1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the internal per-function state used for llvm translation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 15 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 16 17 #include "CGBuilder.h" 18 #include "CGDebugInfo.h" 19 #include "CGLoopInfo.h" 20 #include "CGValue.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "EHScopeStack.h" 24 #include "VarBypassDetector.h" 25 #include "clang/AST/CharUnits.h" 26 #include "clang/AST/ExprCXX.h" 27 #include "clang/AST/ExprObjC.h" 28 #include "clang/AST/ExprOpenMP.h" 29 #include "clang/AST/Type.h" 30 #include "clang/Basic/ABI.h" 31 #include "clang/Basic/CapturedStmt.h" 32 #include "clang/Basic/OpenMPKinds.h" 33 #include "clang/Basic/TargetInfo.h" 34 #include "clang/Frontend/CodeGenOptions.h" 35 #include "llvm/ADT/ArrayRef.h" 36 #include "llvm/ADT/DenseMap.h" 37 #include "llvm/ADT/SmallVector.h" 38 #include "llvm/IR/ValueHandle.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Transforms/Utils/SanitizerStats.h" 41 42 namespace llvm { 43 class BasicBlock; 44 class LLVMContext; 45 class MDNode; 46 class Module; 47 class SwitchInst; 48 class Twine; 49 class Value; 50 class CallSite; 51 } 52 53 namespace clang { 54 class ASTContext; 55 class BlockDecl; 56 class CXXDestructorDecl; 57 class CXXForRangeStmt; 58 class CXXTryStmt; 59 class Decl; 60 class LabelDecl; 61 class EnumConstantDecl; 62 class FunctionDecl; 63 class FunctionProtoType; 64 class LabelStmt; 65 class ObjCContainerDecl; 66 class ObjCInterfaceDecl; 67 class ObjCIvarDecl; 68 class ObjCMethodDecl; 69 class ObjCImplementationDecl; 70 class ObjCPropertyImplDecl; 71 class TargetInfo; 72 class VarDecl; 73 class ObjCForCollectionStmt; 74 class ObjCAtTryStmt; 75 class ObjCAtThrowStmt; 76 class ObjCAtSynchronizedStmt; 77 class ObjCAutoreleasePoolStmt; 78 79 namespace CodeGen { 80 class CodeGenTypes; 81 class CGCallee; 82 class CGFunctionInfo; 83 class CGRecordLayout; 84 class CGBlockInfo; 85 class CGCXXABI; 86 class BlockByrefHelpers; 87 class BlockByrefInfo; 88 class BlockFlags; 89 class BlockFieldFlags; 90 class RegionCodeGenTy; 91 class TargetCodeGenInfo; 92 struct OMPTaskDataTy; 93 struct CGCoroData; 94 95 /// The kind of evaluation to perform on values of a particular 96 /// type. Basically, is the code in CGExprScalar, CGExprComplex, or 97 /// CGExprAgg? 98 /// 99 /// TODO: should vectors maybe be split out into their own thing? 100 enum TypeEvaluationKind { 101 TEK_Scalar, 102 TEK_Complex, 103 TEK_Aggregate 104 }; 105 106 #define LIST_SANITIZER_CHECKS \ 107 SANITIZER_CHECK(AddOverflow, add_overflow, 0) \ 108 SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0) \ 109 SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0) \ 110 SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0) \ 111 SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0) \ 112 SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0) \ 113 SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 0) \ 114 SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0) \ 115 SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0) \ 116 SANITIZER_CHECK(MissingReturn, missing_return, 0) \ 117 SANITIZER_CHECK(MulOverflow, mul_overflow, 0) \ 118 SANITIZER_CHECK(NegateOverflow, negate_overflow, 0) \ 119 SANITIZER_CHECK(NullabilityArg, nullability_arg, 0) \ 120 SANITIZER_CHECK(NullabilityReturn, nullability_return, 1) \ 121 SANITIZER_CHECK(NonnullArg, nonnull_arg, 0) \ 122 SANITIZER_CHECK(NonnullReturn, nonnull_return, 1) \ 123 SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0) \ 124 SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0) \ 125 SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0) \ 126 SANITIZER_CHECK(SubOverflow, sub_overflow, 0) \ 127 SANITIZER_CHECK(TypeMismatch, type_mismatch, 1) \ 128 SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0) 129 130 enum SanitizerHandler { 131 #define SANITIZER_CHECK(Enum, Name, Version) Enum, 132 LIST_SANITIZER_CHECKS 133 #undef SANITIZER_CHECK 134 }; 135 136 /// CodeGenFunction - This class organizes the per-function state that is used 137 /// while generating LLVM code. 138 class CodeGenFunction : public CodeGenTypeCache { 139 CodeGenFunction(const CodeGenFunction &) = delete; 140 void operator=(const CodeGenFunction &) = delete; 141 142 friend class CGCXXABI; 143 public: 144 /// A jump destination is an abstract label, branching to which may 145 /// require a jump out through normal cleanups. 146 struct JumpDest { 147 JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {} 148 JumpDest(llvm::BasicBlock *Block, 149 EHScopeStack::stable_iterator Depth, 150 unsigned Index) 151 : Block(Block), ScopeDepth(Depth), Index(Index) {} 152 153 bool isValid() const { return Block != nullptr; } 154 llvm::BasicBlock *getBlock() const { return Block; } 155 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 156 unsigned getDestIndex() const { return Index; } 157 158 // This should be used cautiously. 159 void setScopeDepth(EHScopeStack::stable_iterator depth) { 160 ScopeDepth = depth; 161 } 162 163 private: 164 llvm::BasicBlock *Block; 165 EHScopeStack::stable_iterator ScopeDepth; 166 unsigned Index; 167 }; 168 169 CodeGenModule &CGM; // Per-module state. 170 const TargetInfo &Target; 171 172 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 173 LoopInfoStack LoopStack; 174 CGBuilderTy Builder; 175 176 // Stores variables for which we can't generate correct lifetime markers 177 // because of jumps. 178 VarBypassDetector Bypasses; 179 180 // CodeGen lambda for loops and support for ordered clause 181 typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &, 182 JumpDest)> 183 CodeGenLoopTy; 184 typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation, 185 const unsigned, const bool)> 186 CodeGenOrderedTy; 187 188 // Codegen lambda for loop bounds in worksharing loop constructs 189 typedef llvm::function_ref<std::pair<LValue, LValue>( 190 CodeGenFunction &, const OMPExecutableDirective &S)> 191 CodeGenLoopBoundsTy; 192 193 // Codegen lambda for loop bounds in dispatch-based loop implementation 194 typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>( 195 CodeGenFunction &, const OMPExecutableDirective &S, Address LB, 196 Address UB)> 197 CodeGenDispatchBoundsTy; 198 199 /// \brief CGBuilder insert helper. This function is called after an 200 /// instruction is created using Builder. 201 void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name, 202 llvm::BasicBlock *BB, 203 llvm::BasicBlock::iterator InsertPt) const; 204 205 /// CurFuncDecl - Holds the Decl for the current outermost 206 /// non-closure context. 207 const Decl *CurFuncDecl; 208 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 209 const Decl *CurCodeDecl; 210 const CGFunctionInfo *CurFnInfo; 211 QualType FnRetTy; 212 llvm::Function *CurFn; 213 214 // Holds coroutine data if the current function is a coroutine. We use a 215 // wrapper to manage its lifetime, so that we don't have to define CGCoroData 216 // in this header. 217 struct CGCoroInfo { 218 std::unique_ptr<CGCoroData> Data; 219 CGCoroInfo(); 220 ~CGCoroInfo(); 221 }; 222 CGCoroInfo CurCoro; 223 224 /// CurGD - The GlobalDecl for the current function being compiled. 225 GlobalDecl CurGD; 226 227 /// PrologueCleanupDepth - The cleanup depth enclosing all the 228 /// cleanups associated with the parameters. 229 EHScopeStack::stable_iterator PrologueCleanupDepth; 230 231 /// ReturnBlock - Unified return block. 232 JumpDest ReturnBlock; 233 234 /// ReturnValue - The temporary alloca to hold the return 235 /// value. This is invalid iff the function has no return value. 236 Address ReturnValue; 237 238 /// Return true if a label was seen in the current scope. 239 bool hasLabelBeenSeenInCurrentScope() const { 240 if (CurLexicalScope) 241 return CurLexicalScope->hasLabels(); 242 return !LabelMap.empty(); 243 } 244 245 /// AllocaInsertPoint - This is an instruction in the entry block before which 246 /// we prefer to insert allocas. 247 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 248 249 /// \brief API for captured statement code generation. 250 class CGCapturedStmtInfo { 251 public: 252 explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default) 253 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {} 254 explicit CGCapturedStmtInfo(const CapturedStmt &S, 255 CapturedRegionKind K = CR_Default) 256 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) { 257 258 RecordDecl::field_iterator Field = 259 S.getCapturedRecordDecl()->field_begin(); 260 for (CapturedStmt::const_capture_iterator I = S.capture_begin(), 261 E = S.capture_end(); 262 I != E; ++I, ++Field) { 263 if (I->capturesThis()) 264 CXXThisFieldDecl = *Field; 265 else if (I->capturesVariable()) 266 CaptureFields[I->getCapturedVar()] = *Field; 267 else if (I->capturesVariableByCopy()) 268 CaptureFields[I->getCapturedVar()] = *Field; 269 } 270 } 271 272 virtual ~CGCapturedStmtInfo(); 273 274 CapturedRegionKind getKind() const { return Kind; } 275 276 virtual void setContextValue(llvm::Value *V) { ThisValue = V; } 277 // \brief Retrieve the value of the context parameter. 278 virtual llvm::Value *getContextValue() const { return ThisValue; } 279 280 /// \brief Lookup the captured field decl for a variable. 281 virtual const FieldDecl *lookup(const VarDecl *VD) const { 282 return CaptureFields.lookup(VD); 283 } 284 285 bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; } 286 virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; } 287 288 static bool classof(const CGCapturedStmtInfo *) { 289 return true; 290 } 291 292 /// \brief Emit the captured statement body. 293 virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) { 294 CGF.incrementProfileCounter(S); 295 CGF.EmitStmt(S); 296 } 297 298 /// \brief Get the name of the capture helper. 299 virtual StringRef getHelperName() const { return "__captured_stmt"; } 300 301 private: 302 /// \brief The kind of captured statement being generated. 303 CapturedRegionKind Kind; 304 305 /// \brief Keep the map between VarDecl and FieldDecl. 306 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields; 307 308 /// \brief The base address of the captured record, passed in as the first 309 /// argument of the parallel region function. 310 llvm::Value *ThisValue; 311 312 /// \brief Captured 'this' type. 313 FieldDecl *CXXThisFieldDecl; 314 }; 315 CGCapturedStmtInfo *CapturedStmtInfo; 316 317 /// \brief RAII for correct setting/restoring of CapturedStmtInfo. 318 class CGCapturedStmtRAII { 319 private: 320 CodeGenFunction &CGF; 321 CGCapturedStmtInfo *PrevCapturedStmtInfo; 322 public: 323 CGCapturedStmtRAII(CodeGenFunction &CGF, 324 CGCapturedStmtInfo *NewCapturedStmtInfo) 325 : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) { 326 CGF.CapturedStmtInfo = NewCapturedStmtInfo; 327 } 328 ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; } 329 }; 330 331 /// An abstract representation of regular/ObjC call/message targets. 332 class AbstractCallee { 333 /// The function declaration of the callee. 334 const Decl *CalleeDecl; 335 336 public: 337 AbstractCallee() : CalleeDecl(nullptr) {} 338 AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {} 339 AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {} 340 bool hasFunctionDecl() const { 341 return dyn_cast_or_null<FunctionDecl>(CalleeDecl); 342 } 343 const Decl *getDecl() const { return CalleeDecl; } 344 unsigned getNumParams() const { 345 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 346 return FD->getNumParams(); 347 return cast<ObjCMethodDecl>(CalleeDecl)->param_size(); 348 } 349 const ParmVarDecl *getParamDecl(unsigned I) const { 350 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 351 return FD->getParamDecl(I); 352 return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I); 353 } 354 }; 355 356 /// \brief Sanitizers enabled for this function. 357 SanitizerSet SanOpts; 358 359 /// \brief True if CodeGen currently emits code implementing sanitizer checks. 360 bool IsSanitizerScope; 361 362 /// \brief RAII object to set/unset CodeGenFunction::IsSanitizerScope. 363 class SanitizerScope { 364 CodeGenFunction *CGF; 365 public: 366 SanitizerScope(CodeGenFunction *CGF); 367 ~SanitizerScope(); 368 }; 369 370 /// In C++, whether we are code generating a thunk. This controls whether we 371 /// should emit cleanups. 372 bool CurFuncIsThunk; 373 374 /// In ARC, whether we should autorelease the return value. 375 bool AutoreleaseResult; 376 377 /// Whether we processed a Microsoft-style asm block during CodeGen. These can 378 /// potentially set the return value. 379 bool SawAsmBlock; 380 381 const FunctionDecl *CurSEHParent = nullptr; 382 383 /// True if the current function is an outlined SEH helper. This can be a 384 /// finally block or filter expression. 385 bool IsOutlinedSEHHelper; 386 387 const CodeGen::CGBlockInfo *BlockInfo; 388 llvm::Value *BlockPointer; 389 390 llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; 391 FieldDecl *LambdaThisCaptureField; 392 393 /// \brief A mapping from NRVO variables to the flags used to indicate 394 /// when the NRVO has been applied to this variable. 395 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 396 397 EHScopeStack EHStack; 398 llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack; 399 llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack; 400 401 llvm::Instruction *CurrentFuncletPad = nullptr; 402 403 class CallLifetimeEnd final : public EHScopeStack::Cleanup { 404 llvm::Value *Addr; 405 llvm::Value *Size; 406 407 public: 408 CallLifetimeEnd(Address addr, llvm::Value *size) 409 : Addr(addr.getPointer()), Size(size) {} 410 411 void Emit(CodeGenFunction &CGF, Flags flags) override { 412 CGF.EmitLifetimeEnd(Size, Addr); 413 } 414 }; 415 416 /// Header for data within LifetimeExtendedCleanupStack. 417 struct LifetimeExtendedCleanupHeader { 418 /// The size of the following cleanup object. 419 unsigned Size; 420 /// The kind of cleanup to push: a value from the CleanupKind enumeration. 421 CleanupKind Kind; 422 423 size_t getSize() const { return Size; } 424 CleanupKind getKind() const { return Kind; } 425 }; 426 427 /// i32s containing the indexes of the cleanup destinations. 428 llvm::AllocaInst *NormalCleanupDest; 429 430 unsigned NextCleanupDestIndex; 431 432 /// FirstBlockInfo - The head of a singly-linked-list of block layouts. 433 CGBlockInfo *FirstBlockInfo; 434 435 /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. 436 llvm::BasicBlock *EHResumeBlock; 437 438 /// The exception slot. All landing pads write the current exception pointer 439 /// into this alloca. 440 llvm::Value *ExceptionSlot; 441 442 /// The selector slot. Under the MandatoryCleanup model, all landing pads 443 /// write the current selector value into this alloca. 444 llvm::AllocaInst *EHSelectorSlot; 445 446 /// A stack of exception code slots. Entering an __except block pushes a slot 447 /// on the stack and leaving pops one. The __exception_code() intrinsic loads 448 /// a value from the top of the stack. 449 SmallVector<Address, 1> SEHCodeSlotStack; 450 451 /// Value returned by __exception_info intrinsic. 452 llvm::Value *SEHInfo = nullptr; 453 454 /// Emits a landing pad for the current EH stack. 455 llvm::BasicBlock *EmitLandingPad(); 456 457 llvm::BasicBlock *getInvokeDestImpl(); 458 459 template <class T> 460 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 461 return DominatingValue<T>::save(*this, value); 462 } 463 464 public: 465 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 466 /// rethrows. 467 SmallVector<llvm::Value*, 8> ObjCEHValueStack; 468 469 /// A class controlling the emission of a finally block. 470 class FinallyInfo { 471 /// Where the catchall's edge through the cleanup should go. 472 JumpDest RethrowDest; 473 474 /// A function to call to enter the catch. 475 llvm::Constant *BeginCatchFn; 476 477 /// An i1 variable indicating whether or not the @finally is 478 /// running for an exception. 479 llvm::AllocaInst *ForEHVar; 480 481 /// An i8* variable into which the exception pointer to rethrow 482 /// has been saved. 483 llvm::AllocaInst *SavedExnVar; 484 485 public: 486 void enter(CodeGenFunction &CGF, const Stmt *Finally, 487 llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn, 488 llvm::Constant *rethrowFn); 489 void exit(CodeGenFunction &CGF); 490 }; 491 492 /// Returns true inside SEH __try blocks. 493 bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); } 494 495 /// Returns true while emitting a cleanuppad. 496 bool isCleanupPadScope() const { 497 return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad); 498 } 499 500 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 501 /// current full-expression. Safe against the possibility that 502 /// we're currently inside a conditionally-evaluated expression. 503 template <class T, class... As> 504 void pushFullExprCleanup(CleanupKind kind, As... A) { 505 // If we're not in a conditional branch, or if none of the 506 // arguments requires saving, then use the unconditional cleanup. 507 if (!isInConditionalBranch()) 508 return EHStack.pushCleanup<T>(kind, A...); 509 510 // Stash values in a tuple so we can guarantee the order of saves. 511 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 512 SavedTuple Saved{saveValueInCond(A)...}; 513 514 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 515 EHStack.pushCleanupTuple<CleanupType>(kind, Saved); 516 initFullExprCleanup(); 517 } 518 519 /// \brief Queue a cleanup to be pushed after finishing the current 520 /// full-expression. 521 template <class T, class... As> 522 void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) { 523 assert(!isInConditionalBranch() && "can't defer conditional cleanup"); 524 525 LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind }; 526 527 size_t OldSize = LifetimeExtendedCleanupStack.size(); 528 LifetimeExtendedCleanupStack.resize( 529 LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size); 530 531 static_assert(sizeof(Header) % alignof(T) == 0, 532 "Cleanup will be allocated on misaligned address"); 533 char *Buffer = &LifetimeExtendedCleanupStack[OldSize]; 534 new (Buffer) LifetimeExtendedCleanupHeader(Header); 535 new (Buffer + sizeof(Header)) T(A...); 536 } 537 538 /// Set up the last cleaup that was pushed as a conditional 539 /// full-expression cleanup. 540 void initFullExprCleanup(); 541 542 /// PushDestructorCleanup - Push a cleanup to call the 543 /// complete-object destructor of an object of the given type at the 544 /// given address. Does nothing if T is not a C++ class type with a 545 /// non-trivial destructor. 546 void PushDestructorCleanup(QualType T, Address Addr); 547 548 /// PushDestructorCleanup - Push a cleanup to call the 549 /// complete-object variant of the given destructor on the object at 550 /// the given address. 551 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, Address Addr); 552 553 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 554 /// process all branch fixups. 555 void PopCleanupBlock(bool FallThroughIsBranchThrough = false); 556 557 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 558 /// The block cannot be reactivated. Pops it if it's the top of the 559 /// stack. 560 /// 561 /// \param DominatingIP - An instruction which is known to 562 /// dominate the current IP (if set) and which lies along 563 /// all paths of execution between the current IP and the 564 /// the point at which the cleanup comes into scope. 565 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 566 llvm::Instruction *DominatingIP); 567 568 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 569 /// Cannot be used to resurrect a deactivated cleanup. 570 /// 571 /// \param DominatingIP - An instruction which is known to 572 /// dominate the current IP (if set) and which lies along 573 /// all paths of execution between the current IP and the 574 /// the point at which the cleanup comes into scope. 