1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the internal per-function state used for llvm translation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
15 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
16 
17 #include "CGBuilder.h"
18 #include "CGDebugInfo.h"
19 #include "CGLoopInfo.h"
20 #include "CGValue.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "EHScopeStack.h"
24 #include "VarBypassDetector.h"
25 #include "clang/AST/CharUnits.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/ExprObjC.h"
28 #include "clang/AST/ExprOpenMP.h"
29 #include "clang/AST/Type.h"
30 #include "clang/Basic/ABI.h"
31 #include "clang/Basic/CapturedStmt.h"
32 #include "clang/Basic/OpenMPKinds.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "clang/Frontend/CodeGenOptions.h"
35 #include "llvm/ADT/ArrayRef.h"
36 #include "llvm/ADT/DenseMap.h"
37 #include "llvm/ADT/SmallVector.h"
38 #include "llvm/IR/ValueHandle.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Transforms/Utils/SanitizerStats.h"
41 
42 namespace llvm {
43 class BasicBlock;
44 class LLVMContext;
45 class MDNode;
46 class Module;
47 class SwitchInst;
48 class Twine;
49 class Value;
50 class CallSite;
51 }
52 
53 namespace clang {
54 class ASTContext;
55 class BlockDecl;
56 class CXXDestructorDecl;
57 class CXXForRangeStmt;
58 class CXXTryStmt;
59 class Decl;
60 class LabelDecl;
61 class EnumConstantDecl;
62 class FunctionDecl;
63 class FunctionProtoType;
64 class LabelStmt;
65 class ObjCContainerDecl;
66 class ObjCInterfaceDecl;
67 class ObjCIvarDecl;
68 class ObjCMethodDecl;
69 class ObjCImplementationDecl;
70 class ObjCPropertyImplDecl;
71 class TargetInfo;
72 class VarDecl;
73 class ObjCForCollectionStmt;
74 class ObjCAtTryStmt;
75 class ObjCAtThrowStmt;
76 class ObjCAtSynchronizedStmt;
77 class ObjCAutoreleasePoolStmt;
78 
79 namespace analyze_os_log {
80 class OSLogBufferLayout;
81 }
82 
83 namespace CodeGen {
84 class CodeGenTypes;
85 class CGCallee;
86 class CGFunctionInfo;
87 class CGRecordLayout;
88 class CGBlockInfo;
89 class CGCXXABI;
90 class BlockByrefHelpers;
91 class BlockByrefInfo;
92 class BlockFlags;
93 class BlockFieldFlags;
94 class RegionCodeGenTy;
95 class TargetCodeGenInfo;
96 struct OMPTaskDataTy;
97 struct CGCoroData;
98 
99 /// The kind of evaluation to perform on values of a particular
100 /// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
101 /// CGExprAgg?
102 ///
103 /// TODO: should vectors maybe be split out into their own thing?
104 enum TypeEvaluationKind {
105   TEK_Scalar,
106   TEK_Complex,
107   TEK_Aggregate
108 };
109 
110 #define LIST_SANITIZER_CHECKS                                                  \
111   SANITIZER_CHECK(AddOverflow, add_overflow, 0)                                \
112   SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0)                  \
113   SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0)                             \
114   SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0)                          \
115   SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0)            \
116   SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0)                   \
117   SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 0)             \
118   SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0)                          \
119   SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0)                     \
120   SANITIZER_CHECK(MissingReturn, missing_return, 0)                            \
121   SANITIZER_CHECK(MulOverflow, mul_overflow, 0)                                \
122   SANITIZER_CHECK(NegateOverflow, negate_overflow, 0)                          \
123   SANITIZER_CHECK(NullabilityArg, nullability_arg, 0)                          \
124   SANITIZER_CHECK(NullabilityReturn, nullability_return, 1)                    \
125   SANITIZER_CHECK(NonnullArg, nonnull_arg, 0)                                  \
126   SANITIZER_CHECK(NonnullReturn, nonnull_return, 1)                            \
127   SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0)                               \
128   SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0)                        \
129   SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0)                    \
130   SANITIZER_CHECK(SubOverflow, sub_overflow, 0)                                \
131   SANITIZER_CHECK(TypeMismatch, type_mismatch, 1)                              \
132   SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0)
133 
134 enum SanitizerHandler {
135 #define SANITIZER_CHECK(Enum, Name, Version) Enum,
136   LIST_SANITIZER_CHECKS
137 #undef SANITIZER_CHECK
138 };
139 
140 /// CodeGenFunction - This class organizes the per-function state that is used
141 /// while generating LLVM code.
142 class CodeGenFunction : public CodeGenTypeCache {
143   CodeGenFunction(const CodeGenFunction &) = delete;
144   void operator=(const CodeGenFunction &) = delete;
145 
146   friend class CGCXXABI;
147 public:
148   /// A jump destination is an abstract label, branching to which may
149   /// require a jump out through normal cleanups.
150   struct JumpDest {
151     JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {}
152     JumpDest(llvm::BasicBlock *Block,
153              EHScopeStack::stable_iterator Depth,
154              unsigned Index)
155       : Block(Block), ScopeDepth(Depth), Index(Index) {}
156 
157     bool isValid() const { return Block != nullptr; }
158     llvm::BasicBlock *getBlock() const { return Block; }
159     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
160     unsigned getDestIndex() const { return Index; }
161 
162     // This should be used cautiously.
163     void setScopeDepth(EHScopeStack::stable_iterator depth) {
164       ScopeDepth = depth;
165     }
166 
167   private:
168     llvm::BasicBlock *Block;
169     EHScopeStack::stable_iterator ScopeDepth;
170     unsigned Index;
171   };
172 
173   CodeGenModule &CGM;  // Per-module state.
174   const TargetInfo &Target;
175 
176   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
177   LoopInfoStack LoopStack;
178   CGBuilderTy Builder;
179 
180   // Stores variables for which we can't generate correct lifetime markers
181   // because of jumps.
182   VarBypassDetector Bypasses;
183 
184   // CodeGen lambda for loops and support for ordered clause
185   typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &,
186                                   JumpDest)>
187       CodeGenLoopTy;
188   typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation,
189                                   const unsigned, const bool)>
190       CodeGenOrderedTy;
191 
192   // Codegen lambda for loop bounds in worksharing loop constructs
193   typedef llvm::function_ref<std::pair<LValue, LValue>(
194       CodeGenFunction &, const OMPExecutableDirective &S)>
195       CodeGenLoopBoundsTy;
196 
197   // Codegen lambda for loop bounds in dispatch-based loop implementation
198   typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>(
199       CodeGenFunction &, const OMPExecutableDirective &S, Address LB,
200       Address UB)>
201       CodeGenDispatchBoundsTy;
202 
203   /// \brief CGBuilder insert helper. This function is called after an
204   /// instruction is created using Builder.
205   void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
206                     llvm::BasicBlock *BB,
207                     llvm::BasicBlock::iterator InsertPt) const;
208 
209   /// CurFuncDecl - Holds the Decl for the current outermost
210   /// non-closure context.
211   const Decl *CurFuncDecl;
212   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
213   const Decl *CurCodeDecl;
214   const CGFunctionInfo *CurFnInfo;
215   QualType FnRetTy;
216   llvm::Function *CurFn;
217 
218   // Holds coroutine data if the current function is a coroutine. We use a
219   // wrapper to manage its lifetime, so that we don't have to define CGCoroData
220   // in this header.
221   struct CGCoroInfo {
222     std::unique_ptr<CGCoroData> Data;
223     CGCoroInfo();
224     ~CGCoroInfo();
225   };
226   CGCoroInfo CurCoro;
227 
228   /// CurGD - The GlobalDecl for the current function being compiled.
229   GlobalDecl CurGD;
230 
231   /// PrologueCleanupDepth - The cleanup depth enclosing all the
232   /// cleanups associated with the parameters.
233   EHScopeStack::stable_iterator PrologueCleanupDepth;
234 
235   /// ReturnBlock - Unified return block.
236   JumpDest ReturnBlock;
237 
238   /// ReturnValue - The temporary alloca to hold the return
239   /// value. This is invalid iff the function has no return value.
240   Address ReturnValue;
241 
242   /// Return true if a label was seen in the current scope.
243   bool hasLabelBeenSeenInCurrentScope() const {
244     if (CurLexicalScope)
245       return CurLexicalScope->hasLabels();
246     return !LabelMap.empty();
247   }
248 
249   /// AllocaInsertPoint - This is an instruction in the entry block before which
250   /// we prefer to insert allocas.
251   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
252 
253   /// \brief API for captured statement code generation.
254   class CGCapturedStmtInfo {
255   public:
256     explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default)
257         : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
258     explicit CGCapturedStmtInfo(const CapturedStmt &S,
259                                 CapturedRegionKind K = CR_Default)
260       : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
261 
262       RecordDecl::field_iterator Field =
263         S.getCapturedRecordDecl()->field_begin();
264       for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
265                                                 E = S.capture_end();
266            I != E; ++I, ++Field) {
267         if (I->capturesThis())
268           CXXThisFieldDecl = *Field;
269         else if (I->capturesVariable())
270           CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
271         else if (I->capturesVariableByCopy())
272           CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
273       }
274     }
275 
276     virtual ~CGCapturedStmtInfo();
277 
278     CapturedRegionKind getKind() const { return Kind; }
279 
280     virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
281     // \brief Retrieve the value of the context parameter.
282     virtual llvm::Value *getContextValue() const { return ThisValue; }
283 
284     /// \brief Lookup the captured field decl for a variable.
285     virtual const FieldDecl *lookup(const VarDecl *VD) const {
286       return CaptureFields.lookup(VD->getCanonicalDecl());
287     }
288 
289     bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
290     virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
291 
292     static bool classof(const CGCapturedStmtInfo *) {
293       return true;
294     }
295 
296     /// \brief Emit the captured statement body.
297     virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
298       CGF.incrementProfileCounter(S);
299       CGF.EmitStmt(S);
300     }
301 
302     /// \brief Get the name of the capture helper.
303     virtual StringRef getHelperName() const { return "__captured_stmt"; }
304 
305   private:
306     /// \brief The kind of captured statement being generated.
307     CapturedRegionKind Kind;
308 
309     /// \brief Keep the map between VarDecl and FieldDecl.
310     llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
311 
312     /// \brief The base address of the captured record, passed in as the first
313     /// argument of the parallel region function.
314     llvm::Value *ThisValue;
315 
316     /// \brief Captured 'this' type.
317     FieldDecl *CXXThisFieldDecl;
318   };
319   CGCapturedStmtInfo *CapturedStmtInfo;
320 
321   /// \brief RAII for correct setting/restoring of CapturedStmtInfo.
322   class CGCapturedStmtRAII {
323   private:
324     CodeGenFunction &CGF;
325     CGCapturedStmtInfo *PrevCapturedStmtInfo;
326   public:
327     CGCapturedStmtRAII(CodeGenFunction &CGF,
328                        CGCapturedStmtInfo *NewCapturedStmtInfo)
329         : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) {
330       CGF.CapturedStmtInfo = NewCapturedStmtInfo;
331     }
332     ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; }
333   };
334 
335   /// An abstract representation of regular/ObjC call/message targets.
336   class AbstractCallee {
337     /// The function declaration of the callee.
338     const Decl *CalleeDecl;
339 
340   public:
341     AbstractCallee() : CalleeDecl(nullptr) {}
342     AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {}
343     AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {}
344     bool hasFunctionDecl() const {
345       return dyn_cast_or_null<FunctionDecl>(CalleeDecl);
346     }
347     const Decl *getDecl() const { return CalleeDecl; }
348     unsigned getNumParams() const {
349       if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
350         return FD->getNumParams();
351       return cast<ObjCMethodDecl>(CalleeDecl)->param_size();
352     }
353     const ParmVarDecl *getParamDecl(unsigned I) const {
354       if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
355         return FD->getParamDecl(I);
356       return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I);
357     }
358   };
359 
360   /// \brief Sanitizers enabled for this function.
361   SanitizerSet SanOpts;
362 
363   /// \brief True if CodeGen currently emits code implementing sanitizer checks.
364   bool IsSanitizerScope;
365 
366   /// \brief RAII object to set/unset CodeGenFunction::IsSanitizerScope.
367   class SanitizerScope {
368     CodeGenFunction *CGF;
369   public:
370     SanitizerScope(CodeGenFunction *CGF);
371     ~SanitizerScope();
372   };
373 
374   /// In C++, whether we are code generating a thunk.  This controls whether we
375   /// should emit cleanups.
376   bool CurFuncIsThunk;
377 
378   /// In ARC, whether we should autorelease the return value.
379   bool AutoreleaseResult;
380 
381   /// Whether we processed a Microsoft-style asm block during CodeGen. These can
382   /// potentially set the return value.
383   bool SawAsmBlock;
384 
385   const FunctionDecl *CurSEHParent = nullptr;
386 
387   /// True if the current function is an outlined SEH helper. This can be a
388   /// finally block or filter expression.
389   bool IsOutlinedSEHHelper;
390 
391   const CodeGen::CGBlockInfo *BlockInfo;
392   llvm::Value *BlockPointer;
393 
394   llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
395   FieldDecl *LambdaThisCaptureField;
396 
397   /// \brief A mapping from NRVO variables to the flags used to indicate
398   /// when the NRVO has been applied to this variable.
399   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
400 
401   EHScopeStack EHStack;
402   llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
403   llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack;
404 
405   llvm::Instruction *CurrentFuncletPad = nullptr;
406 
407   class CallLifetimeEnd final : public EHScopeStack::Cleanup {
408     llvm::Value *Addr;
409     llvm::Value *Size;
410 
411   public:
412     CallLifetimeEnd(Address addr, llvm::Value *size)
413         : Addr(addr.getPointer()), Size(size) {}
414 
415     void Emit(CodeGenFunction &CGF, Flags flags) override {
416       CGF.EmitLifetimeEnd(Size, Addr);
417     }
418   };
419 
420   /// Header for data within LifetimeExtendedCleanupStack.
421   struct LifetimeExtendedCleanupHeader {
422     /// The size of the following cleanup object.
423     unsigned Size;
424     /// The kind of cleanup to push: a value from the CleanupKind enumeration.
425     CleanupKind Kind;
426 
427     size_t getSize() const { return Size; }
428     CleanupKind getKind() const { return Kind; }
429   };
430 
431   /// i32s containing the indexes of the cleanup destinations.
432   llvm::AllocaInst *NormalCleanupDest;
433 
434   unsigned NextCleanupDestIndex;
435 
436   /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
437   CGBlockInfo *FirstBlockInfo;
438 
439   /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
440   llvm::BasicBlock *EHResumeBlock;
441 
442   /// The exception slot.  All landing pads write the current exception pointer
443   /// into this alloca.
444   llvm::Value *ExceptionSlot;
445 
446   /// The selector slot.  Under the MandatoryCleanup model, all landing pads
447   /// write the current selector value into this alloca.
448   llvm::AllocaInst *EHSelectorSlot;
449 
450   /// A stack of exception code slots. Entering an __except block pushes a slot
451   /// on the stack and leaving pops one. The __exception_code() intrinsic loads
452   /// a value from the top of the stack.
453   SmallVector<Address, 1> SEHCodeSlotStack;
454 
455   /// Value returned by __exception_info intrinsic.
456   llvm::Value *SEHInfo = nullptr;
457 
458   /// Emits a landing pad for the current EH stack.
459   llvm::BasicBlock *EmitLandingPad();
460 
461   llvm::BasicBlock *getInvokeDestImpl();
462 
463   template <class T>
464   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
465     return DominatingValue<T>::save(*this, value);
466   }
467 
468 public:
469   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
470   /// rethrows.
471   SmallVector<llvm::Value*, 8> ObjCEHValueStack;
472 
473   /// A class controlling the emission of a finally block.
474   class FinallyInfo {
475     /// Where the catchall's edge through the cleanup should go.
476     JumpDest RethrowDest;
477 
478     /// A function to call to enter the catch.
479     llvm::Constant *BeginCatchFn;
480 
481     /// An i1 variable indicating whether or not the @finally is
482     /// running for an exception.
483     llvm::AllocaInst *ForEHVar;
484 
485     /// An i8* variable into which the exception pointer to rethrow
486     /// has been saved.
487     llvm::AllocaInst *SavedExnVar;
488 
489   public:
490     void enter(CodeGenFunction &CGF, const Stmt *Finally,
491                llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
492                llvm::Constant *rethrowFn);
493     void exit(CodeGenFunction &CGF);
494   };
495 
496   /// Returns true inside SEH __try blocks.
497   bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }
498 
499   /// Returns true while emitting a cleanuppad.
500   bool isCleanupPadScope() const {
501     return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad);
502   }
503 
504   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
505   /// current full-expression.  Safe against the possibility that
506   /// we're currently inside a conditionally-evaluated expression.
507   template <class T, class... As>
508   void pushFullExprCleanup(CleanupKind kind, As... A) {
509     // If we're not in a conditional branch, or if none of the
510     // arguments requires saving, then use the unconditional cleanup.
511     if (!isInConditionalBranch())
512       return EHStack.pushCleanup<T>(kind, A...);
513 
514     // Stash values in a tuple so we can guarantee the order of saves.
515     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
516     SavedTuple Saved{saveValueInCond(A)...};
517 
518     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
519     EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
520     initFullExprCleanup();
521   }
522 
523   /// \brief Queue a cleanup to be pushed after finishing the current
524   /// full-expression.
525   template <class T, class... As>
526   void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
527     assert(!isInConditionalBranch() && "can't defer conditional cleanup");
528 
529     LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind };
530 
531     size_t OldSize = LifetimeExtendedCleanupStack.size();
532     LifetimeExtendedCleanupStack.resize(
533         LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size);
534 
535     static_assert(sizeof(Header) % alignof(T) == 0,
536                   "Cleanup will be allocated on misaligned address");
537     char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
538     new (Buffer) LifetimeExtendedCleanupHeader(Header);
539     new (Buffer + sizeof(Header)) T(A...);
540   }
541 
542   /// Set up the last cleaup that was pushed as a conditional
543   /// full-expression cleanup.
544   void initFullExprCleanup();
545 
546   /// PushDestructorCleanup - Push a cleanup to call the
547   /// complete-object destructor of an object of the given type at the
548   /// given address.  Does nothing if T is not a C++ class type with a
549   /// non-trivial destructor.
550   void PushDestructorCleanup(QualType T, Address Addr);
551 
552   /// PushDestructorCleanup - Push a cleanup to call the
553   /// complete-object variant of the given destructor on the object at
554   /// the given address.
555   void PushDestructorCleanup(const CXXDestructorDecl *Dtor, Address Addr);
556 
557   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
558   /// process all branch fixups.
559   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
560 
561   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
562   /// The block cannot be reactivated.  Pops it if it's the top of the
563   /// stack.
