1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the internal per-function state used for llvm translation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
15 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
16 
17 #include "CGBuilder.h"
18 #include "CGDebugInfo.h"
19 #include "CGLoopInfo.h"
20 #include "CGValue.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "EHScopeStack.h"
24 #include "VarBypassDetector.h"
25 #include "clang/AST/CharUnits.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/ExprObjC.h"
28 #include "clang/AST/ExprOpenMP.h"
29 #include "clang/AST/Type.h"
30 #include "clang/Basic/ABI.h"
31 #include "clang/Basic/CapturedStmt.h"
32 #include "clang/Basic/OpenMPKinds.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "clang/Frontend/CodeGenOptions.h"
35 #include "llvm/ADT/ArrayRef.h"
36 #include "llvm/ADT/DenseMap.h"
37 #include "llvm/ADT/SmallVector.h"
38 #include "llvm/IR/ValueHandle.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Transforms/Utils/SanitizerStats.h"
41 
42 namespace llvm {
43 class BasicBlock;
44 class LLVMContext;
45 class MDNode;
46 class Module;
47 class SwitchInst;
48 class Twine;
49 class Value;
50 class CallSite;
51 }
52 
53 namespace clang {
54 class ASTContext;
55 class BlockDecl;
56 class CXXDestructorDecl;
57 class CXXForRangeStmt;
58 class CXXTryStmt;
59 class Decl;
60 class LabelDecl;
61 class EnumConstantDecl;
62 class FunctionDecl;
63 class FunctionProtoType;
64 class LabelStmt;
65 class ObjCContainerDecl;
66 class ObjCInterfaceDecl;
67 class ObjCIvarDecl;
68 class ObjCMethodDecl;
69 class ObjCImplementationDecl;
70 class ObjCPropertyImplDecl;
71 class TargetInfo;
72 class VarDecl;
73 class ObjCForCollectionStmt;
74 class ObjCAtTryStmt;
75 class ObjCAtThrowStmt;
76 class ObjCAtSynchronizedStmt;
77 class ObjCAutoreleasePoolStmt;
78 
79 namespace CodeGen {
80 class CodeGenTypes;
81 class CGCallee;
82 class CGFunctionInfo;
83 class CGRecordLayout;
84 class CGBlockInfo;
85 class CGCXXABI;
86 class BlockByrefHelpers;
87 class BlockByrefInfo;
88 class BlockFlags;
89 class BlockFieldFlags;
90 class RegionCodeGenTy;
91 class TargetCodeGenInfo;
92 struct OMPTaskDataTy;
93 struct CGCoroData;
94 
95 /// The kind of evaluation to perform on values of a particular
96 /// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
97 /// CGExprAgg?
98 ///
99 /// TODO: should vectors maybe be split out into their own thing?
100 enum TypeEvaluationKind {
101   TEK_Scalar,
102   TEK_Complex,
103   TEK_Aggregate
104 };
105 
106 #define LIST_SANITIZER_CHECKS                                                  \
107   SANITIZER_CHECK(AddOverflow, add_overflow, 0)                                \
108   SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0)                  \
109   SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0)                             \
110   SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0)                          \
111   SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0)            \
112   SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0)                   \
113   SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 0)             \
114   SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0)                          \
115   SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0)                     \
116   SANITIZER_CHECK(MissingReturn, missing_return, 0)                            \
117   SANITIZER_CHECK(MulOverflow, mul_overflow, 0)                                \
118   SANITIZER_CHECK(NegateOverflow, negate_overflow, 0)                          \
119   SANITIZER_CHECK(NullabilityArg, nullability_arg, 0)                          \
120   SANITIZER_CHECK(NullabilityReturn, nullability_return, 1)                    \
121   SANITIZER_CHECK(NonnullArg, nonnull_arg, 0)                                  \
122   SANITIZER_CHECK(NonnullReturn, nonnull_return, 1)                            \
123   SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0)                               \
124   SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0)                        \
125   SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0)                    \
126   SANITIZER_CHECK(SubOverflow, sub_overflow, 0)                                \
127   SANITIZER_CHECK(TypeMismatch, type_mismatch, 1)                              \
128   SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0)
129 
130 enum SanitizerHandler {
131 #define SANITIZER_CHECK(Enum, Name, Version) Enum,
132   LIST_SANITIZER_CHECKS
133 #undef SANITIZER_CHECK
134 };
135 
136 /// CodeGenFunction - This class organizes the per-function state that is used
137 /// while generating LLVM code.
138 class CodeGenFunction : public CodeGenTypeCache {
139   CodeGenFunction(const CodeGenFunction &) = delete;
140   void operator=(const CodeGenFunction &) = delete;
141 
142   friend class CGCXXABI;
143 public:
144   /// A jump destination is an abstract label, branching to which may
145   /// require a jump out through normal cleanups.
146   struct JumpDest {
147     JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {}
148     JumpDest(llvm::BasicBlock *Block,
149              EHScopeStack::stable_iterator Depth,
150              unsigned Index)
151       : Block(Block), ScopeDepth(Depth), Index(Index) {}
152 
153     bool isValid() const { return Block != nullptr; }
154     llvm::BasicBlock *getBlock() const { return Block; }
155     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
156     unsigned getDestIndex() const { return Index; }
157 
158     // This should be used cautiously.
159     void setScopeDepth(EHScopeStack::stable_iterator depth) {
160       ScopeDepth = depth;
161     }
162 
163   private:
164     llvm::BasicBlock *Block;
165     EHScopeStack::stable_iterator ScopeDepth;
166     unsigned Index;
167   };
168 
169   CodeGenModule &CGM;  // Per-module state.
170   const TargetInfo &Target;
171 
172   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
173   LoopInfoStack LoopStack;
174   CGBuilderTy Builder;
175 
176   // Stores variables for which we can't generate correct lifetime markers
177   // because of jumps.
178   VarBypassDetector Bypasses;
179 
180   // CodeGen lambda for loops and support for ordered clause
181   typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &,
182                                   JumpDest)>
183       CodeGenLoopTy;
184   typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation,
185                                   const unsigned, const bool)>
186       CodeGenOrderedTy;
187 
188   // Codegen lambda for loop bounds in worksharing loop constructs
189   typedef llvm::function_ref<std::pair<LValue, LValue>(
190       CodeGenFunction &, const OMPExecutableDirective &S)>
191       CodeGenLoopBoundsTy;
192 
193   // Codegen lambda for loop bounds in dispatch-based loop implementation
194   typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>(
195       CodeGenFunction &, const OMPExecutableDirective &S, Address LB,
196       Address UB)>
197       CodeGenDispatchBoundsTy;
198 
199   /// \brief CGBuilder insert helper. This function is called after an
200   /// instruction is created using Builder.
201   void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
202                     llvm::BasicBlock *BB,
203                     llvm::BasicBlock::iterator InsertPt) const;
204 
205   /// CurFuncDecl - Holds the Decl for the current outermost
206   /// non-closure context.
207   const Decl *CurFuncDecl;
208   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
209   const Decl *CurCodeDecl;
210   const CGFunctionInfo *CurFnInfo;
211   QualType FnRetTy;
212   llvm::Function *CurFn;
213 
214   // Holds coroutine data if the current function is a coroutine. We use a
215   // wrapper to manage its lifetime, so that we don't have to define CGCoroData
216   // in this header.
217   struct CGCoroInfo {
218     std::unique_ptr<CGCoroData> Data;
219     CGCoroInfo();
220     ~CGCoroInfo();
221   };
222   CGCoroInfo CurCoro;
223 
224   /// CurGD - The GlobalDecl for the current function being compiled.
225   GlobalDecl CurGD;
226 
227   /// PrologueCleanupDepth - The cleanup depth enclosing all the
228   /// cleanups associated with the parameters.
229   EHScopeStack::stable_iterator PrologueCleanupDepth;
230 
231   /// ReturnBlock - Unified return block.
232   JumpDest ReturnBlock;
233 
234   /// ReturnValue - The temporary alloca to hold the return
235   /// value. This is invalid iff the function has no return value.
236   Address ReturnValue;
237 
238   /// Return true if a label was seen in the current scope.
239   bool hasLabelBeenSeenInCurrentScope() const {
240     if (CurLexicalScope)
241       return CurLexicalScope->hasLabels();
242     return !LabelMap.empty();
243   }
244 
245   /// AllocaInsertPoint - This is an instruction in the entry block before which
246   /// we prefer to insert allocas.
247   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
248 
249   /// \brief API for captured statement code generation.
250   class CGCapturedStmtInfo {
251   public:
252     explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default)
253         : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
254     explicit CGCapturedStmtInfo(const CapturedStmt &S,
255                                 CapturedRegionKind K = CR_Default)
256       : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
257 
258       RecordDecl::field_iterator Field =
259         S.getCapturedRecordDecl()->field_begin();
260       for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
261                                                 E = S.capture_end();
262            I != E; ++I, ++Field) {
263         if (I->capturesThis())
264           CXXThisFieldDecl = *Field;
265         else if (I->capturesVariable())
266           CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
267         else if (I->capturesVariableByCopy())
268           CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
269       }
270     }
271 
272     virtual ~CGCapturedStmtInfo();
273 
274     CapturedRegionKind getKind() const { return Kind; }
275 
276     virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
277     // \brief Retrieve the value of the context parameter.
278     virtual llvm::Value *getContextValue() const { return ThisValue; }
279 
280     /// \brief Lookup the captured field decl for a variable.
281     virtual const FieldDecl *lookup(const VarDecl *VD) const {
282       return CaptureFields.lookup(VD->getCanonicalDecl());
283     }
284 
285     bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
286     virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
287 
288     static bool classof(const CGCapturedStmtInfo *) {
289       return true;
290     }
291 
292     /// \brief Emit the captured statement body.
293     virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
294       CGF.incrementProfileCounter(S);
295       CGF.EmitStmt(S);
296     }
297 
298     /// \brief Get the name of the capture helper.
299     virtual StringRef getHelperName() const { return "__captured_stmt"; }
300 
301   private:
302     /// \brief The kind of captured statement being generated.
303     CapturedRegionKind Kind;
304 
305     /// \brief Keep the map between VarDecl and FieldDecl.
306     llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
307 
308     /// \brief The base address of the captured record, passed in as the first
309     /// argument of the parallel region function.
310     llvm::Value *ThisValue;
311 
312     /// \brief Captured 'this' type.
313     FieldDecl *CXXThisFieldDecl;
314   };
315   CGCapturedStmtInfo *CapturedStmtInfo;
316 
317   /// \brief RAII for correct setting/restoring of CapturedStmtInfo.
318   class CGCapturedStmtRAII {
319   private:
320     CodeGenFunction &CGF;
321     CGCapturedStmtInfo *PrevCapturedStmtInfo;
322   public:
323     CGCapturedStmtRAII(CodeGenFunction &CGF,
324                        CGCapturedStmtInfo *NewCapturedStmtInfo)
325         : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) {
326       CGF.CapturedStmtInfo = NewCapturedStmtInfo;
327     }
328     ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; }
329   };
330 
331   /// An abstract representation of regular/ObjC call/message targets.
332   class AbstractCallee {
333     /// The function declaration of the callee.
334     const Decl *CalleeDecl;
335 
336   public:
337     AbstractCallee() : CalleeDecl(nullptr) {}
338     AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {}
339     AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {}
340     bool hasFunctionDecl() const {
341       return dyn_cast_or_null<FunctionDecl>(CalleeDecl);
342     }
343     const Decl *getDecl() const { return CalleeDecl; }
344     unsigned getNumParams() const {
345       if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
346         return FD->getNumParams();
347       return cast<ObjCMethodDecl>(CalleeDecl)->param_size();
348     }
349     const ParmVarDecl *getParamDecl(unsigned I) const {
350       if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
351         return FD->getParamDecl(I);
352       return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I);
353     }
354   };
355 
356   /// \brief Sanitizers enabled for this function.
357   SanitizerSet SanOpts;
358 
359   /// \brief True if CodeGen currently emits code implementing sanitizer checks.
360   bool IsSanitizerScope;
361 
362   /// \brief RAII object to set/unset CodeGenFunction::IsSanitizerScope.
363   class SanitizerScope {
364     CodeGenFunction *CGF;
365   public:
366     SanitizerScope(CodeGenFunction *CGF);
367     ~SanitizerScope();
368   };
369 
370   /// In C++, whether we are code generating a thunk.  This controls whether we
371   /// should emit cleanups.
372   bool CurFuncIsThunk;
373 
374   /// In ARC, whether we should autorelease the return value.
375   bool AutoreleaseResult;
376 
377   /// Whether we processed a Microsoft-style asm block during CodeGen. These can
378   /// potentially set the return value.
379   bool SawAsmBlock;
380 
381   const FunctionDecl *CurSEHParent = nullptr;
382 
383   /// True if the current function is an outlined SEH helper. This can be a
384   /// finally block or filter expression.
385   bool IsOutlinedSEHHelper;
386 
387   const CodeGen::CGBlockInfo *BlockInfo;
388   llvm::Value *BlockPointer;
389 
390   llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
391   FieldDecl *LambdaThisCaptureField;
392 
393   /// \brief A mapping from NRVO variables to the flags used to indicate
394   /// when the NRVO has been applied to this variable.
395   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
396 
397   EHScopeStack EHStack;
398   llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
399   llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack;
400 
401   llvm::Instruction *CurrentFuncletPad = nullptr;
402 
403   class CallLifetimeEnd final : public EHScopeStack::Cleanup {
404     llvm::Value *Addr;
405     llvm::Value *Size;
406 
407   public:
408     CallLifetimeEnd(Address addr, llvm::Value *size)
409         : Addr(addr.getPointer()), Size(size) {}
410 
411     void Emit(CodeGenFunction &CGF, Flags flags) override {
412       CGF.EmitLifetimeEnd(Size, Addr);
413     }
414   };
415 
416   /// Header for data within LifetimeExtendedCleanupStack.
417   struct LifetimeExtendedCleanupHeader {
418     /// The size of the following cleanup object.
419     unsigned Size;
420     /// The kind of cleanup to push: a value from the CleanupKind enumeration.
421     CleanupKind Kind;
422 
423     size_t getSize() const { return Size; }
424     CleanupKind getKind() const { return Kind; }
425   };
426 
427   /// i32s containing the indexes of the cleanup destinations.
428   llvm::AllocaInst *NormalCleanupDest;
429 
430   unsigned NextCleanupDestIndex;
431 
432   /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
433   CGBlockInfo *FirstBlockInfo;
434 
435   /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
436   llvm::BasicBlock *EHResumeBlock;
437 
438   /// The exception slot.  All landing pads write the current exception pointer
439   /// into this alloca.
440   llvm::Value *ExceptionSlot;
441 
442   /// The selector slot.  Under the MandatoryCleanup model, all landing pads
443   /// write the current selector value into this alloca.
444   llvm::AllocaInst *EHSelectorSlot;
445 
446   /// A stack of exception code slots. Entering an __except block pushes a slot
447   /// on the stack and leaving pops one. The __exception_code() intrinsic loads
448   /// a value from the top of the stack.
449   SmallVector<Address, 1> SEHCodeSlotStack;
450 
451   /// Value returned by __exception_info intrinsic.
452   llvm::Value *SEHInfo = nullptr;
453 
454   /// Emits a landing pad for the current EH stack.
455   llvm::BasicBlock *EmitLandingPad();
456 
457   llvm::BasicBlock *getInvokeDestImpl();
458 
459   template <class T>
460   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
461     return DominatingValue<T>::save(*this, value);
462   }
463 
464 public:
465   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
466   /// rethrows.
467   SmallVector<llvm::Value*, 8> ObjCEHValueStack;
468 
469   /// A class controlling the emission of a finally block.
470   class FinallyInfo {
471     /// Where the catchall's edge through the cleanup should go.
472     JumpDest RethrowDest;
473 
474     /// A function to call to enter the catch.
475     llvm::Constant *BeginCatchFn;
476 
477     /// An i1 variable indicating whether or not the @finally is
478     /// running for an exception.
479     llvm::AllocaInst *ForEHVar;
480 
481     /// An i8* variable into which the exception pointer to rethrow
482     /// has been saved.
483     llvm::AllocaInst *SavedExnVar;
484 
485   public:
486     void enter(CodeGenFunction &CGF, const Stmt *Finally,
487                llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
488                llvm::Constant *rethrowFn);
489     void exit(CodeGenFunction &CGF);
490   };
491 
492   /// Returns true inside SEH __try blocks.
493   bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }
494 
495   /// Returns true while emitting a cleanuppad.
496   bool isCleanupPadScope() const {
497     return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad);
498   }
499 
500   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
501   /// current full-expression.  Safe against the possibility that
502   /// we're currently inside a conditionally-evaluated expression.
503   template <class T, class... As>
504   void pushFullExprCleanup(CleanupKind kind, As... A) {
505     // If we're not in a conditional branch, or if none of the
506     // arguments requires saving, then use the unconditional cleanup.
507     if (!isInConditionalBranch())
508       return EHStack.pushCleanup<T>(kind, A...);
509 
510     // Stash values in a tuple so we can guarantee the order of saves.
511     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
512     SavedTuple Saved{saveValueInCond(A)...};
513 
514     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
515     EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
516     initFullExprCleanup();
517   }
518 
519   /// \brief Queue a cleanup to be pushed after finishing the current
520   /// full-expression.
521   template <class T, class... As>
522   void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
523     assert(!isInConditionalBranch() && "can't defer conditional cleanup");
524 
525     LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind };
526 
527     size_t OldSize = LifetimeExtendedCleanupStack.size();
528     LifetimeExtendedCleanupStack.resize(
529         LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size);
530 
531     static_assert(sizeof(Header) % alignof(T) == 0,
532                   "Cleanup will be allocated on misaligned address");
533     char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
534     new (Buffer) LifetimeExtendedCleanupHeader(Header);
535     new (Buffer + sizeof(Header)) T(A...);
536   }
537 
538   /// Set up the last cleaup that was pushed as a conditional
539   /// full-expression cleanup.
540   void initFullExprCleanup();
541 
542   /// PushDestructorCleanup - Push a cleanup to call the
543   /// complete-object destructor of an object of the given type at the
544   /// given address.  Does nothing if T is not a C++ class type with a
545   /// non-trivial destructor.
546   void PushDestructorCleanup(QualType T, Address Addr);
547 
548   /// PushDestructorCleanup - Push a cleanup to call the
549   /// complete-object variant of the given destructor on the object at
550   /// the given address.
551   void PushDestructorCleanup(const CXXDestructorDecl *Dtor, Address Addr);
552 
553   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
554   /// process all branch fixups.
