1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the internal per-function state used for llvm translation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 14 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 15 16 #include "CGBuilder.h" 17 #include "CGDebugInfo.h" 18 #include "CGLoopInfo.h" 19 #include "CGValue.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenPGO.h" 22 #include "EHScopeStack.h" 23 #include "VarBypassDetector.h" 24 #include "clang/AST/CharUnits.h" 25 #include "clang/AST/CurrentSourceLocExprScope.h" 26 #include "clang/AST/ExprCXX.h" 27 #include "clang/AST/ExprObjC.h" 28 #include "clang/AST/ExprOpenMP.h" 29 #include "clang/AST/Type.h" 30 #include "clang/Basic/ABI.h" 31 #include "clang/Basic/CapturedStmt.h" 32 #include "clang/Basic/CodeGenOptions.h" 33 #include "clang/Basic/OpenMPKinds.h" 34 #include "clang/Basic/TargetInfo.h" 35 #include "llvm/ADT/ArrayRef.h" 36 #include "llvm/ADT/DenseMap.h" 37 #include "llvm/ADT/MapVector.h" 38 #include "llvm/ADT/SmallVector.h" 39 #include "llvm/IR/ValueHandle.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Transforms/Utils/SanitizerStats.h" 42 43 namespace llvm { 44 class BasicBlock; 45 class LLVMContext; 46 class MDNode; 47 class Module; 48 class SwitchInst; 49 class Twine; 50 class Value; 51 } 52 53 namespace clang { 54 class ASTContext; 55 class BlockDecl; 56 class CXXDestructorDecl; 57 class CXXForRangeStmt; 58 class CXXTryStmt; 59 class Decl; 60 class LabelDecl; 61 class EnumConstantDecl; 62 class FunctionDecl; 63 class FunctionProtoType; 64 class LabelStmt; 65 class ObjCContainerDecl; 66 class ObjCInterfaceDecl; 67 class ObjCIvarDecl; 68 class ObjCMethodDecl; 69 class ObjCImplementationDecl; 70 class ObjCPropertyImplDecl; 71 class TargetInfo; 72 class VarDecl; 73 class ObjCForCollectionStmt; 74 class ObjCAtTryStmt; 75 class ObjCAtThrowStmt; 76 class ObjCAtSynchronizedStmt; 77 class ObjCAutoreleasePoolStmt; 78 79 namespace analyze_os_log { 80 class OSLogBufferLayout; 81 } 82 83 namespace CodeGen { 84 class CodeGenTypes; 85 class CGCallee; 86 class CGFunctionInfo; 87 class CGRecordLayout; 88 class CGBlockInfo; 89 class CGCXXABI; 90 class BlockByrefHelpers; 91 class BlockByrefInfo; 92 class BlockFlags; 93 class BlockFieldFlags; 94 class RegionCodeGenTy; 95 class TargetCodeGenInfo; 96 struct OMPTaskDataTy; 97 struct CGCoroData; 98 99 /// The kind of evaluation to perform on values of a particular 100 /// type. Basically, is the code in CGExprScalar, CGExprComplex, or 101 /// CGExprAgg? 102 /// 103 /// TODO: should vectors maybe be split out into their own thing? 104 enum TypeEvaluationKind { 105 TEK_Scalar, 106 TEK_Complex, 107 TEK_Aggregate 108 }; 109 110 #define LIST_SANITIZER_CHECKS \ 111 SANITIZER_CHECK(AddOverflow, add_overflow, 0) \ 112 SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0) \ 113 SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0) \ 114 SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0) \ 115 SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0) \ 116 SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0) \ 117 SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 1) \ 118 SANITIZER_CHECK(ImplicitConversion, implicit_conversion, 0) \ 119 SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0) \ 120 SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0) \ 121 SANITIZER_CHECK(MissingReturn, missing_return, 0) \ 122 SANITIZER_CHECK(MulOverflow, mul_overflow, 0) \ 123 SANITIZER_CHECK(NegateOverflow, negate_overflow, 0) \ 124 SANITIZER_CHECK(NullabilityArg, nullability_arg, 0) \ 125 SANITIZER_CHECK(NullabilityReturn, nullability_return, 1) \ 126 SANITIZER_CHECK(NonnullArg, nonnull_arg, 0) \ 127 SANITIZER_CHECK(NonnullReturn, nonnull_return, 1) \ 128 SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0) \ 129 SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0) \ 130 SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0) \ 131 SANITIZER_CHECK(SubOverflow, sub_overflow, 0) \ 132 SANITIZER_CHECK(TypeMismatch, type_mismatch, 1) \ 133 SANITIZER_CHECK(AlignmentAssumption, alignment_assumption, 0) \ 134 SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0) 135 136 enum SanitizerHandler { 137 #define SANITIZER_CHECK(Enum, Name, Version) Enum, 138 LIST_SANITIZER_CHECKS 139 #undef SANITIZER_CHECK 140 }; 141 142 /// Helper class with most of the code for saving a value for a 143 /// conditional expression cleanup. 144 struct DominatingLLVMValue { 145 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 146 147 /// Answer whether the given value needs extra work to be saved. 148 static bool needsSaving(llvm::Value *value) { 149 // If it's not an instruction, we don't need to save. 150 if (!isa<llvm::Instruction>(value)) return false; 151 152 // If it's an instruction in the entry block, we don't need to save. 153 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 154 return (block != &block->getParent()->getEntryBlock()); 155 } 156 157 static saved_type save(CodeGenFunction &CGF, llvm::Value *value); 158 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value); 159 }; 160 161 /// A partial specialization of DominatingValue for llvm::Values that 162 /// might be llvm::Instructions. 163 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 164 typedef T *type; 165 static type restore(CodeGenFunction &CGF, saved_type value) { 166 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 167 } 168 }; 169 170 /// A specialization of DominatingValue for Address. 171 template <> struct DominatingValue<Address> { 172 typedef Address type; 173 174 struct saved_type { 175 DominatingLLVMValue::saved_type SavedValue; 176 CharUnits Alignment; 177 }; 178 179 static bool needsSaving(type value) { 180 return DominatingLLVMValue::needsSaving(value.getPointer()); 181 } 182 static saved_type save(CodeGenFunction &CGF, type value) { 183 return { DominatingLLVMValue::save(CGF, value.getPointer()), 184 value.getAlignment() }; 185 } 186 static type restore(CodeGenFunction &CGF, saved_type value) { 187 return Address(DominatingLLVMValue::restore(CGF, value.SavedValue), 188 value.Alignment); 189 } 190 }; 191 192 /// A specialization of DominatingValue for RValue. 193 template <> struct DominatingValue<RValue> { 194 typedef RValue type; 195 class saved_type { 196 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 197 AggregateAddress, ComplexAddress }; 198 199 llvm::Value *Value; 200 unsigned K : 3; 201 unsigned Align : 29; 202 saved_type(llvm::Value *v, Kind k, unsigned a = 0) 203 : Value(v), K(k), Align(a) {} 204 205 public: 206 static bool needsSaving(RValue value); 207 static saved_type save(CodeGenFunction &CGF, RValue value); 208 RValue restore(CodeGenFunction &CGF); 209 210 // implementations in CGCleanup.cpp 211 }; 212 213 static bool needsSaving(type value) { 214 return saved_type::needsSaving(value); 215 } 216 static saved_type save(CodeGenFunction &CGF, type value) { 217 return saved_type::save(CGF, value); 218 } 219 static type restore(CodeGenFunction &CGF, saved_type value) { 220 return value.restore(CGF); 221 } 222 }; 223 224 /// CodeGenFunction - This class organizes the per-function state that is used 225 /// while generating LLVM code. 226 class CodeGenFunction : public CodeGenTypeCache { 227 CodeGenFunction(const CodeGenFunction &) = delete; 228 void operator=(const CodeGenFunction &) = delete; 229 230 friend class CGCXXABI; 231 public: 232 /// A jump destination is an abstract label, branching to which may 233 /// require a jump out through normal cleanups. 234 struct JumpDest { 235 JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {} 236 JumpDest(llvm::BasicBlock *Block, 237 EHScopeStack::stable_iterator Depth, 238 unsigned Index) 239 : Block(Block), ScopeDepth(Depth), Index(Index) {} 240 241 bool isValid() const { return Block != nullptr; } 242 llvm::BasicBlock *getBlock() const { return Block; } 243 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 244 unsigned getDestIndex() const { return Index; } 245 246 // This should be used cautiously. 247 void setScopeDepth(EHScopeStack::stable_iterator depth) { 248 ScopeDepth = depth; 249 } 250 251 private: 252 llvm::BasicBlock *Block; 253 EHScopeStack::stable_iterator ScopeDepth; 254 unsigned Index; 255 }; 256 257 CodeGenModule &CGM; // Per-module state. 258 const TargetInfo &Target; 259 260 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 261 LoopInfoStack LoopStack; 262 CGBuilderTy Builder; 263 264 // Stores variables for which we can't generate correct lifetime markers 265 // because of jumps. 266 VarBypassDetector Bypasses; 267 268 // CodeGen lambda for loops and support for ordered clause 269 typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &, 270 JumpDest)> 271 CodeGenLoopTy; 272 typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation, 273 const unsigned, const bool)> 274 CodeGenOrderedTy; 275 276 // Codegen lambda for loop bounds in worksharing loop constructs 277 typedef llvm::function_ref<std::pair<LValue, LValue>( 278 CodeGenFunction &, const OMPExecutableDirective &S)> 279 CodeGenLoopBoundsTy; 280 281 // Codegen lambda for loop bounds in dispatch-based loop implementation 282 typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>( 283 CodeGenFunction &, const OMPExecutableDirective &S, Address LB, 284 Address UB)> 285 CodeGenDispatchBoundsTy; 286 287 /// CGBuilder insert helper. This function is called after an 288 /// instruction is created using Builder. 289 void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name, 290 llvm::BasicBlock *BB, 291 llvm::BasicBlock::iterator InsertPt) const; 292 293 /// CurFuncDecl - Holds the Decl for the current outermost 294 /// non-closure context. 295 const Decl *CurFuncDecl; 296 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 297 const Decl *CurCodeDecl; 298 const CGFunctionInfo *CurFnInfo; 299 QualType FnRetTy; 300 llvm::Function *CurFn = nullptr; 301 302 // Holds coroutine data if the current function is a coroutine. We use a 303 // wrapper to manage its lifetime, so that we don't have to define CGCoroData 304 // in this header. 305 struct CGCoroInfo { 306 std::unique_ptr<CGCoroData> Data; 307 CGCoroInfo(); 308 ~CGCoroInfo(); 309 }; 310 CGCoroInfo CurCoro; 311 312 bool isCoroutine() const { 313 return CurCoro.Data != nullptr; 314 } 315 316 /// CurGD - The GlobalDecl for the current function being compiled. 317 GlobalDecl CurGD; 318 319 /// PrologueCleanupDepth - The cleanup depth enclosing all the 320 /// cleanups associated with the parameters. 321 EHScopeStack::stable_iterator PrologueCleanupDepth; 322 323 /// ReturnBlock - Unified return block. 324 JumpDest ReturnBlock; 325 326 /// ReturnValue - The temporary alloca to hold the return 327 /// value. This is invalid iff the function has no return value. 328 Address ReturnValue = Address::invalid(); 329 330 /// ReturnValuePointer - The temporary alloca to hold a pointer to sret. 331 /// This is invalid if sret is not in use. 332 Address ReturnValuePointer = Address::invalid(); 333 334 /// Return true if a label was seen in the current scope. 335 bool hasLabelBeenSeenInCurrentScope() const { 336 if (CurLexicalScope) 337 return CurLexicalScope->hasLabels(); 338 return !LabelMap.empty(); 339 } 340 341 /// AllocaInsertPoint - This is an instruction in the entry block before which 342 /// we prefer to insert allocas. 343 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 344 345 /// API for captured statement code generation. 346 class CGCapturedStmtInfo { 347 public: 348 explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default) 349 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {} 350 explicit CGCapturedStmtInfo(const CapturedStmt &S, 351 CapturedRegionKind K = CR_Default) 352 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) { 353 354 RecordDecl::field_iterator Field = 355 S.getCapturedRecordDecl()->field_begin(); 356 for (CapturedStmt::const_capture_iterator I = S.capture_begin(), 357 E = S.capture_end(); 358 I != E; ++I, ++Field) { 359 if (I->capturesThis()) 360 CXXThisFieldDecl = *Field; 361 else if (I->capturesVariable()) 362 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 363 else if (I->capturesVariableByCopy()) 364 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 365 } 366 } 367 368 virtual ~CGCapturedStmtInfo(); 369 370 CapturedRegionKind getKind() const { return Kind; } 371 372 virtual void setContextValue(llvm::Value *V) { ThisValue = V; } 373 // Retrieve the value of the context parameter. 374 virtual llvm::Value *getContextValue() const { return ThisValue; } 375 376 /// Lookup the captured field decl for a variable. 377 virtual const FieldDecl *lookup(const VarDecl *VD) const { 378 return CaptureFields.lookup(VD->getCanonicalDecl()); 379 } 380 381 bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; } 382 virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; } 383 384 static bool classof(const CGCapturedStmtInfo *) { 385 return true; 386 } 387 388 /// Emit the captured statement body. 389 virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) { 390 CGF.incrementProfileCounter(S); 391 CGF.EmitStmt(S); 392 } 393 394 /// Get the name of the capture helper. 395 virtual StringRef getHelperName() const { return "__captured_stmt"; } 396 397 private: 398 /// The kind of captured statement being generated. 399 CapturedRegionKind Kind; 400 401 /// Keep the map between VarDecl and FieldDecl. 402 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields; 403 404 /// The base address of the captured record, passed in as the first 405 /// argument of the parallel region function. 406 llvm::Value *ThisValue; 407 408 /// Captured 'this' type. 409 FieldDecl *CXXThisFieldDecl; 410 }; 411 CGCapturedStmtInfo *CapturedStmtInfo = nullptr; 412 413 /// RAII for correct setting/restoring of CapturedStmtInfo. 414 class CGCapturedStmtRAII { 415 private: 416 CodeGenFunction &CGF; 417 CGCapturedStmtInfo *PrevCapturedStmtInfo; 418 public: 419 CGCapturedStmtRAII(CodeGenFunction &CGF, 420 CGCapturedStmtInfo *NewCapturedStmtInfo) 421 : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) { 422 CGF.CapturedStmtInfo = NewCapturedStmtInfo; 423 } 424 ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; } 425 }; 426 427 /// An abstract representation of regular/ObjC call/message targets. 428 class AbstractCallee { 429 /// The function declaration of the callee. 430 const Decl *CalleeDecl; 431 432 public: 433 AbstractCallee() : CalleeDecl(nullptr) {} 434 AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {} 435 AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {} 436 bool hasFunctionDecl() const { 437 return dyn_cast_or_null<FunctionDecl>(CalleeDecl); 438 } 439 const Decl *getDecl() const { return CalleeDecl; } 440 unsigned getNumParams() const { 441 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 442 return FD->getNumParams(); 443 return cast<ObjCMethodDecl>(CalleeDecl)->param_size(); 444 } 445 const ParmVarDecl *getParamDecl(unsigned I) const { 446 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 447 return FD->getParamDecl(I); 448 return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I); 449 } 450 }; 451 452 /// Sanitizers enabled for this function. 453 SanitizerSet SanOpts; 454 455 /// True if CodeGen currently emits code implementing sanitizer checks. 456 bool IsSanitizerScope = false; 457 458 /// RAII object to set/unset CodeGenFunction::IsSanitizerScope. 459 class SanitizerScope { 460 CodeGenFunction *CGF; 461 public: 462 SanitizerScope(CodeGenFunction *CGF); 463 ~SanitizerScope(); 464 }; 465 466 /// In C++, whether we are code generating a thunk. This controls whether we 467 /// should emit cleanups. 468 bool CurFuncIsThunk = false; 469 470 /// In ARC, whether we should autorelease the return value. 471 bool AutoreleaseResult = false; 472 473 /// Whether we processed a Microsoft-style asm block during CodeGen. These can 474 /// potentially set the return value. 475 bool SawAsmBlock = false; 476 477 const NamedDecl *CurSEHParent = nullptr; 478 479 /// True if the current function is an outlined SEH helper. This can be a 480 /// finally block or filter expression. 481 bool IsOutlinedSEHHelper = false; 482 483 /// True if CodeGen currently emits code inside presereved access index 484 /// region. 485 bool IsInPreservedAIRegion = false; 486 487 const CodeGen::CGBlockInfo *BlockInfo = nullptr; 488 llvm::Value *BlockPointer = nullptr; 489 490 llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; 491 FieldDecl *LambdaThisCaptureField = nullptr; 492 493 /// A mapping from NRVO variables to the flags used to indicate 494 /// when the NRVO has been applied to this variable. 495 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 496 497 EHScopeStack EHStack; 498 llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack; 499 llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack; 500 501 llvm::Instruction *CurrentFuncletPad = nullptr; 502 503 class CallLifetimeEnd final : public EHScopeStack::Cleanup { 504 llvm::Value *Addr; 505 llvm::Value *Size; 506 507 public: 508 CallLifetimeEnd(Address addr, llvm::Value *size) 509 : Addr(addr.getPointer()), Size(size) {} 510 511 void Emit(CodeGenFunction &CGF, Flags flags) override { 512 CGF.EmitLifetimeEnd(Size, Addr); 513 } 514 }; 515 516 /// Header for data within LifetimeExtendedCleanupStack. 517 struct LifetimeExtendedCleanupHeader { 518 /// The size of the following cleanup object. 519 unsigned Size; 520 /// The kind of cleanup to push: a value from the CleanupKind enumeration. 521 unsigned Kind : 31; 522 /// Whether this is a conditional cleanup. 523 unsigned IsConditional : 1; 524 525 size_t getSize() const { return Size; } 526 CleanupKind getKind() const { return (CleanupKind)Kind; } 527 bool isConditional() const { return IsConditional; } 528 }; 529 530 /// i32s containing the indexes of the cleanup destinations. 531 Address NormalCleanupDest = Address::invalid(); 532 533 unsigned NextCleanupDestIndex = 1; 534 535 /// FirstBlockInfo - The head of a singly-linked-list of block layouts. 536 CGBlockInfo *FirstBlockInfo = nullptr; 537 538 /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. 539 llvm::BasicBlock *EHResumeBlock = nullptr; 540 541 /// The exception slot. All landing pads write the current exception pointer 542 /// into this alloca. 543 llvm::Value *ExceptionSlot = nullptr; 544 545 /// The selector slot. Under the MandatoryCleanup model, all landing pads 546 /// write the current selector value into this alloca. 547 llvm::AllocaInst *EHSelectorSlot = nullptr; 548 549 /// A stack of exception code slots. Entering an __except block pushes a slot 550 /// on the stack and leaving pops one. The __exception_code() intrinsic loads 551 /// a value from the top of the stack. 552 SmallVector<Address, 1> SEHCodeSlotStack; 553 554 /// Value returned by __exception_info intrinsic. 555 llvm::Value *SEHInfo = nullptr; 556 557 /// Emits a landing pad for the current EH stack. 558 llvm::BasicBlock *EmitLandingPad(); 559 560 llvm::BasicBlock *getInvokeDestImpl(); 561 562 template <class T> 563 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 564 return DominatingValue<T>::save(*this, value); 565 } 566 567 public: 568 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 569 /// rethrows. 570 SmallVector<llvm::Value*, 8> ObjCEHValueStack; 571 572 /// A class controlling the emission of a finally block. 573 class FinallyInfo { 574 /// Where the catchall's edge through the cleanup should go. 575 JumpDest RethrowDest; 576 577 /// A function to call to enter the catch. 578 llvm::FunctionCallee BeginCatchFn; 579 580 /// An i1 variable indicating whether or not the @finally is 581 /// running for an exception. 582 llvm::AllocaInst *ForEHVar; 583 584 /// An i8* variable into which the exception pointer to rethrow 585 /// has been saved. 586 llvm::AllocaInst *SavedExnVar; 587 588 public: 589 void enter(CodeGenFunction &CGF, const Stmt *Finally, 590 llvm::FunctionCallee beginCatchFn, 591 llvm::FunctionCallee endCatchFn, llvm::FunctionCallee rethrowFn); 592 void exit(CodeGenFunction &CGF); 593 }; 594 595 /// Returns true inside SEH __try blocks. 596 bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); } 597 598 /// Returns true while emitting a cleanuppad. 599 bool isCleanupPadScope() const { 600 return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad); 601 } 602 603 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 604 /// current full-expression. Safe against the possibility that 605 /// we're currently inside a conditionally-evaluated expression. 606 template <class T, class... As> 607 void pushFullExprCleanup(CleanupKind kind, As... A) { 608 // If we're not in a conditional branch, or if none of the 609 // arguments requires saving, then use the unconditional cleanup. 610 if (!isInConditionalBranch()) 611 return EHStack.pushCleanup<T>(kind, A...); 612 613 // Stash values in a tuple so we can guarantee the order of saves. 614 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 615 SavedTuple Saved{saveValueInCond(A)...}; 616 617 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 618 EHStack.pushCleanupTuple<CleanupType>(kind, Saved); 619 initFullExprCleanup(); 620 } 621 622 /// Queue a cleanup to be pushed after finishing the current 623 /// full-expression. 624 template <class T, class... As> 625 void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) { 626 if (!isInConditionalBranch()) 627 return pushCleanupAfterFullExprImpl<T>(Kind, Address::invalid(), A...); 628 629 Address ActiveFlag = createCleanupActiveFlag(); 630 assert(!DominatingValue<Address>::needsSaving(ActiveFlag) && 631 "cleanup active flag should never need saving"); 632 633 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 634 SavedTuple Saved{saveValueInCond(A)...}; 635 636 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 637 pushCleanupAfterFullExprImpl<CleanupType>(Kind, ActiveFlag, Saved); 638 } 639 640 template <class T, class... As> 641 void pushCleanupAfterFullExprImpl(CleanupKind Kind, Address ActiveFlag, 642 As... A) { 643 LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind, 644 ActiveFlag.isValid()}; 645 646 size_t OldSize = LifetimeExtendedCleanupStack.size(); 647 LifetimeExtendedCleanupStack.resize( 648 LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size + 649 (Header.IsConditional ? sizeof(ActiveFlag) : 0)); 650 651 static_assert(sizeof(Header) % alignof(T) == 0, 652 "Cleanup will be allocated on misaligned address"); 653 char *Buffer = &LifetimeExtendedCleanupStack[OldSize]; 654 new (Buffer) LifetimeExtendedCleanupHeader(Header); 655 new (Buffer + sizeof(Header)) T(A...); 656 if (Header.IsConditional) 657 new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag); 658 } 659 660 /// Set up the last cleanup that was pushed as a conditional 661 /// full-expression cleanup. 