123 /// that have been added. 1124 void 1125 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 1126 std::initializer_list<llvm::Value **> ValuesToReload = {}); 1127 1128 /// Takes the old cleanup stack size and emits the cleanup blocks 1129 /// that have been added, then adds all lifetime-extended cleanups from 1130 /// the given position to the stack. 1131 void 1132 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 1133 size_t OldLifetimeExtendedStackSize, 1134 std::initializer_list<llvm::Value **> ValuesToReload = {}); 1135 1136 void ResolveBranchFixups(llvm::BasicBlock *Target); 1137 1138 /// The given basic block lies in the current EH scope, but may be a 1139 /// target of a potentially scope-crossing jump; get a stable handle 1140 /// to which we can perform this jump later. 1141 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 1142 return JumpDest(Target, 1143 EHStack.getInnermostNormalCleanup(), 1144 NextCleanupDestIndex++); 1145 } 1146 1147 /// The given basic block lies in the current EH scope, but may be a 1148 /// target of a potentially scope-crossing jump; get a stable handle 1149 /// to which we can perform this jump later. 1150 JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { 1151 return getJumpDestInCurrentScope(createBasicBlock(Name)); 1152 } 1153 1154 /// EmitBranchThroughCleanup - Emit a branch from the current insert 1155 /// block through the normal cleanup handling code (if any) and then 1156 /// on to \arg Dest. 1157 void EmitBranchThroughCleanup(JumpDest Dest); 1158 1159 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 1160 /// specified destination obviously has no cleanups to run. 'false' is always 1161 /// a conservatively correct answer for this method. 1162 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 1163 1164 /// popCatchScope - Pops the catch scope at the top of the EHScope 1165 /// stack, emitting any required code (other than the catch handlers 1166 /// themselves). 1167 void popCatchScope(); 1168 1169 llvm::BasicBlock *getEHResumeBlock(bool isCleanup); 1170 llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); 1171 llvm::BasicBlock * 1172 getFuncletEHDispatchBlock(EHScopeStack::stable_iterator scope); 1173 1174 /// An object to manage conditionally-evaluated expressions. 1175 class ConditionalEvaluation { 1176 llvm::BasicBlock *StartBB; 1177 1178 public: 1179 ConditionalEvaluation(CodeGenFunction &CGF) 1180 : StartBB(CGF.Builder.GetInsertBlock()) {} 1181 1182 void begin(CodeGenFunction &CGF) { 1183 assert(CGF.OutermostConditional != this); 1184 if (!CGF.OutermostConditional) 1185 CGF.OutermostConditional = this; 1186 } 1187 1188 void end(CodeGenFunction &CGF) { 1189 assert(CGF.OutermostConditional != nullptr); 1190 if (CGF.OutermostConditional == this) 1191 CGF.OutermostConditional = nullptr; 1192 } 1193 1194 /// Returns a block which will be executed prior to each 1195 /// evaluation of the conditional code. 1196 llvm::BasicBlock *getStartingBlock() const { 1197 return StartBB; 1198 } 1199 }; 1200 1201 /// isInConditionalBranch - Return true if we're currently emitting 1202 /// one branch or the other of a conditional expression. 1203 bool isInConditionalBranch() const { return OutermostConditional != nullptr; } 1204 1205 void setBeforeOutermostConditional(llvm::Value *value, Address addr) { 1206 assert(isInConditionalBranch()); 1207 llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); 1208 auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back()); 1209 store->setAlignment(addr.getAlignment().getAsAlign()); 1210 } 1211 1212 /// An RAII object to record that we're evaluating a statement 1213 /// expression. 1214 class StmtExprEvaluation { 1215 CodeGenFunction &CGF; 1216 1217 /// We have to save the outermost conditional: cleanups in a 1218 /// statement expression aren't conditional just because the 1219 /// StmtExpr is. 1220 ConditionalEvaluation *SavedOutermostConditional; 1221 1222 public: 1223 StmtExprEvaluation(CodeGenFunction &CGF) 1224 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 1225 CGF.OutermostConditional = nullptr; 1226 } 1227 1228 ~StmtExprEvaluation() { 1229 CGF.OutermostConditional = SavedOutermostConditional; 1230 CGF.EnsureInsertPoint(); 1231 } 1232 }; 1233 1234 /// An object which temporarily prevents a value from being 1235 /// destroyed by aggressive peephole optimizations that assume that 1236 /// all uses of a value have been realized in the IR. 1237 class PeepholeProtection { 1238 llvm::Instruction *Inst; 1239 friend class CodeGenFunction; 1240 1241 public: 1242 PeepholeProtection() : Inst(nullptr) {} 1243 }; 1244 1245 /// A non-RAII class containing all the information about a bound 1246 /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for 1247 /// this which makes individual mappings very simple; using this 1248 /// class directly is useful when you have a variable number of 1249 /// opaque values or don't want the RAII functionality for some 1250 /// reason. 1251 class OpaqueValueMappingData { 1252 const OpaqueValueExpr *OpaqueValue; 1253 bool BoundLValue; 1254 CodeGenFunction::PeepholeProtection Protection; 1255 1256 OpaqueValueMappingData(const OpaqueValueExpr *ov, 1257 bool boundLValue) 1258 : OpaqueValue(ov), BoundLValue(boundLValue) {} 1259 public: 1260 OpaqueValueMappingData() : OpaqueValue(nullptr) {} 1261 1262 static bool shouldBindAsLValue(const Expr *expr) { 1263 // gl-values should be bound as l-values for obvious reasons. 1264 // Records should be bound as l-values because IR generation 1265 // always keeps them in memory. Expressions of function type 1266 // act exactly like l-values but are formally required to be 1267 // r-values in C. 1268 return expr->isGLValue() || 1269 expr->getType()->isFunctionType() || 1270 hasAggregateEvaluationKind(expr->getType()); 1271 } 1272 1273 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1274 const OpaqueValueExpr *ov, 1275 const Expr *e) { 1276 if (shouldBindAsLValue(ov)) 1277 return bind(CGF, ov, CGF.EmitLValue(e)); 1278 return bind(CGF, ov, CGF.EmitAnyExpr(e)); 1279 } 1280 1281 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1282 const OpaqueValueExpr *ov, 1283 const LValue &lv) { 1284 assert(shouldBindAsLValue(ov)); 1285 CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); 1286 return OpaqueValueMappingData(ov, true); 1287 } 1288 1289 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1290 const OpaqueValueExpr *ov, 1291 const RValue &rv) { 1292 assert(!shouldBindAsLValue(ov)); 1293 CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); 1294 1295 OpaqueValueMappingData data(ov, false); 1296 1297 // Work around an extremely aggressive peephole optimization in 1298 // EmitScalarConversion which assumes that all other uses of a 1299 // value are extant. 1300 data.Protection = CGF.protectFromPeepholes(rv); 1301 1302 return data; 1303 } 1304 1305 bool isValid() const { return OpaqueValue != nullptr; } 1306 void clear() { OpaqueValue = nullptr; } 1307 1308 void unbind(CodeGenFunction &CGF) { 1309 assert(OpaqueValue && "no data to unbind!"); 1310 1311 if (BoundLValue) { 1312 CGF.OpaqueLValues.erase(OpaqueValue); 1313 } else { 1314 CGF.OpaqueRValues.erase(OpaqueValue); 1315 CGF.unprotectFromPeepholes(Protection); 1316 } 1317 } 1318 }; 1319 1320 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 1321 class OpaqueValueMapping { 1322 CodeGenFunction &CGF; 1323 OpaqueValueMappingData Data; 1324 1325 public: 1326 static bool shouldBindAsLValue(const Expr *expr) { 1327 return OpaqueValueMappingData::shouldBindAsLValue(expr); 1328 } 1329 1330 /// Build the opaque value mapping for the given conditional 1331 /// operator if it's the GNU ?: extension. This is a common 1332 /// enough pattern that the convenience operator is really 1333 /// helpful. 1334 /// 1335 OpaqueValueMapping(CodeGenFunction &CGF, 1336 const AbstractConditionalOperator *op) : CGF(CGF) { 1337 if (isa<ConditionalOperator>(op)) 1338 // Leave Data empty. 1339 return; 1340 1341 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 1342 Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), 1343 e->getCommon()); 1344 } 1345 1346 /// Build the opaque value mapping for an OpaqueValueExpr whose source 1347 /// expression is set to the expression the OVE represents. 1348 OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV) 1349 : CGF(CGF) { 1350 if (OV) { 1351 assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used " 1352 "for OVE with no source expression"); 1353 Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr()); 1354 } 1355 } 1356 1357 OpaqueValueMapping(CodeGenFunction &CGF, 1358 const OpaqueValueExpr *opaqueValue, 1359 LValue lvalue) 1360 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { 1361 } 1362 1363 OpaqueValueMapping(CodeGenFunction &CGF, 1364 const OpaqueValueExpr *opaqueValue, 1365 RValue rvalue) 1366 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { 1367 } 1368 1369 void pop() { 1370 Data.unbind(CGF); 1371 Data.clear(); 1372 } 1373 1374 ~OpaqueValueMapping() { 1375 if (Data.isValid()) Data.unbind(CGF); 1376 } 1377 }; 1378 1379 private: 1380 CGDebugInfo *DebugInfo; 1381 /// Used to create unique names for artificial VLA size debug info variables. 1382 unsigned VLAExprCounter = 0; 1383 bool DisableDebugInfo = false; 1384 1385 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 1386 /// calling llvm.stacksave for multiple VLAs in the same scope. 1387 bool DidCallStackSave = false; 1388 1389 /// IndirectBranch - The first time an indirect goto is seen we create a block 1390 /// with an indirect branch. Every time we see the address of a label taken, 1391 /// we add the label to the indirect goto. Every subsequent indirect goto is 1392 /// codegen'd as a jump to the IndirectBranch's basic block. 1393 llvm::IndirectBrInst *IndirectBranch = nullptr; 1394 1395 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 1396 /// decls. 1397 DeclMapTy LocalDeclMap; 1398 1399 // Keep track of the cleanups for callee-destructed parameters pushed to the 1400 // cleanup stack so that they can be deactivated later. 1401 llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator> 1402 CalleeDestructedParamCleanups; 1403 1404 /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this 1405 /// will contain a mapping from said ParmVarDecl to its implicit "object_size" 1406 /// parameter. 1407 llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2> 1408 SizeArguments; 1409 1410 /// Track escaped local variables with auto storage. Used during SEH 1411 /// outlining to produce a call to llvm.localescape. 1412 llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals; 1413 1414 /// LabelMap - This keeps track of the LLVM basic block for each C label. 1415 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 1416 1417 // BreakContinueStack - This keeps track of where break and continue 1418 // statements should jump to. 1419 struct BreakContinue { 1420 BreakContinue(JumpDest Break, JumpDest Continue) 1421 : BreakBlock(Break), ContinueBlock(Continue) {} 1422 1423 JumpDest BreakBlock; 1424 JumpDest ContinueBlock; 1425 }; 1426 SmallVector<BreakContinue, 8> BreakContinueStack; 1427 1428 /// Handles cancellation exit points in OpenMP-related constructs. 1429 class OpenMPCancelExitStack { 1430 /// Tracks cancellation exit point and join point for cancel-related exit 1431 /// and normal exit. 1432 struct CancelExit { 1433 CancelExit() = default; 1434 CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock, 1435 JumpDest ContBlock) 1436 : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {} 1437 OpenMPDirectiveKind Kind = llvm::omp::OMPD_unknown; 1438 /// true if the exit block has been emitted already by the special 1439 /// emitExit() call, false if the default codegen is used. 1440 bool HasBeenEmitted = false; 1441 JumpDest ExitBlock; 1442 JumpDest ContBlock; 1443 }; 1444 1445 SmallVector<CancelExit, 8> Stack; 1446 1447 public: 1448 OpenMPCancelExitStack() : Stack(1) {} 1449 ~OpenMPCancelExitStack() = default; 1450 /// Fetches the exit block for the current OpenMP construct. 1451 JumpDest getExitBlock() const { return Stack.back().ExitBlock; } 1452 /// Emits exit block with special codegen procedure specific for the related 1453 /// OpenMP construct + emits code for normal construct cleanup. 1454 void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 1455 const llvm::function_ref<void(CodeGenFunction &)> CodeGen) { 1456 if (Stack.back().Kind == Kind && getExitBlock().isValid()) { 1457 assert(CGF.getOMPCancelDestination(Kind).isValid()); 1458 assert(CGF.HaveInsertPoint()); 1459 assert(!Stack.back().HasBeenEmitted); 1460 auto IP = CGF.Builder.saveAndClearIP(); 1461 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1462 CodeGen(CGF); 1463 CGF.EmitBranch(Stack.back().ContBlock.getBlock()); 1464 CGF.Builder.restoreIP(IP); 1465 Stack.back().HasBeenEmitted = true; 1466 } 1467 CodeGen(CGF); 1468 } 1469 /// Enter the cancel supporting \a Kind construct. 1470 /// \param Kind OpenMP directive that supports cancel constructs. 1471 /// \param HasCancel true, if the construct has inner cancel directive, 1472 /// false otherwise. 1473 void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) { 1474 Stack.push_back({Kind, 1475 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit") 1476 : JumpDest(), 1477 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont") 1478 : JumpDest()}); 1479 } 1480 /// Emits default exit point for the cancel construct (if the special one 1481 /// has not be used) + join point for cancel/normal exits. 1482 void exit(CodeGenFunction &CGF) { 1483 if (getExitBlock().isValid()) { 1484 assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid()); 1485 bool HaveIP = CGF.HaveInsertPoint(); 1486 if (!Stack.back().HasBeenEmitted) { 1487 if (HaveIP) 1488 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1489 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1490 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1491 } 1492 CGF.EmitBlock(Stack.back().ContBlock.getBlock()); 1493 if (!HaveIP) { 1494 CGF.Builder.CreateUnreachable(); 1495 CGF.Builder.ClearInsertionPoint(); 1496 } 1497 } 1498 Stack.pop_back(); 1499 } 1500 }; 1501 OpenMPCancelExitStack OMPCancelStack; 1502 1503 /// Lower the Likelihood knowledge about the \p Cond via llvm.expect intrin. 1504 llvm::Value *emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond, 1505 Stmt::Likelihood LH); 1506 1507 CodeGenPGO PGO; 1508 1509 /// Calculate branch weights appropriate for PGO data 1510 llvm::MDNode *createProfileWeights(uint64_t TrueCount, 1511 uint64_t FalseCount) const; 1512 llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights) const; 1513 llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond, 1514 uint64_t LoopCount) const; 1515 1516 public: 1517 /// Increment the profiler's counter for the given statement by \p StepV. 1518 /// If \p StepV is null, the default increment is 1. 1519 void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) { 1520 if (CGM.getCodeGenOpts().hasProfileClangInstr() && 1521 !CurFn->hasFnAttribute(llvm::Attribute::NoProfile)) 1522 PGO.emitCounterIncrement(Builder, S, StepV); 1523 PGO.setCurrentStmt(S); 1524 } 1525 1526 /// Get the profiler's count for the given statement. 1527 uint64_t getProfileCount(const Stmt *S) { 1528 Optional<uint64_t> Count = PGO.getStmtCount(S); 1529 if (!Count.hasValue()) 1530 return 0; 1531 return *Count; 1532 } 1533 1534 /// Set the profiler's current count. 1535 void setCurrentProfileCount(uint64_t Count) { 1536 PGO.setCurrentRegionCount(Count); 1537 } 1538 1539 /// Get the profiler's current count. This is generally the count for the most 1540 /// recently incremented counter. 1541 uint64_t getCurrentProfileCount() { 1542 return PGO.getCurrentRegionCount(); 1543 } 1544 1545 private: 1546 1547 /// SwitchInsn - This is nearest current switch instruction. It is null if 1548 /// current context is not in a switch. 1549 llvm::SwitchInst *SwitchInsn = nullptr; 1550 /// The branch weights of SwitchInsn when doing instrumentation based PGO. 1551 SmallVector<uint64_t, 16> *SwitchWeights = nullptr; 1552 1553 /// The likelihood attributes of the SwitchCase. 1554 SmallVector<Stmt::Likelihood, 16> *SwitchLikelihood = nullptr; 1555 1556 /// CaseRangeBlock - This block holds if condition check for last case 1557 /// statement range in current switch instruction. 1558 llvm::BasicBlock *CaseRangeBlock = nullptr; 1559 1560 /// OpaqueLValues - Keeps track of the current set of opaque value 1561 /// expressions. 1562 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 1563 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 1564 1565 // VLASizeMap - This keeps track of the associated size for each VLA type. 1566 // We track this by the size expression rather than the type itself because 1567 // in certain situations, like a const qualifier applied to an VLA typedef, 1568 // multiple VLA types can share the same size expression. 1569 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 1570 // enter/leave scopes. 1571 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 1572 1573 /// A block containing a single 'unreachable' instruction. Created 1574 /// lazily by getUnreachableBlock(). 1575 llvm::BasicBlock *UnreachableBlock = nullptr; 1576 1577 /// Counts of the number return expressions in the function. 1578 unsigned NumReturnExprs = 0; 1579 1580 /// Count the number of simple (constant) return expressions in the function. 1581 unsigned NumSimpleReturnExprs = 0; 1582 1583 /// The last regular (non-return) debug location (breakpoint) in the function. 1584 SourceLocation LastStopPoint; 1585 1586 public: 1587 /// Source location information about the default argument or member 1588 /// initializer expression we're evaluating, if any. 1589 CurrentSourceLocExprScope CurSourceLocExprScope; 1590 using SourceLocExprScopeGuard = 1591 CurrentSourceLocExprScope::SourceLocExprScopeGuard; 1592 1593 /// A scope within which we are constructing the fields of an object which 1594 /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use 1595 /// if we need to evaluate a CXXDefaultInitExpr within the evaluation. 1596 class FieldConstructionScope { 1597 public: 1598 FieldConstructionScope(CodeGenFunction &CGF, Address This) 1599 : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) { 1600 CGF.CXXDefaultInitExprThis = This; 1601 } 1602 ~FieldConstructionScope() { 1603 CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis; 1604 } 1605 1606 private: 1607 CodeGenFunction &CGF; 1608 Address OldCXXDefaultInitExprThis; 1609 }; 1610 1611 /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this' 1612 /// is overridden to be the object under construction. 1613 class CXXDefaultInitExprScope { 1614 public: 1615 CXXDefaultInitExprScope(CodeGenFunction &CGF, const CXXDefaultInitExpr *E) 1616 : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue), 1617 OldCXXThisAlignment(CGF.CXXThisAlignment), 1618 SourceLocScope(E, CGF.CurSourceLocExprScope) { 1619 CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer(); 1620 CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment(); 1621 } 1622 ~CXXDefaultInitExprScope() { 1623 CGF.CXXThisValue = OldCXXThisValue; 1624 CGF.CXXThisAlignment = OldCXXThisAlignment; 1625 } 1626 1627 public: 1628 CodeGenFunction &CGF; 1629 llvm::Value *OldCXXThisValue; 1630 CharUnits OldCXXThisAlignment; 1631 SourceLocExprScopeGuard SourceLocScope; 1632 }; 1633 1634 struct CXXDefaultArgExprScope : SourceLocExprScopeGuard { 1635 CXXDefaultArgExprScope(CodeGenFunction &CGF, const CXXDefaultArgExpr *E) 1636 : SourceLocExprScopeGuard(E, CGF.CurSourceLocExprScope) {} 1637 }; 1638 1639 /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the 1640 /// current loop index is overridden. 