1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the internal per-function state used for llvm translation.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
14 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
15 
16 #include "CGBuilder.h"
17 #include "CGDebugInfo.h"
18 #include "CGLoopInfo.h"
19 #include "CGValue.h"
20 #include "CodeGenModule.h"
21 #include "CodeGenPGO.h"
22 #include "EHScopeStack.h"
23 #include "VarBypassDetector.h"
24 #include "clang/AST/CharUnits.h"
25 #include "clang/AST/CurrentSourceLocExprScope.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/ExprObjC.h"
28 #include "clang/AST/ExprOpenMP.h"
29 #include "clang/AST/Type.h"
30 #include "clang/Basic/ABI.h"
31 #include "clang/Basic/CapturedStmt.h"
32 #include "clang/Basic/CodeGenOptions.h"
33 #include "clang/Basic/OpenMPKinds.h"
34 #include "clang/Basic/TargetInfo.h"
35 #include "llvm/ADT/ArrayRef.h"
36 #include "llvm/ADT/DenseMap.h"
37 #include "llvm/ADT/MapVector.h"
38 #include "llvm/ADT/SmallVector.h"
39 #include "llvm/IR/ValueHandle.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Transforms/Utils/SanitizerStats.h"
42 
43 namespace llvm {
44 class BasicBlock;
45 class LLVMContext;
46 class MDNode;
47 class Module;
48 class SwitchInst;
49 class Twine;
50 class Value;
51 }
52 
53 namespace clang {
54 class ASTContext;
55 class BlockDecl;
56 class CXXDestructorDecl;
57 class CXXForRangeStmt;
58 class CXXTryStmt;
59 class Decl;
60 class LabelDecl;
61 class EnumConstantDecl;
62 class FunctionDecl;
63 class FunctionProtoType;
64 class LabelStmt;
65 class ObjCContainerDecl;
66 class ObjCInterfaceDecl;
67 class ObjCIvarDecl;
68 class ObjCMethodDecl;
69 class ObjCImplementationDecl;
70 class ObjCPropertyImplDecl;
71 class TargetInfo;
72 class VarDecl;
73 class ObjCForCollectionStmt;
74 class ObjCAtTryStmt;
75 class ObjCAtThrowStmt;
76 class ObjCAtSynchronizedStmt;
77 class ObjCAutoreleasePoolStmt;
78 
79 namespace analyze_os_log {
80 class OSLogBufferLayout;
81 }
82 
83 namespace CodeGen {
84 class CodeGenTypes;
85 class CGCallee;
86 class CGFunctionInfo;
87 class CGRecordLayout;
88 class CGBlockInfo;
89 class CGCXXABI;
90 class BlockByrefHelpers;
91 class BlockByrefInfo;
92 class BlockFlags;
93 class BlockFieldFlags;
94 class RegionCodeGenTy;
95 class TargetCodeGenInfo;
96 struct OMPTaskDataTy;
97 struct CGCoroData;
98 
99 /// The kind of evaluation to perform on values of a particular
100 /// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
101 /// CGExprAgg?
102 ///
103 /// TODO: should vectors maybe be split out into their own thing?
104 enum TypeEvaluationKind {
105   TEK_Scalar,
106   TEK_Complex,
107   TEK_Aggregate
108 };
109 
110 #define LIST_SANITIZER_CHECKS                                                  \
111   SANITIZER_CHECK(AddOverflow, add_overflow, 0)                                \
112   SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0)                  \
113   SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0)                             \
114   SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0)                          \
115   SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0)            \
116   SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0)                   \
117   SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 1)             \
118   SANITIZER_CHECK(ImplicitConversion, implicit_conversion, 0)                  \
119   SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0)                          \
120   SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0)                     \
121   SANITIZER_CHECK(MissingReturn, missing_return, 0)                            \
122   SANITIZER_CHECK(MulOverflow, mul_overflow, 0)                                \
123   SANITIZER_CHECK(NegateOverflow, negate_overflow, 0)                          \
124   SANITIZER_CHECK(NullabilityArg, nullability_arg, 0)                          \
125   SANITIZER_CHECK(NullabilityReturn, nullability_return, 1)                    \
126   SANITIZER_CHECK(NonnullArg, nonnull_arg, 0)                                  \
127   SANITIZER_CHECK(NonnullReturn, nonnull_return, 1)                            \
128   SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0)                               \
129   SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0)                        \
130   SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0)                    \
131   SANITIZER_CHECK(SubOverflow, sub_overflow, 0)                                \
132   SANITIZER_CHECK(TypeMismatch, type_mismatch, 1)                              \
133   SANITIZER_CHECK(AlignmentAssumption, alignment_assumption, 0)                \
134   SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0)
135 
136 enum SanitizerHandler {
137 #define SANITIZER_CHECK(Enum, Name, Version) Enum,
138   LIST_SANITIZER_CHECKS
139 #undef SANITIZER_CHECK
140 };
141 
142 /// Helper class with most of the code for saving a value for a
143 /// conditional expression cleanup.
144 struct DominatingLLVMValue {
145   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
146 
147   /// Answer whether the given value needs extra work to be saved.
148   static bool needsSaving(llvm::Value *value) {
149     // If it's not an instruction, we don't need to save.
150     if (!isa<llvm::Instruction>(value)) return false;
151 
152     // If it's an instruction in the entry block, we don't need to save.
153     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
154     return (block != &block->getParent()->getEntryBlock());
155   }
156 
157   static saved_type save(CodeGenFunction &CGF, llvm::Value *value);
158   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value);
159 };
160 
161 /// A partial specialization of DominatingValue for llvm::Values that
162 /// might be llvm::Instructions.
163 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
164   typedef T *type;
165   static type restore(CodeGenFunction &CGF, saved_type value) {
166     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
167   }
168 };
169 
170 /// A specialization of DominatingValue for Address.
171 template <> struct DominatingValue<Address> {
172   typedef Address type;
173 
174   struct saved_type {
175     DominatingLLVMValue::saved_type SavedValue;
176     CharUnits Alignment;
177   };
178 
179   static bool needsSaving(type value) {
180     return DominatingLLVMValue::needsSaving(value.getPointer());
181   }
182   static saved_type save(CodeGenFunction &CGF, type value) {
183     return { DominatingLLVMValue::save(CGF, value.getPointer()),
184              value.getAlignment() };
185   }
186   static type restore(CodeGenFunction &CGF, saved_type value) {
187     return Address(DominatingLLVMValue::restore(CGF, value.SavedValue),
188                    value.Alignment);
189   }
190 };
191 
192 /// A specialization of DominatingValue for RValue.
193 template <> struct DominatingValue<RValue> {
194   typedef RValue type;
195   class saved_type {
196     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
197                 AggregateAddress, ComplexAddress };
198 
199     llvm::Value *Value;
200     unsigned K : 3;
201     unsigned Align : 29;
202     saved_type(llvm::Value *v, Kind k, unsigned a = 0)
203       : Value(v), K(k), Align(a) {}
204 
205   public:
206     static bool needsSaving(RValue value);
207     static saved_type save(CodeGenFunction &CGF, RValue value);
208     RValue restore(CodeGenFunction &CGF);
209 
210     // implementations in CGCleanup.cpp
211   };
212 
213   static bool needsSaving(type value) {
214     return saved_type::needsSaving(value);
215   }
216   static saved_type save(CodeGenFunction &CGF, type value) {
217     return saved_type::save(CGF, value);
218   }
219   static type restore(CodeGenFunction &CGF, saved_type value) {
220     return value.restore(CGF);
221   }
222 };
223 
224 /// CodeGenFunction - This class organizes the per-function state that is used
225 /// while generating LLVM code.
226 class CodeGenFunction : public CodeGenTypeCache {
227   CodeGenFunction(const CodeGenFunction &) = delete;
228   void operator=(const CodeGenFunction &) = delete;
229 
230   friend class CGCXXABI;
231 public:
232   /// A jump destination is an abstract label, branching to which may
233   /// require a jump out through normal cleanups.
234   struct JumpDest {
235     JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {}
236     JumpDest(llvm::BasicBlock *Block,
237              EHScopeStack::stable_iterator Depth,
238              unsigned Index)
239       : Block(Block), ScopeDepth(Depth), Index(Index) {}
240 
241     bool isValid() const { return Block != nullptr; }
242     llvm::BasicBlock *getBlock() const { return Block; }
243     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
244     unsigned getDestIndex() const { return Index; }
245 
246     // This should be used cautiously.
247     void setScopeDepth(EHScopeStack::stable_iterator depth) {
248       ScopeDepth = depth;
249     }
250 
251   private:
252     llvm::BasicBlock *Block;
253     EHScopeStack::stable_iterator ScopeDepth;
254     unsigned Index;
255   };
256 
257   CodeGenModule &CGM;  // Per-module state.
258   const TargetInfo &Target;
259 
260   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
261   LoopInfoStack LoopStack;
262   CGBuilderTy Builder;
263 
264   // Stores variables for which we can't generate correct lifetime markers
265   // because of jumps.
266   VarBypassDetector Bypasses;
267 
268   // CodeGen lambda for loops and support for ordered clause
269   typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &,
270                                   JumpDest)>
271       CodeGenLoopTy;
272   typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation,
273                                   const unsigned, const bool)>
274       CodeGenOrderedTy;
275 
276   // Codegen lambda for loop bounds in worksharing loop constructs
277   typedef llvm::function_ref<std::pair<LValue, LValue>(
278       CodeGenFunction &, const OMPExecutableDirective &S)>
279       CodeGenLoopBoundsTy;
280 
281   // Codegen lambda for loop bounds in dispatch-based loop implementation
282   typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>(
283       CodeGenFunction &, const OMPExecutableDirective &S, Address LB,
284       Address UB)>
285       CodeGenDispatchBoundsTy;
286 
287   /// CGBuilder insert helper. This function is called after an
288   /// instruction is created using Builder.
289   void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
290                     llvm::BasicBlock *BB,
291                     llvm::BasicBlock::iterator InsertPt) const;
292 
293   /// CurFuncDecl - Holds the Decl for the current outermost
294   /// non-closure context.
295   const Decl *CurFuncDecl;
296   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
297   const Decl *CurCodeDecl;
298   const CGFunctionInfo *CurFnInfo;
299   QualType FnRetTy;
300   llvm::Function *CurFn = nullptr;
301 
302   // Holds coroutine data if the current function is a coroutine. We use a
303   // wrapper to manage its lifetime, so that we don't have to define CGCoroData
304   // in this header.
305   struct CGCoroInfo {
306     std::unique_ptr<CGCoroData> Data;
307     CGCoroInfo();
308     ~CGCoroInfo();
309   };
310   CGCoroInfo CurCoro;
311 
312   bool isCoroutine() const {
313     return CurCoro.Data != nullptr;
314   }
315 
316   /// CurGD - The GlobalDecl for the current function being compiled.
317   GlobalDecl CurGD;
318 
319   /// PrologueCleanupDepth - The cleanup depth enclosing all the
320   /// cleanups associated with the parameters.
321   EHScopeStack::stable_iterator PrologueCleanupDepth;
322 
323   /// ReturnBlock - Unified return block.
324   JumpDest ReturnBlock;
325 
326   /// ReturnValue - The temporary alloca to hold the return
327   /// value. This is invalid iff the function has no return value.
328   Address ReturnValue = Address::invalid();
329 
330   /// ReturnValuePointer - The temporary alloca to hold a pointer to sret.
331   /// This is invalid if sret is not in use.
332   Address ReturnValuePointer = Address::invalid();
333 
334   /// Return true if a label was seen in the current scope.
335   bool hasLabelBeenSeenInCurrentScope() const {
336     if (CurLexicalScope)
337       return CurLexicalScope->hasLabels();
338     return !LabelMap.empty();
339   }
340 
341   /// AllocaInsertPoint - This is an instruction in the entry block before which
342   /// we prefer to insert allocas.
343   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
344 
345   /// API for captured statement code generation.
346   class CGCapturedStmtInfo {
347   public:
348     explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default)
349         : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
350     explicit CGCapturedStmtInfo(const CapturedStmt &S,
351                                 CapturedRegionKind K = CR_Default)
352       : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
353 
354       RecordDecl::field_iterator Field =
355         S.getCapturedRecordDecl()->field_begin();
356       for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
357                                                 E = S.capture_end();
358            I != E; ++I, ++Field) {
359         if (I->capturesThis())
360           CXXThisFieldDecl = *Field;
361         else if (I->capturesVariable())
362           CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
363         else if (I->capturesVariableByCopy())
364           CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
365       }
366     }
367 
368     virtual ~CGCapturedStmtInfo();
369 
370     CapturedRegionKind getKind() const { return Kind; }
371 
372     virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
373     // Retrieve the value of the context parameter.
374     virtual llvm::Value *getContextValue() const { return ThisValue; }
375 
376     /// Lookup the captured field decl for a variable.
377     virtual const FieldDecl *lookup(const VarDecl *VD) const {
378       return CaptureFields.lookup(VD->getCanonicalDecl());
379     }
380 
381     bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
382     virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
383 
384     static bool classof(const CGCapturedStmtInfo *) {
385       return true;
386     }
387 
388     /// Emit the captured statement body.
389     virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
390       CGF.incrementProfileCounter(S);
391       CGF.EmitStmt(S);
392     }
393 
394     /// Get the name of the capture helper.
395     virtual StringRef getHelperName() const { return "__captured_stmt"; }
396 
397   private:
398     /// The kind of captured statement being generated.
399     CapturedRegionKind Kind;
400 
401     /// Keep the map between VarDecl and FieldDecl.
402     llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
403 
404     /// The base address of the captured record, passed in as the first
405     /// argument of the parallel region function.
406     llvm::Value *ThisValue;
407 
408     /// Captured 'this' type.
409     FieldDecl *CXXThisFieldDecl;
410   };
411   CGCapturedStmtInfo *CapturedStmtInfo = nullptr;
412 
413   /// RAII for correct setting/restoring of CapturedStmtInfo.
414   class CGCapturedStmtRAII {
415   private:
416     CodeGenFunction &CGF;
417     CGCapturedStmtInfo *PrevCapturedStmtInfo;
418   public:
419     CGCapturedStmtRAII(CodeGenFunction &CGF,
420                        CGCapturedStmtInfo *NewCapturedStmtInfo)
421         : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) {
422       CGF.CapturedStmtInfo = NewCapturedStmtInfo;
423     }
424     ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; }
425   };
426 
427   /// An abstract representation of regular/ObjC call/message targets.
428   class AbstractCallee {
429     /// The function declaration of the callee.
430     const Decl *CalleeDecl;
431 
432   public:
433     AbstractCallee() : CalleeDecl(nullptr) {}
434     AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {}
435     AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {}
436     bool hasFunctionDecl() const {
437       return dyn_cast_or_null<FunctionDecl>(CalleeDecl);
438     }
439     const Decl *getDecl() const { return CalleeDecl; }
440     unsigned getNumParams() const {
441       if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
442         return FD->getNumParams();
443       return cast<ObjCMethodDecl>(CalleeDecl)->param_size();
444     }
445     const ParmVarDecl *getParamDecl(unsigned I) const {
446       if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
447         return FD->getParamDecl(I);
448       return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I);
449     }
450   };
451 
452   /// Sanitizers enabled for this function.
453   SanitizerSet SanOpts;
454 
455   /// True if CodeGen currently emits code implementing sanitizer checks.
456   bool IsSanitizerScope = false;
457 
458   /// RAII object to set/unset CodeGenFunction::IsSanitizerScope.
459   class SanitizerScope {
460     CodeGenFunction *CGF;
461   public:
462     SanitizerScope(CodeGenFunction *CGF);
463     ~SanitizerScope();
464   };
465 
466   /// In C++, whether we are code generating a thunk.  This controls whether we
467   /// should emit cleanups.
468   bool CurFuncIsThunk = false;
469 
470   /// In ARC, whether we should autorelease the return value.
471   bool AutoreleaseResult = false;
472 
473   /// Whether we processed a Microsoft-style asm block during CodeGen. These can
474   /// potentially set the return value.
475   bool SawAsmBlock = false;
476 
477   const NamedDecl *CurSEHParent = nullptr;
478 
479   /// True if the current function is an outlined SEH helper. This can be a
480   /// finally block or filter expression.
481   bool IsOutlinedSEHHelper = false;
482 
483   /// True if CodeGen currently emits code inside presereved access index
484   /// region.
485   bool IsInPreservedAIRegion = false;
486 
487   const CodeGen::CGBlockInfo *BlockInfo = nullptr;
488   llvm::Value *BlockPointer = nullptr;
489 
490   llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
491   FieldDecl *LambdaThisCaptureField = nullptr;
492 
493   /// A mapping from NRVO variables to the flags used to indicate
494   /// when the NRVO has been applied to this variable.
495   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
496 
497   EHScopeStack EHStack;
498   llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
499   llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack;
500 
501   llvm::Instruction *CurrentFuncletPad = nullptr;
502 
503   class CallLifetimeEnd final : public EHScopeStack::Cleanup {
504     llvm::Value *Addr;
505     llvm::Value *Size;
506 
507   public:
508     CallLifetimeEnd(Address addr, llvm::Value *size)
509         : Addr(addr.getPointer()), Size(size) {}
510 
511     void Emit(CodeGenFunction &CGF, Flags flags) override {
512       CGF.EmitLifetimeEnd(Size, Addr);
513     }
514   };
515 
516   /// Header for data within LifetimeExtendedCleanupStack.
517   struct LifetimeExtendedCleanupHeader {
518     /// The size of the following cleanup object.
519     unsigned Size;
520     /// The kind of cleanup to push: a value from the CleanupKind enumeration.
521     unsigned Kind : 31;
522     /// Whether this is a conditional cleanup.
523     unsigned IsConditional : 1;
524 
525     size_t getSize() const { return Size; }
526     CleanupKind getKind() const { return (CleanupKind)Kind; }
527     bool isConditional() const { return IsConditional; }
528   };
529 
530   /// i32s containing the indexes of the cleanup destinations.
531   Address NormalCleanupDest = Address::invalid();
532 
533   unsigned NextCleanupDestIndex = 1;
534 
535   /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
536   CGBlockInfo *FirstBlockInfo = nullptr;
537 
538   /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
539   llvm::BasicBlock *EHResumeBlock = nullptr;
540 
541   /// The exception slot.  All landing pads write the current exception pointer
542   /// into this alloca.
543   llvm::Value *ExceptionSlot = nullptr;
544 
545   /// The selector slot.  Under the MandatoryCleanup model, all landing pads
546   /// write the current selector value into this alloca.
547   llvm::AllocaInst *EHSelectorSlot = nullptr;
548 
549   /// A stack of exception code slots. Entering an __except block pushes a slot
550   /// on the stack and leaving pops one. The __exception_code() intrinsic loads
551   /// a value from the top of the stack.
552   SmallVector<Address, 1> SEHCodeSlotStack;
553 
554   /// Value returned by __exception_info intrinsic.
555   llvm::Value *SEHInfo = nullptr;
556 
557   /// Emits a landing pad for the current EH stack.
558   llvm::BasicBlock *EmitLandingPad();
559 
560   llvm::BasicBlock *getInvokeDestImpl();
561 
562   template <class T>
563   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
564     return DominatingValue<T>::save(*this, value);
565   }
566 
567 public:
568   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
569   /// rethrows.
570   SmallVector<llvm::Value*, 8> ObjCEHValueStack;
571 
572   /// A class controlling the emission of a finally block.
573   class FinallyInfo {
574     /// Where the catchall's edge through the cleanup should go.
575     JumpDest RethrowDest;
576 
577     /// A function to call to enter the catch.
578     llvm::FunctionCallee BeginCatchFn;
579 
580     /// An i1 variable indicating whether or not the @finally is
581     /// running for an exception.
582     llvm::AllocaInst *ForEHVar;
583 
584     /// An i8* variable into which the exception pointer to rethrow
585     /// has been saved.
586     llvm::AllocaInst *SavedExnVar;
587 
588   public:
589     void enter(CodeGenFunction &CGF, const Stmt *Finally,
590                llvm::FunctionCallee beginCatchFn,
591                llvm::FunctionCallee endCatchFn, llvm::FunctionCallee rethrowFn);
592     void exit(CodeGenFunction &CGF);
593   };
594 
595   /// Returns true inside SEH __try blocks.
596   bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }
597 
598   /// Returns true while emitting a cleanuppad.
599   bool isCleanupPadScope() const {
600     return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad);
601   }
602 
603   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
604   /// current full-expression.  Safe against the possibility that
605   /// we're currently inside a conditionally-evaluated expression.
606   template <class T, class... As>
607   void pushFullExprCleanup(CleanupKind kind, As... A) {
608     // If we're not in a conditional branch, or if none of the
609     // arguments requires saving, then use the unconditional cleanup.
610     if (!isInConditionalBranch())
611       return EHStack.pushCleanup<T>(kind, A...);
612 
613     // Stash values in a tuple so we can guarantee the order of saves.
614     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
615     SavedTuple Saved{saveValueInCond(A)...};
616 
617     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
618     EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
619     initFullExprCleanup();
620   }
621 
622   /// Queue a cleanup to be pushed after finishing the current
623   /// full-expression.