564   ///
565   /// \param DominatingIP - An instruction which is known to
566   ///   dominate the current IP (if set) and which lies along
567   ///   all paths of execution between the current IP and the
568   ///   the point at which the cleanup comes into scope.
569   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
570                               llvm::Instruction *DominatingIP);
571 
572   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
573   /// Cannot be used to resurrect a deactivated cleanup.
574   ///
575   /// \param DominatingIP - An instruction which is known to
576   ///   dominate the current IP (if set) and which lies along
577   ///   all paths of execution between the current IP and the
578   ///   the point at which the cleanup comes into scope.
579   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
580                             llvm::Instruction *DominatingIP);
581 
582   /// \brief Enters a new scope for capturing cleanups, all of which
583   /// will be executed once the scope is exited.
584   class RunCleanupsScope {
585     EHScopeStack::stable_iterator CleanupStackDepth;
586     size_t LifetimeExtendedCleanupStackSize;
587     bool OldDidCallStackSave;
588   protected:
589     bool PerformCleanup;
590   private:
591 
592     RunCleanupsScope(const RunCleanupsScope &) = delete;
593     void operator=(const RunCleanupsScope &) = delete;
594 
595   protected:
596     CodeGenFunction& CGF;
597 
598   public:
599     /// \brief Enter a new cleanup scope.
600     explicit RunCleanupsScope(CodeGenFunction &CGF)
601       : PerformCleanup(true), CGF(CGF)
602     {
603       CleanupStackDepth = CGF.EHStack.stable_begin();
604       LifetimeExtendedCleanupStackSize =
605           CGF.LifetimeExtendedCleanupStack.size();
606       OldDidCallStackSave = CGF.DidCallStackSave;
607       CGF.DidCallStackSave = false;
608     }
609 
610     /// \brief Exit this cleanup scope, emitting any accumulated cleanups.
611     ~RunCleanupsScope() {
612       if (PerformCleanup)
613         ForceCleanup();
614     }
615 
616     /// \brief Determine whether this scope requires any cleanups.
617     bool requiresCleanups() const {
618       return CGF.EHStack.stable_begin() != CleanupStackDepth;
619     }
620 
621     /// \brief Force the emission of cleanups now, instead of waiting
622     /// until this object is destroyed.
623     /// \param ValuesToReload - A list of values that need to be available at
624     /// the insertion point after cleanup emission. If cleanup emission created
625     /// a shared cleanup block, these value pointers will be rewritten.
626     /// Otherwise, they not will be modified.
627     void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) {
628       assert(PerformCleanup && "Already forced cleanup");
629       CGF.DidCallStackSave = OldDidCallStackSave;
630       CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize,
631                            ValuesToReload);
632       PerformCleanup = false;
633     }
634   };
635 
636   class LexicalScope : public RunCleanupsScope {
637     SourceRange Range;
638     SmallVector<const LabelDecl*, 4> Labels;
639     LexicalScope *ParentScope;
640 
641     LexicalScope(const LexicalScope &) = delete;
642     void operator=(const LexicalScope &) = delete;
643 
644   public:
645     /// \brief Enter a new cleanup scope.
646     explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
647       : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
648       CGF.CurLexicalScope = this;
649       if (CGDebugInfo *DI = CGF.getDebugInfo())
650         DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
651     }
652 
653     void addLabel(const LabelDecl *label) {
654       assert(PerformCleanup && "adding label to dead scope?");
655       Labels.push_back(label);
656     }
657 
658     /// \brief Exit this cleanup scope, emitting any accumulated
659     /// cleanups.
660     ~LexicalScope() {
661       if (CGDebugInfo *DI = CGF.getDebugInfo())
662         DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
663 
664       // If we should perform a cleanup, force them now.  Note that
665       // this ends the cleanup scope before rescoping any labels.
666       if (PerformCleanup) {
667         ApplyDebugLocation DL(CGF, Range.getEnd());
668         ForceCleanup();
669       }
670     }
671 
672     /// \brief Force the emission of cleanups now, instead of waiting
673     /// until this object is destroyed.
674     void ForceCleanup() {
675       CGF.CurLexicalScope = ParentScope;
676       RunCleanupsScope::ForceCleanup();
677 
678       if (!Labels.empty())
679         rescopeLabels();
680     }
681 
682     bool hasLabels() const {
683       return !Labels.empty();
684     }
685 
686     void rescopeLabels();
687   };
688 
689   typedef llvm::DenseMap<const Decl *, Address> DeclMapTy;
690 
691   /// \brief The scope used to remap some variables as private in the OpenMP
692   /// loop body (or other captured region emitted without outlining), and to
693   /// restore old vars back on exit.
694   class OMPPrivateScope : public RunCleanupsScope {
695     DeclMapTy SavedLocals;
696     DeclMapTy SavedPrivates;
697 
698   private:
699     OMPPrivateScope(const OMPPrivateScope &) = delete;
700     void operator=(const OMPPrivateScope &) = delete;
701 
702   public:
703     /// \brief Enter a new OpenMP private scope.
704     explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}
705 
706     /// \brief Registers \a LocalVD variable as a private and apply \a
707     /// PrivateGen function for it to generate corresponding private variable.
708     /// \a PrivateGen returns an address of the generated private variable.
709     /// \return true if the variable is registered as private, false if it has
710     /// been privatized already.
711     bool
712     addPrivate(const VarDecl *LocalVD,
713                llvm::function_ref<Address()> PrivateGen) {
714       assert(PerformCleanup && "adding private to dead scope");
715 
716       LocalVD = LocalVD->getCanonicalDecl();
717       // Only save it once.
718       if (SavedLocals.count(LocalVD)) return false;
719 
720       // Copy the existing local entry to SavedLocals.
721       auto it = CGF.LocalDeclMap.find(LocalVD);
722       if (it != CGF.LocalDeclMap.end()) {
723         SavedLocals.insert({LocalVD, it->second});
724       } else {
725         SavedLocals.insert({LocalVD, Address::invalid()});
726       }
727 
728       // Generate the private entry.
729       Address Addr = PrivateGen();
730       QualType VarTy = LocalVD->getType();
731       if (VarTy->isReferenceType()) {
732         Address Temp = CGF.CreateMemTemp(VarTy);
733         CGF.Builder.CreateStore(Addr.getPointer(), Temp);
734         Addr = Temp;
735       }
736       SavedPrivates.insert({LocalVD, Addr});
737 
738       return true;
739     }
740 
741     /// \brief Privatizes local variables previously registered as private.
742     /// Registration is separate from the actual privatization to allow
743     /// initializers use values of the original variables, not the private one.
744     /// This is important, for example, if the private variable is a class
745     /// variable initialized by a constructor that references other private
746     /// variables. But at initialization original variables must be used, not
747     /// private copies.
748     /// \return true if at least one variable was privatized, false otherwise.
749     bool Privatize() {
750       copyInto(SavedPrivates, CGF.LocalDeclMap);
751       SavedPrivates.clear();
752       return !SavedLocals.empty();
753     }
754 
755     void ForceCleanup() {
756       RunCleanupsScope::ForceCleanup();
757       copyInto(SavedLocals, CGF.LocalDeclMap);
758       SavedLocals.clear();
759     }
760 
761     /// \brief Exit scope - all the mapped variables are restored.
762     ~OMPPrivateScope() {
763       if (PerformCleanup)
764         ForceCleanup();
765     }
766 
767     /// Checks if the global variable is captured in current function.
768     bool isGlobalVarCaptured(const VarDecl *VD) const {
769       VD = VD->getCanonicalDecl();
770       return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0;
771     }
772 
773   private:
774     /// Copy all the entries in the source map over the corresponding
775     /// entries in the destination, which must exist.
776     static void copyInto(const DeclMapTy &src, DeclMapTy &dest) {
777       for (auto &pair : src) {
778         if (!pair.second.isValid()) {
779           dest.erase(pair.first);
780           continue;
781         }
782 
783         auto it = dest.find(pair.first);
784         if (it != dest.end()) {
785           it->second = pair.second;
786         } else {
787           dest.insert(pair);
788         }
789       }
790     }
791   };
792 
793   /// \brief Takes the old cleanup stack size and emits the cleanup blocks
794   /// that have been added.
795   void
796   PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
797                    std::initializer_list<llvm::Value **> ValuesToReload = {});
798 
799   /// \brief Takes the old cleanup stack size and emits the cleanup blocks
800   /// that have been added, then adds all lifetime-extended cleanups from
801   /// the given position to the stack.
802   void
803   PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
804                    size_t OldLifetimeExtendedStackSize,
805                    std::initializer_list<llvm::Value **> ValuesToReload = {});
806 
807   void ResolveBranchFixups(llvm::BasicBlock *Target);
808 
809   /// The given basic block lies in the current EH scope, but may be a
810   /// target of a potentially scope-crossing jump; get a stable handle
811   /// to which we can perform this jump later.
812   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
813     return JumpDest(Target,
814                     EHStack.getInnermostNormalCleanup(),
815                     NextCleanupDestIndex++);
816   }
817 
818   /// The given basic block lies in the current EH scope, but may be a
819   /// target of a potentially scope-crossing jump; get a stable handle
820   /// to which we can perform this jump later.
821   JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
822     return getJumpDestInCurrentScope(createBasicBlock(Name));
823   }
824 
825   /// EmitBranchThroughCleanup - Emit a branch from the current insert
826   /// block through the normal cleanup handling code (if any) and then
827   /// on to \arg Dest.
828   void EmitBranchThroughCleanup(JumpDest Dest);
829 
830   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
831   /// specified destination obviously has no cleanups to run.  'false' is always
832   /// a conservatively correct answer for this method.
833   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
834 
835   /// popCatchScope - Pops the catch scope at the top of the EHScope
836   /// stack, emitting any required code (other than the catch handlers
837   /// themselves).
838   void popCatchScope();
839 
840   llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
841   llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
842   llvm::BasicBlock *getMSVCDispatchBlock(EHScopeStack::stable_iterator scope);
843 
844   /// An object to manage conditionally-evaluated expressions.
845   class ConditionalEvaluation {
846     llvm::BasicBlock *StartBB;
847 
848   public:
849     ConditionalEvaluation(CodeGenFunction &CGF)
850       : StartBB(CGF.Builder.GetInsertBlock()) {}
851 
852     void begin(CodeGenFunction &CGF) {
853       assert(CGF.OutermostConditional != this);
854       if (!CGF.OutermostConditional)
855         CGF.OutermostConditional = this;
856     }
857 
858     void end(CodeGenFunction &CGF) {
859       assert(CGF.OutermostConditional != nullptr);
860       if (CGF.OutermostConditional == this)
861         CGF.OutermostConditional = nullptr;
862     }
863 
864     /// Returns a block which will be executed prior to each
865     /// evaluation of the conditional code.
866     llvm::BasicBlock *getStartingBlock() const {
867       return StartBB;
868     }
869   };
870 
871   /// isInConditionalBranch - Return true if we're currently emitting
872   /// one branch or the other of a conditional expression.
873   bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
874 
875   void setBeforeOutermostConditional(llvm::Value *value, Address addr) {
876     assert(isInConditionalBranch());
877     llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
878     auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back());
879     store->setAlignment(addr.getAlignment().getQuantity());
880   }
881 
882   /// An RAII object to record that we're evaluating a statement
883   /// expression.
884   class StmtExprEvaluation {
885     CodeGenFunction &CGF;
886 
887     /// We have to save the outermost conditional: cleanups in a
888     /// statement expression aren't conditional just because the
889     /// StmtExpr is.
890     ConditionalEvaluation *SavedOutermostConditional;
891 
892   public:
893     StmtExprEvaluation(CodeGenFunction &CGF)
894       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
895       CGF.OutermostConditional = nullptr;
896     }
897 
898     ~StmtExprEvaluation() {
899       CGF.OutermostConditional = SavedOutermostConditional;
900       CGF.EnsureInsertPoint();
901     }
902   };
903 
904   /// An object which temporarily prevents a value from being
905   /// destroyed by aggressive peephole optimizations that assume that
906   /// all uses of a value have been realized in the IR.
907   class PeepholeProtection {
908     llvm::Instruction *Inst;
909     friend class CodeGenFunction;
910 
911   public:
912     PeepholeProtection() : Inst(nullptr) {}
913   };
914 
915   /// A non-RAII class containing all the information about a bound
916   /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
917   /// this which makes individual mappings very simple; using this
918   /// class directly is useful when you have a variable number of
919   /// opaque values or don't want the RAII functionality for some
920   /// reason.
921   class OpaqueValueMappingData {
922     const OpaqueValueExpr *OpaqueValue;
923     bool BoundLValue;
924     CodeGenFunction::PeepholeProtection Protection;
925 
926     OpaqueValueMappingData(const OpaqueValueExpr *ov,
927                            bool boundLValue)
928       : OpaqueValue(ov), BoundLValue(boundLValue) {}
929   public:
930     OpaqueValueMappingData() : OpaqueValue(nullptr) {}
931 
932     static bool shouldBindAsLValue(const Expr *expr) {
933       // gl-values should be bound as l-values for obvious reasons.
934       // Records should be bound as l-values because IR generation
935       // always keeps them in memory.  Expressions of function type
936       // act exactly like l-values but are formally required to be
937       // r-values in C.
938       return expr->isGLValue() ||
939              expr->getType()->isFunctionType() ||
940              hasAggregateEvaluationKind(expr->getType());
941     }
942 
943     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
944                                        const OpaqueValueExpr *ov,
945                                        const Expr *e) {
946       if (shouldBindAsLValue(ov))
947         return bind(CGF, ov, CGF.EmitLValue(e));
948       return bind(CGF, ov, CGF.EmitAnyExpr(e));
949     }
950 
951     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
952                                        const OpaqueValueExpr *ov,
953                                        const LValue &lv) {
954       assert(shouldBindAsLValue(ov));
955       CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
956       return OpaqueValueMappingData(ov, true);
957     }
958 
959     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
960                                        const OpaqueValueExpr *ov,
961                                        const RValue &rv) {
962       assert(!shouldBindAsLValue(ov));
963       CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
964 
965       OpaqueValueMappingData data(ov, false);
966 
967       // Work around an extremely aggressive peephole optimization in
968       // EmitScalarConversion which assumes that all other uses of a
969       // value are extant.
970       data.Protection = CGF.protectFromPeepholes(rv);
971 
972       return data;
973     }
974 
975     bool isValid() const { return OpaqueValue != nullptr; }
976     void clear() { OpaqueValue = nullptr; }
977 
978     void unbind(CodeGenFunction &CGF) {
979       assert(OpaqueValue && "no data to unbind!");
980 
981       if (BoundLValue) {
982         CGF.OpaqueLValues.erase(OpaqueValue);
983       } else {
984         CGF.OpaqueRValues.erase(OpaqueValue);
985         CGF.unprotectFromPeepholes(Protection);
986       }
987     }
988   };
989 
990   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
991   class OpaqueValueMapping {
992     CodeGenFunction &CGF;
993     OpaqueValueMappingData Data;
994 
995   public:
996     static bool shouldBindAsLValue(const Expr *expr) {
997       return OpaqueValueMappingData::shouldBindAsLValue(expr);
998     }
999 
1000     /// Build the opaque value mapping for the given conditional
1001     /// operator if it's the GNU ?: extension.  This is a common
1002     /// enough pattern that the convenience operator is really
1003     /// helpful.
1004     ///
1005     OpaqueValueMapping(CodeGenFunction &CGF,
1006                        const AbstractConditionalOperator *op) : CGF(CGF) {
1007       if (isa<ConditionalOperator>(op))
1008         // Leave Data empty.
1009         return;
1010 
1011       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
1012       Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
1013                                           e->getCommon());
1014     }
1015 
1016     /// Build the opaque value mapping for an OpaqueValueExpr whose source
1017     /// expression is set to the expression the OVE represents.
1018     OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV)
1019         : CGF(CGF) {
1020       if (OV) {
1021         assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used "
1022                                       "for OVE with no source expression");
1023         Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr());
1024       }
1025     }
1026 
1027     OpaqueValueMapping(CodeGenFunction &CGF,
1028                        const OpaqueValueExpr *opaqueValue,
1029                        LValue lvalue)
1030       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
1031     }
1032 
1033     OpaqueValueMapping(CodeGenFunction &CGF,
1034                        const OpaqueValueExpr *opaqueValue,
1035                        RValue rvalue)
1036       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
1037     }
1038 
1039     void pop() {
1040       Data.unbind(CGF);
1041       Data.clear();
1042     }
1043 
1044     ~OpaqueValueMapping() {
1045       if (Data.isValid()) Data.unbind(CGF);
1046     }
1047   };
1048 
1049 private:
1050   CGDebugInfo *DebugInfo;
1051   bool DisableDebugInfo;
1052 
1053   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
1054   /// calling llvm.stacksave for multiple VLAs in the same scope.
1055   bool DidCallStackSave;
1056 
1057   /// IndirectBranch - The first time an indirect goto is seen we create a block
1058   /// with an indirect branch.  Every time we see the address of a label taken,
1059   /// we add the label to the indirect goto.  Every subsequent indirect goto is
1060   /// codegen'd as a jump to the IndirectBranch's basic block.
1061   llvm::IndirectBrInst *IndirectBranch;
1062 
1063   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1064   /// decls.
1065   DeclMapTy LocalDeclMap;
1066 
1067   /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this
1068   /// will contain a mapping from said ParmVarDecl to its implicit "object_size"
1069   /// parameter.
1070   llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2>
1071       SizeArguments;
1072 
1073   /// Track escaped local variables with auto storage. Used during SEH
1074   /// outlining to produce a call to llvm.localescape.
1075   llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;
1076 
1077   /// LabelMap - This keeps track of the LLVM basic block for each C label.
1078   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1079 
1080   // BreakContinueStack - This keeps track of where break and continue
1081   // statements should jump to.
1082   struct BreakContinue {
1083     BreakContinue(JumpDest Break, JumpDest Continue)
1084       : BreakBlock(Break), ContinueBlock(Continue) {}
1085 
1086     JumpDest BreakBlock;
1087     JumpDest ContinueBlock;
1088   };
1089   SmallVector<BreakContinue, 8> BreakContinueStack;
1090 
1091   /// Handles cancellation exit points in OpenMP-related constructs.
1092   class OpenMPCancelExitStack {
1093     /// Tracks cancellation exit point and join point for cancel-related exit
1094     /// and normal exit.
1095     struct CancelExit {
1096       CancelExit() = default;
1097       CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock,
1098                  JumpDest ContBlock)
1099           : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {}
1100       OpenMPDirectiveKind Kind = OMPD_unknown;
1101       /// true if the exit block has been emitted already by the special
1102       /// emitExit() call, false if the default codegen is used.
