1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the internal per-function state used for llvm translation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef CLANG_CODEGEN_CODEGENFUNCTION_H 15 #define CLANG_CODEGEN_CODEGENFUNCTION_H 16 17 #include "clang/AST/Type.h" 18 #include "clang/AST/ExprCXX.h" 19 #include "clang/AST/ExprObjC.h" 20 #include "clang/AST/CharUnits.h" 21 #include "clang/Frontend/CodeGenOptions.h" 22 #include "clang/Basic/ABI.h" 23 #include "clang/Basic/TargetInfo.h" 24 #include "llvm/ADT/ArrayRef.h" 25 #include "llvm/ADT/DenseMap.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/Support/ValueHandle.h" 28 #include "llvm/Support/Debug.h" 29 #include "CodeGenModule.h" 30 #include "CGBuilder.h" 31 #include "CGDebugInfo.h" 32 #include "CGValue.h" 33 34 namespace llvm { 35 class BasicBlock; 36 class LLVMContext; 37 class MDNode; 38 class Module; 39 class SwitchInst; 40 class Twine; 41 class Value; 42 class CallSite; 43 } 44 45 namespace clang { 46 class ASTContext; 47 class BlockDecl; 48 class CXXDestructorDecl; 49 class CXXForRangeStmt; 50 class CXXTryStmt; 51 class Decl; 52 class LabelDecl; 53 class EnumConstantDecl; 54 class FunctionDecl; 55 class FunctionProtoType; 56 class LabelStmt; 57 class ObjCContainerDecl; 58 class ObjCInterfaceDecl; 59 class ObjCIvarDecl; 60 class ObjCMethodDecl; 61 class ObjCImplementationDecl; 62 class ObjCPropertyImplDecl; 63 class TargetInfo; 64 class TargetCodeGenInfo; 65 class VarDecl; 66 class ObjCForCollectionStmt; 67 class ObjCAtTryStmt; 68 class ObjCAtThrowStmt; 69 class ObjCAtSynchronizedStmt; 70 class ObjCAutoreleasePoolStmt; 71 72 namespace CodeGen { 73 class CodeGenTypes; 74 class CGFunctionInfo; 75 class CGRecordLayout; 76 class CGBlockInfo; 77 class CGCXXABI; 78 class BlockFlags; 79 class BlockFieldFlags; 80 81 /// A branch fixup. These are required when emitting a goto to a 82 /// label which hasn't been emitted yet. The goto is optimistically 83 /// emitted as a branch to the basic block for the label, and (if it 84 /// occurs in a scope with non-trivial cleanups) a fixup is added to 85 /// the innermost cleanup. When a (normal) cleanup is popped, any 86 /// unresolved fixups in that scope are threaded through the cleanup. 87 struct BranchFixup { 88 /// The block containing the terminator which needs to be modified 89 /// into a switch if this fixup is resolved into the current scope. 90 /// If null, LatestBranch points directly to the destination. 91 llvm::BasicBlock *OptimisticBranchBlock; 92 93 /// The ultimate destination of the branch. 94 /// 95 /// This can be set to null to indicate that this fixup was 96 /// successfully resolved. 97 llvm::BasicBlock *Destination; 98 99 /// The destination index value. 100 unsigned DestinationIndex; 101 102 /// The initial branch of the fixup. 103 llvm::BranchInst *InitialBranch; 104 }; 105 106 template <class T> struct InvariantValue { 107 typedef T type; 108 typedef T saved_type; 109 static bool needsSaving(type value) { return false; } 110 static saved_type save(CodeGenFunction &CGF, type value) { return value; } 111 static type restore(CodeGenFunction &CGF, saved_type value) { return value; } 112 }; 113 114 /// A metaprogramming class for ensuring that a value will dominate an 115 /// arbitrary position in a function. 116 template <class T> struct DominatingValue : InvariantValue<T> {}; 117 118 template <class T, bool mightBeInstruction = 119 llvm::is_base_of<llvm::Value, T>::value && 120 !llvm::is_base_of<llvm::Constant, T>::value && 121 !llvm::is_base_of<llvm::BasicBlock, T>::value> 122 struct DominatingPointer; 123 template <class T> struct DominatingPointer<T,false> : InvariantValue<T*> {}; 124 // template <class T> struct DominatingPointer<T,true> at end of file 125 126 template <class T> struct DominatingValue<T*> : DominatingPointer<T> {}; 127 128 enum CleanupKind { 129 EHCleanup = 0x1, 130 NormalCleanup = 0x2, 131 NormalAndEHCleanup = EHCleanup | NormalCleanup, 132 133 InactiveCleanup = 0x4, 134 InactiveEHCleanup = EHCleanup | InactiveCleanup, 135 InactiveNormalCleanup = NormalCleanup | InactiveCleanup, 136 InactiveNormalAndEHCleanup = NormalAndEHCleanup | InactiveCleanup 137 }; 138 139 /// A stack of scopes which respond to exceptions, including cleanups 140 /// and catch blocks. 141 class EHScopeStack { 142 public: 143 /// A saved depth on the scope stack. This is necessary because 144 /// pushing scopes onto the stack invalidates iterators. 145 class stable_iterator { 146 friend class EHScopeStack; 147 148 /// Offset from StartOfData to EndOfBuffer. 149 ptrdiff_t Size; 150 151 stable_iterator(ptrdiff_t Size) : Size(Size) {} 152 153 public: 154 static stable_iterator invalid() { return stable_iterator(-1); } 155 stable_iterator() : Size(-1) {} 156 157 bool isValid() const { return Size >= 0; } 158 159 /// Returns true if this scope encloses I. 160 /// Returns false if I is invalid. 161 /// This scope must be valid. 162 bool encloses(stable_iterator I) const { return Size <= I.Size; } 163 164 /// Returns true if this scope strictly encloses I: that is, 165 /// if it encloses I and is not I. 166 /// Returns false is I is invalid. 167 /// This scope must be valid. 168 bool strictlyEncloses(stable_iterator I) const { return Size < I.Size; } 169 170 friend bool operator==(stable_iterator A, stable_iterator B) { 171 return A.Size == B.Size; 172 } 173 friend bool operator!=(stable_iterator A, stable_iterator B) { 174 return A.Size != B.Size; 175 } 176 }; 177 178 /// Information for lazily generating a cleanup. Subclasses must be 179 /// POD-like: cleanups will not be destructed, and they will be 180 /// allocated on the cleanup stack and freely copied and moved 181 /// around. 182 /// 183 /// Cleanup implementations should generally be declared in an 184 /// anonymous namespace. 185 class Cleanup { 186 // Anchor the construction vtable. 187 virtual void anchor(); 188 public: 189 /// Generation flags. 190 class Flags { 191 enum { 192 F_IsForEH = 0x1, 193 F_IsNormalCleanupKind = 0x2, 194 F_IsEHCleanupKind = 0x4 195 }; 196 unsigned flags; 197 198 public: 199 Flags() : flags(0) {} 200 201 /// isForEH - true if the current emission is for an EH cleanup. 202 bool isForEHCleanup() const { return flags & F_IsForEH; } 203 bool isForNormalCleanup() const { return !isForEHCleanup(); } 204 void setIsForEHCleanup() { flags |= F_IsForEH; } 205 206 bool isNormalCleanupKind() const { return flags & F_IsNormalCleanupKind; } 207 void setIsNormalCleanupKind() { flags |= F_IsNormalCleanupKind; } 208 209 /// isEHCleanupKind - true if the cleanup was pushed as an EH 210 /// cleanup. 211 bool isEHCleanupKind() const { return flags & F_IsEHCleanupKind; } 212 void setIsEHCleanupKind() { flags |= F_IsEHCleanupKind; } 213 }; 214 215 // Provide a virtual destructor to suppress a very common warning 216 // that unfortunately cannot be suppressed without this. Cleanups 217 // should not rely on this destructor ever being called. 218 virtual ~Cleanup() {} 219 220 /// Emit the cleanup. For normal cleanups, this is run in the 221 /// same EH context as when the cleanup was pushed, i.e. the 222 /// immediately-enclosing context of the cleanup scope. For 223 /// EH cleanups, this is run in a terminate context. 224 /// 225 // \param flags cleanup kind. 226 virtual void Emit(CodeGenFunction &CGF, Flags flags) = 0; 227 }; 228 229 /// ConditionalCleanupN stores the saved form of its N parameters, 230 /// then restores them and performs the cleanup. 231 template <class T, class A0> 232 class ConditionalCleanup1 : public Cleanup { 233 typedef typename DominatingValue<A0>::saved_type A0_saved; 234 A0_saved a0_saved; 235 236 void Emit(CodeGenFunction &CGF, Flags flags) { 237 A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); 238 T(a0).Emit(CGF, flags); 239 } 240 241 public: 242 ConditionalCleanup1(A0_saved a0) 243 : a0_saved(a0) {} 244 }; 245 246 template <class T, class A0, class A1> 247 class ConditionalCleanup2 : public Cleanup { 248 typedef typename DominatingValue<A0>::saved_type A0_saved; 249 typedef typename DominatingValue<A1>::saved_type A1_saved; 250 A0_saved a0_saved; 251 A1_saved a1_saved; 252 253 void Emit(CodeGenFunction &CGF, Flags flags) { 254 A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); 255 A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved); 256 T(a0, a1).Emit(CGF, flags); 257 } 258 259 public: 260 ConditionalCleanup2(A0_saved a0, A1_saved a1) 261 : a0_saved(a0), a1_saved(a1) {} 262 }; 263 264 template <class T, class A0, class A1, class A2> 265 class ConditionalCleanup3 : public Cleanup { 266 typedef typename DominatingValue<A0>::saved_type A0_saved; 267 typedef typename DominatingValue<A1>::saved_type A1_saved; 268 typedef typename DominatingValue<A2>::saved_type A2_saved; 269 A0_saved a0_saved; 270 A1_saved a1_saved; 271 A2_saved a2_saved; 272 273 void Emit(CodeGenFunction &CGF, Flags flags) { 274 A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); 275 A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved); 276 A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved); 277 T(a0, a1, a2).Emit(CGF, flags); 278 } 279 280 public: 281 ConditionalCleanup3(A0_saved a0, A1_saved a1, A2_saved a2) 282 : a0_saved(a0), a1_saved(a1), a2_saved(a2) {} 283 }; 284 285 template <class T, class A0, class A1, class A2, class A3> 286 class ConditionalCleanup4 : public Cleanup { 287 typedef typename DominatingValue<A0>::saved_type A0_saved; 288 typedef typename DominatingValue<A1>::saved_type A1_saved; 289 typedef typename DominatingValue<A2>::saved_type A2_saved; 290 typedef typename DominatingValue<A3>::saved_type A3_saved; 291 A0_saved a0_saved; 292 A1_saved a1_saved; 293 A2_saved a2_saved; 294 A3_saved a3_saved; 295 296 void Emit(CodeGenFunction &CGF, Flags flags) { 297 A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); 298 A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved); 299 A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved); 300 A3 a3 = DominatingValue<A3>::restore(CGF, a3_saved); 301 T(a0, a1, a2, a3).Emit(CGF, flags); 302 } 303 304 public: 305 ConditionalCleanup4(A0_saved a0, A1_saved a1, A2_saved a2, A3_saved a3) 306 : a0_saved(a0), a1_saved(a1), a2_saved(a2), a3_saved(a3) {} 307 }; 308 309 private: 310 // The implementation for this class is in CGException.h and 311 // CGException.cpp; the definition is here because it's used as a 312 // member of CodeGenFunction. 313 314 /// The start of the scope-stack buffer, i.e. the allocated pointer 315 /// for the buffer. All of these pointers are either simultaneously 316 /// null or simultaneously valid. 317 char *StartOfBuffer; 318 319 /// The end of the buffer. 320 char *EndOfBuffer; 321 322 /// The first valid entry in the buffer. 323 char *StartOfData; 324 325 /// The innermost normal cleanup on the stack. 326 stable_iterator InnermostNormalCleanup; 327 328 /// The innermost EH scope on the stack. 329 stable_iterator InnermostEHScope; 330 331 /// The current set of branch fixups. A branch fixup is a jump to 332 /// an as-yet unemitted label, i.e. a label for which we don't yet 333 /// know the EH stack depth. Whenever we pop a cleanup, we have 334 /// to thread all the current branch fixups through it. 335 /// 336 /// Fixups are recorded as the Use of the respective branch or 337 /// switch statement. The use points to the final destination. 338 /// When popping out of a cleanup, these uses are threaded through 339 /// the cleanup and adjusted to point to the new cleanup. 340 /// 341 /// Note that branches are allowed to jump into protected scopes 342 /// in certain situations; e.g. the following code is legal: 343 /// struct A { ~A(); }; // trivial ctor, non-trivial dtor 344 /// goto foo; 345 /// A a; 346 /// foo: 347 /// bar(); 348 SmallVector<BranchFixup, 8> BranchFixups; 349 350 char *allocate(size_t Size); 351 352 void *pushCleanup(CleanupKind K, size_t DataSize); 353 354 public: 355 EHScopeStack() : StartOfBuffer(0), EndOfBuffer(0), StartOfData(0), 356 InnermostNormalCleanup(stable_end()), 357 InnermostEHScope(stable_end()) {} 358 ~EHScopeStack() { delete[] StartOfBuffer; } 359 360 // Variadic templates would make this not terrible. 361 362 /// Push a lazily-created cleanup on the stack. 363 template <class T> 364 void pushCleanup(CleanupKind Kind) { 365 void *Buffer = pushCleanup(Kind, sizeof(T)); 366 Cleanup *Obj = new(Buffer) T(); 367 (void) Obj; 368 } 369 370 /// Push a lazily-created cleanup on the stack. 371 template <class T, class A0> 372 void pushCleanup(CleanupKind Kind, A0 a0) { 373 void *Buffer = pushCleanup(Kind, sizeof(T)); 374 Cleanup *Obj = new(Buffer) T(a0); 375 (void) Obj; 376 } 377 378 /// Push a lazily-created cleanup on the stack. 379 template <class T, class A0, class A1> 380 void pushCleanup(CleanupKind Kind, A0 a0, A1 a1) { 381 void *Buffer = pushCleanup(Kind, sizeof(T)); 382 Cleanup *Obj = new(Buffer) T(a0, a1); 383 (void) Obj; 384 } 385 386 /// Push a lazily-created cleanup on the stack. 387 template <class T, class A0, class A1, class A2> 388 void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2) { 389 void *Buffer = pushCleanup(Kind, sizeof(T)); 390 Cleanup *Obj = new(Buffer) T(a0, a1, a2); 391 (void) Obj; 392 } 393 394 /// Push a lazily-created cleanup on the stack. 395 template <class T, class A0, class A1, class A2, class A3> 396 void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) { 397 void *Buffer = pushCleanup(Kind, sizeof(T)); 398 Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3); 399 (void) Obj; 400 } 401 402 /// Push a lazily-created cleanup on the stack. 