662 void initFullExprCleanup() { 663 initFullExprCleanupWithFlag(createCleanupActiveFlag()); 664 } 665 666 void initFullExprCleanupWithFlag(Address ActiveFlag); 667 Address createCleanupActiveFlag(); 668 669 /// PushDestructorCleanup - Push a cleanup to call the 670 /// complete-object destructor of an object of the given type at the 671 /// given address. Does nothing if T is not a C++ class type with a 672 /// non-trivial destructor. 673 void PushDestructorCleanup(QualType T, Address Addr); 674 675 /// PushDestructorCleanup - Push a cleanup to call the 676 /// complete-object variant of the given destructor on the object at 677 /// the given address. 678 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, QualType T, 679 Address Addr); 680 681 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 682 /// process all branch fixups. 683 void PopCleanupBlock(bool FallThroughIsBranchThrough = false); 684 685 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 686 /// The block cannot be reactivated. Pops it if it's the top of the 687 /// stack. 688 /// 689 /// \param DominatingIP - An instruction which is known to 690 /// dominate the current IP (if set) and which lies along 691 /// all paths of execution between the current IP and the 692 /// the point at which the cleanup comes into scope. 693 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 694 llvm::Instruction *DominatingIP); 695 696 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 697 /// Cannot be used to resurrect a deactivated cleanup. 698 /// 699 /// \param DominatingIP - An instruction which is known to 700 /// dominate the current IP (if set) and which lies along 701 /// all paths of execution between the current IP and the 702 /// the point at which the cleanup comes into scope. 703 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 704 llvm::Instruction *DominatingIP); 705 706 /// Enters a new scope for capturing cleanups, all of which 707 /// will be executed once the scope is exited. 708 class RunCleanupsScope { 709 EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth; 710 size_t LifetimeExtendedCleanupStackSize; 711 bool OldDidCallStackSave; 712 protected: 713 bool PerformCleanup; 714 private: 715 716 RunCleanupsScope(const RunCleanupsScope &) = delete; 717 void operator=(const RunCleanupsScope &) = delete; 718 719 protected: 720 CodeGenFunction& CGF; 721 722 public: 723 /// Enter a new cleanup scope. 724 explicit RunCleanupsScope(CodeGenFunction &CGF) 725 : PerformCleanup(true), CGF(CGF) 726 { 727 CleanupStackDepth = CGF.EHStack.stable_begin(); 728 LifetimeExtendedCleanupStackSize = 729 CGF.LifetimeExtendedCleanupStack.size(); 730 OldDidCallStackSave = CGF.DidCallStackSave; 731 CGF.DidCallStackSave = false; 732 OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth; 733 CGF.CurrentCleanupScopeDepth = CleanupStackDepth; 734 } 735 736 /// Exit this cleanup scope, emitting any accumulated cleanups. 737 ~RunCleanupsScope() { 738 if (PerformCleanup) 739 ForceCleanup(); 740 } 741 742 /// Determine whether this scope requires any cleanups. 743 bool requiresCleanups() const { 744 return CGF.EHStack.stable_begin() != CleanupStackDepth; 745 } 746 747 /// Force the emission of cleanups now, instead of waiting 748 /// until this object is destroyed. 749 /// \param ValuesToReload - A list of values that need to be available at 750 /// the insertion point after cleanup emission. If cleanup emission created 751 /// a shared cleanup block, these value pointers will be rewritten. 752 /// Otherwise, they not will be modified. 753 void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) { 754 assert(PerformCleanup && "Already forced cleanup"); 755 CGF.DidCallStackSave = OldDidCallStackSave; 756 CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize, 757 ValuesToReload); 758 PerformCleanup = false; 759 CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth; 760 } 761 }; 762 763 // Cleanup stack depth of the RunCleanupsScope that was pushed most recently. 764 EHScopeStack::stable_iterator CurrentCleanupScopeDepth = 765 EHScopeStack::stable_end(); 766 767 class LexicalScope : public RunCleanupsScope { 768 SourceRange Range; 769 SmallVector<const LabelDecl*, 4> Labels; 770 LexicalScope *ParentScope; 771 772 LexicalScope(const LexicalScope &) = delete; 773 void operator=(const LexicalScope &) = delete; 774 775 public: 776 /// Enter a new cleanup scope. 777 explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) 778 : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) { 779 CGF.CurLexicalScope = this; 780 if (CGDebugInfo *DI = CGF.getDebugInfo()) 781 DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); 782 } 783 784 void addLabel(const LabelDecl *label) { 785 assert(PerformCleanup && "adding label to dead scope?"); 786 Labels.push_back(label); 787 } 788 789 /// Exit this cleanup scope, emitting any accumulated 790 /// cleanups. 791 ~LexicalScope() { 792 if (CGDebugInfo *DI = CGF.getDebugInfo()) 793 DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 794 795 // If we should perform a cleanup, force them now. Note that 796 // this ends the cleanup scope before rescoping any labels. 797 if (PerformCleanup) { 798 ApplyDebugLocation DL(CGF, Range.getEnd()); 799 ForceCleanup(); 800 } 801 } 802 803 /// Force the emission of cleanups now, instead of waiting 804 /// until this object is destroyed. 805 void ForceCleanup() { 806 CGF.CurLexicalScope = ParentScope; 807 RunCleanupsScope::ForceCleanup(); 808 809 if (!Labels.empty()) 810 rescopeLabels(); 811 } 812 813 bool hasLabels() const { 814 return !Labels.empty(); 815 } 816 817 void rescopeLabels(); 818 }; 819 820 typedef llvm::DenseMap<const Decl *, Address> DeclMapTy; 821 822 /// The class used to assign some variables some temporarily addresses. 823 class OMPMapVars { 824 DeclMapTy SavedLocals; 825 DeclMapTy SavedTempAddresses; 826 OMPMapVars(const OMPMapVars &) = delete; 827 void operator=(const OMPMapVars &) = delete; 828 829 public: 830 explicit OMPMapVars() = default; 831 ~OMPMapVars() { 832 assert(SavedLocals.empty() && "Did not restored original addresses."); 833 }; 834 835 /// Sets the address of the variable \p LocalVD to be \p TempAddr in 836 /// function \p CGF. 837 /// \return true if at least one variable was set already, false otherwise. 838 bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD, 839 Address TempAddr) { 840 LocalVD = LocalVD->getCanonicalDecl(); 841 // Only save it once. 842 if (SavedLocals.count(LocalVD)) return false; 843 844 // Copy the existing local entry to SavedLocals. 845 auto it = CGF.LocalDeclMap.find(LocalVD); 846 if (it != CGF.LocalDeclMap.end()) 847 SavedLocals.try_emplace(LocalVD, it->second); 848 else 849 SavedLocals.try_emplace(LocalVD, Address::invalid()); 850 851 // Generate the private entry. 852 QualType VarTy = LocalVD->getType(); 853 if (VarTy->isReferenceType()) { 854 Address Temp = CGF.CreateMemTemp(VarTy); 855 CGF.Builder.CreateStore(TempAddr.getPointer(), Temp); 856 TempAddr = Temp; 857 } 858 SavedTempAddresses.try_emplace(LocalVD, TempAddr); 859 860 return true; 861 } 862 863 /// Applies new addresses to the list of the variables. 864 /// \return true if at least one variable is using new address, false 865 /// otherwise. 866 bool apply(CodeGenFunction &CGF) { 867 copyInto(SavedTempAddresses, CGF.LocalDeclMap); 868 SavedTempAddresses.clear(); 869 return !SavedLocals.empty(); 870 } 871 872 /// Restores original addresses of the variables. 873 void restore(CodeGenFunction &CGF) { 874 if (!SavedLocals.empty()) { 875 copyInto(SavedLocals, CGF.LocalDeclMap); 876 SavedLocals.clear(); 877 } 878 } 879 880 private: 881 /// Copy all the entries in the source map over the corresponding 882 /// entries in the destination, which must exist. 883 static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) { 884 for (auto &Pair : Src) { 885 if (!Pair.second.isValid()) { 886 Dest.erase(Pair.first); 887 continue; 888 } 889 890 auto I = Dest.find(Pair.first); 891 if (I != Dest.end()) 892 I->second = Pair.second; 893 else 894 Dest.insert(Pair); 895 } 896 } 897 }; 898 899 /// The scope used to remap some variables as private in the OpenMP loop body 900 /// (or other captured region emitted without outlining), and to restore old 901 /// vars back on exit. 902 class OMPPrivateScope : public RunCleanupsScope { 903 OMPMapVars MappedVars; 904 OMPPrivateScope(const OMPPrivateScope &) = delete; 905 void operator=(const OMPPrivateScope &) = delete; 906 907 public: 908 /// Enter a new OpenMP private scope. 909 explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {} 910 911 /// Registers \p LocalVD variable as a private and apply \p PrivateGen 912 /// function for it to generate corresponding private variable. \p 913 /// PrivateGen returns an address of the generated private variable. 914 /// \return true if the variable is registered as private, false if it has 915 /// been privatized already. 916 bool addPrivate(const VarDecl *LocalVD, 917 const llvm::function_ref<Address()> PrivateGen) { 918 assert(PerformCleanup && "adding private to dead scope"); 919 return MappedVars.setVarAddr(CGF, LocalVD, PrivateGen()); 920 } 921 922 /// Privatizes local variables previously registered as private. 923 /// Registration is separate from the actual privatization to allow 924 /// initializers use values of the original variables, not the private one. 925 /// This is important, for example, if the private variable is a class 926 /// variable initialized by a constructor that references other private 927 /// variables. But at initialization original variables must be used, not 928 /// private copies. 929 /// \return true if at least one variable was privatized, false otherwise. 930 bool Privatize() { return MappedVars.apply(CGF); } 931 932 void ForceCleanup() { 933 RunCleanupsScope::ForceCleanup(); 934 MappedVars.restore(CGF); 935 } 936 937 /// Exit scope - all the mapped variables are restored. 938 ~OMPPrivateScope() { 939 if (PerformCleanup) 940 ForceCleanup(); 941 } 942 943 /// Checks if the global variable is captured in current function. 944 bool isGlobalVarCaptured(const VarDecl *VD) const { 945 VD = VD->getCanonicalDecl(); 946 return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0; 947 } 948 }; 949 950 /// Save/restore original map of previously emitted local vars in case when we 951 /// need to duplicate emission of the same code several times in the same 952 /// function for OpenMP code. 953 class OMPLocalDeclMapRAII { 954 CodeGenFunction &CGF; 955 DeclMapTy SavedMap; 956 957 public: 958 OMPLocalDeclMapRAII(CodeGenFunction &CGF) 959 : CGF(CGF), SavedMap(CGF.LocalDeclMap) {} 960 ~OMPLocalDeclMapRAII() { SavedMap.swap(CGF.LocalDeclMap); } 961 }; 962 963 /// Takes the old cleanup stack size and emits the cleanup blocks 964 /// that have been added. 965 void 966 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 967 std::initializer_list<llvm::Value **> ValuesToReload = {}); 968 969 /// Takes the old cleanup stack size and emits the cleanup blocks 970 /// that have been added, then adds all lifetime-extended cleanups from 971 /// the given position to the stack. 972 void 973 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 974 size_t OldLifetimeExtendedStackSize, 975 std::initializer_list<llvm::Value **> ValuesToReload = {}); 976 977 void ResolveBranchFixups(llvm::BasicBlock *Target); 978 979 /// The given basic block lies in the current EH scope, but may be a 980 /// target of a potentially scope-crossing jump; get a stable handle 981 /// to which we can perform this jump later. 982 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 983 return JumpDest(Target, 984 EHStack.getInnermostNormalCleanup(), 985 NextCleanupDestIndex++); 986 } 987 988 /// The given basic block lies in the current EH scope, but may be a 989 /// target of a potentially scope-crossing jump; get a stable handle 990 /// to which we can perform this jump later. 991 JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { 992 return getJumpDestInCurrentScope(createBasicBlock(Name)); 993 } 994 995 /// EmitBranchThroughCleanup - Emit a branch from the current insert 996 /// block through the normal cleanup handling code (if any) and then 997 /// on to \arg Dest. 998 void EmitBranchThroughCleanup(JumpDest Dest); 999 1000 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 1001 /// specified destination obviously has no cleanups to run. 'false' is always 1002 /// a conservatively correct answer for this method. 1003 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 1004 1005 /// popCatchScope - Pops the catch scope at the top of the EHScope 1006 /// stack, emitting any required code (other than the catch handlers 1007 /// themselves). 1008 void popCatchScope(); 1009 1010 llvm::BasicBlock *getEHResumeBlock(bool isCleanup); 1011 llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); 1012 llvm::BasicBlock * 1013 getFuncletEHDispatchBlock(EHScopeStack::stable_iterator scope); 1014 1015 /// An object to manage conditionally-evaluated expressions. 1016 class ConditionalEvaluation { 1017 llvm::BasicBlock *StartBB; 1018 1019 public: 1020 ConditionalEvaluation(CodeGenFunction &CGF) 1021 : StartBB(CGF.Builder.GetInsertBlock()) {} 1022 1023 void begin(CodeGenFunction &CGF) { 1024 assert(CGF.OutermostConditional != this); 1025 if (!CGF.OutermostConditional) 1026 CGF.OutermostConditional = this; 1027 } 1028 1029 void end(CodeGenFunction &CGF) { 1030 assert(CGF.OutermostConditional != nullptr); 1031 if (CGF.OutermostConditional == this) 1032 CGF.OutermostConditional = nullptr; 1033 } 1034 1035 /// Returns a block which will be executed prior to each 1036 /// evaluation of the conditional code. 1037 llvm::BasicBlock *getStartingBlock() const { 1038 return StartBB; 1039 } 1040 }; 1041 1042 /// isInConditionalBranch - Return true if we're currently emitting 1043 /// one branch or the other of a conditional expression. 1044 bool isInConditionalBranch() const { return OutermostConditional != nullptr; } 1045 1046 void setBeforeOutermostConditional(llvm::Value *value, Address addr) { 1047 assert(isInConditionalBranch()); 1048 llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); 1049 auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back()); 1050 store->setAlignment(addr.getAlignment().getAsAlign()); 1051 } 1052 1053 /// An RAII object to record that we're evaluating a statement 1054 /// expression. 1055 class StmtExprEvaluation { 1056 CodeGenFunction &CGF; 1057 1058 /// We have to save the outermost conditional: cleanups in a 1059 /// statement expression aren't conditional just because the 1060 /// StmtExpr is. 1061 ConditionalEvaluation *SavedOutermostConditional; 1062 1063 public: 1064 StmtExprEvaluation(CodeGenFunction &CGF) 1065 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 1066 CGF.OutermostConditional = nullptr; 1067 } 1068 1069 ~StmtExprEvaluation() { 1070 CGF.OutermostConditional = SavedOutermostConditional; 1071 CGF.EnsureInsertPoint(); 1072 } 1073 }; 1074 1075 /// An object which temporarily prevents a value from being 1076 /// destroyed by aggressive peephole optimizations that assume that 1077 /// all uses of a value have been realized in the IR. 1078 class PeepholeProtection { 1079 llvm::Instruction *Inst; 1080 friend class CodeGenFunction; 1081 1082 public: 1083 PeepholeProtection() : Inst(nullptr) {} 1084 }; 1085 1086 /// A non-RAII class containing all the information about a bound 1087 /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for 1088 /// this which makes individual mappings very simple; using this 1089 /// class directly is useful when you have a variable number of 1090 /// opaque values or don't want the RAII functionality for some 1091 /// reason. 1092 class OpaqueValueMappingData { 1093 const OpaqueValueExpr *OpaqueValue; 1094 bool BoundLValue; 1095 CodeGenFunction::PeepholeProtection Protection; 1096 1097 OpaqueValueMappingData(const OpaqueValueExpr *ov, 1098 bool boundLValue) 1099 : OpaqueValue(ov), BoundLValue(boundLValue) {} 1100 public: 1101 OpaqueValueMappingData() : OpaqueValue(nullptr) {} 1102 1103 static bool shouldBindAsLValue(const Expr *expr) { 1104 // gl-values should be bound as l-values for obvious reasons. 1105 // Records should be bound as l-values because IR generation 1106 // always keeps them in memory. Expressions of function type 1107 // act exactly like l-values but are formally required to be 1108 // r-values in C. 1109 return expr->isGLValue() || 1110 expr->getType()->isFunctionType() || 1111 hasAggregateEvaluationKind(expr->getType()); 1112 } 1113 1114 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1115 const OpaqueValueExpr *ov, 1116 const Expr *e) { 1117 if (shouldBindAsLValue(ov)) 1118 return bind(CGF, ov, CGF.EmitLValue(e)); 1119 return bind(CGF, ov, CGF.EmitAnyExpr(e)); 1120 } 1121 1122 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1123 const OpaqueValueExpr *ov, 1124 const LValue &lv) { 1125 assert(shouldBindAsLValue(ov)); 1126 CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); 1127 return OpaqueValueMappingData(ov, true); 1128 } 1129 1130 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1131 const OpaqueValueExpr *ov, 1132 const RValue &rv) { 1133 assert(!shouldBindAsLValue(ov)); 1134 CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); 1135 1136 OpaqueValueMappingData data(ov, false); 1137 1138 // Work around an extremely aggressive peephole optimization in 1139 // EmitScalarConversion which assumes that all other uses of a 1140 // value are extant. 1141 data.Protection = CGF.protectFromPeepholes(rv); 1142 1143 return data; 1144 } 1145 1146 bool isValid() const { return OpaqueValue != nullptr; } 1147 void clear() { OpaqueValue = nullptr; } 1148 1149 void unbind(CodeGenFunction &CGF) { 1150 assert(OpaqueValue && "no data to unbind!"); 1151 1152 if (BoundLValue) { 1153 CGF.OpaqueLValues.erase(OpaqueValue); 1154 } else { 1155 CGF.OpaqueRValues.erase(OpaqueValue); 1156 CGF.unprotectFromPeepholes(Protection); 1157 } 1158 } 1159 }; 1160 1161 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 1162 class OpaqueValueMapping { 1163 CodeGenFunction &CGF; 1164 OpaqueValueMappingData Data; 1165 1166 public: 1167 static bool shouldBindAsLValue(const Expr *expr) { 1168 return OpaqueValueMappingData::shouldBindAsLValue(expr); 1169 } 1170 1171 /// Build the opaque value mapping for the given conditional 1172 /// operator if it's the GNU ?: extension. This is a common 1173 /// enough pattern that the convenience operator is really 1174 /// helpful. 1175 /// 1176 OpaqueValueMapping(CodeGenFunction &CGF, 1177 const AbstractConditionalOperator *op) : CGF(CGF) { 1178 if (isa<ConditionalOperator>(op)) 1179 // Leave Data empty. 1180 return; 1181 1182 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 1183 Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), 1184 e->getCommon()); 1185 } 1186 1187 /// Build the opaque value mapping for an OpaqueValueExpr whose source 1188 /// expression is set to the expression the OVE represents. 1189 OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV) 1190 : CGF(CGF) { 1191 if (OV) { 1192 assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used " 1193 "for OVE with no source expression"); 1194 Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr()); 1195 } 1196 } 1197 1198 OpaqueValueMapping(CodeGenFunction &CGF, 1199 const OpaqueValueExpr *opaqueValue, 1200 LValue lvalue) 1201 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { 1202 } 1203 1204 OpaqueValueMapping(CodeGenFunction &CGF, 1205 const OpaqueValueExpr *opaqueValue, 1206 RValue rvalue) 1207 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { 1208 } 1209 1210 void pop() { 1211 Data.unbind(CGF); 1212 Data.clear(); 1213 } 1214 1215 ~OpaqueValueMapping() { 1216 if (Data.isValid()) Data.unbind(CGF); 1217 } 1218 }; 1219 1220 private: 1221 CGDebugInfo *DebugInfo; 1222 /// Used to create unique names for artificial VLA size debug info variables. 1223 unsigned VLAExprCounter = 0; 1224 bool DisableDebugInfo = false; 1225 1226 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 1227 /// calling llvm.stacksave for multiple VLAs in the same scope. 1228 bool DidCallStackSave = false; 1229 1230 /// IndirectBranch - The first time an indirect goto is seen we create a block 1231 /// with an indirect branch. Every time we see the address of a label taken, 1232 /// we add the label to the indirect goto. Every subsequent indirect goto is 1233 /// codegen'd as a jump to the IndirectBranch's basic block. 1234 llvm::IndirectBrInst *IndirectBranch = nullptr; 1235 1236 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 1237 /// decls. 1238 DeclMapTy LocalDeclMap; 1239 1240 // Keep track of the cleanups for callee-destructed parameters pushed to the 1241 // cleanup stack so that they can be deactivated later. 1242 llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator> 1243 CalleeDestructedParamCleanups; 1244 1245 /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this 1246 /// will contain a mapping from said ParmVarDecl to its implicit "object_size" 1247 /// parameter. 1248 llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2> 1249 SizeArguments; 1250 1251 /// Track escaped local variables with auto storage. Used during SEH 1252 /// outlining to produce a call to llvm.localescape. 1253 llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals; 1254 1255 /// LabelMap - This keeps track of the LLVM basic block for each C label. 1256 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 1257 1258 // BreakContinueStack - This keeps track of where break and continue 1259 // statements should jump to. 1260 struct BreakContinue { 1261 BreakContinue(JumpDest Break, JumpDest Continue) 1262 : BreakBlock(Break), ContinueBlock(Continue) {} 1263 1264 JumpDest BreakBlock; 1265 JumpDest ContinueBlock; 1266 }; 1267 SmallVector<BreakContinue, 8> BreakContinueStack; 1268 1269 /// Handles cancellation exit points in OpenMP-related constructs. 