1641 class ArrayInitLoopExprScope { 1642 public: 1643 ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index) 1644 : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) { 1645 CGF.ArrayInitIndex = Index; 1646 } 1647 ~ArrayInitLoopExprScope() { 1648 CGF.ArrayInitIndex = OldArrayInitIndex; 1649 } 1650 1651 private: 1652 CodeGenFunction &CGF; 1653 llvm::Value *OldArrayInitIndex; 1654 }; 1655 1656 class InlinedInheritingConstructorScope { 1657 public: 1658 InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD) 1659 : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl), 1660 OldCurCodeDecl(CGF.CurCodeDecl), 1661 OldCXXABIThisDecl(CGF.CXXABIThisDecl), 1662 OldCXXABIThisValue(CGF.CXXABIThisValue), 1663 OldCXXThisValue(CGF.CXXThisValue), 1664 OldCXXABIThisAlignment(CGF.CXXABIThisAlignment), 1665 OldCXXThisAlignment(CGF.CXXThisAlignment), 1666 OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy), 1667 OldCXXInheritedCtorInitExprArgs( 1668 std::move(CGF.CXXInheritedCtorInitExprArgs)) { 1669 CGF.CurGD = GD; 1670 CGF.CurFuncDecl = CGF.CurCodeDecl = 1671 cast<CXXConstructorDecl>(GD.getDecl()); 1672 CGF.CXXABIThisDecl = nullptr; 1673 CGF.CXXABIThisValue = nullptr; 1674 CGF.CXXThisValue = nullptr; 1675 CGF.CXXABIThisAlignment = CharUnits(); 1676 CGF.CXXThisAlignment = CharUnits(); 1677 CGF.ReturnValue = Address::invalid(); 1678 CGF.FnRetTy = QualType(); 1679 CGF.CXXInheritedCtorInitExprArgs.clear(); 1680 } 1681 ~InlinedInheritingConstructorScope() { 1682 CGF.CurGD = OldCurGD; 1683 CGF.CurFuncDecl = OldCurFuncDecl; 1684 CGF.CurCodeDecl = OldCurCodeDecl; 1685 CGF.CXXABIThisDecl = OldCXXABIThisDecl; 1686 CGF.CXXABIThisValue = OldCXXABIThisValue; 1687 CGF.CXXThisValue = OldCXXThisValue; 1688 CGF.CXXABIThisAlignment = OldCXXABIThisAlignment; 1689 CGF.CXXThisAlignment = OldCXXThisAlignment; 1690 CGF.ReturnValue = OldReturnValue; 1691 CGF.FnRetTy = OldFnRetTy; 1692 CGF.CXXInheritedCtorInitExprArgs = 1693 std::move(OldCXXInheritedCtorInitExprArgs); 1694 } 1695 1696 private: 1697 CodeGenFunction &CGF; 1698 GlobalDecl OldCurGD; 1699 const Decl *OldCurFuncDecl; 1700 const Decl *OldCurCodeDecl; 1701 ImplicitParamDecl *OldCXXABIThisDecl; 1702 llvm::Value *OldCXXABIThisValue; 1703 llvm::Value *OldCXXThisValue; 1704 CharUnits OldCXXABIThisAlignment; 1705 CharUnits OldCXXThisAlignment; 1706 Address OldReturnValue; 1707 QualType OldFnRetTy; 1708 CallArgList OldCXXInheritedCtorInitExprArgs; 1709 }; 1710 1711 // Helper class for the OpenMP IR Builder. Allows reusability of code used for 1712 // region body, and finalization codegen callbacks. This will class will also 1713 // contain privatization functions used by the privatization call backs 1714 // 1715 // TODO: this is temporary class for things that are being moved out of 1716 // CGOpenMPRuntime, new versions of current CodeGenFunction methods, or 1717 // utility function for use with the OMPBuilder. Once that move to use the 1718 // OMPBuilder is done, everything here will either become part of CodeGenFunc. 1719 // directly, or a new helper class that will contain functions used by both 1720 // this and the OMPBuilder 1721 1722 struct OMPBuilderCBHelpers { 1723 1724 OMPBuilderCBHelpers() = delete; 1725 OMPBuilderCBHelpers(const OMPBuilderCBHelpers &) = delete; 1726 OMPBuilderCBHelpers &operator=(const OMPBuilderCBHelpers &) = delete; 1727 1728 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 1729 1730 /// Cleanup action for allocate support. 1731 class OMPAllocateCleanupTy final : public EHScopeStack::Cleanup { 1732 1733 private: 1734 llvm::CallInst *RTLFnCI; 1735 1736 public: 1737 OMPAllocateCleanupTy(llvm::CallInst *RLFnCI) : RTLFnCI(RLFnCI) { 1738 RLFnCI->removeFromParent(); 1739 } 1740 1741 void Emit(CodeGenFunction &CGF, Flags /*flags*/) override { 1742 if (!CGF.HaveInsertPoint()) 1743 return; 1744 CGF.Builder.Insert(RTLFnCI); 1745 } 1746 }; 1747 1748 /// Returns address of the threadprivate variable for the current 1749 /// thread. This Also create any necessary OMP runtime calls. 1750 /// 1751 /// \param VD VarDecl for Threadprivate variable. 1752 /// \param VDAddr Address of the Vardecl 1753 /// \param Loc The location where the barrier directive was encountered 1754 static Address getAddrOfThreadPrivate(CodeGenFunction &CGF, 1755 const VarDecl *VD, Address VDAddr, 1756 SourceLocation Loc); 1757 1758 /// Gets the OpenMP-specific address of the local variable /p VD. 1759 static Address getAddressOfLocalVariable(CodeGenFunction &CGF, 1760 const VarDecl *VD); 1761 /// Get the platform-specific name separator. 1762 /// \param Parts different parts of the final name that needs separation 1763 /// \param FirstSeparator First separator used between the initial two 1764 /// parts of the name. 1765 /// \param Separator separator used between all of the rest consecutinve 1766 /// parts of the name 1767 static std::string getNameWithSeparators(ArrayRef<StringRef> Parts, 1768 StringRef FirstSeparator = ".", 1769 StringRef Separator = "."); 1770 /// Emit the Finalization for an OMP region 1771 /// \param CGF The Codegen function this belongs to 1772 /// \param IP Insertion point for generating the finalization code. 1773 static void FinalizeOMPRegion(CodeGenFunction &CGF, InsertPointTy IP) { 1774 CGBuilderTy::InsertPointGuard IPG(CGF.Builder); 1775 assert(IP.getBlock()->end() != IP.getPoint() && 1776 "OpenMP IR Builder should cause terminated block!"); 1777 1778 llvm::BasicBlock *IPBB = IP.getBlock(); 1779 llvm::BasicBlock *DestBB = IPBB->getUniqueSuccessor(); 1780 assert(DestBB && "Finalization block should have one successor!"); 1781 1782 // erase and replace with cleanup branch. 1783 IPBB->getTerminator()->eraseFromParent(); 1784 CGF.Builder.SetInsertPoint(IPBB); 1785 CodeGenFunction::JumpDest Dest = CGF.getJumpDestInCurrentScope(DestBB); 1786 CGF.EmitBranchThroughCleanup(Dest); 1787 } 1788 1789 /// Emit the body of an OMP region 1790 /// \param CGF The Codegen function this belongs to 1791 /// \param RegionBodyStmt The body statement for the OpenMP region being 1792 /// generated 1793 /// \param CodeGenIP Insertion point for generating the body code. 1794 /// \param FiniBB The finalization basic block 1795 static void EmitOMPRegionBody(CodeGenFunction &CGF, 1796 const Stmt *RegionBodyStmt, 1797 InsertPointTy CodeGenIP, 1798 llvm::BasicBlock &FiniBB) { 1799 llvm::BasicBlock *CodeGenIPBB = CodeGenIP.getBlock(); 1800 if (llvm::Instruction *CodeGenIPBBTI = CodeGenIPBB->getTerminator()) 1801 CodeGenIPBBTI->eraseFromParent(); 1802 1803 CGF.Builder.SetInsertPoint(CodeGenIPBB); 1804 1805 CGF.EmitStmt(RegionBodyStmt); 1806 1807 if (CGF.Builder.saveIP().isSet()) 1808 CGF.Builder.CreateBr(&FiniBB); 1809 } 1810 1811 static void EmitCaptureStmt(CodeGenFunction &CGF, InsertPointTy CodeGenIP, 1812 llvm::BasicBlock &FiniBB, llvm::Function *Fn, 1813 ArrayRef<llvm::Value *> Args) { 1814 llvm::BasicBlock *CodeGenIPBB = CodeGenIP.getBlock(); 1815 if (llvm::Instruction *CodeGenIPBBTI = CodeGenIPBB->getTerminator()) 1816 CodeGenIPBBTI->eraseFromParent(); 1817 1818 CGF.Builder.SetInsertPoint(CodeGenIPBB); 1819 1820 if (Fn->doesNotThrow()) 1821 CGF.EmitNounwindRuntimeCall(Fn, Args); 1822 else 1823 CGF.EmitRuntimeCall(Fn, Args); 1824 1825 if (CGF.Builder.saveIP().isSet()) 1826 CGF.Builder.CreateBr(&FiniBB); 1827 } 1828 1829 /// RAII for preserving necessary info during Outlined region body codegen. 1830 class OutlinedRegionBodyRAII { 1831 1832 llvm::AssertingVH<llvm::Instruction> OldAllocaIP; 1833 CodeGenFunction::JumpDest OldReturnBlock; 1834 CGBuilderTy::InsertPoint IP; 1835 CodeGenFunction &CGF; 1836 1837 public: 1838 OutlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP, 1839 llvm::BasicBlock &RetBB) 1840 : CGF(cgf) { 1841 assert(AllocaIP.isSet() && 1842 "Must specify Insertion point for allocas of outlined function"); 1843 OldAllocaIP = CGF.AllocaInsertPt; 1844 CGF.AllocaInsertPt = &*AllocaIP.getPoint(); 1845 IP = CGF.Builder.saveIP(); 1846 1847 OldReturnBlock = CGF.ReturnBlock; 1848 CGF.ReturnBlock = CGF.getJumpDestInCurrentScope(&RetBB); 1849 } 1850 1851 ~OutlinedRegionBodyRAII() { 1852 CGF.AllocaInsertPt = OldAllocaIP; 1853 CGF.ReturnBlock = OldReturnBlock; 1854 CGF.Builder.restoreIP(IP); 1855 } 1856 }; 1857 1858 /// RAII for preserving necessary info during inlined region body codegen. 1859 class InlinedRegionBodyRAII { 1860 1861 llvm::AssertingVH<llvm::Instruction> OldAllocaIP; 1862 CodeGenFunction &CGF; 1863 1864 public: 1865 InlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP, 1866 llvm::BasicBlock &FiniBB) 1867 : CGF(cgf) { 1868 // Alloca insertion block should be in the entry block of the containing 1869 // function so it expects an empty AllocaIP in which case will reuse the 1870 // old alloca insertion point, or a new AllocaIP in the same block as 1871 // the old one 1872 assert((!AllocaIP.isSet() || 1873 CGF.AllocaInsertPt->getParent() == AllocaIP.getBlock()) && 1874 "Insertion point should be in the entry block of containing " 1875 "function!"); 1876 OldAllocaIP = CGF.AllocaInsertPt; 1877 if (AllocaIP.isSet()) 1878 CGF.AllocaInsertPt = &*AllocaIP.getPoint(); 1879 1880 // TODO: Remove the call, after making sure the counter is not used by 1881 // the EHStack. 1882 // Since this is an inlined region, it should not modify the 1883 // ReturnBlock, and should reuse the one for the enclosing outlined 1884 // region. So, the JumpDest being return by the function is discarded 1885 (void)CGF.getJumpDestInCurrentScope(&FiniBB); 1886 } 1887 1888 ~InlinedRegionBodyRAII() { CGF.AllocaInsertPt = OldAllocaIP; } 1889 }; 1890 }; 1891 1892 private: 1893 /// CXXThisDecl - When generating code for a C++ member function, 1894 /// this will hold the implicit 'this' declaration. 1895 ImplicitParamDecl *CXXABIThisDecl = nullptr; 1896 llvm::Value *CXXABIThisValue = nullptr; 1897 llvm::Value *CXXThisValue = nullptr; 1898 CharUnits CXXABIThisAlignment; 1899 CharUnits CXXThisAlignment; 1900 1901 /// The value of 'this' to use when evaluating CXXDefaultInitExprs within 1902 /// this expression. 1903 Address CXXDefaultInitExprThis = Address::invalid(); 1904 1905 /// The current array initialization index when evaluating an 1906 /// ArrayInitIndexExpr within an ArrayInitLoopExpr. 1907 llvm::Value *ArrayInitIndex = nullptr; 1908 1909 /// The values of function arguments to use when evaluating 1910 /// CXXInheritedCtorInitExprs within this context. 1911 CallArgList CXXInheritedCtorInitExprArgs; 1912 1913 /// CXXStructorImplicitParamDecl - When generating code for a constructor or 1914 /// destructor, this will hold the implicit argument (e.g. VTT). 1915 ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr; 1916 llvm::Value *CXXStructorImplicitParamValue = nullptr; 1917 1918 /// OutermostConditional - Points to the outermost active 1919 /// conditional control. This is used so that we know if a 1920 /// temporary should be destroyed conditionally. 1921 ConditionalEvaluation *OutermostConditional = nullptr; 1922 1923 /// The current lexical scope. 1924 LexicalScope *CurLexicalScope = nullptr; 1925 1926 /// The current source location that should be used for exception 1927 /// handling code. 1928 SourceLocation CurEHLocation; 1929 1930 /// BlockByrefInfos - For each __block variable, contains 1931 /// information about the layout of the variable. 1932 llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos; 1933 1934 /// Used by -fsanitize=nullability-return to determine whether the return 1935 /// value can be checked. 1936 llvm::Value *RetValNullabilityPrecondition = nullptr; 1937 1938 /// Check if -fsanitize=nullability-return instrumentation is required for 1939 /// this function. 1940 bool requiresReturnValueNullabilityCheck() const { 1941 return RetValNullabilityPrecondition; 1942 } 1943 1944 /// Used to store precise source locations for return statements by the 1945 /// runtime return value checks. 1946 Address ReturnLocation = Address::invalid(); 1947 1948 /// Check if the return value of this function requires sanitization. 1949 bool requiresReturnValueCheck() const; 1950 1951 llvm::BasicBlock *TerminateLandingPad = nullptr; 1952 llvm::BasicBlock *TerminateHandler = nullptr; 1953 llvm::SmallVector<llvm::BasicBlock *, 2> TrapBBs; 1954 1955 /// Terminate funclets keyed by parent funclet pad. 1956 llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets; 1957 1958 /// Largest vector width used in ths function. Will be used to create a 1959 /// function attribute. 1960 unsigned LargestVectorWidth = 0; 1961 1962 /// True if we need emit the life-time markers. This is initially set in 1963 /// the constructor, but could be overwritten to true if this is a coroutine. 1964 bool ShouldEmitLifetimeMarkers; 1965 1966 /// Add OpenCL kernel arg metadata and the kernel attribute metadata to 1967 /// the function metadata. 1968 void EmitOpenCLKernelMetadata(const FunctionDecl *FD, 1969 llvm::Function *Fn); 1970 1971 public: 1972 CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false); 1973 ~CodeGenFunction(); 1974 1975 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 1976 ASTContext &getContext() const { return CGM.getContext(); } 1977 CGDebugInfo *getDebugInfo() { 1978 if (DisableDebugInfo) 1979 return nullptr; 1980 return DebugInfo; 1981 } 1982 void disableDebugInfo() { DisableDebugInfo = true; } 1983 void enableDebugInfo() { DisableDebugInfo = false; } 1984 1985 bool shouldUseFusedARCCalls() { 1986 return CGM.getCodeGenOpts().OptimizationLevel == 0; 1987 } 1988 1989 const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } 1990 1991 /// Returns a pointer to the function's exception object and selector slot, 1992 /// which is assigned in every landing pad. 1993 Address getExceptionSlot(); 1994 Address getEHSelectorSlot(); 1995 1996 /// Returns the contents of the function's exception object and selector 1997 /// slots. 1998 llvm::Value *getExceptionFromSlot(); 1999 llvm::Value *getSelectorFromSlot(); 2000 2001 Address getNormalCleanupDestSlot(); 2002 2003 llvm::BasicBlock *getUnreachableBlock() { 2004 if (!UnreachableBlock) { 2005 UnreachableBlock = createBasicBlock("unreachable"); 2006 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 2007 } 2008 return UnreachableBlock; 2009 } 2010 2011 llvm::BasicBlock *getInvokeDest() { 2012 if (!EHStack.requiresLandingPad()) return nullptr; 2013 return getInvokeDestImpl(); 2014 } 2015 2016 bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; } 2017 2018 const TargetInfo &getTarget() const { return Target; } 2019 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 2020 const TargetCodeGenInfo &getTargetHooks() const { 2021 return CGM.getTargetCodeGenInfo(); 2022 } 2023 2024 //===--------------------------------------------------------------------===// 2025 // Cleanups 2026 //===--------------------------------------------------------------------===// 2027 2028 typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty); 2029 2030 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 2031 Address arrayEndPointer, 2032 QualType elementType, 2033 CharUnits elementAlignment, 2034 Destroyer *destroyer); 2035 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 2036 llvm::Value *arrayEnd, 2037 QualType elementType, 2038 CharUnits elementAlignment, 2039 Destroyer *destroyer); 2040 2041 void pushDestroy(QualType::DestructionKind dtorKind, 2042 Address addr, QualType type); 2043 void pushEHDestroy(QualType::DestructionKind dtorKind, 2044 Address addr, QualType type); 2045 void pushDestroy(CleanupKind kind, Address addr, QualType type, 2046 Destroyer *destroyer, bool useEHCleanupForArray); 2047 void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr, 2048 QualType type, Destroyer *destroyer, 2049 bool useEHCleanupForArray); 2050 void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 2051 llvm::Value *CompletePtr, 2052 QualType ElementType); 2053 void pushStackRestore(CleanupKind kind, Address SPMem); 2054 void emitDestroy(Address addr, QualType type, Destroyer *destroyer, 2055 bool useEHCleanupForArray); 2056 llvm::Function *generateDestroyHelper(Address addr, QualType type, 2057 Destroyer *destroyer, 2058 bool useEHCleanupForArray, 2059 const VarDecl *VD); 2060 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 2061 QualType elementType, CharUnits elementAlign, 2062 Destroyer *destroyer, 2063 bool checkZeroLength, bool useEHCleanup); 2064 2065 Destroyer *getDestroyer(QualType::DestructionKind destructionKind); 2066 2067 /// Determines whether an EH cleanup is required to destroy a type 2068 /// with the given destruction kind. 2069 bool needsEHCleanup(QualType::DestructionKind kind) { 2070 switch (kind) { 2071 case QualType::DK_none: 2072 return false; 2073 case QualType::DK_cxx_destructor: 2074 case QualType::DK_objc_weak_lifetime: 2075 case QualType::DK_nontrivial_c_struct: 2076 return getLangOpts().Exceptions; 2077 case QualType::DK_objc_strong_lifetime: 2078 return getLangOpts().Exceptions && 2079 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 2080 } 2081 llvm_unreachable("bad destruction kind"); 2082 } 2083 2084 CleanupKind getCleanupKind(QualType::DestructionKind kind) { 2085 return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); 2086 } 2087 2088 //===--------------------------------------------------------------------===// 2089 // Objective-C 2090 //===--------------------------------------------------------------------===// 2091 2092 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 2093 2094 void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD); 2095 2096 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 2097 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 2098 const ObjCPropertyImplDecl *PID); 2099 void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 2100 const ObjCPropertyImplDecl *propImpl, 2101 const ObjCMethodDecl *GetterMothodDecl, 2102 llvm::Constant *AtomicHelperFn); 2103 2104 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 2105 ObjCMethodDecl *MD, bool ctor); 2106 2107 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 2108 /// for the given property. 2109 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 2110 const ObjCPropertyImplDecl *PID); 2111 void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 2112 const ObjCPropertyImplDecl *propImpl, 2113 llvm::Constant *AtomicHelperFn); 2114 2115 //===--------------------------------------------------------------------===// 2116 // Block Bits 2117 //===--------------------------------------------------------------------===// 2118 2119 /// Emit block literal. 2120 /// \return an LLVM value which is a pointer to a struct which contains 2121 /// information about the block, including the block invoke function, the 2122 /// captured variables, etc. 2123 llvm::Value *EmitBlockLiteral(const BlockExpr *); 2124 2125 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 2126 const CGBlockInfo &Info, 2127 const DeclMapTy &ldm, 2128 bool IsLambdaConversionToBlock, 2129 bool BuildGlobalBlock); 2130 2131 /// Check if \p T is a C++ class that has a destructor that can throw. 2132 static bool cxxDestructorCanThrow(QualType T); 2133 2134 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 2135 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 2136 llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( 2137 const ObjCPropertyImplDecl *PID); 2138 llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( 2139 const ObjCPropertyImplDecl *PID); 2140 llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); 2141 2142 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags, 2143 bool CanThrow); 2144 2145 class AutoVarEmission; 2146 2147 void emitByrefStructureInit(const AutoVarEmission &emission); 2148 2149 /// Enter a cleanup to destroy a __block variable. Note that this 2150 /// cleanup should be a no-op if the variable hasn't left the stack 2151 /// yet; if a cleanup is required for the variable itself, that needs 2152 /// to be done externally. 2153 /// 2154 /// \param Kind Cleanup kind. 2155 /// 2156 /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block 2157 /// structure that will be passed to _Block_object_dispose. When 2158 /// \p LoadBlockVarAddr is true, the address of the field of the block 2159 /// structure that holds the address of the __block structure. 2160 /// 2161 /// \param Flags The flag that will be passed to _Block_object_dispose. 2162 /// 2163 /// \param LoadBlockVarAddr Indicates whether we need to emit a load from 2164 /// \p Addr to get the address of the __block structure. 