1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the internal per-function state used for llvm translation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef CLANG_CODEGEN_CODEGENFUNCTION_H
15 #define CLANG_CODEGEN_CODEGENFUNCTION_H
16 
17 #include "clang/AST/Type.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/ExprObjC.h"
20 #include "clang/AST/CharUnits.h"
21 #include "clang/Frontend/CodeGenOptions.h"
22 #include "clang/Basic/ABI.h"
23 #include "clang/Basic/TargetInfo.h"
24 #include "llvm/ADT/ArrayRef.h"
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/Support/ValueHandle.h"
28 #include "llvm/Support/Debug.h"
29 #include "CodeGenModule.h"
30 #include "CGBuilder.h"
31 #include "CGDebugInfo.h"
32 #include "CGValue.h"
33 
34 namespace llvm {
35   class BasicBlock;
36   class LLVMContext;
37   class MDNode;
38   class Module;
39   class SwitchInst;
40   class Twine;
41   class Value;
42   class CallSite;
43 }
44 
45 namespace clang {
46   class ASTContext;
47   class BlockDecl;
48   class CXXDestructorDecl;
49   class CXXForRangeStmt;
50   class CXXTryStmt;
51   class Decl;
52   class LabelDecl;
53   class EnumConstantDecl;
54   class FunctionDecl;
55   class FunctionProtoType;
56   class LabelStmt;
57   class ObjCContainerDecl;
58   class ObjCInterfaceDecl;
59   class ObjCIvarDecl;
60   class ObjCMethodDecl;
61   class ObjCImplementationDecl;
62   class ObjCPropertyImplDecl;
63   class TargetInfo;
64   class TargetCodeGenInfo;
65   class VarDecl;
66   class ObjCForCollectionStmt;
67   class ObjCAtTryStmt;
68   class ObjCAtThrowStmt;
69   class ObjCAtSynchronizedStmt;
70   class ObjCAutoreleasePoolStmt;
71 
72 namespace CodeGen {
73   class CodeGenTypes;
74   class CGFunctionInfo;
75   class CGRecordLayout;
76   class CGBlockInfo;
77   class CGCXXABI;
78   class BlockFlags;
79   class BlockFieldFlags;
80 
81 /// A branch fixup.  These are required when emitting a goto to a
82 /// label which hasn't been emitted yet.  The goto is optimistically
83 /// emitted as a branch to the basic block for the label, and (if it
84 /// occurs in a scope with non-trivial cleanups) a fixup is added to
85 /// the innermost cleanup.  When a (normal) cleanup is popped, any
86 /// unresolved fixups in that scope are threaded through the cleanup.
87 struct BranchFixup {
88   /// The block containing the terminator which needs to be modified
89   /// into a switch if this fixup is resolved into the current scope.
90   /// If null, LatestBranch points directly to the destination.
91   llvm::BasicBlock *OptimisticBranchBlock;
92 
93   /// The ultimate destination of the branch.
94   ///
95   /// This can be set to null to indicate that this fixup was
96   /// successfully resolved.
97   llvm::BasicBlock *Destination;
98 
99   /// The destination index value.
100   unsigned DestinationIndex;
101 
102   /// The initial branch of the fixup.
103   llvm::BranchInst *InitialBranch;
104 };
105 
106 template <class T> struct InvariantValue {
107   typedef T type;
108   typedef T saved_type;
109   static bool needsSaving(type value) { return false; }
110   static saved_type save(CodeGenFunction &CGF, type value) { return value; }
111   static type restore(CodeGenFunction &CGF, saved_type value) { return value; }
112 };
113 
114 /// A metaprogramming class for ensuring that a value will dominate an
115 /// arbitrary position in a function.
116 template <class T> struct DominatingValue : InvariantValue<T> {};
117 
118 template <class T, bool mightBeInstruction =
119             llvm::is_base_of<llvm::Value, T>::value &&
120             !llvm::is_base_of<llvm::Constant, T>::value &&
121             !llvm::is_base_of<llvm::BasicBlock, T>::value>
122 struct DominatingPointer;
123 template <class T> struct DominatingPointer<T,false> : InvariantValue<T*> {};
124 // template <class T> struct DominatingPointer<T,true> at end of file
125 
126 template <class T> struct DominatingValue<T*> : DominatingPointer<T> {};
127 
128 enum CleanupKind {
129   EHCleanup = 0x1,
130   NormalCleanup = 0x2,
131   NormalAndEHCleanup = EHCleanup | NormalCleanup,
132 
133   InactiveCleanup = 0x4,
134   InactiveEHCleanup = EHCleanup | InactiveCleanup,
135   InactiveNormalCleanup = NormalCleanup | InactiveCleanup,
136   InactiveNormalAndEHCleanup = NormalAndEHCleanup | InactiveCleanup
137 };
138 
139 /// A stack of scopes which respond to exceptions, including cleanups
140 /// and catch blocks.
141 class EHScopeStack {
142 public:
143   /// A saved depth on the scope stack.  This is necessary because
144   /// pushing scopes onto the stack invalidates iterators.
145   class stable_iterator {
146     friend class EHScopeStack;
147 
148     /// Offset from StartOfData to EndOfBuffer.
149     ptrdiff_t Size;
150 
151     stable_iterator(ptrdiff_t Size) : Size(Size) {}
152 
153   public:
154     static stable_iterator invalid() { return stable_iterator(-1); }
155     stable_iterator() : Size(-1) {}
156 
157     bool isValid() const { return Size >= 0; }
158 
159     /// Returns true if this scope encloses I.
160     /// Returns false if I is invalid.
161     /// This scope must be valid.
162     bool encloses(stable_iterator I) const { return Size <= I.Size; }
163 
164     /// Returns true if this scope strictly encloses I: that is,
165     /// if it encloses I and is not I.
166     /// Returns false is I is invalid.
167     /// This scope must be valid.
168     bool strictlyEncloses(stable_iterator I) const { return Size < I.Size; }
169 
170     friend bool operator==(stable_iterator A, stable_iterator B) {
171       return A.Size == B.Size;
172     }
173     friend bool operator!=(stable_iterator A, stable_iterator B) {
174       return A.Size != B.Size;
175     }
176   };
177 
178   /// Information for lazily generating a cleanup.  Subclasses must be
179   /// POD-like: cleanups will not be destructed, and they will be
180   /// allocated on the cleanup stack and freely copied and moved
181   /// around.
182   ///
183   /// Cleanup implementations should generally be declared in an
184   /// anonymous namespace.
185   class Cleanup {
186     // Anchor the construction vtable.
187     virtual void anchor();
188   public:
189     /// Generation flags.
190     class Flags {
191       enum {
192         F_IsForEH             = 0x1,
193         F_IsNormalCleanupKind = 0x2,
194         F_IsEHCleanupKind     = 0x4
195       };
196       unsigned flags;
197 
198     public:
199       Flags() : flags(0) {}
200 
201       /// isForEH - true if the current emission is for an EH cleanup.
202       bool isForEHCleanup() const { return flags & F_IsForEH; }
203       bool isForNormalCleanup() const { return !isForEHCleanup(); }
204       void setIsForEHCleanup() { flags |= F_IsForEH; }
205 
206       bool isNormalCleanupKind() const { return flags & F_IsNormalCleanupKind; }
207       void setIsNormalCleanupKind() { flags |= F_IsNormalCleanupKind; }
208 
209       /// isEHCleanupKind - true if the cleanup was pushed as an EH
210       /// cleanup.
211       bool isEHCleanupKind() const { return flags & F_IsEHCleanupKind; }
212       void setIsEHCleanupKind() { flags |= F_IsEHCleanupKind; }
213     };
214 
215     // Provide a virtual destructor to suppress a very common warning
216     // that unfortunately cannot be suppressed without this.  Cleanups
217     // should not rely on this destructor ever being called.
218     virtual ~Cleanup() {}
219 
220     /// Emit the cleanup.  For normal cleanups, this is run in the
221     /// same EH context as when the cleanup was pushed, i.e. the
222     /// immediately-enclosing context of the cleanup scope.  For
223     /// EH cleanups, this is run in a terminate context.
224     ///
225     // \param flags cleanup kind.
226     virtual void Emit(CodeGenFunction &CGF, Flags flags) = 0;
227   };
228 
229   /// ConditionalCleanupN stores the saved form of its N parameters,
230   /// then restores them and performs the cleanup.
231   template <class T, class A0>
232   class ConditionalCleanup1 : public Cleanup {
233     typedef typename DominatingValue<A0>::saved_type A0_saved;
234     A0_saved a0_saved;
235 
236     void Emit(CodeGenFunction &CGF, Flags flags) {
237       A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
238       T(a0).Emit(CGF, flags);
239     }
240 
241   public:
242     ConditionalCleanup1(A0_saved a0)
243       : a0_saved(a0) {}
244   };
245 
246   template <class T, class A0, class A1>
247   class ConditionalCleanup2 : public Cleanup {
248     typedef typename DominatingValue<A0>::saved_type A0_saved;
249     typedef typename DominatingValue<A1>::saved_type A1_saved;
250     A0_saved a0_saved;
251     A1_saved a1_saved;
252 
253     void Emit(CodeGenFunction &CGF, Flags flags) {
254       A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
255       A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
256       T(a0, a1).Emit(CGF, flags);
257     }
258 
259   public:
260     ConditionalCleanup2(A0_saved a0, A1_saved a1)
261       : a0_saved(a0), a1_saved(a1) {}
262   };
263 
264   template <class T, class A0, class A1, class A2>
265   class ConditionalCleanup3 : public Cleanup {
266     typedef typename DominatingValue<A0>::saved_type A0_saved;
267     typedef typename DominatingValue<A1>::saved_type A1_saved;
268     typedef typename DominatingValue<A2>::saved_type A2_saved;
269     A0_saved a0_saved;
270     A1_saved a1_saved;
271     A2_saved a2_saved;
272 
273     void Emit(CodeGenFunction &CGF, Flags flags) {
274       A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
275       A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
276       A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved);
277       T(a0, a1, a2).Emit(CGF, flags);
278     }
279 
280   public:
281     ConditionalCleanup3(A0_saved a0, A1_saved a1, A2_saved a2)
282       : a0_saved(a0), a1_saved(a1), a2_saved(a2) {}
283   };
284 
285   template <class T, class A0, class A1, class A2, class A3>
286   class ConditionalCleanup4 : public Cleanup {
287     typedef typename DominatingValue<A0>::saved_type A0_saved;
288     typedef typename DominatingValue<A1>::saved_type A1_saved;
289     typedef typename DominatingValue<A2>::saved_type A2_saved;
290     typedef typename DominatingValue<A3>::saved_type A3_saved;
291     A0_saved a0_saved;
292     A1_saved a1_saved;
293     A2_saved a2_saved;
294     A3_saved a3_saved;
295 
296     void Emit(CodeGenFunction &CGF, Flags flags) {
297       A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
298       A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
299       A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved);
300       A3 a3 = DominatingValue<A3>::restore(CGF, a3_saved);
301       T(a0, a1, a2, a3).Emit(CGF, flags);
302     }
303 
304   public:
305     ConditionalCleanup4(A0_saved a0, A1_saved a1, A2_saved a2, A3_saved a3)
306       : a0_saved(a0), a1_saved(a1), a2_saved(a2), a3_saved(a3) {}
307   };
308 
309 private:
310   // The implementation for this class is in CGException.h and
311   // CGException.cpp; the definition is here because it's used as a
312   // member of CodeGenFunction.
313 
314   /// The start of the scope-stack buffer, i.e. the allocated pointer
315   /// for the buffer.  All of these pointers are either simultaneously
316   /// null or simultaneously valid.
317   char *StartOfBuffer;
318 
319   /// The end of the buffer.
320   char *EndOfBuffer;
321 
322   /// The first valid entry in the buffer.
323   char *StartOfData;
324 
325   /// The innermost normal cleanup on the stack.
326   stable_iterator InnermostNormalCleanup;
327 
328   /// The innermost EH scope on the stack.
329   stable_iterator InnermostEHScope;
330 
331   /// The current set of branch fixups.  A branch fixup is a jump to
332   /// an as-yet unemitted label, i.e. a label for which we don't yet
333   /// know the EH stack depth.  Whenever we pop a cleanup, we have
334   /// to thread all the current branch fixups through it.
335   ///
336   /// Fixups are recorded as the Use of the respective branch or
337   /// switch statement.  The use points to the final destination.
338   /// When popping out of a cleanup, these uses are threaded through
339   /// the cleanup and adjusted to point to the new cleanup.
340   ///
341   /// Note that branches are allowed to jump into protected scopes
342   /// in certain situations;  e.g. the following code is legal:
343   ///     struct A { ~A(); }; // trivial ctor, non-trivial dtor
344   ///     goto foo;
345   ///     A a;
346   ///    foo:
347   ///     bar();
348   SmallVector<BranchFixup, 8> BranchFixups;
349 
350   char *allocate(size_t Size);
351 
352   void *pushCleanup(CleanupKind K, size_t DataSize);
353 
354 public:
355   EHScopeStack() : StartOfBuffer(0), EndOfBuffer(0), StartOfData(0),
356                    InnermostNormalCleanup(stable_end()),
357                    InnermostEHScope(stable_end()) {}
358   ~EHScopeStack() { delete[] StartOfBuffer; }
359 
360   // Variadic templates would make this not terrible.
