1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the internal per-function state used for llvm translation.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
14 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
15 
16 #include "CGBuilder.h"
17 #include "CGDebugInfo.h"
18 #include "CGLoopInfo.h"
19 #include "CGValue.h"
20 #include "CodeGenModule.h"
21 #include "CodeGenPGO.h"
22 #include "EHScopeStack.h"
23 #include "VarBypassDetector.h"
24 #include "clang/AST/CharUnits.h"
25 #include "clang/AST/CurrentSourceLocExprScope.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/ExprObjC.h"
28 #include "clang/AST/ExprOpenMP.h"
29 #include "clang/AST/Type.h"
30 #include "clang/Basic/ABI.h"
31 #include "clang/Basic/CapturedStmt.h"
32 #include "clang/Basic/CodeGenOptions.h"
33 #include "clang/Basic/OpenMPKinds.h"
34 #include "clang/Basic/TargetInfo.h"
35 #include "llvm/ADT/ArrayRef.h"
36 #include "llvm/ADT/DenseMap.h"
37 #include "llvm/ADT/MapVector.h"
38 #include "llvm/ADT/SmallVector.h"
39 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
40 #include "llvm/IR/ValueHandle.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Transforms/Utils/SanitizerStats.h"
43 
44 namespace llvm {
45 class BasicBlock;
46 class LLVMContext;
47 class MDNode;
48 class Module;
49 class SwitchInst;
50 class Twine;
51 class Value;
52 }
53 
54 namespace clang {
55 class ASTContext;
56 class BlockDecl;
57 class CXXDestructorDecl;
58 class CXXForRangeStmt;
59 class CXXTryStmt;
60 class Decl;
61 class LabelDecl;
62 class EnumConstantDecl;
63 class FunctionDecl;
64 class FunctionProtoType;
65 class LabelStmt;
66 class ObjCContainerDecl;
67 class ObjCInterfaceDecl;
68 class ObjCIvarDecl;
69 class ObjCMethodDecl;
70 class ObjCImplementationDecl;
71 class ObjCPropertyImplDecl;
72 class TargetInfo;
73 class VarDecl;
74 class ObjCForCollectionStmt;
75 class ObjCAtTryStmt;
76 class ObjCAtThrowStmt;
77 class ObjCAtSynchronizedStmt;
78 class ObjCAutoreleasePoolStmt;
79 class ReturnsNonNullAttr;
80 class SVETypeFlags;
81 
82 namespace analyze_os_log {
83 class OSLogBufferLayout;
84 }
85 
86 namespace CodeGen {
87 class CodeGenTypes;
88 class CGCallee;
89 class CGFunctionInfo;
90 class CGRecordLayout;
91 class CGBlockInfo;
92 class CGCXXABI;
93 class BlockByrefHelpers;
94 class BlockByrefInfo;
95 class BlockFlags;
96 class BlockFieldFlags;
97 class RegionCodeGenTy;
98 class TargetCodeGenInfo;
99 struct OMPTaskDataTy;
100 struct CGCoroData;
101 
102 /// The kind of evaluation to perform on values of a particular
103 /// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
104 /// CGExprAgg?
105 ///
106 /// TODO: should vectors maybe be split out into their own thing?
107 enum TypeEvaluationKind {
108   TEK_Scalar,
109   TEK_Complex,
110   TEK_Aggregate
111 };
112 
113 #define LIST_SANITIZER_CHECKS                                                  \
114   SANITIZER_CHECK(AddOverflow, add_overflow, 0)                                \
115   SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0)                  \
116   SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0)                             \
117   SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0)                          \
118   SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0)            \
119   SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0)                   \
120   SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 1)             \
121   SANITIZER_CHECK(ImplicitConversion, implicit_conversion, 0)                  \
122   SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0)                          \
123   SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0)                     \
124   SANITIZER_CHECK(MissingReturn, missing_return, 0)                            \
125   SANITIZER_CHECK(MulOverflow, mul_overflow, 0)                                \
126   SANITIZER_CHECK(NegateOverflow, negate_overflow, 0)                          \
127   SANITIZER_CHECK(NullabilityArg, nullability_arg, 0)                          \
128   SANITIZER_CHECK(NullabilityReturn, nullability_return, 1)                    \
129   SANITIZER_CHECK(NonnullArg, nonnull_arg, 0)                                  \
130   SANITIZER_CHECK(NonnullReturn, nonnull_return, 1)                            \
131   SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0)                               \
132   SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0)                        \
133   SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0)                    \
134   SANITIZER_CHECK(SubOverflow, sub_overflow, 0)                                \
135   SANITIZER_CHECK(TypeMismatch, type_mismatch, 1)                              \
136   SANITIZER_CHECK(AlignmentAssumption, alignment_assumption, 0)                \
137   SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0)
138 
139 enum SanitizerHandler {
140 #define SANITIZER_CHECK(Enum, Name, Version) Enum,
141   LIST_SANITIZER_CHECKS
142 #undef SANITIZER_CHECK
143 };
144 
145 /// Helper class with most of the code for saving a value for a
146 /// conditional expression cleanup.
147 struct DominatingLLVMValue {
148   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
149 
150   /// Answer whether the given value needs extra work to be saved.
151   static bool needsSaving(llvm::Value *value) {
152     // If it's not an instruction, we don't need to save.
153     if (!isa<llvm::Instruction>(value)) return false;
154 
155     // If it's an instruction in the entry block, we don't need to save.
156     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
157     return (block != &block->getParent()->getEntryBlock());
158   }
159 
160   static saved_type save(CodeGenFunction &CGF, llvm::Value *value);
161   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value);
162 };
163 
164 /// A partial specialization of DominatingValue for llvm::Values that
165 /// might be llvm::Instructions.
166 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
167   typedef T *type;
168   static type restore(CodeGenFunction &CGF, saved_type value) {
169     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
170   }
171 };
172 
173 /// A specialization of DominatingValue for Address.
174 template <> struct DominatingValue<Address> {
175   typedef Address type;
176 
177   struct saved_type {
178     DominatingLLVMValue::saved_type SavedValue;
179     CharUnits Alignment;
180   };
181 
182   static bool needsSaving(type value) {
183     return DominatingLLVMValue::needsSaving(value.getPointer());
184   }
185   static saved_type save(CodeGenFunction &CGF, type value) {
186     return { DominatingLLVMValue::save(CGF, value.getPointer()),
187              value.getAlignment() };
188   }
189   static type restore(CodeGenFunction &CGF, saved_type value) {
190     return Address(DominatingLLVMValue::restore(CGF, value.SavedValue),
191                    value.Alignment);
192   }
193 };
194 
195 /// A specialization of DominatingValue for RValue.
196 template <> struct DominatingValue<RValue> {
197   typedef RValue type;
198   class saved_type {
199     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
200                 AggregateAddress, ComplexAddress };
201 
202     llvm::Value *Value;
203     unsigned K : 3;
204     unsigned Align : 29;
205     saved_type(llvm::Value *v, Kind k, unsigned a = 0)
206       : Value(v), K(k), Align(a) {}
207 
208   public:
209     static bool needsSaving(RValue value);
210     static saved_type save(CodeGenFunction &CGF, RValue value);
211     RValue restore(CodeGenFunction &CGF);
212 
213     // implementations in CGCleanup.cpp
214   };
215 
216   static bool needsSaving(type value) {
217     return saved_type::needsSaving(value);
218   }
219   static saved_type save(CodeGenFunction &CGF, type value) {
220     return saved_type::save(CGF, value);
221   }
222   static type restore(CodeGenFunction &CGF, saved_type value) {
223     return value.restore(CGF);
224   }
225 };
226 
227 /// CodeGenFunction - This class organizes the per-function state that is used
228 /// while generating LLVM code.
229 class CodeGenFunction : public CodeGenTypeCache {
230   CodeGenFunction(const CodeGenFunction &) = delete;
231   void operator=(const CodeGenFunction &) = delete;
232 
233   friend class CGCXXABI;
234 public:
235   /// A jump destination is an abstract label, branching to which may
236   /// require a jump out through normal cleanups.
237   struct JumpDest {
238     JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {}
239     JumpDest(llvm::BasicBlock *Block,
240              EHScopeStack::stable_iterator Depth,
241              unsigned Index)
242       : Block(Block), ScopeDepth(Depth), Index(Index) {}
243 
244     bool isValid() const { return Block != nullptr; }
245     llvm::BasicBlock *getBlock() const { return Block; }
246     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
247     unsigned getDestIndex() const { return Index; }
248 
249     // This should be used cautiously.
250     void setScopeDepth(EHScopeStack::stable_iterator depth) {
251       ScopeDepth = depth;
252     }
253 
254   private:
255     llvm::BasicBlock *Block;
256     EHScopeStack::stable_iterator ScopeDepth;
257     unsigned Index;
258   };
259 
260   // Helper class for the OpenMP IR Builder. Allows reusability of code used for
261   // region body, and finalization codegen callbacks. This will class will also
262   // contain privatization functions used by the privatization call backs
263   struct OMPBuilderCBHelpers {
264 
265     using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
266 
267     /// Emit the Finalization for an OMP region
268     /// \param CGF	The Codegen function this belongs to
269     /// \param IP	Insertion point for generating the finalization code.
270     static void FinalizeOMPRegion(CodeGenFunction &CGF, InsertPointTy IP) {
271       CGBuilderTy::InsertPointGuard IPG(CGF.Builder);
272       assert(IP.getBlock()->end() != IP.getPoint() &&
273              "OpenMP IR Builder should cause terminated block!");
274 
275       llvm::BasicBlock *IPBB = IP.getBlock();
276       llvm::BasicBlock *DestBB = IPBB->getUniqueSuccessor();
277       assert(DestBB && "Finalization block should have one successor!");
278 
279       // erase and replace with cleanup branch.
280       IPBB->getTerminator()->eraseFromParent();
281       CGF.Builder.SetInsertPoint(IPBB);
282       CodeGenFunction::JumpDest Dest = CGF.getJumpDestInCurrentScope(DestBB);
283       CGF.EmitBranchThroughCleanup(Dest);
284     }
285 
286     /// Emit the body of an OMP region
287     /// \param CGF	The Codegen function this belongs to
288     /// \param RegionBodyStmt	The body statement for the OpenMP region being
289     /// 			 generated
290     /// \param CodeGenIP	Insertion point for generating the body code.
291     /// \param FiniBB	The finalization basic block
292     static void EmitOMPRegionBody(CodeGenFunction &CGF,
293                                   const Stmt *RegionBodyStmt,
294                                   InsertPointTy CodeGenIP,
295                                   llvm::BasicBlock &FiniBB) {
296       llvm::BasicBlock *CodeGenIPBB = CodeGenIP.getBlock();
297       if (llvm::Instruction *CodeGenIPBBTI = CodeGenIPBB->getTerminator())
298         CodeGenIPBBTI->eraseFromParent();
299 
300       CGF.Builder.SetInsertPoint(CodeGenIPBB);
301 
302       CGF.EmitStmt(RegionBodyStmt);
303 
304       if (CGF.Builder.saveIP().isSet())
305         CGF.Builder.CreateBr(&FiniBB);
306     }
307 
308     /// RAII for preserving necessary info during Outlined region body codegen.
309     class OutlinedRegionBodyRAII {
310 
311       llvm::AssertingVH<llvm::Instruction> OldAllocaIP;
312       CodeGenFunction::JumpDest OldReturnBlock;
313       CodeGenFunction &CGF;
314 
315     public:
316       OutlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP,
317                              llvm::BasicBlock &RetBB)
318           : CGF(cgf) {
319         assert(AllocaIP.isSet() &&
320                "Must specify Insertion point for allocas of outlined function");
321         OldAllocaIP = CGF.AllocaInsertPt;
322         CGF.AllocaInsertPt = &*AllocaIP.getPoint();
323 
324         OldReturnBlock = CGF.ReturnBlock;
325         CGF.ReturnBlock = CGF.getJumpDestInCurrentScope(&RetBB);
326       }
327 
328       ~OutlinedRegionBodyRAII() {
329         CGF.AllocaInsertPt = OldAllocaIP;
330         CGF.ReturnBlock = OldReturnBlock;
331       }
332     };
333 
334     /// RAII for preserving necessary info during inlined region body codegen.
335     class InlinedRegionBodyRAII {
336 
337       llvm::AssertingVH<llvm::Instruction> OldAllocaIP;
338       CodeGenFunction &CGF;
339 
340     public:
341       InlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP,
342                             llvm::BasicBlock &FiniBB)
343           : CGF(cgf) {
344         // Alloca insertion block should be in the entry block of the containing
345         // function so it expects an empty AllocaIP in which case will reuse the
346         // old alloca insertion point, or a new AllocaIP in the same block as
347         // the old one
348         assert((!AllocaIP.isSet() ||
349                 CGF.AllocaInsertPt->getParent() == AllocaIP.getBlock()) &&
350                "Insertion point should be in the entry block of containing "
351                "function!");
352         OldAllocaIP = CGF.AllocaInsertPt;
353         if (AllocaIP.isSet())
354           CGF.AllocaInsertPt = &*AllocaIP.getPoint();
355 
356         // TODO: Remove the call, after making sure the counter is not used by
357         //       the EHStack.
358         // Since this is an inlined region, it should not modify the
359         // ReturnBlock, and should reuse the one for the enclosing outlined
360         // region. So, the JumpDest being return by the function is discarded
361         (void)CGF.getJumpDestInCurrentScope(&FiniBB);
362       }
363 
364       ~InlinedRegionBodyRAII() { CGF.AllocaInsertPt = OldAllocaIP; }
365     };
366   };
367 
368   CodeGenModule &CGM;  // Per-module state.
369   const TargetInfo &Target;
370 
371   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
372   LoopInfoStack LoopStack;
373   CGBuilderTy Builder;
374 
375   // Stores variables for which we can't generate correct lifetime markers
376   // because of jumps.
377   VarBypassDetector Bypasses;
378 
379   // CodeGen lambda for loops and support for ordered clause
380   typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &,
381                                   JumpDest)>
382       CodeGenLoopTy;
383   typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation,
384                                   const unsigned, const bool)>
385       CodeGenOrderedTy;
386 
387   // Codegen lambda for loop bounds in worksharing loop constructs
388   typedef llvm::function_ref<std::pair<LValue, LValue>(
389       CodeGenFunction &, const OMPExecutableDirective &S)>
390       CodeGenLoopBoundsTy;
391 
392   // Codegen lambda for loop bounds in dispatch-based loop implementation
393   typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>(
394       CodeGenFunction &, const OMPExecutableDirective &S, Address LB,
395       Address UB)>
396       CodeGenDispatchBoundsTy;
397 
398   /// CGBuilder insert helper. This function is called after an
399   /// instruction is created using Builder.
400   void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
401                     llvm::BasicBlock *BB,
402                     llvm::BasicBlock::iterator InsertPt) const;
403 
404   /// CurFuncDecl - Holds the Decl for the current outermost
405   /// non-closure context.
406   const Decl *CurFuncDecl;
407   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
408   const Decl *CurCodeDecl;
409   const CGFunctionInfo *CurFnInfo;
410   QualType FnRetTy;
411   llvm::Function *CurFn = nullptr;
412 
413   // Holds coroutine data if the current function is a coroutine. We use a
414   // wrapper to manage its lifetime, so that we don't have to define CGCoroData
415   // in this header.
416   struct CGCoroInfo {
417     std::unique_ptr<CGCoroData> Data;
418     CGCoroInfo();
419     ~CGCoroInfo();
420   };
421   CGCoroInfo CurCoro;
422 
423   bool isCoroutine() const {
424     return CurCoro.Data != nullptr;
425   }
426 
427   /// CurGD - The GlobalDecl for the current function being compiled.
428   GlobalDecl CurGD;
429 
430   /// PrologueCleanupDepth - The cleanup depth enclosing all the
431   /// cleanups associated with the parameters.
432   EHScopeStack::stable_iterator PrologueCleanupDepth;
433 
434   /// ReturnBlock - Unified return block.
435   JumpDest ReturnBlock;
436 
437   /// ReturnValue - The temporary alloca to hold the return
438   /// value. This is invalid iff the function has no return value.
439   Address ReturnValue = Address::invalid();
440 
441   /// ReturnValuePointer - The temporary alloca to hold a pointer to sret.
442   /// This is invalid if sret is not in use.
443   Address ReturnValuePointer = Address::invalid();
444 
445   /// Return true if a label was seen in the current scope.
446   bool hasLabelBeenSeenInCurrentScope() const {
447     if (CurLexicalScope)
448       return CurLexicalScope->hasLabels();
449     return !LabelMap.empty();
450   }
451 
452   /// AllocaInsertPoint - This is an instruction in the entry block before which
453   /// we prefer to insert allocas.
454   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
455 
456   /// API for captured statement code generation.
457   class CGCapturedStmtInfo {
458   public:
459     explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default)
460         : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
461     explicit CGCapturedStmtInfo(const CapturedStmt &S,
462                                 CapturedRegionKind K = CR_Default)
463       : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
464 
465       RecordDecl::field_iterator Field =
466         S.getCapturedRecordDecl()->field_begin();
467       for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
468                                                 E = S.capture_end();
469            I != E; ++I, ++Field) {
470         if (I->capturesThis())
471           CXXThisFieldDecl = *Field;
472         else if (I->capturesVariable())
473           CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
474         else if (I->capturesVariableByCopy())
475           CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
476       }
477     }
478 
479     virtual ~CGCapturedStmtInfo();
480 
481     CapturedRegionKind getKind() const { return Kind; }
482 
483     virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
484     // Retrieve the value of the context parameter.
485     virtual llvm::Value *getContextValue() const { return ThisValue; }
486 
487     /// Lookup the captured field decl for a variable.
488     virtual const FieldDecl *lookup(const VarDecl *VD) const {
489       return CaptureFields.lookup(VD->getCanonicalDecl());
490     }
491 
492     bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
493     virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
494 
495     static bool classof(const CGCapturedStmtInfo *) {
496       return true;
497     }
498 
499     /// Emit the captured statement body.
500     virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
501       CGF.incrementProfileCounter(S);
502       CGF.EmitStmt(S);
503     }
504 
505     /// Get the name of the capture helper.
506     virtual StringRef getHelperName() const { return "__captured_stmt"; }
507 
508   private:
509     /// The kind of captured statement being generated.
510     CapturedRegionKind Kind;
511 
512     /// Keep the map between VarDecl and FieldDecl.
513     llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
514 
515     /// The base address of the captured record, passed in as the first
516     /// argument of the parallel region function.
517     llvm::Value *ThisValue;
518 
519     /// Captured 'this' type.
520     FieldDecl *CXXThisFieldDecl;
521   };
522   CGCapturedStmtInfo *CapturedStmtInfo = nullptr;
523 
524   /// RAII for correct setting/restoring of CapturedStmtInfo.
525   class CGCapturedStmtRAII {
526   private:
527     CodeGenFunction &CGF;
528     CGCapturedStmtInfo *PrevCapturedStmtInfo;
529   public:
530     CGCapturedStmtRAII(CodeGenFunction &CGF,
531                        CGCapturedStmtInfo *NewCapturedStmtInfo)
532         : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) {
533       CGF.CapturedStmtInfo = NewCapturedStmtInfo;
534     }
535     ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; }
536   };
537 
538   /// An abstract representation of regular/ObjC call/message targets.
539   class AbstractCallee {
540     /// The function declaration of the callee.
541     const Decl *CalleeDecl;
542 
543   public:
544     AbstractCallee() : CalleeDecl(nullptr) {}
545     AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {}
546     AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {}
547     bool hasFunctionDecl() const {
548       return dyn_cast_or_null<FunctionDecl>(CalleeDecl);
549     }
550     const Decl *getDecl() const { return CalleeDecl; }
551     unsigned getNumParams() const {
552       if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
553         return FD->getNumParams();
554       return cast<ObjCMethodDecl>(CalleeDecl)->param_size();
555     }
556     const ParmVarDecl *getParamDecl(unsigned I) const {
557       if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
558         return FD->getParamDecl(I);
559       return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I);
560     }
561   };
562 
563   /// Sanitizers enabled for this function.
564   SanitizerSet SanOpts;
565 
566   /// True if CodeGen currently emits code implementing sanitizer checks.
567   bool IsSanitizerScope = false;
568 
569   /// RAII object to set/unset CodeGenFunction::IsSanitizerScope.
570   class SanitizerScope {
571     CodeGenFunction *CGF;
572   public:
573     SanitizerScope(CodeGenFunction *CGF);
574     ~SanitizerScope();
575   };
576 
577   /// In C++, whether we are code generating a thunk.  This controls whether we
578   /// should emit cleanups.
579   bool CurFuncIsThunk = false;
580 
581   /// In ARC, whether we should autorelease the return value.
582   bool AutoreleaseResult = false;
583 
584   /// Whether we processed a Microsoft-style asm block during CodeGen. These can
585   /// potentially set the return value.
586   bool SawAsmBlock = false;
587 
588   const NamedDecl *CurSEHParent = nullptr;
589 
590   /// True if the current function is an outlined SEH helper. This can be a
591   /// finally block or filter expression.
592   bool IsOutlinedSEHHelper = false;
593 
594   /// True if CodeGen currently emits code inside presereved access index
595   /// region.
596   bool IsInPreservedAIRegion = false;
597 
598   /// True if the current statement has nomerge attribute.
599   bool InNoMergeAttributedStmt = false;
600 
601   const CodeGen::CGBlockInfo *BlockInfo = nullptr;
602   llvm::Value *BlockPointer = nullptr;
603 
604   llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
605   FieldDecl *LambdaThisCaptureField = nullptr;
606 
607   /// A mapping from NRVO variables to the flags used to indicate
608   /// when the NRVO has been applied to this variable.
609   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
610 
611   EHScopeStack EHStack;
612   llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
613   llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack;
614 
615   llvm::Instruction *CurrentFuncletPad = nullptr;
616 
617   class CallLifetimeEnd final : public EHScopeStack::Cleanup {
618     llvm::Value *Addr;
619     llvm::Value *Size;
620 
621   public:
622     CallLifetimeEnd(Address addr, llvm::Value *size)
623         : Addr(addr.getPointer()), Size(size) {}
624 
625     void Emit(CodeGenFunction &CGF, Flags flags) override {
626       CGF.EmitLifetimeEnd(Size, Addr);
627     }
628   };
629 
630   /// Header for data within LifetimeExtendedCleanupStack.