403 template <class T, class A0, class A1, class A2, class A3, class A4> 404 void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3, A4 a4) { 405 void *Buffer = pushCleanup(Kind, sizeof(T)); 406 Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3, a4); 407 (void) Obj; 408 } 409 410 // Feel free to add more variants of the following: 411 412 /// Push a cleanup with non-constant storage requirements on the 413 /// stack. The cleanup type must provide an additional static method: 414 /// static size_t getExtraSize(size_t); 415 /// The argument to this method will be the value N, which will also 416 /// be passed as the first argument to the constructor. 417 /// 418 /// The data stored in the extra storage must obey the same 419 /// restrictions as normal cleanup member data. 420 /// 421 /// The pointer returned from this method is valid until the cleanup 422 /// stack is modified. 423 template <class T, class A0, class A1, class A2> 424 T *pushCleanupWithExtra(CleanupKind Kind, size_t N, A0 a0, A1 a1, A2 a2) { 425 void *Buffer = pushCleanup(Kind, sizeof(T) + T::getExtraSize(N)); 426 return new (Buffer) T(N, a0, a1, a2); 427 } 428 429 /// Pops a cleanup scope off the stack. This is private to CGCleanup.cpp. 430 void popCleanup(); 431 432 /// Push a set of catch handlers on the stack. The catch is 433 /// uninitialized and will need to have the given number of handlers 434 /// set on it. 435 class EHCatchScope *pushCatch(unsigned NumHandlers); 436 437 /// Pops a catch scope off the stack. This is private to CGException.cpp. 438 void popCatch(); 439 440 /// Push an exceptions filter on the stack. 441 class EHFilterScope *pushFilter(unsigned NumFilters); 442 443 /// Pops an exceptions filter off the stack. 444 void popFilter(); 445 446 /// Push a terminate handler on the stack. 447 void pushTerminate(); 448 449 /// Pops a terminate handler off the stack. 450 void popTerminate(); 451 452 /// Determines whether the exception-scopes stack is empty. 453 bool empty() const { return StartOfData == EndOfBuffer; } 454 455 bool requiresLandingPad() const { 456 return InnermostEHScope != stable_end(); 457 } 458 459 /// Determines whether there are any normal cleanups on the stack. 460 bool hasNormalCleanups() const { 461 return InnermostNormalCleanup != stable_end(); 462 } 463 464 /// Returns the innermost normal cleanup on the stack, or 465 /// stable_end() if there are no normal cleanups. 466 stable_iterator getInnermostNormalCleanup() const { 467 return InnermostNormalCleanup; 468 } 469 stable_iterator getInnermostActiveNormalCleanup() const; 470 471 stable_iterator getInnermostEHScope() const { 472 return InnermostEHScope; 473 } 474 475 stable_iterator getInnermostActiveEHScope() const; 476 477 /// An unstable reference to a scope-stack depth. Invalidated by 478 /// pushes but not pops. 479 class iterator; 480 481 /// Returns an iterator pointing to the innermost EH scope. 482 iterator begin() const; 483 484 /// Returns an iterator pointing to the outermost EH scope. 485 iterator end() const; 486 487 /// Create a stable reference to the top of the EH stack. The 488 /// returned reference is valid until that scope is popped off the 489 /// stack. 490 stable_iterator stable_begin() const { 491 return stable_iterator(EndOfBuffer - StartOfData); 492 } 493 494 /// Create a stable reference to the bottom of the EH stack. 495 static stable_iterator stable_end() { 496 return stable_iterator(0); 497 } 498 499 /// Translates an iterator into a stable_iterator. 500 stable_iterator stabilize(iterator it) const; 501 502 /// Turn a stable reference to a scope depth into a unstable pointer 503 /// to the EH stack. 504 iterator find(stable_iterator save) const; 505 506 /// Removes the cleanup pointed to by the given stable_iterator. 507 void removeCleanup(stable_iterator save); 508 509 /// Add a branch fixup to the current cleanup scope. 510 BranchFixup &addBranchFixup() { 511 assert(hasNormalCleanups() && "adding fixup in scope without cleanups"); 512 BranchFixups.push_back(BranchFixup()); 513 return BranchFixups.back(); 514 } 515 516 unsigned getNumBranchFixups() const { return BranchFixups.size(); } 517 BranchFixup &getBranchFixup(unsigned I) { 518 assert(I < getNumBranchFixups()); 519 return BranchFixups[I]; 520 } 521 522 /// Pops lazily-removed fixups from the end of the list. This 523 /// should only be called by procedures which have just popped a 524 /// cleanup or resolved one or more fixups. 525 void popNullFixups(); 526 527 /// Clears the branch-fixups list. This should only be called by 528 /// ResolveAllBranchFixups. 529 void clearFixups() { BranchFixups.clear(); } 530 }; 531 532 /// CodeGenFunction - This class organizes the per-function state that is used 533 /// while generating LLVM code. 534 class CodeGenFunction : public CodeGenTypeCache { 535 CodeGenFunction(const CodeGenFunction &) LLVM_DELETED_FUNCTION; 536 void operator=(const CodeGenFunction &) LLVM_DELETED_FUNCTION; 537 538 friend class CGCXXABI; 539 public: 540 /// A jump destination is an abstract label, branching to which may 541 /// require a jump out through normal cleanups. 542 struct JumpDest { 543 JumpDest() : Block(0), ScopeDepth(), Index(0) {} 544 JumpDest(llvm::BasicBlock *Block, 545 EHScopeStack::stable_iterator Depth, 546 unsigned Index) 547 : Block(Block), ScopeDepth(Depth), Index(Index) {} 548 549 bool isValid() const { return Block != 0; } 550 llvm::BasicBlock *getBlock() const { return Block; } 551 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 552 unsigned getDestIndex() const { return Index; } 553 554 private: 555 llvm::BasicBlock *Block; 556 EHScopeStack::stable_iterator ScopeDepth; 557 unsigned Index; 558 }; 559 560 CodeGenModule &CGM; // Per-module state. 561 const TargetInfo &Target; 562 563 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 564 CGBuilderTy Builder; 565 566 /// CurFuncDecl - Holds the Decl for the current function or ObjC method. 567 /// This excludes BlockDecls. 568 const Decl *CurFuncDecl; 569 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 570 const Decl *CurCodeDecl; 571 const CGFunctionInfo *CurFnInfo; 572 QualType FnRetTy; 573 llvm::Function *CurFn; 574 575 /// CurGD - The GlobalDecl for the current function being compiled. 576 GlobalDecl CurGD; 577 578 /// PrologueCleanupDepth - The cleanup depth enclosing all the 579 /// cleanups associated with the parameters. 580 EHScopeStack::stable_iterator PrologueCleanupDepth; 581 582 /// ReturnBlock - Unified return block. 583 JumpDest ReturnBlock; 584 585 /// ReturnValue - The temporary alloca to hold the return value. This is null 586 /// iff the function has no return value. 587 llvm::Value *ReturnValue; 588 589 /// AllocaInsertPoint - This is an instruction in the entry block before which 590 /// we prefer to insert allocas. 591 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 592 593 /// BoundsChecking - Emit run-time bounds checks. Higher values mean 594 /// potentially higher performance penalties. 595 unsigned char BoundsChecking; 596 597 /// CatchUndefined - Emit run-time checks to catch undefined behaviors. 598 bool CatchUndefined; 599 600 /// In ARC, whether we should autorelease the return value. 601 bool AutoreleaseResult; 602 603 const CodeGen::CGBlockInfo *BlockInfo; 604 llvm::Value *BlockPointer; 605 606 llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; 607 FieldDecl *LambdaThisCaptureField; 608 609 /// \brief A mapping from NRVO variables to the flags used to indicate 610 /// when the NRVO has been applied to this variable. 611 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 612 613 EHScopeStack EHStack; 614 615 /// i32s containing the indexes of the cleanup destinations. 616 llvm::AllocaInst *NormalCleanupDest; 617 618 unsigned NextCleanupDestIndex; 619 620 /// FirstBlockInfo - The head of a singly-linked-list of block layouts. 621 CGBlockInfo *FirstBlockInfo; 622 623 /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. 624 llvm::BasicBlock *EHResumeBlock; 625 626 /// The exception slot. All landing pads write the current exception pointer 627 /// into this alloca. 628 llvm::Value *ExceptionSlot; 629 630 /// The selector slot. Under the MandatoryCleanup model, all landing pads 631 /// write the current selector value into this alloca. 632 llvm::AllocaInst *EHSelectorSlot; 633 634 /// Emits a landing pad for the current EH stack. 635 llvm::BasicBlock *EmitLandingPad(); 636 637 llvm::BasicBlock *getInvokeDestImpl(); 638 639 template <class T> 640 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 641 return DominatingValue<T>::save(*this, value); 642 } 643 644 public: 645 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 646 /// rethrows. 647 SmallVector<llvm::Value*, 8> ObjCEHValueStack; 648 649 /// A class controlling the emission of a finally block. 650 class FinallyInfo { 651 /// Where the catchall's edge through the cleanup should go. 652 JumpDest RethrowDest; 653 654 /// A function to call to enter the catch. 655 llvm::Constant *BeginCatchFn; 656 657 /// An i1 variable indicating whether or not the @finally is 658 /// running for an exception. 659 llvm::AllocaInst *ForEHVar; 660 661 /// An i8* variable into which the exception pointer to rethrow 662 /// has been saved. 663 llvm::AllocaInst *SavedExnVar; 664 665 public: 666 void enter(CodeGenFunction &CGF, const Stmt *Finally, 667 llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn, 668 llvm::Constant *rethrowFn); 669 void exit(CodeGenFunction &CGF); 670 }; 671 672 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 673 /// current full-expression. Safe against the possibility that 674 /// we're currently inside a conditionally-evaluated expression. 675 template <class T, class A0> 676 void pushFullExprCleanup(CleanupKind kind, A0 a0) { 677 // If we're not in a conditional branch, or if none of the 678 // arguments requires saving, then use the unconditional cleanup. 679 if (!isInConditionalBranch()) 680 return EHStack.pushCleanup<T>(kind, a0); 681 682 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 683 684 typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType; 685 EHStack.pushCleanup<CleanupType>(kind, a0_saved); 686 initFullExprCleanup(); 687 } 688 689 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 690 /// current full-expression. Safe against the possibility that 691 /// we're currently inside a conditionally-evaluated expression. 692 template <class T, class A0, class A1> 693 void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) { 694 // If we're not in a conditional branch, or if none of the 695 // arguments requires saving, then use the unconditional cleanup. 696 if (!isInConditionalBranch()) 697 return EHStack.pushCleanup<T>(kind, a0, a1); 698 699 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 700 typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); 701 702 typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType; 703 EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved); 704 initFullExprCleanup(); 705 } 706 707 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 708 /// current full-expression. Safe against the possibility that 709 /// we're currently inside a conditionally-evaluated expression. 710 template <class T, class A0, class A1, class A2> 711 void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2) { 712 // If we're not in a conditional branch, or if none of the 713 // arguments requires saving, then use the unconditional cleanup. 714 if (!isInConditionalBranch()) { 715 return EHStack.pushCleanup<T>(kind, a0, a1, a2); 716 } 717 718 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 719 typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); 720 typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2); 721 722 typedef EHScopeStack::ConditionalCleanup3<T, A0, A1, A2> CleanupType; 723 EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, a2_saved); 724 initFullExprCleanup(); 725 } 726 727 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 728 /// current full-expression. Safe against the possibility that 729 /// we're currently inside a conditionally-evaluated expression. 730 template <class T, class A0, class A1, class A2, class A3> 731 void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2, A3 a3) { 732 // If we're not in a conditional branch, or if none of the 733 // arguments requires saving, then use the unconditional cleanup. 734 if (!isInConditionalBranch()) { 735 return EHStack.pushCleanup<T>(kind, a0, a1, a2, a3); 736 } 737 738 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 739 typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); 740 typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2); 741 typename DominatingValue<A3>::saved_type a3_saved = saveValueInCond(a3); 742 743 typedef EHScopeStack::ConditionalCleanup4<T, A0, A1, A2, A3> CleanupType; 744 EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, 745 a2_saved, a3_saved); 746 initFullExprCleanup(); 747 } 748 749 /// Set up the last cleaup that was pushed as a conditional 750 /// full-expression cleanup. 751 void initFullExprCleanup(); 752 753 /// PushDestructorCleanup - Push a cleanup to call the 754 /// complete-object destructor of an object of the given type at the 755 /// given address. Does nothing if T is not a C++ class type with a 756 /// non-trivial destructor. 757 void PushDestructorCleanup(QualType T, llvm::Value *Addr); 758 759 /// PushDestructorCleanup - Push a cleanup to call the 760 /// complete-object variant of the given destructor on the object at 761 /// the given address. 