575 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 576 llvm::Instruction *DominatingIP); 577 578 /// \brief Enters a new scope for capturing cleanups, all of which 579 /// will be executed once the scope is exited. 580 class RunCleanupsScope { 581 EHScopeStack::stable_iterator CleanupStackDepth; 582 size_t LifetimeExtendedCleanupStackSize; 583 bool OldDidCallStackSave; 584 protected: 585 bool PerformCleanup; 586 private: 587 588 RunCleanupsScope(const RunCleanupsScope &) = delete; 589 void operator=(const RunCleanupsScope &) = delete; 590 591 protected: 592 CodeGenFunction& CGF; 593 594 public: 595 /// \brief Enter a new cleanup scope. 596 explicit RunCleanupsScope(CodeGenFunction &CGF) 597 : PerformCleanup(true), CGF(CGF) 598 { 599 CleanupStackDepth = CGF.EHStack.stable_begin(); 600 LifetimeExtendedCleanupStackSize = 601 CGF.LifetimeExtendedCleanupStack.size(); 602 OldDidCallStackSave = CGF.DidCallStackSave; 603 CGF.DidCallStackSave = false; 604 } 605 606 /// \brief Exit this cleanup scope, emitting any accumulated cleanups. 607 ~RunCleanupsScope() { 608 if (PerformCleanup) 609 ForceCleanup(); 610 } 611 612 /// \brief Determine whether this scope requires any cleanups. 613 bool requiresCleanups() const { 614 return CGF.EHStack.stable_begin() != CleanupStackDepth; 615 } 616 617 /// \brief Force the emission of cleanups now, instead of waiting 618 /// until this object is destroyed. 619 /// \param ValuesToReload - A list of values that need to be available at 620 /// the insertion point after cleanup emission. If cleanup emission created 621 /// a shared cleanup block, these value pointers will be rewritten. 622 /// Otherwise, they not will be modified. 623 void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) { 624 assert(PerformCleanup && "Already forced cleanup"); 625 CGF.DidCallStackSave = OldDidCallStackSave; 626 CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize, 627 ValuesToReload); 628 PerformCleanup = false; 629 } 630 }; 631 632 class LexicalScope : public RunCleanupsScope { 633 SourceRange Range; 634 SmallVector<const LabelDecl*, 4> Labels; 635 LexicalScope *ParentScope; 636 637 LexicalScope(const LexicalScope &) = delete; 638 void operator=(const LexicalScope &) = delete; 639 640 public: 641 /// \brief Enter a new cleanup scope. 642 explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) 643 : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) { 644 CGF.CurLexicalScope = this; 645 if (CGDebugInfo *DI = CGF.getDebugInfo()) 646 DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); 647 } 648 649 void addLabel(const LabelDecl *label) { 650 assert(PerformCleanup && "adding label to dead scope?"); 651 Labels.push_back(label); 652 } 653 654 /// \brief Exit this cleanup scope, emitting any accumulated 655 /// cleanups. 656 ~LexicalScope() { 657 if (CGDebugInfo *DI = CGF.getDebugInfo()) 658 DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 659 660 // If we should perform a cleanup, force them now. Note that 661 // this ends the cleanup scope before rescoping any labels. 662 if (PerformCleanup) { 663 ApplyDebugLocation DL(CGF, Range.getEnd()); 664 ForceCleanup(); 665 } 666 } 667 668 /// \brief Force the emission of cleanups now, instead of waiting 669 /// until this object is destroyed. 670 void ForceCleanup() { 671 CGF.CurLexicalScope = ParentScope; 672 RunCleanupsScope::ForceCleanup(); 673 674 if (!Labels.empty()) 675 rescopeLabels(); 676 } 677 678 bool hasLabels() const { 679 return !Labels.empty(); 680 } 681 682 void rescopeLabels(); 683 }; 684 685 typedef llvm::DenseMap<const Decl *, Address> DeclMapTy; 686 687 /// \brief The scope used to remap some variables as private in the OpenMP 688 /// loop body (or other captured region emitted without outlining), and to 689 /// restore old vars back on exit. 690 class OMPPrivateScope : public RunCleanupsScope { 691 DeclMapTy SavedLocals; 692 DeclMapTy SavedPrivates; 693 694 private: 695 OMPPrivateScope(const OMPPrivateScope &) = delete; 696 void operator=(const OMPPrivateScope &) = delete; 697 698 public: 699 /// \brief Enter a new OpenMP private scope. 700 explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {} 701 702 /// \brief Registers \a LocalVD variable as a private and apply \a 703 /// PrivateGen function for it to generate corresponding private variable. 704 /// \a PrivateGen returns an address of the generated private variable. 705 /// \return true if the variable is registered as private, false if it has 706 /// been privatized already. 707 bool 708 addPrivate(const VarDecl *LocalVD, 709 llvm::function_ref<Address()> PrivateGen) { 710 assert(PerformCleanup && "adding private to dead scope"); 711 712 // Only save it once. 713 if (SavedLocals.count(LocalVD)) return false; 714 715 // Copy the existing local entry to SavedLocals. 716 auto it = CGF.LocalDeclMap.find(LocalVD); 717 if (it != CGF.LocalDeclMap.end()) { 718 SavedLocals.insert({LocalVD, it->second}); 719 } else { 720 SavedLocals.insert({LocalVD, Address::invalid()}); 721 } 722 723 // Generate the private entry. 724 Address Addr = PrivateGen(); 725 QualType VarTy = LocalVD->getType(); 726 if (VarTy->isReferenceType()) { 727 Address Temp = CGF.CreateMemTemp(VarTy); 728 CGF.Builder.CreateStore(Addr.getPointer(), Temp); 729 Addr = Temp; 730 } 731 SavedPrivates.insert({LocalVD, Addr}); 732 733 return true; 734 } 735 736 /// \brief Privatizes local variables previously registered as private. 737 /// Registration is separate from the actual privatization to allow 738 /// initializers use values of the original variables, not the private one. 739 /// This is important, for example, if the private variable is a class 740 /// variable initialized by a constructor that references other private 741 /// variables. But at initialization original variables must be used, not 742 /// private copies. 743 /// \return true if at least one variable was privatized, false otherwise. 744 bool Privatize() { 745 copyInto(SavedPrivates, CGF.LocalDeclMap); 746 SavedPrivates.clear(); 747 return !SavedLocals.empty(); 748 } 749 750 void ForceCleanup() { 751 RunCleanupsScope::ForceCleanup(); 752 copyInto(SavedLocals, CGF.LocalDeclMap); 753 SavedLocals.clear(); 754 } 755 756 /// \brief Exit scope - all the mapped variables are restored. 757 ~OMPPrivateScope() { 758 if (PerformCleanup) 759 ForceCleanup(); 760 } 761 762 /// Checks if the global variable is captured in current function. 763 bool isGlobalVarCaptured(const VarDecl *VD) const { 764 return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0; 765 } 766 767 private: 768 /// Copy all the entries in the source map over the corresponding 769 /// entries in the destination, which must exist. 770 static void copyInto(const DeclMapTy &src, DeclMapTy &dest) { 771 for (auto &pair : src) { 772 if (!pair.second.isValid()) { 773 dest.erase(pair.first); 774 continue; 775 } 776 777 auto it = dest.find(pair.first); 778 if (it != dest.end()) { 779 it->second = pair.second; 780 } else { 781 dest.insert(pair); 782 } 783 } 784 } 785 }; 786 787 /// \brief Takes the old cleanup stack size and emits the cleanup blocks 788 /// that have been added. 789 void 790 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 791 std::initializer_list<llvm::Value **> ValuesToReload = {}); 792 793 /// \brief Takes the old cleanup stack size and emits the cleanup blocks 794 /// that have been added, then adds all lifetime-extended cleanups from 795 /// the given position to the stack. 796 void 797 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 798 size_t OldLifetimeExtendedStackSize, 799 std::initializer_list<llvm::Value **> ValuesToReload = {}); 800 801 void ResolveBranchFixups(llvm::BasicBlock *Target); 802 803 /// The given basic block lies in the current EH scope, but may be a 804 /// target of a potentially scope-crossing jump; get a stable handle 805 /// to which we can perform this jump later. 806 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 807 return JumpDest(Target, 808 EHStack.getInnermostNormalCleanup(), 809 NextCleanupDestIndex++); 810 } 811 812 /// The given basic block lies in the current EH scope, but may be a 813 /// target of a potentially scope-crossing jump; get a stable handle 814 /// to which we can perform this jump later. 815 JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { 816 return getJumpDestInCurrentScope(createBasicBlock(Name)); 817 } 818 819 /// EmitBranchThroughCleanup - Emit a branch from the current insert 820 /// block through the normal cleanup handling code (if any) and then 821 /// on to \arg Dest. 822 void EmitBranchThroughCleanup(JumpDest Dest); 823 824 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 825 /// specified destination obviously has no cleanups to run. 'false' is always 826 /// a conservatively correct answer for this method. 827 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 828 829 /// popCatchScope - Pops the catch scope at the top of the EHScope 830 /// stack, emitting any required code (other than the catch handlers 831 /// themselves). 832 void popCatchScope(); 833 834 llvm::BasicBlock *getEHResumeBlock(bool isCleanup); 835 llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); 836 llvm::BasicBlock *getMSVCDispatchBlock(EHScopeStack::stable_iterator scope); 837 838 /// An object to manage conditionally-evaluated expressions. 839 class ConditionalEvaluation { 840 llvm::BasicBlock *StartBB; 841 842 public: 843 ConditionalEvaluation(CodeGenFunction &CGF) 844 : StartBB(CGF.Builder.GetInsertBlock()) {} 845 846 void begin(CodeGenFunction &CGF) { 847 assert(CGF.OutermostConditional != this); 848 if (!CGF.OutermostConditional) 849 CGF.OutermostConditional = this; 850 } 851 852 void end(CodeGenFunction &CGF) { 853 assert(CGF.OutermostConditional != nullptr); 854 if (CGF.OutermostConditional == this) 855 CGF.OutermostConditional = nullptr; 856 } 857 858 /// Returns a block which will be executed prior to each 859 /// evaluation of the conditional code. 860 llvm::BasicBlock *getStartingBlock() const { 861 return StartBB; 862 } 863 }; 864 865 /// isInConditionalBranch - Return true if we're currently emitting 866 /// one branch or the other of a conditional expression. 867 bool isInConditionalBranch() const { return OutermostConditional != nullptr; } 868 869 void setBeforeOutermostConditional(llvm::Value *value, Address addr) { 870 assert(isInConditionalBranch()); 871 llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); 872 auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back()); 873 store->setAlignment(addr.getAlignment().getQuantity()); 874 } 875 876 /// An RAII object to record that we're evaluating a statement 877 /// expression. 878 class StmtExprEvaluation { 879 CodeGenFunction &CGF; 880 881 /// We have to save the outermost conditional: cleanups in a 882 /// statement expression aren't conditional just because the 883 /// StmtExpr is. 884 ConditionalEvaluation *SavedOutermostConditional; 885 886 public: 887 StmtExprEvaluation(CodeGenFunction &CGF) 888 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 889 CGF.OutermostConditional = nullptr; 890 } 891 892 ~StmtExprEvaluation() { 893 CGF.OutermostConditional = SavedOutermostConditional; 894 CGF.EnsureInsertPoint(); 895 } 896 }; 897 898 /// An object which temporarily prevents a value from being 899 /// destroyed by aggressive peephole optimizations that assume that 900 /// all uses of a value have been realized in the IR. 901 class PeepholeProtection { 902 llvm::Instruction *Inst; 903 friend class CodeGenFunction; 904 905 public: 906 PeepholeProtection() : Inst(nullptr) {} 907 }; 908 909 /// A non-RAII class containing all the information about a bound 910 /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for 911 /// this which makes individual mappings very simple; using this 912 /// class directly is useful when you have a variable number of 913 /// opaque values or don't want the RAII functionality for some 914 /// reason. 915 class OpaqueValueMappingData { 916 const OpaqueValueExpr *OpaqueValue; 917 bool BoundLValue; 918 CodeGenFunction::PeepholeProtection Protection; 919 920 OpaqueValueMappingData(const OpaqueValueExpr *ov, 921 bool boundLValue) 922 : OpaqueValue(ov), BoundLValue(boundLValue) {} 923 public: 924 OpaqueValueMappingData() : OpaqueValue(nullptr) {} 925 926 static bool shouldBindAsLValue(const Expr *expr) { 927 // gl-values should be bound as l-values for obvious reasons. 928 // Records should be bound as l-values because IR generation 929 // always keeps them in memory. Expressions of function type 930 // act exactly like l-values but are formally required to be 931 // r-values in C. 932 return expr->isGLValue() || 933 expr->getType()->isFunctionType() || 934 hasAggregateEvaluationKind(expr->getType()); 935 } 936 937 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 938 const OpaqueValueExpr *ov, 939 const Expr *e) { 940 if (shouldBindAsLValue(ov)) 941 return bind(CGF, ov, CGF.EmitLValue(e)); 942 return bind(CGF, ov, CGF.EmitAnyExpr(e)); 943 } 944 945 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 946 const OpaqueValueExpr *ov, 947 const LValue &lv) { 948 assert(shouldBindAsLValue(ov)); 949 CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); 950 return OpaqueValueMappingData(ov, true); 951 } 952 953 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 954 const OpaqueValueExpr *ov, 955 const RValue &rv) { 956 assert(!shouldBindAsLValue(ov)); 957 CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); 958 959 OpaqueValueMappingData data(ov, false); 960 961 // Work around an extremely aggressive peephole optimization in 962 // EmitScalarConversion which assumes that all other uses of a 963 // value are extant. 964 data.Protection = CGF.protectFromPeepholes(rv); 965 966 return data; 967 } 968 969 bool isValid() const { return OpaqueValue != nullptr; } 970 void clear() { OpaqueValue = nullptr; } 971 972 void unbind(CodeGenFunction &CGF) { 973 assert(OpaqueValue && "no data to unbind!"); 974 975 if (BoundLValue) { 976 CGF.OpaqueLValues.erase(OpaqueValue); 977 } else { 978 CGF.OpaqueRValues.erase(OpaqueValue); 979 CGF.unprotectFromPeepholes(Protection); 980 } 981 } 982 }; 983 984 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 985 class OpaqueValueMapping { 986 CodeGenFunction &CGF; 987 OpaqueValueMappingData Data; 988 989 public: 990 static bool shouldBindAsLValue(const Expr *expr) { 991 return OpaqueValueMappingData::shouldBindAsLValue(expr); 992 } 993 994 /// Build the opaque value mapping for the given conditional 995 /// operator if it's the GNU ?: extension. This is a common 996 /// enough pattern that the convenience operator is really 997 /// helpful. 998 /// 999 OpaqueValueMapping(CodeGenFunction &CGF, 1000 const AbstractConditionalOperator *op) : CGF(CGF) { 1001 if (isa<ConditionalOperator>(op)) 1002 // Leave Data empty. 1003 return; 1004 1005 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 1006 Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), 1007 e->getCommon()); 1008 } 1009 1010 /// Build the opaque value mapping for an OpaqueValueExpr whose source 1011 /// expression is set to the expression the OVE represents. 1012 OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV) 1013 : CGF(CGF) { 1014 if (OV) { 1015 assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used " 1016 "for OVE with no source expression"); 1017 Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr()); 1018 } 1019 } 1020 1021 OpaqueValueMapping(CodeGenFunction &CGF, 1022 const OpaqueValueExpr *opaqueValue, 1023 LValue lvalue) 1024 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { 1025 } 1026 1027 OpaqueValueMapping(CodeGenFunction &CGF, 1028 const OpaqueValueExpr *opaqueValue, 1029 RValue rvalue) 1030 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { 1031 } 1032 1033 void pop() { 1034 Data.unbind(CGF); 1035 Data.clear(); 1036 } 1037 1038 ~OpaqueValueMapping() { 1039 if (Data.isValid()) Data.unbind(CGF); 1040 } 1041 }; 1042 1043 private: 1044 CGDebugInfo *DebugInfo; 1045 bool DisableDebugInfo; 1046 1047 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 1048 /// calling llvm.stacksave for multiple VLAs in the same scope. 1049 bool DidCallStackSave; 1050 1051 /// IndirectBranch - The first time an indirect goto is seen we create a block 1052 /// with an indirect branch. Every time we see the address of a label taken, 1053 /// we add the label to the indirect goto. Every subsequent indirect goto is 1054 /// codegen'd as a jump to the IndirectBranch's basic block. 1055 llvm::IndirectBrInst *IndirectBranch; 1056 1057 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 1058 /// decls. 1059 DeclMapTy LocalDeclMap; 1060 1061 /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this 1062 /// will contain a mapping from said ParmVarDecl to its implicit "object_size" 1063 /// parameter. 1064 llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2> 1065 SizeArguments; 1066 1067 /// Track escaped local variables with auto storage. Used during SEH 1068 /// outlining to produce a call to llvm.localescape. 1069 llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals; 1070 1071 /// LabelMap - This keeps track of the LLVM basic block for each C label. 1072 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 1073 1074 // BreakContinueStack - This keeps track of where break and continue 1075 // statements should jump to. 1076 struct BreakContinue { 1077 BreakContinue(JumpDest Break, JumpDest Continue) 1078 : BreakBlock(Break), ContinueBlock(Continue) {} 1079 1080 JumpDest BreakBlock; 1081 JumpDest ContinueBlock; 1082 }; 1083 SmallVector<BreakContinue, 8> BreakContinueStack; 1084 1085 /// Handles cancellation exit points in OpenMP-related constructs. 1086 class OpenMPCancelExitStack { 1087 /// Tracks cancellation exit point and join point for cancel-related exit 1088 /// and normal exit. 1089 struct CancelExit { 1090 CancelExit() = default; 1091 CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock, 1092 JumpDest ContBlock) 1093 : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {} 1094 OpenMPDirectiveKind Kind = OMPD_unknown; 1095 /// true if the exit block has been emitted already by the special 1096 /// emitExit() call, false if the default codegen is used. 1097 bool HasBeenEmitted = false; 1098 JumpDest ExitBlock; 1099 JumpDest ContBlock; 1100 }; 1101 1102 SmallVector<CancelExit, 8> Stack; 1103 1104 public: 1105 OpenMPCancelExitStack() : Stack(1) {} 1106 ~OpenMPCancelExitStack() = default; 1107 /// Fetches the exit block for the current OpenMP construct. 1108 JumpDest getExitBlock() const { return Stack.back().ExitBlock; } 1109 /// Emits exit block with special codegen procedure specific for the related 1110 /// OpenMP construct + emits code for normal construct cleanup. 1111 void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 1112 const llvm::function_ref<void(CodeGenFunction &)> &CodeGen) { 1113 if (Stack.back().Kind == Kind && getExitBlock().isValid()) { 1114 assert(CGF.getOMPCancelDestination(Kind).isValid()); 1115 assert(CGF.HaveInsertPoint()); 1116 assert(!Stack.back().HasBeenEmitted); 1117 auto IP = CGF.Builder.saveAndClearIP(); 1118 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1119 CodeGen(CGF); 1120 CGF.EmitBranch(Stack.back().ContBlock.getBlock()); 1121 CGF.Builder.restoreIP(IP); 1122 Stack.back().HasBeenEmitted = true; 1123 } 1124 CodeGen(CGF); 1125 } 1126 /// Enter the cancel supporting \a Kind construct. 1127 /// \param Kind OpenMP directive that supports cancel constructs. 1128 /// \param HasCancel true, if the construct has inner cancel directive, 1129 /// false otherwise. 1130 void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) { 1131 Stack.push_back({Kind, 1132 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit") 1133 : JumpDest(), 1134 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont") 1135 : JumpDest()}); 1136 } 1137 /// Emits default exit point for the cancel construct (if the special one 1138 /// has not be used) + join point for cancel/normal exits. 