361 
362   /// Push a lazily-created cleanup on the stack.
363   template <class T>
364   void pushCleanup(CleanupKind Kind) {
365     void *Buffer = pushCleanup(Kind, sizeof(T));
366     Cleanup *Obj = new(Buffer) T();
367     (void) Obj;
368   }
369 
370   /// Push a lazily-created cleanup on the stack.
371   template <class T, class A0>
372   void pushCleanup(CleanupKind Kind, A0 a0) {
373     void *Buffer = pushCleanup(Kind, sizeof(T));
374     Cleanup *Obj = new(Buffer) T(a0);
375     (void) Obj;
376   }
377 
378   /// Push a lazily-created cleanup on the stack.
379   template <class T, class A0, class A1>
380   void pushCleanup(CleanupKind Kind, A0 a0, A1 a1) {
381     void *Buffer = pushCleanup(Kind, sizeof(T));
382     Cleanup *Obj = new(Buffer) T(a0, a1);
383     (void) Obj;
384   }
385 
386   /// Push a lazily-created cleanup on the stack.
387   template <class T, class A0, class A1, class A2>
388   void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2) {
389     void *Buffer = pushCleanup(Kind, sizeof(T));
390     Cleanup *Obj = new(Buffer) T(a0, a1, a2);
391     (void) Obj;
392   }
393 
394   /// Push a lazily-created cleanup on the stack.
395   template <class T, class A0, class A1, class A2, class A3>
396   void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) {
397     void *Buffer = pushCleanup(Kind, sizeof(T));
398     Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3);
399     (void) Obj;
400   }
401 
402   /// Push a lazily-created cleanup on the stack.
403   template <class T, class A0, class A1, class A2, class A3, class A4>
404   void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3, A4 a4) {
405     void *Buffer = pushCleanup(Kind, sizeof(T));
406     Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3, a4);
407     (void) Obj;
408   }
409 
410   // Feel free to add more variants of the following:
411 
412   /// Push a cleanup with non-constant storage requirements on the
413   /// stack.  The cleanup type must provide an additional static method:
414   ///   static size_t getExtraSize(size_t);
415   /// The argument to this method will be the value N, which will also
416   /// be passed as the first argument to the constructor.
417   ///
418   /// The data stored in the extra storage must obey the same
419   /// restrictions as normal cleanup member data.
420   ///
421   /// The pointer returned from this method is valid until the cleanup
422   /// stack is modified.
423   template <class T, class A0, class A1, class A2>
424   T *pushCleanupWithExtra(CleanupKind Kind, size_t N, A0 a0, A1 a1, A2 a2) {
425     void *Buffer = pushCleanup(Kind, sizeof(T) + T::getExtraSize(N));
426     return new (Buffer) T(N, a0, a1, a2);
427   }
428 
429   /// Pops a cleanup scope off the stack.  This is private to CGCleanup.cpp.
430   void popCleanup();
431 
432   /// Push a set of catch handlers on the stack.  The catch is
433   /// uninitialized and will need to have the given number of handlers
434   /// set on it.
435   class EHCatchScope *pushCatch(unsigned NumHandlers);
436 
437   /// Pops a catch scope off the stack.  This is private to CGException.cpp.
438   void popCatch();
439 
440   /// Push an exceptions filter on the stack.
441   class EHFilterScope *pushFilter(unsigned NumFilters);
442 
443   /// Pops an exceptions filter off the stack.
444   void popFilter();
445 
446   /// Push a terminate handler on the stack.
447   void pushTerminate();
448 
449   /// Pops a terminate handler off the stack.
450   void popTerminate();
451 
452   /// Determines whether the exception-scopes stack is empty.
453   bool empty() const { return StartOfData == EndOfBuffer; }
454 
455   bool requiresLandingPad() const {
456     return InnermostEHScope != stable_end();
457   }
458 
459   /// Determines whether there are any normal cleanups on the stack.
460   bool hasNormalCleanups() const {
461     return InnermostNormalCleanup != stable_end();
462   }
463 
464   /// Returns the innermost normal cleanup on the stack, or
465   /// stable_end() if there are no normal cleanups.
466   stable_iterator getInnermostNormalCleanup() const {
467     return InnermostNormalCleanup;
468   }
469   stable_iterator getInnermostActiveNormalCleanup() const;
470 
471   stable_iterator getInnermostEHScope() const {
472     return InnermostEHScope;
473   }
474 
475   stable_iterator getInnermostActiveEHScope() const;
476 
477   /// An unstable reference to a scope-stack depth.  Invalidated by
478   /// pushes but not pops.
479   class iterator;
480 
481   /// Returns an iterator pointing to the innermost EH scope.
482   iterator begin() const;
483 
484   /// Returns an iterator pointing to the outermost EH scope.
485   iterator end() const;
486 
487   /// Create a stable reference to the top of the EH stack.  The
488   /// returned reference is valid until that scope is popped off the
489   /// stack.
490   stable_iterator stable_begin() const {
491     return stable_iterator(EndOfBuffer - StartOfData);
492   }
493 
494   /// Create a stable reference to the bottom of the EH stack.
495   static stable_iterator stable_end() {
496     return stable_iterator(0);
497   }
498 
499   /// Translates an iterator into a stable_iterator.
500   stable_iterator stabilize(iterator it) const;
501 
502   /// Turn a stable reference to a scope depth into a unstable pointer
503   /// to the EH stack.
504   iterator find(stable_iterator save) const;
505 
506   /// Removes the cleanup pointed to by the given stable_iterator.
507   void removeCleanup(stable_iterator save);
508 
509   /// Add a branch fixup to the current cleanup scope.
510   BranchFixup &addBranchFixup() {
511     assert(hasNormalCleanups() && "adding fixup in scope without cleanups");
512     BranchFixups.push_back(BranchFixup());
513     return BranchFixups.back();
514   }
515 
516   unsigned getNumBranchFixups() const { return BranchFixups.size(); }
517   BranchFixup &getBranchFixup(unsigned I) {
518     assert(I < getNumBranchFixups());
519     return BranchFixups[I];
520   }
521 
522   /// Pops lazily-removed fixups from the end of the list.  This
523   /// should only be called by procedures which have just popped a
524   /// cleanup or resolved one or more fixups.
525   void popNullFixups();
526 
527   /// Clears the branch-fixups list.  This should only be called by
528   /// ResolveAllBranchFixups.
529   void clearFixups() { BranchFixups.clear(); }
530 };
531 
532 /// CodeGenFunction - This class organizes the per-function state that is used
533 /// while generating LLVM code.
534 class CodeGenFunction : public CodeGenTypeCache {
535   CodeGenFunction(const CodeGenFunction &) LLVM_DELETED_FUNCTION;
536   void operator=(const CodeGenFunction &) LLVM_DELETED_FUNCTION;
537 
538   friend class CGCXXABI;
539 public:
540   /// A jump destination is an abstract label, branching to which may
541   /// require a jump out through normal cleanups.
542   struct JumpDest {
543     JumpDest() : Block(0), ScopeDepth(), Index(0) {}
544     JumpDest(llvm::BasicBlock *Block,
545              EHScopeStack::stable_iterator Depth,
546              unsigned Index)
547       : Block(Block), ScopeDepth(Depth), Index(Index) {}
548 
549     bool isValid() const { return Block != 0; }
550     llvm::BasicBlock *getBlock() const { return Block; }
551     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
552     unsigned getDestIndex() const { return Index; }
553 
554   private:
555     llvm::BasicBlock *Block;
556     EHScopeStack::stable_iterator ScopeDepth;
557     unsigned Index;
558   };
559 
560   CodeGenModule &CGM;  // Per-module state.
561   const TargetInfo &Target;
562 
563   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
564   CGBuilderTy Builder;
565 
566   /// CurFuncDecl - Holds the Decl for the current function or ObjC method.
567   /// This excludes BlockDecls.
568   const Decl *CurFuncDecl;
569   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
570   const Decl *CurCodeDecl;
571   const CGFunctionInfo *CurFnInfo;
572   QualType FnRetTy;
573   llvm::Function *CurFn;
574 
575   /// CurGD - The GlobalDecl for the current function being compiled.
576   GlobalDecl CurGD;
577 
578   /// PrologueCleanupDepth - The cleanup depth enclosing all the
579   /// cleanups associated with the parameters.
580   EHScopeStack::stable_iterator PrologueCleanupDepth;
581 
582   /// ReturnBlock - Unified return block.
583   JumpDest ReturnBlock;
584 
585   /// ReturnValue - The temporary alloca to hold the return value. This is null
586   /// iff the function has no return value.
587   llvm::Value *ReturnValue;
588 
589   /// AllocaInsertPoint - This is an instruction in the entry block before which
590   /// we prefer to insert allocas.
591   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
592 
593   /// BoundsChecking - Emit run-time bounds checks. Higher values mean
594   /// potentially higher performance penalties.
595   unsigned char BoundsChecking;
596 
597   /// CatchUndefined - Emit run-time checks to catch undefined behaviors.
598   bool CatchUndefined;
599 
600   /// In ARC, whether we should autorelease the return value.
601   bool AutoreleaseResult;
602 
603   const CodeGen::CGBlockInfo *BlockInfo;
604   llvm::Value *BlockPointer;
605 
606   llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
607   FieldDecl *LambdaThisCaptureField;
608 
609   /// \brief A mapping from NRVO variables to the flags used to indicate
610   /// when the NRVO has been applied to this variable.
611   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
612 
613   EHScopeStack EHStack;
614 
615   /// i32s containing the indexes of the cleanup destinations.
616   llvm::AllocaInst *NormalCleanupDest;
617 
618   unsigned NextCleanupDestIndex;
619 
620   /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
621   CGBlockInfo *FirstBlockInfo;
622 
623   /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
624   llvm::BasicBlock *EHResumeBlock;
625 
626   /// The exception slot.  All landing pads write the current exception pointer
627   /// into this alloca.
628   llvm::Value *ExceptionSlot;
629 
630   /// The selector slot.  Under the MandatoryCleanup model, all landing pads
631   /// write the current selector value into this alloca.
632   llvm::AllocaInst *EHSelectorSlot;
633 
634   /// Emits a landing pad for the current EH stack.
635   llvm::BasicBlock *EmitLandingPad();
636 
637   llvm::BasicBlock *getInvokeDestImpl();
638 
639   template <class T>
640   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
641     return DominatingValue<T>::save(*this, value);
642   }
643 
644 public:
645   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
646   /// rethrows.
647   SmallVector<llvm::Value*, 8> ObjCEHValueStack;
648 
649   /// A class controlling the emission of a finally block.
650   class FinallyInfo {
651     /// Where the catchall's edge through the cleanup should go.
652     JumpDest RethrowDest;
653 
654     /// A function to call to enter the catch.
655     llvm::Constant *BeginCatchFn;
656 
657     /// An i1 variable indicating whether or not the @finally is
658     /// running for an exception.
659     llvm::AllocaInst *ForEHVar;
660 
661     /// An i8* variable into which the exception pointer to rethrow
662     /// has been saved.
663     llvm::AllocaInst *SavedExnVar;
664 
665   public:
666     void enter(CodeGenFunction &CGF, const Stmt *Finally,
667                llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
668                llvm::Constant *rethrowFn);
669     void exit(CodeGenFunction &CGF);
670   };
671 
672   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
673   /// current full-expression.  Safe against the possibility that
674   /// we're currently inside a conditionally-evaluated expression.
675   template <class T, class A0>
676   void pushFullExprCleanup(CleanupKind kind, A0 a0) {
677     // If we're not in a conditional branch, or if none of the
678     // arguments requires saving, then use the unconditional cleanup.
679     if (!isInConditionalBranch())
680       return EHStack.pushCleanup<T>(kind, a0);
681 
682     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
683 
684     typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType;
685     EHStack.pushCleanup<CleanupType>(kind, a0_saved);
686     initFullExprCleanup();
687   }
688 
689   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
690   /// current full-expression.  Safe against the possibility that
691   /// we're currently inside a conditionally-evaluated expression.
692   template <class T, class A0, class A1>
693   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) {
694     // If we're not in a conditional branch, or if none of the
695     // arguments requires saving, then use the unconditional cleanup.
696     if (!isInConditionalBranch())
697       return EHStack.pushCleanup<T>(kind, a0, a1);
698 
699     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
700     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
701 
702     typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType;
703     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved);
704     initFullExprCleanup();
705   }
706 
707   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
708   /// current full-expression.  Safe against the possibility that
709   /// we're currently inside a conditionally-evaluated expression.