555   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
556 
557   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
558   /// The block cannot be reactivated.  Pops it if it's the top of the
559   /// stack.
560   ///
561   /// \param DominatingIP - An instruction which is known to
562   ///   dominate the current IP (if set) and which lies along
563   ///   all paths of execution between the current IP and the
564   ///   the point at which the cleanup comes into scope.
565   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
566                               llvm::Instruction *DominatingIP);
567 
568   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
569   /// Cannot be used to resurrect a deactivated cleanup.
570   ///
571   /// \param DominatingIP - An instruction which is known to
572   ///   dominate the current IP (if set) and which lies along
573   ///   all paths of execution between the current IP and the
574   ///   the point at which the cleanup comes into scope.
575   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
576                             llvm::Instruction *DominatingIP);
577 
578   /// \brief Enters a new scope for capturing cleanups, all of which
579   /// will be executed once the scope is exited.
580   class RunCleanupsScope {
581     EHScopeStack::stable_iterator CleanupStackDepth;
582     size_t LifetimeExtendedCleanupStackSize;
583     bool OldDidCallStackSave;
584   protected:
585     bool PerformCleanup;
586   private:
587 
588     RunCleanupsScope(const RunCleanupsScope &) = delete;
589     void operator=(const RunCleanupsScope &) = delete;
590 
591   protected:
592     CodeGenFunction& CGF;
593 
594   public:
595     /// \brief Enter a new cleanup scope.
596     explicit RunCleanupsScope(CodeGenFunction &CGF)
597       : PerformCleanup(true), CGF(CGF)
598     {
599       CleanupStackDepth = CGF.EHStack.stable_begin();
600       LifetimeExtendedCleanupStackSize =
601           CGF.LifetimeExtendedCleanupStack.size();
602       OldDidCallStackSave = CGF.DidCallStackSave;
603       CGF.DidCallStackSave = false;
604     }
605 
606     /// \brief Exit this cleanup scope, emitting any accumulated cleanups.
607     ~RunCleanupsScope() {
608       if (PerformCleanup)
609         ForceCleanup();
610     }
611 
612     /// \brief Determine whether this scope requires any cleanups.
613     bool requiresCleanups() const {
614       return CGF.EHStack.stable_begin() != CleanupStackDepth;
615     }
616 
617     /// \brief Force the emission of cleanups now, instead of waiting
618     /// until this object is destroyed.
619     /// \param ValuesToReload - A list of values that need to be available at
620     /// the insertion point after cleanup emission. If cleanup emission created
621     /// a shared cleanup block, these value pointers will be rewritten.
622     /// Otherwise, they not will be modified.
623     void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) {
624       assert(PerformCleanup && "Already forced cleanup");
625       CGF.DidCallStackSave = OldDidCallStackSave;
626       CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize,
627                            ValuesToReload);
628       PerformCleanup = false;
629     }
630   };
631 
632   class LexicalScope : public RunCleanupsScope {
633     SourceRange Range;
634     SmallVector<const LabelDecl*, 4> Labels;
635     LexicalScope *ParentScope;
636 
637     LexicalScope(const LexicalScope &) = delete;
638     void operator=(const LexicalScope &) = delete;
639 
640   public:
641     /// \brief Enter a new cleanup scope.
642     explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
643       : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
644       CGF.CurLexicalScope = this;
645       if (CGDebugInfo *DI = CGF.getDebugInfo())
646         DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
647     }
648 
649     void addLabel(const LabelDecl *label) {
650       assert(PerformCleanup && "adding label to dead scope?");
651       Labels.push_back(label);
652     }
653 
654     /// \brief Exit this cleanup scope, emitting any accumulated
655     /// cleanups.
656     ~LexicalScope() {
657       if (CGDebugInfo *DI = CGF.getDebugInfo())
658         DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
659 
660       // If we should perform a cleanup, force them now.  Note that
661       // this ends the cleanup scope before rescoping any labels.
662       if (PerformCleanup) {
663         ApplyDebugLocation DL(CGF, Range.getEnd());
664         ForceCleanup();
665       }
666     }
667 
668     /// \brief Force the emission of cleanups now, instead of waiting
669     /// until this object is destroyed.
670     void ForceCleanup() {
671       CGF.CurLexicalScope = ParentScope;
672       RunCleanupsScope::ForceCleanup();
673 
674       if (!Labels.empty())
675         rescopeLabels();
676     }
677 
678     bool hasLabels() const {
679       return !Labels.empty();
680     }
681 
682     void rescopeLabels();
683   };
684 
685   typedef llvm::DenseMap<const Decl *, Address> DeclMapTy;
686 
687   /// \brief The scope used to remap some variables as private in the OpenMP
688   /// loop body (or other captured region emitted without outlining), and to
689   /// restore old vars back on exit.
690   class OMPPrivateScope : public RunCleanupsScope {
691     DeclMapTy SavedLocals;
692     DeclMapTy SavedPrivates;
693 
694   private:
695     OMPPrivateScope(const OMPPrivateScope &) = delete;
696     void operator=(const OMPPrivateScope &) = delete;
697 
698   public:
699     /// \brief Enter a new OpenMP private scope.
700     explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}
701 
702     /// \brief Registers \a LocalVD variable as a private and apply \a
703     /// PrivateGen function for it to generate corresponding private variable.
704     /// \a PrivateGen returns an address of the generated private variable.
705     /// \return true if the variable is registered as private, false if it has
706     /// been privatized already.
707     bool
708     addPrivate(const VarDecl *LocalVD,
709                llvm::function_ref<Address()> PrivateGen) {
710       assert(PerformCleanup && "adding private to dead scope");
711 
712       LocalVD = LocalVD->getCanonicalDecl();
713       // Only save it once.
714       if (SavedLocals.count(LocalVD)) return false;
715 
716       // Copy the existing local entry to SavedLocals.
717       auto it = CGF.LocalDeclMap.find(LocalVD);
718       if (it != CGF.LocalDeclMap.end()) {
719         SavedLocals.insert({LocalVD, it->second});
720       } else {
721         SavedLocals.insert({LocalVD, Address::invalid()});
722       }
723 
724       // Generate the private entry.
725       Address Addr = PrivateGen();
726       QualType VarTy = LocalVD->getType();
727       if (VarTy->isReferenceType()) {
728         Address Temp = CGF.CreateMemTemp(VarTy);
729         CGF.Builder.CreateStore(Addr.getPointer(), Temp);
730         Addr = Temp;
731       }
732       SavedPrivates.insert({LocalVD, Addr});
733 
734       return true;
735     }
736 
737     /// \brief Privatizes local variables previously registered as private.
738     /// Registration is separate from the actual privatization to allow
739     /// initializers use values of the original variables, not the private one.
740     /// This is important, for example, if the private variable is a class
741     /// variable initialized by a constructor that references other private
742     /// variables. But at initialization original variables must be used, not
743     /// private copies.
744     /// \return true if at least one variable was privatized, false otherwise.
745     bool Privatize() {
746       copyInto(SavedPrivates, CGF.LocalDeclMap);
747       SavedPrivates.clear();
748       return !SavedLocals.empty();
749     }
750 
751     void ForceCleanup() {
752       RunCleanupsScope::ForceCleanup();
753       copyInto(SavedLocals, CGF.LocalDeclMap);
754       SavedLocals.clear();
755     }
756 
757     /// \brief Exit scope - all the mapped variables are restored.
758     ~OMPPrivateScope() {
759       if (PerformCleanup)
760         ForceCleanup();
761     }
762 
763     /// Checks if the global variable is captured in current function.
764     bool isGlobalVarCaptured(const VarDecl *VD) const {
765       VD = VD->getCanonicalDecl();
766       return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0;
767     }
768 
769   private:
770     /// Copy all the entries in the source map over the corresponding
771     /// entries in the destination, which must exist.
772     static void copyInto(const DeclMapTy &src, DeclMapTy &dest) {
773       for (auto &pair : src) {
774         if (!pair.second.isValid()) {
775           dest.erase(pair.first);
776           continue;
777         }
778 
779         auto it = dest.find(pair.first);
780         if (it != dest.end()) {
781           it->second = pair.second;
782         } else {
783           dest.insert(pair);
784         }
785       }
786     }
787   };
788 
789   /// \brief Takes the old cleanup stack size and emits the cleanup blocks
790   /// that have been added.
791   void
792   PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
793                    std::initializer_list<llvm::Value **> ValuesToReload = {});
794 
795   /// \brief Takes the old cleanup stack size and emits the cleanup blocks
796   /// that have been added, then adds all lifetime-extended cleanups from
797   /// the given position to the stack.
798   void
799   PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
800                    size_t OldLifetimeExtendedStackSize,
801                    std::initializer_list<llvm::Value **> ValuesToReload = {});
802 
803   void ResolveBranchFixups(llvm::BasicBlock *Target);
804 
805   /// The given basic block lies in the current EH scope, but may be a
806   /// target of a potentially scope-crossing jump; get a stable handle
807   /// to which we can perform this jump later.
808   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
809     return JumpDest(Target,
810                     EHStack.getInnermostNormalCleanup(),
811                     NextCleanupDestIndex++);
812   }
813 
814   /// The given basic block lies in the current EH scope, but may be a
815   /// target of a potentially scope-crossing jump; get a stable handle
816   /// to which we can perform this jump later.
817   JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
818     return getJumpDestInCurrentScope(createBasicBlock(Name));
819   }
820 
821   /// EmitBranchThroughCleanup - Emit a branch from the current insert
822   /// block through the normal cleanup handling code (if any) and then
823   /// on to \arg Dest.
824   void EmitBranchThroughCleanup(JumpDest Dest);
825 
826   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
827   /// specified destination obviously has no cleanups to run.  'false' is always
828   /// a conservatively correct answer for this method.
829   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
830 
831   /// popCatchScope - Pops the catch scope at the top of the EHScope
832   /// stack, emitting any required code (other than the catch handlers
833   /// themselves).
834   void popCatchScope();
835 
836   llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
837   llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
838   llvm::BasicBlock *getMSVCDispatchBlock(EHScopeStack::stable_iterator scope);
839 
840   /// An object to manage conditionally-evaluated expressions.
841   class ConditionalEvaluation {
842     llvm::BasicBlock *StartBB;
843 
844   public:
845     ConditionalEvaluation(CodeGenFunction &CGF)
846       : StartBB(CGF.Builder.GetInsertBlock()) {}
847 
848     void begin(CodeGenFunction &CGF) {
849       assert(CGF.OutermostConditional != this);
850       if (!CGF.OutermostConditional)
851         CGF.OutermostConditional = this;
852     }
853 
854     void end(CodeGenFunction &CGF) {
855       assert(CGF.OutermostConditional != nullptr);
856       if (CGF.OutermostConditional == this)
857         CGF.OutermostConditional = nullptr;
858     }
859 
860     /// Returns a block which will be executed prior to each
861     /// evaluation of the conditional code.
862     llvm::BasicBlock *getStartingBlock() const {
863       return StartBB;
864     }
865   };
866 
867   /// isInConditionalBranch - Return true if we're currently emitting
868   /// one branch or the other of a conditional expression.
869   bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
870 
871   void setBeforeOutermostConditional(llvm::Value *value, Address addr) {
872     assert(isInConditionalBranch());
873     llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
874     auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back());
875     store->setAlignment(addr.getAlignment().getQuantity());
876   }
877 
878   /// An RAII object to record that we're evaluating a statement
879   /// expression.
880   class StmtExprEvaluation {
881     CodeGenFunction &CGF;
882 
883     /// We have to save the outermost conditional: cleanups in a
884     /// statement expression aren't conditional just because the
885     /// StmtExpr is.
886     ConditionalEvaluation *SavedOutermostConditional;
887 
888   public:
889     StmtExprEvaluation(CodeGenFunction &CGF)
890       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
891       CGF.OutermostConditional = nullptr;
892     }
893 
894     ~StmtExprEvaluation() {
895       CGF.OutermostConditional = SavedOutermostConditional;
896       CGF.EnsureInsertPoint();
897     }
898   };
899 
900   /// An object which temporarily prevents a value from being
901   /// destroyed by aggressive peephole optimizations that assume that
902   /// all uses of a value have been realized in the IR.
903   class PeepholeProtection {
904     llvm::Instruction *Inst;
905     friend class CodeGenFunction;
906 
907   public:
908     PeepholeProtection() : Inst(nullptr) {}
909   };
910 
911   /// A non-RAII class containing all the information about a bound
912   /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
913   /// this which makes individual mappings very simple; using this
914   /// class directly is useful when you have a variable number of
915   /// opaque values or don't want the RAII functionality for some
916   /// reason.
917   class OpaqueValueMappingData {
918     const OpaqueValueExpr *OpaqueValue;
919     bool BoundLValue;
920     CodeGenFunction::PeepholeProtection Protection;
921 
922     OpaqueValueMappingData(const OpaqueValueExpr *ov,
923                            bool boundLValue)
924       : OpaqueValue(ov), BoundLValue(boundLValue) {}
925   public:
926     OpaqueValueMappingData() : OpaqueValue(nullptr) {}
927 
928     static bool shouldBindAsLValue(const Expr *expr) {
929       // gl-values should be bound as l-values for obvious reasons.
930       // Records should be bound as l-values because IR generation
931       // always keeps them in memory.  Expressions of function type
932       // act exactly like l-values but are formally required to be
933       // r-values in C.
934       return expr->isGLValue() ||
935              expr->getType()->isFunctionType() ||
936              hasAggregateEvaluationKind(expr->getType());
937     }
938 
939     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
940                                        const OpaqueValueExpr *ov,
941                                        const Expr *e) {
942       if (shouldBindAsLValue(ov))
943         return bind(CGF, ov, CGF.EmitLValue(e));
944       return bind(CGF, ov, CGF.EmitAnyExpr(e));
945     }
946 
947     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
948                                        const OpaqueValueExpr *ov,
949                                        const LValue &lv) {
950       assert(shouldBindAsLValue(ov));
951       CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
952       return OpaqueValueMappingData(ov, true);
953     }
954 
955     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
956                                        const OpaqueValueExpr *ov,
957                                        const RValue &rv) {
958       assert(!shouldBindAsLValue(ov));
959       CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
960 
961       OpaqueValueMappingData data(ov, false);
962 
963       // Work around an extremely aggressive peephole optimization in
964       // EmitScalarConversion which assumes that all other uses of a
965       // value are extant.
966       data.Protection = CGF.protectFromPeepholes(rv);
967 
968       return data;
969     }
970 
971     bool isValid() const { return OpaqueValue != nullptr; }
972     void clear() { OpaqueValue = nullptr; }
973 
974     void unbind(CodeGenFunction &CGF) {
975       assert(OpaqueValue && "no data to unbind!");
976 
977       if (BoundLValue) {
978         CGF.OpaqueLValues.erase(OpaqueValue);
979       } else {
980         CGF.OpaqueRValues.erase(OpaqueValue);
981         CGF.unprotectFromPeepholes(Protection);
982       }
983     }
984   };
985 
986   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
987   class OpaqueValueMapping {
988     CodeGenFunction &CGF;
989     OpaqueValueMappingData Data;
990 
991   public:
992     static bool shouldBindAsLValue(const Expr *expr) {
993       return OpaqueValueMappingData::shouldBindAsLValue(expr);
994     }
995 
996     /// Build the opaque value mapping for the given conditional
997     /// operator if it's the GNU ?: extension.  This is a common
998     /// enough pattern that the convenience operator is really
999     /// helpful.
1000     ///
1001     OpaqueValueMapping(CodeGenFunction &CGF,
1002                        const AbstractConditionalOperator *op) : CGF(CGF) {
1003       if (isa<ConditionalOperator>(op))
1004         // Leave Data empty.
1005         return;
1006 
1007       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
1008       Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
1009                                           e->getCommon());
1010     }
1011 
1012     /// Build the opaque value mapping for an OpaqueValueExpr whose source
1013     /// expression is set to the expression the OVE represents.
1014     OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV)
1015         : CGF(CGF) {
1016       if (OV) {
1017         assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used "
1018                                       "for OVE with no source expression");
1019         Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr());
1020       }
1021     }
1022 
1023     OpaqueValueMapping(CodeGenFunction &CGF,
1024                        const OpaqueValueExpr *opaqueValue,
1025                        LValue lvalue)
1026       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
1027     }
1028 
1029     OpaqueValueMapping(CodeGenFunction &CGF,
1030                        const OpaqueValueExpr *opaqueValue,
1031                        RValue rvalue)
1032       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
1033     }
1034 
1035     void pop() {
1036       Data.unbind(CGF);
1037       Data.clear();
1038     }
1039 
1040     ~OpaqueValueMapping() {
1041       if (Data.isValid()) Data.unbind(CGF);
1042     }
1043   };
1044 
1045 private:
1046   CGDebugInfo *DebugInfo;
1047   bool DisableDebugInfo;
1048 
1049   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
1050   /// calling llvm.stacksave for multiple VLAs in the same scope.
1051   bool DidCallStackSave;
1052 
1053   /// IndirectBranch - The first time an indirect goto is seen we create a block
1054   /// with an indirect branch.  Every time we see the address of a label taken,
1055   /// we add the label to the indirect goto.  Every subsequent indirect goto is
1056   /// codegen'd as a jump to the IndirectBranch's basic block.
1057   llvm::IndirectBrInst *IndirectBranch;
1058 
1059   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1060   /// decls.
1061   DeclMapTy LocalDeclMap;
1062 
1063   /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this
1064   /// will contain a mapping from said ParmVarDecl to its implicit "object_size"
1065   /// parameter.
1066   llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2>
1067       SizeArguments;
1068 
1069   /// Track escaped local variables with auto storage. Used during SEH
1070   /// outlining to produce a call to llvm.localescape.
1071   llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;
1072 
1073   /// LabelMap - This keeps track of the LLVM basic block for each C label.
1074   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1075 
1076   // BreakContinueStack - This keeps track of where break and continue
1077   // statements should jump to.
1078   struct BreakContinue {
1079     BreakContinue(JumpDest Break, JumpDest Continue)
1080       : BreakBlock(Break), ContinueBlock(Continue) {}
1081 
1082     JumpDest BreakBlock;
1083     JumpDest ContinueBlock;
1084   };
1085   SmallVector<BreakContinue, 8> BreakContinueStack;
1086 
1087   /// Handles cancellation exit points in OpenMP-related constructs.
1088   class OpenMPCancelExitStack {
1089     /// Tracks cancellation exit point and join point for cancel-related exit
1090     /// and normal exit.
1091     struct CancelExit {
1092       CancelExit() = default;
1093       CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock,
1094                  JumpDest ContBlock)
1095           : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {}
1096       OpenMPDirectiveKind Kind = OMPD_unknown;
1097       /// true if the exit block has been emitted already by the special
1098       /// emitExit() call, false if the default codegen is used.