762 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, 763 llvm::Value *Addr); 764 765 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 766 /// process all branch fixups. 767 void PopCleanupBlock(bool FallThroughIsBranchThrough = false); 768 769 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 770 /// The block cannot be reactivated. Pops it if it's the top of the 771 /// stack. 772 /// 773 /// \param DominatingIP - An instruction which is known to 774 /// dominate the current IP (if set) and which lies along 775 /// all paths of execution between the current IP and the 776 /// the point at which the cleanup comes into scope. 777 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 778 llvm::Instruction *DominatingIP); 779 780 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 781 /// Cannot be used to resurrect a deactivated cleanup. 782 /// 783 /// \param DominatingIP - An instruction which is known to 784 /// dominate the current IP (if set) and which lies along 785 /// all paths of execution between the current IP and the 786 /// the point at which the cleanup comes into scope. 787 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 788 llvm::Instruction *DominatingIP); 789 790 /// \brief Enters a new scope for capturing cleanups, all of which 791 /// will be executed once the scope is exited. 792 class RunCleanupsScope { 793 EHScopeStack::stable_iterator CleanupStackDepth; 794 bool OldDidCallStackSave; 795 bool PerformCleanup; 796 797 RunCleanupsScope(const RunCleanupsScope &) LLVM_DELETED_FUNCTION; 798 void operator=(const RunCleanupsScope &) LLVM_DELETED_FUNCTION; 799 800 protected: 801 CodeGenFunction& CGF; 802 803 public: 804 /// \brief Enter a new cleanup scope. 805 explicit RunCleanupsScope(CodeGenFunction &CGF) 806 : PerformCleanup(true), CGF(CGF) 807 { 808 CleanupStackDepth = CGF.EHStack.stable_begin(); 809 OldDidCallStackSave = CGF.DidCallStackSave; 810 CGF.DidCallStackSave = false; 811 } 812 813 /// \brief Exit this cleanup scope, emitting any accumulated 814 /// cleanups. 815 ~RunCleanupsScope() { 816 if (PerformCleanup) { 817 CGF.DidCallStackSave = OldDidCallStackSave; 818 CGF.PopCleanupBlocks(CleanupStackDepth); 819 } 820 } 821 822 /// \brief Determine whether this scope requires any cleanups. 823 bool requiresCleanups() const { 824 return CGF.EHStack.stable_begin() != CleanupStackDepth; 825 } 826 827 /// \brief Force the emission of cleanups now, instead of waiting 828 /// until this object is destroyed. 829 void ForceCleanup() { 830 assert(PerformCleanup && "Already forced cleanup"); 831 CGF.DidCallStackSave = OldDidCallStackSave; 832 CGF.PopCleanupBlocks(CleanupStackDepth); 833 PerformCleanup = false; 834 } 835 }; 836 837 class LexicalScope: protected RunCleanupsScope { 838 SourceRange Range; 839 bool PopDebugStack; 840 841 LexicalScope(const LexicalScope &) LLVM_DELETED_FUNCTION; 842 void operator=(const LexicalScope &) LLVM_DELETED_FUNCTION; 843 844 public: 845 /// \brief Enter a new cleanup scope. 846 explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) 847 : RunCleanupsScope(CGF), Range(Range), PopDebugStack(true) { 848 if (CGDebugInfo *DI = CGF.getDebugInfo()) 849 DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); 850 } 851 852 /// \brief Exit this cleanup scope, emitting any accumulated 853 /// cleanups. 854 ~LexicalScope() { 855 if (PopDebugStack) { 856 CGDebugInfo *DI = CGF.getDebugInfo(); 857 if (DI) DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 858 } 859 } 860 861 /// \brief Force the emission of cleanups now, instead of waiting 862 /// until this object is destroyed. 863 void ForceCleanup() { 864 RunCleanupsScope::ForceCleanup(); 865 if (CGDebugInfo *DI = CGF.getDebugInfo()) { 866 DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 867 PopDebugStack = false; 868 } 869 } 870 }; 871 872 873 /// PopCleanupBlocks - Takes the old cleanup stack size and emits 874 /// the cleanup blocks that have been added. 875 void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize); 876 877 void ResolveBranchFixups(llvm::BasicBlock *Target); 878 879 /// The given basic block lies in the current EH scope, but may be a 880 /// target of a potentially scope-crossing jump; get a stable handle 881 /// to which we can perform this jump later. 882 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 883 return JumpDest(Target, 884 EHStack.getInnermostNormalCleanup(), 885 NextCleanupDestIndex++); 886 } 887 888 /// The given basic block lies in the current EH scope, but may be a 889 /// target of a potentially scope-crossing jump; get a stable handle 890 /// to which we can perform this jump later. 891 JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { 892 return getJumpDestInCurrentScope(createBasicBlock(Name)); 893 } 894 895 /// EmitBranchThroughCleanup - Emit a branch from the current insert 896 /// block through the normal cleanup handling code (if any) and then 897 /// on to \arg Dest. 898 void EmitBranchThroughCleanup(JumpDest Dest); 899 900 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 901 /// specified destination obviously has no cleanups to run. 'false' is always 902 /// a conservatively correct answer for this method. 903 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 904 905 /// popCatchScope - Pops the catch scope at the top of the EHScope 906 /// stack, emitting any required code (other than the catch handlers 907 /// themselves). 908 void popCatchScope(); 909 910 llvm::BasicBlock *getEHResumeBlock(); 911 llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); 912 913 /// An object to manage conditionally-evaluated expressions. 914 class ConditionalEvaluation { 915 llvm::BasicBlock *StartBB; 916 917 public: 918 ConditionalEvaluation(CodeGenFunction &CGF) 919 : StartBB(CGF.Builder.GetInsertBlock()) {} 920 921 void begin(CodeGenFunction &CGF) { 922 assert(CGF.OutermostConditional != this); 923 if (!CGF.OutermostConditional) 924 CGF.OutermostConditional = this; 925 } 926 927 void end(CodeGenFunction &CGF) { 928 assert(CGF.OutermostConditional != 0); 929 if (CGF.OutermostConditional == this) 930 CGF.OutermostConditional = 0; 931 } 932 933 /// Returns a block which will be executed prior to each 934 /// evaluation of the conditional code. 935 llvm::BasicBlock *getStartingBlock() const { 936 return StartBB; 937 } 938 }; 939 940 /// isInConditionalBranch - Return true if we're currently emitting 941 /// one branch or the other of a conditional expression. 942 bool isInConditionalBranch() const { return OutermostConditional != 0; } 943 944 void setBeforeOutermostConditional(llvm::Value *value, llvm::Value *addr) { 945 assert(isInConditionalBranch()); 946 llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); 947 new llvm::StoreInst(value, addr, &block->back()); 948 } 949 950 /// An RAII object to record that we're evaluating a statement 951 /// expression. 952 class StmtExprEvaluation { 953 CodeGenFunction &CGF; 954 955 /// We have to save the outermost conditional: cleanups in a 956 /// statement expression aren't conditional just because the 957 /// StmtExpr is. 958 ConditionalEvaluation *SavedOutermostConditional; 959 960 public: 961 StmtExprEvaluation(CodeGenFunction &CGF) 962 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 963 CGF.OutermostConditional = 0; 964 } 965 966 ~StmtExprEvaluation() { 967 CGF.OutermostConditional = SavedOutermostConditional; 968 CGF.EnsureInsertPoint(); 969 } 970 }; 971 972 /// An object which temporarily prevents a value from being 973 /// destroyed by aggressive peephole optimizations that assume that 974 /// all uses of a value have been realized in the IR. 975 class PeepholeProtection { 976 llvm::Instruction *Inst; 977 friend class CodeGenFunction; 978 979 public: 980 PeepholeProtection() : Inst(0) {} 981 }; 982 983 /// A non-RAII class containing all the information about a bound 984 /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for 985 /// this which makes individual mappings very simple; using this 986 /// class directly is useful when you have a variable number of 987 /// opaque values or don't want the RAII functionality for some 988 /// reason. 989 class OpaqueValueMappingData { 990 const OpaqueValueExpr *OpaqueValue; 991 bool BoundLValue; 992 CodeGenFunction::PeepholeProtection Protection; 993 994 OpaqueValueMappingData(const OpaqueValueExpr *ov, 995 bool boundLValue) 996 : OpaqueValue(ov), BoundLValue(boundLValue) {} 997 public: 998 OpaqueValueMappingData() : OpaqueValue(0) {} 999 1000 static bool shouldBindAsLValue(const Expr *expr) { 1001 // gl-values should be bound as l-values for obvious reasons. 1002 // Records should be bound as l-values because IR generation 1003 // always keeps them in memory. Expressions of function type 1004 // act exactly like l-values but are formally required to be 1005 // r-values in C. 1006 return expr->isGLValue() || 1007 expr->getType()->isRecordType() || 1008 expr->getType()->isFunctionType(); 1009 } 1010 1011 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1012 const OpaqueValueExpr *ov, 1013 const Expr *e) { 1014 if (shouldBindAsLValue(ov)) 1015 return bind(CGF, ov, CGF.EmitLValue(e)); 1016 return bind(CGF, ov, CGF.EmitAnyExpr(e)); 1017 } 1018 1019 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1020 const OpaqueValueExpr *ov, 1021 const LValue &lv) { 1022 assert(shouldBindAsLValue(ov)); 1023 CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); 1024 return OpaqueValueMappingData(ov, true); 1025 } 1026 1027 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1028 const OpaqueValueExpr *ov, 1029 const RValue &rv) { 1030 assert(!shouldBindAsLValue(ov)); 1031 CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); 1032 1033 OpaqueValueMappingData data(ov, false); 1034 1035 // Work around an extremely aggressive peephole optimization in 1036 // EmitScalarConversion which assumes that all other uses of a 1037 // value are extant. 1038 data.Protection = CGF.protectFromPeepholes(rv); 1039 1040 return data; 1041 } 1042 1043 bool isValid() const { return OpaqueValue != 0; } 1044 void clear() { OpaqueValue = 0; } 1045 1046 void unbind(CodeGenFunction &CGF) { 1047 assert(OpaqueValue && "no data to unbind!"); 1048 1049 if (BoundLValue) { 1050 CGF.OpaqueLValues.erase(OpaqueValue); 1051 } else { 1052 CGF.OpaqueRValues.erase(OpaqueValue); 1053 CGF.unprotectFromPeepholes(Protection); 1054 } 1055 } 1056 }; 1057 1058 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 1059 class OpaqueValueMapping { 1060 CodeGenFunction &CGF; 1061 OpaqueValueMappingData Data; 1062 1063 public: 1064 static bool shouldBindAsLValue(const Expr *expr) { 1065 return OpaqueValueMappingData::shouldBindAsLValue(expr); 1066 } 1067 1068 /// Build the opaque value mapping for the given conditional 1069 /// operator if it's the GNU ?: extension. This is a common 1070 /// enough pattern that the convenience operator is really 1071 /// helpful. 1072 /// 1073 OpaqueValueMapping(CodeGenFunction &CGF, 1074 const AbstractConditionalOperator *op) : CGF(CGF) { 1075 if (isa<ConditionalOperator>(op)) 1076 // Leave Data empty. 1077 return; 1078 1079 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 1080 Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), 1081 e->getCommon()); 1082 } 1083 1084 OpaqueValueMapping(CodeGenFunction &CGF, 1085 const OpaqueValueExpr *opaqueValue, 1086 LValue lvalue) 1087 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { 1088 } 1089 1090 OpaqueValueMapping(CodeGenFunction &CGF, 1091 const OpaqueValueExpr *opaqueValue, 1092 RValue rvalue) 1093 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { 1094 } 1095 1096 void pop() { 1097 Data.unbind(CGF); 1098 Data.clear(); 1099 } 1100 1101 ~OpaqueValueMapping() { 1102 if (Data.isValid()) Data.unbind(CGF); 1103 } 1104 }; 1105 1106 /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field 1107 /// number that holds the value. 1108 unsigned getByRefValueLLVMField(const ValueDecl *VD) const; 1109 1110 /// BuildBlockByrefAddress - Computes address location of the 1111 /// variable which is declared as __block. 1112 llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr, 1113 const VarDecl *V); 1114 private: 1115 CGDebugInfo *DebugInfo; 1116 bool DisableDebugInfo; 1117 1118 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 1119 /// calling llvm.stacksave for multiple VLAs in the same scope. 1120 bool DidCallStackSave; 1121 1122 /// IndirectBranch - The first time an indirect goto is seen we create a block 1123 /// with an indirect branch. Every time we see the address of a label taken, 1124 /// we add the label to the indirect goto. Every subsequent indirect goto is 1125 /// codegen'd as a jump to the IndirectBranch's basic block. 1126 llvm::IndirectBrInst *IndirectBranch; 1127 1128 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 1129 /// decls. 1130 typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy; 1131 DeclMapTy LocalDeclMap; 1132 1133 /// LabelMap - This keeps track of the LLVM basic block for each C label. 1134 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 1135 1136 // BreakContinueStack - This keeps track of where break and continue 1137 // statements should jump to. 1138 struct BreakContinue { 1139 BreakContinue(JumpDest Break, JumpDest Continue) 1140 : BreakBlock(Break), ContinueBlock(Continue) {} 1141 1142 JumpDest BreakBlock; 1143 JumpDest ContinueBlock; 1144 }; 1145 SmallVector<BreakContinue, 8> BreakContinueStack; 1146 1147 /// SwitchInsn - This is nearest current switch instruction. It is null if 1148 /// current context is not in a switch. 1149 llvm::SwitchInst *SwitchInsn; 1150 1151 /// CaseRangeBlock - This block holds if condition check for last case 1152 /// statement range in current switch instruction. 