1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the internal per-function state used for llvm translation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 15 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 16 17 #include "CGBuilder.h" 18 #include "CGDebugInfo.h" 19 #include "CGLoopInfo.h" 20 #include "CGValue.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "EHScopeStack.h" 24 #include "VarBypassDetector.h" 25 #include "clang/AST/CharUnits.h" 26 #include "clang/AST/ExprCXX.h" 27 #include "clang/AST/ExprObjC.h" 28 #include "clang/AST/ExprOpenMP.h" 29 #include "clang/AST/Type.h" 30 #include "clang/Basic/ABI.h" 31 #include "clang/Basic/CapturedStmt.h" 32 #include "clang/Basic/OpenMPKinds.h" 33 #include "clang/Basic/TargetInfo.h" 34 #include "clang/Frontend/CodeGenOptions.h" 35 #include "llvm/ADT/ArrayRef.h" 36 #include "llvm/ADT/DenseMap.h" 37 #include "llvm/ADT/SmallVector.h" 38 #include "llvm/IR/ValueHandle.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Transforms/Utils/SanitizerStats.h" 41 42 namespace llvm { 43 class BasicBlock; 44 class LLVMContext; 45 class MDNode; 46 class Module; 47 class SwitchInst; 48 class Twine; 49 class Value; 50 class CallSite; 51 } 52 53 namespace clang { 54 class ASTContext; 55 class BlockDecl; 56 class CXXDestructorDecl; 57 class CXXForRangeStmt; 58 class CXXTryStmt; 59 class Decl; 60 class LabelDecl; 61 class EnumConstantDecl; 62 class FunctionDecl; 63 class FunctionProtoType; 64 class LabelStmt; 65 class ObjCContainerDecl; 66 class ObjCInterfaceDecl; 67 class ObjCIvarDecl; 68 class ObjCMethodDecl; 69 class ObjCImplementationDecl; 70 class ObjCPropertyImplDecl; 71 class TargetInfo; 72 class VarDecl; 73 class ObjCForCollectionStmt; 74 class ObjCAtTryStmt; 75 class ObjCAtThrowStmt; 76 class ObjCAtSynchronizedStmt; 77 class ObjCAutoreleasePoolStmt; 78 79 namespace analyze_os_log { 80 class OSLogBufferLayout; 81 } 82 83 namespace CodeGen { 84 class CodeGenTypes; 85 class CGCallee; 86 class CGFunctionInfo; 87 class CGRecordLayout; 88 class CGBlockInfo; 89 class CGCXXABI; 90 class BlockByrefHelpers; 91 class BlockByrefInfo; 92 class BlockFlags; 93 class BlockFieldFlags; 94 class RegionCodeGenTy; 95 class TargetCodeGenInfo; 96 struct OMPTaskDataTy; 97 struct CGCoroData; 98 99 /// The kind of evaluation to perform on values of a particular 100 /// type. Basically, is the code in CGExprScalar, CGExprComplex, or 101 /// CGExprAgg? 102 /// 103 /// TODO: should vectors maybe be split out into their own thing? 104 enum TypeEvaluationKind { 105 TEK_Scalar, 106 TEK_Complex, 107 TEK_Aggregate 108 }; 109 110 #define LIST_SANITIZER_CHECKS \ 111 SANITIZER_CHECK(AddOverflow, add_overflow, 0) \ 112 SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0) \ 113 SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0) \ 114 SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0) \ 115 SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0) \ 116 SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0) \ 117 SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 0) \ 118 SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0) \ 119 SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0) \ 120 SANITIZER_CHECK(MissingReturn, missing_return, 0) \ 121 SANITIZER_CHECK(MulOverflow, mul_overflow, 0) \ 122 SANITIZER_CHECK(NegateOverflow, negate_overflow, 0) \ 123 SANITIZER_CHECK(NullabilityArg, nullability_arg, 0) \ 124 SANITIZER_CHECK(NullabilityReturn, nullability_return, 1) \ 125 SANITIZER_CHECK(NonnullArg, nonnull_arg, 0) \ 126 SANITIZER_CHECK(NonnullReturn, nonnull_return, 1) \ 127 SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0) \ 128 SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0) \ 129 SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0) \ 130 SANITIZER_CHECK(SubOverflow, sub_overflow, 0) \ 131 SANITIZER_CHECK(TypeMismatch, type_mismatch, 1) \ 132 SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0) 133 134 enum SanitizerHandler { 135 #define SANITIZER_CHECK(Enum, Name, Version) Enum, 136 LIST_SANITIZER_CHECKS 137 #undef SANITIZER_CHECK 138 }; 139 140 /// CodeGenFunction - This class organizes the per-function state that is used 141 /// while generating LLVM code. 142 class CodeGenFunction : public CodeGenTypeCache { 143 CodeGenFunction(const CodeGenFunction &) = delete; 144 void operator=(const CodeGenFunction &) = delete; 145 146 friend class CGCXXABI; 147 public: 148 /// A jump destination is an abstract label, branching to which may 149 /// require a jump out through normal cleanups. 150 struct JumpDest { 151 JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {} 152 JumpDest(llvm::BasicBlock *Block, 153 EHScopeStack::stable_iterator Depth, 154 unsigned Index) 155 : Block(Block), ScopeDepth(Depth), Index(Index) {} 156 157 bool isValid() const { return Block != nullptr; } 158 llvm::BasicBlock *getBlock() const { return Block; } 159 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 160 unsigned getDestIndex() const { return Index; } 161 162 // This should be used cautiously. 163 void setScopeDepth(EHScopeStack::stable_iterator depth) { 164 ScopeDepth = depth; 165 } 166 167 private: 168 llvm::BasicBlock *Block; 169 EHScopeStack::stable_iterator ScopeDepth; 170 unsigned Index; 171 }; 172 173 CodeGenModule &CGM; // Per-module state. 174 const TargetInfo &Target; 175 176 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 177 LoopInfoStack LoopStack; 178 CGBuilderTy Builder; 179 180 // Stores variables for which we can't generate correct lifetime markers 181 // because of jumps. 182 VarBypassDetector Bypasses; 183 184 // CodeGen lambda for loops and support for ordered clause 185 typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &, 186 JumpDest)> 187 CodeGenLoopTy; 188 typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation, 189 const unsigned, const bool)> 190 CodeGenOrderedTy; 191 192 // Codegen lambda for loop bounds in worksharing loop constructs 193 typedef llvm::function_ref<std::pair<LValue, LValue>( 194 CodeGenFunction &, const OMPExecutableDirective &S)> 195 CodeGenLoopBoundsTy; 196 197 // Codegen lambda for loop bounds in dispatch-based loop implementation 198 typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>( 199 CodeGenFunction &, const OMPExecutableDirective &S, Address LB, 200 Address UB)> 201 CodeGenDispatchBoundsTy; 202 203 /// \brief CGBuilder insert helper. This function is called after an 204 /// instruction is created using Builder. 205 void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name, 206 llvm::BasicBlock *BB, 207 llvm::BasicBlock::iterator InsertPt) const; 208 209 /// CurFuncDecl - Holds the Decl for the current outermost 210 /// non-closure context. 211 const Decl *CurFuncDecl; 212 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 213 const Decl *CurCodeDecl; 214 const CGFunctionInfo *CurFnInfo; 215 QualType FnRetTy; 216 llvm::Function *CurFn; 217 218 // Holds coroutine data if the current function is a coroutine. We use a 219 // wrapper to manage its lifetime, so that we don't have to define CGCoroData 220 // in this header. 221 struct CGCoroInfo { 222 std::unique_ptr<CGCoroData> Data; 223 CGCoroInfo(); 224 ~CGCoroInfo(); 225 }; 226 CGCoroInfo CurCoro; 227 228 /// CurGD - The GlobalDecl for the current function being compiled. 229 GlobalDecl CurGD; 230 231 /// PrologueCleanupDepth - The cleanup depth enclosing all the 232 /// cleanups associated with the parameters. 233 EHScopeStack::stable_iterator PrologueCleanupDepth; 234 235 /// ReturnBlock - Unified return block. 236 JumpDest ReturnBlock; 237 238 /// ReturnValue - The temporary alloca to hold the return 239 /// value. This is invalid iff the function has no return value. 240 Address ReturnValue; 241 242 /// Return true if a label was seen in the current scope. 243 bool hasLabelBeenSeenInCurrentScope() const { 244 if (CurLexicalScope) 245 return CurLexicalScope->hasLabels(); 246 return !LabelMap.empty(); 247 } 248 249 /// AllocaInsertPoint - This is an instruction in the entry block before which 250 /// we prefer to insert allocas. 251 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 252 253 /// \brief API for captured statement code generation. 254 class CGCapturedStmtInfo { 255 public: 256 explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default) 257 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {} 258 explicit CGCapturedStmtInfo(const CapturedStmt &S, 259 CapturedRegionKind K = CR_Default) 260 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) { 261 262 RecordDecl::field_iterator Field = 263 S.getCapturedRecordDecl()->field_begin(); 264 for (CapturedStmt::const_capture_iterator I = S.capture_begin(), 265 E = S.capture_end(); 266 I != E; ++I, ++Field) { 267 if (I->capturesThis()) 268 CXXThisFieldDecl = *Field; 269 else if (I->capturesVariable()) 270 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 271 else if (I->capturesVariableByCopy()) 272 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 273 } 274 } 275 276 virtual ~CGCapturedStmtInfo(); 277 278 CapturedRegionKind getKind() const { return Kind; } 279 280 virtual void setContextValue(llvm::Value *V) { ThisValue = V; } 281 // \brief Retrieve the value of the context parameter. 282 virtual llvm::Value *getContextValue() const { return ThisValue; } 283 284 /// \brief Lookup the captured field decl for a variable. 285 virtual const FieldDecl *lookup(const VarDecl *VD) const { 286 return CaptureFields.lookup(VD->getCanonicalDecl()); 287 } 288 289 bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; } 290 virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; } 291 292 static bool classof(const CGCapturedStmtInfo *) { 293 return true; 294 } 295 296 /// \brief Emit the captured statement body. 297 virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) { 298 CGF.incrementProfileCounter(S); 299 CGF.EmitStmt(S); 300 } 301 302 /// \brief Get the name of the capture helper. 303 virtual StringRef getHelperName() const { return "__captured_stmt"; } 304 305 private: 306 /// \brief The kind of captured statement being generated. 307 CapturedRegionKind Kind; 308 309 /// \brief Keep the map between VarDecl and FieldDecl. 310 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields; 311 312 /// \brief The base address of the captured record, passed in as the first 313 /// argument of the parallel region function. 314 llvm::Value *ThisValue; 315 316 /// \brief Captured 'this' type. 317 FieldDecl *CXXThisFieldDecl; 318 }; 319 CGCapturedStmtInfo *CapturedStmtInfo; 320 321 /// \brief RAII for correct setting/restoring of CapturedStmtInfo. 322 class CGCapturedStmtRAII { 323 private: 324 CodeGenFunction &CGF; 325 CGCapturedStmtInfo *PrevCapturedStmtInfo; 326 public: 327 CGCapturedStmtRAII(CodeGenFunction &CGF, 328 CGCapturedStmtInfo *NewCapturedStmtInfo) 329 : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) { 330 CGF.CapturedStmtInfo = NewCapturedStmtInfo; 331 } 332 ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; } 333 }; 334 335 /// An abstract representation of regular/ObjC call/message targets. 336 class AbstractCallee { 337 /// The function declaration of the callee. 338 const Decl *CalleeDecl; 339 340 public: 341 AbstractCallee() : CalleeDecl(nullptr) {} 342 AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {} 343 AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {} 344 bool hasFunctionDecl() const { 345 return dyn_cast_or_null<FunctionDecl>(CalleeDecl); 346 } 347 const Decl *getDecl() const { return CalleeDecl; } 348 unsigned getNumParams() const { 349 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 350 return FD->getNumParams(); 351 return cast<ObjCMethodDecl>(CalleeDecl)->param_size(); 352 } 353 const ParmVarDecl *getParamDecl(unsigned I) const { 354 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 355 return FD->getParamDecl(I); 356 return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I); 357 } 358 }; 359 360 /// \brief Sanitizers enabled for this function. 361 SanitizerSet SanOpts; 362 363 /// \brief True if CodeGen currently emits code implementing sanitizer checks. 364 bool IsSanitizerScope; 365 366 /// \brief RAII object to set/unset CodeGenFunction::IsSanitizerScope. 367 class SanitizerScope { 368 CodeGenFunction *CGF; 369 public: 370 SanitizerScope(CodeGenFunction *CGF); 371 ~SanitizerScope(); 372 }; 373 374 /// In C++, whether we are code generating a thunk. This controls whether we 375 /// should emit cleanups. 376 bool CurFuncIsThunk; 377 378 /// In ARC, whether we should autorelease the return value. 379 bool AutoreleaseResult; 380 381 /// Whether we processed a Microsoft-style asm block during CodeGen. These can 382 /// potentially set the return value. 383 bool SawAsmBlock; 384 385 const FunctionDecl *CurSEHParent = nullptr; 386 387 /// True if the current function is an outlined SEH helper. This can be a 388 /// finally block or filter expression. 389 bool IsOutlinedSEHHelper; 390 391 const CodeGen::CGBlockInfo *BlockInfo; 392 llvm::Value *BlockPointer; 393 394 llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; 395 FieldDecl *LambdaThisCaptureField; 396 397 /// \brief A mapping from NRVO variables to the flags used to indicate 398 /// when the NRVO has been applied to this variable. 399 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 400 401 EHScopeStack EHStack; 402 llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack; 403 llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack; 404 405 llvm::Instruction *CurrentFuncletPad = nullptr; 406 407 class CallLifetimeEnd final : public EHScopeStack::Cleanup { 408 llvm::Value *Addr; 409 llvm::Value *Size; 410 411 public: 412 CallLifetimeEnd(Address addr, llvm::Value *size) 413 : Addr(addr.getPointer()), Size(size) {} 414 415 void Emit(CodeGenFunction &CGF, Flags flags) override { 416 CGF.EmitLifetimeEnd(Size, Addr); 417 } 418 }; 419 420 /// Header for data within LifetimeExtendedCleanupStack. 421 struct LifetimeExtendedCleanupHeader { 422 /// The size of the following cleanup object. 423 unsigned Size; 424 /// The kind of cleanup to push: a value from the CleanupKind enumeration. 425 CleanupKind Kind; 426 427 size_t getSize() const { return Size; } 428 CleanupKind getKind() const { return Kind; } 429 }; 430 431 /// i32s containing the indexes of the cleanup destinations. 432 llvm::AllocaInst *NormalCleanupDest; 433 434 unsigned NextCleanupDestIndex; 435 436 /// FirstBlockInfo - The head of a singly-linked-list of block layouts. 437 CGBlockInfo *FirstBlockInfo; 438 439 /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. 440 llvm::BasicBlock *EHResumeBlock; 441 442 /// The exception slot. All landing pads write the current exception pointer 443 /// into this alloca. 444 llvm::Value *ExceptionSlot; 445 446 /// The selector slot. Under the MandatoryCleanup model, all landing pads 447 /// write the current selector value into this alloca. 448 llvm::AllocaInst *EHSelectorSlot; 449 450 /// A stack of exception code slots. Entering an __except block pushes a slot 451 /// on the stack and leaving pops one. The __exception_code() intrinsic loads 452 /// a value from the top of the stack. 453 SmallVector<Address, 1> SEHCodeSlotStack; 454 455 /// Value returned by __exception_info intrinsic. 456 llvm::Value *SEHInfo = nullptr; 457 458 /// Emits a landing pad for the current EH stack. 459 llvm::BasicBlock *EmitLandingPad(); 460 461 llvm::BasicBlock *getInvokeDestImpl(); 462 463 template <class T> 464 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 465 return DominatingValue<T>::save(*this, value); 466 } 467 468 public: 469 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 470 /// rethrows. 471 SmallVector<llvm::Value*, 8> ObjCEHValueStack; 472 473 /// A class controlling the emission of a finally block. 474 class FinallyInfo { 475 /// Where the catchall's edge through the cleanup should go. 476 JumpDest RethrowDest; 477 478 /// A function to call to enter the catch. 479 llvm::Constant *BeginCatchFn; 480 481 /// An i1 variable indicating whether or not the @finally is 482 /// running for an exception. 483 llvm::AllocaInst *ForEHVar; 484 485 /// An i8* variable into which the exception pointer to rethrow 486 /// has been saved. 487 llvm::AllocaInst *SavedExnVar; 488 489 public: 490 void enter(CodeGenFunction &CGF, const Stmt *Finally, 491 llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn, 492 llvm::Constant *rethrowFn); 493 void exit(CodeGenFunction &CGF); 494 }; 495 496 /// Returns true inside SEH __try blocks. 497 bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); } 498 499 /// Returns true while emitting a cleanuppad. 500 bool isCleanupPadScope() const { 501 return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad); 502 } 503 504 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 505 /// current full-expression. Safe against the possibility that 506 /// we're currently inside a conditionally-evaluated expression. 507 template <class T, class... As> 508 void pushFullExprCleanup(CleanupKind kind, As... A) { 509 // If we're not in a conditional branch, or if none of the 510 // arguments requires saving, then use the unconditional cleanup. 511 if (!isInConditionalBranch()) 512 return EHStack.pushCleanup<T>(kind, A...); 513 514 // Stash values in a tuple so we can guarantee the order of saves. 515 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 516 SavedTuple Saved{saveValueInCond(A)...}; 517 518 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 519 EHStack.pushCleanupTuple<CleanupType>(kind, Saved); 520 initFullExprCleanup(); 521 } 522 523 /// \brief Queue a cleanup to be pushed after finishing the current 524 /// full-expression. 525 template <class T, class... As> 526 void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) { 527 assert(!isInConditionalBranch() && "can't defer conditional cleanup"); 528 529 LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind }; 530 531 size_t OldSize = LifetimeExtendedCleanupStack.size(); 532 LifetimeExtendedCleanupStack.resize( 533 LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size); 534 535 static_assert(sizeof(Header) % alignof(T) == 0, 536 "Cleanup will be allocated on misaligned address"); 537 char *Buffer = &LifetimeExtendedCleanupStack[OldSize]; 538 new (Buffer) LifetimeExtendedCleanupHeader(Header); 539 new (Buffer + sizeof(Header)) T(A...); 540 } 541 542 /// Set up the last cleaup that was pushed as a conditional 543 /// full-expression cleanup. 544 void initFullExprCleanup(); 545 546 /// PushDestructorCleanup - Push a cleanup to call the 547 /// complete-object destructor of an object of the given type at the 548 /// given address. Does nothing if T is not a C++ class type with a 549 /// non-trivial destructor. 550 void PushDestructorCleanup(QualType T, Address Addr); 551 552 /// PushDestructorCleanup - Push a cleanup to call the 553 /// complete-object variant of the given destructor on the object at 554 /// the given address. 555 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, Address Addr); 556 557 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 558 /// process all branch fixups. 559 void PopCleanupBlock(bool FallThroughIsBranchThrough = false); 560 561 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 562 /// The block cannot be reactivated. Pops it if it's the top of the 563 /// stack. 564 /// 565 /// \param DominatingIP - An instruction which is known to 566 /// dominate the current IP (if set) and which lies along 567 /// all paths of execution between the current IP and the 568 /// the point at which the cleanup comes into scope. 569 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 570 llvm::Instruction *DominatingIP); 571 572 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 573 /// Cannot be used to resurrect a deactivated cleanup. 574 /// 575 /// \param DominatingIP - An instruction which is known to 576 /// dominate the current IP (if set) and which lies along 577 /// all paths of execution between the current IP and the 578 /// the point at which the cleanup comes into scope. 579 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 580 llvm::Instruction *DominatingIP); 581 582 /// \brief Enters a new scope for capturing cleanups, all of which 583 /// will be executed once the scope is exited. 