1270 class OpenMPCancelExitStack { 1271 /// Tracks cancellation exit point and join point for cancel-related exit 1272 /// and normal exit. 1273 struct CancelExit { 1274 CancelExit() = default; 1275 CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock, 1276 JumpDest ContBlock) 1277 : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {} 1278 OpenMPDirectiveKind Kind = OMPD_unknown; 1279 /// true if the exit block has been emitted already by the special 1280 /// emitExit() call, false if the default codegen is used. 1281 bool HasBeenEmitted = false; 1282 JumpDest ExitBlock; 1283 JumpDest ContBlock; 1284 }; 1285 1286 SmallVector<CancelExit, 8> Stack; 1287 1288 public: 1289 OpenMPCancelExitStack() : Stack(1) {} 1290 ~OpenMPCancelExitStack() = default; 1291 /// Fetches the exit block for the current OpenMP construct. 1292 JumpDest getExitBlock() const { return Stack.back().ExitBlock; } 1293 /// Emits exit block with special codegen procedure specific for the related 1294 /// OpenMP construct + emits code for normal construct cleanup. 1295 void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 1296 const llvm::function_ref<void(CodeGenFunction &)> CodeGen) { 1297 if (Stack.back().Kind == Kind && getExitBlock().isValid()) { 1298 assert(CGF.getOMPCancelDestination(Kind).isValid()); 1299 assert(CGF.HaveInsertPoint()); 1300 assert(!Stack.back().HasBeenEmitted); 1301 auto IP = CGF.Builder.saveAndClearIP(); 1302 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1303 CodeGen(CGF); 1304 CGF.EmitBranch(Stack.back().ContBlock.getBlock()); 1305 CGF.Builder.restoreIP(IP); 1306 Stack.back().HasBeenEmitted = true; 1307 } 1308 CodeGen(CGF); 1309 } 1310 /// Enter the cancel supporting \a Kind construct. 1311 /// \param Kind OpenMP directive that supports cancel constructs. 1312 /// \param HasCancel true, if the construct has inner cancel directive, 1313 /// false otherwise. 1314 void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) { 1315 Stack.push_back({Kind, 1316 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit") 1317 : JumpDest(), 1318 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont") 1319 : JumpDest()}); 1320 } 1321 /// Emits default exit point for the cancel construct (if the special one 1322 /// has not be used) + join point for cancel/normal exits. 1323 void exit(CodeGenFunction &CGF) { 1324 if (getExitBlock().isValid()) { 1325 assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid()); 1326 bool HaveIP = CGF.HaveInsertPoint(); 1327 if (!Stack.back().HasBeenEmitted) { 1328 if (HaveIP) 1329 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1330 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1331 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1332 } 1333 CGF.EmitBlock(Stack.back().ContBlock.getBlock()); 1334 if (!HaveIP) { 1335 CGF.Builder.CreateUnreachable(); 1336 CGF.Builder.ClearInsertionPoint(); 1337 } 1338 } 1339 Stack.pop_back(); 1340 } 1341 }; 1342 OpenMPCancelExitStack OMPCancelStack; 1343 1344 CodeGenPGO PGO; 1345 1346 /// Calculate branch weights appropriate for PGO data 1347 llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount); 1348 llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights); 1349 llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond, 1350 uint64_t LoopCount); 1351 1352 public: 1353 /// Increment the profiler's counter for the given statement by \p StepV. 1354 /// If \p StepV is null, the default increment is 1. 1355 void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) { 1356 if (CGM.getCodeGenOpts().hasProfileClangInstr()) 1357 PGO.emitCounterIncrement(Builder, S, StepV); 1358 PGO.setCurrentStmt(S); 1359 } 1360 1361 /// Get the profiler's count for the given statement. 1362 uint64_t getProfileCount(const Stmt *S) { 1363 Optional<uint64_t> Count = PGO.getStmtCount(S); 1364 if (!Count.hasValue()) 1365 return 0; 1366 return *Count; 1367 } 1368 1369 /// Set the profiler's current count. 1370 void setCurrentProfileCount(uint64_t Count) { 1371 PGO.setCurrentRegionCount(Count); 1372 } 1373 1374 /// Get the profiler's current count. This is generally the count for the most 1375 /// recently incremented counter. 1376 uint64_t getCurrentProfileCount() { 1377 return PGO.getCurrentRegionCount(); 1378 } 1379 1380 private: 1381 1382 /// SwitchInsn - This is nearest current switch instruction. It is null if 1383 /// current context is not in a switch. 1384 llvm::SwitchInst *SwitchInsn = nullptr; 1385 /// The branch weights of SwitchInsn when doing instrumentation based PGO. 1386 SmallVector<uint64_t, 16> *SwitchWeights = nullptr; 1387 1388 /// CaseRangeBlock - This block holds if condition check for last case 1389 /// statement range in current switch instruction. 1390 llvm::BasicBlock *CaseRangeBlock = nullptr; 1391 1392 /// OpaqueLValues - Keeps track of the current set of opaque value 1393 /// expressions. 1394 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 1395 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 1396 1397 // VLASizeMap - This keeps track of the associated size for each VLA type. 1398 // We track this by the size expression rather than the type itself because 1399 // in certain situations, like a const qualifier applied to an VLA typedef, 1400 // multiple VLA types can share the same size expression. 1401 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 1402 // enter/leave scopes. 1403 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 1404 1405 /// A block containing a single 'unreachable' instruction. Created 1406 /// lazily by getUnreachableBlock(). 1407 llvm::BasicBlock *UnreachableBlock = nullptr; 1408 1409 /// Counts of the number return expressions in the function. 1410 unsigned NumReturnExprs = 0; 1411 1412 /// Count the number of simple (constant) return expressions in the function. 1413 unsigned NumSimpleReturnExprs = 0; 1414 1415 /// The last regular (non-return) debug location (breakpoint) in the function. 1416 SourceLocation LastStopPoint; 1417 1418 public: 1419 /// Source location information about the default argument or member 1420 /// initializer expression we're evaluating, if any. 1421 CurrentSourceLocExprScope CurSourceLocExprScope; 1422 using SourceLocExprScopeGuard = 1423 CurrentSourceLocExprScope::SourceLocExprScopeGuard; 1424 1425 /// A scope within which we are constructing the fields of an object which 1426 /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use 1427 /// if we need to evaluate a CXXDefaultInitExpr within the evaluation. 1428 class FieldConstructionScope { 1429 public: 1430 FieldConstructionScope(CodeGenFunction &CGF, Address This) 1431 : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) { 1432 CGF.CXXDefaultInitExprThis = This; 1433 } 1434 ~FieldConstructionScope() { 1435 CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis; 1436 } 1437 1438 private: 1439 CodeGenFunction &CGF; 1440 Address OldCXXDefaultInitExprThis; 1441 }; 1442 1443 /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this' 1444 /// is overridden to be the object under construction. 1445 class CXXDefaultInitExprScope { 1446 public: 1447 CXXDefaultInitExprScope(CodeGenFunction &CGF, const CXXDefaultInitExpr *E) 1448 : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue), 1449 OldCXXThisAlignment(CGF.CXXThisAlignment), 1450 SourceLocScope(E, CGF.CurSourceLocExprScope) { 1451 CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer(); 1452 CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment(); 1453 } 1454 ~CXXDefaultInitExprScope() { 1455 CGF.CXXThisValue = OldCXXThisValue; 1456 CGF.CXXThisAlignment = OldCXXThisAlignment; 1457 } 1458 1459 public: 1460 CodeGenFunction &CGF; 1461 llvm::Value *OldCXXThisValue; 1462 CharUnits OldCXXThisAlignment; 1463 SourceLocExprScopeGuard SourceLocScope; 1464 }; 1465 1466 struct CXXDefaultArgExprScope : SourceLocExprScopeGuard { 1467 CXXDefaultArgExprScope(CodeGenFunction &CGF, const CXXDefaultArgExpr *E) 1468 : SourceLocExprScopeGuard(E, CGF.CurSourceLocExprScope) {} 1469 }; 1470 1471 /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the 1472 /// current loop index is overridden. 1473 class ArrayInitLoopExprScope { 1474 public: 1475 ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index) 1476 : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) { 1477 CGF.ArrayInitIndex = Index; 1478 } 1479 ~ArrayInitLoopExprScope() { 1480 CGF.ArrayInitIndex = OldArrayInitIndex; 1481 } 1482 1483 private: 1484 CodeGenFunction &CGF; 1485 llvm::Value *OldArrayInitIndex; 1486 }; 1487 1488 class InlinedInheritingConstructorScope { 1489 public: 1490 InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD) 1491 : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl), 1492 OldCurCodeDecl(CGF.CurCodeDecl), 1493 OldCXXABIThisDecl(CGF.CXXABIThisDecl), 1494 OldCXXABIThisValue(CGF.CXXABIThisValue), 1495 OldCXXThisValue(CGF.CXXThisValue), 1496 OldCXXABIThisAlignment(CGF.CXXABIThisAlignment), 1497 OldCXXThisAlignment(CGF.CXXThisAlignment), 1498 OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy), 1499 OldCXXInheritedCtorInitExprArgs( 1500 std::move(CGF.CXXInheritedCtorInitExprArgs)) { 1501 CGF.CurGD = GD; 1502 CGF.CurFuncDecl = CGF.CurCodeDecl = 1503 cast<CXXConstructorDecl>(GD.getDecl()); 1504 CGF.CXXABIThisDecl = nullptr; 1505 CGF.CXXABIThisValue = nullptr; 1506 CGF.CXXThisValue = nullptr; 1507 CGF.CXXABIThisAlignment = CharUnits(); 1508 CGF.CXXThisAlignment = CharUnits(); 1509 CGF.ReturnValue = Address::invalid(); 1510 CGF.FnRetTy = QualType(); 1511 CGF.CXXInheritedCtorInitExprArgs.clear(); 1512 } 1513 ~InlinedInheritingConstructorScope() { 1514 CGF.CurGD = OldCurGD; 1515 CGF.CurFuncDecl = OldCurFuncDecl; 1516 CGF.CurCodeDecl = OldCurCodeDecl; 1517 CGF.CXXABIThisDecl = OldCXXABIThisDecl; 1518 CGF.CXXABIThisValue = OldCXXABIThisValue; 1519 CGF.CXXThisValue = OldCXXThisValue; 1520 CGF.CXXABIThisAlignment = OldCXXABIThisAlignment; 1521 CGF.CXXThisAlignment = OldCXXThisAlignment; 1522 CGF.ReturnValue = OldReturnValue; 1523 CGF.FnRetTy = OldFnRetTy; 1524 CGF.CXXInheritedCtorInitExprArgs = 1525 std::move(OldCXXInheritedCtorInitExprArgs); 1526 } 1527 1528 private: 1529 CodeGenFunction &CGF; 1530 GlobalDecl OldCurGD; 1531 const Decl *OldCurFuncDecl; 1532 const Decl *OldCurCodeDecl; 1533 ImplicitParamDecl *OldCXXABIThisDecl; 1534 llvm::Value *OldCXXABIThisValue; 1535 llvm::Value *OldCXXThisValue; 1536 CharUnits OldCXXABIThisAlignment; 1537 CharUnits OldCXXThisAlignment; 1538 Address OldReturnValue; 1539 QualType OldFnRetTy; 1540 CallArgList OldCXXInheritedCtorInitExprArgs; 1541 }; 1542 1543 private: 1544 /// CXXThisDecl - When generating code for a C++ member function, 1545 /// this will hold the implicit 'this' declaration. 1546 ImplicitParamDecl *CXXABIThisDecl = nullptr; 1547 llvm::Value *CXXABIThisValue = nullptr; 1548 llvm::Value *CXXThisValue = nullptr; 1549 CharUnits CXXABIThisAlignment; 1550 CharUnits CXXThisAlignment; 1551 1552 /// The value of 'this' to use when evaluating CXXDefaultInitExprs within 1553 /// this expression. 1554 Address CXXDefaultInitExprThis = Address::invalid(); 1555 1556 /// The current array initialization index when evaluating an 1557 /// ArrayInitIndexExpr within an ArrayInitLoopExpr. 1558 llvm::Value *ArrayInitIndex = nullptr; 1559 1560 /// The values of function arguments to use when evaluating 1561 /// CXXInheritedCtorInitExprs within this context. 1562 CallArgList CXXInheritedCtorInitExprArgs; 1563 1564 /// CXXStructorImplicitParamDecl - When generating code for a constructor or 1565 /// destructor, this will hold the implicit argument (e.g. VTT). 1566 ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr; 1567 llvm::Value *CXXStructorImplicitParamValue = nullptr; 1568 1569 /// OutermostConditional - Points to the outermost active 1570 /// conditional control. This is used so that we know if a 1571 /// temporary should be destroyed conditionally. 1572 ConditionalEvaluation *OutermostConditional = nullptr; 1573 1574 /// The current lexical scope. 1575 LexicalScope *CurLexicalScope = nullptr; 1576 1577 /// The current source location that should be used for exception 1578 /// handling code. 1579 SourceLocation CurEHLocation; 1580 1581 /// BlockByrefInfos - For each __block variable, contains 1582 /// information about the layout of the variable. 1583 llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos; 1584 1585 /// Used by -fsanitize=nullability-return to determine whether the return 1586 /// value can be checked. 1587 llvm::Value *RetValNullabilityPrecondition = nullptr; 1588 1589 /// Check if -fsanitize=nullability-return instrumentation is required for 1590 /// this function. 1591 bool requiresReturnValueNullabilityCheck() const { 1592 return RetValNullabilityPrecondition; 1593 } 1594 1595 /// Used to store precise source locations for return statements by the 1596 /// runtime return value checks. 1597 Address ReturnLocation = Address::invalid(); 1598 1599 /// Check if the return value of this function requires sanitization. 1600 bool requiresReturnValueCheck() const { 1601 return requiresReturnValueNullabilityCheck() || 1602 (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 1603 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()); 1604 } 1605 1606 llvm::BasicBlock *TerminateLandingPad = nullptr; 1607 llvm::BasicBlock *TerminateHandler = nullptr; 1608 llvm::BasicBlock *TrapBB = nullptr; 1609 1610 /// Terminate funclets keyed by parent funclet pad. 1611 llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets; 1612 1613 /// Largest vector width used in ths function. Will be used to create a 1614 /// function attribute. 1615 unsigned LargestVectorWidth = 0; 1616 1617 /// True if we need emit the life-time markers. 1618 const bool ShouldEmitLifetimeMarkers; 1619 1620 /// Add OpenCL kernel arg metadata and the kernel attribute metadata to 1621 /// the function metadata. 1622 void EmitOpenCLKernelMetadata(const FunctionDecl *FD, 1623 llvm::Function *Fn); 1624 1625 public: 1626 CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false); 1627 ~CodeGenFunction(); 1628 1629 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 1630 ASTContext &getContext() const { return CGM.getContext(); } 1631 CGDebugInfo *getDebugInfo() { 1632 if (DisableDebugInfo) 1633 return nullptr; 1634 return DebugInfo; 1635 } 1636 void disableDebugInfo() { DisableDebugInfo = true; } 1637 void enableDebugInfo() { DisableDebugInfo = false; } 1638 1639 bool shouldUseFusedARCCalls() { 1640 return CGM.getCodeGenOpts().OptimizationLevel == 0; 1641 } 1642 1643 const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } 1644 1645 /// Returns a pointer to the function's exception object and selector slot, 1646 /// which is assigned in every landing pad. 1647 Address getExceptionSlot(); 1648 Address getEHSelectorSlot(); 1649 1650 /// Returns the contents of the function's exception object and selector 1651 /// slots. 1652 llvm::Value *getExceptionFromSlot(); 1653 llvm::Value *getSelectorFromSlot(); 1654 1655 Address getNormalCleanupDestSlot(); 1656 1657 llvm::BasicBlock *getUnreachableBlock() { 1658 if (!UnreachableBlock) { 1659 UnreachableBlock = createBasicBlock("unreachable"); 1660 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 1661 } 1662 return UnreachableBlock; 1663 } 1664 1665 llvm::BasicBlock *getInvokeDest() { 1666 if (!EHStack.requiresLandingPad()) return nullptr; 1667 return getInvokeDestImpl(); 1668 } 1669 1670 bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; } 1671 1672 const TargetInfo &getTarget() const { return Target; } 1673 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 1674 const TargetCodeGenInfo &getTargetHooks() const { 1675 return CGM.getTargetCodeGenInfo(); 1676 } 1677 1678 //===--------------------------------------------------------------------===// 1679 // Cleanups 1680 //===--------------------------------------------------------------------===// 1681 1682 typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty); 1683 1684 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1685 Address arrayEndPointer, 1686 QualType elementType, 1687 CharUnits elementAlignment, 1688 Destroyer *destroyer); 1689 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1690 llvm::Value *arrayEnd, 1691 QualType elementType, 1692 CharUnits elementAlignment, 1693 Destroyer *destroyer); 1694 1695 void pushDestroy(QualType::DestructionKind dtorKind, 1696 Address addr, QualType type); 1697 void pushEHDestroy(QualType::DestructionKind dtorKind, 1698 Address addr, QualType type); 1699 void pushDestroy(CleanupKind kind, Address addr, QualType type, 1700 Destroyer *destroyer, bool useEHCleanupForArray); 1701 void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr, 1702 QualType type, Destroyer *destroyer, 1703 bool useEHCleanupForArray); 1704 void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 1705 llvm::Value *CompletePtr, 1706 QualType ElementType); 1707 void pushStackRestore(CleanupKind kind, Address SPMem); 1708 void emitDestroy(Address addr, QualType type, Destroyer *destroyer, 1709 bool useEHCleanupForArray); 1710 llvm::Function *generateDestroyHelper(Address addr, QualType type, 1711 Destroyer *destroyer, 1712 bool useEHCleanupForArray, 1713 const VarDecl *VD); 1714 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 1715 QualType elementType, CharUnits elementAlign, 1716 Destroyer *destroyer, 1717 bool checkZeroLength, bool useEHCleanup); 1718 1719 Destroyer *getDestroyer(QualType::DestructionKind destructionKind); 1720 1721 /// Determines whether an EH cleanup is required to destroy a type 1722 /// with the given destruction kind. 1723 bool needsEHCleanup(QualType::DestructionKind kind) { 1724 switch (kind) { 1725 case QualType::DK_none: 1726 return false; 1727 case QualType::DK_cxx_destructor: 1728 case QualType::DK_objc_weak_lifetime: 1729 case QualType::DK_nontrivial_c_struct: 1730 return getLangOpts().Exceptions; 1731 case QualType::DK_objc_strong_lifetime: 1732 return getLangOpts().Exceptions && 1733 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 1734 } 1735 llvm_unreachable("bad destruction kind"); 1736 } 1737 1738 CleanupKind getCleanupKind(QualType::DestructionKind kind) { 1739 return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); 1740 } 1741 1742 //===--------------------------------------------------------------------===// 1743 // Objective-C 1744 //===--------------------------------------------------------------------===// 1745 1746 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 1747 1748 void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD); 1749 1750 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 1751 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 1752 const ObjCPropertyImplDecl *PID); 1753 void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 1754 const ObjCPropertyImplDecl *propImpl, 1755 const ObjCMethodDecl *GetterMothodDecl, 1756 llvm::Constant *AtomicHelperFn); 1757 1758 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1759 ObjCMethodDecl *MD, bool ctor); 1760 1761 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 1762 /// for the given property. 1763 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 1764 const ObjCPropertyImplDecl *PID); 1765 void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1766 const ObjCPropertyImplDecl *propImpl, 1767 llvm::Constant *AtomicHelperFn); 1768 1769 //===--------------------------------------------------------------------===// 1770 // Block Bits 1771 //===--------------------------------------------------------------------===// 1772 1773 /// Emit block literal. 1774 /// \return an LLVM value which is a pointer to a struct which contains 1775 /// information about the block, including the block invoke function, the 1776 /// captured variables, etc. 1777 llvm::Value *EmitBlockLiteral(const BlockExpr *); 1778 static void destroyBlockInfos(CGBlockInfo *info); 1779 1780 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 1781 const CGBlockInfo &Info, 1782 const DeclMapTy &ldm, 1783 bool IsLambdaConversionToBlock, 1784 bool BuildGlobalBlock); 1785 1786 /// Check if \p T is a C++ class that has a destructor that can throw. 1787 static bool cxxDestructorCanThrow(QualType T); 1788 1789 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 1790 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 1791 llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( 1792 const ObjCPropertyImplDecl *PID); 1793 llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( 1794 const ObjCPropertyImplDecl *PID); 1795 llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); 1796 1797 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags, 1798 bool CanThrow); 1799 1800 class AutoVarEmission; 1801 1802 void emitByrefStructureInit(const AutoVarEmission &emission); 1803 1804 /// Enter a cleanup to destroy a __block variable. Note that this 1805 /// cleanup should be a no-op if the variable hasn't left the stack 1806 /// yet; if a cleanup is required for the variable itself, that needs 1807 /// to be done externally. 1808 /// 1809 /// \param Kind Cleanup kind. 1810 /// 1811 /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block 1812 /// structure that will be passed to _Block_object_dispose. When 1813 /// \p LoadBlockVarAddr is true, the address of the field of the block 1814 /// structure that holds the address of the __block structure. 1815 /// 1816 /// \param Flags The flag that will be passed to _Block_object_dispose. 1817 /// 1818 /// \param LoadBlockVarAddr Indicates whether we need to emit a load from 1819 /// \p Addr to get the address of the __block structure. 1820 void enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags, 1821 bool LoadBlockVarAddr, bool CanThrow); 1822 1823 void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum, 1824 llvm::Value *ptr); 1825 1826 Address LoadBlockStruct(); 1827 Address GetAddrOfBlockDecl(const VarDecl *var); 1828 1829 /// BuildBlockByrefAddress - Computes the location of the 1830 /// data in a variable which is declared as __block. 1831 Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V, 1832 bool followForward = true); 1833 Address emitBlockByrefAddress(Address baseAddr, 1834 const BlockByrefInfo &info, 1835 bool followForward, 1836 const llvm::Twine &name); 1837 1838 const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var); 1839 1840 QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args); 1841 1842 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1843 const CGFunctionInfo &FnInfo); 1844 1845 /// Annotate the function with an attribute that disables TSan checking at 1846 /// runtime. 1847 void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn); 1848 1849 /// Emit code for the start of a function. 