1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the internal per-function state used for llvm translation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 14 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 15 16 #include "CGBuilder.h" 17 #include "CGDebugInfo.h" 18 #include "CGLoopInfo.h" 19 #include "CGValue.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenPGO.h" 22 #include "EHScopeStack.h" 23 #include "VarBypassDetector.h" 24 #include "clang/AST/CharUnits.h" 25 #include "clang/AST/CurrentSourceLocExprScope.h" 26 #include "clang/AST/ExprCXX.h" 27 #include "clang/AST/ExprObjC.h" 28 #include "clang/AST/ExprOpenMP.h" 29 #include "clang/AST/StmtOpenMP.h" 30 #include "clang/AST/Type.h" 31 #include "clang/Basic/ABI.h" 32 #include "clang/Basic/CapturedStmt.h" 33 #include "clang/Basic/CodeGenOptions.h" 34 #include "clang/Basic/OpenMPKinds.h" 35 #include "clang/Basic/TargetInfo.h" 36 #include "llvm/ADT/ArrayRef.h" 37 #include "llvm/ADT/DenseMap.h" 38 #include "llvm/ADT/MapVector.h" 39 #include "llvm/ADT/SmallVector.h" 40 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 41 #include "llvm/IR/ValueHandle.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Transforms/Utils/SanitizerStats.h" 44 45 namespace llvm { 46 class BasicBlock; 47 class LLVMContext; 48 class MDNode; 49 class Module; 50 class SwitchInst; 51 class Twine; 52 class Value; 53 class CanonicalLoopInfo; 54 } 55 56 namespace clang { 57 class ASTContext; 58 class BlockDecl; 59 class CXXDestructorDecl; 60 class CXXForRangeStmt; 61 class CXXTryStmt; 62 class Decl; 63 class LabelDecl; 64 class EnumConstantDecl; 65 class FunctionDecl; 66 class FunctionProtoType; 67 class LabelStmt; 68 class ObjCContainerDecl; 69 class ObjCInterfaceDecl; 70 class ObjCIvarDecl; 71 class ObjCMethodDecl; 72 class ObjCImplementationDecl; 73 class ObjCPropertyImplDecl; 74 class TargetInfo; 75 class VarDecl; 76 class ObjCForCollectionStmt; 77 class ObjCAtTryStmt; 78 class ObjCAtThrowStmt; 79 class ObjCAtSynchronizedStmt; 80 class ObjCAutoreleasePoolStmt; 81 class OMPUseDevicePtrClause; 82 class OMPUseDeviceAddrClause; 83 class ReturnsNonNullAttr; 84 class SVETypeFlags; 85 class OMPExecutableDirective; 86 87 namespace analyze_os_log { 88 class OSLogBufferLayout; 89 } 90 91 namespace CodeGen { 92 class CodeGenTypes; 93 class CGCallee; 94 class CGFunctionInfo; 95 class CGRecordLayout; 96 class CGBlockInfo; 97 class CGCXXABI; 98 class BlockByrefHelpers; 99 class BlockByrefInfo; 100 class BlockFlags; 101 class BlockFieldFlags; 102 class RegionCodeGenTy; 103 class TargetCodeGenInfo; 104 struct OMPTaskDataTy; 105 struct CGCoroData; 106 107 /// The kind of evaluation to perform on values of a particular 108 /// type. Basically, is the code in CGExprScalar, CGExprComplex, or 109 /// CGExprAgg? 110 /// 111 /// TODO: should vectors maybe be split out into their own thing? 112 enum TypeEvaluationKind { 113 TEK_Scalar, 114 TEK_Complex, 115 TEK_Aggregate 116 }; 117 118 #define LIST_SANITIZER_CHECKS \ 119 SANITIZER_CHECK(AddOverflow, add_overflow, 0) \ 120 SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0) \ 121 SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0) \ 122 SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0) \ 123 SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0) \ 124 SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0) \ 125 SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 1) \ 126 SANITIZER_CHECK(ImplicitConversion, implicit_conversion, 0) \ 127 SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0) \ 128 SANITIZER_CHECK(InvalidObjCCast, invalid_objc_cast, 0) \ 129 SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0) \ 130 SANITIZER_CHECK(MissingReturn, missing_return, 0) \ 131 SANITIZER_CHECK(MulOverflow, mul_overflow, 0) \ 132 SANITIZER_CHECK(NegateOverflow, negate_overflow, 0) \ 133 SANITIZER_CHECK(NullabilityArg, nullability_arg, 0) \ 134 SANITIZER_CHECK(NullabilityReturn, nullability_return, 1) \ 135 SANITIZER_CHECK(NonnullArg, nonnull_arg, 0) \ 136 SANITIZER_CHECK(NonnullReturn, nonnull_return, 1) \ 137 SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0) \ 138 SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0) \ 139 SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0) \ 140 SANITIZER_CHECK(SubOverflow, sub_overflow, 0) \ 141 SANITIZER_CHECK(TypeMismatch, type_mismatch, 1) \ 142 SANITIZER_CHECK(AlignmentAssumption, alignment_assumption, 0) \ 143 SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0) 144 145 enum SanitizerHandler { 146 #define SANITIZER_CHECK(Enum, Name, Version) Enum, 147 LIST_SANITIZER_CHECKS 148 #undef SANITIZER_CHECK 149 }; 150 151 /// Helper class with most of the code for saving a value for a 152 /// conditional expression cleanup. 153 struct DominatingLLVMValue { 154 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 155 156 /// Answer whether the given value needs extra work to be saved. 157 static bool needsSaving(llvm::Value *value) { 158 // If it's not an instruction, we don't need to save. 159 if (!isa<llvm::Instruction>(value)) return false; 160 161 // If it's an instruction in the entry block, we don't need to save. 162 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 163 return (block != &block->getParent()->getEntryBlock()); 164 } 165 166 static saved_type save(CodeGenFunction &CGF, llvm::Value *value); 167 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value); 168 }; 169 170 /// A partial specialization of DominatingValue for llvm::Values that 171 /// might be llvm::Instructions. 172 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 173 typedef T *type; 174 static type restore(CodeGenFunction &CGF, saved_type value) { 175 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 176 } 177 }; 178 179 /// A specialization of DominatingValue for Address. 180 template <> struct DominatingValue<Address> { 181 typedef Address type; 182 183 struct saved_type { 184 DominatingLLVMValue::saved_type SavedValue; 185 CharUnits Alignment; 186 }; 187 188 static bool needsSaving(type value) { 189 return DominatingLLVMValue::needsSaving(value.getPointer()); 190 } 191 static saved_type save(CodeGenFunction &CGF, type value) { 192 return { DominatingLLVMValue::save(CGF, value.getPointer()), 193 value.getAlignment() }; 194 } 195 static type restore(CodeGenFunction &CGF, saved_type value) { 196 return Address(DominatingLLVMValue::restore(CGF, value.SavedValue), 197 value.Alignment); 198 } 199 }; 200 201 /// A specialization of DominatingValue for RValue. 202 template <> struct DominatingValue<RValue> { 203 typedef RValue type; 204 class saved_type { 205 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 206 AggregateAddress, ComplexAddress }; 207 208 llvm::Value *Value; 209 unsigned K : 3; 210 unsigned Align : 29; 211 saved_type(llvm::Value *v, Kind k, unsigned a = 0) 212 : Value(v), K(k), Align(a) {} 213 214 public: 215 static bool needsSaving(RValue value); 216 static saved_type save(CodeGenFunction &CGF, RValue value); 217 RValue restore(CodeGenFunction &CGF); 218 219 // implementations in CGCleanup.cpp 220 }; 221 222 static bool needsSaving(type value) { 223 return saved_type::needsSaving(value); 224 } 225 static saved_type save(CodeGenFunction &CGF, type value) { 226 return saved_type::save(CGF, value); 227 } 228 static type restore(CodeGenFunction &CGF, saved_type value) { 229 return value.restore(CGF); 230 } 231 }; 232 233 /// CodeGenFunction - This class organizes the per-function state that is used 234 /// while generating LLVM code. 235 class CodeGenFunction : public CodeGenTypeCache { 236 CodeGenFunction(const CodeGenFunction &) = delete; 237 void operator=(const CodeGenFunction &) = delete; 238 239 friend class CGCXXABI; 240 public: 241 /// A jump destination is an abstract label, branching to which may 242 /// require a jump out through normal cleanups. 243 struct JumpDest { 244 JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {} 245 JumpDest(llvm::BasicBlock *Block, 246 EHScopeStack::stable_iterator Depth, 247 unsigned Index) 248 : Block(Block), ScopeDepth(Depth), Index(Index) {} 249 250 bool isValid() const { return Block != nullptr; } 251 llvm::BasicBlock *getBlock() const { return Block; } 252 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 253 unsigned getDestIndex() const { return Index; } 254 255 // This should be used cautiously. 256 void setScopeDepth(EHScopeStack::stable_iterator depth) { 257 ScopeDepth = depth; 258 } 259 260 private: 261 llvm::BasicBlock *Block; 262 EHScopeStack::stable_iterator ScopeDepth; 263 unsigned Index; 264 }; 265 266 CodeGenModule &CGM; // Per-module state. 267 const TargetInfo &Target; 268 269 // For EH/SEH outlined funclets, this field points to parent's CGF 270 CodeGenFunction *ParentCGF = nullptr; 271 272 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 273 LoopInfoStack LoopStack; 274 CGBuilderTy Builder; 275 276 // Stores variables for which we can't generate correct lifetime markers 277 // because of jumps. 278 VarBypassDetector Bypasses; 279 280 /// List of recently emitted OMPCanonicalLoops. 281 /// 282 /// Since OMPCanonicalLoops are nested inside other statements (in particular 283 /// CapturedStmt generated by OMPExecutableDirective and non-perfectly nested 284 /// loops), we cannot directly call OMPEmitOMPCanonicalLoop and receive its 285 /// llvm::CanonicalLoopInfo. Instead, we call EmitStmt and any 286 /// OMPEmitOMPCanonicalLoop called by it will add its CanonicalLoopInfo to 287 /// this stack when done. Entering a new loop requires clearing this list; it 288 /// either means we start parsing a new loop nest (in which case the previous 289 /// loop nest goes out of scope) or a second loop in the same level in which 290 /// case it would be ambiguous into which of the two (or more) loops the loop 291 /// nest would extend. 292 SmallVector<llvm::CanonicalLoopInfo *, 4> OMPLoopNestStack; 293 294 // CodeGen lambda for loops and support for ordered clause 295 typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &, 296 JumpDest)> 297 CodeGenLoopTy; 298 typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation, 299 const unsigned, const bool)> 300 CodeGenOrderedTy; 301 302 // Codegen lambda for loop bounds in worksharing loop constructs 303 typedef llvm::function_ref<std::pair<LValue, LValue>( 304 CodeGenFunction &, const OMPExecutableDirective &S)> 305 CodeGenLoopBoundsTy; 306 307 // Codegen lambda for loop bounds in dispatch-based loop implementation 308 typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>( 309 CodeGenFunction &, const OMPExecutableDirective &S, Address LB, 310 Address UB)> 311 CodeGenDispatchBoundsTy; 312 313 /// CGBuilder insert helper. This function is called after an 314 /// instruction is created using Builder. 315 void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name, 316 llvm::BasicBlock *BB, 317 llvm::BasicBlock::iterator InsertPt) const; 318 319 /// CurFuncDecl - Holds the Decl for the current outermost 320 /// non-closure context. 321 const Decl *CurFuncDecl; 322 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 323 const Decl *CurCodeDecl; 324 const CGFunctionInfo *CurFnInfo; 325 QualType FnRetTy; 326 llvm::Function *CurFn = nullptr; 327 328 // Holds coroutine data if the current function is a coroutine. We use a 329 // wrapper to manage its lifetime, so that we don't have to define CGCoroData 330 // in this header. 331 struct CGCoroInfo { 332 std::unique_ptr<CGCoroData> Data; 333 CGCoroInfo(); 334 ~CGCoroInfo(); 335 }; 336 CGCoroInfo CurCoro; 337 338 bool isCoroutine() const { 339 return CurCoro.Data != nullptr; 340 } 341 342 /// CurGD - The GlobalDecl for the current function being compiled. 343 GlobalDecl CurGD; 344 345 /// PrologueCleanupDepth - The cleanup depth enclosing all the 346 /// cleanups associated with the parameters. 347 EHScopeStack::stable_iterator PrologueCleanupDepth; 348 349 /// ReturnBlock - Unified return block. 350 JumpDest ReturnBlock; 351 352 /// ReturnValue - The temporary alloca to hold the return 353 /// value. This is invalid iff the function has no return value. 354 Address ReturnValue = Address::invalid(); 355 356 /// ReturnValuePointer - The temporary alloca to hold a pointer to sret. 357 /// This is invalid if sret is not in use. 358 Address ReturnValuePointer = Address::invalid(); 359 360 /// If a return statement is being visited, this holds the return statment's 361 /// result expression. 362 const Expr *RetExpr = nullptr; 363 364 /// Return true if a label was seen in the current scope. 365 bool hasLabelBeenSeenInCurrentScope() const { 366 if (CurLexicalScope) 367 return CurLexicalScope->hasLabels(); 368 return !LabelMap.empty(); 369 } 370 371 /// AllocaInsertPoint - This is an instruction in the entry block before which 372 /// we prefer to insert allocas. 373 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 374 375 /// API for captured statement code generation. 376 class CGCapturedStmtInfo { 377 public: 378 explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default) 379 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {} 380 explicit CGCapturedStmtInfo(const CapturedStmt &S, 381 CapturedRegionKind K = CR_Default) 382 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) { 383 384 RecordDecl::field_iterator Field = 385 S.getCapturedRecordDecl()->field_begin(); 386 for (CapturedStmt::const_capture_iterator I = S.capture_begin(), 387 E = S.capture_end(); 388 I != E; ++I, ++Field) { 389 if (I->capturesThis()) 390 CXXThisFieldDecl = *Field; 391 else if (I->capturesVariable()) 392 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 393 else if (I->capturesVariableByCopy()) 394 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 395 } 396 } 397 398 virtual ~CGCapturedStmtInfo(); 399 400 CapturedRegionKind getKind() const { return Kind; } 401 402 virtual void setContextValue(llvm::Value *V) { ThisValue = V; } 403 // Retrieve the value of the context parameter. 404 virtual llvm::Value *getContextValue() const { return ThisValue; } 405 406 /// Lookup the captured field decl for a variable. 407 virtual const FieldDecl *lookup(const VarDecl *VD) const { 408 return CaptureFields.lookup(VD->getCanonicalDecl()); 409 } 410 411 bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; } 412 virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; } 413 414 static bool classof(const CGCapturedStmtInfo *) { 415 return true; 416 } 417 418 /// Emit the captured statement body. 419 virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) { 420 CGF.incrementProfileCounter(S); 421 CGF.EmitStmt(S); 422 } 423 424 /// Get the name of the capture helper. 425 virtual StringRef getHelperName() const { return "__captured_stmt"; } 426 427 private: 428 /// The kind of captured statement being generated. 429 CapturedRegionKind Kind; 430 431 /// Keep the map between VarDecl and FieldDecl. 432 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields; 433 434 /// The base address of the captured record, passed in as the first 435 /// argument of the parallel region function. 436 llvm::Value *ThisValue; 437 438 /// Captured 'this' type. 439 FieldDecl *CXXThisFieldDecl; 440 }; 441 CGCapturedStmtInfo *CapturedStmtInfo = nullptr; 442 443 /// RAII for correct setting/restoring of CapturedStmtInfo. 444 class CGCapturedStmtRAII { 445 private: 446 CodeGenFunction &CGF; 447 CGCapturedStmtInfo *PrevCapturedStmtInfo; 448 public: 449 CGCapturedStmtRAII(CodeGenFunction &CGF, 450 CGCapturedStmtInfo *NewCapturedStmtInfo) 451 : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) { 452 CGF.CapturedStmtInfo = NewCapturedStmtInfo; 453 } 454 ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; } 455 }; 456 457 /// An abstract representation of regular/ObjC call/message targets. 458 class AbstractCallee { 459 /// The function declaration of the callee. 460 const Decl *CalleeDecl; 461 462 public: 463 AbstractCallee() : CalleeDecl(nullptr) {} 464 AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {} 465 AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {} 466 bool hasFunctionDecl() const { 467 return dyn_cast_or_null<FunctionDecl>(CalleeDecl); 468 } 469 const Decl *getDecl() const { return CalleeDecl; } 470 unsigned getNumParams() const { 471 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 472 return FD->getNumParams(); 473 return cast<ObjCMethodDecl>(CalleeDecl)->param_size(); 474 } 475 const ParmVarDecl *getParamDecl(unsigned I) const { 476 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 477 return FD->getParamDecl(I); 478 return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I); 479 } 480 }; 481 482 /// Sanitizers enabled for this function. 483 SanitizerSet SanOpts; 484 485 /// True if CodeGen currently emits code implementing sanitizer checks. 486 bool IsSanitizerScope = false; 487 488 /// RAII object to set/unset CodeGenFunction::IsSanitizerScope. 489 class SanitizerScope { 490 CodeGenFunction *CGF; 491 public: 492 SanitizerScope(CodeGenFunction *CGF); 493 ~SanitizerScope(); 494 }; 495 496 /// In C++, whether we are code generating a thunk. This controls whether we 497 /// should emit cleanups. 498 bool CurFuncIsThunk = false; 499 500 /// In ARC, whether we should autorelease the return value. 501 bool AutoreleaseResult = false; 502 503 /// Whether we processed a Microsoft-style asm block during CodeGen. These can 504 /// potentially set the return value. 505 bool SawAsmBlock = false; 506 507 const NamedDecl *CurSEHParent = nullptr; 508 509 /// True if the current function is an outlined SEH helper. This can be a 510 /// finally block or filter expression. 511 bool IsOutlinedSEHHelper = false; 512 513 /// True if CodeGen currently emits code inside presereved access index 514 /// region. 515 bool IsInPreservedAIRegion = false; 516 517 /// True if the current statement has nomerge attribute. 518 bool InNoMergeAttributedStmt = false; 519 520 /// True if the current function should be marked mustprogress. 521 bool FnIsMustProgress = false; 522 523 /// True if the C++ Standard Requires Progress. 524 bool CPlusPlusWithProgress() { 525 if (CGM.getCodeGenOpts().getFiniteLoops() == 526 CodeGenOptions::FiniteLoopsKind::Never) 527 return false; 528 529 return getLangOpts().CPlusPlus11 || getLangOpts().CPlusPlus14 || 530 getLangOpts().CPlusPlus17 || getLangOpts().CPlusPlus20; 531 } 532 533 /// True if the C Standard Requires Progress. 534 bool CWithProgress() { 535 if (CGM.getCodeGenOpts().getFiniteLoops() == 536 CodeGenOptions::FiniteLoopsKind::Always) 537 return true; 538 if (CGM.getCodeGenOpts().getFiniteLoops() == 539 CodeGenOptions::FiniteLoopsKind::Never) 540 return false; 541 542 return getLangOpts().C11 || getLangOpts().C17 || getLangOpts().C2x; 543 } 544 545 /// True if the language standard requires progress in functions or 546 /// in infinite loops with non-constant conditionals. 547 bool LanguageRequiresProgress() { 548 return CWithProgress() || CPlusPlusWithProgress(); 549 } 550 551 const CodeGen::CGBlockInfo *BlockInfo = nullptr; 552 llvm::Value *BlockPointer = nullptr; 553 554 llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; 555 FieldDecl *LambdaThisCaptureField = nullptr; 556 557 /// A mapping from NRVO variables to the flags used to indicate 558 /// when the NRVO has been applied to this variable. 559 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 560 561 EHScopeStack EHStack; 562 llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack; 563 llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack; 564 565 llvm::Instruction *CurrentFuncletPad = nullptr; 566 567 class CallLifetimeEnd final : public EHScopeStack::Cleanup { 568 llvm::Value *Addr; 569 llvm::Value *Size; 570 571 public: 572 CallLifetimeEnd(Address addr, llvm::Value *size) 573 : Addr(addr.getPointer()), Size(size) {} 574 575 void Emit(CodeGenFunction &CGF, Flags flags) override { 576 CGF.EmitLifetimeEnd(Size, Addr); 577 } 578 }; 579 580 /// Header for data within LifetimeExtendedCleanupStack. 581 struct LifetimeExtendedCleanupHeader { 582 /// The size of the following cleanup object. 583 unsigned Size; 584 /// The kind of cleanup to push: a value from the CleanupKind enumeration. 585 unsigned Kind : 31; 586 /// Whether this is a conditional cleanup. 587 unsigned IsConditional : 1; 588 589 size_t getSize() const { return Size; } 590 CleanupKind getKind() const { return (CleanupKind)Kind; } 591 bool isConditional() const { return IsConditional; } 592 }; 593 594 /// i32s containing the indexes of the cleanup destinations. 595 Address NormalCleanupDest = Address::invalid(); 596 597 unsigned NextCleanupDestIndex = 1; 598 599 /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. 600 llvm::BasicBlock *EHResumeBlock = nullptr; 601 602 /// The exception slot. All landing pads write the current exception pointer 603 /// into this alloca. 604 llvm::Value *ExceptionSlot = nullptr; 605 606 /// The selector slot. Under the MandatoryCleanup model, all landing pads 607 /// write the current selector value into this alloca. 608 llvm::AllocaInst *EHSelectorSlot = nullptr; 609 610 /// A stack of exception code slots. Entering an __except block pushes a slot 611 /// on the stack and leaving pops one. The __exception_code() intrinsic loads 612 /// a value from the top of the stack. 613 SmallVector<Address, 1> SEHCodeSlotStack; 614 615 /// Value returned by __exception_info intrinsic. 616 llvm::Value *SEHInfo = nullptr; 617 618 /// Emits a landing pad for the current EH stack. 619 llvm::BasicBlock *EmitLandingPad(); 620 621 llvm::BasicBlock *getInvokeDestImpl(); 622 623 /// Parent loop-based directive for scan directive. 624 const OMPExecutableDirective *OMPParentLoopDirectiveForScan = nullptr; 625 llvm::BasicBlock *OMPBeforeScanBlock = nullptr; 626 llvm::BasicBlock *OMPAfterScanBlock = nullptr; 627 llvm::BasicBlock *OMPScanExitBlock = nullptr; 628 llvm::BasicBlock *OMPScanDispatch = nullptr; 629 bool OMPFirstScanLoop = false; 630 631 /// Manages parent directive for scan directives. 632 class ParentLoopDirectiveForScanRegion { 633 CodeGenFunction &CGF; 634 const OMPExecutableDirective *ParentLoopDirectiveForScan; 635 636 public: 637 ParentLoopDirectiveForScanRegion( 638 CodeGenFunction &CGF, 639 const OMPExecutableDirective &ParentLoopDirectiveForScan) 640 : CGF(CGF), 641 ParentLoopDirectiveForScan(CGF.OMPParentLoopDirectiveForScan) { 642 CGF.OMPParentLoopDirectiveForScan = &ParentLoopDirectiveForScan; 643 } 644 ~ParentLoopDirectiveForScanRegion() { 645 CGF.OMPParentLoopDirectiveForScan = ParentLoopDirectiveForScan; 646 } 647 }; 648 649 template <class T> 650 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 651 return DominatingValue<T>::save(*this, value); 652 } 653 654 class CGFPOptionsRAII { 655 public: 656 CGFPOptionsRAII(CodeGenFunction &CGF, FPOptions FPFeatures); 657 CGFPOptionsRAII(CodeGenFunction &CGF, const Expr *E); 658 ~CGFPOptionsRAII(); 659 660 private: 661 void ConstructorHelper(FPOptions FPFeatures); 662 CodeGenFunction &CGF; 663 FPOptions OldFPFeatures; 664 llvm::fp::ExceptionBehavior OldExcept; 665 llvm::RoundingMode OldRounding; 666 Optional<CGBuilderTy::FastMathFlagGuard> FMFGuard; 667 }; 668 FPOptions CurFPFeatures; 669 670 public: 671 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 672 /// rethrows. 673 SmallVector<llvm::Value*, 8> ObjCEHValueStack; 674 675 /// A class controlling the emission of a finally block. 676 class FinallyInfo { 677 /// Where the catchall's edge through the cleanup should go. 678 JumpDest RethrowDest; 679 680 /// A function to call to enter the catch. 681 llvm::FunctionCallee BeginCatchFn; 682 683 /// An i1 variable indicating whether or not the @finally is 684 /// running for an exception. 685 llvm::AllocaInst *ForEHVar; 686 687 /// An i8* variable into which the exception pointer to rethrow 688 /// has been saved. 689 llvm::AllocaInst *SavedExnVar; 690 691 public: 692 void enter(CodeGenFunction &CGF, const Stmt *Finally, 693 llvm::FunctionCallee beginCatchFn, 694 llvm::FunctionCallee endCatchFn, llvm::FunctionCallee rethrowFn); 695 void exit(CodeGenFunction &CGF); 696 }; 697 698 /// Returns true inside SEH __try blocks. 699 bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); } 700 701 /// Returns true while emitting a cleanuppad. 702 bool isCleanupPadScope() const { 703 return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad); 704 } 705 706 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 707 /// current full-expression. Safe against the possibility that 708 /// we're currently inside a conditionally-evaluated expression. 709 template <class T, class... As> 710 void pushFullExprCleanup(CleanupKind kind, As... A) { 711 // If we're not in a conditional branch, or if none of the 712 // arguments requires saving, then use the unconditional cleanup. 