584 class RunCleanupsScope { 585 EHScopeStack::stable_iterator CleanupStackDepth; 586 size_t LifetimeExtendedCleanupStackSize; 587 bool OldDidCallStackSave; 588 protected: 589 bool PerformCleanup; 590 private: 591 592 RunCleanupsScope(const RunCleanupsScope &) = delete; 593 void operator=(const RunCleanupsScope &) = delete; 594 595 protected: 596 CodeGenFunction& CGF; 597 598 public: 599 /// \brief Enter a new cleanup scope. 600 explicit RunCleanupsScope(CodeGenFunction &CGF) 601 : PerformCleanup(true), CGF(CGF) 602 { 603 CleanupStackDepth = CGF.EHStack.stable_begin(); 604 LifetimeExtendedCleanupStackSize = 605 CGF.LifetimeExtendedCleanupStack.size(); 606 OldDidCallStackSave = CGF.DidCallStackSave; 607 CGF.DidCallStackSave = false; 608 } 609 610 /// \brief Exit this cleanup scope, emitting any accumulated cleanups. 611 ~RunCleanupsScope() { 612 if (PerformCleanup) 613 ForceCleanup(); 614 } 615 616 /// \brief Determine whether this scope requires any cleanups. 617 bool requiresCleanups() const { 618 return CGF.EHStack.stable_begin() != CleanupStackDepth; 619 } 620 621 /// \brief Force the emission of cleanups now, instead of waiting 622 /// until this object is destroyed. 623 /// \param ValuesToReload - A list of values that need to be available at 624 /// the insertion point after cleanup emission. If cleanup emission created 625 /// a shared cleanup block, these value pointers will be rewritten. 626 /// Otherwise, they not will be modified. 627 void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) { 628 assert(PerformCleanup && "Already forced cleanup"); 629 CGF.DidCallStackSave = OldDidCallStackSave; 630 CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize, 631 ValuesToReload); 632 PerformCleanup = false; 633 } 634 }; 635 636 class LexicalScope : public RunCleanupsScope { 637 SourceRange Range; 638 SmallVector<const LabelDecl*, 4> Labels; 639 LexicalScope *ParentScope; 640 641 LexicalScope(const LexicalScope &) = delete; 642 void operator=(const LexicalScope &) = delete; 643 644 public: 645 /// \brief Enter a new cleanup scope. 646 explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) 647 : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) { 648 CGF.CurLexicalScope = this; 649 if (CGDebugInfo *DI = CGF.getDebugInfo()) 650 DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); 651 } 652 653 void addLabel(const LabelDecl *label) { 654 assert(PerformCleanup && "adding label to dead scope?"); 655 Labels.push_back(label); 656 } 657 658 /// \brief Exit this cleanup scope, emitting any accumulated 659 /// cleanups. 660 ~LexicalScope() { 661 if (CGDebugInfo *DI = CGF.getDebugInfo()) 662 DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 663 664 // If we should perform a cleanup, force them now. Note that 665 // this ends the cleanup scope before rescoping any labels. 666 if (PerformCleanup) { 667 ApplyDebugLocation DL(CGF, Range.getEnd()); 668 ForceCleanup(); 669 } 670 } 671 672 /// \brief Force the emission of cleanups now, instead of waiting 673 /// until this object is destroyed. 674 void ForceCleanup() { 675 CGF.CurLexicalScope = ParentScope; 676 RunCleanupsScope::ForceCleanup(); 677 678 if (!Labels.empty()) 679 rescopeLabels(); 680 } 681 682 bool hasLabels() const { 683 return !Labels.empty(); 684 } 685 686 void rescopeLabels(); 687 }; 688 689 typedef llvm::DenseMap<const Decl *, Address> DeclMapTy; 690 691 /// \brief The scope used to remap some variables as private in the OpenMP 692 /// loop body (or other captured region emitted without outlining), and to 693 /// restore old vars back on exit. 694 class OMPPrivateScope : public RunCleanupsScope { 695 DeclMapTy SavedLocals; 696 DeclMapTy SavedPrivates; 697 698 private: 699 OMPPrivateScope(const OMPPrivateScope &) = delete; 700 void operator=(const OMPPrivateScope &) = delete; 701 702 public: 703 /// \brief Enter a new OpenMP private scope. 704 explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {} 705 706 /// \brief Registers \a LocalVD variable as a private and apply \a 707 /// PrivateGen function for it to generate corresponding private variable. 708 /// \a PrivateGen returns an address of the generated private variable. 709 /// \return true if the variable is registered as private, false if it has 710 /// been privatized already. 711 bool 712 addPrivate(const VarDecl *LocalVD, 713 llvm::function_ref<Address()> PrivateGen) { 714 assert(PerformCleanup && "adding private to dead scope"); 715 716 LocalVD = LocalVD->getCanonicalDecl(); 717 // Only save it once. 718 if (SavedLocals.count(LocalVD)) return false; 719 720 // Copy the existing local entry to SavedLocals. 721 auto it = CGF.LocalDeclMap.find(LocalVD); 722 if (it != CGF.LocalDeclMap.end()) { 723 SavedLocals.insert({LocalVD, it->second}); 724 } else { 725 SavedLocals.insert({LocalVD, Address::invalid()}); 726 } 727 728 // Generate the private entry. 729 Address Addr = PrivateGen(); 730 QualType VarTy = LocalVD->getType(); 731 if (VarTy->isReferenceType()) { 732 Address Temp = CGF.CreateMemTemp(VarTy); 733 CGF.Builder.CreateStore(Addr.getPointer(), Temp); 734 Addr = Temp; 735 } 736 SavedPrivates.insert({LocalVD, Addr}); 737 738 return true; 739 } 740 741 /// \brief Privatizes local variables previously registered as private. 742 /// Registration is separate from the actual privatization to allow 743 /// initializers use values of the original variables, not the private one. 744 /// This is important, for example, if the private variable is a class 745 /// variable initialized by a constructor that references other private 746 /// variables. But at initialization original variables must be used, not 747 /// private copies. 748 /// \return true if at least one variable was privatized, false otherwise. 749 bool Privatize() { 750 copyInto(SavedPrivates, CGF.LocalDeclMap); 751 SavedPrivates.clear(); 752 return !SavedLocals.empty(); 753 } 754 755 void ForceCleanup() { 756 RunCleanupsScope::ForceCleanup(); 757 copyInto(SavedLocals, CGF.LocalDeclMap); 758 SavedLocals.clear(); 759 } 760 761 /// \brief Exit scope - all the mapped variables are restored. 762 ~OMPPrivateScope() { 763 if (PerformCleanup) 764 ForceCleanup(); 765 } 766 767 /// Checks if the global variable is captured in current function. 768 bool isGlobalVarCaptured(const VarDecl *VD) const { 769 VD = VD->getCanonicalDecl(); 770 return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0; 771 } 772 773 private: 774 /// Copy all the entries in the source map over the corresponding 775 /// entries in the destination, which must exist. 776 static void copyInto(const DeclMapTy &src, DeclMapTy &dest) { 777 for (auto &pair : src) { 778 if (!pair.second.isValid()) { 779 dest.erase(pair.first); 780 continue; 781 } 782 783 auto it = dest.find(pair.first); 784 if (it != dest.end()) { 785 it->second = pair.second; 786 } else { 787 dest.insert(pair); 788 } 789 } 790 } 791 }; 792 793 /// \brief Takes the old cleanup stack size and emits the cleanup blocks 794 /// that have been added. 795 void 796 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 797 std::initializer_list<llvm::Value **> ValuesToReload = {}); 798 799 /// \brief Takes the old cleanup stack size and emits the cleanup blocks 800 /// that have been added, then adds all lifetime-extended cleanups from 801 /// the given position to the stack. 802 void 803 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 804 size_t OldLifetimeExtendedStackSize, 805 std::initializer_list<llvm::Value **> ValuesToReload = {}); 806 807 void ResolveBranchFixups(llvm::BasicBlock *Target); 808 809 /// The given basic block lies in the current EH scope, but may be a 810 /// target of a potentially scope-crossing jump; get a stable handle 811 /// to which we can perform this jump later. 812 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 813 return JumpDest(Target, 814 EHStack.getInnermostNormalCleanup(), 815 NextCleanupDestIndex++); 816 } 817 818 /// The given basic block lies in the current EH scope, but may be a 819 /// target of a potentially scope-crossing jump; get a stable handle 820 /// to which we can perform this jump later. 821 JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { 822 return getJumpDestInCurrentScope(createBasicBlock(Name)); 823 } 824 825 /// EmitBranchThroughCleanup - Emit a branch from the current insert 826 /// block through the normal cleanup handling code (if any) and then 827 /// on to \arg Dest. 828 void EmitBranchThroughCleanup(JumpDest Dest); 829 830 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 831 /// specified destination obviously has no cleanups to run. 'false' is always 832 /// a conservatively correct answer for this method. 833 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 834 835 /// popCatchScope - Pops the catch scope at the top of the EHScope 836 /// stack, emitting any required code (other than the catch handlers 837 /// themselves). 838 void popCatchScope(); 839 840 llvm::BasicBlock *getEHResumeBlock(bool isCleanup); 841 llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); 842 llvm::BasicBlock *getMSVCDispatchBlock(EHScopeStack::stable_iterator scope); 843 844 /// An object to manage conditionally-evaluated expressions. 845 class ConditionalEvaluation { 846 llvm::BasicBlock *StartBB; 847 848 public: 849 ConditionalEvaluation(CodeGenFunction &CGF) 850 : StartBB(CGF.Builder.GetInsertBlock()) {} 851 852 void begin(CodeGenFunction &CGF) { 853 assert(CGF.OutermostConditional != this); 854 if (!CGF.OutermostConditional) 855 CGF.OutermostConditional = this; 856 } 857 858 void end(CodeGenFunction &CGF) { 859 assert(CGF.OutermostConditional != nullptr); 860 if (CGF.OutermostConditional == this) 861 CGF.OutermostConditional = nullptr; 862 } 863 864 /// Returns a block which will be executed prior to each 865 /// evaluation of the conditional code. 866 llvm::BasicBlock *getStartingBlock() const { 867 return StartBB; 868 } 869 }; 870 871 /// isInConditionalBranch - Return true if we're currently emitting 872 /// one branch or the other of a conditional expression. 873 bool isInConditionalBranch() const { return OutermostConditional != nullptr; } 874 875 void setBeforeOutermostConditional(llvm::Value *value, Address addr) { 876 assert(isInConditionalBranch()); 877 llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); 878 auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back()); 879 store->setAlignment(addr.getAlignment().getQuantity()); 880 } 881 882 /// An RAII object to record that we're evaluating a statement 883 /// expression. 884 class StmtExprEvaluation { 885 CodeGenFunction &CGF; 886 887 /// We have to save the outermost conditional: cleanups in a 888 /// statement expression aren't conditional just because the 889 /// StmtExpr is. 890 ConditionalEvaluation *SavedOutermostConditional; 891 892 public: 893 StmtExprEvaluation(CodeGenFunction &CGF) 894 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 895 CGF.OutermostConditional = nullptr; 896 } 897 898 ~StmtExprEvaluation() { 899 CGF.OutermostConditional = SavedOutermostConditional; 900 CGF.EnsureInsertPoint(); 901 } 902 }; 903 904 /// An object which temporarily prevents a value from being 905 /// destroyed by aggressive peephole optimizations that assume that 906 /// all uses of a value have been realized in the IR. 907 class PeepholeProtection { 908 llvm::Instruction *Inst; 909 friend class CodeGenFunction; 910 911 public: 912 PeepholeProtection() : Inst(nullptr) {} 913 }; 914 915 /// A non-RAII class containing all the information about a bound 916 /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for 917 /// this which makes individual mappings very simple; using this 918 /// class directly is useful when you have a variable number of 919 /// opaque values or don't want the RAII functionality for some 920 /// reason. 921 class OpaqueValueMappingData { 922 const OpaqueValueExpr *OpaqueValue; 923 bool BoundLValue; 924 CodeGenFunction::PeepholeProtection Protection; 925 926 OpaqueValueMappingData(const OpaqueValueExpr *ov, 927 bool boundLValue) 928 : OpaqueValue(ov), BoundLValue(boundLValue) {} 929 public: 930 OpaqueValueMappingData() : OpaqueValue(nullptr) {} 931 932 static bool shouldBindAsLValue(const Expr *expr) { 933 // gl-values should be bound as l-values for obvious reasons. 934 // Records should be bound as l-values because IR generation 935 // always keeps them in memory. Expressions of function type 936 // act exactly like l-values but are formally required to be 937 // r-values in C. 938 return expr->isGLValue() || 939 expr->getType()->isFunctionType() || 940 hasAggregateEvaluationKind(expr->getType()); 941 } 942 943 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 944 const OpaqueValueExpr *ov, 945 const Expr *e) { 946 if (shouldBindAsLValue(ov)) 947 return bind(CGF, ov, CGF.EmitLValue(e)); 948 return bind(CGF, ov, CGF.EmitAnyExpr(e)); 949 } 950 951 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 952 const OpaqueValueExpr *ov, 953 const LValue &lv) { 954 assert(shouldBindAsLValue(ov)); 955 CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); 956 return OpaqueValueMappingData(ov, true); 957 } 958 959 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 960 const OpaqueValueExpr *ov, 961 const RValue &rv) { 962 assert(!shouldBindAsLValue(ov)); 963 CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); 964 965 OpaqueValueMappingData data(ov, false); 966 967 // Work around an extremely aggressive peephole optimization in 968 // EmitScalarConversion which assumes that all other uses of a 969 // value are extant. 970 data.Protection = CGF.protectFromPeepholes(rv); 971 972 return data; 973 } 974 975 bool isValid() const { return OpaqueValue != nullptr; } 976 void clear() { OpaqueValue = nullptr; } 977 978 void unbind(CodeGenFunction &CGF) { 979 assert(OpaqueValue && "no data to unbind!"); 980 981 if (BoundLValue) { 982 CGF.OpaqueLValues.erase(OpaqueValue); 983 } else { 984 CGF.OpaqueRValues.erase(OpaqueValue); 985 CGF.unprotectFromPeepholes(Protection); 986 } 987 } 988 }; 989 990 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 991 class OpaqueValueMapping { 992 CodeGenFunction &CGF; 993 OpaqueValueMappingData Data; 994 995 public: 996 static bool shouldBindAsLValue(const Expr *expr) { 997 return OpaqueValueMappingData::shouldBindAsLValue(expr); 998 } 999 1000 /// Build the opaque value mapping for the given conditional 1001 /// operator if it's the GNU ?: extension. This is a common 1002 /// enough pattern that the convenience operator is really 1003 /// helpful. 1004 /// 1005 OpaqueValueMapping(CodeGenFunction &CGF, 1006 const AbstractConditionalOperator *op) : CGF(CGF) { 1007 if (isa<ConditionalOperator>(op)) 1008 // Leave Data empty. 1009 return; 1010 1011 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 1012 Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), 1013 e->getCommon()); 1014 } 1015 1016 /// Build the opaque value mapping for an OpaqueValueExpr whose source 1017 /// expression is set to the expression the OVE represents. 1018 OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV) 1019 : CGF(CGF) { 1020 if (OV) { 1021 assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used " 1022 "for OVE with no source expression"); 1023 Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr()); 1024 } 1025 } 1026 1027 OpaqueValueMapping(CodeGenFunction &CGF, 1028 const OpaqueValueExpr *opaqueValue, 1029 LValue lvalue) 1030 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { 1031 } 1032 1033 OpaqueValueMapping(CodeGenFunction &CGF, 1034 const OpaqueValueExpr *opaqueValue, 1035 RValue rvalue) 1036 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { 1037 } 1038 1039 void pop() { 1040 Data.unbind(CGF); 1041 Data.clear(); 1042 } 1043 1044 ~OpaqueValueMapping() { 1045 if (Data.isValid()) Data.unbind(CGF); 1046 } 1047 }; 1048 1049 private: 1050 CGDebugInfo *DebugInfo; 1051 bool DisableDebugInfo; 1052 1053 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 1054 /// calling llvm.stacksave for multiple VLAs in the same scope. 1055 bool DidCallStackSave; 1056 1057 /// IndirectBranch - The first time an indirect goto is seen we create a block 1058 /// with an indirect branch. Every time we see the address of a label taken, 1059 /// we add the label to the indirect goto. Every subsequent indirect goto is 1060 /// codegen'd as a jump to the IndirectBranch's basic block. 1061 llvm::IndirectBrInst *IndirectBranch; 1062 1063 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 1064 /// decls. 1065 DeclMapTy LocalDeclMap; 1066 1067 /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this 1068 /// will contain a mapping from said ParmVarDecl to its implicit "object_size" 1069 /// parameter. 1070 llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2> 1071 SizeArguments; 1072 1073 /// Track escaped local variables with auto storage. Used during SEH 1074 /// outlining to produce a call to llvm.localescape. 1075 llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals; 1076 1077 /// LabelMap - This keeps track of the LLVM basic block for each C label. 1078 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 1079 1080 // BreakContinueStack - This keeps track of where break and continue 1081 // statements should jump to. 1082 struct BreakContinue { 1083 BreakContinue(JumpDest Break, JumpDest Continue) 1084 : BreakBlock(Break), ContinueBlock(Continue) {} 1085 1086 JumpDest BreakBlock; 1087 JumpDest ContinueBlock; 1088 }; 1089 SmallVector<BreakContinue, 8> BreakContinueStack; 1090 1091 /// Handles cancellation exit points in OpenMP-related constructs. 1092 class OpenMPCancelExitStack { 1093 /// Tracks cancellation exit point and join point for cancel-related exit 1094 /// and normal exit. 1095 struct CancelExit { 1096 CancelExit() = default; 1097 CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock, 1098 JumpDest ContBlock) 1099 : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {} 1100 OpenMPDirectiveKind Kind = OMPD_unknown; 1101 /// true if the exit block has been emitted already by the special 1102 /// emitExit() call, false if the default codegen is used. 1103 bool HasBeenEmitted = false; 1104 JumpDest ExitBlock; 1105 JumpDest ContBlock; 1106 }; 1107 1108 SmallVector<CancelExit, 8> Stack; 1109 1110 public: 1111 OpenMPCancelExitStack() : Stack(1) {} 1112 ~OpenMPCancelExitStack() = default; 1113 /// Fetches the exit block for the current OpenMP construct. 1114 JumpDest getExitBlock() const { return Stack.back().ExitBlock; } 1115 /// Emits exit block with special codegen procedure specific for the related 1116 /// OpenMP construct + emits code for normal construct cleanup. 1117 void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 1118 const llvm::function_ref<void(CodeGenFunction &)> &CodeGen) { 1119 if (Stack.back().Kind == Kind && getExitBlock().isValid()) { 1120 assert(CGF.getOMPCancelDestination(Kind).isValid()); 1121 assert(CGF.HaveInsertPoint()); 1122 assert(!Stack.back().HasBeenEmitted); 1123 auto IP = CGF.Builder.saveAndClearIP(); 1124 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1125 CodeGen(CGF); 1126 CGF.EmitBranch(Stack.back().ContBlock.getBlock()); 1127 CGF.Builder.restoreIP(IP); 1128 Stack.back().HasBeenEmitted = true; 1129 } 1130 CodeGen(CGF); 1131 } 1132 /// Enter the cancel supporting \a Kind construct. 1133 /// \param Kind OpenMP directive that supports cancel constructs. 1134 /// \param HasCancel true, if the construct has inner cancel directive, 1135 /// false otherwise. 1136 void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) { 1137 Stack.push_back({Kind, 1138 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit") 1139 : JumpDest(), 1140 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont") 1141 : JumpDest()}); 1142 } 1143 /// Emits default exit point for the cancel construct (if the special one 1144 /// has not be used) + join point for cancel/normal exits. 