1139 void exit(CodeGenFunction &CGF) { 1140 if (getExitBlock().isValid()) { 1141 assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid()); 1142 bool HaveIP = CGF.HaveInsertPoint(); 1143 if (!Stack.back().HasBeenEmitted) { 1144 if (HaveIP) 1145 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1146 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1147 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1148 } 1149 CGF.EmitBlock(Stack.back().ContBlock.getBlock()); 1150 if (!HaveIP) { 1151 CGF.Builder.CreateUnreachable(); 1152 CGF.Builder.ClearInsertionPoint(); 1153 } 1154 } 1155 Stack.pop_back(); 1156 } 1157 }; 1158 OpenMPCancelExitStack OMPCancelStack; 1159 1160 /// Controls insertion of cancellation exit blocks in worksharing constructs. 1161 class OMPCancelStackRAII { 1162 CodeGenFunction &CGF; 1163 1164 public: 1165 OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 1166 bool HasCancel) 1167 : CGF(CGF) { 1168 CGF.OMPCancelStack.enter(CGF, Kind, HasCancel); 1169 } 1170 ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); } 1171 }; 1172 1173 CodeGenPGO PGO; 1174 1175 /// Calculate branch weights appropriate for PGO data 1176 llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount); 1177 llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights); 1178 llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond, 1179 uint64_t LoopCount); 1180 1181 public: 1182 /// Increment the profiler's counter for the given statement by \p StepV. 1183 /// If \p StepV is null, the default increment is 1. 1184 void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) { 1185 if (CGM.getCodeGenOpts().hasProfileClangInstr()) 1186 PGO.emitCounterIncrement(Builder, S, StepV); 1187 PGO.setCurrentStmt(S); 1188 } 1189 1190 /// Get the profiler's count for the given statement. 1191 uint64_t getProfileCount(const Stmt *S) { 1192 Optional<uint64_t> Count = PGO.getStmtCount(S); 1193 if (!Count.hasValue()) 1194 return 0; 1195 return *Count; 1196 } 1197 1198 /// Set the profiler's current count. 1199 void setCurrentProfileCount(uint64_t Count) { 1200 PGO.setCurrentRegionCount(Count); 1201 } 1202 1203 /// Get the profiler's current count. This is generally the count for the most 1204 /// recently incremented counter. 1205 uint64_t getCurrentProfileCount() { 1206 return PGO.getCurrentRegionCount(); 1207 } 1208 1209 private: 1210 1211 /// SwitchInsn - This is nearest current switch instruction. It is null if 1212 /// current context is not in a switch. 1213 llvm::SwitchInst *SwitchInsn; 1214 /// The branch weights of SwitchInsn when doing instrumentation based PGO. 1215 SmallVector<uint64_t, 16> *SwitchWeights; 1216 1217 /// CaseRangeBlock - This block holds if condition check for last case 1218 /// statement range in current switch instruction. 1219 llvm::BasicBlock *CaseRangeBlock; 1220 1221 /// OpaqueLValues - Keeps track of the current set of opaque value 1222 /// expressions. 1223 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 1224 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 1225 1226 // VLASizeMap - This keeps track of the associated size for each VLA type. 1227 // We track this by the size expression rather than the type itself because 1228 // in certain situations, like a const qualifier applied to an VLA typedef, 1229 // multiple VLA types can share the same size expression. 1230 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 1231 // enter/leave scopes. 1232 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 1233 1234 /// A block containing a single 'unreachable' instruction. Created 1235 /// lazily by getUnreachableBlock(). 1236 llvm::BasicBlock *UnreachableBlock; 1237 1238 /// Counts of the number return expressions in the function. 1239 unsigned NumReturnExprs; 1240 1241 /// Count the number of simple (constant) return expressions in the function. 1242 unsigned NumSimpleReturnExprs; 1243 1244 /// The last regular (non-return) debug location (breakpoint) in the function. 1245 SourceLocation LastStopPoint; 1246 1247 public: 1248 /// A scope within which we are constructing the fields of an object which 1249 /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use 1250 /// if we need to evaluate a CXXDefaultInitExpr within the evaluation. 1251 class FieldConstructionScope { 1252 public: 1253 FieldConstructionScope(CodeGenFunction &CGF, Address This) 1254 : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) { 1255 CGF.CXXDefaultInitExprThis = This; 1256 } 1257 ~FieldConstructionScope() { 1258 CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis; 1259 } 1260 1261 private: 1262 CodeGenFunction &CGF; 1263 Address OldCXXDefaultInitExprThis; 1264 }; 1265 1266 /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this' 1267 /// is overridden to be the object under construction. 1268 class CXXDefaultInitExprScope { 1269 public: 1270 CXXDefaultInitExprScope(CodeGenFunction &CGF) 1271 : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue), 1272 OldCXXThisAlignment(CGF.CXXThisAlignment) { 1273 CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer(); 1274 CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment(); 1275 } 1276 ~CXXDefaultInitExprScope() { 1277 CGF.CXXThisValue = OldCXXThisValue; 1278 CGF.CXXThisAlignment = OldCXXThisAlignment; 1279 } 1280 1281 public: 1282 CodeGenFunction &CGF; 1283 llvm::Value *OldCXXThisValue; 1284 CharUnits OldCXXThisAlignment; 1285 }; 1286 1287 /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the 1288 /// current loop index is overridden. 1289 class ArrayInitLoopExprScope { 1290 public: 1291 ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index) 1292 : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) { 1293 CGF.ArrayInitIndex = Index; 1294 } 1295 ~ArrayInitLoopExprScope() { 1296 CGF.ArrayInitIndex = OldArrayInitIndex; 1297 } 1298 1299 private: 1300 CodeGenFunction &CGF; 1301 llvm::Value *OldArrayInitIndex; 1302 }; 1303 1304 class InlinedInheritingConstructorScope { 1305 public: 1306 InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD) 1307 : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl), 1308 OldCurCodeDecl(CGF.CurCodeDecl), 1309 OldCXXABIThisDecl(CGF.CXXABIThisDecl), 1310 OldCXXABIThisValue(CGF.CXXABIThisValue), 1311 OldCXXThisValue(CGF.CXXThisValue), 1312 OldCXXABIThisAlignment(CGF.CXXABIThisAlignment), 1313 OldCXXThisAlignment(CGF.CXXThisAlignment), 1314 OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy), 1315 OldCXXInheritedCtorInitExprArgs( 1316 std::move(CGF.CXXInheritedCtorInitExprArgs)) { 1317 CGF.CurGD = GD; 1318 CGF.CurFuncDecl = CGF.CurCodeDecl = 1319 cast<CXXConstructorDecl>(GD.getDecl()); 1320 CGF.CXXABIThisDecl = nullptr; 1321 CGF.CXXABIThisValue = nullptr; 1322 CGF.CXXThisValue = nullptr; 1323 CGF.CXXABIThisAlignment = CharUnits(); 1324 CGF.CXXThisAlignment = CharUnits(); 1325 CGF.ReturnValue = Address::invalid(); 1326 CGF.FnRetTy = QualType(); 1327 CGF.CXXInheritedCtorInitExprArgs.clear(); 1328 } 1329 ~InlinedInheritingConstructorScope() { 1330 CGF.CurGD = OldCurGD; 1331 CGF.CurFuncDecl = OldCurFuncDecl; 1332 CGF.CurCodeDecl = OldCurCodeDecl; 1333 CGF.CXXABIThisDecl = OldCXXABIThisDecl; 1334 CGF.CXXABIThisValue = OldCXXABIThisValue; 1335 CGF.CXXThisValue = OldCXXThisValue; 1336 CGF.CXXABIThisAlignment = OldCXXABIThisAlignment; 1337 CGF.CXXThisAlignment = OldCXXThisAlignment; 1338 CGF.ReturnValue = OldReturnValue; 1339 CGF.FnRetTy = OldFnRetTy; 1340 CGF.CXXInheritedCtorInitExprArgs = 1341 std::move(OldCXXInheritedCtorInitExprArgs); 1342 } 1343 1344 private: 1345 CodeGenFunction &CGF; 1346 GlobalDecl OldCurGD; 1347 const Decl *OldCurFuncDecl; 1348 const Decl *OldCurCodeDecl; 1349 ImplicitParamDecl *OldCXXABIThisDecl; 1350 llvm::Value *OldCXXABIThisValue; 1351 llvm::Value *OldCXXThisValue; 1352 CharUnits OldCXXABIThisAlignment; 1353 CharUnits OldCXXThisAlignment; 1354 Address OldReturnValue; 1355 QualType OldFnRetTy; 1356 CallArgList OldCXXInheritedCtorInitExprArgs; 1357 }; 1358 1359 private: 1360 /// CXXThisDecl - When generating code for a C++ member function, 1361 /// this will hold the implicit 'this' declaration. 1362 ImplicitParamDecl *CXXABIThisDecl; 1363 llvm::Value *CXXABIThisValue; 1364 llvm::Value *CXXThisValue; 1365 CharUnits CXXABIThisAlignment; 1366 CharUnits CXXThisAlignment; 1367 1368 /// The value of 'this' to use when evaluating CXXDefaultInitExprs within 1369 /// this expression. 1370 Address CXXDefaultInitExprThis = Address::invalid(); 1371 1372 /// The current array initialization index when evaluating an 1373 /// ArrayInitIndexExpr within an ArrayInitLoopExpr. 1374 llvm::Value *ArrayInitIndex = nullptr; 1375 1376 /// The values of function arguments to use when evaluating 1377 /// CXXInheritedCtorInitExprs within this context. 1378 CallArgList CXXInheritedCtorInitExprArgs; 1379 1380 /// CXXStructorImplicitParamDecl - When generating code for a constructor or 1381 /// destructor, this will hold the implicit argument (e.g. VTT). 1382 ImplicitParamDecl *CXXStructorImplicitParamDecl; 1383 llvm::Value *CXXStructorImplicitParamValue; 1384 1385 /// OutermostConditional - Points to the outermost active 1386 /// conditional control. This is used so that we know if a 1387 /// temporary should be destroyed conditionally. 1388 ConditionalEvaluation *OutermostConditional; 1389 1390 /// The current lexical scope. 1391 LexicalScope *CurLexicalScope; 1392 1393 /// The current source location that should be used for exception 1394 /// handling code. 1395 SourceLocation CurEHLocation; 1396 1397 /// BlockByrefInfos - For each __block variable, contains 1398 /// information about the layout of the variable. 1399 llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos; 1400 1401 /// Used by -fsanitize=nullability-return to determine whether the return 1402 /// value can be checked. 1403 llvm::Value *RetValNullabilityPrecondition = nullptr; 1404 1405 /// Check if -fsanitize=nullability-return instrumentation is required for 1406 /// this function. 1407 bool requiresReturnValueNullabilityCheck() const { 1408 return RetValNullabilityPrecondition; 1409 } 1410 1411 /// Used to store precise source locations for return statements by the 1412 /// runtime return value checks. 1413 Address ReturnLocation = Address::invalid(); 1414 1415 /// Check if the return value of this function requires sanitization. 1416 bool requiresReturnValueCheck() const { 1417 return requiresReturnValueNullabilityCheck() || 1418 (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 1419 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()); 1420 } 1421 1422 llvm::BasicBlock *TerminateLandingPad; 1423 llvm::BasicBlock *TerminateHandler; 1424 llvm::BasicBlock *TrapBB; 1425 1426 /// True if we need emit the life-time markers. 1427 const bool ShouldEmitLifetimeMarkers; 1428 1429 /// Add OpenCL kernel arg metadata and the kernel attribute meatadata to 1430 /// the function metadata. 1431 void EmitOpenCLKernelMetadata(const FunctionDecl *FD, 1432 llvm::Function *Fn); 1433 1434 public: 1435 CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false); 1436 ~CodeGenFunction(); 1437 1438 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 1439 ASTContext &getContext() const { return CGM.getContext(); } 1440 CGDebugInfo *getDebugInfo() { 1441 if (DisableDebugInfo) 1442 return nullptr; 1443 return DebugInfo; 1444 } 1445 void disableDebugInfo() { DisableDebugInfo = true; } 1446 void enableDebugInfo() { DisableDebugInfo = false; } 1447 1448 bool shouldUseFusedARCCalls() { 1449 return CGM.getCodeGenOpts().OptimizationLevel == 0; 1450 } 1451 1452 const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } 1453 1454 /// Returns a pointer to the function's exception object and selector slot, 1455 /// which is assigned in every landing pad. 1456 Address getExceptionSlot(); 1457 Address getEHSelectorSlot(); 1458 1459 /// Returns the contents of the function's exception object and selector 1460 /// slots. 1461 llvm::Value *getExceptionFromSlot(); 1462 llvm::Value *getSelectorFromSlot(); 1463 1464 Address getNormalCleanupDestSlot(); 1465 1466 llvm::BasicBlock *getUnreachableBlock() { 1467 if (!UnreachableBlock) { 1468 UnreachableBlock = createBasicBlock("unreachable"); 1469 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 1470 } 1471 return UnreachableBlock; 1472 } 1473 1474 llvm::BasicBlock *getInvokeDest() { 1475 if (!EHStack.requiresLandingPad()) return nullptr; 1476 return getInvokeDestImpl(); 1477 } 1478 1479 bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; } 1480 1481 const TargetInfo &getTarget() const { return Target; } 1482 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 1483 const TargetCodeGenInfo &getTargetHooks() const { 1484 return CGM.getTargetCodeGenInfo(); 1485 } 1486 1487 //===--------------------------------------------------------------------===// 1488 // Cleanups 1489 //===--------------------------------------------------------------------===// 1490 1491 typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty); 1492 1493 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1494 Address arrayEndPointer, 1495 QualType elementType, 1496 CharUnits elementAlignment, 1497 Destroyer *destroyer); 1498 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1499 llvm::Value *arrayEnd, 1500 QualType elementType, 1501 CharUnits elementAlignment, 1502 Destroyer *destroyer); 1503 1504 void pushDestroy(QualType::DestructionKind dtorKind, 1505 Address addr, QualType type); 1506 void pushEHDestroy(QualType::DestructionKind dtorKind, 1507 Address addr, QualType type); 1508 void pushDestroy(CleanupKind kind, Address addr, QualType type, 1509 Destroyer *destroyer, bool useEHCleanupForArray); 1510 void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr, 1511 QualType type, Destroyer *destroyer, 1512 bool useEHCleanupForArray); 1513 void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 1514 llvm::Value *CompletePtr, 1515 QualType ElementType); 1516 void pushStackRestore(CleanupKind kind, Address SPMem); 1517 void emitDestroy(Address addr, QualType type, Destroyer *destroyer, 1518 bool useEHCleanupForArray); 1519 llvm::Function *generateDestroyHelper(Address addr, QualType type, 1520 Destroyer *destroyer, 1521 bool useEHCleanupForArray, 1522 const VarDecl *VD); 1523 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 1524 QualType elementType, CharUnits elementAlign, 1525 Destroyer *destroyer, 1526 bool checkZeroLength, bool useEHCleanup); 1527 1528 Destroyer *getDestroyer(QualType::DestructionKind destructionKind); 1529 1530 /// Determines whether an EH cleanup is required to destroy a type 1531 /// with the given destruction kind. 1532 bool needsEHCleanup(QualType::DestructionKind kind) { 1533 switch (kind) { 1534 case QualType::DK_none: 1535 return false; 1536 case QualType::DK_cxx_destructor: 1537 case QualType::DK_objc_weak_lifetime: 1538 return getLangOpts().Exceptions; 1539 case QualType::DK_objc_strong_lifetime: 1540 return getLangOpts().Exceptions && 1541 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 1542 } 1543 llvm_unreachable("bad destruction kind"); 1544 } 1545 1546 CleanupKind getCleanupKind(QualType::DestructionKind kind) { 1547 return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); 1548 } 1549 1550 //===--------------------------------------------------------------------===// 1551 // Objective-C 1552 //===--------------------------------------------------------------------===// 1553 1554 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 1555 1556 void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD); 1557 1558 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 1559 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 1560 const ObjCPropertyImplDecl *PID); 1561 void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 1562 const ObjCPropertyImplDecl *propImpl, 1563 const ObjCMethodDecl *GetterMothodDecl, 1564 llvm::Constant *AtomicHelperFn); 1565 1566 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1567 ObjCMethodDecl *MD, bool ctor); 1568 1569 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 1570 /// for the given property. 1571 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 1572 const ObjCPropertyImplDecl *PID); 1573 void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1574 const ObjCPropertyImplDecl *propImpl, 1575 llvm::Constant *AtomicHelperFn); 1576 1577 //===--------------------------------------------------------------------===// 1578 // Block Bits 1579 //===--------------------------------------------------------------------===// 1580 1581 llvm::Value *EmitBlockLiteral(const BlockExpr *); 1582 static void destroyBlockInfos(CGBlockInfo *info); 1583 1584 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 1585 const CGBlockInfo &Info, 1586 const DeclMapTy &ldm, 1587 bool IsLambdaConversionToBlock); 1588 1589 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 1590 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 1591 llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( 1592 const ObjCPropertyImplDecl *PID); 1593 llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( 1594 const ObjCPropertyImplDecl *PID); 1595 llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); 1596 1597 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags); 1598 1599 class AutoVarEmission; 1600 1601 void emitByrefStructureInit(const AutoVarEmission &emission); 1602 void enterByrefCleanup(const AutoVarEmission &emission); 1603 1604 void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum, 1605 llvm::Value *ptr); 1606 1607 Address LoadBlockStruct(); 1608 Address GetAddrOfBlockDecl(const VarDecl *var, bool ByRef); 1609 1610 /// BuildBlockByrefAddress - Computes the location of the 1611 /// data in a variable which is declared as __block. 1612 Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V, 1613 bool followForward = true); 1614 Address emitBlockByrefAddress(Address baseAddr, 1615 const BlockByrefInfo &info, 1616 bool followForward, 1617 const llvm::Twine &name); 1618 1619 const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var); 1620 1621 QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args); 1622 1623 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1624 const CGFunctionInfo &FnInfo); 1625 /// \brief Emit code for the start of a function. 1626 /// \param Loc The location to be associated with the function. 1627 /// \param StartLoc The location of the function body. 1628 void StartFunction(GlobalDecl GD, 1629 QualType RetTy, 1630 llvm::Function *Fn, 1631 const CGFunctionInfo &FnInfo, 1632 const FunctionArgList &Args, 1633 SourceLocation Loc = SourceLocation(), 1634 SourceLocation StartLoc = SourceLocation()); 1635 1636 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor); 1637 1638 void EmitConstructorBody(FunctionArgList &Args); 1639 void EmitDestructorBody(FunctionArgList &Args); 1640 void emitImplicitAssignmentOperatorBody(FunctionArgList &Args); 1641 void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body); 1642 void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S); 1643 1644 void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator, 1645 CallArgList &CallArgs); 1646 void EmitLambdaToBlockPointerBody(FunctionArgList &Args); 1647 void EmitLambdaBlockInvokeBody(); 1648 void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD); 1649 void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD); 1650 void EmitAsanPrologueOrEpilogue(bool Prologue); 1651 1652 /// \brief Emit the unified return block, trying to avoid its emission when 1653 /// possible. 1654 /// \return The debug location of the user written return statement if the 1655 /// return block is is avoided. 1656 llvm::DebugLoc EmitReturnBlock(); 1657 1658 /// FinishFunction - Complete IR generation of the current function. It is 1659 /// legal to call this function even if there is no current insertion point. 