631   struct LifetimeExtendedCleanupHeader {
632     /// The size of the following cleanup object.
633     unsigned Size;
634     /// The kind of cleanup to push: a value from the CleanupKind enumeration.
635     unsigned Kind : 31;
636     /// Whether this is a conditional cleanup.
637     unsigned IsConditional : 1;
638 
639     size_t getSize() const { return Size; }
640     CleanupKind getKind() const { return (CleanupKind)Kind; }
641     bool isConditional() const { return IsConditional; }
642   };
643 
644   /// i32s containing the indexes of the cleanup destinations.
645   Address NormalCleanupDest = Address::invalid();
646 
647   unsigned NextCleanupDestIndex = 1;
648 
649   /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
650   CGBlockInfo *FirstBlockInfo = nullptr;
651 
652   /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
653   llvm::BasicBlock *EHResumeBlock = nullptr;
654 
655   /// The exception slot.  All landing pads write the current exception pointer
656   /// into this alloca.
657   llvm::Value *ExceptionSlot = nullptr;
658 
659   /// The selector slot.  Under the MandatoryCleanup model, all landing pads
660   /// write the current selector value into this alloca.
661   llvm::AllocaInst *EHSelectorSlot = nullptr;
662 
663   /// A stack of exception code slots. Entering an __except block pushes a slot
664   /// on the stack and leaving pops one. The __exception_code() intrinsic loads
665   /// a value from the top of the stack.
666   SmallVector<Address, 1> SEHCodeSlotStack;
667 
668   /// Value returned by __exception_info intrinsic.
669   llvm::Value *SEHInfo = nullptr;
670 
671   /// Emits a landing pad for the current EH stack.
672   llvm::BasicBlock *EmitLandingPad();
673 
674   llvm::BasicBlock *getInvokeDestImpl();
675 
676   template <class T>
677   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
678     return DominatingValue<T>::save(*this, value);
679   }
680 
681 public:
682   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
683   /// rethrows.
684   SmallVector<llvm::Value*, 8> ObjCEHValueStack;
685 
686   /// A class controlling the emission of a finally block.
687   class FinallyInfo {
688     /// Where the catchall's edge through the cleanup should go.
689     JumpDest RethrowDest;
690 
691     /// A function to call to enter the catch.
692     llvm::FunctionCallee BeginCatchFn;
693 
694     /// An i1 variable indicating whether or not the @finally is
695     /// running for an exception.
696     llvm::AllocaInst *ForEHVar;
697 
698     /// An i8* variable into which the exception pointer to rethrow
699     /// has been saved.
700     llvm::AllocaInst *SavedExnVar;
701 
702   public:
703     void enter(CodeGenFunction &CGF, const Stmt *Finally,
704                llvm::FunctionCallee beginCatchFn,
705                llvm::FunctionCallee endCatchFn, llvm::FunctionCallee rethrowFn);
706     void exit(CodeGenFunction &CGF);
707   };
708 
709   /// Returns true inside SEH __try blocks.
710   bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }
711 
712   /// Returns true while emitting a cleanuppad.
713   bool isCleanupPadScope() const {
714     return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad);
715   }
716 
717   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
718   /// current full-expression.  Safe against the possibility that
719   /// we're currently inside a conditionally-evaluated expression.
720   template <class T, class... As>
721   void pushFullExprCleanup(CleanupKind kind, As... A) {
722     // If we're not in a conditional branch, or if none of the
723     // arguments requires saving, then use the unconditional cleanup.
724     if (!isInConditionalBranch())
725       return EHStack.pushCleanup<T>(kind, A...);
726 
727     // Stash values in a tuple so we can guarantee the order of saves.
728     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
729     SavedTuple Saved{saveValueInCond(A)...};
730 
731     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
732     EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
733     initFullExprCleanup();
734   }
735 
736   /// Queue a cleanup to be pushed after finishing the current
737   /// full-expression.
738   template <class T, class... As>
739   void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
740     if (!isInConditionalBranch())
741       return pushCleanupAfterFullExprImpl<T>(Kind, Address::invalid(), A...);
742 
743     Address ActiveFlag = createCleanupActiveFlag();
744     assert(!DominatingValue<Address>::needsSaving(ActiveFlag) &&
745            "cleanup active flag should never need saving");
746 
747     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
748     SavedTuple Saved{saveValueInCond(A)...};
749 
750     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
751     pushCleanupAfterFullExprImpl<CleanupType>(Kind, ActiveFlag, Saved);
752   }
753 
754   template <class T, class... As>
755   void pushCleanupAfterFullExprImpl(CleanupKind Kind, Address ActiveFlag,
756                                     As... A) {
757     LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind,
758                                             ActiveFlag.isValid()};
759 
760     size_t OldSize = LifetimeExtendedCleanupStack.size();
761     LifetimeExtendedCleanupStack.resize(
762         LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size +
763         (Header.IsConditional ? sizeof(ActiveFlag) : 0));
764 
765     static_assert(sizeof(Header) % alignof(T) == 0,
766                   "Cleanup will be allocated on misaligned address");
767     char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
768     new (Buffer) LifetimeExtendedCleanupHeader(Header);
769     new (Buffer + sizeof(Header)) T(A...);
770     if (Header.IsConditional)
771       new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag);
772   }
773 
774   /// Set up the last cleanup that was pushed as a conditional
775   /// full-expression cleanup.
776   void initFullExprCleanup() {
777     initFullExprCleanupWithFlag(createCleanupActiveFlag());
778   }
779 
780   void initFullExprCleanupWithFlag(Address ActiveFlag);
781   Address createCleanupActiveFlag();
782 
783   /// PushDestructorCleanup - Push a cleanup to call the
784   /// complete-object destructor of an object of the given type at the
785   /// given address.  Does nothing if T is not a C++ class type with a
786   /// non-trivial destructor.
787   void PushDestructorCleanup(QualType T, Address Addr);
788 
789   /// PushDestructorCleanup - Push a cleanup to call the
790   /// complete-object variant of the given destructor on the object at
791   /// the given address.
792   void PushDestructorCleanup(const CXXDestructorDecl *Dtor, QualType T,
793                              Address Addr);
794 
795   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
796   /// process all branch fixups.
797   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
798 
799   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
800   /// The block cannot be reactivated.  Pops it if it's the top of the
801   /// stack.
802   ///
803   /// \param DominatingIP - An instruction which is known to
804   ///   dominate the current IP (if set) and which lies along
805   ///   all paths of execution between the current IP and the
806   ///   the point at which the cleanup comes into scope.
807   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
808                               llvm::Instruction *DominatingIP);
809 
810   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
811   /// Cannot be used to resurrect a deactivated cleanup.
812   ///
813   /// \param DominatingIP - An instruction which is known to
814   ///   dominate the current IP (if set) and which lies along
815   ///   all paths of execution between the current IP and the
816   ///   the point at which the cleanup comes into scope.
817   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
818                             llvm::Instruction *DominatingIP);
819 
820   /// Enters a new scope for capturing cleanups, all of which
821   /// will be executed once the scope is exited.
822   class RunCleanupsScope {
823     EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth;
824     size_t LifetimeExtendedCleanupStackSize;
825     bool OldDidCallStackSave;
826   protected:
827     bool PerformCleanup;
828   private:
829 
830     RunCleanupsScope(const RunCleanupsScope &) = delete;
831     void operator=(const RunCleanupsScope &) = delete;
832 
833   protected:
834     CodeGenFunction& CGF;
835 
836   public:
837     /// Enter a new cleanup scope.
838     explicit RunCleanupsScope(CodeGenFunction &CGF)
839       : PerformCleanup(true), CGF(CGF)
840     {
841       CleanupStackDepth = CGF.EHStack.stable_begin();
842       LifetimeExtendedCleanupStackSize =
843           CGF.LifetimeExtendedCleanupStack.size();
844       OldDidCallStackSave = CGF.DidCallStackSave;
845       CGF.DidCallStackSave = false;
846       OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth;
847       CGF.CurrentCleanupScopeDepth = CleanupStackDepth;
848     }
849 
850     /// Exit this cleanup scope, emitting any accumulated cleanups.
851     ~RunCleanupsScope() {
852       if (PerformCleanup)
853         ForceCleanup();
854     }
855 
856     /// Determine whether this scope requires any cleanups.
857     bool requiresCleanups() const {
858       return CGF.EHStack.stable_begin() != CleanupStackDepth;
859     }
860 
861     /// Force the emission of cleanups now, instead of waiting
862     /// until this object is destroyed.
863     /// \param ValuesToReload - A list of values that need to be available at
864     /// the insertion point after cleanup emission. If cleanup emission created
865     /// a shared cleanup block, these value pointers will be rewritten.
866     /// Otherwise, they not will be modified.
867     void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) {
868       assert(PerformCleanup && "Already forced cleanup");
869       CGF.DidCallStackSave = OldDidCallStackSave;
870       CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize,
871                            ValuesToReload);
872       PerformCleanup = false;
873       CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth;
874     }
875   };
876 
877   // Cleanup stack depth of the RunCleanupsScope that was pushed most recently.
878   EHScopeStack::stable_iterator CurrentCleanupScopeDepth =
879       EHScopeStack::stable_end();
880 
881   class LexicalScope : public RunCleanupsScope {
882     SourceRange Range;
883     SmallVector<const LabelDecl*, 4> Labels;
884     LexicalScope *ParentScope;
885 
886     LexicalScope(const LexicalScope &) = delete;
887     void operator=(const LexicalScope &) = delete;
888 
889   public:
890     /// Enter a new cleanup scope.
891     explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
892       : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
893       CGF.CurLexicalScope = this;
894       if (CGDebugInfo *DI = CGF.getDebugInfo())
895         DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
896     }
897 
898     void addLabel(const LabelDecl *label) {
899       assert(PerformCleanup && "adding label to dead scope?");
900       Labels.push_back(label);
901     }
902 
903     /// Exit this cleanup scope, emitting any accumulated
904     /// cleanups.
905     ~LexicalScope() {
906       if (CGDebugInfo *DI = CGF.getDebugInfo())
907         DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
908 
909       // If we should perform a cleanup, force them now.  Note that
910       // this ends the cleanup scope before rescoping any labels.
911       if (PerformCleanup) {
912         ApplyDebugLocation DL(CGF, Range.getEnd());
913         ForceCleanup();
914       }
915     }
916 
917     /// Force the emission of cleanups now, instead of waiting
918     /// until this object is destroyed.
919     void ForceCleanup() {
920       CGF.CurLexicalScope = ParentScope;
921       RunCleanupsScope::ForceCleanup();
922 
923       if (!Labels.empty())
924         rescopeLabels();
925     }
926 
927     bool hasLabels() const {
928       return !Labels.empty();
929     }
930 
931     void rescopeLabels();
932   };
933 
934   typedef llvm::DenseMap<const Decl *, Address> DeclMapTy;
935 
936   /// The class used to assign some variables some temporarily addresses.
937   class OMPMapVars {
938     DeclMapTy SavedLocals;
939     DeclMapTy SavedTempAddresses;
940     OMPMapVars(const OMPMapVars &) = delete;
941     void operator=(const OMPMapVars &) = delete;
942 
943   public:
944     explicit OMPMapVars() = default;
945     ~OMPMapVars() {
946       assert(SavedLocals.empty() && "Did not restored original addresses.");
947     };
948 
949     /// Sets the address of the variable \p LocalVD to be \p TempAddr in
950     /// function \p CGF.
951     /// \return true if at least one variable was set already, false otherwise.
952     bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD,
953                     Address TempAddr) {
954       LocalVD = LocalVD->getCanonicalDecl();
955       // Only save it once.
956       if (SavedLocals.count(LocalVD)) return false;
957 
958       // Copy the existing local entry to SavedLocals.
959       auto it = CGF.LocalDeclMap.find(LocalVD);
960       if (it != CGF.LocalDeclMap.end())
961         SavedLocals.try_emplace(LocalVD, it->second);
962       else
963         SavedLocals.try_emplace(LocalVD, Address::invalid());
964 
965       // Generate the private entry.
966       QualType VarTy = LocalVD->getType();
967       if (VarTy->isReferenceType()) {
968         Address Temp = CGF.CreateMemTemp(VarTy);
969         CGF.Builder.CreateStore(TempAddr.getPointer(), Temp);
970         TempAddr = Temp;
971       }
972       SavedTempAddresses.try_emplace(LocalVD, TempAddr);
973 
974       return true;
975     }
976 
977     /// Applies new addresses to the list of the variables.
978     /// \return true if at least one variable is using new address, false
979     /// otherwise.
980     bool apply(CodeGenFunction &CGF) {
981       copyInto(SavedTempAddresses, CGF.LocalDeclMap);
982       SavedTempAddresses.clear();
983       return !SavedLocals.empty();
984     }
985 
986     /// Restores original addresses of the variables.
987     void restore(CodeGenFunction &CGF) {
988       if (!SavedLocals.empty()) {
989         copyInto(SavedLocals, CGF.LocalDeclMap);
990         SavedLocals.clear();
991       }
992     }
993 
994   private:
995     /// Copy all the entries in the source map over the corresponding
996     /// entries in the destination, which must exist.
997     static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) {
998       for (auto &Pair : Src) {
999         if (!Pair.second.isValid()) {
1000           Dest.erase(Pair.first);
1001           continue;
1002         }
1003 
1004         auto I = Dest.find(Pair.first);
1005         if (I != Dest.end())
1006           I->second = Pair.second;
1007         else
1008           Dest.insert(Pair);
1009       }
1010     }
1011   };
1012 
1013   /// The scope used to remap some variables as private in the OpenMP loop body
1014   /// (or other captured region emitted without outlining), and to restore old
1015   /// vars back on exit.
1016   class OMPPrivateScope : public RunCleanupsScope {
1017     OMPMapVars MappedVars;
1018     OMPPrivateScope(const OMPPrivateScope &) = delete;
1019     void operator=(const OMPPrivateScope &) = delete;
1020 
1021   public:
1022     /// Enter a new OpenMP private scope.
1023     explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}
1024 
1025     /// Registers \p LocalVD variable as a private and apply \p PrivateGen
1026     /// function for it to generate corresponding private variable. \p
1027     /// PrivateGen returns an address of the generated private variable.
1028     /// \return true if the variable is registered as private, false if it has
1029     /// been privatized already.
1030     bool addPrivate(const VarDecl *LocalVD,
1031                     const llvm::function_ref<Address()> PrivateGen) {
1032       assert(PerformCleanup && "adding private to dead scope");
1033       return MappedVars.setVarAddr(CGF, LocalVD, PrivateGen());
1034     }
1035 
1036     /// Privatizes local variables previously registered as private.
1037     /// Registration is separate from the actual privatization to allow
1038     /// initializers use values of the original variables, not the private one.
1039     /// This is important, for example, if the private variable is a class
1040     /// variable initialized by a constructor that references other private
1041     /// variables. But at initialization original variables must be used, not
1042     /// private copies.
1043     /// \return true if at least one variable was privatized, false otherwise.
1044     bool Privatize() { return MappedVars.apply(CGF); }
1045 
1046     void ForceCleanup() {
1047       RunCleanupsScope::ForceCleanup();
1048       MappedVars.restore(CGF);
1049     }
1050 
1051     /// Exit scope - all the mapped variables are restored.
1052     ~OMPPrivateScope() {
1053       if (PerformCleanup)
1054         ForceCleanup();
1055     }
1056 
1057     /// Checks if the global variable is captured in current function.
1058     bool isGlobalVarCaptured(const VarDecl *VD) const {
1059       VD = VD->getCanonicalDecl();
1060       return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0;
1061     }
1062   };
1063 
1064   /// Save/restore original map of previously emitted local vars in case when we
1065   /// need to duplicate emission of the same code several times in the same
1066   /// function for OpenMP code.
1067   class OMPLocalDeclMapRAII {
1068     CodeGenFunction &CGF;
1069     DeclMapTy SavedMap;
1070 
1071   public:
1072     OMPLocalDeclMapRAII(CodeGenFunction &CGF)
1073         : CGF(CGF), SavedMap(CGF.LocalDeclMap) {}
1074     ~OMPLocalDeclMapRAII() { SavedMap.swap(CGF.LocalDeclMap); }
1075   };
1076 
1077   /// Takes the old cleanup stack size and emits the cleanup blocks
1078   /// that have been added.
1079   void
1080   PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
1081                    std::initializer_list<llvm::Value **> ValuesToReload = {});
1082 
1083   /// Takes the old cleanup stack size and emits the cleanup blocks
1084   /// that have been added, then adds all lifetime-extended cleanups from
1085   /// the given position to the stack.
1086   void
1087   PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
1088                    size_t OldLifetimeExtendedStackSize,
1089                    std::initializer_list<llvm::Value **> ValuesToReload = {});
1090 
1091   void ResolveBranchFixups(llvm::BasicBlock *Target);
1092 
1093   /// The given basic block lies in the current EH scope, but may be a
1094   /// target of a potentially scope-crossing jump; get a stable handle
1095   /// to which we can perform this jump later.
1096   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
1097     return JumpDest(Target,
1098                     EHStack.getInnermostNormalCleanup(),
1099                     NextCleanupDestIndex++);
1100   }
1101 
1102   /// The given basic block lies in the current EH scope, but may be a
1103   /// target of a potentially scope-crossing jump; get a stable handle
1104   /// to which we can perform this jump later.
1105   JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
1106     return getJumpDestInCurrentScope(createBasicBlock(Name));
1107   }
1108 
1109   /// EmitBranchThroughCleanup - Emit a branch from the current insert
1110   /// block through the normal cleanup handling code (if any) and then
1111   /// on to \arg Dest.
1112   void EmitBranchThroughCleanup(JumpDest Dest);
1113 
1114   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
1115   /// specified destination obviously has no cleanups to run.  'false' is always
1116   /// a conservatively correct answer for this method.
1117   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
1118 
1119   /// popCatchScope - Pops the catch scope at the top of the EHScope
1120   /// stack, emitting any required code (other than the catch handlers
1121   /// themselves).
1122   void popCatchScope();
1123 
1124   llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
1125   llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
1126   llvm::BasicBlock *
1127   getFuncletEHDispatchBlock(EHScopeStack::stable_iterator scope);
1128 
1129   /// An object to manage conditionally-evaluated expressions.
1130   class ConditionalEvaluation {
1131     llvm::BasicBlock *StartBB;
1132 
1133   public:
1134     ConditionalEvaluation(CodeGenFunction &CGF)
1135       : StartBB(CGF.Builder.GetInsertBlock()) {}
1136 
1137     void begin(CodeGenFunction &CGF) {
1138       assert(CGF.OutermostConditional != this);
1139       if (!CGF.OutermostConditional)
1140         CGF.OutermostConditional = this;
1141     }
1142 
1143     void end(CodeGenFunction &CGF) {
1144       assert(CGF.OutermostConditional != nullptr);
1145       if (CGF.OutermostConditional == this)
1146         CGF.OutermostConditional = nullptr;
1147     }
1148 
1149     /// Returns a block which will be executed prior to each
1150     /// evaluation of the conditional code.
1151     llvm::BasicBlock *getStartingBlock() const {
1152       return StartBB;
1153     }
1154   };
1155 
1156   /// isInConditionalBranch - Return true if we're currently emitting
1157   /// one branch or the other of a conditional expression.
1158   bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
1159 
1160   void setBeforeOutermostConditional(llvm::Value *value, Address addr) {
1161     assert(isInConditionalBranch());
1162     llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
1163     auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back());
1164     store->setAlignment(addr.getAlignment().getAsAlign());
1165   }
1166 
1167   /// An RAII object to record that we're evaluating a statement
1168   /// expression.
1169   class StmtExprEvaluation {
1170     CodeGenFunction &CGF;
1171 
1172     /// We have to save the outermost conditional: cleanups in a
1173     /// statement expression aren't conditional just because the
1174     /// StmtExpr is.
1175     ConditionalEvaluation *SavedOutermostConditional;
1176 
1177   public:
1178     StmtExprEvaluation(CodeGenFunction &CGF)
1179       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
1180       CGF.OutermostConditional = nullptr;
1181     }
1182 
1183     ~StmtExprEvaluation() {
1184       CGF.OutermostConditional = SavedOutermostConditional;
1185       CGF.EnsureInsertPoint();
1186     }
1187   };
1188 
1189   /// An object which temporarily prevents a value from being
1190   /// destroyed by aggressive peephole optimizations that assume that
1191   /// all uses of a value have been realized in the IR.
1192   class PeepholeProtection {
1193     llvm::Instruction *Inst;
1194     friend class CodeGenFunction;
1195 
1196   public:
1197     PeepholeProtection() : Inst(nullptr) {}
1198   };
1199 
1200   /// A non-RAII class containing all the information about a bound
1201   /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
1202   /// this which makes individual mappings very simple; using this
1203   /// class directly is useful when you have a variable number of
1204   /// opaque values or don't want the RAII functionality for some
1205   /// reason.
1206   class OpaqueValueMappingData {
1207     const OpaqueValueExpr *OpaqueValue;
1208     bool BoundLValue;
1209     CodeGenFunction::PeepholeProtection Protection;
1210 
1211     OpaqueValueMappingData(const OpaqueValueExpr *ov,
1212                            bool boundLValue)
1213       : OpaqueValue(ov), BoundLValue(boundLValue) {}
1214   public:
1215     OpaqueValueMappingData() : OpaqueValue(nullptr) {}
1216 
1217     static bool shouldBindAsLValue(const Expr *expr) {
1218       // gl-values should be bound as l-values for obvious reasons.
1219       // Records should be bound as l-values because IR generation
1220       // always keeps them in memory.  Expressions of function type
1221       // act exactly like l-values but are formally required to be
1222       // r-values in C.
1223       return expr->isGLValue() ||
1224              expr->getType()->isFunctionType() ||
1225              hasAggregateEvaluationKind(expr->getType());
1226     }
1227 
1228     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1229                                        const OpaqueValueExpr *ov,
1230                                        const Expr *e) {
1231       if (shouldBindAsLValue(ov))
1232         return bind(CGF, ov, CGF.EmitLValue(e));
1233       return bind(CGF, ov, CGF.EmitAnyExpr(e));
1234     }
1235 
1236     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1237                                        const OpaqueValueExpr *ov,
1238                                        const LValue &lv) {
1239       assert(shouldBindAsLValue(ov));
1240       CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
1241       return OpaqueValueMappingData(ov, true);
1242     }
1243 
1244     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1245                                        const OpaqueValueExpr *ov,
1246                                        const RValue &rv) {
1247       assert(!shouldBindAsLValue(ov));
1248       CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
1249 
1250       OpaqueValueMappingData data(ov, false);
1251 
1252       // Work around an extremely aggressive peephole optimization in
1253       // EmitScalarConversion which assumes that all other uses of a
1254       // value are extant.