1099       bool HasBeenEmitted = false;
1100       JumpDest ExitBlock;
1101       JumpDest ContBlock;
1102     };
1103 
1104     SmallVector<CancelExit, 8> Stack;
1105 
1106   public:
1107     OpenMPCancelExitStack() : Stack(1) {}
1108     ~OpenMPCancelExitStack() = default;
1109     /// Fetches the exit block for the current OpenMP construct.
1110     JumpDest getExitBlock() const { return Stack.back().ExitBlock; }
1111     /// Emits exit block with special codegen procedure specific for the related
1112     /// OpenMP construct + emits code for normal construct cleanup.
1113     void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
1114                   const llvm::function_ref<void(CodeGenFunction &)> &CodeGen) {
1115       if (Stack.back().Kind == Kind && getExitBlock().isValid()) {
1116         assert(CGF.getOMPCancelDestination(Kind).isValid());
1117         assert(CGF.HaveInsertPoint());
1118         assert(!Stack.back().HasBeenEmitted);
1119         auto IP = CGF.Builder.saveAndClearIP();
1120         CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1121         CodeGen(CGF);
1122         CGF.EmitBranch(Stack.back().ContBlock.getBlock());
1123         CGF.Builder.restoreIP(IP);
1124         Stack.back().HasBeenEmitted = true;
1125       }
1126       CodeGen(CGF);
1127     }
1128     /// Enter the cancel supporting \a Kind construct.
1129     /// \param Kind OpenMP directive that supports cancel constructs.
1130     /// \param HasCancel true, if the construct has inner cancel directive,
1131     /// false otherwise.
1132     void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) {
1133       Stack.push_back({Kind,
1134                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit")
1135                                  : JumpDest(),
1136                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont")
1137                                  : JumpDest()});
1138     }
1139     /// Emits default exit point for the cancel construct (if the special one
1140     /// has not be used) + join point for cancel/normal exits.
1141     void exit(CodeGenFunction &CGF) {
1142       if (getExitBlock().isValid()) {
1143         assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid());
1144         bool HaveIP = CGF.HaveInsertPoint();
1145         if (!Stack.back().HasBeenEmitted) {
1146           if (HaveIP)
1147             CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1148           CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1149           CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1150         }
1151         CGF.EmitBlock(Stack.back().ContBlock.getBlock());
1152         if (!HaveIP) {
1153           CGF.Builder.CreateUnreachable();
1154           CGF.Builder.ClearInsertionPoint();
1155         }
1156       }
1157       Stack.pop_back();
1158     }
1159   };
1160   OpenMPCancelExitStack OMPCancelStack;
1161 
1162   /// Controls insertion of cancellation exit blocks in worksharing constructs.
1163   class OMPCancelStackRAII {
1164     CodeGenFunction &CGF;
1165 
1166   public:
1167     OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
1168                        bool HasCancel)
1169         : CGF(CGF) {
1170       CGF.OMPCancelStack.enter(CGF, Kind, HasCancel);
1171     }
1172     ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); }
1173   };
1174 
1175   CodeGenPGO PGO;
1176 
1177   /// Calculate branch weights appropriate for PGO data
1178   llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount);
1179   llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights);
1180   llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond,
1181                                             uint64_t LoopCount);
1182 
1183 public:
1184   /// Increment the profiler's counter for the given statement by \p StepV.
1185   /// If \p StepV is null, the default increment is 1.
1186   void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) {
1187     if (CGM.getCodeGenOpts().hasProfileClangInstr())
1188       PGO.emitCounterIncrement(Builder, S, StepV);
1189     PGO.setCurrentStmt(S);
1190   }
1191 
1192   /// Get the profiler's count for the given statement.
1193   uint64_t getProfileCount(const Stmt *S) {
1194     Optional<uint64_t> Count = PGO.getStmtCount(S);
1195     if (!Count.hasValue())
1196       return 0;
1197     return *Count;
1198   }
1199 
1200   /// Set the profiler's current count.
1201   void setCurrentProfileCount(uint64_t Count) {
1202     PGO.setCurrentRegionCount(Count);
1203   }
1204 
1205   /// Get the profiler's current count. This is generally the count for the most
1206   /// recently incremented counter.
1207   uint64_t getCurrentProfileCount() {
1208     return PGO.getCurrentRegionCount();
1209   }
1210 
1211 private:
1212 
1213   /// SwitchInsn - This is nearest current switch instruction. It is null if
1214   /// current context is not in a switch.
1215   llvm::SwitchInst *SwitchInsn;
1216   /// The branch weights of SwitchInsn when doing instrumentation based PGO.
1217   SmallVector<uint64_t, 16> *SwitchWeights;
1218 
1219   /// CaseRangeBlock - This block holds if condition check for last case
1220   /// statement range in current switch instruction.
1221   llvm::BasicBlock *CaseRangeBlock;
1222 
1223   /// OpaqueLValues - Keeps track of the current set of opaque value
1224   /// expressions.
1225   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1226   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1227 
1228   // VLASizeMap - This keeps track of the associated size for each VLA type.
1229   // We track this by the size expression rather than the type itself because
1230   // in certain situations, like a const qualifier applied to an VLA typedef,
1231   // multiple VLA types can share the same size expression.
1232   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1233   // enter/leave scopes.
1234   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1235 
1236   /// A block containing a single 'unreachable' instruction.  Created
1237   /// lazily by getUnreachableBlock().
1238   llvm::BasicBlock *UnreachableBlock;
1239 
1240   /// Counts of the number return expressions in the function.
1241   unsigned NumReturnExprs;
1242 
1243   /// Count the number of simple (constant) return expressions in the function.
1244   unsigned NumSimpleReturnExprs;
1245 
1246   /// The last regular (non-return) debug location (breakpoint) in the function.
1247   SourceLocation LastStopPoint;
1248 
1249 public:
1250   /// A scope within which we are constructing the fields of an object which
1251   /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
1252   /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
1253   class FieldConstructionScope {
1254   public:
1255     FieldConstructionScope(CodeGenFunction &CGF, Address This)
1256         : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
1257       CGF.CXXDefaultInitExprThis = This;
1258     }
1259     ~FieldConstructionScope() {
1260       CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
1261     }
1262 
1263   private:
1264     CodeGenFunction &CGF;
1265     Address OldCXXDefaultInitExprThis;
1266   };
1267 
1268   /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
1269   /// is overridden to be the object under construction.
1270   class CXXDefaultInitExprScope {
1271   public:
1272     CXXDefaultInitExprScope(CodeGenFunction &CGF)
1273       : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue),
1274         OldCXXThisAlignment(CGF.CXXThisAlignment) {
1275       CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer();
1276       CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment();
1277     }
1278     ~CXXDefaultInitExprScope() {
1279       CGF.CXXThisValue = OldCXXThisValue;
1280       CGF.CXXThisAlignment = OldCXXThisAlignment;
1281     }
1282 
1283   public:
1284     CodeGenFunction &CGF;
1285     llvm::Value *OldCXXThisValue;
1286     CharUnits OldCXXThisAlignment;
1287   };
1288 
1289   /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the
1290   /// current loop index is overridden.
1291   class ArrayInitLoopExprScope {
1292   public:
1293     ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index)
1294       : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) {
1295       CGF.ArrayInitIndex = Index;
1296     }
1297     ~ArrayInitLoopExprScope() {
1298       CGF.ArrayInitIndex = OldArrayInitIndex;
1299     }
1300 
1301   private:
1302     CodeGenFunction &CGF;
1303     llvm::Value *OldArrayInitIndex;
1304   };
1305 
1306   class InlinedInheritingConstructorScope {
1307   public:
1308     InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD)
1309         : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl),
1310           OldCurCodeDecl(CGF.CurCodeDecl),
1311           OldCXXABIThisDecl(CGF.CXXABIThisDecl),
1312           OldCXXABIThisValue(CGF.CXXABIThisValue),
1313           OldCXXThisValue(CGF.CXXThisValue),
1314           OldCXXABIThisAlignment(CGF.CXXABIThisAlignment),
1315           OldCXXThisAlignment(CGF.CXXThisAlignment),
1316           OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy),
1317           OldCXXInheritedCtorInitExprArgs(
1318               std::move(CGF.CXXInheritedCtorInitExprArgs)) {
1319       CGF.CurGD = GD;
1320       CGF.CurFuncDecl = CGF.CurCodeDecl =
1321           cast<CXXConstructorDecl>(GD.getDecl());
1322       CGF.CXXABIThisDecl = nullptr;
1323       CGF.CXXABIThisValue = nullptr;
1324       CGF.CXXThisValue = nullptr;
1325       CGF.CXXABIThisAlignment = CharUnits();
1326       CGF.CXXThisAlignment = CharUnits();
1327       CGF.ReturnValue = Address::invalid();
1328       CGF.FnRetTy = QualType();
1329       CGF.CXXInheritedCtorInitExprArgs.clear();
1330     }
1331     ~InlinedInheritingConstructorScope() {
1332       CGF.CurGD = OldCurGD;
1333       CGF.CurFuncDecl = OldCurFuncDecl;
1334       CGF.CurCodeDecl = OldCurCodeDecl;
1335       CGF.CXXABIThisDecl = OldCXXABIThisDecl;
1336       CGF.CXXABIThisValue = OldCXXABIThisValue;
1337       CGF.CXXThisValue = OldCXXThisValue;
1338       CGF.CXXABIThisAlignment = OldCXXABIThisAlignment;
1339       CGF.CXXThisAlignment = OldCXXThisAlignment;
1340       CGF.ReturnValue = OldReturnValue;
1341       CGF.FnRetTy = OldFnRetTy;
1342       CGF.CXXInheritedCtorInitExprArgs =
1343           std::move(OldCXXInheritedCtorInitExprArgs);
1344     }
1345 
1346   private:
1347     CodeGenFunction &CGF;
1348     GlobalDecl OldCurGD;
1349     const Decl *OldCurFuncDecl;
1350     const Decl *OldCurCodeDecl;
1351     ImplicitParamDecl *OldCXXABIThisDecl;
1352     llvm::Value *OldCXXABIThisValue;
1353     llvm::Value *OldCXXThisValue;
1354     CharUnits OldCXXABIThisAlignment;
1355     CharUnits OldCXXThisAlignment;
1356     Address OldReturnValue;
1357     QualType OldFnRetTy;
1358     CallArgList OldCXXInheritedCtorInitExprArgs;
1359   };
1360 
1361 private:
1362   /// CXXThisDecl - When generating code for a C++ member function,
1363   /// this will hold the implicit 'this' declaration.
1364   ImplicitParamDecl *CXXABIThisDecl;
1365   llvm::Value *CXXABIThisValue;
1366   llvm::Value *CXXThisValue;
1367   CharUnits CXXABIThisAlignment;
1368   CharUnits CXXThisAlignment;
1369 
1370   /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
1371   /// this expression.
1372   Address CXXDefaultInitExprThis = Address::invalid();
1373 
1374   /// The current array initialization index when evaluating an
1375   /// ArrayInitIndexExpr within an ArrayInitLoopExpr.
1376   llvm::Value *ArrayInitIndex = nullptr;
1377 
1378   /// The values of function arguments to use when evaluating
1379   /// CXXInheritedCtorInitExprs within this context.
1380   CallArgList CXXInheritedCtorInitExprArgs;
1381 
1382   /// CXXStructorImplicitParamDecl - When generating code for a constructor or
1383   /// destructor, this will hold the implicit argument (e.g. VTT).
1384   ImplicitParamDecl *CXXStructorImplicitParamDecl;
1385   llvm::Value *CXXStructorImplicitParamValue;
1386 
1387   /// OutermostConditional - Points to the outermost active
1388   /// conditional control.  This is used so that we know if a
1389   /// temporary should be destroyed conditionally.
1390   ConditionalEvaluation *OutermostConditional;
1391 
1392   /// The current lexical scope.
1393   LexicalScope *CurLexicalScope;
1394 
1395   /// The current source location that should be used for exception
1396   /// handling code.
1397   SourceLocation CurEHLocation;
1398 
1399   /// BlockByrefInfos - For each __block variable, contains
1400   /// information about the layout of the variable.
1401   llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos;
1402 
1403   /// Used by -fsanitize=nullability-return to determine whether the return
1404   /// value can be checked.
1405   llvm::Value *RetValNullabilityPrecondition = nullptr;
1406 
1407   /// Check if -fsanitize=nullability-return instrumentation is required for
1408   /// this function.
1409   bool requiresReturnValueNullabilityCheck() const {
1410     return RetValNullabilityPrecondition;
1411   }
1412 
1413   /// Used to store precise source locations for return statements by the
1414   /// runtime return value checks.
1415   Address ReturnLocation = Address::invalid();
1416 
1417   /// Check if the return value of this function requires sanitization.
1418   bool requiresReturnValueCheck() const {
1419     return requiresReturnValueNullabilityCheck() ||
1420            (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
1421             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>());
1422   }
1423 
1424   llvm::BasicBlock *TerminateLandingPad;
1425   llvm::BasicBlock *TerminateHandler;
1426   llvm::BasicBlock *TrapBB;
1427 
1428   /// True if we need emit the life-time markers.
1429   const bool ShouldEmitLifetimeMarkers;
1430 
1431   /// Add OpenCL kernel arg metadata and the kernel attribute meatadata to
1432   /// the function metadata.
1433   void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
1434                                 llvm::Function *Fn);
1435 
1436 public:
1437   CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1438   ~CodeGenFunction();
1439 
1440   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1441   ASTContext &getContext() const { return CGM.getContext(); }
1442   CGDebugInfo *getDebugInfo() {
1443     if (DisableDebugInfo)
1444       return nullptr;
1445     return DebugInfo;
1446   }
1447   void disableDebugInfo() { DisableDebugInfo = true; }
1448   void enableDebugInfo() { DisableDebugInfo = false; }
1449 
1450   bool shouldUseFusedARCCalls() {
1451     return CGM.getCodeGenOpts().OptimizationLevel == 0;
1452   }
1453 
1454   const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1455 
1456   /// Returns a pointer to the function's exception object and selector slot,
1457   /// which is assigned in every landing pad.
1458   Address getExceptionSlot();
1459   Address getEHSelectorSlot();
1460 
1461   /// Returns the contents of the function's exception object and selector
1462   /// slots.
1463   llvm::Value *getExceptionFromSlot();
1464   llvm::Value *getSelectorFromSlot();
1465 
1466   Address getNormalCleanupDestSlot();
1467 
1468   llvm::BasicBlock *getUnreachableBlock() {
1469     if (!UnreachableBlock) {
1470       UnreachableBlock = createBasicBlock("unreachable");
1471       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1472     }
1473     return UnreachableBlock;
1474   }
1475 
1476   llvm::BasicBlock *getInvokeDest() {
1477     if (!EHStack.requiresLandingPad()) return nullptr;
1478     return getInvokeDestImpl();
1479   }
1480 
1481   bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; }
1482 
1483   const TargetInfo &getTarget() const { return Target; }
1484   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1485   const TargetCodeGenInfo &getTargetHooks() const {
1486     return CGM.getTargetCodeGenInfo();
1487   }
1488 
1489   //===--------------------------------------------------------------------===//
1490   //                                  Cleanups
1491   //===--------------------------------------------------------------------===//
1492 
1493   typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty);
1494 
1495   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1496                                         Address arrayEndPointer,
1497                                         QualType elementType,
1498                                         CharUnits elementAlignment,
1499                                         Destroyer *destroyer);
1500   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1501                                       llvm::Value *arrayEnd,
1502                                       QualType elementType,
1503                                       CharUnits elementAlignment,
1504                                       Destroyer *destroyer);
1505 
1506   void pushDestroy(QualType::DestructionKind dtorKind,
1507                    Address addr, QualType type);
1508   void pushEHDestroy(QualType::DestructionKind dtorKind,
1509                      Address addr, QualType type);
1510   void pushDestroy(CleanupKind kind, Address addr, QualType type,
1511                    Destroyer *destroyer, bool useEHCleanupForArray);
1512   void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr,
1513                                    QualType type, Destroyer *destroyer,
1514                                    bool useEHCleanupForArray);
1515   void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1516                                    llvm::Value *CompletePtr,
1517                                    QualType ElementType);
1518   void pushStackRestore(CleanupKind kind, Address SPMem);
1519   void emitDestroy(Address addr, QualType type, Destroyer *destroyer,
1520                    bool useEHCleanupForArray);
1521   llvm::Function *generateDestroyHelper(Address addr, QualType type,
1522                                         Destroyer *destroyer,
1523                                         bool useEHCleanupForArray,
1524                                         const VarDecl *VD);
1525   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1526                         QualType elementType, CharUnits elementAlign,
1527                         Destroyer *destroyer,
1528                         bool checkZeroLength, bool useEHCleanup);
1529 
1530   Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1531 
1532   /// Determines whether an EH cleanup is required to destroy a type
1533   /// with the given destruction kind.
1534   bool needsEHCleanup(QualType::DestructionKind kind) {
1535     switch (kind) {
1536     case QualType::DK_none:
1537       return false;
1538     case QualType::DK_cxx_destructor:
1539     case QualType::DK_objc_weak_lifetime:
1540       return getLangOpts().Exceptions;
1541     case QualType::DK_objc_strong_lifetime:
1542       return getLangOpts().Exceptions &&
1543              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1544     }
1545     llvm_unreachable("bad destruction kind");
1546   }
1547 
1548   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
1549     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1550   }
1551 
1552   //===--------------------------------------------------------------------===//
1553   //                                  Objective-C
1554   //===--------------------------------------------------------------------===//
1555 
1556   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1557 
1558   void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
1559 
1560   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1561   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1562                           const ObjCPropertyImplDecl *PID);
1563   void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1564                               const ObjCPropertyImplDecl *propImpl,
1565                               const ObjCMethodDecl *GetterMothodDecl,
1566                               llvm::Constant *AtomicHelperFn);
1567 
1568   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1569                                   ObjCMethodDecl *MD, bool ctor);
1570 
1571   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1572   /// for the given property.