1153 llvm::BasicBlock *CaseRangeBlock; 1154 1155 /// OpaqueLValues - Keeps track of the current set of opaque value 1156 /// expressions. 1157 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 1158 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 1159 1160 // VLASizeMap - This keeps track of the associated size for each VLA type. 1161 // We track this by the size expression rather than the type itself because 1162 // in certain situations, like a const qualifier applied to an VLA typedef, 1163 // multiple VLA types can share the same size expression. 1164 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 1165 // enter/leave scopes. 1166 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 1167 1168 /// A block containing a single 'unreachable' instruction. Created 1169 /// lazily by getUnreachableBlock(). 1170 llvm::BasicBlock *UnreachableBlock; 1171 1172 /// CXXThisDecl - When generating code for a C++ member function, 1173 /// this will hold the implicit 'this' declaration. 1174 ImplicitParamDecl *CXXABIThisDecl; 1175 llvm::Value *CXXABIThisValue; 1176 llvm::Value *CXXThisValue; 1177 1178 /// CXXVTTDecl - When generating code for a base object constructor or 1179 /// base object destructor with virtual bases, this will hold the implicit 1180 /// VTT parameter. 1181 ImplicitParamDecl *CXXVTTDecl; 1182 llvm::Value *CXXVTTValue; 1183 1184 /// OutermostConditional - Points to the outermost active 1185 /// conditional control. This is used so that we know if a 1186 /// temporary should be destroyed conditionally. 1187 ConditionalEvaluation *OutermostConditional; 1188 1189 1190 /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM 1191 /// type as well as the field number that contains the actual data. 1192 llvm::DenseMap<const ValueDecl *, std::pair<llvm::Type *, 1193 unsigned> > ByRefValueInfo; 1194 1195 llvm::BasicBlock *TerminateLandingPad; 1196 llvm::BasicBlock *TerminateHandler; 1197 llvm::BasicBlock *TrapBB; 1198 1199 /// Add a kernel metadata node to the named metadata node 'opencl.kernels'. 1200 /// In the kernel metadata node, reference the kernel function and metadata 1201 /// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2): 1202 /// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string 1203 /// "work_group_size_hint", and three 32-bit integers X, Y and Z. 1204 /// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string 1205 /// "reqd_work_group_size", and three 32-bit integers X, Y and Z. 1206 void EmitOpenCLKernelMetadata(const FunctionDecl *FD, 1207 llvm::Function *Fn); 1208 1209 public: 1210 CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false); 1211 ~CodeGenFunction(); 1212 1213 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 1214 ASTContext &getContext() const { return CGM.getContext(); } 1215 /// Returns true if DebugInfo is actually initialized. 1216 bool maybeInitializeDebugInfo() { 1217 if (CGM.getModuleDebugInfo()) { 1218 DebugInfo = CGM.getModuleDebugInfo(); 1219 return true; 1220 } 1221 return false; 1222 } 1223 CGDebugInfo *getDebugInfo() { 1224 if (DisableDebugInfo) 1225 return NULL; 1226 return DebugInfo; 1227 } 1228 void disableDebugInfo() { DisableDebugInfo = true; } 1229 void enableDebugInfo() { DisableDebugInfo = false; } 1230 1231 bool shouldUseFusedARCCalls() { 1232 return CGM.getCodeGenOpts().OptimizationLevel == 0; 1233 } 1234 1235 const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } 1236 1237 /// Returns a pointer to the function's exception object and selector slot, 1238 /// which is assigned in every landing pad. 1239 llvm::Value *getExceptionSlot(); 1240 llvm::Value *getEHSelectorSlot(); 1241 1242 /// Returns the contents of the function's exception object and selector 1243 /// slots. 1244 llvm::Value *getExceptionFromSlot(); 1245 llvm::Value *getSelectorFromSlot(); 1246 1247 llvm::Value *getNormalCleanupDestSlot(); 1248 1249 llvm::BasicBlock *getUnreachableBlock() { 1250 if (!UnreachableBlock) { 1251 UnreachableBlock = createBasicBlock("unreachable"); 1252 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 1253 } 1254 return UnreachableBlock; 1255 } 1256 1257 llvm::BasicBlock *getInvokeDest() { 1258 if (!EHStack.requiresLandingPad()) return 0; 1259 return getInvokeDestImpl(); 1260 } 1261 1262 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 1263 1264 //===--------------------------------------------------------------------===// 1265 // Cleanups 1266 //===--------------------------------------------------------------------===// 1267 1268 typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty); 1269 1270 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1271 llvm::Value *arrayEndPointer, 1272 QualType elementType, 1273 Destroyer *destroyer); 1274 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1275 llvm::Value *arrayEnd, 1276 QualType elementType, 1277 Destroyer *destroyer); 1278 1279 void pushDestroy(QualType::DestructionKind dtorKind, 1280 llvm::Value *addr, QualType type); 1281 void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type, 1282 Destroyer *destroyer, bool useEHCleanupForArray); 1283 void emitDestroy(llvm::Value *addr, QualType type, Destroyer *destroyer, 1284 bool useEHCleanupForArray); 1285 llvm::Function *generateDestroyHelper(llvm::Constant *addr, 1286 QualType type, 1287 Destroyer *destroyer, 1288 bool useEHCleanupForArray); 1289 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 1290 QualType type, Destroyer *destroyer, 1291 bool checkZeroLength, bool useEHCleanup); 1292 1293 Destroyer *getDestroyer(QualType::DestructionKind destructionKind); 1294 1295 /// Determines whether an EH cleanup is required to destroy a type 1296 /// with the given destruction kind. 1297 bool needsEHCleanup(QualType::DestructionKind kind) { 1298 switch (kind) { 1299 case QualType::DK_none: 1300 return false; 1301 case QualType::DK_cxx_destructor: 1302 case QualType::DK_objc_weak_lifetime: 1303 return getLangOpts().Exceptions; 1304 case QualType::DK_objc_strong_lifetime: 1305 return getLangOpts().Exceptions && 1306 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 1307 } 1308 llvm_unreachable("bad destruction kind"); 1309 } 1310 1311 CleanupKind getCleanupKind(QualType::DestructionKind kind) { 1312 return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); 1313 } 1314 1315 //===--------------------------------------------------------------------===// 1316 // Objective-C 1317 //===--------------------------------------------------------------------===// 1318 1319 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 1320 1321 void StartObjCMethod(const ObjCMethodDecl *MD, 1322 const ObjCContainerDecl *CD, 1323 SourceLocation StartLoc); 1324 1325 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 1326 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 1327 const ObjCPropertyImplDecl *PID); 1328 void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 1329 const ObjCPropertyImplDecl *propImpl, 1330 const ObjCMethodDecl *GetterMothodDecl, 1331 llvm::Constant *AtomicHelperFn); 1332 1333 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1334 ObjCMethodDecl *MD, bool ctor); 1335 1336 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 1337 /// for the given property. 1338 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 1339 const ObjCPropertyImplDecl *PID); 1340 void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1341 const ObjCPropertyImplDecl *propImpl, 1342 llvm::Constant *AtomicHelperFn); 1343 bool IndirectObjCSetterArg(const CGFunctionInfo &FI); 1344 bool IvarTypeWithAggrGCObjects(QualType Ty); 1345 1346 //===--------------------------------------------------------------------===// 1347 // Block Bits 1348 //===--------------------------------------------------------------------===// 1349 1350 llvm::Value *EmitBlockLiteral(const BlockExpr *); 1351 llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); 1352 static void destroyBlockInfos(CGBlockInfo *info); 1353 llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *, 1354 const CGBlockInfo &Info, 1355 llvm::StructType *, 1356 llvm::Constant *BlockVarLayout); 1357 1358 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 1359 const CGBlockInfo &Info, 1360 const Decl *OuterFuncDecl, 1361 const DeclMapTy &ldm, 1362 bool IsLambdaConversionToBlock); 1363 1364 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 1365 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 1366 llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( 1367 const ObjCPropertyImplDecl *PID); 1368 llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( 1369 const ObjCPropertyImplDecl *PID); 1370 llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); 1371 1372 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags); 1373 1374 class AutoVarEmission; 1375 1376 void emitByrefStructureInit(const AutoVarEmission &emission); 1377 void enterByrefCleanup(const AutoVarEmission &emission); 1378 1379 llvm::Value *LoadBlockStruct() { 1380 assert(BlockPointer && "no block pointer set!"); 1381 return BlockPointer; 1382 } 1383 1384 void AllocateBlockCXXThisPointer(const CXXThisExpr *E); 1385 void AllocateBlockDecl(const DeclRefExpr *E); 1386 llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef); 1387 llvm::Type *BuildByRefType(const VarDecl *var); 1388 1389 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1390 const CGFunctionInfo &FnInfo); 1391 void StartFunction(GlobalDecl GD, QualType RetTy, 1392 llvm::Function *Fn, 1393 const CGFunctionInfo &FnInfo, 1394 const FunctionArgList &Args, 1395 SourceLocation StartLoc); 1396 1397 void EmitConstructorBody(FunctionArgList &Args); 1398 void EmitDestructorBody(FunctionArgList &Args); 1399 void EmitFunctionBody(FunctionArgList &Args); 1400 1401 void EmitForwardingCallToLambda(const CXXRecordDecl *Lambda, 1402 CallArgList &CallArgs); 1403 void EmitLambdaToBlockPointerBody(FunctionArgList &Args); 1404 void EmitLambdaBlockInvokeBody(); 1405 void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD); 1406 void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD); 1407 1408 /// EmitReturnBlock - Emit the unified return block, trying to avoid its 1409 /// emission when possible. 1410 void EmitReturnBlock(); 1411 1412 /// FinishFunction - Complete IR generation of the current function. It is 1413 /// legal to call this function even if there is no current insertion point. 1414 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 1415 1416 /// GenerateThunk - Generate a thunk for the given method. 1417 void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1418 GlobalDecl GD, const ThunkInfo &Thunk); 1419 1420 void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1421 GlobalDecl GD, const ThunkInfo &Thunk); 1422 1423 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 1424 FunctionArgList &Args); 1425 1426 void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init, 1427 ArrayRef<VarDecl *> ArrayIndexes); 1428 1429 /// InitializeVTablePointer - Initialize the vtable pointer of the given 1430 /// subobject. 1431 /// 1432 void InitializeVTablePointer(BaseSubobject Base, 1433 const CXXRecordDecl *NearestVBase, 1434 CharUnits OffsetFromNearestVBase, 1435 llvm::Constant *VTable, 1436 const CXXRecordDecl *VTableClass); 1437 1438 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 1439 void InitializeVTablePointers(BaseSubobject Base, 1440 const CXXRecordDecl *NearestVBase, 1441 CharUnits OffsetFromNearestVBase, 1442 bool BaseIsNonVirtualPrimaryBase, 1443 llvm::Constant *VTable, 1444 const CXXRecordDecl *VTableClass, 1445 VisitedVirtualBasesSetTy& VBases); 1446 1447 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 1448 1449 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 1450 /// to by This. 1451 llvm::Value *GetVTablePtr(llvm::Value *This, llvm::Type *Ty); 1452 1453 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 1454 /// given phase of destruction for a destructor. The end result 1455 /// should call destructors on members and base classes in reverse 1456 /// order of their construction. 1457 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 1458 1459 /// ShouldInstrumentFunction - Return true if the current function should be 1460 /// instrumented with __cyg_profile_func_* calls 1461 bool ShouldInstrumentFunction(); 1462 1463 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 1464 /// instrumentation function with the current function and the call site, if 1465 /// function instrumentation is enabled. 1466 void EmitFunctionInstrumentation(const char *Fn); 1467 1468 /// EmitMCountInstrumentation - Emit call to .mcount. 1469 void EmitMCountInstrumentation(); 1470 1471 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 1472 /// arguments for the given function. This is also responsible for naming the 1473 /// LLVM function arguments. 1474 void EmitFunctionProlog(const CGFunctionInfo &FI, 1475 llvm::Function *Fn, 1476 const FunctionArgList &Args); 1477 1478 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 1479 /// given temporary. 1480 void EmitFunctionEpilog(const CGFunctionInfo &FI); 1481 1482 /// EmitStartEHSpec - Emit the start of the exception spec. 1483 void EmitStartEHSpec(const Decl *D); 1484 1485 /// EmitEndEHSpec - Emit the end of the exception spec. 1486 void EmitEndEHSpec(const Decl *D); 1487 1488 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 1489 llvm::BasicBlock *getTerminateLandingPad(); 1490 1491 /// getTerminateHandler - Return a handler (not a landing pad, just 1492 /// a catch handler) that just calls terminate. This is used when 1493 /// a terminate scope encloses a try. 1494 llvm::BasicBlock *getTerminateHandler(); 1495 1496 llvm::Type *ConvertTypeForMem(QualType T); 1497 llvm::Type *ConvertType(QualType T); 1498 llvm::Type *ConvertType(const TypeDecl *T) { 1499 return ConvertType(getContext().getTypeDeclType(T)); 1500 } 1501 1502 /// LoadObjCSelf - Load the value of self. This function is only valid while 1503 /// generating code for an Objective-C method. 