1255       data.Protection = CGF.protectFromPeepholes(rv);
1256 
1257       return data;
1258     }
1259 
1260     bool isValid() const { return OpaqueValue != nullptr; }
1261     void clear() { OpaqueValue = nullptr; }
1262 
1263     void unbind(CodeGenFunction &CGF) {
1264       assert(OpaqueValue && "no data to unbind!");
1265 
1266       if (BoundLValue) {
1267         CGF.OpaqueLValues.erase(OpaqueValue);
1268       } else {
1269         CGF.OpaqueRValues.erase(OpaqueValue);
1270         CGF.unprotectFromPeepholes(Protection);
1271       }
1272     }
1273   };
1274 
1275   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
1276   class OpaqueValueMapping {
1277     CodeGenFunction &CGF;
1278     OpaqueValueMappingData Data;
1279 
1280   public:
1281     static bool shouldBindAsLValue(const Expr *expr) {
1282       return OpaqueValueMappingData::shouldBindAsLValue(expr);
1283     }
1284 
1285     /// Build the opaque value mapping for the given conditional
1286     /// operator if it's the GNU ?: extension.  This is a common
1287     /// enough pattern that the convenience operator is really
1288     /// helpful.
1289     ///
1290     OpaqueValueMapping(CodeGenFunction &CGF,
1291                        const AbstractConditionalOperator *op) : CGF(CGF) {
1292       if (isa<ConditionalOperator>(op))
1293         // Leave Data empty.
1294         return;
1295 
1296       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
1297       Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
1298                                           e->getCommon());
1299     }
1300 
1301     /// Build the opaque value mapping for an OpaqueValueExpr whose source
1302     /// expression is set to the expression the OVE represents.
1303     OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV)
1304         : CGF(CGF) {
1305       if (OV) {
1306         assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used "
1307                                       "for OVE with no source expression");
1308         Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr());
1309       }
1310     }
1311 
1312     OpaqueValueMapping(CodeGenFunction &CGF,
1313                        const OpaqueValueExpr *opaqueValue,
1314                        LValue lvalue)
1315       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
1316     }
1317 
1318     OpaqueValueMapping(CodeGenFunction &CGF,
1319                        const OpaqueValueExpr *opaqueValue,
1320                        RValue rvalue)
1321       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
1322     }
1323 
1324     void pop() {
1325       Data.unbind(CGF);
1326       Data.clear();
1327     }
1328 
1329     ~OpaqueValueMapping() {
1330       if (Data.isValid()) Data.unbind(CGF);
1331     }
1332   };
1333 
1334 private:
1335   CGDebugInfo *DebugInfo;
1336   /// Used to create unique names for artificial VLA size debug info variables.
1337   unsigned VLAExprCounter = 0;
1338   bool DisableDebugInfo = false;
1339 
1340   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
1341   /// calling llvm.stacksave for multiple VLAs in the same scope.
1342   bool DidCallStackSave = false;
1343 
1344   /// IndirectBranch - The first time an indirect goto is seen we create a block
1345   /// with an indirect branch.  Every time we see the address of a label taken,
1346   /// we add the label to the indirect goto.  Every subsequent indirect goto is
1347   /// codegen'd as a jump to the IndirectBranch's basic block.
1348   llvm::IndirectBrInst *IndirectBranch = nullptr;
1349 
1350   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1351   /// decls.
1352   DeclMapTy LocalDeclMap;
1353 
1354   // Keep track of the cleanups for callee-destructed parameters pushed to the
1355   // cleanup stack so that they can be deactivated later.
1356   llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator>
1357       CalleeDestructedParamCleanups;
1358 
1359   /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this
1360   /// will contain a mapping from said ParmVarDecl to its implicit "object_size"
1361   /// parameter.
1362   llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2>
1363       SizeArguments;
1364 
1365   /// Track escaped local variables with auto storage. Used during SEH
1366   /// outlining to produce a call to llvm.localescape.
1367   llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;
1368 
1369   /// LabelMap - This keeps track of the LLVM basic block for each C label.
1370   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1371 
1372   // BreakContinueStack - This keeps track of where break and continue
1373   // statements should jump to.
1374   struct BreakContinue {
1375     BreakContinue(JumpDest Break, JumpDest Continue)
1376       : BreakBlock(Break), ContinueBlock(Continue) {}
1377 
1378     JumpDest BreakBlock;
1379     JumpDest ContinueBlock;
1380   };
1381   SmallVector<BreakContinue, 8> BreakContinueStack;
1382 
1383   /// Handles cancellation exit points in OpenMP-related constructs.
1384   class OpenMPCancelExitStack {
1385     /// Tracks cancellation exit point and join point for cancel-related exit
1386     /// and normal exit.
1387     struct CancelExit {
1388       CancelExit() = default;
1389       CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock,
1390                  JumpDest ContBlock)
1391           : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {}
1392       OpenMPDirectiveKind Kind = llvm::omp::OMPD_unknown;
1393       /// true if the exit block has been emitted already by the special
1394       /// emitExit() call, false if the default codegen is used.
1395       bool HasBeenEmitted = false;
1396       JumpDest ExitBlock;
1397       JumpDest ContBlock;
1398     };
1399 
1400     SmallVector<CancelExit, 8> Stack;
1401 
1402   public:
1403     OpenMPCancelExitStack() : Stack(1) {}
1404     ~OpenMPCancelExitStack() = default;
1405     /// Fetches the exit block for the current OpenMP construct.
1406     JumpDest getExitBlock() const { return Stack.back().ExitBlock; }
1407     /// Emits exit block with special codegen procedure specific for the related
1408     /// OpenMP construct + emits code for normal construct cleanup.
1409     void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
1410                   const llvm::function_ref<void(CodeGenFunction &)> CodeGen) {
1411       if (Stack.back().Kind == Kind && getExitBlock().isValid()) {
1412         assert(CGF.getOMPCancelDestination(Kind).isValid());
1413         assert(CGF.HaveInsertPoint());
1414         assert(!Stack.back().HasBeenEmitted);
1415         auto IP = CGF.Builder.saveAndClearIP();
1416         CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1417         CodeGen(CGF);
1418         CGF.EmitBranch(Stack.back().ContBlock.getBlock());
1419         CGF.Builder.restoreIP(IP);
1420         Stack.back().HasBeenEmitted = true;
1421       }
1422       CodeGen(CGF);
1423     }
1424     /// Enter the cancel supporting \a Kind construct.
1425     /// \param Kind OpenMP directive that supports cancel constructs.
1426     /// \param HasCancel true, if the construct has inner cancel directive,
1427     /// false otherwise.
1428     void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) {
1429       Stack.push_back({Kind,
1430                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit")
1431                                  : JumpDest(),
1432                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont")
1433                                  : JumpDest()});
1434     }
1435     /// Emits default exit point for the cancel construct (if the special one
1436     /// has not be used) + join point for cancel/normal exits.
1437     void exit(CodeGenFunction &CGF) {
1438       if (getExitBlock().isValid()) {
1439         assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid());
1440         bool HaveIP = CGF.HaveInsertPoint();
1441         if (!Stack.back().HasBeenEmitted) {
1442           if (HaveIP)
1443             CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1444           CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1445           CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1446         }
1447         CGF.EmitBlock(Stack.back().ContBlock.getBlock());
1448         if (!HaveIP) {
1449           CGF.Builder.CreateUnreachable();
1450           CGF.Builder.ClearInsertionPoint();
1451         }
1452       }
1453       Stack.pop_back();
1454     }
1455   };
1456   OpenMPCancelExitStack OMPCancelStack;
1457 
1458   CodeGenPGO PGO;
1459 
1460   /// Calculate branch weights appropriate for PGO data
1461   llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount);
1462   llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights);
1463   llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond,
1464                                             uint64_t LoopCount);
1465 
1466 public:
1467   /// Increment the profiler's counter for the given statement by \p StepV.
1468   /// If \p StepV is null, the default increment is 1.
1469   void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) {
1470     if (CGM.getCodeGenOpts().hasProfileClangInstr())
1471       PGO.emitCounterIncrement(Builder, S, StepV);
1472     PGO.setCurrentStmt(S);
1473   }
1474 
1475   /// Get the profiler's count for the given statement.
1476   uint64_t getProfileCount(const Stmt *S) {
1477     Optional<uint64_t> Count = PGO.getStmtCount(S);
1478     if (!Count.hasValue())
1479       return 0;
1480     return *Count;
1481   }
1482 
1483   /// Set the profiler's current count.
1484   void setCurrentProfileCount(uint64_t Count) {
1485     PGO.setCurrentRegionCount(Count);
1486   }
1487 
1488   /// Get the profiler's current count. This is generally the count for the most
1489   /// recently incremented counter.
1490   uint64_t getCurrentProfileCount() {
1491     return PGO.getCurrentRegionCount();
1492   }
1493 
1494 private:
1495 
1496   /// SwitchInsn - This is nearest current switch instruction. It is null if
1497   /// current context is not in a switch.
1498   llvm::SwitchInst *SwitchInsn = nullptr;
1499   /// The branch weights of SwitchInsn when doing instrumentation based PGO.
1500   SmallVector<uint64_t, 16> *SwitchWeights = nullptr;
1501 
1502   /// CaseRangeBlock - This block holds if condition check for last case
1503   /// statement range in current switch instruction.
1504   llvm::BasicBlock *CaseRangeBlock = nullptr;
1505 
1506   /// OpaqueLValues - Keeps track of the current set of opaque value
1507   /// expressions.
1508   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1509   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1510 
1511   // VLASizeMap - This keeps track of the associated size for each VLA type.
1512   // We track this by the size expression rather than the type itself because
1513   // in certain situations, like a const qualifier applied to an VLA typedef,
1514   // multiple VLA types can share the same size expression.
1515   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1516   // enter/leave scopes.
1517   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1518 
1519   /// A block containing a single 'unreachable' instruction.  Created
1520   /// lazily by getUnreachableBlock().
1521   llvm::BasicBlock *UnreachableBlock = nullptr;
1522 
1523   /// Counts of the number return expressions in the function.
1524   unsigned NumReturnExprs = 0;
1525 
1526   /// Count the number of simple (constant) return expressions in the function.
1527   unsigned NumSimpleReturnExprs = 0;
1528 
1529   /// The last regular (non-return) debug location (breakpoint) in the function.
1530   SourceLocation LastStopPoint;
1531 
1532 public:
1533   /// Source location information about the default argument or member
1534   /// initializer expression we're evaluating, if any.
1535   CurrentSourceLocExprScope CurSourceLocExprScope;
1536   using SourceLocExprScopeGuard =
1537       CurrentSourceLocExprScope::SourceLocExprScopeGuard;
1538 
1539   /// A scope within which we are constructing the fields of an object which
1540   /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
1541   /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
1542   class FieldConstructionScope {
1543   public:
1544     FieldConstructionScope(CodeGenFunction &CGF, Address This)
1545         : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
1546       CGF.CXXDefaultInitExprThis = This;
1547     }
1548     ~FieldConstructionScope() {
1549       CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
1550     }
1551 
1552   private:
1553     CodeGenFunction &CGF;
1554     Address OldCXXDefaultInitExprThis;
1555   };
1556 
1557   /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
1558   /// is overridden to be the object under construction.
1559   class CXXDefaultInitExprScope  {
1560   public:
1561     CXXDefaultInitExprScope(CodeGenFunction &CGF, const CXXDefaultInitExpr *E)
1562         : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue),
1563           OldCXXThisAlignment(CGF.CXXThisAlignment),
1564           SourceLocScope(E, CGF.CurSourceLocExprScope) {
1565       CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer();
1566       CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment();
1567     }
1568     ~CXXDefaultInitExprScope() {
1569       CGF.CXXThisValue = OldCXXThisValue;
1570       CGF.CXXThisAlignment = OldCXXThisAlignment;
1571     }
1572 
1573   public:
1574     CodeGenFunction &CGF;
1575     llvm::Value *OldCXXThisValue;
1576     CharUnits OldCXXThisAlignment;
1577     SourceLocExprScopeGuard SourceLocScope;
1578   };
1579 
1580   struct CXXDefaultArgExprScope : SourceLocExprScopeGuard {
1581     CXXDefaultArgExprScope(CodeGenFunction &CGF, const CXXDefaultArgExpr *E)
1582         : SourceLocExprScopeGuard(E, CGF.CurSourceLocExprScope) {}
1583   };
1584 
1585   /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the
1586   /// current loop index is overridden.
1587   class ArrayInitLoopExprScope {
1588   public:
1589     ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index)
1590       : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) {
1591       CGF.ArrayInitIndex = Index;
1592     }
1593     ~ArrayInitLoopExprScope() {
1594       CGF.ArrayInitIndex = OldArrayInitIndex;
1595     }
1596 
1597   private:
1598     CodeGenFunction &CGF;
1599     llvm::Value *OldArrayInitIndex;
1600   };
1601 
1602   class InlinedInheritingConstructorScope {
1603   public:
1604     InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD)
1605         : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl),
1606           OldCurCodeDecl(CGF.CurCodeDecl),
1607           OldCXXABIThisDecl(CGF.CXXABIThisDecl),
1608           OldCXXABIThisValue(CGF.CXXABIThisValue),
1609           OldCXXThisValue(CGF.CXXThisValue),
1610           OldCXXABIThisAlignment(CGF.CXXABIThisAlignment),
1611           OldCXXThisAlignment(CGF.CXXThisAlignment),
1612           OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy),
1613           OldCXXInheritedCtorInitExprArgs(
1614               std::move(CGF.CXXInheritedCtorInitExprArgs)) {
1615       CGF.CurGD = GD;
1616       CGF.CurFuncDecl = CGF.CurCodeDecl =
1617           cast<CXXConstructorDecl>(GD.getDecl());
1618       CGF.CXXABIThisDecl = nullptr;
1619       CGF.CXXABIThisValue = nullptr;
1620       CGF.CXXThisValue = nullptr;
1621       CGF.CXXABIThisAlignment = CharUnits();
1622       CGF.CXXThisAlignment = CharUnits();
1623       CGF.ReturnValue = Address::invalid();
1624       CGF.FnRetTy = QualType();
1625       CGF.CXXInheritedCtorInitExprArgs.clear();
1626     }
1627     ~InlinedInheritingConstructorScope() {
1628       CGF.CurGD = OldCurGD;
1629       CGF.CurFuncDecl = OldCurFuncDecl;
1630       CGF.CurCodeDecl = OldCurCodeDecl;
1631       CGF.CXXABIThisDecl = OldCXXABIThisDecl;
1632       CGF.CXXABIThisValue = OldCXXABIThisValue;
1633       CGF.CXXThisValue = OldCXXThisValue;
1634       CGF.CXXABIThisAlignment = OldCXXABIThisAlignment;
1635       CGF.CXXThisAlignment = OldCXXThisAlignment;
1636       CGF.ReturnValue = OldReturnValue;
1637       CGF.FnRetTy = OldFnRetTy;
1638       CGF.CXXInheritedCtorInitExprArgs =
1639           std::move(OldCXXInheritedCtorInitExprArgs);
1640     }
1641 
1642   private:
1643     CodeGenFunction &CGF;
1644     GlobalDecl OldCurGD;
1645     const Decl *OldCurFuncDecl;
1646     const Decl *OldCurCodeDecl;
1647     ImplicitParamDecl *OldCXXABIThisDecl;
1648     llvm::Value *OldCXXABIThisValue;
1649     llvm::Value *OldCXXThisValue;
1650     CharUnits OldCXXABIThisAlignment;
1651     CharUnits OldCXXThisAlignment;
1652     Address OldReturnValue;
1653     QualType OldFnRetTy;
1654     CallArgList OldCXXInheritedCtorInitExprArgs;
1655   };
1656 
1657 private:
1658   /// CXXThisDecl - When generating code for a C++ member function,
1659   /// this will hold the implicit 'this' declaration.
1660   ImplicitParamDecl *CXXABIThisDecl = nullptr;
1661   llvm::Value *CXXABIThisValue = nullptr;
1662   llvm::Value *CXXThisValue = nullptr;
1663   CharUnits CXXABIThisAlignment;
1664   CharUnits CXXThisAlignment;
1665 
1666   /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
1667   /// this expression.
1668   Address CXXDefaultInitExprThis = Address::invalid();
1669 
1670   /// The current array initialization index when evaluating an
1671   /// ArrayInitIndexExpr within an ArrayInitLoopExpr.
1672   llvm::Value *ArrayInitIndex = nullptr;
1673 
1674   /// The values of function arguments to use when evaluating
1675   /// CXXInheritedCtorInitExprs within this context.
1676   CallArgList CXXInheritedCtorInitExprArgs;
1677 
1678   /// CXXStructorImplicitParamDecl - When generating code for a constructor or
1679   /// destructor, this will hold the implicit argument (e.g. VTT).
1680   ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr;
1681   llvm::Value *CXXStructorImplicitParamValue = nullptr;
1682 
1683   /// OutermostConditional - Points to the outermost active
1684   /// conditional control.  This is used so that we know if a
1685   /// temporary should be destroyed conditionally.
1686   ConditionalEvaluation *OutermostConditional = nullptr;
1687 
1688   /// The current lexical scope.
1689   LexicalScope *CurLexicalScope = nullptr;
1690 
1691   /// The current source location that should be used for exception
1692   /// handling code.
1693   SourceLocation CurEHLocation;
1694 
1695   /// BlockByrefInfos - For each __block variable, contains
1696   /// information about the layout of the variable.
1697   llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos;
1698 
1699   /// Used by -fsanitize=nullability-return to determine whether the return
1700   /// value can be checked.
1701   llvm::Value *RetValNullabilityPrecondition = nullptr;
1702 
1703   /// Check if -fsanitize=nullability-return instrumentation is required for
1704   /// this function.
1705   bool requiresReturnValueNullabilityCheck() const {
1706     return RetValNullabilityPrecondition;
1707   }
1708 
1709   /// Used to store precise source locations for return statements by the
1710   /// runtime return value checks.
1711   Address ReturnLocation = Address::invalid();
1712 
1713   /// Check if the return value of this function requires sanitization.
1714   bool requiresReturnValueCheck() const;
1715 
1716   llvm::BasicBlock *TerminateLandingPad = nullptr;
1717   llvm::BasicBlock *TerminateHandler = nullptr;
1718   llvm::BasicBlock *TrapBB = nullptr;
1719 
1720   /// Terminate funclets keyed by parent funclet pad.
1721   llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets;
1722 
1723   /// Largest vector width used in ths function. Will be used to create a
1724   /// function attribute.
1725   unsigned LargestVectorWidth = 0;
1726 
1727   /// True if we need emit the life-time markers.
1728   const bool ShouldEmitLifetimeMarkers;
1729 
1730   /// Add OpenCL kernel arg metadata and the kernel attribute metadata to
1731   /// the function metadata.
1732   void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
1733                                 llvm::Function *Fn);
1734 
1735 public:
1736   CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1737   ~CodeGenFunction();
1738 
1739   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1740   ASTContext &getContext() const { return CGM.getContext(); }
1741   CGDebugInfo *getDebugInfo() {
1742     if (DisableDebugInfo)
1743       return nullptr;
1744     return DebugInfo;
1745   }
1746   void disableDebugInfo() { DisableDebugInfo = true; }
1747   void enableDebugInfo() { DisableDebugInfo = false; }
1748 
1749   bool shouldUseFusedARCCalls() {
1750     return CGM.getCodeGenOpts().OptimizationLevel == 0;
1751   }
1752 
1753   const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1754 
1755   /// Returns a pointer to the function's exception object and selector slot,
1756   /// which is assigned in every landing pad.
1757   Address getExceptionSlot();
1758   Address getEHSelectorSlot();
1759 
1760   /// Returns the contents of the function's exception object and selector
1761   /// slots.
1762   llvm::Value *getExceptionFromSlot();
1763   llvm::Value *getSelectorFromSlot();
1764 
1765   Address getNormalCleanupDestSlot();
1766 
1767   llvm::BasicBlock *getUnreachableBlock() {
1768     if (!UnreachableBlock) {
1769       UnreachableBlock = createBasicBlock("unreachable");
1770       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1771     }
1772     return UnreachableBlock;
1773   }
1774 
1775   llvm::BasicBlock *getInvokeDest() {
1776     if (!EHStack.requiresLandingPad()) return nullptr;
1777     return getInvokeDestImpl();
1778   }
1779 
1780   bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; }
1781 
1782   const TargetInfo &getTarget() const { return Target; }
1783   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1784   const TargetCodeGenInfo &getTargetHooks() const {
1785     return CGM.getTargetCodeGenInfo();
1786   }
1787 
1788   //===--------------------------------------------------------------------===//
1789   //                                  Cleanups
1790   //===--------------------------------------------------------------------===//
1791 
1792   typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty);
1793 
1794   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1795                                         Address arrayEndPointer,
1796                                         QualType elementType,
1797                                         CharUnits elementAlignment,
1798                                         Destroyer *destroyer);
1799   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1800                                       llvm::Value *arrayEnd,
1801                                       QualType elementType,
1802                                       CharUnits elementAlignment,
1803                                       Destroyer *destroyer);
1804 
1805   void pushDestroy(QualType::DestructionKind dtorKind,
1806                    Address addr, QualType type);
1807   void pushEHDestroy(QualType::DestructionKind dtorKind,
1808                      Address addr, QualType type);
1809   void pushDestroy(CleanupKind kind, Address addr, QualType type,
1810                    Destroyer *destroyer, bool useEHCleanupForArray);
1811   void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr,
1812                                    QualType type, Destroyer *destroyer,
1813                                    bool useEHCleanupForArray);
1814   void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1815                                    llvm::Value *CompletePtr,
1816                                    QualType ElementType);
1817   void pushStackRestore(CleanupKind kind, Address SPMem);
1818   void emitDestroy(Address addr, QualType type, Destroyer *destroyer,
1819                    bool useEHCleanupForArray);
1820   llvm::Function *generateDestroyHelper(Address addr, QualType type,
1821                                         Destroyer *destroyer,
1822                                         bool useEHCleanupForArray,
1823                                         const VarDecl *VD);
1824   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1825                         QualType elementType, CharUnits elementAlign,
1826                         Destroyer *destroyer,
1827                         bool checkZeroLength, bool useEHCleanup);
1828 
1829   Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1830 
1831   /// Determines whether an EH cleanup is required to destroy a type
1832   /// with the given destruction kind.