1660 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 1661 1662 void StartThunk(llvm::Function *Fn, GlobalDecl GD, 1663 const CGFunctionInfo &FnInfo); 1664 1665 void EmitCallAndReturnForThunk(llvm::Constant *Callee, 1666 const ThunkInfo *Thunk); 1667 1668 void FinishThunk(); 1669 1670 /// Emit a musttail call for a thunk with a potentially adjusted this pointer. 1671 void EmitMustTailThunk(const CXXMethodDecl *MD, llvm::Value *AdjustedThisPtr, 1672 llvm::Value *Callee); 1673 1674 /// Generate a thunk for the given method. 1675 void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1676 GlobalDecl GD, const ThunkInfo &Thunk); 1677 1678 llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn, 1679 const CGFunctionInfo &FnInfo, 1680 GlobalDecl GD, const ThunkInfo &Thunk); 1681 1682 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 1683 FunctionArgList &Args); 1684 1685 void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init); 1686 1687 /// Struct with all informations about dynamic [sub]class needed to set vptr. 1688 struct VPtr { 1689 BaseSubobject Base; 1690 const CXXRecordDecl *NearestVBase; 1691 CharUnits OffsetFromNearestVBase; 1692 const CXXRecordDecl *VTableClass; 1693 }; 1694 1695 /// Initialize the vtable pointer of the given subobject. 1696 void InitializeVTablePointer(const VPtr &vptr); 1697 1698 typedef llvm::SmallVector<VPtr, 4> VPtrsVector; 1699 1700 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 1701 VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass); 1702 1703 void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase, 1704 CharUnits OffsetFromNearestVBase, 1705 bool BaseIsNonVirtualPrimaryBase, 1706 const CXXRecordDecl *VTableClass, 1707 VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs); 1708 1709 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 1710 1711 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 1712 /// to by This. 1713 llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy, 1714 const CXXRecordDecl *VTableClass); 1715 1716 enum CFITypeCheckKind { 1717 CFITCK_VCall, 1718 CFITCK_NVCall, 1719 CFITCK_DerivedCast, 1720 CFITCK_UnrelatedCast, 1721 CFITCK_ICall, 1722 }; 1723 1724 /// \brief Derived is the presumed address of an object of type T after a 1725 /// cast. If T is a polymorphic class type, emit a check that the virtual 1726 /// table for Derived belongs to a class derived from T. 1727 void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived, 1728 bool MayBeNull, CFITypeCheckKind TCK, 1729 SourceLocation Loc); 1730 1731 /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable. 1732 /// If vptr CFI is enabled, emit a check that VTable is valid. 1733 void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable, 1734 CFITypeCheckKind TCK, SourceLocation Loc); 1735 1736 /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for 1737 /// RD using llvm.type.test. 1738 void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable, 1739 CFITypeCheckKind TCK, SourceLocation Loc); 1740 1741 /// If whole-program virtual table optimization is enabled, emit an assumption 1742 /// that VTable is a member of RD's type identifier. Or, if vptr CFI is 1743 /// enabled, emit a check that VTable is a member of RD's type identifier. 1744 void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, 1745 llvm::Value *VTable, SourceLocation Loc); 1746 1747 /// Returns whether we should perform a type checked load when loading a 1748 /// virtual function for virtual calls to members of RD. This is generally 1749 /// true when both vcall CFI and whole-program-vtables are enabled. 1750 bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD); 1751 1752 /// Emit a type checked load from the given vtable. 1753 llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable, 1754 uint64_t VTableByteOffset); 1755 1756 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 1757 /// given phase of destruction for a destructor. The end result 1758 /// should call destructors on members and base classes in reverse 1759 /// order of their construction. 1760 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 1761 1762 /// ShouldInstrumentFunction - Return true if the current function should be 1763 /// instrumented with __cyg_profile_func_* calls 1764 bool ShouldInstrumentFunction(); 1765 1766 /// ShouldXRayInstrument - Return true if the current function should be 1767 /// instrumented with XRay nop sleds. 1768 bool ShouldXRayInstrumentFunction() const; 1769 1770 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 1771 /// instrumentation function with the current function and the call site, if 1772 /// function instrumentation is enabled. 1773 void EmitFunctionInstrumentation(const char *Fn); 1774 1775 /// EmitMCountInstrumentation - Emit call to .mcount. 1776 void EmitMCountInstrumentation(); 1777 1778 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 1779 /// arguments for the given function. This is also responsible for naming the 1780 /// LLVM function arguments. 1781 void EmitFunctionProlog(const CGFunctionInfo &FI, 1782 llvm::Function *Fn, 1783 const FunctionArgList &Args); 1784 1785 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 1786 /// given temporary. 1787 void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc, 1788 SourceLocation EndLoc); 1789 1790 /// Emit a test that checks if the return value \p RV is nonnull. 1791 void EmitReturnValueCheck(llvm::Value *RV); 1792 1793 /// EmitStartEHSpec - Emit the start of the exception spec. 1794 void EmitStartEHSpec(const Decl *D); 1795 1796 /// EmitEndEHSpec - Emit the end of the exception spec. 1797 void EmitEndEHSpec(const Decl *D); 1798 1799 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 1800 llvm::BasicBlock *getTerminateLandingPad(); 1801 1802 /// getTerminateHandler - Return a handler (not a landing pad, just 1803 /// a catch handler) that just calls terminate. This is used when 1804 /// a terminate scope encloses a try. 1805 llvm::BasicBlock *getTerminateHandler(); 1806 1807 llvm::Type *ConvertTypeForMem(QualType T); 1808 llvm::Type *ConvertType(QualType T); 1809 llvm::Type *ConvertType(const TypeDecl *T) { 1810 return ConvertType(getContext().getTypeDeclType(T)); 1811 } 1812 1813 /// LoadObjCSelf - Load the value of self. This function is only valid while 1814 /// generating code for an Objective-C method. 1815 llvm::Value *LoadObjCSelf(); 1816 1817 /// TypeOfSelfObject - Return type of object that this self represents. 1818 QualType TypeOfSelfObject(); 1819 1820 /// hasAggregateLLVMType - Return true if the specified AST type will map into 1821 /// an aggregate LLVM type or is void. 1822 static TypeEvaluationKind getEvaluationKind(QualType T); 1823 1824 static bool hasScalarEvaluationKind(QualType T) { 1825 return getEvaluationKind(T) == TEK_Scalar; 1826 } 1827 1828 static bool hasAggregateEvaluationKind(QualType T) { 1829 return getEvaluationKind(T) == TEK_Aggregate; 1830 } 1831 1832 /// createBasicBlock - Create an LLVM basic block. 1833 llvm::BasicBlock *createBasicBlock(const Twine &name = "", 1834 llvm::Function *parent = nullptr, 1835 llvm::BasicBlock *before = nullptr) { 1836 #ifdef NDEBUG 1837 return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before); 1838 #else 1839 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 1840 #endif 1841 } 1842 1843 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 1844 /// label maps to. 1845 JumpDest getJumpDestForLabel(const LabelDecl *S); 1846 1847 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 1848 /// another basic block, simplify it. This assumes that no other code could 1849 /// potentially reference the basic block. 1850 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 1851 1852 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 1853 /// adding a fall-through branch from the current insert block if 1854 /// necessary. It is legal to call this function even if there is no current 1855 /// insertion point. 1856 /// 1857 /// IsFinished - If true, indicates that the caller has finished emitting 1858 /// branches to the given block and does not expect to emit code into it. This 1859 /// means the block can be ignored if it is unreachable. 1860 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 1861 1862 /// EmitBlockAfterUses - Emit the given block somewhere hopefully 1863 /// near its uses, and leave the insertion point in it. 1864 void EmitBlockAfterUses(llvm::BasicBlock *BB); 1865 1866 /// EmitBranch - Emit a branch to the specified basic block from the current 1867 /// insert block, taking care to avoid creation of branches from dummy 1868 /// blocks. It is legal to call this function even if there is no current 1869 /// insertion point. 1870 /// 1871 /// This function clears the current insertion point. The caller should follow 1872 /// calls to this function with calls to Emit*Block prior to generation new 1873 /// code. 1874 void EmitBranch(llvm::BasicBlock *Block); 1875 1876 /// HaveInsertPoint - True if an insertion point is defined. If not, this 1877 /// indicates that the current code being emitted is unreachable. 1878 bool HaveInsertPoint() const { 1879 return Builder.GetInsertBlock() != nullptr; 1880 } 1881 1882 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 1883 /// emitted IR has a place to go. Note that by definition, if this function 1884 /// creates a block then that block is unreachable; callers may do better to 1885 /// detect when no insertion point is defined and simply skip IR generation. 1886 void EnsureInsertPoint() { 1887 if (!HaveInsertPoint()) 1888 EmitBlock(createBasicBlock()); 1889 } 1890 1891 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1892 /// specified stmt yet. 1893 void ErrorUnsupported(const Stmt *S, const char *Type); 1894 1895 //===--------------------------------------------------------------------===// 1896 // Helpers 1897 //===--------------------------------------------------------------------===// 1898 1899 LValue MakeAddrLValue(Address Addr, QualType T, 1900 LValueBaseInfo BaseInfo = 1901 LValueBaseInfo(AlignmentSource::Type)) { 1902 return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, 1903 CGM.getTBAAInfo(T)); 1904 } 1905 1906 LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 1907 LValueBaseInfo BaseInfo = 1908 LValueBaseInfo(AlignmentSource::Type)) { 1909 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), 1910 BaseInfo, CGM.getTBAAInfo(T)); 1911 } 1912 1913 LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T); 1914 LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T); 1915 CharUnits getNaturalTypeAlignment(QualType T, 1916 LValueBaseInfo *BaseInfo = nullptr, 1917 bool forPointeeType = false); 1918 CharUnits getNaturalPointeeTypeAlignment(QualType T, 1919 LValueBaseInfo *BaseInfo = nullptr); 1920 1921 Address EmitLoadOfReference(Address Ref, const ReferenceType *RefTy, 1922 LValueBaseInfo *BaseInfo = nullptr); 1923 LValue EmitLoadOfReferenceLValue(Address Ref, const ReferenceType *RefTy); 1924 1925 Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy, 1926 LValueBaseInfo *BaseInfo = nullptr); 1927 LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy); 1928 1929 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 1930 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 1931 /// insertion point of the builder. The caller is responsible for setting an 1932 /// appropriate alignment on 1933 /// the alloca. 1934 /// 1935 /// \p ArraySize is the number of array elements to be allocated if it 1936 /// is not nullptr. 1937 /// 1938 /// LangAS::Default is the address space of pointers to local variables and 1939 /// temporaries, as exposed in the source language. In certain 1940 /// configurations, this is not the same as the alloca address space, and a 1941 /// cast is needed to lift the pointer from the alloca AS into 1942 /// LangAS::Default. This can happen when the target uses a restricted 1943 /// address space for the stack but the source language requires 1944 /// LangAS::Default to be a generic address space. The latter condition is 1945 /// common for most programming languages; OpenCL is an exception in that 1946 /// LangAS::Default is the private address space, which naturally maps 1947 /// to the stack. 1948 /// 1949 /// Because the address of a temporary is often exposed to the program in 1950 /// various ways, this function will perform the cast by default. The cast 1951 /// may be avoided by passing false as \p CastToDefaultAddrSpace; this is 1952 /// more efficient if the caller knows that the address will not be exposed. 1953 llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp", 1954 llvm::Value *ArraySize = nullptr); 1955 Address CreateTempAlloca(llvm::Type *Ty, CharUnits align, 1956 const Twine &Name = "tmp", 1957 llvm::Value *ArraySize = nullptr, 1958 bool CastToDefaultAddrSpace = true); 1959 1960 /// CreateDefaultAlignedTempAlloca - This creates an alloca with the 1961 /// default ABI alignment of the given LLVM type. 1962 /// 1963 /// IMPORTANT NOTE: This is *not* generally the right alignment for 1964 /// any given AST type that happens to have been lowered to the 1965 /// given IR type. This should only ever be used for function-local, 1966 /// IR-driven manipulations like saving and restoring a value. Do 1967 /// not hand this address off to arbitrary IRGen routines, and especially 1968 /// do not pass it as an argument to a function that might expect a 1969 /// properly ABI-aligned value. 1970 Address CreateDefaultAlignTempAlloca(llvm::Type *Ty, 1971 const Twine &Name = "tmp"); 1972 1973 /// InitTempAlloca - Provide an initial value for the given alloca which 1974 /// will be observable at all locations in the function. 1975 /// 1976 /// The address should be something that was returned from one of 1977 /// the CreateTempAlloca or CreateMemTemp routines, and the 1978 /// initializer must be valid in the entry block (i.e. it must 1979 /// either be a constant or an argument value). 1980 void InitTempAlloca(Address Alloca, llvm::Value *Value); 1981 1982 /// CreateIRTemp - Create a temporary IR object of the given type, with 1983 /// appropriate alignment. This routine should only be used when an temporary 1984 /// value needs to be stored into an alloca (for example, to avoid explicit 1985 /// PHI construction), but the type is the IR type, not the type appropriate 1986 /// for storing in memory. 1987 /// 1988 /// That is, this is exactly equivalent to CreateMemTemp, but calling 1989 /// ConvertType instead of ConvertTypeForMem. 1990 Address CreateIRTemp(QualType T, const Twine &Name = "tmp"); 1991 1992 /// CreateMemTemp - Create a temporary memory object of the given type, with 1993 /// appropriate alignment. Cast it to the default address space if 1994 /// \p CastToDefaultAddrSpace is true. 1995 Address CreateMemTemp(QualType T, const Twine &Name = "tmp", 1996 bool CastToDefaultAddrSpace = true); 1997 Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp", 1998 bool CastToDefaultAddrSpace = true); 1999 2000 /// CreateAggTemp - Create a temporary memory object for the given 2001 /// aggregate type. 2002 AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") { 2003 return AggValueSlot::forAddr(CreateMemTemp(T, Name), 2004 T.getQualifiers(), 2005 AggValueSlot::IsNotDestructed, 2006 AggValueSlot::DoesNotNeedGCBarriers, 2007 AggValueSlot::IsNotAliased); 2008 } 2009 2010 /// Emit a cast to void* in the appropriate address space. 2011 llvm::Value *EmitCastToVoidPtr(llvm::Value *value); 2012 2013 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 2014 /// expression and compare the result against zero, returning an Int1Ty value. 2015 llvm::Value *EvaluateExprAsBool(const Expr *E); 2016 2017 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 2018 void EmitIgnoredExpr(const Expr *E); 2019 2020 /// EmitAnyExpr - Emit code to compute the specified expression which can have 2021 /// any type. The result is returned as an RValue struct. If this is an 2022 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 2023 /// the result should be returned. 2024 /// 2025 /// \param ignoreResult True if the resulting value isn't used. 2026 RValue EmitAnyExpr(const Expr *E, 2027 AggValueSlot aggSlot = AggValueSlot::ignored(), 2028 bool ignoreResult = false); 2029 2030 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 2031 // or the value of the expression, depending on how va_list is defined. 2032 Address EmitVAListRef(const Expr *E); 2033 2034 /// Emit a "reference" to a __builtin_ms_va_list; this is 2035 /// always the value of the expression, because a __builtin_ms_va_list is a 2036 /// pointer to a char. 2037 Address EmitMSVAListRef(const Expr *E); 2038 2039 /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will 2040 /// always be accessible even if no aggregate location is provided. 2041 RValue EmitAnyExprToTemp(const Expr *E); 2042 2043 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 2044 /// arbitrary expression into the given memory location. 2045 void EmitAnyExprToMem(const Expr *E, Address Location, 2046 Qualifiers Quals, bool IsInitializer); 2047 2048 void EmitAnyExprToExn(const Expr *E, Address Addr); 2049 2050 /// EmitExprAsInit - Emits the code necessary to initialize a 2051 /// location in memory with the given initializer. 2052 void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2053 bool capturedByInit); 2054 2055 /// hasVolatileMember - returns true if aggregate type has a volatile 2056 /// member. 2057 bool hasVolatileMember(QualType T) { 2058 if (const RecordType *RT = T->getAs<RecordType>()) { 2059 const RecordDecl *RD = cast<RecordDecl>(RT->getDecl()); 2060 return RD->hasVolatileMember(); 2061 } 2062 return false; 2063 } 2064 /// EmitAggregateCopy - Emit an aggregate assignment. 2065 /// 2066 /// The difference to EmitAggregateCopy is that tail padding is not copied. 2067 /// This is required for correctness when assigning non-POD structures in C++. 2068 void EmitAggregateAssign(Address DestPtr, Address SrcPtr, 2069 QualType EltTy) { 2070 bool IsVolatile = hasVolatileMember(EltTy); 2071 EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, true); 2072 } 2073 2074 void EmitAggregateCopyCtor(Address DestPtr, Address SrcPtr, 2075 QualType DestTy, QualType SrcTy) { 2076 EmitAggregateCopy(DestPtr, SrcPtr, SrcTy, /*IsVolatile=*/false, 2077 /*IsAssignment=*/false); 2078 } 2079 2080 /// EmitAggregateCopy - Emit an aggregate copy. 2081 /// 2082 /// \param isVolatile - True iff either the source or the destination is 2083 /// volatile. 2084 /// \param isAssignment - If false, allow padding to be copied. This often 2085 /// yields more efficient. 2086 void EmitAggregateCopy(Address DestPtr, Address SrcPtr, 2087 QualType EltTy, bool isVolatile=false, 2088 bool isAssignment = false); 2089 2090 /// GetAddrOfLocalVar - Return the address of a local variable. 2091 Address GetAddrOfLocalVar(const VarDecl *VD) { 2092 auto it = LocalDeclMap.find(VD); 2093 assert(it != LocalDeclMap.end() && 2094 "Invalid argument to GetAddrOfLocalVar(), no decl!"); 2095 return it->second; 2096 } 2097 2098 /// getOpaqueLValueMapping - Given an opaque value expression (which 2099 /// must be mapped to an l-value), return its mapping. 2100 const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) { 2101 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 2102 2103 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 2104 it = OpaqueLValues.find(e); 2105 assert(it != OpaqueLValues.end() && "no mapping for opaque value!"); 2106 return it->second; 2107 } 2108 2109 /// getOpaqueRValueMapping - Given an opaque value expression (which 2110 /// must be mapped to an r-value), return its mapping. 2111 const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) { 2112 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 2113 2114 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 2115 it = OpaqueRValues.find(e); 2116 assert(it != OpaqueRValues.end() && "no mapping for opaque value!"); 2117 return it->second; 2118 } 2119 2120 /// Get the index of the current ArrayInitLoopExpr, if any. 2121 llvm::Value *getArrayInitIndex() { return ArrayInitIndex; } 2122 2123 /// getAccessedFieldNo - Given an encoded value and a result number, return 2124 /// the input field number being accessed. 