713 if (!isInConditionalBranch()) 714 return EHStack.pushCleanup<T>(kind, A...); 715 716 // Stash values in a tuple so we can guarantee the order of saves. 717 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 718 SavedTuple Saved{saveValueInCond(A)...}; 719 720 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 721 EHStack.pushCleanupTuple<CleanupType>(kind, Saved); 722 initFullExprCleanup(); 723 } 724 725 /// Queue a cleanup to be pushed after finishing the current full-expression, 726 /// potentially with an active flag. 727 template <class T, class... As> 728 void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) { 729 if (!isInConditionalBranch()) 730 return pushCleanupAfterFullExprWithActiveFlag<T>(Kind, Address::invalid(), 731 A...); 732 733 Address ActiveFlag = createCleanupActiveFlag(); 734 assert(!DominatingValue<Address>::needsSaving(ActiveFlag) && 735 "cleanup active flag should never need saving"); 736 737 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 738 SavedTuple Saved{saveValueInCond(A)...}; 739 740 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 741 pushCleanupAfterFullExprWithActiveFlag<CleanupType>(Kind, ActiveFlag, Saved); 742 } 743 744 template <class T, class... As> 745 void pushCleanupAfterFullExprWithActiveFlag(CleanupKind Kind, 746 Address ActiveFlag, As... A) { 747 LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind, 748 ActiveFlag.isValid()}; 749 750 size_t OldSize = LifetimeExtendedCleanupStack.size(); 751 LifetimeExtendedCleanupStack.resize( 752 LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size + 753 (Header.IsConditional ? sizeof(ActiveFlag) : 0)); 754 755 static_assert(sizeof(Header) % alignof(T) == 0, 756 "Cleanup will be allocated on misaligned address"); 757 char *Buffer = &LifetimeExtendedCleanupStack[OldSize]; 758 new (Buffer) LifetimeExtendedCleanupHeader(Header); 759 new (Buffer + sizeof(Header)) T(A...); 760 if (Header.IsConditional) 761 new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag); 762 } 763 764 /// Set up the last cleanup that was pushed as a conditional 765 /// full-expression cleanup. 766 void initFullExprCleanup() { 767 initFullExprCleanupWithFlag(createCleanupActiveFlag()); 768 } 769 770 void initFullExprCleanupWithFlag(Address ActiveFlag); 771 Address createCleanupActiveFlag(); 772 773 /// PushDestructorCleanup - Push a cleanup to call the 774 /// complete-object destructor of an object of the given type at the 775 /// given address. Does nothing if T is not a C++ class type with a 776 /// non-trivial destructor. 777 void PushDestructorCleanup(QualType T, Address Addr); 778 779 /// PushDestructorCleanup - Push a cleanup to call the 780 /// complete-object variant of the given destructor on the object at 781 /// the given address. 782 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, QualType T, 783 Address Addr); 784 785 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 786 /// process all branch fixups. 787 void PopCleanupBlock(bool FallThroughIsBranchThrough = false); 788 789 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 790 /// The block cannot be reactivated. Pops it if it's the top of the 791 /// stack. 792 /// 793 /// \param DominatingIP - An instruction which is known to 794 /// dominate the current IP (if set) and which lies along 795 /// all paths of execution between the current IP and the 796 /// the point at which the cleanup comes into scope. 797 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 798 llvm::Instruction *DominatingIP); 799 800 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 801 /// Cannot be used to resurrect a deactivated cleanup. 802 /// 803 /// \param DominatingIP - An instruction which is known to 804 /// dominate the current IP (if set) and which lies along 805 /// all paths of execution between the current IP and the 806 /// the point at which the cleanup comes into scope. 807 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 808 llvm::Instruction *DominatingIP); 809 810 /// Enters a new scope for capturing cleanups, all of which 811 /// will be executed once the scope is exited. 812 class RunCleanupsScope { 813 EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth; 814 size_t LifetimeExtendedCleanupStackSize; 815 bool OldDidCallStackSave; 816 protected: 817 bool PerformCleanup; 818 private: 819 820 RunCleanupsScope(const RunCleanupsScope &) = delete; 821 void operator=(const RunCleanupsScope &) = delete; 822 823 protected: 824 CodeGenFunction& CGF; 825 826 public: 827 /// Enter a new cleanup scope. 828 explicit RunCleanupsScope(CodeGenFunction &CGF) 829 : PerformCleanup(true), CGF(CGF) 830 { 831 CleanupStackDepth = CGF.EHStack.stable_begin(); 832 LifetimeExtendedCleanupStackSize = 833 CGF.LifetimeExtendedCleanupStack.size(); 834 OldDidCallStackSave = CGF.DidCallStackSave; 835 CGF.DidCallStackSave = false; 836 OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth; 837 CGF.CurrentCleanupScopeDepth = CleanupStackDepth; 838 } 839 840 /// Exit this cleanup scope, emitting any accumulated cleanups. 841 ~RunCleanupsScope() { 842 if (PerformCleanup) 843 ForceCleanup(); 844 } 845 846 /// Determine whether this scope requires any cleanups. 847 bool requiresCleanups() const { 848 return CGF.EHStack.stable_begin() != CleanupStackDepth; 849 } 850 851 /// Force the emission of cleanups now, instead of waiting 852 /// until this object is destroyed. 853 /// \param ValuesToReload - A list of values that need to be available at 854 /// the insertion point after cleanup emission. If cleanup emission created 855 /// a shared cleanup block, these value pointers will be rewritten. 856 /// Otherwise, they not will be modified. 857 void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) { 858 assert(PerformCleanup && "Already forced cleanup"); 859 CGF.DidCallStackSave = OldDidCallStackSave; 860 CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize, 861 ValuesToReload); 862 PerformCleanup = false; 863 CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth; 864 } 865 }; 866 867 // Cleanup stack depth of the RunCleanupsScope that was pushed most recently. 868 EHScopeStack::stable_iterator CurrentCleanupScopeDepth = 869 EHScopeStack::stable_end(); 870 871 class LexicalScope : public RunCleanupsScope { 872 SourceRange Range; 873 SmallVector<const LabelDecl*, 4> Labels; 874 LexicalScope *ParentScope; 875 876 LexicalScope(const LexicalScope &) = delete; 877 void operator=(const LexicalScope &) = delete; 878 879 public: 880 /// Enter a new cleanup scope. 881 explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) 882 : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) { 883 CGF.CurLexicalScope = this; 884 if (CGDebugInfo *DI = CGF.getDebugInfo()) 885 DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); 886 } 887 888 void addLabel(const LabelDecl *label) { 889 assert(PerformCleanup && "adding label to dead scope?"); 890 Labels.push_back(label); 891 } 892 893 /// Exit this cleanup scope, emitting any accumulated 894 /// cleanups. 895 ~LexicalScope() { 896 if (CGDebugInfo *DI = CGF.getDebugInfo()) 897 DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 898 899 // If we should perform a cleanup, force them now. Note that 900 // this ends the cleanup scope before rescoping any labels. 901 if (PerformCleanup) { 902 ApplyDebugLocation DL(CGF, Range.getEnd()); 903 ForceCleanup(); 904 } 905 } 906 907 /// Force the emission of cleanups now, instead of waiting 908 /// until this object is destroyed. 909 void ForceCleanup() { 910 CGF.CurLexicalScope = ParentScope; 911 RunCleanupsScope::ForceCleanup(); 912 913 if (!Labels.empty()) 914 rescopeLabels(); 915 } 916 917 bool hasLabels() const { 918 return !Labels.empty(); 919 } 920 921 void rescopeLabels(); 922 }; 923 924 typedef llvm::DenseMap<const Decl *, Address> DeclMapTy; 925 926 /// The class used to assign some variables some temporarily addresses. 927 class OMPMapVars { 928 DeclMapTy SavedLocals; 929 DeclMapTy SavedTempAddresses; 930 OMPMapVars(const OMPMapVars &) = delete; 931 void operator=(const OMPMapVars &) = delete; 932 933 public: 934 explicit OMPMapVars() = default; 935 ~OMPMapVars() { 936 assert(SavedLocals.empty() && "Did not restored original addresses."); 937 }; 938 939 /// Sets the address of the variable \p LocalVD to be \p TempAddr in 940 /// function \p CGF. 941 /// \return true if at least one variable was set already, false otherwise. 942 bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD, 943 Address TempAddr) { 944 LocalVD = LocalVD->getCanonicalDecl(); 945 // Only save it once. 946 if (SavedLocals.count(LocalVD)) return false; 947 948 // Copy the existing local entry to SavedLocals. 949 auto it = CGF.LocalDeclMap.find(LocalVD); 950 if (it != CGF.LocalDeclMap.end()) 951 SavedLocals.try_emplace(LocalVD, it->second); 952 else 953 SavedLocals.try_emplace(LocalVD, Address::invalid()); 954 955 // Generate the private entry. 956 QualType VarTy = LocalVD->getType(); 957 if (VarTy->isReferenceType()) { 958 Address Temp = CGF.CreateMemTemp(VarTy); 959 CGF.Builder.CreateStore(TempAddr.getPointer(), Temp); 960 TempAddr = Temp; 961 } 962 SavedTempAddresses.try_emplace(LocalVD, TempAddr); 963 964 return true; 965 } 966 967 /// Applies new addresses to the list of the variables. 968 /// \return true if at least one variable is using new address, false 969 /// otherwise. 970 bool apply(CodeGenFunction &CGF) { 971 copyInto(SavedTempAddresses, CGF.LocalDeclMap); 972 SavedTempAddresses.clear(); 973 return !SavedLocals.empty(); 974 } 975 976 /// Restores original addresses of the variables. 977 void restore(CodeGenFunction &CGF) { 978 if (!SavedLocals.empty()) { 979 copyInto(SavedLocals, CGF.LocalDeclMap); 980 SavedLocals.clear(); 981 } 982 } 983 984 private: 985 /// Copy all the entries in the source map over the corresponding 986 /// entries in the destination, which must exist. 987 static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) { 988 for (auto &Pair : Src) { 989 if (!Pair.second.isValid()) { 990 Dest.erase(Pair.first); 991 continue; 992 } 993 994 auto I = Dest.find(Pair.first); 995 if (I != Dest.end()) 996 I->second = Pair.second; 997 else 998 Dest.insert(Pair); 999 } 1000 } 1001 }; 1002 1003 /// The scope used to remap some variables as private in the OpenMP loop body 1004 /// (or other captured region emitted without outlining), and to restore old 1005 /// vars back on exit. 1006 class OMPPrivateScope : public RunCleanupsScope { 1007 OMPMapVars MappedVars; 1008 OMPPrivateScope(const OMPPrivateScope &) = delete; 1009 void operator=(const OMPPrivateScope &) = delete; 1010 1011 public: 1012 /// Enter a new OpenMP private scope. 1013 explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {} 1014 1015 /// Registers \p LocalVD variable as a private and apply \p PrivateGen 1016 /// function for it to generate corresponding private variable. \p 1017 /// PrivateGen returns an address of the generated private variable. 1018 /// \return true if the variable is registered as private, false if it has 1019 /// been privatized already. 1020 bool addPrivate(const VarDecl *LocalVD, 1021 const llvm::function_ref<Address()> PrivateGen) { 1022 assert(PerformCleanup && "adding private to dead scope"); 1023 return MappedVars.setVarAddr(CGF, LocalVD, PrivateGen()); 1024 } 1025 1026 /// Privatizes local variables previously registered as private. 1027 /// Registration is separate from the actual privatization to allow 1028 /// initializers use values of the original variables, not the private one. 1029 /// This is important, for example, if the private variable is a class 1030 /// variable initialized by a constructor that references other private 1031 /// variables. But at initialization original variables must be used, not 1032 /// private copies. 1033 /// \return true if at least one variable was privatized, false otherwise. 1034 bool Privatize() { return MappedVars.apply(CGF); } 1035 1036 void ForceCleanup() { 1037 RunCleanupsScope::ForceCleanup(); 1038 MappedVars.restore(CGF); 1039 } 1040 1041 /// Exit scope - all the mapped variables are restored. 1042 ~OMPPrivateScope() { 1043 if (PerformCleanup) 1044 ForceCleanup(); 1045 } 1046 1047 /// Checks if the global variable is captured in current function. 1048 bool isGlobalVarCaptured(const VarDecl *VD) const { 1049 VD = VD->getCanonicalDecl(); 1050 return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0; 1051 } 1052 }; 1053 1054 /// Save/restore original map of previously emitted local vars in case when we 1055 /// need to duplicate emission of the same code several times in the same 1056 /// function for OpenMP code. 1057 class OMPLocalDeclMapRAII { 1058 CodeGenFunction &CGF; 1059 DeclMapTy SavedMap; 1060 1061 public: 1062 OMPLocalDeclMapRAII(CodeGenFunction &CGF) 1063 : CGF(CGF), SavedMap(CGF.LocalDeclMap) {} 1064 ~OMPLocalDeclMapRAII() { SavedMap.swap(CGF.LocalDeclMap); } 1065 }; 1066 1067 /// Takes the old cleanup stack size and emits the cleanup blocks 1068 /// that have been added. 1069 void 1070 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 1071 std::initializer_list<llvm::Value **> ValuesToReload = {}); 1072 1073 /// Takes the old cleanup stack size and emits the cleanup blocks 1074 /// that have been added, then adds all lifetime-extended cleanups from 1075 /// the given position to the stack. 1076 void 1077 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 1078 size_t OldLifetimeExtendedStackSize, 1079 std::initializer_list<llvm::Value **> ValuesToReload = {}); 1080 1081 void ResolveBranchFixups(llvm::BasicBlock *Target); 1082 1083 /// The given basic block lies in the current EH scope, but may be a 1084 /// target of a potentially scope-crossing jump; get a stable handle 1085 /// to which we can perform this jump later. 1086 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 1087 return JumpDest(Target, 1088 EHStack.getInnermostNormalCleanup(), 1089 NextCleanupDestIndex++); 1090 } 1091 1092 /// The given basic block lies in the current EH scope, but may be a 1093 /// target of a potentially scope-crossing jump; get a stable handle 1094 /// to which we can perform this jump later. 1095 JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { 1096 return getJumpDestInCurrentScope(createBasicBlock(Name)); 1097 } 1098 1099 /// EmitBranchThroughCleanup - Emit a branch from the current insert 1100 /// block through the normal cleanup handling code (if any) and then 1101 /// on to \arg Dest. 1102 void EmitBranchThroughCleanup(JumpDest Dest); 1103 1104 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 1105 /// specified destination obviously has no cleanups to run. 'false' is always 1106 /// a conservatively correct answer for this method. 1107 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 1108 1109 /// popCatchScope - Pops the catch scope at the top of the EHScope 1110 /// stack, emitting any required code (other than the catch handlers 1111 /// themselves). 1112 void popCatchScope(); 1113 1114 llvm::BasicBlock *getEHResumeBlock(bool isCleanup); 1115 llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); 1116 llvm::BasicBlock * 1117 getFuncletEHDispatchBlock(EHScopeStack::stable_iterator scope); 1118 1119 /// An object to manage conditionally-evaluated expressions. 1120 class ConditionalEvaluation { 1121 llvm::BasicBlock *StartBB; 1122 1123 public: 1124 ConditionalEvaluation(CodeGenFunction &CGF) 1125 : StartBB(CGF.Builder.GetInsertBlock()) {} 1126 1127 void begin(CodeGenFunction &CGF) { 1128 assert(CGF.OutermostConditional != this); 1129 if (!CGF.OutermostConditional) 1130 CGF.OutermostConditional = this; 1131 } 1132 1133 void end(CodeGenFunction &CGF) { 1134 assert(CGF.OutermostConditional != nullptr); 1135 if (CGF.OutermostConditional == this) 1136 CGF.OutermostConditional = nullptr; 1137 } 1138 1139 /// Returns a block which will be executed prior to each 1140 /// evaluation of the conditional code. 1141 llvm::BasicBlock *getStartingBlock() const { 1142 return StartBB; 1143 } 1144 }; 1145 1146 /// isInConditionalBranch - Return true if we're currently emitting 1147 /// one branch or the other of a conditional expression. 1148 bool isInConditionalBranch() const { return OutermostConditional != nullptr; } 1149 1150 void setBeforeOutermostConditional(llvm::Value *value, Address addr) { 1151 assert(isInConditionalBranch()); 1152 llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); 1153 auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back()); 1154 store->setAlignment(addr.getAlignment().getAsAlign()); 1155 } 1156 1157 /// An RAII object to record that we're evaluating a statement 1158 /// expression. 1159 class StmtExprEvaluation { 1160 CodeGenFunction &CGF; 1161 1162 /// We have to save the outermost conditional: cleanups in a 1163 /// statement expression aren't conditional just because the 1164 /// StmtExpr is. 1165 ConditionalEvaluation *SavedOutermostConditional; 1166 1167 public: 1168 StmtExprEvaluation(CodeGenFunction &CGF) 1169 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 1170 CGF.OutermostConditional = nullptr; 1171 } 1172 1173 ~StmtExprEvaluation() { 1174 CGF.OutermostConditional = SavedOutermostConditional; 1175 CGF.EnsureInsertPoint(); 1176 } 1177 }; 1178 1179 /// An object which temporarily prevents a value from being 1180 /// destroyed by aggressive peephole optimizations that assume that 1181 /// all uses of a value have been realized in the IR. 1182 class PeepholeProtection { 1183 llvm::Instruction *Inst; 1184 friend class CodeGenFunction; 1185 1186 public: 1187 PeepholeProtection() : Inst(nullptr) {} 1188 }; 1189 1190 /// A non-RAII class containing all the information about a bound 1191 /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for 1192 /// this which makes individual mappings very simple; using this 1193 /// class directly is useful when you have a variable number of 1194 /// opaque values or don't want the RAII functionality for some 1195 /// reason. 1196 class OpaqueValueMappingData { 1197 const OpaqueValueExpr *OpaqueValue; 1198 bool BoundLValue; 1199 CodeGenFunction::PeepholeProtection Protection; 1200 1201 OpaqueValueMappingData(const OpaqueValueExpr *ov, 1202 bool boundLValue) 1203 : OpaqueValue(ov), BoundLValue(boundLValue) {} 1204 public: 1205 OpaqueValueMappingData() : OpaqueValue(nullptr) {} 1206 1207 static bool shouldBindAsLValue(const Expr *expr) { 1208 // gl-values should be bound as l-values for obvious reasons. 1209 // Records should be bound as l-values because IR generation 1210 // always keeps them in memory. Expressions of function type 1211 // act exactly like l-values but are formally required to be 1212 // r-values in C. 1213 return expr->isGLValue() || 1214 expr->getType()->isFunctionType() || 1215 hasAggregateEvaluationKind(expr->getType()); 1216 } 1217 1218 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1219 const OpaqueValueExpr *ov, 1220 const Expr *e) { 1221 if (shouldBindAsLValue(ov)) 1222 return bind(CGF, ov, CGF.EmitLValue(e)); 1223 return bind(CGF, ov, CGF.EmitAnyExpr(e)); 1224 } 1225 1226 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1227 const OpaqueValueExpr *ov, 1228 const LValue &lv) { 1229 assert(shouldBindAsLValue(ov)); 1230 CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); 1231 return OpaqueValueMappingData(ov, true); 1232 } 1233 1234 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1235 const OpaqueValueExpr *ov, 1236 const RValue &rv) { 1237 assert(!shouldBindAsLValue(ov)); 1238 CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); 1239 1240 OpaqueValueMappingData data(ov, false); 1241 1242 // Work around an extremely aggressive peephole optimization in 1243 // EmitScalarConversion which assumes that all other uses of a 1244 // value are extant. 1245 data.Protection = CGF.protectFromPeepholes(rv); 1246 1247 return data; 1248 } 1249 1250 bool isValid() const { return OpaqueValue != nullptr; } 1251 void clear() { OpaqueValue = nullptr; } 1252 1253 void unbind(CodeGenFunction &CGF) { 1254 assert(OpaqueValue && "no data to unbind!"); 1255 1256 if (BoundLValue) { 1257 CGF.OpaqueLValues.erase(OpaqueValue); 1258 } else { 1259 CGF.OpaqueRValues.erase(OpaqueValue); 1260 CGF.unprotectFromPeepholes(Protection); 1261 } 1262 } 1263 }; 1264 1265 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 1266 class OpaqueValueMapping { 1267 CodeGenFunction &CGF; 1268 OpaqueValueMappingData Data; 1269 1270 public: 1271 static bool shouldBindAsLValue(const Expr *expr) { 1272 return OpaqueValueMappingData::shouldBindAsLValue(expr); 1273 } 1274 1275 /// Build the opaque value mapping for the given conditional 1276 /// operator if it's the GNU ?: extension. This is a common 1277 /// enough pattern that the convenience operator is really 1278 /// helpful. 1279 /// 1280 OpaqueValueMapping(CodeGenFunction &CGF, 1281 const AbstractConditionalOperator *op) : CGF(CGF) { 1282 if (isa<ConditionalOperator>(op)) 1283 // Leave Data empty. 1284 return; 1285 1286 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 1287 Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), 1288 e->getCommon()); 1289 } 1290 1291 /// Build the opaque value mapping for an OpaqueValueExpr whose source 1292 /// expression is set to the expression the OVE represents. 1293 OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV) 1294 : CGF(CGF) { 1295 if (OV) { 1296 assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used " 1297 "for OVE with no source expression"); 1298 Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr()); 1299 } 1300 } 1301 1302 OpaqueValueMapping(CodeGenFunction &CGF, 1303 const OpaqueValueExpr *opaqueValue, 1304 LValue lvalue) 1305 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { 1306 } 1307 1308 OpaqueValueMapping(CodeGenFunction &CGF, 1309 const OpaqueValueExpr *opaqueValue, 1310 RValue rvalue) 1311 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { 1312 } 1313 1314 void pop() { 1315 Data.unbind(CGF); 1316 Data.clear(); 1317 } 1318 1319 ~OpaqueValueMapping() { 1320 if (Data.isValid()) Data.unbind(CGF); 1321 } 1322 }; 1323 1324 private: 1325 CGDebugInfo *DebugInfo; 1326 /// Used to create unique names for artificial VLA size debug info variables. 1327 unsigned VLAExprCounter = 0; 1328 bool DisableDebugInfo = false; 1329 1330 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 1331 /// calling llvm.stacksave for multiple VLAs in the same scope. 1332 bool DidCallStackSave = false; 1333 1334 /// IndirectBranch - The first time an indirect goto is seen we create a block 1335 /// with an indirect branch. Every time we see the address of a label taken, 1336 /// we add the label to the indirect goto. Every subsequent indirect goto is 1337 /// codegen'd as a jump to the IndirectBranch's basic block. 1338 llvm::IndirectBrInst *IndirectBranch = nullptr; 1339 1340 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 1341 /// decls. 1342 DeclMapTy LocalDeclMap; 1343 1344 // Keep track of the cleanups for callee-destructed parameters pushed to the 1345 // cleanup stack so that they can be deactivated later. 1346 llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator> 1347 CalleeDestructedParamCleanups; 1348 1349 /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this 1350 /// will contain a mapping from said ParmVarDecl to its implicit "object_size" 1351 /// parameter. 1352 llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2> 1353 SizeArguments; 1354 1355 /// Track escaped local variables with auto storage. Used during SEH 1356 /// outlining to produce a call to llvm.localescape. 1357 llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals; 1358 1359 /// LabelMap - This keeps track of the LLVM basic block for each C label. 1360 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 1361 1362 // BreakContinueStack - This keeps track of where break and continue 1363 // statements should jump to. 1364 struct BreakContinue { 1365 BreakContinue(JumpDest Break, JumpDest Continue) 1366 : BreakBlock(Break), ContinueBlock(Continue) {} 1367 1368 JumpDest BreakBlock; 1369 JumpDest ContinueBlock; 1370 }; 1371 SmallVector<BreakContinue, 8> BreakContinueStack; 1372 1373 /// Handles cancellation exit points in OpenMP-related constructs. 