624   template <class T, class... As>
625   void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
626     if (!isInConditionalBranch())
627       return pushCleanupAfterFullExprImpl<T>(Kind, Address::invalid(), A...);
628 
629     Address ActiveFlag = createCleanupActiveFlag();
630     assert(!DominatingValue<Address>::needsSaving(ActiveFlag) &&
631            "cleanup active flag should never need saving");
632 
633     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
634     SavedTuple Saved{saveValueInCond(A)...};
635 
636     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
637     pushCleanupAfterFullExprImpl<CleanupType>(Kind, ActiveFlag, Saved);
638   }
639 
640   template <class T, class... As>
641   void pushCleanupAfterFullExprImpl(CleanupKind Kind, Address ActiveFlag,
642                                     As... A) {
643     LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind,
644                                             ActiveFlag.isValid()};
645 
646     size_t OldSize = LifetimeExtendedCleanupStack.size();
647     LifetimeExtendedCleanupStack.resize(
648         LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size +
649         (Header.IsConditional ? sizeof(ActiveFlag) : 0));
650 
651     static_assert(sizeof(Header) % alignof(T) == 0,
652                   "Cleanup will be allocated on misaligned address");
653     char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
654     new (Buffer) LifetimeExtendedCleanupHeader(Header);
655     new (Buffer + sizeof(Header)) T(A...);
656     if (Header.IsConditional)
657       new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag);
658   }
659 
660   /// Set up the last cleanup that was pushed as a conditional
661   /// full-expression cleanup.
662   void initFullExprCleanup() {
663     initFullExprCleanupWithFlag(createCleanupActiveFlag());
664   }
665 
666   void initFullExprCleanupWithFlag(Address ActiveFlag);
667   Address createCleanupActiveFlag();
668 
669   /// PushDestructorCleanup - Push a cleanup to call the
670   /// complete-object destructor of an object of the given type at the
671   /// given address.  Does nothing if T is not a C++ class type with a
672   /// non-trivial destructor.
673   void PushDestructorCleanup(QualType T, Address Addr);
674 
675   /// PushDestructorCleanup - Push a cleanup to call the
676   /// complete-object variant of the given destructor on the object at
677   /// the given address.
678   void PushDestructorCleanup(const CXXDestructorDecl *Dtor, QualType T,
679                              Address Addr);
680 
681   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
682   /// process all branch fixups.
683   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
684 
685   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
686   /// The block cannot be reactivated.  Pops it if it's the top of the
687   /// stack.
688   ///
689   /// \param DominatingIP - An instruction which is known to
690   ///   dominate the current IP (if set) and which lies along
691   ///   all paths of execution between the current IP and the
692   ///   the point at which the cleanup comes into scope.
693   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
694                               llvm::Instruction *DominatingIP);
695 
696   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
697   /// Cannot be used to resurrect a deactivated cleanup.
698   ///
699   /// \param DominatingIP - An instruction which is known to
700   ///   dominate the current IP (if set) and which lies along
701   ///   all paths of execution between the current IP and the
702   ///   the point at which the cleanup comes into scope.
703   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
704                             llvm::Instruction *DominatingIP);
705 
706   /// Enters a new scope for capturing cleanups, all of which
707   /// will be executed once the scope is exited.
708   class RunCleanupsScope {
709     EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth;
710     size_t LifetimeExtendedCleanupStackSize;
711     bool OldDidCallStackSave;
712   protected:
713     bool PerformCleanup;
714   private:
715 
716     RunCleanupsScope(const RunCleanupsScope &) = delete;
717     void operator=(const RunCleanupsScope &) = delete;
718 
719   protected:
720     CodeGenFunction& CGF;
721 
722   public:
723     /// Enter a new cleanup scope.
724     explicit RunCleanupsScope(CodeGenFunction &CGF)
725       : PerformCleanup(true), CGF(CGF)
726     {
727       CleanupStackDepth = CGF.EHStack.stable_begin();
728       LifetimeExtendedCleanupStackSize =
729           CGF.LifetimeExtendedCleanupStack.size();
730       OldDidCallStackSave = CGF.DidCallStackSave;
731       CGF.DidCallStackSave = false;
732       OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth;
733       CGF.CurrentCleanupScopeDepth = CleanupStackDepth;
734     }
735 
736     /// Exit this cleanup scope, emitting any accumulated cleanups.
737     ~RunCleanupsScope() {
738       if (PerformCleanup)
739         ForceCleanup();
740     }
741 
742     /// Determine whether this scope requires any cleanups.
743     bool requiresCleanups() const {
744       return CGF.EHStack.stable_begin() != CleanupStackDepth;
745     }
746 
747     /// Force the emission of cleanups now, instead of waiting
748     /// until this object is destroyed.
749     /// \param ValuesToReload - A list of values that need to be available at
750     /// the insertion point after cleanup emission. If cleanup emission created
751     /// a shared cleanup block, these value pointers will be rewritten.
752     /// Otherwise, they not will be modified.
753     void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) {
754       assert(PerformCleanup && "Already forced cleanup");
755       CGF.DidCallStackSave = OldDidCallStackSave;
756       CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize,
757                            ValuesToReload);
758       PerformCleanup = false;
759       CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth;
760     }
761   };
762 
763   // Cleanup stack depth of the RunCleanupsScope that was pushed most recently.
764   EHScopeStack::stable_iterator CurrentCleanupScopeDepth =
765       EHScopeStack::stable_end();
766 
767   class LexicalScope : public RunCleanupsScope {
768     SourceRange Range;
769     SmallVector<const LabelDecl*, 4> Labels;
770     LexicalScope *ParentScope;
771 
772     LexicalScope(const LexicalScope &) = delete;
773     void operator=(const LexicalScope &) = delete;
774 
775   public:
776     /// Enter a new cleanup scope.
777     explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
778       : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
779       CGF.CurLexicalScope = this;
780       if (CGDebugInfo *DI = CGF.getDebugInfo())
781         DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
782     }
783 
784     void addLabel(const LabelDecl *label) {
785       assert(PerformCleanup && "adding label to dead scope?");
786       Labels.push_back(label);
787     }
788 
789     /// Exit this cleanup scope, emitting any accumulated
790     /// cleanups.
791     ~LexicalScope() {
792       if (CGDebugInfo *DI = CGF.getDebugInfo())
793         DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
794 
795       // If we should perform a cleanup, force them now.  Note that
796       // this ends the cleanup scope before rescoping any labels.
797       if (PerformCleanup) {
798         ApplyDebugLocation DL(CGF, Range.getEnd());
799         ForceCleanup();
800       }
801     }
802 
803     /// Force the emission of cleanups now, instead of waiting
804     /// until this object is destroyed.
805     void ForceCleanup() {
806       CGF.CurLexicalScope = ParentScope;
807       RunCleanupsScope::ForceCleanup();
808 
809       if (!Labels.empty())
810         rescopeLabels();
811     }
812 
813     bool hasLabels() const {
814       return !Labels.empty();
815     }
816 
817     void rescopeLabels();
818   };
819 
820   typedef llvm::DenseMap<const Decl *, Address> DeclMapTy;
821 
822   /// The class used to assign some variables some temporarily addresses.
823   class OMPMapVars {
824     DeclMapTy SavedLocals;
825     DeclMapTy SavedTempAddresses;
826     OMPMapVars(const OMPMapVars &) = delete;
827     void operator=(const OMPMapVars &) = delete;
828 
829   public:
830     explicit OMPMapVars() = default;
831     ~OMPMapVars() {
832       assert(SavedLocals.empty() && "Did not restored original addresses.");
833     };
834 
835     /// Sets the address of the variable \p LocalVD to be \p TempAddr in
836     /// function \p CGF.
837     /// \return true if at least one variable was set already, false otherwise.
838     bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD,
839                     Address TempAddr) {
840       LocalVD = LocalVD->getCanonicalDecl();
841       // Only save it once.
842       if (SavedLocals.count(LocalVD)) return false;
843 
844       // Copy the existing local entry to SavedLocals.
845       auto it = CGF.LocalDeclMap.find(LocalVD);
846       if (it != CGF.LocalDeclMap.end())
847         SavedLocals.try_emplace(LocalVD, it->second);
848       else
849         SavedLocals.try_emplace(LocalVD, Address::invalid());
850 
851       // Generate the private entry.
852       QualType VarTy = LocalVD->getType();
853       if (VarTy->isReferenceType()) {
854         Address Temp = CGF.CreateMemTemp(VarTy);
855         CGF.Builder.CreateStore(TempAddr.getPointer(), Temp);
856         TempAddr = Temp;
857       }
858       SavedTempAddresses.try_emplace(LocalVD, TempAddr);
859 
860       return true;
861     }
862 
863     /// Applies new addresses to the list of the variables.
864     /// \return true if at least one variable is using new address, false
865     /// otherwise.
866     bool apply(CodeGenFunction &CGF) {
867       copyInto(SavedTempAddresses, CGF.LocalDeclMap);
868       SavedTempAddresses.clear();
869       return !SavedLocals.empty();
870     }
871 
872     /// Restores original addresses of the variables.
873     void restore(CodeGenFunction &CGF) {
874       if (!SavedLocals.empty()) {
875         copyInto(SavedLocals, CGF.LocalDeclMap);
876         SavedLocals.clear();
877       }
878     }
879 
880   private:
881     /// Copy all the entries in the source map over the corresponding
882     /// entries in the destination, which must exist.
883     static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) {
884       for (auto &Pair : Src) {
885         if (!Pair.second.isValid()) {
886           Dest.erase(Pair.first);
887           continue;
888         }
889 
890         auto I = Dest.find(Pair.first);
891         if (I != Dest.end())
892           I->second = Pair.second;
893         else
894           Dest.insert(Pair);
895       }
896     }
897   };
898 
899   /// The scope used to remap some variables as private in the OpenMP loop body
900   /// (or other captured region emitted without outlining), and to restore old
901   /// vars back on exit.
902   class OMPPrivateScope : public RunCleanupsScope {
903     OMPMapVars MappedVars;
904     OMPPrivateScope(const OMPPrivateScope &) = delete;
905     void operator=(const OMPPrivateScope &) = delete;
906 
907   public:
908     /// Enter a new OpenMP private scope.
909     explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}
910 
911     /// Registers \p LocalVD variable as a private and apply \p PrivateGen
912     /// function for it to generate corresponding private variable. \p
913     /// PrivateGen returns an address of the generated private variable.
914     /// \return true if the variable is registered as private, false if it has
915     /// been privatized already.
916     bool addPrivate(const VarDecl *LocalVD,
917                     const llvm::function_ref<Address()> PrivateGen) {
918       assert(PerformCleanup && "adding private to dead scope");
919       return MappedVars.setVarAddr(CGF, LocalVD, PrivateGen());
920     }
921 
922     /// Privatizes local variables previously registered as private.
923     /// Registration is separate from the actual privatization to allow
924     /// initializers use values of the original variables, not the private one.
925     /// This is important, for example, if the private variable is a class
926     /// variable initialized by a constructor that references other private
927     /// variables. But at initialization original variables must be used, not
928     /// private copies.
929     /// \return true if at least one variable was privatized, false otherwise.
930     bool Privatize() { return MappedVars.apply(CGF); }
931 
932     void ForceCleanup() {
933       RunCleanupsScope::ForceCleanup();
934       MappedVars.restore(CGF);
935     }
936 
937     /// Exit scope - all the mapped variables are restored.
938     ~OMPPrivateScope() {
939       if (PerformCleanup)
940         ForceCleanup();
941     }
942 
943     /// Checks if the global variable is captured in current function.
944     bool isGlobalVarCaptured(const VarDecl *VD) const {
945       VD = VD->getCanonicalDecl();
946       return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0;
947     }
948   };
949 
950   /// Save/restore original map of previously emitted local vars in case when we
951   /// need to duplicate emission of the same code several times in the same
952   /// function for OpenMP code.
953   class OMPLocalDeclMapRAII {
954     CodeGenFunction &CGF;
955     DeclMapTy SavedMap;
956 
957   public:
958     OMPLocalDeclMapRAII(CodeGenFunction &CGF)
959         : CGF(CGF), SavedMap(CGF.LocalDeclMap) {}
960     ~OMPLocalDeclMapRAII() { SavedMap.swap(CGF.LocalDeclMap); }
961   };
962 
963   /// Takes the old cleanup stack size and emits the cleanup blocks
964   /// that have been added.
965   void
966   PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
967                    std::initializer_list<llvm::Value **> ValuesToReload = {});
968 
969   /// Takes the old cleanup stack size and emits the cleanup blocks
970   /// that have been added, then adds all lifetime-extended cleanups from
971   /// the given position to the stack.
972   void
973   PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
974                    size_t OldLifetimeExtendedStackSize,
975                    std::initializer_list<llvm::Value **> ValuesToReload = {});
976 
977   void ResolveBranchFixups(llvm::BasicBlock *Target);
978 
979   /// The given basic block lies in the current EH scope, but may be a
980   /// target of a potentially scope-crossing jump; get a stable handle
981   /// to which we can perform this jump later.
982   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
983     return JumpDest(Target,
984                     EHStack.getInnermostNormalCleanup(),
985                     NextCleanupDestIndex++);
986   }
987 
988   /// The given basic block lies in the current EH scope, but may be a
989   /// target of a potentially scope-crossing jump; get a stable handle
990   /// to which we can perform this jump later.
991   JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
992     return getJumpDestInCurrentScope(createBasicBlock(Name));
993   }
994 
995   /// EmitBranchThroughCleanup - Emit a branch from the current insert
996   /// block through the normal cleanup handling code (if any) and then
997   /// on to \arg Dest.
998   void EmitBranchThroughCleanup(JumpDest Dest);
999 
1000   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
1001   /// specified destination obviously has no cleanups to run.  'false' is always
1002   /// a conservatively correct answer for this method.
1003   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
1004 
1005   /// popCatchScope - Pops the catch scope at the top of the EHScope
1006   /// stack, emitting any required code (other than the catch handlers
1007   /// themselves).
1008   void popCatchScope();
1009 
1010   llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
1011   llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
1012   llvm::BasicBlock *
1013   getFuncletEHDispatchBlock(EHScopeStack::stable_iterator scope);
1014 
1015   /// An object to manage conditionally-evaluated expressions.
1016   class ConditionalEvaluation {
1017     llvm::BasicBlock *StartBB;
1018 
1019   public:
1020     ConditionalEvaluation(CodeGenFunction &CGF)
1021       : StartBB(CGF.Builder.GetInsertBlock()) {}
1022 
1023     void begin(CodeGenFunction &CGF) {
1024       assert(CGF.OutermostConditional != this);
1025       if (!CGF.OutermostConditional)
1026         CGF.OutermostConditional = this;
1027     }
1028 
1029     void end(CodeGenFunction &CGF) {
1030       assert(CGF.OutermostConditional != nullptr);
1031       if (CGF.OutermostConditional == this)
1032         CGF.OutermostConditional = nullptr;
1033     }
1034 
1035     /// Returns a block which will be executed prior to each
1036     /// evaluation of the conditional code.
1037     llvm::BasicBlock *getStartingBlock() const {
1038       return StartBB;
1039     }
1040   };
1041 
1042   /// isInConditionalBranch - Return true if we're currently emitting
1043   /// one branch or the other of a conditional expression.
1044   bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
1045 
1046   void setBeforeOutermostConditional(llvm::Value *value, Address addr) {
1047     assert(isInConditionalBranch());
1048     llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
1049     auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back());
1050     store->setAlignment(addr.getAlignment().getAsAlign());
1051   }
1052 
1053   /// An RAII object to record that we're evaluating a statement
1054   /// expression.
1055   class StmtExprEvaluation {
1056     CodeGenFunction &CGF;
1057 
1058     /// We have to save the outermost conditional: cleanups in a
1059     /// statement expression aren't conditional just because the
1060     /// StmtExpr is.
1061     ConditionalEvaluation *SavedOutermostConditional;
1062 
1063   public:
1064     StmtExprEvaluation(CodeGenFunction &CGF)
1065       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
1066       CGF.OutermostConditional = nullptr;
1067     }
1068 
1069     ~StmtExprEvaluation() {
1070       CGF.OutermostConditional = SavedOutermostConditional;
1071       CGF.EnsureInsertPoint();
1072     }
1073   };
1074 
1075   /// An object which temporarily prevents a value from being
1076   /// destroyed by aggressive peephole optimizations that assume that
1077   /// all uses of a value have been realized in the IR.
1078   class PeepholeProtection {
1079     llvm::Instruction *Inst;
1080     friend class CodeGenFunction;
1081 
1082   public:
1083     PeepholeProtection() : Inst(nullptr) {}
1084   };
1085 
1086   /// A non-RAII class containing all the information about a bound
1087   /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
1088   /// this which makes individual mappings very simple; using this
1089   /// class directly is useful when you have a variable number of
1090   /// opaque values or don't want the RAII functionality for some
1091   /// reason.
1092   class OpaqueValueMappingData {
1093     const OpaqueValueExpr *OpaqueValue;
1094     bool BoundLValue;
1095     CodeGenFunction::PeepholeProtection Protection;
1096 
1097     OpaqueValueMappingData(const OpaqueValueExpr *ov,
1098                            bool boundLValue)
1099       : OpaqueValue(ov), BoundLValue(boundLValue) {}
1100   public:
1101     OpaqueValueMappingData() : OpaqueValue(nullptr) {}
1102 
1103     static bool shouldBindAsLValue(const Expr *expr) {
1104       // gl-values should be bound as l-values for obvious reasons.
1105       // Records should be bound as l-values because IR generation
1106       // always keeps them in memory.  Expressions of function type
1107       // act exactly like l-values but are formally required to be
1108       // r-values in C.
1109       return expr->isGLValue() ||
1110              expr->getType()->isFunctionType() ||
1111              hasAggregateEvaluationKind(expr->getType());
1112     }
1113 
1114     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1115                                        const OpaqueValueExpr *ov,
1116                                        const Expr *e) {
1117       if (shouldBindAsLValue(ov))
1118         return bind(CGF, ov, CGF.EmitLValue(e));
1119       return bind(CGF, ov, CGF.EmitAnyExpr(e));
1120     }
1121 
1122     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1123                                        const OpaqueValueExpr *ov,
1124                                        const LValue &lv) {
1125       assert(shouldBindAsLValue(ov));
1126       CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
1127       return OpaqueValueMappingData(ov, true);
1128     }
1129 
1130     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1131                                        const OpaqueValueExpr *ov,
1132                                        const RValue &rv) {
1133       assert(!shouldBindAsLValue(ov));
1134       CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
1135 
1136       OpaqueValueMappingData data(ov, false);
1137 
1138       // Work around an extremely aggressive peephole optimization in
1139       // EmitScalarConversion which assumes that all other uses of a
1140       // value are extant.
1141       data.Protection = CGF.protectFromPeepholes(rv);
1142 
1143       return data;
1144     }
1145 
1146     bool isValid() const { return OpaqueValue != nullptr; }
1147     void clear() { OpaqueValue = nullptr; }
1148 
1149     void unbind(CodeGenFunction &CGF) {
1150       assert(OpaqueValue && "no data to unbind!");
1151 
1152       if (BoundLValue) {
1153         CGF.OpaqueLValues.erase(OpaqueValue);
1154       } else {
1155         CGF.OpaqueRValues.erase(OpaqueValue);
1156         CGF.unprotectFromPeepholes(Protection);
1157       }
1158     }
1159   };
1160 
1161   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
1162   class OpaqueValueMapping {
1163     CodeGenFunction &CGF;
1164     OpaqueValueMappingData Data;
1165 
1166   public:
1167     static bool shouldBindAsLValue(const Expr *expr) {
1168       return OpaqueValueMappingData::shouldBindAsLValue(expr);
1169     }
1170 
1171     /// Build the opaque value mapping for the given conditional
1172     /// operator if it's the GNU ?: extension.  This is a common
1173     /// enough pattern that the convenience operator is really
1174     /// helpful.
1175     ///
1176     OpaqueValueMapping(CodeGenFunction &CGF,
1177                        const AbstractConditionalOperator *op) : CGF(CGF) {
1178       if (isa<ConditionalOperator>(op))
1179         // Leave Data empty.
1180         return;
1181 
1182       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
1183       Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
1184                                           e->getCommon());
1185     }
1186 
1187     /// Build the opaque value mapping for an OpaqueValueExpr whose source
1188     /// expression is set to the expression the OVE represents.
1189     OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV)
1190         : CGF(CGF) {
1191       if (OV) {
1192         assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used "
1193                                       "for OVE with no source expression");
1194         Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr());
1195       }
1196     }
1197 
1198     OpaqueValueMapping(CodeGenFunction &CGF,
1199                        const OpaqueValueExpr *opaqueValue,
1200                        LValue lvalue)
1201       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
1202     }
1203 
1204     OpaqueValueMapping(CodeGenFunction &CGF,
1205                        const OpaqueValueExpr *opaqueValue,
1206                        RValue rvalue)
1207       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
1208     }
1209 
1210     void pop() {
1211       Data.unbind(CGF);
1212       Data.clear();
1213     }
1214 
1215     ~OpaqueValueMapping() {
1216       if (Data.isValid()) Data.unbind(CGF);
1217     }
1218   };
1219 
1220 private:
1221   CGDebugInfo *DebugInfo;
1222   /// Used to create unique names for artificial VLA size debug info variables.