1145 void exit(CodeGenFunction &CGF) { 1146 if (getExitBlock().isValid()) { 1147 assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid()); 1148 bool HaveIP = CGF.HaveInsertPoint(); 1149 if (!Stack.back().HasBeenEmitted) { 1150 if (HaveIP) 1151 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1152 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1153 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1154 } 1155 CGF.EmitBlock(Stack.back().ContBlock.getBlock()); 1156 if (!HaveIP) { 1157 CGF.Builder.CreateUnreachable(); 1158 CGF.Builder.ClearInsertionPoint(); 1159 } 1160 } 1161 Stack.pop_back(); 1162 } 1163 }; 1164 OpenMPCancelExitStack OMPCancelStack; 1165 1166 /// Controls insertion of cancellation exit blocks in worksharing constructs. 1167 class OMPCancelStackRAII { 1168 CodeGenFunction &CGF; 1169 1170 public: 1171 OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 1172 bool HasCancel) 1173 : CGF(CGF) { 1174 CGF.OMPCancelStack.enter(CGF, Kind, HasCancel); 1175 } 1176 ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); } 1177 }; 1178 1179 CodeGenPGO PGO; 1180 1181 /// Calculate branch weights appropriate for PGO data 1182 llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount); 1183 llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights); 1184 llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond, 1185 uint64_t LoopCount); 1186 1187 public: 1188 /// Increment the profiler's counter for the given statement by \p StepV. 1189 /// If \p StepV is null, the default increment is 1. 1190 void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) { 1191 if (CGM.getCodeGenOpts().hasProfileClangInstr()) 1192 PGO.emitCounterIncrement(Builder, S, StepV); 1193 PGO.setCurrentStmt(S); 1194 } 1195 1196 /// Get the profiler's count for the given statement. 1197 uint64_t getProfileCount(const Stmt *S) { 1198 Optional<uint64_t> Count = PGO.getStmtCount(S); 1199 if (!Count.hasValue()) 1200 return 0; 1201 return *Count; 1202 } 1203 1204 /// Set the profiler's current count. 1205 void setCurrentProfileCount(uint64_t Count) { 1206 PGO.setCurrentRegionCount(Count); 1207 } 1208 1209 /// Get the profiler's current count. This is generally the count for the most 1210 /// recently incremented counter. 1211 uint64_t getCurrentProfileCount() { 1212 return PGO.getCurrentRegionCount(); 1213 } 1214 1215 private: 1216 1217 /// SwitchInsn - This is nearest current switch instruction. It is null if 1218 /// current context is not in a switch. 1219 llvm::SwitchInst *SwitchInsn; 1220 /// The branch weights of SwitchInsn when doing instrumentation based PGO. 1221 SmallVector<uint64_t, 16> *SwitchWeights; 1222 1223 /// CaseRangeBlock - This block holds if condition check for last case 1224 /// statement range in current switch instruction. 1225 llvm::BasicBlock *CaseRangeBlock; 1226 1227 /// OpaqueLValues - Keeps track of the current set of opaque value 1228 /// expressions. 1229 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 1230 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 1231 1232 // VLASizeMap - This keeps track of the associated size for each VLA type. 1233 // We track this by the size expression rather than the type itself because 1234 // in certain situations, like a const qualifier applied to an VLA typedef, 1235 // multiple VLA types can share the same size expression. 1236 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 1237 // enter/leave scopes. 1238 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 1239 1240 /// A block containing a single 'unreachable' instruction. Created 1241 /// lazily by getUnreachableBlock(). 1242 llvm::BasicBlock *UnreachableBlock; 1243 1244 /// Counts of the number return expressions in the function. 1245 unsigned NumReturnExprs; 1246 1247 /// Count the number of simple (constant) return expressions in the function. 1248 unsigned NumSimpleReturnExprs; 1249 1250 /// The last regular (non-return) debug location (breakpoint) in the function. 1251 SourceLocation LastStopPoint; 1252 1253 public: 1254 /// A scope within which we are constructing the fields of an object which 1255 /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use 1256 /// if we need to evaluate a CXXDefaultInitExpr within the evaluation. 1257 class FieldConstructionScope { 1258 public: 1259 FieldConstructionScope(CodeGenFunction &CGF, Address This) 1260 : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) { 1261 CGF.CXXDefaultInitExprThis = This; 1262 } 1263 ~FieldConstructionScope() { 1264 CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis; 1265 } 1266 1267 private: 1268 CodeGenFunction &CGF; 1269 Address OldCXXDefaultInitExprThis; 1270 }; 1271 1272 /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this' 1273 /// is overridden to be the object under construction. 1274 class CXXDefaultInitExprScope { 1275 public: 1276 CXXDefaultInitExprScope(CodeGenFunction &CGF) 1277 : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue), 1278 OldCXXThisAlignment(CGF.CXXThisAlignment) { 1279 CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer(); 1280 CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment(); 1281 } 1282 ~CXXDefaultInitExprScope() { 1283 CGF.CXXThisValue = OldCXXThisValue; 1284 CGF.CXXThisAlignment = OldCXXThisAlignment; 1285 } 1286 1287 public: 1288 CodeGenFunction &CGF; 1289 llvm::Value *OldCXXThisValue; 1290 CharUnits OldCXXThisAlignment; 1291 }; 1292 1293 /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the 1294 /// current loop index is overridden. 1295 class ArrayInitLoopExprScope { 1296 public: 1297 ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index) 1298 : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) { 1299 CGF.ArrayInitIndex = Index; 1300 } 1301 ~ArrayInitLoopExprScope() { 1302 CGF.ArrayInitIndex = OldArrayInitIndex; 1303 } 1304 1305 private: 1306 CodeGenFunction &CGF; 1307 llvm::Value *OldArrayInitIndex; 1308 }; 1309 1310 class InlinedInheritingConstructorScope { 1311 public: 1312 InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD) 1313 : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl), 1314 OldCurCodeDecl(CGF.CurCodeDecl), 1315 OldCXXABIThisDecl(CGF.CXXABIThisDecl), 1316 OldCXXABIThisValue(CGF.CXXABIThisValue), 1317 OldCXXThisValue(CGF.CXXThisValue), 1318 OldCXXABIThisAlignment(CGF.CXXABIThisAlignment), 1319 OldCXXThisAlignment(CGF.CXXThisAlignment), 1320 OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy), 1321 OldCXXInheritedCtorInitExprArgs( 1322 std::move(CGF.CXXInheritedCtorInitExprArgs)) { 1323 CGF.CurGD = GD; 1324 CGF.CurFuncDecl = CGF.CurCodeDecl = 1325 cast<CXXConstructorDecl>(GD.getDecl()); 1326 CGF.CXXABIThisDecl = nullptr; 1327 CGF.CXXABIThisValue = nullptr; 1328 CGF.CXXThisValue = nullptr; 1329 CGF.CXXABIThisAlignment = CharUnits(); 1330 CGF.CXXThisAlignment = CharUnits(); 1331 CGF.ReturnValue = Address::invalid(); 1332 CGF.FnRetTy = QualType(); 1333 CGF.CXXInheritedCtorInitExprArgs.clear(); 1334 } 1335 ~InlinedInheritingConstructorScope() { 1336 CGF.CurGD = OldCurGD; 1337 CGF.CurFuncDecl = OldCurFuncDecl; 1338 CGF.CurCodeDecl = OldCurCodeDecl; 1339 CGF.CXXABIThisDecl = OldCXXABIThisDecl; 1340 CGF.CXXABIThisValue = OldCXXABIThisValue; 1341 CGF.CXXThisValue = OldCXXThisValue; 1342 CGF.CXXABIThisAlignment = OldCXXABIThisAlignment; 1343 CGF.CXXThisAlignment = OldCXXThisAlignment; 1344 CGF.ReturnValue = OldReturnValue; 1345 CGF.FnRetTy = OldFnRetTy; 1346 CGF.CXXInheritedCtorInitExprArgs = 1347 std::move(OldCXXInheritedCtorInitExprArgs); 1348 } 1349 1350 private: 1351 CodeGenFunction &CGF; 1352 GlobalDecl OldCurGD; 1353 const Decl *OldCurFuncDecl; 1354 const Decl *OldCurCodeDecl; 1355 ImplicitParamDecl *OldCXXABIThisDecl; 1356 llvm::Value *OldCXXABIThisValue; 1357 llvm::Value *OldCXXThisValue; 1358 CharUnits OldCXXABIThisAlignment; 1359 CharUnits OldCXXThisAlignment; 1360 Address OldReturnValue; 1361 QualType OldFnRetTy; 1362 CallArgList OldCXXInheritedCtorInitExprArgs; 1363 }; 1364 1365 private: 1366 /// CXXThisDecl - When generating code for a C++ member function, 1367 /// this will hold the implicit 'this' declaration. 1368 ImplicitParamDecl *CXXABIThisDecl; 1369 llvm::Value *CXXABIThisValue; 1370 llvm::Value *CXXThisValue; 1371 CharUnits CXXABIThisAlignment; 1372 CharUnits CXXThisAlignment; 1373 1374 /// The value of 'this' to use when evaluating CXXDefaultInitExprs within 1375 /// this expression. 1376 Address CXXDefaultInitExprThis = Address::invalid(); 1377 1378 /// The current array initialization index when evaluating an 1379 /// ArrayInitIndexExpr within an ArrayInitLoopExpr. 1380 llvm::Value *ArrayInitIndex = nullptr; 1381 1382 /// The values of function arguments to use when evaluating 1383 /// CXXInheritedCtorInitExprs within this context. 1384 CallArgList CXXInheritedCtorInitExprArgs; 1385 1386 /// CXXStructorImplicitParamDecl - When generating code for a constructor or 1387 /// destructor, this will hold the implicit argument (e.g. VTT). 1388 ImplicitParamDecl *CXXStructorImplicitParamDecl; 1389 llvm::Value *CXXStructorImplicitParamValue; 1390 1391 /// OutermostConditional - Points to the outermost active 1392 /// conditional control. This is used so that we know if a 1393 /// temporary should be destroyed conditionally. 1394 ConditionalEvaluation *OutermostConditional; 1395 1396 /// The current lexical scope. 1397 LexicalScope *CurLexicalScope; 1398 1399 /// The current source location that should be used for exception 1400 /// handling code. 1401 SourceLocation CurEHLocation; 1402 1403 /// BlockByrefInfos - For each __block variable, contains 1404 /// information about the layout of the variable. 1405 llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos; 1406 1407 /// Used by -fsanitize=nullability-return to determine whether the return 1408 /// value can be checked. 1409 llvm::Value *RetValNullabilityPrecondition = nullptr; 1410 1411 /// Check if -fsanitize=nullability-return instrumentation is required for 1412 /// this function. 1413 bool requiresReturnValueNullabilityCheck() const { 1414 return RetValNullabilityPrecondition; 1415 } 1416 1417 /// Used to store precise source locations for return statements by the 1418 /// runtime return value checks. 1419 Address ReturnLocation = Address::invalid(); 1420 1421 /// Check if the return value of this function requires sanitization. 1422 bool requiresReturnValueCheck() const { 1423 return requiresReturnValueNullabilityCheck() || 1424 (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 1425 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()); 1426 } 1427 1428 llvm::BasicBlock *TerminateLandingPad; 1429 llvm::BasicBlock *TerminateHandler; 1430 llvm::BasicBlock *TrapBB; 1431 1432 /// True if we need emit the life-time markers. 1433 const bool ShouldEmitLifetimeMarkers; 1434 1435 /// Add OpenCL kernel arg metadata and the kernel attribute meatadata to 1436 /// the function metadata. 1437 void EmitOpenCLKernelMetadata(const FunctionDecl *FD, 1438 llvm::Function *Fn); 1439 1440 public: 1441 CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false); 1442 ~CodeGenFunction(); 1443 1444 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 1445 ASTContext &getContext() const { return CGM.getContext(); } 1446 CGDebugInfo *getDebugInfo() { 1447 if (DisableDebugInfo) 1448 return nullptr; 1449 return DebugInfo; 1450 } 1451 void disableDebugInfo() { DisableDebugInfo = true; } 1452 void enableDebugInfo() { DisableDebugInfo = false; } 1453 1454 bool shouldUseFusedARCCalls() { 1455 return CGM.getCodeGenOpts().OptimizationLevel == 0; 1456 } 1457 1458 const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } 1459 1460 /// Returns a pointer to the function's exception object and selector slot, 1461 /// which is assigned in every landing pad. 1462 Address getExceptionSlot(); 1463 Address getEHSelectorSlot(); 1464 1465 /// Returns the contents of the function's exception object and selector 1466 /// slots. 1467 llvm::Value *getExceptionFromSlot(); 1468 llvm::Value *getSelectorFromSlot(); 1469 1470 Address getNormalCleanupDestSlot(); 1471 1472 llvm::BasicBlock *getUnreachableBlock() { 1473 if (!UnreachableBlock) { 1474 UnreachableBlock = createBasicBlock("unreachable"); 1475 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 1476 } 1477 return UnreachableBlock; 1478 } 1479 1480 llvm::BasicBlock *getInvokeDest() { 1481 if (!EHStack.requiresLandingPad()) return nullptr; 1482 return getInvokeDestImpl(); 1483 } 1484 1485 bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; } 1486 1487 const TargetInfo &getTarget() const { return Target; } 1488 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 1489 const TargetCodeGenInfo &getTargetHooks() const { 1490 return CGM.getTargetCodeGenInfo(); 1491 } 1492 1493 //===--------------------------------------------------------------------===// 1494 // Cleanups 1495 //===--------------------------------------------------------------------===// 1496 1497 typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty); 1498 1499 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1500 Address arrayEndPointer, 1501 QualType elementType, 1502 CharUnits elementAlignment, 1503 Destroyer *destroyer); 1504 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1505 llvm::Value *arrayEnd, 1506 QualType elementType, 1507 CharUnits elementAlignment, 1508 Destroyer *destroyer); 1509 1510 void pushDestroy(QualType::DestructionKind dtorKind, 1511 Address addr, QualType type); 1512 void pushEHDestroy(QualType::DestructionKind dtorKind, 1513 Address addr, QualType type); 1514 void pushDestroy(CleanupKind kind, Address addr, QualType type, 1515 Destroyer *destroyer, bool useEHCleanupForArray); 1516 void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr, 1517 QualType type, Destroyer *destroyer, 1518 bool useEHCleanupForArray); 1519 void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 1520 llvm::Value *CompletePtr, 1521 QualType ElementType); 1522 void pushStackRestore(CleanupKind kind, Address SPMem); 1523 void emitDestroy(Address addr, QualType type, Destroyer *destroyer, 1524 bool useEHCleanupForArray); 1525 llvm::Function *generateDestroyHelper(Address addr, QualType type, 1526 Destroyer *destroyer, 1527 bool useEHCleanupForArray, 1528 const VarDecl *VD); 1529 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 1530 QualType elementType, CharUnits elementAlign, 1531 Destroyer *destroyer, 1532 bool checkZeroLength, bool useEHCleanup); 1533 1534 Destroyer *getDestroyer(QualType::DestructionKind destructionKind); 1535 1536 /// Determines whether an EH cleanup is required to destroy a type 1537 /// with the given destruction kind. 1538 bool needsEHCleanup(QualType::DestructionKind kind) { 1539 switch (kind) { 1540 case QualType::DK_none: 1541 return false; 1542 case QualType::DK_cxx_destructor: 1543 case QualType::DK_objc_weak_lifetime: 1544 return getLangOpts().Exceptions; 1545 case QualType::DK_objc_strong_lifetime: 1546 return getLangOpts().Exceptions && 1547 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 1548 } 1549 llvm_unreachable("bad destruction kind"); 1550 } 1551 1552 CleanupKind getCleanupKind(QualType::DestructionKind kind) { 1553 return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); 1554 } 1555 1556 //===--------------------------------------------------------------------===// 1557 // Objective-C 1558 //===--------------------------------------------------------------------===// 1559 1560 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 1561 1562 void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD); 1563 1564 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 1565 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 1566 const ObjCPropertyImplDecl *PID); 1567 void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 1568 const ObjCPropertyImplDecl *propImpl, 1569 const ObjCMethodDecl *GetterMothodDecl, 1570 llvm::Constant *AtomicHelperFn); 1571 1572 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1573 ObjCMethodDecl *MD, bool ctor); 1574 1575 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 1576 /// for the given property. 1577 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 1578 const ObjCPropertyImplDecl *PID); 1579 void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1580 const ObjCPropertyImplDecl *propImpl, 1581 llvm::Constant *AtomicHelperFn); 1582 1583 //===--------------------------------------------------------------------===// 1584 // Block Bits 1585 //===--------------------------------------------------------------------===// 1586 1587 llvm::Value *EmitBlockLiteral(const BlockExpr *); 1588 static void destroyBlockInfos(CGBlockInfo *info); 1589 1590 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 1591 const CGBlockInfo &Info, 1592 const DeclMapTy &ldm, 1593 bool IsLambdaConversionToBlock, 1594 bool BuildGlobalBlock); 1595 1596 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 1597 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 1598 llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( 1599 const ObjCPropertyImplDecl *PID); 1600 llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( 1601 const ObjCPropertyImplDecl *PID); 1602 llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); 1603 1604 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags); 1605 1606 class AutoVarEmission; 1607 1608 void emitByrefStructureInit(const AutoVarEmission &emission); 1609 void enterByrefCleanup(const AutoVarEmission &emission); 1610 1611 void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum, 1612 llvm::Value *ptr); 1613 1614 Address LoadBlockStruct(); 1615 Address GetAddrOfBlockDecl(const VarDecl *var, bool ByRef); 1616 1617 /// BuildBlockByrefAddress - Computes the location of the 1618 /// data in a variable which is declared as __block. 1619 Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V, 1620 bool followForward = true); 1621 Address emitBlockByrefAddress(Address baseAddr, 1622 const BlockByrefInfo &info, 1623 bool followForward, 1624 const llvm::Twine &name); 1625 1626 const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var); 1627 1628 QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args); 1629 1630 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1631 const CGFunctionInfo &FnInfo); 1632 /// \brief Emit code for the start of a function. 1633 /// \param Loc The location to be associated with the function. 1634 /// \param StartLoc The location of the function body. 1635 void StartFunction(GlobalDecl GD, 1636 QualType RetTy, 1637 llvm::Function *Fn, 1638 const CGFunctionInfo &FnInfo, 1639 const FunctionArgList &Args, 1640 SourceLocation Loc = SourceLocation(), 1641 SourceLocation StartLoc = SourceLocation()); 1642 1643 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor); 1644 1645 void EmitConstructorBody(FunctionArgList &Args); 1646 void EmitDestructorBody(FunctionArgList &Args); 1647 void emitImplicitAssignmentOperatorBody(FunctionArgList &Args); 1648 void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body); 1649 void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S); 1650 1651 void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator, 1652 CallArgList &CallArgs); 1653 void EmitLambdaBlockInvokeBody(); 1654 void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD); 1655 void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD); 1656 void EmitAsanPrologueOrEpilogue(bool Prologue); 1657 1658 /// \brief Emit the unified return block, trying to avoid its emission when 1659 /// possible. 1660 /// \return The debug location of the user written return statement if the 1661 /// return block is is avoided. 1662 llvm::DebugLoc EmitReturnBlock(); 1663 1664 /// FinishFunction - Complete IR generation of the current function. It is 1665 /// legal to call this function even if there is no current insertion point. 1666 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 1667 1668 void StartThunk(llvm::Function *Fn, GlobalDecl GD, 1669 const CGFunctionInfo &FnInfo); 1670 1671 void EmitCallAndReturnForThunk(llvm::Constant *Callee, 1672 const ThunkInfo *Thunk); 1673 1674 void FinishThunk(); 1675 1676 /// Emit a musttail call for a thunk with a potentially adjusted this pointer. 1677 void EmitMustTailThunk(const CXXMethodDecl *MD, llvm::Value *AdjustedThisPtr, 1678 llvm::Value *Callee); 1679 1680 /// Generate a thunk for the given method. 