1374 class OpenMPCancelExitStack { 1375 /// Tracks cancellation exit point and join point for cancel-related exit 1376 /// and normal exit. 1377 struct CancelExit { 1378 CancelExit() = default; 1379 CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock, 1380 JumpDest ContBlock) 1381 : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {} 1382 OpenMPDirectiveKind Kind = llvm::omp::OMPD_unknown; 1383 /// true if the exit block has been emitted already by the special 1384 /// emitExit() call, false if the default codegen is used. 1385 bool HasBeenEmitted = false; 1386 JumpDest ExitBlock; 1387 JumpDest ContBlock; 1388 }; 1389 1390 SmallVector<CancelExit, 8> Stack; 1391 1392 public: 1393 OpenMPCancelExitStack() : Stack(1) {} 1394 ~OpenMPCancelExitStack() = default; 1395 /// Fetches the exit block for the current OpenMP construct. 1396 JumpDest getExitBlock() const { return Stack.back().ExitBlock; } 1397 /// Emits exit block with special codegen procedure specific for the related 1398 /// OpenMP construct + emits code for normal construct cleanup. 1399 void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 1400 const llvm::function_ref<void(CodeGenFunction &)> CodeGen) { 1401 if (Stack.back().Kind == Kind && getExitBlock().isValid()) { 1402 assert(CGF.getOMPCancelDestination(Kind).isValid()); 1403 assert(CGF.HaveInsertPoint()); 1404 assert(!Stack.back().HasBeenEmitted); 1405 auto IP = CGF.Builder.saveAndClearIP(); 1406 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1407 CodeGen(CGF); 1408 CGF.EmitBranch(Stack.back().ContBlock.getBlock()); 1409 CGF.Builder.restoreIP(IP); 1410 Stack.back().HasBeenEmitted = true; 1411 } 1412 CodeGen(CGF); 1413 } 1414 /// Enter the cancel supporting \a Kind construct. 1415 /// \param Kind OpenMP directive that supports cancel constructs. 1416 /// \param HasCancel true, if the construct has inner cancel directive, 1417 /// false otherwise. 1418 void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) { 1419 Stack.push_back({Kind, 1420 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit") 1421 : JumpDest(), 1422 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont") 1423 : JumpDest()}); 1424 } 1425 /// Emits default exit point for the cancel construct (if the special one 1426 /// has not be used) + join point for cancel/normal exits. 1427 void exit(CodeGenFunction &CGF) { 1428 if (getExitBlock().isValid()) { 1429 assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid()); 1430 bool HaveIP = CGF.HaveInsertPoint(); 1431 if (!Stack.back().HasBeenEmitted) { 1432 if (HaveIP) 1433 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1434 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1435 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1436 } 1437 CGF.EmitBlock(Stack.back().ContBlock.getBlock()); 1438 if (!HaveIP) { 1439 CGF.Builder.CreateUnreachable(); 1440 CGF.Builder.ClearInsertionPoint(); 1441 } 1442 } 1443 Stack.pop_back(); 1444 } 1445 }; 1446 OpenMPCancelExitStack OMPCancelStack; 1447 1448 /// Calculate branch weights for the likelihood attribute 1449 llvm::MDNode *createBranchWeights(Stmt::Likelihood LH) const; 1450 1451 CodeGenPGO PGO; 1452 1453 /// Calculate branch weights appropriate for PGO data 1454 llvm::MDNode *createProfileWeights(uint64_t TrueCount, 1455 uint64_t FalseCount) const; 1456 llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights) const; 1457 llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond, 1458 uint64_t LoopCount) const; 1459 1460 /// Calculate the branch weight for PGO data or the likelihood attribute. 1461 /// The function tries to get the weight of \ref createProfileWeightsForLoop. 1462 /// If that fails it gets the weight of \ref createBranchWeights. 1463 llvm::MDNode *createProfileOrBranchWeightsForLoop(const Stmt *Cond, 1464 uint64_t LoopCount, 1465 const Stmt *Body) const; 1466 1467 public: 1468 /// Increment the profiler's counter for the given statement by \p StepV. 1469 /// If \p StepV is null, the default increment is 1. 1470 void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) { 1471 if (CGM.getCodeGenOpts().hasProfileClangInstr() && 1472 !CurFn->hasFnAttribute(llvm::Attribute::NoProfile)) 1473 PGO.emitCounterIncrement(Builder, S, StepV); 1474 PGO.setCurrentStmt(S); 1475 } 1476 1477 /// Get the profiler's count for the given statement. 1478 uint64_t getProfileCount(const Stmt *S) { 1479 Optional<uint64_t> Count = PGO.getStmtCount(S); 1480 if (!Count.hasValue()) 1481 return 0; 1482 return *Count; 1483 } 1484 1485 /// Set the profiler's current count. 1486 void setCurrentProfileCount(uint64_t Count) { 1487 PGO.setCurrentRegionCount(Count); 1488 } 1489 1490 /// Get the profiler's current count. This is generally the count for the most 1491 /// recently incremented counter. 1492 uint64_t getCurrentProfileCount() { 1493 return PGO.getCurrentRegionCount(); 1494 } 1495 1496 private: 1497 1498 /// SwitchInsn - This is nearest current switch instruction. It is null if 1499 /// current context is not in a switch. 1500 llvm::SwitchInst *SwitchInsn = nullptr; 1501 /// The branch weights of SwitchInsn when doing instrumentation based PGO. 1502 SmallVector<uint64_t, 16> *SwitchWeights = nullptr; 1503 1504 /// The likelihood attributes of the SwitchCase. 1505 SmallVector<Stmt::Likelihood, 16> *SwitchLikelihood = nullptr; 1506 1507 /// CaseRangeBlock - This block holds if condition check for last case 1508 /// statement range in current switch instruction. 1509 llvm::BasicBlock *CaseRangeBlock = nullptr; 1510 1511 /// OpaqueLValues - Keeps track of the current set of opaque value 1512 /// expressions. 1513 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 1514 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 1515 1516 // VLASizeMap - This keeps track of the associated size for each VLA type. 1517 // We track this by the size expression rather than the type itself because 1518 // in certain situations, like a const qualifier applied to an VLA typedef, 1519 // multiple VLA types can share the same size expression. 1520 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 1521 // enter/leave scopes. 1522 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 1523 1524 /// A block containing a single 'unreachable' instruction. Created 1525 /// lazily by getUnreachableBlock(). 1526 llvm::BasicBlock *UnreachableBlock = nullptr; 1527 1528 /// Counts of the number return expressions in the function. 1529 unsigned NumReturnExprs = 0; 1530 1531 /// Count the number of simple (constant) return expressions in the function. 1532 unsigned NumSimpleReturnExprs = 0; 1533 1534 /// The last regular (non-return) debug location (breakpoint) in the function. 1535 SourceLocation LastStopPoint; 1536 1537 public: 1538 /// Source location information about the default argument or member 1539 /// initializer expression we're evaluating, if any. 1540 CurrentSourceLocExprScope CurSourceLocExprScope; 1541 using SourceLocExprScopeGuard = 1542 CurrentSourceLocExprScope::SourceLocExprScopeGuard; 1543 1544 /// A scope within which we are constructing the fields of an object which 1545 /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use 1546 /// if we need to evaluate a CXXDefaultInitExpr within the evaluation. 1547 class FieldConstructionScope { 1548 public: 1549 FieldConstructionScope(CodeGenFunction &CGF, Address This) 1550 : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) { 1551 CGF.CXXDefaultInitExprThis = This; 1552 } 1553 ~FieldConstructionScope() { 1554 CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis; 1555 } 1556 1557 private: 1558 CodeGenFunction &CGF; 1559 Address OldCXXDefaultInitExprThis; 1560 }; 1561 1562 /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this' 1563 /// is overridden to be the object under construction. 1564 class CXXDefaultInitExprScope { 1565 public: 1566 CXXDefaultInitExprScope(CodeGenFunction &CGF, const CXXDefaultInitExpr *E) 1567 : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue), 1568 OldCXXThisAlignment(CGF.CXXThisAlignment), 1569 SourceLocScope(E, CGF.CurSourceLocExprScope) { 1570 CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer(); 1571 CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment(); 1572 } 1573 ~CXXDefaultInitExprScope() { 1574 CGF.CXXThisValue = OldCXXThisValue; 1575 CGF.CXXThisAlignment = OldCXXThisAlignment; 1576 } 1577 1578 public: 1579 CodeGenFunction &CGF; 1580 llvm::Value *OldCXXThisValue; 1581 CharUnits OldCXXThisAlignment; 1582 SourceLocExprScopeGuard SourceLocScope; 1583 }; 1584 1585 struct CXXDefaultArgExprScope : SourceLocExprScopeGuard { 1586 CXXDefaultArgExprScope(CodeGenFunction &CGF, const CXXDefaultArgExpr *E) 1587 : SourceLocExprScopeGuard(E, CGF.CurSourceLocExprScope) {} 1588 }; 1589 1590 /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the 1591 /// current loop index is overridden. 1592 class ArrayInitLoopExprScope { 1593 public: 1594 ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index) 1595 : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) { 1596 CGF.ArrayInitIndex = Index; 1597 } 1598 ~ArrayInitLoopExprScope() { 1599 CGF.ArrayInitIndex = OldArrayInitIndex; 1600 } 1601 1602 private: 1603 CodeGenFunction &CGF; 1604 llvm::Value *OldArrayInitIndex; 1605 }; 1606 1607 class InlinedInheritingConstructorScope { 1608 public: 1609 InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD) 1610 : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl), 1611 OldCurCodeDecl(CGF.CurCodeDecl), 1612 OldCXXABIThisDecl(CGF.CXXABIThisDecl), 1613 OldCXXABIThisValue(CGF.CXXABIThisValue), 1614 OldCXXThisValue(CGF.CXXThisValue), 1615 OldCXXABIThisAlignment(CGF.CXXABIThisAlignment), 1616 OldCXXThisAlignment(CGF.CXXThisAlignment), 1617 OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy), 1618 OldCXXInheritedCtorInitExprArgs( 1619 std::move(CGF.CXXInheritedCtorInitExprArgs)) { 1620 CGF.CurGD = GD; 1621 CGF.CurFuncDecl = CGF.CurCodeDecl = 1622 cast<CXXConstructorDecl>(GD.getDecl()); 1623 CGF.CXXABIThisDecl = nullptr; 1624 CGF.CXXABIThisValue = nullptr; 1625 CGF.CXXThisValue = nullptr; 1626 CGF.CXXABIThisAlignment = CharUnits(); 1627 CGF.CXXThisAlignment = CharUnits(); 1628 CGF.ReturnValue = Address::invalid(); 1629 CGF.FnRetTy = QualType(); 1630 CGF.CXXInheritedCtorInitExprArgs.clear(); 1631 } 1632 ~InlinedInheritingConstructorScope() { 1633 CGF.CurGD = OldCurGD; 1634 CGF.CurFuncDecl = OldCurFuncDecl; 1635 CGF.CurCodeDecl = OldCurCodeDecl; 1636 CGF.CXXABIThisDecl = OldCXXABIThisDecl; 1637 CGF.CXXABIThisValue = OldCXXABIThisValue; 1638 CGF.CXXThisValue = OldCXXThisValue; 1639 CGF.CXXABIThisAlignment = OldCXXABIThisAlignment; 1640 CGF.CXXThisAlignment = OldCXXThisAlignment; 1641 CGF.ReturnValue = OldReturnValue; 1642 CGF.FnRetTy = OldFnRetTy; 1643 CGF.CXXInheritedCtorInitExprArgs = 1644 std::move(OldCXXInheritedCtorInitExprArgs); 1645 } 1646 1647 private: 1648 CodeGenFunction &CGF; 1649 GlobalDecl OldCurGD; 1650 const Decl *OldCurFuncDecl; 1651 const Decl *OldCurCodeDecl; 1652 ImplicitParamDecl *OldCXXABIThisDecl; 1653 llvm::Value *OldCXXABIThisValue; 1654 llvm::Value *OldCXXThisValue; 1655 CharUnits OldCXXABIThisAlignment; 1656 CharUnits OldCXXThisAlignment; 1657 Address OldReturnValue; 1658 QualType OldFnRetTy; 1659 CallArgList OldCXXInheritedCtorInitExprArgs; 1660 }; 1661 1662 // Helper class for the OpenMP IR Builder. Allows reusability of code used for 1663 // region body, and finalization codegen callbacks. This will class will also 1664 // contain privatization functions used by the privatization call backs 1665 // 1666 // TODO: this is temporary class for things that are being moved out of 1667 // CGOpenMPRuntime, new versions of current CodeGenFunction methods, or 1668 // utility function for use with the OMPBuilder. Once that move to use the 1669 // OMPBuilder is done, everything here will either become part of CodeGenFunc. 1670 // directly, or a new helper class that will contain functions used by both 1671 // this and the OMPBuilder 1672 1673 struct OMPBuilderCBHelpers { 1674 1675 OMPBuilderCBHelpers() = delete; 1676 OMPBuilderCBHelpers(const OMPBuilderCBHelpers &) = delete; 1677 OMPBuilderCBHelpers &operator=(const OMPBuilderCBHelpers &) = delete; 1678 1679 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 1680 1681 /// Cleanup action for allocate support. 1682 class OMPAllocateCleanupTy final : public EHScopeStack::Cleanup { 1683 1684 private: 1685 llvm::CallInst *RTLFnCI; 1686 1687 public: 1688 OMPAllocateCleanupTy(llvm::CallInst *RLFnCI) : RTLFnCI(RLFnCI) { 1689 RLFnCI->removeFromParent(); 1690 } 1691 1692 void Emit(CodeGenFunction &CGF, Flags /*flags*/) override { 1693 if (!CGF.HaveInsertPoint()) 1694 return; 1695 CGF.Builder.Insert(RTLFnCI); 1696 } 1697 }; 1698 1699 /// Returns address of the threadprivate variable for the current 1700 /// thread. This Also create any necessary OMP runtime calls. 1701 /// 1702 /// \param VD VarDecl for Threadprivate variable. 1703 /// \param VDAddr Address of the Vardecl 1704 /// \param Loc The location where the barrier directive was encountered 1705 static Address getAddrOfThreadPrivate(CodeGenFunction &CGF, 1706 const VarDecl *VD, Address VDAddr, 1707 SourceLocation Loc); 1708 1709 /// Gets the OpenMP-specific address of the local variable /p VD. 1710 static Address getAddressOfLocalVariable(CodeGenFunction &CGF, 1711 const VarDecl *VD); 1712 /// Get the platform-specific name separator. 1713 /// \param Parts different parts of the final name that needs separation 1714 /// \param FirstSeparator First separator used between the initial two 1715 /// parts of the name. 1716 /// \param Separator separator used between all of the rest consecutinve 1717 /// parts of the name 1718 static std::string getNameWithSeparators(ArrayRef<StringRef> Parts, 1719 StringRef FirstSeparator = ".", 1720 StringRef Separator = "."); 1721 /// Emit the Finalization for an OMP region 1722 /// \param CGF The Codegen function this belongs to 1723 /// \param IP Insertion point for generating the finalization code. 1724 static void FinalizeOMPRegion(CodeGenFunction &CGF, InsertPointTy IP) { 1725 CGBuilderTy::InsertPointGuard IPG(CGF.Builder); 1726 assert(IP.getBlock()->end() != IP.getPoint() && 1727 "OpenMP IR Builder should cause terminated block!"); 1728 1729 llvm::BasicBlock *IPBB = IP.getBlock(); 1730 llvm::BasicBlock *DestBB = IPBB->getUniqueSuccessor(); 1731 assert(DestBB && "Finalization block should have one successor!"); 1732 1733 // erase and replace with cleanup branch. 1734 IPBB->getTerminator()->eraseFromParent(); 1735 CGF.Builder.SetInsertPoint(IPBB); 1736 CodeGenFunction::JumpDest Dest = CGF.getJumpDestInCurrentScope(DestBB); 1737 CGF.EmitBranchThroughCleanup(Dest); 1738 } 1739 1740 /// Emit the body of an OMP region 1741 /// \param CGF The Codegen function this belongs to 1742 /// \param RegionBodyStmt The body statement for the OpenMP region being 1743 /// generated 1744 /// \param CodeGenIP Insertion point for generating the body code. 1745 /// \param FiniBB The finalization basic block 1746 static void EmitOMPRegionBody(CodeGenFunction &CGF, 1747 const Stmt *RegionBodyStmt, 1748 InsertPointTy CodeGenIP, 1749 llvm::BasicBlock &FiniBB) { 1750 llvm::BasicBlock *CodeGenIPBB = CodeGenIP.getBlock(); 1751 if (llvm::Instruction *CodeGenIPBBTI = CodeGenIPBB->getTerminator()) 1752 CodeGenIPBBTI->eraseFromParent(); 1753 1754 CGF.Builder.SetInsertPoint(CodeGenIPBB); 1755 1756 CGF.EmitStmt(RegionBodyStmt); 1757 1758 if (CGF.Builder.saveIP().isSet()) 1759 CGF.Builder.CreateBr(&FiniBB); 1760 } 1761 1762 /// RAII for preserving necessary info during Outlined region body codegen. 1763 class OutlinedRegionBodyRAII { 1764 1765 llvm::AssertingVH<llvm::Instruction> OldAllocaIP; 1766 CodeGenFunction::JumpDest OldReturnBlock; 1767 CGBuilderTy::InsertPoint IP; 1768 CodeGenFunction &CGF; 1769 1770 public: 1771 OutlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP, 1772 llvm::BasicBlock &RetBB) 1773 : CGF(cgf) { 1774 assert(AllocaIP.isSet() && 1775 "Must specify Insertion point for allocas of outlined function"); 1776 OldAllocaIP = CGF.AllocaInsertPt; 1777 CGF.AllocaInsertPt = &*AllocaIP.getPoint(); 1778 IP = CGF.Builder.saveIP(); 1779 1780 OldReturnBlock = CGF.ReturnBlock; 1781 CGF.ReturnBlock = CGF.getJumpDestInCurrentScope(&RetBB); 1782 } 1783 1784 ~OutlinedRegionBodyRAII() { 1785 CGF.AllocaInsertPt = OldAllocaIP; 1786 CGF.ReturnBlock = OldReturnBlock; 1787 CGF.Builder.restoreIP(IP); 1788 } 1789 }; 1790 1791 /// RAII for preserving necessary info during inlined region body codegen. 1792 class InlinedRegionBodyRAII { 1793 1794 llvm::AssertingVH<llvm::Instruction> OldAllocaIP; 1795 CodeGenFunction &CGF; 1796 1797 public: 1798 InlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP, 1799 llvm::BasicBlock &FiniBB) 1800 : CGF(cgf) { 1801 // Alloca insertion block should be in the entry block of the containing 1802 // function so it expects an empty AllocaIP in which case will reuse the 1803 // old alloca insertion point, or a new AllocaIP in the same block as 1804 // the old one 1805 assert((!AllocaIP.isSet() || 1806 CGF.AllocaInsertPt->getParent() == AllocaIP.getBlock()) && 1807 "Insertion point should be in the entry block of containing " 1808 "function!"); 1809 OldAllocaIP = CGF.AllocaInsertPt; 1810 if (AllocaIP.isSet()) 1811 CGF.AllocaInsertPt = &*AllocaIP.getPoint(); 1812 1813 // TODO: Remove the call, after making sure the counter is not used by 1814 // the EHStack. 1815 // Since this is an inlined region, it should not modify the 1816 // ReturnBlock, and should reuse the one for the enclosing outlined 1817 // region. So, the JumpDest being return by the function is discarded 1818 (void)CGF.getJumpDestInCurrentScope(&FiniBB); 1819 } 1820 1821 ~InlinedRegionBodyRAII() { CGF.AllocaInsertPt = OldAllocaIP; } 1822 }; 1823 }; 1824 1825 private: 1826 /// CXXThisDecl - When generating code for a C++ member function, 1827 /// this will hold the implicit 'this' declaration. 1828 ImplicitParamDecl *CXXABIThisDecl = nullptr; 1829 llvm::Value *CXXABIThisValue = nullptr; 1830 llvm::Value *CXXThisValue = nullptr; 1831 CharUnits CXXABIThisAlignment; 1832 CharUnits CXXThisAlignment; 1833 1834 /// The value of 'this' to use when evaluating CXXDefaultInitExprs within 1835 /// this expression. 1836 Address CXXDefaultInitExprThis = Address::invalid(); 1837 1838 /// The current array initialization index when evaluating an 1839 /// ArrayInitIndexExpr within an ArrayInitLoopExpr. 1840 llvm::Value *ArrayInitIndex = nullptr; 1841 1842 /// The values of function arguments to use when evaluating 1843 /// CXXInheritedCtorInitExprs within this context. 1844 CallArgList CXXInheritedCtorInitExprArgs; 1845 1846 /// CXXStructorImplicitParamDecl - When generating code for a constructor or 1847 /// destructor, this will hold the implicit argument (e.g. VTT). 1848 ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr; 1849 llvm::Value *CXXStructorImplicitParamValue = nullptr; 1850 1851 /// OutermostConditional - Points to the outermost active 1852 /// conditional control. This is used so that we know if a 1853 /// temporary should be destroyed conditionally. 1854 ConditionalEvaluation *OutermostConditional = nullptr; 1855 1856 /// The current lexical scope. 1857 LexicalScope *CurLexicalScope = nullptr; 1858 1859 /// The current source location that should be used for exception 1860 /// handling code. 1861 SourceLocation CurEHLocation; 1862 1863 /// BlockByrefInfos - For each __block variable, contains 1864 /// information about the layout of the variable. 1865 llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos; 1866 1867 /// Used by -fsanitize=nullability-return to determine whether the return 1868 /// value can be checked. 1869 llvm::Value *RetValNullabilityPrecondition = nullptr; 1870 1871 /// Check if -fsanitize=nullability-return instrumentation is required for 1872 /// this function. 1873 bool requiresReturnValueNullabilityCheck() const { 1874 return RetValNullabilityPrecondition; 1875 } 1876 1877 /// Used to store precise source locations for return statements by the 1878 /// runtime return value checks. 1879 Address ReturnLocation = Address::invalid(); 1880 1881 /// Check if the return value of this function requires sanitization. 1882 bool requiresReturnValueCheck() const; 1883 1884 llvm::BasicBlock *TerminateLandingPad = nullptr; 1885 llvm::BasicBlock *TerminateHandler = nullptr; 1886 llvm::SmallVector<llvm::BasicBlock *, 2> TrapBBs; 1887 1888 /// Terminate funclets keyed by parent funclet pad. 1889 llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets; 1890 1891 /// Largest vector width used in ths function. Will be used to create a 1892 /// function attribute. 1893 unsigned LargestVectorWidth = 0; 1894 1895 /// True if we need emit the life-time markers. 1896 const bool ShouldEmitLifetimeMarkers; 1897 1898 /// Add OpenCL kernel arg metadata and the kernel attribute metadata to 1899 /// the function metadata. 1900 void EmitOpenCLKernelMetadata(const FunctionDecl *FD, 1901 llvm::Function *Fn); 1902 1903 public: 1904 CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false); 1905 ~CodeGenFunction(); 1906 1907 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 1908 ASTContext &getContext() const { return CGM.getContext(); } 1909 CGDebugInfo *getDebugInfo() { 1910 if (DisableDebugInfo) 1911 return nullptr; 1912 return DebugInfo; 1913 } 1914 void disableDebugInfo() { DisableDebugInfo = true; } 1915 void enableDebugInfo() { DisableDebugInfo = false; } 1916 1917 bool shouldUseFusedARCCalls() { 1918 return CGM.getCodeGenOpts().OptimizationLevel == 0; 1919 } 1920 1921 const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } 1922 1923 /// Returns a pointer to the function's exception object and selector slot, 1924 /// which is assigned in every landing pad. 1925 Address getExceptionSlot(); 1926 Address getEHSelectorSlot(); 1927 1928 /// Returns the contents of the function's exception object and selector 1929 /// slots. 1930 llvm::Value *getExceptionFromSlot(); 1931 llvm::Value *getSelectorFromSlot(); 1932 1933 Address getNormalCleanupDestSlot(); 1934 1935 llvm::BasicBlock *getUnreachableBlock() { 1936 if (!UnreachableBlock) { 1937 UnreachableBlock = createBasicBlock("unreachable"); 1938 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 1939 } 1940 return UnreachableBlock; 1941 } 1942 1943 llvm::BasicBlock *getInvokeDest() { 1944 if (!EHStack.requiresLandingPad()) return nullptr; 1945 return getInvokeDestImpl(); 1946 } 1947 1948 bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; } 1949 1950 const TargetInfo &getTarget() const { return Target; } 1951 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 1952 const TargetCodeGenInfo &getTargetHooks() const { 1953 return CGM.getTargetCodeGenInfo(); 1954 } 1955 1956 //===--------------------------------------------------------------------===// 1957 // Cleanups 1958 //===--------------------------------------------------------------------===// 1959 1960 typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty); 1961 1962 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1963 Address arrayEndPointer, 1964 QualType elementType, 1965 CharUnits elementAlignment, 1966 Destroyer *destroyer); 1967 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1968 llvm::Value *arrayEnd, 1969 QualType elementType, 1970 CharUnits elementAlignment, 1971 Destroyer *destroyer); 1972 1973 void pushDestroy(QualType::DestructionKind dtorKind, 1974 Address addr, QualType type); 1975 void pushEHDestroy(QualType::DestructionKind dtorKind, 1976 Address addr, QualType type); 1977 void pushDestroy(CleanupKind kind, Address addr, QualType type, 1978 Destroyer *destroyer, bool useEHCleanupForArray); 1979 void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr, 1980 QualType type, Destroyer *destroyer, 1981 bool useEHCleanupForArray); 1982 void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 1983 llvm::Value *CompletePtr, 1984 QualType ElementType); 1985 void pushStackRestore(CleanupKind kind, Address SPMem); 1986 void emitDestroy(Address addr, QualType type, Destroyer *destroyer, 1987 bool useEHCleanupForArray); 1988 llvm::Function *generateDestroyHelper(Address addr, QualType type, 1989 Destroyer *destroyer, 1990 bool useEHCleanupForArray, 1991 const VarDecl *VD); 1992 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 1993 QualType elementType, CharUnits elementAlign, 1994 Destroyer *destroyer, 1995 bool checkZeroLength, bool useEHCleanup); 1996 1997 Destroyer *getDestroyer(QualType::DestructionKind destructionKind); 1998 1999 /// Determines whether an EH cleanup is required to destroy a type 2000 /// with the given destruction kind. 2001 bool needsEHCleanup(QualType::DestructionKind kind) { 2002 switch (kind) { 2003 case QualType::DK_none: 2004 return false; 2005 case QualType::DK_cxx_destructor: 2006 case QualType::DK_objc_weak_lifetime: 2007 case QualType::DK_nontrivial_c_struct: 2008 return getLangOpts().Exceptions; 2009 case QualType::DK_objc_strong_lifetime: 2010 return getLangOpts().Exceptions && 2011 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 2012 } 2013 llvm_unreachable("bad destruction kind"); 2014 } 2015 2016 CleanupKind getCleanupKind(QualType::DestructionKind kind) { 2017 return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); 2018 } 2019 2020 //===--------------------------------------------------------------------===// 2021 // Objective-C 2022 //===--------------------------------------------------------------------===// 2023 2024 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 2025 2026 void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD); 2027 2028 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 2029 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 2030 const ObjCPropertyImplDecl *PID); 2031 void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 2032 const ObjCPropertyImplDecl *propImpl, 2033 const ObjCMethodDecl *GetterMothodDecl, 2034 llvm::Constant *AtomicHelperFn); 2035 2036 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 2037 ObjCMethodDecl *MD, bool ctor); 2038 2039 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 2040 /// for the given property. 