1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the internal per-function state used for llvm translation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef CLANG_CODEGEN_CODEGENFUNCTION_H 15 #define CLANG_CODEGEN_CODEGENFUNCTION_H 16 17 #include "clang/AST/Type.h" 18 #include "clang/AST/ExprCXX.h" 19 #include "clang/AST/ExprObjC.h" 20 #include "clang/AST/CharUnits.h" 21 #include "clang/Frontend/CodeGenOptions.h" 22 #include "clang/Basic/ABI.h" 23 #include "clang/Basic/TargetInfo.h" 24 #include "llvm/ADT/ArrayRef.h" 25 #include "llvm/ADT/DenseMap.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/Support/ValueHandle.h" 28 #include "llvm/Support/Debug.h" 29 #include "CodeGenModule.h" 30 #include "CGBuilder.h" 31 #include "CGDebugInfo.h" 32 #include "CGValue.h" 33 34 namespace llvm { 35 class BasicBlock; 36 class LLVMContext; 37 class MDNode; 38 class Module; 39 class SwitchInst; 40 class Twine; 41 class Value; 42 class CallSite; 43 } 44 45 namespace clang { 46 class ASTContext; 47 class BlockDecl; 48 class CXXDestructorDecl; 49 class CXXForRangeStmt; 50 class CXXTryStmt; 51 class Decl; 52 class LabelDecl; 53 class EnumConstantDecl; 54 class FunctionDecl; 55 class FunctionProtoType; 56 class LabelStmt; 57 class ObjCContainerDecl; 58 class ObjCInterfaceDecl; 59 class ObjCIvarDecl; 60 class ObjCMethodDecl; 61 class ObjCImplementationDecl; 62 class ObjCPropertyImplDecl; 63 class TargetInfo; 64 class TargetCodeGenInfo; 65 class VarDecl; 66 class ObjCForCollectionStmt; 67 class ObjCAtTryStmt; 68 class ObjCAtThrowStmt; 69 class ObjCAtSynchronizedStmt; 70 class ObjCAutoreleasePoolStmt; 71 72 namespace CodeGen { 73 class CodeGenTypes; 74 class CGFunctionInfo; 75 class CGRecordLayout; 76 class CGBlockInfo; 77 class CGCXXABI; 78 class BlockFlags; 79 class BlockFieldFlags; 80 81 /// A branch fixup. These are required when emitting a goto to a 82 /// label which hasn't been emitted yet. The goto is optimistically 83 /// emitted as a branch to the basic block for the label, and (if it 84 /// occurs in a scope with non-trivial cleanups) a fixup is added to 85 /// the innermost cleanup. When a (normal) cleanup is popped, any 86 /// unresolved fixups in that scope are threaded through the cleanup. 87 struct BranchFixup { 88 /// The block containing the terminator which needs to be modified 89 /// into a switch if this fixup is resolved into the current scope. 90 /// If null, LatestBranch points directly to the destination. 91 llvm::BasicBlock *OptimisticBranchBlock; 92 93 /// The ultimate destination of the branch. 94 /// 95 /// This can be set to null to indicate that this fixup was 96 /// successfully resolved. 97 llvm::BasicBlock *Destination; 98 99 /// The destination index value. 100 unsigned DestinationIndex; 101 102 /// The initial branch of the fixup. 103 llvm::BranchInst *InitialBranch; 104 }; 105 106 template <class T> struct InvariantValue { 107 typedef T type; 108 typedef T saved_type; 109 static bool needsSaving(type value) { return false; } 110 static saved_type save(CodeGenFunction &CGF, type value) { return value; } 111 static type restore(CodeGenFunction &CGF, saved_type value) { return value; } 112 }; 113 114 /// A metaprogramming class for ensuring that a value will dominate an 115 /// arbitrary position in a function. 116 template <class T> struct DominatingValue : InvariantValue<T> {}; 117 118 template <class T, bool mightBeInstruction = 119 llvm::is_base_of<llvm::Value, T>::value && 120 !llvm::is_base_of<llvm::Constant, T>::value && 121 !llvm::is_base_of<llvm::BasicBlock, T>::value> 122 struct DominatingPointer; 123 template <class T> struct DominatingPointer<T,false> : InvariantValue<T*> {}; 124 // template <class T> struct DominatingPointer<T,true> at end of file 125 126 template <class T> struct DominatingValue<T*> : DominatingPointer<T> {}; 127 128 enum CleanupKind { 129 EHCleanup = 0x1, 130 NormalCleanup = 0x2, 131 NormalAndEHCleanup = EHCleanup | NormalCleanup, 132 133 InactiveCleanup = 0x4, 134 InactiveEHCleanup = EHCleanup | InactiveCleanup, 135 InactiveNormalCleanup = NormalCleanup | InactiveCleanup, 136 InactiveNormalAndEHCleanup = NormalAndEHCleanup | InactiveCleanup 137 }; 138 139 /// A stack of scopes which respond to exceptions, including cleanups 140 /// and catch blocks. 141 class EHScopeStack { 142 public: 143 /// A saved depth on the scope stack. This is necessary because 144 /// pushing scopes onto the stack invalidates iterators. 145 class stable_iterator { 146 friend class EHScopeStack; 147 148 /// Offset from StartOfData to EndOfBuffer. 149 ptrdiff_t Size; 150 151 stable_iterator(ptrdiff_t Size) : Size(Size) {} 152 153 public: 154 static stable_iterator invalid() { return stable_iterator(-1); } 155 stable_iterator() : Size(-1) {} 156 157 bool isValid() const { return Size >= 0; } 158 159 /// Returns true if this scope encloses I. 160 /// Returns false if I is invalid. 161 /// This scope must be valid. 162 bool encloses(stable_iterator I) const { return Size <= I.Size; } 163 164 /// Returns true if this scope strictly encloses I: that is, 165 /// if it encloses I and is not I. 166 /// Returns false is I is invalid. 167 /// This scope must be valid. 168 bool strictlyEncloses(stable_iterator I) const { return Size < I.Size; } 169 170 friend bool operator==(stable_iterator A, stable_iterator B) { 171 return A.Size == B.Size; 172 } 173 friend bool operator!=(stable_iterator A, stable_iterator B) { 174 return A.Size != B.Size; 175 } 176 }; 177 178 /// Information for lazily generating a cleanup. Subclasses must be 179 /// POD-like: cleanups will not be destructed, and they will be 180 /// allocated on the cleanup stack and freely copied and moved 181 /// around. 182 /// 183 /// Cleanup implementations should generally be declared in an 184 /// anonymous namespace. 185 class Cleanup { 186 // Anchor the construction vtable. 187 virtual void anchor(); 188 public: 189 /// Generation flags. 190 class Flags { 191 enum { 192 F_IsForEH = 0x1, 193 F_IsNormalCleanupKind = 0x2, 194 F_IsEHCleanupKind = 0x4 195 }; 196 unsigned flags; 197 198 public: 199 Flags() : flags(0) {} 200 201 /// isForEH - true if the current emission is for an EH cleanup. 202 bool isForEHCleanup() const { return flags & F_IsForEH; } 203 bool isForNormalCleanup() const { return !isForEHCleanup(); } 204 void setIsForEHCleanup() { flags |= F_IsForEH; } 205 206 bool isNormalCleanupKind() const { return flags & F_IsNormalCleanupKind; } 207 void setIsNormalCleanupKind() { flags |= F_IsNormalCleanupKind; } 208 209 /// isEHCleanupKind - true if the cleanup was pushed as an EH 210 /// cleanup. 211 bool isEHCleanupKind() const { return flags & F_IsEHCleanupKind; } 212 void setIsEHCleanupKind() { flags |= F_IsEHCleanupKind; } 213 }; 214 215 // Provide a virtual destructor to suppress a very common warning 216 // that unfortunately cannot be suppressed without this. Cleanups 217 // should not rely on this destructor ever being called. 218 virtual ~Cleanup() {} 219 220 /// Emit the cleanup. For normal cleanups, this is run in the 221 /// same EH context as when the cleanup was pushed, i.e. the 222 /// immediately-enclosing context of the cleanup scope. For 223 /// EH cleanups, this is run in a terminate context. 224 /// 225 // \param IsForEHCleanup true if this is for an EH cleanup, false 226 /// if for a normal cleanup. 227 virtual void Emit(CodeGenFunction &CGF, Flags flags) = 0; 228 }; 229 230 /// ConditionalCleanupN stores the saved form of its N parameters, 231 /// then restores them and performs the cleanup. 232 template <class T, class A0> 233 class ConditionalCleanup1 : public Cleanup { 234 typedef typename DominatingValue<A0>::saved_type A0_saved; 235 A0_saved a0_saved; 236 237 void Emit(CodeGenFunction &CGF, Flags flags) { 238 A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); 239 T(a0).Emit(CGF, flags); 240 } 241 242 public: 243 ConditionalCleanup1(A0_saved a0) 244 : a0_saved(a0) {} 245 }; 246 247 template <class T, class A0, class A1> 248 class ConditionalCleanup2 : public Cleanup { 249 typedef typename DominatingValue<A0>::saved_type A0_saved; 250 typedef typename DominatingValue<A1>::saved_type A1_saved; 251 A0_saved a0_saved; 252 A1_saved a1_saved; 253 254 void Emit(CodeGenFunction &CGF, Flags flags) { 255 A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); 256 A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved); 257 T(a0, a1).Emit(CGF, flags); 258 } 259 260 public: 261 ConditionalCleanup2(A0_saved a0, A1_saved a1) 262 : a0_saved(a0), a1_saved(a1) {} 263 }; 264 265 template <class T, class A0, class A1, class A2> 266 class ConditionalCleanup3 : public Cleanup { 267 typedef typename DominatingValue<A0>::saved_type A0_saved; 268 typedef typename DominatingValue<A1>::saved_type A1_saved; 269 typedef typename DominatingValue<A2>::saved_type A2_saved; 270 A0_saved a0_saved; 271 A1_saved a1_saved; 272 A2_saved a2_saved; 273 274 void Emit(CodeGenFunction &CGF, Flags flags) { 275 A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); 276 A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved); 277 A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved); 278 T(a0, a1, a2).Emit(CGF, flags); 279 } 280 281 public: 282 ConditionalCleanup3(A0_saved a0, A1_saved a1, A2_saved a2) 283 : a0_saved(a0), a1_saved(a1), a2_saved(a2) {} 284 }; 285 286 template <class T, class A0, class A1, class A2, class A3> 287 class ConditionalCleanup4 : public Cleanup { 288 typedef typename DominatingValue<A0>::saved_type A0_saved; 289 typedef typename DominatingValue<A1>::saved_type A1_saved; 290 typedef typename DominatingValue<A2>::saved_type A2_saved; 291 typedef typename DominatingValue<A3>::saved_type A3_saved; 292 A0_saved a0_saved; 293 A1_saved a1_saved; 294 A2_saved a2_saved; 295 A3_saved a3_saved; 296 297 void Emit(CodeGenFunction &CGF, Flags flags) { 298 A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); 299 A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved); 300 A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved); 301 A3 a3 = DominatingValue<A3>::restore(CGF, a3_saved); 302 T(a0, a1, a2, a3).Emit(CGF, flags); 303 } 304 305 public: 306 ConditionalCleanup4(A0_saved a0, A1_saved a1, A2_saved a2, A3_saved a3) 307 : a0_saved(a0), a1_saved(a1), a2_saved(a2), a3_saved(a3) {} 308 }; 309 310 private: 311 // The implementation for this class is in CGException.h and 312 // CGException.cpp; the definition is here because it's used as a 313 // member of CodeGenFunction. 314 315 /// The start of the scope-stack buffer, i.e. the allocated pointer 316 /// for the buffer. All of these pointers are either simultaneously 317 /// null or simultaneously valid. 318 char *StartOfBuffer; 319 320 /// The end of the buffer. 321 char *EndOfBuffer; 322 323 /// The first valid entry in the buffer. 324 char *StartOfData; 325 326 /// The innermost normal cleanup on the stack. 327 stable_iterator InnermostNormalCleanup; 328 329 /// The innermost EH scope on the stack. 330 stable_iterator InnermostEHScope; 331 332 /// The current set of branch fixups. A branch fixup is a jump to 333 /// an as-yet unemitted label, i.e. a label for which we don't yet 334 /// know the EH stack depth. Whenever we pop a cleanup, we have 335 /// to thread all the current branch fixups through it. 336 /// 337 /// Fixups are recorded as the Use of the respective branch or 338 /// switch statement. The use points to the final destination. 339 /// When popping out of a cleanup, these uses are threaded through 340 /// the cleanup and adjusted to point to the new cleanup. 341 /// 342 /// Note that branches are allowed to jump into protected scopes 343 /// in certain situations; e.g. the following code is legal: 344 /// struct A { ~A(); }; // trivial ctor, non-trivial dtor 345 /// goto foo; 346 /// A a; 347 /// foo: 348 /// bar(); 349 SmallVector<BranchFixup, 8> BranchFixups; 350 351 char *allocate(size_t Size); 352 353 void *pushCleanup(CleanupKind K, size_t DataSize); 354 355 public: 356 EHScopeStack() : StartOfBuffer(0), EndOfBuffer(0), StartOfData(0), 357 InnermostNormalCleanup(stable_end()), 358 InnermostEHScope(stable_end()) {} 359 ~EHScopeStack() { delete[] StartOfBuffer; } 360 361 // Variadic templates would make this not terrible. 362 363 /// Push a lazily-created cleanup on the stack. 364 template <class T> 365 void pushCleanup(CleanupKind Kind) { 366 void *Buffer = pushCleanup(Kind, sizeof(T)); 367 Cleanup *Obj = new(Buffer) T(); 368 (void) Obj; 369 } 370 371 /// Push a lazily-created cleanup on the stack. 372 template <class T, class A0> 373 void pushCleanup(CleanupKind Kind, A0 a0) { 374 void *Buffer = pushCleanup(Kind, sizeof(T)); 375 Cleanup *Obj = new(Buffer) T(a0); 376 (void) Obj; 377 } 378 379 /// Push a lazily-created cleanup on the stack. 380 template <class T, class A0, class A1> 381 void pushCleanup(CleanupKind Kind, A0 a0, A1 a1) { 382 void *Buffer = pushCleanup(Kind, sizeof(T)); 383 Cleanup *Obj = new(Buffer) T(a0, a1); 384 (void) Obj; 385 } 386 387 /// Push a lazily-created cleanup on the stack. 