2125 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 2126 2127 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 2128 llvm::BasicBlock *GetIndirectGotoBlock(); 2129 2130 /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts. 2131 static bool IsWrappedCXXThis(const Expr *E); 2132 2133 /// EmitNullInitialization - Generate code to set a value of the given type to 2134 /// null, If the type contains data member pointers, they will be initialized 2135 /// to -1 in accordance with the Itanium C++ ABI. 2136 void EmitNullInitialization(Address DestPtr, QualType Ty); 2137 2138 /// Emits a call to an LLVM variable-argument intrinsic, either 2139 /// \c llvm.va_start or \c llvm.va_end. 2140 /// \param ArgValue A reference to the \c va_list as emitted by either 2141 /// \c EmitVAListRef or \c EmitMSVAListRef. 2142 /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise, 2143 /// calls \c llvm.va_end. 2144 llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart); 2145 2146 /// Generate code to get an argument from the passed in pointer 2147 /// and update it accordingly. 2148 /// \param VE The \c VAArgExpr for which to generate code. 2149 /// \param VAListAddr Receives a reference to the \c va_list as emitted by 2150 /// either \c EmitVAListRef or \c EmitMSVAListRef. 2151 /// \returns A pointer to the argument. 2152 // FIXME: We should be able to get rid of this method and use the va_arg 2153 // instruction in LLVM instead once it works well enough. 2154 Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr); 2155 2156 /// emitArrayLength - Compute the length of an array, even if it's a 2157 /// VLA, and drill down to the base element type. 2158 llvm::Value *emitArrayLength(const ArrayType *arrayType, 2159 QualType &baseType, 2160 Address &addr); 2161 2162 /// EmitVLASize - Capture all the sizes for the VLA expressions in 2163 /// the given variably-modified type and store them in the VLASizeMap. 2164 /// 2165 /// This function can be called with a null (unreachable) insert point. 2166 void EmitVariablyModifiedType(QualType Ty); 2167 2168 /// getVLASize - Returns an LLVM value that corresponds to the size, 2169 /// in non-variably-sized elements, of a variable length array type, 2170 /// plus that largest non-variably-sized element type. Assumes that 2171 /// the type has already been emitted with EmitVariablyModifiedType. 2172 std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla); 2173 std::pair<llvm::Value*,QualType> getVLASize(QualType vla); 2174 2175 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 2176 /// generating code for an C++ member function. 2177 llvm::Value *LoadCXXThis() { 2178 assert(CXXThisValue && "no 'this' value for this function"); 2179 return CXXThisValue; 2180 } 2181 Address LoadCXXThisAddress(); 2182 2183 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 2184 /// virtual bases. 2185 // FIXME: Every place that calls LoadCXXVTT is something 2186 // that needs to be abstracted properly. 2187 llvm::Value *LoadCXXVTT() { 2188 assert(CXXStructorImplicitParamValue && "no VTT value for this function"); 2189 return CXXStructorImplicitParamValue; 2190 } 2191 2192 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 2193 /// complete class to the given direct base. 2194 Address 2195 GetAddressOfDirectBaseInCompleteClass(Address Value, 2196 const CXXRecordDecl *Derived, 2197 const CXXRecordDecl *Base, 2198 bool BaseIsVirtual); 2199 2200 static bool ShouldNullCheckClassCastValue(const CastExpr *Cast); 2201 2202 /// GetAddressOfBaseClass - This function will add the necessary delta to the 2203 /// load of 'this' and returns address of the base class. 2204 Address GetAddressOfBaseClass(Address Value, 2205 const CXXRecordDecl *Derived, 2206 CastExpr::path_const_iterator PathBegin, 2207 CastExpr::path_const_iterator PathEnd, 2208 bool NullCheckValue, SourceLocation Loc); 2209 2210 Address GetAddressOfDerivedClass(Address Value, 2211 const CXXRecordDecl *Derived, 2212 CastExpr::path_const_iterator PathBegin, 2213 CastExpr::path_const_iterator PathEnd, 2214 bool NullCheckValue); 2215 2216 /// GetVTTParameter - Return the VTT parameter that should be passed to a 2217 /// base constructor/destructor with virtual bases. 2218 /// FIXME: VTTs are Itanium ABI-specific, so the definition should move 2219 /// to ItaniumCXXABI.cpp together with all the references to VTT. 2220 llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase, 2221 bool Delegating); 2222 2223 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 2224 CXXCtorType CtorType, 2225 const FunctionArgList &Args, 2226 SourceLocation Loc); 2227 // It's important not to confuse this and the previous function. Delegating 2228 // constructors are the C++0x feature. The constructor delegate optimization 2229 // is used to reduce duplication in the base and complete consturctors where 2230 // they are substantially the same. 2231 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2232 const FunctionArgList &Args); 2233 2234 /// Emit a call to an inheriting constructor (that is, one that invokes a 2235 /// constructor inherited from a base class) by inlining its definition. This 2236 /// is necessary if the ABI does not support forwarding the arguments to the 2237 /// base class constructor (because they're variadic or similar). 2238 void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2239 CXXCtorType CtorType, 2240 bool ForVirtualBase, 2241 bool Delegating, 2242 CallArgList &Args); 2243 2244 /// Emit a call to a constructor inherited from a base class, passing the 2245 /// current constructor's arguments along unmodified (without even making 2246 /// a copy). 2247 void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D, 2248 bool ForVirtualBase, Address This, 2249 bool InheritedFromVBase, 2250 const CXXInheritedCtorInitExpr *E); 2251 2252 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2253 bool ForVirtualBase, bool Delegating, 2254 Address This, const CXXConstructExpr *E); 2255 2256 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2257 bool ForVirtualBase, bool Delegating, 2258 Address This, CallArgList &Args); 2259 2260 /// Emit assumption load for all bases. Requires to be be called only on 2261 /// most-derived class and not under construction of the object. 2262 void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This); 2263 2264 /// Emit assumption that vptr load == global vtable. 2265 void EmitVTableAssumptionLoad(const VPtr &vptr, Address This); 2266 2267 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 2268 Address This, Address Src, 2269 const CXXConstructExpr *E); 2270 2271 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2272 const ArrayType *ArrayTy, 2273 Address ArrayPtr, 2274 const CXXConstructExpr *E, 2275 bool ZeroInitialization = false); 2276 2277 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2278 llvm::Value *NumElements, 2279 Address ArrayPtr, 2280 const CXXConstructExpr *E, 2281 bool ZeroInitialization = false); 2282 2283 static Destroyer destroyCXXObject; 2284 2285 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 2286 bool ForVirtualBase, bool Delegating, 2287 Address This); 2288 2289 void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, 2290 llvm::Type *ElementTy, Address NewPtr, 2291 llvm::Value *NumElements, 2292 llvm::Value *AllocSizeWithoutCookie); 2293 2294 void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, 2295 Address Ptr); 2296 2297 llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr); 2298 void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr); 2299 2300 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 2301 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 2302 2303 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 2304 QualType DeleteTy, llvm::Value *NumElements = nullptr, 2305 CharUnits CookieSize = CharUnits()); 2306 2307 RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 2308 const Expr *Arg, bool IsDelete); 2309 2310 llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E); 2311 llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE); 2312 Address EmitCXXUuidofExpr(const CXXUuidofExpr *E); 2313 2314 /// \brief Situations in which we might emit a check for the suitability of a 2315 /// pointer or glvalue. 2316 enum TypeCheckKind { 2317 /// Checking the operand of a load. Must be suitably sized and aligned. 2318 TCK_Load, 2319 /// Checking the destination of a store. Must be suitably sized and aligned. 2320 TCK_Store, 2321 /// Checking the bound value in a reference binding. Must be suitably sized 2322 /// and aligned, but is not required to refer to an object (until the 2323 /// reference is used), per core issue 453. 2324 TCK_ReferenceBinding, 2325 /// Checking the object expression in a non-static data member access. Must 2326 /// be an object within its lifetime. 2327 TCK_MemberAccess, 2328 /// Checking the 'this' pointer for a call to a non-static member function. 2329 /// Must be an object within its lifetime. 2330 TCK_MemberCall, 2331 /// Checking the 'this' pointer for a constructor call. 2332 TCK_ConstructorCall, 2333 /// Checking the operand of a static_cast to a derived pointer type. Must be 2334 /// null or an object within its lifetime. 2335 TCK_DowncastPointer, 2336 /// Checking the operand of a static_cast to a derived reference type. Must 2337 /// be an object within its lifetime. 2338 TCK_DowncastReference, 2339 /// Checking the operand of a cast to a base object. Must be suitably sized 2340 /// and aligned. 2341 TCK_Upcast, 2342 /// Checking the operand of a cast to a virtual base object. Must be an 2343 /// object within its lifetime. 2344 TCK_UpcastToVirtualBase, 2345 /// Checking the value assigned to a _Nonnull pointer. Must not be null. 2346 TCK_NonnullAssign 2347 }; 2348 2349 /// \brief Whether any type-checking sanitizers are enabled. If \c false, 2350 /// calls to EmitTypeCheck can be skipped. 2351 bool sanitizePerformTypeCheck() const; 2352 2353 /// \brief Emit a check that \p V is the address of storage of the 2354 /// appropriate size and alignment for an object of type \p Type. 2355 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, 2356 QualType Type, CharUnits Alignment = CharUnits::Zero(), 2357 SanitizerSet SkippedChecks = SanitizerSet()); 2358 2359 /// \brief Emit a check that \p Base points into an array object, which 2360 /// we can access at index \p Index. \p Accessed should be \c false if we 2361 /// this expression is used as an lvalue, for instance in "&Arr[Idx]". 2362 void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, 2363 QualType IndexType, bool Accessed); 2364 2365 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 2366 bool isInc, bool isPre); 2367 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 2368 bool isInc, bool isPre); 2369 2370 void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment, 2371 llvm::Value *OffsetValue = nullptr) { 2372 Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment, 2373 OffsetValue); 2374 } 2375 2376 /// Converts Location to a DebugLoc, if debug information is enabled. 2377 llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location); 2378 2379 2380 //===--------------------------------------------------------------------===// 2381 // Declaration Emission 2382 //===--------------------------------------------------------------------===// 2383 2384 /// EmitDecl - Emit a declaration. 2385 /// 2386 /// This function can be called with a null (unreachable) insert point. 2387 void EmitDecl(const Decl &D); 2388 2389 /// EmitVarDecl - Emit a local variable declaration. 2390 /// 2391 /// This function can be called with a null (unreachable) insert point. 2392 void EmitVarDecl(const VarDecl &D); 2393 2394 void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2395 bool capturedByInit); 2396 2397 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 2398 llvm::Value *Address); 2399 2400 /// \brief Determine whether the given initializer is trivial in the sense 2401 /// that it requires no code to be generated. 2402 bool isTrivialInitializer(const Expr *Init); 2403 2404 /// EmitAutoVarDecl - Emit an auto variable declaration. 2405 /// 2406 /// This function can be called with a null (unreachable) insert point. 2407 void EmitAutoVarDecl(const VarDecl &D); 2408 2409 class AutoVarEmission { 2410 friend class CodeGenFunction; 2411 2412 const VarDecl *Variable; 2413 2414 /// The address of the alloca. Invalid if the variable was emitted 2415 /// as a global constant. 2416 Address Addr; 2417 2418 llvm::Value *NRVOFlag; 2419 2420 /// True if the variable is a __block variable. 2421 bool IsByRef; 2422 2423 /// True if the variable is of aggregate type and has a constant 2424 /// initializer. 2425 bool IsConstantAggregate; 2426 2427 /// Non-null if we should use lifetime annotations. 2428 llvm::Value *SizeForLifetimeMarkers; 2429 2430 struct Invalid {}; 2431 AutoVarEmission(Invalid) : Variable(nullptr), Addr(Address::invalid()) {} 2432 2433 AutoVarEmission(const VarDecl &variable) 2434 : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr), 2435 IsByRef(false), IsConstantAggregate(false), 2436 SizeForLifetimeMarkers(nullptr) {} 2437 2438 bool wasEmittedAsGlobal() const { return !Addr.isValid(); } 2439 2440 public: 2441 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 2442 2443 bool useLifetimeMarkers() const { 2444 return SizeForLifetimeMarkers != nullptr; 2445 } 2446 llvm::Value *getSizeForLifetimeMarkers() const { 2447 assert(useLifetimeMarkers()); 2448 return SizeForLifetimeMarkers; 2449 } 2450 2451 /// Returns the raw, allocated address, which is not necessarily 2452 /// the address of the object itself. 2453 Address getAllocatedAddress() const { 2454 return Addr; 2455 } 2456 2457 /// Returns the address of the object within this declaration. 2458 /// Note that this does not chase the forwarding pointer for 2459 /// __block decls. 2460 Address getObjectAddress(CodeGenFunction &CGF) const { 2461 if (!IsByRef) return Addr; 2462 2463 return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false); 2464 } 2465 }; 2466 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 2467 void EmitAutoVarInit(const AutoVarEmission &emission); 2468 void EmitAutoVarCleanups(const AutoVarEmission &emission); 2469 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 2470 QualType::DestructionKind dtorKind); 2471 2472 void EmitStaticVarDecl(const VarDecl &D, 2473 llvm::GlobalValue::LinkageTypes Linkage); 2474 2475 class ParamValue { 2476 llvm::Value *Value; 2477 unsigned Alignment; 2478 ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {} 2479 public: 2480 static ParamValue forDirect(llvm::Value *value) { 2481 return ParamValue(value, 0); 2482 } 2483 static ParamValue forIndirect(Address addr) { 2484 assert(!addr.getAlignment().isZero()); 2485 return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity()); 2486 } 2487 2488 bool isIndirect() const { return Alignment != 0; } 2489 llvm::Value *getAnyValue() const { return Value; } 2490 2491 llvm::Value *getDirectValue() const { 2492 assert(!isIndirect()); 2493 return Value; 2494 } 2495 2496 Address getIndirectAddress() const { 2497 assert(isIndirect()); 2498 return Address(Value, CharUnits::fromQuantity(Alignment)); 2499 } 2500 }; 2501 2502 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 2503 void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo); 2504 2505 /// protectFromPeepholes - Protect a value that we're intending to 2506 /// store to the side, but which will probably be used later, from 2507 /// aggressive peepholing optimizations that might delete it. 2508 /// 2509 /// Pass the result to unprotectFromPeepholes to declare that 2510 /// protection is no longer required. 2511 /// 2512 /// There's no particular reason why this shouldn't apply to 2513 /// l-values, it's just that no existing peepholes work on pointers. 2514 PeepholeProtection protectFromPeepholes(RValue rvalue); 2515 void unprotectFromPeepholes(PeepholeProtection protection); 2516 2517 void EmitAlignmentAssumption(llvm::Value *PtrValue, llvm::Value *Alignment, 2518 llvm::Value *OffsetValue = nullptr) { 2519 Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment, 2520 OffsetValue); 2521 } 2522 2523 //===--------------------------------------------------------------------===// 2524 // Statement Emission 2525 //===--------------------------------------------------------------------===// 2526 2527 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 2528 void EmitStopPoint(const Stmt *S); 2529 2530 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 2531 /// this function even if there is no current insertion point. 2532 /// 2533 /// This function may clear the current insertion point; callers should use 2534 /// EnsureInsertPoint if they wish to subsequently generate code without first 2535 /// calling EmitBlock, EmitBranch, or EmitStmt. 2536 void EmitStmt(const Stmt *S); 2537 2538 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 2539 /// necessarily require an insertion point or debug information; typically 2540 /// because the statement amounts to a jump or a container of other 2541 /// statements. 2542 /// 2543 /// \return True if the statement was handled. 2544 bool EmitSimpleStmt(const Stmt *S); 2545 2546 Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 2547 AggValueSlot AVS = AggValueSlot::ignored()); 2548 Address EmitCompoundStmtWithoutScope(const CompoundStmt &S, 2549 bool GetLast = false, 2550 AggValueSlot AVS = 2551 AggValueSlot::ignored()); 2552 2553 /// EmitLabel - Emit the block for the given label. It is legal to call this 2554 /// function even if there is no current insertion point. 2555 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 2556 2557 void EmitLabelStmt(const LabelStmt &S); 2558 void EmitAttributedStmt(const AttributedStmt &S); 2559 void EmitGotoStmt(const GotoStmt &S); 2560 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 2561 void EmitIfStmt(const IfStmt &S); 2562 2563 void EmitWhileStmt(const WhileStmt &S, 2564 ArrayRef<const Attr *> Attrs = None); 2565 void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None); 2566 void EmitForStmt(const ForStmt &S, 2567 ArrayRef<const Attr *> Attrs = None); 2568 void EmitReturnStmt(const ReturnStmt &S); 2569 void EmitDeclStmt(const DeclStmt &S); 2570 void EmitBreakStmt(const BreakStmt &S); 2571 void EmitContinueStmt(const ContinueStmt &S); 2572 void EmitSwitchStmt(const SwitchStmt &S); 2573 void EmitDefaultStmt(const DefaultStmt &S); 2574 void EmitCaseStmt(const CaseStmt &S); 2575 void EmitCaseStmtRange(const CaseStmt &S); 2576 void EmitAsmStmt(const AsmStmt &S); 2577 2578 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 2579 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 2580 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 2581 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 2582 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 2583 2584 void EmitCoroutineBody(const CoroutineBodyStmt &S); 2585 void EmitCoreturnStmt(const CoreturnStmt &S); 2586 RValue EmitCoawaitExpr(const CoawaitExpr &E, 2587 AggValueSlot aggSlot = AggValueSlot::ignored(), 2588 bool ignoreResult = false); 2589 LValue EmitCoawaitLValue(const CoawaitExpr *E); 2590 RValue EmitCoyieldExpr(const CoyieldExpr &E, 2591 AggValueSlot aggSlot = AggValueSlot::ignored(), 2592 bool ignoreResult = false); 2593 LValue EmitCoyieldLValue(const CoyieldExpr *E); 2594 RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID); 2595 2596 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 2597 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 2598 2599 void EmitCXXTryStmt(const CXXTryStmt &S); 2600 void EmitSEHTryStmt(const SEHTryStmt &S); 2601 void EmitSEHLeaveStmt(const SEHLeaveStmt &S); 2602 void EnterSEHTryStmt(const SEHTryStmt &S); 2603 void ExitSEHTryStmt(const SEHTryStmt &S); 2604 2605 void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter, 2606 const Stmt *OutlinedStmt); 2607 2608 llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF, 2609 const SEHExceptStmt &Except); 2610 2611 llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF, 2612 const SEHFinallyStmt &Finally); 2613 2614 void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF, 2615 llvm::Value *ParentFP, 2616 llvm::Value *EntryEBP); 2617 llvm::Value *EmitSEHExceptionCode(); 2618 llvm::Value *EmitSEHExceptionInfo(); 2619 llvm::Value *EmitSEHAbnormalTermination(); 2620 2621 /// Scan the outlined statement for captures from the parent function. For 2622 /// each capture, mark the capture as escaped and emit a call to 2623 /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap. 2624 void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt, 2625 bool IsFilter); 2626 2627 /// Recovers the address of a local in a parent function. ParentVar is the 2628 /// address of the variable used in the immediate parent function. It can 2629 /// either be an alloca or a call to llvm.localrecover if there are nested 2630 /// outlined functions. ParentFP is the frame pointer of the outermost parent 2631 /// frame. 