2041 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 2042 const ObjCPropertyImplDecl *PID); 2043 void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 2044 const ObjCPropertyImplDecl *propImpl, 2045 llvm::Constant *AtomicHelperFn); 2046 2047 //===--------------------------------------------------------------------===// 2048 // Block Bits 2049 //===--------------------------------------------------------------------===// 2050 2051 /// Emit block literal. 2052 /// \return an LLVM value which is a pointer to a struct which contains 2053 /// information about the block, including the block invoke function, the 2054 /// captured variables, etc. 2055 llvm::Value *EmitBlockLiteral(const BlockExpr *); 2056 2057 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 2058 const CGBlockInfo &Info, 2059 const DeclMapTy &ldm, 2060 bool IsLambdaConversionToBlock, 2061 bool BuildGlobalBlock); 2062 2063 /// Check if \p T is a C++ class that has a destructor that can throw. 2064 static bool cxxDestructorCanThrow(QualType T); 2065 2066 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 2067 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 2068 llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( 2069 const ObjCPropertyImplDecl *PID); 2070 llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( 2071 const ObjCPropertyImplDecl *PID); 2072 llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); 2073 2074 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags, 2075 bool CanThrow); 2076 2077 class AutoVarEmission; 2078 2079 void emitByrefStructureInit(const AutoVarEmission &emission); 2080 2081 /// Enter a cleanup to destroy a __block variable. Note that this 2082 /// cleanup should be a no-op if the variable hasn't left the stack 2083 /// yet; if a cleanup is required for the variable itself, that needs 2084 /// to be done externally. 2085 /// 2086 /// \param Kind Cleanup kind. 2087 /// 2088 /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block 2089 /// structure that will be passed to _Block_object_dispose. When 2090 /// \p LoadBlockVarAddr is true, the address of the field of the block 2091 /// structure that holds the address of the __block structure. 2092 /// 2093 /// \param Flags The flag that will be passed to _Block_object_dispose. 2094 /// 2095 /// \param LoadBlockVarAddr Indicates whether we need to emit a load from 2096 /// \p Addr to get the address of the __block structure. 2097 void enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags, 2098 bool LoadBlockVarAddr, bool CanThrow); 2099 2100 void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum, 2101 llvm::Value *ptr); 2102 2103 Address LoadBlockStruct(); 2104 Address GetAddrOfBlockDecl(const VarDecl *var); 2105 2106 /// BuildBlockByrefAddress - Computes the location of the 2107 /// data in a variable which is declared as __block. 2108 Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V, 2109 bool followForward = true); 2110 Address emitBlockByrefAddress(Address baseAddr, 2111 const BlockByrefInfo &info, 2112 bool followForward, 2113 const llvm::Twine &name); 2114 2115 const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var); 2116 2117 QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args); 2118 2119 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 2120 const CGFunctionInfo &FnInfo); 2121 2122 /// Annotate the function with an attribute that disables TSan checking at 2123 /// runtime. 2124 void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn); 2125 2126 /// Emit code for the start of a function. 2127 /// \param Loc The location to be associated with the function. 2128 /// \param StartLoc The location of the function body. 2129 void StartFunction(GlobalDecl GD, 2130 QualType RetTy, 2131 llvm::Function *Fn, 2132 const CGFunctionInfo &FnInfo, 2133 const FunctionArgList &Args, 2134 SourceLocation Loc = SourceLocation(), 2135 SourceLocation StartLoc = SourceLocation()); 2136 2137 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor); 2138 2139 void EmitConstructorBody(FunctionArgList &Args); 2140 void EmitDestructorBody(FunctionArgList &Args); 2141 void emitImplicitAssignmentOperatorBody(FunctionArgList &Args); 2142 void EmitFunctionBody(const Stmt *Body); 2143 void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S); 2144 2145 void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator, 2146 CallArgList &CallArgs); 2147 void EmitLambdaBlockInvokeBody(); 2148 void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD); 2149 void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD); 2150 void EmitLambdaVLACapture(const VariableArrayType *VAT, LValue LV) { 2151 EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); 2152 } 2153 void EmitAsanPrologueOrEpilogue(bool Prologue); 2154 2155 /// Emit the unified return block, trying to avoid its emission when 2156 /// possible. 2157 /// \return The debug location of the user written return statement if the 2158 /// return block is is avoided. 2159 llvm::DebugLoc EmitReturnBlock(); 2160 2161 /// FinishFunction - Complete IR generation of the current function. It is 2162 /// legal to call this function even if there is no current insertion point. 2163 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 2164 2165 void StartThunk(llvm::Function *Fn, GlobalDecl GD, 2166 const CGFunctionInfo &FnInfo, bool IsUnprototyped); 2167 2168 void EmitCallAndReturnForThunk(llvm::FunctionCallee Callee, 2169 const ThunkInfo *Thunk, bool IsUnprototyped); 2170 2171 void FinishThunk(); 2172 2173 /// Emit a musttail call for a thunk with a potentially adjusted this pointer. 2174 void EmitMustTailThunk(GlobalDecl GD, llvm::Value *AdjustedThisPtr, 2175 llvm::FunctionCallee Callee); 2176 2177 /// Generate a thunk for the given method. 2178 void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 2179 GlobalDecl GD, const ThunkInfo &Thunk, 2180 bool IsUnprototyped); 2181 2182 llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn, 2183 const CGFunctionInfo &FnInfo, 2184 GlobalDecl GD, const ThunkInfo &Thunk); 2185 2186 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 2187 FunctionArgList &Args); 2188 2189 void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init); 2190 2191 /// Struct with all information about dynamic [sub]class needed to set vptr. 2192 struct VPtr { 2193 BaseSubobject Base; 2194 const CXXRecordDecl *NearestVBase; 2195 CharUnits OffsetFromNearestVBase; 2196 const CXXRecordDecl *VTableClass; 2197 }; 2198 2199 /// Initialize the vtable pointer of the given subobject. 2200 void InitializeVTablePointer(const VPtr &vptr); 2201 2202 typedef llvm::SmallVector<VPtr, 4> VPtrsVector; 2203 2204 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 2205 VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass); 2206 2207 void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase, 2208 CharUnits OffsetFromNearestVBase, 2209 bool BaseIsNonVirtualPrimaryBase, 2210 const CXXRecordDecl *VTableClass, 2211 VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs); 2212 2213 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 2214 2215 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 2216 /// to by This. 2217 llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy, 2218 const CXXRecordDecl *VTableClass); 2219 2220 enum CFITypeCheckKind { 2221 CFITCK_VCall, 2222 CFITCK_NVCall, 2223 CFITCK_DerivedCast, 2224 CFITCK_UnrelatedCast, 2225 CFITCK_ICall, 2226 CFITCK_NVMFCall, 2227 CFITCK_VMFCall, 2228 }; 2229 2230 /// Derived is the presumed address of an object of type T after a 2231 /// cast. If T is a polymorphic class type, emit a check that the virtual 2232 /// table for Derived belongs to a class derived from T. 2233 void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived, 2234 bool MayBeNull, CFITypeCheckKind TCK, 2235 SourceLocation Loc); 2236 2237 /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable. 2238 /// If vptr CFI is enabled, emit a check that VTable is valid. 2239 void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable, 2240 CFITypeCheckKind TCK, SourceLocation Loc); 2241 2242 /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for 2243 /// RD using llvm.type.test. 2244 void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable, 2245 CFITypeCheckKind TCK, SourceLocation Loc); 2246 2247 /// If whole-program virtual table optimization is enabled, emit an assumption 2248 /// that VTable is a member of RD's type identifier. Or, if vptr CFI is 2249 /// enabled, emit a check that VTable is a member of RD's type identifier. 2250 void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, 2251 llvm::Value *VTable, SourceLocation Loc); 2252 2253 /// Returns whether we should perform a type checked load when loading a 2254 /// virtual function for virtual calls to members of RD. This is generally 2255 /// true when both vcall CFI and whole-program-vtables are enabled. 2256 bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD); 2257 2258 /// Emit a type checked load from the given vtable. 2259 llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable, 2260 uint64_t VTableByteOffset); 2261 2262 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 2263 /// given phase of destruction for a destructor. The end result 2264 /// should call destructors on members and base classes in reverse 2265 /// order of their construction. 2266 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 2267 2268 /// ShouldInstrumentFunction - Return true if the current function should be 2269 /// instrumented with __cyg_profile_func_* calls 2270 bool ShouldInstrumentFunction(); 2271 2272 /// ShouldXRayInstrument - Return true if the current function should be 2273 /// instrumented with XRay nop sleds. 2274 bool ShouldXRayInstrumentFunction() const; 2275 2276 /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit 2277 /// XRay custom event handling calls. 2278 bool AlwaysEmitXRayCustomEvents() const; 2279 2280 /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit 2281 /// XRay typed event handling calls. 2282 bool AlwaysEmitXRayTypedEvents() const; 2283 2284 /// Encode an address into a form suitable for use in a function prologue. 2285 llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F, 2286 llvm::Constant *Addr); 2287 2288 /// Decode an address used in a function prologue, encoded by \c 2289 /// EncodeAddrForUseInPrologue. 2290 llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F, 2291 llvm::Value *EncodedAddr); 2292 2293 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 2294 /// arguments for the given function. This is also responsible for naming the 2295 /// LLVM function arguments. 2296 void EmitFunctionProlog(const CGFunctionInfo &FI, 2297 llvm::Function *Fn, 2298 const FunctionArgList &Args); 2299 2300 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 2301 /// given temporary. 2302 void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc, 2303 SourceLocation EndLoc); 2304 2305 /// Emit a test that checks if the return value \p RV is nonnull. 2306 void EmitReturnValueCheck(llvm::Value *RV); 2307 2308 /// EmitStartEHSpec - Emit the start of the exception spec. 2309 void EmitStartEHSpec(const Decl *D); 2310 2311 /// EmitEndEHSpec - Emit the end of the exception spec. 2312 void EmitEndEHSpec(const Decl *D); 2313 2314 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 2315 llvm::BasicBlock *getTerminateLandingPad(); 2316 2317 /// getTerminateLandingPad - Return a cleanup funclet that just calls 2318 /// terminate. 2319 llvm::BasicBlock *getTerminateFunclet(); 2320 2321 /// getTerminateHandler - Return a handler (not a landing pad, just 2322 /// a catch handler) that just calls terminate. This is used when 2323 /// a terminate scope encloses a try. 2324 llvm::BasicBlock *getTerminateHandler(); 2325 2326 llvm::Type *ConvertTypeForMem(QualType T); 2327 llvm::Type *ConvertType(QualType T); 2328 llvm::Type *ConvertType(const TypeDecl *T) { 2329 return ConvertType(getContext().getTypeDeclType(T)); 2330 } 2331 2332 /// LoadObjCSelf - Load the value of self. This function is only valid while 2333 /// generating code for an Objective-C method. 2334 llvm::Value *LoadObjCSelf(); 2335 2336 /// TypeOfSelfObject - Return type of object that this self represents. 2337 QualType TypeOfSelfObject(); 2338 2339 /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T. 2340 static TypeEvaluationKind getEvaluationKind(QualType T); 2341 2342 static bool hasScalarEvaluationKind(QualType T) { 2343 return getEvaluationKind(T) == TEK_Scalar; 2344 } 2345 2346 static bool hasAggregateEvaluationKind(QualType T) { 2347 return getEvaluationKind(T) == TEK_Aggregate; 2348 } 2349 2350 /// createBasicBlock - Create an LLVM basic block. 2351 llvm::BasicBlock *createBasicBlock(const Twine &name = "", 2352 llvm::Function *parent = nullptr, 2353 llvm::BasicBlock *before = nullptr) { 2354 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 2355 } 2356 2357 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 2358 /// label maps to. 2359 JumpDest getJumpDestForLabel(const LabelDecl *S); 2360 2361 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 2362 /// another basic block, simplify it. This assumes that no other code could 2363 /// potentially reference the basic block. 2364 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 2365 2366 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 2367 /// adding a fall-through branch from the current insert block if 2368 /// necessary. It is legal to call this function even if there is no current 2369 /// insertion point. 2370 /// 2371 /// IsFinished - If true, indicates that the caller has finished emitting 2372 /// branches to the given block and does not expect to emit code into it. This 2373 /// means the block can be ignored if it is unreachable. 2374 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 2375 2376 /// EmitBlockAfterUses - Emit the given block somewhere hopefully 2377 /// near its uses, and leave the insertion point in it. 2378 void EmitBlockAfterUses(llvm::BasicBlock *BB); 2379 2380 /// EmitBranch - Emit a branch to the specified basic block from the current 2381 /// insert block, taking care to avoid creation of branches from dummy 2382 /// blocks. It is legal to call this function even if there is no current 2383 /// insertion point. 2384 /// 2385 /// This function clears the current insertion point. The caller should follow 2386 /// calls to this function with calls to Emit*Block prior to generation new 2387 /// code. 2388 void EmitBranch(llvm::BasicBlock *Block); 2389 2390 /// HaveInsertPoint - True if an insertion point is defined. If not, this 2391 /// indicates that the current code being emitted is unreachable. 2392 bool HaveInsertPoint() const { 2393 return Builder.GetInsertBlock() != nullptr; 2394 } 2395 2396 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 2397 /// emitted IR has a place to go. Note that by definition, if this function 2398 /// creates a block then that block is unreachable; callers may do better to 2399 /// detect when no insertion point is defined and simply skip IR generation. 2400 void EnsureInsertPoint() { 2401 if (!HaveInsertPoint()) 2402 EmitBlock(createBasicBlock()); 2403 } 2404 2405 /// ErrorUnsupported - Print out an error that codegen doesn't support the 2406 /// specified stmt yet. 2407 void ErrorUnsupported(const Stmt *S, const char *Type); 2408 2409 //===--------------------------------------------------------------------===// 2410 // Helpers 2411 //===--------------------------------------------------------------------===// 2412 2413 LValue MakeAddrLValue(Address Addr, QualType T, 2414 AlignmentSource Source = AlignmentSource::Type) { 2415 return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source), 2416 CGM.getTBAAAccessInfo(T)); 2417 } 2418 2419 LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo, 2420 TBAAAccessInfo TBAAInfo) { 2421 return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo); 2422 } 2423 2424 LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 2425 AlignmentSource Source = AlignmentSource::Type) { 2426 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), 2427 LValueBaseInfo(Source), CGM.getTBAAAccessInfo(T)); 2428 } 2429 2430 LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 2431 LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) { 2432 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), 2433 BaseInfo, TBAAInfo); 2434 } 2435 2436 LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T); 2437 LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T); 2438 2439 Address EmitLoadOfReference(LValue RefLVal, 2440 LValueBaseInfo *PointeeBaseInfo = nullptr, 2441 TBAAAccessInfo *PointeeTBAAInfo = nullptr); 2442 LValue EmitLoadOfReferenceLValue(LValue RefLVal); 2443 LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy, 2444 AlignmentSource Source = 2445 AlignmentSource::Type) { 2446 LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source), 2447 CGM.getTBAAAccessInfo(RefTy)); 2448 return EmitLoadOfReferenceLValue(RefLVal); 2449 } 2450 2451 Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy, 2452 LValueBaseInfo *BaseInfo = nullptr, 2453 TBAAAccessInfo *TBAAInfo = nullptr); 2454 LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy); 2455 2456 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 2457 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 2458 /// insertion point of the builder. The caller is responsible for setting an 2459 /// appropriate alignment on 2460 /// the alloca. 2461 /// 2462 /// \p ArraySize is the number of array elements to be allocated if it 2463 /// is not nullptr. 2464 /// 2465 /// LangAS::Default is the address space of pointers to local variables and 2466 /// temporaries, as exposed in the source language. In certain 2467 /// configurations, this is not the same as the alloca address space, and a 2468 /// cast is needed to lift the pointer from the alloca AS into 2469 /// LangAS::Default. This can happen when the target uses a restricted 2470 /// address space for the stack but the source language requires 2471 /// LangAS::Default to be a generic address space. The latter condition is 2472 /// common for most programming languages; OpenCL is an exception in that 2473 /// LangAS::Default is the private address space, which naturally maps 2474 /// to the stack. 2475 /// 2476 /// Because the address of a temporary is often exposed to the program in 2477 /// various ways, this function will perform the cast. The original alloca 2478 /// instruction is returned through \p Alloca if it is not nullptr. 2479 /// 2480 /// The cast is not performaed in CreateTempAllocaWithoutCast. This is 2481 /// more efficient if the caller knows that the address will not be exposed. 2482 llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp", 2483 llvm::Value *ArraySize = nullptr); 2484 Address CreateTempAlloca(llvm::Type *Ty, CharUnits align, 2485 const Twine &Name = "tmp", 2486 llvm::Value *ArraySize = nullptr, 2487 Address *Alloca = nullptr); 2488 Address CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align, 2489 const Twine &Name = "tmp", 2490 llvm::Value *ArraySize = nullptr); 2491 2492 /// CreateDefaultAlignedTempAlloca - This creates an alloca with the 2493 /// default ABI alignment of the given LLVM type. 2494 /// 2495 /// IMPORTANT NOTE: This is *not* generally the right alignment for 2496 /// any given AST type that happens to have been lowered to the 2497 /// given IR type. This should only ever be used for function-local, 2498 /// IR-driven manipulations like saving and restoring a value. Do 2499 /// not hand this address off to arbitrary IRGen routines, and especially 2500 /// do not pass it as an argument to a function that might expect a 2501 /// properly ABI-aligned value. 2502 Address CreateDefaultAlignTempAlloca(llvm::Type *Ty, 2503 const Twine &Name = "tmp"); 2504 2505 /// InitTempAlloca - Provide an initial value for the given alloca which 2506 /// will be observable at all locations in the function. 2507 /// 2508 /// The address should be something that was returned from one of 2509 /// the CreateTempAlloca or CreateMemTemp routines, and the 2510 /// initializer must be valid in the entry block (i.e. it must 2511 /// either be a constant or an argument value). 2512 void InitTempAlloca(Address Alloca, llvm::Value *Value); 2513 2514 /// CreateIRTemp - Create a temporary IR object of the given type, with 2515 /// appropriate alignment. This routine should only be used when an temporary 2516 /// value needs to be stored into an alloca (for example, to avoid explicit 2517 /// PHI construction), but the type is the IR type, not the type appropriate 2518 /// for storing in memory. 2519 /// 2520 /// That is, this is exactly equivalent to CreateMemTemp, but calling 2521 /// ConvertType instead of ConvertTypeForMem. 2522 Address CreateIRTemp(QualType T, const Twine &Name = "tmp"); 2523 2524 /// CreateMemTemp - Create a temporary memory object of the given type, with 2525 /// appropriate alignmen and cast it to the default address space. Returns 2526 /// the original alloca instruction by \p Alloca if it is not nullptr. 2527 Address CreateMemTemp(QualType T, const Twine &Name = "tmp", 2528 Address *Alloca = nullptr); 2529 Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp", 2530 Address *Alloca = nullptr); 2531 2532 /// CreateMemTemp - Create a temporary memory object of the given type, with 2533 /// appropriate alignmen without casting it to the default address space. 2534 Address CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp"); 2535 Address CreateMemTempWithoutCast(QualType T, CharUnits Align, 2536 const Twine &Name = "tmp"); 2537 2538 /// CreateAggTemp - Create a temporary memory object for the given 2539 /// aggregate type. 2540 AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp", 2541 Address *Alloca = nullptr) { 2542 return AggValueSlot::forAddr(CreateMemTemp(T, Name, Alloca), 2543 T.getQualifiers(), 2544 AggValueSlot::IsNotDestructed, 2545 AggValueSlot::DoesNotNeedGCBarriers, 2546 AggValueSlot::IsNotAliased, 2547 AggValueSlot::DoesNotOverlap); 2548 } 2549 2550 /// Emit a cast to void* in the appropriate address space. 2551 llvm::Value *EmitCastToVoidPtr(llvm::Value *value); 2552 2553 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 2554 /// expression and compare the result against zero, returning an Int1Ty value. 2555 llvm::Value *EvaluateExprAsBool(const Expr *E); 2556 2557 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 2558 void EmitIgnoredExpr(const Expr *E); 2559 2560 /// EmitAnyExpr - Emit code to compute the specified expression which can have 2561 /// any type. The result is returned as an RValue struct. If this is an 2562 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 2563 /// the result should be returned. 2564 /// 2565 /// \param ignoreResult True if the resulting value isn't used. 2566 RValue EmitAnyExpr(const Expr *E, 2567 AggValueSlot aggSlot = AggValueSlot::ignored(), 2568 bool ignoreResult = false); 2569 2570 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 2571 // or the value of the expression, depending on how va_list is defined. 2572 Address EmitVAListRef(const Expr *E); 2573 2574 /// Emit a "reference" to a __builtin_ms_va_list; this is 2575 /// always the value of the expression, because a __builtin_ms_va_list is a 2576 /// pointer to a char. 2577 Address EmitMSVAListRef(const Expr *E); 2578 2579 /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will 2580 /// always be accessible even if no aggregate location is provided. 