1681 void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1682 GlobalDecl GD, const ThunkInfo &Thunk); 1683 1684 llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn, 1685 const CGFunctionInfo &FnInfo, 1686 GlobalDecl GD, const ThunkInfo &Thunk); 1687 1688 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 1689 FunctionArgList &Args); 1690 1691 void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init); 1692 1693 /// Struct with all informations about dynamic [sub]class needed to set vptr. 1694 struct VPtr { 1695 BaseSubobject Base; 1696 const CXXRecordDecl *NearestVBase; 1697 CharUnits OffsetFromNearestVBase; 1698 const CXXRecordDecl *VTableClass; 1699 }; 1700 1701 /// Initialize the vtable pointer of the given subobject. 1702 void InitializeVTablePointer(const VPtr &vptr); 1703 1704 typedef llvm::SmallVector<VPtr, 4> VPtrsVector; 1705 1706 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 1707 VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass); 1708 1709 void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase, 1710 CharUnits OffsetFromNearestVBase, 1711 bool BaseIsNonVirtualPrimaryBase, 1712 const CXXRecordDecl *VTableClass, 1713 VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs); 1714 1715 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 1716 1717 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 1718 /// to by This. 1719 llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy, 1720 const CXXRecordDecl *VTableClass); 1721 1722 enum CFITypeCheckKind { 1723 CFITCK_VCall, 1724 CFITCK_NVCall, 1725 CFITCK_DerivedCast, 1726 CFITCK_UnrelatedCast, 1727 CFITCK_ICall, 1728 }; 1729 1730 /// \brief Derived is the presumed address of an object of type T after a 1731 /// cast. If T is a polymorphic class type, emit a check that the virtual 1732 /// table for Derived belongs to a class derived from T. 1733 void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived, 1734 bool MayBeNull, CFITypeCheckKind TCK, 1735 SourceLocation Loc); 1736 1737 /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable. 1738 /// If vptr CFI is enabled, emit a check that VTable is valid. 1739 void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable, 1740 CFITypeCheckKind TCK, SourceLocation Loc); 1741 1742 /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for 1743 /// RD using llvm.type.test. 1744 void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable, 1745 CFITypeCheckKind TCK, SourceLocation Loc); 1746 1747 /// If whole-program virtual table optimization is enabled, emit an assumption 1748 /// that VTable is a member of RD's type identifier. Or, if vptr CFI is 1749 /// enabled, emit a check that VTable is a member of RD's type identifier. 1750 void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, 1751 llvm::Value *VTable, SourceLocation Loc); 1752 1753 /// Returns whether we should perform a type checked load when loading a 1754 /// virtual function for virtual calls to members of RD. This is generally 1755 /// true when both vcall CFI and whole-program-vtables are enabled. 1756 bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD); 1757 1758 /// Emit a type checked load from the given vtable. 1759 llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable, 1760 uint64_t VTableByteOffset); 1761 1762 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 1763 /// given phase of destruction for a destructor. The end result 1764 /// should call destructors on members and base classes in reverse 1765 /// order of their construction. 1766 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 1767 1768 /// ShouldInstrumentFunction - Return true if the current function should be 1769 /// instrumented with __cyg_profile_func_* calls 1770 bool ShouldInstrumentFunction(); 1771 1772 /// ShouldXRayInstrument - Return true if the current function should be 1773 /// instrumented with XRay nop sleds. 1774 bool ShouldXRayInstrumentFunction() const; 1775 1776 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 1777 /// instrumentation function with the current function and the call site, if 1778 /// function instrumentation is enabled. 1779 void EmitFunctionInstrumentation(const char *Fn); 1780 1781 /// EmitMCountInstrumentation - Emit call to .mcount. 1782 void EmitMCountInstrumentation(); 1783 1784 /// Encode an address into a form suitable for use in a function prologue. 1785 llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F, 1786 llvm::Constant *Addr); 1787 1788 /// Decode an address used in a function prologue, encoded by \c 1789 /// EncodeAddrForUseInPrologue. 1790 llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F, 1791 llvm::Value *EncodedAddr); 1792 1793 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 1794 /// arguments for the given function. This is also responsible for naming the 1795 /// LLVM function arguments. 1796 void EmitFunctionProlog(const CGFunctionInfo &FI, 1797 llvm::Function *Fn, 1798 const FunctionArgList &Args); 1799 1800 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 1801 /// given temporary. 1802 void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc, 1803 SourceLocation EndLoc); 1804 1805 /// Emit a test that checks if the return value \p RV is nonnull. 1806 void EmitReturnValueCheck(llvm::Value *RV); 1807 1808 /// EmitStartEHSpec - Emit the start of the exception spec. 1809 void EmitStartEHSpec(const Decl *D); 1810 1811 /// EmitEndEHSpec - Emit the end of the exception spec. 1812 void EmitEndEHSpec(const Decl *D); 1813 1814 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 1815 llvm::BasicBlock *getTerminateLandingPad(); 1816 1817 /// getTerminateHandler - Return a handler (not a landing pad, just 1818 /// a catch handler) that just calls terminate. This is used when 1819 /// a terminate scope encloses a try. 1820 llvm::BasicBlock *getTerminateHandler(); 1821 1822 llvm::Type *ConvertTypeForMem(QualType T); 1823 llvm::Type *ConvertType(QualType T); 1824 llvm::Type *ConvertType(const TypeDecl *T) { 1825 return ConvertType(getContext().getTypeDeclType(T)); 1826 } 1827 1828 /// LoadObjCSelf - Load the value of self. This function is only valid while 1829 /// generating code for an Objective-C method. 1830 llvm::Value *LoadObjCSelf(); 1831 1832 /// TypeOfSelfObject - Return type of object that this self represents. 1833 QualType TypeOfSelfObject(); 1834 1835 /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T. 1836 static TypeEvaluationKind getEvaluationKind(QualType T); 1837 1838 static bool hasScalarEvaluationKind(QualType T) { 1839 return getEvaluationKind(T) == TEK_Scalar; 1840 } 1841 1842 static bool hasAggregateEvaluationKind(QualType T) { 1843 return getEvaluationKind(T) == TEK_Aggregate; 1844 } 1845 1846 /// createBasicBlock - Create an LLVM basic block. 1847 llvm::BasicBlock *createBasicBlock(const Twine &name = "", 1848 llvm::Function *parent = nullptr, 1849 llvm::BasicBlock *before = nullptr) { 1850 #ifdef NDEBUG 1851 return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before); 1852 #else 1853 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 1854 #endif 1855 } 1856 1857 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 1858 /// label maps to. 1859 JumpDest getJumpDestForLabel(const LabelDecl *S); 1860 1861 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 1862 /// another basic block, simplify it. This assumes that no other code could 1863 /// potentially reference the basic block. 1864 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 1865 1866 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 1867 /// adding a fall-through branch from the current insert block if 1868 /// necessary. It is legal to call this function even if there is no current 1869 /// insertion point. 1870 /// 1871 /// IsFinished - If true, indicates that the caller has finished emitting 1872 /// branches to the given block and does not expect to emit code into it. This 1873 /// means the block can be ignored if it is unreachable. 1874 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 1875 1876 /// EmitBlockAfterUses - Emit the given block somewhere hopefully 1877 /// near its uses, and leave the insertion point in it. 1878 void EmitBlockAfterUses(llvm::BasicBlock *BB); 1879 1880 /// EmitBranch - Emit a branch to the specified basic block from the current 1881 /// insert block, taking care to avoid creation of branches from dummy 1882 /// blocks. It is legal to call this function even if there is no current 1883 /// insertion point. 1884 /// 1885 /// This function clears the current insertion point. The caller should follow 1886 /// calls to this function with calls to Emit*Block prior to generation new 1887 /// code. 1888 void EmitBranch(llvm::BasicBlock *Block); 1889 1890 /// HaveInsertPoint - True if an insertion point is defined. If not, this 1891 /// indicates that the current code being emitted is unreachable. 1892 bool HaveInsertPoint() const { 1893 return Builder.GetInsertBlock() != nullptr; 1894 } 1895 1896 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 1897 /// emitted IR has a place to go. Note that by definition, if this function 1898 /// creates a block then that block is unreachable; callers may do better to 1899 /// detect when no insertion point is defined and simply skip IR generation. 1900 void EnsureInsertPoint() { 1901 if (!HaveInsertPoint()) 1902 EmitBlock(createBasicBlock()); 1903 } 1904 1905 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1906 /// specified stmt yet. 1907 void ErrorUnsupported(const Stmt *S, const char *Type); 1908 1909 //===--------------------------------------------------------------------===// 1910 // Helpers 1911 //===--------------------------------------------------------------------===// 1912 1913 LValue MakeAddrLValue(Address Addr, QualType T, 1914 LValueBaseInfo BaseInfo = 1915 LValueBaseInfo(AlignmentSource::Type)) { 1916 return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, 1917 CGM.getTBAAAccessInfo(T)); 1918 } 1919 1920 LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 1921 LValueBaseInfo BaseInfo = 1922 LValueBaseInfo(AlignmentSource::Type)) { 1923 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), 1924 BaseInfo, CGM.getTBAAAccessInfo(T)); 1925 } 1926 1927 LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T); 1928 LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T); 1929 CharUnits getNaturalTypeAlignment(QualType T, 1930 LValueBaseInfo *BaseInfo = nullptr, 1931 bool forPointeeType = false); 1932 CharUnits getNaturalPointeeTypeAlignment(QualType T, 1933 LValueBaseInfo *BaseInfo = nullptr); 1934 1935 Address EmitLoadOfReference(Address Ref, const ReferenceType *RefTy, 1936 LValueBaseInfo *BaseInfo = nullptr); 1937 LValue EmitLoadOfReferenceLValue(Address Ref, const ReferenceType *RefTy); 1938 1939 Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy, 1940 LValueBaseInfo *BaseInfo = nullptr); 1941 LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy); 1942 1943 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 1944 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 1945 /// insertion point of the builder. The caller is responsible for setting an 1946 /// appropriate alignment on 1947 /// the alloca. 1948 /// 1949 /// \p ArraySize is the number of array elements to be allocated if it 1950 /// is not nullptr. 1951 /// 1952 /// LangAS::Default is the address space of pointers to local variables and 1953 /// temporaries, as exposed in the source language. In certain 1954 /// configurations, this is not the same as the alloca address space, and a 1955 /// cast is needed to lift the pointer from the alloca AS into 1956 /// LangAS::Default. This can happen when the target uses a restricted 1957 /// address space for the stack but the source language requires 1958 /// LangAS::Default to be a generic address space. The latter condition is 1959 /// common for most programming languages; OpenCL is an exception in that 1960 /// LangAS::Default is the private address space, which naturally maps 1961 /// to the stack. 1962 /// 1963 /// Because the address of a temporary is often exposed to the program in 1964 /// various ways, this function will perform the cast by default. The cast 1965 /// may be avoided by passing false as \p CastToDefaultAddrSpace; this is 1966 /// more efficient if the caller knows that the address will not be exposed. 1967 llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp", 1968 llvm::Value *ArraySize = nullptr); 1969 Address CreateTempAlloca(llvm::Type *Ty, CharUnits align, 1970 const Twine &Name = "tmp", 1971 llvm::Value *ArraySize = nullptr, 1972 bool CastToDefaultAddrSpace = true); 1973 1974 /// CreateDefaultAlignedTempAlloca - This creates an alloca with the 1975 /// default ABI alignment of the given LLVM type. 1976 /// 1977 /// IMPORTANT NOTE: This is *not* generally the right alignment for 1978 /// any given AST type that happens to have been lowered to the 1979 /// given IR type. This should only ever be used for function-local, 1980 /// IR-driven manipulations like saving and restoring a value. Do 1981 /// not hand this address off to arbitrary IRGen routines, and especially 1982 /// do not pass it as an argument to a function that might expect a 1983 /// properly ABI-aligned value. 1984 Address CreateDefaultAlignTempAlloca(llvm::Type *Ty, 1985 const Twine &Name = "tmp"); 1986 1987 /// InitTempAlloca - Provide an initial value for the given alloca which 1988 /// will be observable at all locations in the function. 1989 /// 1990 /// The address should be something that was returned from one of 1991 /// the CreateTempAlloca or CreateMemTemp routines, and the 1992 /// initializer must be valid in the entry block (i.e. it must 1993 /// either be a constant or an argument value). 1994 void InitTempAlloca(Address Alloca, llvm::Value *Value); 1995 1996 /// CreateIRTemp - Create a temporary IR object of the given type, with 1997 /// appropriate alignment. This routine should only be used when an temporary 1998 /// value needs to be stored into an alloca (for example, to avoid explicit 1999 /// PHI construction), but the type is the IR type, not the type appropriate 2000 /// for storing in memory. 2001 /// 2002 /// That is, this is exactly equivalent to CreateMemTemp, but calling 2003 /// ConvertType instead of ConvertTypeForMem. 2004 Address CreateIRTemp(QualType T, const Twine &Name = "tmp"); 2005 2006 /// CreateMemTemp - Create a temporary memory object of the given type, with 2007 /// appropriate alignment. Cast it to the default address space if 2008 /// \p CastToDefaultAddrSpace is true. 2009 Address CreateMemTemp(QualType T, const Twine &Name = "tmp", 2010 bool CastToDefaultAddrSpace = true); 2011 Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp", 2012 bool CastToDefaultAddrSpace = true); 2013 2014 /// CreateAggTemp - Create a temporary memory object for the given 2015 /// aggregate type. 2016 AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") { 2017 return AggValueSlot::forAddr(CreateMemTemp(T, Name), 2018 T.getQualifiers(), 2019 AggValueSlot::IsNotDestructed, 2020 AggValueSlot::DoesNotNeedGCBarriers, 2021 AggValueSlot::IsNotAliased); 2022 } 2023 2024 /// Emit a cast to void* in the appropriate address space. 2025 llvm::Value *EmitCastToVoidPtr(llvm::Value *value); 2026 2027 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 2028 /// expression and compare the result against zero, returning an Int1Ty value. 2029 llvm::Value *EvaluateExprAsBool(const Expr *E); 2030 2031 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 2032 void EmitIgnoredExpr(const Expr *E); 2033 2034 /// EmitAnyExpr - Emit code to compute the specified expression which can have 2035 /// any type. The result is returned as an RValue struct. If this is an 2036 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 2037 /// the result should be returned. 2038 /// 2039 /// \param ignoreResult True if the resulting value isn't used. 2040 RValue EmitAnyExpr(const Expr *E, 2041 AggValueSlot aggSlot = AggValueSlot::ignored(), 2042 bool ignoreResult = false); 2043 2044 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 2045 // or the value of the expression, depending on how va_list is defined. 2046 Address EmitVAListRef(const Expr *E); 2047 2048 /// Emit a "reference" to a __builtin_ms_va_list; this is 2049 /// always the value of the expression, because a __builtin_ms_va_list is a 2050 /// pointer to a char. 2051 Address EmitMSVAListRef(const Expr *E); 2052 2053 /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will 2054 /// always be accessible even if no aggregate location is provided. 2055 RValue EmitAnyExprToTemp(const Expr *E); 2056 2057 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 2058 /// arbitrary expression into the given memory location. 2059 void EmitAnyExprToMem(const Expr *E, Address Location, 2060 Qualifiers Quals, bool IsInitializer); 2061 2062 void EmitAnyExprToExn(const Expr *E, Address Addr); 2063 2064 /// EmitExprAsInit - Emits the code necessary to initialize a 2065 /// location in memory with the given initializer. 2066 void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2067 bool capturedByInit); 2068 2069 /// hasVolatileMember - returns true if aggregate type has a volatile 2070 /// member. 2071 bool hasVolatileMember(QualType T) { 2072 if (const RecordType *RT = T->getAs<RecordType>()) { 2073 const RecordDecl *RD = cast<RecordDecl>(RT->getDecl()); 2074 return RD->hasVolatileMember(); 2075 } 2076 return false; 2077 } 2078 /// EmitAggregateCopy - Emit an aggregate assignment. 2079 /// 2080 /// The difference to EmitAggregateCopy is that tail padding is not copied. 2081 /// This is required for correctness when assigning non-POD structures in C++. 2082 void EmitAggregateAssign(Address DestPtr, Address SrcPtr, 2083 QualType EltTy) { 2084 bool IsVolatile = hasVolatileMember(EltTy); 2085 EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, true); 2086 } 2087 2088 void EmitAggregateCopyCtor(Address DestPtr, Address SrcPtr, 2089 QualType DestTy, QualType SrcTy) { 2090 EmitAggregateCopy(DestPtr, SrcPtr, SrcTy, /*IsVolatile=*/false, 2091 /*IsAssignment=*/false); 2092 } 2093 2094 /// EmitAggregateCopy - Emit an aggregate copy. 2095 /// 2096 /// \param isVolatile - True iff either the source or the destination is 2097 /// volatile. 2098 /// \param isAssignment - If false, allow padding to be copied. This often 2099 /// yields more efficient. 2100 void EmitAggregateCopy(Address DestPtr, Address SrcPtr, 2101 QualType EltTy, bool isVolatile=false, 2102 bool isAssignment = false); 2103 2104 /// GetAddrOfLocalVar - Return the address of a local variable. 2105 Address GetAddrOfLocalVar(const VarDecl *VD) { 2106 auto it = LocalDeclMap.find(VD); 2107 assert(it != LocalDeclMap.end() && 2108 "Invalid argument to GetAddrOfLocalVar(), no decl!"); 2109 return it->second; 2110 } 2111 2112 /// getOpaqueLValueMapping - Given an opaque value expression (which 2113 /// must be mapped to an l-value), return its mapping. 2114 const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) { 2115 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 2116 2117 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 2118 it = OpaqueLValues.find(e); 2119 assert(it != OpaqueLValues.end() && "no mapping for opaque value!"); 2120 return it->second; 2121 } 2122 2123 /// getOpaqueRValueMapping - Given an opaque value expression (which 2124 /// must be mapped to an r-value), return its mapping. 2125 const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) { 2126 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 2127 2128 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 2129 it = OpaqueRValues.find(e); 2130 assert(it != OpaqueRValues.end() && "no mapping for opaque value!"); 2131 return it->second; 2132 } 2133 2134 /// Get the index of the current ArrayInitLoopExpr, if any. 2135 llvm::Value *getArrayInitIndex() { return ArrayInitIndex; } 2136 2137 /// getAccessedFieldNo - Given an encoded value and a result number, return 2138 /// the input field number being accessed. 