388 template <class T, class A0, class A1, class A2> 389 void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2) { 390 void *Buffer = pushCleanup(Kind, sizeof(T)); 391 Cleanup *Obj = new(Buffer) T(a0, a1, a2); 392 (void) Obj; 393 } 394 395 /// Push a lazily-created cleanup on the stack. 396 template <class T, class A0, class A1, class A2, class A3> 397 void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) { 398 void *Buffer = pushCleanup(Kind, sizeof(T)); 399 Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3); 400 (void) Obj; 401 } 402 403 /// Push a lazily-created cleanup on the stack. 404 template <class T, class A0, class A1, class A2, class A3, class A4> 405 void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3, A4 a4) { 406 void *Buffer = pushCleanup(Kind, sizeof(T)); 407 Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3, a4); 408 (void) Obj; 409 } 410 411 // Feel free to add more variants of the following: 412 413 /// Push a cleanup with non-constant storage requirements on the 414 /// stack. The cleanup type must provide an additional static method: 415 /// static size_t getExtraSize(size_t); 416 /// The argument to this method will be the value N, which will also 417 /// be passed as the first argument to the constructor. 418 /// 419 /// The data stored in the extra storage must obey the same 420 /// restrictions as normal cleanup member data. 421 /// 422 /// The pointer returned from this method is valid until the cleanup 423 /// stack is modified. 424 template <class T, class A0, class A1, class A2> 425 T *pushCleanupWithExtra(CleanupKind Kind, size_t N, A0 a0, A1 a1, A2 a2) { 426 void *Buffer = pushCleanup(Kind, sizeof(T) + T::getExtraSize(N)); 427 return new (Buffer) T(N, a0, a1, a2); 428 } 429 430 /// Pops a cleanup scope off the stack. This is private to CGCleanup.cpp. 431 void popCleanup(); 432 433 /// Push a set of catch handlers on the stack. The catch is 434 /// uninitialized and will need to have the given number of handlers 435 /// set on it. 436 class EHCatchScope *pushCatch(unsigned NumHandlers); 437 438 /// Pops a catch scope off the stack. This is private to CGException.cpp. 439 void popCatch(); 440 441 /// Push an exceptions filter on the stack. 442 class EHFilterScope *pushFilter(unsigned NumFilters); 443 444 /// Pops an exceptions filter off the stack. 445 void popFilter(); 446 447 /// Push a terminate handler on the stack. 448 void pushTerminate(); 449 450 /// Pops a terminate handler off the stack. 451 void popTerminate(); 452 453 /// Determines whether the exception-scopes stack is empty. 454 bool empty() const { return StartOfData == EndOfBuffer; } 455 456 bool requiresLandingPad() const { 457 return InnermostEHScope != stable_end(); 458 } 459 460 /// Determines whether there are any normal cleanups on the stack. 461 bool hasNormalCleanups() const { 462 return InnermostNormalCleanup != stable_end(); 463 } 464 465 /// Returns the innermost normal cleanup on the stack, or 466 /// stable_end() if there are no normal cleanups. 467 stable_iterator getInnermostNormalCleanup() const { 468 return InnermostNormalCleanup; 469 } 470 stable_iterator getInnermostActiveNormalCleanup() const; 471 472 stable_iterator getInnermostEHScope() const { 473 return InnermostEHScope; 474 } 475 476 stable_iterator getInnermostActiveEHScope() const; 477 478 /// An unstable reference to a scope-stack depth. Invalidated by 479 /// pushes but not pops. 480 class iterator; 481 482 /// Returns an iterator pointing to the innermost EH scope. 483 iterator begin() const; 484 485 /// Returns an iterator pointing to the outermost EH scope. 486 iterator end() const; 487 488 /// Create a stable reference to the top of the EH stack. The 489 /// returned reference is valid until that scope is popped off the 490 /// stack. 491 stable_iterator stable_begin() const { 492 return stable_iterator(EndOfBuffer - StartOfData); 493 } 494 495 /// Create a stable reference to the bottom of the EH stack. 496 static stable_iterator stable_end() { 497 return stable_iterator(0); 498 } 499 500 /// Translates an iterator into a stable_iterator. 501 stable_iterator stabilize(iterator it) const; 502 503 /// Turn a stable reference to a scope depth into a unstable pointer 504 /// to the EH stack. 505 iterator find(stable_iterator save) const; 506 507 /// Removes the cleanup pointed to by the given stable_iterator. 508 void removeCleanup(stable_iterator save); 509 510 /// Add a branch fixup to the current cleanup scope. 511 BranchFixup &addBranchFixup() { 512 assert(hasNormalCleanups() && "adding fixup in scope without cleanups"); 513 BranchFixups.push_back(BranchFixup()); 514 return BranchFixups.back(); 515 } 516 517 unsigned getNumBranchFixups() const { return BranchFixups.size(); } 518 BranchFixup &getBranchFixup(unsigned I) { 519 assert(I < getNumBranchFixups()); 520 return BranchFixups[I]; 521 } 522 523 /// Pops lazily-removed fixups from the end of the list. This 524 /// should only be called by procedures which have just popped a 525 /// cleanup or resolved one or more fixups. 526 void popNullFixups(); 527 528 /// Clears the branch-fixups list. This should only be called by 529 /// ResolveAllBranchFixups. 530 void clearFixups() { BranchFixups.clear(); } 531 }; 532 533 /// CodeGenFunction - This class organizes the per-function state that is used 534 /// while generating LLVM code. 535 class CodeGenFunction : public CodeGenTypeCache { 536 CodeGenFunction(const CodeGenFunction&); // DO NOT IMPLEMENT 537 void operator=(const CodeGenFunction&); // DO NOT IMPLEMENT 538 539 friend class CGCXXABI; 540 public: 541 /// A jump destination is an abstract label, branching to which may 542 /// require a jump out through normal cleanups. 543 struct JumpDest { 544 JumpDest() : Block(0), ScopeDepth(), Index(0) {} 545 JumpDest(llvm::BasicBlock *Block, 546 EHScopeStack::stable_iterator Depth, 547 unsigned Index) 548 : Block(Block), ScopeDepth(Depth), Index(Index) {} 549 550 bool isValid() const { return Block != 0; } 551 llvm::BasicBlock *getBlock() const { return Block; } 552 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 553 unsigned getDestIndex() const { return Index; } 554 555 private: 556 llvm::BasicBlock *Block; 557 EHScopeStack::stable_iterator ScopeDepth; 558 unsigned Index; 559 }; 560 561 CodeGenModule &CGM; // Per-module state. 562 const TargetInfo &Target; 563 564 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 565 CGBuilderTy Builder; 566 567 /// CurFuncDecl - Holds the Decl for the current function or ObjC method. 568 /// This excludes BlockDecls. 569 const Decl *CurFuncDecl; 570 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 571 const Decl *CurCodeDecl; 572 const CGFunctionInfo *CurFnInfo; 573 QualType FnRetTy; 574 llvm::Function *CurFn; 575 576 /// CurGD - The GlobalDecl for the current function being compiled. 577 GlobalDecl CurGD; 578 579 /// PrologueCleanupDepth - The cleanup depth enclosing all the 580 /// cleanups associated with the parameters. 581 EHScopeStack::stable_iterator PrologueCleanupDepth; 582 583 /// ReturnBlock - Unified return block. 584 JumpDest ReturnBlock; 585 586 /// ReturnValue - The temporary alloca to hold the return value. This is null 587 /// iff the function has no return value. 588 llvm::Value *ReturnValue; 589 590 /// AllocaInsertPoint - This is an instruction in the entry block before which 591 /// we prefer to insert allocas. 592 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 593 594 bool CatchUndefined; 595 596 /// In ARC, whether we should autorelease the return value. 597 bool AutoreleaseResult; 598 599 const CodeGen::CGBlockInfo *BlockInfo; 600 llvm::Value *BlockPointer; 601 602 llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; 603 FieldDecl *LambdaThisCaptureField; 604 605 /// \brief A mapping from NRVO variables to the flags used to indicate 606 /// when the NRVO has been applied to this variable. 607 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 608 609 EHScopeStack EHStack; 610 611 /// i32s containing the indexes of the cleanup destinations. 612 llvm::AllocaInst *NormalCleanupDest; 613 614 unsigned NextCleanupDestIndex; 615 616 /// FirstBlockInfo - The head of a singly-linked-list of block layouts. 617 CGBlockInfo *FirstBlockInfo; 618 619 /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. 620 llvm::BasicBlock *EHResumeBlock; 621 622 /// The exception slot. All landing pads write the current exception pointer 623 /// into this alloca. 624 llvm::Value *ExceptionSlot; 625 626 /// The selector slot. Under the MandatoryCleanup model, all landing pads 627 /// write the current selector value into this alloca. 628 llvm::AllocaInst *EHSelectorSlot; 629 630 /// Emits a landing pad for the current EH stack. 631 llvm::BasicBlock *EmitLandingPad(); 632 633 llvm::BasicBlock *getInvokeDestImpl(); 634 635 template <class T> 636 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 637 return DominatingValue<T>::save(*this, value); 638 } 639 640 public: 641 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 642 /// rethrows. 643 SmallVector<llvm::Value*, 8> ObjCEHValueStack; 644 645 /// A class controlling the emission of a finally block. 646 class FinallyInfo { 647 /// Where the catchall's edge through the cleanup should go. 648 JumpDest RethrowDest; 649 650 /// A function to call to enter the catch. 651 llvm::Constant *BeginCatchFn; 652 653 /// An i1 variable indicating whether or not the @finally is 654 /// running for an exception. 655 llvm::AllocaInst *ForEHVar; 656 657 /// An i8* variable into which the exception pointer to rethrow 658 /// has been saved. 659 llvm::AllocaInst *SavedExnVar; 660 661 public: 662 void enter(CodeGenFunction &CGF, const Stmt *Finally, 663 llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn, 664 llvm::Constant *rethrowFn); 665 void exit(CodeGenFunction &CGF); 666 }; 667 668 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 669 /// current full-expression. Safe against the possibility that 670 /// we're currently inside a conditionally-evaluated expression. 671 template <class T, class A0> 672 void pushFullExprCleanup(CleanupKind kind, A0 a0) { 673 // If we're not in a conditional branch, or if none of the 674 // arguments requires saving, then use the unconditional cleanup. 675 if (!isInConditionalBranch()) 676 return EHStack.pushCleanup<T>(kind, a0); 677 678 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 679 680 typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType; 681 EHStack.pushCleanup<CleanupType>(kind, a0_saved); 682 initFullExprCleanup(); 683 } 684 685 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 686 /// current full-expression. Safe against the possibility that 687 /// we're currently inside a conditionally-evaluated expression. 688 template <class T, class A0, class A1> 689 void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) { 690 // If we're not in a conditional branch, or if none of the 691 // arguments requires saving, then use the unconditional cleanup. 692 if (!isInConditionalBranch()) 693 return EHStack.pushCleanup<T>(kind, a0, a1); 694 695 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 696 typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); 697 698 typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType; 699 EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved); 700 initFullExprCleanup(); 701 } 702 703 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 704 /// current full-expression. Safe against the possibility that 705 /// we're currently inside a conditionally-evaluated expression. 706 template <class T, class A0, class A1, class A2> 707 void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2) { 708 // If we're not in a conditional branch, or if none of the 709 // arguments requires saving, then use the unconditional cleanup. 710 if (!isInConditionalBranch()) { 711 return EHStack.pushCleanup<T>(kind, a0, a1, a2); 712 } 713 714 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 715 typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); 716 typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2); 717 718 typedef EHScopeStack::ConditionalCleanup3<T, A0, A1, A2> CleanupType; 719 EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, a2_saved); 720 initFullExprCleanup(); 721 } 722 723 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 724 /// current full-expression. Safe against the possibility that 725 /// we're currently inside a conditionally-evaluated expression. 726 template <class T, class A0, class A1, class A2, class A3> 727 void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2, A3 a3) { 728 // If we're not in a conditional branch, or if none of the 729 // arguments requires saving, then use the unconditional cleanup. 