2581 RValue EmitAnyExprToTemp(const Expr *E); 2582 2583 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 2584 /// arbitrary expression into the given memory location. 2585 void EmitAnyExprToMem(const Expr *E, Address Location, 2586 Qualifiers Quals, bool IsInitializer); 2587 2588 void EmitAnyExprToExn(const Expr *E, Address Addr); 2589 2590 /// EmitExprAsInit - Emits the code necessary to initialize a 2591 /// location in memory with the given initializer. 2592 void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2593 bool capturedByInit); 2594 2595 /// hasVolatileMember - returns true if aggregate type has a volatile 2596 /// member. 2597 bool hasVolatileMember(QualType T) { 2598 if (const RecordType *RT = T->getAs<RecordType>()) { 2599 const RecordDecl *RD = cast<RecordDecl>(RT->getDecl()); 2600 return RD->hasVolatileMember(); 2601 } 2602 return false; 2603 } 2604 2605 /// Determine whether a return value slot may overlap some other object. 2606 AggValueSlot::Overlap_t getOverlapForReturnValue() { 2607 // FIXME: Assuming no overlap here breaks guaranteed copy elision for base 2608 // class subobjects. These cases may need to be revisited depending on the 2609 // resolution of the relevant core issue. 2610 return AggValueSlot::DoesNotOverlap; 2611 } 2612 2613 /// Determine whether a field initialization may overlap some other object. 2614 AggValueSlot::Overlap_t getOverlapForFieldInit(const FieldDecl *FD); 2615 2616 /// Determine whether a base class initialization may overlap some other 2617 /// object. 2618 AggValueSlot::Overlap_t getOverlapForBaseInit(const CXXRecordDecl *RD, 2619 const CXXRecordDecl *BaseRD, 2620 bool IsVirtual); 2621 2622 /// Emit an aggregate assignment. 2623 void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) { 2624 bool IsVolatile = hasVolatileMember(EltTy); 2625 EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile); 2626 } 2627 2628 void EmitAggregateCopyCtor(LValue Dest, LValue Src, 2629 AggValueSlot::Overlap_t MayOverlap) { 2630 EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap); 2631 } 2632 2633 /// EmitAggregateCopy - Emit an aggregate copy. 2634 /// 2635 /// \param isVolatile \c true iff either the source or the destination is 2636 /// volatile. 2637 /// \param MayOverlap Whether the tail padding of the destination might be 2638 /// occupied by some other object. More efficient code can often be 2639 /// generated if not. 2640 void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy, 2641 AggValueSlot::Overlap_t MayOverlap, 2642 bool isVolatile = false); 2643 2644 /// GetAddrOfLocalVar - Return the address of a local variable. 2645 Address GetAddrOfLocalVar(const VarDecl *VD) { 2646 auto it = LocalDeclMap.find(VD); 2647 assert(it != LocalDeclMap.end() && 2648 "Invalid argument to GetAddrOfLocalVar(), no decl!"); 2649 return it->second; 2650 } 2651 2652 /// Given an opaque value expression, return its LValue mapping if it exists, 2653 /// otherwise create one. 2654 LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e); 2655 2656 /// Given an opaque value expression, return its RValue mapping if it exists, 2657 /// otherwise create one. 2658 RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e); 2659 2660 /// Get the index of the current ArrayInitLoopExpr, if any. 2661 llvm::Value *getArrayInitIndex() { return ArrayInitIndex; } 2662 2663 /// getAccessedFieldNo - Given an encoded value and a result number, return 2664 /// the input field number being accessed. 2665 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 2666 2667 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 2668 llvm::BasicBlock *GetIndirectGotoBlock(); 2669 2670 /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts. 2671 static bool IsWrappedCXXThis(const Expr *E); 2672 2673 /// EmitNullInitialization - Generate code to set a value of the given type to 2674 /// null, If the type contains data member pointers, they will be initialized 2675 /// to -1 in accordance with the Itanium C++ ABI. 2676 void EmitNullInitialization(Address DestPtr, QualType Ty); 2677 2678 /// Emits a call to an LLVM variable-argument intrinsic, either 2679 /// \c llvm.va_start or \c llvm.va_end. 2680 /// \param ArgValue A reference to the \c va_list as emitted by either 2681 /// \c EmitVAListRef or \c EmitMSVAListRef. 2682 /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise, 2683 /// calls \c llvm.va_end. 2684 llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart); 2685 2686 /// Generate code to get an argument from the passed in pointer 2687 /// and update it accordingly. 2688 /// \param VE The \c VAArgExpr for which to generate code. 2689 /// \param VAListAddr Receives a reference to the \c va_list as emitted by 2690 /// either \c EmitVAListRef or \c EmitMSVAListRef. 2691 /// \returns A pointer to the argument. 2692 // FIXME: We should be able to get rid of this method and use the va_arg 2693 // instruction in LLVM instead once it works well enough. 2694 Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr); 2695 2696 /// emitArrayLength - Compute the length of an array, even if it's a 2697 /// VLA, and drill down to the base element type. 2698 llvm::Value *emitArrayLength(const ArrayType *arrayType, 2699 QualType &baseType, 2700 Address &addr); 2701 2702 /// EmitVLASize - Capture all the sizes for the VLA expressions in 2703 /// the given variably-modified type and store them in the VLASizeMap. 2704 /// 2705 /// This function can be called with a null (unreachable) insert point. 2706 void EmitVariablyModifiedType(QualType Ty); 2707 2708 struct VlaSizePair { 2709 llvm::Value *NumElts; 2710 QualType Type; 2711 2712 VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {} 2713 }; 2714 2715 /// Return the number of elements for a single dimension 2716 /// for the given array type. 2717 VlaSizePair getVLAElements1D(const VariableArrayType *vla); 2718 VlaSizePair getVLAElements1D(QualType vla); 2719 2720 /// Returns an LLVM value that corresponds to the size, 2721 /// in non-variably-sized elements, of a variable length array type, 2722 /// plus that largest non-variably-sized element type. Assumes that 2723 /// the type has already been emitted with EmitVariablyModifiedType. 2724 VlaSizePair getVLASize(const VariableArrayType *vla); 2725 VlaSizePair getVLASize(QualType vla); 2726 2727 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 2728 /// generating code for an C++ member function. 2729 llvm::Value *LoadCXXThis() { 2730 assert(CXXThisValue && "no 'this' value for this function"); 2731 return CXXThisValue; 2732 } 2733 Address LoadCXXThisAddress(); 2734 2735 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 2736 /// virtual bases. 2737 // FIXME: Every place that calls LoadCXXVTT is something 2738 // that needs to be abstracted properly. 2739 llvm::Value *LoadCXXVTT() { 2740 assert(CXXStructorImplicitParamValue && "no VTT value for this function"); 2741 return CXXStructorImplicitParamValue; 2742 } 2743 2744 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 2745 /// complete class to the given direct base. 2746 Address 2747 GetAddressOfDirectBaseInCompleteClass(Address Value, 2748 const CXXRecordDecl *Derived, 2749 const CXXRecordDecl *Base, 2750 bool BaseIsVirtual); 2751 2752 static bool ShouldNullCheckClassCastValue(const CastExpr *Cast); 2753 2754 /// GetAddressOfBaseClass - This function will add the necessary delta to the 2755 /// load of 'this' and returns address of the base class. 2756 Address GetAddressOfBaseClass(Address Value, 2757 const CXXRecordDecl *Derived, 2758 CastExpr::path_const_iterator PathBegin, 2759 CastExpr::path_const_iterator PathEnd, 2760 bool NullCheckValue, SourceLocation Loc); 2761 2762 Address GetAddressOfDerivedClass(Address Value, 2763 const CXXRecordDecl *Derived, 2764 CastExpr::path_const_iterator PathBegin, 2765 CastExpr::path_const_iterator PathEnd, 2766 bool NullCheckValue); 2767 2768 /// GetVTTParameter - Return the VTT parameter that should be passed to a 2769 /// base constructor/destructor with virtual bases. 2770 /// FIXME: VTTs are Itanium ABI-specific, so the definition should move 2771 /// to ItaniumCXXABI.cpp together with all the references to VTT. 2772 llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase, 2773 bool Delegating); 2774 2775 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 2776 CXXCtorType CtorType, 2777 const FunctionArgList &Args, 2778 SourceLocation Loc); 2779 // It's important not to confuse this and the previous function. Delegating 2780 // constructors are the C++0x feature. The constructor delegate optimization 2781 // is used to reduce duplication in the base and complete consturctors where 2782 // they are substantially the same. 2783 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2784 const FunctionArgList &Args); 2785 2786 /// Emit a call to an inheriting constructor (that is, one that invokes a 2787 /// constructor inherited from a base class) by inlining its definition. This 2788 /// is necessary if the ABI does not support forwarding the arguments to the 2789 /// base class constructor (because they're variadic or similar). 2790 void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2791 CXXCtorType CtorType, 2792 bool ForVirtualBase, 2793 bool Delegating, 2794 CallArgList &Args); 2795 2796 /// Emit a call to a constructor inherited from a base class, passing the 2797 /// current constructor's arguments along unmodified (without even making 2798 /// a copy). 2799 void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D, 2800 bool ForVirtualBase, Address This, 2801 bool InheritedFromVBase, 2802 const CXXInheritedCtorInitExpr *E); 2803 2804 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2805 bool ForVirtualBase, bool Delegating, 2806 AggValueSlot ThisAVS, const CXXConstructExpr *E); 2807 2808 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2809 bool ForVirtualBase, bool Delegating, 2810 Address This, CallArgList &Args, 2811 AggValueSlot::Overlap_t Overlap, 2812 SourceLocation Loc, bool NewPointerIsChecked); 2813 2814 /// Emit assumption load for all bases. Requires to be be called only on 2815 /// most-derived class and not under construction of the object. 2816 void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This); 2817 2818 /// Emit assumption that vptr load == global vtable. 2819 void EmitVTableAssumptionLoad(const VPtr &vptr, Address This); 2820 2821 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 2822 Address This, Address Src, 2823 const CXXConstructExpr *E); 2824 2825 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2826 const ArrayType *ArrayTy, 2827 Address ArrayPtr, 2828 const CXXConstructExpr *E, 2829 bool NewPointerIsChecked, 2830 bool ZeroInitialization = false); 2831 2832 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2833 llvm::Value *NumElements, 2834 Address ArrayPtr, 2835 const CXXConstructExpr *E, 2836 bool NewPointerIsChecked, 2837 bool ZeroInitialization = false); 2838 2839 static Destroyer destroyCXXObject; 2840 2841 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 2842 bool ForVirtualBase, bool Delegating, Address This, 2843 QualType ThisTy); 2844 2845 void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, 2846 llvm::Type *ElementTy, Address NewPtr, 2847 llvm::Value *NumElements, 2848 llvm::Value *AllocSizeWithoutCookie); 2849 2850 void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, 2851 Address Ptr); 2852 2853 llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr); 2854 void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr); 2855 2856 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 2857 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 2858 2859 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 2860 QualType DeleteTy, llvm::Value *NumElements = nullptr, 2861 CharUnits CookieSize = CharUnits()); 2862 2863 RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 2864 const CallExpr *TheCallExpr, bool IsDelete); 2865 2866 llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E); 2867 llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE); 2868 Address EmitCXXUuidofExpr(const CXXUuidofExpr *E); 2869 2870 /// Situations in which we might emit a check for the suitability of a 2871 /// pointer or glvalue. Needs to be kept in sync with ubsan_handlers.cpp in 2872 /// compiler-rt. 2873 enum TypeCheckKind { 2874 /// Checking the operand of a load. Must be suitably sized and aligned. 2875 TCK_Load, 2876 /// Checking the destination of a store. Must be suitably sized and aligned. 2877 TCK_Store, 2878 /// Checking the bound value in a reference binding. Must be suitably sized 2879 /// and aligned, but is not required to refer to an object (until the 2880 /// reference is used), per core issue 453. 2881 TCK_ReferenceBinding, 2882 /// Checking the object expression in a non-static data member access. Must 2883 /// be an object within its lifetime. 2884 TCK_MemberAccess, 2885 /// Checking the 'this' pointer for a call to a non-static member function. 2886 /// Must be an object within its lifetime. 2887 TCK_MemberCall, 2888 /// Checking the 'this' pointer for a constructor call. 2889 TCK_ConstructorCall, 2890 /// Checking the operand of a static_cast to a derived pointer type. Must be 2891 /// null or an object within its lifetime. 2892 TCK_DowncastPointer, 2893 /// Checking the operand of a static_cast to a derived reference type. Must 2894 /// be an object within its lifetime. 2895 TCK_DowncastReference, 2896 /// Checking the operand of a cast to a base object. Must be suitably sized 2897 /// and aligned. 2898 TCK_Upcast, 2899 /// Checking the operand of a cast to a virtual base object. Must be an 2900 /// object within its lifetime. 2901 TCK_UpcastToVirtualBase, 2902 /// Checking the value assigned to a _Nonnull pointer. Must not be null. 2903 TCK_NonnullAssign, 2904 /// Checking the operand of a dynamic_cast or a typeid expression. Must be 2905 /// null or an object within its lifetime. 2906 TCK_DynamicOperation 2907 }; 2908 2909 /// Determine whether the pointer type check \p TCK permits null pointers. 2910 static bool isNullPointerAllowed(TypeCheckKind TCK); 2911 2912 /// Determine whether the pointer type check \p TCK requires a vptr check. 2913 static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty); 2914 2915 /// Whether any type-checking sanitizers are enabled. If \c false, 2916 /// calls to EmitTypeCheck can be skipped. 2917 bool sanitizePerformTypeCheck() const; 2918 2919 /// Emit a check that \p V is the address of storage of the 2920 /// appropriate size and alignment for an object of type \p Type 2921 /// (or if ArraySize is provided, for an array of that bound). 2922 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, 2923 QualType Type, CharUnits Alignment = CharUnits::Zero(), 2924 SanitizerSet SkippedChecks = SanitizerSet(), 2925 llvm::Value *ArraySize = nullptr); 2926 2927 /// Emit a check that \p Base points into an array object, which 2928 /// we can access at index \p Index. \p Accessed should be \c false if we 2929 /// this expression is used as an lvalue, for instance in "&Arr[Idx]". 2930 void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, 2931 QualType IndexType, bool Accessed); 2932 2933 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 2934 bool isInc, bool isPre); 2935 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 2936 bool isInc, bool isPre); 2937 2938 /// Converts Location to a DebugLoc, if debug information is enabled. 2939 llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location); 2940 2941 /// Get the record field index as represented in debug info. 2942 unsigned getDebugInfoFIndex(const RecordDecl *Rec, unsigned FieldIndex); 2943 2944 2945 //===--------------------------------------------------------------------===// 2946 // Declaration Emission 2947 //===--------------------------------------------------------------------===// 2948 2949 /// EmitDecl - Emit a declaration. 2950 /// 2951 /// This function can be called with a null (unreachable) insert point. 2952 void EmitDecl(const Decl &D); 2953 2954 /// EmitVarDecl - Emit a local variable declaration. 2955 /// 2956 /// This function can be called with a null (unreachable) insert point. 2957 void EmitVarDecl(const VarDecl &D); 2958 2959 void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2960 bool capturedByInit); 2961 2962 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 2963 llvm::Value *Address); 2964 2965 /// Determine whether the given initializer is trivial in the sense 2966 /// that it requires no code to be generated. 2967 bool isTrivialInitializer(const Expr *Init); 2968 2969 /// EmitAutoVarDecl - Emit an auto variable declaration. 2970 /// 2971 /// This function can be called with a null (unreachable) insert point. 2972 void EmitAutoVarDecl(const VarDecl &D); 2973 2974 class AutoVarEmission { 2975 friend class CodeGenFunction; 2976 2977 const VarDecl *Variable; 2978 2979 /// The address of the alloca for languages with explicit address space 2980 /// (e.g. OpenCL) or alloca casted to generic pointer for address space 2981 /// agnostic languages (e.g. C++). Invalid if the variable was emitted 2982 /// as a global constant. 2983 Address Addr; 2984 2985 llvm::Value *NRVOFlag; 2986 2987 /// True if the variable is a __block variable that is captured by an 2988 /// escaping block. 2989 bool IsEscapingByRef; 2990 2991 /// True if the variable is of aggregate type and has a constant 2992 /// initializer. 2993 bool IsConstantAggregate; 2994 2995 /// Non-null if we should use lifetime annotations. 2996 llvm::Value *SizeForLifetimeMarkers; 2997 2998 /// Address with original alloca instruction. Invalid if the variable was 2999 /// emitted as a global constant. 3000 Address AllocaAddr; 3001 3002 struct Invalid {}; 3003 AutoVarEmission(Invalid) 3004 : Variable(nullptr), Addr(Address::invalid()), 3005 AllocaAddr(Address::invalid()) {} 3006 3007 AutoVarEmission(const VarDecl &variable) 3008 : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr), 3009 IsEscapingByRef(false), IsConstantAggregate(false), 3010 SizeForLifetimeMarkers(nullptr), AllocaAddr(Address::invalid()) {} 3011 3012 bool wasEmittedAsGlobal() const { return !Addr.isValid(); } 3013 3014 public: 3015 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 3016 3017 bool useLifetimeMarkers() const { 3018 return SizeForLifetimeMarkers != nullptr; 3019 } 3020 llvm::Value *getSizeForLifetimeMarkers() const { 3021 assert(useLifetimeMarkers()); 3022 return SizeForLifetimeMarkers; 3023 } 3024 3025 /// Returns the raw, allocated address, which is not necessarily 3026 /// the address of the object itself. It is casted to default 3027 /// address space for address space agnostic languages. 3028 Address getAllocatedAddress() const { 3029 return Addr; 3030 } 3031 3032 /// Returns the address for the original alloca instruction. 3033 Address getOriginalAllocatedAddress() const { return AllocaAddr; } 3034 3035 /// Returns the address of the object within this declaration. 3036 /// Note that this does not chase the forwarding pointer for 3037 /// __block decls. 3038 Address getObjectAddress(CodeGenFunction &CGF) const { 3039 if (!IsEscapingByRef) return Addr; 3040 3041 return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false); 3042 } 3043 }; 3044 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 3045 void EmitAutoVarInit(const AutoVarEmission &emission); 3046 void EmitAutoVarCleanups(const AutoVarEmission &emission); 3047 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 3048 QualType::DestructionKind dtorKind); 3049 3050 /// Emits the alloca and debug information for the size expressions for each 3051 /// dimension of an array. It registers the association of its (1-dimensional) 3052 /// QualTypes and size expression's debug node, so that CGDebugInfo can 3053 /// reference this node when creating the DISubrange object to describe the 3054 /// array types. 3055 void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI, 3056 const VarDecl &D, 3057 bool EmitDebugInfo); 3058 3059 void EmitStaticVarDecl(const VarDecl &D, 3060 llvm::GlobalValue::LinkageTypes Linkage); 3061 3062 class ParamValue { 3063 llvm::Value *Value; 3064 unsigned Alignment; 3065 ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {} 3066 public: 3067 static ParamValue forDirect(llvm::Value *value) { 3068 return ParamValue(value, 0); 3069 } 3070 static ParamValue forIndirect(Address addr) { 3071 assert(!addr.getAlignment().isZero()); 3072 return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity()); 3073 } 3074 3075 bool isIndirect() const { return Alignment != 0; } 3076 llvm::Value *getAnyValue() const { return Value; } 3077 3078 llvm::Value *getDirectValue() const { 3079 assert(!isIndirect()); 3080 return Value; 3081 } 3082 3083 Address getIndirectAddress() const { 3084 assert(isIndirect()); 3085 return Address(Value, CharUnits::fromQuantity(Alignment)); 3086 } 3087 }; 3088 3089 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 3090 void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo); 3091 3092 /// protectFromPeepholes - Protect a value that we're intending to 3093 /// store to the side, but which will probably be used later, from 3094 /// aggressive peepholing optimizations that might delete it. 3095 /// 3096 /// Pass the result to unprotectFromPeepholes to declare that 3097 /// protection is no longer required. 3098 /// 3099 /// There's no particular reason why this shouldn't apply to 3100 /// l-values, it's just that no existing peepholes work on pointers. 3101 PeepholeProtection protectFromPeepholes(RValue rvalue); 3102 void unprotectFromPeepholes(PeepholeProtection protection); 3103 3104 void emitAlignmentAssumptionCheck(llvm::Value *Ptr, QualType Ty, 3105 SourceLocation Loc, 3106 SourceLocation AssumptionLoc, 3107 llvm::Value *Alignment, 3108 llvm::Value *OffsetValue, 3109 llvm::Value *TheCheck, 3110 llvm::Instruction *Assumption); 3111 3112 void emitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty, 3113 SourceLocation Loc, SourceLocation AssumptionLoc, 3114 llvm::Value *Alignment, 3115 llvm::Value *OffsetValue = nullptr); 3116 3117 void emitAlignmentAssumption(llvm::Value *PtrValue, const Expr *E, 3118 SourceLocation AssumptionLoc, 3119 llvm::Value *Alignment, 3120 llvm::Value *OffsetValue = nullptr); 3121 3122 //===--------------------------------------------------------------------===// 3123 // Statement Emission 3124 //===--------------------------------------------------------------------===// 3125 3126 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 3127 void EmitStopPoint(const Stmt *S); 3128 3129 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 3130 /// this function even if there is no current insertion point. 3131 /// 3132 /// This function may clear the current insertion point; callers should use 3133 /// EnsureInsertPoint if they wish to subsequently generate code without first 3134 /// calling EmitBlock, EmitBranch, or EmitStmt. 3135 void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None); 3136 3137 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 3138 /// necessarily require an insertion point or debug information; typically 3139 /// because the statement amounts to a jump or a container of other 3140 /// statements. 3141 /// 3142 /// \return True if the statement was handled. 3143 bool EmitSimpleStmt(const Stmt *S, ArrayRef<const Attr *> Attrs); 3144 3145 Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 3146 AggValueSlot AVS = AggValueSlot::ignored()); 3147 Address EmitCompoundStmtWithoutScope(const CompoundStmt &S, 3148 bool GetLast = false, 3149 AggValueSlot AVS = 3150 AggValueSlot::ignored()); 3151 3152 /// EmitLabel - Emit the block for the given label. It is legal to call this 3153 /// function even if there is no current insertion point. 