2165 void enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags, 2166 bool LoadBlockVarAddr, bool CanThrow); 2167 2168 void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum, 2169 llvm::Value *ptr); 2170 2171 Address LoadBlockStruct(); 2172 Address GetAddrOfBlockDecl(const VarDecl *var); 2173 2174 /// BuildBlockByrefAddress - Computes the location of the 2175 /// data in a variable which is declared as __block. 2176 Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V, 2177 bool followForward = true); 2178 Address emitBlockByrefAddress(Address baseAddr, 2179 const BlockByrefInfo &info, 2180 bool followForward, 2181 const llvm::Twine &name); 2182 2183 const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var); 2184 2185 QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args); 2186 2187 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 2188 const CGFunctionInfo &FnInfo); 2189 2190 /// Annotate the function with an attribute that disables TSan checking at 2191 /// runtime. 2192 void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn); 2193 2194 /// Emit code for the start of a function. 2195 /// \param Loc The location to be associated with the function. 2196 /// \param StartLoc The location of the function body. 2197 void StartFunction(GlobalDecl GD, 2198 QualType RetTy, 2199 llvm::Function *Fn, 2200 const CGFunctionInfo &FnInfo, 2201 const FunctionArgList &Args, 2202 SourceLocation Loc = SourceLocation(), 2203 SourceLocation StartLoc = SourceLocation()); 2204 2205 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor); 2206 2207 void EmitConstructorBody(FunctionArgList &Args); 2208 void EmitDestructorBody(FunctionArgList &Args); 2209 void emitImplicitAssignmentOperatorBody(FunctionArgList &Args); 2210 void EmitFunctionBody(const Stmt *Body); 2211 void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S); 2212 2213 void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator, 2214 CallArgList &CallArgs); 2215 void EmitLambdaBlockInvokeBody(); 2216 void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD); 2217 void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD); 2218 void EmitLambdaVLACapture(const VariableArrayType *VAT, LValue LV) { 2219 EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); 2220 } 2221 void EmitAsanPrologueOrEpilogue(bool Prologue); 2222 2223 /// Emit the unified return block, trying to avoid its emission when 2224 /// possible. 2225 /// \return The debug location of the user written return statement if the 2226 /// return block is is avoided. 2227 llvm::DebugLoc EmitReturnBlock(); 2228 2229 /// FinishFunction - Complete IR generation of the current function. It is 2230 /// legal to call this function even if there is no current insertion point. 2231 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 2232 2233 void StartThunk(llvm::Function *Fn, GlobalDecl GD, 2234 const CGFunctionInfo &FnInfo, bool IsUnprototyped); 2235 2236 void EmitCallAndReturnForThunk(llvm::FunctionCallee Callee, 2237 const ThunkInfo *Thunk, bool IsUnprototyped); 2238 2239 void FinishThunk(); 2240 2241 /// Emit a musttail call for a thunk with a potentially adjusted this pointer. 2242 void EmitMustTailThunk(GlobalDecl GD, llvm::Value *AdjustedThisPtr, 2243 llvm::FunctionCallee Callee); 2244 2245 /// Generate a thunk for the given method. 2246 void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 2247 GlobalDecl GD, const ThunkInfo &Thunk, 2248 bool IsUnprototyped); 2249 2250 llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn, 2251 const CGFunctionInfo &FnInfo, 2252 GlobalDecl GD, const ThunkInfo &Thunk); 2253 2254 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 2255 FunctionArgList &Args); 2256 2257 void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init); 2258 2259 /// Struct with all information about dynamic [sub]class needed to set vptr. 2260 struct VPtr { 2261 BaseSubobject Base; 2262 const CXXRecordDecl *NearestVBase; 2263 CharUnits OffsetFromNearestVBase; 2264 const CXXRecordDecl *VTableClass; 2265 }; 2266 2267 /// Initialize the vtable pointer of the given subobject. 2268 void InitializeVTablePointer(const VPtr &vptr); 2269 2270 typedef llvm::SmallVector<VPtr, 4> VPtrsVector; 2271 2272 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 2273 VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass); 2274 2275 void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase, 2276 CharUnits OffsetFromNearestVBase, 2277 bool BaseIsNonVirtualPrimaryBase, 2278 const CXXRecordDecl *VTableClass, 2279 VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs); 2280 2281 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 2282 2283 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 2284 /// to by This. 2285 llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy, 2286 const CXXRecordDecl *VTableClass); 2287 2288 enum CFITypeCheckKind { 2289 CFITCK_VCall, 2290 CFITCK_NVCall, 2291 CFITCK_DerivedCast, 2292 CFITCK_UnrelatedCast, 2293 CFITCK_ICall, 2294 CFITCK_NVMFCall, 2295 CFITCK_VMFCall, 2296 }; 2297 2298 /// Derived is the presumed address of an object of type T after a 2299 /// cast. If T is a polymorphic class type, emit a check that the virtual 2300 /// table for Derived belongs to a class derived from T. 2301 void EmitVTablePtrCheckForCast(QualType T, Address Derived, bool MayBeNull, 2302 CFITypeCheckKind TCK, SourceLocation Loc); 2303 2304 /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable. 2305 /// If vptr CFI is enabled, emit a check that VTable is valid. 2306 void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable, 2307 CFITypeCheckKind TCK, SourceLocation Loc); 2308 2309 /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for 2310 /// RD using llvm.type.test. 2311 void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable, 2312 CFITypeCheckKind TCK, SourceLocation Loc); 2313 2314 /// If whole-program virtual table optimization is enabled, emit an assumption 2315 /// that VTable is a member of RD's type identifier. Or, if vptr CFI is 2316 /// enabled, emit a check that VTable is a member of RD's type identifier. 2317 void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, 2318 llvm::Value *VTable, SourceLocation Loc); 2319 2320 /// Returns whether we should perform a type checked load when loading a 2321 /// virtual function for virtual calls to members of RD. This is generally 2322 /// true when both vcall CFI and whole-program-vtables are enabled. 2323 bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD); 2324 2325 /// Emit a type checked load from the given vtable. 2326 llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, 2327 llvm::Value *VTable, 2328 llvm::Type *VTableTy, 2329 uint64_t VTableByteOffset); 2330 2331 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 2332 /// given phase of destruction for a destructor. The end result 2333 /// should call destructors on members and base classes in reverse 2334 /// order of their construction. 2335 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 2336 2337 /// ShouldInstrumentFunction - Return true if the current function should be 2338 /// instrumented with __cyg_profile_func_* calls 2339 bool ShouldInstrumentFunction(); 2340 2341 /// ShouldSkipSanitizerInstrumentation - Return true if the current function 2342 /// should not be instrumented with sanitizers. 2343 bool ShouldSkipSanitizerInstrumentation(); 2344 2345 /// ShouldXRayInstrument - Return true if the current function should be 2346 /// instrumented with XRay nop sleds. 2347 bool ShouldXRayInstrumentFunction() const; 2348 2349 /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit 2350 /// XRay custom event handling calls. 2351 bool AlwaysEmitXRayCustomEvents() const; 2352 2353 /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit 2354 /// XRay typed event handling calls. 2355 bool AlwaysEmitXRayTypedEvents() const; 2356 2357 /// Encode an address into a form suitable for use in a function prologue. 2358 llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F, 2359 llvm::Constant *Addr); 2360 2361 /// Decode an address used in a function prologue, encoded by \c 2362 /// EncodeAddrForUseInPrologue. 2363 llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F, 2364 llvm::Value *EncodedAddr); 2365 2366 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 2367 /// arguments for the given function. This is also responsible for naming the 2368 /// LLVM function arguments. 2369 void EmitFunctionProlog(const CGFunctionInfo &FI, 2370 llvm::Function *Fn, 2371 const FunctionArgList &Args); 2372 2373 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 2374 /// given temporary. 2375 void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc, 2376 SourceLocation EndLoc); 2377 2378 /// Emit a test that checks if the return value \p RV is nonnull. 2379 void EmitReturnValueCheck(llvm::Value *RV); 2380 2381 /// EmitStartEHSpec - Emit the start of the exception spec. 2382 void EmitStartEHSpec(const Decl *D); 2383 2384 /// EmitEndEHSpec - Emit the end of the exception spec. 2385 void EmitEndEHSpec(const Decl *D); 2386 2387 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 2388 llvm::BasicBlock *getTerminateLandingPad(); 2389 2390 /// getTerminateLandingPad - Return a cleanup funclet that just calls 2391 /// terminate. 2392 llvm::BasicBlock *getTerminateFunclet(); 2393 2394 /// getTerminateHandler - Return a handler (not a landing pad, just 2395 /// a catch handler) that just calls terminate. This is used when 2396 /// a terminate scope encloses a try. 2397 llvm::BasicBlock *getTerminateHandler(); 2398 2399 llvm::Type *ConvertTypeForMem(QualType T); 2400 llvm::Type *ConvertType(QualType T); 2401 llvm::Type *ConvertType(const TypeDecl *T) { 2402 return ConvertType(getContext().getTypeDeclType(T)); 2403 } 2404 2405 /// LoadObjCSelf - Load the value of self. This function is only valid while 2406 /// generating code for an Objective-C method. 2407 llvm::Value *LoadObjCSelf(); 2408 2409 /// TypeOfSelfObject - Return type of object that this self represents. 2410 QualType TypeOfSelfObject(); 2411 2412 /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T. 2413 static TypeEvaluationKind getEvaluationKind(QualType T); 2414 2415 static bool hasScalarEvaluationKind(QualType T) { 2416 return getEvaluationKind(T) == TEK_Scalar; 2417 } 2418 2419 static bool hasAggregateEvaluationKind(QualType T) { 2420 return getEvaluationKind(T) == TEK_Aggregate; 2421 } 2422 2423 /// createBasicBlock - Create an LLVM basic block. 2424 llvm::BasicBlock *createBasicBlock(const Twine &name = "", 2425 llvm::Function *parent = nullptr, 2426 llvm::BasicBlock *before = nullptr) { 2427 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 2428 } 2429 2430 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 2431 /// label maps to. 2432 JumpDest getJumpDestForLabel(const LabelDecl *S); 2433 2434 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 2435 /// another basic block, simplify it. This assumes that no other code could 2436 /// potentially reference the basic block. 2437 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 2438 2439 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 2440 /// adding a fall-through branch from the current insert block if 2441 /// necessary. It is legal to call this function even if there is no current 2442 /// insertion point. 2443 /// 2444 /// IsFinished - If true, indicates that the caller has finished emitting 2445 /// branches to the given block and does not expect to emit code into it. This 2446 /// means the block can be ignored if it is unreachable. 2447 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 2448 2449 /// EmitBlockAfterUses - Emit the given block somewhere hopefully 2450 /// near its uses, and leave the insertion point in it. 2451 void EmitBlockAfterUses(llvm::BasicBlock *BB); 2452 2453 /// EmitBranch - Emit a branch to the specified basic block from the current 2454 /// insert block, taking care to avoid creation of branches from dummy 2455 /// blocks. It is legal to call this function even if there is no current 2456 /// insertion point. 2457 /// 2458 /// This function clears the current insertion point. The caller should follow 2459 /// calls to this function with calls to Emit*Block prior to generation new 2460 /// code. 2461 void EmitBranch(llvm::BasicBlock *Block); 2462 2463 /// HaveInsertPoint - True if an insertion point is defined. If not, this 2464 /// indicates that the current code being emitted is unreachable. 2465 bool HaveInsertPoint() const { 2466 return Builder.GetInsertBlock() != nullptr; 2467 } 2468 2469 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 2470 /// emitted IR has a place to go. Note that by definition, if this function 2471 /// creates a block then that block is unreachable; callers may do better to 2472 /// detect when no insertion point is defined and simply skip IR generation. 2473 void EnsureInsertPoint() { 2474 if (!HaveInsertPoint()) 2475 EmitBlock(createBasicBlock()); 2476 } 2477 2478 /// ErrorUnsupported - Print out an error that codegen doesn't support the 2479 /// specified stmt yet. 2480 void ErrorUnsupported(const Stmt *S, const char *Type); 2481 2482 //===--------------------------------------------------------------------===// 2483 // Helpers 2484 //===--------------------------------------------------------------------===// 2485 2486 LValue MakeAddrLValue(Address Addr, QualType T, 2487 AlignmentSource Source = AlignmentSource::Type) { 2488 return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source), 2489 CGM.getTBAAAccessInfo(T)); 2490 } 2491 2492 LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo, 2493 TBAAAccessInfo TBAAInfo) { 2494 return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo); 2495 } 2496 2497 LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 2498 AlignmentSource Source = AlignmentSource::Type) { 2499 Address Addr(V, ConvertTypeForMem(T), Alignment); 2500 return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source), 2501 CGM.getTBAAAccessInfo(T)); 2502 } 2503 2504 LValue 2505 MakeAddrLValueWithoutTBAA(Address Addr, QualType T, 2506 AlignmentSource Source = AlignmentSource::Type) { 2507 return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source), 2508 TBAAAccessInfo()); 2509 } 2510 2511 LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T); 2512 LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T); 2513 2514 Address EmitLoadOfReference(LValue RefLVal, 2515 LValueBaseInfo *PointeeBaseInfo = nullptr, 2516 TBAAAccessInfo *PointeeTBAAInfo = nullptr); 2517 LValue EmitLoadOfReferenceLValue(LValue RefLVal); 2518 LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy, 2519 AlignmentSource Source = 2520 AlignmentSource::Type) { 2521 LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source), 2522 CGM.getTBAAAccessInfo(RefTy)); 2523 return EmitLoadOfReferenceLValue(RefLVal); 2524 } 2525 2526 Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy, 2527 LValueBaseInfo *BaseInfo = nullptr, 2528 TBAAAccessInfo *TBAAInfo = nullptr); 2529 LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy); 2530 2531 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 2532 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 2533 /// insertion point of the builder. The caller is responsible for setting an 2534 /// appropriate alignment on 2535 /// the alloca. 2536 /// 2537 /// \p ArraySize is the number of array elements to be allocated if it 2538 /// is not nullptr. 2539 /// 2540 /// LangAS::Default is the address space of pointers to local variables and 2541 /// temporaries, as exposed in the source language. In certain 2542 /// configurations, this is not the same as the alloca address space, and a 2543 /// cast is needed to lift the pointer from the alloca AS into 2544 /// LangAS::Default. This can happen when the target uses a restricted 2545 /// address space for the stack but the source language requires 2546 /// LangAS::Default to be a generic address space. The latter condition is 2547 /// common for most programming languages; OpenCL is an exception in that 2548 /// LangAS::Default is the private address space, which naturally maps 2549 /// to the stack. 2550 /// 2551 /// Because the address of a temporary is often exposed to the program in 2552 /// various ways, this function will perform the cast. The original alloca 2553 /// instruction is returned through \p Alloca if it is not nullptr. 2554 /// 2555 /// The cast is not performaed in CreateTempAllocaWithoutCast. This is 2556 /// more efficient if the caller knows that the address will not be exposed. 2557 llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp", 2558 llvm::Value *ArraySize = nullptr); 2559 Address CreateTempAlloca(llvm::Type *Ty, CharUnits align, 2560 const Twine &Name = "tmp", 2561 llvm::Value *ArraySize = nullptr, 2562 Address *Alloca = nullptr); 2563 Address CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align, 2564 const Twine &Name = "tmp", 2565 llvm::Value *ArraySize = nullptr); 2566 2567 /// CreateDefaultAlignedTempAlloca - This creates an alloca with the 2568 /// default ABI alignment of the given LLVM type. 2569 /// 2570 /// IMPORTANT NOTE: This is *not* generally the right alignment for 2571 /// any given AST type that happens to have been lowered to the 2572 /// given IR type. This should only ever be used for function-local, 2573 /// IR-driven manipulations like saving and restoring a value. Do 2574 /// not hand this address off to arbitrary IRGen routines, and especially 2575 /// do not pass it as an argument to a function that might expect a 2576 /// properly ABI-aligned value. 2577 Address CreateDefaultAlignTempAlloca(llvm::Type *Ty, 2578 const Twine &Name = "tmp"); 2579 2580 /// CreateIRTemp - Create a temporary IR object of the given type, with 2581 /// appropriate alignment. This routine should only be used when an temporary 2582 /// value needs to be stored into an alloca (for example, to avoid explicit 2583 /// PHI construction), but the type is the IR type, not the type appropriate 2584 /// for storing in memory. 2585 /// 2586 /// That is, this is exactly equivalent to CreateMemTemp, but calling 2587 /// ConvertType instead of ConvertTypeForMem. 2588 Address CreateIRTemp(QualType T, const Twine &Name = "tmp"); 2589 2590 /// CreateMemTemp - Create a temporary memory object of the given type, with 2591 /// appropriate alignmen and cast it to the default address space. Returns 2592 /// the original alloca instruction by \p Alloca if it is not nullptr. 2593 Address CreateMemTemp(QualType T, const Twine &Name = "tmp", 2594 Address *Alloca = nullptr); 2595 Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp", 2596 Address *Alloca = nullptr); 2597 2598 /// CreateMemTemp - Create a temporary memory object of the given type, with 2599 /// appropriate alignmen without casting it to the default address space. 2600 Address CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp"); 2601 Address CreateMemTempWithoutCast(QualType T, CharUnits Align, 2602 const Twine &Name = "tmp"); 2603 2604 /// CreateAggTemp - Create a temporary memory object for the given 2605 /// aggregate type. 2606 AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp", 2607 Address *Alloca = nullptr) { 2608 return AggValueSlot::forAddr(CreateMemTemp(T, Name, Alloca), 2609 T.getQualifiers(), 2610 AggValueSlot::IsNotDestructed, 2611 AggValueSlot::DoesNotNeedGCBarriers, 2612 AggValueSlot::IsNotAliased, 2613 AggValueSlot::DoesNotOverlap); 2614 } 2615 2616 /// Emit a cast to void* in the appropriate address space. 2617 llvm::Value *EmitCastToVoidPtr(llvm::Value *value); 2618 2619 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 2620 /// expression and compare the result against zero, returning an Int1Ty value. 2621 llvm::Value *EvaluateExprAsBool(const Expr *E); 2622 2623 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 2624 void EmitIgnoredExpr(const Expr *E); 2625 2626 /// EmitAnyExpr - Emit code to compute the specified expression which can have 2627 /// any type. The result is returned as an RValue struct. If this is an 2628 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 2629 /// the result should be returned. 