2632 Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF, 2633 Address ParentVar, 2634 llvm::Value *ParentFP); 2635 2636 void EmitCXXForRangeStmt(const CXXForRangeStmt &S, 2637 ArrayRef<const Attr *> Attrs = None); 2638 2639 /// Returns calculated size of the specified type. 2640 llvm::Value *getTypeSize(QualType Ty); 2641 LValue InitCapturedStruct(const CapturedStmt &S); 2642 llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K); 2643 llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S); 2644 Address GenerateCapturedStmtArgument(const CapturedStmt &S); 2645 llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S); 2646 void GenerateOpenMPCapturedVars(const CapturedStmt &S, 2647 SmallVectorImpl<llvm::Value *> &CapturedVars); 2648 void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy, 2649 SourceLocation Loc); 2650 /// \brief Perform element by element copying of arrays with type \a 2651 /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure 2652 /// generated by \a CopyGen. 2653 /// 2654 /// \param DestAddr Address of the destination array. 2655 /// \param SrcAddr Address of the source array. 2656 /// \param OriginalType Type of destination and source arrays. 2657 /// \param CopyGen Copying procedure that copies value of single array element 2658 /// to another single array element. 2659 void EmitOMPAggregateAssign( 2660 Address DestAddr, Address SrcAddr, QualType OriginalType, 2661 const llvm::function_ref<void(Address, Address)> &CopyGen); 2662 /// \brief Emit proper copying of data from one variable to another. 2663 /// 2664 /// \param OriginalType Original type of the copied variables. 2665 /// \param DestAddr Destination address. 2666 /// \param SrcAddr Source address. 2667 /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has 2668 /// type of the base array element). 2669 /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of 2670 /// the base array element). 2671 /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a 2672 /// DestVD. 2673 void EmitOMPCopy(QualType OriginalType, 2674 Address DestAddr, Address SrcAddr, 2675 const VarDecl *DestVD, const VarDecl *SrcVD, 2676 const Expr *Copy); 2677 /// \brief Emit atomic update code for constructs: \a X = \a X \a BO \a E or 2678 /// \a X = \a E \a BO \a E. 2679 /// 2680 /// \param X Value to be updated. 2681 /// \param E Update value. 2682 /// \param BO Binary operation for update operation. 2683 /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update 2684 /// expression, false otherwise. 2685 /// \param AO Atomic ordering of the generated atomic instructions. 2686 /// \param CommonGen Code generator for complex expressions that cannot be 2687 /// expressed through atomicrmw instruction. 2688 /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was 2689 /// generated, <false, RValue::get(nullptr)> otherwise. 2690 std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr( 2691 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 2692 llvm::AtomicOrdering AO, SourceLocation Loc, 2693 const llvm::function_ref<RValue(RValue)> &CommonGen); 2694 bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 2695 OMPPrivateScope &PrivateScope); 2696 void EmitOMPPrivateClause(const OMPExecutableDirective &D, 2697 OMPPrivateScope &PrivateScope); 2698 void EmitOMPUseDevicePtrClause( 2699 const OMPClause &C, OMPPrivateScope &PrivateScope, 2700 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap); 2701 /// \brief Emit code for copyin clause in \a D directive. The next code is 2702 /// generated at the start of outlined functions for directives: 2703 /// \code 2704 /// threadprivate_var1 = master_threadprivate_var1; 2705 /// operator=(threadprivate_var2, master_threadprivate_var2); 2706 /// ... 2707 /// __kmpc_barrier(&loc, global_tid); 2708 /// \endcode 2709 /// 2710 /// \param D OpenMP directive possibly with 'copyin' clause(s). 2711 /// \returns true if at least one copyin variable is found, false otherwise. 2712 bool EmitOMPCopyinClause(const OMPExecutableDirective &D); 2713 /// \brief Emit initial code for lastprivate variables. If some variable is 2714 /// not also firstprivate, then the default initialization is used. Otherwise 2715 /// initialization of this variable is performed by EmitOMPFirstprivateClause 2716 /// method. 2717 /// 2718 /// \param D Directive that may have 'lastprivate' directives. 2719 /// \param PrivateScope Private scope for capturing lastprivate variables for 2720 /// proper codegen in internal captured statement. 2721 /// 2722 /// \returns true if there is at least one lastprivate variable, false 2723 /// otherwise. 2724 bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D, 2725 OMPPrivateScope &PrivateScope); 2726 /// \brief Emit final copying of lastprivate values to original variables at 2727 /// the end of the worksharing or simd directive. 2728 /// 2729 /// \param D Directive that has at least one 'lastprivate' directives. 2730 /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if 2731 /// it is the last iteration of the loop code in associated directive, or to 2732 /// 'i1 false' otherwise. If this item is nullptr, no final check is required. 2733 void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D, 2734 bool NoFinals, 2735 llvm::Value *IsLastIterCond = nullptr); 2736 /// Emit initial code for linear clauses. 2737 void EmitOMPLinearClause(const OMPLoopDirective &D, 2738 CodeGenFunction::OMPPrivateScope &PrivateScope); 2739 /// Emit final code for linear clauses. 2740 /// \param CondGen Optional conditional code for final part of codegen for 2741 /// linear clause. 2742 void EmitOMPLinearClauseFinal( 2743 const OMPLoopDirective &D, 2744 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen); 2745 /// \brief Emit initial code for reduction variables. Creates reduction copies 2746 /// and initializes them with the values according to OpenMP standard. 2747 /// 2748 /// \param D Directive (possibly) with the 'reduction' clause. 2749 /// \param PrivateScope Private scope for capturing reduction variables for 2750 /// proper codegen in internal captured statement. 2751 /// 2752 void EmitOMPReductionClauseInit(const OMPExecutableDirective &D, 2753 OMPPrivateScope &PrivateScope); 2754 /// \brief Emit final update of reduction values to original variables at 2755 /// the end of the directive. 2756 /// 2757 /// \param D Directive that has at least one 'reduction' directives. 2758 /// \param ReductionKind The kind of reduction to perform. 2759 void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D, 2760 const OpenMPDirectiveKind ReductionKind); 2761 /// \brief Emit initial code for linear variables. Creates private copies 2762 /// and initializes them with the values according to OpenMP standard. 2763 /// 2764 /// \param D Directive (possibly) with the 'linear' clause. 2765 void EmitOMPLinearClauseInit(const OMPLoopDirective &D); 2766 2767 typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/, 2768 llvm::Value * /*OutlinedFn*/, 2769 const OMPTaskDataTy & /*Data*/)> 2770 TaskGenTy; 2771 void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S, 2772 const RegionCodeGenTy &BodyGen, 2773 const TaskGenTy &TaskGen, OMPTaskDataTy &Data); 2774 2775 void EmitOMPParallelDirective(const OMPParallelDirective &S); 2776 void EmitOMPSimdDirective(const OMPSimdDirective &S); 2777 void EmitOMPForDirective(const OMPForDirective &S); 2778 void EmitOMPForSimdDirective(const OMPForSimdDirective &S); 2779 void EmitOMPSectionsDirective(const OMPSectionsDirective &S); 2780 void EmitOMPSectionDirective(const OMPSectionDirective &S); 2781 void EmitOMPSingleDirective(const OMPSingleDirective &S); 2782 void EmitOMPMasterDirective(const OMPMasterDirective &S); 2783 void EmitOMPCriticalDirective(const OMPCriticalDirective &S); 2784 void EmitOMPParallelForDirective(const OMPParallelForDirective &S); 2785 void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S); 2786 void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S); 2787 void EmitOMPTaskDirective(const OMPTaskDirective &S); 2788 void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S); 2789 void EmitOMPBarrierDirective(const OMPBarrierDirective &S); 2790 void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S); 2791 void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S); 2792 void EmitOMPFlushDirective(const OMPFlushDirective &S); 2793 void EmitOMPOrderedDirective(const OMPOrderedDirective &S); 2794 void EmitOMPAtomicDirective(const OMPAtomicDirective &S); 2795 void EmitOMPTargetDirective(const OMPTargetDirective &S); 2796 void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S); 2797 void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S); 2798 void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S); 2799 void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S); 2800 void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S); 2801 void 2802 EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S); 2803 void EmitOMPTeamsDirective(const OMPTeamsDirective &S); 2804 void 2805 EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S); 2806 void EmitOMPCancelDirective(const OMPCancelDirective &S); 2807 void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S); 2808 void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S); 2809 void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S); 2810 void EmitOMPDistributeDirective(const OMPDistributeDirective &S); 2811 void EmitOMPDistributeParallelForDirective( 2812 const OMPDistributeParallelForDirective &S); 2813 void EmitOMPDistributeParallelForSimdDirective( 2814 const OMPDistributeParallelForSimdDirective &S); 2815 void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S); 2816 void EmitOMPTargetParallelForSimdDirective( 2817 const OMPTargetParallelForSimdDirective &S); 2818 void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S); 2819 void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S); 2820 void 2821 EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S); 2822 void EmitOMPTeamsDistributeParallelForSimdDirective( 2823 const OMPTeamsDistributeParallelForSimdDirective &S); 2824 void EmitOMPTeamsDistributeParallelForDirective( 2825 const OMPTeamsDistributeParallelForDirective &S); 2826 void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S); 2827 void EmitOMPTargetTeamsDistributeDirective( 2828 const OMPTargetTeamsDistributeDirective &S); 2829 void EmitOMPTargetTeamsDistributeParallelForDirective( 2830 const OMPTargetTeamsDistributeParallelForDirective &S); 2831 void EmitOMPTargetTeamsDistributeParallelForSimdDirective( 2832 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 2833 void EmitOMPTargetTeamsDistributeSimdDirective( 2834 const OMPTargetTeamsDistributeSimdDirective &S); 2835 2836 /// Emit device code for the target directive. 2837 static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 2838 StringRef ParentName, 2839 const OMPTargetDirective &S); 2840 static void 2841 EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 2842 const OMPTargetParallelDirective &S); 2843 static void 2844 EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 2845 const OMPTargetTeamsDirective &S); 2846 /// \brief Emit inner loop of the worksharing/simd construct. 2847 /// 2848 /// \param S Directive, for which the inner loop must be emitted. 2849 /// \param RequiresCleanup true, if directive has some associated private 2850 /// variables. 2851 /// \param LoopCond Bollean condition for loop continuation. 2852 /// \param IncExpr Increment expression for loop control variable. 2853 /// \param BodyGen Generator for the inner body of the inner loop. 2854 /// \param PostIncGen Genrator for post-increment code (required for ordered 2855 /// loop directvies). 2856 void EmitOMPInnerLoop( 2857 const Stmt &S, bool RequiresCleanup, const Expr *LoopCond, 2858 const Expr *IncExpr, 2859 const llvm::function_ref<void(CodeGenFunction &)> &BodyGen, 2860 const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen); 2861 2862 JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind); 2863 /// Emit initial code for loop counters of loop-based directives. 2864 void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S, 2865 OMPPrivateScope &LoopScope); 2866 2867 /// Helper for the OpenMP loop directives. 2868 void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit); 2869 2870 /// \brief Emit code for the worksharing loop-based directive. 2871 /// \return true, if this construct has any lastprivate clause, false - 2872 /// otherwise. 2873 bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB, 2874 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 2875 const CodeGenDispatchBoundsTy &CGDispatchBounds); 2876 2877 private: 2878 /// Helpers for blocks 2879 llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); 2880 2881 /// Helpers for the OpenMP loop directives. 2882 void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false); 2883 void EmitOMPSimdFinal( 2884 const OMPLoopDirective &D, 2885 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen); 2886 2887 void EmitOMPDistributeLoop(const OMPLoopDirective &S, 2888 const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr); 2889 2890 /// struct with the values to be passed to the OpenMP loop-related functions 2891 struct OMPLoopArguments { 2892 /// loop lower bound 2893 Address LB = Address::invalid(); 2894 /// loop upper bound 2895 Address UB = Address::invalid(); 2896 /// loop stride 2897 Address ST = Address::invalid(); 2898 /// isLastIteration argument for runtime functions 2899 Address IL = Address::invalid(); 2900 /// Chunk value generated by sema 2901 llvm::Value *Chunk = nullptr; 2902 /// EnsureUpperBound 2903 Expr *EUB = nullptr; 2904 /// IncrementExpression 2905 Expr *IncExpr = nullptr; 2906 /// Loop initialization 2907 Expr *Init = nullptr; 2908 /// Loop exit condition 2909 Expr *Cond = nullptr; 2910 /// Update of LB after a whole chunk has been executed 2911 Expr *NextLB = nullptr; 2912 /// Update of UB after a whole chunk has been executed 2913 Expr *NextUB = nullptr; 2914 OMPLoopArguments() = default; 2915 OMPLoopArguments(Address LB, Address UB, Address ST, Address IL, 2916 llvm::Value *Chunk = nullptr, Expr *EUB = nullptr, 2917 Expr *IncExpr = nullptr, Expr *Init = nullptr, 2918 Expr *Cond = nullptr, Expr *NextLB = nullptr, 2919 Expr *NextUB = nullptr) 2920 : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB), 2921 IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB), 2922 NextUB(NextUB) {} 2923 }; 2924 void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic, 2925 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, 2926 const OMPLoopArguments &LoopArgs, 2927 const CodeGenLoopTy &CodeGenLoop, 2928 const CodeGenOrderedTy &CodeGenOrdered); 2929 void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind, 2930 bool IsMonotonic, const OMPLoopDirective &S, 2931 OMPPrivateScope &LoopScope, bool Ordered, 2932 const OMPLoopArguments &LoopArgs, 2933 const CodeGenDispatchBoundsTy &CGDispatchBounds); 2934 void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind, 2935 const OMPLoopDirective &S, 2936 OMPPrivateScope &LoopScope, 2937 const OMPLoopArguments &LoopArgs, 2938 const CodeGenLoopTy &CodeGenLoopContent); 2939 /// \brief Emit code for sections directive. 2940 void EmitSections(const OMPExecutableDirective &S); 2941 2942 public: 2943 2944 //===--------------------------------------------------------------------===// 2945 // LValue Expression Emission 2946 //===--------------------------------------------------------------------===// 2947 2948 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 2949 RValue GetUndefRValue(QualType Ty); 2950 2951 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 2952 /// and issue an ErrorUnsupported style diagnostic (using the 2953 /// provided Name). 2954 RValue EmitUnsupportedRValue(const Expr *E, 2955 const char *Name); 2956 2957 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 2958 /// an ErrorUnsupported style diagnostic (using the provided Name). 2959 LValue EmitUnsupportedLValue(const Expr *E, 2960 const char *Name); 2961 2962 /// EmitLValue - Emit code to compute a designator that specifies the location 2963 /// of the expression. 2964 /// 2965 /// This can return one of two things: a simple address or a bitfield 2966 /// reference. In either case, the LLVM Value* in the LValue structure is 2967 /// guaranteed to be an LLVM pointer type. 2968 /// 2969 /// If this returns a bitfield reference, nothing about the pointee type of 2970 /// the LLVM value is known: For example, it may not be a pointer to an 2971 /// integer. 2972 /// 2973 /// If this returns a normal address, and if the lvalue's C type is fixed 2974 /// size, this method guarantees that the returned pointer type will point to 2975 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 2976 /// variable length type, this is not possible. 2977 /// 2978 LValue EmitLValue(const Expr *E); 2979 2980 /// \brief Same as EmitLValue but additionally we generate checking code to 2981 /// guard against undefined behavior. This is only suitable when we know 2982 /// that the address will be used to access the object. 2983 LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK); 2984 2985 RValue convertTempToRValue(Address addr, QualType type, 2986 SourceLocation Loc); 2987 2988 void EmitAtomicInit(Expr *E, LValue lvalue); 2989 2990 bool LValueIsSuitableForInlineAtomic(LValue Src); 2991 2992 RValue EmitAtomicLoad(LValue LV, SourceLocation SL, 2993 AggValueSlot Slot = AggValueSlot::ignored()); 2994 2995 RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc, 2996 llvm::AtomicOrdering AO, bool IsVolatile = false, 2997 AggValueSlot slot = AggValueSlot::ignored()); 2998 2999 void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit); 3000 3001 void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO, 3002 bool IsVolatile, bool isInit); 3003 3004 std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange( 3005 LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, 3006 llvm::AtomicOrdering Success = 3007 llvm::AtomicOrdering::SequentiallyConsistent, 3008 llvm::AtomicOrdering Failure = 3009 llvm::AtomicOrdering::SequentiallyConsistent, 3010 bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored()); 3011 3012 void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO, 3013 const llvm::function_ref<RValue(RValue)> &UpdateOp, 3014 bool IsVolatile); 3015 3016 /// EmitToMemory - Change a scalar value from its value 3017 /// representation to its in-memory representation. 3018 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 3019 3020 /// EmitFromMemory - Change a scalar value from its memory 3021 /// representation to its value representation. 