1573   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1574                           const ObjCPropertyImplDecl *PID);
1575   void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1576                               const ObjCPropertyImplDecl *propImpl,
1577                               llvm::Constant *AtomicHelperFn);
1578 
1579   //===--------------------------------------------------------------------===//
1580   //                                  Block Bits
1581   //===--------------------------------------------------------------------===//
1582 
1583   llvm::Value *EmitBlockLiteral(const BlockExpr *);
1584   static void destroyBlockInfos(CGBlockInfo *info);
1585 
1586   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1587                                         const CGBlockInfo &Info,
1588                                         const DeclMapTy &ldm,
1589                                         bool IsLambdaConversionToBlock,
1590                                         bool BuildGlobalBlock);
1591 
1592   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1593   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1594   llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
1595                                              const ObjCPropertyImplDecl *PID);
1596   llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
1597                                              const ObjCPropertyImplDecl *PID);
1598   llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
1599 
1600   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
1601 
1602   class AutoVarEmission;
1603 
1604   void emitByrefStructureInit(const AutoVarEmission &emission);
1605   void enterByrefCleanup(const AutoVarEmission &emission);
1606 
1607   void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum,
1608                                 llvm::Value *ptr);
1609 
1610   Address LoadBlockStruct();
1611   Address GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
1612 
1613   /// BuildBlockByrefAddress - Computes the location of the
1614   /// data in a variable which is declared as __block.
1615   Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V,
1616                                 bool followForward = true);
1617   Address emitBlockByrefAddress(Address baseAddr,
1618                                 const BlockByrefInfo &info,
1619                                 bool followForward,
1620                                 const llvm::Twine &name);
1621 
1622   const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var);
1623 
1624   QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args);
1625 
1626   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1627                     const CGFunctionInfo &FnInfo);
1628   /// \brief Emit code for the start of a function.
1629   /// \param Loc       The location to be associated with the function.
1630   /// \param StartLoc  The location of the function body.
1631   void StartFunction(GlobalDecl GD,
1632                      QualType RetTy,
1633                      llvm::Function *Fn,
1634                      const CGFunctionInfo &FnInfo,
1635                      const FunctionArgList &Args,
1636                      SourceLocation Loc = SourceLocation(),
1637                      SourceLocation StartLoc = SourceLocation());
1638 
1639   static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor);
1640 
1641   void EmitConstructorBody(FunctionArgList &Args);
1642   void EmitDestructorBody(FunctionArgList &Args);
1643   void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
1644   void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body);
1645   void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S);
1646 
1647   void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
1648                                   CallArgList &CallArgs);
1649   void EmitLambdaBlockInvokeBody();
1650   void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
1651   void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD);
1652   void EmitAsanPrologueOrEpilogue(bool Prologue);
1653 
1654   /// \brief Emit the unified return block, trying to avoid its emission when
1655   /// possible.
1656   /// \return The debug location of the user written return statement if the
1657   /// return block is is avoided.
1658   llvm::DebugLoc EmitReturnBlock();
1659 
1660   /// FinishFunction - Complete IR generation of the current function. It is
1661   /// legal to call this function even if there is no current insertion point.
1662   void FinishFunction(SourceLocation EndLoc=SourceLocation());
1663 
1664   void StartThunk(llvm::Function *Fn, GlobalDecl GD,
1665                   const CGFunctionInfo &FnInfo);
1666 
1667   void EmitCallAndReturnForThunk(llvm::Constant *Callee,
1668                                  const ThunkInfo *Thunk);
1669 
1670   void FinishThunk();
1671 
1672   /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
1673   void EmitMustTailThunk(const CXXMethodDecl *MD, llvm::Value *AdjustedThisPtr,
1674                          llvm::Value *Callee);
1675 
1676   /// Generate a thunk for the given method.
1677   void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1678                      GlobalDecl GD, const ThunkInfo &Thunk);
1679 
1680   llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn,
1681                                        const CGFunctionInfo &FnInfo,
1682                                        GlobalDecl GD, const ThunkInfo &Thunk);
1683 
1684   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1685                         FunctionArgList &Args);
1686 
1687   void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init);
1688 
1689   /// Struct with all informations about dynamic [sub]class needed to set vptr.
1690   struct VPtr {
1691     BaseSubobject Base;
1692     const CXXRecordDecl *NearestVBase;
1693     CharUnits OffsetFromNearestVBase;
1694     const CXXRecordDecl *VTableClass;
1695   };
1696 
1697   /// Initialize the vtable pointer of the given subobject.
1698   void InitializeVTablePointer(const VPtr &vptr);
1699 
1700   typedef llvm::SmallVector<VPtr, 4> VPtrsVector;
1701 
1702   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1703   VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass);
1704 
1705   void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase,
1706                          CharUnits OffsetFromNearestVBase,
1707                          bool BaseIsNonVirtualPrimaryBase,
1708                          const CXXRecordDecl *VTableClass,
1709                          VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs);
1710 
1711   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1712 
1713   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1714   /// to by This.
1715   llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy,
1716                             const CXXRecordDecl *VTableClass);
1717 
1718   enum CFITypeCheckKind {
1719     CFITCK_VCall,
1720     CFITCK_NVCall,
1721     CFITCK_DerivedCast,
1722     CFITCK_UnrelatedCast,
1723     CFITCK_ICall,
1724   };
1725 
1726   /// \brief Derived is the presumed address of an object of type T after a
1727   /// cast. If T is a polymorphic class type, emit a check that the virtual
1728   /// table for Derived belongs to a class derived from T.
1729   void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived,
1730                                  bool MayBeNull, CFITypeCheckKind TCK,
1731                                  SourceLocation Loc);
1732 
1733   /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
1734   /// If vptr CFI is enabled, emit a check that VTable is valid.
1735   void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable,
1736                                  CFITypeCheckKind TCK, SourceLocation Loc);
1737 
1738   /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
1739   /// RD using llvm.type.test.
1740   void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable,
1741                           CFITypeCheckKind TCK, SourceLocation Loc);
1742 
1743   /// If whole-program virtual table optimization is enabled, emit an assumption
1744   /// that VTable is a member of RD's type identifier. Or, if vptr CFI is
1745   /// enabled, emit a check that VTable is a member of RD's type identifier.
1746   void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
1747                                     llvm::Value *VTable, SourceLocation Loc);
1748 
1749   /// Returns whether we should perform a type checked load when loading a
1750   /// virtual function for virtual calls to members of RD. This is generally
1751   /// true when both vcall CFI and whole-program-vtables are enabled.
1752   bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD);
1753 
1754   /// Emit a type checked load from the given vtable.
1755   llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable,
1756                                          uint64_t VTableByteOffset);
1757 
1758   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1759   /// given phase of destruction for a destructor.  The end result
1760   /// should call destructors on members and base classes in reverse
1761   /// order of their construction.
1762   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1763 
1764   /// ShouldInstrumentFunction - Return true if the current function should be
1765   /// instrumented with __cyg_profile_func_* calls
1766   bool ShouldInstrumentFunction();
1767 
1768   /// ShouldXRayInstrument - Return true if the current function should be
1769   /// instrumented with XRay nop sleds.
1770   bool ShouldXRayInstrumentFunction() const;
1771 
1772   /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
1773   /// instrumentation function with the current function and the call site, if
1774   /// function instrumentation is enabled.
1775   void EmitFunctionInstrumentation(const char *Fn);
1776 
1777   /// EmitMCountInstrumentation - Emit call to .mcount.
1778   void EmitMCountInstrumentation();
1779 
1780   /// Encode an address into a form suitable for use in a function prologue.
1781   llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F,
1782                                              llvm::Constant *Addr);
1783 
1784   /// Decode an address used in a function prologue, encoded by \c
1785   /// EncodeAddrForUseInPrologue.
1786   llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F,
1787                                         llvm::Value *EncodedAddr);
1788 
1789   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1790   /// arguments for the given function. This is also responsible for naming the
1791   /// LLVM function arguments.
1792   void EmitFunctionProlog(const CGFunctionInfo &FI,
1793                           llvm::Function *Fn,
1794                           const FunctionArgList &Args);
1795 
1796   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1797   /// given temporary.
1798   void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
1799                           SourceLocation EndLoc);
1800 
1801   /// Emit a test that checks if the return value \p RV is nonnull.
1802   void EmitReturnValueCheck(llvm::Value *RV);
1803 
1804   /// EmitStartEHSpec - Emit the start of the exception spec.
1805   void EmitStartEHSpec(const Decl *D);
1806 
1807   /// EmitEndEHSpec - Emit the end of the exception spec.
1808   void EmitEndEHSpec(const Decl *D);
1809 
1810   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
1811   llvm::BasicBlock *getTerminateLandingPad();
1812 
1813   /// getTerminateHandler - Return a handler (not a landing pad, just
1814   /// a catch handler) that just calls terminate.  This is used when
1815   /// a terminate scope encloses a try.
1816   llvm::BasicBlock *getTerminateHandler();
1817 
1818   llvm::Type *ConvertTypeForMem(QualType T);
1819   llvm::Type *ConvertType(QualType T);
1820   llvm::Type *ConvertType(const TypeDecl *T) {
1821     return ConvertType(getContext().getTypeDeclType(T));
1822   }
1823 
1824   /// LoadObjCSelf - Load the value of self. This function is only valid while
1825   /// generating code for an Objective-C method.
1826   llvm::Value *LoadObjCSelf();
1827 
1828   /// TypeOfSelfObject - Return type of object that this self represents.
1829   QualType TypeOfSelfObject();
1830 
1831   /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T.
1832   static TypeEvaluationKind getEvaluationKind(QualType T);
1833 
1834   static bool hasScalarEvaluationKind(QualType T) {
1835     return getEvaluationKind(T) == TEK_Scalar;
1836   }
1837 
1838   static bool hasAggregateEvaluationKind(QualType T) {
1839     return getEvaluationKind(T) == TEK_Aggregate;
1840   }
1841 
1842   /// createBasicBlock - Create an LLVM basic block.
1843   llvm::BasicBlock *createBasicBlock(const Twine &name = "",
1844                                      llvm::Function *parent = nullptr,
1845                                      llvm::BasicBlock *before = nullptr) {
1846 #ifdef NDEBUG
1847     return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
1848 #else
1849     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
1850 #endif
1851   }
1852 
1853   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
1854   /// label maps to.
1855   JumpDest getJumpDestForLabel(const LabelDecl *S);
1856 
1857   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
1858   /// another basic block, simplify it. This assumes that no other code could
1859   /// potentially reference the basic block.
1860   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
1861 
1862   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
1863   /// adding a fall-through branch from the current insert block if
1864   /// necessary. It is legal to call this function even if there is no current
1865   /// insertion point.
1866   ///
1867   /// IsFinished - If true, indicates that the caller has finished emitting
1868   /// branches to the given block and does not expect to emit code into it. This
1869   /// means the block can be ignored if it is unreachable.
1870   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
1871 
1872   /// EmitBlockAfterUses - Emit the given block somewhere hopefully
1873   /// near its uses, and leave the insertion point in it.
1874   void EmitBlockAfterUses(llvm::BasicBlock *BB);
1875 
1876   /// EmitBranch - Emit a branch to the specified basic block from the current
1877   /// insert block, taking care to avoid creation of branches from dummy
1878   /// blocks. It is legal to call this function even if there is no current
1879   /// insertion point.
1880   ///
1881   /// This function clears the current insertion point. The caller should follow
1882   /// calls to this function with calls to Emit*Block prior to generation new
1883   /// code.
1884   void EmitBranch(llvm::BasicBlock *Block);
1885 
1886   /// HaveInsertPoint - True if an insertion point is defined. If not, this
1887   /// indicates that the current code being emitted is unreachable.
1888   bool HaveInsertPoint() const {
1889     return Builder.GetInsertBlock() != nullptr;
1890   }
1891 
1892   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
1893   /// emitted IR has a place to go. Note that by definition, if this function
1894   /// creates a block then that block is unreachable; callers may do better to
1895   /// detect when no insertion point is defined and simply skip IR generation.
1896   void EnsureInsertPoint() {
1897     if (!HaveInsertPoint())
1898       EmitBlock(createBasicBlock());
1899   }
1900 
1901   /// ErrorUnsupported - Print out an error that codegen doesn't support the
1902   /// specified stmt yet.
1903   void ErrorUnsupported(const Stmt *S, const char *Type);
1904 
1905   //===--------------------------------------------------------------------===//
1906   //                                  Helpers
1907   //===--------------------------------------------------------------------===//
1908 
1909   LValue MakeAddrLValue(Address Addr, QualType T,
1910                         LValueBaseInfo BaseInfo =
1911                             LValueBaseInfo(AlignmentSource::Type)) {
1912     return LValue::MakeAddr(Addr, T, getContext(), BaseInfo,
1913                             CGM.getTBAAInfo(T));
1914   }
1915 
1916   LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
1917                         LValueBaseInfo BaseInfo =
1918                             LValueBaseInfo(AlignmentSource::Type)) {
1919     return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
1920                             BaseInfo, CGM.getTBAAInfo(T));
1921   }
1922 
1923   LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T);
1924   LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T);
1925   CharUnits getNaturalTypeAlignment(QualType T,
1926                                     LValueBaseInfo *BaseInfo = nullptr,
1927                                     bool forPointeeType = false);
1928   CharUnits getNaturalPointeeTypeAlignment(QualType T,
1929                                            LValueBaseInfo *BaseInfo = nullptr);
1930 
1931   Address EmitLoadOfReference(Address Ref, const ReferenceType *RefTy,
1932                               LValueBaseInfo *BaseInfo = nullptr);
1933   LValue EmitLoadOfReferenceLValue(Address Ref, const ReferenceType *RefTy);
1934 
1935   Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy,
1936                             LValueBaseInfo *BaseInfo = nullptr);
1937   LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy);
1938 
1939   /// CreateTempAlloca - This creates an alloca and inserts it into the entry
1940   /// block if \p ArraySize is nullptr, otherwise inserts it at the current
1941   /// insertion point of the builder. The caller is responsible for setting an
1942   /// appropriate alignment on
1943   /// the alloca.
1944   ///
1945   /// \p ArraySize is the number of array elements to be allocated if it
1946   ///    is not nullptr.
1947   ///
1948   /// LangAS::Default is the address space of pointers to local variables and
1949   /// temporaries, as exposed in the source language. In certain
1950   /// configurations, this is not the same as the alloca address space, and a
1951   /// cast is needed to lift the pointer from the alloca AS into
1952   /// LangAS::Default. This can happen when the target uses a restricted
1953   /// address space for the stack but the source language requires
1954   /// LangAS::Default to be a generic address space. The latter condition is
1955   /// common for most programming languages; OpenCL is an exception in that
1956   /// LangAS::Default is the private address space, which naturally maps
1957   /// to the stack.
1958   ///
1959   /// Because the address of a temporary is often exposed to the program in
1960   /// various ways, this function will perform the cast by default. The cast
1961   /// may be avoided by passing false as \p CastToDefaultAddrSpace; this is
1962   /// more efficient if the caller knows that the address will not be exposed.
1963   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp",
1964                                      llvm::Value *ArraySize = nullptr);
1965   Address CreateTempAlloca(llvm::Type *Ty, CharUnits align,
1966                            const Twine &Name = "tmp",
1967                            llvm::Value *ArraySize = nullptr,
1968                            bool CastToDefaultAddrSpace = true);
1969 
1970   /// CreateDefaultAlignedTempAlloca - This creates an alloca with the
1971   /// default ABI alignment of the given LLVM type.
1972   ///
1973   /// IMPORTANT NOTE: This is *not* generally the right alignment for
1974   /// any given AST type that happens to have been lowered to the
1975   /// given IR type.  This should only ever be used for function-local,
1976   /// IR-driven manipulations like saving and restoring a value.  Do
1977   /// not hand this address off to arbitrary IRGen routines, and especially
1978   /// do not pass it as an argument to a function that might expect a
1979   /// properly ABI-aligned value.
1980   Address CreateDefaultAlignTempAlloca(llvm::Type *Ty,
1981                                        const Twine &Name = "tmp");
1982 
1983   /// InitTempAlloca - Provide an initial value for the given alloca which
1984   /// will be observable at all locations in the function.
1985   ///
1986   /// The address should be something that was returned from one of
1987   /// the CreateTempAlloca or CreateMemTemp routines, and the
1988   /// initializer must be valid in the entry block (i.e. it must
1989   /// either be a constant or an argument value).
1990   void InitTempAlloca(Address Alloca, llvm::Value *Value);
1991 
1992   /// CreateIRTemp - Create a temporary IR object of the given type, with
1993   /// appropriate alignment. This routine should only be used when an temporary
1994   /// value needs to be stored into an alloca (for example, to avoid explicit
1995   /// PHI construction), but the type is the IR type, not the type appropriate
1996   /// for storing in memory.
1997   ///
1998   /// That is, this is exactly equivalent to CreateMemTemp, but calling
1999   /// ConvertType instead of ConvertTypeForMem.
2000   Address CreateIRTemp(QualType T, const Twine &Name = "tmp");
2001 
2002   /// CreateMemTemp - Create a temporary memory object of the given type, with
2003   /// appropriate alignment. Cast it to the default address space if
2004   /// \p CastToDefaultAddrSpace is true.
2005   Address CreateMemTemp(QualType T, const Twine &Name = "tmp",
2006                         bool CastToDefaultAddrSpace = true);
2007   Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp",
2008                         bool CastToDefaultAddrSpace = true);
2009 
2010   /// CreateAggTemp - Create a temporary memory object for the given
2011   /// aggregate type.
2012   AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
2013     return AggValueSlot::forAddr(CreateMemTemp(T, Name),
2014                                  T.getQualifiers(),
2015                                  AggValueSlot::IsNotDestructed,
2016                                  AggValueSlot::DoesNotNeedGCBarriers,
2017                                  AggValueSlot::IsNotAliased);
2018   }
2019 
2020   /// Emit a cast to void* in the appropriate address space.
2021   llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
2022 
2023   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
2024   /// expression and compare the result against zero, returning an Int1Ty value.
2025   llvm::Value *EvaluateExprAsBool(const Expr *E);
2026 
2027   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
2028   void EmitIgnoredExpr(const Expr *E);
2029 
2030   /// EmitAnyExpr - Emit code to compute the specified expression which can have
2031   /// any type.  The result is returned as an RValue struct.  If this is an
2032   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
2033   /// the result should be returned.
2034   ///
2035   /// \param ignoreResult True if the resulting value isn't used.
2036   RValue EmitAnyExpr(const Expr *E,
2037                      AggValueSlot aggSlot = AggValueSlot::ignored(),
2038                      bool ignoreResult = false);
2039 
2040   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
2041   // or the value of the expression, depending on how va_list is defined.
2042   Address EmitVAListRef(const Expr *E);
2043 
2044   /// Emit a "reference" to a __builtin_ms_va_list; this is
2045   /// always the value of the expression, because a __builtin_ms_va_list is a
2046   /// pointer to a char.
2047   Address EmitMSVAListRef(const Expr *E);
2048 
2049   /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will
2050   /// always be accessible even if no aggregate location is provided.