1850 /// \param Loc The location to be associated with the function. 1851 /// \param StartLoc The location of the function body. 1852 void StartFunction(GlobalDecl GD, 1853 QualType RetTy, 1854 llvm::Function *Fn, 1855 const CGFunctionInfo &FnInfo, 1856 const FunctionArgList &Args, 1857 SourceLocation Loc = SourceLocation(), 1858 SourceLocation StartLoc = SourceLocation()); 1859 1860 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor); 1861 1862 void EmitConstructorBody(FunctionArgList &Args); 1863 void EmitDestructorBody(FunctionArgList &Args); 1864 void emitImplicitAssignmentOperatorBody(FunctionArgList &Args); 1865 void EmitFunctionBody(const Stmt *Body); 1866 void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S); 1867 1868 void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator, 1869 CallArgList &CallArgs); 1870 void EmitLambdaBlockInvokeBody(); 1871 void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD); 1872 void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD); 1873 void EmitLambdaVLACapture(const VariableArrayType *VAT, LValue LV) { 1874 EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); 1875 } 1876 void EmitAsanPrologueOrEpilogue(bool Prologue); 1877 1878 /// Emit the unified return block, trying to avoid its emission when 1879 /// possible. 1880 /// \return The debug location of the user written return statement if the 1881 /// return block is is avoided. 1882 llvm::DebugLoc EmitReturnBlock(); 1883 1884 /// FinishFunction - Complete IR generation of the current function. It is 1885 /// legal to call this function even if there is no current insertion point. 1886 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 1887 1888 void StartThunk(llvm::Function *Fn, GlobalDecl GD, 1889 const CGFunctionInfo &FnInfo, bool IsUnprototyped); 1890 1891 void EmitCallAndReturnForThunk(llvm::FunctionCallee Callee, 1892 const ThunkInfo *Thunk, bool IsUnprototyped); 1893 1894 void FinishThunk(); 1895 1896 /// Emit a musttail call for a thunk with a potentially adjusted this pointer. 1897 void EmitMustTailThunk(GlobalDecl GD, llvm::Value *AdjustedThisPtr, 1898 llvm::FunctionCallee Callee); 1899 1900 /// Generate a thunk for the given method. 1901 void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1902 GlobalDecl GD, const ThunkInfo &Thunk, 1903 bool IsUnprototyped); 1904 1905 llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn, 1906 const CGFunctionInfo &FnInfo, 1907 GlobalDecl GD, const ThunkInfo &Thunk); 1908 1909 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 1910 FunctionArgList &Args); 1911 1912 void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init); 1913 1914 /// Struct with all information about dynamic [sub]class needed to set vptr. 1915 struct VPtr { 1916 BaseSubobject Base; 1917 const CXXRecordDecl *NearestVBase; 1918 CharUnits OffsetFromNearestVBase; 1919 const CXXRecordDecl *VTableClass; 1920 }; 1921 1922 /// Initialize the vtable pointer of the given subobject. 1923 void InitializeVTablePointer(const VPtr &vptr); 1924 1925 typedef llvm::SmallVector<VPtr, 4> VPtrsVector; 1926 1927 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 1928 VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass); 1929 1930 void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase, 1931 CharUnits OffsetFromNearestVBase, 1932 bool BaseIsNonVirtualPrimaryBase, 1933 const CXXRecordDecl *VTableClass, 1934 VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs); 1935 1936 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 1937 1938 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 1939 /// to by This. 1940 llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy, 1941 const CXXRecordDecl *VTableClass); 1942 1943 enum CFITypeCheckKind { 1944 CFITCK_VCall, 1945 CFITCK_NVCall, 1946 CFITCK_DerivedCast, 1947 CFITCK_UnrelatedCast, 1948 CFITCK_ICall, 1949 CFITCK_NVMFCall, 1950 CFITCK_VMFCall, 1951 }; 1952 1953 /// Derived is the presumed address of an object of type T after a 1954 /// cast. If T is a polymorphic class type, emit a check that the virtual 1955 /// table for Derived belongs to a class derived from T. 1956 void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived, 1957 bool MayBeNull, CFITypeCheckKind TCK, 1958 SourceLocation Loc); 1959 1960 /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable. 1961 /// If vptr CFI is enabled, emit a check that VTable is valid. 1962 void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable, 1963 CFITypeCheckKind TCK, SourceLocation Loc); 1964 1965 /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for 1966 /// RD using llvm.type.test. 1967 void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable, 1968 CFITypeCheckKind TCK, SourceLocation Loc); 1969 1970 /// If whole-program virtual table optimization is enabled, emit an assumption 1971 /// that VTable is a member of RD's type identifier. Or, if vptr CFI is 1972 /// enabled, emit a check that VTable is a member of RD's type identifier. 1973 void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, 1974 llvm::Value *VTable, SourceLocation Loc); 1975 1976 /// Returns whether we should perform a type checked load when loading a 1977 /// virtual function for virtual calls to members of RD. This is generally 1978 /// true when both vcall CFI and whole-program-vtables are enabled. 1979 bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD); 1980 1981 /// Emit a type checked load from the given vtable. 1982 llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable, 1983 uint64_t VTableByteOffset); 1984 1985 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 1986 /// given phase of destruction for a destructor. The end result 1987 /// should call destructors on members and base classes in reverse 1988 /// order of their construction. 1989 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 1990 1991 /// ShouldInstrumentFunction - Return true if the current function should be 1992 /// instrumented with __cyg_profile_func_* calls 1993 bool ShouldInstrumentFunction(); 1994 1995 /// ShouldXRayInstrument - Return true if the current function should be 1996 /// instrumented with XRay nop sleds. 1997 bool ShouldXRayInstrumentFunction() const; 1998 1999 /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit 2000 /// XRay custom event handling calls. 2001 bool AlwaysEmitXRayCustomEvents() const; 2002 2003 /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit 2004 /// XRay typed event handling calls. 2005 bool AlwaysEmitXRayTypedEvents() const; 2006 2007 /// Encode an address into a form suitable for use in a function prologue. 2008 llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F, 2009 llvm::Constant *Addr); 2010 2011 /// Decode an address used in a function prologue, encoded by \c 2012 /// EncodeAddrForUseInPrologue. 2013 llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F, 2014 llvm::Value *EncodedAddr); 2015 2016 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 2017 /// arguments for the given function. This is also responsible for naming the 2018 /// LLVM function arguments. 2019 void EmitFunctionProlog(const CGFunctionInfo &FI, 2020 llvm::Function *Fn, 2021 const FunctionArgList &Args); 2022 2023 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 2024 /// given temporary. 2025 void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc, 2026 SourceLocation EndLoc); 2027 2028 /// Emit a test that checks if the return value \p RV is nonnull. 2029 void EmitReturnValueCheck(llvm::Value *RV); 2030 2031 /// EmitStartEHSpec - Emit the start of the exception spec. 2032 void EmitStartEHSpec(const Decl *D); 2033 2034 /// EmitEndEHSpec - Emit the end of the exception spec. 2035 void EmitEndEHSpec(const Decl *D); 2036 2037 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 2038 llvm::BasicBlock *getTerminateLandingPad(); 2039 2040 /// getTerminateLandingPad - Return a cleanup funclet that just calls 2041 /// terminate. 2042 llvm::BasicBlock *getTerminateFunclet(); 2043 2044 /// getTerminateHandler - Return a handler (not a landing pad, just 2045 /// a catch handler) that just calls terminate. This is used when 2046 /// a terminate scope encloses a try. 2047 llvm::BasicBlock *getTerminateHandler(); 2048 2049 llvm::Type *ConvertTypeForMem(QualType T); 2050 llvm::Type *ConvertType(QualType T); 2051 llvm::Type *ConvertType(const TypeDecl *T) { 2052 return ConvertType(getContext().getTypeDeclType(T)); 2053 } 2054 2055 /// LoadObjCSelf - Load the value of self. This function is only valid while 2056 /// generating code for an Objective-C method. 2057 llvm::Value *LoadObjCSelf(); 2058 2059 /// TypeOfSelfObject - Return type of object that this self represents. 2060 QualType TypeOfSelfObject(); 2061 2062 /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T. 2063 static TypeEvaluationKind getEvaluationKind(QualType T); 2064 2065 static bool hasScalarEvaluationKind(QualType T) { 2066 return getEvaluationKind(T) == TEK_Scalar; 2067 } 2068 2069 static bool hasAggregateEvaluationKind(QualType T) { 2070 return getEvaluationKind(T) == TEK_Aggregate; 2071 } 2072 2073 /// createBasicBlock - Create an LLVM basic block. 2074 llvm::BasicBlock *createBasicBlock(const Twine &name = "", 2075 llvm::Function *parent = nullptr, 2076 llvm::BasicBlock *before = nullptr) { 2077 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 2078 } 2079 2080 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 2081 /// label maps to. 2082 JumpDest getJumpDestForLabel(const LabelDecl *S); 2083 2084 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 2085 /// another basic block, simplify it. This assumes that no other code could 2086 /// potentially reference the basic block. 2087 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 2088 2089 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 2090 /// adding a fall-through branch from the current insert block if 2091 /// necessary. It is legal to call this function even if there is no current 2092 /// insertion point. 2093 /// 2094 /// IsFinished - If true, indicates that the caller has finished emitting 2095 /// branches to the given block and does not expect to emit code into it. This 2096 /// means the block can be ignored if it is unreachable. 2097 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 2098 2099 /// EmitBlockAfterUses - Emit the given block somewhere hopefully 2100 /// near its uses, and leave the insertion point in it. 2101 void EmitBlockAfterUses(llvm::BasicBlock *BB); 2102 2103 /// EmitBranch - Emit a branch to the specified basic block from the current 2104 /// insert block, taking care to avoid creation of branches from dummy 2105 /// blocks. It is legal to call this function even if there is no current 2106 /// insertion point. 2107 /// 2108 /// This function clears the current insertion point. The caller should follow 2109 /// calls to this function with calls to Emit*Block prior to generation new 2110 /// code. 2111 void EmitBranch(llvm::BasicBlock *Block); 2112 2113 /// HaveInsertPoint - True if an insertion point is defined. If not, this 2114 /// indicates that the current code being emitted is unreachable. 2115 bool HaveInsertPoint() const { 2116 return Builder.GetInsertBlock() != nullptr; 2117 } 2118 2119 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 2120 /// emitted IR has a place to go. Note that by definition, if this function 2121 /// creates a block then that block is unreachable; callers may do better to 2122 /// detect when no insertion point is defined and simply skip IR generation. 2123 void EnsureInsertPoint() { 2124 if (!HaveInsertPoint()) 2125 EmitBlock(createBasicBlock()); 2126 } 2127 2128 /// ErrorUnsupported - Print out an error that codegen doesn't support the 2129 /// specified stmt yet. 2130 void ErrorUnsupported(const Stmt *S, const char *Type); 2131 2132 //===--------------------------------------------------------------------===// 2133 // Helpers 2134 //===--------------------------------------------------------------------===// 2135 2136 LValue MakeAddrLValue(Address Addr, QualType T, 2137 AlignmentSource Source = AlignmentSource::Type) { 2138 return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source), 2139 CGM.getTBAAAccessInfo(T)); 2140 } 2141 2142 LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo, 2143 TBAAAccessInfo TBAAInfo) { 2144 return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo); 2145 } 2146 2147 LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 2148 AlignmentSource Source = AlignmentSource::Type) { 2149 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), 2150 LValueBaseInfo(Source), CGM.getTBAAAccessInfo(T)); 2151 } 2152 2153 LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 2154 LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) { 2155 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), 2156 BaseInfo, TBAAInfo); 2157 } 2158 2159 LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T); 2160 LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T); 2161 CharUnits getNaturalTypeAlignment(QualType T, 2162 LValueBaseInfo *BaseInfo = nullptr, 2163 TBAAAccessInfo *TBAAInfo = nullptr, 2164 bool forPointeeType = false); 2165 CharUnits getNaturalPointeeTypeAlignment(QualType T, 2166 LValueBaseInfo *BaseInfo = nullptr, 2167 TBAAAccessInfo *TBAAInfo = nullptr); 2168 2169 Address EmitLoadOfReference(LValue RefLVal, 2170 LValueBaseInfo *PointeeBaseInfo = nullptr, 2171 TBAAAccessInfo *PointeeTBAAInfo = nullptr); 2172 LValue EmitLoadOfReferenceLValue(LValue RefLVal); 2173 LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy, 2174 AlignmentSource Source = 2175 AlignmentSource::Type) { 2176 LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source), 2177 CGM.getTBAAAccessInfo(RefTy)); 2178 return EmitLoadOfReferenceLValue(RefLVal); 2179 } 2180 2181 Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy, 2182 LValueBaseInfo *BaseInfo = nullptr, 2183 TBAAAccessInfo *TBAAInfo = nullptr); 2184 LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy); 2185 2186 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 2187 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 2188 /// insertion point of the builder. The caller is responsible for setting an 2189 /// appropriate alignment on 2190 /// the alloca. 2191 /// 2192 /// \p ArraySize is the number of array elements to be allocated if it 2193 /// is not nullptr. 2194 /// 2195 /// LangAS::Default is the address space of pointers to local variables and 2196 /// temporaries, as exposed in the source language. In certain 2197 /// configurations, this is not the same as the alloca address space, and a 2198 /// cast is needed to lift the pointer from the alloca AS into 2199 /// LangAS::Default. This can happen when the target uses a restricted 2200 /// address space for the stack but the source language requires 2201 /// LangAS::Default to be a generic address space. The latter condition is 2202 /// common for most programming languages; OpenCL is an exception in that 2203 /// LangAS::Default is the private address space, which naturally maps 2204 /// to the stack. 2205 /// 2206 /// Because the address of a temporary is often exposed to the program in 2207 /// various ways, this function will perform the cast. The original alloca 2208 /// instruction is returned through \p Alloca if it is not nullptr. 2209 /// 2210 /// The cast is not performaed in CreateTempAllocaWithoutCast. This is 2211 /// more efficient if the caller knows that the address will not be exposed. 2212 llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp", 2213 llvm::Value *ArraySize = nullptr); 2214 Address CreateTempAlloca(llvm::Type *Ty, CharUnits align, 2215 const Twine &Name = "tmp", 2216 llvm::Value *ArraySize = nullptr, 2217 Address *Alloca = nullptr); 2218 Address CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align, 2219 const Twine &Name = "tmp", 2220 llvm::Value *ArraySize = nullptr); 2221 2222 /// CreateDefaultAlignedTempAlloca - This creates an alloca with the 2223 /// default ABI alignment of the given LLVM type. 2224 /// 2225 /// IMPORTANT NOTE: This is *not* generally the right alignment for 2226 /// any given AST type that happens to have been lowered to the 2227 /// given IR type. This should only ever be used for function-local, 2228 /// IR-driven manipulations like saving and restoring a value. Do 2229 /// not hand this address off to arbitrary IRGen routines, and especially 2230 /// do not pass it as an argument to a function that might expect a 2231 /// properly ABI-aligned value. 2232 Address CreateDefaultAlignTempAlloca(llvm::Type *Ty, 2233 const Twine &Name = "tmp"); 2234 2235 /// InitTempAlloca - Provide an initial value for the given alloca which 2236 /// will be observable at all locations in the function. 2237 /// 2238 /// The address should be something that was returned from one of 2239 /// the CreateTempAlloca or CreateMemTemp routines, and the 2240 /// initializer must be valid in the entry block (i.e. it must 2241 /// either be a constant or an argument value). 2242 void InitTempAlloca(Address Alloca, llvm::Value *Value); 2243 2244 /// CreateIRTemp - Create a temporary IR object of the given type, with 2245 /// appropriate alignment. This routine should only be used when an temporary 2246 /// value needs to be stored into an alloca (for example, to avoid explicit 2247 /// PHI construction), but the type is the IR type, not the type appropriate 2248 /// for storing in memory. 2249 /// 2250 /// That is, this is exactly equivalent to CreateMemTemp, but calling 2251 /// ConvertType instead of ConvertTypeForMem. 2252 Address CreateIRTemp(QualType T, const Twine &Name = "tmp"); 2253 2254 /// CreateMemTemp - Create a temporary memory object of the given type, with 2255 /// appropriate alignmen and cast it to the default address space. Returns 2256 /// the original alloca instruction by \p Alloca if it is not nullptr. 2257 Address CreateMemTemp(QualType T, const Twine &Name = "tmp", 2258 Address *Alloca = nullptr); 2259 Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp", 2260 Address *Alloca = nullptr); 2261 2262 /// CreateMemTemp - Create a temporary memory object of the given type, with 2263 /// appropriate alignmen without casting it to the default address space. 2264 Address CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp"); 2265 Address CreateMemTempWithoutCast(QualType T, CharUnits Align, 2266 const Twine &Name = "tmp"); 2267 2268 /// CreateAggTemp - Create a temporary memory object for the given 2269 /// aggregate type. 2270 AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") { 2271 return AggValueSlot::forAddr(CreateMemTemp(T, Name), 2272 T.getQualifiers(), 2273 AggValueSlot::IsNotDestructed, 2274 AggValueSlot::DoesNotNeedGCBarriers, 2275 AggValueSlot::IsNotAliased, 2276 AggValueSlot::DoesNotOverlap); 2277 } 2278 2279 /// Emit a cast to void* in the appropriate address space. 2280 llvm::Value *EmitCastToVoidPtr(llvm::Value *value); 2281 2282 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 2283 /// expression and compare the result against zero, returning an Int1Ty value. 2284 llvm::Value *EvaluateExprAsBool(const Expr *E); 2285 2286 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 2287 void EmitIgnoredExpr(const Expr *E); 2288 2289 /// EmitAnyExpr - Emit code to compute the specified expression which can have 2290 /// any type. The result is returned as an RValue struct. If this is an 2291 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 2292 /// the result should be returned. 2293 /// 2294 /// \param ignoreResult True if the resulting value isn't used. 2295 RValue EmitAnyExpr(const Expr *E, 2296 AggValueSlot aggSlot = AggValueSlot::ignored(), 2297 bool ignoreResult = false); 2298 2299 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 2300 // or the value of the expression, depending on how va_list is defined. 2301 Address EmitVAListRef(const Expr *E); 2302 2303 /// Emit a "reference" to a __builtin_ms_va_list; this is 2304 /// always the value of the expression, because a __builtin_ms_va_list is a 2305 /// pointer to a char. 2306 Address EmitMSVAListRef(const Expr *E); 2307 2308 /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will 2309 /// always be accessible even if no aggregate location is provided. 2310 RValue EmitAnyExprToTemp(const Expr *E); 2311 2312 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 2313 /// arbitrary expression into the given memory location. 2314 void EmitAnyExprToMem(const Expr *E, Address Location, 2315 Qualifiers Quals, bool IsInitializer); 2316 2317 void EmitAnyExprToExn(const Expr *E, Address Addr); 2318 2319 /// EmitExprAsInit - Emits the code necessary to initialize a 2320 /// location in memory with the given initializer. 2321 void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2322 bool capturedByInit); 2323 2324 /// hasVolatileMember - returns true if aggregate type has a volatile 2325 /// member. 2326 bool hasVolatileMember(QualType T) { 2327 if (const RecordType *RT = T->getAs<RecordType>()) { 2328 const RecordDecl *RD = cast<RecordDecl>(RT->getDecl()); 2329 return RD->hasVolatileMember(); 2330 } 2331 return false; 2332 } 2333 2334 /// Determine whether a return value slot may overlap some other object. 2335 AggValueSlot::Overlap_t getOverlapForReturnValue() { 2336 // FIXME: Assuming no overlap here breaks guaranteed copy elision for base 2337 // class subobjects. These cases may need to be revisited depending on the 2338 // resolution of the relevant core issue. 2339 return AggValueSlot::DoesNotOverlap; 2340 } 2341 2342 /// Determine whether a field initialization may overlap some other object. 2343 AggValueSlot::Overlap_t getOverlapForFieldInit(const FieldDecl *FD); 2344 2345 /// Determine whether a base class initialization may overlap some other 2346 /// object. 2347 AggValueSlot::Overlap_t getOverlapForBaseInit(const CXXRecordDecl *RD, 2348 const CXXRecordDecl *BaseRD, 2349 bool IsVirtual); 2350 2351 /// Emit an aggregate assignment. 2352 void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) { 2353 bool IsVolatile = hasVolatileMember(EltTy); 2354 EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile); 2355 } 2356 2357 void EmitAggregateCopyCtor(LValue Dest, LValue Src, 2358 AggValueSlot::Overlap_t MayOverlap) { 2359 EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap); 2360 } 2361 2362 /// EmitAggregateCopy - Emit an aggregate copy. 2363 /// 2364 /// \param isVolatile \c true iff either the source or the destination is 2365 /// volatile. 