1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the internal per-function state used for llvm translation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 15 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 16 17 #include "CGBuilder.h" 18 #include "CGDebugInfo.h" 19 #include "CGLoopInfo.h" 20 #include "CGValue.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "EHScopeStack.h" 24 #include "clang/AST/CharUnits.h" 25 #include "clang/AST/ExprCXX.h" 26 #include "clang/AST/ExprObjC.h" 27 #include "clang/AST/ExprOpenMP.h" 28 #include "clang/AST/Type.h" 29 #include "clang/Basic/ABI.h" 30 #include "clang/Basic/CapturedStmt.h" 31 #include "clang/Basic/OpenMPKinds.h" 32 #include "clang/Basic/TargetInfo.h" 33 #include "clang/Frontend/CodeGenOptions.h" 34 #include "llvm/ADT/ArrayRef.h" 35 #include "llvm/ADT/DenseMap.h" 36 #include "llvm/ADT/SmallVector.h" 37 #include "llvm/IR/ValueHandle.h" 38 #include "llvm/Support/Debug.h" 39 40 namespace llvm { 41 class BasicBlock; 42 class LLVMContext; 43 class MDNode; 44 class Module; 45 class SwitchInst; 46 class Twine; 47 class Value; 48 class CallSite; 49 } 50 51 namespace clang { 52 class ASTContext; 53 class BlockDecl; 54 class CXXDestructorDecl; 55 class CXXForRangeStmt; 56 class CXXTryStmt; 57 class Decl; 58 class LabelDecl; 59 class EnumConstantDecl; 60 class FunctionDecl; 61 class FunctionProtoType; 62 class LabelStmt; 63 class ObjCContainerDecl; 64 class ObjCInterfaceDecl; 65 class ObjCIvarDecl; 66 class ObjCMethodDecl; 67 class ObjCImplementationDecl; 68 class ObjCPropertyImplDecl; 69 class TargetInfo; 70 class TargetCodeGenInfo; 71 class VarDecl; 72 class ObjCForCollectionStmt; 73 class ObjCAtTryStmt; 74 class ObjCAtThrowStmt; 75 class ObjCAtSynchronizedStmt; 76 class ObjCAutoreleasePoolStmt; 77 78 namespace CodeGen { 79 class CodeGenTypes; 80 class CGFunctionInfo; 81 class CGRecordLayout; 82 class CGBlockInfo; 83 class CGCXXABI; 84 class BlockByrefHelpers; 85 class BlockByrefInfo; 86 class BlockFlags; 87 class BlockFieldFlags; 88 89 /// The kind of evaluation to perform on values of a particular 90 /// type. Basically, is the code in CGExprScalar, CGExprComplex, or 91 /// CGExprAgg? 92 /// 93 /// TODO: should vectors maybe be split out into their own thing? 94 enum TypeEvaluationKind { 95 TEK_Scalar, 96 TEK_Complex, 97 TEK_Aggregate 98 }; 99 100 /// CodeGenFunction - This class organizes the per-function state that is used 101 /// while generating LLVM code. 102 class CodeGenFunction : public CodeGenTypeCache { 103 CodeGenFunction(const CodeGenFunction &) = delete; 104 void operator=(const CodeGenFunction &) = delete; 105 106 friend class CGCXXABI; 107 public: 108 /// A jump destination is an abstract label, branching to which may 109 /// require a jump out through normal cleanups. 110 struct JumpDest { 111 JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {} 112 JumpDest(llvm::BasicBlock *Block, 113 EHScopeStack::stable_iterator Depth, 114 unsigned Index) 115 : Block(Block), ScopeDepth(Depth), Index(Index) {} 116 117 bool isValid() const { return Block != nullptr; } 118 llvm::BasicBlock *getBlock() const { return Block; } 119 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 120 unsigned getDestIndex() const { return Index; } 121 122 // This should be used cautiously. 123 void setScopeDepth(EHScopeStack::stable_iterator depth) { 124 ScopeDepth = depth; 125 } 126 127 private: 128 llvm::BasicBlock *Block; 129 EHScopeStack::stable_iterator ScopeDepth; 130 unsigned Index; 131 }; 132 133 CodeGenModule &CGM; // Per-module state. 134 const TargetInfo &Target; 135 136 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 137 LoopInfoStack LoopStack; 138 CGBuilderTy Builder; 139 140 /// \brief CGBuilder insert helper. This function is called after an 141 /// instruction is created using Builder. 