1504 llvm::Value *LoadObjCSelf(); 1505 1506 /// TypeOfSelfObject - Return type of object that this self represents. 1507 QualType TypeOfSelfObject(); 1508 1509 /// hasAggregateLLVMType - Return true if the specified AST type will map into 1510 /// an aggregate LLVM type or is void. 1511 static bool hasAggregateLLVMType(QualType T); 1512 1513 /// createBasicBlock - Create an LLVM basic block. 1514 llvm::BasicBlock *createBasicBlock(const Twine &name = "", 1515 llvm::Function *parent = 0, 1516 llvm::BasicBlock *before = 0) { 1517 #ifdef NDEBUG 1518 return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before); 1519 #else 1520 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 1521 #endif 1522 } 1523 1524 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 1525 /// label maps to. 1526 JumpDest getJumpDestForLabel(const LabelDecl *S); 1527 1528 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 1529 /// another basic block, simplify it. This assumes that no other code could 1530 /// potentially reference the basic block. 1531 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 1532 1533 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 1534 /// adding a fall-through branch from the current insert block if 1535 /// necessary. It is legal to call this function even if there is no current 1536 /// insertion point. 1537 /// 1538 /// IsFinished - If true, indicates that the caller has finished emitting 1539 /// branches to the given block and does not expect to emit code into it. This 1540 /// means the block can be ignored if it is unreachable. 1541 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 1542 1543 /// EmitBlockAfterUses - Emit the given block somewhere hopefully 1544 /// near its uses, and leave the insertion point in it. 1545 void EmitBlockAfterUses(llvm::BasicBlock *BB); 1546 1547 /// EmitBranch - Emit a branch to the specified basic block from the current 1548 /// insert block, taking care to avoid creation of branches from dummy 1549 /// blocks. It is legal to call this function even if there is no current 1550 /// insertion point. 1551 /// 1552 /// This function clears the current insertion point. The caller should follow 1553 /// calls to this function with calls to Emit*Block prior to generation new 1554 /// code. 1555 void EmitBranch(llvm::BasicBlock *Block); 1556 1557 /// HaveInsertPoint - True if an insertion point is defined. If not, this 1558 /// indicates that the current code being emitted is unreachable. 1559 bool HaveInsertPoint() const { 1560 return Builder.GetInsertBlock() != 0; 1561 } 1562 1563 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 1564 /// emitted IR has a place to go. Note that by definition, if this function 1565 /// creates a block then that block is unreachable; callers may do better to 1566 /// detect when no insertion point is defined and simply skip IR generation. 1567 void EnsureInsertPoint() { 1568 if (!HaveInsertPoint()) 1569 EmitBlock(createBasicBlock()); 1570 } 1571 1572 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1573 /// specified stmt yet. 1574 void ErrorUnsupported(const Stmt *S, const char *Type, 1575 bool OmitOnError=false); 1576 1577 //===--------------------------------------------------------------------===// 1578 // Helpers 1579 //===--------------------------------------------------------------------===// 1580 1581 LValue MakeAddrLValue(llvm::Value *V, QualType T, 1582 CharUnits Alignment = CharUnits()) { 1583 return LValue::MakeAddr(V, T, Alignment, getContext(), 1584 CGM.getTBAAInfo(T)); 1585 } 1586 1587 LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 1588 CharUnits Alignment; 1589 if (!T->isIncompleteType()) 1590 Alignment = getContext().getTypeAlignInChars(T); 1591 return LValue::MakeAddr(V, T, Alignment, getContext(), 1592 CGM.getTBAAInfo(T)); 1593 } 1594 1595 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 1596 /// block. The caller is responsible for setting an appropriate alignment on 1597 /// the alloca. 1598 llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, 1599 const Twine &Name = "tmp"); 1600 1601 /// InitTempAlloca - Provide an initial value for the given alloca. 1602 void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value); 1603 1604 /// CreateIRTemp - Create a temporary IR object of the given type, with 1605 /// appropriate alignment. This routine should only be used when an temporary 1606 /// value needs to be stored into an alloca (for example, to avoid explicit 1607 /// PHI construction), but the type is the IR type, not the type appropriate 1608 /// for storing in memory. 1609 llvm::AllocaInst *CreateIRTemp(QualType T, const Twine &Name = "tmp"); 1610 1611 /// CreateMemTemp - Create a temporary memory object of the given type, with 1612 /// appropriate alignment. 1613 llvm::AllocaInst *CreateMemTemp(QualType T, const Twine &Name = "tmp"); 1614 1615 /// CreateAggTemp - Create a temporary memory object for the given 1616 /// aggregate type. 1617 AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") { 1618 CharUnits Alignment = getContext().getTypeAlignInChars(T); 1619 return AggValueSlot::forAddr(CreateMemTemp(T, Name), Alignment, 1620 T.getQualifiers(), 1621 AggValueSlot::IsNotDestructed, 1622 AggValueSlot::DoesNotNeedGCBarriers, 1623 AggValueSlot::IsNotAliased); 1624 } 1625 1626 /// Emit a cast to void* in the appropriate address space. 1627 llvm::Value *EmitCastToVoidPtr(llvm::Value *value); 1628 1629 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 1630 /// expression and compare the result against zero, returning an Int1Ty value. 1631 llvm::Value *EvaluateExprAsBool(const Expr *E); 1632 1633 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 1634 void EmitIgnoredExpr(const Expr *E); 1635 1636 /// EmitAnyExpr - Emit code to compute the specified expression which can have 1637 /// any type. The result is returned as an RValue struct. If this is an 1638 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 1639 /// the result should be returned. 1640 /// 1641 /// \param ignoreResult True if the resulting value isn't used. 1642 RValue EmitAnyExpr(const Expr *E, 1643 AggValueSlot aggSlot = AggValueSlot::ignored(), 1644 bool ignoreResult = false); 1645 1646 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 1647 // or the value of the expression, depending on how va_list is defined. 1648 llvm::Value *EmitVAListRef(const Expr *E); 1649 1650 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 1651 /// always be accessible even if no aggregate location is provided. 1652 RValue EmitAnyExprToTemp(const Expr *E); 1653 1654 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 1655 /// arbitrary expression into the given memory location. 1656 void EmitAnyExprToMem(const Expr *E, llvm::Value *Location, 1657 Qualifiers Quals, bool IsInitializer); 1658 1659 /// EmitExprAsInit - Emits the code necessary to initialize a 1660 /// location in memory with the given initializer. 1661 void EmitExprAsInit(const Expr *init, const ValueDecl *D, 1662 LValue lvalue, bool capturedByInit); 1663 1664 /// EmitAggregateCopy - Emit an aggrate assignment. 1665 /// 1666 /// The difference to EmitAggregateCopy is that tail padding is not copied. 1667 /// This is required for correctness when assigning non-POD structures in C++. 1668 void EmitAggregateAssign(llvm::Value *DestPtr, llvm::Value *SrcPtr, 1669 QualType EltTy, bool isVolatile=false, 1670 CharUnits Alignment = CharUnits::Zero()) { 1671 EmitAggregateCopy(DestPtr, SrcPtr, EltTy, isVolatile, Alignment, true); 1672 } 1673 1674 /// EmitAggregateCopy - Emit an aggrate copy. 1675 /// 1676 /// \param isVolatile - True iff either the source or the destination is 1677 /// volatile. 1678 /// \param isAssignment - If false, allow padding to be copied. This often 1679 /// yields more efficient. 1680 void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr, 1681 QualType EltTy, bool isVolatile=false, 1682 CharUnits Alignment = CharUnits::Zero(), 1683 bool isAssignment = false); 1684 1685 /// StartBlock - Start new block named N. If insert block is a dummy block 1686 /// then reuse it. 1687 void StartBlock(const char *N); 1688 1689 /// GetAddrOfStaticLocalVar - Return the address of a static local variable. 1690 llvm::Constant *GetAddrOfStaticLocalVar(const VarDecl *BVD) { 1691 return cast<llvm::Constant>(GetAddrOfLocalVar(BVD)); 1692 } 1693 1694 /// GetAddrOfLocalVar - Return the address of a local variable. 1695 llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) { 1696 llvm::Value *Res = LocalDeclMap[VD]; 1697 assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!"); 1698 return Res; 1699 } 1700 1701 /// getOpaqueLValueMapping - Given an opaque value expression (which 1702 /// must be mapped to an l-value), return its mapping. 1703 const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) { 1704 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 1705 1706 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 1707 it = OpaqueLValues.find(e); 1708 assert(it != OpaqueLValues.end() && "no mapping for opaque value!"); 1709 return it->second; 1710 } 1711 1712 /// getOpaqueRValueMapping - Given an opaque value expression (which 1713 /// must be mapped to an r-value), return its mapping. 1714 const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) { 1715 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 1716 1717 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 1718 it = OpaqueRValues.find(e); 1719 assert(it != OpaqueRValues.end() && "no mapping for opaque value!"); 1720 return it->second; 1721 } 1722 1723 /// getAccessedFieldNo - Given an encoded value and a result number, return 1724 /// the input field number being accessed. 1725 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 1726 1727 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 1728 llvm::BasicBlock *GetIndirectGotoBlock(); 1729 1730 /// EmitNullInitialization - Generate code to set a value of the given type to 1731 /// null, If the type contains data member pointers, they will be initialized 1732 /// to -1 in accordance with the Itanium C++ ABI. 1733 void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty); 1734 1735 // EmitVAArg - Generate code to get an argument from the passed in pointer 1736 // and update it accordingly. The return value is a pointer to the argument. 1737 // FIXME: We should be able to get rid of this method and use the va_arg 1738 // instruction in LLVM instead once it works well enough. 1739 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty); 1740 1741 /// emitArrayLength - Compute the length of an array, even if it's a 1742 /// VLA, and drill down to the base element type. 1743 llvm::Value *emitArrayLength(const ArrayType *arrayType, 1744 QualType &baseType, 1745 llvm::Value *&addr); 1746 1747 /// EmitVLASize - Capture all the sizes for the VLA expressions in 1748 /// the given variably-modified type and store them in the VLASizeMap. 1749 /// 1750 /// This function can be called with a null (unreachable) insert point. 1751 void EmitVariablyModifiedType(QualType Ty); 1752 1753 /// getVLASize - Returns an LLVM value that corresponds to the size, 1754 /// in non-variably-sized elements, of a variable length array type, 1755 /// plus that largest non-variably-sized element type. Assumes that 1756 /// the type has already been emitted with EmitVariablyModifiedType. 1757 std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla); 1758 std::pair<llvm::Value*,QualType> getVLASize(QualType vla); 1759 1760 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 1761 /// generating code for an C++ member function. 1762 llvm::Value *LoadCXXThis() { 1763 assert(CXXThisValue && "no 'this' value for this function"); 1764 return CXXThisValue; 1765 } 1766 1767 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 1768 /// virtual bases. 1769 llvm::Value *LoadCXXVTT() { 1770 assert(CXXVTTValue && "no VTT value for this function"); 1771 return CXXVTTValue; 1772 } 1773 1774 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 1775 /// complete class to the given direct base. 1776 llvm::Value * 1777 GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value, 1778 const CXXRecordDecl *Derived, 1779 const CXXRecordDecl *Base, 1780 bool BaseIsVirtual); 1781 1782 /// GetAddressOfBaseClass - This function will add the necessary delta to the 1783 /// load of 'this' and returns address of the base class. 