3154 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 3155 3156 void EmitLabelStmt(const LabelStmt &S); 3157 void EmitAttributedStmt(const AttributedStmt &S); 3158 void EmitGotoStmt(const GotoStmt &S); 3159 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 3160 void EmitIfStmt(const IfStmt &S); 3161 3162 void EmitWhileStmt(const WhileStmt &S, 3163 ArrayRef<const Attr *> Attrs = None); 3164 void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None); 3165 void EmitForStmt(const ForStmt &S, 3166 ArrayRef<const Attr *> Attrs = None); 3167 void EmitReturnStmt(const ReturnStmt &S); 3168 void EmitDeclStmt(const DeclStmt &S); 3169 void EmitBreakStmt(const BreakStmt &S); 3170 void EmitContinueStmt(const ContinueStmt &S); 3171 void EmitSwitchStmt(const SwitchStmt &S); 3172 void EmitDefaultStmt(const DefaultStmt &S, ArrayRef<const Attr *> Attrs); 3173 void EmitCaseStmt(const CaseStmt &S, ArrayRef<const Attr *> Attrs); 3174 void EmitCaseStmtRange(const CaseStmt &S, ArrayRef<const Attr *> Attrs); 3175 void EmitAsmStmt(const AsmStmt &S); 3176 3177 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 3178 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 3179 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 3180 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 3181 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 3182 3183 void EmitCoroutineBody(const CoroutineBodyStmt &S); 3184 void EmitCoreturnStmt(const CoreturnStmt &S); 3185 RValue EmitCoawaitExpr(const CoawaitExpr &E, 3186 AggValueSlot aggSlot = AggValueSlot::ignored(), 3187 bool ignoreResult = false); 3188 LValue EmitCoawaitLValue(const CoawaitExpr *E); 3189 RValue EmitCoyieldExpr(const CoyieldExpr &E, 3190 AggValueSlot aggSlot = AggValueSlot::ignored(), 3191 bool ignoreResult = false); 3192 LValue EmitCoyieldLValue(const CoyieldExpr *E); 3193 RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID); 3194 3195 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 3196 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 3197 3198 void EmitCXXTryStmt(const CXXTryStmt &S); 3199 void EmitSEHTryStmt(const SEHTryStmt &S); 3200 void EmitSEHLeaveStmt(const SEHLeaveStmt &S); 3201 void EnterSEHTryStmt(const SEHTryStmt &S); 3202 void ExitSEHTryStmt(const SEHTryStmt &S); 3203 3204 void pushSEHCleanup(CleanupKind kind, 3205 llvm::Function *FinallyFunc); 3206 void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter, 3207 const Stmt *OutlinedStmt); 3208 3209 llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF, 3210 const SEHExceptStmt &Except); 3211 3212 llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF, 3213 const SEHFinallyStmt &Finally); 3214 3215 void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF, 3216 llvm::Value *ParentFP, 3217 llvm::Value *EntryEBP); 3218 llvm::Value *EmitSEHExceptionCode(); 3219 llvm::Value *EmitSEHExceptionInfo(); 3220 llvm::Value *EmitSEHAbnormalTermination(); 3221 3222 /// Emit simple code for OpenMP directives in Simd-only mode. 3223 void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D); 3224 3225 /// Scan the outlined statement for captures from the parent function. For 3226 /// each capture, mark the capture as escaped and emit a call to 3227 /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap. 3228 void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt, 3229 bool IsFilter); 3230 3231 /// Recovers the address of a local in a parent function. ParentVar is the 3232 /// address of the variable used in the immediate parent function. It can 3233 /// either be an alloca or a call to llvm.localrecover if there are nested 3234 /// outlined functions. ParentFP is the frame pointer of the outermost parent 3235 /// frame. 3236 Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF, 3237 Address ParentVar, 3238 llvm::Value *ParentFP); 3239 3240 void EmitCXXForRangeStmt(const CXXForRangeStmt &S, 3241 ArrayRef<const Attr *> Attrs = None); 3242 3243 /// Controls insertion of cancellation exit blocks in worksharing constructs. 3244 class OMPCancelStackRAII { 3245 CodeGenFunction &CGF; 3246 3247 public: 3248 OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 3249 bool HasCancel) 3250 : CGF(CGF) { 3251 CGF.OMPCancelStack.enter(CGF, Kind, HasCancel); 3252 } 3253 ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); } 3254 }; 3255 3256 /// Returns calculated size of the specified type. 3257 llvm::Value *getTypeSize(QualType Ty); 3258 LValue InitCapturedStruct(const CapturedStmt &S); 3259 llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K); 3260 llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S); 3261 Address GenerateCapturedStmtArgument(const CapturedStmt &S); 3262 llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S, 3263 SourceLocation Loc); 3264 void GenerateOpenMPCapturedVars(const CapturedStmt &S, 3265 SmallVectorImpl<llvm::Value *> &CapturedVars); 3266 void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy, 3267 SourceLocation Loc); 3268 /// Perform element by element copying of arrays with type \a 3269 /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure 3270 /// generated by \a CopyGen. 3271 /// 3272 /// \param DestAddr Address of the destination array. 3273 /// \param SrcAddr Address of the source array. 3274 /// \param OriginalType Type of destination and source arrays. 3275 /// \param CopyGen Copying procedure that copies value of single array element 3276 /// to another single array element. 3277 void EmitOMPAggregateAssign( 3278 Address DestAddr, Address SrcAddr, QualType OriginalType, 3279 const llvm::function_ref<void(Address, Address)> CopyGen); 3280 /// Emit proper copying of data from one variable to another. 3281 /// 3282 /// \param OriginalType Original type of the copied variables. 3283 /// \param DestAddr Destination address. 3284 /// \param SrcAddr Source address. 3285 /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has 3286 /// type of the base array element). 3287 /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of 3288 /// the base array element). 3289 /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a 3290 /// DestVD. 3291 void EmitOMPCopy(QualType OriginalType, 3292 Address DestAddr, Address SrcAddr, 3293 const VarDecl *DestVD, const VarDecl *SrcVD, 3294 const Expr *Copy); 3295 /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or 3296 /// \a X = \a E \a BO \a E. 3297 /// 3298 /// \param X Value to be updated. 3299 /// \param E Update value. 3300 /// \param BO Binary operation for update operation. 3301 /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update 3302 /// expression, false otherwise. 3303 /// \param AO Atomic ordering of the generated atomic instructions. 3304 /// \param CommonGen Code generator for complex expressions that cannot be 3305 /// expressed through atomicrmw instruction. 3306 /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was 3307 /// generated, <false, RValue::get(nullptr)> otherwise. 3308 std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr( 3309 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 3310 llvm::AtomicOrdering AO, SourceLocation Loc, 3311 const llvm::function_ref<RValue(RValue)> CommonGen); 3312 bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 3313 OMPPrivateScope &PrivateScope); 3314 void EmitOMPPrivateClause(const OMPExecutableDirective &D, 3315 OMPPrivateScope &PrivateScope); 3316 void EmitOMPUseDevicePtrClause( 3317 const OMPUseDevicePtrClause &C, OMPPrivateScope &PrivateScope, 3318 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap); 3319 void EmitOMPUseDeviceAddrClause( 3320 const OMPUseDeviceAddrClause &C, OMPPrivateScope &PrivateScope, 3321 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap); 3322 /// Emit code for copyin clause in \a D directive. The next code is 3323 /// generated at the start of outlined functions for directives: 3324 /// \code 3325 /// threadprivate_var1 = master_threadprivate_var1; 3326 /// operator=(threadprivate_var2, master_threadprivate_var2); 3327 /// ... 3328 /// __kmpc_barrier(&loc, global_tid); 3329 /// \endcode 3330 /// 3331 /// \param D OpenMP directive possibly with 'copyin' clause(s). 3332 /// \returns true if at least one copyin variable is found, false otherwise. 3333 bool EmitOMPCopyinClause(const OMPExecutableDirective &D); 3334 /// Emit initial code for lastprivate variables. If some variable is 3335 /// not also firstprivate, then the default initialization is used. Otherwise 3336 /// initialization of this variable is performed by EmitOMPFirstprivateClause 3337 /// method. 3338 /// 3339 /// \param D Directive that may have 'lastprivate' directives. 3340 /// \param PrivateScope Private scope for capturing lastprivate variables for 3341 /// proper codegen in internal captured statement. 3342 /// 3343 /// \returns true if there is at least one lastprivate variable, false 3344 /// otherwise. 3345 bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D, 3346 OMPPrivateScope &PrivateScope); 3347 /// Emit final copying of lastprivate values to original variables at 3348 /// the end of the worksharing or simd directive. 3349 /// 3350 /// \param D Directive that has at least one 'lastprivate' directives. 3351 /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if 3352 /// it is the last iteration of the loop code in associated directive, or to 3353 /// 'i1 false' otherwise. If this item is nullptr, no final check is required. 3354 void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D, 3355 bool NoFinals, 3356 llvm::Value *IsLastIterCond = nullptr); 3357 /// Emit initial code for linear clauses. 3358 void EmitOMPLinearClause(const OMPLoopDirective &D, 3359 CodeGenFunction::OMPPrivateScope &PrivateScope); 3360 /// Emit final code for linear clauses. 3361 /// \param CondGen Optional conditional code for final part of codegen for 3362 /// linear clause. 3363 void EmitOMPLinearClauseFinal( 3364 const OMPLoopDirective &D, 3365 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); 3366 /// Emit initial code for reduction variables. Creates reduction copies 3367 /// and initializes them with the values according to OpenMP standard. 3368 /// 3369 /// \param D Directive (possibly) with the 'reduction' clause. 3370 /// \param PrivateScope Private scope for capturing reduction variables for 3371 /// proper codegen in internal captured statement. 3372 /// 3373 void EmitOMPReductionClauseInit(const OMPExecutableDirective &D, 3374 OMPPrivateScope &PrivateScope, 3375 bool ForInscan = false); 3376 /// Emit final update of reduction values to original variables at 3377 /// the end of the directive. 3378 /// 3379 /// \param D Directive that has at least one 'reduction' directives. 3380 /// \param ReductionKind The kind of reduction to perform. 3381 void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D, 3382 const OpenMPDirectiveKind ReductionKind); 3383 /// Emit initial code for linear variables. Creates private copies 3384 /// and initializes them with the values according to OpenMP standard. 3385 /// 3386 /// \param D Directive (possibly) with the 'linear' clause. 3387 /// \return true if at least one linear variable is found that should be 3388 /// initialized with the value of the original variable, false otherwise. 3389 bool EmitOMPLinearClauseInit(const OMPLoopDirective &D); 3390 3391 typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/, 3392 llvm::Function * /*OutlinedFn*/, 3393 const OMPTaskDataTy & /*Data*/)> 3394 TaskGenTy; 3395 void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S, 3396 const OpenMPDirectiveKind CapturedRegion, 3397 const RegionCodeGenTy &BodyGen, 3398 const TaskGenTy &TaskGen, OMPTaskDataTy &Data); 3399 struct OMPTargetDataInfo { 3400 Address BasePointersArray = Address::invalid(); 3401 Address PointersArray = Address::invalid(); 3402 Address SizesArray = Address::invalid(); 3403 Address MappersArray = Address::invalid(); 3404 unsigned NumberOfTargetItems = 0; 3405 explicit OMPTargetDataInfo() = default; 3406 OMPTargetDataInfo(Address BasePointersArray, Address PointersArray, 3407 Address SizesArray, Address MappersArray, 3408 unsigned NumberOfTargetItems) 3409 : BasePointersArray(BasePointersArray), PointersArray(PointersArray), 3410 SizesArray(SizesArray), MappersArray(MappersArray), 3411 NumberOfTargetItems(NumberOfTargetItems) {} 3412 }; 3413 void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S, 3414 const RegionCodeGenTy &BodyGen, 3415 OMPTargetDataInfo &InputInfo); 3416 3417 void EmitOMPParallelDirective(const OMPParallelDirective &S); 3418 void EmitOMPSimdDirective(const OMPSimdDirective &S); 3419 void EmitOMPTileDirective(const OMPTileDirective &S); 3420 void EmitOMPForDirective(const OMPForDirective &S); 3421 void EmitOMPForSimdDirective(const OMPForSimdDirective &S); 3422 void EmitOMPSectionsDirective(const OMPSectionsDirective &S); 3423 void EmitOMPSectionDirective(const OMPSectionDirective &S); 3424 void EmitOMPSingleDirective(const OMPSingleDirective &S); 3425 void EmitOMPMasterDirective(const OMPMasterDirective &S); 3426 void EmitOMPCriticalDirective(const OMPCriticalDirective &S); 3427 void EmitOMPParallelForDirective(const OMPParallelForDirective &S); 3428 void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S); 3429 void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S); 3430 void EmitOMPParallelMasterDirective(const OMPParallelMasterDirective &S); 3431 void EmitOMPTaskDirective(const OMPTaskDirective &S); 3432 void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S); 3433 void EmitOMPBarrierDirective(const OMPBarrierDirective &S); 3434 void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S); 3435 void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S); 3436 void EmitOMPFlushDirective(const OMPFlushDirective &S); 3437 void EmitOMPDepobjDirective(const OMPDepobjDirective &S); 3438 void EmitOMPScanDirective(const OMPScanDirective &S); 3439 void EmitOMPOrderedDirective(const OMPOrderedDirective &S); 3440 void EmitOMPAtomicDirective(const OMPAtomicDirective &S); 3441 void EmitOMPTargetDirective(const OMPTargetDirective &S); 3442 void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S); 3443 void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S); 3444 void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S); 3445 void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S); 3446 void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S); 3447 void 3448 EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S); 3449 void EmitOMPTeamsDirective(const OMPTeamsDirective &S); 3450 void 3451 EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S); 3452 void EmitOMPCancelDirective(const OMPCancelDirective &S); 3453 void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S); 3454 void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S); 3455 void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S); 3456 void EmitOMPMasterTaskLoopDirective(const OMPMasterTaskLoopDirective &S); 3457 void 3458 EmitOMPMasterTaskLoopSimdDirective(const OMPMasterTaskLoopSimdDirective &S); 3459 void EmitOMPParallelMasterTaskLoopDirective( 3460 const OMPParallelMasterTaskLoopDirective &S); 3461 void EmitOMPParallelMasterTaskLoopSimdDirective( 3462 const OMPParallelMasterTaskLoopSimdDirective &S); 3463 void EmitOMPDistributeDirective(const OMPDistributeDirective &S); 3464 void EmitOMPDistributeParallelForDirective( 3465 const OMPDistributeParallelForDirective &S); 3466 void EmitOMPDistributeParallelForSimdDirective( 3467 const OMPDistributeParallelForSimdDirective &S); 3468 void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S); 3469 void EmitOMPTargetParallelForSimdDirective( 3470 const OMPTargetParallelForSimdDirective &S); 3471 void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S); 3472 void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S); 3473 void 3474 EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S); 3475 void EmitOMPTeamsDistributeParallelForSimdDirective( 3476 const OMPTeamsDistributeParallelForSimdDirective &S); 3477 void EmitOMPTeamsDistributeParallelForDirective( 3478 const OMPTeamsDistributeParallelForDirective &S); 3479 void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S); 3480 void EmitOMPTargetTeamsDistributeDirective( 3481 const OMPTargetTeamsDistributeDirective &S); 3482 void EmitOMPTargetTeamsDistributeParallelForDirective( 3483 const OMPTargetTeamsDistributeParallelForDirective &S); 3484 void EmitOMPTargetTeamsDistributeParallelForSimdDirective( 3485 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 3486 void EmitOMPTargetTeamsDistributeSimdDirective( 3487 const OMPTargetTeamsDistributeSimdDirective &S); 3488 3489 /// Emit device code for the target directive. 3490 static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 3491 StringRef ParentName, 3492 const OMPTargetDirective &S); 3493 static void 3494 EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 3495 const OMPTargetParallelDirective &S); 3496 /// Emit device code for the target parallel for directive. 3497 static void EmitOMPTargetParallelForDeviceFunction( 3498 CodeGenModule &CGM, StringRef ParentName, 3499 const OMPTargetParallelForDirective &S); 3500 /// Emit device code for the target parallel for simd directive. 3501 static void EmitOMPTargetParallelForSimdDeviceFunction( 3502 CodeGenModule &CGM, StringRef ParentName, 3503 const OMPTargetParallelForSimdDirective &S); 3504 /// Emit device code for the target teams directive. 3505 static void 3506 EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 3507 const OMPTargetTeamsDirective &S); 3508 /// Emit device code for the target teams distribute directive. 3509 static void EmitOMPTargetTeamsDistributeDeviceFunction( 3510 CodeGenModule &CGM, StringRef ParentName, 3511 const OMPTargetTeamsDistributeDirective &S); 3512 /// Emit device code for the target teams distribute simd directive. 3513 static void EmitOMPTargetTeamsDistributeSimdDeviceFunction( 3514 CodeGenModule &CGM, StringRef ParentName, 3515 const OMPTargetTeamsDistributeSimdDirective &S); 3516 /// Emit device code for the target simd directive. 3517 static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM, 3518 StringRef ParentName, 3519 const OMPTargetSimdDirective &S); 3520 /// Emit device code for the target teams distribute parallel for simd 3521 /// directive. 3522 static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( 3523 CodeGenModule &CGM, StringRef ParentName, 3524 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 3525 3526 static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 3527 CodeGenModule &CGM, StringRef ParentName, 3528 const OMPTargetTeamsDistributeParallelForDirective &S); 3529 3530 /// Emit the Stmt \p S and return its topmost canonical loop, if any. 3531 /// TODO: The \p Depth paramter is not yet implemented and must be 1. In the 3532 /// future it is meant to be the number of loops expected in the loop nests 3533 /// (usually specified by the "collapse" clause) that are collapsed to a 3534 /// single loop by this function. 3535 llvm::CanonicalLoopInfo *EmitOMPCollapsedCanonicalLoopNest(const Stmt *S, 3536 int Depth); 3537 3538 /// Emit an OMPCanonicalLoop using the OpenMPIRBuilder. 3539 void EmitOMPCanonicalLoop(const OMPCanonicalLoop *S); 3540 3541 /// Emit inner loop of the worksharing/simd construct. 3542 /// 3543 /// \param S Directive, for which the inner loop must be emitted. 3544 /// \param RequiresCleanup true, if directive has some associated private 3545 /// variables. 3546 /// \param LoopCond Bollean condition for loop continuation. 3547 /// \param IncExpr Increment expression for loop control variable. 3548 /// \param BodyGen Generator for the inner body of the inner loop. 3549 /// \param PostIncGen Genrator for post-increment code (required for ordered 3550 /// loop directvies). 3551 void EmitOMPInnerLoop( 3552 const OMPExecutableDirective &S, bool RequiresCleanup, 3553 const Expr *LoopCond, const Expr *IncExpr, 3554 const llvm::function_ref<void(CodeGenFunction &)> BodyGen, 3555 const llvm::function_ref<void(CodeGenFunction &)> PostIncGen); 3556 3557 JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind); 3558 /// Emit initial code for loop counters of loop-based directives. 3559 void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S, 3560 OMPPrivateScope &LoopScope); 3561 3562 /// Helper for the OpenMP loop directives. 3563 void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit); 3564 3565 /// Emit code for the worksharing loop-based directive. 3566 /// \return true, if this construct has any lastprivate clause, false - 3567 /// otherwise. 3568 bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB, 3569 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 3570 const CodeGenDispatchBoundsTy &CGDispatchBounds); 3571 3572 /// Emit code for the distribute loop-based directive. 3573 void EmitOMPDistributeLoop(const OMPLoopDirective &S, 3574 const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr); 3575 3576 /// Helpers for the OpenMP loop directives. 3577 void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false); 3578 void EmitOMPSimdFinal( 3579 const OMPLoopDirective &D, 3580 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); 3581 3582 /// Emits the lvalue for the expression with possibly captured variable. 3583 LValue EmitOMPSharedLValue(const Expr *E); 3584 3585 private: 3586 /// Helpers for blocks. 3587 llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); 3588 3589 /// struct with the values to be passed to the OpenMP loop-related functions 3590 struct OMPLoopArguments { 3591 /// loop lower bound 3592 Address LB = Address::invalid(); 3593 /// loop upper bound 3594 Address UB = Address::invalid(); 3595 /// loop stride 3596 Address ST = Address::invalid(); 3597 /// isLastIteration argument for runtime functions 3598 Address IL = Address::invalid(); 3599 /// Chunk value generated by sema 3600 llvm::Value *Chunk = nullptr; 3601 /// EnsureUpperBound 3602 Expr *EUB = nullptr; 3603 /// IncrementExpression 3604 Expr *IncExpr = nullptr; 3605 /// Loop initialization 3606 Expr *Init = nullptr; 3607 /// Loop exit condition 3608 Expr *Cond = nullptr; 3609 /// Update of LB after a whole chunk has been executed 3610 Expr *NextLB = nullptr; 3611 /// Update of UB after a whole chunk has been executed 3612 Expr *NextUB = nullptr; 3613 OMPLoopArguments() = default; 3614 OMPLoopArguments(Address LB, Address UB, Address ST, Address IL, 3615 llvm::Value *Chunk = nullptr, Expr *EUB = nullptr, 3616 Expr *IncExpr = nullptr, Expr *Init = nullptr, 3617 Expr *Cond = nullptr, Expr *NextLB = nullptr, 3618 Expr *NextUB = nullptr) 3619 : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB), 3620 IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB), 3621 NextUB(NextUB) {} 3622 }; 3623 void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic, 3624 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, 3625 const OMPLoopArguments &LoopArgs, 3626 const CodeGenLoopTy &CodeGenLoop, 3627 const CodeGenOrderedTy &CodeGenOrdered); 3628 void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind, 3629 bool IsMonotonic, const OMPLoopDirective &S, 3630 OMPPrivateScope &LoopScope, bool Ordered, 3631 const OMPLoopArguments &LoopArgs, 3632 const CodeGenDispatchBoundsTy &CGDispatchBounds); 3633 void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind, 3634 const OMPLoopDirective &S, 3635 OMPPrivateScope &LoopScope, 3636 const OMPLoopArguments &LoopArgs, 3637 const CodeGenLoopTy &CodeGenLoopContent); 3638 /// Emit code for sections directive. 3639 void EmitSections(const OMPExecutableDirective &S); 3640 3641 public: 3642 3643 //===--------------------------------------------------------------------===// 3644 // LValue Expression Emission 3645 //===--------------------------------------------------------------------===// 3646 3647 /// Create a check that a scalar RValue is non-null. 3648 llvm::Value *EmitNonNullRValueCheck(RValue RV, QualType T); 3649 3650 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 3651 RValue GetUndefRValue(QualType Ty); 3652 3653 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 3654 /// and issue an ErrorUnsupported style diagnostic (using the 3655 /// provided Name). 3656 RValue EmitUnsupportedRValue(const Expr *E, 3657 const char *Name); 3658 3659 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 3660 /// an ErrorUnsupported style diagnostic (using the provided Name). 3661 LValue EmitUnsupportedLValue(const Expr *E, 3662 const char *Name); 3663 3664 /// EmitLValue - Emit code to compute a designator that specifies the location 3665 /// of the expression. 3666 /// 3667 /// This can return one of two things: a simple address or a bitfield 3668 /// reference. In either case, the LLVM Value* in the LValue structure is 3669 /// guaranteed to be an LLVM pointer type. 3670 /// 3671 /// If this returns a bitfield reference, nothing about the pointee type of 3672 /// the LLVM value is known: For example, it may not be a pointer to an 3673 /// integer. 3674 /// 3675 /// If this returns a normal address, and if the lvalue's C type is fixed 3676 /// size, this method guarantees that the returned pointer type will point to 3677 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 3678 /// variable length type, this is not possible. 3679 /// 3680 LValue EmitLValue(const Expr *E); 3681 3682 /// Same as EmitLValue but additionally we generate checking code to 3683 /// guard against undefined behavior. This is only suitable when we know 3684 /// that the address will be used to access the object. 