710   template <class T, class A0, class A1, class A2>
711   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2) {
712     // If we're not in a conditional branch, or if none of the
713     // arguments requires saving, then use the unconditional cleanup.
714     if (!isInConditionalBranch()) {
715       return EHStack.pushCleanup<T>(kind, a0, a1, a2);
716     }
717 
718     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
719     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
720     typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
721 
722     typedef EHScopeStack::ConditionalCleanup3<T, A0, A1, A2> CleanupType;
723     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, a2_saved);
724     initFullExprCleanup();
725   }
726 
727   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
728   /// current full-expression.  Safe against the possibility that
729   /// we're currently inside a conditionally-evaluated expression.
730   template <class T, class A0, class A1, class A2, class A3>
731   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2, A3 a3) {
732     // If we're not in a conditional branch, or if none of the
733     // arguments requires saving, then use the unconditional cleanup.
734     if (!isInConditionalBranch()) {
735       return EHStack.pushCleanup<T>(kind, a0, a1, a2, a3);
736     }
737 
738     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
739     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
740     typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
741     typename DominatingValue<A3>::saved_type a3_saved = saveValueInCond(a3);
742 
743     typedef EHScopeStack::ConditionalCleanup4<T, A0, A1, A2, A3> CleanupType;
744     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved,
745                                      a2_saved, a3_saved);
746     initFullExprCleanup();
747   }
748 
749   /// Set up the last cleaup that was pushed as a conditional
750   /// full-expression cleanup.
751   void initFullExprCleanup();
752 
753   /// PushDestructorCleanup - Push a cleanup to call the
754   /// complete-object destructor of an object of the given type at the
755   /// given address.  Does nothing if T is not a C++ class type with a
756   /// non-trivial destructor.
757   void PushDestructorCleanup(QualType T, llvm::Value *Addr);
758 
759   /// PushDestructorCleanup - Push a cleanup to call the
760   /// complete-object variant of the given destructor on the object at
761   /// the given address.
762   void PushDestructorCleanup(const CXXDestructorDecl *Dtor,
763                              llvm::Value *Addr);
764 
765   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
766   /// process all branch fixups.
767   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
768 
769   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
770   /// The block cannot be reactivated.  Pops it if it's the top of the
771   /// stack.
772   ///
773   /// \param DominatingIP - An instruction which is known to
774   ///   dominate the current IP (if set) and which lies along
775   ///   all paths of execution between the current IP and the
776   ///   the point at which the cleanup comes into scope.
777   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
778                               llvm::Instruction *DominatingIP);
779 
780   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
781   /// Cannot be used to resurrect a deactivated cleanup.
782   ///
783   /// \param DominatingIP - An instruction which is known to
784   ///   dominate the current IP (if set) and which lies along
785   ///   all paths of execution between the current IP and the
786   ///   the point at which the cleanup comes into scope.
787   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
788                             llvm::Instruction *DominatingIP);
789 
790   /// \brief Enters a new scope for capturing cleanups, all of which
791   /// will be executed once the scope is exited.
792   class RunCleanupsScope {
793     EHScopeStack::stable_iterator CleanupStackDepth;
794     bool OldDidCallStackSave;
795     bool PerformCleanup;
796 
797     RunCleanupsScope(const RunCleanupsScope &) LLVM_DELETED_FUNCTION;
798     void operator=(const RunCleanupsScope &) LLVM_DELETED_FUNCTION;
799 
800   protected:
801     CodeGenFunction& CGF;
802 
803   public:
804     /// \brief Enter a new cleanup scope.
805     explicit RunCleanupsScope(CodeGenFunction &CGF)
806       : PerformCleanup(true), CGF(CGF)
807     {
808       CleanupStackDepth = CGF.EHStack.stable_begin();
809       OldDidCallStackSave = CGF.DidCallStackSave;
810       CGF.DidCallStackSave = false;
811     }
812 
813     /// \brief Exit this cleanup scope, emitting any accumulated
814     /// cleanups.
815     ~RunCleanupsScope() {
816       if (PerformCleanup) {
817         CGF.DidCallStackSave = OldDidCallStackSave;
818         CGF.PopCleanupBlocks(CleanupStackDepth);
819       }
820     }
821 
822     /// \brief Determine whether this scope requires any cleanups.
823     bool requiresCleanups() const {
824       return CGF.EHStack.stable_begin() != CleanupStackDepth;
825     }
826 
827     /// \brief Force the emission of cleanups now, instead of waiting
828     /// until this object is destroyed.
829     void ForceCleanup() {
830       assert(PerformCleanup && "Already forced cleanup");
831       CGF.DidCallStackSave = OldDidCallStackSave;
832       CGF.PopCleanupBlocks(CleanupStackDepth);
833       PerformCleanup = false;
834     }
835   };
836 
837   class LexicalScope: protected RunCleanupsScope {
838     SourceRange Range;
839     bool PopDebugStack;
840 
841     LexicalScope(const LexicalScope &) LLVM_DELETED_FUNCTION;
842     void operator=(const LexicalScope &) LLVM_DELETED_FUNCTION;
843 
844   public:
845     /// \brief Enter a new cleanup scope.
846     explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
847       : RunCleanupsScope(CGF), Range(Range), PopDebugStack(true) {
848       if (CGDebugInfo *DI = CGF.getDebugInfo())
849         DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
850     }
851 
852     /// \brief Exit this cleanup scope, emitting any accumulated
853     /// cleanups.
854     ~LexicalScope() {
855       if (PopDebugStack) {
856         CGDebugInfo *DI = CGF.getDebugInfo();
857         if (DI) DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
858       }
859     }
860 
861     /// \brief Force the emission of cleanups now, instead of waiting
862     /// until this object is destroyed.
863     void ForceCleanup() {
864       RunCleanupsScope::ForceCleanup();
865       if (CGDebugInfo *DI = CGF.getDebugInfo()) {
866         DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
867         PopDebugStack = false;
868       }
869     }
870   };
871 
872 
873   /// PopCleanupBlocks - Takes the old cleanup stack size and emits
874   /// the cleanup blocks that have been added.
875   void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize);
876 
877   void ResolveBranchFixups(llvm::BasicBlock *Target);
878 
879   /// The given basic block lies in the current EH scope, but may be a
880   /// target of a potentially scope-crossing jump; get a stable handle
881   /// to which we can perform this jump later.
882   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
883     return JumpDest(Target,
884                     EHStack.getInnermostNormalCleanup(),
885                     NextCleanupDestIndex++);
886   }
887 
888   /// The given basic block lies in the current EH scope, but may be a
889   /// target of a potentially scope-crossing jump; get a stable handle
890   /// to which we can perform this jump later.
891   JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
892     return getJumpDestInCurrentScope(createBasicBlock(Name));
893   }
894 
895   /// EmitBranchThroughCleanup - Emit a branch from the current insert
896   /// block through the normal cleanup handling code (if any) and then
897   /// on to \arg Dest.
898   void EmitBranchThroughCleanup(JumpDest Dest);
899 
900   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
901   /// specified destination obviously has no cleanups to run.  'false' is always
902   /// a conservatively correct answer for this method.
903   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
904 
905   /// popCatchScope - Pops the catch scope at the top of the EHScope
906   /// stack, emitting any required code (other than the catch handlers
907   /// themselves).
908   void popCatchScope();
909 
910   llvm::BasicBlock *getEHResumeBlock();
911   llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
912 
913   /// An object to manage conditionally-evaluated expressions.
914   class ConditionalEvaluation {
915     llvm::BasicBlock *StartBB;
916 
917   public:
918     ConditionalEvaluation(CodeGenFunction &CGF)
919       : StartBB(CGF.Builder.GetInsertBlock()) {}
920 
921     void begin(CodeGenFunction &CGF) {
922       assert(CGF.OutermostConditional != this);
923       if (!CGF.OutermostConditional)
924         CGF.OutermostConditional = this;
925     }
926 
927     void end(CodeGenFunction &CGF) {
928       assert(CGF.OutermostConditional != 0);
929       if (CGF.OutermostConditional == this)
930         CGF.OutermostConditional = 0;
931     }
932 
933     /// Returns a block which will be executed prior to each
934     /// evaluation of the conditional code.
935     llvm::BasicBlock *getStartingBlock() const {
936       return StartBB;
937     }
938   };
939 
940   /// isInConditionalBranch - Return true if we're currently emitting
941   /// one branch or the other of a conditional expression.
942   bool isInConditionalBranch() const { return OutermostConditional != 0; }
943 
944   void setBeforeOutermostConditional(llvm::Value *value, llvm::Value *addr) {
945     assert(isInConditionalBranch());
946     llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
947     new llvm::StoreInst(value, addr, &block->back());
948   }
949 
950   /// An RAII object to record that we're evaluating a statement
951   /// expression.
952   class StmtExprEvaluation {
953     CodeGenFunction &CGF;
954 
955     /// We have to save the outermost conditional: cleanups in a
956     /// statement expression aren't conditional just because the
957     /// StmtExpr is.
958     ConditionalEvaluation *SavedOutermostConditional;
959 
960   public:
961     StmtExprEvaluation(CodeGenFunction &CGF)
962       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
963       CGF.OutermostConditional = 0;
964     }
965 
966     ~StmtExprEvaluation() {
967       CGF.OutermostConditional = SavedOutermostConditional;
968       CGF.EnsureInsertPoint();
969     }
970   };
971 
972   /// An object which temporarily prevents a value from being
973   /// destroyed by aggressive peephole optimizations that assume that
974   /// all uses of a value have been realized in the IR.
975   class PeepholeProtection {
976     llvm::Instruction *Inst;
977     friend class CodeGenFunction;
978 
979   public:
980     PeepholeProtection() : Inst(0) {}
981   };
982 
983   /// A non-RAII class containing all the information about a bound
984   /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
985   /// this which makes individual mappings very simple; using this
986   /// class directly is useful when you have a variable number of
987   /// opaque values or don't want the RAII functionality for some
988   /// reason.
989   class OpaqueValueMappingData {
990     const OpaqueValueExpr *OpaqueValue;
991     bool BoundLValue;
992     CodeGenFunction::PeepholeProtection Protection;
993 
994     OpaqueValueMappingData(const OpaqueValueExpr *ov,
995                            bool boundLValue)
996       : OpaqueValue(ov), BoundLValue(boundLValue) {}
997   public:
998     OpaqueValueMappingData() : OpaqueValue(0) {}
999 
1000     static bool shouldBindAsLValue(const Expr *expr) {
1001       // gl-values should be bound as l-values for obvious reasons.
1002       // Records should be bound as l-values because IR generation
1003       // always keeps them in memory.  Expressions of function type
1004       // act exactly like l-values but are formally required to be
1005       // r-values in C.
1006       return expr->isGLValue() ||
1007              expr->getType()->isRecordType() ||
1008              expr->getType()->isFunctionType();
1009     }
1010 
1011     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1012                                        const OpaqueValueExpr *ov,
1013                                        const Expr *e) {
1014       if (shouldBindAsLValue(ov))
1015         return bind(CGF, ov, CGF.EmitLValue(e));
1016       return bind(CGF, ov, CGF.EmitAnyExpr(e));
1017     }
1018 
1019     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1020                                        const OpaqueValueExpr *ov,
1021                                        const LValue &lv) {
1022       assert(shouldBindAsLValue(ov));
1023       CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
1024       return OpaqueValueMappingData(ov, true);
1025     }
1026 
1027     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1028                                        const OpaqueValueExpr *ov,
1029                                        const RValue &rv) {
1030       assert(!shouldBindAsLValue(ov));
1031       CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
1032 
1033       OpaqueValueMappingData data(ov, false);
1034 
1035       // Work around an extremely aggressive peephole optimization in
1036       // EmitScalarConversion which assumes that all other uses of a
1037       // value are extant.
1038       data.Protection = CGF.protectFromPeepholes(rv);
1039 
1040       return data;
1041     }
1042 
1043     bool isValid() const { return OpaqueValue != 0; }
1044     void clear() { OpaqueValue = 0; }
1045 
1046     void unbind(CodeGenFunction &CGF) {
1047       assert(OpaqueValue && "no data to unbind!");
1048 
1049       if (BoundLValue) {
1050         CGF.OpaqueLValues.erase(OpaqueValue);
1051       } else {
1052         CGF.OpaqueRValues.erase(OpaqueValue);
1053         CGF.unprotectFromPeepholes(Protection);
1054       }
1055     }
1056   };
1057 
1058   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
1059   class OpaqueValueMapping {
1060     CodeGenFunction &CGF;
1061     OpaqueValueMappingData Data;
1062 
1063   public:
1064     static bool shouldBindAsLValue(const Expr *expr) {
1065       return OpaqueValueMappingData::shouldBindAsLValue(expr);
1066     }
1067 
1068     /// Build the opaque value mapping for the given conditional
1069     /// operator if it's the GNU ?: extension.  This is a common
1070     /// enough pattern that the convenience operator is really
1071     /// helpful.