2051   RValue EmitAnyExprToTemp(const Expr *E);
2052 
2053   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
2054   /// arbitrary expression into the given memory location.
2055   void EmitAnyExprToMem(const Expr *E, Address Location,
2056                         Qualifiers Quals, bool IsInitializer);
2057 
2058   void EmitAnyExprToExn(const Expr *E, Address Addr);
2059 
2060   /// EmitExprAsInit - Emits the code necessary to initialize a
2061   /// location in memory with the given initializer.
2062   void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2063                       bool capturedByInit);
2064 
2065   /// hasVolatileMember - returns true if aggregate type has a volatile
2066   /// member.
2067   bool hasVolatileMember(QualType T) {
2068     if (const RecordType *RT = T->getAs<RecordType>()) {
2069       const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
2070       return RD->hasVolatileMember();
2071     }
2072     return false;
2073   }
2074   /// EmitAggregateCopy - Emit an aggregate assignment.
2075   ///
2076   /// The difference to EmitAggregateCopy is that tail padding is not copied.
2077   /// This is required for correctness when assigning non-POD structures in C++.
2078   void EmitAggregateAssign(Address DestPtr, Address SrcPtr,
2079                            QualType EltTy) {
2080     bool IsVolatile = hasVolatileMember(EltTy);
2081     EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, true);
2082   }
2083 
2084   void EmitAggregateCopyCtor(Address DestPtr, Address SrcPtr,
2085                              QualType DestTy, QualType SrcTy) {
2086     EmitAggregateCopy(DestPtr, SrcPtr, SrcTy, /*IsVolatile=*/false,
2087                       /*IsAssignment=*/false);
2088   }
2089 
2090   /// EmitAggregateCopy - Emit an aggregate copy.
2091   ///
2092   /// \param isVolatile - True iff either the source or the destination is
2093   /// volatile.
2094   /// \param isAssignment - If false, allow padding to be copied.  This often
2095   /// yields more efficient.
2096   void EmitAggregateCopy(Address DestPtr, Address SrcPtr,
2097                          QualType EltTy, bool isVolatile=false,
2098                          bool isAssignment = false);
2099 
2100   /// GetAddrOfLocalVar - Return the address of a local variable.
2101   Address GetAddrOfLocalVar(const VarDecl *VD) {
2102     auto it = LocalDeclMap.find(VD);
2103     assert(it != LocalDeclMap.end() &&
2104            "Invalid argument to GetAddrOfLocalVar(), no decl!");
2105     return it->second;
2106   }
2107 
2108   /// getOpaqueLValueMapping - Given an opaque value expression (which
2109   /// must be mapped to an l-value), return its mapping.
2110   const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
2111     assert(OpaqueValueMapping::shouldBindAsLValue(e));
2112 
2113     llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
2114       it = OpaqueLValues.find(e);
2115     assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
2116     return it->second;
2117   }
2118 
2119   /// getOpaqueRValueMapping - Given an opaque value expression (which
2120   /// must be mapped to an r-value), return its mapping.
2121   const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
2122     assert(!OpaqueValueMapping::shouldBindAsLValue(e));
2123 
2124     llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
2125       it = OpaqueRValues.find(e);
2126     assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
2127     return it->second;
2128   }
2129 
2130   /// Get the index of the current ArrayInitLoopExpr, if any.
2131   llvm::Value *getArrayInitIndex() { return ArrayInitIndex; }
2132 
2133   /// getAccessedFieldNo - Given an encoded value and a result number, return
2134   /// the input field number being accessed.
2135   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
2136 
2137   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
2138   llvm::BasicBlock *GetIndirectGotoBlock();
2139 
2140   /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts.
2141   static bool IsWrappedCXXThis(const Expr *E);
2142 
2143   /// EmitNullInitialization - Generate code to set a value of the given type to
2144   /// null, If the type contains data member pointers, they will be initialized
2145   /// to -1 in accordance with the Itanium C++ ABI.
2146   void EmitNullInitialization(Address DestPtr, QualType Ty);
2147 
2148   /// Emits a call to an LLVM variable-argument intrinsic, either
2149   /// \c llvm.va_start or \c llvm.va_end.
2150   /// \param ArgValue A reference to the \c va_list as emitted by either
2151   /// \c EmitVAListRef or \c EmitMSVAListRef.
2152   /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise,
2153   /// calls \c llvm.va_end.
2154   llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart);
2155 
2156   /// Generate code to get an argument from the passed in pointer
2157   /// and update it accordingly.
2158   /// \param VE The \c VAArgExpr for which to generate code.
2159   /// \param VAListAddr Receives a reference to the \c va_list as emitted by
2160   /// either \c EmitVAListRef or \c EmitMSVAListRef.
2161   /// \returns A pointer to the argument.
2162   // FIXME: We should be able to get rid of this method and use the va_arg
2163   // instruction in LLVM instead once it works well enough.
2164   Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr);
2165 
2166   /// emitArrayLength - Compute the length of an array, even if it's a
2167   /// VLA, and drill down to the base element type.
2168   llvm::Value *emitArrayLength(const ArrayType *arrayType,
2169                                QualType &baseType,
2170                                Address &addr);
2171 
2172   /// EmitVLASize - Capture all the sizes for the VLA expressions in
2173   /// the given variably-modified type and store them in the VLASizeMap.
2174   ///
2175   /// This function can be called with a null (unreachable) insert point.
2176   void EmitVariablyModifiedType(QualType Ty);
2177 
2178   /// getVLASize - Returns an LLVM value that corresponds to the size,
2179   /// in non-variably-sized elements, of a variable length array type,
2180   /// plus that largest non-variably-sized element type.  Assumes that
2181   /// the type has already been emitted with EmitVariablyModifiedType.
2182   std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla);
2183   std::pair<llvm::Value*,QualType> getVLASize(QualType vla);
2184 
2185   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
2186   /// generating code for an C++ member function.
2187   llvm::Value *LoadCXXThis() {
2188     assert(CXXThisValue && "no 'this' value for this function");
2189     return CXXThisValue;
2190   }
2191   Address LoadCXXThisAddress();
2192 
2193   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
2194   /// virtual bases.
2195   // FIXME: Every place that calls LoadCXXVTT is something
2196   // that needs to be abstracted properly.
2197   llvm::Value *LoadCXXVTT() {
2198     assert(CXXStructorImplicitParamValue && "no VTT value for this function");
2199     return CXXStructorImplicitParamValue;
2200   }
2201 
2202   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
2203   /// complete class to the given direct base.
2204   Address
2205   GetAddressOfDirectBaseInCompleteClass(Address Value,
2206                                         const CXXRecordDecl *Derived,
2207                                         const CXXRecordDecl *Base,
2208                                         bool BaseIsVirtual);
2209 
2210   static bool ShouldNullCheckClassCastValue(const CastExpr *Cast);
2211 
2212   /// GetAddressOfBaseClass - This function will add the necessary delta to the
2213   /// load of 'this' and returns address of the base class.
2214   Address GetAddressOfBaseClass(Address Value,
2215                                 const CXXRecordDecl *Derived,
2216                                 CastExpr::path_const_iterator PathBegin,
2217                                 CastExpr::path_const_iterator PathEnd,
2218                                 bool NullCheckValue, SourceLocation Loc);
2219 
2220   Address GetAddressOfDerivedClass(Address Value,
2221                                    const CXXRecordDecl *Derived,
2222                                    CastExpr::path_const_iterator PathBegin,
2223                                    CastExpr::path_const_iterator PathEnd,
2224                                    bool NullCheckValue);
2225 
2226   /// GetVTTParameter - Return the VTT parameter that should be passed to a
2227   /// base constructor/destructor with virtual bases.
2228   /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
2229   /// to ItaniumCXXABI.cpp together with all the references to VTT.
2230   llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
2231                                bool Delegating);
2232 
2233   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
2234                                       CXXCtorType CtorType,
2235                                       const FunctionArgList &Args,
2236                                       SourceLocation Loc);
2237   // It's important not to confuse this and the previous function. Delegating
2238   // constructors are the C++0x feature. The constructor delegate optimization
2239   // is used to reduce duplication in the base and complete consturctors where
2240   // they are substantially the same.
2241   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2242                                         const FunctionArgList &Args);
2243 
2244   /// Emit a call to an inheriting constructor (that is, one that invokes a
2245   /// constructor inherited from a base class) by inlining its definition. This
2246   /// is necessary if the ABI does not support forwarding the arguments to the
2247   /// base class constructor (because they're variadic or similar).
2248   void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2249                                                CXXCtorType CtorType,
2250                                                bool ForVirtualBase,
2251                                                bool Delegating,
2252                                                CallArgList &Args);
2253 
2254   /// Emit a call to a constructor inherited from a base class, passing the
2255   /// current constructor's arguments along unmodified (without even making
2256   /// a copy).
2257   void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D,
2258                                        bool ForVirtualBase, Address This,
2259                                        bool InheritedFromVBase,
2260                                        const CXXInheritedCtorInitExpr *E);
2261 
2262   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2263                               bool ForVirtualBase, bool Delegating,
2264                               Address This, const CXXConstructExpr *E);
2265 
2266   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2267                               bool ForVirtualBase, bool Delegating,
2268                               Address This, CallArgList &Args);
2269 
2270   /// Emit assumption load for all bases. Requires to be be called only on
2271   /// most-derived class and not under construction of the object.
2272   void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This);
2273 
2274   /// Emit assumption that vptr load == global vtable.
2275   void EmitVTableAssumptionLoad(const VPtr &vptr, Address This);
2276 
2277   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
2278                                       Address This, Address Src,
2279                                       const CXXConstructExpr *E);
2280 
2281   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2282                                   const ArrayType *ArrayTy,
2283                                   Address ArrayPtr,
2284                                   const CXXConstructExpr *E,
2285                                   bool ZeroInitialization = false);
2286 
2287   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2288                                   llvm::Value *NumElements,
2289                                   Address ArrayPtr,
2290                                   const CXXConstructExpr *E,
2291                                   bool ZeroInitialization = false);
2292 
2293   static Destroyer destroyCXXObject;
2294 
2295   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
2296                              bool ForVirtualBase, bool Delegating,
2297                              Address This);
2298 
2299   void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
2300                                llvm::Type *ElementTy, Address NewPtr,
2301                                llvm::Value *NumElements,
2302                                llvm::Value *AllocSizeWithoutCookie);
2303 
2304   void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
2305                         Address Ptr);
2306 
2307   llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr);
2308   void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr);
2309 
2310   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
2311   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
2312 
2313   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
2314                       QualType DeleteTy, llvm::Value *NumElements = nullptr,
2315                       CharUnits CookieSize = CharUnits());
2316 
2317   RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
2318                                   const Expr *Arg, bool IsDelete);
2319 
2320   llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E);
2321   llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE);
2322   Address EmitCXXUuidofExpr(const CXXUuidofExpr *E);
2323 
2324   /// \brief Situations in which we might emit a check for the suitability of a
2325   ///        pointer or glvalue.
2326   enum TypeCheckKind {
2327     /// Checking the operand of a load. Must be suitably sized and aligned.
2328     TCK_Load,
2329     /// Checking the destination of a store. Must be suitably sized and aligned.
2330     TCK_Store,
2331     /// Checking the bound value in a reference binding. Must be suitably sized
2332     /// and aligned, but is not required to refer to an object (until the
2333     /// reference is used), per core issue 453.
2334     TCK_ReferenceBinding,
2335     /// Checking the object expression in a non-static data member access. Must
2336     /// be an object within its lifetime.
2337     TCK_MemberAccess,
2338     /// Checking the 'this' pointer for a call to a non-static member function.
2339     /// Must be an object within its lifetime.
2340     TCK_MemberCall,
2341     /// Checking the 'this' pointer for a constructor call.
2342     TCK_ConstructorCall,
2343     /// Checking the operand of a static_cast to a derived pointer type. Must be
2344     /// null or an object within its lifetime.
2345     TCK_DowncastPointer,
2346     /// Checking the operand of a static_cast to a derived reference type. Must
2347     /// be an object within its lifetime.
2348     TCK_DowncastReference,
2349     /// Checking the operand of a cast to a base object. Must be suitably sized
2350     /// and aligned.
2351     TCK_Upcast,
2352     /// Checking the operand of a cast to a virtual base object. Must be an
2353     /// object within its lifetime.
2354     TCK_UpcastToVirtualBase,
2355     /// Checking the value assigned to a _Nonnull pointer. Must not be null.
2356     TCK_NonnullAssign
2357   };
2358 
2359   /// \brief Whether any type-checking sanitizers are enabled. If \c false,
2360   /// calls to EmitTypeCheck can be skipped.
2361   bool sanitizePerformTypeCheck() const;
2362 
2363   /// \brief Emit a check that \p V is the address of storage of the
2364   /// appropriate size and alignment for an object of type \p Type.
2365   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
2366                      QualType Type, CharUnits Alignment = CharUnits::Zero(),
2367                      SanitizerSet SkippedChecks = SanitizerSet());
2368 
2369   /// \brief Emit a check that \p Base points into an array object, which
2370   /// we can access at index \p Index. \p Accessed should be \c false if we
2371   /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
2372   void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
2373                        QualType IndexType, bool Accessed);
2374 
2375   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2376                                        bool isInc, bool isPre);
2377   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
2378                                          bool isInc, bool isPre);
2379 
2380   void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment,
2381                                llvm::Value *OffsetValue = nullptr) {
2382     Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment,
2383                                       OffsetValue);
2384   }
2385 
2386   /// Converts Location to a DebugLoc, if debug information is enabled.
2387   llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location);
2388 
2389 
2390   //===--------------------------------------------------------------------===//
2391   //                            Declaration Emission
2392   //===--------------------------------------------------------------------===//
2393 
2394   /// EmitDecl - Emit a declaration.
2395   ///
2396   /// This function can be called with a null (unreachable) insert point.
2397   void EmitDecl(const Decl &D);
2398 
2399   /// EmitVarDecl - Emit a local variable declaration.
2400   ///
2401   /// This function can be called with a null (unreachable) insert point.
2402   void EmitVarDecl(const VarDecl &D);
2403 
2404   void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2405                       bool capturedByInit);
2406 
2407   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
2408                              llvm::Value *Address);
2409 
2410   /// \brief Determine whether the given initializer is trivial in the sense
2411   /// that it requires no code to be generated.
2412   bool isTrivialInitializer(const Expr *Init);
2413 
2414   /// EmitAutoVarDecl - Emit an auto variable declaration.
2415   ///
2416   /// This function can be called with a null (unreachable) insert point.
2417   void EmitAutoVarDecl(const VarDecl &D);
2418 
2419   class AutoVarEmission {
2420     friend class CodeGenFunction;
2421 
2422     const VarDecl *Variable;
2423 
2424     /// The address of the alloca.  Invalid if the variable was emitted
2425     /// as a global constant.
2426     Address Addr;
2427 
2428     llvm::Value *NRVOFlag;
2429 
2430     /// True if the variable is a __block variable.
2431     bool IsByRef;
2432 
2433     /// True if the variable is of aggregate type and has a constant
2434     /// initializer.
2435     bool IsConstantAggregate;
2436 
2437     /// Non-null if we should use lifetime annotations.
2438     llvm::Value *SizeForLifetimeMarkers;
2439 
2440     struct Invalid {};
2441     AutoVarEmission(Invalid) : Variable(nullptr), Addr(Address::invalid()) {}
2442 
2443     AutoVarEmission(const VarDecl &variable)
2444       : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr),
2445         IsByRef(false), IsConstantAggregate(false),
2446         SizeForLifetimeMarkers(nullptr) {}
2447 
2448     bool wasEmittedAsGlobal() const { return !Addr.isValid(); }
2449 
2450   public:
2451     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
2452 
2453     bool useLifetimeMarkers() const {
2454       return SizeForLifetimeMarkers != nullptr;
2455     }
2456     llvm::Value *getSizeForLifetimeMarkers() const {
2457       assert(useLifetimeMarkers());
2458       return SizeForLifetimeMarkers;
2459     }
2460 
2461     /// Returns the raw, allocated address, which is not necessarily
2462     /// the address of the object itself.
2463     Address getAllocatedAddress() const {
2464       return Addr;
2465     }
2466 
2467     /// Returns the address of the object within this declaration.
2468     /// Note that this does not chase the forwarding pointer for
2469     /// __block decls.
2470     Address getObjectAddress(CodeGenFunction &CGF) const {
2471       if (!IsByRef) return Addr;
2472 
2473       return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false);
2474     }
2475   };
2476   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
2477   void EmitAutoVarInit(const AutoVarEmission &emission);
2478   void EmitAutoVarCleanups(const AutoVarEmission &emission);
2479   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
2480                               QualType::DestructionKind dtorKind);
2481 
2482   void EmitStaticVarDecl(const VarDecl &D,
2483                          llvm::GlobalValue::LinkageTypes Linkage);
2484 
2485   class ParamValue {
2486     llvm::Value *Value;
2487     unsigned Alignment;
2488     ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {}
2489   public:
2490     static ParamValue forDirect(llvm::Value *value) {
2491       return ParamValue(value, 0);
2492     }
2493     static ParamValue forIndirect(Address addr) {
2494       assert(!addr.getAlignment().isZero());
2495       return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity());
2496     }
2497 
2498     bool isIndirect() const { return Alignment != 0; }
2499     llvm::Value *getAnyValue() const { return Value; }
2500 
2501     llvm::Value *getDirectValue() const {
2502       assert(!isIndirect());
2503       return Value;
2504     }
2505 
2506     Address getIndirectAddress() const {
2507       assert(isIndirect());
2508       return Address(Value, CharUnits::fromQuantity(Alignment));
2509     }
2510   };
2511 
2512   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
2513   void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo);
2514 
2515   /// protectFromPeepholes - Protect a value that we're intending to
2516   /// store to the side, but which will probably be used later, from
2517   /// aggressive peepholing optimizations that might delete it.
2518   ///
2519   /// Pass the result to unprotectFromPeepholes to declare that
2520   /// protection is no longer required.
2521   ///
2522   /// There's no particular reason why this shouldn't apply to
2523   /// l-values, it's just that no existing peepholes work on pointers.
2524   PeepholeProtection protectFromPeepholes(RValue rvalue);
2525   void unprotectFromPeepholes(PeepholeProtection protection);
2526 
2527   void EmitAlignmentAssumption(llvm::Value *PtrValue, llvm::Value *Alignment,
2528                                llvm::Value *OffsetValue = nullptr) {
2529     Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment,
2530                                       OffsetValue);
2531   }
2532 
2533   //===--------------------------------------------------------------------===//
2534   //                             Statement Emission
2535   //===--------------------------------------------------------------------===//
2536 
2537   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
2538   void EmitStopPoint(const Stmt *S);
2539 
2540   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
2541   /// this function even if there is no current insertion point.