1833   bool needsEHCleanup(QualType::DestructionKind kind) {
1834     switch (kind) {
1835     case QualType::DK_none:
1836       return false;
1837     case QualType::DK_cxx_destructor:
1838     case QualType::DK_objc_weak_lifetime:
1839     case QualType::DK_nontrivial_c_struct:
1840       return getLangOpts().Exceptions;
1841     case QualType::DK_objc_strong_lifetime:
1842       return getLangOpts().Exceptions &&
1843              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1844     }
1845     llvm_unreachable("bad destruction kind");
1846   }
1847 
1848   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
1849     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1850   }
1851 
1852   //===--------------------------------------------------------------------===//
1853   //                                  Objective-C
1854   //===--------------------------------------------------------------------===//
1855 
1856   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1857 
1858   void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
1859 
1860   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1861   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1862                           const ObjCPropertyImplDecl *PID);
1863   void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1864                               const ObjCPropertyImplDecl *propImpl,
1865                               const ObjCMethodDecl *GetterMothodDecl,
1866                               llvm::Constant *AtomicHelperFn);
1867 
1868   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1869                                   ObjCMethodDecl *MD, bool ctor);
1870 
1871   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1872   /// for the given property.
1873   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1874                           const ObjCPropertyImplDecl *PID);
1875   void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1876                               const ObjCPropertyImplDecl *propImpl,
1877                               llvm::Constant *AtomicHelperFn);
1878 
1879   //===--------------------------------------------------------------------===//
1880   //                                  Block Bits
1881   //===--------------------------------------------------------------------===//
1882 
1883   /// Emit block literal.
1884   /// \return an LLVM value which is a pointer to a struct which contains
1885   /// information about the block, including the block invoke function, the
1886   /// captured variables, etc.
1887   llvm::Value *EmitBlockLiteral(const BlockExpr *);
1888   static void destroyBlockInfos(CGBlockInfo *info);
1889 
1890   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1891                                         const CGBlockInfo &Info,
1892                                         const DeclMapTy &ldm,
1893                                         bool IsLambdaConversionToBlock,
1894                                         bool BuildGlobalBlock);
1895 
1896   /// Check if \p T is a C++ class that has a destructor that can throw.
1897   static bool cxxDestructorCanThrow(QualType T);
1898 
1899   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1900   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1901   llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
1902                                              const ObjCPropertyImplDecl *PID);
1903   llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
1904                                              const ObjCPropertyImplDecl *PID);
1905   llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
1906 
1907   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags,
1908                          bool CanThrow);
1909 
1910   class AutoVarEmission;
1911 
1912   void emitByrefStructureInit(const AutoVarEmission &emission);
1913 
1914   /// Enter a cleanup to destroy a __block variable.  Note that this
1915   /// cleanup should be a no-op if the variable hasn't left the stack
1916   /// yet; if a cleanup is required for the variable itself, that needs
1917   /// to be done externally.
1918   ///
1919   /// \param Kind Cleanup kind.
1920   ///
1921   /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block
1922   /// structure that will be passed to _Block_object_dispose. When
1923   /// \p LoadBlockVarAddr is true, the address of the field of the block
1924   /// structure that holds the address of the __block structure.
1925   ///
1926   /// \param Flags The flag that will be passed to _Block_object_dispose.
1927   ///
1928   /// \param LoadBlockVarAddr Indicates whether we need to emit a load from
1929   /// \p Addr to get the address of the __block structure.
1930   void enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags,
1931                          bool LoadBlockVarAddr, bool CanThrow);
1932 
1933   void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum,
1934                                 llvm::Value *ptr);
1935 
1936   Address LoadBlockStruct();
1937   Address GetAddrOfBlockDecl(const VarDecl *var);
1938 
1939   /// BuildBlockByrefAddress - Computes the location of the
1940   /// data in a variable which is declared as __block.
1941   Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V,
1942                                 bool followForward = true);
1943   Address emitBlockByrefAddress(Address baseAddr,
1944                                 const BlockByrefInfo &info,
1945                                 bool followForward,
1946                                 const llvm::Twine &name);
1947 
1948   const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var);
1949 
1950   QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args);
1951 
1952   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1953                     const CGFunctionInfo &FnInfo);
1954 
1955   /// Annotate the function with an attribute that disables TSan checking at
1956   /// runtime.
1957   void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn);
1958 
1959   /// Emit code for the start of a function.
1960   /// \param Loc       The location to be associated with the function.
1961   /// \param StartLoc  The location of the function body.
1962   void StartFunction(GlobalDecl GD,
1963                      QualType RetTy,
1964                      llvm::Function *Fn,
1965                      const CGFunctionInfo &FnInfo,
1966                      const FunctionArgList &Args,
1967                      SourceLocation Loc = SourceLocation(),
1968                      SourceLocation StartLoc = SourceLocation());
1969 
1970   static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor);
1971 
1972   void EmitConstructorBody(FunctionArgList &Args);
1973   void EmitDestructorBody(FunctionArgList &Args);
1974   void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
1975   void EmitFunctionBody(const Stmt *Body);
1976   void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S);
1977 
1978   void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
1979                                   CallArgList &CallArgs);
1980   void EmitLambdaBlockInvokeBody();
1981   void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
1982   void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD);
1983   void EmitLambdaVLACapture(const VariableArrayType *VAT, LValue LV) {
1984     EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
1985   }
1986   void EmitAsanPrologueOrEpilogue(bool Prologue);
1987 
1988   /// Emit the unified return block, trying to avoid its emission when
1989   /// possible.
1990   /// \return The debug location of the user written return statement if the
1991   /// return block is is avoided.
1992   llvm::DebugLoc EmitReturnBlock();
1993 
1994   /// FinishFunction - Complete IR generation of the current function. It is
1995   /// legal to call this function even if there is no current insertion point.
1996   void FinishFunction(SourceLocation EndLoc=SourceLocation());
1997 
1998   void StartThunk(llvm::Function *Fn, GlobalDecl GD,
1999                   const CGFunctionInfo &FnInfo, bool IsUnprototyped);
2000 
2001   void EmitCallAndReturnForThunk(llvm::FunctionCallee Callee,
2002                                  const ThunkInfo *Thunk, bool IsUnprototyped);
2003 
2004   void FinishThunk();
2005 
2006   /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
2007   void EmitMustTailThunk(GlobalDecl GD, llvm::Value *AdjustedThisPtr,
2008                          llvm::FunctionCallee Callee);
2009 
2010   /// Generate a thunk for the given method.
2011   void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
2012                      GlobalDecl GD, const ThunkInfo &Thunk,
2013                      bool IsUnprototyped);
2014 
2015   llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn,
2016                                        const CGFunctionInfo &FnInfo,
2017                                        GlobalDecl GD, const ThunkInfo &Thunk);
2018 
2019   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
2020                         FunctionArgList &Args);
2021 
2022   void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init);
2023 
2024   /// Struct with all information about dynamic [sub]class needed to set vptr.
2025   struct VPtr {
2026     BaseSubobject Base;
2027     const CXXRecordDecl *NearestVBase;
2028     CharUnits OffsetFromNearestVBase;
2029     const CXXRecordDecl *VTableClass;
2030   };
2031 
2032   /// Initialize the vtable pointer of the given subobject.
2033   void InitializeVTablePointer(const VPtr &vptr);
2034 
2035   typedef llvm::SmallVector<VPtr, 4> VPtrsVector;
2036 
2037   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
2038   VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass);
2039 
2040   void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase,
2041                          CharUnits OffsetFromNearestVBase,
2042                          bool BaseIsNonVirtualPrimaryBase,
2043                          const CXXRecordDecl *VTableClass,
2044                          VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs);
2045 
2046   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
2047 
2048   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
2049   /// to by This.
2050   llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy,
2051                             const CXXRecordDecl *VTableClass);
2052 
2053   enum CFITypeCheckKind {
2054     CFITCK_VCall,
2055     CFITCK_NVCall,
2056     CFITCK_DerivedCast,
2057     CFITCK_UnrelatedCast,
2058     CFITCK_ICall,
2059     CFITCK_NVMFCall,
2060     CFITCK_VMFCall,
2061   };
2062 
2063   /// Derived is the presumed address of an object of type T after a
2064   /// cast. If T is a polymorphic class type, emit a check that the virtual
2065   /// table for Derived belongs to a class derived from T.
2066   void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived,
2067                                  bool MayBeNull, CFITypeCheckKind TCK,
2068                                  SourceLocation Loc);
2069 
2070   /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
2071   /// If vptr CFI is enabled, emit a check that VTable is valid.
2072   void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable,
2073                                  CFITypeCheckKind TCK, SourceLocation Loc);
2074 
2075   /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
2076   /// RD using llvm.type.test.
2077   void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable,
2078                           CFITypeCheckKind TCK, SourceLocation Loc);
2079 
2080   /// If whole-program virtual table optimization is enabled, emit an assumption
2081   /// that VTable is a member of RD's type identifier. Or, if vptr CFI is
2082   /// enabled, emit a check that VTable is a member of RD's type identifier.
2083   void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
2084                                     llvm::Value *VTable, SourceLocation Loc);
2085 
2086   /// Returns whether we should perform a type checked load when loading a
2087   /// virtual function for virtual calls to members of RD. This is generally
2088   /// true when both vcall CFI and whole-program-vtables are enabled.
2089   bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD);
2090 
2091   /// Emit a type checked load from the given vtable.
2092   llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable,
2093                                          uint64_t VTableByteOffset);
2094 
2095   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
2096   /// given phase of destruction for a destructor.  The end result
2097   /// should call destructors on members and base classes in reverse
2098   /// order of their construction.
2099   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
2100 
2101   /// ShouldInstrumentFunction - Return true if the current function should be
2102   /// instrumented with __cyg_profile_func_* calls
2103   bool ShouldInstrumentFunction();
2104 
2105   /// ShouldXRayInstrument - Return true if the current function should be
2106   /// instrumented with XRay nop sleds.
2107   bool ShouldXRayInstrumentFunction() const;
2108 
2109   /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit
2110   /// XRay custom event handling calls.
2111   bool AlwaysEmitXRayCustomEvents() const;
2112 
2113   /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit
2114   /// XRay typed event handling calls.
2115   bool AlwaysEmitXRayTypedEvents() const;
2116 
2117   /// Encode an address into a form suitable for use in a function prologue.
2118   llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F,
2119                                              llvm::Constant *Addr);
2120 
2121   /// Decode an address used in a function prologue, encoded by \c
2122   /// EncodeAddrForUseInPrologue.
2123   llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F,
2124                                         llvm::Value *EncodedAddr);
2125 
2126   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
2127   /// arguments for the given function. This is also responsible for naming the
2128   /// LLVM function arguments.
2129   void EmitFunctionProlog(const CGFunctionInfo &FI,
2130                           llvm::Function *Fn,
2131                           const FunctionArgList &Args);
2132 
2133   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
2134   /// given temporary.
2135   void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
2136                           SourceLocation EndLoc);
2137 
2138   /// Emit a test that checks if the return value \p RV is nonnull.
2139   void EmitReturnValueCheck(llvm::Value *RV);
2140 
2141   /// EmitStartEHSpec - Emit the start of the exception spec.
2142   void EmitStartEHSpec(const Decl *D);
2143 
2144   /// EmitEndEHSpec - Emit the end of the exception spec.
2145   void EmitEndEHSpec(const Decl *D);
2146 
2147   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
2148   llvm::BasicBlock *getTerminateLandingPad();
2149 
2150   /// getTerminateLandingPad - Return a cleanup funclet that just calls
2151   /// terminate.
2152   llvm::BasicBlock *getTerminateFunclet();
2153 
2154   /// getTerminateHandler - Return a handler (not a landing pad, just
2155   /// a catch handler) that just calls terminate.  This is used when
2156   /// a terminate scope encloses a try.
2157   llvm::BasicBlock *getTerminateHandler();
2158 
2159   llvm::Type *ConvertTypeForMem(QualType T);
2160   llvm::Type *ConvertType(QualType T);
2161   llvm::Type *ConvertType(const TypeDecl *T) {
2162     return ConvertType(getContext().getTypeDeclType(T));
2163   }
2164 
2165   /// LoadObjCSelf - Load the value of self. This function is only valid while
2166   /// generating code for an Objective-C method.
2167   llvm::Value *LoadObjCSelf();
2168 
2169   /// TypeOfSelfObject - Return type of object that this self represents.
2170   QualType TypeOfSelfObject();
2171 
2172   /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T.
2173   static TypeEvaluationKind getEvaluationKind(QualType T);
2174 
2175   static bool hasScalarEvaluationKind(QualType T) {
2176     return getEvaluationKind(T) == TEK_Scalar;
2177   }
2178 
2179   static bool hasAggregateEvaluationKind(QualType T) {
2180     return getEvaluationKind(T) == TEK_Aggregate;
2181   }
2182 
2183   /// createBasicBlock - Create an LLVM basic block.
2184   llvm::BasicBlock *createBasicBlock(const Twine &name = "",
2185                                      llvm::Function *parent = nullptr,
2186                                      llvm::BasicBlock *before = nullptr) {
2187     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
2188   }
2189 
2190   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
2191   /// label maps to.
2192   JumpDest getJumpDestForLabel(const LabelDecl *S);
2193 
2194   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
2195   /// another basic block, simplify it. This assumes that no other code could
2196   /// potentially reference the basic block.
2197   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
2198 
2199   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
2200   /// adding a fall-through branch from the current insert block if
2201   /// necessary. It is legal to call this function even if there is no current
2202   /// insertion point.
2203   ///
2204   /// IsFinished - If true, indicates that the caller has finished emitting
2205   /// branches to the given block and does not expect to emit code into it. This
2206   /// means the block can be ignored if it is unreachable.
2207   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
2208 
2209   /// EmitBlockAfterUses - Emit the given block somewhere hopefully
2210   /// near its uses, and leave the insertion point in it.
2211   void EmitBlockAfterUses(llvm::BasicBlock *BB);
2212 
2213   /// EmitBranch - Emit a branch to the specified basic block from the current
2214   /// insert block, taking care to avoid creation of branches from dummy
2215   /// blocks. It is legal to call this function even if there is no current
2216   /// insertion point.
2217   ///
2218   /// This function clears the current insertion point. The caller should follow
2219   /// calls to this function with calls to Emit*Block prior to generation new
2220   /// code.
2221   void EmitBranch(llvm::BasicBlock *Block);
2222 
2223   /// HaveInsertPoint - True if an insertion point is defined. If not, this
2224   /// indicates that the current code being emitted is unreachable.
2225   bool HaveInsertPoint() const {
2226     return Builder.GetInsertBlock() != nullptr;
2227   }
2228 
2229   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
2230   /// emitted IR has a place to go. Note that by definition, if this function
2231   /// creates a block then that block is unreachable; callers may do better to
2232   /// detect when no insertion point is defined and simply skip IR generation.
2233   void EnsureInsertPoint() {
2234     if (!HaveInsertPoint())
2235       EmitBlock(createBasicBlock());
2236   }
2237 
2238   /// ErrorUnsupported - Print out an error that codegen doesn't support the
2239   /// specified stmt yet.
2240   void ErrorUnsupported(const Stmt *S, const char *Type);
2241 
2242   //===--------------------------------------------------------------------===//
2243   //                                  Helpers
2244   //===--------------------------------------------------------------------===//
2245 
2246   LValue MakeAddrLValue(Address Addr, QualType T,
2247                         AlignmentSource Source = AlignmentSource::Type) {
2248     return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
2249                             CGM.getTBAAAccessInfo(T));
2250   }
2251 
2252   LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo,
2253                         TBAAAccessInfo TBAAInfo) {
2254     return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo);
2255   }
2256 
2257   LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
2258                         AlignmentSource Source = AlignmentSource::Type) {
2259     return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
2260                             LValueBaseInfo(Source), CGM.getTBAAAccessInfo(T));
2261   }
2262 
2263   LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
2264                         LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) {
2265     return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
2266                             BaseInfo, TBAAInfo);
2267   }
2268 
2269   LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T);
2270   LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T);
2271 
2272   Address EmitLoadOfReference(LValue RefLVal,
2273                               LValueBaseInfo *PointeeBaseInfo = nullptr,
2274                               TBAAAccessInfo *PointeeTBAAInfo = nullptr);
2275   LValue EmitLoadOfReferenceLValue(LValue RefLVal);
2276   LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy,
2277                                    AlignmentSource Source =
2278                                        AlignmentSource::Type) {
2279     LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source),
2280                                     CGM.getTBAAAccessInfo(RefTy));
2281     return EmitLoadOfReferenceLValue(RefLVal);
2282   }
2283 
2284   Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy,
2285                             LValueBaseInfo *BaseInfo = nullptr,
2286                             TBAAAccessInfo *TBAAInfo = nullptr);
2287   LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy);
2288 
2289   /// CreateTempAlloca - This creates an alloca and inserts it into the entry
2290   /// block if \p ArraySize is nullptr, otherwise inserts it at the current
2291   /// insertion point of the builder. The caller is responsible for setting an
2292   /// appropriate alignment on
2293   /// the alloca.
2294   ///
2295   /// \p ArraySize is the number of array elements to be allocated if it
2296   ///    is not nullptr.
2297   ///
2298   /// LangAS::Default is the address space of pointers to local variables and
2299   /// temporaries, as exposed in the source language. In certain
2300   /// configurations, this is not the same as the alloca address space, and a
2301   /// cast is needed to lift the pointer from the alloca AS into
2302   /// LangAS::Default. This can happen when the target uses a restricted
2303   /// address space for the stack but the source language requires
2304   /// LangAS::Default to be a generic address space. The latter condition is
2305   /// common for most programming languages; OpenCL is an exception in that
2306   /// LangAS::Default is the private address space, which naturally maps
2307   /// to the stack.
2308   ///
2309   /// Because the address of a temporary is often exposed to the program in
2310   /// various ways, this function will perform the cast. The original alloca
2311   /// instruction is returned through \p Alloca if it is not nullptr.
2312   ///
2313   /// The cast is not performaed in CreateTempAllocaWithoutCast. This is
2314   /// more efficient if the caller knows that the address will not be exposed.
2315   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp",
2316                                      llvm::Value *ArraySize = nullptr);
2317   Address CreateTempAlloca(llvm::Type *Ty, CharUnits align,
2318                            const Twine &Name = "tmp",
2319                            llvm::Value *ArraySize = nullptr,
2320                            Address *Alloca = nullptr);
2321   Address CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align,
2322                                       const Twine &Name = "tmp",
2323                                       llvm::Value *ArraySize = nullptr);
2324 
2325   /// CreateDefaultAlignedTempAlloca - This creates an alloca with the
2326   /// default ABI alignment of the given LLVM type.
2327   ///
2328   /// IMPORTANT NOTE: This is *not* generally the right alignment for
2329   /// any given AST type that happens to have been lowered to the
2330   /// given IR type.  This should only ever be used for function-local,
2331   /// IR-driven manipulations like saving and restoring a value.  Do
2332   /// not hand this address off to arbitrary IRGen routines, and especially
2333   /// do not pass it as an argument to a function that might expect a
2334   /// properly ABI-aligned value.
2335   Address CreateDefaultAlignTempAlloca(llvm::Type *Ty,
2336                                        const Twine &Name = "tmp");
2337 
2338   /// InitTempAlloca - Provide an initial value for the given alloca which
2339   /// will be observable at all locations in the function.
2340   ///
2341   /// The address should be something that was returned from one of
2342   /// the CreateTempAlloca or CreateMemTemp routines, and the
2343   /// initializer must be valid in the entry block (i.e. it must
2344   /// either be a constant or an argument value).
2345   void InitTempAlloca(Address Alloca, llvm::Value *Value);
2346 
2347   /// CreateIRTemp - Create a temporary IR object of the given type, with
2348   /// appropriate alignment. This routine should only be used when an temporary
2349   /// value needs to be stored into an alloca (for example, to avoid explicit
2350   /// PHI construction), but the type is the IR type, not the type appropriate
2351   /// for storing in memory.
2352   ///
2353   /// That is, this is exactly equivalent to CreateMemTemp, but calling
2354   /// ConvertType instead of ConvertTypeForMem.
2355   Address CreateIRTemp(QualType T, const Twine &Name = "tmp");
2356 
2357   /// CreateMemTemp - Create a temporary memory object of the given type, with
2358   /// appropriate alignmen and cast it to the default address space. Returns
2359   /// the original alloca instruction by \p Alloca if it is not nullptr.
2360   Address CreateMemTemp(QualType T, const Twine &Name = "tmp",
2361                         Address *Alloca = nullptr);
2362   Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp",
2363                         Address *Alloca = nullptr);
2364 
2365   /// CreateMemTemp - Create a temporary memory object of the given type, with
2366   /// appropriate alignmen without casting it to the default address space.
2367   Address CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp");
2368   Address CreateMemTempWithoutCast(QualType T, CharUnits Align,
2369                                    const Twine &Name = "tmp");
2370 
2371   /// CreateAggTemp - Create a temporary memory object for the given
2372   /// aggregate type.
2373   AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp",
2374                              Address *Alloca = nullptr) {
2375     return AggValueSlot::forAddr(CreateMemTemp(T, Name, Alloca),
2376                                  T.getQualifiers(),
2377                                  AggValueSlot::IsNotDestructed,
2378                                  AggValueSlot::DoesNotNeedGCBarriers,
2379                                  AggValueSlot::IsNotAliased,
2380                                  AggValueSlot::DoesNotOverlap);
2381   }
2382 
2383   /// Emit a cast to void* in the appropriate address space.
2384   llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
2385 
2386   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
2387   /// expression and compare the result against zero, returning an Int1Ty value.
2388   llvm::Value *EvaluateExprAsBool(const Expr *E);
2389 
2390   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
2391   void EmitIgnoredExpr(const Expr *E);
2392 
2393   /// EmitAnyExpr - Emit code to compute the specified expression which can have
2394   /// any type.  The result is returned as an RValue struct.  If this is an
2395   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
2396   /// the result should be returned.