1103       bool HasBeenEmitted = false;
1104       JumpDest ExitBlock;
1105       JumpDest ContBlock;
1106     };
1107 
1108     SmallVector<CancelExit, 8> Stack;
1109 
1110   public:
1111     OpenMPCancelExitStack() : Stack(1) {}
1112     ~OpenMPCancelExitStack() = default;
1113     /// Fetches the exit block for the current OpenMP construct.
1114     JumpDest getExitBlock() const { return Stack.back().ExitBlock; }
1115     /// Emits exit block with special codegen procedure specific for the related
1116     /// OpenMP construct + emits code for normal construct cleanup.
1117     void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
1118                   const llvm::function_ref<void(CodeGenFunction &)> &CodeGen) {
1119       if (Stack.back().Kind == Kind && getExitBlock().isValid()) {
1120         assert(CGF.getOMPCancelDestination(Kind).isValid());
1121         assert(CGF.HaveInsertPoint());
1122         assert(!Stack.back().HasBeenEmitted);
1123         auto IP = CGF.Builder.saveAndClearIP();
1124         CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1125         CodeGen(CGF);
1126         CGF.EmitBranch(Stack.back().ContBlock.getBlock());
1127         CGF.Builder.restoreIP(IP);
1128         Stack.back().HasBeenEmitted = true;
1129       }
1130       CodeGen(CGF);
1131     }
1132     /// Enter the cancel supporting \a Kind construct.
1133     /// \param Kind OpenMP directive that supports cancel constructs.
1134     /// \param HasCancel true, if the construct has inner cancel directive,
1135     /// false otherwise.
1136     void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) {
1137       Stack.push_back({Kind,
1138                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit")
1139                                  : JumpDest(),
1140                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont")
1141                                  : JumpDest()});
1142     }
1143     /// Emits default exit point for the cancel construct (if the special one
1144     /// has not be used) + join point for cancel/normal exits.
1145     void exit(CodeGenFunction &CGF) {
1146       if (getExitBlock().isValid()) {
1147         assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid());
1148         bool HaveIP = CGF.HaveInsertPoint();
1149         if (!Stack.back().HasBeenEmitted) {
1150           if (HaveIP)
1151             CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1152           CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1153           CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1154         }
1155         CGF.EmitBlock(Stack.back().ContBlock.getBlock());
1156         if (!HaveIP) {
1157           CGF.Builder.CreateUnreachable();
1158           CGF.Builder.ClearInsertionPoint();
1159         }
1160       }
1161       Stack.pop_back();
1162     }
1163   };
1164   OpenMPCancelExitStack OMPCancelStack;
1165 
1166   /// Controls insertion of cancellation exit blocks in worksharing constructs.
1167   class OMPCancelStackRAII {
1168     CodeGenFunction &CGF;
1169 
1170   public:
1171     OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
1172                        bool HasCancel)
1173         : CGF(CGF) {
1174       CGF.OMPCancelStack.enter(CGF, Kind, HasCancel);
1175     }
1176     ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); }
1177   };
1178 
1179   CodeGenPGO PGO;
1180 
1181   /// Calculate branch weights appropriate for PGO data
1182   llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount);
1183   llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights);
1184   llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond,
1185                                             uint64_t LoopCount);
1186 
1187 public:
1188   /// Increment the profiler's counter for the given statement by \p StepV.
1189   /// If \p StepV is null, the default increment is 1.
1190   void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) {
1191     if (CGM.getCodeGenOpts().hasProfileClangInstr())
1192       PGO.emitCounterIncrement(Builder, S, StepV);
1193     PGO.setCurrentStmt(S);
1194   }
1195 
1196   /// Get the profiler's count for the given statement.
1197   uint64_t getProfileCount(const Stmt *S) {
1198     Optional<uint64_t> Count = PGO.getStmtCount(S);
1199     if (!Count.hasValue())
1200       return 0;
1201     return *Count;
1202   }
1203 
1204   /// Set the profiler's current count.
1205   void setCurrentProfileCount(uint64_t Count) {
1206     PGO.setCurrentRegionCount(Count);
1207   }
1208 
1209   /// Get the profiler's current count. This is generally the count for the most
1210   /// recently incremented counter.
1211   uint64_t getCurrentProfileCount() {
1212     return PGO.getCurrentRegionCount();
1213   }
1214 
1215 private:
1216 
1217   /// SwitchInsn - This is nearest current switch instruction. It is null if
1218   /// current context is not in a switch.
1219   llvm::SwitchInst *SwitchInsn;
1220   /// The branch weights of SwitchInsn when doing instrumentation based PGO.
1221   SmallVector<uint64_t, 16> *SwitchWeights;
1222 
1223   /// CaseRangeBlock - This block holds if condition check for last case
1224   /// statement range in current switch instruction.
1225   llvm::BasicBlock *CaseRangeBlock;
1226 
1227   /// OpaqueLValues - Keeps track of the current set of opaque value
1228   /// expressions.
1229   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1230   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1231 
1232   // VLASizeMap - This keeps track of the associated size for each VLA type.
1233   // We track this by the size expression rather than the type itself because
1234   // in certain situations, like a const qualifier applied to an VLA typedef,
1235   // multiple VLA types can share the same size expression.
1236   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1237   // enter/leave scopes.
1238   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1239 
1240   /// A block containing a single 'unreachable' instruction.  Created
1241   /// lazily by getUnreachableBlock().
1242   llvm::BasicBlock *UnreachableBlock;
1243 
1244   /// Counts of the number return expressions in the function.
1245   unsigned NumReturnExprs;
1246 
1247   /// Count the number of simple (constant) return expressions in the function.
1248   unsigned NumSimpleReturnExprs;
1249 
1250   /// The last regular (non-return) debug location (breakpoint) in the function.
1251   SourceLocation LastStopPoint;
1252 
1253 public:
1254   /// A scope within which we are constructing the fields of an object which
1255   /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
1256   /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
1257   class FieldConstructionScope {
1258   public:
1259     FieldConstructionScope(CodeGenFunction &CGF, Address This)
1260         : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
1261       CGF.CXXDefaultInitExprThis = This;
1262     }
1263     ~FieldConstructionScope() {
1264       CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
1265     }
1266 
1267   private:
1268     CodeGenFunction &CGF;
1269     Address OldCXXDefaultInitExprThis;
1270   };
1271 
1272   /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
1273   /// is overridden to be the object under construction.
1274   class CXXDefaultInitExprScope {
1275   public:
1276     CXXDefaultInitExprScope(CodeGenFunction &CGF)
1277       : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue),
1278         OldCXXThisAlignment(CGF.CXXThisAlignment) {
1279       CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer();
1280       CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment();
1281     }
1282     ~CXXDefaultInitExprScope() {
1283       CGF.CXXThisValue = OldCXXThisValue;
1284       CGF.CXXThisAlignment = OldCXXThisAlignment;
1285     }
1286 
1287   public:
1288     CodeGenFunction &CGF;
1289     llvm::Value *OldCXXThisValue;
1290     CharUnits OldCXXThisAlignment;
1291   };
1292 
1293   /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the
1294   /// current loop index is overridden.
1295   class ArrayInitLoopExprScope {
1296   public:
1297     ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index)
1298       : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) {
1299       CGF.ArrayInitIndex = Index;
1300     }
1301     ~ArrayInitLoopExprScope() {
1302       CGF.ArrayInitIndex = OldArrayInitIndex;
1303     }
1304 
1305   private:
1306     CodeGenFunction &CGF;
1307     llvm::Value *OldArrayInitIndex;
1308   };
1309 
1310   class InlinedInheritingConstructorScope {
1311   public:
1312     InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD)
1313         : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl),
1314           OldCurCodeDecl(CGF.CurCodeDecl),
1315           OldCXXABIThisDecl(CGF.CXXABIThisDecl),
1316           OldCXXABIThisValue(CGF.CXXABIThisValue),
1317           OldCXXThisValue(CGF.CXXThisValue),
1318           OldCXXABIThisAlignment(CGF.CXXABIThisAlignment),
1319           OldCXXThisAlignment(CGF.CXXThisAlignment),
1320           OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy),
1321           OldCXXInheritedCtorInitExprArgs(
1322               std::move(CGF.CXXInheritedCtorInitExprArgs)) {
1323       CGF.CurGD = GD;
1324       CGF.CurFuncDecl = CGF.CurCodeDecl =
1325           cast<CXXConstructorDecl>(GD.getDecl());
1326       CGF.CXXABIThisDecl = nullptr;
1327       CGF.CXXABIThisValue = nullptr;
1328       CGF.CXXThisValue = nullptr;
1329       CGF.CXXABIThisAlignment = CharUnits();
1330       CGF.CXXThisAlignment = CharUnits();
1331       CGF.ReturnValue = Address::invalid();
1332       CGF.FnRetTy = QualType();
1333       CGF.CXXInheritedCtorInitExprArgs.clear();
1334     }
1335     ~InlinedInheritingConstructorScope() {
1336       CGF.CurGD = OldCurGD;
1337       CGF.CurFuncDecl = OldCurFuncDecl;
1338       CGF.CurCodeDecl = OldCurCodeDecl;
1339       CGF.CXXABIThisDecl = OldCXXABIThisDecl;
1340       CGF.CXXABIThisValue = OldCXXABIThisValue;
1341       CGF.CXXThisValue = OldCXXThisValue;
1342       CGF.CXXABIThisAlignment = OldCXXABIThisAlignment;
1343       CGF.CXXThisAlignment = OldCXXThisAlignment;
1344       CGF.ReturnValue = OldReturnValue;
1345       CGF.FnRetTy = OldFnRetTy;
1346       CGF.CXXInheritedCtorInitExprArgs =
1347           std::move(OldCXXInheritedCtorInitExprArgs);
1348     }
1349 
1350   private:
1351     CodeGenFunction &CGF;
1352     GlobalDecl OldCurGD;
1353     const Decl *OldCurFuncDecl;
1354     const Decl *OldCurCodeDecl;
1355     ImplicitParamDecl *OldCXXABIThisDecl;
1356     llvm::Value *OldCXXABIThisValue;
1357     llvm::Value *OldCXXThisValue;
1358     CharUnits OldCXXABIThisAlignment;
1359     CharUnits OldCXXThisAlignment;
1360     Address OldReturnValue;
1361     QualType OldFnRetTy;
1362     CallArgList OldCXXInheritedCtorInitExprArgs;
1363   };
1364 
1365 private:
1366   /// CXXThisDecl - When generating code for a C++ member function,
1367   /// this will hold the implicit 'this' declaration.
1368   ImplicitParamDecl *CXXABIThisDecl;
1369   llvm::Value *CXXABIThisValue;
1370   llvm::Value *CXXThisValue;
1371   CharUnits CXXABIThisAlignment;
1372   CharUnits CXXThisAlignment;
1373 
1374   /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
1375   /// this expression.
1376   Address CXXDefaultInitExprThis = Address::invalid();
1377 
1378   /// The current array initialization index when evaluating an
1379   /// ArrayInitIndexExpr within an ArrayInitLoopExpr.
1380   llvm::Value *ArrayInitIndex = nullptr;
1381 
1382   /// The values of function arguments to use when evaluating
1383   /// CXXInheritedCtorInitExprs within this context.
1384   CallArgList CXXInheritedCtorInitExprArgs;
1385 
1386   /// CXXStructorImplicitParamDecl - When generating code for a constructor or
1387   /// destructor, this will hold the implicit argument (e.g. VTT).
1388   ImplicitParamDecl *CXXStructorImplicitParamDecl;
1389   llvm::Value *CXXStructorImplicitParamValue;
1390 
1391   /// OutermostConditional - Points to the outermost active
1392   /// conditional control.  This is used so that we know if a
1393   /// temporary should be destroyed conditionally.
1394   ConditionalEvaluation *OutermostConditional;
1395 
1396   /// The current lexical scope.
1397   LexicalScope *CurLexicalScope;
1398 
1399   /// The current source location that should be used for exception
1400   /// handling code.
1401   SourceLocation CurEHLocation;
1402 
1403   /// BlockByrefInfos - For each __block variable, contains
1404   /// information about the layout of the variable.
1405   llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos;
1406 
1407   /// Used by -fsanitize=nullability-return to determine whether the return
1408   /// value can be checked.
1409   llvm::Value *RetValNullabilityPrecondition = nullptr;
1410 
1411   /// Check if -fsanitize=nullability-return instrumentation is required for
1412   /// this function.
1413   bool requiresReturnValueNullabilityCheck() const {
1414     return RetValNullabilityPrecondition;
1415   }
1416 
1417   /// Used to store precise source locations for return statements by the
1418   /// runtime return value checks.
1419   Address ReturnLocation = Address::invalid();
1420 
1421   /// Check if the return value of this function requires sanitization.
1422   bool requiresReturnValueCheck() const {
1423     return requiresReturnValueNullabilityCheck() ||
1424            (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
1425             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>());
1426   }
1427 
1428   llvm::BasicBlock *TerminateLandingPad;
1429   llvm::BasicBlock *TerminateHandler;
1430   llvm::BasicBlock *TrapBB;
1431 
1432   /// True if we need emit the life-time markers.
1433   const bool ShouldEmitLifetimeMarkers;
1434 
1435   /// Add OpenCL kernel arg metadata and the kernel attribute meatadata to
1436   /// the function metadata.
1437   void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
1438                                 llvm::Function *Fn);
1439 
1440 public:
1441   CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1442   ~CodeGenFunction();
1443 
1444   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1445   ASTContext &getContext() const { return CGM.getContext(); }
1446   CGDebugInfo *getDebugInfo() {
1447     if (DisableDebugInfo)
1448       return nullptr;
1449     return DebugInfo;
1450   }
1451   void disableDebugInfo() { DisableDebugInfo = true; }
1452   void enableDebugInfo() { DisableDebugInfo = false; }
1453 
1454   bool shouldUseFusedARCCalls() {
1455     return CGM.getCodeGenOpts().OptimizationLevel == 0;
1456   }
1457 
1458   const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1459 
1460   /// Returns a pointer to the function's exception object and selector slot,
1461   /// which is assigned in every landing pad.
1462   Address getExceptionSlot();
1463   Address getEHSelectorSlot();
1464 
1465   /// Returns the contents of the function's exception object and selector
1466   /// slots.
1467   llvm::Value *getExceptionFromSlot();
1468   llvm::Value *getSelectorFromSlot();
1469 
1470   Address getNormalCleanupDestSlot();
1471 
1472   llvm::BasicBlock *getUnreachableBlock() {
1473     if (!UnreachableBlock) {
1474       UnreachableBlock = createBasicBlock("unreachable");
1475       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1476     }
1477     return UnreachableBlock;
1478   }
1479 
1480   llvm::BasicBlock *getInvokeDest() {
1481     if (!EHStack.requiresLandingPad()) return nullptr;
1482     return getInvokeDestImpl();
1483   }
1484 
1485   bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; }
1486 
1487   const TargetInfo &getTarget() const { return Target; }
1488   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1489   const TargetCodeGenInfo &getTargetHooks() const {
1490     return CGM.getTargetCodeGenInfo();
1491   }
1492 
1493   //===--------------------------------------------------------------------===//
1494   //                                  Cleanups
1495   //===--------------------------------------------------------------------===//
1496 
1497   typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty);
1498 
1499   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1500                                         Address arrayEndPointer,
1501                                         QualType elementType,
1502                                         CharUnits elementAlignment,
1503                                         Destroyer *destroyer);
1504   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1505                                       llvm::Value *arrayEnd,
1506                                       QualType elementType,
1507                                       CharUnits elementAlignment,
1508                                       Destroyer *destroyer);
1509 
1510   void pushDestroy(QualType::DestructionKind dtorKind,
1511                    Address addr, QualType type);
1512   void pushEHDestroy(QualType::DestructionKind dtorKind,
1513                      Address addr, QualType type);
1514   void pushDestroy(CleanupKind kind, Address addr, QualType type,
1515                    Destroyer *destroyer, bool useEHCleanupForArray);
1516   void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr,
1517                                    QualType type, Destroyer *destroyer,
1518                                    bool useEHCleanupForArray);
1519   void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1520                                    llvm::Value *CompletePtr,
1521                                    QualType ElementType);
1522   void pushStackRestore(CleanupKind kind, Address SPMem);
1523   void emitDestroy(Address addr, QualType type, Destroyer *destroyer,
1524                    bool useEHCleanupForArray);
1525   llvm::Function *generateDestroyHelper(Address addr, QualType type,
1526                                         Destroyer *destroyer,
1527                                         bool useEHCleanupForArray,
1528                                         const VarDecl *VD);
1529   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1530                         QualType elementType, CharUnits elementAlign,
1531                         Destroyer *destroyer,
1532                         bool checkZeroLength, bool useEHCleanup);
1533 
1534   Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1535 
1536   /// Determines whether an EH cleanup is required to destroy a type
1537   /// with the given destruction kind.
1538   bool needsEHCleanup(QualType::DestructionKind kind) {
1539     switch (kind) {
1540     case QualType::DK_none:
1541       return false;
1542     case QualType::DK_cxx_destructor:
1543     case QualType::DK_objc_weak_lifetime:
1544       return getLangOpts().Exceptions;
1545     case QualType::DK_objc_strong_lifetime:
1546       return getLangOpts().Exceptions &&
1547              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1548     }
1549     llvm_unreachable("bad destruction kind");
1550   }
1551 
1552   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
1553     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1554   }
1555 
1556   //===--------------------------------------------------------------------===//
1557   //                                  Objective-C
1558   //===--------------------------------------------------------------------===//
1559 
1560   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1561 
1562   void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
1563 
1564   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1565   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1566                           const ObjCPropertyImplDecl *PID);
1567   void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1568                               const ObjCPropertyImplDecl *propImpl,
1569                               const ObjCMethodDecl *GetterMothodDecl,
1570                               llvm::Constant *AtomicHelperFn);
1571 
1572   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1573                                   ObjCMethodDecl *MD, bool ctor);
1574 
1575   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1576   /// for the given property.
1577   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1578                           const ObjCPropertyImplDecl *PID);
1579   void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1580                               const ObjCPropertyImplDecl *propImpl,
1581                               llvm::Constant *AtomicHelperFn);
1582 
1583   //===--------------------------------------------------------------------===//
1584   //                                  Block Bits
1585   //===--------------------------------------------------------------------===//
1586 
1587   llvm::Value *EmitBlockLiteral(const BlockExpr *);
1588   static void destroyBlockInfos(CGBlockInfo *info);
1589 
1590   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1591                                         const CGBlockInfo &Info,
1592                                         const DeclMapTy &ldm,
1593                                         bool IsLambdaConversionToBlock,
1594                                         bool BuildGlobalBlock);
1595 
1596   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1597   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1598   llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
1599                                              const ObjCPropertyImplDecl *PID);
1600   llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
1601                                              const ObjCPropertyImplDecl *PID);
1602   llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
1603 
1604   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
1605 
1606   class AutoVarEmission;
1607 
1608   void emitByrefStructureInit(const AutoVarEmission &emission);
1609   void enterByrefCleanup(const AutoVarEmission &emission);
1610 
1611   void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum,
1612                                 llvm::Value *ptr);
1613 
1614   Address LoadBlockStruct();
1615   Address GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
1616 
1617   /// BuildBlockByrefAddress - Computes the location of the
1618   /// data in a variable which is declared as __block.