1223   unsigned VLAExprCounter = 0;
1224   bool DisableDebugInfo = false;
1225 
1226   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
1227   /// calling llvm.stacksave for multiple VLAs in the same scope.
1228   bool DidCallStackSave = false;
1229 
1230   /// IndirectBranch - The first time an indirect goto is seen we create a block
1231   /// with an indirect branch.  Every time we see the address of a label taken,
1232   /// we add the label to the indirect goto.  Every subsequent indirect goto is
1233   /// codegen'd as a jump to the IndirectBranch's basic block.
1234   llvm::IndirectBrInst *IndirectBranch = nullptr;
1235 
1236   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1237   /// decls.
1238   DeclMapTy LocalDeclMap;
1239 
1240   // Keep track of the cleanups for callee-destructed parameters pushed to the
1241   // cleanup stack so that they can be deactivated later.
1242   llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator>
1243       CalleeDestructedParamCleanups;
1244 
1245   /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this
1246   /// will contain a mapping from said ParmVarDecl to its implicit "object_size"
1247   /// parameter.
1248   llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2>
1249       SizeArguments;
1250 
1251   /// Track escaped local variables with auto storage. Used during SEH
1252   /// outlining to produce a call to llvm.localescape.
1253   llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;
1254 
1255   /// LabelMap - This keeps track of the LLVM basic block for each C label.
1256   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1257 
1258   // BreakContinueStack - This keeps track of where break and continue
1259   // statements should jump to.
1260   struct BreakContinue {
1261     BreakContinue(JumpDest Break, JumpDest Continue)
1262       : BreakBlock(Break), ContinueBlock(Continue) {}
1263 
1264     JumpDest BreakBlock;
1265     JumpDest ContinueBlock;
1266   };
1267   SmallVector<BreakContinue, 8> BreakContinueStack;
1268 
1269   /// Handles cancellation exit points in OpenMP-related constructs.
1270   class OpenMPCancelExitStack {
1271     /// Tracks cancellation exit point and join point for cancel-related exit
1272     /// and normal exit.
1273     struct CancelExit {
1274       CancelExit() = default;
1275       CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock,
1276                  JumpDest ContBlock)
1277           : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {}
1278       OpenMPDirectiveKind Kind = OMPD_unknown;
1279       /// true if the exit block has been emitted already by the special
1280       /// emitExit() call, false if the default codegen is used.
1281       bool HasBeenEmitted = false;
1282       JumpDest ExitBlock;
1283       JumpDest ContBlock;
1284     };
1285 
1286     SmallVector<CancelExit, 8> Stack;
1287 
1288   public:
1289     OpenMPCancelExitStack() : Stack(1) {}
1290     ~OpenMPCancelExitStack() = default;
1291     /// Fetches the exit block for the current OpenMP construct.
1292     JumpDest getExitBlock() const { return Stack.back().ExitBlock; }
1293     /// Emits exit block with special codegen procedure specific for the related
1294     /// OpenMP construct + emits code for normal construct cleanup.
1295     void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
1296                   const llvm::function_ref<void(CodeGenFunction &)> CodeGen) {
1297       if (Stack.back().Kind == Kind && getExitBlock().isValid()) {
1298         assert(CGF.getOMPCancelDestination(Kind).isValid());
1299         assert(CGF.HaveInsertPoint());
1300         assert(!Stack.back().HasBeenEmitted);
1301         auto IP = CGF.Builder.saveAndClearIP();
1302         CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1303         CodeGen(CGF);
1304         CGF.EmitBranch(Stack.back().ContBlock.getBlock());
1305         CGF.Builder.restoreIP(IP);
1306         Stack.back().HasBeenEmitted = true;
1307       }
1308       CodeGen(CGF);
1309     }
1310     /// Enter the cancel supporting \a Kind construct.
1311     /// \param Kind OpenMP directive that supports cancel constructs.
1312     /// \param HasCancel true, if the construct has inner cancel directive,
1313     /// false otherwise.
1314     void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) {
1315       Stack.push_back({Kind,
1316                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit")
1317                                  : JumpDest(),
1318                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont")
1319                                  : JumpDest()});
1320     }
1321     /// Emits default exit point for the cancel construct (if the special one
1322     /// has not be used) + join point for cancel/normal exits.
1323     void exit(CodeGenFunction &CGF) {
1324       if (getExitBlock().isValid()) {
1325         assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid());
1326         bool HaveIP = CGF.HaveInsertPoint();
1327         if (!Stack.back().HasBeenEmitted) {
1328           if (HaveIP)
1329             CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1330           CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1331           CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1332         }
1333         CGF.EmitBlock(Stack.back().ContBlock.getBlock());
1334         if (!HaveIP) {
1335           CGF.Builder.CreateUnreachable();
1336           CGF.Builder.ClearInsertionPoint();
1337         }
1338       }
1339       Stack.pop_back();
1340     }
1341   };
1342   OpenMPCancelExitStack OMPCancelStack;
1343 
1344   CodeGenPGO PGO;
1345 
1346   /// Calculate branch weights appropriate for PGO data
1347   llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount);
1348   llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights);
1349   llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond,
1350                                             uint64_t LoopCount);
1351 
1352 public:
1353   /// Increment the profiler's counter for the given statement by \p StepV.
1354   /// If \p StepV is null, the default increment is 1.
1355   void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) {
1356     if (CGM.getCodeGenOpts().hasProfileClangInstr())
1357       PGO.emitCounterIncrement(Builder, S, StepV);
1358     PGO.setCurrentStmt(S);
1359   }
1360 
1361   /// Get the profiler's count for the given statement.
1362   uint64_t getProfileCount(const Stmt *S) {
1363     Optional<uint64_t> Count = PGO.getStmtCount(S);
1364     if (!Count.hasValue())
1365       return 0;
1366     return *Count;
1367   }
1368 
1369   /// Set the profiler's current count.
1370   void setCurrentProfileCount(uint64_t Count) {
1371     PGO.setCurrentRegionCount(Count);
1372   }
1373 
1374   /// Get the profiler's current count. This is generally the count for the most
1375   /// recently incremented counter.
1376   uint64_t getCurrentProfileCount() {
1377     return PGO.getCurrentRegionCount();
1378   }
1379 
1380 private:
1381 
1382   /// SwitchInsn - This is nearest current switch instruction. It is null if
1383   /// current context is not in a switch.
1384   llvm::SwitchInst *SwitchInsn = nullptr;
1385   /// The branch weights of SwitchInsn when doing instrumentation based PGO.
1386   SmallVector<uint64_t, 16> *SwitchWeights = nullptr;
1387 
1388   /// CaseRangeBlock - This block holds if condition check for last case
1389   /// statement range in current switch instruction.
1390   llvm::BasicBlock *CaseRangeBlock = nullptr;
1391 
1392   /// OpaqueLValues - Keeps track of the current set of opaque value
1393   /// expressions.
1394   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1395   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1396 
1397   // VLASizeMap - This keeps track of the associated size for each VLA type.
1398   // We track this by the size expression rather than the type itself because
1399   // in certain situations, like a const qualifier applied to an VLA typedef,
1400   // multiple VLA types can share the same size expression.
1401   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1402   // enter/leave scopes.
1403   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1404 
1405   /// A block containing a single 'unreachable' instruction.  Created
1406   /// lazily by getUnreachableBlock().
1407   llvm::BasicBlock *UnreachableBlock = nullptr;
1408 
1409   /// Counts of the number return expressions in the function.
1410   unsigned NumReturnExprs = 0;
1411 
1412   /// Count the number of simple (constant) return expressions in the function.
1413   unsigned NumSimpleReturnExprs = 0;
1414 
1415   /// The last regular (non-return) debug location (breakpoint) in the function.
1416   SourceLocation LastStopPoint;
1417 
1418 public:
1419   /// Source location information about the default argument or member
1420   /// initializer expression we're evaluating, if any.
1421   CurrentSourceLocExprScope CurSourceLocExprScope;
1422   using SourceLocExprScopeGuard =
1423       CurrentSourceLocExprScope::SourceLocExprScopeGuard;
1424 
1425   /// A scope within which we are constructing the fields of an object which
1426   /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
1427   /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
1428   class FieldConstructionScope {
1429   public:
1430     FieldConstructionScope(CodeGenFunction &CGF, Address This)
1431         : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
1432       CGF.CXXDefaultInitExprThis = This;
1433     }
1434     ~FieldConstructionScope() {
1435       CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
1436     }
1437 
1438   private:
1439     CodeGenFunction &CGF;
1440     Address OldCXXDefaultInitExprThis;
1441   };
1442 
1443   /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
1444   /// is overridden to be the object under construction.
1445   class CXXDefaultInitExprScope  {
1446   public:
1447     CXXDefaultInitExprScope(CodeGenFunction &CGF, const CXXDefaultInitExpr *E)
1448         : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue),
1449           OldCXXThisAlignment(CGF.CXXThisAlignment),
1450           SourceLocScope(E, CGF.CurSourceLocExprScope) {
1451       CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer();
1452       CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment();
1453     }
1454     ~CXXDefaultInitExprScope() {
1455       CGF.CXXThisValue = OldCXXThisValue;
1456       CGF.CXXThisAlignment = OldCXXThisAlignment;
1457     }
1458 
1459   public:
1460     CodeGenFunction &CGF;
1461     llvm::Value *OldCXXThisValue;
1462     CharUnits OldCXXThisAlignment;
1463     SourceLocExprScopeGuard SourceLocScope;
1464   };
1465 
1466   struct CXXDefaultArgExprScope : SourceLocExprScopeGuard {
1467     CXXDefaultArgExprScope(CodeGenFunction &CGF, const CXXDefaultArgExpr *E)
1468         : SourceLocExprScopeGuard(E, CGF.CurSourceLocExprScope) {}
1469   };
1470 
1471   /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the
1472   /// current loop index is overridden.
1473   class ArrayInitLoopExprScope {
1474   public:
1475     ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index)
1476       : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) {
1477       CGF.ArrayInitIndex = Index;
1478     }
1479     ~ArrayInitLoopExprScope() {
1480       CGF.ArrayInitIndex = OldArrayInitIndex;
1481     }
1482 
1483   private:
1484     CodeGenFunction &CGF;
1485     llvm::Value *OldArrayInitIndex;
1486   };
1487 
1488   class InlinedInheritingConstructorScope {
1489   public:
1490     InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD)
1491         : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl),
1492           OldCurCodeDecl(CGF.CurCodeDecl),
1493           OldCXXABIThisDecl(CGF.CXXABIThisDecl),
1494           OldCXXABIThisValue(CGF.CXXABIThisValue),
1495           OldCXXThisValue(CGF.CXXThisValue),
1496           OldCXXABIThisAlignment(CGF.CXXABIThisAlignment),
1497           OldCXXThisAlignment(CGF.CXXThisAlignment),
1498           OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy),
1499           OldCXXInheritedCtorInitExprArgs(
1500               std::move(CGF.CXXInheritedCtorInitExprArgs)) {
1501       CGF.CurGD = GD;
1502       CGF.CurFuncDecl = CGF.CurCodeDecl =
1503           cast<CXXConstructorDecl>(GD.getDecl());
1504       CGF.CXXABIThisDecl = nullptr;
1505       CGF.CXXABIThisValue = nullptr;
1506       CGF.CXXThisValue = nullptr;
1507       CGF.CXXABIThisAlignment = CharUnits();
1508       CGF.CXXThisAlignment = CharUnits();
1509       CGF.ReturnValue = Address::invalid();
1510       CGF.FnRetTy = QualType();
1511       CGF.CXXInheritedCtorInitExprArgs.clear();
1512     }
1513     ~InlinedInheritingConstructorScope() {
1514       CGF.CurGD = OldCurGD;
1515       CGF.CurFuncDecl = OldCurFuncDecl;
1516       CGF.CurCodeDecl = OldCurCodeDecl;
1517       CGF.CXXABIThisDecl = OldCXXABIThisDecl;
1518       CGF.CXXABIThisValue = OldCXXABIThisValue;
1519       CGF.CXXThisValue = OldCXXThisValue;
1520       CGF.CXXABIThisAlignment = OldCXXABIThisAlignment;
1521       CGF.CXXThisAlignment = OldCXXThisAlignment;
1522       CGF.ReturnValue = OldReturnValue;
1523       CGF.FnRetTy = OldFnRetTy;
1524       CGF.CXXInheritedCtorInitExprArgs =
1525           std::move(OldCXXInheritedCtorInitExprArgs);
1526     }
1527 
1528   private:
1529     CodeGenFunction &CGF;
1530     GlobalDecl OldCurGD;
1531     const Decl *OldCurFuncDecl;
1532     const Decl *OldCurCodeDecl;
1533     ImplicitParamDecl *OldCXXABIThisDecl;
1534     llvm::Value *OldCXXABIThisValue;
1535     llvm::Value *OldCXXThisValue;
1536     CharUnits OldCXXABIThisAlignment;
1537     CharUnits OldCXXThisAlignment;
1538     Address OldReturnValue;
1539     QualType OldFnRetTy;
1540     CallArgList OldCXXInheritedCtorInitExprArgs;
1541   };
1542 
1543 private:
1544   /// CXXThisDecl - When generating code for a C++ member function,
1545   /// this will hold the implicit 'this' declaration.
1546   ImplicitParamDecl *CXXABIThisDecl = nullptr;
1547   llvm::Value *CXXABIThisValue = nullptr;
1548   llvm::Value *CXXThisValue = nullptr;
1549   CharUnits CXXABIThisAlignment;
1550   CharUnits CXXThisAlignment;
1551 
1552   /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
1553   /// this expression.
1554   Address CXXDefaultInitExprThis = Address::invalid();
1555 
1556   /// The current array initialization index when evaluating an
1557   /// ArrayInitIndexExpr within an ArrayInitLoopExpr.
1558   llvm::Value *ArrayInitIndex = nullptr;
1559 
1560   /// The values of function arguments to use when evaluating
1561   /// CXXInheritedCtorInitExprs within this context.
1562   CallArgList CXXInheritedCtorInitExprArgs;
1563 
1564   /// CXXStructorImplicitParamDecl - When generating code for a constructor or
1565   /// destructor, this will hold the implicit argument (e.g. VTT).
1566   ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr;
1567   llvm::Value *CXXStructorImplicitParamValue = nullptr;
1568 
1569   /// OutermostConditional - Points to the outermost active
1570   /// conditional control.  This is used so that we know if a
1571   /// temporary should be destroyed conditionally.
1572   ConditionalEvaluation *OutermostConditional = nullptr;
1573 
1574   /// The current lexical scope.
1575   LexicalScope *CurLexicalScope = nullptr;
1576 
1577   /// The current source location that should be used for exception
1578   /// handling code.
1579   SourceLocation CurEHLocation;
1580 
1581   /// BlockByrefInfos - For each __block variable, contains
1582   /// information about the layout of the variable.
1583   llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos;
1584 
1585   /// Used by -fsanitize=nullability-return to determine whether the return
1586   /// value can be checked.
1587   llvm::Value *RetValNullabilityPrecondition = nullptr;
1588 
1589   /// Check if -fsanitize=nullability-return instrumentation is required for
1590   /// this function.
1591   bool requiresReturnValueNullabilityCheck() const {
1592     return RetValNullabilityPrecondition;
1593   }
1594 
1595   /// Used to store precise source locations for return statements by the
1596   /// runtime return value checks.
1597   Address ReturnLocation = Address::invalid();
1598 
1599   /// Check if the return value of this function requires sanitization.
1600   bool requiresReturnValueCheck() const {
1601     return requiresReturnValueNullabilityCheck() ||
1602            (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
1603             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>());
1604   }
1605 
1606   llvm::BasicBlock *TerminateLandingPad = nullptr;
1607   llvm::BasicBlock *TerminateHandler = nullptr;
1608   llvm::BasicBlock *TrapBB = nullptr;
1609 
1610   /// Terminate funclets keyed by parent funclet pad.
1611   llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets;
1612 
1613   /// Largest vector width used in ths function. Will be used to create a
1614   /// function attribute.
1615   unsigned LargestVectorWidth = 0;
1616 
1617   /// True if we need emit the life-time markers.
1618   const bool ShouldEmitLifetimeMarkers;
1619 
1620   /// Add OpenCL kernel arg metadata and the kernel attribute metadata to
1621   /// the function metadata.
1622   void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
1623                                 llvm::Function *Fn);
1624 
1625 public:
1626   CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1627   ~CodeGenFunction();
1628 
1629   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1630   ASTContext &getContext() const { return CGM.getContext(); }
1631   CGDebugInfo *getDebugInfo() {
1632     if (DisableDebugInfo)
1633       return nullptr;
1634     return DebugInfo;
1635   }
1636   void disableDebugInfo() { DisableDebugInfo = true; }
1637   void enableDebugInfo() { DisableDebugInfo = false; }
1638 
1639   bool shouldUseFusedARCCalls() {
1640     return CGM.getCodeGenOpts().OptimizationLevel == 0;
1641   }
1642 
1643   const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1644 
1645   /// Returns a pointer to the function's exception object and selector slot,
1646   /// which is assigned in every landing pad.
1647   Address getExceptionSlot();
1648   Address getEHSelectorSlot();
1649 
1650   /// Returns the contents of the function's exception object and selector
1651   /// slots.
1652   llvm::Value *getExceptionFromSlot();
1653   llvm::Value *getSelectorFromSlot();
1654 
1655   Address getNormalCleanupDestSlot();
1656 
1657   llvm::BasicBlock *getUnreachableBlock() {
1658     if (!UnreachableBlock) {
1659       UnreachableBlock = createBasicBlock("unreachable");
1660       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1661     }
1662     return UnreachableBlock;
1663   }
1664 
1665   llvm::BasicBlock *getInvokeDest() {
1666     if (!EHStack.requiresLandingPad()) return nullptr;
1667     return getInvokeDestImpl();
1668   }
1669 
1670   bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; }
1671 
1672   const TargetInfo &getTarget() const { return Target; }
1673   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1674   const TargetCodeGenInfo &getTargetHooks() const {
1675     return CGM.getTargetCodeGenInfo();
1676   }
1677 
1678   //===--------------------------------------------------------------------===//
1679   //                                  Cleanups
1680   //===--------------------------------------------------------------------===//
1681 
1682   typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty);
1683 
1684   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1685                                         Address arrayEndPointer,
1686                                         QualType elementType,
1687                                         CharUnits elementAlignment,
1688                                         Destroyer *destroyer);
1689   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1690                                       llvm::Value *arrayEnd,
1691                                       QualType elementType,
1692                                       CharUnits elementAlignment,
1693                                       Destroyer *destroyer);
1694 
1695   void pushDestroy(QualType::DestructionKind dtorKind,
1696                    Address addr, QualType type);
1697   void pushEHDestroy(QualType::DestructionKind dtorKind,
1698                      Address addr, QualType type);
1699   void pushDestroy(CleanupKind kind, Address addr, QualType type,
1700                    Destroyer *destroyer, bool useEHCleanupForArray);
1701   void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr,
1702                                    QualType type, Destroyer *destroyer,
1703                                    bool useEHCleanupForArray);
1704   void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1705                                    llvm::Value *CompletePtr,
1706                                    QualType ElementType);
1707   void pushStackRestore(CleanupKind kind, Address SPMem);
1708   void emitDestroy(Address addr, QualType type, Destroyer *destroyer,
1709                    bool useEHCleanupForArray);
1710   llvm::Function *generateDestroyHelper(Address addr, QualType type,
1711                                         Destroyer *destroyer,
1712                                         bool useEHCleanupForArray,
1713                                         const VarDecl *VD);
1714   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1715                         QualType elementType, CharUnits elementAlign,
1716                         Destroyer *destroyer,
1717                         bool checkZeroLength, bool useEHCleanup);
1718 
1719   Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1720 
1721   /// Determines whether an EH cleanup is required to destroy a type
1722   /// with the given destruction kind.
1723   bool needsEHCleanup(QualType::DestructionKind kind) {
1724     switch (kind) {
1725     case QualType::DK_none:
1726       return false;
1727     case QualType::DK_cxx_destructor:
1728     case QualType::DK_objc_weak_lifetime:
1729     case QualType::DK_nontrivial_c_struct:
1730       return getLangOpts().Exceptions;
1731     case QualType::DK_objc_strong_lifetime:
1732       return getLangOpts().Exceptions &&
1733              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1734     }
1735     llvm_unreachable("bad destruction kind");
1736   }
1737 
1738   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
1739     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1740   }
1741 
1742   //===--------------------------------------------------------------------===//
1743   //                                  Objective-C
1744   //===--------------------------------------------------------------------===//
1745 
1746   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1747 
1748   void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
1749 
1750   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1751   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1752                           const ObjCPropertyImplDecl *PID);
1753   void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1754                               const ObjCPropertyImplDecl *propImpl,
1755                               const ObjCMethodDecl *GetterMothodDecl,
1756                               llvm::Constant *AtomicHelperFn);
1757 
1758   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1759                                   ObjCMethodDecl *MD, bool ctor);
1760 
1761   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1762   /// for the given property.