1072     ///
1073     OpaqueValueMapping(CodeGenFunction &CGF,
1074                        const AbstractConditionalOperator *op) : CGF(CGF) {
1075       if (isa<ConditionalOperator>(op))
1076         // Leave Data empty.
1077         return;
1078 
1079       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
1080       Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
1081                                           e->getCommon());
1082     }
1083 
1084     OpaqueValueMapping(CodeGenFunction &CGF,
1085                        const OpaqueValueExpr *opaqueValue,
1086                        LValue lvalue)
1087       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
1088     }
1089 
1090     OpaqueValueMapping(CodeGenFunction &CGF,
1091                        const OpaqueValueExpr *opaqueValue,
1092                        RValue rvalue)
1093       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
1094     }
1095 
1096     void pop() {
1097       Data.unbind(CGF);
1098       Data.clear();
1099     }
1100 
1101     ~OpaqueValueMapping() {
1102       if (Data.isValid()) Data.unbind(CGF);
1103     }
1104   };
1105 
1106   /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field
1107   /// number that holds the value.
1108   unsigned getByRefValueLLVMField(const ValueDecl *VD) const;
1109 
1110   /// BuildBlockByrefAddress - Computes address location of the
1111   /// variable which is declared as __block.
1112   llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr,
1113                                       const VarDecl *V);
1114 private:
1115   CGDebugInfo *DebugInfo;
1116   bool DisableDebugInfo;
1117 
1118   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
1119   /// calling llvm.stacksave for multiple VLAs in the same scope.
1120   bool DidCallStackSave;
1121 
1122   /// IndirectBranch - The first time an indirect goto is seen we create a block
1123   /// with an indirect branch.  Every time we see the address of a label taken,
1124   /// we add the label to the indirect goto.  Every subsequent indirect goto is
1125   /// codegen'd as a jump to the IndirectBranch's basic block.
1126   llvm::IndirectBrInst *IndirectBranch;
1127 
1128   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1129   /// decls.
1130   typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy;
1131   DeclMapTy LocalDeclMap;
1132 
1133   /// LabelMap - This keeps track of the LLVM basic block for each C label.
1134   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1135 
1136   // BreakContinueStack - This keeps track of where break and continue
1137   // statements should jump to.
1138   struct BreakContinue {
1139     BreakContinue(JumpDest Break, JumpDest Continue)
1140       : BreakBlock(Break), ContinueBlock(Continue) {}
1141 
1142     JumpDest BreakBlock;
1143     JumpDest ContinueBlock;
1144   };
1145   SmallVector<BreakContinue, 8> BreakContinueStack;
1146 
1147   /// SwitchInsn - This is nearest current switch instruction. It is null if
1148   /// current context is not in a switch.
1149   llvm::SwitchInst *SwitchInsn;
1150 
1151   /// CaseRangeBlock - This block holds if condition check for last case
1152   /// statement range in current switch instruction.
1153   llvm::BasicBlock *CaseRangeBlock;
1154 
1155   /// OpaqueLValues - Keeps track of the current set of opaque value
1156   /// expressions.
1157   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1158   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1159 
1160   // VLASizeMap - This keeps track of the associated size for each VLA type.
1161   // We track this by the size expression rather than the type itself because
1162   // in certain situations, like a const qualifier applied to an VLA typedef,
1163   // multiple VLA types can share the same size expression.
1164   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1165   // enter/leave scopes.
1166   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1167 
1168   /// A block containing a single 'unreachable' instruction.  Created
1169   /// lazily by getUnreachableBlock().
1170   llvm::BasicBlock *UnreachableBlock;
1171 
1172   /// CXXThisDecl - When generating code for a C++ member function,
1173   /// this will hold the implicit 'this' declaration.
1174   ImplicitParamDecl *CXXABIThisDecl;
1175   llvm::Value *CXXABIThisValue;
1176   llvm::Value *CXXThisValue;
1177 
1178   /// CXXVTTDecl - When generating code for a base object constructor or
1179   /// base object destructor with virtual bases, this will hold the implicit
1180   /// VTT parameter.
1181   ImplicitParamDecl *CXXVTTDecl;
1182   llvm::Value *CXXVTTValue;
1183 
1184   /// OutermostConditional - Points to the outermost active
1185   /// conditional control.  This is used so that we know if a
1186   /// temporary should be destroyed conditionally.
1187   ConditionalEvaluation *OutermostConditional;
1188 
1189 
1190   /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM
1191   /// type as well as the field number that contains the actual data.
1192   llvm::DenseMap<const ValueDecl *, std::pair<llvm::Type *,
1193                                               unsigned> > ByRefValueInfo;
1194 
1195   llvm::BasicBlock *TerminateLandingPad;
1196   llvm::BasicBlock *TerminateHandler;
1197   llvm::BasicBlock *TrapBB;
1198 
1199   /// Add a kernel metadata node to the named metadata node 'opencl.kernels'.
1200   /// In the kernel metadata node, reference the kernel function and metadata
1201   /// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2):
1202   /// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string
1203   ///   "work_group_size_hint", and three 32-bit integers X, Y and Z.
1204   /// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string
1205   ///   "reqd_work_group_size", and three 32-bit integers X, Y and Z.
1206   void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
1207                                 llvm::Function *Fn);
1208 
1209 public:
1210   CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1211   ~CodeGenFunction();
1212 
1213   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1214   ASTContext &getContext() const { return CGM.getContext(); }
1215   /// Returns true if DebugInfo is actually initialized.
1216   bool maybeInitializeDebugInfo() {
1217     if (CGM.getModuleDebugInfo()) {
1218       DebugInfo = CGM.getModuleDebugInfo();
1219       return true;
1220     }
1221     return false;
1222   }
1223   CGDebugInfo *getDebugInfo() {
1224     if (DisableDebugInfo)
1225       return NULL;
1226     return DebugInfo;
1227   }
1228   void disableDebugInfo() { DisableDebugInfo = true; }
1229   void enableDebugInfo() { DisableDebugInfo = false; }
1230 
1231   bool shouldUseFusedARCCalls() {
1232     return CGM.getCodeGenOpts().OptimizationLevel == 0;
1233   }
1234 
1235   const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1236 
1237   /// Returns a pointer to the function's exception object and selector slot,
1238   /// which is assigned in every landing pad.
1239   llvm::Value *getExceptionSlot();
1240   llvm::Value *getEHSelectorSlot();
1241 
1242   /// Returns the contents of the function's exception object and selector
1243   /// slots.
1244   llvm::Value *getExceptionFromSlot();
1245   llvm::Value *getSelectorFromSlot();
1246 
1247   llvm::Value *getNormalCleanupDestSlot();
1248 
1249   llvm::BasicBlock *getUnreachableBlock() {
1250     if (!UnreachableBlock) {
1251       UnreachableBlock = createBasicBlock("unreachable");
1252       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1253     }
1254     return UnreachableBlock;
1255   }
1256 
1257   llvm::BasicBlock *getInvokeDest() {
1258     if (!EHStack.requiresLandingPad()) return 0;
1259     return getInvokeDestImpl();
1260   }
1261 
1262   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1263 
1264   //===--------------------------------------------------------------------===//
1265   //                                  Cleanups
1266   //===--------------------------------------------------------------------===//
1267 
1268   typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty);
1269 
1270   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1271                                         llvm::Value *arrayEndPointer,
1272                                         QualType elementType,
1273                                         Destroyer *destroyer);
1274   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1275                                       llvm::Value *arrayEnd,
1276                                       QualType elementType,
1277                                       Destroyer *destroyer);
1278 
1279   void pushDestroy(QualType::DestructionKind dtorKind,
1280                    llvm::Value *addr, QualType type);
1281   void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type,
1282                    Destroyer *destroyer, bool useEHCleanupForArray);
1283   void emitDestroy(llvm::Value *addr, QualType type, Destroyer *destroyer,
1284                    bool useEHCleanupForArray);
1285   llvm::Function *generateDestroyHelper(llvm::Constant *addr,
1286                                         QualType type,
1287                                         Destroyer *destroyer,
1288                                         bool useEHCleanupForArray);
1289   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1290                         QualType type, Destroyer *destroyer,
1291                         bool checkZeroLength, bool useEHCleanup);
1292 
1293   Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1294 
1295   /// Determines whether an EH cleanup is required to destroy a type
1296   /// with the given destruction kind.
1297   bool needsEHCleanup(QualType::DestructionKind kind) {
1298     switch (kind) {
1299     case QualType::DK_none:
1300       return false;
1301     case QualType::DK_cxx_destructor:
1302     case QualType::DK_objc_weak_lifetime:
1303       return getLangOpts().Exceptions;
1304     case QualType::DK_objc_strong_lifetime:
1305       return getLangOpts().Exceptions &&
1306              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1307     }
1308     llvm_unreachable("bad destruction kind");
1309   }
1310 
1311   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
1312     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1313   }
1314 
1315   //===--------------------------------------------------------------------===//
1316   //                                  Objective-C
1317   //===--------------------------------------------------------------------===//
1318 
1319   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1320 
1321   void StartObjCMethod(const ObjCMethodDecl *MD,
1322                        const ObjCContainerDecl *CD,
1323                        SourceLocation StartLoc);
1324 
1325   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1326   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1327                           const ObjCPropertyImplDecl *PID);
1328   void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1329                               const ObjCPropertyImplDecl *propImpl,
1330                               const ObjCMethodDecl *GetterMothodDecl,
1331                               llvm::Constant *AtomicHelperFn);
1332 
1333   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1334                                   ObjCMethodDecl *MD, bool ctor);
1335 
1336   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1337   /// for the given property.
1338   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1339                           const ObjCPropertyImplDecl *PID);
1340   void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1341                               const ObjCPropertyImplDecl *propImpl,
1342                               llvm::Constant *AtomicHelperFn);
1343   bool IndirectObjCSetterArg(const CGFunctionInfo &FI);
1344   bool IvarTypeWithAggrGCObjects(QualType Ty);
1345 
1346   //===--------------------------------------------------------------------===//
1347   //                                  Block Bits
1348   //===--------------------------------------------------------------------===//
1349 
1350   llvm::Value *EmitBlockLiteral(const BlockExpr *);
1351   llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
1352   static void destroyBlockInfos(CGBlockInfo *info);
1353   llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *,
1354                                            const CGBlockInfo &Info,
1355                                            llvm::StructType *,
1356                                            llvm::Constant *BlockVarLayout);
1357 
1358   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1359                                         const CGBlockInfo &Info,
1360                                         const Decl *OuterFuncDecl,
1361                                         const DeclMapTy &ldm,
1362                                         bool IsLambdaConversionToBlock);
1363 
1364   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1365   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1366   llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
1367                                              const ObjCPropertyImplDecl *PID);
1368   llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
1369                                              const ObjCPropertyImplDecl *PID);
1370   llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
1371 
1372   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
1373 
1374   class AutoVarEmission;
1375 
1376   void emitByrefStructureInit(const AutoVarEmission &emission);
1377   void enterByrefCleanup(const AutoVarEmission &emission);
1378 
1379   llvm::Value *LoadBlockStruct() {
1380     assert(BlockPointer && "no block pointer set!");
1381     return BlockPointer;
1382   }
1383 
1384   void AllocateBlockCXXThisPointer(const CXXThisExpr *E);
1385   void AllocateBlockDecl(const DeclRefExpr *E);
1386   llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
1387   llvm::Type *BuildByRefType(const VarDecl *var);
1388 
1389   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1390                     const CGFunctionInfo &FnInfo);
1391   void StartFunction(GlobalDecl GD, QualType RetTy,
1392                      llvm::Function *Fn,
1393                      const CGFunctionInfo &FnInfo,
1394                      const FunctionArgList &Args,
1395                      SourceLocation StartLoc);
1396 
1397   void EmitConstructorBody(FunctionArgList &Args);
1398   void EmitDestructorBody(FunctionArgList &Args);
1399   void EmitFunctionBody(FunctionArgList &Args);
1400 
1401   void EmitForwardingCallToLambda(const CXXRecordDecl *Lambda,
1402                                   CallArgList &CallArgs);
1403   void EmitLambdaToBlockPointerBody(FunctionArgList &Args);
1404   void EmitLambdaBlockInvokeBody();
1405   void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
1406   void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD);
1407 
1408   /// EmitReturnBlock - Emit the unified return block, trying to avoid its
1409   /// emission when possible.
1410   void EmitReturnBlock();
1411 
1412   /// FinishFunction - Complete IR generation of the current function. It is
1413   /// legal to call this function even if there is no current insertion point.
1414   void FinishFunction(SourceLocation EndLoc=SourceLocation());
1415 
1416   /// GenerateThunk - Generate a thunk for the given method.
1417   void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1418                      GlobalDecl GD, const ThunkInfo &Thunk);
1419 
1420   void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1421                             GlobalDecl GD, const ThunkInfo &Thunk);
1422 
1423   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1424                         FunctionArgList &Args);
1425 
1426   void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init,
1427                                ArrayRef<VarDecl *> ArrayIndexes);
1428 
1429   /// InitializeVTablePointer - Initialize the vtable pointer of the given
1430   /// subobject.