1619   Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V,
1620                                 bool followForward = true);
1621   Address emitBlockByrefAddress(Address baseAddr,
1622                                 const BlockByrefInfo &info,
1623                                 bool followForward,
1624                                 const llvm::Twine &name);
1625 
1626   const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var);
1627 
1628   QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args);
1629 
1630   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1631                     const CGFunctionInfo &FnInfo);
1632   /// \brief Emit code for the start of a function.
1633   /// \param Loc       The location to be associated with the function.
1634   /// \param StartLoc  The location of the function body.
1635   void StartFunction(GlobalDecl GD,
1636                      QualType RetTy,
1637                      llvm::Function *Fn,
1638                      const CGFunctionInfo &FnInfo,
1639                      const FunctionArgList &Args,
1640                      SourceLocation Loc = SourceLocation(),
1641                      SourceLocation StartLoc = SourceLocation());
1642 
1643   static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor);
1644 
1645   void EmitConstructorBody(FunctionArgList &Args);
1646   void EmitDestructorBody(FunctionArgList &Args);
1647   void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
1648   void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body);
1649   void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S);
1650 
1651   void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
1652                                   CallArgList &CallArgs);
1653   void EmitLambdaBlockInvokeBody();
1654   void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
1655   void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD);
1656   void EmitAsanPrologueOrEpilogue(bool Prologue);
1657 
1658   /// \brief Emit the unified return block, trying to avoid its emission when
1659   /// possible.
1660   /// \return The debug location of the user written return statement if the
1661   /// return block is is avoided.
1662   llvm::DebugLoc EmitReturnBlock();
1663 
1664   /// FinishFunction - Complete IR generation of the current function. It is
1665   /// legal to call this function even if there is no current insertion point.
1666   void FinishFunction(SourceLocation EndLoc=SourceLocation());
1667 
1668   void StartThunk(llvm::Function *Fn, GlobalDecl GD,
1669                   const CGFunctionInfo &FnInfo);
1670 
1671   void EmitCallAndReturnForThunk(llvm::Constant *Callee,
1672                                  const ThunkInfo *Thunk);
1673 
1674   void FinishThunk();
1675 
1676   /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
1677   void EmitMustTailThunk(const CXXMethodDecl *MD, llvm::Value *AdjustedThisPtr,
1678                          llvm::Value *Callee);
1679 
1680   /// Generate a thunk for the given method.
1681   void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1682                      GlobalDecl GD, const ThunkInfo &Thunk);
1683 
1684   llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn,
1685                                        const CGFunctionInfo &FnInfo,
1686                                        GlobalDecl GD, const ThunkInfo &Thunk);
1687 
1688   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1689                         FunctionArgList &Args);
1690 
1691   void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init);
1692 
1693   /// Struct with all informations about dynamic [sub]class needed to set vptr.
1694   struct VPtr {
1695     BaseSubobject Base;
1696     const CXXRecordDecl *NearestVBase;
1697     CharUnits OffsetFromNearestVBase;
1698     const CXXRecordDecl *VTableClass;
1699   };
1700 
1701   /// Initialize the vtable pointer of the given subobject.
1702   void InitializeVTablePointer(const VPtr &vptr);
1703 
1704   typedef llvm::SmallVector<VPtr, 4> VPtrsVector;
1705 
1706   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1707   VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass);
1708 
1709   void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase,
1710                          CharUnits OffsetFromNearestVBase,
1711                          bool BaseIsNonVirtualPrimaryBase,
1712                          const CXXRecordDecl *VTableClass,
1713                          VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs);
1714 
1715   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1716 
1717   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1718   /// to by This.
1719   llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy,
1720                             const CXXRecordDecl *VTableClass);
1721 
1722   enum CFITypeCheckKind {
1723     CFITCK_VCall,
1724     CFITCK_NVCall,
1725     CFITCK_DerivedCast,
1726     CFITCK_UnrelatedCast,
1727     CFITCK_ICall,
1728   };
1729 
1730   /// \brief Derived is the presumed address of an object of type T after a
1731   /// cast. If T is a polymorphic class type, emit a check that the virtual
1732   /// table for Derived belongs to a class derived from T.
1733   void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived,
1734                                  bool MayBeNull, CFITypeCheckKind TCK,
1735                                  SourceLocation Loc);
1736 
1737   /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
1738   /// If vptr CFI is enabled, emit a check that VTable is valid.
1739   void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable,
1740                                  CFITypeCheckKind TCK, SourceLocation Loc);
1741 
1742   /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
1743   /// RD using llvm.type.test.
1744   void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable,
1745                           CFITypeCheckKind TCK, SourceLocation Loc);
1746 
1747   /// If whole-program virtual table optimization is enabled, emit an assumption
1748   /// that VTable is a member of RD's type identifier. Or, if vptr CFI is
1749   /// enabled, emit a check that VTable is a member of RD's type identifier.
1750   void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
1751                                     llvm::Value *VTable, SourceLocation Loc);
1752 
1753   /// Returns whether we should perform a type checked load when loading a
1754   /// virtual function for virtual calls to members of RD. This is generally
1755   /// true when both vcall CFI and whole-program-vtables are enabled.
1756   bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD);
1757 
1758   /// Emit a type checked load from the given vtable.
1759   llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable,
1760                                          uint64_t VTableByteOffset);
1761 
1762   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1763   /// given phase of destruction for a destructor.  The end result
1764   /// should call destructors on members and base classes in reverse
1765   /// order of their construction.
1766   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1767 
1768   /// ShouldInstrumentFunction - Return true if the current function should be
1769   /// instrumented with __cyg_profile_func_* calls
1770   bool ShouldInstrumentFunction();
1771 
1772   /// ShouldXRayInstrument - Return true if the current function should be
1773   /// instrumented with XRay nop sleds.
1774   bool ShouldXRayInstrumentFunction() const;
1775 
1776   /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
1777   /// instrumentation function with the current function and the call site, if
1778   /// function instrumentation is enabled.
1779   void EmitFunctionInstrumentation(const char *Fn);
1780 
1781   /// EmitMCountInstrumentation - Emit call to .mcount.
1782   void EmitMCountInstrumentation();
1783 
1784   /// Encode an address into a form suitable for use in a function prologue.
1785   llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F,
1786                                              llvm::Constant *Addr);
1787 
1788   /// Decode an address used in a function prologue, encoded by \c
1789   /// EncodeAddrForUseInPrologue.
1790   llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F,
1791                                         llvm::Value *EncodedAddr);
1792 
1793   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1794   /// arguments for the given function. This is also responsible for naming the
1795   /// LLVM function arguments.
1796   void EmitFunctionProlog(const CGFunctionInfo &FI,
1797                           llvm::Function *Fn,
1798                           const FunctionArgList &Args);
1799 
1800   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1801   /// given temporary.
1802   void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
1803                           SourceLocation EndLoc);
1804 
1805   /// Emit a test that checks if the return value \p RV is nonnull.
1806   void EmitReturnValueCheck(llvm::Value *RV);
1807 
1808   /// EmitStartEHSpec - Emit the start of the exception spec.
1809   void EmitStartEHSpec(const Decl *D);
1810 
1811   /// EmitEndEHSpec - Emit the end of the exception spec.
1812   void EmitEndEHSpec(const Decl *D);
1813 
1814   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
1815   llvm::BasicBlock *getTerminateLandingPad();
1816 
1817   /// getTerminateHandler - Return a handler (not a landing pad, just
1818   /// a catch handler) that just calls terminate.  This is used when
1819   /// a terminate scope encloses a try.
1820   llvm::BasicBlock *getTerminateHandler();
1821 
1822   llvm::Type *ConvertTypeForMem(QualType T);
1823   llvm::Type *ConvertType(QualType T);
1824   llvm::Type *ConvertType(const TypeDecl *T) {
1825     return ConvertType(getContext().getTypeDeclType(T));
1826   }
1827 
1828   /// LoadObjCSelf - Load the value of self. This function is only valid while
1829   /// generating code for an Objective-C method.
1830   llvm::Value *LoadObjCSelf();
1831 
1832   /// TypeOfSelfObject - Return type of object that this self represents.
1833   QualType TypeOfSelfObject();
1834 
1835   /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T.
1836   static TypeEvaluationKind getEvaluationKind(QualType T);
1837 
1838   static bool hasScalarEvaluationKind(QualType T) {
1839     return getEvaluationKind(T) == TEK_Scalar;
1840   }
1841 
1842   static bool hasAggregateEvaluationKind(QualType T) {
1843     return getEvaluationKind(T) == TEK_Aggregate;
1844   }
1845 
1846   /// createBasicBlock - Create an LLVM basic block.
1847   llvm::BasicBlock *createBasicBlock(const Twine &name = "",
1848                                      llvm::Function *parent = nullptr,
1849                                      llvm::BasicBlock *before = nullptr) {
1850 #ifdef NDEBUG
1851     return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
1852 #else
1853     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
1854 #endif
1855   }
1856 
1857   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
1858   /// label maps to.
1859   JumpDest getJumpDestForLabel(const LabelDecl *S);
1860 
1861   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
1862   /// another basic block, simplify it. This assumes that no other code could
1863   /// potentially reference the basic block.
1864   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
1865 
1866   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
1867   /// adding a fall-through branch from the current insert block if
1868   /// necessary. It is legal to call this function even if there is no current
1869   /// insertion point.
1870   ///
1871   /// IsFinished - If true, indicates that the caller has finished emitting
1872   /// branches to the given block and does not expect to emit code into it. This
1873   /// means the block can be ignored if it is unreachable.
1874   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
1875 
1876   /// EmitBlockAfterUses - Emit the given block somewhere hopefully
1877   /// near its uses, and leave the insertion point in it.
1878   void EmitBlockAfterUses(llvm::BasicBlock *BB);
1879 
1880   /// EmitBranch - Emit a branch to the specified basic block from the current
1881   /// insert block, taking care to avoid creation of branches from dummy
1882   /// blocks. It is legal to call this function even if there is no current
1883   /// insertion point.
1884   ///
1885   /// This function clears the current insertion point. The caller should follow
1886   /// calls to this function with calls to Emit*Block prior to generation new
1887   /// code.
1888   void EmitBranch(llvm::BasicBlock *Block);
1889 
1890   /// HaveInsertPoint - True if an insertion point is defined. If not, this
1891   /// indicates that the current code being emitted is unreachable.
1892   bool HaveInsertPoint() const {
1893     return Builder.GetInsertBlock() != nullptr;
1894   }
1895 
1896   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
1897   /// emitted IR has a place to go. Note that by definition, if this function
1898   /// creates a block then that block is unreachable; callers may do better to
1899   /// detect when no insertion point is defined and simply skip IR generation.
1900   void EnsureInsertPoint() {
1901     if (!HaveInsertPoint())
1902       EmitBlock(createBasicBlock());
1903   }
1904 
1905   /// ErrorUnsupported - Print out an error that codegen doesn't support the
1906   /// specified stmt yet.
1907   void ErrorUnsupported(const Stmt *S, const char *Type);
1908 
1909   //===--------------------------------------------------------------------===//
1910   //                                  Helpers
1911   //===--------------------------------------------------------------------===//
1912 
1913   LValue MakeAddrLValue(Address Addr, QualType T,
1914                         LValueBaseInfo BaseInfo =
1915                             LValueBaseInfo(AlignmentSource::Type)) {
1916     return LValue::MakeAddr(Addr, T, getContext(), BaseInfo,
1917                             CGM.getTBAAAccessInfo(T));
1918   }
1919 
1920   LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
1921                         LValueBaseInfo BaseInfo =
1922                             LValueBaseInfo(AlignmentSource::Type)) {
1923     return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
1924                             BaseInfo, CGM.getTBAAAccessInfo(T));
1925   }
1926 
1927   LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T);
1928   LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T);
1929   CharUnits getNaturalTypeAlignment(QualType T,
1930                                     LValueBaseInfo *BaseInfo = nullptr,
1931                                     bool forPointeeType = false);
1932   CharUnits getNaturalPointeeTypeAlignment(QualType T,
1933                                            LValueBaseInfo *BaseInfo = nullptr);
1934 
1935   Address EmitLoadOfReference(Address Ref, const ReferenceType *RefTy,
1936                               LValueBaseInfo *BaseInfo = nullptr);
1937   LValue EmitLoadOfReferenceLValue(Address Ref, const ReferenceType *RefTy);
1938 
1939   Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy,
1940                             LValueBaseInfo *BaseInfo = nullptr);
1941   LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy);
1942 
1943   /// CreateTempAlloca - This creates an alloca and inserts it into the entry
1944   /// block if \p ArraySize is nullptr, otherwise inserts it at the current
1945   /// insertion point of the builder. The caller is responsible for setting an
1946   /// appropriate alignment on
1947   /// the alloca.
1948   ///
1949   /// \p ArraySize is the number of array elements to be allocated if it
1950   ///    is not nullptr.
1951   ///
1952   /// LangAS::Default is the address space of pointers to local variables and
1953   /// temporaries, as exposed in the source language. In certain
1954   /// configurations, this is not the same as the alloca address space, and a
1955   /// cast is needed to lift the pointer from the alloca AS into
1956   /// LangAS::Default. This can happen when the target uses a restricted
1957   /// address space for the stack but the source language requires
1958   /// LangAS::Default to be a generic address space. The latter condition is
1959   /// common for most programming languages; OpenCL is an exception in that
1960   /// LangAS::Default is the private address space, which naturally maps
1961   /// to the stack.
1962   ///
1963   /// Because the address of a temporary is often exposed to the program in
1964   /// various ways, this function will perform the cast by default. The cast
1965   /// may be avoided by passing false as \p CastToDefaultAddrSpace; this is
1966   /// more efficient if the caller knows that the address will not be exposed.
1967   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp",
1968                                      llvm::Value *ArraySize = nullptr);
1969   Address CreateTempAlloca(llvm::Type *Ty, CharUnits align,
1970                            const Twine &Name = "tmp",
1971                            llvm::Value *ArraySize = nullptr,
1972                            bool CastToDefaultAddrSpace = true);
1973 
1974   /// CreateDefaultAlignedTempAlloca - This creates an alloca with the
1975   /// default ABI alignment of the given LLVM type.
1976   ///
1977   /// IMPORTANT NOTE: This is *not* generally the right alignment for
1978   /// any given AST type that happens to have been lowered to the
1979   /// given IR type.  This should only ever be used for function-local,
1980   /// IR-driven manipulations like saving and restoring a value.  Do
1981   /// not hand this address off to arbitrary IRGen routines, and especially
1982   /// do not pass it as an argument to a function that might expect a
1983   /// properly ABI-aligned value.
1984   Address CreateDefaultAlignTempAlloca(llvm::Type *Ty,
1985                                        const Twine &Name = "tmp");
1986 
1987   /// InitTempAlloca - Provide an initial value for the given alloca which
1988   /// will be observable at all locations in the function.
1989   ///
1990   /// The address should be something that was returned from one of
1991   /// the CreateTempAlloca or CreateMemTemp routines, and the
1992   /// initializer must be valid in the entry block (i.e. it must
1993   /// either be a constant or an argument value).
1994   void InitTempAlloca(Address Alloca, llvm::Value *Value);
1995 
1996   /// CreateIRTemp - Create a temporary IR object of the given type, with
1997   /// appropriate alignment. This routine should only be used when an temporary
1998   /// value needs to be stored into an alloca (for example, to avoid explicit
1999   /// PHI construction), but the type is the IR type, not the type appropriate
2000   /// for storing in memory.
2001   ///
2002   /// That is, this is exactly equivalent to CreateMemTemp, but calling
2003   /// ConvertType instead of ConvertTypeForMem.
2004   Address CreateIRTemp(QualType T, const Twine &Name = "tmp");
2005 
2006   /// CreateMemTemp - Create a temporary memory object of the given type, with
2007   /// appropriate alignment. Cast it to the default address space if
2008   /// \p CastToDefaultAddrSpace is true.
2009   Address CreateMemTemp(QualType T, const Twine &Name = "tmp",
2010                         bool CastToDefaultAddrSpace = true);
2011   Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp",
2012                         bool CastToDefaultAddrSpace = true);
2013 
2014   /// CreateAggTemp - Create a temporary memory object for the given
2015   /// aggregate type.
2016   AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
2017     return AggValueSlot::forAddr(CreateMemTemp(T, Name),
2018                                  T.getQualifiers(),
2019                                  AggValueSlot::IsNotDestructed,
2020                                  AggValueSlot::DoesNotNeedGCBarriers,
2021                                  AggValueSlot::IsNotAliased);
2022   }
2023 
2024   /// Emit a cast to void* in the appropriate address space.
2025   llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
2026 
2027   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
2028   /// expression and compare the result against zero, returning an Int1Ty value.
2029   llvm::Value *EvaluateExprAsBool(const Expr *E);
2030 
2031   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
2032   void EmitIgnoredExpr(const Expr *E);
2033 
2034   /// EmitAnyExpr - Emit code to compute the specified expression which can have
2035   /// any type.  The result is returned as an RValue struct.  If this is an
2036   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
2037   /// the result should be returned.
2038   ///
2039   /// \param ignoreResult True if the resulting value isn't used.
2040   RValue EmitAnyExpr(const Expr *E,
2041                      AggValueSlot aggSlot = AggValueSlot::ignored(),
2042                      bool ignoreResult = false);
2043 
2044   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
2045   // or the value of the expression, depending on how va_list is defined.
2046   Address EmitVAListRef(const Expr *E);
2047 
2048   /// Emit a "reference" to a __builtin_ms_va_list; this is
2049   /// always the value of the expression, because a __builtin_ms_va_list is a
2050   /// pointer to a char.
2051   Address EmitMSVAListRef(const Expr *E);
2052 
2053   /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will
2054   /// always be accessible even if no aggregate location is provided.
2055   RValue EmitAnyExprToTemp(const Expr *E);
2056 
2057   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
2058   /// arbitrary expression into the given memory location.
2059   void EmitAnyExprToMem(const Expr *E, Address Location,
2060                         Qualifiers Quals, bool IsInitializer);
2061 
2062   void EmitAnyExprToExn(const Expr *E, Address Addr);
2063 
2064   /// EmitExprAsInit - Emits the code necessary to initialize a
2065   /// location in memory with the given initializer.