1763   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1764                           const ObjCPropertyImplDecl *PID);
1765   void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1766                               const ObjCPropertyImplDecl *propImpl,
1767                               llvm::Constant *AtomicHelperFn);
1768 
1769   //===--------------------------------------------------------------------===//
1770   //                                  Block Bits
1771   //===--------------------------------------------------------------------===//
1772 
1773   /// Emit block literal.
1774   /// \return an LLVM value which is a pointer to a struct which contains
1775   /// information about the block, including the block invoke function, the
1776   /// captured variables, etc.
1777   llvm::Value *EmitBlockLiteral(const BlockExpr *);
1778   static void destroyBlockInfos(CGBlockInfo *info);
1779 
1780   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1781                                         const CGBlockInfo &Info,
1782                                         const DeclMapTy &ldm,
1783                                         bool IsLambdaConversionToBlock,
1784                                         bool BuildGlobalBlock);
1785 
1786   /// Check if \p T is a C++ class that has a destructor that can throw.
1787   static bool cxxDestructorCanThrow(QualType T);
1788 
1789   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1790   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1791   llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
1792                                              const ObjCPropertyImplDecl *PID);
1793   llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
1794                                              const ObjCPropertyImplDecl *PID);
1795   llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
1796 
1797   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags,
1798                          bool CanThrow);
1799 
1800   class AutoVarEmission;
1801 
1802   void emitByrefStructureInit(const AutoVarEmission &emission);
1803 
1804   /// Enter a cleanup to destroy a __block variable.  Note that this
1805   /// cleanup should be a no-op if the variable hasn't left the stack
1806   /// yet; if a cleanup is required for the variable itself, that needs
1807   /// to be done externally.
1808   ///
1809   /// \param Kind Cleanup kind.
1810   ///
1811   /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block
1812   /// structure that will be passed to _Block_object_dispose. When
1813   /// \p LoadBlockVarAddr is true, the address of the field of the block
1814   /// structure that holds the address of the __block structure.
1815   ///
1816   /// \param Flags The flag that will be passed to _Block_object_dispose.
1817   ///
1818   /// \param LoadBlockVarAddr Indicates whether we need to emit a load from
1819   /// \p Addr to get the address of the __block structure.
1820   void enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags,
1821                          bool LoadBlockVarAddr, bool CanThrow);
1822 
1823   void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum,
1824                                 llvm::Value *ptr);
1825 
1826   Address LoadBlockStruct();
1827   Address GetAddrOfBlockDecl(const VarDecl *var);
1828 
1829   /// BuildBlockByrefAddress - Computes the location of the
1830   /// data in a variable which is declared as __block.
1831   Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V,
1832                                 bool followForward = true);
1833   Address emitBlockByrefAddress(Address baseAddr,
1834                                 const BlockByrefInfo &info,
1835                                 bool followForward,
1836                                 const llvm::Twine &name);
1837 
1838   const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var);
1839 
1840   QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args);
1841 
1842   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1843                     const CGFunctionInfo &FnInfo);
1844 
1845   /// Annotate the function with an attribute that disables TSan checking at
1846   /// runtime.
1847   void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn);
1848 
1849   /// Emit code for the start of a function.
1850   /// \param Loc       The location to be associated with the function.
1851   /// \param StartLoc  The location of the function body.
1852   void StartFunction(GlobalDecl GD,
1853                      QualType RetTy,
1854                      llvm::Function *Fn,
1855                      const CGFunctionInfo &FnInfo,
1856                      const FunctionArgList &Args,
1857                      SourceLocation Loc = SourceLocation(),
1858                      SourceLocation StartLoc = SourceLocation());
1859 
1860   static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor);
1861 
1862   void EmitConstructorBody(FunctionArgList &Args);
1863   void EmitDestructorBody(FunctionArgList &Args);
1864   void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
1865   void EmitFunctionBody(const Stmt *Body);
1866   void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S);
1867 
1868   void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
1869                                   CallArgList &CallArgs);
1870   void EmitLambdaBlockInvokeBody();
1871   void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
1872   void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD);
1873   void EmitLambdaVLACapture(const VariableArrayType *VAT, LValue LV) {
1874     EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
1875   }
1876   void EmitAsanPrologueOrEpilogue(bool Prologue);
1877 
1878   /// Emit the unified return block, trying to avoid its emission when
1879   /// possible.
1880   /// \return The debug location of the user written return statement if the
1881   /// return block is is avoided.
1882   llvm::DebugLoc EmitReturnBlock();
1883 
1884   /// FinishFunction - Complete IR generation of the current function. It is
1885   /// legal to call this function even if there is no current insertion point.
1886   void FinishFunction(SourceLocation EndLoc=SourceLocation());
1887 
1888   void StartThunk(llvm::Function *Fn, GlobalDecl GD,
1889                   const CGFunctionInfo &FnInfo, bool IsUnprototyped);
1890 
1891   void EmitCallAndReturnForThunk(llvm::FunctionCallee Callee,
1892                                  const ThunkInfo *Thunk, bool IsUnprototyped);
1893 
1894   void FinishThunk();
1895 
1896   /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
1897   void EmitMustTailThunk(GlobalDecl GD, llvm::Value *AdjustedThisPtr,
1898                          llvm::FunctionCallee Callee);
1899 
1900   /// Generate a thunk for the given method.
1901   void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1902                      GlobalDecl GD, const ThunkInfo &Thunk,
1903                      bool IsUnprototyped);
1904 
1905   llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn,
1906                                        const CGFunctionInfo &FnInfo,
1907                                        GlobalDecl GD, const ThunkInfo &Thunk);
1908 
1909   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1910                         FunctionArgList &Args);
1911 
1912   void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init);
1913 
1914   /// Struct with all information about dynamic [sub]class needed to set vptr.
1915   struct VPtr {
1916     BaseSubobject Base;
1917     const CXXRecordDecl *NearestVBase;
1918     CharUnits OffsetFromNearestVBase;
1919     const CXXRecordDecl *VTableClass;
1920   };
1921 
1922   /// Initialize the vtable pointer of the given subobject.
1923   void InitializeVTablePointer(const VPtr &vptr);
1924 
1925   typedef llvm::SmallVector<VPtr, 4> VPtrsVector;
1926 
1927   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1928   VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass);
1929 
1930   void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase,
1931                          CharUnits OffsetFromNearestVBase,
1932                          bool BaseIsNonVirtualPrimaryBase,
1933                          const CXXRecordDecl *VTableClass,
1934                          VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs);
1935 
1936   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1937 
1938   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1939   /// to by This.
1940   llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy,
1941                             const CXXRecordDecl *VTableClass);
1942 
1943   enum CFITypeCheckKind {
1944     CFITCK_VCall,
1945     CFITCK_NVCall,
1946     CFITCK_DerivedCast,
1947     CFITCK_UnrelatedCast,
1948     CFITCK_ICall,
1949     CFITCK_NVMFCall,
1950     CFITCK_VMFCall,
1951   };
1952 
1953   /// Derived is the presumed address of an object of type T after a
1954   /// cast. If T is a polymorphic class type, emit a check that the virtual
1955   /// table for Derived belongs to a class derived from T.
1956   void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived,
1957                                  bool MayBeNull, CFITypeCheckKind TCK,
1958                                  SourceLocation Loc);
1959 
1960   /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
1961   /// If vptr CFI is enabled, emit a check that VTable is valid.
1962   void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable,
1963                                  CFITypeCheckKind TCK, SourceLocation Loc);
1964 
1965   /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
1966   /// RD using llvm.type.test.
1967   void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable,
1968                           CFITypeCheckKind TCK, SourceLocation Loc);
1969 
1970   /// If whole-program virtual table optimization is enabled, emit an assumption
1971   /// that VTable is a member of RD's type identifier. Or, if vptr CFI is
1972   /// enabled, emit a check that VTable is a member of RD's type identifier.
1973   void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
1974                                     llvm::Value *VTable, SourceLocation Loc);
1975 
1976   /// Returns whether we should perform a type checked load when loading a
1977   /// virtual function for virtual calls to members of RD. This is generally
1978   /// true when both vcall CFI and whole-program-vtables are enabled.
1979   bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD);
1980 
1981   /// Emit a type checked load from the given vtable.
1982   llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable,
1983                                          uint64_t VTableByteOffset);
1984 
1985   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1986   /// given phase of destruction for a destructor.  The end result
1987   /// should call destructors on members and base classes in reverse
1988   /// order of their construction.
1989   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1990 
1991   /// ShouldInstrumentFunction - Return true if the current function should be
1992   /// instrumented with __cyg_profile_func_* calls
1993   bool ShouldInstrumentFunction();
1994 
1995   /// ShouldXRayInstrument - Return true if the current function should be
1996   /// instrumented with XRay nop sleds.
1997   bool ShouldXRayInstrumentFunction() const;
1998 
1999   /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit
2000   /// XRay custom event handling calls.
2001   bool AlwaysEmitXRayCustomEvents() const;
2002 
2003   /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit
2004   /// XRay typed event handling calls.
2005   bool AlwaysEmitXRayTypedEvents() const;
2006 
2007   /// Encode an address into a form suitable for use in a function prologue.
2008   llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F,
2009                                              llvm::Constant *Addr);
2010 
2011   /// Decode an address used in a function prologue, encoded by \c
2012   /// EncodeAddrForUseInPrologue.
2013   llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F,
2014                                         llvm::Value *EncodedAddr);
2015 
2016   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
2017   /// arguments for the given function. This is also responsible for naming the
2018   /// LLVM function arguments.
2019   void EmitFunctionProlog(const CGFunctionInfo &FI,
2020                           llvm::Function *Fn,
2021                           const FunctionArgList &Args);
2022 
2023   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
2024   /// given temporary.
2025   void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
2026                           SourceLocation EndLoc);
2027 
2028   /// Emit a test that checks if the return value \p RV is nonnull.
2029   void EmitReturnValueCheck(llvm::Value *RV);
2030 
2031   /// EmitStartEHSpec - Emit the start of the exception spec.
2032   void EmitStartEHSpec(const Decl *D);
2033 
2034   /// EmitEndEHSpec - Emit the end of the exception spec.
2035   void EmitEndEHSpec(const Decl *D);
2036 
2037   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
2038   llvm::BasicBlock *getTerminateLandingPad();
2039 
2040   /// getTerminateLandingPad - Return a cleanup funclet that just calls
2041   /// terminate.
2042   llvm::BasicBlock *getTerminateFunclet();
2043 
2044   /// getTerminateHandler - Return a handler (not a landing pad, just
2045   /// a catch handler) that just calls terminate.  This is used when
2046   /// a terminate scope encloses a try.
2047   llvm::BasicBlock *getTerminateHandler();
2048 
2049   llvm::Type *ConvertTypeForMem(QualType T);
2050   llvm::Type *ConvertType(QualType T);
2051   llvm::Type *ConvertType(const TypeDecl *T) {
2052     return ConvertType(getContext().getTypeDeclType(T));
2053   }
2054 
2055   /// LoadObjCSelf - Load the value of self. This function is only valid while
2056   /// generating code for an Objective-C method.
2057   llvm::Value *LoadObjCSelf();
2058 
2059   /// TypeOfSelfObject - Return type of object that this self represents.
2060   QualType TypeOfSelfObject();
2061 
2062   /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T.
2063   static TypeEvaluationKind getEvaluationKind(QualType T);
2064 
2065   static bool hasScalarEvaluationKind(QualType T) {
2066     return getEvaluationKind(T) == TEK_Scalar;
2067   }
2068 
2069   static bool hasAggregateEvaluationKind(QualType T) {
2070     return getEvaluationKind(T) == TEK_Aggregate;
2071   }
2072 
2073   /// createBasicBlock - Create an LLVM basic block.
2074   llvm::BasicBlock *createBasicBlock(const Twine &name = "",
2075                                      llvm::Function *parent = nullptr,
2076                                      llvm::BasicBlock *before = nullptr) {
2077     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
2078   }
2079 
2080   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
2081   /// label maps to.
2082   JumpDest getJumpDestForLabel(const LabelDecl *S);
2083 
2084   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
2085   /// another basic block, simplify it. This assumes that no other code could
2086   /// potentially reference the basic block.
2087   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
2088 
2089   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
2090   /// adding a fall-through branch from the current insert block if
2091   /// necessary. It is legal to call this function even if there is no current
2092   /// insertion point.
2093   ///
2094   /// IsFinished - If true, indicates that the caller has finished emitting
2095   /// branches to the given block and does not expect to emit code into it. This
2096   /// means the block can be ignored if it is unreachable.
2097   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
2098 
2099   /// EmitBlockAfterUses - Emit the given block somewhere hopefully
2100   /// near its uses, and leave the insertion point in it.
2101   void EmitBlockAfterUses(llvm::BasicBlock *BB);
2102 
2103   /// EmitBranch - Emit a branch to the specified basic block from the current
2104   /// insert block, taking care to avoid creation of branches from dummy
2105   /// blocks. It is legal to call this function even if there is no current
2106   /// insertion point.
2107   ///
2108   /// This function clears the current insertion point. The caller should follow
2109   /// calls to this function with calls to Emit*Block prior to generation new
2110   /// code.
2111   void EmitBranch(llvm::BasicBlock *Block);
2112 
2113   /// HaveInsertPoint - True if an insertion point is defined. If not, this
2114   /// indicates that the current code being emitted is unreachable.
2115   bool HaveInsertPoint() const {
2116     return Builder.GetInsertBlock() != nullptr;
2117   }
2118 
2119   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
2120   /// emitted IR has a place to go. Note that by definition, if this function
2121   /// creates a block then that block is unreachable; callers may do better to
2122   /// detect when no insertion point is defined and simply skip IR generation.
2123   void EnsureInsertPoint() {
2124     if (!HaveInsertPoint())
2125       EmitBlock(createBasicBlock());
2126   }
2127 
2128   /// ErrorUnsupported - Print out an error that codegen doesn't support the
2129   /// specified stmt yet.
2130   void ErrorUnsupported(const Stmt *S, const char *Type);
2131 
2132   //===--------------------------------------------------------------------===//
2133   //                                  Helpers
2134   //===--------------------------------------------------------------------===//
2135 
2136   LValue MakeAddrLValue(Address Addr, QualType T,
2137                         AlignmentSource Source = AlignmentSource::Type) {
2138     return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
2139                             CGM.getTBAAAccessInfo(T));
2140   }
2141 
2142   LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo,
2143                         TBAAAccessInfo TBAAInfo) {
2144     return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo);
2145   }
2146 
2147   LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
2148                         AlignmentSource Source = AlignmentSource::Type) {
2149     return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
2150                             LValueBaseInfo(Source), CGM.getTBAAAccessInfo(T));
2151   }
2152 
2153   LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
2154                         LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) {
2155     return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
2156                             BaseInfo, TBAAInfo);
2157   }
2158 
2159   LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T);
2160   LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T);
2161   CharUnits getNaturalTypeAlignment(QualType T,
2162                                     LValueBaseInfo *BaseInfo = nullptr,
2163                                     TBAAAccessInfo *TBAAInfo = nullptr,
2164                                     bool forPointeeType = false);
2165   CharUnits getNaturalPointeeTypeAlignment(QualType T,
2166                                            LValueBaseInfo *BaseInfo = nullptr,
2167                                            TBAAAccessInfo *TBAAInfo = nullptr);
2168 
2169   Address EmitLoadOfReference(LValue RefLVal,
2170                               LValueBaseInfo *PointeeBaseInfo = nullptr,
2171                               TBAAAccessInfo *PointeeTBAAInfo = nullptr);
2172   LValue EmitLoadOfReferenceLValue(LValue RefLVal);
2173   LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy,
2174                                    AlignmentSource Source =
2175                                        AlignmentSource::Type) {
2176     LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source),
2177                                     CGM.getTBAAAccessInfo(RefTy));
2178     return EmitLoadOfReferenceLValue(RefLVal);
2179   }
2180 
2181   Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy,
2182                             LValueBaseInfo *BaseInfo = nullptr,
2183                             TBAAAccessInfo *TBAAInfo = nullptr);
2184   LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy);
2185 
2186   /// CreateTempAlloca - This creates an alloca and inserts it into the entry
2187   /// block if \p ArraySize is nullptr, otherwise inserts it at the current
2188   /// insertion point of the builder. The caller is responsible for setting an
2189   /// appropriate alignment on
2190   /// the alloca.
2191   ///
2192   /// \p ArraySize is the number of array elements to be allocated if it
2193   ///    is not nullptr.
2194   ///
2195   /// LangAS::Default is the address space of pointers to local variables and
2196   /// temporaries, as exposed in the source language. In certain
2197   /// configurations, this is not the same as the alloca address space, and a
2198   /// cast is needed to lift the pointer from the alloca AS into
2199   /// LangAS::Default. This can happen when the target uses a restricted
2200   /// address space for the stack but the source language requires
2201   /// LangAS::Default to be a generic address space. The latter condition is
2202   /// common for most programming languages; OpenCL is an exception in that
2203   /// LangAS::Default is the private address space, which naturally maps
2204   /// to the stack.
2205   ///
2206   /// Because the address of a temporary is often exposed to the program in
2207   /// various ways, this function will perform the cast. The original alloca
2208   /// instruction is returned through \p Alloca if it is not nullptr.
2209   ///
2210   /// The cast is not performaed in CreateTempAllocaWithoutCast. This is
2211   /// more efficient if the caller knows that the address will not be exposed.
2212   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp",
2213                                      llvm::Value *ArraySize = nullptr);
2214   Address CreateTempAlloca(llvm::Type *Ty, CharUnits align,
2215                            const Twine &Name = "tmp",
2216                            llvm::Value *ArraySize = nullptr,
2217                            Address *Alloca = nullptr);
2218   Address CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align,
2219                                       const Twine &Name = "tmp",
2220                                       llvm::Value *ArraySize = nullptr);
2221 
2222   /// CreateDefaultAlignedTempAlloca - This creates an alloca with the
2223   /// default ABI alignment of the given LLVM type.
2224   ///
2225   /// IMPORTANT NOTE: This is *not* generally the right alignment for
2226   /// any given AST type that happens to have been lowered to the
2227   /// given IR type.  This should only ever be used for function-local,
2228   /// IR-driven manipulations like saving and restoring a value.  Do
2229   /// not hand this address off to arbitrary IRGen routines, and especially
2230   /// do not pass it as an argument to a function that might expect a
2231   /// properly ABI-aligned value.
2232   Address CreateDefaultAlignTempAlloca(llvm::Type *Ty,
2233                                        const Twine &Name = "tmp");
2234 
2235   /// InitTempAlloca - Provide an initial value for the given alloca which
2236   /// will be observable at all locations in the function.
2237   ///
2238   /// The address should be something that was returned from one of
2239   /// the CreateTempAlloca or CreateMemTemp routines, and the
2240   /// initializer must be valid in the entry block (i.e. it must
2241   /// either be a constant or an argument value).
2242   void InitTempAlloca(Address Alloca, llvm::Value *Value);
2243 
2244   /// CreateIRTemp - Create a temporary IR object of the given type, with
2245   /// appropriate alignment. This routine should only be used when an temporary
2246   /// value needs to be stored into an alloca (for example, to avoid explicit
2247   /// PHI construction), but the type is the IR type, not the type appropriate
2248   /// for storing in memory.
2249   ///
2250   /// That is, this is exactly equivalent to CreateMemTemp, but calling
2251   /// ConvertType instead of ConvertTypeForMem.
2252   Address CreateIRTemp(QualType T, const Twine &Name = "tmp");
2253 
2254   /// CreateMemTemp - Create a temporary memory object of the given type, with
2255   /// appropriate alignmen and cast it to the default address space. Returns
2256   /// the original alloca instruction by \p Alloca if it is not nullptr.
2257   Address CreateMemTemp(QualType T, const Twine &Name = "tmp",
2258                         Address *Alloca = nullptr);
2259   Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp",
2260                         Address *Alloca = nullptr);
2261 
2262   /// CreateMemTemp - Create a temporary memory object of the given type, with
2263   /// appropriate alignmen without casting it to the default address space.
2264   Address CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp");
2265   Address CreateMemTempWithoutCast(QualType T, CharUnits Align,
2266                                    const Twine &Name = "tmp");
2267 
2268   /// CreateAggTemp - Create a temporary memory object for the given
2269   /// aggregate type.
2270   AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
2271     return AggValueSlot::forAddr(CreateMemTemp(T, Name),
2272                                  T.getQualifiers(),
2273                                  AggValueSlot::IsNotDestructed,
2274                                  AggValueSlot::DoesNotNeedGCBarriers,
2275                                  AggValueSlot::IsNotAliased,
2276                                  AggValueSlot::DoesNotOverlap);
2277   }
2278 
2279   /// Emit a cast to void* in the appropriate address space.
2280   llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
2281 
2282   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
2283   /// expression and compare the result against zero, returning an Int1Ty value.
2284   llvm::Value *EvaluateExprAsBool(const Expr *E);
2285 
2286   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
2287   void EmitIgnoredExpr(const Expr *E);
2288 
2289   /// EmitAnyExpr - Emit code to compute the specified expression which can have
2290   /// any type.  The result is returned as an RValue struct.  If this is an
2291   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
2292   /// the result should be returned.