2139 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 2140 2141 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 2142 llvm::BasicBlock *GetIndirectGotoBlock(); 2143 2144 /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts. 2145 static bool IsWrappedCXXThis(const Expr *E); 2146 2147 /// EmitNullInitialization - Generate code to set a value of the given type to 2148 /// null, If the type contains data member pointers, they will be initialized 2149 /// to -1 in accordance with the Itanium C++ ABI. 2150 void EmitNullInitialization(Address DestPtr, QualType Ty); 2151 2152 /// Emits a call to an LLVM variable-argument intrinsic, either 2153 /// \c llvm.va_start or \c llvm.va_end. 2154 /// \param ArgValue A reference to the \c va_list as emitted by either 2155 /// \c EmitVAListRef or \c EmitMSVAListRef. 2156 /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise, 2157 /// calls \c llvm.va_end. 2158 llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart); 2159 2160 /// Generate code to get an argument from the passed in pointer 2161 /// and update it accordingly. 2162 /// \param VE The \c VAArgExpr for which to generate code. 2163 /// \param VAListAddr Receives a reference to the \c va_list as emitted by 2164 /// either \c EmitVAListRef or \c EmitMSVAListRef. 2165 /// \returns A pointer to the argument. 2166 // FIXME: We should be able to get rid of this method and use the va_arg 2167 // instruction in LLVM instead once it works well enough. 2168 Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr); 2169 2170 /// emitArrayLength - Compute the length of an array, even if it's a 2171 /// VLA, and drill down to the base element type. 2172 llvm::Value *emitArrayLength(const ArrayType *arrayType, 2173 QualType &baseType, 2174 Address &addr); 2175 2176 /// EmitVLASize - Capture all the sizes for the VLA expressions in 2177 /// the given variably-modified type and store them in the VLASizeMap. 2178 /// 2179 /// This function can be called with a null (unreachable) insert point. 2180 void EmitVariablyModifiedType(QualType Ty); 2181 2182 /// getVLASize - Returns an LLVM value that corresponds to the size, 2183 /// in non-variably-sized elements, of a variable length array type, 2184 /// plus that largest non-variably-sized element type. Assumes that 2185 /// the type has already been emitted with EmitVariablyModifiedType. 2186 std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla); 2187 std::pair<llvm::Value*,QualType> getVLASize(QualType vla); 2188 2189 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 2190 /// generating code for an C++ member function. 2191 llvm::Value *LoadCXXThis() { 2192 assert(CXXThisValue && "no 'this' value for this function"); 2193 return CXXThisValue; 2194 } 2195 Address LoadCXXThisAddress(); 2196 2197 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 2198 /// virtual bases. 2199 // FIXME: Every place that calls LoadCXXVTT is something 2200 // that needs to be abstracted properly. 2201 llvm::Value *LoadCXXVTT() { 2202 assert(CXXStructorImplicitParamValue && "no VTT value for this function"); 2203 return CXXStructorImplicitParamValue; 2204 } 2205 2206 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 2207 /// complete class to the given direct base. 2208 Address 2209 GetAddressOfDirectBaseInCompleteClass(Address Value, 2210 const CXXRecordDecl *Derived, 2211 const CXXRecordDecl *Base, 2212 bool BaseIsVirtual); 2213 2214 static bool ShouldNullCheckClassCastValue(const CastExpr *Cast); 2215 2216 /// GetAddressOfBaseClass - This function will add the necessary delta to the 2217 /// load of 'this' and returns address of the base class. 2218 Address GetAddressOfBaseClass(Address Value, 2219 const CXXRecordDecl *Derived, 2220 CastExpr::path_const_iterator PathBegin, 2221 CastExpr::path_const_iterator PathEnd, 2222 bool NullCheckValue, SourceLocation Loc); 2223 2224 Address GetAddressOfDerivedClass(Address Value, 2225 const CXXRecordDecl *Derived, 2226 CastExpr::path_const_iterator PathBegin, 2227 CastExpr::path_const_iterator PathEnd, 2228 bool NullCheckValue); 2229 2230 /// GetVTTParameter - Return the VTT parameter that should be passed to a 2231 /// base constructor/destructor with virtual bases. 2232 /// FIXME: VTTs are Itanium ABI-specific, so the definition should move 2233 /// to ItaniumCXXABI.cpp together with all the references to VTT. 2234 llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase, 2235 bool Delegating); 2236 2237 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 2238 CXXCtorType CtorType, 2239 const FunctionArgList &Args, 2240 SourceLocation Loc); 2241 // It's important not to confuse this and the previous function. Delegating 2242 // constructors are the C++0x feature. The constructor delegate optimization 2243 // is used to reduce duplication in the base and complete consturctors where 2244 // they are substantially the same. 2245 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2246 const FunctionArgList &Args); 2247 2248 /// Emit a call to an inheriting constructor (that is, one that invokes a 2249 /// constructor inherited from a base class) by inlining its definition. This 2250 /// is necessary if the ABI does not support forwarding the arguments to the 2251 /// base class constructor (because they're variadic or similar). 2252 void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2253 CXXCtorType CtorType, 2254 bool ForVirtualBase, 2255 bool Delegating, 2256 CallArgList &Args); 2257 2258 /// Emit a call to a constructor inherited from a base class, passing the 2259 /// current constructor's arguments along unmodified (without even making 2260 /// a copy). 2261 void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D, 2262 bool ForVirtualBase, Address This, 2263 bool InheritedFromVBase, 2264 const CXXInheritedCtorInitExpr *E); 2265 2266 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2267 bool ForVirtualBase, bool Delegating, 2268 Address This, const CXXConstructExpr *E); 2269 2270 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2271 bool ForVirtualBase, bool Delegating, 2272 Address This, CallArgList &Args); 2273 2274 /// Emit assumption load for all bases. Requires to be be called only on 2275 /// most-derived class and not under construction of the object. 2276 void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This); 2277 2278 /// Emit assumption that vptr load == global vtable. 2279 void EmitVTableAssumptionLoad(const VPtr &vptr, Address This); 2280 2281 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 2282 Address This, Address Src, 2283 const CXXConstructExpr *E); 2284 2285 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2286 const ArrayType *ArrayTy, 2287 Address ArrayPtr, 2288 const CXXConstructExpr *E, 2289 bool ZeroInitialization = false); 2290 2291 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2292 llvm::Value *NumElements, 2293 Address ArrayPtr, 2294 const CXXConstructExpr *E, 2295 bool ZeroInitialization = false); 2296 2297 static Destroyer destroyCXXObject; 2298 2299 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 2300 bool ForVirtualBase, bool Delegating, 2301 Address This); 2302 2303 void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, 2304 llvm::Type *ElementTy, Address NewPtr, 2305 llvm::Value *NumElements, 2306 llvm::Value *AllocSizeWithoutCookie); 2307 2308 void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, 2309 Address Ptr); 2310 2311 llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr); 2312 void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr); 2313 2314 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 2315 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 2316 2317 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 2318 QualType DeleteTy, llvm::Value *NumElements = nullptr, 2319 CharUnits CookieSize = CharUnits()); 2320 2321 RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 2322 const Expr *Arg, bool IsDelete); 2323 2324 llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E); 2325 llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE); 2326 Address EmitCXXUuidofExpr(const CXXUuidofExpr *E); 2327 2328 /// \brief Situations in which we might emit a check for the suitability of a 2329 /// pointer or glvalue. 2330 enum TypeCheckKind { 2331 /// Checking the operand of a load. Must be suitably sized and aligned. 2332 TCK_Load, 2333 /// Checking the destination of a store. Must be suitably sized and aligned. 2334 TCK_Store, 2335 /// Checking the bound value in a reference binding. Must be suitably sized 2336 /// and aligned, but is not required to refer to an object (until the 2337 /// reference is used), per core issue 453. 2338 TCK_ReferenceBinding, 2339 /// Checking the object expression in a non-static data member access. Must 2340 /// be an object within its lifetime. 2341 TCK_MemberAccess, 2342 /// Checking the 'this' pointer for a call to a non-static member function. 2343 /// Must be an object within its lifetime. 2344 TCK_MemberCall, 2345 /// Checking the 'this' pointer for a constructor call. 2346 TCK_ConstructorCall, 2347 /// Checking the operand of a static_cast to a derived pointer type. Must be 2348 /// null or an object within its lifetime. 2349 TCK_DowncastPointer, 2350 /// Checking the operand of a static_cast to a derived reference type. Must 2351 /// be an object within its lifetime. 2352 TCK_DowncastReference, 2353 /// Checking the operand of a cast to a base object. Must be suitably sized 2354 /// and aligned. 2355 TCK_Upcast, 2356 /// Checking the operand of a cast to a virtual base object. Must be an 2357 /// object within its lifetime. 2358 TCK_UpcastToVirtualBase, 2359 /// Checking the value assigned to a _Nonnull pointer. Must not be null. 2360 TCK_NonnullAssign 2361 }; 2362 2363 /// Determine whether the pointer type check \p TCK permits null pointers. 2364 static bool isNullPointerAllowed(TypeCheckKind TCK); 2365 2366 /// Determine whether the pointer type check \p TCK requires a vptr check. 2367 static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty); 2368 2369 /// \brief Whether any type-checking sanitizers are enabled. If \c false, 2370 /// calls to EmitTypeCheck can be skipped. 2371 bool sanitizePerformTypeCheck() const; 2372 2373 /// \brief Emit a check that \p V is the address of storage of the 2374 /// appropriate size and alignment for an object of type \p Type. 2375 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, 2376 QualType Type, CharUnits Alignment = CharUnits::Zero(), 2377 SanitizerSet SkippedChecks = SanitizerSet()); 2378 2379 /// \brief Emit a check that \p Base points into an array object, which 2380 /// we can access at index \p Index. \p Accessed should be \c false if we 2381 /// this expression is used as an lvalue, for instance in "&Arr[Idx]". 2382 void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, 2383 QualType IndexType, bool Accessed); 2384 2385 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 2386 bool isInc, bool isPre); 2387 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 2388 bool isInc, bool isPre); 2389 2390 void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment, 2391 llvm::Value *OffsetValue = nullptr) { 2392 Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment, 2393 OffsetValue); 2394 } 2395 2396 /// Converts Location to a DebugLoc, if debug information is enabled. 2397 llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location); 2398 2399 2400 //===--------------------------------------------------------------------===// 2401 // Declaration Emission 2402 //===--------------------------------------------------------------------===// 2403 2404 /// EmitDecl - Emit a declaration. 2405 /// 2406 /// This function can be called with a null (unreachable) insert point. 2407 void EmitDecl(const Decl &D); 2408 2409 /// EmitVarDecl - Emit a local variable declaration. 2410 /// 2411 /// This function can be called with a null (unreachable) insert point. 2412 void EmitVarDecl(const VarDecl &D); 2413 2414 void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2415 bool capturedByInit); 2416 2417 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 2418 llvm::Value *Address); 2419 2420 /// \brief Determine whether the given initializer is trivial in the sense 2421 /// that it requires no code to be generated. 2422 bool isTrivialInitializer(const Expr *Init); 2423 2424 /// EmitAutoVarDecl - Emit an auto variable declaration. 2425 /// 2426 /// This function can be called with a null (unreachable) insert point. 2427 void EmitAutoVarDecl(const VarDecl &D); 2428 2429 class AutoVarEmission { 2430 friend class CodeGenFunction; 2431 2432 const VarDecl *Variable; 2433 2434 /// The address of the alloca. Invalid if the variable was emitted 2435 /// as a global constant. 2436 Address Addr; 2437 2438 llvm::Value *NRVOFlag; 2439 2440 /// True if the variable is a __block variable. 2441 bool IsByRef; 2442 2443 /// True if the variable is of aggregate type and has a constant 2444 /// initializer. 2445 bool IsConstantAggregate; 2446 2447 /// Non-null if we should use lifetime annotations. 2448 llvm::Value *SizeForLifetimeMarkers; 2449 2450 struct Invalid {}; 2451 AutoVarEmission(Invalid) : Variable(nullptr), Addr(Address::invalid()) {} 2452 2453 AutoVarEmission(const VarDecl &variable) 2454 : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr), 2455 IsByRef(false), IsConstantAggregate(false), 2456 SizeForLifetimeMarkers(nullptr) {} 2457 2458 bool wasEmittedAsGlobal() const { return !Addr.isValid(); } 2459 2460 public: 2461 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 2462 2463 bool useLifetimeMarkers() const { 2464 return SizeForLifetimeMarkers != nullptr; 2465 } 2466 llvm::Value *getSizeForLifetimeMarkers() const { 2467 assert(useLifetimeMarkers()); 2468 return SizeForLifetimeMarkers; 2469 } 2470 2471 /// Returns the raw, allocated address, which is not necessarily 2472 /// the address of the object itself. 2473 Address getAllocatedAddress() const { 2474 return Addr; 2475 } 2476 2477 /// Returns the address of the object within this declaration. 2478 /// Note that this does not chase the forwarding pointer for 2479 /// __block decls. 2480 Address getObjectAddress(CodeGenFunction &CGF) const { 2481 if (!IsByRef) return Addr; 2482 2483 return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false); 2484 } 2485 }; 2486 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 2487 void EmitAutoVarInit(const AutoVarEmission &emission); 2488 void EmitAutoVarCleanups(const AutoVarEmission &emission); 2489 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 2490 QualType::DestructionKind dtorKind); 2491 2492 void EmitStaticVarDecl(const VarDecl &D, 2493 llvm::GlobalValue::LinkageTypes Linkage); 2494 2495 class ParamValue { 2496 llvm::Value *Value; 2497 unsigned Alignment; 2498 ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {} 2499 public: 2500 static ParamValue forDirect(llvm::Value *value) { 2501 return ParamValue(value, 0); 2502 } 2503 static ParamValue forIndirect(Address addr) { 2504 assert(!addr.getAlignment().isZero()); 2505 return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity()); 2506 } 2507 2508 bool isIndirect() const { return Alignment != 0; } 2509 llvm::Value *getAnyValue() const { return Value; } 2510 2511 llvm::Value *getDirectValue() const { 2512 assert(!isIndirect()); 2513 return Value; 2514 } 2515 2516 Address getIndirectAddress() const { 2517 assert(isIndirect()); 2518 return Address(Value, CharUnits::fromQuantity(Alignment)); 2519 } 2520 }; 2521 2522 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 2523 void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo); 2524 2525 /// protectFromPeepholes - Protect a value that we're intending to 2526 /// store to the side, but which will probably be used later, from 2527 /// aggressive peepholing optimizations that might delete it. 2528 /// 2529 /// Pass the result to unprotectFromPeepholes to declare that 2530 /// protection is no longer required. 2531 /// 2532 /// There's no particular reason why this shouldn't apply to 2533 /// l-values, it's just that no existing peepholes work on pointers. 2534 PeepholeProtection protectFromPeepholes(RValue rvalue); 2535 void unprotectFromPeepholes(PeepholeProtection protection); 2536 2537 void EmitAlignmentAssumption(llvm::Value *PtrValue, llvm::Value *Alignment, 2538 llvm::Value *OffsetValue = nullptr) { 2539 Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment, 2540 OffsetValue); 2541 } 2542 2543 //===--------------------------------------------------------------------===// 2544 // Statement Emission 2545 //===--------------------------------------------------------------------===// 2546 2547 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 2548 void EmitStopPoint(const Stmt *S); 2549 2550 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 2551 /// this function even if there is no current insertion point. 2552 /// 2553 /// This function may clear the current insertion point; callers should use 2554 /// EnsureInsertPoint if they wish to subsequently generate code without first 2555 /// calling EmitBlock, EmitBranch, or EmitStmt. 2556 void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None); 2557 2558 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 2559 /// necessarily require an insertion point or debug information; typically 2560 /// because the statement amounts to a jump or a container of other 2561 /// statements. 2562 /// 2563 /// \return True if the statement was handled. 2564 bool EmitSimpleStmt(const Stmt *S); 2565 2566 Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 2567 AggValueSlot AVS = AggValueSlot::ignored()); 2568 Address EmitCompoundStmtWithoutScope(const CompoundStmt &S, 2569 bool GetLast = false, 2570 AggValueSlot AVS = 2571 AggValueSlot::ignored()); 2572 2573 /// EmitLabel - Emit the block for the given label. It is legal to call this 2574 /// function even if there is no current insertion point. 2575 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 2576 2577 void EmitLabelStmt(const LabelStmt &S); 2578 void EmitAttributedStmt(const AttributedStmt &S); 2579 void EmitGotoStmt(const GotoStmt &S); 2580 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 2581 void EmitIfStmt(const IfStmt &S); 2582 2583 void EmitWhileStmt(const WhileStmt &S, 2584 ArrayRef<const Attr *> Attrs = None); 2585 void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None); 2586 void EmitForStmt(const ForStmt &S, 2587 ArrayRef<const Attr *> Attrs = None); 2588 void EmitReturnStmt(const ReturnStmt &S); 2589 void EmitDeclStmt(const DeclStmt &S); 2590 void EmitBreakStmt(const BreakStmt &S); 2591 void EmitContinueStmt(const ContinueStmt &S); 2592 void EmitSwitchStmt(const SwitchStmt &S); 2593 void EmitDefaultStmt(const DefaultStmt &S); 2594 void EmitCaseStmt(const CaseStmt &S); 2595 void EmitCaseStmtRange(const CaseStmt &S); 2596 void EmitAsmStmt(const AsmStmt &S); 2597 2598 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 2599 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 2600 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 2601 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 2602 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 2603 2604 void EmitCoroutineBody(const CoroutineBodyStmt &S); 2605 void EmitCoreturnStmt(const CoreturnStmt &S); 2606 RValue EmitCoawaitExpr(const CoawaitExpr &E, 2607 AggValueSlot aggSlot = AggValueSlot::ignored(), 2608 bool ignoreResult = false); 2609 LValue EmitCoawaitLValue(const CoawaitExpr *E); 2610 RValue EmitCoyieldExpr(const CoyieldExpr &E, 2611 AggValueSlot aggSlot = AggValueSlot::ignored(), 2612 bool ignoreResult = false); 2613 LValue EmitCoyieldLValue(const CoyieldExpr *E); 2614 RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID); 2615 2616 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 2617 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 2618 2619 void EmitCXXTryStmt(const CXXTryStmt &S); 2620 void EmitSEHTryStmt(const SEHTryStmt &S); 2621 void EmitSEHLeaveStmt(const SEHLeaveStmt &S); 2622 void EnterSEHTryStmt(const SEHTryStmt &S); 2623 void ExitSEHTryStmt(const SEHTryStmt &S); 2624 2625 void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter, 2626 const Stmt *OutlinedStmt); 2627 2628 llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF, 2629 const SEHExceptStmt &Except); 2630 2631 llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF, 2632 const SEHFinallyStmt &Finally); 2633 2634 void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF, 2635 llvm::Value *ParentFP, 2636 llvm::Value *EntryEBP); 2637 llvm::Value *EmitSEHExceptionCode(); 2638 llvm::Value *EmitSEHExceptionInfo(); 2639 llvm::Value *EmitSEHAbnormalTermination(); 2640 2641 /// Scan the outlined statement for captures from the parent function. For 2642 /// each capture, mark the capture as escaped and emit a call to 2643 /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap. 2644 void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt, 2645 bool IsFilter); 2646 2647 /// Recovers the address of a local in a parent function. ParentVar is the 2648 /// address of the variable used in the immediate parent function. It can 2649 /// either be an alloca or a call to llvm.localrecover if there are nested 2650 /// outlined functions. ParentFP is the frame pointer of the outermost parent 2651 /// frame. 