1431   ///
1432   void InitializeVTablePointer(BaseSubobject Base,
1433                                const CXXRecordDecl *NearestVBase,
1434                                CharUnits OffsetFromNearestVBase,
1435                                llvm::Constant *VTable,
1436                                const CXXRecordDecl *VTableClass);
1437 
1438   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1439   void InitializeVTablePointers(BaseSubobject Base,
1440                                 const CXXRecordDecl *NearestVBase,
1441                                 CharUnits OffsetFromNearestVBase,
1442                                 bool BaseIsNonVirtualPrimaryBase,
1443                                 llvm::Constant *VTable,
1444                                 const CXXRecordDecl *VTableClass,
1445                                 VisitedVirtualBasesSetTy& VBases);
1446 
1447   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1448 
1449   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1450   /// to by This.
1451   llvm::Value *GetVTablePtr(llvm::Value *This, llvm::Type *Ty);
1452 
1453   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1454   /// given phase of destruction for a destructor.  The end result
1455   /// should call destructors on members and base classes in reverse
1456   /// order of their construction.
1457   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1458 
1459   /// ShouldInstrumentFunction - Return true if the current function should be
1460   /// instrumented with __cyg_profile_func_* calls
1461   bool ShouldInstrumentFunction();
1462 
1463   /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
1464   /// instrumentation function with the current function and the call site, if
1465   /// function instrumentation is enabled.
1466   void EmitFunctionInstrumentation(const char *Fn);
1467 
1468   /// EmitMCountInstrumentation - Emit call to .mcount.
1469   void EmitMCountInstrumentation();
1470 
1471   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1472   /// arguments for the given function. This is also responsible for naming the
1473   /// LLVM function arguments.
1474   void EmitFunctionProlog(const CGFunctionInfo &FI,
1475                           llvm::Function *Fn,
1476                           const FunctionArgList &Args);
1477 
1478   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1479   /// given temporary.
1480   void EmitFunctionEpilog(const CGFunctionInfo &FI);
1481 
1482   /// EmitStartEHSpec - Emit the start of the exception spec.
1483   void EmitStartEHSpec(const Decl *D);
1484 
1485   /// EmitEndEHSpec - Emit the end of the exception spec.
1486   void EmitEndEHSpec(const Decl *D);
1487 
1488   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
1489   llvm::BasicBlock *getTerminateLandingPad();
1490 
1491   /// getTerminateHandler - Return a handler (not a landing pad, just
1492   /// a catch handler) that just calls terminate.  This is used when
1493   /// a terminate scope encloses a try.
1494   llvm::BasicBlock *getTerminateHandler();
1495 
1496   llvm::Type *ConvertTypeForMem(QualType T);
1497   llvm::Type *ConvertType(QualType T);
1498   llvm::Type *ConvertType(const TypeDecl *T) {
1499     return ConvertType(getContext().getTypeDeclType(T));
1500   }
1501 
1502   /// LoadObjCSelf - Load the value of self. This function is only valid while
1503   /// generating code for an Objective-C method.
1504   llvm::Value *LoadObjCSelf();
1505 
1506   /// TypeOfSelfObject - Return type of object that this self represents.
1507   QualType TypeOfSelfObject();
1508 
1509   /// hasAggregateLLVMType - Return true if the specified AST type will map into
1510   /// an aggregate LLVM type or is void.
1511   static bool hasAggregateLLVMType(QualType T);
1512 
1513   /// createBasicBlock - Create an LLVM basic block.
1514   llvm::BasicBlock *createBasicBlock(const Twine &name = "",
1515                                      llvm::Function *parent = 0,
1516                                      llvm::BasicBlock *before = 0) {
1517 #ifdef NDEBUG
1518     return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
1519 #else
1520     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
1521 #endif
1522   }
1523 
1524   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
1525   /// label maps to.
1526   JumpDest getJumpDestForLabel(const LabelDecl *S);
1527 
1528   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
1529   /// another basic block, simplify it. This assumes that no other code could
1530   /// potentially reference the basic block.
1531   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
1532 
1533   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
1534   /// adding a fall-through branch from the current insert block if
1535   /// necessary. It is legal to call this function even if there is no current
1536   /// insertion point.
1537   ///
1538   /// IsFinished - If true, indicates that the caller has finished emitting
1539   /// branches to the given block and does not expect to emit code into it. This
1540   /// means the block can be ignored if it is unreachable.
1541   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
1542 
1543   /// EmitBlockAfterUses - Emit the given block somewhere hopefully
1544   /// near its uses, and leave the insertion point in it.
1545   void EmitBlockAfterUses(llvm::BasicBlock *BB);
1546 
1547   /// EmitBranch - Emit a branch to the specified basic block from the current
1548   /// insert block, taking care to avoid creation of branches from dummy
1549   /// blocks. It is legal to call this function even if there is no current
1550   /// insertion point.
1551   ///
1552   /// This function clears the current insertion point. The caller should follow
1553   /// calls to this function with calls to Emit*Block prior to generation new
1554   /// code.
1555   void EmitBranch(llvm::BasicBlock *Block);
1556 
1557   /// HaveInsertPoint - True if an insertion point is defined. If not, this
1558   /// indicates that the current code being emitted is unreachable.
1559   bool HaveInsertPoint() const {
1560     return Builder.GetInsertBlock() != 0;
1561   }
1562 
1563   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
1564   /// emitted IR has a place to go. Note that by definition, if this function
1565   /// creates a block then that block is unreachable; callers may do better to
1566   /// detect when no insertion point is defined and simply skip IR generation.
1567   void EnsureInsertPoint() {
1568     if (!HaveInsertPoint())
1569       EmitBlock(createBasicBlock());
1570   }
1571 
1572   /// ErrorUnsupported - Print out an error that codegen doesn't support the
1573   /// specified stmt yet.
1574   void ErrorUnsupported(const Stmt *S, const char *Type,
1575                         bool OmitOnError=false);
1576 
1577   //===--------------------------------------------------------------------===//
1578   //                                  Helpers
1579   //===--------------------------------------------------------------------===//
1580 
1581   LValue MakeAddrLValue(llvm::Value *V, QualType T,
1582                         CharUnits Alignment = CharUnits()) {
1583     return LValue::MakeAddr(V, T, Alignment, getContext(),
1584                             CGM.getTBAAInfo(T));
1585   }
1586 
1587   LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
1588     CharUnits Alignment;
1589     if (!T->isIncompleteType())
1590       Alignment = getContext().getTypeAlignInChars(T);
1591     return LValue::MakeAddr(V, T, Alignment, getContext(),
1592                             CGM.getTBAAInfo(T));
1593   }
1594 
1595   /// CreateTempAlloca - This creates a alloca and inserts it into the entry
1596   /// block. The caller is responsible for setting an appropriate alignment on
1597   /// the alloca.
1598   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty,
1599                                      const Twine &Name = "tmp");
1600 
1601   /// InitTempAlloca - Provide an initial value for the given alloca.
1602   void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value);
1603 
1604   /// CreateIRTemp - Create a temporary IR object of the given type, with
1605   /// appropriate alignment. This routine should only be used when an temporary
1606   /// value needs to be stored into an alloca (for example, to avoid explicit
1607   /// PHI construction), but the type is the IR type, not the type appropriate
1608   /// for storing in memory.
1609   llvm::AllocaInst *CreateIRTemp(QualType T, const Twine &Name = "tmp");
1610 
1611   /// CreateMemTemp - Create a temporary memory object of the given type, with
1612   /// appropriate alignment.
1613   llvm::AllocaInst *CreateMemTemp(QualType T, const Twine &Name = "tmp");
1614 
1615   /// CreateAggTemp - Create a temporary memory object for the given
1616   /// aggregate type.
1617   AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
1618     CharUnits Alignment = getContext().getTypeAlignInChars(T);
1619     return AggValueSlot::forAddr(CreateMemTemp(T, Name), Alignment,
1620                                  T.getQualifiers(),
1621                                  AggValueSlot::IsNotDestructed,
1622                                  AggValueSlot::DoesNotNeedGCBarriers,
1623                                  AggValueSlot::IsNotAliased);
1624   }
1625 
1626   /// Emit a cast to void* in the appropriate address space.
1627   llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
1628 
1629   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
1630   /// expression and compare the result against zero, returning an Int1Ty value.
1631   llvm::Value *EvaluateExprAsBool(const Expr *E);
1632 
1633   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
1634   void EmitIgnoredExpr(const Expr *E);
1635 
1636   /// EmitAnyExpr - Emit code to compute the specified expression which can have
1637   /// any type.  The result is returned as an RValue struct.  If this is an
1638   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
1639   /// the result should be returned.
1640   ///
1641   /// \param ignoreResult True if the resulting value isn't used.
1642   RValue EmitAnyExpr(const Expr *E,
1643                      AggValueSlot aggSlot = AggValueSlot::ignored(),
1644                      bool ignoreResult = false);
1645 
1646   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
1647   // or the value of the expression, depending on how va_list is defined.
1648   llvm::Value *EmitVAListRef(const Expr *E);
1649 
1650   /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
1651   /// always be accessible even if no aggregate location is provided.
1652   RValue EmitAnyExprToTemp(const Expr *E);
1653 
1654   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
1655   /// arbitrary expression into the given memory location.
1656   void EmitAnyExprToMem(const Expr *E, llvm::Value *Location,
1657                         Qualifiers Quals, bool IsInitializer);
1658 
1659   /// EmitExprAsInit - Emits the code necessary to initialize a
1660   /// location in memory with the given initializer.
1661   void EmitExprAsInit(const Expr *init, const ValueDecl *D,
1662                       LValue lvalue, bool capturedByInit);
1663 
1664   /// EmitAggregateCopy - Emit an aggrate assignment.
1665   ///
1666   /// The difference to EmitAggregateCopy is that tail padding is not copied.
1667   /// This is required for correctness when assigning non-POD structures in C++.
1668   void EmitAggregateAssign(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1669                            QualType EltTy, bool isVolatile=false,
1670                            CharUnits Alignment = CharUnits::Zero()) {
1671     EmitAggregateCopy(DestPtr, SrcPtr, EltTy, isVolatile, Alignment, true);
1672   }
1673 
1674   /// EmitAggregateCopy - Emit an aggrate copy.
1675   ///
1676   /// \param isVolatile - True iff either the source or the destination is
1677   /// volatile.
1678   /// \param isAssignment - If false, allow padding to be copied.  This often
1679   /// yields more efficient.
1680   void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1681                          QualType EltTy, bool isVolatile=false,
1682                          CharUnits Alignment = CharUnits::Zero(),
1683                          bool isAssignment = false);
1684 
1685   /// StartBlock - Start new block named N. If insert block is a dummy block
1686   /// then reuse it.
1687   void StartBlock(const char *N);
1688 
1689   /// GetAddrOfStaticLocalVar - Return the address of a static local variable.
1690   llvm::Constant *GetAddrOfStaticLocalVar(const VarDecl *BVD) {
1691     return cast<llvm::Constant>(GetAddrOfLocalVar(BVD));
1692   }
1693 
1694   /// GetAddrOfLocalVar - Return the address of a local variable.
1695   llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) {
1696     llvm::Value *Res = LocalDeclMap[VD];
1697     assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!");
1698     return Res;
1699   }
1700 
1701   /// getOpaqueLValueMapping - Given an opaque value expression (which
1702   /// must be mapped to an l-value), return its mapping.
1703   const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
1704     assert(OpaqueValueMapping::shouldBindAsLValue(e));
1705 
1706     llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
1707       it = OpaqueLValues.find(e);
1708     assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
1709     return it->second;
1710   }
1711 
1712   /// getOpaqueRValueMapping - Given an opaque value expression (which
1713   /// must be mapped to an r-value), return its mapping.
1714   const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
1715     assert(!OpaqueValueMapping::shouldBindAsLValue(e));
1716 
1717     llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
1718       it = OpaqueRValues.find(e);
1719     assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
1720     return it->second;
1721   }
1722 
1723   /// getAccessedFieldNo - Given an encoded value and a result number, return
1724   /// the input field number being accessed.
1725   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
1726 
1727   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
1728   llvm::BasicBlock *GetIndirectGotoBlock();
1729 
1730   /// EmitNullInitialization - Generate code to set a value of the given type to
1731   /// null, If the type contains data member pointers, they will be initialized
1732   /// to -1 in accordance with the Itanium C++ ABI.
1733   void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty);
1734 
1735   // EmitVAArg - Generate code to get an argument from the passed in pointer
1736   // and update it accordingly. The return value is a pointer to the argument.
1737   // FIXME: We should be able to get rid of this method and use the va_arg
1738   // instruction in LLVM instead once it works well enough.
1739   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty);
1740 
1741   /// emitArrayLength - Compute the length of an array, even if it's a
1742   /// VLA, and drill down to the base element type.