2293   ///
2294   /// \param ignoreResult True if the resulting value isn't used.
2295   RValue EmitAnyExpr(const Expr *E,
2296                      AggValueSlot aggSlot = AggValueSlot::ignored(),
2297                      bool ignoreResult = false);
2298 
2299   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
2300   // or the value of the expression, depending on how va_list is defined.
2301   Address EmitVAListRef(const Expr *E);
2302 
2303   /// Emit a "reference" to a __builtin_ms_va_list; this is
2304   /// always the value of the expression, because a __builtin_ms_va_list is a
2305   /// pointer to a char.
2306   Address EmitMSVAListRef(const Expr *E);
2307 
2308   /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will
2309   /// always be accessible even if no aggregate location is provided.
2310   RValue EmitAnyExprToTemp(const Expr *E);
2311 
2312   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
2313   /// arbitrary expression into the given memory location.
2314   void EmitAnyExprToMem(const Expr *E, Address Location,
2315                         Qualifiers Quals, bool IsInitializer);
2316 
2317   void EmitAnyExprToExn(const Expr *E, Address Addr);
2318 
2319   /// EmitExprAsInit - Emits the code necessary to initialize a
2320   /// location in memory with the given initializer.
2321   void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2322                       bool capturedByInit);
2323 
2324   /// hasVolatileMember - returns true if aggregate type has a volatile
2325   /// member.
2326   bool hasVolatileMember(QualType T) {
2327     if (const RecordType *RT = T->getAs<RecordType>()) {
2328       const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
2329       return RD->hasVolatileMember();
2330     }
2331     return false;
2332   }
2333 
2334   /// Determine whether a return value slot may overlap some other object.
2335   AggValueSlot::Overlap_t getOverlapForReturnValue() {
2336     // FIXME: Assuming no overlap here breaks guaranteed copy elision for base
2337     // class subobjects. These cases may need to be revisited depending on the
2338     // resolution of the relevant core issue.
2339     return AggValueSlot::DoesNotOverlap;
2340   }
2341 
2342   /// Determine whether a field initialization may overlap some other object.
2343   AggValueSlot::Overlap_t getOverlapForFieldInit(const FieldDecl *FD);
2344 
2345   /// Determine whether a base class initialization may overlap some other
2346   /// object.
2347   AggValueSlot::Overlap_t getOverlapForBaseInit(const CXXRecordDecl *RD,
2348                                                 const CXXRecordDecl *BaseRD,
2349                                                 bool IsVirtual);
2350 
2351   /// Emit an aggregate assignment.
2352   void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) {
2353     bool IsVolatile = hasVolatileMember(EltTy);
2354     EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile);
2355   }
2356 
2357   void EmitAggregateCopyCtor(LValue Dest, LValue Src,
2358                              AggValueSlot::Overlap_t MayOverlap) {
2359     EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap);
2360   }
2361 
2362   /// EmitAggregateCopy - Emit an aggregate copy.
2363   ///
2364   /// \param isVolatile \c true iff either the source or the destination is
2365   ///        volatile.
2366   /// \param MayOverlap Whether the tail padding of the destination might be
2367   ///        occupied by some other object. More efficient code can often be
2368   ///        generated if not.
2369   void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy,
2370                          AggValueSlot::Overlap_t MayOverlap,
2371                          bool isVolatile = false);
2372 
2373   /// GetAddrOfLocalVar - Return the address of a local variable.
2374   Address GetAddrOfLocalVar(const VarDecl *VD) {
2375     auto it = LocalDeclMap.find(VD);
2376     assert(it != LocalDeclMap.end() &&
2377            "Invalid argument to GetAddrOfLocalVar(), no decl!");
2378     return it->second;
2379   }
2380 
2381   /// Given an opaque value expression, return its LValue mapping if it exists,
2382   /// otherwise create one.
2383   LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e);
2384 
2385   /// Given an opaque value expression, return its RValue mapping if it exists,
2386   /// otherwise create one.
2387   RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e);
2388 
2389   /// Get the index of the current ArrayInitLoopExpr, if any.
2390   llvm::Value *getArrayInitIndex() { return ArrayInitIndex; }
2391 
2392   /// getAccessedFieldNo - Given an encoded value and a result number, return
2393   /// the input field number being accessed.
2394   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
2395 
2396   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
2397   llvm::BasicBlock *GetIndirectGotoBlock();
2398 
2399   /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts.
2400   static bool IsWrappedCXXThis(const Expr *E);
2401 
2402   /// EmitNullInitialization - Generate code to set a value of the given type to
2403   /// null, If the type contains data member pointers, they will be initialized
2404   /// to -1 in accordance with the Itanium C++ ABI.
2405   void EmitNullInitialization(Address DestPtr, QualType Ty);
2406 
2407   /// Emits a call to an LLVM variable-argument intrinsic, either
2408   /// \c llvm.va_start or \c llvm.va_end.
2409   /// \param ArgValue A reference to the \c va_list as emitted by either
2410   /// \c EmitVAListRef or \c EmitMSVAListRef.
2411   /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise,
2412   /// calls \c llvm.va_end.
2413   llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart);
2414 
2415   /// Generate code to get an argument from the passed in pointer
2416   /// and update it accordingly.
2417   /// \param VE The \c VAArgExpr for which to generate code.
2418   /// \param VAListAddr Receives a reference to the \c va_list as emitted by
2419   /// either \c EmitVAListRef or \c EmitMSVAListRef.
2420   /// \returns A pointer to the argument.
2421   // FIXME: We should be able to get rid of this method and use the va_arg
2422   // instruction in LLVM instead once it works well enough.
2423   Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr);
2424 
2425   /// emitArrayLength - Compute the length of an array, even if it's a
2426   /// VLA, and drill down to the base element type.
2427   llvm::Value *emitArrayLength(const ArrayType *arrayType,
2428                                QualType &baseType,
2429                                Address &addr);
2430 
2431   /// EmitVLASize - Capture all the sizes for the VLA expressions in
2432   /// the given variably-modified type and store them in the VLASizeMap.
2433   ///
2434   /// This function can be called with a null (unreachable) insert point.
2435   void EmitVariablyModifiedType(QualType Ty);
2436 
2437   struct VlaSizePair {
2438     llvm::Value *NumElts;
2439     QualType Type;
2440 
2441     VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {}
2442   };
2443 
2444   /// Return the number of elements for a single dimension
2445   /// for the given array type.
2446   VlaSizePair getVLAElements1D(const VariableArrayType *vla);
2447   VlaSizePair getVLAElements1D(QualType vla);
2448 
2449   /// Returns an LLVM value that corresponds to the size,
2450   /// in non-variably-sized elements, of a variable length array type,
2451   /// plus that largest non-variably-sized element type.  Assumes that
2452   /// the type has already been emitted with EmitVariablyModifiedType.
2453   VlaSizePair getVLASize(const VariableArrayType *vla);
2454   VlaSizePair getVLASize(QualType vla);
2455 
2456   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
2457   /// generating code for an C++ member function.
2458   llvm::Value *LoadCXXThis() {
2459     assert(CXXThisValue && "no 'this' value for this function");
2460     return CXXThisValue;
2461   }
2462   Address LoadCXXThisAddress();
2463 
2464   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
2465   /// virtual bases.
2466   // FIXME: Every place that calls LoadCXXVTT is something
2467   // that needs to be abstracted properly.
2468   llvm::Value *LoadCXXVTT() {
2469     assert(CXXStructorImplicitParamValue && "no VTT value for this function");
2470     return CXXStructorImplicitParamValue;
2471   }
2472 
2473   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
2474   /// complete class to the given direct base.
2475   Address
2476   GetAddressOfDirectBaseInCompleteClass(Address Value,
2477                                         const CXXRecordDecl *Derived,
2478                                         const CXXRecordDecl *Base,
2479                                         bool BaseIsVirtual);
2480 
2481   static bool ShouldNullCheckClassCastValue(const CastExpr *Cast);
2482 
2483   /// GetAddressOfBaseClass - This function will add the necessary delta to the
2484   /// load of 'this' and returns address of the base class.
2485   Address GetAddressOfBaseClass(Address Value,
2486                                 const CXXRecordDecl *Derived,
2487                                 CastExpr::path_const_iterator PathBegin,
2488                                 CastExpr::path_const_iterator PathEnd,
2489                                 bool NullCheckValue, SourceLocation Loc);
2490 
2491   Address GetAddressOfDerivedClass(Address Value,
2492                                    const CXXRecordDecl *Derived,
2493                                    CastExpr::path_const_iterator PathBegin,
2494                                    CastExpr::path_const_iterator PathEnd,
2495                                    bool NullCheckValue);
2496 
2497   /// GetVTTParameter - Return the VTT parameter that should be passed to a
2498   /// base constructor/destructor with virtual bases.
2499   /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
2500   /// to ItaniumCXXABI.cpp together with all the references to VTT.
2501   llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
2502                                bool Delegating);
2503 
2504   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
2505                                       CXXCtorType CtorType,
2506                                       const FunctionArgList &Args,
2507                                       SourceLocation Loc);
2508   // It's important not to confuse this and the previous function. Delegating
2509   // constructors are the C++0x feature. The constructor delegate optimization
2510   // is used to reduce duplication in the base and complete consturctors where
2511   // they are substantially the same.
2512   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2513                                         const FunctionArgList &Args);
2514 
2515   /// Emit a call to an inheriting constructor (that is, one that invokes a
2516   /// constructor inherited from a base class) by inlining its definition. This
2517   /// is necessary if the ABI does not support forwarding the arguments to the
2518   /// base class constructor (because they're variadic or similar).
2519   void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2520                                                CXXCtorType CtorType,
2521                                                bool ForVirtualBase,
2522                                                bool Delegating,
2523                                                CallArgList &Args);
2524 
2525   /// Emit a call to a constructor inherited from a base class, passing the
2526   /// current constructor's arguments along unmodified (without even making
2527   /// a copy).
2528   void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D,
2529                                        bool ForVirtualBase, Address This,
2530                                        bool InheritedFromVBase,
2531                                        const CXXInheritedCtorInitExpr *E);
2532 
2533   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2534                               bool ForVirtualBase, bool Delegating,
2535                               AggValueSlot ThisAVS, const CXXConstructExpr *E);
2536 
2537   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2538                               bool ForVirtualBase, bool Delegating,
2539                               Address This, CallArgList &Args,
2540                               AggValueSlot::Overlap_t Overlap,
2541                               SourceLocation Loc, bool NewPointerIsChecked);
2542 
2543   /// Emit assumption load for all bases. Requires to be be called only on
2544   /// most-derived class and not under construction of the object.
2545   void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This);
2546 
2547   /// Emit assumption that vptr load == global vtable.
2548   void EmitVTableAssumptionLoad(const VPtr &vptr, Address This);
2549 
2550   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
2551                                       Address This, Address Src,
2552                                       const CXXConstructExpr *E);
2553 
2554   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2555                                   const ArrayType *ArrayTy,
2556                                   Address ArrayPtr,
2557                                   const CXXConstructExpr *E,
2558                                   bool NewPointerIsChecked,
2559                                   bool ZeroInitialization = false);
2560 
2561   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2562                                   llvm::Value *NumElements,
2563                                   Address ArrayPtr,
2564                                   const CXXConstructExpr *E,
2565                                   bool NewPointerIsChecked,
2566                                   bool ZeroInitialization = false);
2567 
2568   static Destroyer destroyCXXObject;
2569 
2570   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
2571                              bool ForVirtualBase, bool Delegating, Address This,
2572                              QualType ThisTy);
2573 
2574   void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
2575                                llvm::Type *ElementTy, Address NewPtr,
2576                                llvm::Value *NumElements,
2577                                llvm::Value *AllocSizeWithoutCookie);
2578 
2579   void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
2580                         Address Ptr);
2581 
2582   llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr);
2583   void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr);
2584 
2585   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
2586   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
2587 
2588   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
2589                       QualType DeleteTy, llvm::Value *NumElements = nullptr,
2590                       CharUnits CookieSize = CharUnits());
2591 
2592   RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
2593                                   const CallExpr *TheCallExpr, bool IsDelete);
2594 
2595   llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E);
2596   llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE);
2597   Address EmitCXXUuidofExpr(const CXXUuidofExpr *E);
2598 
2599   /// Situations in which we might emit a check for the suitability of a
2600   ///        pointer or glvalue.
2601   enum TypeCheckKind {
2602     /// Checking the operand of a load. Must be suitably sized and aligned.
2603     TCK_Load,
2604     /// Checking the destination of a store. Must be suitably sized and aligned.
2605     TCK_Store,
2606     /// Checking the bound value in a reference binding. Must be suitably sized
2607     /// and aligned, but is not required to refer to an object (until the
2608     /// reference is used), per core issue 453.
2609     TCK_ReferenceBinding,
2610     /// Checking the object expression in a non-static data member access. Must
2611     /// be an object within its lifetime.
2612     TCK_MemberAccess,
2613     /// Checking the 'this' pointer for a call to a non-static member function.
2614     /// Must be an object within its lifetime.
2615     TCK_MemberCall,
2616     /// Checking the 'this' pointer for a constructor call.
2617     TCK_ConstructorCall,
2618     /// Checking the operand of a static_cast to a derived pointer type. Must be
2619     /// null or an object within its lifetime.
2620     TCK_DowncastPointer,
2621     /// Checking the operand of a static_cast to a derived reference type. Must
2622     /// be an object within its lifetime.
2623     TCK_DowncastReference,
2624     /// Checking the operand of a cast to a base object. Must be suitably sized
2625     /// and aligned.
2626     TCK_Upcast,
2627     /// Checking the operand of a cast to a virtual base object. Must be an
2628     /// object within its lifetime.
2629     TCK_UpcastToVirtualBase,
2630     /// Checking the value assigned to a _Nonnull pointer. Must not be null.
2631     TCK_NonnullAssign,
2632     /// Checking the operand of a dynamic_cast or a typeid expression.  Must be
2633     /// null or an object within its lifetime.
2634     TCK_DynamicOperation
2635   };
2636 
2637   /// Determine whether the pointer type check \p TCK permits null pointers.
2638   static bool isNullPointerAllowed(TypeCheckKind TCK);
2639 
2640   /// Determine whether the pointer type check \p TCK requires a vptr check.
2641   static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty);
2642 
2643   /// Whether any type-checking sanitizers are enabled. If \c false,
2644   /// calls to EmitTypeCheck can be skipped.
2645   bool sanitizePerformTypeCheck() const;
2646 
2647   /// Emit a check that \p V is the address of storage of the
2648   /// appropriate size and alignment for an object of type \p Type
2649   /// (or if ArraySize is provided, for an array of that bound).
2650   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
2651                      QualType Type, CharUnits Alignment = CharUnits::Zero(),
2652                      SanitizerSet SkippedChecks = SanitizerSet(),
2653                      llvm::Value *ArraySize = nullptr);
2654 
2655   /// Emit a check that \p Base points into an array object, which
2656   /// we can access at index \p Index. \p Accessed should be \c false if we
2657   /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
2658   void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
2659                        QualType IndexType, bool Accessed);
2660 
2661   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2662                                        bool isInc, bool isPre);
2663   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
2664                                          bool isInc, bool isPre);
2665 
2666   /// Converts Location to a DebugLoc, if debug information is enabled.
2667   llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location);
2668 
2669   /// Get the record field index as represented in debug info.
2670   unsigned getDebugInfoFIndex(const RecordDecl *Rec, unsigned FieldIndex);
2671 
2672 
2673   //===--------------------------------------------------------------------===//
2674   //                            Declaration Emission
2675   //===--------------------------------------------------------------------===//
2676 
2677   /// EmitDecl - Emit a declaration.
2678   ///
2679   /// This function can be called with a null (unreachable) insert point.
2680   void EmitDecl(const Decl &D);
2681 
2682   /// EmitVarDecl - Emit a local variable declaration.
2683   ///
2684   /// This function can be called with a null (unreachable) insert point.
2685   void EmitVarDecl(const VarDecl &D);
2686 
2687   void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2688                       bool capturedByInit);
2689 
2690   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
2691                              llvm::Value *Address);
2692 
2693   /// Determine whether the given initializer is trivial in the sense
2694   /// that it requires no code to be generated.
2695   bool isTrivialInitializer(const Expr *Init);
2696 
2697   /// EmitAutoVarDecl - Emit an auto variable declaration.
2698   ///
2699   /// This function can be called with a null (unreachable) insert point.
2700   void EmitAutoVarDecl(const VarDecl &D);
2701 
2702   class AutoVarEmission {
2703     friend class CodeGenFunction;
2704 
2705     const VarDecl *Variable;
2706 
2707     /// The address of the alloca for languages with explicit address space
2708     /// (e.g. OpenCL) or alloca casted to generic pointer for address space
2709     /// agnostic languages (e.g. C++). Invalid if the variable was emitted
2710     /// as a global constant.
2711     Address Addr;
2712 
2713     llvm::Value *NRVOFlag;
2714 
2715     /// True if the variable is a __block variable that is captured by an
2716     /// escaping block.
2717     bool IsEscapingByRef;
2718 
2719     /// True if the variable is of aggregate type and has a constant
2720     /// initializer.
2721     bool IsConstantAggregate;
2722 
2723     /// Non-null if we should use lifetime annotations.
2724     llvm::Value *SizeForLifetimeMarkers;
2725 
2726     /// Address with original alloca instruction. Invalid if the variable was
2727     /// emitted as a global constant.
2728     Address AllocaAddr;
2729 
2730     struct Invalid {};
2731     AutoVarEmission(Invalid)
2732         : Variable(nullptr), Addr(Address::invalid()),
2733           AllocaAddr(Address::invalid()) {}
2734 
2735     AutoVarEmission(const VarDecl &variable)
2736         : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr),
2737           IsEscapingByRef(false), IsConstantAggregate(false),
2738           SizeForLifetimeMarkers(nullptr), AllocaAddr(Address::invalid()) {}
2739 
2740     bool wasEmittedAsGlobal() const { return !Addr.isValid(); }
2741 
2742   public:
2743     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
2744 
2745     bool useLifetimeMarkers() const {
2746       return SizeForLifetimeMarkers != nullptr;
2747     }
2748     llvm::Value *getSizeForLifetimeMarkers() const {
2749       assert(useLifetimeMarkers());
2750       return SizeForLifetimeMarkers;
2751     }
2752 
2753     /// Returns the raw, allocated address, which is not necessarily
2754     /// the address of the object itself. It is casted to default
2755     /// address space for address space agnostic languages.
2756     Address getAllocatedAddress() const {
2757       return Addr;
2758     }
2759 
2760     /// Returns the address for the original alloca instruction.
2761     Address getOriginalAllocatedAddress() const { return AllocaAddr; }
2762 
2763     /// Returns the address of the object within this declaration.
2764     /// Note that this does not chase the forwarding pointer for
2765     /// __block decls.
2766     Address getObjectAddress(CodeGenFunction &CGF) const {
2767       if (!IsEscapingByRef) return Addr;
2768 
2769       return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false);
2770     }
2771   };
2772   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
2773   void EmitAutoVarInit(const AutoVarEmission &emission);
2774   void EmitAutoVarCleanups(const AutoVarEmission &emission);
2775   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
2776                               QualType::DestructionKind dtorKind);
2777 
2778   /// Emits the alloca and debug information for the size expressions for each
2779   /// dimension of an array. It registers the association of its (1-dimensional)
2780   /// QualTypes and size expression's debug node, so that CGDebugInfo can
2781   /// reference this node when creating the DISubrange object to describe the
2782   /// array types.
2783   void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI,
2784                                               const VarDecl &D,
2785                                               bool EmitDebugInfo);
2786 
2787   void EmitStaticVarDecl(const VarDecl &D,
2788                          llvm::GlobalValue::LinkageTypes Linkage);
2789 
2790   class ParamValue {
2791     llvm::Value *Value;
2792     unsigned Alignment;
2793     ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {}
2794   public:
2795     static ParamValue forDirect(llvm::Value *value) {
2796       return ParamValue(value, 0);
2797     }
2798     static ParamValue forIndirect(Address addr) {
2799       assert(!addr.getAlignment().isZero());
2800       return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity());
2801     }
2802 
2803     bool isIndirect() const { return Alignment != 0; }
2804     llvm::Value *getAnyValue() const { return Value; }
2805 
2806     llvm::Value *getDirectValue() const {
2807       assert(!isIndirect());
2808       return Value;
2809     }
2810 
2811     Address getIndirectAddress() const {
2812       assert(isIndirect());
2813       return Address(Value, CharUnits::fromQuantity(Alignment));
2814     }
2815   };
2816 
2817   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
2818   void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo);
2819 
2820   /// protectFromPeepholes - Protect a value that we're intending to
2821   /// store to the side, but which will probably be used later, from
2822   /// aggressive peepholing optimizations that might delete it.
2823   ///
2824   /// Pass the result to unprotectFromPeepholes to declare that
2825   /// protection is no longer required.
2826   ///
2827   /// There's no particular reason why this shouldn't apply to
2828   /// l-values, it's just that no existing peepholes work on pointers.