2397   ///
2398   /// \param ignoreResult True if the resulting value isn't used.
2399   RValue EmitAnyExpr(const Expr *E,
2400                      AggValueSlot aggSlot = AggValueSlot::ignored(),
2401                      bool ignoreResult = false);
2402 
2403   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
2404   // or the value of the expression, depending on how va_list is defined.
2405   Address EmitVAListRef(const Expr *E);
2406 
2407   /// Emit a "reference" to a __builtin_ms_va_list; this is
2408   /// always the value of the expression, because a __builtin_ms_va_list is a
2409   /// pointer to a char.
2410   Address EmitMSVAListRef(const Expr *E);
2411 
2412   /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will
2413   /// always be accessible even if no aggregate location is provided.
2414   RValue EmitAnyExprToTemp(const Expr *E);
2415 
2416   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
2417   /// arbitrary expression into the given memory location.
2418   void EmitAnyExprToMem(const Expr *E, Address Location,
2419                         Qualifiers Quals, bool IsInitializer);
2420 
2421   void EmitAnyExprToExn(const Expr *E, Address Addr);
2422 
2423   /// EmitExprAsInit - Emits the code necessary to initialize a
2424   /// location in memory with the given initializer.
2425   void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2426                       bool capturedByInit);
2427 
2428   /// hasVolatileMember - returns true if aggregate type has a volatile
2429   /// member.
2430   bool hasVolatileMember(QualType T) {
2431     if (const RecordType *RT = T->getAs<RecordType>()) {
2432       const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
2433       return RD->hasVolatileMember();
2434     }
2435     return false;
2436   }
2437 
2438   /// Determine whether a return value slot may overlap some other object.
2439   AggValueSlot::Overlap_t getOverlapForReturnValue() {
2440     // FIXME: Assuming no overlap here breaks guaranteed copy elision for base
2441     // class subobjects. These cases may need to be revisited depending on the
2442     // resolution of the relevant core issue.
2443     return AggValueSlot::DoesNotOverlap;
2444   }
2445 
2446   /// Determine whether a field initialization may overlap some other object.
2447   AggValueSlot::Overlap_t getOverlapForFieldInit(const FieldDecl *FD);
2448 
2449   /// Determine whether a base class initialization may overlap some other
2450   /// object.
2451   AggValueSlot::Overlap_t getOverlapForBaseInit(const CXXRecordDecl *RD,
2452                                                 const CXXRecordDecl *BaseRD,
2453                                                 bool IsVirtual);
2454 
2455   /// Emit an aggregate assignment.
2456   void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) {
2457     bool IsVolatile = hasVolatileMember(EltTy);
2458     EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile);
2459   }
2460 
2461   void EmitAggregateCopyCtor(LValue Dest, LValue Src,
2462                              AggValueSlot::Overlap_t MayOverlap) {
2463     EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap);
2464   }
2465 
2466   /// EmitAggregateCopy - Emit an aggregate copy.
2467   ///
2468   /// \param isVolatile \c true iff either the source or the destination is
2469   ///        volatile.
2470   /// \param MayOverlap Whether the tail padding of the destination might be
2471   ///        occupied by some other object. More efficient code can often be
2472   ///        generated if not.
2473   void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy,
2474                          AggValueSlot::Overlap_t MayOverlap,
2475                          bool isVolatile = false);
2476 
2477   /// GetAddrOfLocalVar - Return the address of a local variable.
2478   Address GetAddrOfLocalVar(const VarDecl *VD) {
2479     auto it = LocalDeclMap.find(VD);
2480     assert(it != LocalDeclMap.end() &&
2481            "Invalid argument to GetAddrOfLocalVar(), no decl!");
2482     return it->second;
2483   }
2484 
2485   /// Given an opaque value expression, return its LValue mapping if it exists,
2486   /// otherwise create one.
2487   LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e);
2488 
2489   /// Given an opaque value expression, return its RValue mapping if it exists,
2490   /// otherwise create one.
2491   RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e);
2492 
2493   /// Get the index of the current ArrayInitLoopExpr, if any.
2494   llvm::Value *getArrayInitIndex() { return ArrayInitIndex; }
2495 
2496   /// getAccessedFieldNo - Given an encoded value and a result number, return
2497   /// the input field number being accessed.
2498   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
2499 
2500   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
2501   llvm::BasicBlock *GetIndirectGotoBlock();
2502 
2503   /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts.
2504   static bool IsWrappedCXXThis(const Expr *E);
2505 
2506   /// EmitNullInitialization - Generate code to set a value of the given type to
2507   /// null, If the type contains data member pointers, they will be initialized
2508   /// to -1 in accordance with the Itanium C++ ABI.
2509   void EmitNullInitialization(Address DestPtr, QualType Ty);
2510 
2511   /// Emits a call to an LLVM variable-argument intrinsic, either
2512   /// \c llvm.va_start or \c llvm.va_end.
2513   /// \param ArgValue A reference to the \c va_list as emitted by either
2514   /// \c EmitVAListRef or \c EmitMSVAListRef.
2515   /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise,
2516   /// calls \c llvm.va_end.
2517   llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart);
2518 
2519   /// Generate code to get an argument from the passed in pointer
2520   /// and update it accordingly.
2521   /// \param VE The \c VAArgExpr for which to generate code.
2522   /// \param VAListAddr Receives a reference to the \c va_list as emitted by
2523   /// either \c EmitVAListRef or \c EmitMSVAListRef.
2524   /// \returns A pointer to the argument.
2525   // FIXME: We should be able to get rid of this method and use the va_arg
2526   // instruction in LLVM instead once it works well enough.
2527   Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr);
2528 
2529   /// emitArrayLength - Compute the length of an array, even if it's a
2530   /// VLA, and drill down to the base element type.
2531   llvm::Value *emitArrayLength(const ArrayType *arrayType,
2532                                QualType &baseType,
2533                                Address &addr);
2534 
2535   /// EmitVLASize - Capture all the sizes for the VLA expressions in
2536   /// the given variably-modified type and store them in the VLASizeMap.
2537   ///
2538   /// This function can be called with a null (unreachable) insert point.
2539   void EmitVariablyModifiedType(QualType Ty);
2540 
2541   struct VlaSizePair {
2542     llvm::Value *NumElts;
2543     QualType Type;
2544 
2545     VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {}
2546   };
2547 
2548   /// Return the number of elements for a single dimension
2549   /// for the given array type.
2550   VlaSizePair getVLAElements1D(const VariableArrayType *vla);
2551   VlaSizePair getVLAElements1D(QualType vla);
2552 
2553   /// Returns an LLVM value that corresponds to the size,
2554   /// in non-variably-sized elements, of a variable length array type,
2555   /// plus that largest non-variably-sized element type.  Assumes that
2556   /// the type has already been emitted with EmitVariablyModifiedType.
2557   VlaSizePair getVLASize(const VariableArrayType *vla);
2558   VlaSizePair getVLASize(QualType vla);
2559 
2560   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
2561   /// generating code for an C++ member function.
2562   llvm::Value *LoadCXXThis() {
2563     assert(CXXThisValue && "no 'this' value for this function");
2564     return CXXThisValue;
2565   }
2566   Address LoadCXXThisAddress();
2567 
2568   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
2569   /// virtual bases.
2570   // FIXME: Every place that calls LoadCXXVTT is something
2571   // that needs to be abstracted properly.
2572   llvm::Value *LoadCXXVTT() {
2573     assert(CXXStructorImplicitParamValue && "no VTT value for this function");
2574     return CXXStructorImplicitParamValue;
2575   }
2576 
2577   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
2578   /// complete class to the given direct base.
2579   Address
2580   GetAddressOfDirectBaseInCompleteClass(Address Value,
2581                                         const CXXRecordDecl *Derived,
2582                                         const CXXRecordDecl *Base,
2583                                         bool BaseIsVirtual);
2584 
2585   static bool ShouldNullCheckClassCastValue(const CastExpr *Cast);
2586 
2587   /// GetAddressOfBaseClass - This function will add the necessary delta to the
2588   /// load of 'this' and returns address of the base class.
2589   Address GetAddressOfBaseClass(Address Value,
2590                                 const CXXRecordDecl *Derived,
2591                                 CastExpr::path_const_iterator PathBegin,
2592                                 CastExpr::path_const_iterator PathEnd,
2593                                 bool NullCheckValue, SourceLocation Loc);
2594 
2595   Address GetAddressOfDerivedClass(Address Value,
2596                                    const CXXRecordDecl *Derived,
2597                                    CastExpr::path_const_iterator PathBegin,
2598                                    CastExpr::path_const_iterator PathEnd,
2599                                    bool NullCheckValue);
2600 
2601   /// GetVTTParameter - Return the VTT parameter that should be passed to a
2602   /// base constructor/destructor with virtual bases.
2603   /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
2604   /// to ItaniumCXXABI.cpp together with all the references to VTT.
2605   llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
2606                                bool Delegating);
2607 
2608   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
2609                                       CXXCtorType CtorType,
2610                                       const FunctionArgList &Args,
2611                                       SourceLocation Loc);
2612   // It's important not to confuse this and the previous function. Delegating
2613   // constructors are the C++0x feature. The constructor delegate optimization
2614   // is used to reduce duplication in the base and complete consturctors where
2615   // they are substantially the same.
2616   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2617                                         const FunctionArgList &Args);
2618 
2619   /// Emit a call to an inheriting constructor (that is, one that invokes a
2620   /// constructor inherited from a base class) by inlining its definition. This
2621   /// is necessary if the ABI does not support forwarding the arguments to the
2622   /// base class constructor (because they're variadic or similar).
2623   void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2624                                                CXXCtorType CtorType,
2625                                                bool ForVirtualBase,
2626                                                bool Delegating,
2627                                                CallArgList &Args);
2628 
2629   /// Emit a call to a constructor inherited from a base class, passing the
2630   /// current constructor's arguments along unmodified (without even making
2631   /// a copy).
2632   void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D,
2633                                        bool ForVirtualBase, Address This,
2634                                        bool InheritedFromVBase,
2635                                        const CXXInheritedCtorInitExpr *E);
2636 
2637   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2638                               bool ForVirtualBase, bool Delegating,
2639                               AggValueSlot ThisAVS, const CXXConstructExpr *E);
2640 
2641   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2642                               bool ForVirtualBase, bool Delegating,
2643                               Address This, CallArgList &Args,
2644                               AggValueSlot::Overlap_t Overlap,
2645                               SourceLocation Loc, bool NewPointerIsChecked);
2646 
2647   /// Emit assumption load for all bases. Requires to be be called only on
2648   /// most-derived class and not under construction of the object.
2649   void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This);
2650 
2651   /// Emit assumption that vptr load == global vtable.
2652   void EmitVTableAssumptionLoad(const VPtr &vptr, Address This);
2653 
2654   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
2655                                       Address This, Address Src,
2656                                       const CXXConstructExpr *E);
2657 
2658   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2659                                   const ArrayType *ArrayTy,
2660                                   Address ArrayPtr,
2661                                   const CXXConstructExpr *E,
2662                                   bool NewPointerIsChecked,
2663                                   bool ZeroInitialization = false);
2664 
2665   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2666                                   llvm::Value *NumElements,
2667                                   Address ArrayPtr,
2668                                   const CXXConstructExpr *E,
2669                                   bool NewPointerIsChecked,
2670                                   bool ZeroInitialization = false);
2671 
2672   static Destroyer destroyCXXObject;
2673 
2674   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
2675                              bool ForVirtualBase, bool Delegating, Address This,
2676                              QualType ThisTy);
2677 
2678   void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
2679                                llvm::Type *ElementTy, Address NewPtr,
2680                                llvm::Value *NumElements,
2681                                llvm::Value *AllocSizeWithoutCookie);
2682 
2683   void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
2684                         Address Ptr);
2685 
2686   llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr);
2687   void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr);
2688 
2689   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
2690   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
2691 
2692   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
2693                       QualType DeleteTy, llvm::Value *NumElements = nullptr,
2694                       CharUnits CookieSize = CharUnits());
2695 
2696   RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
2697                                   const CallExpr *TheCallExpr, bool IsDelete);
2698 
2699   llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E);
2700   llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE);
2701   Address EmitCXXUuidofExpr(const CXXUuidofExpr *E);
2702 
2703   /// Situations in which we might emit a check for the suitability of a
2704   /// pointer or glvalue. Needs to be kept in sync with ubsan_handlers.cpp in
2705   /// compiler-rt.
2706   enum TypeCheckKind {
2707     /// Checking the operand of a load. Must be suitably sized and aligned.
2708     TCK_Load,
2709     /// Checking the destination of a store. Must be suitably sized and aligned.
2710     TCK_Store,
2711     /// Checking the bound value in a reference binding. Must be suitably sized
2712     /// and aligned, but is not required to refer to an object (until the
2713     /// reference is used), per core issue 453.
2714     TCK_ReferenceBinding,
2715     /// Checking the object expression in a non-static data member access. Must
2716     /// be an object within its lifetime.
2717     TCK_MemberAccess,
2718     /// Checking the 'this' pointer for a call to a non-static member function.
2719     /// Must be an object within its lifetime.
2720     TCK_MemberCall,
2721     /// Checking the 'this' pointer for a constructor call.
2722     TCK_ConstructorCall,
2723     /// Checking the operand of a static_cast to a derived pointer type. Must be
2724     /// null or an object within its lifetime.
2725     TCK_DowncastPointer,
2726     /// Checking the operand of a static_cast to a derived reference type. Must
2727     /// be an object within its lifetime.
2728     TCK_DowncastReference,
2729     /// Checking the operand of a cast to a base object. Must be suitably sized
2730     /// and aligned.
2731     TCK_Upcast,
2732     /// Checking the operand of a cast to a virtual base object. Must be an
2733     /// object within its lifetime.
2734     TCK_UpcastToVirtualBase,
2735     /// Checking the value assigned to a _Nonnull pointer. Must not be null.
2736     TCK_NonnullAssign,
2737     /// Checking the operand of a dynamic_cast or a typeid expression.  Must be
2738     /// null or an object within its lifetime.
2739     TCK_DynamicOperation
2740   };
2741 
2742   /// Determine whether the pointer type check \p TCK permits null pointers.
2743   static bool isNullPointerAllowed(TypeCheckKind TCK);
2744 
2745   /// Determine whether the pointer type check \p TCK requires a vptr check.
2746   static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty);
2747 
2748   /// Whether any type-checking sanitizers are enabled. If \c false,
2749   /// calls to EmitTypeCheck can be skipped.
2750   bool sanitizePerformTypeCheck() const;
2751 
2752   /// Emit a check that \p V is the address of storage of the
2753   /// appropriate size and alignment for an object of type \p Type
2754   /// (or if ArraySize is provided, for an array of that bound).
2755   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
2756                      QualType Type, CharUnits Alignment = CharUnits::Zero(),
2757                      SanitizerSet SkippedChecks = SanitizerSet(),
2758                      llvm::Value *ArraySize = nullptr);
2759 
2760   /// Emit a check that \p Base points into an array object, which
2761   /// we can access at index \p Index. \p Accessed should be \c false if we
2762   /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
2763   void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
2764                        QualType IndexType, bool Accessed);
2765 
2766   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2767                                        bool isInc, bool isPre);
2768   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
2769                                          bool isInc, bool isPre);
2770 
2771   /// Converts Location to a DebugLoc, if debug information is enabled.
2772   llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location);
2773 
2774   /// Get the record field index as represented in debug info.
2775   unsigned getDebugInfoFIndex(const RecordDecl *Rec, unsigned FieldIndex);
2776 
2777 
2778   //===--------------------------------------------------------------------===//
2779   //                            Declaration Emission
2780   //===--------------------------------------------------------------------===//
2781 
2782   /// EmitDecl - Emit a declaration.
2783   ///
2784   /// This function can be called with a null (unreachable) insert point.
2785   void EmitDecl(const Decl &D);
2786 
2787   /// EmitVarDecl - Emit a local variable declaration.
2788   ///
2789   /// This function can be called with a null (unreachable) insert point.
2790   void EmitVarDecl(const VarDecl &D);
2791 
2792   void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2793                       bool capturedByInit);
2794 
2795   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
2796                              llvm::Value *Address);
2797 
2798   /// Determine whether the given initializer is trivial in the sense
2799   /// that it requires no code to be generated.
2800   bool isTrivialInitializer(const Expr *Init);
2801 
2802   /// EmitAutoVarDecl - Emit an auto variable declaration.
2803   ///
2804   /// This function can be called with a null (unreachable) insert point.
2805   void EmitAutoVarDecl(const VarDecl &D);
2806 
2807   class AutoVarEmission {
2808     friend class CodeGenFunction;
2809 
2810     const VarDecl *Variable;
2811 
2812     /// The address of the alloca for languages with explicit address space
2813     /// (e.g. OpenCL) or alloca casted to generic pointer for address space
2814     /// agnostic languages (e.g. C++). Invalid if the variable was emitted
2815     /// as a global constant.
2816     Address Addr;
2817 
2818     llvm::Value *NRVOFlag;
2819 
2820     /// True if the variable is a __block variable that is captured by an
2821     /// escaping block.
2822     bool IsEscapingByRef;
2823 
2824     /// True if the variable is of aggregate type and has a constant
2825     /// initializer.
2826     bool IsConstantAggregate;
2827 
2828     /// Non-null if we should use lifetime annotations.
2829     llvm::Value *SizeForLifetimeMarkers;
2830 
2831     /// Address with original alloca instruction. Invalid if the variable was
2832     /// emitted as a global constant.
2833     Address AllocaAddr;
2834 
2835     struct Invalid {};
2836     AutoVarEmission(Invalid)
2837         : Variable(nullptr), Addr(Address::invalid()),
2838           AllocaAddr(Address::invalid()) {}
2839 
2840     AutoVarEmission(const VarDecl &variable)
2841         : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr),
2842           IsEscapingByRef(false), IsConstantAggregate(false),
2843           SizeForLifetimeMarkers(nullptr), AllocaAddr(Address::invalid()) {}
2844 
2845     bool wasEmittedAsGlobal() const { return !Addr.isValid(); }
2846 
2847   public:
2848     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
2849 
2850     bool useLifetimeMarkers() const {
2851       return SizeForLifetimeMarkers != nullptr;
2852     }
2853     llvm::Value *getSizeForLifetimeMarkers() const {
2854       assert(useLifetimeMarkers());
2855       return SizeForLifetimeMarkers;
2856     }
2857 
2858     /// Returns the raw, allocated address, which is not necessarily
2859     /// the address of the object itself. It is casted to default
2860     /// address space for address space agnostic languages.
2861     Address getAllocatedAddress() const {
2862       return Addr;
2863     }
2864 
2865     /// Returns the address for the original alloca instruction.
2866     Address getOriginalAllocatedAddress() const { return AllocaAddr; }
2867 
2868     /// Returns the address of the object within this declaration.
2869     /// Note that this does not chase the forwarding pointer for
2870     /// __block decls.
2871     Address getObjectAddress(CodeGenFunction &CGF) const {
2872       if (!IsEscapingByRef) return Addr;
2873 
2874       return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false);
2875     }
2876   };
2877   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
2878   void EmitAutoVarInit(const AutoVarEmission &emission);
2879   void EmitAutoVarCleanups(const AutoVarEmission &emission);
2880   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
2881                               QualType::DestructionKind dtorKind);
2882 
2883   /// Emits the alloca and debug information for the size expressions for each
2884   /// dimension of an array. It registers the association of its (1-dimensional)
2885   /// QualTypes and size expression's debug node, so that CGDebugInfo can
2886   /// reference this node when creating the DISubrange object to describe the
2887   /// array types.
2888   void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI,
2889                                               const VarDecl &D,
2890                                               bool EmitDebugInfo);
2891 
2892   void EmitStaticVarDecl(const VarDecl &D,
2893                          llvm::GlobalValue::LinkageTypes Linkage);
2894 
2895   class ParamValue {
2896     llvm::Value *Value;
2897     unsigned Alignment;
2898     ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {}
2899   public:
2900     static ParamValue forDirect(llvm::Value *value) {
2901       return ParamValue(value, 0);
2902     }
2903     static ParamValue forIndirect(Address addr) {
2904       assert(!addr.getAlignment().isZero());
2905       return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity());
2906     }
2907 
2908     bool isIndirect() const { return Alignment != 0; }
2909     llvm::Value *getAnyValue() const { return Value; }
2910 
2911     llvm::Value *getDirectValue() const {
2912       assert(!isIndirect());
2913       return Value;
2914     }
2915 
2916     Address getIndirectAddress() const {
2917       assert(isIndirect());
2918       return Address(Value, CharUnits::fromQuantity(Alignment));
2919     }
2920   };
2921 
2922   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
2923   void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo);
2924 
2925   /// protectFromPeepholes - Protect a value that we're intending to
2926   /// store to the side, but which will probably be used later, from
2927   /// aggressive peepholing optimizations that might delete it.
2928   ///
2929   /// Pass the result to unprotectFromPeepholes to declare that
2930   /// protection is no longer required.
2931   ///
2932   /// There's no particular reason why this shouldn't apply to
2933   /// l-values, it's just that no existing peepholes work on pointers.
2934   PeepholeProtection protectFromPeepholes(RValue rvalue);
2935   void unprotectFromPeepholes(PeepholeProtection protection);
2936 
2937   void emitAlignmentAssumptionCheck(llvm::Value *Ptr, QualType Ty,
2938                                     SourceLocation Loc,
2939                                     SourceLocation AssumptionLoc,
2940                                     llvm::Value *Alignment,
2941                                     llvm::Value *OffsetValue,
2942                                     llvm::Value *TheCheck,
2943                                     llvm::Instruction *Assumption);
2944 
2945   void emitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty,
2946                                SourceLocation Loc, SourceLocation AssumptionLoc,
2947                                llvm::Value *Alignment,
2948                                llvm::Value *OffsetValue = nullptr);
2949 
2950   void emitAlignmentAssumption(llvm::Value *PtrValue, const Expr *E,
2951                                SourceLocation AssumptionLoc,
2952                                llvm::Value *Alignment,
2953                                llvm::Value *OffsetValue = nullptr);
2954 
2955   //===--------------------------------------------------------------------===//
2956   //                             Statement Emission
2957   //===--------------------------------------------------------------------===//
2958 
2959   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
2960   void EmitStopPoint(const Stmt *S);
2961 
2962   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
2963   /// this function even if there is no current insertion point.