2542   ///
2543   /// This function may clear the current insertion point; callers should use
2544   /// EnsureInsertPoint if they wish to subsequently generate code without first
2545   /// calling EmitBlock, EmitBranch, or EmitStmt.
2546   void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None);
2547 
2548   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
2549   /// necessarily require an insertion point or debug information; typically
2550   /// because the statement amounts to a jump or a container of other
2551   /// statements.
2552   ///
2553   /// \return True if the statement was handled.
2554   bool EmitSimpleStmt(const Stmt *S);
2555 
2556   Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
2557                            AggValueSlot AVS = AggValueSlot::ignored());
2558   Address EmitCompoundStmtWithoutScope(const CompoundStmt &S,
2559                                        bool GetLast = false,
2560                                        AggValueSlot AVS =
2561                                                 AggValueSlot::ignored());
2562 
2563   /// EmitLabel - Emit the block for the given label. It is legal to call this
2564   /// function even if there is no current insertion point.
2565   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
2566 
2567   void EmitLabelStmt(const LabelStmt &S);
2568   void EmitAttributedStmt(const AttributedStmt &S);
2569   void EmitGotoStmt(const GotoStmt &S);
2570   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
2571   void EmitIfStmt(const IfStmt &S);
2572 
2573   void EmitWhileStmt(const WhileStmt &S,
2574                      ArrayRef<const Attr *> Attrs = None);
2575   void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None);
2576   void EmitForStmt(const ForStmt &S,
2577                    ArrayRef<const Attr *> Attrs = None);
2578   void EmitReturnStmt(const ReturnStmt &S);
2579   void EmitDeclStmt(const DeclStmt &S);
2580   void EmitBreakStmt(const BreakStmt &S);
2581   void EmitContinueStmt(const ContinueStmt &S);
2582   void EmitSwitchStmt(const SwitchStmt &S);
2583   void EmitDefaultStmt(const DefaultStmt &S);
2584   void EmitCaseStmt(const CaseStmt &S);
2585   void EmitCaseStmtRange(const CaseStmt &S);
2586   void EmitAsmStmt(const AsmStmt &S);
2587 
2588   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
2589   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
2590   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
2591   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
2592   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
2593 
2594   void EmitCoroutineBody(const CoroutineBodyStmt &S);
2595   void EmitCoreturnStmt(const CoreturnStmt &S);
2596   RValue EmitCoawaitExpr(const CoawaitExpr &E,
2597                          AggValueSlot aggSlot = AggValueSlot::ignored(),
2598                          bool ignoreResult = false);
2599   LValue EmitCoawaitLValue(const CoawaitExpr *E);
2600   RValue EmitCoyieldExpr(const CoyieldExpr &E,
2601                          AggValueSlot aggSlot = AggValueSlot::ignored(),
2602                          bool ignoreResult = false);
2603   LValue EmitCoyieldLValue(const CoyieldExpr *E);
2604   RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID);
2605 
2606   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2607   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2608 
2609   void EmitCXXTryStmt(const CXXTryStmt &S);
2610   void EmitSEHTryStmt(const SEHTryStmt &S);
2611   void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
2612   void EnterSEHTryStmt(const SEHTryStmt &S);
2613   void ExitSEHTryStmt(const SEHTryStmt &S);
2614 
2615   void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter,
2616                               const Stmt *OutlinedStmt);
2617 
2618   llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
2619                                             const SEHExceptStmt &Except);
2620 
2621   llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF,
2622                                              const SEHFinallyStmt &Finally);
2623 
2624   void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF,
2625                                 llvm::Value *ParentFP,
2626                                 llvm::Value *EntryEBP);
2627   llvm::Value *EmitSEHExceptionCode();
2628   llvm::Value *EmitSEHExceptionInfo();
2629   llvm::Value *EmitSEHAbnormalTermination();
2630 
2631   /// Scan the outlined statement for captures from the parent function. For
2632   /// each capture, mark the capture as escaped and emit a call to
2633   /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap.
2634   void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
2635                           bool IsFilter);
2636 
2637   /// Recovers the address of a local in a parent function. ParentVar is the
2638   /// address of the variable used in the immediate parent function. It can
2639   /// either be an alloca or a call to llvm.localrecover if there are nested
2640   /// outlined functions. ParentFP is the frame pointer of the outermost parent
2641   /// frame.
2642   Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF,
2643                                     Address ParentVar,
2644                                     llvm::Value *ParentFP);
2645 
2646   void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
2647                            ArrayRef<const Attr *> Attrs = None);
2648 
2649   /// Returns calculated size of the specified type.
2650   llvm::Value *getTypeSize(QualType Ty);
2651   LValue InitCapturedStruct(const CapturedStmt &S);
2652   llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
2653   llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
2654   Address GenerateCapturedStmtArgument(const CapturedStmt &S);
2655   llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S);
2656   void GenerateOpenMPCapturedVars(const CapturedStmt &S,
2657                                   SmallVectorImpl<llvm::Value *> &CapturedVars);
2658   void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy,
2659                           SourceLocation Loc);
2660   /// \brief Perform element by element copying of arrays with type \a
2661   /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
2662   /// generated by \a CopyGen.
2663   ///
2664   /// \param DestAddr Address of the destination array.
2665   /// \param SrcAddr Address of the source array.
2666   /// \param OriginalType Type of destination and source arrays.
2667   /// \param CopyGen Copying procedure that copies value of single array element
2668   /// to another single array element.
2669   void EmitOMPAggregateAssign(
2670       Address DestAddr, Address SrcAddr, QualType OriginalType,
2671       const llvm::function_ref<void(Address, Address)> &CopyGen);
2672   /// \brief Emit proper copying of data from one variable to another.
2673   ///
2674   /// \param OriginalType Original type of the copied variables.
2675   /// \param DestAddr Destination address.
2676   /// \param SrcAddr Source address.
2677   /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
2678   /// type of the base array element).
2679   /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
2680   /// the base array element).
2681   /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
2682   /// DestVD.
2683   void EmitOMPCopy(QualType OriginalType,
2684                    Address DestAddr, Address SrcAddr,
2685                    const VarDecl *DestVD, const VarDecl *SrcVD,
2686                    const Expr *Copy);
2687   /// \brief Emit atomic update code for constructs: \a X = \a X \a BO \a E or
2688   /// \a X = \a E \a BO \a E.
2689   ///
2690   /// \param X Value to be updated.
2691   /// \param E Update value.
2692   /// \param BO Binary operation for update operation.
2693   /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
2694   /// expression, false otherwise.
2695   /// \param AO Atomic ordering of the generated atomic instructions.
2696   /// \param CommonGen Code generator for complex expressions that cannot be
2697   /// expressed through atomicrmw instruction.
2698   /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was
2699   /// generated, <false, RValue::get(nullptr)> otherwise.
2700   std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr(
2701       LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
2702       llvm::AtomicOrdering AO, SourceLocation Loc,
2703       const llvm::function_ref<RValue(RValue)> &CommonGen);
2704   bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
2705                                  OMPPrivateScope &PrivateScope);
2706   void EmitOMPPrivateClause(const OMPExecutableDirective &D,
2707                             OMPPrivateScope &PrivateScope);
2708   void EmitOMPUseDevicePtrClause(
2709       const OMPClause &C, OMPPrivateScope &PrivateScope,
2710       const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap);
2711   /// \brief Emit code for copyin clause in \a D directive. The next code is
2712   /// generated at the start of outlined functions for directives:
2713   /// \code
2714   /// threadprivate_var1 = master_threadprivate_var1;
2715   /// operator=(threadprivate_var2, master_threadprivate_var2);
2716   /// ...
2717   /// __kmpc_barrier(&loc, global_tid);
2718   /// \endcode
2719   ///
2720   /// \param D OpenMP directive possibly with 'copyin' clause(s).
2721   /// \returns true if at least one copyin variable is found, false otherwise.
2722   bool EmitOMPCopyinClause(const OMPExecutableDirective &D);
2723   /// \brief Emit initial code for lastprivate variables. If some variable is
2724   /// not also firstprivate, then the default initialization is used. Otherwise
2725   /// initialization of this variable is performed by EmitOMPFirstprivateClause
2726   /// method.
2727   ///
2728   /// \param D Directive that may have 'lastprivate' directives.
2729   /// \param PrivateScope Private scope for capturing lastprivate variables for
2730   /// proper codegen in internal captured statement.
2731   ///
2732   /// \returns true if there is at least one lastprivate variable, false
2733   /// otherwise.
2734   bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D,
2735                                     OMPPrivateScope &PrivateScope);
2736   /// \brief Emit final copying of lastprivate values to original variables at
2737   /// the end of the worksharing or simd directive.
2738   ///
2739   /// \param D Directive that has at least one 'lastprivate' directives.
2740   /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
2741   /// it is the last iteration of the loop code in associated directive, or to
2742   /// 'i1 false' otherwise. If this item is nullptr, no final check is required.
2743   void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D,
2744                                      bool NoFinals,
2745                                      llvm::Value *IsLastIterCond = nullptr);
2746   /// Emit initial code for linear clauses.
2747   void EmitOMPLinearClause(const OMPLoopDirective &D,
2748                            CodeGenFunction::OMPPrivateScope &PrivateScope);
2749   /// Emit final code for linear clauses.
2750   /// \param CondGen Optional conditional code for final part of codegen for
2751   /// linear clause.
2752   void EmitOMPLinearClauseFinal(
2753       const OMPLoopDirective &D,
2754       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen);
2755   /// \brief Emit initial code for reduction variables. Creates reduction copies
2756   /// and initializes them with the values according to OpenMP standard.
2757   ///
2758   /// \param D Directive (possibly) with the 'reduction' clause.
2759   /// \param PrivateScope Private scope for capturing reduction variables for
2760   /// proper codegen in internal captured statement.
2761   ///
2762   void EmitOMPReductionClauseInit(const OMPExecutableDirective &D,
2763                                   OMPPrivateScope &PrivateScope);
2764   /// \brief Emit final update of reduction values to original variables at
2765   /// the end of the directive.
2766   ///
2767   /// \param D Directive that has at least one 'reduction' directives.
2768   /// \param ReductionKind The kind of reduction to perform.
2769   void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D,
2770                                    const OpenMPDirectiveKind ReductionKind);
2771   /// \brief Emit initial code for linear variables. Creates private copies
2772   /// and initializes them with the values according to OpenMP standard.
2773   ///
2774   /// \param D Directive (possibly) with the 'linear' clause.
2775   /// \return true if at least one linear variable is found that should be
2776   /// initialized with the value of the original variable, false otherwise.
2777   bool EmitOMPLinearClauseInit(const OMPLoopDirective &D);
2778 
2779   typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/,
2780                                         llvm::Value * /*OutlinedFn*/,
2781                                         const OMPTaskDataTy & /*Data*/)>
2782       TaskGenTy;
2783   void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S,
2784                                  const RegionCodeGenTy &BodyGen,
2785                                  const TaskGenTy &TaskGen, OMPTaskDataTy &Data);
2786 
2787   void EmitOMPParallelDirective(const OMPParallelDirective &S);
2788   void EmitOMPSimdDirective(const OMPSimdDirective &S);
2789   void EmitOMPForDirective(const OMPForDirective &S);
2790   void EmitOMPForSimdDirective(const OMPForSimdDirective &S);
2791   void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
2792   void EmitOMPSectionDirective(const OMPSectionDirective &S);
2793   void EmitOMPSingleDirective(const OMPSingleDirective &S);
2794   void EmitOMPMasterDirective(const OMPMasterDirective &S);
2795   void EmitOMPCriticalDirective(const OMPCriticalDirective &S);
2796   void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
2797   void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S);
2798   void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
2799   void EmitOMPTaskDirective(const OMPTaskDirective &S);
2800   void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
2801   void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
2802   void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
2803   void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S);
2804   void EmitOMPFlushDirective(const OMPFlushDirective &S);
2805   void EmitOMPOrderedDirective(const OMPOrderedDirective &S);
2806   void EmitOMPAtomicDirective(const OMPAtomicDirective &S);
2807   void EmitOMPTargetDirective(const OMPTargetDirective &S);
2808   void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S);
2809   void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S);
2810   void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S);
2811   void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S);
2812   void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S);
2813   void
2814   EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S);
2815   void EmitOMPTeamsDirective(const OMPTeamsDirective &S);
2816   void
2817   EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S);
2818   void EmitOMPCancelDirective(const OMPCancelDirective &S);
2819   void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S);
2820   void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S);
2821   void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S);
2822   void EmitOMPDistributeDirective(const OMPDistributeDirective &S);
2823   void EmitOMPDistributeParallelForDirective(
2824       const OMPDistributeParallelForDirective &S);
2825   void EmitOMPDistributeParallelForSimdDirective(
2826       const OMPDistributeParallelForSimdDirective &S);
2827   void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S);
2828   void EmitOMPTargetParallelForSimdDirective(
2829       const OMPTargetParallelForSimdDirective &S);
2830   void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S);
2831   void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S);
2832   void
2833   EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S);
2834   void EmitOMPTeamsDistributeParallelForSimdDirective(
2835       const OMPTeamsDistributeParallelForSimdDirective &S);
2836   void EmitOMPTeamsDistributeParallelForDirective(
2837       const OMPTeamsDistributeParallelForDirective &S);
2838   void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S);
2839   void EmitOMPTargetTeamsDistributeDirective(
2840       const OMPTargetTeamsDistributeDirective &S);
2841   void EmitOMPTargetTeamsDistributeParallelForDirective(
2842       const OMPTargetTeamsDistributeParallelForDirective &S);
2843   void EmitOMPTargetTeamsDistributeParallelForSimdDirective(
2844       const OMPTargetTeamsDistributeParallelForSimdDirective &S);
2845   void EmitOMPTargetTeamsDistributeSimdDirective(
2846       const OMPTargetTeamsDistributeSimdDirective &S);
2847 
2848   /// Emit device code for the target directive.
2849   static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM,
2850                                           StringRef ParentName,
2851                                           const OMPTargetDirective &S);
2852   static void
2853   EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
2854                                       const OMPTargetParallelDirective &S);
2855   static void
2856   EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
2857                                    const OMPTargetTeamsDirective &S);
2858   /// \brief Emit inner loop of the worksharing/simd construct.
2859   ///
2860   /// \param S Directive, for which the inner loop must be emitted.
2861   /// \param RequiresCleanup true, if directive has some associated private
2862   /// variables.
2863   /// \param LoopCond Bollean condition for loop continuation.
2864   /// \param IncExpr Increment expression for loop control variable.
2865   /// \param BodyGen Generator for the inner body of the inner loop.
2866   /// \param PostIncGen Genrator for post-increment code (required for ordered
2867   /// loop directvies).
2868   void EmitOMPInnerLoop(
2869       const Stmt &S, bool RequiresCleanup, const Expr *LoopCond,
2870       const Expr *IncExpr,
2871       const llvm::function_ref<void(CodeGenFunction &)> &BodyGen,
2872       const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen);
2873 
2874   JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind);
2875   /// Emit initial code for loop counters of loop-based directives.
2876   void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S,
2877                                   OMPPrivateScope &LoopScope);
2878 
2879   /// Helper for the OpenMP loop directives.
2880   void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit);
2881 
2882   /// \brief Emit code for the worksharing loop-based directive.
2883   /// \return true, if this construct has any lastprivate clause, false -
2884   /// otherwise.
2885   bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB,
2886                               const CodeGenLoopBoundsTy &CodeGenLoopBounds,
2887                               const CodeGenDispatchBoundsTy &CGDispatchBounds);
2888 
2889   /// Emits the lvalue for the expression with possibly captured variable.
2890   LValue EmitOMPSharedLValue(const Expr *E);
2891 
2892 private:
2893   /// Helpers for blocks
2894   llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
2895 
2896   /// Helpers for the OpenMP loop directives.
2897   void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false);
2898   void EmitOMPSimdFinal(
2899       const OMPLoopDirective &D,
2900       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen);
2901 
2902   void EmitOMPDistributeLoop(const OMPLoopDirective &S,
2903                              const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr);
2904 
2905   /// struct with the values to be passed to the OpenMP loop-related functions
2906   struct OMPLoopArguments {
2907     /// loop lower bound
2908     Address LB = Address::invalid();
2909     /// loop upper bound
2910     Address UB = Address::invalid();
2911     /// loop stride
2912     Address ST = Address::invalid();
2913     /// isLastIteration argument for runtime functions
2914     Address IL = Address::invalid();
2915     /// Chunk value generated by sema
2916     llvm::Value *Chunk = nullptr;
2917     /// EnsureUpperBound
2918     Expr *EUB = nullptr;
2919     /// IncrementExpression
2920     Expr *IncExpr = nullptr;
2921     /// Loop initialization
2922     Expr *Init = nullptr;
2923     /// Loop exit condition
2924     Expr *Cond = nullptr;
2925     /// Update of LB after a whole chunk has been executed
2926     Expr *NextLB = nullptr;
2927     /// Update of UB after a whole chunk has been executed
2928     Expr *NextUB = nullptr;
2929     OMPLoopArguments() = default;
2930     OMPLoopArguments(Address LB, Address UB, Address ST, Address IL,
2931                      llvm::Value *Chunk = nullptr, Expr *EUB = nullptr,
2932                      Expr *IncExpr = nullptr, Expr *Init = nullptr,
2933                      Expr *Cond = nullptr, Expr *NextLB = nullptr,
2934                      Expr *NextUB = nullptr)
2935         : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB),
2936           IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB),
2937           NextUB(NextUB) {}
2938   };
2939   void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic,
2940                         const OMPLoopDirective &S, OMPPrivateScope &LoopScope,
2941                         const OMPLoopArguments &LoopArgs,
2942                         const CodeGenLoopTy &CodeGenLoop,
2943                         const CodeGenOrderedTy &CodeGenOrdered);
2944   void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind,
2945                            bool IsMonotonic, const OMPLoopDirective &S,
2946                            OMPPrivateScope &LoopScope, bool Ordered,
2947                            const OMPLoopArguments &LoopArgs,
2948                            const CodeGenDispatchBoundsTy &CGDispatchBounds);
2949   void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind,
2950                                   const OMPLoopDirective &S,
2951                                   OMPPrivateScope &LoopScope,
2952                                   const OMPLoopArguments &LoopArgs,
2953                                   const CodeGenLoopTy &CodeGenLoopContent);
2954   /// \brief Emit code for sections directive.