2630 /// 2631 /// \param ignoreResult True if the resulting value isn't used. 2632 RValue EmitAnyExpr(const Expr *E, 2633 AggValueSlot aggSlot = AggValueSlot::ignored(), 2634 bool ignoreResult = false); 2635 2636 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 2637 // or the value of the expression, depending on how va_list is defined. 2638 Address EmitVAListRef(const Expr *E); 2639 2640 /// Emit a "reference" to a __builtin_ms_va_list; this is 2641 /// always the value of the expression, because a __builtin_ms_va_list is a 2642 /// pointer to a char. 2643 Address EmitMSVAListRef(const Expr *E); 2644 2645 /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will 2646 /// always be accessible even if no aggregate location is provided. 2647 RValue EmitAnyExprToTemp(const Expr *E); 2648 2649 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 2650 /// arbitrary expression into the given memory location. 2651 void EmitAnyExprToMem(const Expr *E, Address Location, 2652 Qualifiers Quals, bool IsInitializer); 2653 2654 void EmitAnyExprToExn(const Expr *E, Address Addr); 2655 2656 /// EmitExprAsInit - Emits the code necessary to initialize a 2657 /// location in memory with the given initializer. 2658 void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2659 bool capturedByInit); 2660 2661 /// hasVolatileMember - returns true if aggregate type has a volatile 2662 /// member. 2663 bool hasVolatileMember(QualType T) { 2664 if (const RecordType *RT = T->getAs<RecordType>()) { 2665 const RecordDecl *RD = cast<RecordDecl>(RT->getDecl()); 2666 return RD->hasVolatileMember(); 2667 } 2668 return false; 2669 } 2670 2671 /// Determine whether a return value slot may overlap some other object. 2672 AggValueSlot::Overlap_t getOverlapForReturnValue() { 2673 // FIXME: Assuming no overlap here breaks guaranteed copy elision for base 2674 // class subobjects. These cases may need to be revisited depending on the 2675 // resolution of the relevant core issue. 2676 return AggValueSlot::DoesNotOverlap; 2677 } 2678 2679 /// Determine whether a field initialization may overlap some other object. 2680 AggValueSlot::Overlap_t getOverlapForFieldInit(const FieldDecl *FD); 2681 2682 /// Determine whether a base class initialization may overlap some other 2683 /// object. 2684 AggValueSlot::Overlap_t getOverlapForBaseInit(const CXXRecordDecl *RD, 2685 const CXXRecordDecl *BaseRD, 2686 bool IsVirtual); 2687 2688 /// Emit an aggregate assignment. 2689 void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) { 2690 bool IsVolatile = hasVolatileMember(EltTy); 2691 EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile); 2692 } 2693 2694 void EmitAggregateCopyCtor(LValue Dest, LValue Src, 2695 AggValueSlot::Overlap_t MayOverlap) { 2696 EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap); 2697 } 2698 2699 /// EmitAggregateCopy - Emit an aggregate copy. 2700 /// 2701 /// \param isVolatile \c true iff either the source or the destination is 2702 /// volatile. 2703 /// \param MayOverlap Whether the tail padding of the destination might be 2704 /// occupied by some other object. More efficient code can often be 2705 /// generated if not. 2706 void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy, 2707 AggValueSlot::Overlap_t MayOverlap, 2708 bool isVolatile = false); 2709 2710 /// GetAddrOfLocalVar - Return the address of a local variable. 2711 Address GetAddrOfLocalVar(const VarDecl *VD) { 2712 auto it = LocalDeclMap.find(VD); 2713 assert(it != LocalDeclMap.end() && 2714 "Invalid argument to GetAddrOfLocalVar(), no decl!"); 2715 return it->second; 2716 } 2717 2718 /// Given an opaque value expression, return its LValue mapping if it exists, 2719 /// otherwise create one. 2720 LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e); 2721 2722 /// Given an opaque value expression, return its RValue mapping if it exists, 2723 /// otherwise create one. 2724 RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e); 2725 2726 /// Get the index of the current ArrayInitLoopExpr, if any. 2727 llvm::Value *getArrayInitIndex() { return ArrayInitIndex; } 2728 2729 /// getAccessedFieldNo - Given an encoded value and a result number, return 2730 /// the input field number being accessed. 2731 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 2732 2733 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 2734 llvm::BasicBlock *GetIndirectGotoBlock(); 2735 2736 /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts. 2737 static bool IsWrappedCXXThis(const Expr *E); 2738 2739 /// EmitNullInitialization - Generate code to set a value of the given type to 2740 /// null, If the type contains data member pointers, they will be initialized 2741 /// to -1 in accordance with the Itanium C++ ABI. 2742 void EmitNullInitialization(Address DestPtr, QualType Ty); 2743 2744 /// Emits a call to an LLVM variable-argument intrinsic, either 2745 /// \c llvm.va_start or \c llvm.va_end. 2746 /// \param ArgValue A reference to the \c va_list as emitted by either 2747 /// \c EmitVAListRef or \c EmitMSVAListRef. 2748 /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise, 2749 /// calls \c llvm.va_end. 2750 llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart); 2751 2752 /// Generate code to get an argument from the passed in pointer 2753 /// and update it accordingly. 2754 /// \param VE The \c VAArgExpr for which to generate code. 2755 /// \param VAListAddr Receives a reference to the \c va_list as emitted by 2756 /// either \c EmitVAListRef or \c EmitMSVAListRef. 2757 /// \returns A pointer to the argument. 2758 // FIXME: We should be able to get rid of this method and use the va_arg 2759 // instruction in LLVM instead once it works well enough. 2760 Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr); 2761 2762 /// emitArrayLength - Compute the length of an array, even if it's a 2763 /// VLA, and drill down to the base element type. 2764 llvm::Value *emitArrayLength(const ArrayType *arrayType, 2765 QualType &baseType, 2766 Address &addr); 2767 2768 /// EmitVLASize - Capture all the sizes for the VLA expressions in 2769 /// the given variably-modified type and store them in the VLASizeMap. 2770 /// 2771 /// This function can be called with a null (unreachable) insert point. 2772 void EmitVariablyModifiedType(QualType Ty); 2773 2774 struct VlaSizePair { 2775 llvm::Value *NumElts; 2776 QualType Type; 2777 2778 VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {} 2779 }; 2780 2781 /// Return the number of elements for a single dimension 2782 /// for the given array type. 2783 VlaSizePair getVLAElements1D(const VariableArrayType *vla); 2784 VlaSizePair getVLAElements1D(QualType vla); 2785 2786 /// Returns an LLVM value that corresponds to the size, 2787 /// in non-variably-sized elements, of a variable length array type, 2788 /// plus that largest non-variably-sized element type. Assumes that 2789 /// the type has already been emitted with EmitVariablyModifiedType. 2790 VlaSizePair getVLASize(const VariableArrayType *vla); 2791 VlaSizePair getVLASize(QualType vla); 2792 2793 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 2794 /// generating code for an C++ member function. 2795 llvm::Value *LoadCXXThis() { 2796 assert(CXXThisValue && "no 'this' value for this function"); 2797 return CXXThisValue; 2798 } 2799 Address LoadCXXThisAddress(); 2800 2801 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 2802 /// virtual bases. 2803 // FIXME: Every place that calls LoadCXXVTT is something 2804 // that needs to be abstracted properly. 2805 llvm::Value *LoadCXXVTT() { 2806 assert(CXXStructorImplicitParamValue && "no VTT value for this function"); 2807 return CXXStructorImplicitParamValue; 2808 } 2809 2810 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 2811 /// complete class to the given direct base. 2812 Address 2813 GetAddressOfDirectBaseInCompleteClass(Address Value, 2814 const CXXRecordDecl *Derived, 2815 const CXXRecordDecl *Base, 2816 bool BaseIsVirtual); 2817 2818 static bool ShouldNullCheckClassCastValue(const CastExpr *Cast); 2819 2820 /// GetAddressOfBaseClass - This function will add the necessary delta to the 2821 /// load of 'this' and returns address of the base class. 2822 Address GetAddressOfBaseClass(Address Value, 2823 const CXXRecordDecl *Derived, 2824 CastExpr::path_const_iterator PathBegin, 2825 CastExpr::path_const_iterator PathEnd, 2826 bool NullCheckValue, SourceLocation Loc); 2827 2828 Address GetAddressOfDerivedClass(Address Value, 2829 const CXXRecordDecl *Derived, 2830 CastExpr::path_const_iterator PathBegin, 2831 CastExpr::path_const_iterator PathEnd, 2832 bool NullCheckValue); 2833 2834 /// GetVTTParameter - Return the VTT parameter that should be passed to a 2835 /// base constructor/destructor with virtual bases. 2836 /// FIXME: VTTs are Itanium ABI-specific, so the definition should move 2837 /// to ItaniumCXXABI.cpp together with all the references to VTT. 2838 llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase, 2839 bool Delegating); 2840 2841 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 2842 CXXCtorType CtorType, 2843 const FunctionArgList &Args, 2844 SourceLocation Loc); 2845 // It's important not to confuse this and the previous function. Delegating 2846 // constructors are the C++0x feature. The constructor delegate optimization 2847 // is used to reduce duplication in the base and complete consturctors where 2848 // they are substantially the same. 2849 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2850 const FunctionArgList &Args); 2851 2852 /// Emit a call to an inheriting constructor (that is, one that invokes a 2853 /// constructor inherited from a base class) by inlining its definition. This 2854 /// is necessary if the ABI does not support forwarding the arguments to the 2855 /// base class constructor (because they're variadic or similar). 2856 void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2857 CXXCtorType CtorType, 2858 bool ForVirtualBase, 2859 bool Delegating, 2860 CallArgList &Args); 2861 2862 /// Emit a call to a constructor inherited from a base class, passing the 2863 /// current constructor's arguments along unmodified (without even making 2864 /// a copy). 2865 void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D, 2866 bool ForVirtualBase, Address This, 2867 bool InheritedFromVBase, 2868 const CXXInheritedCtorInitExpr *E); 2869 2870 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2871 bool ForVirtualBase, bool Delegating, 2872 AggValueSlot ThisAVS, const CXXConstructExpr *E); 2873 2874 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2875 bool ForVirtualBase, bool Delegating, 2876 Address This, CallArgList &Args, 2877 AggValueSlot::Overlap_t Overlap, 2878 SourceLocation Loc, bool NewPointerIsChecked); 2879 2880 /// Emit assumption load for all bases. Requires to be be called only on 2881 /// most-derived class and not under construction of the object. 2882 void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This); 2883 2884 /// Emit assumption that vptr load == global vtable. 2885 void EmitVTableAssumptionLoad(const VPtr &vptr, Address This); 2886 2887 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 2888 Address This, Address Src, 2889 const CXXConstructExpr *E); 2890 2891 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2892 const ArrayType *ArrayTy, 2893 Address ArrayPtr, 2894 const CXXConstructExpr *E, 2895 bool NewPointerIsChecked, 2896 bool ZeroInitialization = false); 2897 2898 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2899 llvm::Value *NumElements, 2900 Address ArrayPtr, 2901 const CXXConstructExpr *E, 2902 bool NewPointerIsChecked, 2903 bool ZeroInitialization = false); 2904 2905 static Destroyer destroyCXXObject; 2906 2907 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 2908 bool ForVirtualBase, bool Delegating, Address This, 2909 QualType ThisTy); 2910 2911 void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, 2912 llvm::Type *ElementTy, Address NewPtr, 2913 llvm::Value *NumElements, 2914 llvm::Value *AllocSizeWithoutCookie); 2915 2916 void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, 2917 Address Ptr); 2918 2919 void EmitSehCppScopeBegin(); 2920 void EmitSehCppScopeEnd(); 2921 void EmitSehTryScopeBegin(); 2922 void EmitSehTryScopeEnd(); 2923 2924 llvm::Value *EmitLifetimeStart(llvm::TypeSize Size, llvm::Value *Addr); 2925 void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr); 2926 2927 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 2928 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 2929 2930 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 2931 QualType DeleteTy, llvm::Value *NumElements = nullptr, 2932 CharUnits CookieSize = CharUnits()); 2933 2934 RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 2935 const CallExpr *TheCallExpr, bool IsDelete); 2936 2937 llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E); 2938 llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE); 2939 Address EmitCXXUuidofExpr(const CXXUuidofExpr *E); 2940 2941 /// Situations in which we might emit a check for the suitability of a 2942 /// pointer or glvalue. Needs to be kept in sync with ubsan_handlers.cpp in 2943 /// compiler-rt. 2944 enum TypeCheckKind { 2945 /// Checking the operand of a load. Must be suitably sized and aligned. 2946 TCK_Load, 2947 /// Checking the destination of a store. Must be suitably sized and aligned. 2948 TCK_Store, 2949 /// Checking the bound value in a reference binding. Must be suitably sized 2950 /// and aligned, but is not required to refer to an object (until the 2951 /// reference is used), per core issue 453. 2952 TCK_ReferenceBinding, 2953 /// Checking the object expression in a non-static data member access. Must 2954 /// be an object within its lifetime. 2955 TCK_MemberAccess, 2956 /// Checking the 'this' pointer for a call to a non-static member function. 2957 /// Must be an object within its lifetime. 2958 TCK_MemberCall, 2959 /// Checking the 'this' pointer for a constructor call. 2960 TCK_ConstructorCall, 2961 /// Checking the operand of a static_cast to a derived pointer type. Must be 2962 /// null or an object within its lifetime. 2963 TCK_DowncastPointer, 2964 /// Checking the operand of a static_cast to a derived reference type. Must 2965 /// be an object within its lifetime. 2966 TCK_DowncastReference, 2967 /// Checking the operand of a cast to a base object. Must be suitably sized 2968 /// and aligned. 2969 TCK_Upcast, 2970 /// Checking the operand of a cast to a virtual base object. Must be an 2971 /// object within its lifetime. 2972 TCK_UpcastToVirtualBase, 2973 /// Checking the value assigned to a _Nonnull pointer. Must not be null. 2974 TCK_NonnullAssign, 2975 /// Checking the operand of a dynamic_cast or a typeid expression. Must be 2976 /// null or an object within its lifetime. 2977 TCK_DynamicOperation 2978 }; 2979 2980 /// Determine whether the pointer type check \p TCK permits null pointers. 2981 static bool isNullPointerAllowed(TypeCheckKind TCK); 2982 2983 /// Determine whether the pointer type check \p TCK requires a vptr check. 2984 static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty); 2985 2986 /// Whether any type-checking sanitizers are enabled. If \c false, 2987 /// calls to EmitTypeCheck can be skipped. 2988 bool sanitizePerformTypeCheck() const; 2989 2990 /// Emit a check that \p V is the address of storage of the 2991 /// appropriate size and alignment for an object of type \p Type 2992 /// (or if ArraySize is provided, for an array of that bound). 2993 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, 2994 QualType Type, CharUnits Alignment = CharUnits::Zero(), 2995 SanitizerSet SkippedChecks = SanitizerSet(), 2996 llvm::Value *ArraySize = nullptr); 2997 2998 /// Emit a check that \p Base points into an array object, which 2999 /// we can access at index \p Index. \p Accessed should be \c false if we 3000 /// this expression is used as an lvalue, for instance in "&Arr[Idx]". 3001 void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, 3002 QualType IndexType, bool Accessed); 3003 3004 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 3005 bool isInc, bool isPre); 3006 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 3007 bool isInc, bool isPre); 3008 3009 /// Converts Location to a DebugLoc, if debug information is enabled. 3010 llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location); 3011 3012 /// Get the record field index as represented in debug info. 3013 unsigned getDebugInfoFIndex(const RecordDecl *Rec, unsigned FieldIndex); 3014 3015 3016 //===--------------------------------------------------------------------===// 3017 // Declaration Emission 3018 //===--------------------------------------------------------------------===// 3019 3020 /// EmitDecl - Emit a declaration. 3021 /// 3022 /// This function can be called with a null (unreachable) insert point. 3023 void EmitDecl(const Decl &D); 3024 3025 /// EmitVarDecl - Emit a local variable declaration. 3026 /// 3027 /// This function can be called with a null (unreachable) insert point. 3028 void EmitVarDecl(const VarDecl &D); 3029 3030 void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue, 3031 bool capturedByInit); 3032 3033 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 3034 llvm::Value *Address); 3035 3036 /// Determine whether the given initializer is trivial in the sense 3037 /// that it requires no code to be generated. 3038 bool isTrivialInitializer(const Expr *Init); 3039 3040 /// EmitAutoVarDecl - Emit an auto variable declaration. 3041 /// 3042 /// This function can be called with a null (unreachable) insert point. 3043 void EmitAutoVarDecl(const VarDecl &D); 3044 3045 class AutoVarEmission { 3046 friend class CodeGenFunction; 3047 3048 const VarDecl *Variable; 3049 3050 /// The address of the alloca for languages with explicit address space 3051 /// (e.g. OpenCL) or alloca casted to generic pointer for address space 3052 /// agnostic languages (e.g. C++). Invalid if the variable was emitted 3053 /// as a global constant. 3054 Address Addr; 3055 3056 llvm::Value *NRVOFlag; 3057 3058 /// True if the variable is a __block variable that is captured by an 3059 /// escaping block. 3060 bool IsEscapingByRef; 3061 3062 /// True if the variable is of aggregate type and has a constant 3063 /// initializer. 3064 bool IsConstantAggregate; 3065 3066 /// Non-null if we should use lifetime annotations. 3067 llvm::Value *SizeForLifetimeMarkers; 3068 3069 /// Address with original alloca instruction. Invalid if the variable was 3070 /// emitted as a global constant. 3071 Address AllocaAddr; 3072 3073 struct Invalid {}; 3074 AutoVarEmission(Invalid) 3075 : Variable(nullptr), Addr(Address::invalid()), 3076 AllocaAddr(Address::invalid()) {} 3077 3078 AutoVarEmission(const VarDecl &variable) 3079 : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr), 3080 IsEscapingByRef(false), IsConstantAggregate(false), 3081 SizeForLifetimeMarkers(nullptr), AllocaAddr(Address::invalid()) {} 3082 3083 bool wasEmittedAsGlobal() const { return !Addr.isValid(); } 3084 3085 public: 3086 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 3087 3088 bool useLifetimeMarkers() const { 3089 return SizeForLifetimeMarkers != nullptr; 3090 } 3091 llvm::Value *getSizeForLifetimeMarkers() const { 3092 assert(useLifetimeMarkers()); 3093 return SizeForLifetimeMarkers; 3094 } 3095 3096 /// Returns the raw, allocated address, which is not necessarily 3097 /// the address of the object itself. It is casted to default 3098 /// address space for address space agnostic languages. 3099 Address getAllocatedAddress() const { 3100 return Addr; 3101 } 3102 3103 /// Returns the address for the original alloca instruction. 3104 Address getOriginalAllocatedAddress() const { return AllocaAddr; } 3105 3106 /// Returns the address of the object within this declaration. 3107 /// Note that this does not chase the forwarding pointer for 3108 /// __block decls. 