1743   llvm::Value *emitArrayLength(const ArrayType *arrayType,
1744                                QualType &baseType,
1745                                llvm::Value *&addr);
1746 
1747   /// EmitVLASize - Capture all the sizes for the VLA expressions in
1748   /// the given variably-modified type and store them in the VLASizeMap.
1749   ///
1750   /// This function can be called with a null (unreachable) insert point.
1751   void EmitVariablyModifiedType(QualType Ty);
1752 
1753   /// getVLASize - Returns an LLVM value that corresponds to the size,
1754   /// in non-variably-sized elements, of a variable length array type,
1755   /// plus that largest non-variably-sized element type.  Assumes that
1756   /// the type has already been emitted with EmitVariablyModifiedType.
1757   std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla);
1758   std::pair<llvm::Value*,QualType> getVLASize(QualType vla);
1759 
1760   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
1761   /// generating code for an C++ member function.
1762   llvm::Value *LoadCXXThis() {
1763     assert(CXXThisValue && "no 'this' value for this function");
1764     return CXXThisValue;
1765   }
1766 
1767   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
1768   /// virtual bases.
1769   llvm::Value *LoadCXXVTT() {
1770     assert(CXXVTTValue && "no VTT value for this function");
1771     return CXXVTTValue;
1772   }
1773 
1774   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
1775   /// complete class to the given direct base.
1776   llvm::Value *
1777   GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value,
1778                                         const CXXRecordDecl *Derived,
1779                                         const CXXRecordDecl *Base,
1780                                         bool BaseIsVirtual);
1781 
1782   /// GetAddressOfBaseClass - This function will add the necessary delta to the
1783   /// load of 'this' and returns address of the base class.
1784   llvm::Value *GetAddressOfBaseClass(llvm::Value *Value,
1785                                      const CXXRecordDecl *Derived,
1786                                      CastExpr::path_const_iterator PathBegin,
1787                                      CastExpr::path_const_iterator PathEnd,
1788                                      bool NullCheckValue);
1789 
1790   llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value,
1791                                         const CXXRecordDecl *Derived,
1792                                         CastExpr::path_const_iterator PathBegin,
1793                                         CastExpr::path_const_iterator PathEnd,
1794                                         bool NullCheckValue);
1795 
1796   llvm::Value *GetVirtualBaseClassOffset(llvm::Value *This,
1797                                          const CXXRecordDecl *ClassDecl,
1798                                          const CXXRecordDecl *BaseClassDecl);
1799 
1800   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
1801                                       CXXCtorType CtorType,
1802                                       const FunctionArgList &Args);
1803   // It's important not to confuse this and the previous function. Delegating
1804   // constructors are the C++0x feature. The constructor delegate optimization
1805   // is used to reduce duplication in the base and complete consturctors where
1806   // they are substantially the same.
1807   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
1808                                         const FunctionArgList &Args);
1809   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
1810                               bool ForVirtualBase, llvm::Value *This,
1811                               CallExpr::const_arg_iterator ArgBeg,
1812                               CallExpr::const_arg_iterator ArgEnd);
1813 
1814   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
1815                               llvm::Value *This, llvm::Value *Src,
1816                               CallExpr::const_arg_iterator ArgBeg,
1817                               CallExpr::const_arg_iterator ArgEnd);
1818 
1819   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1820                                   const ConstantArrayType *ArrayTy,
1821                                   llvm::Value *ArrayPtr,
1822                                   CallExpr::const_arg_iterator ArgBeg,
1823                                   CallExpr::const_arg_iterator ArgEnd,
1824                                   bool ZeroInitialization = false);
1825 
1826   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1827                                   llvm::Value *NumElements,
1828                                   llvm::Value *ArrayPtr,
1829                                   CallExpr::const_arg_iterator ArgBeg,
1830                                   CallExpr::const_arg_iterator ArgEnd,
1831                                   bool ZeroInitialization = false);
1832 
1833   static Destroyer destroyCXXObject;
1834 
1835   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
1836                              bool ForVirtualBase, llvm::Value *This);
1837 
1838   void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
1839                                llvm::Value *NewPtr, llvm::Value *NumElements);
1840 
1841   void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
1842                         llvm::Value *Ptr);
1843 
1844   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
1845   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
1846 
1847   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
1848                       QualType DeleteTy);
1849 
1850   llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E);
1851   llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE);
1852   llvm::Value* EmitCXXUuidofExpr(const CXXUuidofExpr *E);
1853 
1854   void MaybeEmitStdInitializerListCleanup(llvm::Value *loc, const Expr *init);
1855   void EmitStdInitializerListCleanup(llvm::Value *loc,
1856                                      const InitListExpr *init);
1857 
1858   /// \brief Situations in which we might emit a check for the suitability of a
1859   ///        pointer or glvalue.
1860   enum TypeCheckKind {
1861     /// Checking the operand of a load. Must be suitably sized and aligned.
1862     TCK_Load,
1863     /// Checking the destination of a store. Must be suitably sized and aligned.
1864     TCK_Store,
1865     /// Checking the bound value in a reference binding. Must be suitably sized
1866     /// and aligned, but is not required to refer to an object (until the
1867     /// reference is used), per core issue 453.
1868     TCK_ReferenceBinding,
1869     /// Checking the object expression in a non-static data member access. Must
1870     /// be an object within its lifetime.
1871     TCK_MemberAccess,
1872     /// Checking the 'this' pointer for a call to a non-static member function.
1873     /// Must be an object within its lifetime.
1874     TCK_MemberCall
1875   };
1876 
1877   /// \brief Emit a check that \p V is the address of storage of the
1878   /// appropriate size and alignment for an object of type \p Type.
1879   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
1880                      QualType Type, CharUnits Alignment = CharUnits::Zero());
1881 
1882   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1883                                        bool isInc, bool isPre);
1884   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1885                                          bool isInc, bool isPre);
1886   //===--------------------------------------------------------------------===//
1887   //                            Declaration Emission
1888   //===--------------------------------------------------------------------===//
1889 
1890   /// EmitDecl - Emit a declaration.
1891   ///
1892   /// This function can be called with a null (unreachable) insert point.
1893   void EmitDecl(const Decl &D);
1894 
1895   /// EmitVarDecl - Emit a local variable declaration.
1896   ///
1897   /// This function can be called with a null (unreachable) insert point.
1898   void EmitVarDecl(const VarDecl &D);
1899 
1900   void EmitScalarInit(const Expr *init, const ValueDecl *D,
1901                       LValue lvalue, bool capturedByInit);
1902   void EmitScalarInit(llvm::Value *init, LValue lvalue);
1903 
1904   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
1905                              llvm::Value *Address);
1906 
1907   /// EmitAutoVarDecl - Emit an auto variable declaration.
1908   ///
1909   /// This function can be called with a null (unreachable) insert point.
1910   void EmitAutoVarDecl(const VarDecl &D);
1911 
1912   class AutoVarEmission {
1913     friend class CodeGenFunction;
1914 
1915     const VarDecl *Variable;
1916 
1917     /// The alignment of the variable.
1918     CharUnits Alignment;
1919 
1920     /// The address of the alloca.  Null if the variable was emitted
1921     /// as a global constant.
1922     llvm::Value *Address;
1923 
1924     llvm::Value *NRVOFlag;
1925 
1926     /// True if the variable is a __block variable.
1927     bool IsByRef;
1928 
1929     /// True if the variable is of aggregate type and has a constant
1930     /// initializer.
1931     bool IsConstantAggregate;
1932 
1933     struct Invalid {};
1934     AutoVarEmission(Invalid) : Variable(0) {}
1935 
1936     AutoVarEmission(const VarDecl &variable)
1937       : Variable(&variable), Address(0), NRVOFlag(0),
1938         IsByRef(false), IsConstantAggregate(false) {}
1939 
1940     bool wasEmittedAsGlobal() const { return Address == 0; }
1941 
1942   public:
1943     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
1944 
1945     /// Returns the address of the object within this declaration.
1946     /// Note that this does not chase the forwarding pointer for
1947     /// __block decls.
1948     llvm::Value *getObjectAddress(CodeGenFunction &CGF) const {
1949       if (!IsByRef) return Address;
1950 
1951       return CGF.Builder.CreateStructGEP(Address,
1952                                          CGF.getByRefValueLLVMField(Variable),
1953                                          Variable->getNameAsString());
1954     }
1955   };
1956   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
1957   void EmitAutoVarInit(const AutoVarEmission &emission);
1958   void EmitAutoVarCleanups(const AutoVarEmission &emission);
1959   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
1960                               QualType::DestructionKind dtorKind);
1961 
1962   void EmitStaticVarDecl(const VarDecl &D,
1963                          llvm::GlobalValue::LinkageTypes Linkage);
1964 
1965   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
1966   void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, unsigned ArgNo);
1967 
1968   /// protectFromPeepholes - Protect a value that we're intending to
1969   /// store to the side, but which will probably be used later, from
1970   /// aggressive peepholing optimizations that might delete it.
1971   ///
1972   /// Pass the result to unprotectFromPeepholes to declare that
1973   /// protection is no longer required.
1974   ///
1975   /// There's no particular reason why this shouldn't apply to
1976   /// l-values, it's just that no existing peepholes work on pointers.
1977   PeepholeProtection protectFromPeepholes(RValue rvalue);
1978   void unprotectFromPeepholes(PeepholeProtection protection);
1979 
1980   //===--------------------------------------------------------------------===//
1981   //                             Statement Emission
1982   //===--------------------------------------------------------------------===//
1983 
1984   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
1985   void EmitStopPoint(const Stmt *S);
1986 
1987   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
1988   /// this function even if there is no current insertion point.
1989   ///
1990   /// This function may clear the current insertion point; callers should use
1991   /// EnsureInsertPoint if they wish to subsequently generate code without first
1992   /// calling EmitBlock, EmitBranch, or EmitStmt.
1993   void EmitStmt(const Stmt *S);
1994 
1995   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
1996   /// necessarily require an insertion point or debug information; typically
1997   /// because the statement amounts to a jump or a container of other
1998   /// statements.
1999   ///
2000   /// \return True if the statement was handled.
2001   bool EmitSimpleStmt(const Stmt *S);
2002 
2003   RValue EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
2004                           AggValueSlot AVS = AggValueSlot::ignored());
2005 
2006   /// EmitLabel - Emit the block for the given label. It is legal to call this
2007   /// function even if there is no current insertion point.
2008   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
2009 
2010   void EmitLabelStmt(const LabelStmt &S);
2011   void EmitAttributedStmt(const AttributedStmt &S);
2012   void EmitGotoStmt(const GotoStmt &S);
2013   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
2014   void EmitIfStmt(const IfStmt &S);
2015   void EmitWhileStmt(const WhileStmt &S);
2016   void EmitDoStmt(const DoStmt &S);
2017   void EmitForStmt(const ForStmt &S);
2018   void EmitReturnStmt(const ReturnStmt &S);
2019   void EmitDeclStmt(const DeclStmt &S);
2020   void EmitBreakStmt(const BreakStmt &S);
2021   void EmitContinueStmt(const ContinueStmt &S);
2022   void EmitSwitchStmt(const SwitchStmt &S);
2023   void EmitDefaultStmt(const DefaultStmt &S);
2024   void EmitCaseStmt(const CaseStmt &S);
2025   void EmitCaseStmtRange(const CaseStmt &S);
2026   void EmitAsmStmt(const AsmStmt &S);
2027 
2028   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
2029   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
2030   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
2031   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
2032   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
2033 
2034   llvm::Constant *getUnwindResumeFn();
2035   llvm::Constant *getUnwindResumeOrRethrowFn();
2036   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2037   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2038 
2039   void EmitCXXTryStmt(const CXXTryStmt &S);
2040   void EmitCXXForRangeStmt(const CXXForRangeStmt &S);
2041 
2042   //===--------------------------------------------------------------------===//
2043   //                         LValue Expression Emission
2044   //===--------------------------------------------------------------------===//
2045 
2046   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
2047   RValue GetUndefRValue(QualType Ty);
2048 
2049   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
2050   /// and issue an ErrorUnsupported style diagnostic (using the
2051   /// provided Name).
2052   RValue EmitUnsupportedRValue(const Expr *E,
2053                                const char *Name);
2054 
2055   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
2056   /// an ErrorUnsupported style diagnostic (using the provided Name).
2057   LValue EmitUnsupportedLValue(const Expr *E,
2058                                const char *Name);
2059 
2060   /// EmitLValue - Emit code to compute a designator that specifies the location
2061   /// of the expression.
2062   ///
2063   /// This can return one of two things: a simple address or a bitfield
2064   /// reference.  In either case, the LLVM Value* in the LValue structure is
2065   /// guaranteed to be an LLVM pointer type.
2066   ///
2067   /// If this returns a bitfield reference, nothing about the pointee type of
2068   /// the LLVM value is known: For example, it may not be a pointer to an
2069   /// integer.