730 if (!isInConditionalBranch()) { 731 return EHStack.pushCleanup<T>(kind, a0, a1, a2, a3); 732 } 733 734 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 735 typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); 736 typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2); 737 typename DominatingValue<A3>::saved_type a3_saved = saveValueInCond(a3); 738 739 typedef EHScopeStack::ConditionalCleanup4<T, A0, A1, A2, A3> CleanupType; 740 EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, 741 a2_saved, a3_saved); 742 initFullExprCleanup(); 743 } 744 745 /// Set up the last cleaup that was pushed as a conditional 746 /// full-expression cleanup. 747 void initFullExprCleanup(); 748 749 /// PushDestructorCleanup - Push a cleanup to call the 750 /// complete-object destructor of an object of the given type at the 751 /// given address. Does nothing if T is not a C++ class type with a 752 /// non-trivial destructor. 753 void PushDestructorCleanup(QualType T, llvm::Value *Addr); 754 755 /// PushDestructorCleanup - Push a cleanup to call the 756 /// complete-object variant of the given destructor on the object at 757 /// the given address. 758 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, 759 llvm::Value *Addr); 760 761 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 762 /// process all branch fixups. 763 void PopCleanupBlock(bool FallThroughIsBranchThrough = false); 764 765 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 766 /// The block cannot be reactivated. Pops it if it's the top of the 767 /// stack. 768 /// 769 /// \param DominatingIP - An instruction which is known to 770 /// dominate the current IP (if set) and which lies along 771 /// all paths of execution between the current IP and the 772 /// the point at which the cleanup comes into scope. 773 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 774 llvm::Instruction *DominatingIP); 775 776 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 777 /// Cannot be used to resurrect a deactivated cleanup. 778 /// 779 /// \param DominatingIP - An instruction which is known to 780 /// dominate the current IP (if set) and which lies along 781 /// all paths of execution between the current IP and the 782 /// the point at which the cleanup comes into scope. 783 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 784 llvm::Instruction *DominatingIP); 785 786 /// \brief Enters a new scope for capturing cleanups, all of which 787 /// will be executed once the scope is exited. 788 class RunCleanupsScope { 789 EHScopeStack::stable_iterator CleanupStackDepth; 790 bool OldDidCallStackSave; 791 bool PerformCleanup; 792 793 RunCleanupsScope(const RunCleanupsScope &); // DO NOT IMPLEMENT 794 RunCleanupsScope &operator=(const RunCleanupsScope &); // DO NOT IMPLEMENT 795 796 protected: 797 CodeGenFunction& CGF; 798 799 public: 800 /// \brief Enter a new cleanup scope. 801 explicit RunCleanupsScope(CodeGenFunction &CGF) 802 : PerformCleanup(true), CGF(CGF) 803 { 804 CleanupStackDepth = CGF.EHStack.stable_begin(); 805 OldDidCallStackSave = CGF.DidCallStackSave; 806 CGF.DidCallStackSave = false; 807 } 808 809 /// \brief Exit this cleanup scope, emitting any accumulated 810 /// cleanups. 811 ~RunCleanupsScope() { 812 if (PerformCleanup) { 813 CGF.DidCallStackSave = OldDidCallStackSave; 814 CGF.PopCleanupBlocks(CleanupStackDepth); 815 } 816 } 817 818 /// \brief Determine whether this scope requires any cleanups. 819 bool requiresCleanups() const { 820 return CGF.EHStack.stable_begin() != CleanupStackDepth; 821 } 822 823 /// \brief Force the emission of cleanups now, instead of waiting 824 /// until this object is destroyed. 825 void ForceCleanup() { 826 assert(PerformCleanup && "Already forced cleanup"); 827 CGF.DidCallStackSave = OldDidCallStackSave; 828 CGF.PopCleanupBlocks(CleanupStackDepth); 829 PerformCleanup = false; 830 } 831 }; 832 833 class LexicalScope: protected RunCleanupsScope { 834 SourceRange Range; 835 bool PopDebugStack; 836 837 LexicalScope(const LexicalScope &); // DO NOT IMPLEMENT THESE 838 LexicalScope &operator=(const LexicalScope &); 839 840 public: 841 /// \brief Enter a new cleanup scope. 842 explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) 843 : RunCleanupsScope(CGF), Range(Range), PopDebugStack(true) { 844 if (CGDebugInfo *DI = CGF.getDebugInfo()) 845 DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); 846 } 847 848 /// \brief Exit this cleanup scope, emitting any accumulated 849 /// cleanups. 850 ~LexicalScope() { 851 if (PopDebugStack) { 852 CGDebugInfo *DI = CGF.getDebugInfo(); 853 if (DI) DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 854 } 855 } 856 857 /// \brief Force the emission of cleanups now, instead of waiting 858 /// until this object is destroyed. 859 void ForceCleanup() { 860 RunCleanupsScope::ForceCleanup(); 861 if (CGDebugInfo *DI = CGF.getDebugInfo()) { 862 DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 863 PopDebugStack = false; 864 } 865 } 866 }; 867 868 869 /// PopCleanupBlocks - Takes the old cleanup stack size and emits 870 /// the cleanup blocks that have been added. 871 void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize); 872 873 void ResolveBranchFixups(llvm::BasicBlock *Target); 874 875 /// The given basic block lies in the current EH scope, but may be a 876 /// target of a potentially scope-crossing jump; get a stable handle 877 /// to which we can perform this jump later. 878 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 879 return JumpDest(Target, 880 EHStack.getInnermostNormalCleanup(), 881 NextCleanupDestIndex++); 882 } 883 884 /// The given basic block lies in the current EH scope, but may be a 885 /// target of a potentially scope-crossing jump; get a stable handle 886 /// to which we can perform this jump later. 887 JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { 888 return getJumpDestInCurrentScope(createBasicBlock(Name)); 889 } 890 891 /// EmitBranchThroughCleanup - Emit a branch from the current insert 892 /// block through the normal cleanup handling code (if any) and then 893 /// on to \arg Dest. 894 void EmitBranchThroughCleanup(JumpDest Dest); 895 896 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 897 /// specified destination obviously has no cleanups to run. 'false' is always 898 /// a conservatively correct answer for this method. 899 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 900 901 /// popCatchScope - Pops the catch scope at the top of the EHScope 902 /// stack, emitting any required code (other than the catch handlers 903 /// themselves). 904 void popCatchScope(); 905 906 llvm::BasicBlock *getEHResumeBlock(); 907 llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); 908 909 /// An object to manage conditionally-evaluated expressions. 910 class ConditionalEvaluation { 911 llvm::BasicBlock *StartBB; 912 913 public: 914 ConditionalEvaluation(CodeGenFunction &CGF) 915 : StartBB(CGF.Builder.GetInsertBlock()) {} 916 917 void begin(CodeGenFunction &CGF) { 918 assert(CGF.OutermostConditional != this); 919 if (!CGF.OutermostConditional) 920 CGF.OutermostConditional = this; 921 } 922 923 void end(CodeGenFunction &CGF) { 924 assert(CGF.OutermostConditional != 0); 925 if (CGF.OutermostConditional == this) 926 CGF.OutermostConditional = 0; 927 } 928 929 /// Returns a block which will be executed prior to each 930 /// evaluation of the conditional code. 931 llvm::BasicBlock *getStartingBlock() const { 932 return StartBB; 933 } 934 }; 935 936 /// isInConditionalBranch - Return true if we're currently emitting 937 /// one branch or the other of a conditional expression. 938 bool isInConditionalBranch() const { return OutermostConditional != 0; } 939 940 void setBeforeOutermostConditional(llvm::Value *value, llvm::Value *addr) { 941 assert(isInConditionalBranch()); 942 llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); 943 new llvm::StoreInst(value, addr, &block->back()); 944 } 945 946 /// An RAII object to record that we're evaluating a statement 947 /// expression. 948 class StmtExprEvaluation { 949 CodeGenFunction &CGF; 950 951 /// We have to save the outermost conditional: cleanups in a 952 /// statement expression aren't conditional just because the 953 /// StmtExpr is. 954 ConditionalEvaluation *SavedOutermostConditional; 955 956 public: 957 StmtExprEvaluation(CodeGenFunction &CGF) 958 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 959 CGF.OutermostConditional = 0; 960 } 961 962 ~StmtExprEvaluation() { 963 CGF.OutermostConditional = SavedOutermostConditional; 964 CGF.EnsureInsertPoint(); 965 } 966 }; 967 968 /// An object which temporarily prevents a value from being 969 /// destroyed by aggressive peephole optimizations that assume that 970 /// all uses of a value have been realized in the IR. 971 class PeepholeProtection { 972 llvm::Instruction *Inst; 973 friend class CodeGenFunction; 974 975 public: 976 PeepholeProtection() : Inst(0) {} 977 }; 978 979 /// A non-RAII class containing all the information about a bound 980 /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for 981 /// this which makes individual mappings very simple; using this 982 /// class directly is useful when you have a variable number of 983 /// opaque values or don't want the RAII functionality for some 984 /// reason. 985 class OpaqueValueMappingData { 986 const OpaqueValueExpr *OpaqueValue; 987 bool BoundLValue; 988 CodeGenFunction::PeepholeProtection Protection; 989 990 OpaqueValueMappingData(const OpaqueValueExpr *ov, 991 bool boundLValue) 992 : OpaqueValue(ov), BoundLValue(boundLValue) {} 993 public: 994 OpaqueValueMappingData() : OpaqueValue(0) {} 995 996 static bool shouldBindAsLValue(const Expr *expr) { 997 // gl-values should be bound as l-values for obvious reasons. 998 // Records should be bound as l-values because IR generation 999 // always keeps them in memory. Expressions of function type 1000 // act exactly like l-values but are formally required to be 1001 // r-values in C. 1002 return expr->isGLValue() || 1003 expr->getType()->isRecordType() || 1004 expr->getType()->isFunctionType(); 1005 } 1006 1007 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1008 const OpaqueValueExpr *ov, 1009 const Expr *e) { 1010 if (shouldBindAsLValue(ov)) 1011 return bind(CGF, ov, CGF.EmitLValue(e)); 1012 return bind(CGF, ov, CGF.EmitAnyExpr(e)); 1013 } 1014 1015 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1016 const OpaqueValueExpr *ov, 1017 const LValue &lv) { 1018 assert(shouldBindAsLValue(ov)); 1019 CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); 1020 return OpaqueValueMappingData(ov, true); 1021 } 1022 1023 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1024 const OpaqueValueExpr *ov, 1025 const RValue &rv) { 1026 assert(!shouldBindAsLValue(ov)); 1027 CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); 1028 1029 OpaqueValueMappingData data(ov, false); 1030 1031 // Work around an extremely aggressive peephole optimization in 1032 // EmitScalarConversion which assumes that all other uses of a 1033 // value are extant. 1034 data.Protection = CGF.protectFromPeepholes(rv); 1035 1036 return data; 1037 } 1038 1039 bool isValid() const { return OpaqueValue != 0; } 1040 void clear() { OpaqueValue = 0; } 1041 1042 void unbind(CodeGenFunction &CGF) { 1043 assert(OpaqueValue && "no data to unbind!"); 1044 1045 if (BoundLValue) { 1046 CGF.OpaqueLValues.erase(OpaqueValue); 1047 } else { 1048 CGF.OpaqueRValues.erase(OpaqueValue); 1049 CGF.unprotectFromPeepholes(Protection); 1050 } 1051 } 1052 }; 1053 1054 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 1055 class OpaqueValueMapping { 1056 CodeGenFunction &CGF; 1057 OpaqueValueMappingData Data; 1058 1059 public: 1060 static bool shouldBindAsLValue(const Expr *expr) { 1061 return OpaqueValueMappingData::shouldBindAsLValue(expr); 1062 } 1063 1064 /// Build the opaque value mapping for the given conditional 1065 /// operator if it's the GNU ?: extension. This is a common 1066 /// enough pattern that the convenience operator is really 1067 /// helpful. 1068 /// 1069 OpaqueValueMapping(CodeGenFunction &CGF, 1070 const AbstractConditionalOperator *op) : CGF(CGF) { 1071 if (isa<ConditionalOperator>(op)) 1072 // Leave Data empty. 1073 return; 1074 1075 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 1076 Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), 1077 e->getCommon()); 1078 } 1079 1080 OpaqueValueMapping(CodeGenFunction &CGF, 1081 const OpaqueValueExpr *opaqueValue, 1082 LValue lvalue) 1083 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { 1084 } 1085 1086 OpaqueValueMapping(CodeGenFunction &CGF, 1087 const OpaqueValueExpr *opaqueValue, 1088 RValue rvalue) 1089 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { 1090 } 1091 1092 void pop() { 1093 Data.unbind(CGF); 1094 Data.clear(); 1095 } 1096 1097 ~OpaqueValueMapping() { 1098 if (Data.isValid()) Data.unbind(CGF); 1099 } 1100 }; 1101 1102 /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field 1103 /// number that holds the value. 1104 unsigned getByRefValueLLVMField(const ValueDecl *VD) const; 1105 1106 /// BuildBlockByrefAddress - Computes address location of the 1107 /// variable which is declared as __block. 