1784 llvm::Value *GetAddressOfBaseClass(llvm::Value *Value, 1785 const CXXRecordDecl *Derived, 1786 CastExpr::path_const_iterator PathBegin, 1787 CastExpr::path_const_iterator PathEnd, 1788 bool NullCheckValue); 1789 1790 llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value, 1791 const CXXRecordDecl *Derived, 1792 CastExpr::path_const_iterator PathBegin, 1793 CastExpr::path_const_iterator PathEnd, 1794 bool NullCheckValue); 1795 1796 llvm::Value *GetVirtualBaseClassOffset(llvm::Value *This, 1797 const CXXRecordDecl *ClassDecl, 1798 const CXXRecordDecl *BaseClassDecl); 1799 1800 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 1801 CXXCtorType CtorType, 1802 const FunctionArgList &Args); 1803 // It's important not to confuse this and the previous function. Delegating 1804 // constructors are the C++0x feature. The constructor delegate optimization 1805 // is used to reduce duplication in the base and complete consturctors where 1806 // they are substantially the same. 1807 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 1808 const FunctionArgList &Args); 1809 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 1810 bool ForVirtualBase, llvm::Value *This, 1811 CallExpr::const_arg_iterator ArgBeg, 1812 CallExpr::const_arg_iterator ArgEnd); 1813 1814 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 1815 llvm::Value *This, llvm::Value *Src, 1816 CallExpr::const_arg_iterator ArgBeg, 1817 CallExpr::const_arg_iterator ArgEnd); 1818 1819 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 1820 const ConstantArrayType *ArrayTy, 1821 llvm::Value *ArrayPtr, 1822 CallExpr::const_arg_iterator ArgBeg, 1823 CallExpr::const_arg_iterator ArgEnd, 1824 bool ZeroInitialization = false); 1825 1826 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 1827 llvm::Value *NumElements, 1828 llvm::Value *ArrayPtr, 1829 CallExpr::const_arg_iterator ArgBeg, 1830 CallExpr::const_arg_iterator ArgEnd, 1831 bool ZeroInitialization = false); 1832 1833 static Destroyer destroyCXXObject; 1834 1835 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 1836 bool ForVirtualBase, llvm::Value *This); 1837 1838 void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, 1839 llvm::Value *NewPtr, llvm::Value *NumElements); 1840 1841 void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, 1842 llvm::Value *Ptr); 1843 1844 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 1845 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 1846 1847 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 1848 QualType DeleteTy); 1849 1850 llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E); 1851 llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE); 1852 llvm::Value* EmitCXXUuidofExpr(const CXXUuidofExpr *E); 1853 1854 void MaybeEmitStdInitializerListCleanup(llvm::Value *loc, const Expr *init); 1855 void EmitStdInitializerListCleanup(llvm::Value *loc, 1856 const InitListExpr *init); 1857 1858 /// \brief Situations in which we might emit a check for the suitability of a 1859 /// pointer or glvalue. 1860 enum TypeCheckKind { 1861 /// Checking the operand of a load. Must be suitably sized and aligned. 1862 TCK_Load, 1863 /// Checking the destination of a store. Must be suitably sized and aligned. 1864 TCK_Store, 1865 /// Checking the bound value in a reference binding. Must be suitably sized 1866 /// and aligned, but is not required to refer to an object (until the 1867 /// reference is used), per core issue 453. 1868 TCK_ReferenceBinding, 1869 /// Checking the object expression in a non-static data member access. Must 1870 /// be an object within its lifetime. 1871 TCK_MemberAccess, 1872 /// Checking the 'this' pointer for a call to a non-static member function. 1873 /// Must be an object within its lifetime. 1874 TCK_MemberCall 1875 }; 1876 1877 /// \brief Emit a check that \p V is the address of storage of the 1878 /// appropriate size and alignment for an object of type \p Type. 1879 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, 1880 QualType Type, CharUnits Alignment = CharUnits::Zero()); 1881 1882 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 1883 bool isInc, bool isPre); 1884 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 1885 bool isInc, bool isPre); 1886 //===--------------------------------------------------------------------===// 1887 // Declaration Emission 1888 //===--------------------------------------------------------------------===// 1889 1890 /// EmitDecl - Emit a declaration. 1891 /// 1892 /// This function can be called with a null (unreachable) insert point. 1893 void EmitDecl(const Decl &D); 1894 1895 /// EmitVarDecl - Emit a local variable declaration. 1896 /// 1897 /// This function can be called with a null (unreachable) insert point. 1898 void EmitVarDecl(const VarDecl &D); 1899 1900 void EmitScalarInit(const Expr *init, const ValueDecl *D, 1901 LValue lvalue, bool capturedByInit); 1902 void EmitScalarInit(llvm::Value *init, LValue lvalue); 1903 1904 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 1905 llvm::Value *Address); 1906 1907 /// EmitAutoVarDecl - Emit an auto variable declaration. 1908 /// 1909 /// This function can be called with a null (unreachable) insert point. 1910 void EmitAutoVarDecl(const VarDecl &D); 1911 1912 class AutoVarEmission { 1913 friend class CodeGenFunction; 1914 1915 const VarDecl *Variable; 1916 1917 /// The alignment of the variable. 1918 CharUnits Alignment; 1919 1920 /// The address of the alloca. Null if the variable was emitted 1921 /// as a global constant. 1922 llvm::Value *Address; 1923 1924 llvm::Value *NRVOFlag; 1925 1926 /// True if the variable is a __block variable. 1927 bool IsByRef; 1928 1929 /// True if the variable is of aggregate type and has a constant 1930 /// initializer. 1931 bool IsConstantAggregate; 1932 1933 struct Invalid {}; 1934 AutoVarEmission(Invalid) : Variable(0) {} 1935 1936 AutoVarEmission(const VarDecl &variable) 1937 : Variable(&variable), Address(0), NRVOFlag(0), 1938 IsByRef(false), IsConstantAggregate(false) {} 1939 1940 bool wasEmittedAsGlobal() const { return Address == 0; } 1941 1942 public: 1943 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 1944 1945 /// Returns the address of the object within this declaration. 1946 /// Note that this does not chase the forwarding pointer for 1947 /// __block decls. 1948 llvm::Value *getObjectAddress(CodeGenFunction &CGF) const { 1949 if (!IsByRef) return Address; 1950 1951 return CGF.Builder.CreateStructGEP(Address, 1952 CGF.getByRefValueLLVMField(Variable), 1953 Variable->getNameAsString()); 1954 } 1955 }; 1956 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 1957 void EmitAutoVarInit(const AutoVarEmission &emission); 1958 void EmitAutoVarCleanups(const AutoVarEmission &emission); 1959 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 1960 QualType::DestructionKind dtorKind); 1961 1962 void EmitStaticVarDecl(const VarDecl &D, 1963 llvm::GlobalValue::LinkageTypes Linkage); 1964 1965 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 1966 void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, unsigned ArgNo); 1967 1968 /// protectFromPeepholes - Protect a value that we're intending to 1969 /// store to the side, but which will probably be used later, from 1970 /// aggressive peepholing optimizations that might delete it. 1971 /// 1972 /// Pass the result to unprotectFromPeepholes to declare that 1973 /// protection is no longer required. 1974 /// 1975 /// There's no particular reason why this shouldn't apply to 1976 /// l-values, it's just that no existing peepholes work on pointers. 1977 PeepholeProtection protectFromPeepholes(RValue rvalue); 1978 void unprotectFromPeepholes(PeepholeProtection protection); 1979 1980 //===--------------------------------------------------------------------===// 1981 // Statement Emission 1982 //===--------------------------------------------------------------------===// 1983 1984 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 1985 void EmitStopPoint(const Stmt *S); 1986 1987 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 1988 /// this function even if there is no current insertion point. 1989 /// 1990 /// This function may clear the current insertion point; callers should use 1991 /// EnsureInsertPoint if they wish to subsequently generate code without first 1992 /// calling EmitBlock, EmitBranch, or EmitStmt. 1993 void EmitStmt(const Stmt *S); 1994 1995 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 1996 /// necessarily require an insertion point or debug information; typically 1997 /// because the statement amounts to a jump or a container of other 1998 /// statements. 1999 /// 2000 /// \return True if the statement was handled. 2001 bool EmitSimpleStmt(const Stmt *S); 2002 2003 RValue EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 2004 AggValueSlot AVS = AggValueSlot::ignored()); 2005 2006 /// EmitLabel - Emit the block for the given label. It is legal to call this 2007 /// function even if there is no current insertion point. 2008 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 2009 2010 void EmitLabelStmt(const LabelStmt &S); 2011 void EmitAttributedStmt(const AttributedStmt &S); 2012 void EmitGotoStmt(const GotoStmt &S); 2013 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 2014 void EmitIfStmt(const IfStmt &S); 2015 void EmitWhileStmt(const WhileStmt &S); 2016 void EmitDoStmt(const DoStmt &S); 2017 void EmitForStmt(const ForStmt &S); 2018 void EmitReturnStmt(const ReturnStmt &S); 2019 void EmitDeclStmt(const DeclStmt &S); 2020 void EmitBreakStmt(const BreakStmt &S); 2021 void EmitContinueStmt(const ContinueStmt &S); 2022 void EmitSwitchStmt(const SwitchStmt &S); 2023 void EmitDefaultStmt(const DefaultStmt &S); 2024 void EmitCaseStmt(const CaseStmt &S); 2025 void EmitCaseStmtRange(const CaseStmt &S); 2026 void EmitAsmStmt(const AsmStmt &S); 2027 2028 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 2029 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 2030 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 2031 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 2032 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 2033 2034 llvm::Constant *getUnwindResumeFn(); 2035 llvm::Constant *getUnwindResumeOrRethrowFn(); 2036 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 2037 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 2038 2039 void EmitCXXTryStmt(const CXXTryStmt &S); 2040 void EmitCXXForRangeStmt(const CXXForRangeStmt &S); 2041 2042 //===--------------------------------------------------------------------===// 2043 // LValue Expression Emission 2044 //===--------------------------------------------------------------------===// 2045 2046 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 2047 RValue GetUndefRValue(QualType Ty); 2048 2049 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 2050 /// and issue an ErrorUnsupported style diagnostic (using the 2051 /// provided Name). 2052 RValue EmitUnsupportedRValue(const Expr *E, 2053 const char *Name); 2054 2055 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 2056 /// an ErrorUnsupported style diagnostic (using the provided Name). 2057 LValue EmitUnsupportedLValue(const Expr *E, 2058 const char *Name); 2059 2060 /// EmitLValue - Emit code to compute a designator that specifies the location 2061 /// of the expression. 2062 /// 2063 /// This can return one of two things: a simple address or a bitfield 2064 /// reference. In either case, the LLVM Value* in the LValue structure is 2065 /// guaranteed to be an LLVM pointer type. 2066 /// 2067 /// If this returns a bitfield reference, nothing about the pointee type of 2068 /// the LLVM value is known: For example, it may not be a pointer to an 2069 /// integer. 2070 /// 2071 /// If this returns a normal address, and if the lvalue's C type is fixed 2072 /// size, this method guarantees that the returned pointer type will point to 2073 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 2074 /// variable length type, this is not possible. 2075 /// 2076 LValue EmitLValue(const Expr *E); 2077 2078 /// \brief Same as EmitLValue but additionally we generate checking code to 2079 /// guard against undefined behavior. This is only suitable when we know 2080 /// that the address will be used to access the object. 2081 LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK); 2082 2083 /// EmitToMemory - Change a scalar value from its value 2084 /// representation to its in-memory representation. 2085 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 2086 2087 /// EmitFromMemory - Change a scalar value from its memory 2088 /// representation to its value representation. 2089 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 2090 2091 /// EmitLoadOfScalar - Load a scalar value from an address, taking 2092 /// care to appropriately convert from the memory representation to 2093 /// the LLVM value representation. 2094 llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile, 2095 unsigned Alignment, QualType Ty, 2096 llvm::MDNode *TBAAInfo = 0); 2097 2098 /// EmitLoadOfScalar - Load a scalar value from an address, taking 2099 /// care to appropriately convert from the memory representation to 2100 /// the LLVM value representation. The l-value must be a simple 2101 /// l-value. 2102 llvm::Value *EmitLoadOfScalar(LValue lvalue); 2103 2104 /// EmitStoreOfScalar - Store a scalar value to an address, taking 2105 /// care to appropriately convert from the memory representation to 2106 /// the LLVM value representation. 2107 void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr, 2108 bool Volatile, unsigned Alignment, QualType Ty, 2109 llvm::MDNode *TBAAInfo = 0, bool isInit=false); 2110 2111 /// EmitStoreOfScalar - Store a scalar value to an address, taking 2112 /// care to appropriately convert from the memory representation to 2113 /// the LLVM value representation. The l-value must be a simple 2114 /// l-value. The isInit flag indicates whether this is an initialization. 2115 /// If so, atomic qualifiers are ignored and the store is always non-atomic. 2116 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); 2117 2118 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 2119 /// this method emits the address of the lvalue, then loads the result as an 2120 /// rvalue, returning the rvalue. 