3685 LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK); 3686 3687 RValue convertTempToRValue(Address addr, QualType type, 3688 SourceLocation Loc); 3689 3690 void EmitAtomicInit(Expr *E, LValue lvalue); 3691 3692 bool LValueIsSuitableForInlineAtomic(LValue Src); 3693 3694 RValue EmitAtomicLoad(LValue LV, SourceLocation SL, 3695 AggValueSlot Slot = AggValueSlot::ignored()); 3696 3697 RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc, 3698 llvm::AtomicOrdering AO, bool IsVolatile = false, 3699 AggValueSlot slot = AggValueSlot::ignored()); 3700 3701 void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit); 3702 3703 void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO, 3704 bool IsVolatile, bool isInit); 3705 3706 std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange( 3707 LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, 3708 llvm::AtomicOrdering Success = 3709 llvm::AtomicOrdering::SequentiallyConsistent, 3710 llvm::AtomicOrdering Failure = 3711 llvm::AtomicOrdering::SequentiallyConsistent, 3712 bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored()); 3713 3714 void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO, 3715 const llvm::function_ref<RValue(RValue)> &UpdateOp, 3716 bool IsVolatile); 3717 3718 /// EmitToMemory - Change a scalar value from its value 3719 /// representation to its in-memory representation. 3720 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 3721 3722 /// EmitFromMemory - Change a scalar value from its memory 3723 /// representation to its value representation. 3724 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 3725 3726 /// Check if the scalar \p Value is within the valid range for the given 3727 /// type \p Ty. 3728 /// 3729 /// Returns true if a check is needed (even if the range is unknown). 3730 bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 3731 SourceLocation Loc); 3732 3733 /// EmitLoadOfScalar - Load a scalar value from an address, taking 3734 /// care to appropriately convert from the memory representation to 3735 /// the LLVM value representation. 3736 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 3737 SourceLocation Loc, 3738 AlignmentSource Source = AlignmentSource::Type, 3739 bool isNontemporal = false) { 3740 return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source), 3741 CGM.getTBAAAccessInfo(Ty), isNontemporal); 3742 } 3743 3744 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 3745 SourceLocation Loc, LValueBaseInfo BaseInfo, 3746 TBAAAccessInfo TBAAInfo, 3747 bool isNontemporal = false); 3748 3749 /// EmitLoadOfScalar - Load a scalar value from an address, taking 3750 /// care to appropriately convert from the memory representation to 3751 /// the LLVM value representation. The l-value must be a simple 3752 /// l-value. 3753 llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc); 3754 3755 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3756 /// care to appropriately convert from the memory representation to 3757 /// the LLVM value representation. 3758 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 3759 bool Volatile, QualType Ty, 3760 AlignmentSource Source = AlignmentSource::Type, 3761 bool isInit = false, bool isNontemporal = false) { 3762 EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source), 3763 CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal); 3764 } 3765 3766 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 3767 bool Volatile, QualType Ty, 3768 LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo, 3769 bool isInit = false, bool isNontemporal = false); 3770 3771 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3772 /// care to appropriately convert from the memory representation to 3773 /// the LLVM value representation. The l-value must be a simple 3774 /// l-value. The isInit flag indicates whether this is an initialization. 3775 /// If so, atomic qualifiers are ignored and the store is always non-atomic. 3776 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); 3777 3778 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 3779 /// this method emits the address of the lvalue, then loads the result as an 3780 /// rvalue, returning the rvalue. 3781 RValue EmitLoadOfLValue(LValue V, SourceLocation Loc); 3782 RValue EmitLoadOfExtVectorElementLValue(LValue V); 3783 RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc); 3784 RValue EmitLoadOfGlobalRegLValue(LValue LV); 3785 3786 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 3787 /// lvalue, where both are guaranteed to the have the same type, and that type 3788 /// is 'Ty'. 3789 void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false); 3790 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 3791 void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst); 3792 3793 /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints 3794 /// as EmitStoreThroughLValue. 3795 /// 3796 /// \param Result [out] - If non-null, this will be set to a Value* for the 3797 /// bit-field contents after the store, appropriate for use as the result of 3798 /// an assignment to the bit-field. 3799 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 3800 llvm::Value **Result=nullptr); 3801 3802 /// Emit an l-value for an assignment (simple or compound) of complex type. 3803 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 3804 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 3805 LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 3806 llvm::Value *&Result); 3807 3808 // Note: only available for agg return types 3809 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 3810 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 3811 // Note: only available for agg return types 3812 LValue EmitCallExprLValue(const CallExpr *E); 3813 // Note: only available for agg return types 3814 LValue EmitVAArgExprLValue(const VAArgExpr *E); 3815 LValue EmitDeclRefLValue(const DeclRefExpr *E); 3816 LValue EmitStringLiteralLValue(const StringLiteral *E); 3817 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 3818 LValue EmitPredefinedLValue(const PredefinedExpr *E); 3819 LValue EmitUnaryOpLValue(const UnaryOperator *E); 3820 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3821 bool Accessed = false); 3822 LValue EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E); 3823 LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3824 bool IsLowerBound = true); 3825 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 3826 LValue EmitMemberExpr(const MemberExpr *E); 3827 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 3828 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 3829 LValue EmitInitListLValue(const InitListExpr *E); 3830 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 3831 LValue EmitCastLValue(const CastExpr *E); 3832 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 3833 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 3834 3835 Address EmitExtVectorElementLValue(LValue V); 3836 3837 RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc); 3838 3839 Address EmitArrayToPointerDecay(const Expr *Array, 3840 LValueBaseInfo *BaseInfo = nullptr, 3841 TBAAAccessInfo *TBAAInfo = nullptr); 3842 3843 class ConstantEmission { 3844 llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; 3845 ConstantEmission(llvm::Constant *C, bool isReference) 3846 : ValueAndIsReference(C, isReference) {} 3847 public: 3848 ConstantEmission() {} 3849 static ConstantEmission forReference(llvm::Constant *C) { 3850 return ConstantEmission(C, true); 3851 } 3852 static ConstantEmission forValue(llvm::Constant *C) { 3853 return ConstantEmission(C, false); 3854 } 3855 3856 explicit operator bool() const { 3857 return ValueAndIsReference.getOpaqueValue() != nullptr; 3858 } 3859 3860 bool isReference() const { return ValueAndIsReference.getInt(); } 3861 LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { 3862 assert(isReference()); 3863 return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), 3864 refExpr->getType()); 3865 } 3866 3867 llvm::Constant *getValue() const { 3868 assert(!isReference()); 3869 return ValueAndIsReference.getPointer(); 3870 } 3871 }; 3872 3873 ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); 3874 ConstantEmission tryEmitAsConstant(const MemberExpr *ME); 3875 llvm::Value *emitScalarConstant(const ConstantEmission &Constant, Expr *E); 3876 3877 RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, 3878 AggValueSlot slot = AggValueSlot::ignored()); 3879 LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); 3880 3881 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 3882 const ObjCIvarDecl *Ivar); 3883 LValue EmitLValueForField(LValue Base, const FieldDecl* Field); 3884 LValue EmitLValueForLambdaField(const FieldDecl *Field); 3885 3886 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 3887 /// if the Field is a reference, this will return the address of the reference 3888 /// and not the address of the value stored in the reference. 3889 LValue EmitLValueForFieldInitialization(LValue Base, 3890 const FieldDecl* Field); 3891 3892 LValue EmitLValueForIvar(QualType ObjectTy, 3893 llvm::Value* Base, const ObjCIvarDecl *Ivar, 3894 unsigned CVRQualifiers); 3895 3896 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 3897 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 3898 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 3899 LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E); 3900 3901 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 3902 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 3903 LValue EmitStmtExprLValue(const StmtExpr *E); 3904 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 3905 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 3906 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init); 3907 3908 //===--------------------------------------------------------------------===// 3909 // Scalar Expression Emission 3910 //===--------------------------------------------------------------------===// 3911 3912 /// EmitCall - Generate a call of the given function, expecting the given 3913 /// result type, and using the given argument list which specifies both the 3914 /// LLVM arguments and the types they were derived from. 3915 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 3916 ReturnValueSlot ReturnValue, const CallArgList &Args, 3917 llvm::CallBase **callOrInvoke, SourceLocation Loc); 3918 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 3919 ReturnValueSlot ReturnValue, const CallArgList &Args, 3920 llvm::CallBase **callOrInvoke = nullptr) { 3921 return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke, 3922 SourceLocation()); 3923 } 3924 RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E, 3925 ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr); 3926 RValue EmitCallExpr(const CallExpr *E, 3927 ReturnValueSlot ReturnValue = ReturnValueSlot()); 3928 RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 3929 CGCallee EmitCallee(const Expr *E); 3930 3931 void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl); 3932 void checkTargetFeatures(SourceLocation Loc, const FunctionDecl *TargetDecl); 3933 3934 llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee, 3935 const Twine &name = ""); 3936 llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee, 3937 ArrayRef<llvm::Value *> args, 3938 const Twine &name = ""); 3939 llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 3940 const Twine &name = ""); 3941 llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 3942 ArrayRef<llvm::Value *> args, 3943 const Twine &name = ""); 3944 3945 SmallVector<llvm::OperandBundleDef, 1> 3946 getBundlesForFunclet(llvm::Value *Callee); 3947 3948 llvm::CallBase *EmitCallOrInvoke(llvm::FunctionCallee Callee, 3949 ArrayRef<llvm::Value *> Args, 3950 const Twine &Name = ""); 3951 llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 3952 ArrayRef<llvm::Value *> args, 3953 const Twine &name = ""); 3954 llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 3955 const Twine &name = ""); 3956 void EmitNoreturnRuntimeCallOrInvoke(llvm::FunctionCallee callee, 3957 ArrayRef<llvm::Value *> args); 3958 3959 CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 3960 NestedNameSpecifier *Qual, 3961 llvm::Type *Ty); 3962 3963 CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 3964 CXXDtorType Type, 3965 const CXXRecordDecl *RD); 3966 3967 // Return the copy constructor name with the prefix "__copy_constructor_" 3968 // removed. 3969 static std::string getNonTrivialCopyConstructorStr(QualType QT, 3970 CharUnits Alignment, 3971 bool IsVolatile, 3972 ASTContext &Ctx); 3973 3974 // Return the destructor name with the prefix "__destructor_" removed. 3975 static std::string getNonTrivialDestructorStr(QualType QT, 3976 CharUnits Alignment, 3977 bool IsVolatile, 3978 ASTContext &Ctx); 3979 3980 // These functions emit calls to the special functions of non-trivial C 3981 // structs. 3982 void defaultInitNonTrivialCStructVar(LValue Dst); 3983 void callCStructDefaultConstructor(LValue Dst); 3984 void callCStructDestructor(LValue Dst); 3985 void callCStructCopyConstructor(LValue Dst, LValue Src); 3986 void callCStructMoveConstructor(LValue Dst, LValue Src); 3987 void callCStructCopyAssignmentOperator(LValue Dst, LValue Src); 3988 void callCStructMoveAssignmentOperator(LValue Dst, LValue Src); 3989 3990 RValue 3991 EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method, 3992 const CGCallee &Callee, 3993 ReturnValueSlot ReturnValue, llvm::Value *This, 3994 llvm::Value *ImplicitParam, 3995 QualType ImplicitParamTy, const CallExpr *E, 3996 CallArgList *RtlArgs); 3997 RValue EmitCXXDestructorCall(GlobalDecl Dtor, const CGCallee &Callee, 3998 llvm::Value *This, QualType ThisTy, 3999 llvm::Value *ImplicitParam, 4000 QualType ImplicitParamTy, const CallExpr *E); 4001 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 4002 ReturnValueSlot ReturnValue); 4003 RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE, 4004 const CXXMethodDecl *MD, 4005 ReturnValueSlot ReturnValue, 4006 bool HasQualifier, 4007 NestedNameSpecifier *Qualifier, 4008 bool IsArrow, const Expr *Base); 4009 // Compute the object pointer. 4010 Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base, 4011 llvm::Value *memberPtr, 4012 const MemberPointerType *memberPtrType, 4013 LValueBaseInfo *BaseInfo = nullptr, 4014 TBAAAccessInfo *TBAAInfo = nullptr); 4015 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 4016 ReturnValueSlot ReturnValue); 4017 4018 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 4019 const CXXMethodDecl *MD, 4020 ReturnValueSlot ReturnValue); 4021 RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E); 4022 4023 RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 4024 ReturnValueSlot ReturnValue); 4025 4026 RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E, 4027 ReturnValueSlot ReturnValue); 4028 RValue EmitAMDGPUDevicePrintfCallExpr(const CallExpr *E, 4029 ReturnValueSlot ReturnValue); 4030 4031 RValue EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID, 4032 const CallExpr *E, ReturnValueSlot ReturnValue); 4033 4034 RValue emitRotate(const CallExpr *E, bool IsRotateRight); 4035 4036 /// Emit IR for __builtin_os_log_format. 4037 RValue emitBuiltinOSLogFormat(const CallExpr &E); 4038 4039 /// Emit IR for __builtin_is_aligned. 4040 RValue EmitBuiltinIsAligned(const CallExpr *E); 4041 /// Emit IR for __builtin_align_up/__builtin_align_down. 4042 RValue EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp); 4043 4044 llvm::Function *generateBuiltinOSLogHelperFunction( 4045 const analyze_os_log::OSLogBufferLayout &Layout, 4046 CharUnits BufferAlignment); 4047 4048 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 4049 4050 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 4051 /// is unhandled by the current target. 4052 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4053 ReturnValueSlot ReturnValue); 4054 4055 llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty, 4056 const llvm::CmpInst::Predicate Fp, 4057 const llvm::CmpInst::Predicate Ip, 4058 const llvm::Twine &Name = ""); 4059 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4060 ReturnValueSlot ReturnValue, 4061 llvm::Triple::ArchType Arch); 4062 llvm::Value *EmitARMMVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4063 ReturnValueSlot ReturnValue, 4064 llvm::Triple::ArchType Arch); 4065 llvm::Value *EmitARMCDEBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4066 ReturnValueSlot ReturnValue, 4067 llvm::Triple::ArchType Arch); 4068 llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::IntegerType *ITy, 4069 QualType RTy); 4070 llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::ArrayType *ATy, 4071 QualType RTy); 4072 4073 llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID, 4074 unsigned LLVMIntrinsic, 4075 unsigned AltLLVMIntrinsic, 4076 const char *NameHint, 4077 unsigned Modifier, 4078 const CallExpr *E, 4079 SmallVectorImpl<llvm::Value *> &Ops, 4080 Address PtrOp0, Address PtrOp1, 4081 llvm::Triple::ArchType Arch); 4082 4083 llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID, 4084 unsigned Modifier, llvm::Type *ArgTy, 4085 const CallExpr *E); 4086 llvm::Value *EmitNeonCall(llvm::Function *F, 4087 SmallVectorImpl<llvm::Value*> &O, 4088 const char *name, 4089 unsigned shift = 0, bool rightshift = false); 4090 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx, 4091 const llvm::ElementCount &Count); 4092 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 4093 llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, 4094 bool negateForRightShift); 4095 llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt, 4096 llvm::Type *Ty, bool usgn, const char *name); 4097 llvm::Value *vectorWrapScalar16(llvm::Value *Op); 4098 /// SVEBuiltinMemEltTy - Returns the memory element type for this memory 4099 /// access builtin. Only required if it can't be inferred from the base 4100 /// pointer operand. 4101 llvm::Type *SVEBuiltinMemEltTy(SVETypeFlags TypeFlags); 4102 4103 SmallVector<llvm::Type *, 2> getSVEOverloadTypes(SVETypeFlags TypeFlags, 4104 llvm::Type *ReturnType, 4105 ArrayRef<llvm::Value *> Ops); 4106 llvm::Type *getEltType(SVETypeFlags TypeFlags); 4107 llvm::ScalableVectorType *getSVEType(const SVETypeFlags &TypeFlags); 4108 llvm::ScalableVectorType *getSVEPredType(SVETypeFlags TypeFlags); 4109 llvm::Value *EmitSVEAllTruePred(SVETypeFlags TypeFlags); 4110 llvm::Value *EmitSVEDupX(llvm::Value *Scalar); 4111 llvm::Value *EmitSVEDupX(llvm::Value *Scalar, llvm::Type *Ty); 4112 llvm::Value *EmitSVEReinterpret(llvm::Value *Val, llvm::Type *Ty); 4113 llvm::Value *EmitSVEPMull(SVETypeFlags TypeFlags, 4114 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4115 unsigned BuiltinID); 4116 llvm::Value *EmitSVEMovl(SVETypeFlags TypeFlags, 4117 llvm::ArrayRef<llvm::Value *> Ops, 4118 unsigned BuiltinID); 4119 llvm::Value *EmitSVEPredicateCast(llvm::Value *Pred, 4120 llvm::ScalableVectorType *VTy); 4121 llvm::Value *EmitSVEGatherLoad(SVETypeFlags TypeFlags, 4122 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4123 unsigned IntID); 4124 llvm::Value *EmitSVEScatterStore(SVETypeFlags TypeFlags, 4125 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4126 unsigned IntID); 4127 llvm::Value *EmitSVEMaskedLoad(const CallExpr *, llvm::Type *ReturnTy, 4128 SmallVectorImpl<llvm::Value *> &Ops, 4129 unsigned BuiltinID, bool IsZExtReturn); 4130 llvm::Value *EmitSVEMaskedStore(const CallExpr *, 4131 SmallVectorImpl<llvm::Value *> &Ops, 4132 unsigned BuiltinID); 4133 llvm::Value *EmitSVEPrefetchLoad(SVETypeFlags TypeFlags, 4134 SmallVectorImpl<llvm::Value *> &Ops, 4135 unsigned BuiltinID); 4136 llvm::Value *EmitSVEGatherPrefetch(SVETypeFlags TypeFlags, 4137 SmallVectorImpl<llvm::Value *> &Ops, 4138 unsigned IntID); 4139 llvm::Value *EmitSVEStructLoad(SVETypeFlags TypeFlags, 4140 SmallVectorImpl<llvm::Value *> &Ops, unsigned IntID); 4141 llvm::Value *EmitSVEStructStore(SVETypeFlags TypeFlags, 4142 SmallVectorImpl<llvm::Value *> &Ops, 4143 unsigned IntID); 4144 llvm::Value *EmitAArch64SVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4145 4146 llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4147 llvm::Triple::ArchType Arch); 4148 llvm::Value *EmitBPFBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4149 4150 llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); 4151 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4152 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4153 llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4154 llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4155 llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4156 llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID, 4157 const CallExpr *E); 4158 llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4159 llvm::Value *EmitRISCVBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4160 ReturnValueSlot ReturnValue); 4161 bool ProcessOrderScopeAMDGCN(llvm::Value *Order, llvm::Value *Scope, 4162 llvm::AtomicOrdering &AO, 4163 llvm::SyncScope::ID &SSID); 4164 4165 enum class MSVCIntrin; 4166 llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E); 4167 4168 llvm::Value *EmitBuiltinAvailable(const VersionTuple &Version); 4169 4170 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 4171 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 4172 llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); 4173 llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); 4174 llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); 4175 llvm::Value *EmitObjCCollectionLiteral(const Expr *E, 4176 const ObjCMethodDecl *MethodWithObjects); 4177 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 4178 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 4179 ReturnValueSlot Return = ReturnValueSlot()); 4180 4181 /// Retrieves the default cleanup kind for an ARC cleanup. 4182 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. 4183 CleanupKind getARCCleanupKind() { 4184 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 4185 ? NormalAndEHCleanup : NormalCleanup; 4186 } 4187 4188 // ARC primitives. 4189 void EmitARCInitWeak(Address addr, llvm::Value *value); 4190 void EmitARCDestroyWeak(Address addr); 4191 llvm::Value *EmitARCLoadWeak(Address addr); 4192 llvm::Value *EmitARCLoadWeakRetained(Address addr); 4193 llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored); 4194 void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); 4195 void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); 4196 void EmitARCCopyWeak(Address dst, Address src); 4197 void EmitARCMoveWeak(Address dst, Address src); 4198 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 4199 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 4200 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 4201 bool resultIgnored); 4202 llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value, 4203 bool resultIgnored); 4204 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 4205 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 4206 llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); 4207 void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise); 4208 void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 4209 llvm::Value *EmitARCAutorelease(llvm::Value *value); 4210 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 4211 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 4212 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 4213 llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value); 4214 4215 llvm::Value *EmitObjCAutorelease(llvm::Value *value, llvm::Type *returnType); 4216 llvm::Value *EmitObjCRetainNonBlock(llvm::Value *value, 4217 llvm::Type *returnType); 4218 void EmitObjCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 4219 4220 std::pair<LValue,llvm::Value*> 4221 EmitARCStoreAutoreleasing(const BinaryOperator *e); 4222 std::pair<LValue,llvm::Value*> 4223 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 4224 std::pair<LValue,llvm::Value*> 4225 EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored); 4226 4227 llvm::Value *EmitObjCAlloc(llvm::Value *value, 4228 llvm::Type *returnType); 4229 llvm::Value *EmitObjCAllocWithZone(llvm::Value *value, 4230 llvm::Type *returnType); 4231 llvm::Value *EmitObjCAllocInit(llvm::Value *value, llvm::Type *resultType); 4232 4233 llvm::Value *EmitObjCThrowOperand(const Expr *expr); 4234 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 4235 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 4236 4237 llvm::Value *EmitARCExtendBlockObject(const Expr *expr); 4238 llvm::Value *EmitARCReclaimReturnedObject(const Expr *e, 4239 bool allowUnsafeClaim); 4240 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 4241 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 4242 llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr); 4243 4244 void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values); 4245 4246 void EmitARCNoopIntrinsicUse(ArrayRef<llvm::Value *> values); 4247 4248 static Destroyer destroyARCStrongImprecise; 4249 static Destroyer destroyARCStrongPrecise; 4250 static Destroyer destroyARCWeak; 4251 static Destroyer emitARCIntrinsicUse; 4252 static Destroyer destroyNonTrivialCStruct; 4253 4254 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 4255 llvm::Value *EmitObjCAutoreleasePoolPush(); 4256 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 4257 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 4258 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 4259 4260 /// Emits a reference binding to the passed in expression. 