2366 /// \param MayOverlap Whether the tail padding of the destination might be 2367 /// occupied by some other object. More efficient code can often be 2368 /// generated if not. 2369 void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy, 2370 AggValueSlot::Overlap_t MayOverlap, 2371 bool isVolatile = false); 2372 2373 /// GetAddrOfLocalVar - Return the address of a local variable. 2374 Address GetAddrOfLocalVar(const VarDecl *VD) { 2375 auto it = LocalDeclMap.find(VD); 2376 assert(it != LocalDeclMap.end() && 2377 "Invalid argument to GetAddrOfLocalVar(), no decl!"); 2378 return it->second; 2379 } 2380 2381 /// Given an opaque value expression, return its LValue mapping if it exists, 2382 /// otherwise create one. 2383 LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e); 2384 2385 /// Given an opaque value expression, return its RValue mapping if it exists, 2386 /// otherwise create one. 2387 RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e); 2388 2389 /// Get the index of the current ArrayInitLoopExpr, if any. 2390 llvm::Value *getArrayInitIndex() { return ArrayInitIndex; } 2391 2392 /// getAccessedFieldNo - Given an encoded value and a result number, return 2393 /// the input field number being accessed. 2394 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 2395 2396 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 2397 llvm::BasicBlock *GetIndirectGotoBlock(); 2398 2399 /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts. 2400 static bool IsWrappedCXXThis(const Expr *E); 2401 2402 /// EmitNullInitialization - Generate code to set a value of the given type to 2403 /// null, If the type contains data member pointers, they will be initialized 2404 /// to -1 in accordance with the Itanium C++ ABI. 2405 void EmitNullInitialization(Address DestPtr, QualType Ty); 2406 2407 /// Emits a call to an LLVM variable-argument intrinsic, either 2408 /// \c llvm.va_start or \c llvm.va_end. 2409 /// \param ArgValue A reference to the \c va_list as emitted by either 2410 /// \c EmitVAListRef or \c EmitMSVAListRef. 2411 /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise, 2412 /// calls \c llvm.va_end. 2413 llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart); 2414 2415 /// Generate code to get an argument from the passed in pointer 2416 /// and update it accordingly. 2417 /// \param VE The \c VAArgExpr for which to generate code. 2418 /// \param VAListAddr Receives a reference to the \c va_list as emitted by 2419 /// either \c EmitVAListRef or \c EmitMSVAListRef. 2420 /// \returns A pointer to the argument. 2421 // FIXME: We should be able to get rid of this method and use the va_arg 2422 // instruction in LLVM instead once it works well enough. 2423 Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr); 2424 2425 /// emitArrayLength - Compute the length of an array, even if it's a 2426 /// VLA, and drill down to the base element type. 2427 llvm::Value *emitArrayLength(const ArrayType *arrayType, 2428 QualType &baseType, 2429 Address &addr); 2430 2431 /// EmitVLASize - Capture all the sizes for the VLA expressions in 2432 /// the given variably-modified type and store them in the VLASizeMap. 2433 /// 2434 /// This function can be called with a null (unreachable) insert point. 2435 void EmitVariablyModifiedType(QualType Ty); 2436 2437 struct VlaSizePair { 2438 llvm::Value *NumElts; 2439 QualType Type; 2440 2441 VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {} 2442 }; 2443 2444 /// Return the number of elements for a single dimension 2445 /// for the given array type. 2446 VlaSizePair getVLAElements1D(const VariableArrayType *vla); 2447 VlaSizePair getVLAElements1D(QualType vla); 2448 2449 /// Returns an LLVM value that corresponds to the size, 2450 /// in non-variably-sized elements, of a variable length array type, 2451 /// plus that largest non-variably-sized element type. Assumes that 2452 /// the type has already been emitted with EmitVariablyModifiedType. 2453 VlaSizePair getVLASize(const VariableArrayType *vla); 2454 VlaSizePair getVLASize(QualType vla); 2455 2456 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 2457 /// generating code for an C++ member function. 2458 llvm::Value *LoadCXXThis() { 2459 assert(CXXThisValue && "no 'this' value for this function"); 2460 return CXXThisValue; 2461 } 2462 Address LoadCXXThisAddress(); 2463 2464 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 2465 /// virtual bases. 2466 // FIXME: Every place that calls LoadCXXVTT is something 2467 // that needs to be abstracted properly. 2468 llvm::Value *LoadCXXVTT() { 2469 assert(CXXStructorImplicitParamValue && "no VTT value for this function"); 2470 return CXXStructorImplicitParamValue; 2471 } 2472 2473 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 2474 /// complete class to the given direct base. 2475 Address 2476 GetAddressOfDirectBaseInCompleteClass(Address Value, 2477 const CXXRecordDecl *Derived, 2478 const CXXRecordDecl *Base, 2479 bool BaseIsVirtual); 2480 2481 static bool ShouldNullCheckClassCastValue(const CastExpr *Cast); 2482 2483 /// GetAddressOfBaseClass - This function will add the necessary delta to the 2484 /// load of 'this' and returns address of the base class. 2485 Address GetAddressOfBaseClass(Address Value, 2486 const CXXRecordDecl *Derived, 2487 CastExpr::path_const_iterator PathBegin, 2488 CastExpr::path_const_iterator PathEnd, 2489 bool NullCheckValue, SourceLocation Loc); 2490 2491 Address GetAddressOfDerivedClass(Address Value, 2492 const CXXRecordDecl *Derived, 2493 CastExpr::path_const_iterator PathBegin, 2494 CastExpr::path_const_iterator PathEnd, 2495 bool NullCheckValue); 2496 2497 /// GetVTTParameter - Return the VTT parameter that should be passed to a 2498 /// base constructor/destructor with virtual bases. 2499 /// FIXME: VTTs are Itanium ABI-specific, so the definition should move 2500 /// to ItaniumCXXABI.cpp together with all the references to VTT. 2501 llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase, 2502 bool Delegating); 2503 2504 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 2505 CXXCtorType CtorType, 2506 const FunctionArgList &Args, 2507 SourceLocation Loc); 2508 // It's important not to confuse this and the previous function. Delegating 2509 // constructors are the C++0x feature. The constructor delegate optimization 2510 // is used to reduce duplication in the base and complete consturctors where 2511 // they are substantially the same. 2512 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2513 const FunctionArgList &Args); 2514 2515 /// Emit a call to an inheriting constructor (that is, one that invokes a 2516 /// constructor inherited from a base class) by inlining its definition. This 2517 /// is necessary if the ABI does not support forwarding the arguments to the 2518 /// base class constructor (because they're variadic or similar). 2519 void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2520 CXXCtorType CtorType, 2521 bool ForVirtualBase, 2522 bool Delegating, 2523 CallArgList &Args); 2524 2525 /// Emit a call to a constructor inherited from a base class, passing the 2526 /// current constructor's arguments along unmodified (without even making 2527 /// a copy). 2528 void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D, 2529 bool ForVirtualBase, Address This, 2530 bool InheritedFromVBase, 2531 const CXXInheritedCtorInitExpr *E); 2532 2533 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2534 bool ForVirtualBase, bool Delegating, 2535 AggValueSlot ThisAVS, const CXXConstructExpr *E); 2536 2537 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2538 bool ForVirtualBase, bool Delegating, 2539 Address This, CallArgList &Args, 2540 AggValueSlot::Overlap_t Overlap, 2541 SourceLocation Loc, bool NewPointerIsChecked); 2542 2543 /// Emit assumption load for all bases. Requires to be be called only on 2544 /// most-derived class and not under construction of the object. 2545 void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This); 2546 2547 /// Emit assumption that vptr load == global vtable. 2548 void EmitVTableAssumptionLoad(const VPtr &vptr, Address This); 2549 2550 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 2551 Address This, Address Src, 2552 const CXXConstructExpr *E); 2553 2554 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2555 const ArrayType *ArrayTy, 2556 Address ArrayPtr, 2557 const CXXConstructExpr *E, 2558 bool NewPointerIsChecked, 2559 bool ZeroInitialization = false); 2560 2561 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2562 llvm::Value *NumElements, 2563 Address ArrayPtr, 2564 const CXXConstructExpr *E, 2565 bool NewPointerIsChecked, 2566 bool ZeroInitialization = false); 2567 2568 static Destroyer destroyCXXObject; 2569 2570 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 2571 bool ForVirtualBase, bool Delegating, Address This, 2572 QualType ThisTy); 2573 2574 void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, 2575 llvm::Type *ElementTy, Address NewPtr, 2576 llvm::Value *NumElements, 2577 llvm::Value *AllocSizeWithoutCookie); 2578 2579 void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, 2580 Address Ptr); 2581 2582 llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr); 2583 void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr); 2584 2585 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 2586 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 2587 2588 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 2589 QualType DeleteTy, llvm::Value *NumElements = nullptr, 2590 CharUnits CookieSize = CharUnits()); 2591 2592 RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 2593 const CallExpr *TheCallExpr, bool IsDelete); 2594 2595 llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E); 2596 llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE); 2597 Address EmitCXXUuidofExpr(const CXXUuidofExpr *E); 2598 2599 /// Situations in which we might emit a check for the suitability of a 2600 /// pointer or glvalue. 2601 enum TypeCheckKind { 2602 /// Checking the operand of a load. Must be suitably sized and aligned. 2603 TCK_Load, 2604 /// Checking the destination of a store. Must be suitably sized and aligned. 2605 TCK_Store, 2606 /// Checking the bound value in a reference binding. Must be suitably sized 2607 /// and aligned, but is not required to refer to an object (until the 2608 /// reference is used), per core issue 453. 2609 TCK_ReferenceBinding, 2610 /// Checking the object expression in a non-static data member access. Must 2611 /// be an object within its lifetime. 2612 TCK_MemberAccess, 2613 /// Checking the 'this' pointer for a call to a non-static member function. 2614 /// Must be an object within its lifetime. 2615 TCK_MemberCall, 2616 /// Checking the 'this' pointer for a constructor call. 2617 TCK_ConstructorCall, 2618 /// Checking the operand of a static_cast to a derived pointer type. Must be 2619 /// null or an object within its lifetime. 2620 TCK_DowncastPointer, 2621 /// Checking the operand of a static_cast to a derived reference type. Must 2622 /// be an object within its lifetime. 2623 TCK_DowncastReference, 2624 /// Checking the operand of a cast to a base object. Must be suitably sized 2625 /// and aligned. 2626 TCK_Upcast, 2627 /// Checking the operand of a cast to a virtual base object. Must be an 2628 /// object within its lifetime. 2629 TCK_UpcastToVirtualBase, 2630 /// Checking the value assigned to a _Nonnull pointer. Must not be null. 2631 TCK_NonnullAssign, 2632 /// Checking the operand of a dynamic_cast or a typeid expression. Must be 2633 /// null or an object within its lifetime. 2634 TCK_DynamicOperation 2635 }; 2636 2637 /// Determine whether the pointer type check \p TCK permits null pointers. 2638 static bool isNullPointerAllowed(TypeCheckKind TCK); 2639 2640 /// Determine whether the pointer type check \p TCK requires a vptr check. 2641 static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty); 2642 2643 /// Whether any type-checking sanitizers are enabled. If \c false, 2644 /// calls to EmitTypeCheck can be skipped. 2645 bool sanitizePerformTypeCheck() const; 2646 2647 /// Emit a check that \p V is the address of storage of the 2648 /// appropriate size and alignment for an object of type \p Type 2649 /// (or if ArraySize is provided, for an array of that bound). 2650 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, 2651 QualType Type, CharUnits Alignment = CharUnits::Zero(), 2652 SanitizerSet SkippedChecks = SanitizerSet(), 2653 llvm::Value *ArraySize = nullptr); 2654 2655 /// Emit a check that \p Base points into an array object, which 2656 /// we can access at index \p Index. \p Accessed should be \c false if we 2657 /// this expression is used as an lvalue, for instance in "&Arr[Idx]". 2658 void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, 2659 QualType IndexType, bool Accessed); 2660 2661 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 2662 bool isInc, bool isPre); 2663 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 2664 bool isInc, bool isPre); 2665 2666 /// Converts Location to a DebugLoc, if debug information is enabled. 2667 llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location); 2668 2669 /// Get the record field index as represented in debug info. 2670 unsigned getDebugInfoFIndex(const RecordDecl *Rec, unsigned FieldIndex); 2671 2672 2673 //===--------------------------------------------------------------------===// 2674 // Declaration Emission 2675 //===--------------------------------------------------------------------===// 2676 2677 /// EmitDecl - Emit a declaration. 2678 /// 2679 /// This function can be called with a null (unreachable) insert point. 2680 void EmitDecl(const Decl &D); 2681 2682 /// EmitVarDecl - Emit a local variable declaration. 2683 /// 2684 /// This function can be called with a null (unreachable) insert point. 2685 void EmitVarDecl(const VarDecl &D); 2686 2687 void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2688 bool capturedByInit); 2689 2690 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 2691 llvm::Value *Address); 2692 2693 /// Determine whether the given initializer is trivial in the sense 2694 /// that it requires no code to be generated. 2695 bool isTrivialInitializer(const Expr *Init); 2696 2697 /// EmitAutoVarDecl - Emit an auto variable declaration. 2698 /// 2699 /// This function can be called with a null (unreachable) insert point. 2700 void EmitAutoVarDecl(const VarDecl &D); 2701 2702 class AutoVarEmission { 2703 friend class CodeGenFunction; 2704 2705 const VarDecl *Variable; 2706 2707 /// The address of the alloca for languages with explicit address space 2708 /// (e.g. OpenCL) or alloca casted to generic pointer for address space 2709 /// agnostic languages (e.g. C++). Invalid if the variable was emitted 2710 /// as a global constant. 2711 Address Addr; 2712 2713 llvm::Value *NRVOFlag; 2714 2715 /// True if the variable is a __block variable that is captured by an 2716 /// escaping block. 2717 bool IsEscapingByRef; 2718 2719 /// True if the variable is of aggregate type and has a constant 2720 /// initializer. 2721 bool IsConstantAggregate; 2722 2723 /// Non-null if we should use lifetime annotations. 2724 llvm::Value *SizeForLifetimeMarkers; 2725 2726 /// Address with original alloca instruction. Invalid if the variable was 2727 /// emitted as a global constant. 2728 Address AllocaAddr; 2729 2730 struct Invalid {}; 2731 AutoVarEmission(Invalid) 2732 : Variable(nullptr), Addr(Address::invalid()), 2733 AllocaAddr(Address::invalid()) {} 2734 2735 AutoVarEmission(const VarDecl &variable) 2736 : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr), 2737 IsEscapingByRef(false), IsConstantAggregate(false), 2738 SizeForLifetimeMarkers(nullptr), AllocaAddr(Address::invalid()) {} 2739 2740 bool wasEmittedAsGlobal() const { return !Addr.isValid(); } 2741 2742 public: 2743 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 2744 2745 bool useLifetimeMarkers() const { 2746 return SizeForLifetimeMarkers != nullptr; 2747 } 2748 llvm::Value *getSizeForLifetimeMarkers() const { 2749 assert(useLifetimeMarkers()); 2750 return SizeForLifetimeMarkers; 2751 } 2752 2753 /// Returns the raw, allocated address, which is not necessarily 2754 /// the address of the object itself. It is casted to default 2755 /// address space for address space agnostic languages. 2756 Address getAllocatedAddress() const { 2757 return Addr; 2758 } 2759 2760 /// Returns the address for the original alloca instruction. 2761 Address getOriginalAllocatedAddress() const { return AllocaAddr; } 2762 2763 /// Returns the address of the object within this declaration. 2764 /// Note that this does not chase the forwarding pointer for 2765 /// __block decls. 2766 Address getObjectAddress(CodeGenFunction &CGF) const { 2767 if (!IsEscapingByRef) return Addr; 2768 2769 return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false); 2770 } 2771 }; 2772 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 2773 void EmitAutoVarInit(const AutoVarEmission &emission); 2774 void EmitAutoVarCleanups(const AutoVarEmission &emission); 2775 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 2776 QualType::DestructionKind dtorKind); 2777 2778 /// Emits the alloca and debug information for the size expressions for each 2779 /// dimension of an array. It registers the association of its (1-dimensional) 2780 /// QualTypes and size expression's debug node, so that CGDebugInfo can 2781 /// reference this node when creating the DISubrange object to describe the 2782 /// array types. 2783 void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI, 2784 const VarDecl &D, 2785 bool EmitDebugInfo); 2786 2787 void EmitStaticVarDecl(const VarDecl &D, 2788 llvm::GlobalValue::LinkageTypes Linkage); 2789 2790 class ParamValue { 2791 llvm::Value *Value; 2792 unsigned Alignment; 2793 ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {} 2794 public: 2795 static ParamValue forDirect(llvm::Value *value) { 2796 return ParamValue(value, 0); 2797 } 2798 static ParamValue forIndirect(Address addr) { 2799 assert(!addr.getAlignment().isZero()); 2800 return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity()); 2801 } 2802 2803 bool isIndirect() const { return Alignment != 0; } 2804 llvm::Value *getAnyValue() const { return Value; } 2805 2806 llvm::Value *getDirectValue() const { 2807 assert(!isIndirect()); 2808 return Value; 2809 } 2810 2811 Address getIndirectAddress() const { 2812 assert(isIndirect()); 2813 return Address(Value, CharUnits::fromQuantity(Alignment)); 2814 } 2815 }; 2816 2817 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 2818 void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo); 2819 2820 /// protectFromPeepholes - Protect a value that we're intending to 2821 /// store to the side, but which will probably be used later, from 2822 /// aggressive peepholing optimizations that might delete it. 2823 /// 2824 /// Pass the result to unprotectFromPeepholes to declare that 2825 /// protection is no longer required. 2826 /// 2827 /// There's no particular reason why this shouldn't apply to 2828 /// l-values, it's just that no existing peepholes work on pointers. 2829 PeepholeProtection protectFromPeepholes(RValue rvalue); 2830 void unprotectFromPeepholes(PeepholeProtection protection); 2831 2832 void EmitAlignmentAssumptionCheck(llvm::Value *Ptr, QualType Ty, 2833 SourceLocation Loc, 2834 SourceLocation AssumptionLoc, 2835 llvm::Value *Alignment, 2836 llvm::Value *OffsetValue, 2837 llvm::Value *TheCheck, 2838 llvm::Instruction *Assumption); 2839 2840 void EmitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty, 2841 SourceLocation Loc, SourceLocation AssumptionLoc, 2842 llvm::Value *Alignment, 2843 llvm::Value *OffsetValue = nullptr); 2844 2845 void EmitAlignmentAssumption(llvm::Value *PtrValue, const Expr *E, 2846 SourceLocation AssumptionLoc, llvm::Value *Alignment, 2847 llvm::Value *OffsetValue = nullptr); 2848 2849 //===--------------------------------------------------------------------===// 2850 // Statement Emission 2851 //===--------------------------------------------------------------------===// 2852 2853 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 2854 void EmitStopPoint(const Stmt *S); 2855 2856 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 2857 /// this function even if there is no current insertion point. 2858 /// 2859 /// This function may clear the current insertion point; callers should use 2860 /// EnsureInsertPoint if they wish to subsequently generate code without first 2861 /// calling EmitBlock, EmitBranch, or EmitStmt. 2862 void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None); 2863 2864 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 2865 /// necessarily require an insertion point or debug information; typically 2866 /// because the statement amounts to a jump or a container of other 2867 /// statements. 2868 /// 2869 /// \return True if the statement was handled. 2870 bool EmitSimpleStmt(const Stmt *S); 2871 2872 Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 2873 AggValueSlot AVS = AggValueSlot::ignored()); 2874 Address EmitCompoundStmtWithoutScope(const CompoundStmt &S, 2875 bool GetLast = false, 2876 AggValueSlot AVS = 2877 AggValueSlot::ignored()); 2878 2879 /// EmitLabel - Emit the block for the given label. It is legal to call this 2880 /// function even if there is no current insertion point. 