1108 llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr, 1109 const VarDecl *V); 1110 private: 1111 CGDebugInfo *DebugInfo; 1112 bool DisableDebugInfo; 1113 1114 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 1115 /// calling llvm.stacksave for multiple VLAs in the same scope. 1116 bool DidCallStackSave; 1117 1118 /// IndirectBranch - The first time an indirect goto is seen we create a block 1119 /// with an indirect branch. Every time we see the address of a label taken, 1120 /// we add the label to the indirect goto. Every subsequent indirect goto is 1121 /// codegen'd as a jump to the IndirectBranch's basic block. 1122 llvm::IndirectBrInst *IndirectBranch; 1123 1124 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 1125 /// decls. 1126 typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy; 1127 DeclMapTy LocalDeclMap; 1128 1129 /// LabelMap - This keeps track of the LLVM basic block for each C label. 1130 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 1131 1132 // BreakContinueStack - This keeps track of where break and continue 1133 // statements should jump to. 1134 struct BreakContinue { 1135 BreakContinue(JumpDest Break, JumpDest Continue) 1136 : BreakBlock(Break), ContinueBlock(Continue) {} 1137 1138 JumpDest BreakBlock; 1139 JumpDest ContinueBlock; 1140 }; 1141 SmallVector<BreakContinue, 8> BreakContinueStack; 1142 1143 /// SwitchInsn - This is nearest current switch instruction. It is null if 1144 /// current context is not in a switch. 1145 llvm::SwitchInst *SwitchInsn; 1146 1147 /// CaseRangeBlock - This block holds if condition check for last case 1148 /// statement range in current switch instruction. 1149 llvm::BasicBlock *CaseRangeBlock; 1150 1151 /// OpaqueLValues - Keeps track of the current set of opaque value 1152 /// expressions. 1153 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 1154 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 1155 1156 // VLASizeMap - This keeps track of the associated size for each VLA type. 1157 // We track this by the size expression rather than the type itself because 1158 // in certain situations, like a const qualifier applied to an VLA typedef, 1159 // multiple VLA types can share the same size expression. 1160 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 1161 // enter/leave scopes. 1162 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 1163 1164 /// A block containing a single 'unreachable' instruction. Created 1165 /// lazily by getUnreachableBlock(). 1166 llvm::BasicBlock *UnreachableBlock; 1167 1168 /// CXXThisDecl - When generating code for a C++ member function, 1169 /// this will hold the implicit 'this' declaration. 1170 ImplicitParamDecl *CXXABIThisDecl; 1171 llvm::Value *CXXABIThisValue; 1172 llvm::Value *CXXThisValue; 1173 1174 /// CXXVTTDecl - When generating code for a base object constructor or 1175 /// base object destructor with virtual bases, this will hold the implicit 1176 /// VTT parameter. 1177 ImplicitParamDecl *CXXVTTDecl; 1178 llvm::Value *CXXVTTValue; 1179 1180 /// OutermostConditional - Points to the outermost active 1181 /// conditional control. This is used so that we know if a 1182 /// temporary should be destroyed conditionally. 1183 ConditionalEvaluation *OutermostConditional; 1184 1185 1186 /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM 1187 /// type as well as the field number that contains the actual data. 1188 llvm::DenseMap<const ValueDecl *, std::pair<llvm::Type *, 1189 unsigned> > ByRefValueInfo; 1190 1191 llvm::BasicBlock *TerminateLandingPad; 1192 llvm::BasicBlock *TerminateHandler; 1193 llvm::BasicBlock *TrapBB; 1194 1195 public: 1196 CodeGenFunction(CodeGenModule &cgm); 1197 ~CodeGenFunction(); 1198 1199 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 1200 ASTContext &getContext() const { return CGM.getContext(); } 1201 CGDebugInfo *getDebugInfo() { 1202 if (DisableDebugInfo) 1203 return NULL; 1204 return DebugInfo; 1205 } 1206 void disableDebugInfo() { DisableDebugInfo = true; } 1207 void enableDebugInfo() { DisableDebugInfo = false; } 1208 1209 bool shouldUseFusedARCCalls() { 1210 return CGM.getCodeGenOpts().OptimizationLevel == 0; 1211 } 1212 1213 const LangOptions &getLangOptions() const { return CGM.getLangOptions(); } 1214 1215 /// Returns a pointer to the function's exception object and selector slot, 1216 /// which is assigned in every landing pad. 1217 llvm::Value *getExceptionSlot(); 1218 llvm::Value *getEHSelectorSlot(); 1219 1220 /// Returns the contents of the function's exception object and selector 1221 /// slots. 1222 llvm::Value *getExceptionFromSlot(); 1223 llvm::Value *getSelectorFromSlot(); 1224 1225 llvm::Value *getNormalCleanupDestSlot(); 1226 1227 llvm::BasicBlock *getUnreachableBlock() { 1228 if (!UnreachableBlock) { 1229 UnreachableBlock = createBasicBlock("unreachable"); 1230 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 1231 } 1232 return UnreachableBlock; 1233 } 1234 1235 llvm::BasicBlock *getInvokeDest() { 1236 if (!EHStack.requiresLandingPad()) return 0; 1237 return getInvokeDestImpl(); 1238 } 1239 1240 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 1241 1242 //===--------------------------------------------------------------------===// 1243 // Cleanups 1244 //===--------------------------------------------------------------------===// 1245 1246 typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty); 1247 1248 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1249 llvm::Value *arrayEndPointer, 1250 QualType elementType, 1251 Destroyer *destroyer); 1252 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1253 llvm::Value *arrayEnd, 1254 QualType elementType, 1255 Destroyer *destroyer); 1256 1257 void pushDestroy(QualType::DestructionKind dtorKind, 1258 llvm::Value *addr, QualType type); 1259 void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type, 1260 Destroyer *destroyer, bool useEHCleanupForArray); 1261 void emitDestroy(llvm::Value *addr, QualType type, Destroyer *destroyer, 1262 bool useEHCleanupForArray); 1263 llvm::Function *generateDestroyHelper(llvm::Constant *addr, 1264 QualType type, 1265 Destroyer *destroyer, 1266 bool useEHCleanupForArray); 1267 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 1268 QualType type, Destroyer *destroyer, 1269 bool checkZeroLength, bool useEHCleanup); 1270 1271 Destroyer *getDestroyer(QualType::DestructionKind destructionKind); 1272 1273 /// Determines whether an EH cleanup is required to destroy a type 1274 /// with the given destruction kind. 1275 bool needsEHCleanup(QualType::DestructionKind kind) { 1276 switch (kind) { 1277 case QualType::DK_none: 1278 return false; 1279 case QualType::DK_cxx_destructor: 1280 case QualType::DK_objc_weak_lifetime: 1281 return getLangOptions().Exceptions; 1282 case QualType::DK_objc_strong_lifetime: 1283 return getLangOptions().Exceptions && 1284 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 1285 } 1286 llvm_unreachable("bad destruction kind"); 1287 } 1288 1289 CleanupKind getCleanupKind(QualType::DestructionKind kind) { 1290 return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); 1291 } 1292 1293 //===--------------------------------------------------------------------===// 1294 // Objective-C 1295 //===--------------------------------------------------------------------===// 1296 1297 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 1298 1299 void StartObjCMethod(const ObjCMethodDecl *MD, 1300 const ObjCContainerDecl *CD, 1301 SourceLocation StartLoc); 1302 1303 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 1304 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 1305 const ObjCPropertyImplDecl *PID); 1306 void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 1307 const ObjCPropertyImplDecl *propImpl, 1308 llvm::Constant *AtomicHelperFn); 1309 1310 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1311 ObjCMethodDecl *MD, bool ctor); 1312 1313 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 1314 /// for the given property. 1315 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 1316 const ObjCPropertyImplDecl *PID); 1317 void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1318 const ObjCPropertyImplDecl *propImpl, 1319 llvm::Constant *AtomicHelperFn); 1320 bool IndirectObjCSetterArg(const CGFunctionInfo &FI); 1321 bool IvarTypeWithAggrGCObjects(QualType Ty); 1322 1323 //===--------------------------------------------------------------------===// 1324 // Block Bits 1325 //===--------------------------------------------------------------------===// 1326 1327 llvm::Value *EmitBlockLiteral(const BlockExpr *); 1328 llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); 1329 static void destroyBlockInfos(CGBlockInfo *info); 1330 llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *, 1331 const CGBlockInfo &Info, 1332 llvm::StructType *, 1333 llvm::Constant *BlockVarLayout); 1334 1335 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 1336 const CGBlockInfo &Info, 1337 const Decl *OuterFuncDecl, 1338 const DeclMapTy &ldm, 1339 bool IsLambdaConversionToBlock); 1340 1341 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 1342 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 1343 llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( 1344 const ObjCPropertyImplDecl *PID); 1345 llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( 1346 const ObjCPropertyImplDecl *PID); 1347 llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); 1348 1349 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags); 1350 1351 class AutoVarEmission; 1352 1353 void emitByrefStructureInit(const AutoVarEmission &emission); 1354 void enterByrefCleanup(const AutoVarEmission &emission); 1355 1356 llvm::Value *LoadBlockStruct() { 1357 assert(BlockPointer && "no block pointer set!"); 1358 return BlockPointer; 1359 } 1360 1361 void AllocateBlockCXXThisPointer(const CXXThisExpr *E); 1362 void AllocateBlockDecl(const BlockDeclRefExpr *E); 1363 llvm::Value *GetAddrOfBlockDecl(const BlockDeclRefExpr *E) { 1364 return GetAddrOfBlockDecl(E->getDecl(), E->isByRef()); 1365 } 1366 llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef); 1367 llvm::Type *BuildByRefType(const VarDecl *var); 1368 1369 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1370 const CGFunctionInfo &FnInfo); 1371 void StartFunction(GlobalDecl GD, QualType RetTy, 1372 llvm::Function *Fn, 1373 const CGFunctionInfo &FnInfo, 1374 const FunctionArgList &Args, 1375 SourceLocation StartLoc); 1376 1377 void EmitConstructorBody(FunctionArgList &Args); 1378 void EmitDestructorBody(FunctionArgList &Args); 1379 void EmitFunctionBody(FunctionArgList &Args); 1380 1381 void EmitForwardingCallToLambda(const CXXRecordDecl *Lambda, 1382 CallArgList &CallArgs); 1383 void EmitLambdaToBlockPointerBody(FunctionArgList &Args); 1384 void EmitLambdaBlockInvokeBody(); 1385 void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD); 1386 void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD); 1387 1388 /// EmitReturnBlock - Emit the unified return block, trying to avoid its 1389 /// emission when possible. 1390 void EmitReturnBlock(); 1391 1392 /// FinishFunction - Complete IR generation of the current function. It is 1393 /// legal to call this function even if there is no current insertion point. 1394 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 1395 1396 /// GenerateThunk - Generate a thunk for the given method. 1397 void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1398 GlobalDecl GD, const ThunkInfo &Thunk); 1399 1400 void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1401 GlobalDecl GD, const ThunkInfo &Thunk); 1402 1403 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 1404 FunctionArgList &Args); 1405 1406 void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init, 1407 ArrayRef<VarDecl *> ArrayIndexes); 1408 1409 /// InitializeVTablePointer - Initialize the vtable pointer of the given 1410 /// subobject. 1411 /// 1412 void InitializeVTablePointer(BaseSubobject Base, 1413 const CXXRecordDecl *NearestVBase, 1414 CharUnits OffsetFromNearestVBase, 1415 llvm::Constant *VTable, 1416 const CXXRecordDecl *VTableClass); 1417 1418 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 1419 void InitializeVTablePointers(BaseSubobject Base, 1420 const CXXRecordDecl *NearestVBase, 1421 CharUnits OffsetFromNearestVBase, 1422 bool BaseIsNonVirtualPrimaryBase, 1423 llvm::Constant *VTable, 1424 const CXXRecordDecl *VTableClass, 1425 VisitedVirtualBasesSetTy& VBases); 1426 1427 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 1428 1429 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 1430 /// to by This. 1431 llvm::Value *GetVTablePtr(llvm::Value *This, llvm::Type *Ty); 1432 1433 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 1434 /// given phase of destruction for a destructor. The end result 1435 /// should call destructors on members and base classes in reverse 1436 /// order of their construction. 