2955   void EmitSections(const OMPExecutableDirective &S);
2956 
2957 public:
2958 
2959   //===--------------------------------------------------------------------===//
2960   //                         LValue Expression Emission
2961   //===--------------------------------------------------------------------===//
2962 
2963   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
2964   RValue GetUndefRValue(QualType Ty);
2965 
2966   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
2967   /// and issue an ErrorUnsupported style diagnostic (using the
2968   /// provided Name).
2969   RValue EmitUnsupportedRValue(const Expr *E,
2970                                const char *Name);
2971 
2972   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
2973   /// an ErrorUnsupported style diagnostic (using the provided Name).
2974   LValue EmitUnsupportedLValue(const Expr *E,
2975                                const char *Name);
2976 
2977   /// EmitLValue - Emit code to compute a designator that specifies the location
2978   /// of the expression.
2979   ///
2980   /// This can return one of two things: a simple address or a bitfield
2981   /// reference.  In either case, the LLVM Value* in the LValue structure is
2982   /// guaranteed to be an LLVM pointer type.
2983   ///
2984   /// If this returns a bitfield reference, nothing about the pointee type of
2985   /// the LLVM value is known: For example, it may not be a pointer to an
2986   /// integer.
2987   ///
2988   /// If this returns a normal address, and if the lvalue's C type is fixed
2989   /// size, this method guarantees that the returned pointer type will point to
2990   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
2991   /// variable length type, this is not possible.
2992   ///
2993   LValue EmitLValue(const Expr *E);
2994 
2995   /// \brief Same as EmitLValue but additionally we generate checking code to
2996   /// guard against undefined behavior.  This is only suitable when we know
2997   /// that the address will be used to access the object.
2998   LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
2999 
3000   RValue convertTempToRValue(Address addr, QualType type,
3001                              SourceLocation Loc);
3002 
3003   void EmitAtomicInit(Expr *E, LValue lvalue);
3004 
3005   bool LValueIsSuitableForInlineAtomic(LValue Src);
3006 
3007   RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
3008                         AggValueSlot Slot = AggValueSlot::ignored());
3009 
3010   RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
3011                         llvm::AtomicOrdering AO, bool IsVolatile = false,
3012                         AggValueSlot slot = AggValueSlot::ignored());
3013 
3014   void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
3015 
3016   void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
3017                        bool IsVolatile, bool isInit);
3018 
3019   std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
3020       LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
3021       llvm::AtomicOrdering Success =
3022           llvm::AtomicOrdering::SequentiallyConsistent,
3023       llvm::AtomicOrdering Failure =
3024           llvm::AtomicOrdering::SequentiallyConsistent,
3025       bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
3026 
3027   void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
3028                         const llvm::function_ref<RValue(RValue)> &UpdateOp,
3029                         bool IsVolatile);
3030 
3031   /// EmitToMemory - Change a scalar value from its value
3032   /// representation to its in-memory representation.
3033   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
3034 
3035   /// EmitFromMemory - Change a scalar value from its memory
3036   /// representation to its value representation.
3037   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
3038 
3039   /// Check if the scalar \p Value is within the valid range for the given
3040   /// type \p Ty.
3041   ///
3042   /// Returns true if a check is needed (even if the range is unknown).
3043   bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
3044                             SourceLocation Loc);
3045 
3046   /// EmitLoadOfScalar - Load a scalar value from an address, taking
3047   /// care to appropriately convert from the memory representation to
3048   /// the LLVM value representation.
3049   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3050                                 SourceLocation Loc,
3051                                 LValueBaseInfo BaseInfo =
3052                                     LValueBaseInfo(AlignmentSource::Type),
3053                                 llvm::MDNode *TBAAInfo = nullptr,
3054                                 QualType TBAABaseTy = QualType(),
3055                                 uint64_t TBAAOffset = 0,
3056                                 bool isNontemporal = false);
3057 
3058   /// EmitLoadOfScalar - Load a scalar value from an address, taking
3059   /// care to appropriately convert from the memory representation to
3060   /// the LLVM value representation.  The l-value must be a simple
3061   /// l-value.
3062   llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
3063 
3064   /// EmitStoreOfScalar - Store a scalar value to an address, taking
3065   /// care to appropriately convert from the memory representation to
3066   /// the LLVM value representation.
3067   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3068                          bool Volatile, QualType Ty,
3069                          LValueBaseInfo BaseInfo =
3070                              LValueBaseInfo(AlignmentSource::Type),
3071                          llvm::MDNode *TBAAInfo = nullptr, bool isInit = false,
3072                          QualType TBAABaseTy = QualType(),
3073                          uint64_t TBAAOffset = 0, bool isNontemporal = false);
3074 
3075   /// EmitStoreOfScalar - Store a scalar value to an address, taking
3076   /// care to appropriately convert from the memory representation to
3077   /// the LLVM value representation.  The l-value must be a simple
3078   /// l-value.  The isInit flag indicates whether this is an initialization.
3079   /// If so, atomic qualifiers are ignored and the store is always non-atomic.
3080   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
3081 
3082   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
3083   /// this method emits the address of the lvalue, then loads the result as an
3084   /// rvalue, returning the rvalue.
3085   RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
3086   RValue EmitLoadOfExtVectorElementLValue(LValue V);
3087   RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc);
3088   RValue EmitLoadOfGlobalRegLValue(LValue LV);
3089 
3090   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
3091   /// lvalue, where both are guaranteed to the have the same type, and that type
3092   /// is 'Ty'.
3093   void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
3094   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
3095   void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
3096 
3097   /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
3098   /// as EmitStoreThroughLValue.
3099   ///
3100   /// \param Result [out] - If non-null, this will be set to a Value* for the
3101   /// bit-field contents after the store, appropriate for use as the result of
3102   /// an assignment to the bit-field.
3103   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
3104                                       llvm::Value **Result=nullptr);
3105 
3106   /// Emit an l-value for an assignment (simple or compound) of complex type.
3107   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
3108   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
3109   LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
3110                                              llvm::Value *&Result);
3111 
3112   // Note: only available for agg return types
3113   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
3114   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
3115   // Note: only available for agg return types
3116   LValue EmitCallExprLValue(const CallExpr *E);
3117   // Note: only available for agg return types
3118   LValue EmitVAArgExprLValue(const VAArgExpr *E);
3119   LValue EmitDeclRefLValue(const DeclRefExpr *E);
3120   LValue EmitStringLiteralLValue(const StringLiteral *E);
3121   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
3122   LValue EmitPredefinedLValue(const PredefinedExpr *E);
3123   LValue EmitUnaryOpLValue(const UnaryOperator *E);
3124   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3125                                 bool Accessed = false);
3126   LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3127                                  bool IsLowerBound = true);
3128   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
3129   LValue EmitMemberExpr(const MemberExpr *E);
3130   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
3131   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
3132   LValue EmitInitListLValue(const InitListExpr *E);
3133   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
3134   LValue EmitCastLValue(const CastExpr *E);
3135   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
3136   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
3137 
3138   Address EmitExtVectorElementLValue(LValue V);
3139 
3140   RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
3141 
3142   Address EmitArrayToPointerDecay(const Expr *Array,
3143                                   LValueBaseInfo *BaseInfo = nullptr);
3144 
3145   class ConstantEmission {
3146     llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
3147     ConstantEmission(llvm::Constant *C, bool isReference)
3148       : ValueAndIsReference(C, isReference) {}
3149   public:
3150     ConstantEmission() {}
3151     static ConstantEmission forReference(llvm::Constant *C) {
3152       return ConstantEmission(C, true);
3153     }
3154     static ConstantEmission forValue(llvm::Constant *C) {
3155       return ConstantEmission(C, false);
3156     }
3157 
3158     explicit operator bool() const {
3159       return ValueAndIsReference.getOpaqueValue() != nullptr;
3160     }
3161 
3162     bool isReference() const { return ValueAndIsReference.getInt(); }
3163     LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
3164       assert(isReference());
3165       return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
3166                                             refExpr->getType());
3167     }
3168 
3169     llvm::Constant *getValue() const {
3170       assert(!isReference());
3171       return ValueAndIsReference.getPointer();
3172     }
3173   };
3174 
3175   ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
3176   ConstantEmission tryEmitAsConstant(const MemberExpr *ME);
3177 
3178   RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
3179                                 AggValueSlot slot = AggValueSlot::ignored());
3180   LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
3181 
3182   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3183                               const ObjCIvarDecl *Ivar);
3184   LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
3185   LValue EmitLValueForLambdaField(const FieldDecl *Field);
3186 
3187   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
3188   /// if the Field is a reference, this will return the address of the reference
3189   /// and not the address of the value stored in the reference.
3190   LValue EmitLValueForFieldInitialization(LValue Base,
3191                                           const FieldDecl* Field);
3192 
3193   LValue EmitLValueForIvar(QualType ObjectTy,
3194                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
3195                            unsigned CVRQualifiers);
3196 
3197   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
3198   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
3199   LValue EmitLambdaLValue(const LambdaExpr *E);
3200   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
3201   LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
3202 
3203   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
3204   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
3205   LValue EmitStmtExprLValue(const StmtExpr *E);
3206   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
3207   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
3208   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init);
3209 
3210   //===--------------------------------------------------------------------===//
3211   //                         Scalar Expression Emission
3212   //===--------------------------------------------------------------------===//
3213 
3214   /// EmitCall - Generate a call of the given function, expecting the given
3215   /// result type, and using the given argument list which specifies both the
3216   /// LLVM arguments and the types they were derived from.
3217   RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
3218                   ReturnValueSlot ReturnValue, const CallArgList &Args,
3219                   llvm::Instruction **callOrInvoke = nullptr);
3220 
3221   RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E,
3222                   ReturnValueSlot ReturnValue,
3223                   llvm::Value *Chain = nullptr);
3224   RValue EmitCallExpr(const CallExpr *E,
3225                       ReturnValueSlot ReturnValue = ReturnValueSlot());
3226   RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
3227   CGCallee EmitCallee(const Expr *E);
3228 
3229   void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl);
3230 
3231   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
3232                                   const Twine &name = "");
3233   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
3234                                   ArrayRef<llvm::Value*> args,
3235                                   const Twine &name = "");
3236   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
3237                                           const Twine &name = "");
3238   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
3239                                           ArrayRef<llvm::Value*> args,
3240                                           const Twine &name = "");
3241 
3242   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
3243                                   ArrayRef<llvm::Value *> Args,
3244                                   const Twine &Name = "");
3245   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
3246                                          ArrayRef<llvm::Value*> args,
3247                                          const Twine &name = "");
3248   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
3249                                          const Twine &name = "");
3250   void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
3251                                        ArrayRef<llvm::Value*> args);
3252 
3253   CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
3254                                      NestedNameSpecifier *Qual,
3255                                      llvm::Type *Ty);
3256 
3257   CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
3258                                                CXXDtorType Type,
3259                                                const CXXRecordDecl *RD);
3260 
3261   RValue
3262   EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method,
3263                               const CGCallee &Callee,
3264                               ReturnValueSlot ReturnValue, llvm::Value *This,
3265                               llvm::Value *ImplicitParam,
3266                               QualType ImplicitParamTy, const CallExpr *E,
3267                               CallArgList *RtlArgs);
3268   RValue EmitCXXDestructorCall(const CXXDestructorDecl *DD,
3269                                const CGCallee &Callee,
3270                                llvm::Value *This, llvm::Value *ImplicitParam,
3271                                QualType ImplicitParamTy, const CallExpr *E,
3272                                StructorType Type);
3273   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
3274                                ReturnValueSlot ReturnValue);
3275   RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE,
3276                                                const CXXMethodDecl *MD,
3277                                                ReturnValueSlot ReturnValue,
3278                                                bool HasQualifier,
3279                                                NestedNameSpecifier *Qualifier,
3280                                                bool IsArrow, const Expr *Base);
3281   // Compute the object pointer.
3282   Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
3283                                           llvm::Value *memberPtr,
3284                                           const MemberPointerType *memberPtrType,
3285                                           LValueBaseInfo *BaseInfo = nullptr);
3286   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
3287                                       ReturnValueSlot ReturnValue);
3288 
3289   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
3290                                        const CXXMethodDecl *MD,
3291                                        ReturnValueSlot ReturnValue);
3292   RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E);
3293 
3294   RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
3295                                 ReturnValueSlot ReturnValue);
3296 
3297   RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E,
3298                                        ReturnValueSlot ReturnValue);
3299 
3300   RValue EmitBuiltinExpr(const FunctionDecl *FD,
3301                          unsigned BuiltinID, const CallExpr *E,
3302                          ReturnValueSlot ReturnValue);
3303 
3304   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
3305 
3306   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
3307   /// is unhandled by the current target.
3308   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3309 
3310   llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
3311                                              const llvm::CmpInst::Predicate Fp,
3312                                              const llvm::CmpInst::Predicate Ip,
3313                                              const llvm::Twine &Name = "");
3314   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3315 
3316   llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
3317                                          unsigned LLVMIntrinsic,
3318                                          unsigned AltLLVMIntrinsic,
3319                                          const char *NameHint,
3320                                          unsigned Modifier,
3321                                          const CallExpr *E,
3322                                          SmallVectorImpl<llvm::Value *> &Ops,
3323                                          Address PtrOp0, Address PtrOp1);
3324   llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
3325                                           unsigned Modifier, llvm::Type *ArgTy,
3326                                           const CallExpr *E);
3327   llvm::Value *EmitNeonCall(llvm::Function *F,
3328                             SmallVectorImpl<llvm::Value*> &O,
3329                             const char *name,
3330                             unsigned shift = 0, bool rightshift = false);
3331   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
3332   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
3333                                    bool negateForRightShift);
3334   llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
3335                                  llvm::Type *Ty, bool usgn, const char *name);
3336   llvm::Value *vectorWrapScalar16(llvm::Value *Op);
3337   llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3338 
3339   llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
3340   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3341   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3342   llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3343   llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3344   llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3345   llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
3346                                           const CallExpr *E);
3347 
3348 private:
3349   enum class MSVCIntrin;
3350 
3351 public:
3352   llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E);
3353 
3354   llvm::Value *EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args);
3355 
3356   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
3357   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
3358   llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
3359   llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
3360   llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
3361   llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
3362                                 const ObjCMethodDecl *MethodWithObjects);
3363   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
3364   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
3365                              ReturnValueSlot Return = ReturnValueSlot());
3366 
3367   /// Retrieves the default cleanup kind for an ARC cleanup.
3368   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
3369   CleanupKind getARCCleanupKind() {
3370     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
3371              ? NormalAndEHCleanup : NormalCleanup;
3372   }
3373 
3374   // ARC primitives.
3375   void EmitARCInitWeak(Address addr, llvm::Value *value);
3376   void EmitARCDestroyWeak(Address addr);
3377   llvm::Value *EmitARCLoadWeak(Address addr);
3378   llvm::Value *EmitARCLoadWeakRetained(Address addr);
3379   llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored);
3380   void EmitARCCopyWeak(Address dst, Address src);
3381   void EmitARCMoveWeak(Address dst, Address src);
3382   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
3383   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
3384   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
3385                                   bool resultIgnored);
3386   llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value,
3387                                       bool resultIgnored);
3388   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
3389   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
3390   llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
3391   void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise);
3392   void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
3393   llvm::Value *EmitARCAutorelease(llvm::Value *value);
3394   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
3395   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
3396   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
3397   llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value);
3398 
3399   std::pair<LValue,llvm::Value*>
3400   EmitARCStoreAutoreleasing(const BinaryOperator *e);
3401   std::pair<LValue,llvm::Value*>
3402   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
3403   std::pair<LValue,llvm::Value*>
3404   EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored);
3405 
3406   llvm::Value *EmitObjCThrowOperand(const Expr *expr);
3407   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
3408   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
3409 
3410   llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
3411   llvm::Value *EmitARCReclaimReturnedObject(const Expr *e,
3412                                             bool allowUnsafeClaim);
3413   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
3414   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
3415   llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr);
3416 
3417   void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
3418 
3419   static Destroyer destroyARCStrongImprecise;
3420   static Destroyer destroyARCStrongPrecise;
3421   static Destroyer destroyARCWeak;
3422   static Destroyer emitARCIntrinsicUse;
3423 
3424   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
3425   llvm::Value *EmitObjCAutoreleasePoolPush();
3426   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
3427   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
3428   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
3429 
3430   /// \brief Emits a reference binding to the passed in expression.
3431   RValue EmitReferenceBindingToExpr(const Expr *E);
3432 
3433   //===--------------------------------------------------------------------===//
3434   //                           Expression Emission
3435   //===--------------------------------------------------------------------===//
3436 
3437   // Expressions are broken into three classes: scalar, complex, aggregate.
3438 
3439   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
3440   /// scalar type, returning the result.
3441   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
3442 
3443   /// Emit a conversion from the specified type to the specified destination
3444   /// type, both of which are LLVM scalar types.
3445   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
3446                                     QualType DstTy, SourceLocation Loc);
3447 
3448   /// Emit a conversion from the specified complex type to the specified
3449   /// destination type, where the destination type is an LLVM scalar type.
3450   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
3451                                              QualType DstTy,
3452                                              SourceLocation Loc);
3453 
3454   /// EmitAggExpr - Emit the computation of the specified expression
3455   /// of aggregate type.  The result is computed into the given slot,
3456   /// which may be null to indicate that the value is not needed.
3457   void EmitAggExpr(const Expr *E, AggValueSlot AS);
3458 
3459   /// EmitAggExprToLValue - Emit the computation of the specified expression of
3460   /// aggregate type into a temporary LValue.
3461   LValue EmitAggExprToLValue(const Expr *E);
3462 
3463   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
3464   /// make sure it survives garbage collection until this point.
3465   void EmitExtendGCLifetime(llvm::Value *object);
3466 
3467   /// EmitComplexExpr - Emit the computation of the specified expression of
3468   /// complex type, returning the result.
3469   ComplexPairTy EmitComplexExpr(const Expr *E,
3470                                 bool IgnoreReal = false,
3471                                 bool IgnoreImag = false);
3472 
3473   /// EmitComplexExprIntoLValue - Emit the given expression of complex
3474   /// type and place its result into the specified l-value.
3475   void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
3476 
3477   /// EmitStoreOfComplex - Store a complex number into the specified l-value.
3478   void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
3479 
3480   /// EmitLoadOfComplex - Load a complex number from the specified l-value.
3481   ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
3482 
3483   Address emitAddrOfRealComponent(Address complex, QualType complexType);
3484   Address emitAddrOfImagComponent(Address complex, QualType complexType);
3485 
3486   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
3487   /// global variable that has already been created for it.  If the initializer
3488   /// has a different type than GV does, this may free GV and return a different
3489   /// one.  Otherwise it just returns GV.