2881 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 2882 2883 void EmitLabelStmt(const LabelStmt &S); 2884 void EmitAttributedStmt(const AttributedStmt &S); 2885 void EmitGotoStmt(const GotoStmt &S); 2886 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 2887 void EmitIfStmt(const IfStmt &S); 2888 2889 void EmitWhileStmt(const WhileStmt &S, 2890 ArrayRef<const Attr *> Attrs = None); 2891 void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None); 2892 void EmitForStmt(const ForStmt &S, 2893 ArrayRef<const Attr *> Attrs = None); 2894 void EmitReturnStmt(const ReturnStmt &S); 2895 void EmitDeclStmt(const DeclStmt &S); 2896 void EmitBreakStmt(const BreakStmt &S); 2897 void EmitContinueStmt(const ContinueStmt &S); 2898 void EmitSwitchStmt(const SwitchStmt &S); 2899 void EmitDefaultStmt(const DefaultStmt &S); 2900 void EmitCaseStmt(const CaseStmt &S); 2901 void EmitCaseStmtRange(const CaseStmt &S); 2902 void EmitAsmStmt(const AsmStmt &S); 2903 2904 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 2905 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 2906 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 2907 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 2908 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 2909 2910 void EmitCoroutineBody(const CoroutineBodyStmt &S); 2911 void EmitCoreturnStmt(const CoreturnStmt &S); 2912 RValue EmitCoawaitExpr(const CoawaitExpr &E, 2913 AggValueSlot aggSlot = AggValueSlot::ignored(), 2914 bool ignoreResult = false); 2915 LValue EmitCoawaitLValue(const CoawaitExpr *E); 2916 RValue EmitCoyieldExpr(const CoyieldExpr &E, 2917 AggValueSlot aggSlot = AggValueSlot::ignored(), 2918 bool ignoreResult = false); 2919 LValue EmitCoyieldLValue(const CoyieldExpr *E); 2920 RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID); 2921 2922 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 2923 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 2924 2925 void EmitCXXTryStmt(const CXXTryStmt &S); 2926 void EmitSEHTryStmt(const SEHTryStmt &S); 2927 void EmitSEHLeaveStmt(const SEHLeaveStmt &S); 2928 void EnterSEHTryStmt(const SEHTryStmt &S); 2929 void ExitSEHTryStmt(const SEHTryStmt &S); 2930 2931 void pushSEHCleanup(CleanupKind kind, 2932 llvm::Function *FinallyFunc); 2933 void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter, 2934 const Stmt *OutlinedStmt); 2935 2936 llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF, 2937 const SEHExceptStmt &Except); 2938 2939 llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF, 2940 const SEHFinallyStmt &Finally); 2941 2942 void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF, 2943 llvm::Value *ParentFP, 2944 llvm::Value *EntryEBP); 2945 llvm::Value *EmitSEHExceptionCode(); 2946 llvm::Value *EmitSEHExceptionInfo(); 2947 llvm::Value *EmitSEHAbnormalTermination(); 2948 2949 /// Emit simple code for OpenMP directives in Simd-only mode. 2950 void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D); 2951 2952 /// Scan the outlined statement for captures from the parent function. For 2953 /// each capture, mark the capture as escaped and emit a call to 2954 /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap. 2955 void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt, 2956 bool IsFilter); 2957 2958 /// Recovers the address of a local in a parent function. ParentVar is the 2959 /// address of the variable used in the immediate parent function. It can 2960 /// either be an alloca or a call to llvm.localrecover if there are nested 2961 /// outlined functions. ParentFP is the frame pointer of the outermost parent 2962 /// frame. 2963 Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF, 2964 Address ParentVar, 2965 llvm::Value *ParentFP); 2966 2967 void EmitCXXForRangeStmt(const CXXForRangeStmt &S, 2968 ArrayRef<const Attr *> Attrs = None); 2969 2970 /// Controls insertion of cancellation exit blocks in worksharing constructs. 2971 class OMPCancelStackRAII { 2972 CodeGenFunction &CGF; 2973 2974 public: 2975 OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 2976 bool HasCancel) 2977 : CGF(CGF) { 2978 CGF.OMPCancelStack.enter(CGF, Kind, HasCancel); 2979 } 2980 ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); } 2981 }; 2982 2983 /// Returns calculated size of the specified type. 2984 llvm::Value *getTypeSize(QualType Ty); 2985 LValue InitCapturedStruct(const CapturedStmt &S); 2986 llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K); 2987 llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S); 2988 Address GenerateCapturedStmtArgument(const CapturedStmt &S); 2989 llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S); 2990 void GenerateOpenMPCapturedVars(const CapturedStmt &S, 2991 SmallVectorImpl<llvm::Value *> &CapturedVars); 2992 void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy, 2993 SourceLocation Loc); 2994 /// Perform element by element copying of arrays with type \a 2995 /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure 2996 /// generated by \a CopyGen. 2997 /// 2998 /// \param DestAddr Address of the destination array. 2999 /// \param SrcAddr Address of the source array. 3000 /// \param OriginalType Type of destination and source arrays. 3001 /// \param CopyGen Copying procedure that copies value of single array element 3002 /// to another single array element. 3003 void EmitOMPAggregateAssign( 3004 Address DestAddr, Address SrcAddr, QualType OriginalType, 3005 const llvm::function_ref<void(Address, Address)> CopyGen); 3006 /// Emit proper copying of data from one variable to another. 3007 /// 3008 /// \param OriginalType Original type of the copied variables. 3009 /// \param DestAddr Destination address. 3010 /// \param SrcAddr Source address. 3011 /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has 3012 /// type of the base array element). 3013 /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of 3014 /// the base array element). 3015 /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a 3016 /// DestVD. 3017 void EmitOMPCopy(QualType OriginalType, 3018 Address DestAddr, Address SrcAddr, 3019 const VarDecl *DestVD, const VarDecl *SrcVD, 3020 const Expr *Copy); 3021 /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or 3022 /// \a X = \a E \a BO \a E. 3023 /// 3024 /// \param X Value to be updated. 3025 /// \param E Update value. 3026 /// \param BO Binary operation for update operation. 3027 /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update 3028 /// expression, false otherwise. 3029 /// \param AO Atomic ordering of the generated atomic instructions. 3030 /// \param CommonGen Code generator for complex expressions that cannot be 3031 /// expressed through atomicrmw instruction. 3032 /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was 3033 /// generated, <false, RValue::get(nullptr)> otherwise. 3034 std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr( 3035 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 3036 llvm::AtomicOrdering AO, SourceLocation Loc, 3037 const llvm::function_ref<RValue(RValue)> CommonGen); 3038 bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 3039 OMPPrivateScope &PrivateScope); 3040 void EmitOMPPrivateClause(const OMPExecutableDirective &D, 3041 OMPPrivateScope &PrivateScope); 3042 void EmitOMPUseDevicePtrClause( 3043 const OMPClause &C, OMPPrivateScope &PrivateScope, 3044 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap); 3045 /// Emit code for copyin clause in \a D directive. The next code is 3046 /// generated at the start of outlined functions for directives: 3047 /// \code 3048 /// threadprivate_var1 = master_threadprivate_var1; 3049 /// operator=(threadprivate_var2, master_threadprivate_var2); 3050 /// ... 3051 /// __kmpc_barrier(&loc, global_tid); 3052 /// \endcode 3053 /// 3054 /// \param D OpenMP directive possibly with 'copyin' clause(s). 3055 /// \returns true if at least one copyin variable is found, false otherwise. 3056 bool EmitOMPCopyinClause(const OMPExecutableDirective &D); 3057 /// Emit initial code for lastprivate variables. If some variable is 3058 /// not also firstprivate, then the default initialization is used. Otherwise 3059 /// initialization of this variable is performed by EmitOMPFirstprivateClause 3060 /// method. 3061 /// 3062 /// \param D Directive that may have 'lastprivate' directives. 3063 /// \param PrivateScope Private scope for capturing lastprivate variables for 3064 /// proper codegen in internal captured statement. 3065 /// 3066 /// \returns true if there is at least one lastprivate variable, false 3067 /// otherwise. 3068 bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D, 3069 OMPPrivateScope &PrivateScope); 3070 /// Emit final copying of lastprivate values to original variables at 3071 /// the end of the worksharing or simd directive. 3072 /// 3073 /// \param D Directive that has at least one 'lastprivate' directives. 3074 /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if 3075 /// it is the last iteration of the loop code in associated directive, or to 3076 /// 'i1 false' otherwise. If this item is nullptr, no final check is required. 3077 void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D, 3078 bool NoFinals, 3079 llvm::Value *IsLastIterCond = nullptr); 3080 /// Emit initial code for linear clauses. 3081 void EmitOMPLinearClause(const OMPLoopDirective &D, 3082 CodeGenFunction::OMPPrivateScope &PrivateScope); 3083 /// Emit final code for linear clauses. 3084 /// \param CondGen Optional conditional code for final part of codegen for 3085 /// linear clause. 3086 void EmitOMPLinearClauseFinal( 3087 const OMPLoopDirective &D, 3088 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); 3089 /// Emit initial code for reduction variables. Creates reduction copies 3090 /// and initializes them with the values according to OpenMP standard. 3091 /// 3092 /// \param D Directive (possibly) with the 'reduction' clause. 3093 /// \param PrivateScope Private scope for capturing reduction variables for 3094 /// proper codegen in internal captured statement. 3095 /// 3096 void EmitOMPReductionClauseInit(const OMPExecutableDirective &D, 3097 OMPPrivateScope &PrivateScope); 3098 /// Emit final update of reduction values to original variables at 3099 /// the end of the directive. 3100 /// 3101 /// \param D Directive that has at least one 'reduction' directives. 3102 /// \param ReductionKind The kind of reduction to perform. 3103 void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D, 3104 const OpenMPDirectiveKind ReductionKind); 3105 /// Emit initial code for linear variables. Creates private copies 3106 /// and initializes them with the values according to OpenMP standard. 3107 /// 3108 /// \param D Directive (possibly) with the 'linear' clause. 3109 /// \return true if at least one linear variable is found that should be 3110 /// initialized with the value of the original variable, false otherwise. 3111 bool EmitOMPLinearClauseInit(const OMPLoopDirective &D); 3112 3113 typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/, 3114 llvm::Function * /*OutlinedFn*/, 3115 const OMPTaskDataTy & /*Data*/)> 3116 TaskGenTy; 3117 void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S, 3118 const OpenMPDirectiveKind CapturedRegion, 3119 const RegionCodeGenTy &BodyGen, 3120 const TaskGenTy &TaskGen, OMPTaskDataTy &Data); 3121 struct OMPTargetDataInfo { 3122 Address BasePointersArray = Address::invalid(); 3123 Address PointersArray = Address::invalid(); 3124 Address SizesArray = Address::invalid(); 3125 unsigned NumberOfTargetItems = 0; 3126 explicit OMPTargetDataInfo() = default; 3127 OMPTargetDataInfo(Address BasePointersArray, Address PointersArray, 3128 Address SizesArray, unsigned NumberOfTargetItems) 3129 : BasePointersArray(BasePointersArray), PointersArray(PointersArray), 3130 SizesArray(SizesArray), NumberOfTargetItems(NumberOfTargetItems) {} 3131 }; 3132 void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S, 3133 const RegionCodeGenTy &BodyGen, 3134 OMPTargetDataInfo &InputInfo); 3135 3136 void EmitOMPParallelDirective(const OMPParallelDirective &S); 3137 void EmitOMPSimdDirective(const OMPSimdDirective &S); 3138 void EmitOMPForDirective(const OMPForDirective &S); 3139 void EmitOMPForSimdDirective(const OMPForSimdDirective &S); 3140 void EmitOMPSectionsDirective(const OMPSectionsDirective &S); 3141 void EmitOMPSectionDirective(const OMPSectionDirective &S); 3142 void EmitOMPSingleDirective(const OMPSingleDirective &S); 3143 void EmitOMPMasterDirective(const OMPMasterDirective &S); 3144 void EmitOMPCriticalDirective(const OMPCriticalDirective &S); 3145 void EmitOMPParallelForDirective(const OMPParallelForDirective &S); 3146 void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S); 3147 void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S); 3148 void EmitOMPTaskDirective(const OMPTaskDirective &S); 3149 void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S); 3150 void EmitOMPBarrierDirective(const OMPBarrierDirective &S); 3151 void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S); 3152 void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S); 3153 void EmitOMPFlushDirective(const OMPFlushDirective &S); 3154 void EmitOMPOrderedDirective(const OMPOrderedDirective &S); 3155 void EmitOMPAtomicDirective(const OMPAtomicDirective &S); 3156 void EmitOMPTargetDirective(const OMPTargetDirective &S); 3157 void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S); 3158 void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S); 3159 void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S); 3160 void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S); 3161 void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S); 3162 void 3163 EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S); 3164 void EmitOMPTeamsDirective(const OMPTeamsDirective &S); 3165 void 3166 EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S); 3167 void EmitOMPCancelDirective(const OMPCancelDirective &S); 3168 void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S); 3169 void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S); 3170 void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S); 3171 void EmitOMPMasterTaskLoopDirective(const OMPMasterTaskLoopDirective &S); 3172 void 3173 EmitOMPMasterTaskLoopSimdDirective(const OMPMasterTaskLoopSimdDirective &S); 3174 void EmitOMPParallelMasterTaskLoopDirective( 3175 const OMPParallelMasterTaskLoopDirective &S); 3176 void EmitOMPParallelMasterTaskLoopSimdDirective( 3177 const OMPParallelMasterTaskLoopSimdDirective &S); 3178 void EmitOMPDistributeDirective(const OMPDistributeDirective &S); 3179 void EmitOMPDistributeParallelForDirective( 3180 const OMPDistributeParallelForDirective &S); 3181 void EmitOMPDistributeParallelForSimdDirective( 3182 const OMPDistributeParallelForSimdDirective &S); 3183 void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S); 3184 void EmitOMPTargetParallelForSimdDirective( 3185 const OMPTargetParallelForSimdDirective &S); 3186 void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S); 3187 void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S); 3188 void 3189 EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S); 3190 void EmitOMPTeamsDistributeParallelForSimdDirective( 3191 const OMPTeamsDistributeParallelForSimdDirective &S); 3192 void EmitOMPTeamsDistributeParallelForDirective( 3193 const OMPTeamsDistributeParallelForDirective &S); 3194 void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S); 3195 void EmitOMPTargetTeamsDistributeDirective( 3196 const OMPTargetTeamsDistributeDirective &S); 3197 void EmitOMPTargetTeamsDistributeParallelForDirective( 3198 const OMPTargetTeamsDistributeParallelForDirective &S); 3199 void EmitOMPTargetTeamsDistributeParallelForSimdDirective( 3200 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 3201 void EmitOMPTargetTeamsDistributeSimdDirective( 3202 const OMPTargetTeamsDistributeSimdDirective &S); 3203 3204 /// Emit device code for the target directive. 3205 static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 3206 StringRef ParentName, 3207 const OMPTargetDirective &S); 3208 static void 3209 EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 3210 const OMPTargetParallelDirective &S); 3211 /// Emit device code for the target parallel for directive. 3212 static void EmitOMPTargetParallelForDeviceFunction( 3213 CodeGenModule &CGM, StringRef ParentName, 3214 const OMPTargetParallelForDirective &S); 3215 /// Emit device code for the target parallel for simd directive. 3216 static void EmitOMPTargetParallelForSimdDeviceFunction( 3217 CodeGenModule &CGM, StringRef ParentName, 3218 const OMPTargetParallelForSimdDirective &S); 3219 /// Emit device code for the target teams directive. 3220 static void 3221 EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 3222 const OMPTargetTeamsDirective &S); 3223 /// Emit device code for the target teams distribute directive. 3224 static void EmitOMPTargetTeamsDistributeDeviceFunction( 3225 CodeGenModule &CGM, StringRef ParentName, 3226 const OMPTargetTeamsDistributeDirective &S); 3227 /// Emit device code for the target teams distribute simd directive. 3228 static void EmitOMPTargetTeamsDistributeSimdDeviceFunction( 3229 CodeGenModule &CGM, StringRef ParentName, 3230 const OMPTargetTeamsDistributeSimdDirective &S); 3231 /// Emit device code for the target simd directive. 3232 static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM, 3233 StringRef ParentName, 3234 const OMPTargetSimdDirective &S); 3235 /// Emit device code for the target teams distribute parallel for simd 3236 /// directive. 3237 static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( 3238 CodeGenModule &CGM, StringRef ParentName, 3239 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 3240 3241 static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 3242 CodeGenModule &CGM, StringRef ParentName, 3243 const OMPTargetTeamsDistributeParallelForDirective &S); 3244 /// Emit inner loop of the worksharing/simd construct. 3245 /// 3246 /// \param S Directive, for which the inner loop must be emitted. 3247 /// \param RequiresCleanup true, if directive has some associated private 3248 /// variables. 3249 /// \param LoopCond Bollean condition for loop continuation. 3250 /// \param IncExpr Increment expression for loop control variable. 3251 /// \param BodyGen Generator for the inner body of the inner loop. 3252 /// \param PostIncGen Genrator for post-increment code (required for ordered 3253 /// loop directvies). 3254 void EmitOMPInnerLoop( 3255 const Stmt &S, bool RequiresCleanup, const Expr *LoopCond, 3256 const Expr *IncExpr, 3257 const llvm::function_ref<void(CodeGenFunction &)> BodyGen, 3258 const llvm::function_ref<void(CodeGenFunction &)> PostIncGen); 3259 3260 JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind); 3261 /// Emit initial code for loop counters of loop-based directives. 3262 void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S, 3263 OMPPrivateScope &LoopScope); 3264 3265 /// Helper for the OpenMP loop directives. 3266 void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit); 3267 3268 /// Emit code for the worksharing loop-based directive. 3269 /// \return true, if this construct has any lastprivate clause, false - 3270 /// otherwise. 3271 bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB, 3272 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 3273 const CodeGenDispatchBoundsTy &CGDispatchBounds); 3274 3275 /// Emit code for the distribute loop-based directive. 3276 void EmitOMPDistributeLoop(const OMPLoopDirective &S, 3277 const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr); 3278 3279 /// Helpers for the OpenMP loop directives. 3280 void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false); 3281 void EmitOMPSimdFinal( 3282 const OMPLoopDirective &D, 3283 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); 3284 3285 /// Emits the lvalue for the expression with possibly captured variable. 3286 LValue EmitOMPSharedLValue(const Expr *E); 3287 3288 private: 3289 /// Helpers for blocks. 3290 llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); 3291 3292 /// struct with the values to be passed to the OpenMP loop-related functions 3293 struct OMPLoopArguments { 3294 /// loop lower bound 3295 Address LB = Address::invalid(); 3296 /// loop upper bound 3297 Address UB = Address::invalid(); 3298 /// loop stride 3299 Address ST = Address::invalid(); 3300 /// isLastIteration argument for runtime functions 3301 Address IL = Address::invalid(); 3302 /// Chunk value generated by sema 3303 llvm::Value *Chunk = nullptr; 3304 /// EnsureUpperBound 3305 Expr *EUB = nullptr; 3306 /// IncrementExpression 3307 Expr *IncExpr = nullptr; 3308 /// Loop initialization 3309 Expr *Init = nullptr; 3310 /// Loop exit condition 3311 Expr *Cond = nullptr; 3312 /// Update of LB after a whole chunk has been executed 3313 Expr *NextLB = nullptr; 3314 /// Update of UB after a whole chunk has been executed 3315 Expr *NextUB = nullptr; 3316 OMPLoopArguments() = default; 3317 OMPLoopArguments(Address LB, Address UB, Address ST, Address IL, 3318 llvm::Value *Chunk = nullptr, Expr *EUB = nullptr, 3319 Expr *IncExpr = nullptr, Expr *Init = nullptr, 3320 Expr *Cond = nullptr, Expr *NextLB = nullptr, 3321 Expr *NextUB = nullptr) 3322 : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB), 3323 IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB), 3324 NextUB(NextUB) {} 3325 }; 3326 void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic, 3327 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, 3328 const OMPLoopArguments &LoopArgs, 3329 const CodeGenLoopTy &CodeGenLoop, 3330 const CodeGenOrderedTy &CodeGenOrdered); 3331 void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind, 3332 bool IsMonotonic, const OMPLoopDirective &S, 3333 OMPPrivateScope &LoopScope, bool Ordered, 3334 const OMPLoopArguments &LoopArgs, 3335 const CodeGenDispatchBoundsTy &CGDispatchBounds); 3336 void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind, 3337 const OMPLoopDirective &S, 3338 OMPPrivateScope &LoopScope, 3339 const OMPLoopArguments &LoopArgs, 3340 const CodeGenLoopTy &CodeGenLoopContent); 3341 /// Emit code for sections directive. 3342 void EmitSections(const OMPExecutableDirective &S); 3343 3344 public: 3345 3346 //===--------------------------------------------------------------------===// 3347 // LValue Expression Emission 3348 //===--------------------------------------------------------------------===// 3349 3350 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 3351 RValue GetUndefRValue(QualType Ty); 3352 3353 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 3354 /// and issue an ErrorUnsupported style diagnostic (using the 3355 /// provided Name). 3356 RValue EmitUnsupportedRValue(const Expr *E, 3357 const char *Name); 3358 3359 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 3360 /// an ErrorUnsupported style diagnostic (using the provided Name). 3361 LValue EmitUnsupportedLValue(const Expr *E, 3362 const char *Name); 3363 3364 /// EmitLValue - Emit code to compute a designator that specifies the location 3365 /// of the expression. 3366 /// 3367 /// This can return one of two things: a simple address or a bitfield 3368 /// reference. In either case, the LLVM Value* in the LValue structure is 3369 /// guaranteed to be an LLVM pointer type. 3370 /// 3371 /// If this returns a bitfield reference, nothing about the pointee type of 3372 /// the LLVM value is known: For example, it may not be a pointer to an 3373 /// integer. 