2964   ///
2965   /// This function may clear the current insertion point; callers should use
2966   /// EnsureInsertPoint if they wish to subsequently generate code without first
2967   /// calling EmitBlock, EmitBranch, or EmitStmt.
2968   void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None);
2969 
2970   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
2971   /// necessarily require an insertion point or debug information; typically
2972   /// because the statement amounts to a jump or a container of other
2973   /// statements.
2974   ///
2975   /// \return True if the statement was handled.
2976   bool EmitSimpleStmt(const Stmt *S);
2977 
2978   Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
2979                            AggValueSlot AVS = AggValueSlot::ignored());
2980   Address EmitCompoundStmtWithoutScope(const CompoundStmt &S,
2981                                        bool GetLast = false,
2982                                        AggValueSlot AVS =
2983                                                 AggValueSlot::ignored());
2984 
2985   /// EmitLabel - Emit the block for the given label. It is legal to call this
2986   /// function even if there is no current insertion point.
2987   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
2988 
2989   void EmitLabelStmt(const LabelStmt &S);
2990   void EmitAttributedStmt(const AttributedStmt &S);
2991   void EmitGotoStmt(const GotoStmt &S);
2992   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
2993   void EmitIfStmt(const IfStmt &S);
2994 
2995   void EmitWhileStmt(const WhileStmt &S,
2996                      ArrayRef<const Attr *> Attrs = None);
2997   void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None);
2998   void EmitForStmt(const ForStmt &S,
2999                    ArrayRef<const Attr *> Attrs = None);
3000   void EmitReturnStmt(const ReturnStmt &S);
3001   void EmitDeclStmt(const DeclStmt &S);
3002   void EmitBreakStmt(const BreakStmt &S);
3003   void EmitContinueStmt(const ContinueStmt &S);
3004   void EmitSwitchStmt(const SwitchStmt &S);
3005   void EmitDefaultStmt(const DefaultStmt &S);
3006   void EmitCaseStmt(const CaseStmt &S);
3007   void EmitCaseStmtRange(const CaseStmt &S);
3008   void EmitAsmStmt(const AsmStmt &S);
3009 
3010   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
3011   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
3012   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
3013   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
3014   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
3015 
3016   void EmitCoroutineBody(const CoroutineBodyStmt &S);
3017   void EmitCoreturnStmt(const CoreturnStmt &S);
3018   RValue EmitCoawaitExpr(const CoawaitExpr &E,
3019                          AggValueSlot aggSlot = AggValueSlot::ignored(),
3020                          bool ignoreResult = false);
3021   LValue EmitCoawaitLValue(const CoawaitExpr *E);
3022   RValue EmitCoyieldExpr(const CoyieldExpr &E,
3023                          AggValueSlot aggSlot = AggValueSlot::ignored(),
3024                          bool ignoreResult = false);
3025   LValue EmitCoyieldLValue(const CoyieldExpr *E);
3026   RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID);
3027 
3028   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
3029   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
3030 
3031   void EmitCXXTryStmt(const CXXTryStmt &S);
3032   void EmitSEHTryStmt(const SEHTryStmt &S);
3033   void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
3034   void EnterSEHTryStmt(const SEHTryStmt &S);
3035   void ExitSEHTryStmt(const SEHTryStmt &S);
3036 
3037   void pushSEHCleanup(CleanupKind kind,
3038                       llvm::Function *FinallyFunc);
3039   void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter,
3040                               const Stmt *OutlinedStmt);
3041 
3042   llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
3043                                             const SEHExceptStmt &Except);
3044 
3045   llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF,
3046                                              const SEHFinallyStmt &Finally);
3047 
3048   void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF,
3049                                 llvm::Value *ParentFP,
3050                                 llvm::Value *EntryEBP);
3051   llvm::Value *EmitSEHExceptionCode();
3052   llvm::Value *EmitSEHExceptionInfo();
3053   llvm::Value *EmitSEHAbnormalTermination();
3054 
3055   /// Emit simple code for OpenMP directives in Simd-only mode.
3056   void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D);
3057 
3058   /// Scan the outlined statement for captures from the parent function. For
3059   /// each capture, mark the capture as escaped and emit a call to
3060   /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap.
3061   void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
3062                           bool IsFilter);
3063 
3064   /// Recovers the address of a local in a parent function. ParentVar is the
3065   /// address of the variable used in the immediate parent function. It can
3066   /// either be an alloca or a call to llvm.localrecover if there are nested
3067   /// outlined functions. ParentFP is the frame pointer of the outermost parent
3068   /// frame.
3069   Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF,
3070                                     Address ParentVar,
3071                                     llvm::Value *ParentFP);
3072 
3073   void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
3074                            ArrayRef<const Attr *> Attrs = None);
3075 
3076   /// Controls insertion of cancellation exit blocks in worksharing constructs.
3077   class OMPCancelStackRAII {
3078     CodeGenFunction &CGF;
3079 
3080   public:
3081     OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
3082                        bool HasCancel)
3083         : CGF(CGF) {
3084       CGF.OMPCancelStack.enter(CGF, Kind, HasCancel);
3085     }
3086     ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); }
3087   };
3088 
3089   /// Returns calculated size of the specified type.
3090   llvm::Value *getTypeSize(QualType Ty);
3091   LValue InitCapturedStruct(const CapturedStmt &S);
3092   llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
3093   llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
3094   Address GenerateCapturedStmtArgument(const CapturedStmt &S);
3095   llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S,
3096                                                      SourceLocation Loc);
3097   void GenerateOpenMPCapturedVars(const CapturedStmt &S,
3098                                   SmallVectorImpl<llvm::Value *> &CapturedVars);
3099   void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy,
3100                           SourceLocation Loc);
3101   /// Perform element by element copying of arrays with type \a
3102   /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
3103   /// generated by \a CopyGen.
3104   ///
3105   /// \param DestAddr Address of the destination array.
3106   /// \param SrcAddr Address of the source array.
3107   /// \param OriginalType Type of destination and source arrays.
3108   /// \param CopyGen Copying procedure that copies value of single array element
3109   /// to another single array element.
3110   void EmitOMPAggregateAssign(
3111       Address DestAddr, Address SrcAddr, QualType OriginalType,
3112       const llvm::function_ref<void(Address, Address)> CopyGen);
3113   /// Emit proper copying of data from one variable to another.
3114   ///
3115   /// \param OriginalType Original type of the copied variables.
3116   /// \param DestAddr Destination address.
3117   /// \param SrcAddr Source address.
3118   /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
3119   /// type of the base array element).
3120   /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
3121   /// the base array element).
3122   /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
3123   /// DestVD.
3124   void EmitOMPCopy(QualType OriginalType,
3125                    Address DestAddr, Address SrcAddr,
3126                    const VarDecl *DestVD, const VarDecl *SrcVD,
3127                    const Expr *Copy);
3128   /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or
3129   /// \a X = \a E \a BO \a E.
3130   ///
3131   /// \param X Value to be updated.
3132   /// \param E Update value.
3133   /// \param BO Binary operation for update operation.
3134   /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
3135   /// expression, false otherwise.
3136   /// \param AO Atomic ordering of the generated atomic instructions.
3137   /// \param CommonGen Code generator for complex expressions that cannot be
3138   /// expressed through atomicrmw instruction.
3139   /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was
3140   /// generated, <false, RValue::get(nullptr)> otherwise.
3141   std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr(
3142       LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
3143       llvm::AtomicOrdering AO, SourceLocation Loc,
3144       const llvm::function_ref<RValue(RValue)> CommonGen);
3145   bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
3146                                  OMPPrivateScope &PrivateScope);
3147   void EmitOMPPrivateClause(const OMPExecutableDirective &D,
3148                             OMPPrivateScope &PrivateScope);
3149   void EmitOMPUseDevicePtrClause(
3150       const OMPClause &C, OMPPrivateScope &PrivateScope,
3151       const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap);
3152   /// Emit code for copyin clause in \a D directive. The next code is
3153   /// generated at the start of outlined functions for directives:
3154   /// \code
3155   /// threadprivate_var1 = master_threadprivate_var1;
3156   /// operator=(threadprivate_var2, master_threadprivate_var2);
3157   /// ...
3158   /// __kmpc_barrier(&loc, global_tid);
3159   /// \endcode
3160   ///
3161   /// \param D OpenMP directive possibly with 'copyin' clause(s).
3162   /// \returns true if at least one copyin variable is found, false otherwise.
3163   bool EmitOMPCopyinClause(const OMPExecutableDirective &D);
3164   /// Emit initial code for lastprivate variables. If some variable is
3165   /// not also firstprivate, then the default initialization is used. Otherwise
3166   /// initialization of this variable is performed by EmitOMPFirstprivateClause
3167   /// method.
3168   ///
3169   /// \param D Directive that may have 'lastprivate' directives.
3170   /// \param PrivateScope Private scope for capturing lastprivate variables for
3171   /// proper codegen in internal captured statement.
3172   ///
3173   /// \returns true if there is at least one lastprivate variable, false
3174   /// otherwise.
3175   bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D,
3176                                     OMPPrivateScope &PrivateScope);
3177   /// Emit final copying of lastprivate values to original variables at
3178   /// the end of the worksharing or simd directive.
3179   ///
3180   /// \param D Directive that has at least one 'lastprivate' directives.
3181   /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
3182   /// it is the last iteration of the loop code in associated directive, or to
3183   /// 'i1 false' otherwise. If this item is nullptr, no final check is required.
3184   void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D,
3185                                      bool NoFinals,
3186                                      llvm::Value *IsLastIterCond = nullptr);
3187   /// Emit initial code for linear clauses.
3188   void EmitOMPLinearClause(const OMPLoopDirective &D,
3189                            CodeGenFunction::OMPPrivateScope &PrivateScope);
3190   /// Emit final code for linear clauses.
3191   /// \param CondGen Optional conditional code for final part of codegen for
3192   /// linear clause.
3193   void EmitOMPLinearClauseFinal(
3194       const OMPLoopDirective &D,
3195       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
3196   /// Emit initial code for reduction variables. Creates reduction copies
3197   /// and initializes them with the values according to OpenMP standard.
3198   ///
3199   /// \param D Directive (possibly) with the 'reduction' clause.
3200   /// \param PrivateScope Private scope for capturing reduction variables for
3201   /// proper codegen in internal captured statement.
3202   ///
3203   void EmitOMPReductionClauseInit(const OMPExecutableDirective &D,
3204                                   OMPPrivateScope &PrivateScope);
3205   /// Emit final update of reduction values to original variables at
3206   /// the end of the directive.
3207   ///
3208   /// \param D Directive that has at least one 'reduction' directives.
3209   /// \param ReductionKind The kind of reduction to perform.
3210   void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D,
3211                                    const OpenMPDirectiveKind ReductionKind);
3212   /// Emit initial code for linear variables. Creates private copies
3213   /// and initializes them with the values according to OpenMP standard.
3214   ///
3215   /// \param D Directive (possibly) with the 'linear' clause.
3216   /// \return true if at least one linear variable is found that should be
3217   /// initialized with the value of the original variable, false otherwise.
3218   bool EmitOMPLinearClauseInit(const OMPLoopDirective &D);
3219 
3220   typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/,
3221                                         llvm::Function * /*OutlinedFn*/,
3222                                         const OMPTaskDataTy & /*Data*/)>
3223       TaskGenTy;
3224   void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S,
3225                                  const OpenMPDirectiveKind CapturedRegion,
3226                                  const RegionCodeGenTy &BodyGen,
3227                                  const TaskGenTy &TaskGen, OMPTaskDataTy &Data);
3228   struct OMPTargetDataInfo {
3229     Address BasePointersArray = Address::invalid();
3230     Address PointersArray = Address::invalid();
3231     Address SizesArray = Address::invalid();
3232     unsigned NumberOfTargetItems = 0;
3233     explicit OMPTargetDataInfo() = default;
3234     OMPTargetDataInfo(Address BasePointersArray, Address PointersArray,
3235                       Address SizesArray, unsigned NumberOfTargetItems)
3236         : BasePointersArray(BasePointersArray), PointersArray(PointersArray),
3237           SizesArray(SizesArray), NumberOfTargetItems(NumberOfTargetItems) {}
3238   };
3239   void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S,
3240                                        const RegionCodeGenTy &BodyGen,
3241                                        OMPTargetDataInfo &InputInfo);
3242 
3243   void EmitOMPParallelDirective(const OMPParallelDirective &S);
3244   void EmitOMPSimdDirective(const OMPSimdDirective &S);
3245   void EmitOMPForDirective(const OMPForDirective &S);
3246   void EmitOMPForSimdDirective(const OMPForSimdDirective &S);
3247   void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
3248   void EmitOMPSectionDirective(const OMPSectionDirective &S);
3249   void EmitOMPSingleDirective(const OMPSingleDirective &S);
3250   void EmitOMPMasterDirective(const OMPMasterDirective &S);
3251   void EmitOMPCriticalDirective(const OMPCriticalDirective &S);
3252   void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
3253   void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S);
3254   void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
3255   void EmitOMPParallelMasterDirective(const OMPParallelMasterDirective &S);
3256   void EmitOMPTaskDirective(const OMPTaskDirective &S);
3257   void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
3258   void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
3259   void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
3260   void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S);
3261   void EmitOMPFlushDirective(const OMPFlushDirective &S);
3262   void EmitOMPDepobjDirective(const OMPDepobjDirective &S);
3263   void EmitOMPOrderedDirective(const OMPOrderedDirective &S);
3264   void EmitOMPAtomicDirective(const OMPAtomicDirective &S);
3265   void EmitOMPTargetDirective(const OMPTargetDirective &S);
3266   void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S);
3267   void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S);
3268   void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S);
3269   void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S);
3270   void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S);
3271   void
3272   EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S);
3273   void EmitOMPTeamsDirective(const OMPTeamsDirective &S);
3274   void
3275   EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S);
3276   void EmitOMPCancelDirective(const OMPCancelDirective &S);
3277   void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S);
3278   void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S);
3279   void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S);
3280   void EmitOMPMasterTaskLoopDirective(const OMPMasterTaskLoopDirective &S);
3281   void
3282   EmitOMPMasterTaskLoopSimdDirective(const OMPMasterTaskLoopSimdDirective &S);
3283   void EmitOMPParallelMasterTaskLoopDirective(
3284       const OMPParallelMasterTaskLoopDirective &S);
3285   void EmitOMPParallelMasterTaskLoopSimdDirective(
3286       const OMPParallelMasterTaskLoopSimdDirective &S);
3287   void EmitOMPDistributeDirective(const OMPDistributeDirective &S);
3288   void EmitOMPDistributeParallelForDirective(
3289       const OMPDistributeParallelForDirective &S);
3290   void EmitOMPDistributeParallelForSimdDirective(
3291       const OMPDistributeParallelForSimdDirective &S);
3292   void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S);
3293   void EmitOMPTargetParallelForSimdDirective(
3294       const OMPTargetParallelForSimdDirective &S);
3295   void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S);
3296   void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S);
3297   void
3298   EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S);
3299   void EmitOMPTeamsDistributeParallelForSimdDirective(
3300       const OMPTeamsDistributeParallelForSimdDirective &S);
3301   void EmitOMPTeamsDistributeParallelForDirective(
3302       const OMPTeamsDistributeParallelForDirective &S);
3303   void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S);
3304   void EmitOMPTargetTeamsDistributeDirective(
3305       const OMPTargetTeamsDistributeDirective &S);
3306   void EmitOMPTargetTeamsDistributeParallelForDirective(
3307       const OMPTargetTeamsDistributeParallelForDirective &S);
3308   void EmitOMPTargetTeamsDistributeParallelForSimdDirective(
3309       const OMPTargetTeamsDistributeParallelForSimdDirective &S);
3310   void EmitOMPTargetTeamsDistributeSimdDirective(
3311       const OMPTargetTeamsDistributeSimdDirective &S);
3312 
3313   /// Emit device code for the target directive.
3314   static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM,
3315                                           StringRef ParentName,
3316                                           const OMPTargetDirective &S);
3317   static void
3318   EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3319                                       const OMPTargetParallelDirective &S);
3320   /// Emit device code for the target parallel for directive.
3321   static void EmitOMPTargetParallelForDeviceFunction(
3322       CodeGenModule &CGM, StringRef ParentName,
3323       const OMPTargetParallelForDirective &S);
3324   /// Emit device code for the target parallel for simd directive.
3325   static void EmitOMPTargetParallelForSimdDeviceFunction(
3326       CodeGenModule &CGM, StringRef ParentName,
3327       const OMPTargetParallelForSimdDirective &S);
3328   /// Emit device code for the target teams directive.
3329   static void
3330   EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3331                                    const OMPTargetTeamsDirective &S);
3332   /// Emit device code for the target teams distribute directive.
3333   static void EmitOMPTargetTeamsDistributeDeviceFunction(
3334       CodeGenModule &CGM, StringRef ParentName,
3335       const OMPTargetTeamsDistributeDirective &S);
3336   /// Emit device code for the target teams distribute simd directive.
3337   static void EmitOMPTargetTeamsDistributeSimdDeviceFunction(
3338       CodeGenModule &CGM, StringRef ParentName,
3339       const OMPTargetTeamsDistributeSimdDirective &S);
3340   /// Emit device code for the target simd directive.
3341   static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM,
3342                                               StringRef ParentName,
3343                                               const OMPTargetSimdDirective &S);
3344   /// Emit device code for the target teams distribute parallel for simd
3345   /// directive.
3346   static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction(
3347       CodeGenModule &CGM, StringRef ParentName,
3348       const OMPTargetTeamsDistributeParallelForSimdDirective &S);
3349 
3350   static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction(
3351       CodeGenModule &CGM, StringRef ParentName,
3352       const OMPTargetTeamsDistributeParallelForDirective &S);
3353   /// Emit inner loop of the worksharing/simd construct.
3354   ///
3355   /// \param S Directive, for which the inner loop must be emitted.
3356   /// \param RequiresCleanup true, if directive has some associated private
3357   /// variables.
3358   /// \param LoopCond Bollean condition for loop continuation.
3359   /// \param IncExpr Increment expression for loop control variable.
3360   /// \param BodyGen Generator for the inner body of the inner loop.
3361   /// \param PostIncGen Genrator for post-increment code (required for ordered
3362   /// loop directvies).
3363   void EmitOMPInnerLoop(
3364       const Stmt &S, bool RequiresCleanup, const Expr *LoopCond,
3365       const Expr *IncExpr,
3366       const llvm::function_ref<void(CodeGenFunction &)> BodyGen,
3367       const llvm::function_ref<void(CodeGenFunction &)> PostIncGen);
3368 
3369   JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind);
3370   /// Emit initial code for loop counters of loop-based directives.
3371   void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S,
3372                                   OMPPrivateScope &LoopScope);
3373 
3374   /// Helper for the OpenMP loop directives.
3375   void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit);
3376 
3377   /// Emit code for the worksharing loop-based directive.
3378   /// \return true, if this construct has any lastprivate clause, false -
3379   /// otherwise.
3380   bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB,
3381                               const CodeGenLoopBoundsTy &CodeGenLoopBounds,
3382                               const CodeGenDispatchBoundsTy &CGDispatchBounds);
3383 
3384   /// Emit code for the distribute loop-based directive.
3385   void EmitOMPDistributeLoop(const OMPLoopDirective &S,
3386                              const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr);
3387 
3388   /// Helpers for the OpenMP loop directives.
3389   void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false);
3390   void EmitOMPSimdFinal(
3391       const OMPLoopDirective &D,
3392       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
3393 
3394   /// Emits the lvalue for the expression with possibly captured variable.
3395   LValue EmitOMPSharedLValue(const Expr *E);
3396 
3397 private:
3398   /// Helpers for blocks.
3399   llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
3400 
3401   /// struct with the values to be passed to the OpenMP loop-related functions
3402   struct OMPLoopArguments {
3403     /// loop lower bound
3404     Address LB = Address::invalid();
3405     /// loop upper bound
3406     Address UB = Address::invalid();
3407     /// loop stride
3408     Address ST = Address::invalid();
3409     /// isLastIteration argument for runtime functions
3410     Address IL = Address::invalid();
3411     /// Chunk value generated by sema
3412     llvm::Value *Chunk = nullptr;
3413     /// EnsureUpperBound
3414     Expr *EUB = nullptr;
3415     /// IncrementExpression
3416     Expr *IncExpr = nullptr;
3417     /// Loop initialization
3418     Expr *Init = nullptr;
3419     /// Loop exit condition
3420     Expr *Cond = nullptr;
3421     /// Update of LB after a whole chunk has been executed
3422     Expr *NextLB = nullptr;
3423     /// Update of UB after a whole chunk has been executed
3424     Expr *NextUB = nullptr;
3425     OMPLoopArguments() = default;
3426     OMPLoopArguments(Address LB, Address UB, Address ST, Address IL,
3427                      llvm::Value *Chunk = nullptr, Expr *EUB = nullptr,
3428                      Expr *IncExpr = nullptr, Expr *Init = nullptr,
3429                      Expr *Cond = nullptr, Expr *NextLB = nullptr,
3430                      Expr *NextUB = nullptr)
3431         : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB),
3432           IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB),
3433           NextUB(NextUB) {}
3434   };
3435   void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic,
3436                         const OMPLoopDirective &S, OMPPrivateScope &LoopScope,
3437                         const OMPLoopArguments &LoopArgs,
3438                         const CodeGenLoopTy &CodeGenLoop,
3439                         const CodeGenOrderedTy &CodeGenOrdered);
3440   void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind,
3441                            bool IsMonotonic, const OMPLoopDirective &S,
3442                            OMPPrivateScope &LoopScope, bool Ordered,
3443                            const OMPLoopArguments &LoopArgs,
3444                            const CodeGenDispatchBoundsTy &CGDispatchBounds);
3445   void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind,
3446                                   const OMPLoopDirective &S,
3447                                   OMPPrivateScope &LoopScope,
3448                                   const OMPLoopArguments &LoopArgs,
3449                                   const CodeGenLoopTy &CodeGenLoopContent);
3450   /// Emit code for sections directive.