1437 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 1438 1439 /// ShouldInstrumentFunction - Return true if the current function should be 1440 /// instrumented with __cyg_profile_func_* calls 1441 bool ShouldInstrumentFunction(); 1442 1443 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 1444 /// instrumentation function with the current function and the call site, if 1445 /// function instrumentation is enabled. 1446 void EmitFunctionInstrumentation(const char *Fn); 1447 1448 /// EmitMCountInstrumentation - Emit call to .mcount. 1449 void EmitMCountInstrumentation(); 1450 1451 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 1452 /// arguments for the given function. This is also responsible for naming the 1453 /// LLVM function arguments. 1454 void EmitFunctionProlog(const CGFunctionInfo &FI, 1455 llvm::Function *Fn, 1456 const FunctionArgList &Args); 1457 1458 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 1459 /// given temporary. 1460 void EmitFunctionEpilog(const CGFunctionInfo &FI); 1461 1462 /// EmitStartEHSpec - Emit the start of the exception spec. 1463 void EmitStartEHSpec(const Decl *D); 1464 1465 /// EmitEndEHSpec - Emit the end of the exception spec. 1466 void EmitEndEHSpec(const Decl *D); 1467 1468 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 1469 llvm::BasicBlock *getTerminateLandingPad(); 1470 1471 /// getTerminateHandler - Return a handler (not a landing pad, just 1472 /// a catch handler) that just calls terminate. This is used when 1473 /// a terminate scope encloses a try. 1474 llvm::BasicBlock *getTerminateHandler(); 1475 1476 llvm::Type *ConvertTypeForMem(QualType T); 1477 llvm::Type *ConvertType(QualType T); 1478 llvm::Type *ConvertType(const TypeDecl *T) { 1479 return ConvertType(getContext().getTypeDeclType(T)); 1480 } 1481 1482 /// LoadObjCSelf - Load the value of self. This function is only valid while 1483 /// generating code for an Objective-C method. 1484 llvm::Value *LoadObjCSelf(); 1485 1486 /// TypeOfSelfObject - Return type of object that this self represents. 1487 QualType TypeOfSelfObject(); 1488 1489 /// hasAggregateLLVMType - Return true if the specified AST type will map into 1490 /// an aggregate LLVM type or is void. 1491 static bool hasAggregateLLVMType(QualType T); 1492 1493 /// createBasicBlock - Create an LLVM basic block. 1494 llvm::BasicBlock *createBasicBlock(StringRef name = "", 1495 llvm::Function *parent = 0, 1496 llvm::BasicBlock *before = 0) { 1497 #ifdef NDEBUG 1498 return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before); 1499 #else 1500 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 1501 #endif 1502 } 1503 1504 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 1505 /// label maps to. 1506 JumpDest getJumpDestForLabel(const LabelDecl *S); 1507 1508 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 1509 /// another basic block, simplify it. This assumes that no other code could 1510 /// potentially reference the basic block. 1511 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 1512 1513 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 1514 /// adding a fall-through branch from the current insert block if 1515 /// necessary. It is legal to call this function even if there is no current 1516 /// insertion point. 1517 /// 1518 /// IsFinished - If true, indicates that the caller has finished emitting 1519 /// branches to the given block and does not expect to emit code into it. This 1520 /// means the block can be ignored if it is unreachable. 1521 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 1522 1523 /// EmitBlockAfterUses - Emit the given block somewhere hopefully 1524 /// near its uses, and leave the insertion point in it. 1525 void EmitBlockAfterUses(llvm::BasicBlock *BB); 1526 1527 /// EmitBranch - Emit a branch to the specified basic block from the current 1528 /// insert block, taking care to avoid creation of branches from dummy 1529 /// blocks. It is legal to call this function even if there is no current 1530 /// insertion point. 1531 /// 1532 /// This function clears the current insertion point. The caller should follow 1533 /// calls to this function with calls to Emit*Block prior to generation new 1534 /// code. 1535 void EmitBranch(llvm::BasicBlock *Block); 1536 1537 /// HaveInsertPoint - True if an insertion point is defined. If not, this 1538 /// indicates that the current code being emitted is unreachable. 1539 bool HaveInsertPoint() const { 1540 return Builder.GetInsertBlock() != 0; 1541 } 1542 1543 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 1544 /// emitted IR has a place to go. Note that by definition, if this function 1545 /// creates a block then that block is unreachable; callers may do better to 1546 /// detect when no insertion point is defined and simply skip IR generation. 1547 void EnsureInsertPoint() { 1548 if (!HaveInsertPoint()) 1549 EmitBlock(createBasicBlock()); 1550 } 1551 1552 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1553 /// specified stmt yet. 1554 void ErrorUnsupported(const Stmt *S, const char *Type, 1555 bool OmitOnError=false); 1556 1557 //===--------------------------------------------------------------------===// 1558 // Helpers 1559 //===--------------------------------------------------------------------===// 1560 1561 LValue MakeAddrLValue(llvm::Value *V, QualType T, 1562 CharUnits Alignment = CharUnits()) { 1563 return LValue::MakeAddr(V, T, Alignment, getContext(), 1564 CGM.getTBAAInfo(T)); 1565 } 1566 LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 1567 CharUnits Alignment; 1568 if (!T->isIncompleteType()) 1569 Alignment = getContext().getTypeAlignInChars(T); 1570 return LValue::MakeAddr(V, T, Alignment, getContext(), 1571 CGM.getTBAAInfo(T)); 1572 } 1573 1574 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 1575 /// block. The caller is responsible for setting an appropriate alignment on 1576 /// the alloca. 1577 llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, 1578 const Twine &Name = "tmp"); 1579 1580 /// InitTempAlloca - Provide an initial value for the given alloca. 1581 void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value); 1582 1583 /// CreateIRTemp - Create a temporary IR object of the given type, with 1584 /// appropriate alignment. This routine should only be used when an temporary 1585 /// value needs to be stored into an alloca (for example, to avoid explicit 1586 /// PHI construction), but the type is the IR type, not the type appropriate 1587 /// for storing in memory. 1588 llvm::AllocaInst *CreateIRTemp(QualType T, const Twine &Name = "tmp"); 1589 1590 /// CreateMemTemp - Create a temporary memory object of the given type, with 1591 /// appropriate alignment. 1592 llvm::AllocaInst *CreateMemTemp(QualType T, const Twine &Name = "tmp"); 1593 1594 /// CreateAggTemp - Create a temporary memory object for the given 1595 /// aggregate type. 1596 AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") { 1597 CharUnits Alignment = getContext().getTypeAlignInChars(T); 1598 return AggValueSlot::forAddr(CreateMemTemp(T, Name), Alignment, 1599 T.getQualifiers(), 1600 AggValueSlot::IsNotDestructed, 1601 AggValueSlot::DoesNotNeedGCBarriers, 1602 AggValueSlot::IsNotAliased); 1603 } 1604 1605 /// Emit a cast to void* in the appropriate address space. 1606 llvm::Value *EmitCastToVoidPtr(llvm::Value *value); 1607 1608 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 1609 /// expression and compare the result against zero, returning an Int1Ty value. 1610 llvm::Value *EvaluateExprAsBool(const Expr *E); 1611 1612 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 1613 void EmitIgnoredExpr(const Expr *E); 1614 1615 /// EmitAnyExpr - Emit code to compute the specified expression which can have 1616 /// any type. The result is returned as an RValue struct. If this is an 1617 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 1618 /// the result should be returned. 1619 /// 1620 /// \param IgnoreResult - True if the resulting value isn't used. 1621 RValue EmitAnyExpr(const Expr *E, 1622 AggValueSlot AggSlot = AggValueSlot::ignored(), 1623 bool IgnoreResult = false); 1624 1625 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 1626 // or the value of the expression, depending on how va_list is defined. 1627 llvm::Value *EmitVAListRef(const Expr *E); 1628 1629 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 1630 /// always be accessible even if no aggregate location is provided. 1631 RValue EmitAnyExprToTemp(const Expr *E); 1632 1633 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 1634 /// arbitrary expression into the given memory location. 1635 void EmitAnyExprToMem(const Expr *E, llvm::Value *Location, 1636 Qualifiers Quals, bool IsInitializer); 1637 1638 /// EmitExprAsInit - Emits the code necessary to initialize a 1639 /// location in memory with the given initializer. 1640 void EmitExprAsInit(const Expr *init, const ValueDecl *D, 1641 LValue lvalue, bool capturedByInit); 1642 1643 /// EmitAggregateCopy - Emit an aggrate copy. 1644 /// 1645 /// \param isVolatile - True iff either the source or the destination is 1646 /// volatile. 1647 void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr, 1648 QualType EltTy, bool isVolatile=false, 1649 unsigned Alignment = 0); 1650 1651 /// StartBlock - Start new block named N. If insert block is a dummy block 1652 /// then reuse it. 1653 void StartBlock(const char *N); 1654 1655 /// GetAddrOfStaticLocalVar - Return the address of a static local variable. 1656 llvm::Constant *GetAddrOfStaticLocalVar(const VarDecl *BVD) { 1657 return cast<llvm::Constant>(GetAddrOfLocalVar(BVD)); 1658 } 1659 1660 /// GetAddrOfLocalVar - Return the address of a local variable. 1661 llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) { 1662 llvm::Value *Res = LocalDeclMap[VD]; 1663 assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!"); 1664 return Res; 1665 } 1666 1667 /// getOpaqueLValueMapping - Given an opaque value expression (which 1668 /// must be mapped to an l-value), return its mapping. 1669 const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) { 1670 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 1671 1672 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 1673 it = OpaqueLValues.find(e); 1674 assert(it != OpaqueLValues.end() && "no mapping for opaque value!"); 1675 return it->second; 1676 } 1677 1678 /// getOpaqueRValueMapping - Given an opaque value expression (which 1679 /// must be mapped to an r-value), return its mapping. 1680 const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) { 1681 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 1682 1683 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 1684 it = OpaqueRValues.find(e); 1685 assert(it != OpaqueRValues.end() && "no mapping for opaque value!"); 1686 return it->second; 1687 } 1688 1689 /// getAccessedFieldNo - Given an encoded value and a result number, return 1690 /// the input field number being accessed. 1691 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 1692 1693 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 1694 llvm::BasicBlock *GetIndirectGotoBlock(); 1695 1696 /// EmitNullInitialization - Generate code to set a value of the given type to 1697 /// null, If the type contains data member pointers, they will be initialized 1698 /// to -1 in accordance with the Itanium C++ ABI. 1699 void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty); 1700 1701 // EmitVAArg - Generate code to get an argument from the passed in pointer 1702 // and update it accordingly. The return value is a pointer to the argument. 1703 // FIXME: We should be able to get rid of this method and use the va_arg 1704 // instruction in LLVM instead once it works well enough. 1705 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty); 1706 1707 /// emitArrayLength - Compute the length of an array, even if it's a 1708 /// VLA, and drill down to the base element type. 1709 llvm::Value *emitArrayLength(const ArrayType *arrayType, 1710 QualType &baseType, 1711 llvm::Value *&addr); 1712 1713 /// EmitVLASize - Capture all the sizes for the VLA expressions in 1714 /// the given variably-modified type and store them in the VLASizeMap. 1715 /// 1716 /// This function can be called with a null (unreachable) insert point. 1717 void EmitVariablyModifiedType(QualType Ty); 1718 1719 /// getVLASize - Returns an LLVM value that corresponds to the size, 1720 /// in non-variably-sized elements, of a variable length array type, 1721 /// plus that largest non-variably-sized element type. Assumes that 1722 /// the type has already been emitted with EmitVariablyModifiedType. 1723 std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla); 1724 std::pair<llvm::Value*,QualType> getVLASize(QualType vla); 1725 1726 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 1727 /// generating code for an C++ member function. 1728 llvm::Value *LoadCXXThis() { 1729 assert(CXXThisValue && "no 'this' value for this function"); 1730 return CXXThisValue; 1731 } 1732 1733 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 1734 /// virtual bases. 