142 void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name, 143 llvm::BasicBlock *BB, 144 llvm::BasicBlock::iterator InsertPt) const; 145 146 /// CurFuncDecl - Holds the Decl for the current outermost 147 /// non-closure context. 148 const Decl *CurFuncDecl; 149 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 150 const Decl *CurCodeDecl; 151 const CGFunctionInfo *CurFnInfo; 152 QualType FnRetTy; 153 llvm::Function *CurFn; 154 155 /// CurGD - The GlobalDecl for the current function being compiled. 156 GlobalDecl CurGD; 157 158 /// PrologueCleanupDepth - The cleanup depth enclosing all the 159 /// cleanups associated with the parameters. 160 EHScopeStack::stable_iterator PrologueCleanupDepth; 161 162 /// ReturnBlock - Unified return block. 163 JumpDest ReturnBlock; 164 165 /// ReturnValue - The temporary alloca to hold the return 166 /// value. This is invalid iff the function has no return value. 167 Address ReturnValue; 168 169 /// AllocaInsertPoint - This is an instruction in the entry block before which 170 /// we prefer to insert allocas. 171 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 172 173 /// \brief API for captured statement code generation. 174 class CGCapturedStmtInfo { 175 public: 176 explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default) 177 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {} 178 explicit CGCapturedStmtInfo(const CapturedStmt &S, 179 CapturedRegionKind K = CR_Default) 180 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) { 181 182 RecordDecl::field_iterator Field = 183 S.getCapturedRecordDecl()->field_begin(); 184 for (CapturedStmt::const_capture_iterator I = S.capture_begin(), 185 E = S.capture_end(); 186 I != E; ++I, ++Field) { 187 if (I->capturesThis()) 188 CXXThisFieldDecl = *Field; 189 else if (I->capturesVariable()) 190 CaptureFields[I->getCapturedVar()] = *Field; 191 } 192 } 193 194 virtual ~CGCapturedStmtInfo(); 195 196 CapturedRegionKind getKind() const { return Kind; } 197 198 virtual void setContextValue(llvm::Value *V) { ThisValue = V; } 199 // \brief Retrieve the value of the context parameter. 200 virtual llvm::Value *getContextValue() const { return ThisValue; } 201 202 /// \brief Lookup the captured field decl for a variable. 203 virtual const FieldDecl *lookup(const VarDecl *VD) const { 204 return CaptureFields.lookup(VD); 205 } 206 207 bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; } 208 virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; } 209 210 static bool classof(const CGCapturedStmtInfo *) { 211 return true; 212 } 213 214 /// \brief Emit the captured statement body. 215 virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) { 216 CGF.incrementProfileCounter(S); 217 CGF.EmitStmt(S); 218 } 219 220 /// \brief Get the name of the capture helper. 221 virtual StringRef getHelperName() const { return "__captured_stmt"; } 222 223 private: 224 /// \brief The kind of captured statement being generated. 225 CapturedRegionKind Kind; 226 227 /// \brief Keep the map between VarDecl and FieldDecl. 228 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields; 229 230 /// \brief The base address of the captured record, passed in as the first 231 /// argument of the parallel region function. 232 llvm::Value *ThisValue; 233 234 /// \brief Captured 'this' type. 235 FieldDecl *CXXThisFieldDecl; 236 }; 237 CGCapturedStmtInfo *CapturedStmtInfo; 238 239 /// \brief RAII for correct setting/restoring of CapturedStmtInfo. 