2652 Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF, 2653 Address ParentVar, 2654 llvm::Value *ParentFP); 2655 2656 void EmitCXXForRangeStmt(const CXXForRangeStmt &S, 2657 ArrayRef<const Attr *> Attrs = None); 2658 2659 /// Returns calculated size of the specified type. 2660 llvm::Value *getTypeSize(QualType Ty); 2661 LValue InitCapturedStruct(const CapturedStmt &S); 2662 llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K); 2663 llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S); 2664 Address GenerateCapturedStmtArgument(const CapturedStmt &S); 2665 llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S); 2666 void GenerateOpenMPCapturedVars(const CapturedStmt &S, 2667 SmallVectorImpl<llvm::Value *> &CapturedVars); 2668 void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy, 2669 SourceLocation Loc); 2670 /// \brief Perform element by element copying of arrays with type \a 2671 /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure 2672 /// generated by \a CopyGen. 2673 /// 2674 /// \param DestAddr Address of the destination array. 2675 /// \param SrcAddr Address of the source array. 2676 /// \param OriginalType Type of destination and source arrays. 2677 /// \param CopyGen Copying procedure that copies value of single array element 2678 /// to another single array element. 2679 void EmitOMPAggregateAssign( 2680 Address DestAddr, Address SrcAddr, QualType OriginalType, 2681 const llvm::function_ref<void(Address, Address)> &CopyGen); 2682 /// \brief Emit proper copying of data from one variable to another. 2683 /// 2684 /// \param OriginalType Original type of the copied variables. 2685 /// \param DestAddr Destination address. 2686 /// \param SrcAddr Source address. 2687 /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has 2688 /// type of the base array element). 2689 /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of 2690 /// the base array element). 2691 /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a 2692 /// DestVD. 2693 void EmitOMPCopy(QualType OriginalType, 2694 Address DestAddr, Address SrcAddr, 2695 const VarDecl *DestVD, const VarDecl *SrcVD, 2696 const Expr *Copy); 2697 /// \brief Emit atomic update code for constructs: \a X = \a X \a BO \a E or 2698 /// \a X = \a E \a BO \a E. 2699 /// 2700 /// \param X Value to be updated. 2701 /// \param E Update value. 2702 /// \param BO Binary operation for update operation. 2703 /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update 2704 /// expression, false otherwise. 2705 /// \param AO Atomic ordering of the generated atomic instructions. 2706 /// \param CommonGen Code generator for complex expressions that cannot be 2707 /// expressed through atomicrmw instruction. 2708 /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was 2709 /// generated, <false, RValue::get(nullptr)> otherwise. 2710 std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr( 2711 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 2712 llvm::AtomicOrdering AO, SourceLocation Loc, 2713 const llvm::function_ref<RValue(RValue)> &CommonGen); 2714 bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 2715 OMPPrivateScope &PrivateScope); 2716 void EmitOMPPrivateClause(const OMPExecutableDirective &D, 2717 OMPPrivateScope &PrivateScope); 2718 void EmitOMPUseDevicePtrClause( 2719 const OMPClause &C, OMPPrivateScope &PrivateScope, 2720 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap); 2721 /// \brief Emit code for copyin clause in \a D directive. The next code is 2722 /// generated at the start of outlined functions for directives: 2723 /// \code 2724 /// threadprivate_var1 = master_threadprivate_var1; 2725 /// operator=(threadprivate_var2, master_threadprivate_var2); 2726 /// ... 2727 /// __kmpc_barrier(&loc, global_tid); 2728 /// \endcode 2729 /// 2730 /// \param D OpenMP directive possibly with 'copyin' clause(s). 2731 /// \returns true if at least one copyin variable is found, false otherwise. 2732 bool EmitOMPCopyinClause(const OMPExecutableDirective &D); 2733 /// \brief Emit initial code for lastprivate variables. If some variable is 2734 /// not also firstprivate, then the default initialization is used. Otherwise 2735 /// initialization of this variable is performed by EmitOMPFirstprivateClause 2736 /// method. 2737 /// 2738 /// \param D Directive that may have 'lastprivate' directives. 2739 /// \param PrivateScope Private scope for capturing lastprivate variables for 2740 /// proper codegen in internal captured statement. 2741 /// 2742 /// \returns true if there is at least one lastprivate variable, false 2743 /// otherwise. 2744 bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D, 2745 OMPPrivateScope &PrivateScope); 2746 /// \brief Emit final copying of lastprivate values to original variables at 2747 /// the end of the worksharing or simd directive. 2748 /// 2749 /// \param D Directive that has at least one 'lastprivate' directives. 2750 /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if 2751 /// it is the last iteration of the loop code in associated directive, or to 2752 /// 'i1 false' otherwise. If this item is nullptr, no final check is required. 2753 void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D, 2754 bool NoFinals, 2755 llvm::Value *IsLastIterCond = nullptr); 2756 /// Emit initial code for linear clauses. 2757 void EmitOMPLinearClause(const OMPLoopDirective &D, 2758 CodeGenFunction::OMPPrivateScope &PrivateScope); 2759 /// Emit final code for linear clauses. 2760 /// \param CondGen Optional conditional code for final part of codegen for 2761 /// linear clause. 2762 void EmitOMPLinearClauseFinal( 2763 const OMPLoopDirective &D, 2764 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen); 2765 /// \brief Emit initial code for reduction variables. Creates reduction copies 2766 /// and initializes them with the values according to OpenMP standard. 2767 /// 2768 /// \param D Directive (possibly) with the 'reduction' clause. 2769 /// \param PrivateScope Private scope for capturing reduction variables for 2770 /// proper codegen in internal captured statement. 2771 /// 2772 void EmitOMPReductionClauseInit(const OMPExecutableDirective &D, 2773 OMPPrivateScope &PrivateScope); 2774 /// \brief Emit final update of reduction values to original variables at 2775 /// the end of the directive. 2776 /// 2777 /// \param D Directive that has at least one 'reduction' directives. 2778 /// \param ReductionKind The kind of reduction to perform. 2779 void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D, 2780 const OpenMPDirectiveKind ReductionKind); 2781 /// \brief Emit initial code for linear variables. Creates private copies 2782 /// and initializes them with the values according to OpenMP standard. 2783 /// 2784 /// \param D Directive (possibly) with the 'linear' clause. 2785 /// \return true if at least one linear variable is found that should be 2786 /// initialized with the value of the original variable, false otherwise. 2787 bool EmitOMPLinearClauseInit(const OMPLoopDirective &D); 2788 2789 typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/, 2790 llvm::Value * /*OutlinedFn*/, 2791 const OMPTaskDataTy & /*Data*/)> 2792 TaskGenTy; 2793 void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S, 2794 const RegionCodeGenTy &BodyGen, 2795 const TaskGenTy &TaskGen, OMPTaskDataTy &Data); 2796 2797 void EmitOMPParallelDirective(const OMPParallelDirective &S); 2798 void EmitOMPSimdDirective(const OMPSimdDirective &S); 2799 void EmitOMPForDirective(const OMPForDirective &S); 2800 void EmitOMPForSimdDirective(const OMPForSimdDirective &S); 2801 void EmitOMPSectionsDirective(const OMPSectionsDirective &S); 2802 void EmitOMPSectionDirective(const OMPSectionDirective &S); 2803 void EmitOMPSingleDirective(const OMPSingleDirective &S); 2804 void EmitOMPMasterDirective(const OMPMasterDirective &S); 2805 void EmitOMPCriticalDirective(const OMPCriticalDirective &S); 2806 void EmitOMPParallelForDirective(const OMPParallelForDirective &S); 2807 void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S); 2808 void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S); 2809 void EmitOMPTaskDirective(const OMPTaskDirective &S); 2810 void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S); 2811 void EmitOMPBarrierDirective(const OMPBarrierDirective &S); 2812 void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S); 2813 void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S); 2814 void EmitOMPFlushDirective(const OMPFlushDirective &S); 2815 void EmitOMPOrderedDirective(const OMPOrderedDirective &S); 2816 void EmitOMPAtomicDirective(const OMPAtomicDirective &S); 2817 void EmitOMPTargetDirective(const OMPTargetDirective &S); 2818 void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S); 2819 void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S); 2820 void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S); 2821 void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S); 2822 void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S); 2823 void 2824 EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S); 2825 void EmitOMPTeamsDirective(const OMPTeamsDirective &S); 2826 void 2827 EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S); 2828 void EmitOMPCancelDirective(const OMPCancelDirective &S); 2829 void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S); 2830 void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S); 2831 void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S); 2832 void EmitOMPDistributeDirective(const OMPDistributeDirective &S); 2833 void EmitOMPDistributeParallelForDirective( 2834 const OMPDistributeParallelForDirective &S); 2835 void EmitOMPDistributeParallelForSimdDirective( 2836 const OMPDistributeParallelForSimdDirective &S); 2837 void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S); 2838 void EmitOMPTargetParallelForSimdDirective( 2839 const OMPTargetParallelForSimdDirective &S); 2840 void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S); 2841 void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S); 2842 void 2843 EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S); 2844 void EmitOMPTeamsDistributeParallelForSimdDirective( 2845 const OMPTeamsDistributeParallelForSimdDirective &S); 2846 void EmitOMPTeamsDistributeParallelForDirective( 2847 const OMPTeamsDistributeParallelForDirective &S); 2848 void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S); 2849 void EmitOMPTargetTeamsDistributeDirective( 2850 const OMPTargetTeamsDistributeDirective &S); 2851 void EmitOMPTargetTeamsDistributeParallelForDirective( 2852 const OMPTargetTeamsDistributeParallelForDirective &S); 2853 void EmitOMPTargetTeamsDistributeParallelForSimdDirective( 2854 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 2855 void EmitOMPTargetTeamsDistributeSimdDirective( 2856 const OMPTargetTeamsDistributeSimdDirective &S); 2857 2858 /// Emit device code for the target directive. 2859 static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 2860 StringRef ParentName, 2861 const OMPTargetDirective &S); 2862 static void 2863 EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 2864 const OMPTargetParallelDirective &S); 2865 static void 2866 EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 2867 const OMPTargetTeamsDirective &S); 2868 /// \brief Emit inner loop of the worksharing/simd construct. 2869 /// 2870 /// \param S Directive, for which the inner loop must be emitted. 2871 /// \param RequiresCleanup true, if directive has some associated private 2872 /// variables. 2873 /// \param LoopCond Bollean condition for loop continuation. 2874 /// \param IncExpr Increment expression for loop control variable. 2875 /// \param BodyGen Generator for the inner body of the inner loop. 2876 /// \param PostIncGen Genrator for post-increment code (required for ordered 2877 /// loop directvies). 2878 void EmitOMPInnerLoop( 2879 const Stmt &S, bool RequiresCleanup, const Expr *LoopCond, 2880 const Expr *IncExpr, 2881 const llvm::function_ref<void(CodeGenFunction &)> &BodyGen, 2882 const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen); 2883 2884 JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind); 2885 /// Emit initial code for loop counters of loop-based directives. 2886 void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S, 2887 OMPPrivateScope &LoopScope); 2888 2889 /// Helper for the OpenMP loop directives. 2890 void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit); 2891 2892 /// \brief Emit code for the worksharing loop-based directive. 2893 /// \return true, if this construct has any lastprivate clause, false - 2894 /// otherwise. 2895 bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB, 2896 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 2897 const CodeGenDispatchBoundsTy &CGDispatchBounds); 2898 2899 /// Emits the lvalue for the expression with possibly captured variable. 2900 LValue EmitOMPSharedLValue(const Expr *E); 2901 2902 private: 2903 /// Helpers for blocks 2904 llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); 2905 2906 /// Helpers for the OpenMP loop directives. 2907 void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false); 2908 void EmitOMPSimdFinal( 2909 const OMPLoopDirective &D, 2910 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen); 2911 2912 void EmitOMPDistributeLoop(const OMPLoopDirective &S, 2913 const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr); 2914 2915 /// struct with the values to be passed to the OpenMP loop-related functions 2916 struct OMPLoopArguments { 2917 /// loop lower bound 2918 Address LB = Address::invalid(); 2919 /// loop upper bound 2920 Address UB = Address::invalid(); 2921 /// loop stride 2922 Address ST = Address::invalid(); 2923 /// isLastIteration argument for runtime functions 2924 Address IL = Address::invalid(); 2925 /// Chunk value generated by sema 2926 llvm::Value *Chunk = nullptr; 2927 /// EnsureUpperBound 2928 Expr *EUB = nullptr; 2929 /// IncrementExpression 2930 Expr *IncExpr = nullptr; 2931 /// Loop initialization 2932 Expr *Init = nullptr; 2933 /// Loop exit condition 2934 Expr *Cond = nullptr; 2935 /// Update of LB after a whole chunk has been executed 2936 Expr *NextLB = nullptr; 2937 /// Update of UB after a whole chunk has been executed 2938 Expr *NextUB = nullptr; 2939 OMPLoopArguments() = default; 2940 OMPLoopArguments(Address LB, Address UB, Address ST, Address IL, 2941 llvm::Value *Chunk = nullptr, Expr *EUB = nullptr, 2942 Expr *IncExpr = nullptr, Expr *Init = nullptr, 2943 Expr *Cond = nullptr, Expr *NextLB = nullptr, 2944 Expr *NextUB = nullptr) 2945 : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB), 2946 IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB), 2947 NextUB(NextUB) {} 2948 }; 2949 void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic, 2950 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, 2951 const OMPLoopArguments &LoopArgs, 2952 const CodeGenLoopTy &CodeGenLoop, 2953 const CodeGenOrderedTy &CodeGenOrdered); 2954 void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind, 2955 bool IsMonotonic, const OMPLoopDirective &S, 2956 OMPPrivateScope &LoopScope, bool Ordered, 2957 const OMPLoopArguments &LoopArgs, 2958 const CodeGenDispatchBoundsTy &CGDispatchBounds); 2959 void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind, 2960 const OMPLoopDirective &S, 2961 OMPPrivateScope &LoopScope, 2962 const OMPLoopArguments &LoopArgs, 2963 const CodeGenLoopTy &CodeGenLoopContent); 2964 /// \brief Emit code for sections directive. 2965 void EmitSections(const OMPExecutableDirective &S); 2966 2967 public: 2968 2969 //===--------------------------------------------------------------------===// 2970 // LValue Expression Emission 2971 //===--------------------------------------------------------------------===// 2972 2973 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 2974 RValue GetUndefRValue(QualType Ty); 2975 2976 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 2977 /// and issue an ErrorUnsupported style diagnostic (using the 2978 /// provided Name). 2979 RValue EmitUnsupportedRValue(const Expr *E, 2980 const char *Name); 2981 2982 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 2983 /// an ErrorUnsupported style diagnostic (using the provided Name). 2984 LValue EmitUnsupportedLValue(const Expr *E, 2985 const char *Name); 2986 2987 /// EmitLValue - Emit code to compute a designator that specifies the location 2988 /// of the expression. 2989 /// 2990 /// This can return one of two things: a simple address or a bitfield 2991 /// reference. In either case, the LLVM Value* in the LValue structure is 2992 /// guaranteed to be an LLVM pointer type. 2993 /// 2994 /// If this returns a bitfield reference, nothing about the pointee type of 2995 /// the LLVM value is known: For example, it may not be a pointer to an 2996 /// integer. 2997 /// 2998 /// If this returns a normal address, and if the lvalue's C type is fixed 2999 /// size, this method guarantees that the returned pointer type will point to 3000 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 3001 /// variable length type, this is not possible. 3002 /// 3003 LValue EmitLValue(const Expr *E); 3004 3005 /// \brief Same as EmitLValue but additionally we generate checking code to 3006 /// guard against undefined behavior. This is only suitable when we know 3007 /// that the address will be used to access the object. 3008 LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK); 3009 3010 RValue convertTempToRValue(Address addr, QualType type, 3011 SourceLocation Loc); 3012 3013 void EmitAtomicInit(Expr *E, LValue lvalue); 3014 3015 bool LValueIsSuitableForInlineAtomic(LValue Src); 3016 3017 RValue EmitAtomicLoad(LValue LV, SourceLocation SL, 3018 AggValueSlot Slot = AggValueSlot::ignored()); 3019 3020 RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc, 3021 llvm::AtomicOrdering AO, bool IsVolatile = false, 3022 AggValueSlot slot = AggValueSlot::ignored()); 3023 3024 void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit); 3025 3026 void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO, 3027 bool IsVolatile, bool isInit); 3028 3029 std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange( 3030 LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, 3031 llvm::AtomicOrdering Success = 3032 llvm::AtomicOrdering::SequentiallyConsistent, 3033 llvm::AtomicOrdering Failure = 3034 llvm::AtomicOrdering::SequentiallyConsistent, 3035 bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored()); 3036 3037 void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO, 3038 const llvm::function_ref<RValue(RValue)> &UpdateOp, 3039 bool IsVolatile); 3040 3041 /// EmitToMemory - Change a scalar value from its value 3042 /// representation to its in-memory representation. 3043 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 3044 3045 /// EmitFromMemory - Change a scalar value from its memory 3046 /// representation to its value representation. 3047 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 3048 3049 /// Check if the scalar \p Value is within the valid range for the given 3050 /// type \p Ty. 3051 /// 3052 /// Returns true if a check is needed (even if the range is unknown). 3053 bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 3054 SourceLocation Loc); 3055 3056 /// EmitLoadOfScalar - Load a scalar value from an address, taking 3057 /// care to appropriately convert from the memory representation to 3058 /// the LLVM value representation. 