3109 Address getObjectAddress(CodeGenFunction &CGF) const { 3110 if (!IsEscapingByRef) return Addr; 3111 3112 return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false); 3113 } 3114 }; 3115 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 3116 void EmitAutoVarInit(const AutoVarEmission &emission); 3117 void EmitAutoVarCleanups(const AutoVarEmission &emission); 3118 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 3119 QualType::DestructionKind dtorKind); 3120 3121 /// Emits the alloca and debug information for the size expressions for each 3122 /// dimension of an array. It registers the association of its (1-dimensional) 3123 /// QualTypes and size expression's debug node, so that CGDebugInfo can 3124 /// reference this node when creating the DISubrange object to describe the 3125 /// array types. 3126 void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI, 3127 const VarDecl &D, 3128 bool EmitDebugInfo); 3129 3130 void EmitStaticVarDecl(const VarDecl &D, 3131 llvm::GlobalValue::LinkageTypes Linkage); 3132 3133 class ParamValue { 3134 llvm::Value *Value; 3135 llvm::Type *ElementType; 3136 unsigned Alignment; 3137 ParamValue(llvm::Value *V, llvm::Type *T, unsigned A) 3138 : Value(V), ElementType(T), Alignment(A) {} 3139 public: 3140 static ParamValue forDirect(llvm::Value *value) { 3141 return ParamValue(value, nullptr, 0); 3142 } 3143 static ParamValue forIndirect(Address addr) { 3144 assert(!addr.getAlignment().isZero()); 3145 return ParamValue(addr.getPointer(), addr.getElementType(), 3146 addr.getAlignment().getQuantity()); 3147 } 3148 3149 bool isIndirect() const { return Alignment != 0; } 3150 llvm::Value *getAnyValue() const { return Value; } 3151 3152 llvm::Value *getDirectValue() const { 3153 assert(!isIndirect()); 3154 return Value; 3155 } 3156 3157 Address getIndirectAddress() const { 3158 assert(isIndirect()); 3159 return Address(Value, ElementType, CharUnits::fromQuantity(Alignment)); 3160 } 3161 }; 3162 3163 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 3164 void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo); 3165 3166 /// protectFromPeepholes - Protect a value that we're intending to 3167 /// store to the side, but which will probably be used later, from 3168 /// aggressive peepholing optimizations that might delete it. 3169 /// 3170 /// Pass the result to unprotectFromPeepholes to declare that 3171 /// protection is no longer required. 3172 /// 3173 /// There's no particular reason why this shouldn't apply to 3174 /// l-values, it's just that no existing peepholes work on pointers. 3175 PeepholeProtection protectFromPeepholes(RValue rvalue); 3176 void unprotectFromPeepholes(PeepholeProtection protection); 3177 3178 void emitAlignmentAssumptionCheck(llvm::Value *Ptr, QualType Ty, 3179 SourceLocation Loc, 3180 SourceLocation AssumptionLoc, 3181 llvm::Value *Alignment, 3182 llvm::Value *OffsetValue, 3183 llvm::Value *TheCheck, 3184 llvm::Instruction *Assumption); 3185 3186 void emitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty, 3187 SourceLocation Loc, SourceLocation AssumptionLoc, 3188 llvm::Value *Alignment, 3189 llvm::Value *OffsetValue = nullptr); 3190 3191 void emitAlignmentAssumption(llvm::Value *PtrValue, const Expr *E, 3192 SourceLocation AssumptionLoc, 3193 llvm::Value *Alignment, 3194 llvm::Value *OffsetValue = nullptr); 3195 3196 //===--------------------------------------------------------------------===// 3197 // Statement Emission 3198 //===--------------------------------------------------------------------===// 3199 3200 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 3201 void EmitStopPoint(const Stmt *S); 3202 3203 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 3204 /// this function even if there is no current insertion point. 3205 /// 3206 /// This function may clear the current insertion point; callers should use 3207 /// EnsureInsertPoint if they wish to subsequently generate code without first 3208 /// calling EmitBlock, EmitBranch, or EmitStmt. 3209 void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None); 3210 3211 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 3212 /// necessarily require an insertion point or debug information; typically 3213 /// because the statement amounts to a jump or a container of other 3214 /// statements. 3215 /// 3216 /// \return True if the statement was handled. 3217 bool EmitSimpleStmt(const Stmt *S, ArrayRef<const Attr *> Attrs); 3218 3219 Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 3220 AggValueSlot AVS = AggValueSlot::ignored()); 3221 Address EmitCompoundStmtWithoutScope(const CompoundStmt &S, 3222 bool GetLast = false, 3223 AggValueSlot AVS = 3224 AggValueSlot::ignored()); 3225 3226 /// EmitLabel - Emit the block for the given label. It is legal to call this 3227 /// function even if there is no current insertion point. 3228 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 3229 3230 void EmitLabelStmt(const LabelStmt &S); 3231 void EmitAttributedStmt(const AttributedStmt &S); 3232 void EmitGotoStmt(const GotoStmt &S); 3233 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 3234 void EmitIfStmt(const IfStmt &S); 3235 3236 void EmitWhileStmt(const WhileStmt &S, 3237 ArrayRef<const Attr *> Attrs = None); 3238 void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None); 3239 void EmitForStmt(const ForStmt &S, 3240 ArrayRef<const Attr *> Attrs = None); 3241 void EmitReturnStmt(const ReturnStmt &S); 3242 void EmitDeclStmt(const DeclStmt &S); 3243 void EmitBreakStmt(const BreakStmt &S); 3244 void EmitContinueStmt(const ContinueStmt &S); 3245 void EmitSwitchStmt(const SwitchStmt &S); 3246 void EmitDefaultStmt(const DefaultStmt &S, ArrayRef<const Attr *> Attrs); 3247 void EmitCaseStmt(const CaseStmt &S, ArrayRef<const Attr *> Attrs); 3248 void EmitCaseStmtRange(const CaseStmt &S, ArrayRef<const Attr *> Attrs); 3249 void EmitAsmStmt(const AsmStmt &S); 3250 3251 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 3252 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 3253 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 3254 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 3255 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 3256 3257 void EmitCoroutineBody(const CoroutineBodyStmt &S); 3258 void EmitCoreturnStmt(const CoreturnStmt &S); 3259 RValue EmitCoawaitExpr(const CoawaitExpr &E, 3260 AggValueSlot aggSlot = AggValueSlot::ignored(), 3261 bool ignoreResult = false); 3262 LValue EmitCoawaitLValue(const CoawaitExpr *E); 3263 RValue EmitCoyieldExpr(const CoyieldExpr &E, 3264 AggValueSlot aggSlot = AggValueSlot::ignored(), 3265 bool ignoreResult = false); 3266 LValue EmitCoyieldLValue(const CoyieldExpr *E); 3267 RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID); 3268 3269 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 3270 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 3271 3272 void EmitCXXTryStmt(const CXXTryStmt &S); 3273 void EmitSEHTryStmt(const SEHTryStmt &S); 3274 void EmitSEHLeaveStmt(const SEHLeaveStmt &S); 3275 void EnterSEHTryStmt(const SEHTryStmt &S); 3276 void ExitSEHTryStmt(const SEHTryStmt &S); 3277 void VolatilizeTryBlocks(llvm::BasicBlock *BB, 3278 llvm::SmallPtrSet<llvm::BasicBlock *, 10> &V); 3279 3280 void pushSEHCleanup(CleanupKind kind, 3281 llvm::Function *FinallyFunc); 3282 void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter, 3283 const Stmt *OutlinedStmt); 3284 3285 llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF, 3286 const SEHExceptStmt &Except); 3287 3288 llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF, 3289 const SEHFinallyStmt &Finally); 3290 3291 void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF, 3292 llvm::Value *ParentFP, 3293 llvm::Value *EntryEBP); 3294 llvm::Value *EmitSEHExceptionCode(); 3295 llvm::Value *EmitSEHExceptionInfo(); 3296 llvm::Value *EmitSEHAbnormalTermination(); 3297 3298 /// Emit simple code for OpenMP directives in Simd-only mode. 3299 void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D); 3300 3301 /// Scan the outlined statement for captures from the parent function. For 3302 /// each capture, mark the capture as escaped and emit a call to 3303 /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap. 3304 void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt, 3305 bool IsFilter); 3306 3307 /// Recovers the address of a local in a parent function. ParentVar is the 3308 /// address of the variable used in the immediate parent function. It can 3309 /// either be an alloca or a call to llvm.localrecover if there are nested 3310 /// outlined functions. ParentFP is the frame pointer of the outermost parent 3311 /// frame. 3312 Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF, 3313 Address ParentVar, 3314 llvm::Value *ParentFP); 3315 3316 void EmitCXXForRangeStmt(const CXXForRangeStmt &S, 3317 ArrayRef<const Attr *> Attrs = None); 3318 3319 /// Controls insertion of cancellation exit blocks in worksharing constructs. 3320 class OMPCancelStackRAII { 3321 CodeGenFunction &CGF; 3322 3323 public: 3324 OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 3325 bool HasCancel) 3326 : CGF(CGF) { 3327 CGF.OMPCancelStack.enter(CGF, Kind, HasCancel); 3328 } 3329 ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); } 3330 }; 3331 3332 /// Returns calculated size of the specified type. 3333 llvm::Value *getTypeSize(QualType Ty); 3334 LValue InitCapturedStruct(const CapturedStmt &S); 3335 llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K); 3336 llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S); 3337 Address GenerateCapturedStmtArgument(const CapturedStmt &S); 3338 llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S, 3339 SourceLocation Loc); 3340 void GenerateOpenMPCapturedVars(const CapturedStmt &S, 3341 SmallVectorImpl<llvm::Value *> &CapturedVars); 3342 void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy, 3343 SourceLocation Loc); 3344 /// Perform element by element copying of arrays with type \a 3345 /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure 3346 /// generated by \a CopyGen. 3347 /// 3348 /// \param DestAddr Address of the destination array. 3349 /// \param SrcAddr Address of the source array. 3350 /// \param OriginalType Type of destination and source arrays. 3351 /// \param CopyGen Copying procedure that copies value of single array element 3352 /// to another single array element. 3353 void EmitOMPAggregateAssign( 3354 Address DestAddr, Address SrcAddr, QualType OriginalType, 3355 const llvm::function_ref<void(Address, Address)> CopyGen); 3356 /// Emit proper copying of data from one variable to another. 3357 /// 3358 /// \param OriginalType Original type of the copied variables. 3359 /// \param DestAddr Destination address. 3360 /// \param SrcAddr Source address. 3361 /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has 3362 /// type of the base array element). 3363 /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of 3364 /// the base array element). 3365 /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a 3366 /// DestVD. 3367 void EmitOMPCopy(QualType OriginalType, 3368 Address DestAddr, Address SrcAddr, 3369 const VarDecl *DestVD, const VarDecl *SrcVD, 3370 const Expr *Copy); 3371 /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or 3372 /// \a X = \a E \a BO \a E. 3373 /// 3374 /// \param X Value to be updated. 3375 /// \param E Update value. 3376 /// \param BO Binary operation for update operation. 3377 /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update 3378 /// expression, false otherwise. 3379 /// \param AO Atomic ordering of the generated atomic instructions. 3380 /// \param CommonGen Code generator for complex expressions that cannot be 3381 /// expressed through atomicrmw instruction. 3382 /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was 3383 /// generated, <false, RValue::get(nullptr)> otherwise. 3384 std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr( 3385 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 3386 llvm::AtomicOrdering AO, SourceLocation Loc, 3387 const llvm::function_ref<RValue(RValue)> CommonGen); 3388 bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 3389 OMPPrivateScope &PrivateScope); 3390 void EmitOMPPrivateClause(const OMPExecutableDirective &D, 3391 OMPPrivateScope &PrivateScope); 3392 void EmitOMPUseDevicePtrClause( 3393 const OMPUseDevicePtrClause &C, OMPPrivateScope &PrivateScope, 3394 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap); 3395 void EmitOMPUseDeviceAddrClause( 3396 const OMPUseDeviceAddrClause &C, OMPPrivateScope &PrivateScope, 3397 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap); 3398 /// Emit code for copyin clause in \a D directive. The next code is 3399 /// generated at the start of outlined functions for directives: 3400 /// \code 3401 /// threadprivate_var1 = master_threadprivate_var1; 3402 /// operator=(threadprivate_var2, master_threadprivate_var2); 3403 /// ... 3404 /// __kmpc_barrier(&loc, global_tid); 3405 /// \endcode 3406 /// 3407 /// \param D OpenMP directive possibly with 'copyin' clause(s). 3408 /// \returns true if at least one copyin variable is found, false otherwise. 3409 bool EmitOMPCopyinClause(const OMPExecutableDirective &D); 3410 /// Emit initial code for lastprivate variables. If some variable is 3411 /// not also firstprivate, then the default initialization is used. Otherwise 3412 /// initialization of this variable is performed by EmitOMPFirstprivateClause 3413 /// method. 3414 /// 3415 /// \param D Directive that may have 'lastprivate' directives. 3416 /// \param PrivateScope Private scope for capturing lastprivate variables for 3417 /// proper codegen in internal captured statement. 3418 /// 3419 /// \returns true if there is at least one lastprivate variable, false 3420 /// otherwise. 3421 bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D, 3422 OMPPrivateScope &PrivateScope); 3423 /// Emit final copying of lastprivate values to original variables at 3424 /// the end of the worksharing or simd directive. 3425 /// 3426 /// \param D Directive that has at least one 'lastprivate' directives. 3427 /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if 3428 /// it is the last iteration of the loop code in associated directive, or to 3429 /// 'i1 false' otherwise. If this item is nullptr, no final check is required. 3430 void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D, 3431 bool NoFinals, 3432 llvm::Value *IsLastIterCond = nullptr); 3433 /// Emit initial code for linear clauses. 3434 void EmitOMPLinearClause(const OMPLoopDirective &D, 3435 CodeGenFunction::OMPPrivateScope &PrivateScope); 3436 /// Emit final code for linear clauses. 3437 /// \param CondGen Optional conditional code for final part of codegen for 3438 /// linear clause. 3439 void EmitOMPLinearClauseFinal( 3440 const OMPLoopDirective &D, 3441 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); 3442 /// Emit initial code for reduction variables. Creates reduction copies 3443 /// and initializes them with the values according to OpenMP standard. 3444 /// 3445 /// \param D Directive (possibly) with the 'reduction' clause. 3446 /// \param PrivateScope Private scope for capturing reduction variables for 3447 /// proper codegen in internal captured statement. 3448 /// 3449 void EmitOMPReductionClauseInit(const OMPExecutableDirective &D, 3450 OMPPrivateScope &PrivateScope, 3451 bool ForInscan = false); 3452 /// Emit final update of reduction values to original variables at 3453 /// the end of the directive. 3454 /// 3455 /// \param D Directive that has at least one 'reduction' directives. 3456 /// \param ReductionKind The kind of reduction to perform. 3457 void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D, 3458 const OpenMPDirectiveKind ReductionKind); 3459 /// Emit initial code for linear variables. Creates private copies 3460 /// and initializes them with the values according to OpenMP standard. 3461 /// 3462 /// \param D Directive (possibly) with the 'linear' clause. 3463 /// \return true if at least one linear variable is found that should be 3464 /// initialized with the value of the original variable, false otherwise. 3465 bool EmitOMPLinearClauseInit(const OMPLoopDirective &D); 3466 3467 typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/, 3468 llvm::Function * /*OutlinedFn*/, 3469 const OMPTaskDataTy & /*Data*/)> 3470 TaskGenTy; 3471 void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S, 3472 const OpenMPDirectiveKind CapturedRegion, 3473 const RegionCodeGenTy &BodyGen, 3474 const TaskGenTy &TaskGen, OMPTaskDataTy &Data); 3475 struct OMPTargetDataInfo { 3476 Address BasePointersArray = Address::invalid(); 3477 Address PointersArray = Address::invalid(); 3478 Address SizesArray = Address::invalid(); 3479 Address MappersArray = Address::invalid(); 3480 unsigned NumberOfTargetItems = 0; 3481 explicit OMPTargetDataInfo() = default; 3482 OMPTargetDataInfo(Address BasePointersArray, Address PointersArray, 3483 Address SizesArray, Address MappersArray, 3484 unsigned NumberOfTargetItems) 3485 : BasePointersArray(BasePointersArray), PointersArray(PointersArray), 3486 SizesArray(SizesArray), MappersArray(MappersArray), 3487 NumberOfTargetItems(NumberOfTargetItems) {} 3488 }; 3489 void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S, 3490 const RegionCodeGenTy &BodyGen, 3491 OMPTargetDataInfo &InputInfo); 3492 3493 void EmitOMPMetaDirective(const OMPMetaDirective &S); 3494 void EmitOMPParallelDirective(const OMPParallelDirective &S); 3495 void EmitOMPSimdDirective(const OMPSimdDirective &S); 3496 void EmitOMPTileDirective(const OMPTileDirective &S); 3497 void EmitOMPUnrollDirective(const OMPUnrollDirective &S); 3498 void EmitOMPForDirective(const OMPForDirective &S); 3499 void EmitOMPForSimdDirective(const OMPForSimdDirective &S); 3500 void EmitOMPSectionsDirective(const OMPSectionsDirective &S); 3501 void EmitOMPSectionDirective(const OMPSectionDirective &S); 3502 void EmitOMPSingleDirective(const OMPSingleDirective &S); 3503 void EmitOMPMasterDirective(const OMPMasterDirective &S); 3504 void EmitOMPMaskedDirective(const OMPMaskedDirective &S); 3505 void EmitOMPCriticalDirective(const OMPCriticalDirective &S); 3506 void EmitOMPParallelForDirective(const OMPParallelForDirective &S); 3507 void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S); 3508 void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S); 3509 void EmitOMPParallelMasterDirective(const OMPParallelMasterDirective &S); 3510 void EmitOMPTaskDirective(const OMPTaskDirective &S); 3511 void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S); 3512 void EmitOMPBarrierDirective(const OMPBarrierDirective &S); 3513 void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S); 3514 void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S); 3515 void EmitOMPFlushDirective(const OMPFlushDirective &S); 3516 void EmitOMPDepobjDirective(const OMPDepobjDirective &S); 3517 void EmitOMPScanDirective(const OMPScanDirective &S); 3518 void EmitOMPOrderedDirective(const OMPOrderedDirective &S); 3519 void EmitOMPAtomicDirective(const OMPAtomicDirective &S); 3520 void EmitOMPTargetDirective(const OMPTargetDirective &S); 3521 void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S); 3522 void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S); 3523 void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S); 3524 void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S); 3525 void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S); 3526 void 3527 EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S); 3528 void EmitOMPTeamsDirective(const OMPTeamsDirective &S); 3529 void 3530 EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S); 3531 void EmitOMPCancelDirective(const OMPCancelDirective &S); 3532 void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S); 3533 void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S); 3534 void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S); 3535 void EmitOMPMasterTaskLoopDirective(const OMPMasterTaskLoopDirective &S); 3536 void 3537 EmitOMPMasterTaskLoopSimdDirective(const OMPMasterTaskLoopSimdDirective &S); 3538 void EmitOMPParallelMasterTaskLoopDirective( 3539 const OMPParallelMasterTaskLoopDirective &S); 3540 void EmitOMPParallelMasterTaskLoopSimdDirective( 3541 const OMPParallelMasterTaskLoopSimdDirective &S); 3542 void EmitOMPDistributeDirective(const OMPDistributeDirective &S); 3543 void EmitOMPDistributeParallelForDirective( 3544 const OMPDistributeParallelForDirective &S); 3545 void EmitOMPDistributeParallelForSimdDirective( 3546 const OMPDistributeParallelForSimdDirective &S); 3547 void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S); 3548 void EmitOMPTargetParallelForSimdDirective( 3549 const OMPTargetParallelForSimdDirective &S); 3550 void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S); 3551 void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S); 3552 void 3553 EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S); 3554 void EmitOMPTeamsDistributeParallelForSimdDirective( 3555 const OMPTeamsDistributeParallelForSimdDirective &S); 3556 void EmitOMPTeamsDistributeParallelForDirective( 3557 const OMPTeamsDistributeParallelForDirective &S); 3558 void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S); 3559 void EmitOMPTargetTeamsDistributeDirective( 3560 const OMPTargetTeamsDistributeDirective &S); 3561 void EmitOMPTargetTeamsDistributeParallelForDirective( 3562 const OMPTargetTeamsDistributeParallelForDirective &S); 3563 void EmitOMPTargetTeamsDistributeParallelForSimdDirective( 3564 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 3565 void EmitOMPTargetTeamsDistributeSimdDirective( 3566 const OMPTargetTeamsDistributeSimdDirective &S); 3567 void EmitOMPGenericLoopDirective(const OMPGenericLoopDirective &S); 3568 void EmitOMPInteropDirective(const OMPInteropDirective &S); 3569 3570 /// Emit device code for the target directive. 