3490   llvm::GlobalVariable *
3491   AddInitializerToStaticVarDecl(const VarDecl &D,
3492                                 llvm::GlobalVariable *GV);
3493 
3494 
3495   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
3496   /// variable with global storage.
3497   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
3498                                 bool PerformInit);
3499 
3500   llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::Constant *Dtor,
3501                                    llvm::Constant *Addr);
3502 
3503   /// Call atexit() with a function that passes the given argument to
3504   /// the given function.
3505   void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn,
3506                                     llvm::Constant *addr);
3507 
3508   /// Emit code in this function to perform a guarded variable
3509   /// initialization.  Guarded initializations are used when it's not
3510   /// possible to prove that an initialization will be done exactly
3511   /// once, e.g. with a static local variable or a static data member
3512   /// of a class template.
3513   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
3514                           bool PerformInit);
3515 
3516   enum class GuardKind { VariableGuard, TlsGuard };
3517 
3518   /// Emit a branch to select whether or not to perform guarded initialization.
3519   void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit,
3520                                 llvm::BasicBlock *InitBlock,
3521                                 llvm::BasicBlock *NoInitBlock,
3522                                 GuardKind Kind, const VarDecl *D);
3523 
3524   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
3525   /// variables.
3526   void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
3527                                  ArrayRef<llvm::Function *> CXXThreadLocals,
3528                                  Address Guard = Address::invalid());
3529 
3530   /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
3531   /// variables.
3532   void GenerateCXXGlobalDtorsFunc(
3533       llvm::Function *Fn,
3534       const std::vector<std::pair<llvm::WeakTrackingVH, llvm::Constant *>>
3535           &DtorsAndObjects);
3536 
3537   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
3538                                         const VarDecl *D,
3539                                         llvm::GlobalVariable *Addr,
3540                                         bool PerformInit);
3541 
3542   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
3543 
3544   void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp);
3545 
3546   void enterFullExpression(const ExprWithCleanups *E) {
3547     if (E->getNumObjects() == 0) return;
3548     enterNonTrivialFullExpression(E);
3549   }
3550   void enterNonTrivialFullExpression(const ExprWithCleanups *E);
3551 
3552   void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
3553 
3554   void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest);
3555 
3556   RValue EmitAtomicExpr(AtomicExpr *E);
3557 
3558   //===--------------------------------------------------------------------===//
3559   //                         Annotations Emission
3560   //===--------------------------------------------------------------------===//
3561 
3562   /// Emit an annotation call (intrinsic or builtin).
3563   llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
3564                                   llvm::Value *AnnotatedVal,
3565                                   StringRef AnnotationStr,
3566                                   SourceLocation Location);
3567 
3568   /// Emit local annotations for the local variable V, declared by D.
3569   void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
3570 
3571   /// Emit field annotations for the given field & value. Returns the
3572   /// annotation result.
3573   Address EmitFieldAnnotations(const FieldDecl *D, Address V);
3574 
3575   //===--------------------------------------------------------------------===//
3576   //                             Internal Helpers
3577   //===--------------------------------------------------------------------===//
3578 
3579   /// ContainsLabel - Return true if the statement contains a label in it.  If
3580   /// this statement is not executed normally, it not containing a label means
3581   /// that we can just remove the code.
3582   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
3583 
3584   /// containsBreak - Return true if the statement contains a break out of it.
3585   /// If the statement (recursively) contains a switch or loop with a break
3586   /// inside of it, this is fine.
3587   static bool containsBreak(const Stmt *S);
3588 
3589   /// Determine if the given statement might introduce a declaration into the
3590   /// current scope, by being a (possibly-labelled) DeclStmt.
3591   static bool mightAddDeclToScope(const Stmt *S);
3592 
3593   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
3594   /// to a constant, or if it does but contains a label, return false.  If it
3595   /// constant folds return true and set the boolean result in Result.
3596   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result,
3597                                     bool AllowLabels = false);
3598 
3599   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
3600   /// to a constant, or if it does but contains a label, return false.  If it
3601   /// constant folds return true and set the folded value.
3602   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result,
3603                                     bool AllowLabels = false);
3604 
3605   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
3606   /// if statement) to the specified blocks.  Based on the condition, this might
3607   /// try to simplify the codegen of the conditional based on the branch.
3608   /// TrueCount should be the number of times we expect the condition to
3609   /// evaluate to true based on PGO data.
3610   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
3611                             llvm::BasicBlock *FalseBlock, uint64_t TrueCount);
3612 
3613   /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is
3614   /// nonnull, if \p LHS is marked _Nonnull.
3615   void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc);
3616 
3617   /// An enumeration which makes it easier to specify whether or not an
3618   /// operation is a subtraction.
3619   enum { NotSubtraction = false, IsSubtraction = true };
3620 
3621   /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to
3622   /// detect undefined behavior when the pointer overflow sanitizer is enabled.
3623   /// \p SignedIndices indicates whether any of the GEP indices are signed.
3624   /// \p IsSubtraction indicates whether the expression used to form the GEP
3625   /// is a subtraction.
3626   llvm::Value *EmitCheckedInBoundsGEP(llvm::Value *Ptr,
3627                                       ArrayRef<llvm::Value *> IdxList,
3628                                       bool SignedIndices,
3629                                       bool IsSubtraction,
3630                                       SourceLocation Loc,
3631                                       const Twine &Name = "");
3632 
3633   /// Specifies which type of sanitizer check to apply when handling a
3634   /// particular builtin.
3635   enum BuiltinCheckKind {
3636     BCK_CTZPassedZero,
3637     BCK_CLZPassedZero,
3638   };
3639 
3640   /// Emits an argument for a call to a builtin. If the builtin sanitizer is
3641   /// enabled, a runtime check specified by \p Kind is also emitted.
3642   llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind);
3643 
3644   /// \brief Emit a description of a type in a format suitable for passing to
3645   /// a runtime sanitizer handler.
3646   llvm::Constant *EmitCheckTypeDescriptor(QualType T);
3647 
3648   /// \brief Convert a value into a format suitable for passing to a runtime
3649   /// sanitizer handler.
3650   llvm::Value *EmitCheckValue(llvm::Value *V);
3651 
3652   /// \brief Emit a description of a source location in a format suitable for
3653   /// passing to a runtime sanitizer handler.
3654   llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
3655 
3656   /// \brief Create a basic block that will call a handler function in a
3657   /// sanitizer runtime with the provided arguments, and create a conditional
3658   /// branch to it.
3659   void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
3660                  SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs,
3661                  ArrayRef<llvm::Value *> DynamicArgs);
3662 
3663   /// \brief Emit a slow path cross-DSO CFI check which calls __cfi_slowpath
3664   /// if Cond if false.
3665   void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond,
3666                             llvm::ConstantInt *TypeId, llvm::Value *Ptr,
3667                             ArrayRef<llvm::Constant *> StaticArgs);
3668 
3669   /// \brief Create a basic block that will call the trap intrinsic, and emit a
3670   /// conditional branch to it, for the -ftrapv checks.
3671   void EmitTrapCheck(llvm::Value *Checked);
3672 
3673   /// \brief Emit a call to trap or debugtrap and attach function attribute
3674   /// "trap-func-name" if specified.
3675   llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID);
3676 
3677   /// \brief Emit a stub for the cross-DSO CFI check function.
3678   void EmitCfiCheckStub();
3679 
3680   /// \brief Emit a cross-DSO CFI failure handling function.
3681   void EmitCfiCheckFail();
3682 
3683   /// \brief Create a check for a function parameter that may potentially be
3684   /// declared as non-null.
3685   void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc,
3686                            AbstractCallee AC, unsigned ParmNum);
3687 
3688   /// EmitCallArg - Emit a single call argument.
3689   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
3690 
3691   /// EmitDelegateCallArg - We are performing a delegate call; that
3692   /// is, the current function is delegating to another one.  Produce
3693   /// a r-value suitable for passing the given parameter.
3694   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
3695                            SourceLocation loc);
3696 
3697   /// SetFPAccuracy - Set the minimum required accuracy of the given floating
3698   /// point operation, expressed as the maximum relative error in ulp.
3699   void SetFPAccuracy(llvm::Value *Val, float Accuracy);
3700 
3701 private:
3702   llvm::MDNode *getRangeForLoadFromType(QualType Ty);
3703   void EmitReturnOfRValue(RValue RV, QualType Ty);
3704 
3705   void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
3706 
3707   llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4>
3708   DeferredReplacements;
3709 
3710   /// Set the address of a local variable.
3711   void setAddrOfLocalVar(const VarDecl *VD, Address Addr) {
3712     assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!");
3713     LocalDeclMap.insert({VD, Addr});
3714   }
3715 
3716   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
3717   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
3718   ///
3719   /// \param AI - The first function argument of the expansion.
3720   void ExpandTypeFromArgs(QualType Ty, LValue Dst,
3721                           SmallVectorImpl<llvm::Value *>::iterator &AI);
3722 
3723   /// ExpandTypeToArgs - Expand an RValue \arg RV, with the LLVM type for \arg
3724   /// Ty, into individual arguments on the provided vector \arg IRCallArgs,
3725   /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand.
3726   void ExpandTypeToArgs(QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy,
3727                         SmallVectorImpl<llvm::Value *> &IRCallArgs,
3728                         unsigned &IRCallArgPos);
3729 
3730   llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
3731                             const Expr *InputExpr, std::string &ConstraintStr);
3732 
3733   llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
3734                                   LValue InputValue, QualType InputType,
3735                                   std::string &ConstraintStr,
3736                                   SourceLocation Loc);
3737 
3738   /// \brief Attempts to statically evaluate the object size of E. If that
3739   /// fails, emits code to figure the size of E out for us. This is
3740   /// pass_object_size aware.
3741   ///
3742   /// If EmittedExpr is non-null, this will use that instead of re-emitting E.
3743   llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
3744                                                llvm::IntegerType *ResType,
3745                                                llvm::Value *EmittedE);
3746 
3747   /// \brief Emits the size of E, as required by __builtin_object_size. This
3748   /// function is aware of pass_object_size parameters, and will act accordingly
3749   /// if E is a parameter with the pass_object_size attribute.
3750   llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type,
3751                                      llvm::IntegerType *ResType,
3752                                      llvm::Value *EmittedE);
3753 
3754 public:
3755 #ifndef NDEBUG
3756   // Determine whether the given argument is an Objective-C method
3757   // that may have type parameters in its signature.
3758   static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) {
3759     const DeclContext *dc = method->getDeclContext();
3760     if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) {
3761       return classDecl->getTypeParamListAsWritten();
3762     }
3763 
3764     if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) {
3765       return catDecl->getTypeParamList();
3766     }
3767 
3768     return false;
3769   }
3770 
3771   template<typename T>
3772   static bool isObjCMethodWithTypeParams(const T *) { return false; }
3773 #endif
3774 
3775   enum class EvaluationOrder {
3776     ///! No language constraints on evaluation order.
3777     Default,
3778     ///! Language semantics require left-to-right evaluation.
3779     ForceLeftToRight,
3780     ///! Language semantics require right-to-left evaluation.
3781     ForceRightToLeft
3782   };
3783 
3784   /// EmitCallArgs - Emit call arguments for a function.
3785   template <typename T>
3786   void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo,
3787                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3788                     AbstractCallee AC = AbstractCallee(),
3789                     unsigned ParamsToSkip = 0,
3790                     EvaluationOrder Order = EvaluationOrder::Default) {
3791     SmallVector<QualType, 16> ArgTypes;
3792     CallExpr::const_arg_iterator Arg = ArgRange.begin();
3793 
3794     assert((ParamsToSkip == 0 || CallArgTypeInfo) &&
3795            "Can't skip parameters if type info is not provided");
3796     if (CallArgTypeInfo) {
3797 #ifndef NDEBUG
3798       bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo);
3799 #endif
3800 
3801       // First, use the argument types that the type info knows about
3802       for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip,
3803                 E = CallArgTypeInfo->param_type_end();
3804            I != E; ++I, ++Arg) {
3805         assert(Arg != ArgRange.end() && "Running over edge of argument list!");
3806         assert((isGenericMethod ||
3807                 ((*I)->isVariablyModifiedType() ||
3808                  (*I).getNonReferenceType()->isObjCRetainableType() ||
3809                  getContext()
3810                          .getCanonicalType((*I).getNonReferenceType())
3811                          .getTypePtr() ==
3812                      getContext()
3813                          .getCanonicalType((*Arg)->getType())
3814                          .getTypePtr())) &&
3815                "type mismatch in call argument!");
3816         ArgTypes.push_back(*I);
3817       }
3818     }
3819 
3820     // Either we've emitted all the call args, or we have a call to variadic
3821     // function.
3822     assert((Arg == ArgRange.end() || !CallArgTypeInfo ||
3823             CallArgTypeInfo->isVariadic()) &&
3824            "Extra arguments in non-variadic function!");
3825 
3826     // If we still have any arguments, emit them using the type of the argument.
3827     for (auto *A : llvm::make_range(Arg, ArgRange.end()))
3828       ArgTypes.push_back(CallArgTypeInfo ? getVarArgType(A) : A->getType());
3829 
3830     EmitCallArgs(Args, ArgTypes, ArgRange, AC, ParamsToSkip, Order);
3831   }
3832 
3833   void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes,
3834                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3835                     AbstractCallee AC = AbstractCallee(),
3836                     unsigned ParamsToSkip = 0,
3837                     EvaluationOrder Order = EvaluationOrder::Default);
3838 
3839   /// EmitPointerWithAlignment - Given an expression with a pointer type,
3840   /// emit the value and compute our best estimate of the alignment of the
3841   /// pointee.
3842   ///
3843   /// \param BaseInfo - If non-null, this will be initialized with
3844   /// information about the source of the alignment and the may-alias
3845   /// attribute.  Note that this function will conservatively fall back on
3846   /// the type when it doesn't recognize the expression and may-alias will
3847   /// be set to false.
3848   ///
3849   /// One reasonable way to use this information is when there's a language
3850   /// guarantee that the pointer must be aligned to some stricter value, and
3851   /// we're simply trying to ensure that sufficiently obvious uses of under-
3852   /// aligned objects don't get miscompiled; for example, a placement new
3853   /// into the address of a local variable.  In such a case, it's quite
3854   /// reasonable to just ignore the returned alignment when it isn't from an
3855   /// explicit source.
3856   Address EmitPointerWithAlignment(const Expr *Addr,
3857                                    LValueBaseInfo *BaseInfo = nullptr);
3858 
3859   void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK);
3860 
3861 private:
3862   QualType getVarArgType(const Expr *Arg);
3863 
3864   void EmitDeclMetadata();
3865 
3866   BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType,
3867                                   const AutoVarEmission &emission);
3868 
3869   void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
3870 
3871   llvm::Value *GetValueForARMHint(unsigned BuiltinID);
3872   llvm::Value *EmitX86CpuIs(const CallExpr *E);
3873   llvm::Value *EmitX86CpuIs(StringRef CPUStr);
3874   llvm::Value *EmitX86CpuSupports(const CallExpr *E);
3875   llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs);
3876 };
3877 
3878 /// Helper class with most of the code for saving a value for a
3879 /// conditional expression cleanup.
3880 struct DominatingLLVMValue {
3881   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
3882 
3883   /// Answer whether the given value needs extra work to be saved.
3884   static bool needsSaving(llvm::Value *value) {
3885     // If it's not an instruction, we don't need to save.
3886     if (!isa<llvm::Instruction>(value)) return false;
3887 
3888     // If it's an instruction in the entry block, we don't need to save.
3889     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
3890     return (block != &block->getParent()->getEntryBlock());
3891   }
3892 
3893   /// Try to save the given value.
3894   static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
3895     if (!needsSaving(value)) return saved_type(value, false);
3896 
3897     // Otherwise, we need an alloca.
3898     auto align = CharUnits::fromQuantity(
3899               CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType()));
3900     Address alloca =
3901       CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save");
3902     CGF.Builder.CreateStore(value, alloca);
3903 
3904     return saved_type(alloca.getPointer(), true);
3905   }
3906 
3907   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
3908     // If the value says it wasn't saved, trust that it's still dominating.
3909     if (!value.getInt()) return value.getPointer();
3910 
3911     // Otherwise, it should be an alloca instruction, as set up in save().
3912     auto alloca = cast<llvm::AllocaInst>(value.getPointer());
3913     return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlignment());
3914   }
3915 };
3916 
3917 /// A partial specialization of DominatingValue for llvm::Values that
3918 /// might be llvm::Instructions.
3919 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
3920   typedef T *type;
3921   static type restore(CodeGenFunction &CGF, saved_type value) {
3922     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
3923   }
3924 };
3925 
3926 /// A specialization of DominatingValue for Address.
3927 template <> struct DominatingValue<Address> {
3928   typedef Address type;
3929 
3930   struct saved_type {
3931     DominatingLLVMValue::saved_type SavedValue;
3932     CharUnits Alignment;
3933   };
3934 
3935   static bool needsSaving(type value) {
3936     return DominatingLLVMValue::needsSaving(value.getPointer());
3937   }
3938   static saved_type save(CodeGenFunction &CGF, type value) {
3939     return { DominatingLLVMValue::save(CGF, value.getPointer()),
3940              value.getAlignment() };
3941   }
3942   static type restore(CodeGenFunction &CGF, saved_type value) {
3943     return Address(DominatingLLVMValue::restore(CGF, value.SavedValue),
3944                    value.Alignment);
3945   }
3946 };
3947 
3948 /// A specialization of DominatingValue for RValue.
3949 template <> struct DominatingValue<RValue> {
3950   typedef RValue type;
3951   class saved_type {
3952     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
3953                 AggregateAddress, ComplexAddress };
3954 
3955     llvm::Value *Value;
3956     unsigned K : 3;
3957     unsigned Align : 29;
3958     saved_type(llvm::Value *v, Kind k, unsigned a = 0)
3959       : Value(v), K(k), Align(a) {}
3960 
3961   public:
3962     static bool needsSaving(RValue value);
3963     static saved_type save(CodeGenFunction &CGF, RValue value);
3964     RValue restore(CodeGenFunction &CGF);
3965 
3966     // implementations in CGCleanup.cpp
3967   };
3968 
3969   static bool needsSaving(type value) {
3970     return saved_type::needsSaving(value);
3971   }
3972   static saved_type save(CodeGenFunction &CGF, type value) {
3973     return saved_type::save(CGF, value);
3974   }
3975   static type restore(CodeGenFunction &CGF, saved_type value) {
3976     return value.restore(CGF);
3977   }
3978 };
3979 
3980 }  // end namespace CodeGen
3981 }  // end namespace clang
3982 
3983 #endif
3984