3059 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 3060 SourceLocation Loc, 3061 LValueBaseInfo BaseInfo = 3062 LValueBaseInfo(AlignmentSource::Type), 3063 bool isNontemporal = false) { 3064 return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, BaseInfo, 3065 CGM.getTBAAAccessInfo(Ty), isNontemporal); 3066 } 3067 3068 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 3069 SourceLocation Loc, LValueBaseInfo BaseInfo, 3070 TBAAAccessInfo TBAAInfo, 3071 bool isNontemporal = false); 3072 3073 /// EmitLoadOfScalar - Load a scalar value from an address, taking 3074 /// care to appropriately convert from the memory representation to 3075 /// the LLVM value representation. The l-value must be a simple 3076 /// l-value. 3077 llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc); 3078 3079 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3080 /// care to appropriately convert from the memory representation to 3081 /// the LLVM value representation. 3082 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 3083 bool Volatile, QualType Ty, 3084 LValueBaseInfo BaseInfo = 3085 LValueBaseInfo(AlignmentSource::Type), 3086 bool isInit = false, bool isNontemporal = false) { 3087 EmitStoreOfScalar(Value, Addr, Volatile, Ty, BaseInfo, 3088 CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal); 3089 } 3090 3091 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 3092 bool Volatile, QualType Ty, 3093 LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo, 3094 bool isInit = false, bool isNontemporal = false); 3095 3096 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3097 /// care to appropriately convert from the memory representation to 3098 /// the LLVM value representation. The l-value must be a simple 3099 /// l-value. The isInit flag indicates whether this is an initialization. 3100 /// If so, atomic qualifiers are ignored and the store is always non-atomic. 3101 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); 3102 3103 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 3104 /// this method emits the address of the lvalue, then loads the result as an 3105 /// rvalue, returning the rvalue. 3106 RValue EmitLoadOfLValue(LValue V, SourceLocation Loc); 3107 RValue EmitLoadOfExtVectorElementLValue(LValue V); 3108 RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc); 3109 RValue EmitLoadOfGlobalRegLValue(LValue LV); 3110 3111 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 3112 /// lvalue, where both are guaranteed to the have the same type, and that type 3113 /// is 'Ty'. 3114 void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false); 3115 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 3116 void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst); 3117 3118 /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints 3119 /// as EmitStoreThroughLValue. 3120 /// 3121 /// \param Result [out] - If non-null, this will be set to a Value* for the 3122 /// bit-field contents after the store, appropriate for use as the result of 3123 /// an assignment to the bit-field. 3124 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 3125 llvm::Value **Result=nullptr); 3126 3127 /// Emit an l-value for an assignment (simple or compound) of complex type. 3128 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 3129 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 3130 LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 3131 llvm::Value *&Result); 3132 3133 // Note: only available for agg return types 3134 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 3135 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 3136 // Note: only available for agg return types 3137 LValue EmitCallExprLValue(const CallExpr *E); 3138 // Note: only available for agg return types 3139 LValue EmitVAArgExprLValue(const VAArgExpr *E); 3140 LValue EmitDeclRefLValue(const DeclRefExpr *E); 3141 LValue EmitStringLiteralLValue(const StringLiteral *E); 3142 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 3143 LValue EmitPredefinedLValue(const PredefinedExpr *E); 3144 LValue EmitUnaryOpLValue(const UnaryOperator *E); 3145 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3146 bool Accessed = false); 3147 LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3148 bool IsLowerBound = true); 3149 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 3150 LValue EmitMemberExpr(const MemberExpr *E); 3151 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 3152 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 3153 LValue EmitInitListLValue(const InitListExpr *E); 3154 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 3155 LValue EmitCastLValue(const CastExpr *E); 3156 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 3157 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 3158 3159 Address EmitExtVectorElementLValue(LValue V); 3160 3161 RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc); 3162 3163 Address EmitArrayToPointerDecay(const Expr *Array, 3164 LValueBaseInfo *BaseInfo = nullptr); 3165 3166 class ConstantEmission { 3167 llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; 3168 ConstantEmission(llvm::Constant *C, bool isReference) 3169 : ValueAndIsReference(C, isReference) {} 3170 public: 3171 ConstantEmission() {} 3172 static ConstantEmission forReference(llvm::Constant *C) { 3173 return ConstantEmission(C, true); 3174 } 3175 static ConstantEmission forValue(llvm::Constant *C) { 3176 return ConstantEmission(C, false); 3177 } 3178 3179 explicit operator bool() const { 3180 return ValueAndIsReference.getOpaqueValue() != nullptr; 3181 } 3182 3183 bool isReference() const { return ValueAndIsReference.getInt(); } 3184 LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { 3185 assert(isReference()); 3186 return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), 3187 refExpr->getType()); 3188 } 3189 3190 llvm::Constant *getValue() const { 3191 assert(!isReference()); 3192 return ValueAndIsReference.getPointer(); 3193 } 3194 }; 3195 3196 ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); 3197 ConstantEmission tryEmitAsConstant(const MemberExpr *ME); 3198 3199 RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, 3200 AggValueSlot slot = AggValueSlot::ignored()); 3201 LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); 3202 3203 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 3204 const ObjCIvarDecl *Ivar); 3205 LValue EmitLValueForField(LValue Base, const FieldDecl* Field); 3206 LValue EmitLValueForLambdaField(const FieldDecl *Field); 3207 3208 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 3209 /// if the Field is a reference, this will return the address of the reference 3210 /// and not the address of the value stored in the reference. 3211 LValue EmitLValueForFieldInitialization(LValue Base, 3212 const FieldDecl* Field); 3213 3214 LValue EmitLValueForIvar(QualType ObjectTy, 3215 llvm::Value* Base, const ObjCIvarDecl *Ivar, 3216 unsigned CVRQualifiers); 3217 3218 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 3219 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 3220 LValue EmitLambdaLValue(const LambdaExpr *E); 3221 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 3222 LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E); 3223 3224 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 3225 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 3226 LValue EmitStmtExprLValue(const StmtExpr *E); 3227 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 3228 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 3229 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init); 3230 3231 //===--------------------------------------------------------------------===// 3232 // Scalar Expression Emission 3233 //===--------------------------------------------------------------------===// 3234 3235 /// EmitCall - Generate a call of the given function, expecting the given 3236 /// result type, and using the given argument list which specifies both the 3237 /// LLVM arguments and the types they were derived from. 3238 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 3239 ReturnValueSlot ReturnValue, const CallArgList &Args, 3240 llvm::Instruction **callOrInvoke = nullptr); 3241 3242 RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E, 3243 ReturnValueSlot ReturnValue, 3244 llvm::Value *Chain = nullptr); 3245 RValue EmitCallExpr(const CallExpr *E, 3246 ReturnValueSlot ReturnValue = ReturnValueSlot()); 3247 RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 3248 CGCallee EmitCallee(const Expr *E); 3249 3250 void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl); 3251 3252 llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, 3253 const Twine &name = ""); 3254 llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, 3255 ArrayRef<llvm::Value*> args, 3256 const Twine &name = ""); 3257 llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, 3258 const Twine &name = ""); 3259 llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, 3260 ArrayRef<llvm::Value*> args, 3261 const Twine &name = ""); 3262 3263 llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, 3264 ArrayRef<llvm::Value *> Args, 3265 const Twine &Name = ""); 3266 llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, 3267 ArrayRef<llvm::Value*> args, 3268 const Twine &name = ""); 3269 llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, 3270 const Twine &name = ""); 3271 void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee, 3272 ArrayRef<llvm::Value*> args); 3273 3274 CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 3275 NestedNameSpecifier *Qual, 3276 llvm::Type *Ty); 3277 3278 CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 3279 CXXDtorType Type, 3280 const CXXRecordDecl *RD); 3281 3282 RValue 3283 EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method, 3284 const CGCallee &Callee, 3285 ReturnValueSlot ReturnValue, llvm::Value *This, 3286 llvm::Value *ImplicitParam, 3287 QualType ImplicitParamTy, const CallExpr *E, 3288 CallArgList *RtlArgs); 3289 RValue EmitCXXDestructorCall(const CXXDestructorDecl *DD, 3290 const CGCallee &Callee, 3291 llvm::Value *This, llvm::Value *ImplicitParam, 3292 QualType ImplicitParamTy, const CallExpr *E, 3293 StructorType Type); 3294 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 3295 ReturnValueSlot ReturnValue); 3296 RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE, 3297 const CXXMethodDecl *MD, 3298 ReturnValueSlot ReturnValue, 3299 bool HasQualifier, 3300 NestedNameSpecifier *Qualifier, 3301 bool IsArrow, const Expr *Base); 3302 // Compute the object pointer. 3303 Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base, 3304 llvm::Value *memberPtr, 3305 const MemberPointerType *memberPtrType, 3306 LValueBaseInfo *BaseInfo = nullptr); 3307 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 3308 ReturnValueSlot ReturnValue); 3309 3310 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 3311 const CXXMethodDecl *MD, 3312 ReturnValueSlot ReturnValue); 3313 RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E); 3314 3315 RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 3316 ReturnValueSlot ReturnValue); 3317 3318 RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E, 3319 ReturnValueSlot ReturnValue); 3320 3321 RValue EmitBuiltinExpr(const FunctionDecl *FD, 3322 unsigned BuiltinID, const CallExpr *E, 3323 ReturnValueSlot ReturnValue); 3324 3325 /// Emit IR for __builtin_os_log_format. 3326 RValue emitBuiltinOSLogFormat(const CallExpr &E); 3327 3328 llvm::Function *generateBuiltinOSLogHelperFunction( 3329 const analyze_os_log::OSLogBufferLayout &Layout, 3330 CharUnits BufferAlignment); 3331 3332 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 3333 3334 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 3335 /// is unhandled by the current target. 3336 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3337 3338 llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty, 3339 const llvm::CmpInst::Predicate Fp, 3340 const llvm::CmpInst::Predicate Ip, 3341 const llvm::Twine &Name = ""); 3342 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3343 3344 llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID, 3345 unsigned LLVMIntrinsic, 3346 unsigned AltLLVMIntrinsic, 3347 const char *NameHint, 3348 unsigned Modifier, 3349 const CallExpr *E, 3350 SmallVectorImpl<llvm::Value *> &Ops, 3351 Address PtrOp0, Address PtrOp1); 3352 llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID, 3353 unsigned Modifier, llvm::Type *ArgTy, 3354 const CallExpr *E); 3355 llvm::Value *EmitNeonCall(llvm::Function *F, 3356 SmallVectorImpl<llvm::Value*> &O, 3357 const char *name, 3358 unsigned shift = 0, bool rightshift = false); 3359 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 3360 llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, 3361 bool negateForRightShift); 3362 llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt, 3363 llvm::Type *Ty, bool usgn, const char *name); 3364 llvm::Value *vectorWrapScalar16(llvm::Value *Op); 3365 llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3366 3367 llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); 3368 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3369 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3370 llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3371 llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3372 llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3373 llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID, 3374 const CallExpr *E); 3375 3376 private: 3377 enum class MSVCIntrin; 3378 3379 public: 3380 llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E); 3381 3382 llvm::Value *EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args); 3383 3384 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 3385 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 3386 llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); 3387 llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); 3388 llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); 3389 llvm::Value *EmitObjCCollectionLiteral(const Expr *E, 3390 const ObjCMethodDecl *MethodWithObjects); 3391 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 3392 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 3393 ReturnValueSlot Return = ReturnValueSlot()); 3394 3395 /// Retrieves the default cleanup kind for an ARC cleanup. 3396 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. 3397 CleanupKind getARCCleanupKind() { 3398 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 3399 ? NormalAndEHCleanup : NormalCleanup; 3400 } 3401 3402 // ARC primitives. 3403 void EmitARCInitWeak(Address addr, llvm::Value *value); 3404 void EmitARCDestroyWeak(Address addr); 3405 llvm::Value *EmitARCLoadWeak(Address addr); 3406 llvm::Value *EmitARCLoadWeakRetained(Address addr); 3407 llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored); 3408 void EmitARCCopyWeak(Address dst, Address src); 3409 void EmitARCMoveWeak(Address dst, Address src); 3410 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 3411 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 3412 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 3413 bool resultIgnored); 3414 llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value, 3415 bool resultIgnored); 3416 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 3417 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 3418 llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); 3419 void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise); 3420 void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 3421 llvm::Value *EmitARCAutorelease(llvm::Value *value); 3422 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 3423 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 3424 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 3425 llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value); 3426 3427 std::pair<LValue,llvm::Value*> 3428 EmitARCStoreAutoreleasing(const BinaryOperator *e); 3429 std::pair<LValue,llvm::Value*> 3430 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 3431 std::pair<LValue,llvm::Value*> 3432 EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored); 3433 3434 llvm::Value *EmitObjCThrowOperand(const Expr *expr); 3435 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 3436 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 3437 3438 llvm::Value *EmitARCExtendBlockObject(const Expr *expr); 3439 llvm::Value *EmitARCReclaimReturnedObject(const Expr *e, 3440 bool allowUnsafeClaim); 3441 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 3442 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 3443 llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr); 3444 3445 void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values); 3446 3447 static Destroyer destroyARCStrongImprecise; 3448 static Destroyer destroyARCStrongPrecise; 3449 static Destroyer destroyARCWeak; 3450 static Destroyer emitARCIntrinsicUse; 3451 3452 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 3453 llvm::Value *EmitObjCAutoreleasePoolPush(); 3454 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 3455 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 3456 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 3457 3458 /// \brief Emits a reference binding to the passed in expression. 3459 RValue EmitReferenceBindingToExpr(const Expr *E); 3460 3461 //===--------------------------------------------------------------------===// 3462 // Expression Emission 3463 //===--------------------------------------------------------------------===// 3464 3465 // Expressions are broken into three classes: scalar, complex, aggregate. 3466 3467 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 3468 /// scalar type, returning the result. 3469 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 3470 3471 /// Emit a conversion from the specified type to the specified destination 3472 /// type, both of which are LLVM scalar types. 3473 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 3474 QualType DstTy, SourceLocation Loc); 3475 3476 /// Emit a conversion from the specified complex type to the specified 3477 /// destination type, where the destination type is an LLVM scalar type. 3478 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 3479 QualType DstTy, 3480 SourceLocation Loc); 3481 3482 /// EmitAggExpr - Emit the computation of the specified expression 3483 /// of aggregate type. The result is computed into the given slot, 3484 /// which may be null to indicate that the value is not needed. 3485 void EmitAggExpr(const Expr *E, AggValueSlot AS); 3486 3487 /// EmitAggExprToLValue - Emit the computation of the specified expression of 3488 /// aggregate type into a temporary LValue. 3489 LValue EmitAggExprToLValue(const Expr *E); 3490 3491 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 3492 /// make sure it survives garbage collection until this point. 3493 void EmitExtendGCLifetime(llvm::Value *object); 3494 3495 /// EmitComplexExpr - Emit the computation of the specified expression of 3496 /// complex type, returning the result. 3497 ComplexPairTy EmitComplexExpr(const Expr *E, 3498 bool IgnoreReal = false, 3499 bool IgnoreImag = false); 3500 3501 /// EmitComplexExprIntoLValue - Emit the given expression of complex 3502 /// type and place its result into the specified l-value. 3503 void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit); 3504 3505 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 3506 void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit); 3507 3508 /// EmitLoadOfComplex - Load a complex number from the specified l-value. 3509 ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc); 3510 3511 Address emitAddrOfRealComponent(Address complex, QualType complexType); 3512 Address emitAddrOfImagComponent(Address complex, QualType complexType); 3513 3514 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 3515 /// global variable that has already been created for it. If the initializer 3516 /// has a different type than GV does, this may free GV and return a different 3517 /// one. Otherwise it just returns GV. 3518 llvm::GlobalVariable * 3519 AddInitializerToStaticVarDecl(const VarDecl &D, 3520 llvm::GlobalVariable *GV); 3521 3522 3523 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 3524 /// variable with global storage. 