3374 /// 3375 /// If this returns a normal address, and if the lvalue's C type is fixed 3376 /// size, this method guarantees that the returned pointer type will point to 3377 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 3378 /// variable length type, this is not possible. 3379 /// 3380 LValue EmitLValue(const Expr *E); 3381 3382 /// Same as EmitLValue but additionally we generate checking code to 3383 /// guard against undefined behavior. This is only suitable when we know 3384 /// that the address will be used to access the object. 3385 LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK); 3386 3387 RValue convertTempToRValue(Address addr, QualType type, 3388 SourceLocation Loc); 3389 3390 void EmitAtomicInit(Expr *E, LValue lvalue); 3391 3392 bool LValueIsSuitableForInlineAtomic(LValue Src); 3393 3394 RValue EmitAtomicLoad(LValue LV, SourceLocation SL, 3395 AggValueSlot Slot = AggValueSlot::ignored()); 3396 3397 RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc, 3398 llvm::AtomicOrdering AO, bool IsVolatile = false, 3399 AggValueSlot slot = AggValueSlot::ignored()); 3400 3401 void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit); 3402 3403 void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO, 3404 bool IsVolatile, bool isInit); 3405 3406 std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange( 3407 LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, 3408 llvm::AtomicOrdering Success = 3409 llvm::AtomicOrdering::SequentiallyConsistent, 3410 llvm::AtomicOrdering Failure = 3411 llvm::AtomicOrdering::SequentiallyConsistent, 3412 bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored()); 3413 3414 void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO, 3415 const llvm::function_ref<RValue(RValue)> &UpdateOp, 3416 bool IsVolatile); 3417 3418 /// EmitToMemory - Change a scalar value from its value 3419 /// representation to its in-memory representation. 3420 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 3421 3422 /// EmitFromMemory - Change a scalar value from its memory 3423 /// representation to its value representation. 3424 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 3425 3426 /// Check if the scalar \p Value is within the valid range for the given 3427 /// type \p Ty. 3428 /// 3429 /// Returns true if a check is needed (even if the range is unknown). 3430 bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 3431 SourceLocation Loc); 3432 3433 /// EmitLoadOfScalar - Load a scalar value from an address, taking 3434 /// care to appropriately convert from the memory representation to 3435 /// the LLVM value representation. 3436 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 3437 SourceLocation Loc, 3438 AlignmentSource Source = AlignmentSource::Type, 3439 bool isNontemporal = false) { 3440 return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source), 3441 CGM.getTBAAAccessInfo(Ty), isNontemporal); 3442 } 3443 3444 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 3445 SourceLocation Loc, LValueBaseInfo BaseInfo, 3446 TBAAAccessInfo TBAAInfo, 3447 bool isNontemporal = false); 3448 3449 /// EmitLoadOfScalar - Load a scalar value from an address, taking 3450 /// care to appropriately convert from the memory representation to 3451 /// the LLVM value representation. The l-value must be a simple 3452 /// l-value. 3453 llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc); 3454 3455 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3456 /// care to appropriately convert from the memory representation to 3457 /// the LLVM value representation. 3458 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 3459 bool Volatile, QualType Ty, 3460 AlignmentSource Source = AlignmentSource::Type, 3461 bool isInit = false, bool isNontemporal = false) { 3462 EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source), 3463 CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal); 3464 } 3465 3466 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 3467 bool Volatile, QualType Ty, 3468 LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo, 3469 bool isInit = false, bool isNontemporal = false); 3470 3471 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3472 /// care to appropriately convert from the memory representation to 3473 /// the LLVM value representation. The l-value must be a simple 3474 /// l-value. The isInit flag indicates whether this is an initialization. 3475 /// If so, atomic qualifiers are ignored and the store is always non-atomic. 3476 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); 3477 3478 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 3479 /// this method emits the address of the lvalue, then loads the result as an 3480 /// rvalue, returning the rvalue. 3481 RValue EmitLoadOfLValue(LValue V, SourceLocation Loc); 3482 RValue EmitLoadOfExtVectorElementLValue(LValue V); 3483 RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc); 3484 RValue EmitLoadOfGlobalRegLValue(LValue LV); 3485 3486 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 3487 /// lvalue, where both are guaranteed to the have the same type, and that type 3488 /// is 'Ty'. 3489 void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false); 3490 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 3491 void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst); 3492 3493 /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints 3494 /// as EmitStoreThroughLValue. 3495 /// 3496 /// \param Result [out] - If non-null, this will be set to a Value* for the 3497 /// bit-field contents after the store, appropriate for use as the result of 3498 /// an assignment to the bit-field. 3499 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 3500 llvm::Value **Result=nullptr); 3501 3502 /// Emit an l-value for an assignment (simple or compound) of complex type. 3503 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 3504 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 3505 LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 3506 llvm::Value *&Result); 3507 3508 // Note: only available for agg return types 3509 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 3510 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 3511 // Note: only available for agg return types 3512 LValue EmitCallExprLValue(const CallExpr *E); 3513 // Note: only available for agg return types 3514 LValue EmitVAArgExprLValue(const VAArgExpr *E); 3515 LValue EmitDeclRefLValue(const DeclRefExpr *E); 3516 LValue EmitStringLiteralLValue(const StringLiteral *E); 3517 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 3518 LValue EmitPredefinedLValue(const PredefinedExpr *E); 3519 LValue EmitUnaryOpLValue(const UnaryOperator *E); 3520 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3521 bool Accessed = false); 3522 LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3523 bool IsLowerBound = true); 3524 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 3525 LValue EmitMemberExpr(const MemberExpr *E); 3526 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 3527 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 3528 LValue EmitInitListLValue(const InitListExpr *E); 3529 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 3530 LValue EmitCastLValue(const CastExpr *E); 3531 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 3532 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 3533 3534 Address EmitExtVectorElementLValue(LValue V); 3535 3536 RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc); 3537 3538 Address EmitArrayToPointerDecay(const Expr *Array, 3539 LValueBaseInfo *BaseInfo = nullptr, 3540 TBAAAccessInfo *TBAAInfo = nullptr); 3541 3542 class ConstantEmission { 3543 llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; 3544 ConstantEmission(llvm::Constant *C, bool isReference) 3545 : ValueAndIsReference(C, isReference) {} 3546 public: 3547 ConstantEmission() {} 3548 static ConstantEmission forReference(llvm::Constant *C) { 3549 return ConstantEmission(C, true); 3550 } 3551 static ConstantEmission forValue(llvm::Constant *C) { 3552 return ConstantEmission(C, false); 3553 } 3554 3555 explicit operator bool() const { 3556 return ValueAndIsReference.getOpaqueValue() != nullptr; 3557 } 3558 3559 bool isReference() const { return ValueAndIsReference.getInt(); } 3560 LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { 3561 assert(isReference()); 3562 return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), 3563 refExpr->getType()); 3564 } 3565 3566 llvm::Constant *getValue() const { 3567 assert(!isReference()); 3568 return ValueAndIsReference.getPointer(); 3569 } 3570 }; 3571 3572 ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); 3573 ConstantEmission tryEmitAsConstant(const MemberExpr *ME); 3574 llvm::Value *emitScalarConstant(const ConstantEmission &Constant, Expr *E); 3575 3576 RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, 3577 AggValueSlot slot = AggValueSlot::ignored()); 3578 LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); 3579 3580 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 3581 const ObjCIvarDecl *Ivar); 3582 LValue EmitLValueForField(LValue Base, const FieldDecl* Field); 3583 LValue EmitLValueForLambdaField(const FieldDecl *Field); 3584 3585 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 3586 /// if the Field is a reference, this will return the address of the reference 3587 /// and not the address of the value stored in the reference. 3588 LValue EmitLValueForFieldInitialization(LValue Base, 3589 const FieldDecl* Field); 3590 3591 LValue EmitLValueForIvar(QualType ObjectTy, 3592 llvm::Value* Base, const ObjCIvarDecl *Ivar, 3593 unsigned CVRQualifiers); 3594 3595 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 3596 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 3597 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 3598 LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E); 3599 3600 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 3601 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 3602 LValue EmitStmtExprLValue(const StmtExpr *E); 3603 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 3604 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 3605 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init); 3606 3607 //===--------------------------------------------------------------------===// 3608 // Scalar Expression Emission 3609 //===--------------------------------------------------------------------===// 3610 3611 /// EmitCall - Generate a call of the given function, expecting the given 3612 /// result type, and using the given argument list which specifies both the 3613 /// LLVM arguments and the types they were derived from. 3614 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 3615 ReturnValueSlot ReturnValue, const CallArgList &Args, 3616 llvm::CallBase **callOrInvoke, SourceLocation Loc); 3617 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 3618 ReturnValueSlot ReturnValue, const CallArgList &Args, 3619 llvm::CallBase **callOrInvoke = nullptr) { 3620 return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke, 3621 SourceLocation()); 3622 } 3623 RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E, 3624 ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr); 3625 RValue EmitCallExpr(const CallExpr *E, 3626 ReturnValueSlot ReturnValue = ReturnValueSlot()); 3627 RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 3628 CGCallee EmitCallee(const Expr *E); 3629 3630 void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl); 3631 void checkTargetFeatures(SourceLocation Loc, const FunctionDecl *TargetDecl); 3632 3633 llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee, 3634 const Twine &name = ""); 3635 llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee, 3636 ArrayRef<llvm::Value *> args, 3637 const Twine &name = ""); 3638 llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 3639 const Twine &name = ""); 3640 llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 3641 ArrayRef<llvm::Value *> args, 3642 const Twine &name = ""); 3643 3644 SmallVector<llvm::OperandBundleDef, 1> 3645 getBundlesForFunclet(llvm::Value *Callee); 3646 3647 llvm::CallBase *EmitCallOrInvoke(llvm::FunctionCallee Callee, 3648 ArrayRef<llvm::Value *> Args, 3649 const Twine &Name = ""); 3650 llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 3651 ArrayRef<llvm::Value *> args, 3652 const Twine &name = ""); 3653 llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 3654 const Twine &name = ""); 3655 void EmitNoreturnRuntimeCallOrInvoke(llvm::FunctionCallee callee, 3656 ArrayRef<llvm::Value *> args); 3657 3658 CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 3659 NestedNameSpecifier *Qual, 3660 llvm::Type *Ty); 3661 3662 CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 3663 CXXDtorType Type, 3664 const CXXRecordDecl *RD); 3665 3666 // Return the copy constructor name with the prefix "__copy_constructor_" 3667 // removed. 3668 static std::string getNonTrivialCopyConstructorStr(QualType QT, 3669 CharUnits Alignment, 3670 bool IsVolatile, 3671 ASTContext &Ctx); 3672 3673 // Return the destructor name with the prefix "__destructor_" removed. 3674 static std::string getNonTrivialDestructorStr(QualType QT, 3675 CharUnits Alignment, 3676 bool IsVolatile, 3677 ASTContext &Ctx); 3678 3679 // These functions emit calls to the special functions of non-trivial C 3680 // structs. 3681 void defaultInitNonTrivialCStructVar(LValue Dst); 3682 void callCStructDefaultConstructor(LValue Dst); 3683 void callCStructDestructor(LValue Dst); 3684 void callCStructCopyConstructor(LValue Dst, LValue Src); 3685 void callCStructMoveConstructor(LValue Dst, LValue Src); 3686 void callCStructCopyAssignmentOperator(LValue Dst, LValue Src); 3687 void callCStructMoveAssignmentOperator(LValue Dst, LValue Src); 3688 3689 RValue 3690 EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method, 3691 const CGCallee &Callee, 3692 ReturnValueSlot ReturnValue, llvm::Value *This, 3693 llvm::Value *ImplicitParam, 3694 QualType ImplicitParamTy, const CallExpr *E, 3695 CallArgList *RtlArgs); 3696 RValue EmitCXXDestructorCall(GlobalDecl Dtor, const CGCallee &Callee, 3697 llvm::Value *This, QualType ThisTy, 3698 llvm::Value *ImplicitParam, 3699 QualType ImplicitParamTy, const CallExpr *E); 3700 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 3701 ReturnValueSlot ReturnValue); 3702 RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE, 3703 const CXXMethodDecl *MD, 3704 ReturnValueSlot ReturnValue, 3705 bool HasQualifier, 3706 NestedNameSpecifier *Qualifier, 3707 bool IsArrow, const Expr *Base); 3708 // Compute the object pointer. 3709 Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base, 3710 llvm::Value *memberPtr, 3711 const MemberPointerType *memberPtrType, 3712 LValueBaseInfo *BaseInfo = nullptr, 3713 TBAAAccessInfo *TBAAInfo = nullptr); 3714 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 3715 ReturnValueSlot ReturnValue); 3716 3717 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 3718 const CXXMethodDecl *MD, 3719 ReturnValueSlot ReturnValue); 3720 RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E); 3721 3722 RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 3723 ReturnValueSlot ReturnValue); 3724 3725 RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E, 3726 ReturnValueSlot ReturnValue); 3727 3728 RValue EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID, 3729 const CallExpr *E, ReturnValueSlot ReturnValue); 3730 3731 RValue emitRotate(const CallExpr *E, bool IsRotateRight); 3732 3733 /// Emit IR for __builtin_os_log_format. 3734 RValue emitBuiltinOSLogFormat(const CallExpr &E); 3735 3736 llvm::Function *generateBuiltinOSLogHelperFunction( 3737 const analyze_os_log::OSLogBufferLayout &Layout, 3738 CharUnits BufferAlignment); 3739 3740 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 3741 3742 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 3743 /// is unhandled by the current target. 3744 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 3745 ReturnValueSlot ReturnValue); 3746 3747 llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty, 3748 const llvm::CmpInst::Predicate Fp, 3749 const llvm::CmpInst::Predicate Ip, 3750 const llvm::Twine &Name = ""); 3751 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 3752 ReturnValueSlot ReturnValue, 3753 llvm::Triple::ArchType Arch); 3754 llvm::Value *EmitARMMVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 3755 ReturnValueSlot ReturnValue, 3756 llvm::Triple::ArchType Arch); 3757 3758 llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID, 3759 unsigned LLVMIntrinsic, 3760 unsigned AltLLVMIntrinsic, 3761 const char *NameHint, 3762 unsigned Modifier, 3763 const CallExpr *E, 3764 SmallVectorImpl<llvm::Value *> &Ops, 3765 Address PtrOp0, Address PtrOp1, 3766 llvm::Triple::ArchType Arch); 3767 3768 llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID, 3769 unsigned Modifier, llvm::Type *ArgTy, 3770 const CallExpr *E); 3771 llvm::Value *EmitNeonCall(llvm::Function *F, 3772 SmallVectorImpl<llvm::Value*> &O, 3773 const char *name, 3774 unsigned shift = 0, bool rightshift = false); 3775 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 3776 llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, 3777 bool negateForRightShift); 3778 llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt, 3779 llvm::Type *Ty, bool usgn, const char *name); 3780 llvm::Value *vectorWrapScalar16(llvm::Value *Op); 3781 llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E, 3782 llvm::Triple::ArchType Arch); 3783 llvm::Value *EmitBPFBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3784 3785 llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); 3786 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3787 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3788 llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3789 llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3790 llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3791 llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID, 3792 const CallExpr *E); 3793 llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3794 3795 private: 3796 enum class MSVCIntrin; 3797 3798 public: 3799 llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E); 3800 3801 llvm::Value *EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args); 3802 3803 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 3804 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 3805 llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); 3806 llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); 3807 llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); 3808 llvm::Value *EmitObjCCollectionLiteral(const Expr *E, 3809 const ObjCMethodDecl *MethodWithObjects); 3810 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 3811 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 3812 ReturnValueSlot Return = ReturnValueSlot()); 3813 3814 /// Retrieves the default cleanup kind for an ARC cleanup. 3815 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. 3816 CleanupKind getARCCleanupKind() { 3817 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 3818 ? NormalAndEHCleanup : NormalCleanup; 3819 } 3820 3821 // ARC primitives. 3822 void EmitARCInitWeak(Address addr, llvm::Value *value); 3823 void EmitARCDestroyWeak(Address addr); 3824 llvm::Value *EmitARCLoadWeak(Address addr); 3825 llvm::Value *EmitARCLoadWeakRetained(Address addr); 3826 llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored); 3827 void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); 3828 void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); 3829 void EmitARCCopyWeak(Address dst, Address src); 3830 void EmitARCMoveWeak(Address dst, Address src); 3831 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 3832 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 3833 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 3834 bool resultIgnored); 3835 llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value, 3836 bool resultIgnored); 3837 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 3838 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 3839 llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); 3840 void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise); 3841 void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 3842 llvm::Value *EmitARCAutorelease(llvm::Value *value); 3843 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 3844 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 3845 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 3846 llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value); 3847 3848 llvm::Value *EmitObjCAutorelease(llvm::Value *value, llvm::Type *returnType); 3849 llvm::Value *EmitObjCRetainNonBlock(llvm::Value *value, 3850 llvm::Type *returnType); 3851 void EmitObjCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 3852 3853 std::pair<LValue,llvm::Value*> 3854 EmitARCStoreAutoreleasing(const BinaryOperator *e); 3855 std::pair<LValue,llvm::Value*> 3856 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 3857 std::pair<LValue,llvm::Value*> 3858 EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored); 3859 3860 llvm::Value *EmitObjCAlloc(llvm::Value *value, 3861 llvm::Type *returnType); 3862 llvm::Value *EmitObjCAllocWithZone(llvm::Value *value, 3863 llvm::Type *returnType); 3864 llvm::Value *EmitObjCAllocInit(llvm::Value *value, llvm::Type *resultType); 3865 3866 llvm::Value *EmitObjCThrowOperand(const Expr *expr); 3867 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 3868 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 3869 3870 llvm::Value *EmitARCExtendBlockObject(const Expr *expr); 3871 llvm::Value *EmitARCReclaimReturnedObject(const Expr *e, 3872 bool allowUnsafeClaim); 3873 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 3874 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 3875 llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr); 3876 3877 void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values); 3878 3879 static Destroyer destroyARCStrongImprecise; 3880 static Destroyer destroyARCStrongPrecise; 3881 static Destroyer destroyARCWeak; 3882 static Destroyer emitARCIntrinsicUse; 3883 static Destroyer destroyNonTrivialCStruct; 3884 3885 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 3886 llvm::Value *EmitObjCAutoreleasePoolPush(); 3887 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 3888 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 3889 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 3890 3891 /// Emits a reference binding to the passed in expression. 