3451   void EmitSections(const OMPExecutableDirective &S);
3452 
3453 public:
3454 
3455   //===--------------------------------------------------------------------===//
3456   //                         LValue Expression Emission
3457   //===--------------------------------------------------------------------===//
3458 
3459   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
3460   RValue GetUndefRValue(QualType Ty);
3461 
3462   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
3463   /// and issue an ErrorUnsupported style diagnostic (using the
3464   /// provided Name).
3465   RValue EmitUnsupportedRValue(const Expr *E,
3466                                const char *Name);
3467 
3468   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
3469   /// an ErrorUnsupported style diagnostic (using the provided Name).
3470   LValue EmitUnsupportedLValue(const Expr *E,
3471                                const char *Name);
3472 
3473   /// EmitLValue - Emit code to compute a designator that specifies the location
3474   /// of the expression.
3475   ///
3476   /// This can return one of two things: a simple address or a bitfield
3477   /// reference.  In either case, the LLVM Value* in the LValue structure is
3478   /// guaranteed to be an LLVM pointer type.
3479   ///
3480   /// If this returns a bitfield reference, nothing about the pointee type of
3481   /// the LLVM value is known: For example, it may not be a pointer to an
3482   /// integer.
3483   ///
3484   /// If this returns a normal address, and if the lvalue's C type is fixed
3485   /// size, this method guarantees that the returned pointer type will point to
3486   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
3487   /// variable length type, this is not possible.
3488   ///
3489   LValue EmitLValue(const Expr *E);
3490 
3491   /// Same as EmitLValue but additionally we generate checking code to
3492   /// guard against undefined behavior.  This is only suitable when we know
3493   /// that the address will be used to access the object.
3494   LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
3495 
3496   RValue convertTempToRValue(Address addr, QualType type,
3497                              SourceLocation Loc);
3498 
3499   void EmitAtomicInit(Expr *E, LValue lvalue);
3500 
3501   bool LValueIsSuitableForInlineAtomic(LValue Src);
3502 
3503   RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
3504                         AggValueSlot Slot = AggValueSlot::ignored());
3505 
3506   RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
3507                         llvm::AtomicOrdering AO, bool IsVolatile = false,
3508                         AggValueSlot slot = AggValueSlot::ignored());
3509 
3510   void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
3511 
3512   void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
3513                        bool IsVolatile, bool isInit);
3514 
3515   std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
3516       LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
3517       llvm::AtomicOrdering Success =
3518           llvm::AtomicOrdering::SequentiallyConsistent,
3519       llvm::AtomicOrdering Failure =
3520           llvm::AtomicOrdering::SequentiallyConsistent,
3521       bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
3522 
3523   void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
3524                         const llvm::function_ref<RValue(RValue)> &UpdateOp,
3525                         bool IsVolatile);
3526 
3527   /// EmitToMemory - Change a scalar value from its value
3528   /// representation to its in-memory representation.
3529   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
3530 
3531   /// EmitFromMemory - Change a scalar value from its memory
3532   /// representation to its value representation.
3533   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
3534 
3535   /// Check if the scalar \p Value is within the valid range for the given
3536   /// type \p Ty.
3537   ///
3538   /// Returns true if a check is needed (even if the range is unknown).
3539   bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
3540                             SourceLocation Loc);
3541 
3542   /// EmitLoadOfScalar - Load a scalar value from an address, taking
3543   /// care to appropriately convert from the memory representation to
3544   /// the LLVM value representation.
3545   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3546                                 SourceLocation Loc,
3547                                 AlignmentSource Source = AlignmentSource::Type,
3548                                 bool isNontemporal = false) {
3549     return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source),
3550                             CGM.getTBAAAccessInfo(Ty), isNontemporal);
3551   }
3552 
3553   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3554                                 SourceLocation Loc, LValueBaseInfo BaseInfo,
3555                                 TBAAAccessInfo TBAAInfo,
3556                                 bool isNontemporal = false);
3557 
3558   /// EmitLoadOfScalar - Load a scalar value from an address, taking
3559   /// care to appropriately convert from the memory representation to
3560   /// the LLVM value representation.  The l-value must be a simple
3561   /// l-value.
3562   llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
3563 
3564   /// EmitStoreOfScalar - Store a scalar value to an address, taking
3565   /// care to appropriately convert from the memory representation to
3566   /// the LLVM value representation.
3567   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3568                          bool Volatile, QualType Ty,
3569                          AlignmentSource Source = AlignmentSource::Type,
3570                          bool isInit = false, bool isNontemporal = false) {
3571     EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source),
3572                       CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal);
3573   }
3574 
3575   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3576                          bool Volatile, QualType Ty,
3577                          LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo,
3578                          bool isInit = false, bool isNontemporal = false);
3579 
3580   /// EmitStoreOfScalar - Store a scalar value to an address, taking
3581   /// care to appropriately convert from the memory representation to
3582   /// the LLVM value representation.  The l-value must be a simple
3583   /// l-value.  The isInit flag indicates whether this is an initialization.
3584   /// If so, atomic qualifiers are ignored and the store is always non-atomic.
3585   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
3586 
3587   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
3588   /// this method emits the address of the lvalue, then loads the result as an
3589   /// rvalue, returning the rvalue.
3590   RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
3591   RValue EmitLoadOfExtVectorElementLValue(LValue V);
3592   RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc);
3593   RValue EmitLoadOfGlobalRegLValue(LValue LV);
3594 
3595   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
3596   /// lvalue, where both are guaranteed to the have the same type, and that type
3597   /// is 'Ty'.
3598   void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
3599   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
3600   void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
3601 
3602   /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
3603   /// as EmitStoreThroughLValue.
3604   ///
3605   /// \param Result [out] - If non-null, this will be set to a Value* for the
3606   /// bit-field contents after the store, appropriate for use as the result of
3607   /// an assignment to the bit-field.
3608   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
3609                                       llvm::Value **Result=nullptr);
3610 
3611   /// Emit an l-value for an assignment (simple or compound) of complex type.
3612   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
3613   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
3614   LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
3615                                              llvm::Value *&Result);
3616 
3617   // Note: only available for agg return types
3618   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
3619   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
3620   // Note: only available for agg return types
3621   LValue EmitCallExprLValue(const CallExpr *E);
3622   // Note: only available for agg return types
3623   LValue EmitVAArgExprLValue(const VAArgExpr *E);
3624   LValue EmitDeclRefLValue(const DeclRefExpr *E);
3625   LValue EmitStringLiteralLValue(const StringLiteral *E);
3626   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
3627   LValue EmitPredefinedLValue(const PredefinedExpr *E);
3628   LValue EmitUnaryOpLValue(const UnaryOperator *E);
3629   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3630                                 bool Accessed = false);
3631   LValue EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E);
3632   LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3633                                  bool IsLowerBound = true);
3634   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
3635   LValue EmitMemberExpr(const MemberExpr *E);
3636   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
3637   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
3638   LValue EmitInitListLValue(const InitListExpr *E);
3639   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
3640   LValue EmitCastLValue(const CastExpr *E);
3641   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
3642   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
3643 
3644   Address EmitExtVectorElementLValue(LValue V);
3645 
3646   RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
3647 
3648   Address EmitArrayToPointerDecay(const Expr *Array,
3649                                   LValueBaseInfo *BaseInfo = nullptr,
3650                                   TBAAAccessInfo *TBAAInfo = nullptr);
3651 
3652   class ConstantEmission {
3653     llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
3654     ConstantEmission(llvm::Constant *C, bool isReference)
3655       : ValueAndIsReference(C, isReference) {}
3656   public:
3657     ConstantEmission() {}
3658     static ConstantEmission forReference(llvm::Constant *C) {
3659       return ConstantEmission(C, true);
3660     }
3661     static ConstantEmission forValue(llvm::Constant *C) {
3662       return ConstantEmission(C, false);
3663     }
3664 
3665     explicit operator bool() const {
3666       return ValueAndIsReference.getOpaqueValue() != nullptr;
3667     }
3668 
3669     bool isReference() const { return ValueAndIsReference.getInt(); }
3670     LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
3671       assert(isReference());
3672       return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
3673                                             refExpr->getType());
3674     }
3675 
3676     llvm::Constant *getValue() const {
3677       assert(!isReference());
3678       return ValueAndIsReference.getPointer();
3679     }
3680   };
3681 
3682   ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
3683   ConstantEmission tryEmitAsConstant(const MemberExpr *ME);
3684   llvm::Value *emitScalarConstant(const ConstantEmission &Constant, Expr *E);
3685 
3686   RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
3687                                 AggValueSlot slot = AggValueSlot::ignored());
3688   LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
3689 
3690   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3691                               const ObjCIvarDecl *Ivar);
3692   LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
3693   LValue EmitLValueForLambdaField(const FieldDecl *Field);
3694 
3695   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
3696   /// if the Field is a reference, this will return the address of the reference
3697   /// and not the address of the value stored in the reference.
3698   LValue EmitLValueForFieldInitialization(LValue Base,
3699                                           const FieldDecl* Field);
3700 
3701   LValue EmitLValueForIvar(QualType ObjectTy,
3702                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
3703                            unsigned CVRQualifiers);
3704 
3705   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
3706   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
3707   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
3708   LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
3709 
3710   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
3711   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
3712   LValue EmitStmtExprLValue(const StmtExpr *E);
3713   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
3714   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
3715   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init);
3716 
3717   //===--------------------------------------------------------------------===//
3718   //                         Scalar Expression Emission
3719   //===--------------------------------------------------------------------===//
3720 
3721   /// EmitCall - Generate a call of the given function, expecting the given
3722   /// result type, and using the given argument list which specifies both the
3723   /// LLVM arguments and the types they were derived from.
3724   RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
3725                   ReturnValueSlot ReturnValue, const CallArgList &Args,
3726                   llvm::CallBase **callOrInvoke, SourceLocation Loc);
3727   RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
3728                   ReturnValueSlot ReturnValue, const CallArgList &Args,
3729                   llvm::CallBase **callOrInvoke = nullptr) {
3730     return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke,
3731                     SourceLocation());
3732   }
3733   RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E,
3734                   ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr);
3735   RValue EmitCallExpr(const CallExpr *E,
3736                       ReturnValueSlot ReturnValue = ReturnValueSlot());
3737   RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
3738   CGCallee EmitCallee(const Expr *E);
3739 
3740   void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl);
3741   void checkTargetFeatures(SourceLocation Loc, const FunctionDecl *TargetDecl);
3742 
3743   llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee,
3744                                   const Twine &name = "");
3745   llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee,
3746                                   ArrayRef<llvm::Value *> args,
3747                                   const Twine &name = "");
3748   llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
3749                                           const Twine &name = "");
3750   llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
3751                                           ArrayRef<llvm::Value *> args,
3752                                           const Twine &name = "");
3753 
3754   SmallVector<llvm::OperandBundleDef, 1>
3755   getBundlesForFunclet(llvm::Value *Callee);
3756 
3757   llvm::CallBase *EmitCallOrInvoke(llvm::FunctionCallee Callee,
3758                                    ArrayRef<llvm::Value *> Args,
3759                                    const Twine &Name = "");
3760   llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
3761                                           ArrayRef<llvm::Value *> args,
3762                                           const Twine &name = "");
3763   llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
3764                                           const Twine &name = "");
3765   void EmitNoreturnRuntimeCallOrInvoke(llvm::FunctionCallee callee,
3766                                        ArrayRef<llvm::Value *> args);
3767 
3768   CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
3769                                      NestedNameSpecifier *Qual,
3770                                      llvm::Type *Ty);
3771 
3772   CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
3773                                                CXXDtorType Type,
3774                                                const CXXRecordDecl *RD);
3775 
3776   // Return the copy constructor name with the prefix "__copy_constructor_"
3777   // removed.
3778   static std::string getNonTrivialCopyConstructorStr(QualType QT,
3779                                                      CharUnits Alignment,
3780                                                      bool IsVolatile,
3781                                                      ASTContext &Ctx);
3782 
3783   // Return the destructor name with the prefix "__destructor_" removed.
3784   static std::string getNonTrivialDestructorStr(QualType QT,
3785                                                 CharUnits Alignment,
3786                                                 bool IsVolatile,
3787                                                 ASTContext &Ctx);
3788 
3789   // These functions emit calls to the special functions of non-trivial C
3790   // structs.
3791   void defaultInitNonTrivialCStructVar(LValue Dst);
3792   void callCStructDefaultConstructor(LValue Dst);
3793   void callCStructDestructor(LValue Dst);
3794   void callCStructCopyConstructor(LValue Dst, LValue Src);
3795   void callCStructMoveConstructor(LValue Dst, LValue Src);
3796   void callCStructCopyAssignmentOperator(LValue Dst, LValue Src);
3797   void callCStructMoveAssignmentOperator(LValue Dst, LValue Src);
3798 
3799   RValue
3800   EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method,
3801                               const CGCallee &Callee,
3802                               ReturnValueSlot ReturnValue, llvm::Value *This,
3803                               llvm::Value *ImplicitParam,
3804                               QualType ImplicitParamTy, const CallExpr *E,
3805                               CallArgList *RtlArgs);
3806   RValue EmitCXXDestructorCall(GlobalDecl Dtor, const CGCallee &Callee,
3807                                llvm::Value *This, QualType ThisTy,
3808                                llvm::Value *ImplicitParam,
3809                                QualType ImplicitParamTy, const CallExpr *E);
3810   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
3811                                ReturnValueSlot ReturnValue);
3812   RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE,
3813                                                const CXXMethodDecl *MD,
3814                                                ReturnValueSlot ReturnValue,
3815                                                bool HasQualifier,
3816                                                NestedNameSpecifier *Qualifier,
3817                                                bool IsArrow, const Expr *Base);
3818   // Compute the object pointer.
3819   Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
3820                                           llvm::Value *memberPtr,
3821                                           const MemberPointerType *memberPtrType,
3822                                           LValueBaseInfo *BaseInfo = nullptr,
3823                                           TBAAAccessInfo *TBAAInfo = nullptr);
3824   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
3825                                       ReturnValueSlot ReturnValue);
3826 
3827   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
3828                                        const CXXMethodDecl *MD,
3829                                        ReturnValueSlot ReturnValue);
3830   RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E);
3831 
3832   RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
3833                                 ReturnValueSlot ReturnValue);
3834 
3835   RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E,
3836                                        ReturnValueSlot ReturnValue);
3837   RValue EmitAMDGPUDevicePrintfCallExpr(const CallExpr *E,
3838                                         ReturnValueSlot ReturnValue);
3839 
3840   RValue EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID,
3841                          const CallExpr *E, ReturnValueSlot ReturnValue);
3842 
3843   RValue emitRotate(const CallExpr *E, bool IsRotateRight);
3844 
3845   /// Emit IR for __builtin_os_log_format.
3846   RValue emitBuiltinOSLogFormat(const CallExpr &E);
3847 
3848   /// Emit IR for __builtin_is_aligned.
3849   RValue EmitBuiltinIsAligned(const CallExpr *E);
3850   /// Emit IR for __builtin_align_up/__builtin_align_down.
3851   RValue EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp);
3852 
3853   llvm::Function *generateBuiltinOSLogHelperFunction(
3854       const analyze_os_log::OSLogBufferLayout &Layout,
3855       CharUnits BufferAlignment);
3856 
3857   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
3858 
3859   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
3860   /// is unhandled by the current target.
3861   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
3862                                      ReturnValueSlot ReturnValue);
3863 
3864   llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
3865                                              const llvm::CmpInst::Predicate Fp,
3866                                              const llvm::CmpInst::Predicate Ip,
3867                                              const llvm::Twine &Name = "");
3868   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
3869                                   ReturnValueSlot ReturnValue,
3870                                   llvm::Triple::ArchType Arch);
3871   llvm::Value *EmitARMMVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
3872                                      ReturnValueSlot ReturnValue,
3873                                      llvm::Triple::ArchType Arch);
3874   llvm::Value *EmitARMCDEBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
3875                                      ReturnValueSlot ReturnValue,
3876                                      llvm::Triple::ArchType Arch);
3877   llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::IntegerType *ITy,
3878                                    QualType RTy);
3879   llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::ArrayType *ATy,
3880                                    QualType RTy);
3881   llvm::Value *EmitCMSEClearFP16(llvm::Value *V);
3882 
3883   llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
3884                                          unsigned LLVMIntrinsic,
3885                                          unsigned AltLLVMIntrinsic,
3886                                          const char *NameHint,
3887                                          unsigned Modifier,
3888                                          const CallExpr *E,
3889                                          SmallVectorImpl<llvm::Value *> &Ops,
3890                                          Address PtrOp0, Address PtrOp1,
3891                                          llvm::Triple::ArchType Arch);
3892 
3893   llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
3894                                           unsigned Modifier, llvm::Type *ArgTy,
3895                                           const CallExpr *E);
3896   llvm::Value *EmitNeonCall(llvm::Function *F,
3897                             SmallVectorImpl<llvm::Value*> &O,
3898                             const char *name,
3899                             unsigned shift = 0, bool rightshift = false);
3900   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx,
3901                              const llvm::ElementCount &Count);
3902   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
3903   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
3904                                    bool negateForRightShift);
3905   llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
3906                                  llvm::Type *Ty, bool usgn, const char *name);
3907   llvm::Value *vectorWrapScalar16(llvm::Value *Op);
3908   /// SVEBuiltinMemEltTy - Returns the memory element type for this memory
3909   /// access builtin.  Only required if it can't be inferred from the base
3910   /// pointer operand.
3911   llvm::Type *SVEBuiltinMemEltTy(SVETypeFlags TypeFlags);
3912 
3913   SmallVector<llvm::Type *, 2> getSVEOverloadTypes(SVETypeFlags TypeFlags,
3914                                                    ArrayRef<llvm::Value *> Ops);
3915   llvm::Type *getEltType(SVETypeFlags TypeFlags);
3916   llvm::ScalableVectorType *getSVEType(const SVETypeFlags &TypeFlags);
3917   llvm::ScalableVectorType *getSVEPredType(SVETypeFlags TypeFlags);
3918   llvm::Value *EmitSVEAllTruePred(SVETypeFlags TypeFlags);
3919   llvm::Value *EmitSVEDupX(llvm::Value *Scalar);
3920   llvm::Value *EmitSVEDupX(llvm::Value *Scalar, llvm::Type *Ty);
3921   llvm::Value *EmitSVEReinterpret(llvm::Value *Val, llvm::Type *Ty);
3922   llvm::Value *EmitSVEPMull(SVETypeFlags TypeFlags,
3923                             llvm::SmallVectorImpl<llvm::Value *> &Ops,
3924                             unsigned BuiltinID);
3925   llvm::Value *EmitSVEMovl(SVETypeFlags TypeFlags,
3926                            llvm::ArrayRef<llvm::Value *> Ops,
3927                            unsigned BuiltinID);
3928   llvm::Value *EmitSVEPredicateCast(llvm::Value *Pred,
3929                                     llvm::ScalableVectorType *VTy);
3930   llvm::Value *EmitSVEGatherLoad(SVETypeFlags TypeFlags,
3931                                  llvm::SmallVectorImpl<llvm::Value *> &Ops,
3932                                  unsigned IntID);
3933   llvm::Value *EmitSVEScatterStore(SVETypeFlags TypeFlags,
3934                                    llvm::SmallVectorImpl<llvm::Value *> &Ops,
3935                                    unsigned IntID);
3936   llvm::Value *EmitSVEMaskedLoad(const CallExpr *, llvm::Type *ReturnTy,
3937                                  SmallVectorImpl<llvm::Value *> &Ops,
3938                                  unsigned BuiltinID, bool IsZExtReturn);
3939   llvm::Value *EmitSVEMaskedStore(const CallExpr *,
3940                                   SmallVectorImpl<llvm::Value *> &Ops,
3941                                   unsigned BuiltinID);
3942   llvm::Value *EmitSVEPrefetchLoad(SVETypeFlags TypeFlags,
3943                                    SmallVectorImpl<llvm::Value *> &Ops,
3944                                    unsigned BuiltinID);
3945   llvm::Value *EmitSVEGatherPrefetch(SVETypeFlags TypeFlags,
3946                                      SmallVectorImpl<llvm::Value *> &Ops,
3947                                      unsigned IntID);
3948   llvm::Value *EmitAArch64SVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3949 
3950   llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E,
3951                                       llvm::Triple::ArchType Arch);
3952   llvm::Value *EmitBPFBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3953 
3954   llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
3955   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3956   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3957   llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3958   llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3959   llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3960   llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
3961                                           const CallExpr *E);
3962   llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3963 
3964 private:
3965   enum class MSVCIntrin;
3966 
3967 public:
3968   llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E);
3969 
3970   llvm::Value *EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args);
3971 
3972   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
3973   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
3974   llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
3975   llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
3976   llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
3977   llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
3978                                 const ObjCMethodDecl *MethodWithObjects);
3979   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
3980   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
3981                              ReturnValueSlot Return = ReturnValueSlot());
3982 
3983   /// Retrieves the default cleanup kind for an ARC cleanup.
3984   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
3985   CleanupKind getARCCleanupKind() {
3986     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
3987              ? NormalAndEHCleanup : NormalCleanup;
3988   }
3989 
3990   // ARC primitives.