2121 RValue EmitLoadOfLValue(LValue V); 2122 RValue EmitLoadOfExtVectorElementLValue(LValue V); 2123 RValue EmitLoadOfBitfieldLValue(LValue LV); 2124 2125 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 2126 /// lvalue, where both are guaranteed to the have the same type, and that type 2127 /// is 'Ty'. 2128 void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit=false); 2129 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 2130 2131 /// EmitStoreThroughLValue - Store Src into Dst with same constraints as 2132 /// EmitStoreThroughLValue. 2133 /// 2134 /// \param Result [out] - If non-null, this will be set to a Value* for the 2135 /// bit-field contents after the store, appropriate for use as the result of 2136 /// an assignment to the bit-field. 2137 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 2138 llvm::Value **Result=0); 2139 2140 /// Emit an l-value for an assignment (simple or compound) of complex type. 2141 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 2142 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 2143 2144 // Note: only available for agg return types 2145 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 2146 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 2147 // Note: only available for agg return types 2148 LValue EmitCallExprLValue(const CallExpr *E); 2149 // Note: only available for agg return types 2150 LValue EmitVAArgExprLValue(const VAArgExpr *E); 2151 LValue EmitDeclRefLValue(const DeclRefExpr *E); 2152 LValue EmitStringLiteralLValue(const StringLiteral *E); 2153 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 2154 LValue EmitPredefinedLValue(const PredefinedExpr *E); 2155 LValue EmitUnaryOpLValue(const UnaryOperator *E); 2156 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E); 2157 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 2158 LValue EmitMemberExpr(const MemberExpr *E); 2159 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 2160 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 2161 LValue EmitInitListLValue(const InitListExpr *E); 2162 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 2163 LValue EmitCastLValue(const CastExpr *E); 2164 LValue EmitNullInitializationLValue(const CXXScalarValueInitExpr *E); 2165 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 2166 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 2167 2168 RValue EmitRValueForField(LValue LV, const FieldDecl *FD); 2169 2170 class ConstantEmission { 2171 llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; 2172 ConstantEmission(llvm::Constant *C, bool isReference) 2173 : ValueAndIsReference(C, isReference) {} 2174 public: 2175 ConstantEmission() {} 2176 static ConstantEmission forReference(llvm::Constant *C) { 2177 return ConstantEmission(C, true); 2178 } 2179 static ConstantEmission forValue(llvm::Constant *C) { 2180 return ConstantEmission(C, false); 2181 } 2182 2183 operator bool() const { return ValueAndIsReference.getOpaqueValue() != 0; } 2184 2185 bool isReference() const { return ValueAndIsReference.getInt(); } 2186 LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { 2187 assert(isReference()); 2188 return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), 2189 refExpr->getType()); 2190 } 2191 2192 llvm::Constant *getValue() const { 2193 assert(!isReference()); 2194 return ValueAndIsReference.getPointer(); 2195 } 2196 }; 2197 2198 ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); 2199 2200 RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, 2201 AggValueSlot slot = AggValueSlot::ignored()); 2202 LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); 2203 2204 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 2205 const ObjCIvarDecl *Ivar); 2206 LValue EmitLValueForField(LValue Base, const FieldDecl* Field); 2207 2208 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 2209 /// if the Field is a reference, this will return the address of the reference 2210 /// and not the address of the value stored in the reference. 2211 LValue EmitLValueForFieldInitialization(LValue Base, 2212 const FieldDecl* Field); 2213 2214 LValue EmitLValueForIvar(QualType ObjectTy, 2215 llvm::Value* Base, const ObjCIvarDecl *Ivar, 2216 unsigned CVRQualifiers); 2217 2218 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 2219 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 2220 LValue EmitLambdaLValue(const LambdaExpr *E); 2221 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 2222 LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E); 2223 2224 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 2225 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 2226 LValue EmitStmtExprLValue(const StmtExpr *E); 2227 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 2228 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 2229 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init); 2230 2231 //===--------------------------------------------------------------------===// 2232 // Scalar Expression Emission 2233 //===--------------------------------------------------------------------===// 2234 2235 /// EmitCall - Generate a call of the given function, expecting the given 2236 /// result type, and using the given argument list which specifies both the 2237 /// LLVM arguments and the types they were derived from. 2238 /// 2239 /// \param TargetDecl - If given, the decl of the function in a direct call; 2240 /// used to set attributes on the call (noreturn, etc.). 2241 RValue EmitCall(const CGFunctionInfo &FnInfo, 2242 llvm::Value *Callee, 2243 ReturnValueSlot ReturnValue, 2244 const CallArgList &Args, 2245 const Decl *TargetDecl = 0, 2246 llvm::Instruction **callOrInvoke = 0); 2247 2248 RValue EmitCall(QualType FnType, llvm::Value *Callee, 2249 ReturnValueSlot ReturnValue, 2250 CallExpr::const_arg_iterator ArgBeg, 2251 CallExpr::const_arg_iterator ArgEnd, 2252 const Decl *TargetDecl = 0); 2253 RValue EmitCallExpr(const CallExpr *E, 2254 ReturnValueSlot ReturnValue = ReturnValueSlot()); 2255 2256 llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, 2257 ArrayRef<llvm::Value *> Args, 2258 const Twine &Name = ""); 2259 llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, 2260 const Twine &Name = ""); 2261 2262 llvm::Value *BuildVirtualCall(const CXXMethodDecl *MD, llvm::Value *This, 2263 llvm::Type *Ty); 2264 llvm::Value *BuildVirtualCall(const CXXDestructorDecl *DD, CXXDtorType Type, 2265 llvm::Value *This, llvm::Type *Ty); 2266 llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 2267 NestedNameSpecifier *Qual, 2268 llvm::Type *Ty); 2269 2270 llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 2271 CXXDtorType Type, 2272 const CXXRecordDecl *RD); 2273 2274 RValue EmitCXXMemberCall(const CXXMethodDecl *MD, 2275 SourceLocation CallLoc, 2276 llvm::Value *Callee, 2277 ReturnValueSlot ReturnValue, 2278 llvm::Value *This, 2279 llvm::Value *VTT, 2280 CallExpr::const_arg_iterator ArgBeg, 2281 CallExpr::const_arg_iterator ArgEnd); 2282 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 2283 ReturnValueSlot ReturnValue); 2284 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 2285 ReturnValueSlot ReturnValue); 2286 2287 llvm::Value *EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E, 2288 const CXXMethodDecl *MD, 2289 llvm::Value *This); 2290 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 2291 const CXXMethodDecl *MD, 2292 ReturnValueSlot ReturnValue); 2293 2294 RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 2295 ReturnValueSlot ReturnValue); 2296 2297 2298 RValue EmitBuiltinExpr(const FunctionDecl *FD, 2299 unsigned BuiltinID, const CallExpr *E); 2300 2301 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 2302 2303 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 2304 /// is unhandled by the current target. 2305 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2306 2307 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2308 llvm::Value *EmitNeonCall(llvm::Function *F, 2309 SmallVectorImpl<llvm::Value*> &O, 2310 const char *name, 2311 unsigned shift = 0, bool rightshift = false); 2312 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 2313 llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, 2314 bool negateForRightShift); 2315 2316 llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); 2317 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2318 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2319 2320 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 2321 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 2322 llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); 2323 llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); 2324 llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); 2325 llvm::Value *EmitObjCCollectionLiteral(const Expr *E, 2326 const ObjCMethodDecl *MethodWithObjects); 2327 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 2328 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 2329 ReturnValueSlot Return = ReturnValueSlot()); 2330 2331 /// Retrieves the default cleanup kind for an ARC cleanup. 2332 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. 2333 CleanupKind getARCCleanupKind() { 2334 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 2335 ? NormalAndEHCleanup : NormalCleanup; 2336 } 2337 2338 // ARC primitives. 2339 void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr); 2340 void EmitARCDestroyWeak(llvm::Value *addr); 2341 llvm::Value *EmitARCLoadWeak(llvm::Value *addr); 2342 llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr); 2343 llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr, 2344 bool ignored); 2345 void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src); 2346 void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src); 2347 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 2348 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 2349 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 2350 bool ignored); 2351 llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value, 2352 bool ignored); 2353 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 2354 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 2355 llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); 2356 void EmitARCDestroyStrong(llvm::Value *addr, bool precise); 2357 void EmitARCRelease(llvm::Value *value, bool precise); 2358 llvm::Value *EmitARCAutorelease(llvm::Value *value); 2359 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 2360 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 2361 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 2362 2363 std::pair<LValue,llvm::Value*> 2364 EmitARCStoreAutoreleasing(const BinaryOperator *e); 2365 std::pair<LValue,llvm::Value*> 2366 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 2367 2368 llvm::Value *EmitObjCThrowOperand(const Expr *expr); 2369 2370 llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr); 2371 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 2372 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 2373 2374 llvm::Value *EmitARCExtendBlockObject(const Expr *expr); 2375 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 2376 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 2377 2378 static Destroyer destroyARCStrongImprecise; 2379 static Destroyer destroyARCStrongPrecise; 2380 static Destroyer destroyARCWeak; 2381 2382 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 2383 llvm::Value *EmitObjCAutoreleasePoolPush(); 2384 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 2385 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 2386 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 2387 2388 /// EmitReferenceBindingToExpr - Emits a reference binding to the passed in 2389 /// expression. Will emit a temporary variable if E is not an LValue. 2390 RValue EmitReferenceBindingToExpr(const Expr* E, 2391 const NamedDecl *InitializedDecl); 2392 2393 //===--------------------------------------------------------------------===// 2394 // Expression Emission 2395 //===--------------------------------------------------------------------===// 2396 2397 // Expressions are broken into three classes: scalar, complex, aggregate. 2398 2399 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 2400 /// scalar type, returning the result. 2401 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 2402 2403 /// EmitScalarConversion - Emit a conversion from the specified type to the 2404 /// specified destination type, both of which are LLVM scalar types. 2405 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 2406 QualType DstTy); 2407 2408 /// EmitComplexToScalarConversion - Emit a conversion from the specified 2409 /// complex type to the specified destination type, where the destination type 2410 /// is an LLVM scalar type. 2411 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 2412 QualType DstTy); 2413 2414 2415 /// EmitAggExpr - Emit the computation of the specified expression 2416 /// of aggregate type. The result is computed into the given slot, 2417 /// which may be null to indicate that the value is not needed. 2418 void EmitAggExpr(const Expr *E, AggValueSlot AS); 2419 2420 /// EmitAggExprToLValue - Emit the computation of the specified expression of 2421 /// aggregate type into a temporary LValue. 2422 LValue EmitAggExprToLValue(const Expr *E); 2423 2424 /// EmitGCMemmoveCollectable - Emit special API for structs with object 2425 /// pointers. 2426 void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr, 2427 QualType Ty); 2428 2429 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 2430 /// make sure it survives garbage collection until this point. 