1735 llvm::Value *LoadCXXVTT() { 1736 assert(CXXVTTValue && "no VTT value for this function"); 1737 return CXXVTTValue; 1738 } 1739 1740 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 1741 /// complete class to the given direct base. 1742 llvm::Value * 1743 GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value, 1744 const CXXRecordDecl *Derived, 1745 const CXXRecordDecl *Base, 1746 bool BaseIsVirtual); 1747 1748 /// GetAddressOfBaseClass - This function will add the necessary delta to the 1749 /// load of 'this' and returns address of the base class. 1750 llvm::Value *GetAddressOfBaseClass(llvm::Value *Value, 1751 const CXXRecordDecl *Derived, 1752 CastExpr::path_const_iterator PathBegin, 1753 CastExpr::path_const_iterator PathEnd, 1754 bool NullCheckValue); 1755 1756 llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value, 1757 const CXXRecordDecl *Derived, 1758 CastExpr::path_const_iterator PathBegin, 1759 CastExpr::path_const_iterator PathEnd, 1760 bool NullCheckValue); 1761 1762 llvm::Value *GetVirtualBaseClassOffset(llvm::Value *This, 1763 const CXXRecordDecl *ClassDecl, 1764 const CXXRecordDecl *BaseClassDecl); 1765 1766 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 1767 CXXCtorType CtorType, 1768 const FunctionArgList &Args); 1769 // It's important not to confuse this and the previous function. Delegating 1770 // constructors are the C++0x feature. The constructor delegate optimization 1771 // is used to reduce duplication in the base and complete consturctors where 1772 // they are substantially the same. 1773 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 1774 const FunctionArgList &Args); 1775 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 1776 bool ForVirtualBase, llvm::Value *This, 1777 CallExpr::const_arg_iterator ArgBeg, 1778 CallExpr::const_arg_iterator ArgEnd); 1779 1780 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 1781 llvm::Value *This, llvm::Value *Src, 1782 CallExpr::const_arg_iterator ArgBeg, 1783 CallExpr::const_arg_iterator ArgEnd); 1784 1785 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 1786 const ConstantArrayType *ArrayTy, 1787 llvm::Value *ArrayPtr, 1788 CallExpr::const_arg_iterator ArgBeg, 1789 CallExpr::const_arg_iterator ArgEnd, 1790 bool ZeroInitialization = false); 1791 1792 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 1793 llvm::Value *NumElements, 1794 llvm::Value *ArrayPtr, 1795 CallExpr::const_arg_iterator ArgBeg, 1796 CallExpr::const_arg_iterator ArgEnd, 1797 bool ZeroInitialization = false); 1798 1799 static Destroyer destroyCXXObject; 1800 1801 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 1802 bool ForVirtualBase, llvm::Value *This); 1803 1804 void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, 1805 llvm::Value *NewPtr, llvm::Value *NumElements); 1806 1807 void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, 1808 llvm::Value *Ptr); 1809 1810 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 1811 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 1812 1813 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 1814 QualType DeleteTy); 1815 1816 llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E); 1817 llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE); 1818 1819 void MaybeEmitStdInitializerListCleanup(llvm::Value *loc, const Expr *init); 1820 void EmitStdInitializerListCleanup(llvm::Value *loc, 1821 const InitListExpr *init); 1822 1823 void EmitCheck(llvm::Value *, unsigned Size); 1824 1825 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 1826 bool isInc, bool isPre); 1827 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 1828 bool isInc, bool isPre); 1829 //===--------------------------------------------------------------------===// 1830 // Declaration Emission 1831 //===--------------------------------------------------------------------===// 1832 1833 /// EmitDecl - Emit a declaration. 1834 /// 1835 /// This function can be called with a null (unreachable) insert point. 1836 void EmitDecl(const Decl &D); 1837 1838 /// EmitVarDecl - Emit a local variable declaration. 1839 /// 1840 /// This function can be called with a null (unreachable) insert point. 1841 void EmitVarDecl(const VarDecl &D); 1842 1843 void EmitScalarInit(const Expr *init, const ValueDecl *D, 1844 LValue lvalue, bool capturedByInit); 1845 void EmitScalarInit(llvm::Value *init, LValue lvalue); 1846 1847 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 1848 llvm::Value *Address); 1849 1850 /// EmitAutoVarDecl - Emit an auto variable declaration. 1851 /// 1852 /// This function can be called with a null (unreachable) insert point. 1853 void EmitAutoVarDecl(const VarDecl &D); 1854 1855 class AutoVarEmission { 1856 friend class CodeGenFunction; 1857 1858 const VarDecl *Variable; 1859 1860 /// The alignment of the variable. 1861 CharUnits Alignment; 1862 1863 /// The address of the alloca. Null if the variable was emitted 1864 /// as a global constant. 1865 llvm::Value *Address; 1866 1867 llvm::Value *NRVOFlag; 1868 1869 /// True if the variable is a __block variable. 1870 bool IsByRef; 1871 1872 /// True if the variable is of aggregate type and has a constant 1873 /// initializer. 1874 bool IsConstantAggregate; 1875 1876 struct Invalid {}; 1877 AutoVarEmission(Invalid) : Variable(0) {} 1878 1879 AutoVarEmission(const VarDecl &variable) 1880 : Variable(&variable), Address(0), NRVOFlag(0), 1881 IsByRef(false), IsConstantAggregate(false) {} 1882 1883 bool wasEmittedAsGlobal() const { return Address == 0; } 1884 1885 public: 1886 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 1887 1888 /// Returns the address of the object within this declaration. 1889 /// Note that this does not chase the forwarding pointer for 1890 /// __block decls. 1891 llvm::Value *getObjectAddress(CodeGenFunction &CGF) const { 1892 if (!IsByRef) return Address; 1893 1894 return CGF.Builder.CreateStructGEP(Address, 1895 CGF.getByRefValueLLVMField(Variable), 1896 Variable->getNameAsString()); 1897 } 1898 }; 1899 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 1900 void EmitAutoVarInit(const AutoVarEmission &emission); 1901 void EmitAutoVarCleanups(const AutoVarEmission &emission); 1902 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 1903 QualType::DestructionKind dtorKind); 1904 1905 void EmitStaticVarDecl(const VarDecl &D, 1906 llvm::GlobalValue::LinkageTypes Linkage); 1907 1908 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 1909 void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, unsigned ArgNo); 1910 1911 /// protectFromPeepholes - Protect a value that we're intending to 1912 /// store to the side, but which will probably be used later, from 1913 /// aggressive peepholing optimizations that might delete it. 1914 /// 1915 /// Pass the result to unprotectFromPeepholes to declare that 1916 /// protection is no longer required. 1917 /// 1918 /// There's no particular reason why this shouldn't apply to 1919 /// l-values, it's just that no existing peepholes work on pointers. 1920 PeepholeProtection protectFromPeepholes(RValue rvalue); 1921 void unprotectFromPeepholes(PeepholeProtection protection); 1922 1923 //===--------------------------------------------------------------------===// 1924 // Statement Emission 1925 //===--------------------------------------------------------------------===// 1926 1927 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 1928 void EmitStopPoint(const Stmt *S); 1929 1930 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 1931 /// this function even if there is no current insertion point. 1932 /// 1933 /// This function may clear the current insertion point; callers should use 1934 /// EnsureInsertPoint if they wish to subsequently generate code without first 1935 /// calling EmitBlock, EmitBranch, or EmitStmt. 1936 void EmitStmt(const Stmt *S); 1937 1938 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 1939 /// necessarily require an insertion point or debug information; typically 1940 /// because the statement amounts to a jump or a container of other 1941 /// statements. 1942 /// 1943 /// \return True if the statement was handled. 1944 bool EmitSimpleStmt(const Stmt *S); 1945 1946 RValue EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 1947 AggValueSlot AVS = AggValueSlot::ignored()); 1948 1949 /// EmitLabel - Emit the block for the given label. It is legal to call this 1950 /// function even if there is no current insertion point. 1951 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 1952 1953 void EmitLabelStmt(const LabelStmt &S); 1954 void EmitGotoStmt(const GotoStmt &S); 1955 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 1956 void EmitIfStmt(const IfStmt &S); 1957 void EmitWhileStmt(const WhileStmt &S); 1958 void EmitDoStmt(const DoStmt &S); 1959 void EmitForStmt(const ForStmt &S); 1960 void EmitReturnStmt(const ReturnStmt &S); 1961 void EmitDeclStmt(const DeclStmt &S); 1962 void EmitBreakStmt(const BreakStmt &S); 1963 void EmitContinueStmt(const ContinueStmt &S); 1964 void EmitSwitchStmt(const SwitchStmt &S); 1965 void EmitDefaultStmt(const DefaultStmt &S); 1966 void EmitCaseStmt(const CaseStmt &S); 1967 void EmitCaseStmtRange(const CaseStmt &S); 1968 void EmitAsmStmt(const AsmStmt &S); 1969 1970 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 1971 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 1972 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 1973 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 1974 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 1975 1976 llvm::Constant *getUnwindResumeFn(); 1977 llvm::Constant *getUnwindResumeOrRethrowFn(); 1978 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 1979 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 1980 1981 void EmitCXXTryStmt(const CXXTryStmt &S); 1982 void EmitCXXForRangeStmt(const CXXForRangeStmt &S); 1983 1984 //===--------------------------------------------------------------------===// 1985 // LValue Expression Emission 1986 //===--------------------------------------------------------------------===// 1987 1988 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 1989 RValue GetUndefRValue(QualType Ty); 1990 1991 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 1992 /// and issue an ErrorUnsupported style diagnostic (using the 1993 /// provided Name). 1994 RValue EmitUnsupportedRValue(const Expr *E, 1995 const char *Name); 1996 1997 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 1998 /// an ErrorUnsupported style diagnostic (using the provided Name). 1999 LValue EmitUnsupportedLValue(const Expr *E, 2000 const char *Name); 2001 2002 /// EmitLValue - Emit code to compute a designator that specifies the location 2003 /// of the expression. 2004 /// 2005 /// This can return one of two things: a simple address or a bitfield 2006 /// reference. In either case, the LLVM Value* in the LValue structure is 2007 /// guaranteed to be an LLVM pointer type. 2008 /// 2009 /// If this returns a bitfield reference, nothing about the pointee type of 2010 /// the LLVM value is known: For example, it may not be a pointer to an 2011 /// integer. 2012 /// 2013 /// If this returns a normal address, and if the lvalue's C type is fixed 2014 /// size, this method guarantees that the returned pointer type will point to 2015 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 2016 /// variable length type, this is not possible. 2017 /// 2018 LValue EmitLValue(const Expr *E); 2019 2020 /// EmitCheckedLValue - Same as EmitLValue but additionally we generate 2021 /// checking code to guard against undefined behavior. This is only 2022 /// suitable when we know that the address will be used to access the 2023 /// object. 2024 LValue EmitCheckedLValue(const Expr *E); 2025 2026 /// EmitToMemory - Change a scalar value from its value 2027 /// representation to its in-memory representation. 2028 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 2029 2030 /// EmitFromMemory - Change a scalar value from its memory 2031 /// representation to its value representation. 2032 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 2033 2034 /// EmitLoadOfScalar - Load a scalar value from an address, taking 2035 /// care to appropriately convert from the memory representation to 2036 /// the LLVM value representation. 2037 llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile, 2038 unsigned Alignment, QualType Ty, 2039 llvm::MDNode *TBAAInfo = 0); 2040 2041 /// EmitLoadOfScalar - Load a scalar value from an address, taking 2042 /// care to appropriately convert from the memory representation to 2043 /// the LLVM value representation. The l-value must be a simple 2044 /// l-value. 2045 llvm::Value *EmitLoadOfScalar(LValue lvalue); 2046 2047 /// EmitStoreOfScalar - Store a scalar value to an address, taking 2048 /// care to appropriately convert from the memory representation to 2049 /// the LLVM value representation. 