2070   ///
2071   /// If this returns a normal address, and if the lvalue's C type is fixed
2072   /// size, this method guarantees that the returned pointer type will point to
2073   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
2074   /// variable length type, this is not possible.
2075   ///
2076   LValue EmitLValue(const Expr *E);
2077 
2078   /// \brief Same as EmitLValue but additionally we generate checking code to
2079   /// guard against undefined behavior.  This is only suitable when we know
2080   /// that the address will be used to access the object.
2081   LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
2082 
2083   /// EmitToMemory - Change a scalar value from its value
2084   /// representation to its in-memory representation.
2085   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
2086 
2087   /// EmitFromMemory - Change a scalar value from its memory
2088   /// representation to its value representation.
2089   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
2090 
2091   /// EmitLoadOfScalar - Load a scalar value from an address, taking
2092   /// care to appropriately convert from the memory representation to
2093   /// the LLVM value representation.
2094   llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
2095                                 unsigned Alignment, QualType Ty,
2096                                 llvm::MDNode *TBAAInfo = 0);
2097 
2098   /// EmitLoadOfScalar - Load a scalar value from an address, taking
2099   /// care to appropriately convert from the memory representation to
2100   /// the LLVM value representation.  The l-value must be a simple
2101   /// l-value.
2102   llvm::Value *EmitLoadOfScalar(LValue lvalue);
2103 
2104   /// EmitStoreOfScalar - Store a scalar value to an address, taking
2105   /// care to appropriately convert from the memory representation to
2106   /// the LLVM value representation.
2107   void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
2108                          bool Volatile, unsigned Alignment, QualType Ty,
2109                          llvm::MDNode *TBAAInfo = 0, bool isInit=false);
2110 
2111   /// EmitStoreOfScalar - Store a scalar value to an address, taking
2112   /// care to appropriately convert from the memory representation to
2113   /// the LLVM value representation.  The l-value must be a simple
2114   /// l-value.  The isInit flag indicates whether this is an initialization.
2115   /// If so, atomic qualifiers are ignored and the store is always non-atomic.
2116   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
2117 
2118   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
2119   /// this method emits the address of the lvalue, then loads the result as an
2120   /// rvalue, returning the rvalue.
2121   RValue EmitLoadOfLValue(LValue V);
2122   RValue EmitLoadOfExtVectorElementLValue(LValue V);
2123   RValue EmitLoadOfBitfieldLValue(LValue LV);
2124 
2125   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
2126   /// lvalue, where both are guaranteed to the have the same type, and that type
2127   /// is 'Ty'.
2128   void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit=false);
2129   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
2130 
2131   /// EmitStoreThroughLValue - Store Src into Dst with same constraints as
2132   /// EmitStoreThroughLValue.
2133   ///
2134   /// \param Result [out] - If non-null, this will be set to a Value* for the
2135   /// bit-field contents after the store, appropriate for use as the result of
2136   /// an assignment to the bit-field.
2137   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2138                                       llvm::Value **Result=0);
2139 
2140   /// Emit an l-value for an assignment (simple or compound) of complex type.
2141   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
2142   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
2143 
2144   // Note: only available for agg return types
2145   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
2146   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
2147   // Note: only available for agg return types
2148   LValue EmitCallExprLValue(const CallExpr *E);
2149   // Note: only available for agg return types
2150   LValue EmitVAArgExprLValue(const VAArgExpr *E);
2151   LValue EmitDeclRefLValue(const DeclRefExpr *E);
2152   LValue EmitStringLiteralLValue(const StringLiteral *E);
2153   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
2154   LValue EmitPredefinedLValue(const PredefinedExpr *E);
2155   LValue EmitUnaryOpLValue(const UnaryOperator *E);
2156   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E);
2157   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
2158   LValue EmitMemberExpr(const MemberExpr *E);
2159   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
2160   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
2161   LValue EmitInitListLValue(const InitListExpr *E);
2162   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
2163   LValue EmitCastLValue(const CastExpr *E);
2164   LValue EmitNullInitializationLValue(const CXXScalarValueInitExpr *E);
2165   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
2166   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
2167 
2168   RValue EmitRValueForField(LValue LV, const FieldDecl *FD);
2169 
2170   class ConstantEmission {
2171     llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
2172     ConstantEmission(llvm::Constant *C, bool isReference)
2173       : ValueAndIsReference(C, isReference) {}
2174   public:
2175     ConstantEmission() {}
2176     static ConstantEmission forReference(llvm::Constant *C) {
2177       return ConstantEmission(C, true);
2178     }
2179     static ConstantEmission forValue(llvm::Constant *C) {
2180       return ConstantEmission(C, false);
2181     }
2182 
2183     operator bool() const { return ValueAndIsReference.getOpaqueValue() != 0; }
2184 
2185     bool isReference() const { return ValueAndIsReference.getInt(); }
2186     LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
2187       assert(isReference());
2188       return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
2189                                             refExpr->getType());
2190     }
2191 
2192     llvm::Constant *getValue() const {
2193       assert(!isReference());
2194       return ValueAndIsReference.getPointer();
2195     }
2196   };
2197 
2198   ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
2199 
2200   RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
2201                                 AggValueSlot slot = AggValueSlot::ignored());
2202   LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
2203 
2204   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
2205                               const ObjCIvarDecl *Ivar);
2206   LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
2207 
2208   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
2209   /// if the Field is a reference, this will return the address of the reference
2210   /// and not the address of the value stored in the reference.
2211   LValue EmitLValueForFieldInitialization(LValue Base,
2212                                           const FieldDecl* Field);
2213 
2214   LValue EmitLValueForIvar(QualType ObjectTy,
2215                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
2216                            unsigned CVRQualifiers);
2217 
2218   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
2219   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
2220   LValue EmitLambdaLValue(const LambdaExpr *E);
2221   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
2222   LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
2223 
2224   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
2225   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
2226   LValue EmitStmtExprLValue(const StmtExpr *E);
2227   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
2228   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
2229   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init);
2230 
2231   //===--------------------------------------------------------------------===//
2232   //                         Scalar Expression Emission
2233   //===--------------------------------------------------------------------===//
2234 
2235   /// EmitCall - Generate a call of the given function, expecting the given
2236   /// result type, and using the given argument list which specifies both the
2237   /// LLVM arguments and the types they were derived from.
2238   ///
2239   /// \param TargetDecl - If given, the decl of the function in a direct call;
2240   /// used to set attributes on the call (noreturn, etc.).
2241   RValue EmitCall(const CGFunctionInfo &FnInfo,
2242                   llvm::Value *Callee,
2243                   ReturnValueSlot ReturnValue,
2244                   const CallArgList &Args,
2245                   const Decl *TargetDecl = 0,
2246                   llvm::Instruction **callOrInvoke = 0);
2247 
2248   RValue EmitCall(QualType FnType, llvm::Value *Callee,
2249                   ReturnValueSlot ReturnValue,
2250                   CallExpr::const_arg_iterator ArgBeg,
2251                   CallExpr::const_arg_iterator ArgEnd,
2252                   const Decl *TargetDecl = 0);
2253   RValue EmitCallExpr(const CallExpr *E,
2254                       ReturnValueSlot ReturnValue = ReturnValueSlot());
2255 
2256   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2257                                   ArrayRef<llvm::Value *> Args,
2258                                   const Twine &Name = "");
2259   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2260                                   const Twine &Name = "");
2261 
2262   llvm::Value *BuildVirtualCall(const CXXMethodDecl *MD, llvm::Value *This,
2263                                 llvm::Type *Ty);
2264   llvm::Value *BuildVirtualCall(const CXXDestructorDecl *DD, CXXDtorType Type,
2265                                 llvm::Value *This, llvm::Type *Ty);
2266   llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
2267                                          NestedNameSpecifier *Qual,
2268                                          llvm::Type *Ty);
2269 
2270   llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
2271                                                    CXXDtorType Type,
2272                                                    const CXXRecordDecl *RD);
2273 
2274   RValue EmitCXXMemberCall(const CXXMethodDecl *MD,
2275                            SourceLocation CallLoc,
2276                            llvm::Value *Callee,
2277                            ReturnValueSlot ReturnValue,
2278                            llvm::Value *This,
2279                            llvm::Value *VTT,
2280                            CallExpr::const_arg_iterator ArgBeg,
2281                            CallExpr::const_arg_iterator ArgEnd);
2282   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
2283                                ReturnValueSlot ReturnValue);
2284   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
2285                                       ReturnValueSlot ReturnValue);
2286 
2287   llvm::Value *EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E,
2288                                            const CXXMethodDecl *MD,
2289                                            llvm::Value *This);
2290   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
2291                                        const CXXMethodDecl *MD,
2292                                        ReturnValueSlot ReturnValue);
2293 
2294   RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
2295                                 ReturnValueSlot ReturnValue);
2296 
2297 
2298   RValue EmitBuiltinExpr(const FunctionDecl *FD,
2299                          unsigned BuiltinID, const CallExpr *E);
2300 
2301   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
2302 
2303   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
2304   /// is unhandled by the current target.
2305   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2306 
2307   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2308   llvm::Value *EmitNeonCall(llvm::Function *F,
2309                             SmallVectorImpl<llvm::Value*> &O,
2310                             const char *name,
2311                             unsigned shift = 0, bool rightshift = false);
2312   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
2313   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
2314                                    bool negateForRightShift);
2315 
2316   llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
2317   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2318   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2319 
2320   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
2321   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
2322   llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
2323   llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
2324   llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
2325   llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
2326                                 const ObjCMethodDecl *MethodWithObjects);
2327   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
2328   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
2329                              ReturnValueSlot Return = ReturnValueSlot());
2330 
2331   /// Retrieves the default cleanup kind for an ARC cleanup.
2332   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
2333   CleanupKind getARCCleanupKind() {
2334     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
2335              ? NormalAndEHCleanup : NormalCleanup;
2336   }
2337 
2338   // ARC primitives.
2339   void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr);
2340   void EmitARCDestroyWeak(llvm::Value *addr);
2341   llvm::Value *EmitARCLoadWeak(llvm::Value *addr);
2342   llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr);
2343   llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr,
2344                                 bool ignored);
2345   void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src);
2346   void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src);
2347   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
2348   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
2349   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
2350                                   bool ignored);
2351   llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value,
2352                                       bool ignored);
2353   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
2354   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
2355   llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
2356   void EmitARCDestroyStrong(llvm::Value *addr, bool precise);
2357   void EmitARCRelease(llvm::Value *value, bool precise);
2358   llvm::Value *EmitARCAutorelease(llvm::Value *value);
2359   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
2360   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
2361   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
2362 
2363   std::pair<LValue,llvm::Value*>
2364   EmitARCStoreAutoreleasing(const BinaryOperator *e);
2365   std::pair<LValue,llvm::Value*>
2366   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
2367 
2368   llvm::Value *EmitObjCThrowOperand(const Expr *expr);
2369 
2370   llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr);
2371   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
2372   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
2373 
2374   llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
2375   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
2376   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
2377 
2378   static Destroyer destroyARCStrongImprecise;
2379   static Destroyer destroyARCStrongPrecise;
2380   static Destroyer destroyARCWeak;
2381 
2382   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
2383   llvm::Value *EmitObjCAutoreleasePoolPush();
2384   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
2385   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
2386   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
2387 
2388   /// EmitReferenceBindingToExpr - Emits a reference binding to the passed in
2389   /// expression. Will emit a temporary variable if E is not an LValue.
2390   RValue EmitReferenceBindingToExpr(const Expr* E,
2391                                     const NamedDecl *InitializedDecl);
2392 
2393   //===--------------------------------------------------------------------===//
2394   //                           Expression Emission
2395   //===--------------------------------------------------------------------===//
2396 
2397   // Expressions are broken into three classes: scalar, complex, aggregate.
2398 
2399   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
2400   /// scalar type, returning the result.
2401   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
2402 
2403   /// EmitScalarConversion - Emit a conversion from the specified type to the
2404   /// specified destination type, both of which are LLVM scalar types.
2405   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
2406                                     QualType DstTy);
2407 
2408   /// EmitComplexToScalarConversion - Emit a conversion from the specified
2409   /// complex type to the specified destination type, where the destination type
2410   /// is an LLVM scalar type.
2411   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
2412                                              QualType DstTy);
2413 
2414 
2415   /// EmitAggExpr - Emit the computation of the specified expression
2416   /// of aggregate type.  The result is computed into the given slot,
2417   /// which may be null to indicate that the value is not needed.
2418   void EmitAggExpr(const Expr *E, AggValueSlot AS);
2419 
2420   /// EmitAggExprToLValue - Emit the computation of the specified expression of
2421   /// aggregate type into a temporary LValue.
2422   LValue EmitAggExprToLValue(const Expr *E);
2423 
2424   /// EmitGCMemmoveCollectable - Emit special API for structs with object
2425   /// pointers.
2426   void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr,
2427                                 QualType Ty);
2428 
2429   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
2430   /// make sure it survives garbage collection until this point.