2829   PeepholeProtection protectFromPeepholes(RValue rvalue);
2830   void unprotectFromPeepholes(PeepholeProtection protection);
2831 
2832   void EmitAlignmentAssumptionCheck(llvm::Value *Ptr, QualType Ty,
2833                                     SourceLocation Loc,
2834                                     SourceLocation AssumptionLoc,
2835                                     llvm::Value *Alignment,
2836                                     llvm::Value *OffsetValue,
2837                                     llvm::Value *TheCheck,
2838                                     llvm::Instruction *Assumption);
2839 
2840   void EmitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty,
2841                                SourceLocation Loc, SourceLocation AssumptionLoc,
2842                                llvm::Value *Alignment,
2843                                llvm::Value *OffsetValue = nullptr);
2844 
2845   void EmitAlignmentAssumption(llvm::Value *PtrValue, const Expr *E,
2846                                SourceLocation AssumptionLoc, llvm::Value *Alignment,
2847                                llvm::Value *OffsetValue = nullptr);
2848 
2849   //===--------------------------------------------------------------------===//
2850   //                             Statement Emission
2851   //===--------------------------------------------------------------------===//
2852 
2853   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
2854   void EmitStopPoint(const Stmt *S);
2855 
2856   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
2857   /// this function even if there is no current insertion point.
2858   ///
2859   /// This function may clear the current insertion point; callers should use
2860   /// EnsureInsertPoint if they wish to subsequently generate code without first
2861   /// calling EmitBlock, EmitBranch, or EmitStmt.
2862   void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None);
2863 
2864   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
2865   /// necessarily require an insertion point or debug information; typically
2866   /// because the statement amounts to a jump or a container of other
2867   /// statements.
2868   ///
2869   /// \return True if the statement was handled.
2870   bool EmitSimpleStmt(const Stmt *S);
2871 
2872   Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
2873                            AggValueSlot AVS = AggValueSlot::ignored());
2874   Address EmitCompoundStmtWithoutScope(const CompoundStmt &S,
2875                                        bool GetLast = false,
2876                                        AggValueSlot AVS =
2877                                                 AggValueSlot::ignored());
2878 
2879   /// EmitLabel - Emit the block for the given label. It is legal to call this
2880   /// function even if there is no current insertion point.
2881   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
2882 
2883   void EmitLabelStmt(const LabelStmt &S);
2884   void EmitAttributedStmt(const AttributedStmt &S);
2885   void EmitGotoStmt(const GotoStmt &S);
2886   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
2887   void EmitIfStmt(const IfStmt &S);
2888 
2889   void EmitWhileStmt(const WhileStmt &S,
2890                      ArrayRef<const Attr *> Attrs = None);
2891   void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None);
2892   void EmitForStmt(const ForStmt &S,
2893                    ArrayRef<const Attr *> Attrs = None);
2894   void EmitReturnStmt(const ReturnStmt &S);
2895   void EmitDeclStmt(const DeclStmt &S);
2896   void EmitBreakStmt(const BreakStmt &S);
2897   void EmitContinueStmt(const ContinueStmt &S);
2898   void EmitSwitchStmt(const SwitchStmt &S);
2899   void EmitDefaultStmt(const DefaultStmt &S);
2900   void EmitCaseStmt(const CaseStmt &S);
2901   void EmitCaseStmtRange(const CaseStmt &S);
2902   void EmitAsmStmt(const AsmStmt &S);
2903 
2904   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
2905   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
2906   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
2907   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
2908   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
2909 
2910   void EmitCoroutineBody(const CoroutineBodyStmt &S);
2911   void EmitCoreturnStmt(const CoreturnStmt &S);
2912   RValue EmitCoawaitExpr(const CoawaitExpr &E,
2913                          AggValueSlot aggSlot = AggValueSlot::ignored(),
2914                          bool ignoreResult = false);
2915   LValue EmitCoawaitLValue(const CoawaitExpr *E);
2916   RValue EmitCoyieldExpr(const CoyieldExpr &E,
2917                          AggValueSlot aggSlot = AggValueSlot::ignored(),
2918                          bool ignoreResult = false);
2919   LValue EmitCoyieldLValue(const CoyieldExpr *E);
2920   RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID);
2921 
2922   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2923   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2924 
2925   void EmitCXXTryStmt(const CXXTryStmt &S);
2926   void EmitSEHTryStmt(const SEHTryStmt &S);
2927   void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
2928   void EnterSEHTryStmt(const SEHTryStmt &S);
2929   void ExitSEHTryStmt(const SEHTryStmt &S);
2930 
2931   void pushSEHCleanup(CleanupKind kind,
2932                       llvm::Function *FinallyFunc);
2933   void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter,
2934                               const Stmt *OutlinedStmt);
2935 
2936   llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
2937                                             const SEHExceptStmt &Except);
2938 
2939   llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF,
2940                                              const SEHFinallyStmt &Finally);
2941 
2942   void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF,
2943                                 llvm::Value *ParentFP,
2944                                 llvm::Value *EntryEBP);
2945   llvm::Value *EmitSEHExceptionCode();
2946   llvm::Value *EmitSEHExceptionInfo();
2947   llvm::Value *EmitSEHAbnormalTermination();
2948 
2949   /// Emit simple code for OpenMP directives in Simd-only mode.
2950   void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D);
2951 
2952   /// Scan the outlined statement for captures from the parent function. For
2953   /// each capture, mark the capture as escaped and emit a call to
2954   /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap.
2955   void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
2956                           bool IsFilter);
2957 
2958   /// Recovers the address of a local in a parent function. ParentVar is the
2959   /// address of the variable used in the immediate parent function. It can
2960   /// either be an alloca or a call to llvm.localrecover if there are nested
2961   /// outlined functions. ParentFP is the frame pointer of the outermost parent
2962   /// frame.
2963   Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF,
2964                                     Address ParentVar,
2965                                     llvm::Value *ParentFP);
2966 
2967   void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
2968                            ArrayRef<const Attr *> Attrs = None);
2969 
2970   /// Controls insertion of cancellation exit blocks in worksharing constructs.
2971   class OMPCancelStackRAII {
2972     CodeGenFunction &CGF;
2973 
2974   public:
2975     OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
2976                        bool HasCancel)
2977         : CGF(CGF) {
2978       CGF.OMPCancelStack.enter(CGF, Kind, HasCancel);
2979     }
2980     ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); }
2981   };
2982 
2983   /// Returns calculated size of the specified type.
2984   llvm::Value *getTypeSize(QualType Ty);
2985   LValue InitCapturedStruct(const CapturedStmt &S);
2986   llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
2987   llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
2988   Address GenerateCapturedStmtArgument(const CapturedStmt &S);
2989   llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S);
2990   void GenerateOpenMPCapturedVars(const CapturedStmt &S,
2991                                   SmallVectorImpl<llvm::Value *> &CapturedVars);
2992   void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy,
2993                           SourceLocation Loc);
2994   /// Perform element by element copying of arrays with type \a
2995   /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
2996   /// generated by \a CopyGen.
2997   ///
2998   /// \param DestAddr Address of the destination array.
2999   /// \param SrcAddr Address of the source array.
3000   /// \param OriginalType Type of destination and source arrays.
3001   /// \param CopyGen Copying procedure that copies value of single array element
3002   /// to another single array element.
3003   void EmitOMPAggregateAssign(
3004       Address DestAddr, Address SrcAddr, QualType OriginalType,
3005       const llvm::function_ref<void(Address, Address)> CopyGen);
3006   /// Emit proper copying of data from one variable to another.
3007   ///
3008   /// \param OriginalType Original type of the copied variables.
3009   /// \param DestAddr Destination address.
3010   /// \param SrcAddr Source address.
3011   /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
3012   /// type of the base array element).
3013   /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
3014   /// the base array element).
3015   /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
3016   /// DestVD.
3017   void EmitOMPCopy(QualType OriginalType,
3018                    Address DestAddr, Address SrcAddr,
3019                    const VarDecl *DestVD, const VarDecl *SrcVD,
3020                    const Expr *Copy);
3021   /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or
3022   /// \a X = \a E \a BO \a E.
3023   ///
3024   /// \param X Value to be updated.
3025   /// \param E Update value.
3026   /// \param BO Binary operation for update operation.
3027   /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
3028   /// expression, false otherwise.
3029   /// \param AO Atomic ordering of the generated atomic instructions.
3030   /// \param CommonGen Code generator for complex expressions that cannot be
3031   /// expressed through atomicrmw instruction.
3032   /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was
3033   /// generated, <false, RValue::get(nullptr)> otherwise.
3034   std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr(
3035       LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
3036       llvm::AtomicOrdering AO, SourceLocation Loc,
3037       const llvm::function_ref<RValue(RValue)> CommonGen);
3038   bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
3039                                  OMPPrivateScope &PrivateScope);
3040   void EmitOMPPrivateClause(const OMPExecutableDirective &D,
3041                             OMPPrivateScope &PrivateScope);
3042   void EmitOMPUseDevicePtrClause(
3043       const OMPClause &C, OMPPrivateScope &PrivateScope,
3044       const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap);
3045   /// Emit code for copyin clause in \a D directive. The next code is
3046   /// generated at the start of outlined functions for directives:
3047   /// \code
3048   /// threadprivate_var1 = master_threadprivate_var1;
3049   /// operator=(threadprivate_var2, master_threadprivate_var2);
3050   /// ...
3051   /// __kmpc_barrier(&loc, global_tid);
3052   /// \endcode
3053   ///
3054   /// \param D OpenMP directive possibly with 'copyin' clause(s).
3055   /// \returns true if at least one copyin variable is found, false otherwise.
3056   bool EmitOMPCopyinClause(const OMPExecutableDirective &D);
3057   /// Emit initial code for lastprivate variables. If some variable is
3058   /// not also firstprivate, then the default initialization is used. Otherwise
3059   /// initialization of this variable is performed by EmitOMPFirstprivateClause
3060   /// method.
3061   ///
3062   /// \param D Directive that may have 'lastprivate' directives.
3063   /// \param PrivateScope Private scope for capturing lastprivate variables for
3064   /// proper codegen in internal captured statement.
3065   ///
3066   /// \returns true if there is at least one lastprivate variable, false
3067   /// otherwise.
3068   bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D,
3069                                     OMPPrivateScope &PrivateScope);
3070   /// Emit final copying of lastprivate values to original variables at
3071   /// the end of the worksharing or simd directive.
3072   ///
3073   /// \param D Directive that has at least one 'lastprivate' directives.
3074   /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
3075   /// it is the last iteration of the loop code in associated directive, or to
3076   /// 'i1 false' otherwise. If this item is nullptr, no final check is required.
3077   void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D,
3078                                      bool NoFinals,
3079                                      llvm::Value *IsLastIterCond = nullptr);
3080   /// Emit initial code for linear clauses.
3081   void EmitOMPLinearClause(const OMPLoopDirective &D,
3082                            CodeGenFunction::OMPPrivateScope &PrivateScope);
3083   /// Emit final code for linear clauses.
3084   /// \param CondGen Optional conditional code for final part of codegen for
3085   /// linear clause.
3086   void EmitOMPLinearClauseFinal(
3087       const OMPLoopDirective &D,
3088       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
3089   /// Emit initial code for reduction variables. Creates reduction copies
3090   /// and initializes them with the values according to OpenMP standard.
3091   ///
3092   /// \param D Directive (possibly) with the 'reduction' clause.
3093   /// \param PrivateScope Private scope for capturing reduction variables for
3094   /// proper codegen in internal captured statement.
3095   ///
3096   void EmitOMPReductionClauseInit(const OMPExecutableDirective &D,
3097                                   OMPPrivateScope &PrivateScope);
3098   /// Emit final update of reduction values to original variables at
3099   /// the end of the directive.
3100   ///
3101   /// \param D Directive that has at least one 'reduction' directives.
3102   /// \param ReductionKind The kind of reduction to perform.
3103   void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D,
3104                                    const OpenMPDirectiveKind ReductionKind);
3105   /// Emit initial code for linear variables. Creates private copies
3106   /// and initializes them with the values according to OpenMP standard.
3107   ///
3108   /// \param D Directive (possibly) with the 'linear' clause.
3109   /// \return true if at least one linear variable is found that should be
3110   /// initialized with the value of the original variable, false otherwise.
3111   bool EmitOMPLinearClauseInit(const OMPLoopDirective &D);
3112 
3113   typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/,
3114                                         llvm::Function * /*OutlinedFn*/,
3115                                         const OMPTaskDataTy & /*Data*/)>
3116       TaskGenTy;
3117   void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S,
3118                                  const OpenMPDirectiveKind CapturedRegion,
3119                                  const RegionCodeGenTy &BodyGen,
3120                                  const TaskGenTy &TaskGen, OMPTaskDataTy &Data);
3121   struct OMPTargetDataInfo {
3122     Address BasePointersArray = Address::invalid();
3123     Address PointersArray = Address::invalid();
3124     Address SizesArray = Address::invalid();
3125     unsigned NumberOfTargetItems = 0;
3126     explicit OMPTargetDataInfo() = default;
3127     OMPTargetDataInfo(Address BasePointersArray, Address PointersArray,
3128                       Address SizesArray, unsigned NumberOfTargetItems)
3129         : BasePointersArray(BasePointersArray), PointersArray(PointersArray),
3130           SizesArray(SizesArray), NumberOfTargetItems(NumberOfTargetItems) {}
3131   };
3132   void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S,
3133                                        const RegionCodeGenTy &BodyGen,
3134                                        OMPTargetDataInfo &InputInfo);
3135 
3136   void EmitOMPParallelDirective(const OMPParallelDirective &S);
3137   void EmitOMPSimdDirective(const OMPSimdDirective &S);
3138   void EmitOMPForDirective(const OMPForDirective &S);
3139   void EmitOMPForSimdDirective(const OMPForSimdDirective &S);
3140   void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
3141   void EmitOMPSectionDirective(const OMPSectionDirective &S);
3142   void EmitOMPSingleDirective(const OMPSingleDirective &S);
3143   void EmitOMPMasterDirective(const OMPMasterDirective &S);
3144   void EmitOMPCriticalDirective(const OMPCriticalDirective &S);
3145   void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
3146   void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S);
3147   void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
3148   void EmitOMPTaskDirective(const OMPTaskDirective &S);
3149   void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
3150   void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
3151   void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
3152   void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S);
3153   void EmitOMPFlushDirective(const OMPFlushDirective &S);
3154   void EmitOMPOrderedDirective(const OMPOrderedDirective &S);
3155   void EmitOMPAtomicDirective(const OMPAtomicDirective &S);
3156   void EmitOMPTargetDirective(const OMPTargetDirective &S);
3157   void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S);
3158   void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S);
3159   void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S);
3160   void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S);
3161   void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S);
3162   void
3163   EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S);
3164   void EmitOMPTeamsDirective(const OMPTeamsDirective &S);
3165   void
3166   EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S);
3167   void EmitOMPCancelDirective(const OMPCancelDirective &S);
3168   void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S);
3169   void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S);
3170   void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S);
3171   void EmitOMPMasterTaskLoopDirective(const OMPMasterTaskLoopDirective &S);
3172   void
3173   EmitOMPMasterTaskLoopSimdDirective(const OMPMasterTaskLoopSimdDirective &S);
3174   void EmitOMPParallelMasterTaskLoopDirective(
3175       const OMPParallelMasterTaskLoopDirective &S);
3176   void EmitOMPParallelMasterTaskLoopSimdDirective(
3177       const OMPParallelMasterTaskLoopSimdDirective &S);
3178   void EmitOMPDistributeDirective(const OMPDistributeDirective &S);
3179   void EmitOMPDistributeParallelForDirective(
3180       const OMPDistributeParallelForDirective &S);
3181   void EmitOMPDistributeParallelForSimdDirective(
3182       const OMPDistributeParallelForSimdDirective &S);
3183   void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S);
3184   void EmitOMPTargetParallelForSimdDirective(
3185       const OMPTargetParallelForSimdDirective &S);
3186   void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S);
3187   void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S);
3188   void
3189   EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S);
3190   void EmitOMPTeamsDistributeParallelForSimdDirective(
3191       const OMPTeamsDistributeParallelForSimdDirective &S);
3192   void EmitOMPTeamsDistributeParallelForDirective(
3193       const OMPTeamsDistributeParallelForDirective &S);
3194   void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S);
3195   void EmitOMPTargetTeamsDistributeDirective(
3196       const OMPTargetTeamsDistributeDirective &S);
3197   void EmitOMPTargetTeamsDistributeParallelForDirective(
3198       const OMPTargetTeamsDistributeParallelForDirective &S);
3199   void EmitOMPTargetTeamsDistributeParallelForSimdDirective(
3200       const OMPTargetTeamsDistributeParallelForSimdDirective &S);
3201   void EmitOMPTargetTeamsDistributeSimdDirective(
3202       const OMPTargetTeamsDistributeSimdDirective &S);
3203 
3204   /// Emit device code for the target directive.
3205   static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM,
3206                                           StringRef ParentName,
3207                                           const OMPTargetDirective &S);
3208   static void
3209   EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3210                                       const OMPTargetParallelDirective &S);
3211   /// Emit device code for the target parallel for directive.
3212   static void EmitOMPTargetParallelForDeviceFunction(
3213       CodeGenModule &CGM, StringRef ParentName,
3214       const OMPTargetParallelForDirective &S);
3215   /// Emit device code for the target parallel for simd directive.
3216   static void EmitOMPTargetParallelForSimdDeviceFunction(
3217       CodeGenModule &CGM, StringRef ParentName,
3218       const OMPTargetParallelForSimdDirective &S);
3219   /// Emit device code for the target teams directive.
3220   static void
3221   EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3222                                    const OMPTargetTeamsDirective &S);
3223   /// Emit device code for the target teams distribute directive.
3224   static void EmitOMPTargetTeamsDistributeDeviceFunction(
3225       CodeGenModule &CGM, StringRef ParentName,
3226       const OMPTargetTeamsDistributeDirective &S);
3227   /// Emit device code for the target teams distribute simd directive.
3228   static void EmitOMPTargetTeamsDistributeSimdDeviceFunction(
3229       CodeGenModule &CGM, StringRef ParentName,
3230       const OMPTargetTeamsDistributeSimdDirective &S);
3231   /// Emit device code for the target simd directive.
3232   static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM,
3233                                               StringRef ParentName,
3234                                               const OMPTargetSimdDirective &S);
3235   /// Emit device code for the target teams distribute parallel for simd
3236   /// directive.
3237   static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction(
3238       CodeGenModule &CGM, StringRef ParentName,
3239       const OMPTargetTeamsDistributeParallelForSimdDirective &S);
3240 
3241   static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction(
3242       CodeGenModule &CGM, StringRef ParentName,
3243       const OMPTargetTeamsDistributeParallelForDirective &S);
3244   /// Emit inner loop of the worksharing/simd construct.
3245   ///
3246   /// \param S Directive, for which the inner loop must be emitted.
3247   /// \param RequiresCleanup true, if directive has some associated private
3248   /// variables.
3249   /// \param LoopCond Bollean condition for loop continuation.
3250   /// \param IncExpr Increment expression for loop control variable.
3251   /// \param BodyGen Generator for the inner body of the inner loop.
3252   /// \param PostIncGen Genrator for post-increment code (required for ordered
3253   /// loop directvies).
3254   void EmitOMPInnerLoop(
3255       const Stmt &S, bool RequiresCleanup, const Expr *LoopCond,
3256       const Expr *IncExpr,
3257       const llvm::function_ref<void(CodeGenFunction &)> BodyGen,
3258       const llvm::function_ref<void(CodeGenFunction &)> PostIncGen);
3259 
3260   JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind);
3261   /// Emit initial code for loop counters of loop-based directives.
3262   void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S,
3263                                   OMPPrivateScope &LoopScope);
3264 
3265   /// Helper for the OpenMP loop directives.
3266   void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit);
3267 
3268   /// Emit code for the worksharing loop-based directive.
3269   /// \return true, if this construct has any lastprivate clause, false -
3270   /// otherwise.
3271   bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB,
3272                               const CodeGenLoopBoundsTy &CodeGenLoopBounds,
3273                               const CodeGenDispatchBoundsTy &CGDispatchBounds);
3274 
3275   /// Emit code for the distribute loop-based directive.
3276   void EmitOMPDistributeLoop(const OMPLoopDirective &S,
3277                              const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr);
3278 
3279   /// Helpers for the OpenMP loop directives.
3280   void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false);
3281   void EmitOMPSimdFinal(
3282       const OMPLoopDirective &D,
3283       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
3284 
3285   /// Emits the lvalue for the expression with possibly captured variable.
3286   LValue EmitOMPSharedLValue(const Expr *E);
3287 
3288 private:
3289   /// Helpers for blocks.