3022 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 3023 3024 /// Check if the scalar \p Value is within the valid range for the given 3025 /// type \p Ty. 3026 /// 3027 /// Returns true if a check is needed (even if the range is unknown). 3028 bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 3029 SourceLocation Loc); 3030 3031 /// EmitLoadOfScalar - Load a scalar value from an address, taking 3032 /// care to appropriately convert from the memory representation to 3033 /// the LLVM value representation. 3034 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 3035 SourceLocation Loc, 3036 LValueBaseInfo BaseInfo = 3037 LValueBaseInfo(AlignmentSource::Type), 3038 llvm::MDNode *TBAAInfo = nullptr, 3039 QualType TBAABaseTy = QualType(), 3040 uint64_t TBAAOffset = 0, 3041 bool isNontemporal = false); 3042 3043 /// EmitLoadOfScalar - Load a scalar value from an address, taking 3044 /// care to appropriately convert from the memory representation to 3045 /// the LLVM value representation. The l-value must be a simple 3046 /// l-value. 3047 llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc); 3048 3049 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3050 /// care to appropriately convert from the memory representation to 3051 /// the LLVM value representation. 3052 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 3053 bool Volatile, QualType Ty, 3054 LValueBaseInfo BaseInfo = 3055 LValueBaseInfo(AlignmentSource::Type), 3056 llvm::MDNode *TBAAInfo = nullptr, bool isInit = false, 3057 QualType TBAABaseTy = QualType(), 3058 uint64_t TBAAOffset = 0, bool isNontemporal = false); 3059 3060 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3061 /// care to appropriately convert from the memory representation to 3062 /// the LLVM value representation. The l-value must be a simple 3063 /// l-value. The isInit flag indicates whether this is an initialization. 3064 /// If so, atomic qualifiers are ignored and the store is always non-atomic. 3065 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); 3066 3067 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 3068 /// this method emits the address of the lvalue, then loads the result as an 3069 /// rvalue, returning the rvalue. 3070 RValue EmitLoadOfLValue(LValue V, SourceLocation Loc); 3071 RValue EmitLoadOfExtVectorElementLValue(LValue V); 3072 RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc); 3073 RValue EmitLoadOfGlobalRegLValue(LValue LV); 3074 3075 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 3076 /// lvalue, where both are guaranteed to the have the same type, and that type 3077 /// is 'Ty'. 3078 void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false); 3079 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 3080 void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst); 3081 3082 /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints 3083 /// as EmitStoreThroughLValue. 3084 /// 3085 /// \param Result [out] - If non-null, this will be set to a Value* for the 3086 /// bit-field contents after the store, appropriate for use as the result of 3087 /// an assignment to the bit-field. 3088 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 3089 llvm::Value **Result=nullptr); 3090 3091 /// Emit an l-value for an assignment (simple or compound) of complex type. 3092 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 3093 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 3094 LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 3095 llvm::Value *&Result); 3096 3097 // Note: only available for agg return types 3098 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 3099 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 3100 // Note: only available for agg return types 3101 LValue EmitCallExprLValue(const CallExpr *E); 3102 // Note: only available for agg return types 3103 LValue EmitVAArgExprLValue(const VAArgExpr *E); 3104 LValue EmitDeclRefLValue(const DeclRefExpr *E); 3105 LValue EmitStringLiteralLValue(const StringLiteral *E); 3106 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 3107 LValue EmitPredefinedLValue(const PredefinedExpr *E); 3108 LValue EmitUnaryOpLValue(const UnaryOperator *E); 3109 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3110 bool Accessed = false); 3111 LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3112 bool IsLowerBound = true); 3113 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 3114 LValue EmitMemberExpr(const MemberExpr *E); 3115 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 3116 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 3117 LValue EmitInitListLValue(const InitListExpr *E); 3118 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 3119 LValue EmitCastLValue(const CastExpr *E); 3120 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 3121 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 3122 3123 Address EmitExtVectorElementLValue(LValue V); 3124 3125 RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc); 3126 3127 Address EmitArrayToPointerDecay(const Expr *Array, 3128 LValueBaseInfo *BaseInfo = nullptr); 3129 3130 class ConstantEmission { 3131 llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; 3132 ConstantEmission(llvm::Constant *C, bool isReference) 3133 : ValueAndIsReference(C, isReference) {} 3134 public: 3135 ConstantEmission() {} 3136 static ConstantEmission forReference(llvm::Constant *C) { 3137 return ConstantEmission(C, true); 3138 } 3139 static ConstantEmission forValue(llvm::Constant *C) { 3140 return ConstantEmission(C, false); 3141 } 3142 3143 explicit operator bool() const { 3144 return ValueAndIsReference.getOpaqueValue() != nullptr; 3145 } 3146 3147 bool isReference() const { return ValueAndIsReference.getInt(); } 3148 LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { 3149 assert(isReference()); 3150 return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), 3151 refExpr->getType()); 3152 } 3153 3154 llvm::Constant *getValue() const { 3155 assert(!isReference()); 3156 return ValueAndIsReference.getPointer(); 3157 } 3158 }; 3159 3160 ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); 3161 3162 RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, 3163 AggValueSlot slot = AggValueSlot::ignored()); 3164 LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); 3165 3166 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 3167 const ObjCIvarDecl *Ivar); 3168 LValue EmitLValueForField(LValue Base, const FieldDecl* Field); 3169 LValue EmitLValueForLambdaField(const FieldDecl *Field); 3170 3171 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 3172 /// if the Field is a reference, this will return the address of the reference 3173 /// and not the address of the value stored in the reference. 3174 LValue EmitLValueForFieldInitialization(LValue Base, 3175 const FieldDecl* Field); 3176 3177 LValue EmitLValueForIvar(QualType ObjectTy, 3178 llvm::Value* Base, const ObjCIvarDecl *Ivar, 3179 unsigned CVRQualifiers); 3180 3181 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 3182 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 3183 LValue EmitLambdaLValue(const LambdaExpr *E); 3184 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 3185 LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E); 3186 3187 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 3188 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 3189 LValue EmitStmtExprLValue(const StmtExpr *E); 3190 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 3191 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 3192 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init); 3193 3194 //===--------------------------------------------------------------------===// 3195 // Scalar Expression Emission 3196 //===--------------------------------------------------------------------===// 3197 3198 /// EmitCall - Generate a call of the given function, expecting the given 3199 /// result type, and using the given argument list which specifies both the 3200 /// LLVM arguments and the types they were derived from. 3201 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 3202 ReturnValueSlot ReturnValue, const CallArgList &Args, 3203 llvm::Instruction **callOrInvoke = nullptr); 3204 3205 RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E, 3206 ReturnValueSlot ReturnValue, 3207 llvm::Value *Chain = nullptr); 3208 RValue EmitCallExpr(const CallExpr *E, 3209 ReturnValueSlot ReturnValue = ReturnValueSlot()); 3210 RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 3211 CGCallee EmitCallee(const Expr *E); 3212 3213 void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl); 3214 3215 llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, 3216 const Twine &name = ""); 3217 llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, 3218 ArrayRef<llvm::Value*> args, 3219 const Twine &name = ""); 3220 llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, 3221 const Twine &name = ""); 3222 llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, 3223 ArrayRef<llvm::Value*> args, 3224 const Twine &name = ""); 3225 3226 llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, 3227 ArrayRef<llvm::Value *> Args, 3228 const Twine &Name = ""); 3229 llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, 3230 ArrayRef<llvm::Value*> args, 3231 const Twine &name = ""); 3232 llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, 3233 const Twine &name = ""); 3234 void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee, 3235 ArrayRef<llvm::Value*> args); 3236 3237 CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 3238 NestedNameSpecifier *Qual, 3239 llvm::Type *Ty); 3240 3241 CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 3242 CXXDtorType Type, 3243 const CXXRecordDecl *RD); 3244 3245 RValue 3246 EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method, 3247 const CGCallee &Callee, 3248 ReturnValueSlot ReturnValue, llvm::Value *This, 3249 llvm::Value *ImplicitParam, 3250 QualType ImplicitParamTy, const CallExpr *E, 3251 CallArgList *RtlArgs); 3252 RValue EmitCXXDestructorCall(const CXXDestructorDecl *DD, 3253 const CGCallee &Callee, 3254 llvm::Value *This, llvm::Value *ImplicitParam, 3255 QualType ImplicitParamTy, const CallExpr *E, 3256 StructorType Type); 3257 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 3258 ReturnValueSlot ReturnValue); 3259 RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE, 3260 const CXXMethodDecl *MD, 3261 ReturnValueSlot ReturnValue, 3262 bool HasQualifier, 3263 NestedNameSpecifier *Qualifier, 3264 bool IsArrow, const Expr *Base); 3265 // Compute the object pointer. 3266 Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base, 3267 llvm::Value *memberPtr, 3268 const MemberPointerType *memberPtrType, 3269 LValueBaseInfo *BaseInfo = nullptr); 3270 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 3271 ReturnValueSlot ReturnValue); 3272 3273 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 3274 const CXXMethodDecl *MD, 3275 ReturnValueSlot ReturnValue); 3276 RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E); 3277 3278 RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 3279 ReturnValueSlot ReturnValue); 3280 3281 RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E, 3282 ReturnValueSlot ReturnValue); 3283 3284 RValue EmitBuiltinExpr(const FunctionDecl *FD, 3285 unsigned BuiltinID, const CallExpr *E, 3286 ReturnValueSlot ReturnValue); 3287 3288 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 3289 3290 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 3291 /// is unhandled by the current target. 3292 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3293 3294 llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty, 3295 const llvm::CmpInst::Predicate Fp, 3296 const llvm::CmpInst::Predicate Ip, 3297 const llvm::Twine &Name = ""); 3298 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3299 3300 llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID, 3301 unsigned LLVMIntrinsic, 3302 unsigned AltLLVMIntrinsic, 3303 const char *NameHint, 3304 unsigned Modifier, 3305 const CallExpr *E, 3306 SmallVectorImpl<llvm::Value *> &Ops, 3307 Address PtrOp0, Address PtrOp1); 3308 llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID, 3309 unsigned Modifier, llvm::Type *ArgTy, 3310 const CallExpr *E); 3311 llvm::Value *EmitNeonCall(llvm::Function *F, 3312 SmallVectorImpl<llvm::Value*> &O, 3313 const char *name, 3314 unsigned shift = 0, bool rightshift = false); 3315 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 3316 llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, 3317 bool negateForRightShift); 3318 llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt, 3319 llvm::Type *Ty, bool usgn, const char *name); 3320 llvm::Value *vectorWrapScalar16(llvm::Value *Op); 3321 llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3322 3323 llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); 3324 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3325 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3326 llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3327 llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3328 llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3329 llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID, 3330 const CallExpr *E); 3331 3332 private: 3333 enum class MSVCIntrin; 3334 3335 public: 3336 llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E); 3337 3338 llvm::Value *EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args); 3339 3340 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 3341 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 3342 llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); 3343 llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); 3344 llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); 3345 llvm::Value *EmitObjCCollectionLiteral(const Expr *E, 3346 const ObjCMethodDecl *MethodWithObjects); 3347 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 3348 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 3349 ReturnValueSlot Return = ReturnValueSlot()); 3350 3351 /// Retrieves the default cleanup kind for an ARC cleanup. 3352 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. 3353 CleanupKind getARCCleanupKind() { 3354 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 3355 ? NormalAndEHCleanup : NormalCleanup; 3356 } 3357 3358 // ARC primitives. 3359 void EmitARCInitWeak(Address addr, llvm::Value *value); 3360 void EmitARCDestroyWeak(Address addr); 3361 llvm::Value *EmitARCLoadWeak(Address addr); 3362 llvm::Value *EmitARCLoadWeakRetained(Address addr); 3363 llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored); 3364 void EmitARCCopyWeak(Address dst, Address src); 3365 void EmitARCMoveWeak(Address dst, Address src); 3366 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 3367 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 3368 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 3369 bool resultIgnored); 3370 llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value, 3371 bool resultIgnored); 3372 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 3373 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 3374 llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); 3375 void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise); 3376 void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 3377 llvm::Value *EmitARCAutorelease(llvm::Value *value); 3378 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 3379 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 3380 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 3381 llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value); 3382 3383 std::pair<LValue,llvm::Value*> 3384 EmitARCStoreAutoreleasing(const BinaryOperator *e); 3385 std::pair<LValue,llvm::Value*> 3386 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 3387 std::pair<LValue,llvm::Value*> 3388 EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored); 3389 3390 llvm::Value *EmitObjCThrowOperand(const Expr *expr); 3391 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 3392 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 3393 3394 llvm::Value *EmitARCExtendBlockObject(const Expr *expr); 3395 llvm::Value *EmitARCReclaimReturnedObject(const Expr *e, 3396 bool allowUnsafeClaim); 3397 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 3398 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 3399 llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr); 3400 3401 void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values); 3402 3403 static Destroyer destroyARCStrongImprecise; 3404 static Destroyer destroyARCStrongPrecise; 3405 static Destroyer destroyARCWeak; 3406 static Destroyer emitARCIntrinsicUse; 3407 3408 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 3409 llvm::Value *EmitObjCAutoreleasePoolPush(); 3410 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 3411 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 3412 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 3413 3414 /// \brief Emits a reference binding to the passed in expression. 3415 RValue EmitReferenceBindingToExpr(const Expr *E); 3416 3417 //===--------------------------------------------------------------------===// 3418 // Expression Emission 3419 //===--------------------------------------------------------------------===// 3420 3421 // Expressions are broken into three classes: scalar, complex, aggregate. 3422 3423 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 3424 /// scalar type, returning the result. 3425 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 3426 3427 /// Emit a conversion from the specified type to the specified destination 3428 /// type, both of which are LLVM scalar types. 3429 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 3430 QualType DstTy, SourceLocation Loc); 3431 3432 /// Emit a conversion from the specified complex type to the specified 3433 /// destination type, where the destination type is an LLVM scalar type. 3434 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 3435 QualType DstTy, 3436 SourceLocation Loc); 3437 3438 /// EmitAggExpr - Emit the computation of the specified expression 3439 /// of aggregate type. The result is computed into the given slot, 3440 /// which may be null to indicate that the value is not needed. 3441 void EmitAggExpr(const Expr *E, AggValueSlot AS); 3442 3443 /// EmitAggExprToLValue - Emit the computation of the specified expression of 3444 /// aggregate type into a temporary LValue. 3445 LValue EmitAggExprToLValue(const Expr *E); 3446 3447 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 3448 /// make sure it survives garbage collection until this point. 3449 void EmitExtendGCLifetime(llvm::Value *object); 3450 3451 /// EmitComplexExpr - Emit the computation of the specified expression of 3452 /// complex type, returning the result. 3453 ComplexPairTy EmitComplexExpr(const Expr *E, 3454 bool IgnoreReal = false, 3455 bool IgnoreImag = false); 3456 3457 /// EmitComplexExprIntoLValue - Emit the given expression of complex 3458 /// type and place its result into the specified l-value. 3459 void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit); 3460 3461 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 3462 void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit); 3463 3464 /// EmitLoadOfComplex - Load a complex number from the specified l-value. 3465 ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc); 3466 3467 Address emitAddrOfRealComponent(Address complex, QualType complexType); 3468 Address emitAddrOfImagComponent(Address complex, QualType complexType); 3469 3470 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 3471 /// global variable that has already been created for it. If the initializer 3472 /// has a different type than GV does, this may free GV and return a different 3473 /// one. Otherwise it just returns GV. 3474 llvm::GlobalVariable * 3475 AddInitializerToStaticVarDecl(const VarDecl &D, 3476 llvm::GlobalVariable *GV); 3477 3478 3479 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 3480 /// variable with global storage. 