2431   void EmitExtendGCLifetime(llvm::Value *object);
2432 
2433   /// EmitComplexExpr - Emit the computation of the specified expression of
2434   /// complex type, returning the result.
2435   ComplexPairTy EmitComplexExpr(const Expr *E,
2436                                 bool IgnoreReal = false,
2437                                 bool IgnoreImag = false);
2438 
2439   /// EmitComplexExprIntoAddr - Emit the computation of the specified expression
2440   /// of complex type, storing into the specified Value*.
2441   void EmitComplexExprIntoAddr(const Expr *E, llvm::Value *DestAddr,
2442                                bool DestIsVolatile);
2443 
2444   /// StoreComplexToAddr - Store a complex number into the specified address.
2445   void StoreComplexToAddr(ComplexPairTy V, llvm::Value *DestAddr,
2446                           bool DestIsVolatile);
2447   /// LoadComplexFromAddr - Load a complex number from the specified address.
2448   ComplexPairTy LoadComplexFromAddr(llvm::Value *SrcAddr, bool SrcIsVolatile);
2449 
2450   /// CreateStaticVarDecl - Create a zero-initialized LLVM global for
2451   /// a static local variable.
2452   llvm::GlobalVariable *CreateStaticVarDecl(const VarDecl &D,
2453                                             const char *Separator,
2454                                        llvm::GlobalValue::LinkageTypes Linkage);
2455 
2456   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
2457   /// global variable that has already been created for it.  If the initializer
2458   /// has a different type than GV does, this may free GV and return a different
2459   /// one.  Otherwise it just returns GV.
2460   llvm::GlobalVariable *
2461   AddInitializerToStaticVarDecl(const VarDecl &D,
2462                                 llvm::GlobalVariable *GV);
2463 
2464 
2465   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
2466   /// variable with global storage.
2467   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
2468                                 bool PerformInit);
2469 
2470   /// Call atexit() with a function that passes the given argument to
2471   /// the given function.
2472   void registerGlobalDtorWithAtExit(llvm::Constant *fn, llvm::Constant *addr);
2473 
2474   /// Emit code in this function to perform a guarded variable
2475   /// initialization.  Guarded initializations are used when it's not
2476   /// possible to prove that an initialization will be done exactly
2477   /// once, e.g. with a static local variable or a static data member
2478   /// of a class template.
2479   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
2480                           bool PerformInit);
2481 
2482   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
2483   /// variables.
2484   void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
2485                                  llvm::Constant **Decls,
2486                                  unsigned NumDecls);
2487 
2488   /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
2489   /// variables.
2490   void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn,
2491                                   const std::vector<std::pair<llvm::WeakVH,
2492                                   llvm::Constant*> > &DtorsAndObjects);
2493 
2494   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
2495                                         const VarDecl *D,
2496                                         llvm::GlobalVariable *Addr,
2497                                         bool PerformInit);
2498 
2499   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
2500 
2501   void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src,
2502                                   const Expr *Exp);
2503 
2504   void enterFullExpression(const ExprWithCleanups *E) {
2505     if (E->getNumObjects() == 0) return;
2506     enterNonTrivialFullExpression(E);
2507   }
2508   void enterNonTrivialFullExpression(const ExprWithCleanups *E);
2509 
2510   void EmitCXXThrowExpr(const CXXThrowExpr *E);
2511 
2512   void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest);
2513 
2514   RValue EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest = 0);
2515 
2516   //===--------------------------------------------------------------------===//
2517   //                         Annotations Emission
2518   //===--------------------------------------------------------------------===//
2519 
2520   /// Emit an annotation call (intrinsic or builtin).
2521   llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
2522                                   llvm::Value *AnnotatedVal,
2523                                   llvm::StringRef AnnotationStr,
2524                                   SourceLocation Location);
2525 
2526   /// Emit local annotations for the local variable V, declared by D.
2527   void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
2528 
2529   /// Emit field annotations for the given field & value. Returns the
2530   /// annotation result.
2531   llvm::Value *EmitFieldAnnotations(const FieldDecl *D, llvm::Value *V);
2532 
2533   //===--------------------------------------------------------------------===//
2534   //                             Internal Helpers
2535   //===--------------------------------------------------------------------===//
2536 
2537   /// ContainsLabel - Return true if the statement contains a label in it.  If
2538   /// this statement is not executed normally, it not containing a label means
2539   /// that we can just remove the code.
2540   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
2541 
2542   /// containsBreak - Return true if the statement contains a break out of it.
2543   /// If the statement (recursively) contains a switch or loop with a break
2544   /// inside of it, this is fine.
2545   static bool containsBreak(const Stmt *S);
2546 
2547   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2548   /// to a constant, or if it does but contains a label, return false.  If it
2549   /// constant folds return true and set the boolean result in Result.
2550   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result);
2551 
2552   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2553   /// to a constant, or if it does but contains a label, return false.  If it
2554   /// constant folds return true and set the folded value.
2555   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result);
2556 
2557   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
2558   /// if statement) to the specified blocks.  Based on the condition, this might
2559   /// try to simplify the codegen of the conditional based on the branch.
2560   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
2561                             llvm::BasicBlock *FalseBlock);
2562 
2563   /// \brief Emit a description of a type in a format suitable for passing to
2564   /// a runtime sanitizer handler.
2565   llvm::Constant *EmitCheckTypeDescriptor(QualType T);
2566 
2567   /// \brief Convert a value into a format suitable for passing to a runtime
2568   /// sanitizer handler.
2569   llvm::Value *EmitCheckValue(llvm::Value *V);
2570 
2571   /// \brief Emit a description of a source location in a format suitable for
2572   /// passing to a runtime sanitizer handler.
2573   llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
2574 
2575   /// \brief Create a basic block that will call the trap intrinsic, and emit a
2576   /// conditional branch to it.
2577   void EmitCheck(llvm::Value *Checked, StringRef CheckName,
2578                  llvm::ArrayRef<llvm::Constant *> StaticArgs,
2579                  llvm::ArrayRef<llvm::Value *> DynamicArgs);
2580 
2581   /// EmitCallArg - Emit a single call argument.
2582   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
2583 
2584   /// EmitDelegateCallArg - We are performing a delegate call; that
2585   /// is, the current function is delegating to another one.  Produce
2586   /// a r-value suitable for passing the given parameter.
2587   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param);
2588 
2589   /// SetFPAccuracy - Set the minimum required accuracy of the given floating
2590   /// point operation, expressed as the maximum relative error in ulp.
2591   void SetFPAccuracy(llvm::Value *Val, float Accuracy);
2592 
2593 private:
2594   llvm::MDNode *getRangeForLoadFromType(QualType Ty);
2595   void EmitReturnOfRValue(RValue RV, QualType Ty);
2596 
2597   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
2598   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
2599   ///
2600   /// \param AI - The first function argument of the expansion.
2601   /// \return The argument following the last expanded function
2602   /// argument.
2603   llvm::Function::arg_iterator
2604   ExpandTypeFromArgs(QualType Ty, LValue Dst,
2605                      llvm::Function::arg_iterator AI);
2606 
2607   /// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg
2608   /// Ty, into individual arguments on the provided vector \arg Args. See
2609   /// ABIArgInfo::Expand.
2610   void ExpandTypeToArgs(QualType Ty, RValue Src,
2611                         SmallVector<llvm::Value*, 16> &Args,
2612                         llvm::FunctionType *IRFuncTy);
2613 
2614   llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
2615                             const Expr *InputExpr, std::string &ConstraintStr);
2616 
2617   llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
2618                                   LValue InputValue, QualType InputType,
2619                                   std::string &ConstraintStr);
2620 
2621   /// EmitCallArgs - Emit call arguments for a function.
2622   /// The CallArgTypeInfo parameter is used for iterating over the known
2623   /// argument types of the function being called.
2624   template<typename T>
2625   void EmitCallArgs(CallArgList& Args, const T* CallArgTypeInfo,
2626                     CallExpr::const_arg_iterator ArgBeg,
2627                     CallExpr::const_arg_iterator ArgEnd) {
2628       CallExpr::const_arg_iterator Arg = ArgBeg;
2629 
2630     // First, use the argument types that the type info knows about
2631     if (CallArgTypeInfo) {
2632       for (typename T::arg_type_iterator I = CallArgTypeInfo->arg_type_begin(),
2633            E = CallArgTypeInfo->arg_type_end(); I != E; ++I, ++Arg) {
2634         assert(Arg != ArgEnd && "Running over edge of argument list!");
2635         QualType ArgType = *I;
2636 #ifndef NDEBUG
2637         QualType ActualArgType = Arg->getType();
2638         if (ArgType->isPointerType() && ActualArgType->isPointerType()) {
2639           QualType ActualBaseType =
2640             ActualArgType->getAs<PointerType>()->getPointeeType();
2641           QualType ArgBaseType =
2642             ArgType->getAs<PointerType>()->getPointeeType();
2643           if (ArgBaseType->isVariableArrayType()) {
2644             if (const VariableArrayType *VAT =
2645                 getContext().getAsVariableArrayType(ActualBaseType)) {
2646               if (!VAT->getSizeExpr())
2647                 ActualArgType = ArgType;
2648             }
2649           }
2650         }
2651         assert(getContext().getCanonicalType(ArgType.getNonReferenceType()).
2652                getTypePtr() ==
2653                getContext().getCanonicalType(ActualArgType).getTypePtr() &&
2654                "type mismatch in call argument!");
2655 #endif
2656         EmitCallArg(Args, *Arg, ArgType);
2657       }
2658 
2659       // Either we've emitted all the call args, or we have a call to a
2660       // variadic function.
2661       assert((Arg == ArgEnd || CallArgTypeInfo->isVariadic()) &&
2662              "Extra arguments in non-variadic function!");
2663 
2664     }
2665 
2666     // If we still have any arguments, emit them using the type of the argument.
2667     for (; Arg != ArgEnd; ++Arg)
2668       EmitCallArg(Args, *Arg, Arg->getType());
2669   }
2670 
2671   const TargetCodeGenInfo &getTargetHooks() const {
2672     return CGM.getTargetCodeGenInfo();
2673   }
2674 
2675   void EmitDeclMetadata();
2676 
2677   CodeGenModule::ByrefHelpers *
2678   buildByrefHelpers(llvm::StructType &byrefType,
2679                     const AutoVarEmission &emission);
2680 
2681   void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
2682 
2683   /// GetPointeeAlignment - Given an expression with a pointer type, emit the
2684   /// value and compute our best estimate of the alignment of the pointee.
2685   std::pair<llvm::Value*, unsigned> EmitPointerWithAlignment(const Expr *Addr);
2686 };
2687 
2688 /// Helper class with most of the code for saving a value for a
2689 /// conditional expression cleanup.
2690 struct DominatingLLVMValue {
2691   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
2692 
2693   /// Answer whether the given value needs extra work to be saved.
2694   static bool needsSaving(llvm::Value *value) {
2695     // If it's not an instruction, we don't need to save.
2696     if (!isa<llvm::Instruction>(value)) return false;
2697 
2698     // If it's an instruction in the entry block, we don't need to save.
2699     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
2700     return (block != &block->getParent()->getEntryBlock());
2701   }
2702 
2703   /// Try to save the given value.
2704   static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
2705     if (!needsSaving(value)) return saved_type(value, false);
2706 
2707     // Otherwise we need an alloca.
2708     llvm::Value *alloca =
2709       CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save");
2710     CGF.Builder.CreateStore(value, alloca);
2711 
2712     return saved_type(alloca, true);
2713   }
2714 
2715   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
2716     if (!value.getInt()) return value.getPointer();
2717     return CGF.Builder.CreateLoad(value.getPointer());
2718   }
2719 };
2720 
2721 /// A partial specialization of DominatingValue for llvm::Values that
2722 /// might be llvm::Instructions.
2723 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
2724   typedef T *type;
2725   static type restore(CodeGenFunction &CGF, saved_type value) {
2726     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
2727   }
2728 };
2729 
2730 /// A specialization of DominatingValue for RValue.
2731 template <> struct DominatingValue<RValue> {
2732   typedef RValue type;
2733   class saved_type {
2734     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
2735                 AggregateAddress, ComplexAddress };
2736 
2737     llvm::Value *Value;
2738     Kind K;
2739     saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {}
2740 
2741   public:
2742     static bool needsSaving(RValue value);
2743     static saved_type save(CodeGenFunction &CGF, RValue value);
2744     RValue restore(CodeGenFunction &CGF);
2745 
2746     // implementations in CGExprCXX.cpp
2747   };
2748 
2749   static bool needsSaving(type value) {
2750     return saved_type::needsSaving(value);
2751   }
2752   static saved_type save(CodeGenFunction &CGF, type value) {
2753     return saved_type::save(CGF, value);
2754   }
2755   static type restore(CodeGenFunction &CGF, saved_type value) {
2756     return value.restore(CGF);
2757   }
2758 };
2759 
2760 }  // end namespace CodeGen
2761 }  // end namespace clang
2762 
2763 #endif
2764