3290   llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
3291 
3292   /// struct with the values to be passed to the OpenMP loop-related functions
3293   struct OMPLoopArguments {
3294     /// loop lower bound
3295     Address LB = Address::invalid();
3296     /// loop upper bound
3297     Address UB = Address::invalid();
3298     /// loop stride
3299     Address ST = Address::invalid();
3300     /// isLastIteration argument for runtime functions
3301     Address IL = Address::invalid();
3302     /// Chunk value generated by sema
3303     llvm::Value *Chunk = nullptr;
3304     /// EnsureUpperBound
3305     Expr *EUB = nullptr;
3306     /// IncrementExpression
3307     Expr *IncExpr = nullptr;
3308     /// Loop initialization
3309     Expr *Init = nullptr;
3310     /// Loop exit condition
3311     Expr *Cond = nullptr;
3312     /// Update of LB after a whole chunk has been executed
3313     Expr *NextLB = nullptr;
3314     /// Update of UB after a whole chunk has been executed
3315     Expr *NextUB = nullptr;
3316     OMPLoopArguments() = default;
3317     OMPLoopArguments(Address LB, Address UB, Address ST, Address IL,
3318                      llvm::Value *Chunk = nullptr, Expr *EUB = nullptr,
3319                      Expr *IncExpr = nullptr, Expr *Init = nullptr,
3320                      Expr *Cond = nullptr, Expr *NextLB = nullptr,
3321                      Expr *NextUB = nullptr)
3322         : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB),
3323           IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB),
3324           NextUB(NextUB) {}
3325   };
3326   void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic,
3327                         const OMPLoopDirective &S, OMPPrivateScope &LoopScope,
3328                         const OMPLoopArguments &LoopArgs,
3329                         const CodeGenLoopTy &CodeGenLoop,
3330                         const CodeGenOrderedTy &CodeGenOrdered);
3331   void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind,
3332                            bool IsMonotonic, const OMPLoopDirective &S,
3333                            OMPPrivateScope &LoopScope, bool Ordered,
3334                            const OMPLoopArguments &LoopArgs,
3335                            const CodeGenDispatchBoundsTy &CGDispatchBounds);
3336   void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind,
3337                                   const OMPLoopDirective &S,
3338                                   OMPPrivateScope &LoopScope,
3339                                   const OMPLoopArguments &LoopArgs,
3340                                   const CodeGenLoopTy &CodeGenLoopContent);
3341   /// Emit code for sections directive.
3342   void EmitSections(const OMPExecutableDirective &S);
3343 
3344 public:
3345 
3346   //===--------------------------------------------------------------------===//
3347   //                         LValue Expression Emission
3348   //===--------------------------------------------------------------------===//
3349 
3350   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
3351   RValue GetUndefRValue(QualType Ty);
3352 
3353   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
3354   /// and issue an ErrorUnsupported style diagnostic (using the
3355   /// provided Name).
3356   RValue EmitUnsupportedRValue(const Expr *E,
3357                                const char *Name);
3358 
3359   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
3360   /// an ErrorUnsupported style diagnostic (using the provided Name).
3361   LValue EmitUnsupportedLValue(const Expr *E,
3362                                const char *Name);
3363 
3364   /// EmitLValue - Emit code to compute a designator that specifies the location
3365   /// of the expression.
3366   ///
3367   /// This can return one of two things: a simple address or a bitfield
3368   /// reference.  In either case, the LLVM Value* in the LValue structure is
3369   /// guaranteed to be an LLVM pointer type.
3370   ///
3371   /// If this returns a bitfield reference, nothing about the pointee type of
3372   /// the LLVM value is known: For example, it may not be a pointer to an
3373   /// integer.
3374   ///
3375   /// If this returns a normal address, and if the lvalue's C type is fixed
3376   /// size, this method guarantees that the returned pointer type will point to
3377   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
3378   /// variable length type, this is not possible.
3379   ///
3380   LValue EmitLValue(const Expr *E);
3381 
3382   /// Same as EmitLValue but additionally we generate checking code to
3383   /// guard against undefined behavior.  This is only suitable when we know
3384   /// that the address will be used to access the object.
3385   LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
3386 
3387   RValue convertTempToRValue(Address addr, QualType type,
3388                              SourceLocation Loc);
3389 
3390   void EmitAtomicInit(Expr *E, LValue lvalue);
3391 
3392   bool LValueIsSuitableForInlineAtomic(LValue Src);
3393 
3394   RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
3395                         AggValueSlot Slot = AggValueSlot::ignored());
3396 
3397   RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
3398                         llvm::AtomicOrdering AO, bool IsVolatile = false,
3399                         AggValueSlot slot = AggValueSlot::ignored());
3400 
3401   void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
3402 
3403   void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
3404                        bool IsVolatile, bool isInit);
3405 
3406   std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
3407       LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
3408       llvm::AtomicOrdering Success =
3409           llvm::AtomicOrdering::SequentiallyConsistent,
3410       llvm::AtomicOrdering Failure =
3411           llvm::AtomicOrdering::SequentiallyConsistent,
3412       bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
3413 
3414   void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
3415                         const llvm::function_ref<RValue(RValue)> &UpdateOp,
3416                         bool IsVolatile);
3417 
3418   /// EmitToMemory - Change a scalar value from its value
3419   /// representation to its in-memory representation.
3420   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
3421 
3422   /// EmitFromMemory - Change a scalar value from its memory
3423   /// representation to its value representation.
3424   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
3425 
3426   /// Check if the scalar \p Value is within the valid range for the given
3427   /// type \p Ty.
3428   ///
3429   /// Returns true if a check is needed (even if the range is unknown).
3430   bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
3431                             SourceLocation Loc);
3432 
3433   /// EmitLoadOfScalar - Load a scalar value from an address, taking
3434   /// care to appropriately convert from the memory representation to
3435   /// the LLVM value representation.
3436   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3437                                 SourceLocation Loc,
3438                                 AlignmentSource Source = AlignmentSource::Type,
3439                                 bool isNontemporal = false) {
3440     return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source),
3441                             CGM.getTBAAAccessInfo(Ty), isNontemporal);
3442   }
3443 
3444   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3445                                 SourceLocation Loc, LValueBaseInfo BaseInfo,
3446                                 TBAAAccessInfo TBAAInfo,
3447                                 bool isNontemporal = false);
3448 
3449   /// EmitLoadOfScalar - Load a scalar value from an address, taking
3450   /// care to appropriately convert from the memory representation to
3451   /// the LLVM value representation.  The l-value must be a simple
3452   /// l-value.
3453   llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
3454 
3455   /// EmitStoreOfScalar - Store a scalar value to an address, taking
3456   /// care to appropriately convert from the memory representation to
3457   /// the LLVM value representation.
3458   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3459                          bool Volatile, QualType Ty,
3460                          AlignmentSource Source = AlignmentSource::Type,
3461                          bool isInit = false, bool isNontemporal = false) {
3462     EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source),
3463                       CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal);
3464   }
3465 
3466   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3467                          bool Volatile, QualType Ty,
3468                          LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo,
3469                          bool isInit = false, bool isNontemporal = false);
3470 
3471   /// EmitStoreOfScalar - Store a scalar value to an address, taking
3472   /// care to appropriately convert from the memory representation to
3473   /// the LLVM value representation.  The l-value must be a simple
3474   /// l-value.  The isInit flag indicates whether this is an initialization.
3475   /// If so, atomic qualifiers are ignored and the store is always non-atomic.
3476   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
3477 
3478   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
3479   /// this method emits the address of the lvalue, then loads the result as an
3480   /// rvalue, returning the rvalue.
3481   RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
3482   RValue EmitLoadOfExtVectorElementLValue(LValue V);
3483   RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc);
3484   RValue EmitLoadOfGlobalRegLValue(LValue LV);
3485 
3486   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
3487   /// lvalue, where both are guaranteed to the have the same type, and that type
3488   /// is 'Ty'.
3489   void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
3490   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
3491   void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
3492 
3493   /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
3494   /// as EmitStoreThroughLValue.
3495   ///
3496   /// \param Result [out] - If non-null, this will be set to a Value* for the
3497   /// bit-field contents after the store, appropriate for use as the result of
3498   /// an assignment to the bit-field.
3499   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
3500                                       llvm::Value **Result=nullptr);
3501 
3502   /// Emit an l-value for an assignment (simple or compound) of complex type.
3503   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
3504   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
3505   LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
3506                                              llvm::Value *&Result);
3507 
3508   // Note: only available for agg return types
3509   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
3510   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
3511   // Note: only available for agg return types
3512   LValue EmitCallExprLValue(const CallExpr *E);
3513   // Note: only available for agg return types
3514   LValue EmitVAArgExprLValue(const VAArgExpr *E);
3515   LValue EmitDeclRefLValue(const DeclRefExpr *E);
3516   LValue EmitStringLiteralLValue(const StringLiteral *E);
3517   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
3518   LValue EmitPredefinedLValue(const PredefinedExpr *E);
3519   LValue EmitUnaryOpLValue(const UnaryOperator *E);
3520   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3521                                 bool Accessed = false);
3522   LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3523                                  bool IsLowerBound = true);
3524   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
3525   LValue EmitMemberExpr(const MemberExpr *E);
3526   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
3527   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
3528   LValue EmitInitListLValue(const InitListExpr *E);
3529   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
3530   LValue EmitCastLValue(const CastExpr *E);
3531   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
3532   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
3533 
3534   Address EmitExtVectorElementLValue(LValue V);
3535 
3536   RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
3537 
3538   Address EmitArrayToPointerDecay(const Expr *Array,
3539                                   LValueBaseInfo *BaseInfo = nullptr,
3540                                   TBAAAccessInfo *TBAAInfo = nullptr);
3541 
3542   class ConstantEmission {
3543     llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
3544     ConstantEmission(llvm::Constant *C, bool isReference)
3545       : ValueAndIsReference(C, isReference) {}
3546   public:
3547     ConstantEmission() {}
3548     static ConstantEmission forReference(llvm::Constant *C) {
3549       return ConstantEmission(C, true);
3550     }
3551     static ConstantEmission forValue(llvm::Constant *C) {
3552       return ConstantEmission(C, false);
3553     }
3554 
3555     explicit operator bool() const {
3556       return ValueAndIsReference.getOpaqueValue() != nullptr;
3557     }
3558 
3559     bool isReference() const { return ValueAndIsReference.getInt(); }
3560     LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
3561       assert(isReference());
3562       return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
3563                                             refExpr->getType());
3564     }
3565 
3566     llvm::Constant *getValue() const {
3567       assert(!isReference());
3568       return ValueAndIsReference.getPointer();
3569     }
3570   };
3571 
3572   ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
3573   ConstantEmission tryEmitAsConstant(const MemberExpr *ME);
3574   llvm::Value *emitScalarConstant(const ConstantEmission &Constant, Expr *E);
3575 
3576   RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
3577                                 AggValueSlot slot = AggValueSlot::ignored());
3578   LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
3579 
3580   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3581                               const ObjCIvarDecl *Ivar);
3582   LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
3583   LValue EmitLValueForLambdaField(const FieldDecl *Field);
3584 
3585   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
3586   /// if the Field is a reference, this will return the address of the reference
3587   /// and not the address of the value stored in the reference.
3588   LValue EmitLValueForFieldInitialization(LValue Base,
3589                                           const FieldDecl* Field);
3590 
3591   LValue EmitLValueForIvar(QualType ObjectTy,
3592                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
3593                            unsigned CVRQualifiers);
3594 
3595   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
3596   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
3597   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
3598   LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
3599 
3600   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
3601   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
3602   LValue EmitStmtExprLValue(const StmtExpr *E);
3603   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
3604   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
3605   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init);
3606 
3607   //===--------------------------------------------------------------------===//
3608   //                         Scalar Expression Emission
3609   //===--------------------------------------------------------------------===//
3610 
3611   /// EmitCall - Generate a call of the given function, expecting the given
3612   /// result type, and using the given argument list which specifies both the
3613   /// LLVM arguments and the types they were derived from.
3614   RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
3615                   ReturnValueSlot ReturnValue, const CallArgList &Args,
3616                   llvm::CallBase **callOrInvoke, SourceLocation Loc);
3617   RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
3618                   ReturnValueSlot ReturnValue, const CallArgList &Args,
3619                   llvm::CallBase **callOrInvoke = nullptr) {
3620     return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke,
3621                     SourceLocation());
3622   }
3623   RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E,
3624                   ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr);
3625   RValue EmitCallExpr(const CallExpr *E,
3626                       ReturnValueSlot ReturnValue = ReturnValueSlot());
3627   RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
3628   CGCallee EmitCallee(const Expr *E);
3629 
3630   void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl);
3631   void checkTargetFeatures(SourceLocation Loc, const FunctionDecl *TargetDecl);
3632 
3633   llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee,
3634                                   const Twine &name = "");
3635   llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee,
3636                                   ArrayRef<llvm::Value *> args,
3637                                   const Twine &name = "");
3638   llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
3639                                           const Twine &name = "");
3640   llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
3641                                           ArrayRef<llvm::Value *> args,
3642                                           const Twine &name = "");
3643 
3644   SmallVector<llvm::OperandBundleDef, 1>
3645   getBundlesForFunclet(llvm::Value *Callee);
3646 
3647   llvm::CallBase *EmitCallOrInvoke(llvm::FunctionCallee Callee,
3648                                    ArrayRef<llvm::Value *> Args,
3649                                    const Twine &Name = "");
3650   llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
3651                                           ArrayRef<llvm::Value *> args,
3652                                           const Twine &name = "");
3653   llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
3654                                           const Twine &name = "");
3655   void EmitNoreturnRuntimeCallOrInvoke(llvm::FunctionCallee callee,
3656                                        ArrayRef<llvm::Value *> args);
3657 
3658   CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
3659                                      NestedNameSpecifier *Qual,
3660                                      llvm::Type *Ty);
3661 
3662   CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
3663                                                CXXDtorType Type,
3664                                                const CXXRecordDecl *RD);
3665 
3666   // Return the copy constructor name with the prefix "__copy_constructor_"
3667   // removed.
3668   static std::string getNonTrivialCopyConstructorStr(QualType QT,
3669                                                      CharUnits Alignment,
3670                                                      bool IsVolatile,
3671                                                      ASTContext &Ctx);
3672 
3673   // Return the destructor name with the prefix "__destructor_" removed.
3674   static std::string getNonTrivialDestructorStr(QualType QT,
3675                                                 CharUnits Alignment,
3676                                                 bool IsVolatile,
3677                                                 ASTContext &Ctx);
3678 
3679   // These functions emit calls to the special functions of non-trivial C
3680   // structs.
3681   void defaultInitNonTrivialCStructVar(LValue Dst);
3682   void callCStructDefaultConstructor(LValue Dst);
3683   void callCStructDestructor(LValue Dst);
3684   void callCStructCopyConstructor(LValue Dst, LValue Src);
3685   void callCStructMoveConstructor(LValue Dst, LValue Src);
3686   void callCStructCopyAssignmentOperator(LValue Dst, LValue Src);
3687   void callCStructMoveAssignmentOperator(LValue Dst, LValue Src);
3688 
3689   RValue
3690   EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method,
3691                               const CGCallee &Callee,
3692                               ReturnValueSlot ReturnValue, llvm::Value *This,
3693                               llvm::Value *ImplicitParam,
3694                               QualType ImplicitParamTy, const CallExpr *E,
3695                               CallArgList *RtlArgs);
3696   RValue EmitCXXDestructorCall(GlobalDecl Dtor, const CGCallee &Callee,
3697                                llvm::Value *This, QualType ThisTy,
3698                                llvm::Value *ImplicitParam,
3699                                QualType ImplicitParamTy, const CallExpr *E);
3700   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
3701                                ReturnValueSlot ReturnValue);
3702   RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE,
3703                                                const CXXMethodDecl *MD,
3704                                                ReturnValueSlot ReturnValue,
3705                                                bool HasQualifier,
3706                                                NestedNameSpecifier *Qualifier,
3707                                                bool IsArrow, const Expr *Base);
3708   // Compute the object pointer.
3709   Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
3710                                           llvm::Value *memberPtr,
3711                                           const MemberPointerType *memberPtrType,
3712                                           LValueBaseInfo *BaseInfo = nullptr,
3713                                           TBAAAccessInfo *TBAAInfo = nullptr);
3714   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
3715                                       ReturnValueSlot ReturnValue);
3716 
3717   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
3718                                        const CXXMethodDecl *MD,
3719                                        ReturnValueSlot ReturnValue);
3720   RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E);
3721 
3722   RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
3723                                 ReturnValueSlot ReturnValue);
3724 
3725   RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E,
3726                                        ReturnValueSlot ReturnValue);
3727 
3728   RValue EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID,
3729                          const CallExpr *E, ReturnValueSlot ReturnValue);
3730 
3731   RValue emitRotate(const CallExpr *E, bool IsRotateRight);
3732 
3733   /// Emit IR for __builtin_os_log_format.
3734   RValue emitBuiltinOSLogFormat(const CallExpr &E);
3735 
3736   llvm::Function *generateBuiltinOSLogHelperFunction(
3737       const analyze_os_log::OSLogBufferLayout &Layout,
3738       CharUnits BufferAlignment);
3739 
3740   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
3741 
3742   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
3743   /// is unhandled by the current target.
3744   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
3745                                      ReturnValueSlot ReturnValue);
3746 
3747   llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
3748                                              const llvm::CmpInst::Predicate Fp,
3749                                              const llvm::CmpInst::Predicate Ip,
3750                                              const llvm::Twine &Name = "");
3751   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
3752                                   ReturnValueSlot ReturnValue,
3753                                   llvm::Triple::ArchType Arch);
3754   llvm::Value *EmitARMMVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
3755                                      ReturnValueSlot ReturnValue,
3756                                      llvm::Triple::ArchType Arch);
3757 
3758   llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
3759                                          unsigned LLVMIntrinsic,
3760                                          unsigned AltLLVMIntrinsic,
3761                                          const char *NameHint,
3762                                          unsigned Modifier,
3763                                          const CallExpr *E,
3764                                          SmallVectorImpl<llvm::Value *> &Ops,
3765                                          Address PtrOp0, Address PtrOp1,
3766                                          llvm::Triple::ArchType Arch);
3767 
3768   llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
3769                                           unsigned Modifier, llvm::Type *ArgTy,
3770                                           const CallExpr *E);
3771   llvm::Value *EmitNeonCall(llvm::Function *F,
3772                             SmallVectorImpl<llvm::Value*> &O,
3773                             const char *name,
3774                             unsigned shift = 0, bool rightshift = false);
3775   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
3776   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
3777                                    bool negateForRightShift);
3778   llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
3779                                  llvm::Type *Ty, bool usgn, const char *name);
3780   llvm::Value *vectorWrapScalar16(llvm::Value *Op);
3781   llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E,
3782                                       llvm::Triple::ArchType Arch);
3783   llvm::Value *EmitBPFBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3784 
3785   llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
3786   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3787   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3788   llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3789   llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3790   llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3791   llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
3792                                           const CallExpr *E);
3793   llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3794 
3795 private:
3796   enum class MSVCIntrin;
3797 
3798 public:
3799   llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E);
3800 
3801   llvm::Value *EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args);
3802 
3803   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
3804   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
3805   llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
3806   llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
3807   llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
3808   llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
3809                                 const ObjCMethodDecl *MethodWithObjects);
3810   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
3811   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
3812                              ReturnValueSlot Return = ReturnValueSlot());
3813 
3814   /// Retrieves the default cleanup kind for an ARC cleanup.
3815   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
3816   CleanupKind getARCCleanupKind() {
3817     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
3818              ? NormalAndEHCleanup : NormalCleanup;
3819   }
3820 
3821   // ARC primitives.
3822   void EmitARCInitWeak(Address addr, llvm::Value *value);
3823   void EmitARCDestroyWeak(Address addr);
3824   llvm::Value *EmitARCLoadWeak(Address addr);
3825   llvm::Value *EmitARCLoadWeakRetained(Address addr);
3826   llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored);
3827   void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
3828   void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
3829   void EmitARCCopyWeak(Address dst, Address src);
3830   void EmitARCMoveWeak(Address dst, Address src);
3831   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
3832   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
3833   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
3834                                   bool resultIgnored);
3835   llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value,
3836                                       bool resultIgnored);
3837   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
3838   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
3839   llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
3840   void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise);
3841   void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
3842   llvm::Value *EmitARCAutorelease(llvm::Value *value);
3843   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
3844   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
3845   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
3846   llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value);
3847 
3848   llvm::Value *EmitObjCAutorelease(llvm::Value *value, llvm::Type *returnType);
3849   llvm::Value *EmitObjCRetainNonBlock(llvm::Value *value,
3850                                       llvm::Type *returnType);
3851   void EmitObjCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
3852 
3853   std::pair<LValue,llvm::Value*>
3854   EmitARCStoreAutoreleasing(const BinaryOperator *e);
3855   std::pair<LValue,llvm::Value*>
3856   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
3857   std::pair<LValue,llvm::Value*>
3858   EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored);
3859 
3860   llvm::Value *EmitObjCAlloc(llvm::Value *value,
3861                              llvm::Type *returnType);
3862   llvm::Value *EmitObjCAllocWithZone(llvm::Value *value,
3863                                      llvm::Type *returnType);
3864   llvm::Value *EmitObjCAllocInit(llvm::Value *value, llvm::Type *resultType);
3865 
3866   llvm::Value *EmitObjCThrowOperand(const Expr *expr);
3867   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
3868   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
3869 
3870   llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
3871   llvm::Value *EmitARCReclaimReturnedObject(const Expr *e,
3872                                             bool allowUnsafeClaim);
3873   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
3874   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
3875   llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr);
3876 
3877   void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
3878 
3879   static Destroyer destroyARCStrongImprecise;
3880   static Destroyer destroyARCStrongPrecise;
3881   static Destroyer destroyARCWeak;
3882   static Destroyer emitARCIntrinsicUse;
3883   static Destroyer destroyNonTrivialCStruct;
3884 
3885   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
3886   llvm::Value *EmitObjCAutoreleasePoolPush();
3887   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
3888   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
3889   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
3890 
3891   /// Emits a reference binding to the passed in expression.