2066   void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2067                       bool capturedByInit);
2068 
2069   /// hasVolatileMember - returns true if aggregate type has a volatile
2070   /// member.
2071   bool hasVolatileMember(QualType T) {
2072     if (const RecordType *RT = T->getAs<RecordType>()) {
2073       const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
2074       return RD->hasVolatileMember();
2075     }
2076     return false;
2077   }
2078   /// EmitAggregateCopy - Emit an aggregate assignment.
2079   ///
2080   /// The difference to EmitAggregateCopy is that tail padding is not copied.
2081   /// This is required for correctness when assigning non-POD structures in C++.
2082   void EmitAggregateAssign(Address DestPtr, Address SrcPtr,
2083                            QualType EltTy) {
2084     bool IsVolatile = hasVolatileMember(EltTy);
2085     EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, true);
2086   }
2087 
2088   void EmitAggregateCopyCtor(Address DestPtr, Address SrcPtr,
2089                              QualType DestTy, QualType SrcTy) {
2090     EmitAggregateCopy(DestPtr, SrcPtr, SrcTy, /*IsVolatile=*/false,
2091                       /*IsAssignment=*/false);
2092   }
2093 
2094   /// EmitAggregateCopy - Emit an aggregate copy.
2095   ///
2096   /// \param isVolatile - True iff either the source or the destination is
2097   /// volatile.
2098   /// \param isAssignment - If false, allow padding to be copied.  This often
2099   /// yields more efficient.
2100   void EmitAggregateCopy(Address DestPtr, Address SrcPtr,
2101                          QualType EltTy, bool isVolatile=false,
2102                          bool isAssignment = false);
2103 
2104   /// GetAddrOfLocalVar - Return the address of a local variable.
2105   Address GetAddrOfLocalVar(const VarDecl *VD) {
2106     auto it = LocalDeclMap.find(VD);
2107     assert(it != LocalDeclMap.end() &&
2108            "Invalid argument to GetAddrOfLocalVar(), no decl!");
2109     return it->second;
2110   }
2111 
2112   /// getOpaqueLValueMapping - Given an opaque value expression (which
2113   /// must be mapped to an l-value), return its mapping.
2114   const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
2115     assert(OpaqueValueMapping::shouldBindAsLValue(e));
2116 
2117     llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
2118       it = OpaqueLValues.find(e);
2119     assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
2120     return it->second;
2121   }
2122 
2123   /// getOpaqueRValueMapping - Given an opaque value expression (which
2124   /// must be mapped to an r-value), return its mapping.
2125   const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
2126     assert(!OpaqueValueMapping::shouldBindAsLValue(e));
2127 
2128     llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
2129       it = OpaqueRValues.find(e);
2130     assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
2131     return it->second;
2132   }
2133 
2134   /// Get the index of the current ArrayInitLoopExpr, if any.
2135   llvm::Value *getArrayInitIndex() { return ArrayInitIndex; }
2136 
2137   /// getAccessedFieldNo - Given an encoded value and a result number, return
2138   /// the input field number being accessed.
2139   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
2140 
2141   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
2142   llvm::BasicBlock *GetIndirectGotoBlock();
2143 
2144   /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts.
2145   static bool IsWrappedCXXThis(const Expr *E);
2146 
2147   /// EmitNullInitialization - Generate code to set a value of the given type to
2148   /// null, If the type contains data member pointers, they will be initialized
2149   /// to -1 in accordance with the Itanium C++ ABI.
2150   void EmitNullInitialization(Address DestPtr, QualType Ty);
2151 
2152   /// Emits a call to an LLVM variable-argument intrinsic, either
2153   /// \c llvm.va_start or \c llvm.va_end.
2154   /// \param ArgValue A reference to the \c va_list as emitted by either
2155   /// \c EmitVAListRef or \c EmitMSVAListRef.
2156   /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise,
2157   /// calls \c llvm.va_end.
2158   llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart);
2159 
2160   /// Generate code to get an argument from the passed in pointer
2161   /// and update it accordingly.
2162   /// \param VE The \c VAArgExpr for which to generate code.
2163   /// \param VAListAddr Receives a reference to the \c va_list as emitted by
2164   /// either \c EmitVAListRef or \c EmitMSVAListRef.
2165   /// \returns A pointer to the argument.
2166   // FIXME: We should be able to get rid of this method and use the va_arg
2167   // instruction in LLVM instead once it works well enough.
2168   Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr);
2169 
2170   /// emitArrayLength - Compute the length of an array, even if it's a
2171   /// VLA, and drill down to the base element type.
2172   llvm::Value *emitArrayLength(const ArrayType *arrayType,
2173                                QualType &baseType,
2174                                Address &addr);
2175 
2176   /// EmitVLASize - Capture all the sizes for the VLA expressions in
2177   /// the given variably-modified type and store them in the VLASizeMap.
2178   ///
2179   /// This function can be called with a null (unreachable) insert point.
2180   void EmitVariablyModifiedType(QualType Ty);
2181 
2182   /// getVLASize - Returns an LLVM value that corresponds to the size,
2183   /// in non-variably-sized elements, of a variable length array type,
2184   /// plus that largest non-variably-sized element type.  Assumes that
2185   /// the type has already been emitted with EmitVariablyModifiedType.
2186   std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla);
2187   std::pair<llvm::Value*,QualType> getVLASize(QualType vla);
2188 
2189   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
2190   /// generating code for an C++ member function.
2191   llvm::Value *LoadCXXThis() {
2192     assert(CXXThisValue && "no 'this' value for this function");
2193     return CXXThisValue;
2194   }
2195   Address LoadCXXThisAddress();
2196 
2197   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
2198   /// virtual bases.
2199   // FIXME: Every place that calls LoadCXXVTT is something
2200   // that needs to be abstracted properly.
2201   llvm::Value *LoadCXXVTT() {
2202     assert(CXXStructorImplicitParamValue && "no VTT value for this function");
2203     return CXXStructorImplicitParamValue;
2204   }
2205 
2206   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
2207   /// complete class to the given direct base.
2208   Address
2209   GetAddressOfDirectBaseInCompleteClass(Address Value,
2210                                         const CXXRecordDecl *Derived,
2211                                         const CXXRecordDecl *Base,
2212                                         bool BaseIsVirtual);
2213 
2214   static bool ShouldNullCheckClassCastValue(const CastExpr *Cast);
2215 
2216   /// GetAddressOfBaseClass - This function will add the necessary delta to the
2217   /// load of 'this' and returns address of the base class.
2218   Address GetAddressOfBaseClass(Address Value,
2219                                 const CXXRecordDecl *Derived,
2220                                 CastExpr::path_const_iterator PathBegin,
2221                                 CastExpr::path_const_iterator PathEnd,
2222                                 bool NullCheckValue, SourceLocation Loc);
2223 
2224   Address GetAddressOfDerivedClass(Address Value,
2225                                    const CXXRecordDecl *Derived,
2226                                    CastExpr::path_const_iterator PathBegin,
2227                                    CastExpr::path_const_iterator PathEnd,
2228                                    bool NullCheckValue);
2229 
2230   /// GetVTTParameter - Return the VTT parameter that should be passed to a
2231   /// base constructor/destructor with virtual bases.
2232   /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
2233   /// to ItaniumCXXABI.cpp together with all the references to VTT.
2234   llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
2235                                bool Delegating);
2236 
2237   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
2238                                       CXXCtorType CtorType,
2239                                       const FunctionArgList &Args,
2240                                       SourceLocation Loc);
2241   // It's important not to confuse this and the previous function. Delegating
2242   // constructors are the C++0x feature. The constructor delegate optimization
2243   // is used to reduce duplication in the base and complete consturctors where
2244   // they are substantially the same.
2245   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2246                                         const FunctionArgList &Args);
2247 
2248   /// Emit a call to an inheriting constructor (that is, one that invokes a
2249   /// constructor inherited from a base class) by inlining its definition. This
2250   /// is necessary if the ABI does not support forwarding the arguments to the
2251   /// base class constructor (because they're variadic or similar).
2252   void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2253                                                CXXCtorType CtorType,
2254                                                bool ForVirtualBase,
2255                                                bool Delegating,
2256                                                CallArgList &Args);
2257 
2258   /// Emit a call to a constructor inherited from a base class, passing the
2259   /// current constructor's arguments along unmodified (without even making
2260   /// a copy).
2261   void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D,
2262                                        bool ForVirtualBase, Address This,
2263                                        bool InheritedFromVBase,
2264                                        const CXXInheritedCtorInitExpr *E);
2265 
2266   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2267                               bool ForVirtualBase, bool Delegating,
2268                               Address This, const CXXConstructExpr *E);
2269 
2270   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2271                               bool ForVirtualBase, bool Delegating,
2272                               Address This, CallArgList &Args);
2273 
2274   /// Emit assumption load for all bases. Requires to be be called only on
2275   /// most-derived class and not under construction of the object.
2276   void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This);
2277 
2278   /// Emit assumption that vptr load == global vtable.
2279   void EmitVTableAssumptionLoad(const VPtr &vptr, Address This);
2280 
2281   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
2282                                       Address This, Address Src,
2283                                       const CXXConstructExpr *E);
2284 
2285   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2286                                   const ArrayType *ArrayTy,
2287                                   Address ArrayPtr,
2288                                   const CXXConstructExpr *E,
2289                                   bool ZeroInitialization = false);
2290 
2291   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2292                                   llvm::Value *NumElements,
2293                                   Address ArrayPtr,
2294                                   const CXXConstructExpr *E,
2295                                   bool ZeroInitialization = false);
2296 
2297   static Destroyer destroyCXXObject;
2298 
2299   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
2300                              bool ForVirtualBase, bool Delegating,
2301                              Address This);
2302 
2303   void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
2304                                llvm::Type *ElementTy, Address NewPtr,
2305                                llvm::Value *NumElements,
2306                                llvm::Value *AllocSizeWithoutCookie);
2307 
2308   void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
2309                         Address Ptr);
2310 
2311   llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr);
2312   void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr);
2313 
2314   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
2315   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
2316 
2317   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
2318                       QualType DeleteTy, llvm::Value *NumElements = nullptr,
2319                       CharUnits CookieSize = CharUnits());
2320 
2321   RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
2322                                   const Expr *Arg, bool IsDelete);
2323 
2324   llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E);
2325   llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE);
2326   Address EmitCXXUuidofExpr(const CXXUuidofExpr *E);
2327 
2328   /// \brief Situations in which we might emit a check for the suitability of a
2329   ///        pointer or glvalue.
2330   enum TypeCheckKind {
2331     /// Checking the operand of a load. Must be suitably sized and aligned.
2332     TCK_Load,
2333     /// Checking the destination of a store. Must be suitably sized and aligned.
2334     TCK_Store,
2335     /// Checking the bound value in a reference binding. Must be suitably sized
2336     /// and aligned, but is not required to refer to an object (until the
2337     /// reference is used), per core issue 453.
2338     TCK_ReferenceBinding,
2339     /// Checking the object expression in a non-static data member access. Must
2340     /// be an object within its lifetime.
2341     TCK_MemberAccess,
2342     /// Checking the 'this' pointer for a call to a non-static member function.
2343     /// Must be an object within its lifetime.
2344     TCK_MemberCall,
2345     /// Checking the 'this' pointer for a constructor call.
2346     TCK_ConstructorCall,
2347     /// Checking the operand of a static_cast to a derived pointer type. Must be
2348     /// null or an object within its lifetime.
2349     TCK_DowncastPointer,
2350     /// Checking the operand of a static_cast to a derived reference type. Must
2351     /// be an object within its lifetime.
2352     TCK_DowncastReference,
2353     /// Checking the operand of a cast to a base object. Must be suitably sized
2354     /// and aligned.
2355     TCK_Upcast,
2356     /// Checking the operand of a cast to a virtual base object. Must be an
2357     /// object within its lifetime.
2358     TCK_UpcastToVirtualBase,
2359     /// Checking the value assigned to a _Nonnull pointer. Must not be null.
2360     TCK_NonnullAssign
2361   };
2362 
2363   /// Determine whether the pointer type check \p TCK permits null pointers.
2364   static bool isNullPointerAllowed(TypeCheckKind TCK);
2365 
2366   /// Determine whether the pointer type check \p TCK requires a vptr check.
2367   static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty);
2368 
2369   /// \brief Whether any type-checking sanitizers are enabled. If \c false,
2370   /// calls to EmitTypeCheck can be skipped.
2371   bool sanitizePerformTypeCheck() const;
2372 
2373   /// \brief Emit a check that \p V is the address of storage of the
2374   /// appropriate size and alignment for an object of type \p Type.
2375   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
2376                      QualType Type, CharUnits Alignment = CharUnits::Zero(),
2377                      SanitizerSet SkippedChecks = SanitizerSet());
2378 
2379   /// \brief Emit a check that \p Base points into an array object, which
2380   /// we can access at index \p Index. \p Accessed should be \c false if we
2381   /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
2382   void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
2383                        QualType IndexType, bool Accessed);
2384 
2385   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2386                                        bool isInc, bool isPre);
2387   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
2388                                          bool isInc, bool isPre);
2389 
2390   void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment,
2391                                llvm::Value *OffsetValue = nullptr) {
2392     Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment,
2393                                       OffsetValue);
2394   }
2395 
2396   /// Converts Location to a DebugLoc, if debug information is enabled.
2397   llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location);
2398 
2399 
2400   //===--------------------------------------------------------------------===//
2401   //                            Declaration Emission
2402   //===--------------------------------------------------------------------===//
2403 
2404   /// EmitDecl - Emit a declaration.
2405   ///
2406   /// This function can be called with a null (unreachable) insert point.
2407   void EmitDecl(const Decl &D);
2408 
2409   /// EmitVarDecl - Emit a local variable declaration.
2410   ///
2411   /// This function can be called with a null (unreachable) insert point.
2412   void EmitVarDecl(const VarDecl &D);
2413 
2414   void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2415                       bool capturedByInit);
2416 
2417   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
2418                              llvm::Value *Address);
2419 
2420   /// \brief Determine whether the given initializer is trivial in the sense
2421   /// that it requires no code to be generated.
2422   bool isTrivialInitializer(const Expr *Init);
2423 
2424   /// EmitAutoVarDecl - Emit an auto variable declaration.
2425   ///
2426   /// This function can be called with a null (unreachable) insert point.
2427   void EmitAutoVarDecl(const VarDecl &D);
2428 
2429   class AutoVarEmission {
2430     friend class CodeGenFunction;
2431 
2432     const VarDecl *Variable;
2433 
2434     /// The address of the alloca.  Invalid if the variable was emitted
2435     /// as a global constant.
2436     Address Addr;
2437 
2438     llvm::Value *NRVOFlag;
2439 
2440     /// True if the variable is a __block variable.
2441     bool IsByRef;
2442 
2443     /// True if the variable is of aggregate type and has a constant
2444     /// initializer.
2445     bool IsConstantAggregate;
2446 
2447     /// Non-null if we should use lifetime annotations.
2448     llvm::Value *SizeForLifetimeMarkers;
2449 
2450     struct Invalid {};
2451     AutoVarEmission(Invalid) : Variable(nullptr), Addr(Address::invalid()) {}
2452 
2453     AutoVarEmission(const VarDecl &variable)
2454       : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr),
2455         IsByRef(false), IsConstantAggregate(false),
2456         SizeForLifetimeMarkers(nullptr) {}
2457 
2458     bool wasEmittedAsGlobal() const { return !Addr.isValid(); }
2459 
2460   public:
2461     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
2462 
2463     bool useLifetimeMarkers() const {
2464       return SizeForLifetimeMarkers != nullptr;
2465     }
2466     llvm::Value *getSizeForLifetimeMarkers() const {
2467       assert(useLifetimeMarkers());
2468       return SizeForLifetimeMarkers;
2469     }
2470 
2471     /// Returns the raw, allocated address, which is not necessarily
2472     /// the address of the object itself.
2473     Address getAllocatedAddress() const {
2474       return Addr;
2475     }
2476 
2477     /// Returns the address of the object within this declaration.
2478     /// Note that this does not chase the forwarding pointer for
2479     /// __block decls.
2480     Address getObjectAddress(CodeGenFunction &CGF) const {
2481       if (!IsByRef) return Addr;
2482 
2483       return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false);
2484     }
2485   };
2486   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
2487   void EmitAutoVarInit(const AutoVarEmission &emission);
2488   void EmitAutoVarCleanups(const AutoVarEmission &emission);
2489   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
2490                               QualType::DestructionKind dtorKind);
2491 
2492   void EmitStaticVarDecl(const VarDecl &D,
2493                          llvm::GlobalValue::LinkageTypes Linkage);
2494 
2495   class ParamValue {
2496     llvm::Value *Value;
2497     unsigned Alignment;
2498     ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {}
2499   public:
2500     static ParamValue forDirect(llvm::Value *value) {
2501       return ParamValue(value, 0);
2502     }
2503     static ParamValue forIndirect(Address addr) {
2504       assert(!addr.getAlignment().isZero());
2505       return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity());
2506     }
2507 
2508     bool isIndirect() const { return Alignment != 0; }
2509     llvm::Value *getAnyValue() const { return Value; }
2510 
2511     llvm::Value *getDirectValue() const {
2512       assert(!isIndirect());
2513       return Value;
2514     }
2515 
2516     Address getIndirectAddress() const {
2517       assert(isIndirect());
2518       return Address(Value, CharUnits::fromQuantity(Alignment));
2519     }
2520   };
2521 
2522   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
2523   void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo);
2524 
2525   /// protectFromPeepholes - Protect a value that we're intending to
2526   /// store to the side, but which will probably be used later, from
2527   /// aggressive peepholing optimizations that might delete it.
2528   ///
2529   /// Pass the result to unprotectFromPeepholes to declare that
2530   /// protection is no longer required.
2531   ///
2532   /// There's no particular reason why this shouldn't apply to
2533   /// l-values, it's just that no existing peepholes work on pointers.
2534   PeepholeProtection protectFromPeepholes(RValue rvalue);
2535   void unprotectFromPeepholes(PeepholeProtection protection);
2536 
2537   void EmitAlignmentAssumption(llvm::Value *PtrValue, llvm::Value *Alignment,
2538                                llvm::Value *OffsetValue = nullptr) {
2539     Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment,
2540                                       OffsetValue);
2541   }
2542 
2543   //===--------------------------------------------------------------------===//
2544   //                             Statement Emission
2545   //===--------------------------------------------------------------------===//
2546 
2547   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
2548   void EmitStopPoint(const Stmt *S);
2549 
2550   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
2551   /// this function even if there is no current insertion point.
2552   ///
2553   /// This function may clear the current insertion point; callers should use
2554   /// EnsureInsertPoint if they wish to subsequently generate code without first
2555   /// calling EmitBlock, EmitBranch, or EmitStmt.