3571 static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 3572 StringRef ParentName, 3573 const OMPTargetDirective &S); 3574 static void 3575 EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 3576 const OMPTargetParallelDirective &S); 3577 /// Emit device code for the target parallel for directive. 3578 static void EmitOMPTargetParallelForDeviceFunction( 3579 CodeGenModule &CGM, StringRef ParentName, 3580 const OMPTargetParallelForDirective &S); 3581 /// Emit device code for the target parallel for simd directive. 3582 static void EmitOMPTargetParallelForSimdDeviceFunction( 3583 CodeGenModule &CGM, StringRef ParentName, 3584 const OMPTargetParallelForSimdDirective &S); 3585 /// Emit device code for the target teams directive. 3586 static void 3587 EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 3588 const OMPTargetTeamsDirective &S); 3589 /// Emit device code for the target teams distribute directive. 3590 static void EmitOMPTargetTeamsDistributeDeviceFunction( 3591 CodeGenModule &CGM, StringRef ParentName, 3592 const OMPTargetTeamsDistributeDirective &S); 3593 /// Emit device code for the target teams distribute simd directive. 3594 static void EmitOMPTargetTeamsDistributeSimdDeviceFunction( 3595 CodeGenModule &CGM, StringRef ParentName, 3596 const OMPTargetTeamsDistributeSimdDirective &S); 3597 /// Emit device code for the target simd directive. 3598 static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM, 3599 StringRef ParentName, 3600 const OMPTargetSimdDirective &S); 3601 /// Emit device code for the target teams distribute parallel for simd 3602 /// directive. 3603 static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( 3604 CodeGenModule &CGM, StringRef ParentName, 3605 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 3606 3607 static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 3608 CodeGenModule &CGM, StringRef ParentName, 3609 const OMPTargetTeamsDistributeParallelForDirective &S); 3610 3611 /// Emit the Stmt \p S and return its topmost canonical loop, if any. 3612 /// TODO: The \p Depth paramter is not yet implemented and must be 1. In the 3613 /// future it is meant to be the number of loops expected in the loop nests 3614 /// (usually specified by the "collapse" clause) that are collapsed to a 3615 /// single loop by this function. 3616 llvm::CanonicalLoopInfo *EmitOMPCollapsedCanonicalLoopNest(const Stmt *S, 3617 int Depth); 3618 3619 /// Emit an OMPCanonicalLoop using the OpenMPIRBuilder. 3620 void EmitOMPCanonicalLoop(const OMPCanonicalLoop *S); 3621 3622 /// Emit inner loop of the worksharing/simd construct. 3623 /// 3624 /// \param S Directive, for which the inner loop must be emitted. 3625 /// \param RequiresCleanup true, if directive has some associated private 3626 /// variables. 3627 /// \param LoopCond Bollean condition for loop continuation. 3628 /// \param IncExpr Increment expression for loop control variable. 3629 /// \param BodyGen Generator for the inner body of the inner loop. 3630 /// \param PostIncGen Genrator for post-increment code (required for ordered 3631 /// loop directvies). 3632 void EmitOMPInnerLoop( 3633 const OMPExecutableDirective &S, bool RequiresCleanup, 3634 const Expr *LoopCond, const Expr *IncExpr, 3635 const llvm::function_ref<void(CodeGenFunction &)> BodyGen, 3636 const llvm::function_ref<void(CodeGenFunction &)> PostIncGen); 3637 3638 JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind); 3639 /// Emit initial code for loop counters of loop-based directives. 3640 void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S, 3641 OMPPrivateScope &LoopScope); 3642 3643 /// Helper for the OpenMP loop directives. 3644 void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit); 3645 3646 /// Emit code for the worksharing loop-based directive. 3647 /// \return true, if this construct has any lastprivate clause, false - 3648 /// otherwise. 3649 bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB, 3650 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 3651 const CodeGenDispatchBoundsTy &CGDispatchBounds); 3652 3653 /// Emit code for the distribute loop-based directive. 3654 void EmitOMPDistributeLoop(const OMPLoopDirective &S, 3655 const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr); 3656 3657 /// Helpers for the OpenMP loop directives. 3658 void EmitOMPSimdInit(const OMPLoopDirective &D); 3659 void EmitOMPSimdFinal( 3660 const OMPLoopDirective &D, 3661 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); 3662 3663 /// Emits the lvalue for the expression with possibly captured variable. 3664 LValue EmitOMPSharedLValue(const Expr *E); 3665 3666 private: 3667 /// Helpers for blocks. 3668 llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); 3669 3670 /// struct with the values to be passed to the OpenMP loop-related functions 3671 struct OMPLoopArguments { 3672 /// loop lower bound 3673 Address LB = Address::invalid(); 3674 /// loop upper bound 3675 Address UB = Address::invalid(); 3676 /// loop stride 3677 Address ST = Address::invalid(); 3678 /// isLastIteration argument for runtime functions 3679 Address IL = Address::invalid(); 3680 /// Chunk value generated by sema 3681 llvm::Value *Chunk = nullptr; 3682 /// EnsureUpperBound 3683 Expr *EUB = nullptr; 3684 /// IncrementExpression 3685 Expr *IncExpr = nullptr; 3686 /// Loop initialization 3687 Expr *Init = nullptr; 3688 /// Loop exit condition 3689 Expr *Cond = nullptr; 3690 /// Update of LB after a whole chunk has been executed 3691 Expr *NextLB = nullptr; 3692 /// Update of UB after a whole chunk has been executed 3693 Expr *NextUB = nullptr; 3694 OMPLoopArguments() = default; 3695 OMPLoopArguments(Address LB, Address UB, Address ST, Address IL, 3696 llvm::Value *Chunk = nullptr, Expr *EUB = nullptr, 3697 Expr *IncExpr = nullptr, Expr *Init = nullptr, 3698 Expr *Cond = nullptr, Expr *NextLB = nullptr, 3699 Expr *NextUB = nullptr) 3700 : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB), 3701 IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB), 3702 NextUB(NextUB) {} 3703 }; 3704 void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic, 3705 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, 3706 const OMPLoopArguments &LoopArgs, 3707 const CodeGenLoopTy &CodeGenLoop, 3708 const CodeGenOrderedTy &CodeGenOrdered); 3709 void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind, 3710 bool IsMonotonic, const OMPLoopDirective &S, 3711 OMPPrivateScope &LoopScope, bool Ordered, 3712 const OMPLoopArguments &LoopArgs, 3713 const CodeGenDispatchBoundsTy &CGDispatchBounds); 3714 void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind, 3715 const OMPLoopDirective &S, 3716 OMPPrivateScope &LoopScope, 3717 const OMPLoopArguments &LoopArgs, 3718 const CodeGenLoopTy &CodeGenLoopContent); 3719 /// Emit code for sections directive. 3720 void EmitSections(const OMPExecutableDirective &S); 3721 3722 public: 3723 3724 //===--------------------------------------------------------------------===// 3725 // LValue Expression Emission 3726 //===--------------------------------------------------------------------===// 3727 3728 /// Create a check that a scalar RValue is non-null. 3729 llvm::Value *EmitNonNullRValueCheck(RValue RV, QualType T); 3730 3731 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 3732 RValue GetUndefRValue(QualType Ty); 3733 3734 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 3735 /// and issue an ErrorUnsupported style diagnostic (using the 3736 /// provided Name). 3737 RValue EmitUnsupportedRValue(const Expr *E, 3738 const char *Name); 3739 3740 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 3741 /// an ErrorUnsupported style diagnostic (using the provided Name). 3742 LValue EmitUnsupportedLValue(const Expr *E, 3743 const char *Name); 3744 3745 /// EmitLValue - Emit code to compute a designator that specifies the location 3746 /// of the expression. 3747 /// 3748 /// This can return one of two things: a simple address or a bitfield 3749 /// reference. In either case, the LLVM Value* in the LValue structure is 3750 /// guaranteed to be an LLVM pointer type. 3751 /// 3752 /// If this returns a bitfield reference, nothing about the pointee type of 3753 /// the LLVM value is known: For example, it may not be a pointer to an 3754 /// integer. 3755 /// 3756 /// If this returns a normal address, and if the lvalue's C type is fixed 3757 /// size, this method guarantees that the returned pointer type will point to 3758 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 3759 /// variable length type, this is not possible. 3760 /// 3761 LValue EmitLValue(const Expr *E); 3762 3763 /// Same as EmitLValue but additionally we generate checking code to 3764 /// guard against undefined behavior. This is only suitable when we know 3765 /// that the address will be used to access the object. 3766 LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK); 3767 3768 RValue convertTempToRValue(Address addr, QualType type, 3769 SourceLocation Loc); 3770 3771 void EmitAtomicInit(Expr *E, LValue lvalue); 3772 3773 bool LValueIsSuitableForInlineAtomic(LValue Src); 3774 3775 RValue EmitAtomicLoad(LValue LV, SourceLocation SL, 3776 AggValueSlot Slot = AggValueSlot::ignored()); 3777 3778 RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc, 3779 llvm::AtomicOrdering AO, bool IsVolatile = false, 3780 AggValueSlot slot = AggValueSlot::ignored()); 3781 3782 void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit); 3783 3784 void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO, 3785 bool IsVolatile, bool isInit); 3786 3787 std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange( 3788 LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, 3789 llvm::AtomicOrdering Success = 3790 llvm::AtomicOrdering::SequentiallyConsistent, 3791 llvm::AtomicOrdering Failure = 3792 llvm::AtomicOrdering::SequentiallyConsistent, 3793 bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored()); 3794 3795 void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO, 3796 const llvm::function_ref<RValue(RValue)> &UpdateOp, 3797 bool IsVolatile); 3798 3799 /// EmitToMemory - Change a scalar value from its value 3800 /// representation to its in-memory representation. 3801 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 3802 3803 /// EmitFromMemory - Change a scalar value from its memory 3804 /// representation to its value representation. 3805 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 3806 3807 /// Check if the scalar \p Value is within the valid range for the given 3808 /// type \p Ty. 3809 /// 3810 /// Returns true if a check is needed (even if the range is unknown). 3811 bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 3812 SourceLocation Loc); 3813 3814 /// EmitLoadOfScalar - Load a scalar value from an address, taking 3815 /// care to appropriately convert from the memory representation to 3816 /// the LLVM value representation. 3817 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 3818 SourceLocation Loc, 3819 AlignmentSource Source = AlignmentSource::Type, 3820 bool isNontemporal = false) { 3821 return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source), 3822 CGM.getTBAAAccessInfo(Ty), isNontemporal); 3823 } 3824 3825 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 3826 SourceLocation Loc, LValueBaseInfo BaseInfo, 3827 TBAAAccessInfo TBAAInfo, 3828 bool isNontemporal = false); 3829 3830 /// EmitLoadOfScalar - Load a scalar value from an address, taking 3831 /// care to appropriately convert from the memory representation to 3832 /// the LLVM value representation. The l-value must be a simple 3833 /// l-value. 3834 llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc); 3835 3836 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3837 /// care to appropriately convert from the memory representation to 3838 /// the LLVM value representation. 3839 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 3840 bool Volatile, QualType Ty, 3841 AlignmentSource Source = AlignmentSource::Type, 3842 bool isInit = false, bool isNontemporal = false) { 3843 EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source), 3844 CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal); 3845 } 3846 3847 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 3848 bool Volatile, QualType Ty, 3849 LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo, 3850 bool isInit = false, bool isNontemporal = false); 3851 3852 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3853 /// care to appropriately convert from the memory representation to 3854 /// the LLVM value representation. The l-value must be a simple 3855 /// l-value. The isInit flag indicates whether this is an initialization. 3856 /// If so, atomic qualifiers are ignored and the store is always non-atomic. 3857 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); 3858 3859 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 3860 /// this method emits the address of the lvalue, then loads the result as an 3861 /// rvalue, returning the rvalue. 3862 RValue EmitLoadOfLValue(LValue V, SourceLocation Loc); 3863 RValue EmitLoadOfExtVectorElementLValue(LValue V); 3864 RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc); 3865 RValue EmitLoadOfGlobalRegLValue(LValue LV); 3866 3867 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 3868 /// lvalue, where both are guaranteed to the have the same type, and that type 3869 /// is 'Ty'. 3870 void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false); 3871 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 3872 void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst); 3873 3874 /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints 3875 /// as EmitStoreThroughLValue. 3876 /// 3877 /// \param Result [out] - If non-null, this will be set to a Value* for the 3878 /// bit-field contents after the store, appropriate for use as the result of 3879 /// an assignment to the bit-field. 3880 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 3881 llvm::Value **Result=nullptr); 3882 3883 /// Emit an l-value for an assignment (simple or compound) of complex type. 3884 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 3885 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 3886 LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 3887 llvm::Value *&Result); 3888 3889 // Note: only available for agg return types 3890 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 3891 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 3892 // Note: only available for agg return types 3893 LValue EmitCallExprLValue(const CallExpr *E); 3894 // Note: only available for agg return types 3895 LValue EmitVAArgExprLValue(const VAArgExpr *E); 3896 LValue EmitDeclRefLValue(const DeclRefExpr *E); 3897 LValue EmitStringLiteralLValue(const StringLiteral *E); 3898 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 3899 LValue EmitPredefinedLValue(const PredefinedExpr *E); 3900 LValue EmitUnaryOpLValue(const UnaryOperator *E); 3901 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3902 bool Accessed = false); 3903 LValue EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E); 3904 LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3905 bool IsLowerBound = true); 3906 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 3907 LValue EmitMemberExpr(const MemberExpr *E); 3908 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 3909 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 3910 LValue EmitInitListLValue(const InitListExpr *E); 3911 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 3912 LValue EmitCastLValue(const CastExpr *E); 3913 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 3914 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 3915 3916 Address EmitExtVectorElementLValue(LValue V); 3917 3918 RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc); 3919 3920 Address EmitArrayToPointerDecay(const Expr *Array, 3921 LValueBaseInfo *BaseInfo = nullptr, 3922 TBAAAccessInfo *TBAAInfo = nullptr); 3923 3924 class ConstantEmission { 3925 llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; 3926 ConstantEmission(llvm::Constant *C, bool isReference) 3927 : ValueAndIsReference(C, isReference) {} 3928 public: 3929 ConstantEmission() {} 3930 static ConstantEmission forReference(llvm::Constant *C) { 3931 return ConstantEmission(C, true); 3932 } 3933 static ConstantEmission forValue(llvm::Constant *C) { 3934 return ConstantEmission(C, false); 3935 } 3936 3937 explicit operator bool() const { 3938 return ValueAndIsReference.getOpaqueValue() != nullptr; 3939 } 3940 3941 bool isReference() const { return ValueAndIsReference.getInt(); } 3942 LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { 3943 assert(isReference()); 3944 return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), 3945 refExpr->getType()); 3946 } 3947 3948 llvm::Constant *getValue() const { 3949 assert(!isReference()); 3950 return ValueAndIsReference.getPointer(); 3951 } 3952 }; 3953 3954 ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); 3955 ConstantEmission tryEmitAsConstant(const MemberExpr *ME); 3956 llvm::Value *emitScalarConstant(const ConstantEmission &Constant, Expr *E); 3957 3958 RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, 3959 AggValueSlot slot = AggValueSlot::ignored()); 3960 LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); 3961 3962 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 3963 const ObjCIvarDecl *Ivar); 3964 LValue EmitLValueForField(LValue Base, const FieldDecl* Field); 3965 LValue EmitLValueForLambdaField(const FieldDecl *Field); 3966 3967 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 3968 /// if the Field is a reference, this will return the address of the reference 3969 /// and not the address of the value stored in the reference. 