3991   void EmitARCInitWeak(Address addr, llvm::Value *value);
3992   void EmitARCDestroyWeak(Address addr);
3993   llvm::Value *EmitARCLoadWeak(Address addr);
3994   llvm::Value *EmitARCLoadWeakRetained(Address addr);
3995   llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored);
3996   void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
3997   void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
3998   void EmitARCCopyWeak(Address dst, Address src);
3999   void EmitARCMoveWeak(Address dst, Address src);
4000   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
4001   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
4002   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
4003                                   bool resultIgnored);
4004   llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value,
4005                                       bool resultIgnored);
4006   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
4007   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
4008   llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
4009   void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise);
4010   void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
4011   llvm::Value *EmitARCAutorelease(llvm::Value *value);
4012   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
4013   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
4014   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
4015   llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value);
4016 
4017   llvm::Value *EmitObjCAutorelease(llvm::Value *value, llvm::Type *returnType);
4018   llvm::Value *EmitObjCRetainNonBlock(llvm::Value *value,
4019                                       llvm::Type *returnType);
4020   void EmitObjCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
4021 
4022   std::pair<LValue,llvm::Value*>
4023   EmitARCStoreAutoreleasing(const BinaryOperator *e);
4024   std::pair<LValue,llvm::Value*>
4025   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
4026   std::pair<LValue,llvm::Value*>
4027   EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored);
4028 
4029   llvm::Value *EmitObjCAlloc(llvm::Value *value,
4030                              llvm::Type *returnType);
4031   llvm::Value *EmitObjCAllocWithZone(llvm::Value *value,
4032                                      llvm::Type *returnType);
4033   llvm::Value *EmitObjCAllocInit(llvm::Value *value, llvm::Type *resultType);
4034 
4035   llvm::Value *EmitObjCThrowOperand(const Expr *expr);
4036   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
4037   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
4038 
4039   llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
4040   llvm::Value *EmitARCReclaimReturnedObject(const Expr *e,
4041                                             bool allowUnsafeClaim);
4042   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
4043   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
4044   llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr);
4045 
4046   void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
4047 
4048   static Destroyer destroyARCStrongImprecise;
4049   static Destroyer destroyARCStrongPrecise;
4050   static Destroyer destroyARCWeak;
4051   static Destroyer emitARCIntrinsicUse;
4052   static Destroyer destroyNonTrivialCStruct;
4053 
4054   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
4055   llvm::Value *EmitObjCAutoreleasePoolPush();
4056   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
4057   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
4058   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
4059 
4060   /// Emits a reference binding to the passed in expression.
4061   RValue EmitReferenceBindingToExpr(const Expr *E);
4062 
4063   //===--------------------------------------------------------------------===//
4064   //                           Expression Emission
4065   //===--------------------------------------------------------------------===//
4066 
4067   // Expressions are broken into three classes: scalar, complex, aggregate.
4068 
4069   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
4070   /// scalar type, returning the result.
4071   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
4072 
4073   /// Emit a conversion from the specified type to the specified destination
4074   /// type, both of which are LLVM scalar types.
4075   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
4076                                     QualType DstTy, SourceLocation Loc);
4077 
4078   /// Emit a conversion from the specified complex type to the specified
4079   /// destination type, where the destination type is an LLVM scalar type.
4080   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
4081                                              QualType DstTy,
4082                                              SourceLocation Loc);
4083 
4084   /// EmitAggExpr - Emit the computation of the specified expression
4085   /// of aggregate type.  The result is computed into the given slot,
4086   /// which may be null to indicate that the value is not needed.
4087   void EmitAggExpr(const Expr *E, AggValueSlot AS);
4088 
4089   /// EmitAggExprToLValue - Emit the computation of the specified expression of
4090   /// aggregate type into a temporary LValue.
4091   LValue EmitAggExprToLValue(const Expr *E);
4092 
4093   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
4094   /// make sure it survives garbage collection until this point.
4095   void EmitExtendGCLifetime(llvm::Value *object);
4096 
4097   /// EmitComplexExpr - Emit the computation of the specified expression of
4098   /// complex type, returning the result.
4099   ComplexPairTy EmitComplexExpr(const Expr *E,
4100                                 bool IgnoreReal = false,
4101                                 bool IgnoreImag = false);
4102 
4103   /// EmitComplexExprIntoLValue - Emit the given expression of complex
4104   /// type and place its result into the specified l-value.
4105   void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
4106 
4107   /// EmitStoreOfComplex - Store a complex number into the specified l-value.
4108   void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
4109 
4110   /// EmitLoadOfComplex - Load a complex number from the specified l-value.
4111   ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
4112 
4113   Address emitAddrOfRealComponent(Address complex, QualType complexType);
4114   Address emitAddrOfImagComponent(Address complex, QualType complexType);
4115 
4116   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
4117   /// global variable that has already been created for it.  If the initializer
4118   /// has a different type than GV does, this may free GV and return a different
4119   /// one.  Otherwise it just returns GV.
4120   llvm::GlobalVariable *
4121   AddInitializerToStaticVarDecl(const VarDecl &D,
4122                                 llvm::GlobalVariable *GV);
4123 
4124   // Emit an @llvm.invariant.start call for the given memory region.
4125   void EmitInvariantStart(llvm::Constant *Addr, CharUnits Size);
4126 
4127   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
4128   /// variable with global storage.
4129   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
4130                                 bool PerformInit);
4131 
4132   llvm::Function *createAtExitStub(const VarDecl &VD, llvm::FunctionCallee Dtor,
4133                                    llvm::Constant *Addr);
4134 
4135   /// Call atexit() with a function that passes the given argument to
4136   /// the given function.
4137   void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::FunctionCallee fn,
4138                                     llvm::Constant *addr);
4139 
4140   /// Call atexit() with function dtorStub.
4141   void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub);
4142 
4143   /// Emit code in this function to perform a guarded variable
4144   /// initialization.  Guarded initializations are used when it's not
4145   /// possible to prove that an initialization will be done exactly
4146   /// once, e.g. with a static local variable or a static data member
4147   /// of a class template.
4148   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
4149                           bool PerformInit);
4150 
4151   enum class GuardKind { VariableGuard, TlsGuard };
4152 
4153   /// Emit a branch to select whether or not to perform guarded initialization.
4154   void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit,
4155                                 llvm::BasicBlock *InitBlock,
4156                                 llvm::BasicBlock *NoInitBlock,
4157                                 GuardKind Kind, const VarDecl *D);
4158 
4159   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
4160   /// variables.
4161   void
4162   GenerateCXXGlobalInitFunc(llvm::Function *Fn,
4163                             ArrayRef<llvm::Function *> CXXThreadLocals,
4164                             ConstantAddress Guard = ConstantAddress::invalid());
4165 
4166   /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
4167   /// variables.
4168   void GenerateCXXGlobalDtorsFunc(
4169       llvm::Function *Fn,
4170       const std::vector<std::tuple<llvm::FunctionType *, llvm::WeakTrackingVH,
4171                                    llvm::Constant *>> &DtorsAndObjects);
4172 
4173   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
4174                                         const VarDecl *D,
4175                                         llvm::GlobalVariable *Addr,
4176                                         bool PerformInit);
4177 
4178   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
4179 
4180   void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp);
4181 
4182   void enterFullExpression(const FullExpr *E) {
4183     if (const auto *EWC = dyn_cast<ExprWithCleanups>(E))
4184       if (EWC->getNumObjects() == 0)
4185         return;
4186     enterNonTrivialFullExpression(E);
4187   }
4188   void enterNonTrivialFullExpression(const FullExpr *E);
4189 
4190   void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
4191 
4192   RValue EmitAtomicExpr(AtomicExpr *E);
4193 
4194   //===--------------------------------------------------------------------===//
4195   //                         Annotations Emission
4196   //===--------------------------------------------------------------------===//
4197 
4198   /// Emit an annotation call (intrinsic).
4199   llvm::Value *EmitAnnotationCall(llvm::Function *AnnotationFn,
4200                                   llvm::Value *AnnotatedVal,
4201                                   StringRef AnnotationStr,
4202                                   SourceLocation Location);
4203 
4204   /// Emit local annotations for the local variable V, declared by D.
4205   void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
4206 
4207   /// Emit field annotations for the given field & value. Returns the
4208   /// annotation result.
4209   Address EmitFieldAnnotations(const FieldDecl *D, Address V);
4210 
4211   //===--------------------------------------------------------------------===//
4212   //                             Internal Helpers
4213   //===--------------------------------------------------------------------===//
4214 
4215   /// ContainsLabel - Return true if the statement contains a label in it.  If
4216   /// this statement is not executed normally, it not containing a label means
4217   /// that we can just remove the code.
4218   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
4219 
4220   /// containsBreak - Return true if the statement contains a break out of it.
4221   /// If the statement (recursively) contains a switch or loop with a break
4222   /// inside of it, this is fine.
4223   static bool containsBreak(const Stmt *S);
4224 
4225   /// Determine if the given statement might introduce a declaration into the
4226   /// current scope, by being a (possibly-labelled) DeclStmt.
4227   static bool mightAddDeclToScope(const Stmt *S);
4228 
4229   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
4230   /// to a constant, or if it does but contains a label, return false.  If it
4231   /// constant folds return true and set the boolean result in Result.
4232   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result,
4233                                     bool AllowLabels = false);
4234 
4235   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
4236   /// to a constant, or if it does but contains a label, return false.  If it
4237   /// constant folds return true and set the folded value.
4238   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result,
4239                                     bool AllowLabels = false);
4240 
4241   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
4242   /// if statement) to the specified blocks.  Based on the condition, this might
4243   /// try to simplify the codegen of the conditional based on the branch.
4244   /// TrueCount should be the number of times we expect the condition to
4245   /// evaluate to true based on PGO data.
4246   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
4247                             llvm::BasicBlock *FalseBlock, uint64_t TrueCount);
4248 
4249   /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is
4250   /// nonnull, if \p LHS is marked _Nonnull.
4251   void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc);
4252 
4253   /// An enumeration which makes it easier to specify whether or not an
4254   /// operation is a subtraction.
4255   enum { NotSubtraction = false, IsSubtraction = true };
4256 
4257   /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to
4258   /// detect undefined behavior when the pointer overflow sanitizer is enabled.
4259   /// \p SignedIndices indicates whether any of the GEP indices are signed.
4260   /// \p IsSubtraction indicates whether the expression used to form the GEP
4261   /// is a subtraction.
4262   llvm::Value *EmitCheckedInBoundsGEP(llvm::Value *Ptr,
4263                                       ArrayRef<llvm::Value *> IdxList,
4264                                       bool SignedIndices,
4265                                       bool IsSubtraction,
4266                                       SourceLocation Loc,
4267                                       const Twine &Name = "");
4268 
4269   /// Specifies which type of sanitizer check to apply when handling a
4270   /// particular builtin.
4271   enum BuiltinCheckKind {
4272     BCK_CTZPassedZero,
4273     BCK_CLZPassedZero,
4274   };
4275 
4276   /// Emits an argument for a call to a builtin. If the builtin sanitizer is
4277   /// enabled, a runtime check specified by \p Kind is also emitted.
4278   llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind);
4279 
4280   /// Emit a description of a type in a format suitable for passing to
4281   /// a runtime sanitizer handler.
4282   llvm::Constant *EmitCheckTypeDescriptor(QualType T);
4283 
4284   /// Convert a value into a format suitable for passing to a runtime
4285   /// sanitizer handler.
4286   llvm::Value *EmitCheckValue(llvm::Value *V);
4287 
4288   /// Emit a description of a source location in a format suitable for
4289   /// passing to a runtime sanitizer handler.
4290   llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
4291 
4292   /// Create a basic block that will either trap or call a handler function in
4293   /// the UBSan runtime with the provided arguments, and create a conditional
4294   /// branch to it.
4295   void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
4296                  SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs,
4297                  ArrayRef<llvm::Value *> DynamicArgs);
4298 
4299   /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath
4300   /// if Cond if false.
4301   void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond,
4302                             llvm::ConstantInt *TypeId, llvm::Value *Ptr,
4303                             ArrayRef<llvm::Constant *> StaticArgs);
4304 
4305   /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime
4306   /// checking is enabled. Otherwise, just emit an unreachable instruction.
4307   void EmitUnreachable(SourceLocation Loc);
4308 
4309   /// Create a basic block that will call the trap intrinsic, and emit a
4310   /// conditional branch to it, for the -ftrapv checks.
4311   void EmitTrapCheck(llvm::Value *Checked);
4312 
4313   /// Emit a call to trap or debugtrap and attach function attribute
4314   /// "trap-func-name" if specified.
4315   llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID);
4316 
4317   /// Emit a stub for the cross-DSO CFI check function.
4318   void EmitCfiCheckStub();
4319 
4320   /// Emit a cross-DSO CFI failure handling function.
4321   void EmitCfiCheckFail();
4322 
4323   /// Create a check for a function parameter that may potentially be
4324   /// declared as non-null.
4325   void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc,
4326                            AbstractCallee AC, unsigned ParmNum);
4327 
4328   /// EmitCallArg - Emit a single call argument.
4329   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
4330 
4331   /// EmitDelegateCallArg - We are performing a delegate call; that
4332   /// is, the current function is delegating to another one.  Produce
4333   /// a r-value suitable for passing the given parameter.
4334   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
4335                            SourceLocation loc);
4336 
4337   /// SetFPAccuracy - Set the minimum required accuracy of the given floating
4338   /// point operation, expressed as the maximum relative error in ulp.
4339   void SetFPAccuracy(llvm::Value *Val, float Accuracy);
4340 
4341   /// SetFPModel - Control floating point behavior via fp-model settings.
4342   void SetFPModel();
4343 
4344   /// Set the codegen fast-math flags.
4345   void SetFastMathFlags(FPOptions FPFeatures);
4346 
4347 private:
4348   llvm::MDNode *getRangeForLoadFromType(QualType Ty);
4349   void EmitReturnOfRValue(RValue RV, QualType Ty);
4350 
4351   void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
4352 
4353   llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4>
4354   DeferredReplacements;
4355 
4356   /// Set the address of a local variable.
4357   void setAddrOfLocalVar(const VarDecl *VD, Address Addr) {
4358     assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!");
4359     LocalDeclMap.insert({VD, Addr});
4360   }
4361 
4362   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
4363   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
4364   ///
4365   /// \param AI - The first function argument of the expansion.
4366   void ExpandTypeFromArgs(QualType Ty, LValue Dst,
4367                           llvm::Function::arg_iterator &AI);
4368 
4369   /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg
4370   /// Ty, into individual arguments on the provided vector \arg IRCallArgs,
4371   /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand.
4372   void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
4373                         SmallVectorImpl<llvm::Value *> &IRCallArgs,
4374                         unsigned &IRCallArgPos);
4375 
4376   llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
4377                             const Expr *InputExpr, std::string &ConstraintStr);
4378 
4379   llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
4380                                   LValue InputValue, QualType InputType,
4381                                   std::string &ConstraintStr,
4382                                   SourceLocation Loc);
4383 
4384   /// Attempts to statically evaluate the object size of E. If that
4385   /// fails, emits code to figure the size of E out for us. This is
4386   /// pass_object_size aware.
4387   ///
4388   /// If EmittedExpr is non-null, this will use that instead of re-emitting E.
4389   llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
4390                                                llvm::IntegerType *ResType,
4391                                                llvm::Value *EmittedE,
4392                                                bool IsDynamic);
4393 
4394   /// Emits the size of E, as required by __builtin_object_size. This
4395   /// function is aware of pass_object_size parameters, and will act accordingly
4396   /// if E is a parameter with the pass_object_size attribute.
4397   llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type,
4398                                      llvm::IntegerType *ResType,
4399                                      llvm::Value *EmittedE,
4400                                      bool IsDynamic);
4401 
4402   void emitZeroOrPatternForAutoVarInit(QualType type, const VarDecl &D,
4403                                        Address Loc);
4404 
4405 public:
4406 #ifndef NDEBUG
4407   // Determine whether the given argument is an Objective-C method
4408   // that may have type parameters in its signature.
4409   static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) {
4410     const DeclContext *dc = method->getDeclContext();
4411     if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) {
4412       return classDecl->getTypeParamListAsWritten();
4413     }
4414 
4415     if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) {
4416       return catDecl->getTypeParamList();
4417     }
4418 
4419     return false;
4420   }
4421 
4422   template<typename T>
4423   static bool isObjCMethodWithTypeParams(const T *) { return false; }
4424 #endif
4425 
4426   enum class EvaluationOrder {
4427     ///! No language constraints on evaluation order.
4428     Default,
4429     ///! Language semantics require left-to-right evaluation.
4430     ForceLeftToRight,
4431     ///! Language semantics require right-to-left evaluation.
4432     ForceRightToLeft
4433   };
4434 
4435   /// EmitCallArgs - Emit call arguments for a function.
4436   template <typename T>
4437   void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo,
4438                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
4439                     AbstractCallee AC = AbstractCallee(),
4440                     unsigned ParamsToSkip = 0,
4441                     EvaluationOrder Order = EvaluationOrder::Default) {
4442     SmallVector<QualType, 16> ArgTypes;
4443     CallExpr::const_arg_iterator Arg = ArgRange.begin();
4444 
4445     assert((ParamsToSkip == 0 || CallArgTypeInfo) &&
4446            "Can't skip parameters if type info is not provided");
4447     if (CallArgTypeInfo) {
4448 #ifndef NDEBUG
4449       bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo);
4450 #endif
4451 
4452       // First, use the argument types that the type info knows about
4453       for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip,
4454                 E = CallArgTypeInfo->param_type_end();
4455            I != E; ++I, ++Arg) {
4456         assert(Arg != ArgRange.end() && "Running over edge of argument list!");
4457         assert((isGenericMethod ||
4458                 ((*I)->isVariablyModifiedType() ||
4459                  (*I).getNonReferenceType()->isObjCRetainableType() ||
4460                  getContext()
4461                          .getCanonicalType((*I).getNonReferenceType())
4462                          .getTypePtr() ==
4463                      getContext()
4464                          .getCanonicalType((*Arg)->getType())
4465                          .getTypePtr())) &&
4466                "type mismatch in call argument!");
4467         ArgTypes.push_back(*I);
4468       }
4469     }
4470 
4471     // Either we've emitted all the call args, or we have a call to variadic
4472     // function.
4473     assert((Arg == ArgRange.end() || !CallArgTypeInfo ||
4474             CallArgTypeInfo->isVariadic()) &&
4475            "Extra arguments in non-variadic function!");
4476 
4477     // If we still have any arguments, emit them using the type of the argument.
4478     for (auto *A : llvm::make_range(Arg, ArgRange.end()))
4479       ArgTypes.push_back(CallArgTypeInfo ? getVarArgType(A) : A->getType());
4480 
4481     EmitCallArgs(Args, ArgTypes, ArgRange, AC, ParamsToSkip, Order);
4482   }
4483 
4484   void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes,
4485                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
4486                     AbstractCallee AC = AbstractCallee(),
4487                     unsigned ParamsToSkip = 0,
4488                     EvaluationOrder Order = EvaluationOrder::Default);
4489 
4490   /// EmitPointerWithAlignment - Given an expression with a pointer type,
4491   /// emit the value and compute our best estimate of the alignment of the
4492   /// pointee.
4493   ///
4494   /// \param BaseInfo - If non-null, this will be initialized with
4495   /// information about the source of the alignment and the may-alias
4496   /// attribute.  Note that this function will conservatively fall back on
4497   /// the type when it doesn't recognize the expression and may-alias will
4498   /// be set to false.
4499   ///
4500   /// One reasonable way to use this information is when there's a language
4501   /// guarantee that the pointer must be aligned to some stricter value, and
4502   /// we're simply trying to ensure that sufficiently obvious uses of under-
4503   /// aligned objects don't get miscompiled; for example, a placement new
4504   /// into the address of a local variable.  In such a case, it's quite
4505   /// reasonable to just ignore the returned alignment when it isn't from an
4506   /// explicit source.
4507   Address EmitPointerWithAlignment(const Expr *Addr,
4508                                    LValueBaseInfo *BaseInfo = nullptr,
4509                                    TBAAAccessInfo *TBAAInfo = nullptr);
4510 
4511   /// If \p E references a parameter with pass_object_size info or a constant
4512   /// array size modifier, emit the object size divided by the size of \p EltTy.
4513   /// Otherwise return null.
4514   llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy);
4515 
4516   void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK);
4517 
4518   struct MultiVersionResolverOption {
4519     llvm::Function *Function;
4520     FunctionDecl *FD;
4521     struct Conds {
4522       StringRef Architecture;
4523       llvm::SmallVector<StringRef, 8> Features;
4524 
4525       Conds(StringRef Arch, ArrayRef<StringRef> Feats)
4526           : Architecture(Arch), Features(Feats.begin(), Feats.end()) {}
4527     } Conditions;
4528 
4529     MultiVersionResolverOption(llvm::Function *F, StringRef Arch,
4530                                ArrayRef<StringRef> Feats)
4531         : Function(F), Conditions(Arch, Feats) {}
4532   };
4533 
4534   // Emits the body of a multiversion function's resolver. Assumes that the
4535   // options are already sorted in the proper order, with the 'default' option
4536   // last (if it exists).
4537   void EmitMultiVersionResolver(llvm::Function *Resolver,
4538                                 ArrayRef<MultiVersionResolverOption> Options);
4539 
4540   static uint64_t GetX86CpuSupportsMask(ArrayRef<StringRef> FeatureStrs);
4541 
4542 private:
4543   QualType getVarArgType(const Expr *Arg);
4544 
4545   void EmitDeclMetadata();
4546 
4547   BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType,
4548                                   const AutoVarEmission &emission);
4549 
4550   void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
4551 
4552   llvm::Value *GetValueForARMHint(unsigned BuiltinID);
4553   llvm::Value *EmitX86CpuIs(const CallExpr *E);
4554   llvm::Value *EmitX86CpuIs(StringRef CPUStr);
4555   llvm::Value *EmitX86CpuSupports(const CallExpr *E);
4556   llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs);
4557   llvm::Value *EmitX86CpuSupports(uint64_t Mask);
4558   llvm::Value *EmitX86CpuInit();
4559   llvm::Value *FormResolverCondition(const MultiVersionResolverOption &RO);
4560 };
4561 
4562 inline DominatingLLVMValue::saved_type
4563 DominatingLLVMValue::save(CodeGenFunction &CGF, llvm::Value *value) {
4564   if (!needsSaving(value)) return saved_type(value, false);
4565 
4566   // Otherwise, we need an alloca.
4567   auto align = CharUnits::fromQuantity(
4568             CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType()));
4569   Address alloca =
4570     CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save");
4571   CGF.Builder.CreateStore(value, alloca);
4572 
4573   return saved_type(alloca.getPointer(), true);
4574 }
4575 
4576 inline llvm::Value *DominatingLLVMValue::restore(CodeGenFunction &CGF,
4577                                                  saved_type value) {
4578   // If the value says it wasn't saved, trust that it's still dominating.
4579   if (!value.getInt()) return value.getPointer();
4580 
4581   // Otherwise, it should be an alloca instruction, as set up in save().
4582   auto alloca = cast<llvm::AllocaInst>(value.getPointer());
4583   return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlign());
4584 }
4585 
4586 }  // end namespace CodeGen
4587 
4588 // Map the LangOption for floating point exception behavior into
4589 // the corresponding enum in the IR.
4590 llvm::fp::ExceptionBehavior
4591 ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind);
4592 }  // end namespace clang
4593 
4594 #endif
4595