2556   void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None);
2557 
2558   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
2559   /// necessarily require an insertion point or debug information; typically
2560   /// because the statement amounts to a jump or a container of other
2561   /// statements.
2562   ///
2563   /// \return True if the statement was handled.
2564   bool EmitSimpleStmt(const Stmt *S);
2565 
2566   Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
2567                            AggValueSlot AVS = AggValueSlot::ignored());
2568   Address EmitCompoundStmtWithoutScope(const CompoundStmt &S,
2569                                        bool GetLast = false,
2570                                        AggValueSlot AVS =
2571                                                 AggValueSlot::ignored());
2572 
2573   /// EmitLabel - Emit the block for the given label. It is legal to call this
2574   /// function even if there is no current insertion point.
2575   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
2576 
2577   void EmitLabelStmt(const LabelStmt &S);
2578   void EmitAttributedStmt(const AttributedStmt &S);
2579   void EmitGotoStmt(const GotoStmt &S);
2580   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
2581   void EmitIfStmt(const IfStmt &S);
2582 
2583   void EmitWhileStmt(const WhileStmt &S,
2584                      ArrayRef<const Attr *> Attrs = None);
2585   void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None);
2586   void EmitForStmt(const ForStmt &S,
2587                    ArrayRef<const Attr *> Attrs = None);
2588   void EmitReturnStmt(const ReturnStmt &S);
2589   void EmitDeclStmt(const DeclStmt &S);
2590   void EmitBreakStmt(const BreakStmt &S);
2591   void EmitContinueStmt(const ContinueStmt &S);
2592   void EmitSwitchStmt(const SwitchStmt &S);
2593   void EmitDefaultStmt(const DefaultStmt &S);
2594   void EmitCaseStmt(const CaseStmt &S);
2595   void EmitCaseStmtRange(const CaseStmt &S);
2596   void EmitAsmStmt(const AsmStmt &S);
2597 
2598   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
2599   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
2600   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
2601   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
2602   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
2603 
2604   void EmitCoroutineBody(const CoroutineBodyStmt &S);
2605   void EmitCoreturnStmt(const CoreturnStmt &S);
2606   RValue EmitCoawaitExpr(const CoawaitExpr &E,
2607                          AggValueSlot aggSlot = AggValueSlot::ignored(),
2608                          bool ignoreResult = false);
2609   LValue EmitCoawaitLValue(const CoawaitExpr *E);
2610   RValue EmitCoyieldExpr(const CoyieldExpr &E,
2611                          AggValueSlot aggSlot = AggValueSlot::ignored(),
2612                          bool ignoreResult = false);
2613   LValue EmitCoyieldLValue(const CoyieldExpr *E);
2614   RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID);
2615 
2616   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2617   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2618 
2619   void EmitCXXTryStmt(const CXXTryStmt &S);
2620   void EmitSEHTryStmt(const SEHTryStmt &S);
2621   void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
2622   void EnterSEHTryStmt(const SEHTryStmt &S);
2623   void ExitSEHTryStmt(const SEHTryStmt &S);
2624 
2625   void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter,
2626                               const Stmt *OutlinedStmt);
2627 
2628   llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
2629                                             const SEHExceptStmt &Except);
2630 
2631   llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF,
2632                                              const SEHFinallyStmt &Finally);
2633 
2634   void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF,
2635                                 llvm::Value *ParentFP,
2636                                 llvm::Value *EntryEBP);
2637   llvm::Value *EmitSEHExceptionCode();
2638   llvm::Value *EmitSEHExceptionInfo();
2639   llvm::Value *EmitSEHAbnormalTermination();
2640 
2641   /// Scan the outlined statement for captures from the parent function. For
2642   /// each capture, mark the capture as escaped and emit a call to
2643   /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap.
2644   void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
2645                           bool IsFilter);
2646 
2647   /// Recovers the address of a local in a parent function. ParentVar is the
2648   /// address of the variable used in the immediate parent function. It can
2649   /// either be an alloca or a call to llvm.localrecover if there are nested
2650   /// outlined functions. ParentFP is the frame pointer of the outermost parent
2651   /// frame.
2652   Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF,
2653                                     Address ParentVar,
2654                                     llvm::Value *ParentFP);
2655 
2656   void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
2657                            ArrayRef<const Attr *> Attrs = None);
2658 
2659   /// Returns calculated size of the specified type.
2660   llvm::Value *getTypeSize(QualType Ty);
2661   LValue InitCapturedStruct(const CapturedStmt &S);
2662   llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
2663   llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
2664   Address GenerateCapturedStmtArgument(const CapturedStmt &S);
2665   llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S);
2666   void GenerateOpenMPCapturedVars(const CapturedStmt &S,
2667                                   SmallVectorImpl<llvm::Value *> &CapturedVars);
2668   void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy,
2669                           SourceLocation Loc);
2670   /// \brief Perform element by element copying of arrays with type \a
2671   /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
2672   /// generated by \a CopyGen.
2673   ///
2674   /// \param DestAddr Address of the destination array.
2675   /// \param SrcAddr Address of the source array.
2676   /// \param OriginalType Type of destination and source arrays.
2677   /// \param CopyGen Copying procedure that copies value of single array element
2678   /// to another single array element.
2679   void EmitOMPAggregateAssign(
2680       Address DestAddr, Address SrcAddr, QualType OriginalType,
2681       const llvm::function_ref<void(Address, Address)> &CopyGen);
2682   /// \brief Emit proper copying of data from one variable to another.
2683   ///
2684   /// \param OriginalType Original type of the copied variables.
2685   /// \param DestAddr Destination address.
2686   /// \param SrcAddr Source address.
2687   /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
2688   /// type of the base array element).
2689   /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
2690   /// the base array element).
2691   /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
2692   /// DestVD.
2693   void EmitOMPCopy(QualType OriginalType,
2694                    Address DestAddr, Address SrcAddr,
2695                    const VarDecl *DestVD, const VarDecl *SrcVD,
2696                    const Expr *Copy);
2697   /// \brief Emit atomic update code for constructs: \a X = \a X \a BO \a E or
2698   /// \a X = \a E \a BO \a E.
2699   ///
2700   /// \param X Value to be updated.
2701   /// \param E Update value.
2702   /// \param BO Binary operation for update operation.
2703   /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
2704   /// expression, false otherwise.
2705   /// \param AO Atomic ordering of the generated atomic instructions.
2706   /// \param CommonGen Code generator for complex expressions that cannot be
2707   /// expressed through atomicrmw instruction.
2708   /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was
2709   /// generated, <false, RValue::get(nullptr)> otherwise.
2710   std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr(
2711       LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
2712       llvm::AtomicOrdering AO, SourceLocation Loc,
2713       const llvm::function_ref<RValue(RValue)> &CommonGen);
2714   bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
2715                                  OMPPrivateScope &PrivateScope);
2716   void EmitOMPPrivateClause(const OMPExecutableDirective &D,
2717                             OMPPrivateScope &PrivateScope);
2718   void EmitOMPUseDevicePtrClause(
2719       const OMPClause &C, OMPPrivateScope &PrivateScope,
2720       const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap);
2721   /// \brief Emit code for copyin clause in \a D directive. The next code is
2722   /// generated at the start of outlined functions for directives:
2723   /// \code
2724   /// threadprivate_var1 = master_threadprivate_var1;
2725   /// operator=(threadprivate_var2, master_threadprivate_var2);
2726   /// ...
2727   /// __kmpc_barrier(&loc, global_tid);
2728   /// \endcode
2729   ///
2730   /// \param D OpenMP directive possibly with 'copyin' clause(s).
2731   /// \returns true if at least one copyin variable is found, false otherwise.
2732   bool EmitOMPCopyinClause(const OMPExecutableDirective &D);
2733   /// \brief Emit initial code for lastprivate variables. If some variable is
2734   /// not also firstprivate, then the default initialization is used. Otherwise
2735   /// initialization of this variable is performed by EmitOMPFirstprivateClause
2736   /// method.
2737   ///
2738   /// \param D Directive that may have 'lastprivate' directives.
2739   /// \param PrivateScope Private scope for capturing lastprivate variables for
2740   /// proper codegen in internal captured statement.
2741   ///
2742   /// \returns true if there is at least one lastprivate variable, false
2743   /// otherwise.
2744   bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D,
2745                                     OMPPrivateScope &PrivateScope);
2746   /// \brief Emit final copying of lastprivate values to original variables at
2747   /// the end of the worksharing or simd directive.
2748   ///
2749   /// \param D Directive that has at least one 'lastprivate' directives.
2750   /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
2751   /// it is the last iteration of the loop code in associated directive, or to
2752   /// 'i1 false' otherwise. If this item is nullptr, no final check is required.
2753   void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D,
2754                                      bool NoFinals,
2755                                      llvm::Value *IsLastIterCond = nullptr);
2756   /// Emit initial code for linear clauses.
2757   void EmitOMPLinearClause(const OMPLoopDirective &D,
2758                            CodeGenFunction::OMPPrivateScope &PrivateScope);
2759   /// Emit final code for linear clauses.
2760   /// \param CondGen Optional conditional code for final part of codegen for
2761   /// linear clause.
2762   void EmitOMPLinearClauseFinal(
2763       const OMPLoopDirective &D,
2764       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen);
2765   /// \brief Emit initial code for reduction variables. Creates reduction copies
2766   /// and initializes them with the values according to OpenMP standard.
2767   ///
2768   /// \param D Directive (possibly) with the 'reduction' clause.
2769   /// \param PrivateScope Private scope for capturing reduction variables for
2770   /// proper codegen in internal captured statement.
2771   ///
2772   void EmitOMPReductionClauseInit(const OMPExecutableDirective &D,
2773                                   OMPPrivateScope &PrivateScope);
2774   /// \brief Emit final update of reduction values to original variables at
2775   /// the end of the directive.
2776   ///
2777   /// \param D Directive that has at least one 'reduction' directives.
2778   /// \param ReductionKind The kind of reduction to perform.
2779   void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D,
2780                                    const OpenMPDirectiveKind ReductionKind);
2781   /// \brief Emit initial code for linear variables. Creates private copies
2782   /// and initializes them with the values according to OpenMP standard.
2783   ///
2784   /// \param D Directive (possibly) with the 'linear' clause.
2785   /// \return true if at least one linear variable is found that should be
2786   /// initialized with the value of the original variable, false otherwise.
2787   bool EmitOMPLinearClauseInit(const OMPLoopDirective &D);
2788 
2789   typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/,
2790                                         llvm::Value * /*OutlinedFn*/,
2791                                         const OMPTaskDataTy & /*Data*/)>
2792       TaskGenTy;
2793   void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S,
2794                                  const RegionCodeGenTy &BodyGen,
2795                                  const TaskGenTy &TaskGen, OMPTaskDataTy &Data);
2796 
2797   void EmitOMPParallelDirective(const OMPParallelDirective &S);
2798   void EmitOMPSimdDirective(const OMPSimdDirective &S);
2799   void EmitOMPForDirective(const OMPForDirective &S);
2800   void EmitOMPForSimdDirective(const OMPForSimdDirective &S);
2801   void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
2802   void EmitOMPSectionDirective(const OMPSectionDirective &S);
2803   void EmitOMPSingleDirective(const OMPSingleDirective &S);
2804   void EmitOMPMasterDirective(const OMPMasterDirective &S);
2805   void EmitOMPCriticalDirective(const OMPCriticalDirective &S);
2806   void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
2807   void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S);
2808   void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
2809   void EmitOMPTaskDirective(const OMPTaskDirective &S);
2810   void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
2811   void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
2812   void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
2813   void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S);
2814   void EmitOMPFlushDirective(const OMPFlushDirective &S);
2815   void EmitOMPOrderedDirective(const OMPOrderedDirective &S);
2816   void EmitOMPAtomicDirective(const OMPAtomicDirective &S);
2817   void EmitOMPTargetDirective(const OMPTargetDirective &S);
2818   void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S);
2819   void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S);
2820   void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S);
2821   void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S);
2822   void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S);
2823   void
2824   EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S);
2825   void EmitOMPTeamsDirective(const OMPTeamsDirective &S);
2826   void
2827   EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S);
2828   void EmitOMPCancelDirective(const OMPCancelDirective &S);
2829   void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S);
2830   void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S);
2831   void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S);
2832   void EmitOMPDistributeDirective(const OMPDistributeDirective &S);
2833   void EmitOMPDistributeParallelForDirective(
2834       const OMPDistributeParallelForDirective &S);
2835   void EmitOMPDistributeParallelForSimdDirective(
2836       const OMPDistributeParallelForSimdDirective &S);
2837   void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S);
2838   void EmitOMPTargetParallelForSimdDirective(
2839       const OMPTargetParallelForSimdDirective &S);
2840   void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S);
2841   void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S);
2842   void
2843   EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S);
2844   void EmitOMPTeamsDistributeParallelForSimdDirective(
2845       const OMPTeamsDistributeParallelForSimdDirective &S);
2846   void EmitOMPTeamsDistributeParallelForDirective(
2847       const OMPTeamsDistributeParallelForDirective &S);
2848   void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S);
2849   void EmitOMPTargetTeamsDistributeDirective(
2850       const OMPTargetTeamsDistributeDirective &S);
2851   void EmitOMPTargetTeamsDistributeParallelForDirective(
2852       const OMPTargetTeamsDistributeParallelForDirective &S);
2853   void EmitOMPTargetTeamsDistributeParallelForSimdDirective(
2854       const OMPTargetTeamsDistributeParallelForSimdDirective &S);
2855   void EmitOMPTargetTeamsDistributeSimdDirective(
2856       const OMPTargetTeamsDistributeSimdDirective &S);
2857 
2858   /// Emit device code for the target directive.
2859   static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM,
2860                                           StringRef ParentName,
2861                                           const OMPTargetDirective &S);
2862   static void
2863   EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
2864                                       const OMPTargetParallelDirective &S);
2865   static void
2866   EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
2867                                    const OMPTargetTeamsDirective &S);
2868   /// \brief Emit inner loop of the worksharing/simd construct.
2869   ///
2870   /// \param S Directive, for which the inner loop must be emitted.
2871   /// \param RequiresCleanup true, if directive has some associated private
2872   /// variables.
2873   /// \param LoopCond Bollean condition for loop continuation.
2874   /// \param IncExpr Increment expression for loop control variable.
2875   /// \param BodyGen Generator for the inner body of the inner loop.
2876   /// \param PostIncGen Genrator for post-increment code (required for ordered
2877   /// loop directvies).
2878   void EmitOMPInnerLoop(
2879       const Stmt &S, bool RequiresCleanup, const Expr *LoopCond,
2880       const Expr *IncExpr,
2881       const llvm::function_ref<void(CodeGenFunction &)> &BodyGen,
2882       const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen);
2883 
2884   JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind);
2885   /// Emit initial code for loop counters of loop-based directives.
2886   void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S,
2887                                   OMPPrivateScope &LoopScope);
2888 
2889   /// Helper for the OpenMP loop directives.
2890   void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit);
2891 
2892   /// \brief Emit code for the worksharing loop-based directive.
2893   /// \return true, if this construct has any lastprivate clause, false -
2894   /// otherwise.
2895   bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB,
2896                               const CodeGenLoopBoundsTy &CodeGenLoopBounds,
2897                               const CodeGenDispatchBoundsTy &CGDispatchBounds);
2898 
2899   /// Emits the lvalue for the expression with possibly captured variable.
2900   LValue EmitOMPSharedLValue(const Expr *E);
2901 
2902 private:
2903   /// Helpers for blocks
2904   llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
2905 
2906   /// Helpers for the OpenMP loop directives.
2907   void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false);
2908   void EmitOMPSimdFinal(
2909       const OMPLoopDirective &D,
2910       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen);
2911 
2912   void EmitOMPDistributeLoop(const OMPLoopDirective &S,
2913                              const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr);
2914 
2915   /// struct with the values to be passed to the OpenMP loop-related functions
2916   struct OMPLoopArguments {
2917     /// loop lower bound
2918     Address LB = Address::invalid();
2919     /// loop upper bound
2920     Address UB = Address::invalid();
2921     /// loop stride
2922     Address ST = Address::invalid();
2923     /// isLastIteration argument for runtime functions
2924     Address IL = Address::invalid();
2925     /// Chunk value generated by sema
2926     llvm::Value *Chunk = nullptr;
2927     /// EnsureUpperBound
2928     Expr *EUB = nullptr;
2929     /// IncrementExpression
2930     Expr *IncExpr = nullptr;
2931     /// Loop initialization
2932     Expr *Init = nullptr;
2933     /// Loop exit condition
2934     Expr *Cond = nullptr;
2935     /// Update of LB after a whole chunk has been executed
2936     Expr *NextLB = nullptr;
2937     /// Update of UB after a whole chunk has been executed
2938     Expr *NextUB = nullptr;
2939     OMPLoopArguments() = default;
2940     OMPLoopArguments(Address LB, Address UB, Address ST, Address IL,
2941                      llvm::Value *Chunk = nullptr, Expr *EUB = nullptr,
2942                      Expr *IncExpr = nullptr, Expr *Init = nullptr,
2943                      Expr *Cond = nullptr, Expr *NextLB = nullptr,
2944                      Expr *NextUB = nullptr)
2945         : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB),
2946           IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB),
2947           NextUB(NextUB) {}
2948   };
2949   void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic,
2950                         const OMPLoopDirective &S, OMPPrivateScope &LoopScope,
2951                         const OMPLoopArguments &LoopArgs,
2952                         const CodeGenLoopTy &CodeGenLoop,
2953                         const CodeGenOrderedTy &CodeGenOrdered);
2954   void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind,
2955                            bool IsMonotonic, const OMPLoopDirective &S,
2956                            OMPPrivateScope &LoopScope, bool Ordered,
2957                            const OMPLoopArguments &LoopArgs,
2958                            const CodeGenDispatchBoundsTy &CGDispatchBounds);
2959   void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind,
2960                                   const OMPLoopDirective &S,
2961                                   OMPPrivateScope &LoopScope,
2962                                   const OMPLoopArguments &LoopArgs,
2963                                   const CodeGenLoopTy &CodeGenLoopContent);
2964   /// \brief Emit code for sections directive.
2965   void EmitSections(const OMPExecutableDirective &S);
2966 
2967 public:
2968 
2969   //===--------------------------------------------------------------------===//
2970   //                         LValue Expression Emission
2971   //===--------------------------------------------------------------------===//
2972 
2973   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
2974   RValue GetUndefRValue(QualType Ty);
2975 
2976   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
2977   /// and issue an ErrorUnsupported style diagnostic (using the
2978   /// provided Name).
2979   RValue EmitUnsupportedRValue(const Expr *E,
2980                                const char *Name);
2981 
2982   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
2983   /// an ErrorUnsupported style diagnostic (using the provided Name).