3970 LValue EmitLValueForFieldInitialization(LValue Base, 3971 const FieldDecl* Field); 3972 3973 LValue EmitLValueForIvar(QualType ObjectTy, 3974 llvm::Value* Base, const ObjCIvarDecl *Ivar, 3975 unsigned CVRQualifiers); 3976 3977 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 3978 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 3979 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 3980 LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E); 3981 3982 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 3983 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 3984 LValue EmitStmtExprLValue(const StmtExpr *E); 3985 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 3986 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 3987 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init); 3988 3989 //===--------------------------------------------------------------------===// 3990 // Scalar Expression Emission 3991 //===--------------------------------------------------------------------===// 3992 3993 /// EmitCall - Generate a call of the given function, expecting the given 3994 /// result type, and using the given argument list which specifies both the 3995 /// LLVM arguments and the types they were derived from. 3996 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 3997 ReturnValueSlot ReturnValue, const CallArgList &Args, 3998 llvm::CallBase **callOrInvoke, bool IsMustTail, 3999 SourceLocation Loc); 4000 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 4001 ReturnValueSlot ReturnValue, const CallArgList &Args, 4002 llvm::CallBase **callOrInvoke = nullptr, 4003 bool IsMustTail = false) { 4004 return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke, 4005 IsMustTail, SourceLocation()); 4006 } 4007 RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E, 4008 ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr); 4009 RValue EmitCallExpr(const CallExpr *E, 4010 ReturnValueSlot ReturnValue = ReturnValueSlot()); 4011 RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 4012 CGCallee EmitCallee(const Expr *E); 4013 4014 void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl); 4015 void checkTargetFeatures(SourceLocation Loc, const FunctionDecl *TargetDecl); 4016 4017 llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee, 4018 const Twine &name = ""); 4019 llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee, 4020 ArrayRef<llvm::Value *> args, 4021 const Twine &name = ""); 4022 llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4023 const Twine &name = ""); 4024 llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4025 ArrayRef<llvm::Value *> args, 4026 const Twine &name = ""); 4027 4028 SmallVector<llvm::OperandBundleDef, 1> 4029 getBundlesForFunclet(llvm::Value *Callee); 4030 4031 llvm::CallBase *EmitCallOrInvoke(llvm::FunctionCallee Callee, 4032 ArrayRef<llvm::Value *> Args, 4033 const Twine &Name = ""); 4034 llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4035 ArrayRef<llvm::Value *> args, 4036 const Twine &name = ""); 4037 llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4038 const Twine &name = ""); 4039 void EmitNoreturnRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4040 ArrayRef<llvm::Value *> args); 4041 4042 CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 4043 NestedNameSpecifier *Qual, 4044 llvm::Type *Ty); 4045 4046 CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 4047 CXXDtorType Type, 4048 const CXXRecordDecl *RD); 4049 4050 // Return the copy constructor name with the prefix "__copy_constructor_" 4051 // removed. 4052 static std::string getNonTrivialCopyConstructorStr(QualType QT, 4053 CharUnits Alignment, 4054 bool IsVolatile, 4055 ASTContext &Ctx); 4056 4057 // Return the destructor name with the prefix "__destructor_" removed. 4058 static std::string getNonTrivialDestructorStr(QualType QT, 4059 CharUnits Alignment, 4060 bool IsVolatile, 4061 ASTContext &Ctx); 4062 4063 // These functions emit calls to the special functions of non-trivial C 4064 // structs. 4065 void defaultInitNonTrivialCStructVar(LValue Dst); 4066 void callCStructDefaultConstructor(LValue Dst); 4067 void callCStructDestructor(LValue Dst); 4068 void callCStructCopyConstructor(LValue Dst, LValue Src); 4069 void callCStructMoveConstructor(LValue Dst, LValue Src); 4070 void callCStructCopyAssignmentOperator(LValue Dst, LValue Src); 4071 void callCStructMoveAssignmentOperator(LValue Dst, LValue Src); 4072 4073 RValue 4074 EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method, 4075 const CGCallee &Callee, 4076 ReturnValueSlot ReturnValue, llvm::Value *This, 4077 llvm::Value *ImplicitParam, 4078 QualType ImplicitParamTy, const CallExpr *E, 4079 CallArgList *RtlArgs); 4080 RValue EmitCXXDestructorCall(GlobalDecl Dtor, const CGCallee &Callee, 4081 llvm::Value *This, QualType ThisTy, 4082 llvm::Value *ImplicitParam, 4083 QualType ImplicitParamTy, const CallExpr *E); 4084 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 4085 ReturnValueSlot ReturnValue); 4086 RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE, 4087 const CXXMethodDecl *MD, 4088 ReturnValueSlot ReturnValue, 4089 bool HasQualifier, 4090 NestedNameSpecifier *Qualifier, 4091 bool IsArrow, const Expr *Base); 4092 // Compute the object pointer. 4093 Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base, 4094 llvm::Value *memberPtr, 4095 const MemberPointerType *memberPtrType, 4096 LValueBaseInfo *BaseInfo = nullptr, 4097 TBAAAccessInfo *TBAAInfo = nullptr); 4098 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 4099 ReturnValueSlot ReturnValue); 4100 4101 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 4102 const CXXMethodDecl *MD, 4103 ReturnValueSlot ReturnValue); 4104 RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E); 4105 4106 RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 4107 ReturnValueSlot ReturnValue); 4108 4109 RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E); 4110 RValue EmitAMDGPUDevicePrintfCallExpr(const CallExpr *E); 4111 RValue EmitOpenMPDevicePrintfCallExpr(const CallExpr *E); 4112 4113 RValue EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID, 4114 const CallExpr *E, ReturnValueSlot ReturnValue); 4115 4116 RValue emitRotate(const CallExpr *E, bool IsRotateRight); 4117 4118 /// Emit IR for __builtin_os_log_format. 4119 RValue emitBuiltinOSLogFormat(const CallExpr &E); 4120 4121 /// Emit IR for __builtin_is_aligned. 4122 RValue EmitBuiltinIsAligned(const CallExpr *E); 4123 /// Emit IR for __builtin_align_up/__builtin_align_down. 4124 RValue EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp); 4125 4126 llvm::Function *generateBuiltinOSLogHelperFunction( 4127 const analyze_os_log::OSLogBufferLayout &Layout, 4128 CharUnits BufferAlignment); 4129 4130 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 4131 4132 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 4133 /// is unhandled by the current target. 4134 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4135 ReturnValueSlot ReturnValue); 4136 4137 llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty, 4138 const llvm::CmpInst::Predicate Fp, 4139 const llvm::CmpInst::Predicate Ip, 4140 const llvm::Twine &Name = ""); 4141 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4142 ReturnValueSlot ReturnValue, 4143 llvm::Triple::ArchType Arch); 4144 llvm::Value *EmitARMMVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4145 ReturnValueSlot ReturnValue, 4146 llvm::Triple::ArchType Arch); 4147 llvm::Value *EmitARMCDEBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4148 ReturnValueSlot ReturnValue, 4149 llvm::Triple::ArchType Arch); 4150 llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::IntegerType *ITy, 4151 QualType RTy); 4152 llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::ArrayType *ATy, 4153 QualType RTy); 4154 4155 llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID, 4156 unsigned LLVMIntrinsic, 4157 unsigned AltLLVMIntrinsic, 4158 const char *NameHint, 4159 unsigned Modifier, 4160 const CallExpr *E, 4161 SmallVectorImpl<llvm::Value *> &Ops, 4162 Address PtrOp0, Address PtrOp1, 4163 llvm::Triple::ArchType Arch); 4164 4165 llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID, 4166 unsigned Modifier, llvm::Type *ArgTy, 4167 const CallExpr *E); 4168 llvm::Value *EmitNeonCall(llvm::Function *F, 4169 SmallVectorImpl<llvm::Value*> &O, 4170 const char *name, 4171 unsigned shift = 0, bool rightshift = false); 4172 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx, 4173 const llvm::ElementCount &Count); 4174 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 4175 llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, 4176 bool negateForRightShift); 4177 llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt, 4178 llvm::Type *Ty, bool usgn, const char *name); 4179 llvm::Value *vectorWrapScalar16(llvm::Value *Op); 4180 /// SVEBuiltinMemEltTy - Returns the memory element type for this memory 4181 /// access builtin. Only required if it can't be inferred from the base 4182 /// pointer operand. 4183 llvm::Type *SVEBuiltinMemEltTy(const SVETypeFlags &TypeFlags); 4184 4185 SmallVector<llvm::Type *, 2> 4186 getSVEOverloadTypes(const SVETypeFlags &TypeFlags, llvm::Type *ReturnType, 4187 ArrayRef<llvm::Value *> Ops); 4188 llvm::Type *getEltType(const SVETypeFlags &TypeFlags); 4189 llvm::ScalableVectorType *getSVEType(const SVETypeFlags &TypeFlags); 4190 llvm::ScalableVectorType *getSVEPredType(const SVETypeFlags &TypeFlags); 4191 llvm::Value *EmitSVEAllTruePred(const SVETypeFlags &TypeFlags); 4192 llvm::Value *EmitSVEDupX(llvm::Value *Scalar); 4193 llvm::Value *EmitSVEDupX(llvm::Value *Scalar, llvm::Type *Ty); 4194 llvm::Value *EmitSVEReinterpret(llvm::Value *Val, llvm::Type *Ty); 4195 llvm::Value *EmitSVEPMull(const SVETypeFlags &TypeFlags, 4196 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4197 unsigned BuiltinID); 4198 llvm::Value *EmitSVEMovl(const SVETypeFlags &TypeFlags, 4199 llvm::ArrayRef<llvm::Value *> Ops, 4200 unsigned BuiltinID); 4201 llvm::Value *EmitSVEPredicateCast(llvm::Value *Pred, 4202 llvm::ScalableVectorType *VTy); 4203 llvm::Value *EmitSVEGatherLoad(const SVETypeFlags &TypeFlags, 4204 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4205 unsigned IntID); 4206 llvm::Value *EmitSVEScatterStore(const SVETypeFlags &TypeFlags, 4207 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4208 unsigned IntID); 4209 llvm::Value *EmitSVEMaskedLoad(const CallExpr *, llvm::Type *ReturnTy, 4210 SmallVectorImpl<llvm::Value *> &Ops, 4211 unsigned BuiltinID, bool IsZExtReturn); 4212 llvm::Value *EmitSVEMaskedStore(const CallExpr *, 4213 SmallVectorImpl<llvm::Value *> &Ops, 4214 unsigned BuiltinID); 4215 llvm::Value *EmitSVEPrefetchLoad(const SVETypeFlags &TypeFlags, 4216 SmallVectorImpl<llvm::Value *> &Ops, 4217 unsigned BuiltinID); 4218 llvm::Value *EmitSVEGatherPrefetch(const SVETypeFlags &TypeFlags, 4219 SmallVectorImpl<llvm::Value *> &Ops, 4220 unsigned IntID); 4221 llvm::Value *EmitSVEStructLoad(const SVETypeFlags &TypeFlags, 4222 SmallVectorImpl<llvm::Value *> &Ops, 4223 unsigned IntID); 4224 llvm::Value *EmitSVEStructStore(const SVETypeFlags &TypeFlags, 4225 SmallVectorImpl<llvm::Value *> &Ops, 4226 unsigned IntID); 4227 llvm::Value *EmitAArch64SVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4228 4229 llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4230 llvm::Triple::ArchType Arch); 4231 llvm::Value *EmitBPFBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4232 4233 llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); 4234 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4235 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4236 llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4237 llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4238 llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4239 llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID, 4240 const CallExpr *E); 4241 llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4242 llvm::Value *EmitRISCVBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4243 ReturnValueSlot ReturnValue); 4244 bool ProcessOrderScopeAMDGCN(llvm::Value *Order, llvm::Value *Scope, 4245 llvm::AtomicOrdering &AO, 4246 llvm::SyncScope::ID &SSID); 4247 4248 enum class MSVCIntrin; 4249 llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E); 4250 4251 llvm::Value *EmitBuiltinAvailable(const VersionTuple &Version); 4252 4253 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 4254 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 4255 llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); 4256 llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); 4257 llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); 4258 llvm::Value *EmitObjCCollectionLiteral(const Expr *E, 4259 const ObjCMethodDecl *MethodWithObjects); 4260 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 4261 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 4262 ReturnValueSlot Return = ReturnValueSlot()); 4263 4264 /// Retrieves the default cleanup kind for an ARC cleanup. 4265 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. 4266 CleanupKind getARCCleanupKind() { 4267 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 4268 ? NormalAndEHCleanup : NormalCleanup; 4269 } 4270 4271 // ARC primitives. 4272 void EmitARCInitWeak(Address addr, llvm::Value *value); 4273 void EmitARCDestroyWeak(Address addr); 4274 llvm::Value *EmitARCLoadWeak(Address addr); 4275 llvm::Value *EmitARCLoadWeakRetained(Address addr); 4276 llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored); 4277 void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); 4278 void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); 4279 void EmitARCCopyWeak(Address dst, Address src); 4280 void EmitARCMoveWeak(Address dst, Address src); 4281 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 4282 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 4283 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 4284 bool resultIgnored); 4285 llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value, 4286 bool resultIgnored); 4287 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 4288 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 4289 llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); 4290 void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise); 4291 void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 4292 llvm::Value *EmitARCAutorelease(llvm::Value *value); 4293 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 4294 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 4295 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 4296 llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value); 4297 4298 llvm::Value *EmitObjCAutorelease(llvm::Value *value, llvm::Type *returnType); 4299 llvm::Value *EmitObjCRetainNonBlock(llvm::Value *value, 4300 llvm::Type *returnType); 4301 void EmitObjCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 4302 4303 std::pair<LValue,llvm::Value*> 4304 EmitARCStoreAutoreleasing(const BinaryOperator *e); 4305 std::pair<LValue,llvm::Value*> 4306 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 4307 std::pair<LValue,llvm::Value*> 4308 EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored); 4309 4310 llvm::Value *EmitObjCAlloc(llvm::Value *value, 4311 llvm::Type *returnType); 4312 llvm::Value *EmitObjCAllocWithZone(llvm::Value *value, 4313 llvm::Type *returnType); 4314 llvm::Value *EmitObjCAllocInit(llvm::Value *value, llvm::Type *resultType); 4315 4316 llvm::Value *EmitObjCThrowOperand(const Expr *expr); 4317 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 4318 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 4319 4320 llvm::Value *EmitARCExtendBlockObject(const Expr *expr); 4321 llvm::Value *EmitARCReclaimReturnedObject(const Expr *e, 4322 bool allowUnsafeClaim); 4323 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 4324 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 4325 llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr); 4326 4327 void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values); 4328 4329 void EmitARCNoopIntrinsicUse(ArrayRef<llvm::Value *> values); 4330 4331 static Destroyer destroyARCStrongImprecise; 4332 static Destroyer destroyARCStrongPrecise; 4333 static Destroyer destroyARCWeak; 4334 static Destroyer emitARCIntrinsicUse; 4335 static Destroyer destroyNonTrivialCStruct; 4336 4337 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 4338 llvm::Value *EmitObjCAutoreleasePoolPush(); 4339 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 4340 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 4341 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 4342 4343 /// Emits a reference binding to the passed in expression. 4344 RValue EmitReferenceBindingToExpr(const Expr *E); 4345 4346 //===--------------------------------------------------------------------===// 4347 // Expression Emission 4348 //===--------------------------------------------------------------------===// 4349 4350 // Expressions are broken into three classes: scalar, complex, aggregate. 4351 4352 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 4353 /// scalar type, returning the result. 4354 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 4355 4356 /// Emit a conversion from the specified type to the specified destination 4357 /// type, both of which are LLVM scalar types. 4358 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 4359 QualType DstTy, SourceLocation Loc); 4360 4361 /// Emit a conversion from the specified complex type to the specified 4362 /// destination type, where the destination type is an LLVM scalar type. 4363 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 4364 QualType DstTy, 4365 SourceLocation Loc); 4366 4367 /// EmitAggExpr - Emit the computation of the specified expression 4368 /// of aggregate type. The result is computed into the given slot, 4369 /// which may be null to indicate that the value is not needed. 4370 void EmitAggExpr(const Expr *E, AggValueSlot AS); 4371 4372 /// EmitAggExprToLValue - Emit the computation of the specified expression of 4373 /// aggregate type into a temporary LValue. 4374 LValue EmitAggExprToLValue(const Expr *E); 4375 4376 /// Build all the stores needed to initialize an aggregate at Dest with the 4377 /// value Val. 4378 void EmitAggregateStore(llvm::Value *Val, Address Dest, bool DestIsVolatile); 4379 4380 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 4381 /// make sure it survives garbage collection until this point. 4382 void EmitExtendGCLifetime(llvm::Value *object); 4383 4384 /// EmitComplexExpr - Emit the computation of the specified expression of 4385 /// complex type, returning the result. 4386 ComplexPairTy EmitComplexExpr(const Expr *E, 4387 bool IgnoreReal = false, 4388 bool IgnoreImag = false); 4389 4390 /// EmitComplexExprIntoLValue - Emit the given expression of complex 4391 /// type and place its result into the specified l-value. 4392 void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit); 4393 4394 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 4395 void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit); 4396 4397 /// EmitLoadOfComplex - Load a complex number from the specified l-value. 4398 ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc); 4399 4400 Address emitAddrOfRealComponent(Address complex, QualType complexType); 4401 Address emitAddrOfImagComponent(Address complex, QualType complexType); 4402 4403 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 4404 /// global variable that has already been created for it. If the initializer 4405 /// has a different type than GV does, this may free GV and return a different 4406 /// one. Otherwise it just returns GV. 4407 llvm::GlobalVariable * 4408 AddInitializerToStaticVarDecl(const VarDecl &D, 4409 llvm::GlobalVariable *GV); 4410 4411 // Emit an @llvm.invariant.start call for the given memory region. 4412 void EmitInvariantStart(llvm::Constant *Addr, CharUnits Size); 4413 4414 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 4415 /// variable with global storage. 4416 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::GlobalVariable *GV, 4417 bool PerformInit); 4418 4419 llvm::Function *createAtExitStub(const VarDecl &VD, llvm::FunctionCallee Dtor, 4420 llvm::Constant *Addr); 4421 4422 llvm::Function *createTLSAtExitStub(const VarDecl &VD, 4423 llvm::FunctionCallee Dtor, 4424 llvm::Constant *Addr, 4425 llvm::FunctionCallee &AtExit); 4426 4427 /// Call atexit() with a function that passes the given argument to 4428 /// the given function. 