3892 RValue EmitReferenceBindingToExpr(const Expr *E); 3893 3894 //===--------------------------------------------------------------------===// 3895 // Expression Emission 3896 //===--------------------------------------------------------------------===// 3897 3898 // Expressions are broken into three classes: scalar, complex, aggregate. 3899 3900 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 3901 /// scalar type, returning the result. 3902 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 3903 3904 /// Emit a conversion from the specified type to the specified destination 3905 /// type, both of which are LLVM scalar types. 3906 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 3907 QualType DstTy, SourceLocation Loc); 3908 3909 /// Emit a conversion from the specified complex type to the specified 3910 /// destination type, where the destination type is an LLVM scalar type. 3911 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 3912 QualType DstTy, 3913 SourceLocation Loc); 3914 3915 /// EmitAggExpr - Emit the computation of the specified expression 3916 /// of aggregate type. The result is computed into the given slot, 3917 /// which may be null to indicate that the value is not needed. 3918 void EmitAggExpr(const Expr *E, AggValueSlot AS); 3919 3920 /// EmitAggExprToLValue - Emit the computation of the specified expression of 3921 /// aggregate type into a temporary LValue. 3922 LValue EmitAggExprToLValue(const Expr *E); 3923 3924 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 3925 /// make sure it survives garbage collection until this point. 3926 void EmitExtendGCLifetime(llvm::Value *object); 3927 3928 /// EmitComplexExpr - Emit the computation of the specified expression of 3929 /// complex type, returning the result. 3930 ComplexPairTy EmitComplexExpr(const Expr *E, 3931 bool IgnoreReal = false, 3932 bool IgnoreImag = false); 3933 3934 /// EmitComplexExprIntoLValue - Emit the given expression of complex 3935 /// type and place its result into the specified l-value. 3936 void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit); 3937 3938 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 3939 void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit); 3940 3941 /// EmitLoadOfComplex - Load a complex number from the specified l-value. 3942 ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc); 3943 3944 Address emitAddrOfRealComponent(Address complex, QualType complexType); 3945 Address emitAddrOfImagComponent(Address complex, QualType complexType); 3946 3947 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 3948 /// global variable that has already been created for it. If the initializer 3949 /// has a different type than GV does, this may free GV and return a different 3950 /// one. Otherwise it just returns GV. 3951 llvm::GlobalVariable * 3952 AddInitializerToStaticVarDecl(const VarDecl &D, 3953 llvm::GlobalVariable *GV); 3954 3955 // Emit an @llvm.invariant.start call for the given memory region. 3956 void EmitInvariantStart(llvm::Constant *Addr, CharUnits Size); 3957 3958 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 3959 /// variable with global storage. 3960 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr, 3961 bool PerformInit); 3962 3963 llvm::Function *createAtExitStub(const VarDecl &VD, llvm::FunctionCallee Dtor, 3964 llvm::Constant *Addr); 3965 3966 /// Call atexit() with a function that passes the given argument to 3967 /// the given function. 3968 void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::FunctionCallee fn, 3969 llvm::Constant *addr); 3970 3971 /// Call atexit() with function dtorStub. 3972 void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub); 3973 3974 /// Emit code in this function to perform a guarded variable 3975 /// initialization. Guarded initializations are used when it's not 3976 /// possible to prove that an initialization will be done exactly 3977 /// once, e.g. with a static local variable or a static data member 3978 /// of a class template. 3979 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, 3980 bool PerformInit); 3981 3982 enum class GuardKind { VariableGuard, TlsGuard }; 3983 3984 /// Emit a branch to select whether or not to perform guarded initialization. 3985 void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit, 3986 llvm::BasicBlock *InitBlock, 3987 llvm::BasicBlock *NoInitBlock, 3988 GuardKind Kind, const VarDecl *D); 3989 3990 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 3991 /// variables. 3992 void 3993 GenerateCXXGlobalInitFunc(llvm::Function *Fn, 3994 ArrayRef<llvm::Function *> CXXThreadLocals, 3995 ConstantAddress Guard = ConstantAddress::invalid()); 3996 3997 /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global 3998 /// variables. 3999 void GenerateCXXGlobalDtorsFunc( 4000 llvm::Function *Fn, 4001 const std::vector<std::tuple<llvm::FunctionType *, llvm::WeakTrackingVH, 4002 llvm::Constant *>> &DtorsAndObjects); 4003 4004 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 4005 const VarDecl *D, 4006 llvm::GlobalVariable *Addr, 4007 bool PerformInit); 4008 4009 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 4010 4011 void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp); 4012 4013 void enterFullExpression(const FullExpr *E) { 4014 if (const auto *EWC = dyn_cast<ExprWithCleanups>(E)) 4015 if (EWC->getNumObjects() == 0) 4016 return; 4017 enterNonTrivialFullExpression(E); 4018 } 4019 void enterNonTrivialFullExpression(const FullExpr *E); 4020 4021 void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true); 4022 4023 RValue EmitAtomicExpr(AtomicExpr *E); 4024 4025 //===--------------------------------------------------------------------===// 4026 // Annotations Emission 4027 //===--------------------------------------------------------------------===// 4028 4029 /// Emit an annotation call (intrinsic). 4030 llvm::Value *EmitAnnotationCall(llvm::Function *AnnotationFn, 4031 llvm::Value *AnnotatedVal, 4032 StringRef AnnotationStr, 4033 SourceLocation Location); 4034 4035 /// Emit local annotations for the local variable V, declared by D. 4036 void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); 4037 4038 /// Emit field annotations for the given field & value. Returns the 4039 /// annotation result. 4040 Address EmitFieldAnnotations(const FieldDecl *D, Address V); 4041 4042 //===--------------------------------------------------------------------===// 4043 // Internal Helpers 4044 //===--------------------------------------------------------------------===// 4045 4046 /// ContainsLabel - Return true if the statement contains a label in it. If 4047 /// this statement is not executed normally, it not containing a label means 4048 /// that we can just remove the code. 4049 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 4050 4051 /// containsBreak - Return true if the statement contains a break out of it. 4052 /// If the statement (recursively) contains a switch or loop with a break 4053 /// inside of it, this is fine. 4054 static bool containsBreak(const Stmt *S); 4055 4056 /// Determine if the given statement might introduce a declaration into the 4057 /// current scope, by being a (possibly-labelled) DeclStmt. 4058 static bool mightAddDeclToScope(const Stmt *S); 4059 4060 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 4061 /// to a constant, or if it does but contains a label, return false. If it 4062 /// constant folds return true and set the boolean result in Result. 4063 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result, 4064 bool AllowLabels = false); 4065 4066 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 4067 /// to a constant, or if it does but contains a label, return false. If it 4068 /// constant folds return true and set the folded value. 4069 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result, 4070 bool AllowLabels = false); 4071 4072 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 4073 /// if statement) to the specified blocks. Based on the condition, this might 4074 /// try to simplify the codegen of the conditional based on the branch. 4075 /// TrueCount should be the number of times we expect the condition to 4076 /// evaluate to true based on PGO data. 4077 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 4078 llvm::BasicBlock *FalseBlock, uint64_t TrueCount); 4079 4080 /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is 4081 /// nonnull, if \p LHS is marked _Nonnull. 4082 void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc); 4083 4084 /// An enumeration which makes it easier to specify whether or not an 4085 /// operation is a subtraction. 4086 enum { NotSubtraction = false, IsSubtraction = true }; 4087 4088 /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to 4089 /// detect undefined behavior when the pointer overflow sanitizer is enabled. 4090 /// \p SignedIndices indicates whether any of the GEP indices are signed. 4091 /// \p IsSubtraction indicates whether the expression used to form the GEP 4092 /// is a subtraction. 4093 llvm::Value *EmitCheckedInBoundsGEP(llvm::Value *Ptr, 4094 ArrayRef<llvm::Value *> IdxList, 4095 bool SignedIndices, 4096 bool IsSubtraction, 4097 SourceLocation Loc, 4098 const Twine &Name = ""); 4099 4100 /// Specifies which type of sanitizer check to apply when handling a 4101 /// particular builtin. 4102 enum BuiltinCheckKind { 4103 BCK_CTZPassedZero, 4104 BCK_CLZPassedZero, 4105 }; 4106 4107 /// Emits an argument for a call to a builtin. If the builtin sanitizer is 4108 /// enabled, a runtime check specified by \p Kind is also emitted. 4109 llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind); 4110 4111 /// Emit a description of a type in a format suitable for passing to 4112 /// a runtime sanitizer handler. 4113 llvm::Constant *EmitCheckTypeDescriptor(QualType T); 4114 4115 /// Convert a value into a format suitable for passing to a runtime 4116 /// sanitizer handler. 4117 llvm::Value *EmitCheckValue(llvm::Value *V); 4118 4119 /// Emit a description of a source location in a format suitable for 4120 /// passing to a runtime sanitizer handler. 4121 llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc); 4122 4123 /// Create a basic block that will either trap or call a handler function in 4124 /// the UBSan runtime with the provided arguments, and create a conditional 4125 /// branch to it. 4126 void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 4127 SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs, 4128 ArrayRef<llvm::Value *> DynamicArgs); 4129 4130 /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath 4131 /// if Cond if false. 4132 void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond, 4133 llvm::ConstantInt *TypeId, llvm::Value *Ptr, 4134 ArrayRef<llvm::Constant *> StaticArgs); 4135 4136 /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime 4137 /// checking is enabled. Otherwise, just emit an unreachable instruction. 4138 void EmitUnreachable(SourceLocation Loc); 4139 4140 /// Create a basic block that will call the trap intrinsic, and emit a 4141 /// conditional branch to it, for the -ftrapv checks. 4142 void EmitTrapCheck(llvm::Value *Checked); 4143 4144 /// Emit a call to trap or debugtrap and attach function attribute 4145 /// "trap-func-name" if specified. 4146 llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID); 4147 4148 /// Emit a stub for the cross-DSO CFI check function. 4149 void EmitCfiCheckStub(); 4150 4151 /// Emit a cross-DSO CFI failure handling function. 4152 void EmitCfiCheckFail(); 4153 4154 /// Create a check for a function parameter that may potentially be 4155 /// declared as non-null. 4156 void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc, 4157 AbstractCallee AC, unsigned ParmNum); 4158 4159 /// EmitCallArg - Emit a single call argument. 4160 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 4161 4162 /// EmitDelegateCallArg - We are performing a delegate call; that 4163 /// is, the current function is delegating to another one. Produce 4164 /// a r-value suitable for passing the given parameter. 4165 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param, 4166 SourceLocation loc); 4167 4168 /// SetFPAccuracy - Set the minimum required accuracy of the given floating 4169 /// point operation, expressed as the maximum relative error in ulp. 4170 void SetFPAccuracy(llvm::Value *Val, float Accuracy); 4171 4172 private: 4173 llvm::MDNode *getRangeForLoadFromType(QualType Ty); 4174 void EmitReturnOfRValue(RValue RV, QualType Ty); 4175 4176 void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New); 4177 4178 llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4> 4179 DeferredReplacements; 4180 4181 /// Set the address of a local variable. 4182 void setAddrOfLocalVar(const VarDecl *VD, Address Addr) { 4183 assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!"); 4184 LocalDeclMap.insert({VD, Addr}); 4185 } 4186 4187 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 4188 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 4189 /// 4190 /// \param AI - The first function argument of the expansion. 4191 void ExpandTypeFromArgs(QualType Ty, LValue Dst, 4192 SmallVectorImpl<llvm::Value *>::iterator &AI); 4193 4194 /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg 4195 /// Ty, into individual arguments on the provided vector \arg IRCallArgs, 4196 /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand. 4197 void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, 4198 SmallVectorImpl<llvm::Value *> &IRCallArgs, 4199 unsigned &IRCallArgPos); 4200 4201 llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info, 4202 const Expr *InputExpr, std::string &ConstraintStr); 4203 4204 llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 4205 LValue InputValue, QualType InputType, 4206 std::string &ConstraintStr, 4207 SourceLocation Loc); 4208 4209 /// Attempts to statically evaluate the object size of E. If that 4210 /// fails, emits code to figure the size of E out for us. This is 4211 /// pass_object_size aware. 4212 /// 4213 /// If EmittedExpr is non-null, this will use that instead of re-emitting E. 4214 llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type, 4215 llvm::IntegerType *ResType, 4216 llvm::Value *EmittedE, 4217 bool IsDynamic); 4218 4219 /// Emits the size of E, as required by __builtin_object_size. This 4220 /// function is aware of pass_object_size parameters, and will act accordingly 4221 /// if E is a parameter with the pass_object_size attribute. 4222 llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type, 4223 llvm::IntegerType *ResType, 4224 llvm::Value *EmittedE, 4225 bool IsDynamic); 4226 4227 void emitZeroOrPatternForAutoVarInit(QualType type, const VarDecl &D, 4228 Address Loc); 4229 4230 public: 4231 #ifndef NDEBUG 4232 // Determine whether the given argument is an Objective-C method 4233 // that may have type parameters in its signature. 4234 static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) { 4235 const DeclContext *dc = method->getDeclContext(); 4236 if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) { 4237 return classDecl->getTypeParamListAsWritten(); 4238 } 4239 4240 if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) { 4241 return catDecl->getTypeParamList(); 4242 } 4243 4244 return false; 4245 } 4246 4247 template<typename T> 4248 static bool isObjCMethodWithTypeParams(const T *) { return false; } 4249 #endif 4250 4251 enum class EvaluationOrder { 4252 ///! No language constraints on evaluation order. 4253 Default, 4254 ///! Language semantics require left-to-right evaluation. 4255 ForceLeftToRight, 4256 ///! Language semantics require right-to-left evaluation. 4257 ForceRightToLeft 4258 }; 4259 4260 /// EmitCallArgs - Emit call arguments for a function. 4261 template <typename T> 4262 void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo, 4263 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 4264 AbstractCallee AC = AbstractCallee(), 4265 unsigned ParamsToSkip = 0, 4266 EvaluationOrder Order = EvaluationOrder::Default) { 4267 SmallVector<QualType, 16> ArgTypes; 4268 CallExpr::const_arg_iterator Arg = ArgRange.begin(); 4269 4270 assert((ParamsToSkip == 0 || CallArgTypeInfo) && 4271 "Can't skip parameters if type info is not provided"); 4272 if (CallArgTypeInfo) { 4273 #ifndef NDEBUG 4274 bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo); 4275 #endif 4276 4277 // First, use the argument types that the type info knows about 4278 for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip, 4279 E = CallArgTypeInfo->param_type_end(); 4280 I != E; ++I, ++Arg) { 4281 assert(Arg != ArgRange.end() && "Running over edge of argument list!"); 4282 assert((isGenericMethod || 4283 ((*I)->isVariablyModifiedType() || 4284 (*I).getNonReferenceType()->isObjCRetainableType() || 4285 getContext() 4286 .getCanonicalType((*I).getNonReferenceType()) 4287 .getTypePtr() == 4288 getContext() 4289 .getCanonicalType((*Arg)->getType()) 4290 .getTypePtr())) && 4291 "type mismatch in call argument!"); 4292 ArgTypes.push_back(*I); 4293 } 4294 } 4295 4296 // Either we've emitted all the call args, or we have a call to variadic 4297 // function. 4298 assert((Arg == ArgRange.end() || !CallArgTypeInfo || 4299 CallArgTypeInfo->isVariadic()) && 4300 "Extra arguments in non-variadic function!"); 4301 4302 // If we still have any arguments, emit them using the type of the argument. 4303 for (auto *A : llvm::make_range(Arg, ArgRange.end())) 4304 ArgTypes.push_back(CallArgTypeInfo ? getVarArgType(A) : A->getType()); 4305 4306 EmitCallArgs(Args, ArgTypes, ArgRange, AC, ParamsToSkip, Order); 4307 } 4308 4309 void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes, 4310 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 4311 AbstractCallee AC = AbstractCallee(), 4312 unsigned ParamsToSkip = 0, 4313 EvaluationOrder Order = EvaluationOrder::Default); 4314 4315 /// EmitPointerWithAlignment - Given an expression with a pointer type, 4316 /// emit the value and compute our best estimate of the alignment of the 4317 /// pointee. 4318 /// 4319 /// \param BaseInfo - If non-null, this will be initialized with 4320 /// information about the source of the alignment and the may-alias 4321 /// attribute. Note that this function will conservatively fall back on 4322 /// the type when it doesn't recognize the expression and may-alias will 4323 /// be set to false. 4324 /// 4325 /// One reasonable way to use this information is when there's a language 4326 /// guarantee that the pointer must be aligned to some stricter value, and 4327 /// we're simply trying to ensure that sufficiently obvious uses of under- 4328 /// aligned objects don't get miscompiled; for example, a placement new 4329 /// into the address of a local variable. In such a case, it's quite 4330 /// reasonable to just ignore the returned alignment when it isn't from an 4331 /// explicit source. 4332 Address EmitPointerWithAlignment(const Expr *Addr, 4333 LValueBaseInfo *BaseInfo = nullptr, 4334 TBAAAccessInfo *TBAAInfo = nullptr); 4335 4336 /// If \p E references a parameter with pass_object_size info or a constant 4337 /// array size modifier, emit the object size divided by the size of \p EltTy. 4338 /// Otherwise return null. 4339 llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy); 4340 4341 void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK); 4342 4343 struct MultiVersionResolverOption { 4344 llvm::Function *Function; 4345 FunctionDecl *FD; 4346 struct Conds { 4347 StringRef Architecture; 4348 llvm::SmallVector<StringRef, 8> Features; 4349 4350 Conds(StringRef Arch, ArrayRef<StringRef> Feats) 4351 : Architecture(Arch), Features(Feats.begin(), Feats.end()) {} 4352 } Conditions; 4353 4354 MultiVersionResolverOption(llvm::Function *F, StringRef Arch, 4355 ArrayRef<StringRef> Feats) 4356 : Function(F), Conditions(Arch, Feats) {} 4357 }; 4358 4359 // Emits the body of a multiversion function's resolver. Assumes that the 4360 // options are already sorted in the proper order, with the 'default' option 4361 // last (if it exists). 4362 void EmitMultiVersionResolver(llvm::Function *Resolver, 4363 ArrayRef<MultiVersionResolverOption> Options); 4364 4365 static uint64_t GetX86CpuSupportsMask(ArrayRef<StringRef> FeatureStrs); 4366 4367 private: 4368 QualType getVarArgType(const Expr *Arg); 4369 4370 void EmitDeclMetadata(); 4371 4372 BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType, 4373 const AutoVarEmission &emission); 4374 4375 void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); 4376 4377 llvm::Value *GetValueForARMHint(unsigned BuiltinID); 4378 llvm::Value *EmitX86CpuIs(const CallExpr *E); 4379 llvm::Value *EmitX86CpuIs(StringRef CPUStr); 4380 llvm::Value *EmitX86CpuSupports(const CallExpr *E); 4381 llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs); 4382 llvm::Value *EmitX86CpuSupports(uint64_t Mask); 4383 llvm::Value *EmitX86CpuInit(); 4384 llvm::Value *FormResolverCondition(const MultiVersionResolverOption &RO); 4385 }; 4386 4387 inline DominatingLLVMValue::saved_type 4388 DominatingLLVMValue::save(CodeGenFunction &CGF, llvm::Value *value) { 4389 if (!needsSaving(value)) return saved_type(value, false); 4390 4391 // Otherwise, we need an alloca. 4392 auto align = CharUnits::fromQuantity( 4393 CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType())); 4394 Address alloca = 4395 CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save"); 4396 CGF.Builder.CreateStore(value, alloca); 4397 4398 return saved_type(alloca.getPointer(), true); 4399 } 4400 4401 inline llvm::Value *DominatingLLVMValue::restore(CodeGenFunction &CGF, 4402 saved_type value) { 4403 // If the value says it wasn't saved, trust that it's still dominating. 4404 if (!value.getInt()) return value.getPointer(); 4405 4406 // Otherwise, it should be an alloca instruction, as set up in save(). 4407 auto alloca = cast<llvm::AllocaInst>(value.getPointer()); 4408 return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlignment()); 4409 } 4410 4411 } // end namespace CodeGen 4412 } // end namespace clang 4413 4414 #endif 4415