2984   LValue EmitUnsupportedLValue(const Expr *E,
2985                                const char *Name);
2986 
2987   /// EmitLValue - Emit code to compute a designator that specifies the location
2988   /// of the expression.
2989   ///
2990   /// This can return one of two things: a simple address or a bitfield
2991   /// reference.  In either case, the LLVM Value* in the LValue structure is
2992   /// guaranteed to be an LLVM pointer type.
2993   ///
2994   /// If this returns a bitfield reference, nothing about the pointee type of
2995   /// the LLVM value is known: For example, it may not be a pointer to an
2996   /// integer.
2997   ///
2998   /// If this returns a normal address, and if the lvalue's C type is fixed
2999   /// size, this method guarantees that the returned pointer type will point to
3000   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
3001   /// variable length type, this is not possible.
3002   ///
3003   LValue EmitLValue(const Expr *E);
3004 
3005   /// \brief Same as EmitLValue but additionally we generate checking code to
3006   /// guard against undefined behavior.  This is only suitable when we know
3007   /// that the address will be used to access the object.
3008   LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
3009 
3010   RValue convertTempToRValue(Address addr, QualType type,
3011                              SourceLocation Loc);
3012 
3013   void EmitAtomicInit(Expr *E, LValue lvalue);
3014 
3015   bool LValueIsSuitableForInlineAtomic(LValue Src);
3016 
3017   RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
3018                         AggValueSlot Slot = AggValueSlot::ignored());
3019 
3020   RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
3021                         llvm::AtomicOrdering AO, bool IsVolatile = false,
3022                         AggValueSlot slot = AggValueSlot::ignored());
3023 
3024   void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
3025 
3026   void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
3027                        bool IsVolatile, bool isInit);
3028 
3029   std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
3030       LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
3031       llvm::AtomicOrdering Success =
3032           llvm::AtomicOrdering::SequentiallyConsistent,
3033       llvm::AtomicOrdering Failure =
3034           llvm::AtomicOrdering::SequentiallyConsistent,
3035       bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
3036 
3037   void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
3038                         const llvm::function_ref<RValue(RValue)> &UpdateOp,
3039                         bool IsVolatile);
3040 
3041   /// EmitToMemory - Change a scalar value from its value
3042   /// representation to its in-memory representation.
3043   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
3044 
3045   /// EmitFromMemory - Change a scalar value from its memory
3046   /// representation to its value representation.
3047   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
3048 
3049   /// Check if the scalar \p Value is within the valid range for the given
3050   /// type \p Ty.
3051   ///
3052   /// Returns true if a check is needed (even if the range is unknown).
3053   bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
3054                             SourceLocation Loc);
3055 
3056   /// EmitLoadOfScalar - Load a scalar value from an address, taking
3057   /// care to appropriately convert from the memory representation to
3058   /// the LLVM value representation.
3059   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3060                                 SourceLocation Loc,
3061                                 LValueBaseInfo BaseInfo =
3062                                     LValueBaseInfo(AlignmentSource::Type),
3063                                 bool isNontemporal = false) {
3064     return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, BaseInfo,
3065                             CGM.getTBAAAccessInfo(Ty), isNontemporal);
3066   }
3067 
3068   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3069                                 SourceLocation Loc, LValueBaseInfo BaseInfo,
3070                                 TBAAAccessInfo TBAAInfo,
3071                                 bool isNontemporal = false);
3072 
3073   /// EmitLoadOfScalar - Load a scalar value from an address, taking
3074   /// care to appropriately convert from the memory representation to
3075   /// the LLVM value representation.  The l-value must be a simple
3076   /// l-value.
3077   llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
3078 
3079   /// EmitStoreOfScalar - Store a scalar value to an address, taking
3080   /// care to appropriately convert from the memory representation to
3081   /// the LLVM value representation.
3082   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3083                          bool Volatile, QualType Ty,
3084                          LValueBaseInfo BaseInfo =
3085                              LValueBaseInfo(AlignmentSource::Type),
3086                          bool isInit = false, bool isNontemporal = false) {
3087     EmitStoreOfScalar(Value, Addr, Volatile, Ty, BaseInfo,
3088                       CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal);
3089   }
3090 
3091   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3092                          bool Volatile, QualType Ty,
3093                          LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo,
3094                          bool isInit = false, bool isNontemporal = false);
3095 
3096   /// EmitStoreOfScalar - Store a scalar value to an address, taking
3097   /// care to appropriately convert from the memory representation to
3098   /// the LLVM value representation.  The l-value must be a simple
3099   /// l-value.  The isInit flag indicates whether this is an initialization.
3100   /// If so, atomic qualifiers are ignored and the store is always non-atomic.
3101   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
3102 
3103   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
3104   /// this method emits the address of the lvalue, then loads the result as an
3105   /// rvalue, returning the rvalue.
3106   RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
3107   RValue EmitLoadOfExtVectorElementLValue(LValue V);
3108   RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc);
3109   RValue EmitLoadOfGlobalRegLValue(LValue LV);
3110 
3111   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
3112   /// lvalue, where both are guaranteed to the have the same type, and that type
3113   /// is 'Ty'.
3114   void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
3115   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
3116   void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
3117 
3118   /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
3119   /// as EmitStoreThroughLValue.
3120   ///
3121   /// \param Result [out] - If non-null, this will be set to a Value* for the
3122   /// bit-field contents after the store, appropriate for use as the result of
3123   /// an assignment to the bit-field.
3124   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
3125                                       llvm::Value **Result=nullptr);
3126 
3127   /// Emit an l-value for an assignment (simple or compound) of complex type.
3128   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
3129   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
3130   LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
3131                                              llvm::Value *&Result);
3132 
3133   // Note: only available for agg return types
3134   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
3135   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
3136   // Note: only available for agg return types
3137   LValue EmitCallExprLValue(const CallExpr *E);
3138   // Note: only available for agg return types
3139   LValue EmitVAArgExprLValue(const VAArgExpr *E);
3140   LValue EmitDeclRefLValue(const DeclRefExpr *E);
3141   LValue EmitStringLiteralLValue(const StringLiteral *E);
3142   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
3143   LValue EmitPredefinedLValue(const PredefinedExpr *E);
3144   LValue EmitUnaryOpLValue(const UnaryOperator *E);
3145   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3146                                 bool Accessed = false);
3147   LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3148                                  bool IsLowerBound = true);
3149   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
3150   LValue EmitMemberExpr(const MemberExpr *E);
3151   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
3152   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
3153   LValue EmitInitListLValue(const InitListExpr *E);
3154   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
3155   LValue EmitCastLValue(const CastExpr *E);
3156   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
3157   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
3158 
3159   Address EmitExtVectorElementLValue(LValue V);
3160 
3161   RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
3162 
3163   Address EmitArrayToPointerDecay(const Expr *Array,
3164                                   LValueBaseInfo *BaseInfo = nullptr);
3165 
3166   class ConstantEmission {
3167     llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
3168     ConstantEmission(llvm::Constant *C, bool isReference)
3169       : ValueAndIsReference(C, isReference) {}
3170   public:
3171     ConstantEmission() {}
3172     static ConstantEmission forReference(llvm::Constant *C) {
3173       return ConstantEmission(C, true);
3174     }
3175     static ConstantEmission forValue(llvm::Constant *C) {
3176       return ConstantEmission(C, false);
3177     }
3178 
3179     explicit operator bool() const {
3180       return ValueAndIsReference.getOpaqueValue() != nullptr;
3181     }
3182 
3183     bool isReference() const { return ValueAndIsReference.getInt(); }
3184     LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
3185       assert(isReference());
3186       return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
3187                                             refExpr->getType());
3188     }
3189 
3190     llvm::Constant *getValue() const {
3191       assert(!isReference());
3192       return ValueAndIsReference.getPointer();
3193     }
3194   };
3195 
3196   ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
3197   ConstantEmission tryEmitAsConstant(const MemberExpr *ME);
3198 
3199   RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
3200                                 AggValueSlot slot = AggValueSlot::ignored());
3201   LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
3202 
3203   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3204                               const ObjCIvarDecl *Ivar);
3205   LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
3206   LValue EmitLValueForLambdaField(const FieldDecl *Field);
3207 
3208   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
3209   /// if the Field is a reference, this will return the address of the reference
3210   /// and not the address of the value stored in the reference.
3211   LValue EmitLValueForFieldInitialization(LValue Base,
3212                                           const FieldDecl* Field);
3213 
3214   LValue EmitLValueForIvar(QualType ObjectTy,
3215                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
3216                            unsigned CVRQualifiers);
3217 
3218   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
3219   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
3220   LValue EmitLambdaLValue(const LambdaExpr *E);
3221   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
3222   LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
3223 
3224   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
3225   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
3226   LValue EmitStmtExprLValue(const StmtExpr *E);
3227   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
3228   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
3229   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init);
3230 
3231   //===--------------------------------------------------------------------===//
3232   //                         Scalar Expression Emission
3233   //===--------------------------------------------------------------------===//
3234 
3235   /// EmitCall - Generate a call of the given function, expecting the given
3236   /// result type, and using the given argument list which specifies both the
3237   /// LLVM arguments and the types they were derived from.
3238   RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
3239                   ReturnValueSlot ReturnValue, const CallArgList &Args,
3240                   llvm::Instruction **callOrInvoke = nullptr);
3241 
3242   RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E,
3243                   ReturnValueSlot ReturnValue,
3244                   llvm::Value *Chain = nullptr);
3245   RValue EmitCallExpr(const CallExpr *E,
3246                       ReturnValueSlot ReturnValue = ReturnValueSlot());
3247   RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
3248   CGCallee EmitCallee(const Expr *E);
3249 
3250   void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl);
3251 
3252   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
3253                                   const Twine &name = "");
3254   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
3255                                   ArrayRef<llvm::Value*> args,
3256                                   const Twine &name = "");
3257   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
3258                                           const Twine &name = "");
3259   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
3260                                           ArrayRef<llvm::Value*> args,
3261                                           const Twine &name = "");
3262 
3263   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
3264                                   ArrayRef<llvm::Value *> Args,
3265                                   const Twine &Name = "");
3266   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
3267                                          ArrayRef<llvm::Value*> args,
3268                                          const Twine &name = "");
3269   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
3270                                          const Twine &name = "");
3271   void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
3272                                        ArrayRef<llvm::Value*> args);
3273 
3274   CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
3275                                      NestedNameSpecifier *Qual,
3276                                      llvm::Type *Ty);
3277 
3278   CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
3279                                                CXXDtorType Type,
3280                                                const CXXRecordDecl *RD);
3281 
3282   RValue
3283   EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method,
3284                               const CGCallee &Callee,
3285                               ReturnValueSlot ReturnValue, llvm::Value *This,
3286                               llvm::Value *ImplicitParam,
3287                               QualType ImplicitParamTy, const CallExpr *E,
3288                               CallArgList *RtlArgs);
3289   RValue EmitCXXDestructorCall(const CXXDestructorDecl *DD,
3290                                const CGCallee &Callee,
3291                                llvm::Value *This, llvm::Value *ImplicitParam,
3292                                QualType ImplicitParamTy, const CallExpr *E,
3293                                StructorType Type);
3294   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
3295                                ReturnValueSlot ReturnValue);
3296   RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE,
3297                                                const CXXMethodDecl *MD,
3298                                                ReturnValueSlot ReturnValue,
3299                                                bool HasQualifier,
3300                                                NestedNameSpecifier *Qualifier,
3301                                                bool IsArrow, const Expr *Base);
3302   // Compute the object pointer.
3303   Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
3304                                           llvm::Value *memberPtr,
3305                                           const MemberPointerType *memberPtrType,
3306                                           LValueBaseInfo *BaseInfo = nullptr);
3307   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
3308                                       ReturnValueSlot ReturnValue);
3309 
3310   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
3311                                        const CXXMethodDecl *MD,
3312                                        ReturnValueSlot ReturnValue);
3313   RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E);
3314 
3315   RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
3316                                 ReturnValueSlot ReturnValue);
3317 
3318   RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E,
3319                                        ReturnValueSlot ReturnValue);
3320 
3321   RValue EmitBuiltinExpr(const FunctionDecl *FD,
3322                          unsigned BuiltinID, const CallExpr *E,
3323                          ReturnValueSlot ReturnValue);
3324 
3325   /// Emit IR for __builtin_os_log_format.
3326   RValue emitBuiltinOSLogFormat(const CallExpr &E);
3327 
3328   llvm::Function *generateBuiltinOSLogHelperFunction(
3329       const analyze_os_log::OSLogBufferLayout &Layout,
3330       CharUnits BufferAlignment);
3331 
3332   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
3333 
3334   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
3335   /// is unhandled by the current target.
3336   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3337 
3338   llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
3339                                              const llvm::CmpInst::Predicate Fp,
3340                                              const llvm::CmpInst::Predicate Ip,
3341                                              const llvm::Twine &Name = "");
3342   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3343 
3344   llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
3345                                          unsigned LLVMIntrinsic,
3346                                          unsigned AltLLVMIntrinsic,
3347                                          const char *NameHint,
3348                                          unsigned Modifier,
3349                                          const CallExpr *E,
3350                                          SmallVectorImpl<llvm::Value *> &Ops,
3351                                          Address PtrOp0, Address PtrOp1);
3352   llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
3353                                           unsigned Modifier, llvm::Type *ArgTy,
3354                                           const CallExpr *E);
3355   llvm::Value *EmitNeonCall(llvm::Function *F,
3356                             SmallVectorImpl<llvm::Value*> &O,
3357                             const char *name,
3358                             unsigned shift = 0, bool rightshift = false);
3359   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
3360   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
3361                                    bool negateForRightShift);
3362   llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
3363                                  llvm::Type *Ty, bool usgn, const char *name);
3364   llvm::Value *vectorWrapScalar16(llvm::Value *Op);
3365   llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3366 
3367   llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
3368   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3369   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3370   llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3371   llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3372   llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3373   llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
3374                                           const CallExpr *E);
3375 
3376 private:
3377   enum class MSVCIntrin;
3378 
3379 public:
3380   llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E);
3381 
3382   llvm::Value *EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args);
3383 
3384   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
3385   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
3386   llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
3387   llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
3388   llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
3389   llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
3390                                 const ObjCMethodDecl *MethodWithObjects);
3391   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
3392   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
3393                              ReturnValueSlot Return = ReturnValueSlot());
3394 
3395   /// Retrieves the default cleanup kind for an ARC cleanup.
3396   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
3397   CleanupKind getARCCleanupKind() {
3398     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
3399              ? NormalAndEHCleanup : NormalCleanup;
3400   }
3401 
3402   // ARC primitives.
3403   void EmitARCInitWeak(Address addr, llvm::Value *value);
3404   void EmitARCDestroyWeak(Address addr);
3405   llvm::Value *EmitARCLoadWeak(Address addr);
3406   llvm::Value *EmitARCLoadWeakRetained(Address addr);
3407   llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored);
3408   void EmitARCCopyWeak(Address dst, Address src);
3409   void EmitARCMoveWeak(Address dst, Address src);
3410   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
3411   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
3412   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
3413                                   bool resultIgnored);
3414   llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value,
3415                                       bool resultIgnored);
3416   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
3417   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
3418   llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
3419   void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise);
3420   void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
3421   llvm::Value *EmitARCAutorelease(llvm::Value *value);
3422   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
3423   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
3424   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
3425   llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value);
3426 
3427   std::pair<LValue,llvm::Value*>
3428   EmitARCStoreAutoreleasing(const BinaryOperator *e);
3429   std::pair<LValue,llvm::Value*>
3430   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
3431   std::pair<LValue,llvm::Value*>
3432   EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored);
3433 
3434   llvm::Value *EmitObjCThrowOperand(const Expr *expr);
3435   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
3436   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
3437 
3438   llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
3439   llvm::Value *EmitARCReclaimReturnedObject(const Expr *e,
3440                                             bool allowUnsafeClaim);
3441   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
3442   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
3443   llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr);
3444 
3445   void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
3446 
3447   static Destroyer destroyARCStrongImprecise;
3448   static Destroyer destroyARCStrongPrecise;
3449   static Destroyer destroyARCWeak;
3450   static Destroyer emitARCIntrinsicUse;
3451 
3452   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
3453   llvm::Value *EmitObjCAutoreleasePoolPush();
3454   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
3455   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
3456   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
3457 
3458   /// \brief Emits a reference binding to the passed in expression.
3459   RValue EmitReferenceBindingToExpr(const Expr *E);
3460 
3461   //===--------------------------------------------------------------------===//
3462   //                           Expression Emission
3463   //===--------------------------------------------------------------------===//
3464 
3465   // Expressions are broken into three classes: scalar, complex, aggregate.
3466 
3467   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
3468   /// scalar type, returning the result.
3469   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
3470 
3471   /// Emit a conversion from the specified type to the specified destination
3472   /// type, both of which are LLVM scalar types.
3473   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
3474                                     QualType DstTy, SourceLocation Loc);
3475 
3476   /// Emit a conversion from the specified complex type to the specified
3477   /// destination type, where the destination type is an LLVM scalar type.
3478   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
3479                                              QualType DstTy,
3480                                              SourceLocation Loc);
3481 
3482   /// EmitAggExpr - Emit the computation of the specified expression
3483   /// of aggregate type.  The result is computed into the given slot,
3484   /// which may be null to indicate that the value is not needed.
3485   void EmitAggExpr(const Expr *E, AggValueSlot AS);
3486 
3487   /// EmitAggExprToLValue - Emit the computation of the specified expression of
3488   /// aggregate type into a temporary LValue.
3489   LValue EmitAggExprToLValue(const Expr *E);
3490 
3491   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
3492   /// make sure it survives garbage collection until this point.
3493   void EmitExtendGCLifetime(llvm::Value *object);
3494 
3495   /// EmitComplexExpr - Emit the computation of the specified expression of
3496   /// complex type, returning the result.
3497   ComplexPairTy EmitComplexExpr(const Expr *E,
3498                                 bool IgnoreReal = false,
3499                                 bool IgnoreImag = false);
3500 
3501   /// EmitComplexExprIntoLValue - Emit the given expression of complex
3502   /// type and place its result into the specified l-value.
3503   void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
3504 
3505   /// EmitStoreOfComplex - Store a complex number into the specified l-value.
3506   void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
3507 
3508   /// EmitLoadOfComplex - Load a complex number from the specified l-value.
3509   ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
3510 
3511   Address emitAddrOfRealComponent(Address complex, QualType complexType);
3512   Address emitAddrOfImagComponent(Address complex, QualType complexType);
3513 
3514   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
3515   /// global variable that has already been created for it.  If the initializer
3516   /// has a different type than GV does, this may free GV and return a different
3517   /// one.  Otherwise it just returns GV.