2050 void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr, 2051 bool Volatile, unsigned Alignment, QualType Ty, 2052 llvm::MDNode *TBAAInfo = 0, bool isInit=false); 2053 2054 /// EmitStoreOfScalar - Store a scalar value to an address, taking 2055 /// care to appropriately convert from the memory representation to 2056 /// the LLVM value representation. The l-value must be a simple 2057 /// l-value. The isInit flag indicates whether this is an initialization. 2058 /// If so, atomic qualifiers are ignored and the store is always non-atomic. 2059 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); 2060 2061 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 2062 /// this method emits the address of the lvalue, then loads the result as an 2063 /// rvalue, returning the rvalue. 2064 RValue EmitLoadOfLValue(LValue V); 2065 RValue EmitLoadOfExtVectorElementLValue(LValue V); 2066 RValue EmitLoadOfBitfieldLValue(LValue LV); 2067 2068 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 2069 /// lvalue, where both are guaranteed to the have the same type, and that type 2070 /// is 'Ty'. 2071 void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit=false); 2072 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 2073 2074 /// EmitStoreThroughLValue - Store Src into Dst with same constraints as 2075 /// EmitStoreThroughLValue. 2076 /// 2077 /// \param Result [out] - If non-null, this will be set to a Value* for the 2078 /// bit-field contents after the store, appropriate for use as the result of 2079 /// an assignment to the bit-field. 2080 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 2081 llvm::Value **Result=0); 2082 2083 /// Emit an l-value for an assignment (simple or compound) of complex type. 2084 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 2085 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 2086 2087 // Note: only available for agg return types 2088 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 2089 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 2090 // Note: only available for agg return types 2091 LValue EmitCallExprLValue(const CallExpr *E); 2092 // Note: only available for agg return types 2093 LValue EmitVAArgExprLValue(const VAArgExpr *E); 2094 LValue EmitDeclRefLValue(const DeclRefExpr *E); 2095 LValue EmitStringLiteralLValue(const StringLiteral *E); 2096 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 2097 LValue EmitPredefinedLValue(const PredefinedExpr *E); 2098 LValue EmitUnaryOpLValue(const UnaryOperator *E); 2099 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E); 2100 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 2101 LValue EmitMemberExpr(const MemberExpr *E); 2102 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 2103 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 2104 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 2105 LValue EmitCastLValue(const CastExpr *E); 2106 LValue EmitNullInitializationLValue(const CXXScalarValueInitExpr *E); 2107 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 2108 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 2109 2110 RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, 2111 AggValueSlot slot = AggValueSlot::ignored()); 2112 LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); 2113 2114 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 2115 const ObjCIvarDecl *Ivar); 2116 LValue EmitLValueForAnonRecordField(llvm::Value* Base, 2117 const IndirectFieldDecl* Field, 2118 unsigned CVRQualifiers); 2119 LValue EmitLValueForField(llvm::Value* Base, const FieldDecl* Field, 2120 unsigned CVRQualifiers); 2121 2122 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 2123 /// if the Field is a reference, this will return the address of the reference 2124 /// and not the address of the value stored in the reference. 2125 LValue EmitLValueForFieldInitialization(llvm::Value* Base, 2126 const FieldDecl* Field, 2127 unsigned CVRQualifiers); 2128 2129 LValue EmitLValueForIvar(QualType ObjectTy, 2130 llvm::Value* Base, const ObjCIvarDecl *Ivar, 2131 unsigned CVRQualifiers); 2132 2133 LValue EmitLValueForBitfield(llvm::Value* Base, const FieldDecl* Field, 2134 unsigned CVRQualifiers); 2135 2136 LValue EmitBlockDeclRefLValue(const BlockDeclRefExpr *E); 2137 2138 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 2139 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 2140 LValue EmitLambdaLValue(const LambdaExpr *E); 2141 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 2142 2143 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 2144 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 2145 LValue EmitStmtExprLValue(const StmtExpr *E); 2146 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 2147 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 2148 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init); 2149 2150 //===--------------------------------------------------------------------===// 2151 // Scalar Expression Emission 2152 //===--------------------------------------------------------------------===// 2153 2154 /// EmitCall - Generate a call of the given function, expecting the given 2155 /// result type, and using the given argument list which specifies both the 2156 /// LLVM arguments and the types they were derived from. 2157 /// 2158 /// \param TargetDecl - If given, the decl of the function in a direct call; 2159 /// used to set attributes on the call (noreturn, etc.). 2160 RValue EmitCall(const CGFunctionInfo &FnInfo, 2161 llvm::Value *Callee, 2162 ReturnValueSlot ReturnValue, 2163 const CallArgList &Args, 2164 const Decl *TargetDecl = 0, 2165 llvm::Instruction **callOrInvoke = 0); 2166 2167 RValue EmitCall(QualType FnType, llvm::Value *Callee, 2168 ReturnValueSlot ReturnValue, 2169 CallExpr::const_arg_iterator ArgBeg, 2170 CallExpr::const_arg_iterator ArgEnd, 2171 const Decl *TargetDecl = 0); 2172 RValue EmitCallExpr(const CallExpr *E, 2173 ReturnValueSlot ReturnValue = ReturnValueSlot()); 2174 2175 llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, 2176 ArrayRef<llvm::Value *> Args, 2177 const Twine &Name = ""); 2178 llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, 2179 const Twine &Name = ""); 2180 2181 llvm::Value *BuildVirtualCall(const CXXMethodDecl *MD, llvm::Value *This, 2182 llvm::Type *Ty); 2183 llvm::Value *BuildVirtualCall(const CXXDestructorDecl *DD, CXXDtorType Type, 2184 llvm::Value *This, llvm::Type *Ty); 2185 llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 2186 NestedNameSpecifier *Qual, 2187 llvm::Type *Ty); 2188 2189 llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 2190 CXXDtorType Type, 2191 const CXXRecordDecl *RD); 2192 2193 RValue EmitCXXMemberCall(const CXXMethodDecl *MD, 2194 llvm::Value *Callee, 2195 ReturnValueSlot ReturnValue, 2196 llvm::Value *This, 2197 llvm::Value *VTT, 2198 CallExpr::const_arg_iterator ArgBeg, 2199 CallExpr::const_arg_iterator ArgEnd); 2200 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 2201 ReturnValueSlot ReturnValue); 2202 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 2203 ReturnValueSlot ReturnValue); 2204 2205 llvm::Value *EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E, 2206 const CXXMethodDecl *MD, 2207 llvm::Value *This); 2208 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 2209 const CXXMethodDecl *MD, 2210 ReturnValueSlot ReturnValue); 2211 2212 RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 2213 ReturnValueSlot ReturnValue); 2214 2215 2216 RValue EmitBuiltinExpr(const FunctionDecl *FD, 2217 unsigned BuiltinID, const CallExpr *E); 2218 2219 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 2220 2221 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 2222 /// is unhandled by the current target. 2223 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2224 2225 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2226 llvm::Value *EmitNeonCall(llvm::Function *F, 2227 SmallVectorImpl<llvm::Value*> &O, 2228 const char *name, 2229 unsigned shift = 0, bool rightshift = false); 2230 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 2231 llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, 2232 bool negateForRightShift); 2233 2234 llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); 2235 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2236 llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2237 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2238 2239 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 2240 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 2241 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 2242 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 2243 ReturnValueSlot Return = ReturnValueSlot()); 2244 2245 /// Retrieves the default cleanup kind for an ARC cleanup. 2246 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. 2247 CleanupKind getARCCleanupKind() { 2248 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 2249 ? NormalAndEHCleanup : NormalCleanup; 2250 } 2251 2252 // ARC primitives. 2253 void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr); 2254 void EmitARCDestroyWeak(llvm::Value *addr); 2255 llvm::Value *EmitARCLoadWeak(llvm::Value *addr); 2256 llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr); 2257 llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr, 2258 bool ignored); 2259 void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src); 2260 void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src); 2261 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 2262 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 2263 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 2264 bool ignored); 2265 llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value, 2266 bool ignored); 2267 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 2268 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 2269 llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); 2270 void EmitARCRelease(llvm::Value *value, bool precise); 2271 llvm::Value *EmitARCAutorelease(llvm::Value *value); 2272 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 2273 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 2274 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 2275 2276 std::pair<LValue,llvm::Value*> 2277 EmitARCStoreAutoreleasing(const BinaryOperator *e); 2278 std::pair<LValue,llvm::Value*> 2279 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 2280 2281 llvm::Value *EmitObjCThrowOperand(const Expr *expr); 2282 2283 llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr); 2284 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 2285 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 2286 2287 llvm::Value *EmitARCExtendBlockObject(const Expr *expr); 2288 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 2289 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 2290 2291 static Destroyer destroyARCStrongImprecise; 2292 static Destroyer destroyARCStrongPrecise; 2293 static Destroyer destroyARCWeak; 2294 2295 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 2296 llvm::Value *EmitObjCAutoreleasePoolPush(); 2297 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 2298 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 2299 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 2300 2301 /// EmitReferenceBindingToExpr - Emits a reference binding to the passed in 2302 /// expression. Will emit a temporary variable if E is not an LValue. 2303 RValue EmitReferenceBindingToExpr(const Expr* E, 2304 const NamedDecl *InitializedDecl); 2305 2306 //===--------------------------------------------------------------------===// 2307 // Expression Emission 2308 //===--------------------------------------------------------------------===// 2309 2310 // Expressions are broken into three classes: scalar, complex, aggregate. 2311 2312 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 2313 /// scalar type, returning the result. 2314 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 2315 2316 /// EmitScalarConversion - Emit a conversion from the specified type to the 2317 /// specified destination type, both of which are LLVM scalar types. 2318 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 2319 QualType DstTy); 2320 2321 /// EmitComplexToScalarConversion - Emit a conversion from the specified 2322 /// complex type to the specified destination type, where the destination type 2323 /// is an LLVM scalar type. 2324 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 2325 QualType DstTy); 2326 2327 2328 /// EmitAggExpr - Emit the computation of the specified expression 2329 /// of aggregate type. The result is computed into the given slot, 2330 /// which may be null to indicate that the value is not needed. 2331 void EmitAggExpr(const Expr *E, AggValueSlot AS, bool IgnoreResult = false); 2332 2333 /// EmitAggExprToLValue - Emit the computation of the specified expression of 2334 /// aggregate type into a temporary LValue. 2335 LValue EmitAggExprToLValue(const Expr *E); 2336 2337 /// EmitGCMemmoveCollectable - Emit special API for structs with object 2338 /// pointers. 