2431 void EmitExtendGCLifetime(llvm::Value *object); 2432 2433 /// EmitComplexExpr - Emit the computation of the specified expression of 2434 /// complex type, returning the result. 2435 ComplexPairTy EmitComplexExpr(const Expr *E, 2436 bool IgnoreReal = false, 2437 bool IgnoreImag = false); 2438 2439 /// EmitComplexExprIntoAddr - Emit the computation of the specified expression 2440 /// of complex type, storing into the specified Value*. 2441 void EmitComplexExprIntoAddr(const Expr *E, llvm::Value *DestAddr, 2442 bool DestIsVolatile); 2443 2444 /// StoreComplexToAddr - Store a complex number into the specified address. 2445 void StoreComplexToAddr(ComplexPairTy V, llvm::Value *DestAddr, 2446 bool DestIsVolatile); 2447 /// LoadComplexFromAddr - Load a complex number from the specified address. 2448 ComplexPairTy LoadComplexFromAddr(llvm::Value *SrcAddr, bool SrcIsVolatile); 2449 2450 /// CreateStaticVarDecl - Create a zero-initialized LLVM global for 2451 /// a static local variable. 2452 llvm::GlobalVariable *CreateStaticVarDecl(const VarDecl &D, 2453 const char *Separator, 2454 llvm::GlobalValue::LinkageTypes Linkage); 2455 2456 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 2457 /// global variable that has already been created for it. If the initializer 2458 /// has a different type than GV does, this may free GV and return a different 2459 /// one. Otherwise it just returns GV. 2460 llvm::GlobalVariable * 2461 AddInitializerToStaticVarDecl(const VarDecl &D, 2462 llvm::GlobalVariable *GV); 2463 2464 2465 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 2466 /// variable with global storage. 2467 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr, 2468 bool PerformInit); 2469 2470 /// Call atexit() with a function that passes the given argument to 2471 /// the given function. 2472 void registerGlobalDtorWithAtExit(llvm::Constant *fn, llvm::Constant *addr); 2473 2474 /// Emit code in this function to perform a guarded variable 2475 /// initialization. Guarded initializations are used when it's not 2476 /// possible to prove that an initialization will be done exactly 2477 /// once, e.g. with a static local variable or a static data member 2478 /// of a class template. 2479 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, 2480 bool PerformInit); 2481 2482 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 2483 /// variables. 2484 void GenerateCXXGlobalInitFunc(llvm::Function *Fn, 2485 llvm::Constant **Decls, 2486 unsigned NumDecls); 2487 2488 /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global 2489 /// variables. 2490 void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn, 2491 const std::vector<std::pair<llvm::WeakVH, 2492 llvm::Constant*> > &DtorsAndObjects); 2493 2494 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 2495 const VarDecl *D, 2496 llvm::GlobalVariable *Addr, 2497 bool PerformInit); 2498 2499 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 2500 2501 void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src, 2502 const Expr *Exp); 2503 2504 void enterFullExpression(const ExprWithCleanups *E) { 2505 if (E->getNumObjects() == 0) return; 2506 enterNonTrivialFullExpression(E); 2507 } 2508 void enterNonTrivialFullExpression(const ExprWithCleanups *E); 2509 2510 void EmitCXXThrowExpr(const CXXThrowExpr *E); 2511 2512 void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest); 2513 2514 RValue EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest = 0); 2515 2516 //===--------------------------------------------------------------------===// 2517 // Annotations Emission 2518 //===--------------------------------------------------------------------===// 2519 2520 /// Emit an annotation call (intrinsic or builtin). 2521 llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn, 2522 llvm::Value *AnnotatedVal, 2523 llvm::StringRef AnnotationStr, 2524 SourceLocation Location); 2525 2526 /// Emit local annotations for the local variable V, declared by D. 2527 void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); 2528 2529 /// Emit field annotations for the given field & value. Returns the 2530 /// annotation result. 2531 llvm::Value *EmitFieldAnnotations(const FieldDecl *D, llvm::Value *V); 2532 2533 //===--------------------------------------------------------------------===// 2534 // Internal Helpers 2535 //===--------------------------------------------------------------------===// 2536 2537 /// ContainsLabel - Return true if the statement contains a label in it. If 2538 /// this statement is not executed normally, it not containing a label means 2539 /// that we can just remove the code. 2540 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 2541 2542 /// containsBreak - Return true if the statement contains a break out of it. 2543 /// If the statement (recursively) contains a switch or loop with a break 2544 /// inside of it, this is fine. 2545 static bool containsBreak(const Stmt *S); 2546 2547 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 2548 /// to a constant, or if it does but contains a label, return false. If it 2549 /// constant folds return true and set the boolean result in Result. 2550 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result); 2551 2552 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 2553 /// to a constant, or if it does but contains a label, return false. If it 2554 /// constant folds return true and set the folded value. 2555 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result); 2556 2557 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 2558 /// if statement) to the specified blocks. Based on the condition, this might 2559 /// try to simplify the codegen of the conditional based on the branch. 2560 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 2561 llvm::BasicBlock *FalseBlock); 2562 2563 /// \brief Emit a description of a type in a format suitable for passing to 2564 /// a runtime sanitizer handler. 2565 llvm::Constant *EmitCheckTypeDescriptor(QualType T); 2566 2567 /// \brief Convert a value into a format suitable for passing to a runtime 2568 /// sanitizer handler. 2569 llvm::Value *EmitCheckValue(llvm::Value *V); 2570 2571 /// \brief Emit a description of a source location in a format suitable for 2572 /// passing to a runtime sanitizer handler. 2573 llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc); 2574 2575 /// \brief Create a basic block that will call the trap intrinsic, and emit a 2576 /// conditional branch to it. 2577 void EmitCheck(llvm::Value *Checked, StringRef CheckName, 2578 llvm::ArrayRef<llvm::Constant *> StaticArgs, 2579 llvm::ArrayRef<llvm::Value *> DynamicArgs); 2580 2581 /// EmitCallArg - Emit a single call argument. 2582 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 2583 2584 /// EmitDelegateCallArg - We are performing a delegate call; that 2585 /// is, the current function is delegating to another one. Produce 2586 /// a r-value suitable for passing the given parameter. 2587 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param); 2588 2589 /// SetFPAccuracy - Set the minimum required accuracy of the given floating 2590 /// point operation, expressed as the maximum relative error in ulp. 2591 void SetFPAccuracy(llvm::Value *Val, float Accuracy); 2592 2593 private: 2594 llvm::MDNode *getRangeForLoadFromType(QualType Ty); 2595 void EmitReturnOfRValue(RValue RV, QualType Ty); 2596 2597 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 2598 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 2599 /// 2600 /// \param AI - The first function argument of the expansion. 2601 /// \return The argument following the last expanded function 2602 /// argument. 2603 llvm::Function::arg_iterator 2604 ExpandTypeFromArgs(QualType Ty, LValue Dst, 2605 llvm::Function::arg_iterator AI); 2606 2607 /// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg 2608 /// Ty, into individual arguments on the provided vector \arg Args. See 2609 /// ABIArgInfo::Expand. 2610 void ExpandTypeToArgs(QualType Ty, RValue Src, 2611 SmallVector<llvm::Value*, 16> &Args, 2612 llvm::FunctionType *IRFuncTy); 2613 2614 llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info, 2615 const Expr *InputExpr, std::string &ConstraintStr); 2616 2617 llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 2618 LValue InputValue, QualType InputType, 2619 std::string &ConstraintStr); 2620 2621 /// EmitCallArgs - Emit call arguments for a function. 2622 /// The CallArgTypeInfo parameter is used for iterating over the known 2623 /// argument types of the function being called. 2624 template<typename T> 2625 void EmitCallArgs(CallArgList& Args, const T* CallArgTypeInfo, 2626 CallExpr::const_arg_iterator ArgBeg, 2627 CallExpr::const_arg_iterator ArgEnd) { 2628 CallExpr::const_arg_iterator Arg = ArgBeg; 2629 2630 // First, use the argument types that the type info knows about 2631 if (CallArgTypeInfo) { 2632 for (typename T::arg_type_iterator I = CallArgTypeInfo->arg_type_begin(), 2633 E = CallArgTypeInfo->arg_type_end(); I != E; ++I, ++Arg) { 2634 assert(Arg != ArgEnd && "Running over edge of argument list!"); 2635 QualType ArgType = *I; 2636 #ifndef NDEBUG 2637 QualType ActualArgType = Arg->getType(); 2638 if (ArgType->isPointerType() && ActualArgType->isPointerType()) { 2639 QualType ActualBaseType = 2640 ActualArgType->getAs<PointerType>()->getPointeeType(); 2641 QualType ArgBaseType = 2642 ArgType->getAs<PointerType>()->getPointeeType(); 2643 if (ArgBaseType->isVariableArrayType()) { 2644 if (const VariableArrayType *VAT = 2645 getContext().getAsVariableArrayType(ActualBaseType)) { 2646 if (!VAT->getSizeExpr()) 2647 ActualArgType = ArgType; 2648 } 2649 } 2650 } 2651 assert(getContext().getCanonicalType(ArgType.getNonReferenceType()). 2652 getTypePtr() == 2653 getContext().getCanonicalType(ActualArgType).getTypePtr() && 2654 "type mismatch in call argument!"); 2655 #endif 2656 EmitCallArg(Args, *Arg, ArgType); 2657 } 2658 2659 // Either we've emitted all the call args, or we have a call to a 2660 // variadic function. 2661 assert((Arg == ArgEnd || CallArgTypeInfo->isVariadic()) && 2662 "Extra arguments in non-variadic function!"); 2663 2664 } 2665 2666 // If we still have any arguments, emit them using the type of the argument. 2667 for (; Arg != ArgEnd; ++Arg) 2668 EmitCallArg(Args, *Arg, Arg->getType()); 2669 } 2670 2671 const TargetCodeGenInfo &getTargetHooks() const { 2672 return CGM.getTargetCodeGenInfo(); 2673 } 2674 2675 void EmitDeclMetadata(); 2676 2677 CodeGenModule::ByrefHelpers * 2678 buildByrefHelpers(llvm::StructType &byrefType, 2679 const AutoVarEmission &emission); 2680 2681 void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); 2682 2683 /// GetPointeeAlignment - Given an expression with a pointer type, emit the 2684 /// value and compute our best estimate of the alignment of the pointee. 2685 std::pair<llvm::Value*, unsigned> EmitPointerWithAlignment(const Expr *Addr); 2686 }; 2687 2688 /// Helper class with most of the code for saving a value for a 2689 /// conditional expression cleanup. 2690 struct DominatingLLVMValue { 2691 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 2692 2693 /// Answer whether the given value needs extra work to be saved. 2694 static bool needsSaving(llvm::Value *value) { 2695 // If it's not an instruction, we don't need to save. 2696 if (!isa<llvm::Instruction>(value)) return false; 2697 2698 // If it's an instruction in the entry block, we don't need to save. 2699 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 2700 return (block != &block->getParent()->getEntryBlock()); 2701 } 2702 2703 /// Try to save the given value. 2704 static saved_type save(CodeGenFunction &CGF, llvm::Value *value) { 2705 if (!needsSaving(value)) return saved_type(value, false); 2706 2707 // Otherwise we need an alloca. 2708 llvm::Value *alloca = 2709 CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save"); 2710 CGF.Builder.CreateStore(value, alloca); 2711 2712 return saved_type(alloca, true); 2713 } 2714 2715 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) { 2716 if (!value.getInt()) return value.getPointer(); 2717 return CGF.Builder.CreateLoad(value.getPointer()); 2718 } 2719 }; 2720 2721 /// A partial specialization of DominatingValue for llvm::Values that 2722 /// might be llvm::Instructions. 2723 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 2724 typedef T *type; 2725 static type restore(CodeGenFunction &CGF, saved_type value) { 2726 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 2727 } 2728 }; 2729 2730 /// A specialization of DominatingValue for RValue. 2731 template <> struct DominatingValue<RValue> { 2732 typedef RValue type; 2733 class saved_type { 2734 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 2735 AggregateAddress, ComplexAddress }; 2736 2737 llvm::Value *Value; 2738 Kind K; 2739 saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {} 2740 2741 public: 2742 static bool needsSaving(RValue value); 2743 static saved_type save(CodeGenFunction &CGF, RValue value); 2744 RValue restore(CodeGenFunction &CGF); 2745 2746 // implementations in CGExprCXX.cpp 2747 }; 2748 2749 static bool needsSaving(type value) { 2750 return saved_type::needsSaving(value); 2751 } 2752 static saved_type save(CodeGenFunction &CGF, type value) { 2753 return saved_type::save(CGF, value); 2754 } 2755 static type restore(CodeGenFunction &CGF, saved_type value) { 2756 return value.restore(CGF); 2757 } 2758 }; 2759 2760 } // end namespace CodeGen 2761 } // end namespace clang 2762 2763 #endif 2764