3518   llvm::GlobalVariable *
3519   AddInitializerToStaticVarDecl(const VarDecl &D,
3520                                 llvm::GlobalVariable *GV);
3521 
3522 
3523   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
3524   /// variable with global storage.
3525   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
3526                                 bool PerformInit);
3527 
3528   llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::Constant *Dtor,
3529                                    llvm::Constant *Addr);
3530 
3531   /// Call atexit() with a function that passes the given argument to
3532   /// the given function.
3533   void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn,
3534                                     llvm::Constant *addr);
3535 
3536   /// Emit code in this function to perform a guarded variable
3537   /// initialization.  Guarded initializations are used when it's not
3538   /// possible to prove that an initialization will be done exactly
3539   /// once, e.g. with a static local variable or a static data member
3540   /// of a class template.
3541   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
3542                           bool PerformInit);
3543 
3544   enum class GuardKind { VariableGuard, TlsGuard };
3545 
3546   /// Emit a branch to select whether or not to perform guarded initialization.
3547   void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit,
3548                                 llvm::BasicBlock *InitBlock,
3549                                 llvm::BasicBlock *NoInitBlock,
3550                                 GuardKind Kind, const VarDecl *D);
3551 
3552   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
3553   /// variables.
3554   void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
3555                                  ArrayRef<llvm::Function *> CXXThreadLocals,
3556                                  Address Guard = Address::invalid());
3557 
3558   /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
3559   /// variables.
3560   void GenerateCXXGlobalDtorsFunc(
3561       llvm::Function *Fn,
3562       const std::vector<std::pair<llvm::WeakTrackingVH, llvm::Constant *>>
3563           &DtorsAndObjects);
3564 
3565   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
3566                                         const VarDecl *D,
3567                                         llvm::GlobalVariable *Addr,
3568                                         bool PerformInit);
3569 
3570   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
3571 
3572   void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp);
3573 
3574   void enterFullExpression(const ExprWithCleanups *E) {
3575     if (E->getNumObjects() == 0) return;
3576     enterNonTrivialFullExpression(E);
3577   }
3578   void enterNonTrivialFullExpression(const ExprWithCleanups *E);
3579 
3580   void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
3581 
3582   void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest);
3583 
3584   RValue EmitAtomicExpr(AtomicExpr *E);
3585 
3586   //===--------------------------------------------------------------------===//
3587   //                         Annotations Emission
3588   //===--------------------------------------------------------------------===//
3589 
3590   /// Emit an annotation call (intrinsic or builtin).
3591   llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
3592                                   llvm::Value *AnnotatedVal,
3593                                   StringRef AnnotationStr,
3594                                   SourceLocation Location);
3595 
3596   /// Emit local annotations for the local variable V, declared by D.
3597   void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
3598 
3599   /// Emit field annotations for the given field & value. Returns the
3600   /// annotation result.
3601   Address EmitFieldAnnotations(const FieldDecl *D, Address V);
3602 
3603   //===--------------------------------------------------------------------===//
3604   //                             Internal Helpers
3605   //===--------------------------------------------------------------------===//
3606 
3607   /// ContainsLabel - Return true if the statement contains a label in it.  If
3608   /// this statement is not executed normally, it not containing a label means
3609   /// that we can just remove the code.
3610   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
3611 
3612   /// containsBreak - Return true if the statement contains a break out of it.
3613   /// If the statement (recursively) contains a switch or loop with a break
3614   /// inside of it, this is fine.
3615   static bool containsBreak(const Stmt *S);
3616 
3617   /// Determine if the given statement might introduce a declaration into the
3618   /// current scope, by being a (possibly-labelled) DeclStmt.
3619   static bool mightAddDeclToScope(const Stmt *S);
3620 
3621   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
3622   /// to a constant, or if it does but contains a label, return false.  If it
3623   /// constant folds return true and set the boolean result in Result.
3624   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result,
3625                                     bool AllowLabels = false);
3626 
3627   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
3628   /// to a constant, or if it does but contains a label, return false.  If it
3629   /// constant folds return true and set the folded value.
3630   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result,
3631                                     bool AllowLabels = false);
3632 
3633   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
3634   /// if statement) to the specified blocks.  Based on the condition, this might
3635   /// try to simplify the codegen of the conditional based on the branch.
3636   /// TrueCount should be the number of times we expect the condition to
3637   /// evaluate to true based on PGO data.
3638   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
3639                             llvm::BasicBlock *FalseBlock, uint64_t TrueCount);
3640 
3641   /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is
3642   /// nonnull, if \p LHS is marked _Nonnull.
3643   void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc);
3644 
3645   /// An enumeration which makes it easier to specify whether or not an
3646   /// operation is a subtraction.
3647   enum { NotSubtraction = false, IsSubtraction = true };
3648 
3649   /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to
3650   /// detect undefined behavior when the pointer overflow sanitizer is enabled.
3651   /// \p SignedIndices indicates whether any of the GEP indices are signed.
3652   /// \p IsSubtraction indicates whether the expression used to form the GEP
3653   /// is a subtraction.
3654   llvm::Value *EmitCheckedInBoundsGEP(llvm::Value *Ptr,
3655                                       ArrayRef<llvm::Value *> IdxList,
3656                                       bool SignedIndices,
3657                                       bool IsSubtraction,
3658                                       SourceLocation Loc,
3659                                       const Twine &Name = "");
3660 
3661   /// Specifies which type of sanitizer check to apply when handling a
3662   /// particular builtin.
3663   enum BuiltinCheckKind {
3664     BCK_CTZPassedZero,
3665     BCK_CLZPassedZero,
3666   };
3667 
3668   /// Emits an argument for a call to a builtin. If the builtin sanitizer is
3669   /// enabled, a runtime check specified by \p Kind is also emitted.
3670   llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind);
3671 
3672   /// \brief Emit a description of a type in a format suitable for passing to
3673   /// a runtime sanitizer handler.
3674   llvm::Constant *EmitCheckTypeDescriptor(QualType T);
3675 
3676   /// \brief Convert a value into a format suitable for passing to a runtime
3677   /// sanitizer handler.
3678   llvm::Value *EmitCheckValue(llvm::Value *V);
3679 
3680   /// \brief Emit a description of a source location in a format suitable for
3681   /// passing to a runtime sanitizer handler.
3682   llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
3683 
3684   /// \brief Create a basic block that will call a handler function in a
3685   /// sanitizer runtime with the provided arguments, and create a conditional
3686   /// branch to it.
3687   void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
3688                  SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs,
3689                  ArrayRef<llvm::Value *> DynamicArgs);
3690 
3691   /// \brief Emit a slow path cross-DSO CFI check which calls __cfi_slowpath
3692   /// if Cond if false.
3693   void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond,
3694                             llvm::ConstantInt *TypeId, llvm::Value *Ptr,
3695                             ArrayRef<llvm::Constant *> StaticArgs);
3696 
3697   /// \brief Create a basic block that will call the trap intrinsic, and emit a
3698   /// conditional branch to it, for the -ftrapv checks.
3699   void EmitTrapCheck(llvm::Value *Checked);
3700 
3701   /// \brief Emit a call to trap or debugtrap and attach function attribute
3702   /// "trap-func-name" if specified.
3703   llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID);
3704 
3705   /// \brief Emit a stub for the cross-DSO CFI check function.
3706   void EmitCfiCheckStub();
3707 
3708   /// \brief Emit a cross-DSO CFI failure handling function.
3709   void EmitCfiCheckFail();
3710 
3711   /// \brief Create a check for a function parameter that may potentially be
3712   /// declared as non-null.
3713   void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc,
3714                            AbstractCallee AC, unsigned ParmNum);
3715 
3716   /// EmitCallArg - Emit a single call argument.
3717   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
3718 
3719   /// EmitDelegateCallArg - We are performing a delegate call; that
3720   /// is, the current function is delegating to another one.  Produce
3721   /// a r-value suitable for passing the given parameter.
3722   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
3723                            SourceLocation loc);
3724 
3725   /// SetFPAccuracy - Set the minimum required accuracy of the given floating
3726   /// point operation, expressed as the maximum relative error in ulp.
3727   void SetFPAccuracy(llvm::Value *Val, float Accuracy);
3728 
3729 private:
3730   llvm::MDNode *getRangeForLoadFromType(QualType Ty);
3731   void EmitReturnOfRValue(RValue RV, QualType Ty);
3732 
3733   void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
3734 
3735   llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4>
3736   DeferredReplacements;
3737 
3738   /// Set the address of a local variable.
3739   void setAddrOfLocalVar(const VarDecl *VD, Address Addr) {
3740     assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!");
3741     LocalDeclMap.insert({VD, Addr});
3742   }
3743 
3744   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
3745   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
3746   ///
3747   /// \param AI - The first function argument of the expansion.
3748   void ExpandTypeFromArgs(QualType Ty, LValue Dst,
3749                           SmallVectorImpl<llvm::Value *>::iterator &AI);
3750 
3751   /// ExpandTypeToArgs - Expand an RValue \arg RV, with the LLVM type for \arg
3752   /// Ty, into individual arguments on the provided vector \arg IRCallArgs,
3753   /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand.
3754   void ExpandTypeToArgs(QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy,
3755                         SmallVectorImpl<llvm::Value *> &IRCallArgs,
3756                         unsigned &IRCallArgPos);
3757 
3758   llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
3759                             const Expr *InputExpr, std::string &ConstraintStr);
3760 
3761   llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
3762                                   LValue InputValue, QualType InputType,
3763                                   std::string &ConstraintStr,
3764                                   SourceLocation Loc);
3765 
3766   /// \brief Attempts to statically evaluate the object size of E. If that
3767   /// fails, emits code to figure the size of E out for us. This is
3768   /// pass_object_size aware.
3769   ///
3770   /// If EmittedExpr is non-null, this will use that instead of re-emitting E.
3771   llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
3772                                                llvm::IntegerType *ResType,
3773                                                llvm::Value *EmittedE);
3774 
3775   /// \brief Emits the size of E, as required by __builtin_object_size. This
3776   /// function is aware of pass_object_size parameters, and will act accordingly
3777   /// if E is a parameter with the pass_object_size attribute.
3778   llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type,
3779                                      llvm::IntegerType *ResType,
3780                                      llvm::Value *EmittedE);
3781 
3782 public:
3783 #ifndef NDEBUG
3784   // Determine whether the given argument is an Objective-C method
3785   // that may have type parameters in its signature.
3786   static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) {
3787     const DeclContext *dc = method->getDeclContext();
3788     if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) {
3789       return classDecl->getTypeParamListAsWritten();
3790     }
3791 
3792     if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) {
3793       return catDecl->getTypeParamList();
3794     }
3795 
3796     return false;
3797   }
3798 
3799   template<typename T>
3800   static bool isObjCMethodWithTypeParams(const T *) { return false; }
3801 #endif
3802 
3803   enum class EvaluationOrder {
3804     ///! No language constraints on evaluation order.
3805     Default,
3806     ///! Language semantics require left-to-right evaluation.
3807     ForceLeftToRight,
3808     ///! Language semantics require right-to-left evaluation.
3809     ForceRightToLeft
3810   };
3811 
3812   /// EmitCallArgs - Emit call arguments for a function.
3813   template <typename T>
3814   void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo,
3815                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3816                     AbstractCallee AC = AbstractCallee(),
3817                     unsigned ParamsToSkip = 0,
3818                     EvaluationOrder Order = EvaluationOrder::Default) {
3819     SmallVector<QualType, 16> ArgTypes;
3820     CallExpr::const_arg_iterator Arg = ArgRange.begin();
3821 
3822     assert((ParamsToSkip == 0 || CallArgTypeInfo) &&
3823            "Can't skip parameters if type info is not provided");
3824     if (CallArgTypeInfo) {
3825 #ifndef NDEBUG
3826       bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo);
3827 #endif
3828 
3829       // First, use the argument types that the type info knows about
3830       for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip,
3831                 E = CallArgTypeInfo->param_type_end();
3832            I != E; ++I, ++Arg) {
3833         assert(Arg != ArgRange.end() && "Running over edge of argument list!");
3834         assert((isGenericMethod ||
3835                 ((*I)->isVariablyModifiedType() ||
3836                  (*I).getNonReferenceType()->isObjCRetainableType() ||
3837                  getContext()
3838                          .getCanonicalType((*I).getNonReferenceType())
3839                          .getTypePtr() ==
3840                      getContext()
3841                          .getCanonicalType((*Arg)->getType())
3842                          .getTypePtr())) &&
3843                "type mismatch in call argument!");
3844         ArgTypes.push_back(*I);
3845       }
3846     }
3847 
3848     // Either we've emitted all the call args, or we have a call to variadic
3849     // function.
3850     assert((Arg == ArgRange.end() || !CallArgTypeInfo ||
3851             CallArgTypeInfo->isVariadic()) &&
3852            "Extra arguments in non-variadic function!");
3853 
3854     // If we still have any arguments, emit them using the type of the argument.
3855     for (auto *A : llvm::make_range(Arg, ArgRange.end()))
3856       ArgTypes.push_back(CallArgTypeInfo ? getVarArgType(A) : A->getType());
3857 
3858     EmitCallArgs(Args, ArgTypes, ArgRange, AC, ParamsToSkip, Order);
3859   }
3860 
3861   void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes,
3862                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3863                     AbstractCallee AC = AbstractCallee(),
3864                     unsigned ParamsToSkip = 0,
3865                     EvaluationOrder Order = EvaluationOrder::Default);
3866 
3867   /// EmitPointerWithAlignment - Given an expression with a pointer type,
3868   /// emit the value and compute our best estimate of the alignment of the
3869   /// pointee.
3870   ///
3871   /// \param BaseInfo - If non-null, this will be initialized with
3872   /// information about the source of the alignment and the may-alias
3873   /// attribute.  Note that this function will conservatively fall back on
3874   /// the type when it doesn't recognize the expression and may-alias will
3875   /// be set to false.
3876   ///
3877   /// One reasonable way to use this information is when there's a language
3878   /// guarantee that the pointer must be aligned to some stricter value, and
3879   /// we're simply trying to ensure that sufficiently obvious uses of under-
3880   /// aligned objects don't get miscompiled; for example, a placement new
3881   /// into the address of a local variable.  In such a case, it's quite
3882   /// reasonable to just ignore the returned alignment when it isn't from an
3883   /// explicit source.
3884   Address EmitPointerWithAlignment(const Expr *Addr,
3885                                    LValueBaseInfo *BaseInfo = nullptr);
3886 
3887   void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK);
3888 
3889 private:
3890   QualType getVarArgType(const Expr *Arg);
3891 
3892   void EmitDeclMetadata();
3893 
3894   BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType,
3895                                   const AutoVarEmission &emission);
3896 
3897   void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
3898 
3899   llvm::Value *GetValueForARMHint(unsigned BuiltinID);
3900   llvm::Value *EmitX86CpuIs(const CallExpr *E);
3901   llvm::Value *EmitX86CpuIs(StringRef CPUStr);
3902   llvm::Value *EmitX86CpuSupports(const CallExpr *E);
3903   llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs);
3904   llvm::Value *EmitX86CpuInit();
3905 };
3906 
3907 /// Helper class with most of the code for saving a value for a
3908 /// conditional expression cleanup.
3909 struct DominatingLLVMValue {
3910   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
3911 
3912   /// Answer whether the given value needs extra work to be saved.
3913   static bool needsSaving(llvm::Value *value) {
3914     // If it's not an instruction, we don't need to save.
3915     if (!isa<llvm::Instruction>(value)) return false;
3916 
3917     // If it's an instruction in the entry block, we don't need to save.
3918     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
3919     return (block != &block->getParent()->getEntryBlock());
3920   }
3921 
3922   /// Try to save the given value.
3923   static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
3924     if (!needsSaving(value)) return saved_type(value, false);
3925 
3926     // Otherwise, we need an alloca.
3927     auto align = CharUnits::fromQuantity(
3928               CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType()));
3929     Address alloca =
3930       CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save");
3931     CGF.Builder.CreateStore(value, alloca);
3932 
3933     return saved_type(alloca.getPointer(), true);
3934   }
3935 
3936   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
3937     // If the value says it wasn't saved, trust that it's still dominating.
3938     if (!value.getInt()) return value.getPointer();
3939 
3940     // Otherwise, it should be an alloca instruction, as set up in save().
3941     auto alloca = cast<llvm::AllocaInst>(value.getPointer());
3942     return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlignment());
3943   }
3944 };
3945 
3946 /// A partial specialization of DominatingValue for llvm::Values that
3947 /// might be llvm::Instructions.
3948 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
3949   typedef T *type;
3950   static type restore(CodeGenFunction &CGF, saved_type value) {
3951     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
3952   }
3953 };
3954 
3955 /// A specialization of DominatingValue for Address.
3956 template <> struct DominatingValue<Address> {
3957   typedef Address type;
3958 
3959   struct saved_type {
3960     DominatingLLVMValue::saved_type SavedValue;
3961     CharUnits Alignment;
3962   };
3963 
3964   static bool needsSaving(type value) {
3965     return DominatingLLVMValue::needsSaving(value.getPointer());
3966   }
3967   static saved_type save(CodeGenFunction &CGF, type value) {
3968     return { DominatingLLVMValue::save(CGF, value.getPointer()),
3969              value.getAlignment() };
3970   }
3971   static type restore(CodeGenFunction &CGF, saved_type value) {
3972     return Address(DominatingLLVMValue::restore(CGF, value.SavedValue),
3973                    value.Alignment);
3974   }
3975 };
3976 
3977 /// A specialization of DominatingValue for RValue.
3978 template <> struct DominatingValue<RValue> {
3979   typedef RValue type;
3980   class saved_type {
3981     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
3982                 AggregateAddress, ComplexAddress };
3983 
3984     llvm::Value *Value;
3985     unsigned K : 3;
3986     unsigned Align : 29;
3987     saved_type(llvm::Value *v, Kind k, unsigned a = 0)
3988       : Value(v), K(k), Align(a) {}
3989 
3990   public:
3991     static bool needsSaving(RValue value);
3992     static saved_type save(CodeGenFunction &CGF, RValue value);
3993     RValue restore(CodeGenFunction &CGF);
3994 
3995     // implementations in CGCleanup.cpp
3996   };
3997 
3998   static bool needsSaving(type value) {
3999     return saved_type::needsSaving(value);
4000   }
4001   static saved_type save(CodeGenFunction &CGF, type value) {
4002     return saved_type::save(CGF, value);
4003   }
4004   static type restore(CodeGenFunction &CGF, saved_type value) {
4005     return value.restore(CGF);
4006   }
4007 };
4008 
4009 }  // end namespace CodeGen
4010 }  // end namespace clang
4011 
4012 #endif
4013