3892   RValue EmitReferenceBindingToExpr(const Expr *E);
3893 
3894   //===--------------------------------------------------------------------===//
3895   //                           Expression Emission
3896   //===--------------------------------------------------------------------===//
3897 
3898   // Expressions are broken into three classes: scalar, complex, aggregate.
3899 
3900   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
3901   /// scalar type, returning the result.
3902   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
3903 
3904   /// Emit a conversion from the specified type to the specified destination
3905   /// type, both of which are LLVM scalar types.
3906   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
3907                                     QualType DstTy, SourceLocation Loc);
3908 
3909   /// Emit a conversion from the specified complex type to the specified
3910   /// destination type, where the destination type is an LLVM scalar type.
3911   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
3912                                              QualType DstTy,
3913                                              SourceLocation Loc);
3914 
3915   /// EmitAggExpr - Emit the computation of the specified expression
3916   /// of aggregate type.  The result is computed into the given slot,
3917   /// which may be null to indicate that the value is not needed.
3918   void EmitAggExpr(const Expr *E, AggValueSlot AS);
3919 
3920   /// EmitAggExprToLValue - Emit the computation of the specified expression of
3921   /// aggregate type into a temporary LValue.
3922   LValue EmitAggExprToLValue(const Expr *E);
3923 
3924   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
3925   /// make sure it survives garbage collection until this point.
3926   void EmitExtendGCLifetime(llvm::Value *object);
3927 
3928   /// EmitComplexExpr - Emit the computation of the specified expression of
3929   /// complex type, returning the result.
3930   ComplexPairTy EmitComplexExpr(const Expr *E,
3931                                 bool IgnoreReal = false,
3932                                 bool IgnoreImag = false);
3933 
3934   /// EmitComplexExprIntoLValue - Emit the given expression of complex
3935   /// type and place its result into the specified l-value.
3936   void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
3937 
3938   /// EmitStoreOfComplex - Store a complex number into the specified l-value.
3939   void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
3940 
3941   /// EmitLoadOfComplex - Load a complex number from the specified l-value.
3942   ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
3943 
3944   Address emitAddrOfRealComponent(Address complex, QualType complexType);
3945   Address emitAddrOfImagComponent(Address complex, QualType complexType);
3946 
3947   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
3948   /// global variable that has already been created for it.  If the initializer
3949   /// has a different type than GV does, this may free GV and return a different
3950   /// one.  Otherwise it just returns GV.
3951   llvm::GlobalVariable *
3952   AddInitializerToStaticVarDecl(const VarDecl &D,
3953                                 llvm::GlobalVariable *GV);
3954 
3955   // Emit an @llvm.invariant.start call for the given memory region.
3956   void EmitInvariantStart(llvm::Constant *Addr, CharUnits Size);
3957 
3958   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
3959   /// variable with global storage.
3960   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
3961                                 bool PerformInit);
3962 
3963   llvm::Function *createAtExitStub(const VarDecl &VD, llvm::FunctionCallee Dtor,
3964                                    llvm::Constant *Addr);
3965 
3966   /// Call atexit() with a function that passes the given argument to
3967   /// the given function.
3968   void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::FunctionCallee fn,
3969                                     llvm::Constant *addr);
3970 
3971   /// Call atexit() with function dtorStub.
3972   void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub);
3973 
3974   /// Emit code in this function to perform a guarded variable
3975   /// initialization.  Guarded initializations are used when it's not
3976   /// possible to prove that an initialization will be done exactly
3977   /// once, e.g. with a static local variable or a static data member
3978   /// of a class template.
3979   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
3980                           bool PerformInit);
3981 
3982   enum class GuardKind { VariableGuard, TlsGuard };
3983 
3984   /// Emit a branch to select whether or not to perform guarded initialization.
3985   void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit,
3986                                 llvm::BasicBlock *InitBlock,
3987                                 llvm::BasicBlock *NoInitBlock,
3988                                 GuardKind Kind, const VarDecl *D);
3989 
3990   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
3991   /// variables.
3992   void
3993   GenerateCXXGlobalInitFunc(llvm::Function *Fn,
3994                             ArrayRef<llvm::Function *> CXXThreadLocals,
3995                             ConstantAddress Guard = ConstantAddress::invalid());
3996 
3997   /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
3998   /// variables.
3999   void GenerateCXXGlobalDtorsFunc(
4000       llvm::Function *Fn,
4001       const std::vector<std::tuple<llvm::FunctionType *, llvm::WeakTrackingVH,
4002                                    llvm::Constant *>> &DtorsAndObjects);
4003 
4004   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
4005                                         const VarDecl *D,
4006                                         llvm::GlobalVariable *Addr,
4007                                         bool PerformInit);
4008 
4009   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
4010 
4011   void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp);
4012 
4013   void enterFullExpression(const FullExpr *E) {
4014     if (const auto *EWC = dyn_cast<ExprWithCleanups>(E))
4015       if (EWC->getNumObjects() == 0)
4016         return;
4017     enterNonTrivialFullExpression(E);
4018   }
4019   void enterNonTrivialFullExpression(const FullExpr *E);
4020 
4021   void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
4022 
4023   RValue EmitAtomicExpr(AtomicExpr *E);
4024 
4025   //===--------------------------------------------------------------------===//
4026   //                         Annotations Emission
4027   //===--------------------------------------------------------------------===//
4028 
4029   /// Emit an annotation call (intrinsic).
4030   llvm::Value *EmitAnnotationCall(llvm::Function *AnnotationFn,
4031                                   llvm::Value *AnnotatedVal,
4032                                   StringRef AnnotationStr,
4033                                   SourceLocation Location);
4034 
4035   /// Emit local annotations for the local variable V, declared by D.
4036   void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
4037 
4038   /// Emit field annotations for the given field & value. Returns the
4039   /// annotation result.
4040   Address EmitFieldAnnotations(const FieldDecl *D, Address V);
4041 
4042   //===--------------------------------------------------------------------===//
4043   //                             Internal Helpers
4044   //===--------------------------------------------------------------------===//
4045 
4046   /// ContainsLabel - Return true if the statement contains a label in it.  If
4047   /// this statement is not executed normally, it not containing a label means
4048   /// that we can just remove the code.
4049   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
4050 
4051   /// containsBreak - Return true if the statement contains a break out of it.
4052   /// If the statement (recursively) contains a switch or loop with a break
4053   /// inside of it, this is fine.
4054   static bool containsBreak(const Stmt *S);
4055 
4056   /// Determine if the given statement might introduce a declaration into the
4057   /// current scope, by being a (possibly-labelled) DeclStmt.
4058   static bool mightAddDeclToScope(const Stmt *S);
4059 
4060   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
4061   /// to a constant, or if it does but contains a label, return false.  If it
4062   /// constant folds return true and set the boolean result in Result.
4063   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result,
4064                                     bool AllowLabels = false);
4065 
4066   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
4067   /// to a constant, or if it does but contains a label, return false.  If it
4068   /// constant folds return true and set the folded value.
4069   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result,
4070                                     bool AllowLabels = false);
4071 
4072   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
4073   /// if statement) to the specified blocks.  Based on the condition, this might
4074   /// try to simplify the codegen of the conditional based on the branch.
4075   /// TrueCount should be the number of times we expect the condition to
4076   /// evaluate to true based on PGO data.
4077   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
4078                             llvm::BasicBlock *FalseBlock, uint64_t TrueCount);
4079 
4080   /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is
4081   /// nonnull, if \p LHS is marked _Nonnull.
4082   void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc);
4083 
4084   /// An enumeration which makes it easier to specify whether or not an
4085   /// operation is a subtraction.
4086   enum { NotSubtraction = false, IsSubtraction = true };
4087 
4088   /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to
4089   /// detect undefined behavior when the pointer overflow sanitizer is enabled.
4090   /// \p SignedIndices indicates whether any of the GEP indices are signed.
4091   /// \p IsSubtraction indicates whether the expression used to form the GEP
4092   /// is a subtraction.
4093   llvm::Value *EmitCheckedInBoundsGEP(llvm::Value *Ptr,
4094                                       ArrayRef<llvm::Value *> IdxList,
4095                                       bool SignedIndices,
4096                                       bool IsSubtraction,
4097                                       SourceLocation Loc,
4098                                       const Twine &Name = "");
4099 
4100   /// Specifies which type of sanitizer check to apply when handling a
4101   /// particular builtin.
4102   enum BuiltinCheckKind {
4103     BCK_CTZPassedZero,
4104     BCK_CLZPassedZero,
4105   };
4106 
4107   /// Emits an argument for a call to a builtin. If the builtin sanitizer is
4108   /// enabled, a runtime check specified by \p Kind is also emitted.
4109   llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind);
4110 
4111   /// Emit a description of a type in a format suitable for passing to
4112   /// a runtime sanitizer handler.
4113   llvm::Constant *EmitCheckTypeDescriptor(QualType T);
4114 
4115   /// Convert a value into a format suitable for passing to a runtime
4116   /// sanitizer handler.
4117   llvm::Value *EmitCheckValue(llvm::Value *V);
4118 
4119   /// Emit a description of a source location in a format suitable for
4120   /// passing to a runtime sanitizer handler.
4121   llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
4122 
4123   /// Create a basic block that will either trap or call a handler function in
4124   /// the UBSan runtime with the provided arguments, and create a conditional
4125   /// branch to it.
4126   void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
4127                  SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs,
4128                  ArrayRef<llvm::Value *> DynamicArgs);
4129 
4130   /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath
4131   /// if Cond if false.
4132   void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond,
4133                             llvm::ConstantInt *TypeId, llvm::Value *Ptr,
4134                             ArrayRef<llvm::Constant *> StaticArgs);
4135 
4136   /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime
4137   /// checking is enabled. Otherwise, just emit an unreachable instruction.
4138   void EmitUnreachable(SourceLocation Loc);
4139 
4140   /// Create a basic block that will call the trap intrinsic, and emit a
4141   /// conditional branch to it, for the -ftrapv checks.
4142   void EmitTrapCheck(llvm::Value *Checked);
4143 
4144   /// Emit a call to trap or debugtrap and attach function attribute
4145   /// "trap-func-name" if specified.
4146   llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID);
4147 
4148   /// Emit a stub for the cross-DSO CFI check function.
4149   void EmitCfiCheckStub();
4150 
4151   /// Emit a cross-DSO CFI failure handling function.
4152   void EmitCfiCheckFail();
4153 
4154   /// Create a check for a function parameter that may potentially be
4155   /// declared as non-null.
4156   void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc,
4157                            AbstractCallee AC, unsigned ParmNum);
4158 
4159   /// EmitCallArg - Emit a single call argument.
4160   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
4161 
4162   /// EmitDelegateCallArg - We are performing a delegate call; that
4163   /// is, the current function is delegating to another one.  Produce
4164   /// a r-value suitable for passing the given parameter.
4165   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
4166                            SourceLocation loc);
4167 
4168   /// SetFPAccuracy - Set the minimum required accuracy of the given floating
4169   /// point operation, expressed as the maximum relative error in ulp.
4170   void SetFPAccuracy(llvm::Value *Val, float Accuracy);
4171 
4172 private:
4173   llvm::MDNode *getRangeForLoadFromType(QualType Ty);
4174   void EmitReturnOfRValue(RValue RV, QualType Ty);
4175 
4176   void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
4177 
4178   llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4>
4179   DeferredReplacements;
4180 
4181   /// Set the address of a local variable.
4182   void setAddrOfLocalVar(const VarDecl *VD, Address Addr) {
4183     assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!");
4184     LocalDeclMap.insert({VD, Addr});
4185   }
4186 
4187   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
4188   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
4189   ///
4190   /// \param AI - The first function argument of the expansion.
4191   void ExpandTypeFromArgs(QualType Ty, LValue Dst,
4192                           SmallVectorImpl<llvm::Value *>::iterator &AI);
4193 
4194   /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg
4195   /// Ty, into individual arguments on the provided vector \arg IRCallArgs,
4196   /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand.
4197   void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
4198                         SmallVectorImpl<llvm::Value *> &IRCallArgs,
4199                         unsigned &IRCallArgPos);
4200 
4201   llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
4202                             const Expr *InputExpr, std::string &ConstraintStr);
4203 
4204   llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
4205                                   LValue InputValue, QualType InputType,
4206                                   std::string &ConstraintStr,
4207                                   SourceLocation Loc);
4208 
4209   /// Attempts to statically evaluate the object size of E. If that
4210   /// fails, emits code to figure the size of E out for us. This is
4211   /// pass_object_size aware.
4212   ///
4213   /// If EmittedExpr is non-null, this will use that instead of re-emitting E.
4214   llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
4215                                                llvm::IntegerType *ResType,
4216                                                llvm::Value *EmittedE,
4217                                                bool IsDynamic);
4218 
4219   /// Emits the size of E, as required by __builtin_object_size. This
4220   /// function is aware of pass_object_size parameters, and will act accordingly
4221   /// if E is a parameter with the pass_object_size attribute.
4222   llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type,
4223                                      llvm::IntegerType *ResType,
4224                                      llvm::Value *EmittedE,
4225                                      bool IsDynamic);
4226 
4227   void emitZeroOrPatternForAutoVarInit(QualType type, const VarDecl &D,
4228                                        Address Loc);
4229 
4230 public:
4231 #ifndef NDEBUG
4232   // Determine whether the given argument is an Objective-C method
4233   // that may have type parameters in its signature.
4234   static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) {
4235     const DeclContext *dc = method->getDeclContext();
4236     if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) {
4237       return classDecl->getTypeParamListAsWritten();
4238     }
4239 
4240     if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) {
4241       return catDecl->getTypeParamList();
4242     }
4243 
4244     return false;
4245   }
4246 
4247   template<typename T>
4248   static bool isObjCMethodWithTypeParams(const T *) { return false; }
4249 #endif
4250 
4251   enum class EvaluationOrder {
4252     ///! No language constraints on evaluation order.
4253     Default,
4254     ///! Language semantics require left-to-right evaluation.
4255     ForceLeftToRight,
4256     ///! Language semantics require right-to-left evaluation.
4257     ForceRightToLeft
4258   };
4259 
4260   /// EmitCallArgs - Emit call arguments for a function.
4261   template <typename T>
4262   void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo,
4263                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
4264                     AbstractCallee AC = AbstractCallee(),
4265                     unsigned ParamsToSkip = 0,
4266                     EvaluationOrder Order = EvaluationOrder::Default) {
4267     SmallVector<QualType, 16> ArgTypes;
4268     CallExpr::const_arg_iterator Arg = ArgRange.begin();
4269 
4270     assert((ParamsToSkip == 0 || CallArgTypeInfo) &&
4271            "Can't skip parameters if type info is not provided");
4272     if (CallArgTypeInfo) {
4273 #ifndef NDEBUG
4274       bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo);
4275 #endif
4276 
4277       // First, use the argument types that the type info knows about
4278       for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip,
4279                 E = CallArgTypeInfo->param_type_end();
4280            I != E; ++I, ++Arg) {
4281         assert(Arg != ArgRange.end() && "Running over edge of argument list!");
4282         assert((isGenericMethod ||
4283                 ((*I)->isVariablyModifiedType() ||
4284                  (*I).getNonReferenceType()->isObjCRetainableType() ||
4285                  getContext()
4286                          .getCanonicalType((*I).getNonReferenceType())
4287                          .getTypePtr() ==
4288                      getContext()
4289                          .getCanonicalType((*Arg)->getType())
4290                          .getTypePtr())) &&
4291                "type mismatch in call argument!");
4292         ArgTypes.push_back(*I);
4293       }
4294     }
4295 
4296     // Either we've emitted all the call args, or we have a call to variadic
4297     // function.
4298     assert((Arg == ArgRange.end() || !CallArgTypeInfo ||
4299             CallArgTypeInfo->isVariadic()) &&
4300            "Extra arguments in non-variadic function!");
4301 
4302     // If we still have any arguments, emit them using the type of the argument.
4303     for (auto *A : llvm::make_range(Arg, ArgRange.end()))
4304       ArgTypes.push_back(CallArgTypeInfo ? getVarArgType(A) : A->getType());
4305 
4306     EmitCallArgs(Args, ArgTypes, ArgRange, AC, ParamsToSkip, Order);
4307   }
4308 
4309   void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes,
4310                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
4311                     AbstractCallee AC = AbstractCallee(),
4312                     unsigned ParamsToSkip = 0,
4313                     EvaluationOrder Order = EvaluationOrder::Default);
4314 
4315   /// EmitPointerWithAlignment - Given an expression with a pointer type,
4316   /// emit the value and compute our best estimate of the alignment of the
4317   /// pointee.
4318   ///
4319   /// \param BaseInfo - If non-null, this will be initialized with
4320   /// information about the source of the alignment and the may-alias
4321   /// attribute.  Note that this function will conservatively fall back on
4322   /// the type when it doesn't recognize the expression and may-alias will
4323   /// be set to false.
4324   ///
4325   /// One reasonable way to use this information is when there's a language
4326   /// guarantee that the pointer must be aligned to some stricter value, and
4327   /// we're simply trying to ensure that sufficiently obvious uses of under-
4328   /// aligned objects don't get miscompiled; for example, a placement new
4329   /// into the address of a local variable.  In such a case, it's quite
4330   /// reasonable to just ignore the returned alignment when it isn't from an
4331   /// explicit source.
4332   Address EmitPointerWithAlignment(const Expr *Addr,
4333                                    LValueBaseInfo *BaseInfo = nullptr,
4334                                    TBAAAccessInfo *TBAAInfo = nullptr);
4335 
4336   /// If \p E references a parameter with pass_object_size info or a constant
4337   /// array size modifier, emit the object size divided by the size of \p EltTy.
4338   /// Otherwise return null.
4339   llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy);
4340 
4341   void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK);
4342 
4343   struct MultiVersionResolverOption {
4344     llvm::Function *Function;
4345     FunctionDecl *FD;
4346     struct Conds {
4347       StringRef Architecture;
4348       llvm::SmallVector<StringRef, 8> Features;
4349 
4350       Conds(StringRef Arch, ArrayRef<StringRef> Feats)
4351           : Architecture(Arch), Features(Feats.begin(), Feats.end()) {}
4352     } Conditions;
4353 
4354     MultiVersionResolverOption(llvm::Function *F, StringRef Arch,
4355                                ArrayRef<StringRef> Feats)
4356         : Function(F), Conditions(Arch, Feats) {}
4357   };
4358 
4359   // Emits the body of a multiversion function's resolver. Assumes that the
4360   // options are already sorted in the proper order, with the 'default' option
4361   // last (if it exists).
4362   void EmitMultiVersionResolver(llvm::Function *Resolver,
4363                                 ArrayRef<MultiVersionResolverOption> Options);
4364 
4365   static uint64_t GetX86CpuSupportsMask(ArrayRef<StringRef> FeatureStrs);
4366 
4367 private:
4368   QualType getVarArgType(const Expr *Arg);
4369 
4370   void EmitDeclMetadata();
4371 
4372   BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType,
4373                                   const AutoVarEmission &emission);
4374 
4375   void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
4376 
4377   llvm::Value *GetValueForARMHint(unsigned BuiltinID);
4378   llvm::Value *EmitX86CpuIs(const CallExpr *E);
4379   llvm::Value *EmitX86CpuIs(StringRef CPUStr);
4380   llvm::Value *EmitX86CpuSupports(const CallExpr *E);
4381   llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs);
4382   llvm::Value *EmitX86CpuSupports(uint64_t Mask);
4383   llvm::Value *EmitX86CpuInit();
4384   llvm::Value *FormResolverCondition(const MultiVersionResolverOption &RO);
4385 };
4386 
4387 inline DominatingLLVMValue::saved_type
4388 DominatingLLVMValue::save(CodeGenFunction &CGF, llvm::Value *value) {
4389   if (!needsSaving(value)) return saved_type(value, false);
4390 
4391   // Otherwise, we need an alloca.
4392   auto align = CharUnits::fromQuantity(
4393             CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType()));
4394   Address alloca =
4395     CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save");
4396   CGF.Builder.CreateStore(value, alloca);
4397 
4398   return saved_type(alloca.getPointer(), true);
4399 }
4400 
4401 inline llvm::Value *DominatingLLVMValue::restore(CodeGenFunction &CGF,
4402                                                  saved_type value) {
4403   // If the value says it wasn't saved, trust that it's still dominating.
4404   if (!value.getInt()) return value.getPointer();
4405 
4406   // Otherwise, it should be an alloca instruction, as set up in save().
4407   auto alloca = cast<llvm::AllocaInst>(value.getPointer());
4408   return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlignment());
4409 }
4410 
4411 }  // end namespace CodeGen
4412 }  // end namespace clang
4413 
4414 #endif
4415