4429 void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::FunctionCallee fn, 4430 llvm::Constant *addr); 4431 4432 /// Call atexit() with function dtorStub. 4433 void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub); 4434 4435 /// Call unatexit() with function dtorStub. 4436 llvm::Value *unregisterGlobalDtorWithUnAtExit(llvm::Constant *dtorStub); 4437 4438 /// Emit code in this function to perform a guarded variable 4439 /// initialization. Guarded initializations are used when it's not 4440 /// possible to prove that an initialization will be done exactly 4441 /// once, e.g. with a static local variable or a static data member 4442 /// of a class template. 4443 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, 4444 bool PerformInit); 4445 4446 enum class GuardKind { VariableGuard, TlsGuard }; 4447 4448 /// Emit a branch to select whether or not to perform guarded initialization. 4449 void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit, 4450 llvm::BasicBlock *InitBlock, 4451 llvm::BasicBlock *NoInitBlock, 4452 GuardKind Kind, const VarDecl *D); 4453 4454 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 4455 /// variables. 4456 void 4457 GenerateCXXGlobalInitFunc(llvm::Function *Fn, 4458 ArrayRef<llvm::Function *> CXXThreadLocals, 4459 ConstantAddress Guard = ConstantAddress::invalid()); 4460 4461 /// GenerateCXXGlobalCleanUpFunc - Generates code for cleaning up global 4462 /// variables. 4463 void GenerateCXXGlobalCleanUpFunc( 4464 llvm::Function *Fn, 4465 ArrayRef<std::tuple<llvm::FunctionType *, llvm::WeakTrackingVH, 4466 llvm::Constant *>> 4467 DtorsOrStermFinalizers); 4468 4469 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 4470 const VarDecl *D, 4471 llvm::GlobalVariable *Addr, 4472 bool PerformInit); 4473 4474 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 4475 4476 void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp); 4477 4478 void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true); 4479 4480 RValue EmitAtomicExpr(AtomicExpr *E); 4481 4482 //===--------------------------------------------------------------------===// 4483 // Annotations Emission 4484 //===--------------------------------------------------------------------===// 4485 4486 /// Emit an annotation call (intrinsic). 4487 llvm::Value *EmitAnnotationCall(llvm::Function *AnnotationFn, 4488 llvm::Value *AnnotatedVal, 4489 StringRef AnnotationStr, 4490 SourceLocation Location, 4491 const AnnotateAttr *Attr); 4492 4493 /// Emit local annotations for the local variable V, declared by D. 4494 void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); 4495 4496 /// Emit field annotations for the given field & value. Returns the 4497 /// annotation result. 4498 Address EmitFieldAnnotations(const FieldDecl *D, Address V); 4499 4500 //===--------------------------------------------------------------------===// 4501 // Internal Helpers 4502 //===--------------------------------------------------------------------===// 4503 4504 /// ContainsLabel - Return true if the statement contains a label in it. If 4505 /// this statement is not executed normally, it not containing a label means 4506 /// that we can just remove the code. 4507 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 4508 4509 /// containsBreak - Return true if the statement contains a break out of it. 4510 /// If the statement (recursively) contains a switch or loop with a break 4511 /// inside of it, this is fine. 4512 static bool containsBreak(const Stmt *S); 4513 4514 /// Determine if the given statement might introduce a declaration into the 4515 /// current scope, by being a (possibly-labelled) DeclStmt. 4516 static bool mightAddDeclToScope(const Stmt *S); 4517 4518 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 4519 /// to a constant, or if it does but contains a label, return false. If it 4520 /// constant folds return true and set the boolean result in Result. 4521 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result, 4522 bool AllowLabels = false); 4523 4524 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 4525 /// to a constant, or if it does but contains a label, return false. If it 4526 /// constant folds return true and set the folded value. 4527 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result, 4528 bool AllowLabels = false); 4529 4530 /// isInstrumentedCondition - Determine whether the given condition is an 4531 /// instrumentable condition (i.e. no "&&" or "||"). 4532 static bool isInstrumentedCondition(const Expr *C); 4533 4534 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that 4535 /// increments a profile counter based on the semantics of the given logical 4536 /// operator opcode. This is used to instrument branch condition coverage 4537 /// for logical operators. 4538 void EmitBranchToCounterBlock(const Expr *Cond, BinaryOperator::Opcode LOp, 4539 llvm::BasicBlock *TrueBlock, 4540 llvm::BasicBlock *FalseBlock, 4541 uint64_t TrueCount = 0, 4542 Stmt::Likelihood LH = Stmt::LH_None, 4543 const Expr *CntrIdx = nullptr); 4544 4545 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 4546 /// if statement) to the specified blocks. Based on the condition, this might 4547 /// try to simplify the codegen of the conditional based on the branch. 4548 /// TrueCount should be the number of times we expect the condition to 4549 /// evaluate to true based on PGO data. 4550 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 4551 llvm::BasicBlock *FalseBlock, uint64_t TrueCount, 4552 Stmt::Likelihood LH = Stmt::LH_None); 4553 4554 /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is 4555 /// nonnull, if \p LHS is marked _Nonnull. 4556 void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc); 4557 4558 /// An enumeration which makes it easier to specify whether or not an 4559 /// operation is a subtraction. 4560 enum { NotSubtraction = false, IsSubtraction = true }; 4561 4562 /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to 4563 /// detect undefined behavior when the pointer overflow sanitizer is enabled. 4564 /// \p SignedIndices indicates whether any of the GEP indices are signed. 4565 /// \p IsSubtraction indicates whether the expression used to form the GEP 4566 /// is a subtraction. 4567 llvm::Value *EmitCheckedInBoundsGEP(llvm::Type *ElemTy, llvm::Value *Ptr, 4568 ArrayRef<llvm::Value *> IdxList, 4569 bool SignedIndices, 4570 bool IsSubtraction, 4571 SourceLocation Loc, 4572 const Twine &Name = ""); 4573 4574 /// Specifies which type of sanitizer check to apply when handling a 4575 /// particular builtin. 4576 enum BuiltinCheckKind { 4577 BCK_CTZPassedZero, 4578 BCK_CLZPassedZero, 4579 }; 4580 4581 /// Emits an argument for a call to a builtin. If the builtin sanitizer is 4582 /// enabled, a runtime check specified by \p Kind is also emitted. 4583 llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind); 4584 4585 /// Emit a description of a type in a format suitable for passing to 4586 /// a runtime sanitizer handler. 4587 llvm::Constant *EmitCheckTypeDescriptor(QualType T); 4588 4589 /// Convert a value into a format suitable for passing to a runtime 4590 /// sanitizer handler. 4591 llvm::Value *EmitCheckValue(llvm::Value *V); 4592 4593 /// Emit a description of a source location in a format suitable for 4594 /// passing to a runtime sanitizer handler. 4595 llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc); 4596 4597 /// Create a basic block that will either trap or call a handler function in 4598 /// the UBSan runtime with the provided arguments, and create a conditional 4599 /// branch to it. 4600 void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 4601 SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs, 4602 ArrayRef<llvm::Value *> DynamicArgs); 4603 4604 /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath 4605 /// if Cond if false. 4606 void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond, 4607 llvm::ConstantInt *TypeId, llvm::Value *Ptr, 4608 ArrayRef<llvm::Constant *> StaticArgs); 4609 4610 /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime 4611 /// checking is enabled. Otherwise, just emit an unreachable instruction. 4612 void EmitUnreachable(SourceLocation Loc); 4613 4614 /// Create a basic block that will call the trap intrinsic, and emit a 4615 /// conditional branch to it, for the -ftrapv checks. 4616 void EmitTrapCheck(llvm::Value *Checked, SanitizerHandler CheckHandlerID); 4617 4618 /// Emit a call to trap or debugtrap and attach function attribute 4619 /// "trap-func-name" if specified. 4620 llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID); 4621 4622 /// Emit a stub for the cross-DSO CFI check function. 4623 void EmitCfiCheckStub(); 4624 4625 /// Emit a cross-DSO CFI failure handling function. 4626 void EmitCfiCheckFail(); 4627 4628 /// Create a check for a function parameter that may potentially be 4629 /// declared as non-null. 4630 void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc, 4631 AbstractCallee AC, unsigned ParmNum); 4632 4633 /// EmitCallArg - Emit a single call argument. 4634 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 4635 4636 /// EmitDelegateCallArg - We are performing a delegate call; that 4637 /// is, the current function is delegating to another one. Produce 4638 /// a r-value suitable for passing the given parameter. 4639 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param, 4640 SourceLocation loc); 4641 4642 /// SetFPAccuracy - Set the minimum required accuracy of the given floating 4643 /// point operation, expressed as the maximum relative error in ulp. 4644 void SetFPAccuracy(llvm::Value *Val, float Accuracy); 4645 4646 /// Set the codegen fast-math flags. 4647 void SetFastMathFlags(FPOptions FPFeatures); 4648 4649 private: 4650 llvm::MDNode *getRangeForLoadFromType(QualType Ty); 4651 void EmitReturnOfRValue(RValue RV, QualType Ty); 4652 4653 void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New); 4654 4655 llvm::SmallVector<std::pair<llvm::WeakTrackingVH, llvm::Value *>, 4> 4656 DeferredReplacements; 4657 4658 /// Set the address of a local variable. 4659 void setAddrOfLocalVar(const VarDecl *VD, Address Addr) { 4660 assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!"); 4661 LocalDeclMap.insert({VD, Addr}); 4662 } 4663 4664 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 4665 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 4666 /// 4667 /// \param AI - The first function argument of the expansion. 4668 void ExpandTypeFromArgs(QualType Ty, LValue Dst, 4669 llvm::Function::arg_iterator &AI); 4670 4671 /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg 4672 /// Ty, into individual arguments on the provided vector \arg IRCallArgs, 4673 /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand. 4674 void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, 4675 SmallVectorImpl<llvm::Value *> &IRCallArgs, 4676 unsigned &IRCallArgPos); 4677 4678 std::pair<llvm::Value *, llvm::Type *> 4679 EmitAsmInput(const TargetInfo::ConstraintInfo &Info, const Expr *InputExpr, 4680 std::string &ConstraintStr); 4681 4682 std::pair<llvm::Value *, llvm::Type *> 4683 EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, LValue InputValue, 4684 QualType InputType, std::string &ConstraintStr, 4685 SourceLocation Loc); 4686 4687 /// Attempts to statically evaluate the object size of E. If that 4688 /// fails, emits code to figure the size of E out for us. This is 4689 /// pass_object_size aware. 4690 /// 4691 /// If EmittedExpr is non-null, this will use that instead of re-emitting E. 4692 llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type, 4693 llvm::IntegerType *ResType, 4694 llvm::Value *EmittedE, 4695 bool IsDynamic); 4696 4697 /// Emits the size of E, as required by __builtin_object_size. This 4698 /// function is aware of pass_object_size parameters, and will act accordingly 4699 /// if E is a parameter with the pass_object_size attribute. 4700 llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type, 4701 llvm::IntegerType *ResType, 4702 llvm::Value *EmittedE, 4703 bool IsDynamic); 4704 4705 void emitZeroOrPatternForAutoVarInit(QualType type, const VarDecl &D, 4706 Address Loc); 4707 4708 public: 4709 enum class EvaluationOrder { 4710 ///! No language constraints on evaluation order. 4711 Default, 4712 ///! Language semantics require left-to-right evaluation. 4713 ForceLeftToRight, 4714 ///! Language semantics require right-to-left evaluation. 4715 ForceRightToLeft 4716 }; 4717 4718 // Wrapper for function prototype sources. Wraps either a FunctionProtoType or 4719 // an ObjCMethodDecl. 4720 struct PrototypeWrapper { 4721 llvm::PointerUnion<const FunctionProtoType *, const ObjCMethodDecl *> P; 4722 4723 PrototypeWrapper(const FunctionProtoType *FT) : P(FT) {} 4724 PrototypeWrapper(const ObjCMethodDecl *MD) : P(MD) {} 4725 }; 4726 4727 void EmitCallArgs(CallArgList &Args, PrototypeWrapper Prototype, 4728 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 4729 AbstractCallee AC = AbstractCallee(), 4730 unsigned ParamsToSkip = 0, 4731 EvaluationOrder Order = EvaluationOrder::Default); 4732 4733 /// EmitPointerWithAlignment - Given an expression with a pointer type, 4734 /// emit the value and compute our best estimate of the alignment of the 4735 /// pointee. 4736 /// 4737 /// \param BaseInfo - If non-null, this will be initialized with 4738 /// information about the source of the alignment and the may-alias 4739 /// attribute. Note that this function will conservatively fall back on 4740 /// the type when it doesn't recognize the expression and may-alias will 4741 /// be set to false. 4742 /// 4743 /// One reasonable way to use this information is when there's a language 4744 /// guarantee that the pointer must be aligned to some stricter value, and 4745 /// we're simply trying to ensure that sufficiently obvious uses of under- 4746 /// aligned objects don't get miscompiled; for example, a placement new 4747 /// into the address of a local variable. In such a case, it's quite 4748 /// reasonable to just ignore the returned alignment when it isn't from an 4749 /// explicit source. 4750 Address EmitPointerWithAlignment(const Expr *Addr, 4751 LValueBaseInfo *BaseInfo = nullptr, 4752 TBAAAccessInfo *TBAAInfo = nullptr); 4753 4754 /// If \p E references a parameter with pass_object_size info or a constant 4755 /// array size modifier, emit the object size divided by the size of \p EltTy. 4756 /// Otherwise return null. 4757 llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy); 4758 4759 void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK); 4760 4761 struct MultiVersionResolverOption { 4762 llvm::Function *Function; 4763 struct Conds { 4764 StringRef Architecture; 4765 llvm::SmallVector<StringRef, 8> Features; 4766 4767 Conds(StringRef Arch, ArrayRef<StringRef> Feats) 4768 : Architecture(Arch), Features(Feats.begin(), Feats.end()) {} 4769 } Conditions; 4770 4771 MultiVersionResolverOption(llvm::Function *F, StringRef Arch, 4772 ArrayRef<StringRef> Feats) 4773 : Function(F), Conditions(Arch, Feats) {} 4774 }; 4775 4776 // Emits the body of a multiversion function's resolver. Assumes that the 4777 // options are already sorted in the proper order, with the 'default' option 4778 // last (if it exists). 4779 void EmitMultiVersionResolver(llvm::Function *Resolver, 4780 ArrayRef<MultiVersionResolverOption> Options); 4781 4782 private: 4783 QualType getVarArgType(const Expr *Arg); 4784 4785 void EmitDeclMetadata(); 4786 4787 BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType, 4788 const AutoVarEmission &emission); 4789 4790 void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); 4791 4792 llvm::Value *GetValueForARMHint(unsigned BuiltinID); 4793 llvm::Value *EmitX86CpuIs(const CallExpr *E); 4794 llvm::Value *EmitX86CpuIs(StringRef CPUStr); 4795 llvm::Value *EmitX86CpuSupports(const CallExpr *E); 4796 llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs); 4797 llvm::Value *EmitX86CpuSupports(uint64_t Mask); 4798 llvm::Value *EmitX86CpuInit(); 4799 llvm::Value *FormResolverCondition(const MultiVersionResolverOption &RO); 4800 }; 4801 4802 /// TargetFeatures - This class is used to check whether the builtin function 4803 /// has the required tagert specific features. It is able to support the 4804 /// combination of ','(and), '|'(or), and '()'. By default, the priority of 4805 /// ',' is higher than that of '|' . 4806 /// E.g: 4807 /// A,B|C means the builtin function requires both A and B, or C. 4808 /// If we want the builtin function requires both A and B, or both A and C, 4809 /// there are two ways: A,B|A,C or A,(B|C). 4810 /// The FeaturesList should not contain spaces, and brackets must appear in 4811 /// pairs. 4812 class TargetFeatures { 4813 struct FeatureListStatus { 4814 bool HasFeatures; 4815 StringRef CurFeaturesList; 4816 }; 4817 4818 const llvm::StringMap<bool> &CallerFeatureMap; 4819 4820 FeatureListStatus getAndFeatures(StringRef FeatureList) { 4821 int InParentheses = 0; 4822 bool HasFeatures = true; 4823 size_t SubexpressionStart = 0; 4824 for (size_t i = 0, e = FeatureList.size(); i < e; ++i) { 4825 char CurrentToken = FeatureList[i]; 4826 switch (CurrentToken) { 4827 default: 4828 break; 4829 case '(': 4830 if (InParentheses == 0) 4831 SubexpressionStart = i + 1; 4832 ++InParentheses; 4833 break; 4834 case ')': 4835 --InParentheses; 4836 assert(InParentheses >= 0 && "Parentheses are not in pair"); 4837 LLVM_FALLTHROUGH; 4838 case '|': 4839 case ',': 4840 if (InParentheses == 0) { 4841 if (HasFeatures && i != SubexpressionStart) { 4842 StringRef F = FeatureList.slice(SubexpressionStart, i); 4843 HasFeatures = CurrentToken == ')' ? hasRequiredFeatures(F) 4844 : CallerFeatureMap.lookup(F); 4845 } 4846 SubexpressionStart = i + 1; 4847 if (CurrentToken == '|') { 4848 return {HasFeatures, FeatureList.substr(SubexpressionStart)}; 4849 } 4850 } 4851 break; 4852 } 4853 } 4854 assert(InParentheses == 0 && "Parentheses are not in pair"); 4855 if (HasFeatures && SubexpressionStart != FeatureList.size()) 4856 HasFeatures = 4857 CallerFeatureMap.lookup(FeatureList.substr(SubexpressionStart)); 4858 return {HasFeatures, StringRef()}; 4859 } 4860 4861 public: 4862 bool hasRequiredFeatures(StringRef FeatureList) { 4863 FeatureListStatus FS = {false, FeatureList}; 4864 while (!FS.HasFeatures && !FS.CurFeaturesList.empty()) 4865 FS = getAndFeatures(FS.CurFeaturesList); 4866 return FS.HasFeatures; 4867 } 4868 4869 TargetFeatures(const llvm::StringMap<bool> &CallerFeatureMap) 4870 : CallerFeatureMap(CallerFeatureMap) {} 4871 }; 4872 4873 inline DominatingLLVMValue::saved_type 4874 DominatingLLVMValue::save(CodeGenFunction &CGF, llvm::Value *value) { 4875 if (!needsSaving(value)) return saved_type(value, false); 4876 4877 // Otherwise, we need an alloca. 4878 auto align = CharUnits::fromQuantity( 4879 CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType())); 4880 Address alloca = 4881 CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save"); 4882 CGF.Builder.CreateStore(value, alloca); 4883 4884 return saved_type(alloca.getPointer(), true); 4885 } 4886 4887 inline llvm::Value *DominatingLLVMValue::restore(CodeGenFunction &CGF, 4888 saved_type value) { 4889 // If the value says it wasn't saved, trust that it's still dominating. 4890 if (!value.getInt()) return value.getPointer(); 4891 4892 // Otherwise, it should be an alloca instruction, as set up in save(). 4893 auto alloca = cast<llvm::AllocaInst>(value.getPointer()); 4894 return CGF.Builder.CreateAlignedLoad(alloca->getAllocatedType(), alloca, 4895 alloca->getAlign()); 4896 } 4897 4898 } // end namespace CodeGen 4899 4900 // Map the LangOption for floating point exception behavior into 4901 // the corresponding enum in the IR. 4902 llvm::fp::ExceptionBehavior 4903 ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind); 4904 } // end namespace clang 4905 4906 #endif 4907