4261 RValue EmitReferenceBindingToExpr(const Expr *E); 4262 4263 //===--------------------------------------------------------------------===// 4264 // Expression Emission 4265 //===--------------------------------------------------------------------===// 4266 4267 // Expressions are broken into three classes: scalar, complex, aggregate. 4268 4269 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 4270 /// scalar type, returning the result. 4271 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 4272 4273 /// Emit a conversion from the specified type to the specified destination 4274 /// type, both of which are LLVM scalar types. 4275 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 4276 QualType DstTy, SourceLocation Loc); 4277 4278 /// Emit a conversion from the specified complex type to the specified 4279 /// destination type, where the destination type is an LLVM scalar type. 4280 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 4281 QualType DstTy, 4282 SourceLocation Loc); 4283 4284 /// EmitAggExpr - Emit the computation of the specified expression 4285 /// of aggregate type. The result is computed into the given slot, 4286 /// which may be null to indicate that the value is not needed. 4287 void EmitAggExpr(const Expr *E, AggValueSlot AS); 4288 4289 /// EmitAggExprToLValue - Emit the computation of the specified expression of 4290 /// aggregate type into a temporary LValue. 4291 LValue EmitAggExprToLValue(const Expr *E); 4292 4293 /// Build all the stores needed to initialize an aggregate at Dest with the 4294 /// value Val. 4295 void EmitAggregateStore(llvm::Value *Val, Address Dest, bool DestIsVolatile); 4296 4297 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 4298 /// make sure it survives garbage collection until this point. 4299 void EmitExtendGCLifetime(llvm::Value *object); 4300 4301 /// EmitComplexExpr - Emit the computation of the specified expression of 4302 /// complex type, returning the result. 4303 ComplexPairTy EmitComplexExpr(const Expr *E, 4304 bool IgnoreReal = false, 4305 bool IgnoreImag = false); 4306 4307 /// EmitComplexExprIntoLValue - Emit the given expression of complex 4308 /// type and place its result into the specified l-value. 4309 void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit); 4310 4311 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 4312 void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit); 4313 4314 /// EmitLoadOfComplex - Load a complex number from the specified l-value. 4315 ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc); 4316 4317 Address emitAddrOfRealComponent(Address complex, QualType complexType); 4318 Address emitAddrOfImagComponent(Address complex, QualType complexType); 4319 4320 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 4321 /// global variable that has already been created for it. If the initializer 4322 /// has a different type than GV does, this may free GV and return a different 4323 /// one. Otherwise it just returns GV. 4324 llvm::GlobalVariable * 4325 AddInitializerToStaticVarDecl(const VarDecl &D, 4326 llvm::GlobalVariable *GV); 4327 4328 // Emit an @llvm.invariant.start call for the given memory region. 4329 void EmitInvariantStart(llvm::Constant *Addr, CharUnits Size); 4330 4331 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 4332 /// variable with global storage. 4333 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr, 4334 bool PerformInit); 4335 4336 llvm::Function *createAtExitStub(const VarDecl &VD, llvm::FunctionCallee Dtor, 4337 llvm::Constant *Addr); 4338 4339 /// Call atexit() with a function that passes the given argument to 4340 /// the given function. 4341 void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::FunctionCallee fn, 4342 llvm::Constant *addr); 4343 4344 /// Call atexit() with function dtorStub. 4345 void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub); 4346 4347 /// Call unatexit() with function dtorStub. 4348 llvm::Value *unregisterGlobalDtorWithUnAtExit(llvm::Constant *dtorStub); 4349 4350 /// Emit code in this function to perform a guarded variable 4351 /// initialization. Guarded initializations are used when it's not 4352 /// possible to prove that an initialization will be done exactly 4353 /// once, e.g. with a static local variable or a static data member 4354 /// of a class template. 4355 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, 4356 bool PerformInit); 4357 4358 enum class GuardKind { VariableGuard, TlsGuard }; 4359 4360 /// Emit a branch to select whether or not to perform guarded initialization. 4361 void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit, 4362 llvm::BasicBlock *InitBlock, 4363 llvm::BasicBlock *NoInitBlock, 4364 GuardKind Kind, const VarDecl *D); 4365 4366 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 4367 /// variables. 4368 void 4369 GenerateCXXGlobalInitFunc(llvm::Function *Fn, 4370 ArrayRef<llvm::Function *> CXXThreadLocals, 4371 ConstantAddress Guard = ConstantAddress::invalid()); 4372 4373 /// GenerateCXXGlobalCleanUpFunc - Generates code for cleaning up global 4374 /// variables. 4375 void GenerateCXXGlobalCleanUpFunc( 4376 llvm::Function *Fn, 4377 const std::vector<std::tuple<llvm::FunctionType *, llvm::WeakTrackingVH, 4378 llvm::Constant *>> &DtorsOrStermFinalizers); 4379 4380 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 4381 const VarDecl *D, 4382 llvm::GlobalVariable *Addr, 4383 bool PerformInit); 4384 4385 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 4386 4387 void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp); 4388 4389 void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true); 4390 4391 RValue EmitAtomicExpr(AtomicExpr *E); 4392 4393 //===--------------------------------------------------------------------===// 4394 // Annotations Emission 4395 //===--------------------------------------------------------------------===// 4396 4397 /// Emit an annotation call (intrinsic). 4398 llvm::Value *EmitAnnotationCall(llvm::Function *AnnotationFn, 4399 llvm::Value *AnnotatedVal, 4400 StringRef AnnotationStr, 4401 SourceLocation Location, 4402 const AnnotateAttr *Attr); 4403 4404 /// Emit local annotations for the local variable V, declared by D. 4405 void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); 4406 4407 /// Emit field annotations for the given field & value. Returns the 4408 /// annotation result. 4409 Address EmitFieldAnnotations(const FieldDecl *D, Address V); 4410 4411 //===--------------------------------------------------------------------===// 4412 // Internal Helpers 4413 //===--------------------------------------------------------------------===// 4414 4415 /// ContainsLabel - Return true if the statement contains a label in it. If 4416 /// this statement is not executed normally, it not containing a label means 4417 /// that we can just remove the code. 4418 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 4419 4420 /// containsBreak - Return true if the statement contains a break out of it. 4421 /// If the statement (recursively) contains a switch or loop with a break 4422 /// inside of it, this is fine. 4423 static bool containsBreak(const Stmt *S); 4424 4425 /// Determine if the given statement might introduce a declaration into the 4426 /// current scope, by being a (possibly-labelled) DeclStmt. 4427 static bool mightAddDeclToScope(const Stmt *S); 4428 4429 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 4430 /// to a constant, or if it does but contains a label, return false. If it 4431 /// constant folds return true and set the boolean result in Result. 4432 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result, 4433 bool AllowLabels = false); 4434 4435 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 4436 /// to a constant, or if it does but contains a label, return false. If it 4437 /// constant folds return true and set the folded value. 4438 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result, 4439 bool AllowLabels = false); 4440 4441 /// isInstrumentedCondition - Determine whether the given condition is an 4442 /// instrumentable condition (i.e. no "&&" or "||"). 4443 static bool isInstrumentedCondition(const Expr *C); 4444 4445 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that 4446 /// increments a profile counter based on the semantics of the given logical 4447 /// operator opcode. This is used to instrument branch condition coverage 4448 /// for logical operators. 4449 void EmitBranchToCounterBlock(const Expr *Cond, BinaryOperator::Opcode LOp, 4450 llvm::BasicBlock *TrueBlock, 4451 llvm::BasicBlock *FalseBlock, 4452 uint64_t TrueCount = 0, 4453 Stmt::Likelihood LH = Stmt::LH_None, 4454 const Expr *CntrIdx = nullptr); 4455 4456 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 4457 /// if statement) to the specified blocks. Based on the condition, this might 4458 /// try to simplify the codegen of the conditional based on the branch. 4459 /// TrueCount should be the number of times we expect the condition to 4460 /// evaluate to true based on PGO data. 4461 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 4462 llvm::BasicBlock *FalseBlock, uint64_t TrueCount, 4463 Stmt::Likelihood LH = Stmt::LH_None); 4464 4465 /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is 4466 /// nonnull, if \p LHS is marked _Nonnull. 4467 void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc); 4468 4469 /// An enumeration which makes it easier to specify whether or not an 4470 /// operation is a subtraction. 4471 enum { NotSubtraction = false, IsSubtraction = true }; 4472 4473 /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to 4474 /// detect undefined behavior when the pointer overflow sanitizer is enabled. 4475 /// \p SignedIndices indicates whether any of the GEP indices are signed. 4476 /// \p IsSubtraction indicates whether the expression used to form the GEP 4477 /// is a subtraction. 4478 llvm::Value *EmitCheckedInBoundsGEP(llvm::Value *Ptr, 4479 ArrayRef<llvm::Value *> IdxList, 4480 bool SignedIndices, 4481 bool IsSubtraction, 4482 SourceLocation Loc, 4483 const Twine &Name = ""); 4484 4485 /// Specifies which type of sanitizer check to apply when handling a 4486 /// particular builtin. 4487 enum BuiltinCheckKind { 4488 BCK_CTZPassedZero, 4489 BCK_CLZPassedZero, 4490 }; 4491 4492 /// Emits an argument for a call to a builtin. If the builtin sanitizer is 4493 /// enabled, a runtime check specified by \p Kind is also emitted. 4494 llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind); 4495 4496 /// Emit a description of a type in a format suitable for passing to 4497 /// a runtime sanitizer handler. 4498 llvm::Constant *EmitCheckTypeDescriptor(QualType T); 4499 4500 /// Convert a value into a format suitable for passing to a runtime 4501 /// sanitizer handler. 4502 llvm::Value *EmitCheckValue(llvm::Value *V); 4503 4504 /// Emit a description of a source location in a format suitable for 4505 /// passing to a runtime sanitizer handler. 4506 llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc); 4507 4508 /// Create a basic block that will either trap or call a handler function in 4509 /// the UBSan runtime with the provided arguments, and create a conditional 4510 /// branch to it. 4511 void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 4512 SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs, 4513 ArrayRef<llvm::Value *> DynamicArgs); 4514 4515 /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath 4516 /// if Cond if false. 4517 void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond, 4518 llvm::ConstantInt *TypeId, llvm::Value *Ptr, 4519 ArrayRef<llvm::Constant *> StaticArgs); 4520 4521 /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime 4522 /// checking is enabled. Otherwise, just emit an unreachable instruction. 4523 void EmitUnreachable(SourceLocation Loc); 4524 4525 /// Create a basic block that will call the trap intrinsic, and emit a 4526 /// conditional branch to it, for the -ftrapv checks. 4527 void EmitTrapCheck(llvm::Value *Checked, SanitizerHandler CheckHandlerID); 4528 4529 /// Emit a call to trap or debugtrap and attach function attribute 4530 /// "trap-func-name" if specified. 4531 llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID); 4532 4533 /// Emit a stub for the cross-DSO CFI check function. 4534 void EmitCfiCheckStub(); 4535 4536 /// Emit a cross-DSO CFI failure handling function. 4537 void EmitCfiCheckFail(); 4538 4539 /// Create a check for a function parameter that may potentially be 4540 /// declared as non-null. 4541 void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc, 4542 AbstractCallee AC, unsigned ParmNum); 4543 4544 /// EmitCallArg - Emit a single call argument. 4545 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 4546 4547 /// EmitDelegateCallArg - We are performing a delegate call; that 4548 /// is, the current function is delegating to another one. Produce 4549 /// a r-value suitable for passing the given parameter. 4550 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param, 4551 SourceLocation loc); 4552 4553 /// SetFPAccuracy - Set the minimum required accuracy of the given floating 4554 /// point operation, expressed as the maximum relative error in ulp. 4555 void SetFPAccuracy(llvm::Value *Val, float Accuracy); 4556 4557 /// SetFPModel - Control floating point behavior via fp-model settings. 4558 void SetFPModel(); 4559 4560 /// Set the codegen fast-math flags. 4561 void SetFastMathFlags(FPOptions FPFeatures); 4562 4563 private: 4564 llvm::MDNode *getRangeForLoadFromType(QualType Ty); 4565 void EmitReturnOfRValue(RValue RV, QualType Ty); 4566 4567 void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New); 4568 4569 llvm::SmallVector<std::pair<llvm::WeakTrackingVH, llvm::Value *>, 4> 4570 DeferredReplacements; 4571 4572 /// Set the address of a local variable. 4573 void setAddrOfLocalVar(const VarDecl *VD, Address Addr) { 4574 assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!"); 4575 LocalDeclMap.insert({VD, Addr}); 4576 } 4577 4578 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 4579 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 4580 /// 4581 /// \param AI - The first function argument of the expansion. 4582 void ExpandTypeFromArgs(QualType Ty, LValue Dst, 4583 llvm::Function::arg_iterator &AI); 4584 4585 /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg 4586 /// Ty, into individual arguments on the provided vector \arg IRCallArgs, 4587 /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand. 4588 void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, 4589 SmallVectorImpl<llvm::Value *> &IRCallArgs, 4590 unsigned &IRCallArgPos); 4591 4592 llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info, 4593 const Expr *InputExpr, std::string &ConstraintStr); 4594 4595 llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 4596 LValue InputValue, QualType InputType, 4597 std::string &ConstraintStr, 4598 SourceLocation Loc); 4599 4600 /// Attempts to statically evaluate the object size of E. If that 4601 /// fails, emits code to figure the size of E out for us. This is 4602 /// pass_object_size aware. 4603 /// 4604 /// If EmittedExpr is non-null, this will use that instead of re-emitting E. 4605 llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type, 4606 llvm::IntegerType *ResType, 4607 llvm::Value *EmittedE, 4608 bool IsDynamic); 4609 4610 /// Emits the size of E, as required by __builtin_object_size. This 4611 /// function is aware of pass_object_size parameters, and will act accordingly 4612 /// if E is a parameter with the pass_object_size attribute. 4613 llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type, 4614 llvm::IntegerType *ResType, 4615 llvm::Value *EmittedE, 4616 bool IsDynamic); 4617 4618 void emitZeroOrPatternForAutoVarInit(QualType type, const VarDecl &D, 4619 Address Loc); 4620 4621 public: 4622 enum class EvaluationOrder { 4623 ///! No language constraints on evaluation order. 4624 Default, 4625 ///! Language semantics require left-to-right evaluation. 4626 ForceLeftToRight, 4627 ///! Language semantics require right-to-left evaluation. 4628 ForceRightToLeft 4629 }; 4630 4631 // Wrapper for function prototype sources. Wraps either a FunctionProtoType or 4632 // an ObjCMethodDecl. 4633 struct PrototypeWrapper { 4634 llvm::PointerUnion<const FunctionProtoType *, const ObjCMethodDecl *> P; 4635 4636 PrototypeWrapper(const FunctionProtoType *FT) : P(FT) {} 4637 PrototypeWrapper(const ObjCMethodDecl *MD) : P(MD) {} 4638 }; 4639 4640 void EmitCallArgs(CallArgList &Args, PrototypeWrapper Prototype, 4641 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 4642 AbstractCallee AC = AbstractCallee(), 4643 unsigned ParamsToSkip = 0, 4644 EvaluationOrder Order = EvaluationOrder::Default); 4645 4646 /// EmitPointerWithAlignment - Given an expression with a pointer type, 4647 /// emit the value and compute our best estimate of the alignment of the 4648 /// pointee. 4649 /// 4650 /// \param BaseInfo - If non-null, this will be initialized with 4651 /// information about the source of the alignment and the may-alias 4652 /// attribute. Note that this function will conservatively fall back on 4653 /// the type when it doesn't recognize the expression and may-alias will 4654 /// be set to false. 4655 /// 4656 /// One reasonable way to use this information is when there's a language 4657 /// guarantee that the pointer must be aligned to some stricter value, and 4658 /// we're simply trying to ensure that sufficiently obvious uses of under- 4659 /// aligned objects don't get miscompiled; for example, a placement new 4660 /// into the address of a local variable. In such a case, it's quite 4661 /// reasonable to just ignore the returned alignment when it isn't from an 4662 /// explicit source. 4663 Address EmitPointerWithAlignment(const Expr *Addr, 4664 LValueBaseInfo *BaseInfo = nullptr, 4665 TBAAAccessInfo *TBAAInfo = nullptr); 4666 4667 /// If \p E references a parameter with pass_object_size info or a constant 4668 /// array size modifier, emit the object size divided by the size of \p EltTy. 4669 /// Otherwise return null. 4670 llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy); 4671 4672 void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK); 4673 4674 struct MultiVersionResolverOption { 4675 llvm::Function *Function; 4676 FunctionDecl *FD; 4677 struct Conds { 4678 StringRef Architecture; 4679 llvm::SmallVector<StringRef, 8> Features; 4680 4681 Conds(StringRef Arch, ArrayRef<StringRef> Feats) 4682 : Architecture(Arch), Features(Feats.begin(), Feats.end()) {} 4683 } Conditions; 4684 4685 MultiVersionResolverOption(llvm::Function *F, StringRef Arch, 4686 ArrayRef<StringRef> Feats) 4687 : Function(F), Conditions(Arch, Feats) {} 4688 }; 4689 4690 // Emits the body of a multiversion function's resolver. Assumes that the 4691 // options are already sorted in the proper order, with the 'default' option 4692 // last (if it exists). 4693 void EmitMultiVersionResolver(llvm::Function *Resolver, 4694 ArrayRef<MultiVersionResolverOption> Options); 4695 4696 static uint64_t GetX86CpuSupportsMask(ArrayRef<StringRef> FeatureStrs); 4697 4698 private: 4699 QualType getVarArgType(const Expr *Arg); 4700 4701 void EmitDeclMetadata(); 4702 4703 BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType, 4704 const AutoVarEmission &emission); 4705 4706 void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); 4707 4708 llvm::Value *GetValueForARMHint(unsigned BuiltinID); 4709 llvm::Value *EmitX86CpuIs(const CallExpr *E); 4710 llvm::Value *EmitX86CpuIs(StringRef CPUStr); 4711 llvm::Value *EmitX86CpuSupports(const CallExpr *E); 4712 llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs); 4713 llvm::Value *EmitX86CpuSupports(uint64_t Mask); 4714 llvm::Value *EmitX86CpuInit(); 4715 llvm::Value *FormResolverCondition(const MultiVersionResolverOption &RO); 4716 }; 4717 4718 /// TargetFeatures - This class is used to check whether the builtin function 4719 /// has the required tagert specific features. It is able to support the 4720 /// combination of ','(and), '|'(or), and '()'. By default, the priority of 4721 /// ',' is higher than that of '|' . 4722 /// E.g: 4723 /// A,B|C means the builtin function requires both A and B, or C. 4724 /// If we want the builtin function requires both A and B, or both A and C, 4725 /// there are two ways: A,B|A,C or A,(B|C). 4726 /// The FeaturesList should not contain spaces, and brackets must appear in 4727 /// pairs. 4728 class TargetFeatures { 4729 struct FeatureListStatus { 4730 bool HasFeatures; 4731 StringRef CurFeaturesList; 4732 }; 4733 4734 const llvm::StringMap<bool> &CallerFeatureMap; 4735 4736 FeatureListStatus getAndFeatures(StringRef FeatureList) { 4737 int InParentheses = 0; 4738 bool HasFeatures = true; 4739 size_t SubexpressionStart = 0; 4740 for (size_t i = 0, e = FeatureList.size(); i < e; ++i) { 4741 char CurrentToken = FeatureList[i]; 4742 switch (CurrentToken) { 4743 default: 4744 break; 4745 case '(': 4746 if (InParentheses == 0) 4747 SubexpressionStart = i + 1; 4748 ++InParentheses; 4749 break; 4750 case ')': 4751 --InParentheses; 4752 assert(InParentheses >= 0 && "Parentheses are not in pair"); 4753 LLVM_FALLTHROUGH; 4754 case '|': 4755 case ',': 4756 if (InParentheses == 0) { 4757 if (HasFeatures && i != SubexpressionStart) { 4758 StringRef F = FeatureList.slice(SubexpressionStart, i); 4759 HasFeatures = CurrentToken == ')' ? hasRequiredFeatures(F) 4760 : CallerFeatureMap.lookup(F); 4761 } 4762 SubexpressionStart = i + 1; 4763 if (CurrentToken == '|') { 4764 return {HasFeatures, FeatureList.substr(SubexpressionStart)}; 4765 } 4766 } 4767 break; 4768 } 4769 } 4770 assert(InParentheses == 0 && "Parentheses are not in pair"); 4771 if (HasFeatures && SubexpressionStart != FeatureList.size()) 4772 HasFeatures = 4773 CallerFeatureMap.lookup(FeatureList.substr(SubexpressionStart)); 4774 return {HasFeatures, StringRef()}; 4775 } 4776 4777 public: 4778 bool hasRequiredFeatures(StringRef FeatureList) { 4779 FeatureListStatus FS = {false, FeatureList}; 4780 while (!FS.HasFeatures && !FS.CurFeaturesList.empty()) 4781 FS = getAndFeatures(FS.CurFeaturesList); 4782 return FS.HasFeatures; 4783 } 4784 4785 TargetFeatures(const llvm::StringMap<bool> &CallerFeatureMap) 4786 : CallerFeatureMap(CallerFeatureMap) {} 4787 }; 4788 4789 inline DominatingLLVMValue::saved_type 4790 DominatingLLVMValue::save(CodeGenFunction &CGF, llvm::Value *value) { 4791 if (!needsSaving(value)) return saved_type(value, false); 4792 4793 // Otherwise, we need an alloca. 4794 auto align = CharUnits::fromQuantity( 4795 CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType())); 4796 Address alloca = 4797 CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save"); 4798 CGF.Builder.CreateStore(value, alloca); 4799 4800 return saved_type(alloca.getPointer(), true); 4801 } 4802 4803 inline llvm::Value *DominatingLLVMValue::restore(CodeGenFunction &CGF, 4804 saved_type value) { 4805 // If the value says it wasn't saved, trust that it's still dominating. 4806 if (!value.getInt()) return value.getPointer(); 4807 4808 // Otherwise, it should be an alloca instruction, as set up in save(). 4809 auto alloca = cast<llvm::AllocaInst>(value.getPointer()); 4810 return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlign()); 4811 } 4812 4813 } // end namespace CodeGen 4814 4815 // Map the LangOption for floating point exception behavior into 4816 // the corresponding enum in the IR. 4817 llvm::fp::ExceptionBehavior 4818 ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind); 4819 } // end namespace clang 4820 4821 #endif 4822