3525 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr, 3526 bool PerformInit); 3527 3528 llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::Constant *Dtor, 3529 llvm::Constant *Addr); 3530 3531 /// Call atexit() with a function that passes the given argument to 3532 /// the given function. 3533 void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn, 3534 llvm::Constant *addr); 3535 3536 /// Emit code in this function to perform a guarded variable 3537 /// initialization. Guarded initializations are used when it's not 3538 /// possible to prove that an initialization will be done exactly 3539 /// once, e.g. with a static local variable or a static data member 3540 /// of a class template. 3541 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, 3542 bool PerformInit); 3543 3544 enum class GuardKind { VariableGuard, TlsGuard }; 3545 3546 /// Emit a branch to select whether or not to perform guarded initialization. 3547 void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit, 3548 llvm::BasicBlock *InitBlock, 3549 llvm::BasicBlock *NoInitBlock, 3550 GuardKind Kind, const VarDecl *D); 3551 3552 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 3553 /// variables. 3554 void GenerateCXXGlobalInitFunc(llvm::Function *Fn, 3555 ArrayRef<llvm::Function *> CXXThreadLocals, 3556 Address Guard = Address::invalid()); 3557 3558 /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global 3559 /// variables. 3560 void GenerateCXXGlobalDtorsFunc( 3561 llvm::Function *Fn, 3562 const std::vector<std::pair<llvm::WeakTrackingVH, llvm::Constant *>> 3563 &DtorsAndObjects); 3564 3565 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 3566 const VarDecl *D, 3567 llvm::GlobalVariable *Addr, 3568 bool PerformInit); 3569 3570 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 3571 3572 void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp); 3573 3574 void enterFullExpression(const ExprWithCleanups *E) { 3575 if (E->getNumObjects() == 0) return; 3576 enterNonTrivialFullExpression(E); 3577 } 3578 void enterNonTrivialFullExpression(const ExprWithCleanups *E); 3579 3580 void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true); 3581 3582 void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest); 3583 3584 RValue EmitAtomicExpr(AtomicExpr *E); 3585 3586 //===--------------------------------------------------------------------===// 3587 // Annotations Emission 3588 //===--------------------------------------------------------------------===// 3589 3590 /// Emit an annotation call (intrinsic or builtin). 3591 llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn, 3592 llvm::Value *AnnotatedVal, 3593 StringRef AnnotationStr, 3594 SourceLocation Location); 3595 3596 /// Emit local annotations for the local variable V, declared by D. 3597 void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); 3598 3599 /// Emit field annotations for the given field & value. Returns the 3600 /// annotation result. 3601 Address EmitFieldAnnotations(const FieldDecl *D, Address V); 3602 3603 //===--------------------------------------------------------------------===// 3604 // Internal Helpers 3605 //===--------------------------------------------------------------------===// 3606 3607 /// ContainsLabel - Return true if the statement contains a label in it. If 3608 /// this statement is not executed normally, it not containing a label means 3609 /// that we can just remove the code. 3610 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 3611 3612 /// containsBreak - Return true if the statement contains a break out of it. 3613 /// If the statement (recursively) contains a switch or loop with a break 3614 /// inside of it, this is fine. 3615 static bool containsBreak(const Stmt *S); 3616 3617 /// Determine if the given statement might introduce a declaration into the 3618 /// current scope, by being a (possibly-labelled) DeclStmt. 3619 static bool mightAddDeclToScope(const Stmt *S); 3620 3621 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 3622 /// to a constant, or if it does but contains a label, return false. If it 3623 /// constant folds return true and set the boolean result in Result. 3624 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result, 3625 bool AllowLabels = false); 3626 3627 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 3628 /// to a constant, or if it does but contains a label, return false. If it 3629 /// constant folds return true and set the folded value. 3630 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result, 3631 bool AllowLabels = false); 3632 3633 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 3634 /// if statement) to the specified blocks. Based on the condition, this might 3635 /// try to simplify the codegen of the conditional based on the branch. 3636 /// TrueCount should be the number of times we expect the condition to 3637 /// evaluate to true based on PGO data. 3638 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 3639 llvm::BasicBlock *FalseBlock, uint64_t TrueCount); 3640 3641 /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is 3642 /// nonnull, if \p LHS is marked _Nonnull. 3643 void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc); 3644 3645 /// An enumeration which makes it easier to specify whether or not an 3646 /// operation is a subtraction. 3647 enum { NotSubtraction = false, IsSubtraction = true }; 3648 3649 /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to 3650 /// detect undefined behavior when the pointer overflow sanitizer is enabled. 3651 /// \p SignedIndices indicates whether any of the GEP indices are signed. 3652 /// \p IsSubtraction indicates whether the expression used to form the GEP 3653 /// is a subtraction. 3654 llvm::Value *EmitCheckedInBoundsGEP(llvm::Value *Ptr, 3655 ArrayRef<llvm::Value *> IdxList, 3656 bool SignedIndices, 3657 bool IsSubtraction, 3658 SourceLocation Loc, 3659 const Twine &Name = ""); 3660 3661 /// Specifies which type of sanitizer check to apply when handling a 3662 /// particular builtin. 3663 enum BuiltinCheckKind { 3664 BCK_CTZPassedZero, 3665 BCK_CLZPassedZero, 3666 }; 3667 3668 /// Emits an argument for a call to a builtin. If the builtin sanitizer is 3669 /// enabled, a runtime check specified by \p Kind is also emitted. 3670 llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind); 3671 3672 /// \brief Emit a description of a type in a format suitable for passing to 3673 /// a runtime sanitizer handler. 3674 llvm::Constant *EmitCheckTypeDescriptor(QualType T); 3675 3676 /// \brief Convert a value into a format suitable for passing to a runtime 3677 /// sanitizer handler. 3678 llvm::Value *EmitCheckValue(llvm::Value *V); 3679 3680 /// \brief Emit a description of a source location in a format suitable for 3681 /// passing to a runtime sanitizer handler. 3682 llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc); 3683 3684 /// \brief Create a basic block that will call a handler function in a 3685 /// sanitizer runtime with the provided arguments, and create a conditional 3686 /// branch to it. 3687 void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 3688 SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs, 3689 ArrayRef<llvm::Value *> DynamicArgs); 3690 3691 /// \brief Emit a slow path cross-DSO CFI check which calls __cfi_slowpath 3692 /// if Cond if false. 3693 void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond, 3694 llvm::ConstantInt *TypeId, llvm::Value *Ptr, 3695 ArrayRef<llvm::Constant *> StaticArgs); 3696 3697 /// \brief Create a basic block that will call the trap intrinsic, and emit a 3698 /// conditional branch to it, for the -ftrapv checks. 3699 void EmitTrapCheck(llvm::Value *Checked); 3700 3701 /// \brief Emit a call to trap or debugtrap and attach function attribute 3702 /// "trap-func-name" if specified. 3703 llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID); 3704 3705 /// \brief Emit a stub for the cross-DSO CFI check function. 3706 void EmitCfiCheckStub(); 3707 3708 /// \brief Emit a cross-DSO CFI failure handling function. 3709 void EmitCfiCheckFail(); 3710 3711 /// \brief Create a check for a function parameter that may potentially be 3712 /// declared as non-null. 3713 void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc, 3714 AbstractCallee AC, unsigned ParmNum); 3715 3716 /// EmitCallArg - Emit a single call argument. 3717 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 3718 3719 /// EmitDelegateCallArg - We are performing a delegate call; that 3720 /// is, the current function is delegating to another one. Produce 3721 /// a r-value suitable for passing the given parameter. 3722 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param, 3723 SourceLocation loc); 3724 3725 /// SetFPAccuracy - Set the minimum required accuracy of the given floating 3726 /// point operation, expressed as the maximum relative error in ulp. 3727 void SetFPAccuracy(llvm::Value *Val, float Accuracy); 3728 3729 private: 3730 llvm::MDNode *getRangeForLoadFromType(QualType Ty); 3731 void EmitReturnOfRValue(RValue RV, QualType Ty); 3732 3733 void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New); 3734 3735 llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4> 3736 DeferredReplacements; 3737 3738 /// Set the address of a local variable. 3739 void setAddrOfLocalVar(const VarDecl *VD, Address Addr) { 3740 assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!"); 3741 LocalDeclMap.insert({VD, Addr}); 3742 } 3743 3744 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 3745 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 3746 /// 3747 /// \param AI - The first function argument of the expansion. 3748 void ExpandTypeFromArgs(QualType Ty, LValue Dst, 3749 SmallVectorImpl<llvm::Value *>::iterator &AI); 3750 3751 /// ExpandTypeToArgs - Expand an RValue \arg RV, with the LLVM type for \arg 3752 /// Ty, into individual arguments on the provided vector \arg IRCallArgs, 3753 /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand. 3754 void ExpandTypeToArgs(QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy, 3755 SmallVectorImpl<llvm::Value *> &IRCallArgs, 3756 unsigned &IRCallArgPos); 3757 3758 llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info, 3759 const Expr *InputExpr, std::string &ConstraintStr); 3760 3761 llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 3762 LValue InputValue, QualType InputType, 3763 std::string &ConstraintStr, 3764 SourceLocation Loc); 3765 3766 /// \brief Attempts to statically evaluate the object size of E. If that 3767 /// fails, emits code to figure the size of E out for us. This is 3768 /// pass_object_size aware. 3769 /// 3770 /// If EmittedExpr is non-null, this will use that instead of re-emitting E. 3771 llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type, 3772 llvm::IntegerType *ResType, 3773 llvm::Value *EmittedE); 3774 3775 /// \brief Emits the size of E, as required by __builtin_object_size. This 3776 /// function is aware of pass_object_size parameters, and will act accordingly 3777 /// if E is a parameter with the pass_object_size attribute. 3778 llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type, 3779 llvm::IntegerType *ResType, 3780 llvm::Value *EmittedE); 3781 3782 public: 3783 #ifndef NDEBUG 3784 // Determine whether the given argument is an Objective-C method 3785 // that may have type parameters in its signature. 3786 static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) { 3787 const DeclContext *dc = method->getDeclContext(); 3788 if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) { 3789 return classDecl->getTypeParamListAsWritten(); 3790 } 3791 3792 if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) { 3793 return catDecl->getTypeParamList(); 3794 } 3795 3796 return false; 3797 } 3798 3799 template<typename T> 3800 static bool isObjCMethodWithTypeParams(const T *) { return false; } 3801 #endif 3802 3803 enum class EvaluationOrder { 3804 ///! No language constraints on evaluation order. 3805 Default, 3806 ///! Language semantics require left-to-right evaluation. 3807 ForceLeftToRight, 3808 ///! Language semantics require right-to-left evaluation. 3809 ForceRightToLeft 3810 }; 3811 3812 /// EmitCallArgs - Emit call arguments for a function. 3813 template <typename T> 3814 void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo, 3815 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 3816 AbstractCallee AC = AbstractCallee(), 3817 unsigned ParamsToSkip = 0, 3818 EvaluationOrder Order = EvaluationOrder::Default) { 3819 SmallVector<QualType, 16> ArgTypes; 3820 CallExpr::const_arg_iterator Arg = ArgRange.begin(); 3821 3822 assert((ParamsToSkip == 0 || CallArgTypeInfo) && 3823 "Can't skip parameters if type info is not provided"); 3824 if (CallArgTypeInfo) { 3825 #ifndef NDEBUG 3826 bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo); 3827 #endif 3828 3829 // First, use the argument types that the type info knows about 3830 for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip, 3831 E = CallArgTypeInfo->param_type_end(); 3832 I != E; ++I, ++Arg) { 3833 assert(Arg != ArgRange.end() && "Running over edge of argument list!"); 3834 assert((isGenericMethod || 3835 ((*I)->isVariablyModifiedType() || 3836 (*I).getNonReferenceType()->isObjCRetainableType() || 3837 getContext() 3838 .getCanonicalType((*I).getNonReferenceType()) 3839 .getTypePtr() == 3840 getContext() 3841 .getCanonicalType((*Arg)->getType()) 3842 .getTypePtr())) && 3843 "type mismatch in call argument!"); 3844 ArgTypes.push_back(*I); 3845 } 3846 } 3847 3848 // Either we've emitted all the call args, or we have a call to variadic 3849 // function. 3850 assert((Arg == ArgRange.end() || !CallArgTypeInfo || 3851 CallArgTypeInfo->isVariadic()) && 3852 "Extra arguments in non-variadic function!"); 3853 3854 // If we still have any arguments, emit them using the type of the argument. 3855 for (auto *A : llvm::make_range(Arg, ArgRange.end())) 3856 ArgTypes.push_back(CallArgTypeInfo ? getVarArgType(A) : A->getType()); 3857 3858 EmitCallArgs(Args, ArgTypes, ArgRange, AC, ParamsToSkip, Order); 3859 } 3860 3861 void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes, 3862 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 3863 AbstractCallee AC = AbstractCallee(), 3864 unsigned ParamsToSkip = 0, 3865 EvaluationOrder Order = EvaluationOrder::Default); 3866 3867 /// EmitPointerWithAlignment - Given an expression with a pointer type, 3868 /// emit the value and compute our best estimate of the alignment of the 3869 /// pointee. 3870 /// 3871 /// \param BaseInfo - If non-null, this will be initialized with 3872 /// information about the source of the alignment and the may-alias 3873 /// attribute. Note that this function will conservatively fall back on 3874 /// the type when it doesn't recognize the expression and may-alias will 3875 /// be set to false. 3876 /// 3877 /// One reasonable way to use this information is when there's a language 3878 /// guarantee that the pointer must be aligned to some stricter value, and 3879 /// we're simply trying to ensure that sufficiently obvious uses of under- 3880 /// aligned objects don't get miscompiled; for example, a placement new 3881 /// into the address of a local variable. In such a case, it's quite 3882 /// reasonable to just ignore the returned alignment when it isn't from an 3883 /// explicit source. 3884 Address EmitPointerWithAlignment(const Expr *Addr, 3885 LValueBaseInfo *BaseInfo = nullptr); 3886 3887 void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK); 3888 3889 private: 3890 QualType getVarArgType(const Expr *Arg); 3891 3892 void EmitDeclMetadata(); 3893 3894 BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType, 3895 const AutoVarEmission &emission); 3896 3897 void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); 3898 3899 llvm::Value *GetValueForARMHint(unsigned BuiltinID); 3900 llvm::Value *EmitX86CpuIs(const CallExpr *E); 3901 llvm::Value *EmitX86CpuIs(StringRef CPUStr); 3902 llvm::Value *EmitX86CpuSupports(const CallExpr *E); 3903 llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs); 3904 llvm::Value *EmitX86CpuInit(); 3905 }; 3906 3907 /// Helper class with most of the code for saving a value for a 3908 /// conditional expression cleanup. 3909 struct DominatingLLVMValue { 3910 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 3911 3912 /// Answer whether the given value needs extra work to be saved. 3913 static bool needsSaving(llvm::Value *value) { 3914 // If it's not an instruction, we don't need to save. 3915 if (!isa<llvm::Instruction>(value)) return false; 3916 3917 // If it's an instruction in the entry block, we don't need to save. 3918 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 3919 return (block != &block->getParent()->getEntryBlock()); 3920 } 3921 3922 /// Try to save the given value. 3923 static saved_type save(CodeGenFunction &CGF, llvm::Value *value) { 3924 if (!needsSaving(value)) return saved_type(value, false); 3925 3926 // Otherwise, we need an alloca. 3927 auto align = CharUnits::fromQuantity( 3928 CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType())); 3929 Address alloca = 3930 CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save"); 3931 CGF.Builder.CreateStore(value, alloca); 3932 3933 return saved_type(alloca.getPointer(), true); 3934 } 3935 3936 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) { 3937 // If the value says it wasn't saved, trust that it's still dominating. 3938 if (!value.getInt()) return value.getPointer(); 3939 3940 // Otherwise, it should be an alloca instruction, as set up in save(). 3941 auto alloca = cast<llvm::AllocaInst>(value.getPointer()); 3942 return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlignment()); 3943 } 3944 }; 3945 3946 /// A partial specialization of DominatingValue for llvm::Values that 3947 /// might be llvm::Instructions. 3948 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 3949 typedef T *type; 3950 static type restore(CodeGenFunction &CGF, saved_type value) { 3951 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 3952 } 3953 }; 3954 3955 /// A specialization of DominatingValue for Address. 3956 template <> struct DominatingValue<Address> { 3957 typedef Address type; 3958 3959 struct saved_type { 3960 DominatingLLVMValue::saved_type SavedValue; 3961 CharUnits Alignment; 3962 }; 3963 3964 static bool needsSaving(type value) { 3965 return DominatingLLVMValue::needsSaving(value.getPointer()); 3966 } 3967 static saved_type save(CodeGenFunction &CGF, type value) { 3968 return { DominatingLLVMValue::save(CGF, value.getPointer()), 3969 value.getAlignment() }; 3970 } 3971 static type restore(CodeGenFunction &CGF, saved_type value) { 3972 return Address(DominatingLLVMValue::restore(CGF, value.SavedValue), 3973 value.Alignment); 3974 } 3975 }; 3976 3977 /// A specialization of DominatingValue for RValue. 3978 template <> struct DominatingValue<RValue> { 3979 typedef RValue type; 3980 class saved_type { 3981 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 3982 AggregateAddress, ComplexAddress }; 3983 3984 llvm::Value *Value; 3985 unsigned K : 3; 3986 unsigned Align : 29; 3987 saved_type(llvm::Value *v, Kind k, unsigned a = 0) 3988 : Value(v), K(k), Align(a) {} 3989 3990 public: 3991 static bool needsSaving(RValue value); 3992 static saved_type save(CodeGenFunction &CGF, RValue value); 3993 RValue restore(CodeGenFunction &CGF); 3994 3995 // implementations in CGCleanup.cpp 3996 }; 3997 3998 static bool needsSaving(type value) { 3999 return saved_type::needsSaving(value); 4000 } 4001 static saved_type save(CodeGenFunction &CGF, type value) { 4002 return saved_type::save(CGF, value); 4003 } 4004 static type restore(CodeGenFunction &CGF, saved_type value) { 4005 return value.restore(CGF); 4006 } 4007 }; 4008 4009 } // end namespace CodeGen 4010 } // end namespace clang 4011 4012 #endif 4013