3481 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr, 3482 bool PerformInit); 3483 3484 llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::Constant *Dtor, 3485 llvm::Constant *Addr); 3486 3487 /// Call atexit() with a function that passes the given argument to 3488 /// the given function. 3489 void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn, 3490 llvm::Constant *addr); 3491 3492 /// Emit code in this function to perform a guarded variable 3493 /// initialization. Guarded initializations are used when it's not 3494 /// possible to prove that an initialization will be done exactly 3495 /// once, e.g. with a static local variable or a static data member 3496 /// of a class template. 3497 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, 3498 bool PerformInit); 3499 3500 enum class GuardKind { VariableGuard, TlsGuard }; 3501 3502 /// Emit a branch to select whether or not to perform guarded initialization. 3503 void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit, 3504 llvm::BasicBlock *InitBlock, 3505 llvm::BasicBlock *NoInitBlock, 3506 GuardKind Kind, const VarDecl *D); 3507 3508 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 3509 /// variables. 3510 void GenerateCXXGlobalInitFunc(llvm::Function *Fn, 3511 ArrayRef<llvm::Function *> CXXThreadLocals, 3512 Address Guard = Address::invalid()); 3513 3514 /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global 3515 /// variables. 3516 void GenerateCXXGlobalDtorsFunc( 3517 llvm::Function *Fn, 3518 const std::vector<std::pair<llvm::WeakTrackingVH, llvm::Constant *>> 3519 &DtorsAndObjects); 3520 3521 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 3522 const VarDecl *D, 3523 llvm::GlobalVariable *Addr, 3524 bool PerformInit); 3525 3526 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 3527 3528 void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp); 3529 3530 void enterFullExpression(const ExprWithCleanups *E) { 3531 if (E->getNumObjects() == 0) return; 3532 enterNonTrivialFullExpression(E); 3533 } 3534 void enterNonTrivialFullExpression(const ExprWithCleanups *E); 3535 3536 void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true); 3537 3538 void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest); 3539 3540 RValue EmitAtomicExpr(AtomicExpr *E); 3541 3542 //===--------------------------------------------------------------------===// 3543 // Annotations Emission 3544 //===--------------------------------------------------------------------===// 3545 3546 /// Emit an annotation call (intrinsic or builtin). 3547 llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn, 3548 llvm::Value *AnnotatedVal, 3549 StringRef AnnotationStr, 3550 SourceLocation Location); 3551 3552 /// Emit local annotations for the local variable V, declared by D. 3553 void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); 3554 3555 /// Emit field annotations for the given field & value. Returns the 3556 /// annotation result. 3557 Address EmitFieldAnnotations(const FieldDecl *D, Address V); 3558 3559 //===--------------------------------------------------------------------===// 3560 // Internal Helpers 3561 //===--------------------------------------------------------------------===// 3562 3563 /// ContainsLabel - Return true if the statement contains a label in it. If 3564 /// this statement is not executed normally, it not containing a label means 3565 /// that we can just remove the code. 3566 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 3567 3568 /// containsBreak - Return true if the statement contains a break out of it. 3569 /// If the statement (recursively) contains a switch or loop with a break 3570 /// inside of it, this is fine. 3571 static bool containsBreak(const Stmt *S); 3572 3573 /// Determine if the given statement might introduce a declaration into the 3574 /// current scope, by being a (possibly-labelled) DeclStmt. 3575 static bool mightAddDeclToScope(const Stmt *S); 3576 3577 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 3578 /// to a constant, or if it does but contains a label, return false. If it 3579 /// constant folds return true and set the boolean result in Result. 3580 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result, 3581 bool AllowLabels = false); 3582 3583 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 3584 /// to a constant, or if it does but contains a label, return false. If it 3585 /// constant folds return true and set the folded value. 3586 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result, 3587 bool AllowLabels = false); 3588 3589 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 3590 /// if statement) to the specified blocks. Based on the condition, this might 3591 /// try to simplify the codegen of the conditional based on the branch. 3592 /// TrueCount should be the number of times we expect the condition to 3593 /// evaluate to true based on PGO data. 3594 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 3595 llvm::BasicBlock *FalseBlock, uint64_t TrueCount); 3596 3597 /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is 3598 /// nonnull, if \p LHS is marked _Nonnull. 3599 void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc); 3600 3601 /// An enumeration which makes it easier to specify whether or not an 3602 /// operation is a subtraction. 3603 enum { NotSubtraction = false, IsSubtraction = true }; 3604 3605 /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to 3606 /// detect undefined behavior when the pointer overflow sanitizer is enabled. 3607 /// \p SignedIndices indicates whether any of the GEP indices are signed. 3608 /// \p IsSubtraction indicates whether the expression used to form the GEP 3609 /// is a subtraction. 3610 llvm::Value *EmitCheckedInBoundsGEP(llvm::Value *Ptr, 3611 ArrayRef<llvm::Value *> IdxList, 3612 bool SignedIndices, 3613 bool IsSubtraction, 3614 SourceLocation Loc, 3615 const Twine &Name = ""); 3616 3617 /// Specifies which type of sanitizer check to apply when handling a 3618 /// particular builtin. 3619 enum BuiltinCheckKind { 3620 BCK_CTZPassedZero, 3621 BCK_CLZPassedZero, 3622 }; 3623 3624 /// Emits an argument for a call to a builtin. If the builtin sanitizer is 3625 /// enabled, a runtime check specified by \p Kind is also emitted. 3626 llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind); 3627 3628 /// \brief Emit a description of a type in a format suitable for passing to 3629 /// a runtime sanitizer handler. 3630 llvm::Constant *EmitCheckTypeDescriptor(QualType T); 3631 3632 /// \brief Convert a value into a format suitable for passing to a runtime 3633 /// sanitizer handler. 3634 llvm::Value *EmitCheckValue(llvm::Value *V); 3635 3636 /// \brief Emit a description of a source location in a format suitable for 3637 /// passing to a runtime sanitizer handler. 3638 llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc); 3639 3640 /// \brief Create a basic block that will call a handler function in a 3641 /// sanitizer runtime with the provided arguments, and create a conditional 3642 /// branch to it. 3643 void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 3644 SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs, 3645 ArrayRef<llvm::Value *> DynamicArgs); 3646 3647 /// \brief Emit a slow path cross-DSO CFI check which calls __cfi_slowpath 3648 /// if Cond if false. 3649 void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond, 3650 llvm::ConstantInt *TypeId, llvm::Value *Ptr, 3651 ArrayRef<llvm::Constant *> StaticArgs); 3652 3653 /// \brief Create a basic block that will call the trap intrinsic, and emit a 3654 /// conditional branch to it, for the -ftrapv checks. 3655 void EmitTrapCheck(llvm::Value *Checked); 3656 3657 /// \brief Emit a call to trap or debugtrap and attach function attribute 3658 /// "trap-func-name" if specified. 3659 llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID); 3660 3661 /// \brief Emit a stub for the cross-DSO CFI check function. 3662 void EmitCfiCheckStub(); 3663 3664 /// \brief Emit a cross-DSO CFI failure handling function. 3665 void EmitCfiCheckFail(); 3666 3667 /// \brief Create a check for a function parameter that may potentially be 3668 /// declared as non-null. 3669 void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc, 3670 AbstractCallee AC, unsigned ParmNum); 3671 3672 /// EmitCallArg - Emit a single call argument. 3673 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 3674 3675 /// EmitDelegateCallArg - We are performing a delegate call; that 3676 /// is, the current function is delegating to another one. Produce 3677 /// a r-value suitable for passing the given parameter. 3678 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param, 3679 SourceLocation loc); 3680 3681 /// SetFPAccuracy - Set the minimum required accuracy of the given floating 3682 /// point operation, expressed as the maximum relative error in ulp. 3683 void SetFPAccuracy(llvm::Value *Val, float Accuracy); 3684 3685 private: 3686 llvm::MDNode *getRangeForLoadFromType(QualType Ty); 3687 void EmitReturnOfRValue(RValue RV, QualType Ty); 3688 3689 void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New); 3690 3691 llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4> 3692 DeferredReplacements; 3693 3694 /// Set the address of a local variable. 3695 void setAddrOfLocalVar(const VarDecl *VD, Address Addr) { 3696 assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!"); 3697 LocalDeclMap.insert({VD, Addr}); 3698 } 3699 3700 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 3701 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 3702 /// 3703 /// \param AI - The first function argument of the expansion. 3704 void ExpandTypeFromArgs(QualType Ty, LValue Dst, 3705 SmallVectorImpl<llvm::Value *>::iterator &AI); 3706 3707 /// ExpandTypeToArgs - Expand an RValue \arg RV, with the LLVM type for \arg 3708 /// Ty, into individual arguments on the provided vector \arg IRCallArgs, 3709 /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand. 3710 void ExpandTypeToArgs(QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy, 3711 SmallVectorImpl<llvm::Value *> &IRCallArgs, 3712 unsigned &IRCallArgPos); 3713 3714 llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info, 3715 const Expr *InputExpr, std::string &ConstraintStr); 3716 3717 llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 3718 LValue InputValue, QualType InputType, 3719 std::string &ConstraintStr, 3720 SourceLocation Loc); 3721 3722 /// \brief Attempts to statically evaluate the object size of E. If that 3723 /// fails, emits code to figure the size of E out for us. This is 3724 /// pass_object_size aware. 3725 /// 3726 /// If EmittedExpr is non-null, this will use that instead of re-emitting E. 3727 llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type, 3728 llvm::IntegerType *ResType, 3729 llvm::Value *EmittedE); 3730 3731 /// \brief Emits the size of E, as required by __builtin_object_size. This 3732 /// function is aware of pass_object_size parameters, and will act accordingly 3733 /// if E is a parameter with the pass_object_size attribute. 3734 llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type, 3735 llvm::IntegerType *ResType, 3736 llvm::Value *EmittedE); 3737 3738 public: 3739 #ifndef NDEBUG 3740 // Determine whether the given argument is an Objective-C method 3741 // that may have type parameters in its signature. 3742 static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) { 3743 const DeclContext *dc = method->getDeclContext(); 3744 if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) { 3745 return classDecl->getTypeParamListAsWritten(); 3746 } 3747 3748 if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) { 3749 return catDecl->getTypeParamList(); 3750 } 3751 3752 return false; 3753 } 3754 3755 template<typename T> 3756 static bool isObjCMethodWithTypeParams(const T *) { return false; } 3757 #endif 3758 3759 enum class EvaluationOrder { 3760 ///! No language constraints on evaluation order. 3761 Default, 3762 ///! Language semantics require left-to-right evaluation. 3763 ForceLeftToRight, 3764 ///! Language semantics require right-to-left evaluation. 3765 ForceRightToLeft 3766 }; 3767 3768 /// EmitCallArgs - Emit call arguments for a function. 3769 template <typename T> 3770 void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo, 3771 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 3772 AbstractCallee AC = AbstractCallee(), 3773 unsigned ParamsToSkip = 0, 3774 EvaluationOrder Order = EvaluationOrder::Default) { 3775 SmallVector<QualType, 16> ArgTypes; 3776 CallExpr::const_arg_iterator Arg = ArgRange.begin(); 3777 3778 assert((ParamsToSkip == 0 || CallArgTypeInfo) && 3779 "Can't skip parameters if type info is not provided"); 3780 if (CallArgTypeInfo) { 3781 #ifndef NDEBUG 3782 bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo); 3783 #endif 3784 3785 // First, use the argument types that the type info knows about 3786 for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip, 3787 E = CallArgTypeInfo->param_type_end(); 3788 I != E; ++I, ++Arg) { 3789 assert(Arg != ArgRange.end() && "Running over edge of argument list!"); 3790 assert((isGenericMethod || 3791 ((*I)->isVariablyModifiedType() || 3792 (*I).getNonReferenceType()->isObjCRetainableType() || 3793 getContext() 3794 .getCanonicalType((*I).getNonReferenceType()) 3795 .getTypePtr() == 3796 getContext() 3797 .getCanonicalType((*Arg)->getType()) 3798 .getTypePtr())) && 3799 "type mismatch in call argument!"); 3800 ArgTypes.push_back(*I); 3801 } 3802 } 3803 3804 // Either we've emitted all the call args, or we have a call to variadic 3805 // function. 3806 assert((Arg == ArgRange.end() || !CallArgTypeInfo || 3807 CallArgTypeInfo->isVariadic()) && 3808 "Extra arguments in non-variadic function!"); 3809 3810 // If we still have any arguments, emit them using the type of the argument. 3811 for (auto *A : llvm::make_range(Arg, ArgRange.end())) 3812 ArgTypes.push_back(CallArgTypeInfo ? getVarArgType(A) : A->getType()); 3813 3814 EmitCallArgs(Args, ArgTypes, ArgRange, AC, ParamsToSkip, Order); 3815 } 3816 3817 void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes, 3818 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 3819 AbstractCallee AC = AbstractCallee(), 3820 unsigned ParamsToSkip = 0, 3821 EvaluationOrder Order = EvaluationOrder::Default); 3822 3823 /// EmitPointerWithAlignment - Given an expression with a pointer type, 3824 /// emit the value and compute our best estimate of the alignment of the 3825 /// pointee. 3826 /// 3827 /// \param BaseInfo - If non-null, this will be initialized with 3828 /// information about the source of the alignment and the may-alias 3829 /// attribute. Note that this function will conservatively fall back on 3830 /// the type when it doesn't recognize the expression and may-alias will 3831 /// be set to false. 3832 /// 3833 /// One reasonable way to use this information is when there's a language 3834 /// guarantee that the pointer must be aligned to some stricter value, and 3835 /// we're simply trying to ensure that sufficiently obvious uses of under- 3836 /// aligned objects don't get miscompiled; for example, a placement new 3837 /// into the address of a local variable. In such a case, it's quite 3838 /// reasonable to just ignore the returned alignment when it isn't from an 3839 /// explicit source. 3840 Address EmitPointerWithAlignment(const Expr *Addr, 3841 LValueBaseInfo *BaseInfo = nullptr); 3842 3843 void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK); 3844 3845 private: 3846 QualType getVarArgType(const Expr *Arg); 3847 3848 void EmitDeclMetadata(); 3849 3850 BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType, 3851 const AutoVarEmission &emission); 3852 3853 void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); 3854 3855 llvm::Value *GetValueForARMHint(unsigned BuiltinID); 3856 }; 3857 3858 /// Helper class with most of the code for saving a value for a 3859 /// conditional expression cleanup. 3860 struct DominatingLLVMValue { 3861 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 3862 3863 /// Answer whether the given value needs extra work to be saved. 3864 static bool needsSaving(llvm::Value *value) { 3865 // If it's not an instruction, we don't need to save. 3866 if (!isa<llvm::Instruction>(value)) return false; 3867 3868 // If it's an instruction in the entry block, we don't need to save. 3869 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 3870 return (block != &block->getParent()->getEntryBlock()); 3871 } 3872 3873 /// Try to save the given value. 3874 static saved_type save(CodeGenFunction &CGF, llvm::Value *value) { 3875 if (!needsSaving(value)) return saved_type(value, false); 3876 3877 // Otherwise, we need an alloca. 3878 auto align = CharUnits::fromQuantity( 3879 CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType())); 3880 Address alloca = 3881 CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save"); 3882 CGF.Builder.CreateStore(value, alloca); 3883 3884 return saved_type(alloca.getPointer(), true); 3885 } 3886 3887 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) { 3888 // If the value says it wasn't saved, trust that it's still dominating. 3889 if (!value.getInt()) return value.getPointer(); 3890 3891 // Otherwise, it should be an alloca instruction, as set up in save(). 3892 auto alloca = cast<llvm::AllocaInst>(value.getPointer()); 3893 return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlignment()); 3894 } 3895 }; 3896 3897 /// A partial specialization of DominatingValue for llvm::Values that 3898 /// might be llvm::Instructions. 3899 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 3900 typedef T *type; 3901 static type restore(CodeGenFunction &CGF, saved_type value) { 3902 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 3903 } 3904 }; 3905 3906 /// A specialization of DominatingValue for Address. 3907 template <> struct DominatingValue<Address> { 3908 typedef Address type; 3909 3910 struct saved_type { 3911 DominatingLLVMValue::saved_type SavedValue; 3912 CharUnits Alignment; 3913 }; 3914 3915 static bool needsSaving(type value) { 3916 return DominatingLLVMValue::needsSaving(value.getPointer()); 3917 } 3918 static saved_type save(CodeGenFunction &CGF, type value) { 3919 return { DominatingLLVMValue::save(CGF, value.getPointer()), 3920 value.getAlignment() }; 3921 } 3922 static type restore(CodeGenFunction &CGF, saved_type value) { 3923 return Address(DominatingLLVMValue::restore(CGF, value.SavedValue), 3924 value.Alignment); 3925 } 3926 }; 3927 3928 /// A specialization of DominatingValue for RValue. 3929 template <> struct DominatingValue<RValue> { 3930 typedef RValue type; 3931 class saved_type { 3932 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 3933 AggregateAddress, ComplexAddress }; 3934 3935 llvm::Value *Value; 3936 unsigned K : 3; 3937 unsigned Align : 29; 3938 saved_type(llvm::Value *v, Kind k, unsigned a = 0) 3939 : Value(v), K(k), Align(a) {} 3940 3941 public: 3942 static bool needsSaving(RValue value); 3943 static saved_type save(CodeGenFunction &CGF, RValue value); 3944 RValue restore(CodeGenFunction &CGF); 3945 3946 // implementations in CGCleanup.cpp 3947 }; 3948 3949 static bool needsSaving(type value) { 3950 return saved_type::needsSaving(value); 3951 } 3952 static saved_type save(CodeGenFunction &CGF, type value) { 3953 return saved_type::save(CGF, value); 3954 } 3955 static type restore(CodeGenFunction &CGF, saved_type value) { 3956 return value.restore(CGF); 3957 } 3958 }; 3959 3960 } // end namespace CodeGen 3961 } // end namespace clang 3962 3963 #endif 3964