2339 void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr, 2340 QualType Ty); 2341 2342 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 2343 /// make sure it survives garbage collection until this point. 2344 void EmitExtendGCLifetime(llvm::Value *object); 2345 2346 /// EmitComplexExpr - Emit the computation of the specified expression of 2347 /// complex type, returning the result. 2348 ComplexPairTy EmitComplexExpr(const Expr *E, 2349 bool IgnoreReal = false, 2350 bool IgnoreImag = false); 2351 2352 /// EmitComplexExprIntoAddr - Emit the computation of the specified expression 2353 /// of complex type, storing into the specified Value*. 2354 void EmitComplexExprIntoAddr(const Expr *E, llvm::Value *DestAddr, 2355 bool DestIsVolatile); 2356 2357 /// StoreComplexToAddr - Store a complex number into the specified address. 2358 void StoreComplexToAddr(ComplexPairTy V, llvm::Value *DestAddr, 2359 bool DestIsVolatile); 2360 /// LoadComplexFromAddr - Load a complex number from the specified address. 2361 ComplexPairTy LoadComplexFromAddr(llvm::Value *SrcAddr, bool SrcIsVolatile); 2362 2363 /// CreateStaticVarDecl - Create a zero-initialized LLVM global for 2364 /// a static local variable. 2365 llvm::GlobalVariable *CreateStaticVarDecl(const VarDecl &D, 2366 const char *Separator, 2367 llvm::GlobalValue::LinkageTypes Linkage); 2368 2369 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 2370 /// global variable that has already been created for it. If the initializer 2371 /// has a different type than GV does, this may free GV and return a different 2372 /// one. Otherwise it just returns GV. 2373 llvm::GlobalVariable * 2374 AddInitializerToStaticVarDecl(const VarDecl &D, 2375 llvm::GlobalVariable *GV); 2376 2377 2378 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 2379 /// variable with global storage. 2380 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr, 2381 bool PerformInit); 2382 2383 /// EmitCXXGlobalDtorRegistration - Emits a call to register the global ptr 2384 /// with the C++ runtime so that its destructor will be called at exit. 2385 void EmitCXXGlobalDtorRegistration(llvm::Constant *DtorFn, 2386 llvm::Constant *DeclPtr); 2387 2388 /// Emit code in this function to perform a guarded variable 2389 /// initialization. Guarded initializations are used when it's not 2390 /// possible to prove that an initialization will be done exactly 2391 /// once, e.g. with a static local variable or a static data member 2392 /// of a class template. 2393 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, 2394 bool PerformInit); 2395 2396 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 2397 /// variables. 2398 void GenerateCXXGlobalInitFunc(llvm::Function *Fn, 2399 llvm::Constant **Decls, 2400 unsigned NumDecls); 2401 2402 /// GenerateCXXGlobalDtorFunc - Generates code for destroying global 2403 /// variables. 2404 void GenerateCXXGlobalDtorFunc(llvm::Function *Fn, 2405 const std::vector<std::pair<llvm::WeakVH, 2406 llvm::Constant*> > &DtorsAndObjects); 2407 2408 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 2409 const VarDecl *D, 2410 llvm::GlobalVariable *Addr, 2411 bool PerformInit); 2412 2413 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 2414 2415 void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src, 2416 const Expr *Exp); 2417 2418 void enterFullExpression(const ExprWithCleanups *E) { 2419 if (E->getNumObjects() == 0) return; 2420 enterNonTrivialFullExpression(E); 2421 } 2422 void enterNonTrivialFullExpression(const ExprWithCleanups *E); 2423 2424 void EmitCXXThrowExpr(const CXXThrowExpr *E); 2425 2426 void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest); 2427 2428 RValue EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest = 0); 2429 2430 //===--------------------------------------------------------------------===// 2431 // Annotations Emission 2432 //===--------------------------------------------------------------------===// 2433 2434 /// Emit an annotation call (intrinsic or builtin). 2435 llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn, 2436 llvm::Value *AnnotatedVal, 2437 llvm::StringRef AnnotationStr, 2438 SourceLocation Location); 2439 2440 /// Emit local annotations for the local variable V, declared by D. 2441 void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); 2442 2443 /// Emit field annotations for the given field & value. Returns the 2444 /// annotation result. 2445 llvm::Value *EmitFieldAnnotations(const FieldDecl *D, llvm::Value *V); 2446 2447 //===--------------------------------------------------------------------===// 2448 // Internal Helpers 2449 //===--------------------------------------------------------------------===// 2450 2451 /// ContainsLabel - Return true if the statement contains a label in it. If 2452 /// this statement is not executed normally, it not containing a label means 2453 /// that we can just remove the code. 2454 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 2455 2456 /// containsBreak - Return true if the statement contains a break out of it. 2457 /// If the statement (recursively) contains a switch or loop with a break 2458 /// inside of it, this is fine. 2459 static bool containsBreak(const Stmt *S); 2460 2461 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 2462 /// to a constant, or if it does but contains a label, return false. If it 2463 /// constant folds return true and set the boolean result in Result. 2464 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result); 2465 2466 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 2467 /// to a constant, or if it does but contains a label, return false. If it 2468 /// constant folds return true and set the folded value. 2469 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APInt &Result); 2470 2471 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 2472 /// if statement) to the specified blocks. Based on the condition, this might 2473 /// try to simplify the codegen of the conditional based on the branch. 2474 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 2475 llvm::BasicBlock *FalseBlock); 2476 2477 /// getTrapBB - Create a basic block that will call the trap intrinsic. We'll 2478 /// generate a branch around the created basic block as necessary. 2479 llvm::BasicBlock *getTrapBB(); 2480 2481 /// EmitCallArg - Emit a single call argument. 2482 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 2483 2484 /// EmitDelegateCallArg - We are performing a delegate call; that 2485 /// is, the current function is delegating to another one. Produce 2486 /// a r-value suitable for passing the given parameter. 2487 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param); 2488 2489 /// SetFPAccuracy - Set the minimum required accuracy of the given floating 2490 /// point operation, expressed as the maximum relative error in ulp. 2491 void SetFPAccuracy(llvm::Value *Val, unsigned AccuracyN, 2492 unsigned AccuracyD = 1); 2493 2494 private: 2495 void EmitReturnOfRValue(RValue RV, QualType Ty); 2496 2497 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 2498 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 2499 /// 2500 /// \param AI - The first function argument of the expansion. 2501 /// \return The argument following the last expanded function 2502 /// argument. 2503 llvm::Function::arg_iterator 2504 ExpandTypeFromArgs(QualType Ty, LValue Dst, 2505 llvm::Function::arg_iterator AI); 2506 2507 /// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg 2508 /// Ty, into individual arguments on the provided vector \arg Args. See 2509 /// ABIArgInfo::Expand. 2510 void ExpandTypeToArgs(QualType Ty, RValue Src, 2511 SmallVector<llvm::Value*, 16> &Args, 2512 llvm::FunctionType *IRFuncTy); 2513 2514 llvm::Value* EmitAsmInput(const AsmStmt &S, 2515 const TargetInfo::ConstraintInfo &Info, 2516 const Expr *InputExpr, std::string &ConstraintStr); 2517 2518 llvm::Value* EmitAsmInputLValue(const AsmStmt &S, 2519 const TargetInfo::ConstraintInfo &Info, 2520 LValue InputValue, QualType InputType, 2521 std::string &ConstraintStr); 2522 2523 /// EmitCallArgs - Emit call arguments for a function. 2524 /// The CallArgTypeInfo parameter is used for iterating over the known 2525 /// argument types of the function being called. 2526 template<typename T> 2527 void EmitCallArgs(CallArgList& Args, const T* CallArgTypeInfo, 2528 CallExpr::const_arg_iterator ArgBeg, 2529 CallExpr::const_arg_iterator ArgEnd) { 2530 CallExpr::const_arg_iterator Arg = ArgBeg; 2531 2532 // First, use the argument types that the type info knows about 2533 if (CallArgTypeInfo) { 2534 for (typename T::arg_type_iterator I = CallArgTypeInfo->arg_type_begin(), 2535 E = CallArgTypeInfo->arg_type_end(); I != E; ++I, ++Arg) { 2536 assert(Arg != ArgEnd && "Running over edge of argument list!"); 2537 QualType ArgType = *I; 2538 #ifndef NDEBUG 2539 QualType ActualArgType = Arg->getType(); 2540 if (ArgType->isPointerType() && ActualArgType->isPointerType()) { 2541 QualType ActualBaseType = 2542 ActualArgType->getAs<PointerType>()->getPointeeType(); 2543 QualType ArgBaseType = 2544 ArgType->getAs<PointerType>()->getPointeeType(); 2545 if (ArgBaseType->isVariableArrayType()) { 2546 if (const VariableArrayType *VAT = 2547 getContext().getAsVariableArrayType(ActualBaseType)) { 2548 if (!VAT->getSizeExpr()) 2549 ActualArgType = ArgType; 2550 } 2551 } 2552 } 2553 assert(getContext().getCanonicalType(ArgType.getNonReferenceType()). 2554 getTypePtr() == 2555 getContext().getCanonicalType(ActualArgType).getTypePtr() && 2556 "type mismatch in call argument!"); 2557 #endif 2558 EmitCallArg(Args, *Arg, ArgType); 2559 } 2560 2561 // Either we've emitted all the call args, or we have a call to a 2562 // variadic function. 2563 assert((Arg == ArgEnd || CallArgTypeInfo->isVariadic()) && 2564 "Extra arguments in non-variadic function!"); 2565 2566 } 2567 2568 // If we still have any arguments, emit them using the type of the argument. 2569 for (; Arg != ArgEnd; ++Arg) 2570 EmitCallArg(Args, *Arg, Arg->getType()); 2571 } 2572 2573 const TargetCodeGenInfo &getTargetHooks() const { 2574 return CGM.getTargetCodeGenInfo(); 2575 } 2576 2577 void EmitDeclMetadata(); 2578 2579 CodeGenModule::ByrefHelpers * 2580 buildByrefHelpers(llvm::StructType &byrefType, 2581 const AutoVarEmission &emission); 2582 2583 void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); 2584 }; 2585 2586 /// Helper class with most of the code for saving a value for a 2587 /// conditional expression cleanup. 2588 struct DominatingLLVMValue { 2589 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 2590 2591 /// Answer whether the given value needs extra work to be saved. 2592 static bool needsSaving(llvm::Value *value) { 2593 // If it's not an instruction, we don't need to save. 2594 if (!isa<llvm::Instruction>(value)) return false; 2595 2596 // If it's an instruction in the entry block, we don't need to save. 2597 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 2598 return (block != &block->getParent()->getEntryBlock()); 2599 } 2600 2601 /// Try to save the given value. 2602 static saved_type save(CodeGenFunction &CGF, llvm::Value *value) { 2603 if (!needsSaving(value)) return saved_type(value, false); 2604 2605 // Otherwise we need an alloca. 2606 llvm::Value *alloca = 2607 CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save"); 2608 CGF.Builder.CreateStore(value, alloca); 2609 2610 return saved_type(alloca, true); 2611 } 2612 2613 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) { 2614 if (!value.getInt()) return value.getPointer(); 2615 return CGF.Builder.CreateLoad(value.getPointer()); 2616 } 2617 }; 2618 2619 /// A partial specialization of DominatingValue for llvm::Values that 2620 /// might be llvm::Instructions. 2621 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 2622 typedef T *type; 2623 static type restore(CodeGenFunction &CGF, saved_type value) { 2624 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 2625 } 2626 }; 2627 2628 /// A specialization of DominatingValue for RValue. 2629 template <> struct DominatingValue<RValue> { 2630 typedef RValue type; 2631 class saved_type { 2632 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 2633 AggregateAddress, ComplexAddress }; 2634 2635 llvm::Value *Value; 2636 Kind K; 2637 saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {} 2638 2639 public: 2640 static bool needsSaving(RValue value); 2641 static saved_type save(CodeGenFunction &CGF, RValue value); 2642 RValue restore(CodeGenFunction &CGF); 2643 2644 // implementations in CGExprCXX.cpp 2645 }; 2646 2647 static bool needsSaving(type value) { 2648 return saved_type::needsSaving(value); 2649 } 2650 static saved_type save(CodeGenFunction &CGF, type value) { 2651 return saved_type::save(CGF, value); 2652 } 2653 static type restore(CodeGenFunction &CGF, saved_type value) { 2654 return value.restore(CGF); 2655 } 2656 }; 2657 2658 } // end namespace CodeGen 2659 } // end namespace clang 2660 2661 #endif 2662