240 class CGCapturedStmtRAII { 241 private: 242 CodeGenFunction &CGF; 243 CGCapturedStmtInfo *PrevCapturedStmtInfo; 244 public: 245 CGCapturedStmtRAII(CodeGenFunction &CGF, 246 CGCapturedStmtInfo *NewCapturedStmtInfo) 247 : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) { 248 CGF.CapturedStmtInfo = NewCapturedStmtInfo; 249 } 250 ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; } 251 }; 252 253 /// \brief Sanitizers enabled for this function. 254 SanitizerSet SanOpts; 255 256 /// \brief True if CodeGen currently emits code implementing sanitizer checks. 257 bool IsSanitizerScope; 258 259 /// \brief RAII object to set/unset CodeGenFunction::IsSanitizerScope. 260 class SanitizerScope { 261 CodeGenFunction *CGF; 262 public: 263 SanitizerScope(CodeGenFunction *CGF); 264 ~SanitizerScope(); 265 }; 266 267 /// In C++, whether we are code generating a thunk. This controls whether we 268 /// should emit cleanups. 269 bool CurFuncIsThunk; 270 271 /// In ARC, whether we should autorelease the return value. 272 bool AutoreleaseResult; 273 274 /// Whether we processed a Microsoft-style asm block during CodeGen. These can 275 /// potentially set the return value. 276 bool SawAsmBlock; 277 278 /// True if the current function is an outlined SEH helper. This can be a 279 /// finally block or filter expression. 280 bool IsOutlinedSEHHelper; 281 282 bool IsCleanupPadScope = false; 283 284 const CodeGen::CGBlockInfo *BlockInfo; 285 llvm::Value *BlockPointer; 286 287 llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; 288 FieldDecl *LambdaThisCaptureField; 289 290 /// \brief A mapping from NRVO variables to the flags used to indicate 291 /// when the NRVO has been applied to this variable. 292 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 293 294 EHScopeStack EHStack; 295 llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack; 296 llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack; 297 298 /// Header for data within LifetimeExtendedCleanupStack. 299 struct LifetimeExtendedCleanupHeader { 300 /// The size of the following cleanup object. 301 unsigned Size; 302 /// The kind of cleanup to push: a value from the CleanupKind enumeration. 303 CleanupKind Kind; 304 305 size_t getSize() const { return Size; } 306 CleanupKind getKind() const { return Kind; } 307 }; 308 309 /// i32s containing the indexes of the cleanup destinations. 310 llvm::AllocaInst *NormalCleanupDest; 311 312 unsigned NextCleanupDestIndex; 313 314 /// FirstBlockInfo - The head of a singly-linked-list of block layouts. 315 CGBlockInfo *FirstBlockInfo; 316 317 /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. 318 llvm::BasicBlock *EHResumeBlock; 319 320 /// The exception slot. All landing pads write the current exception pointer 321 /// into this alloca. 322 llvm::Value *ExceptionSlot; 323 324 /// The selector slot. Under the MandatoryCleanup model, all landing pads 325 /// write the current selector value into this alloca. 326 llvm::AllocaInst *EHSelectorSlot; 327 328 /// A stack of exception code slots. Entering an __except block pushes a slot 329 /// on the stack and leaving pops one. The __exception_code() intrinsic loads 330 /// a value from the top of the stack. 331 SmallVector<Address, 1> SEHCodeSlotStack; 332 333 /// Value returned by __exception_info intrinsic. 334 llvm::Value *SEHInfo = nullptr; 335 336 /// Emits a landing pad for the current EH stack. 337 llvm::BasicBlock *EmitLandingPad(); 338 339 llvm::BasicBlock *getInvokeDestImpl(); 340 341 template <class T> 342 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 343 return DominatingValue<T>::save(*this, value); 344 } 345 346 public: 347 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 348 /// rethrows. 349 SmallVector<llvm::Value*, 8> ObjCEHValueStack; 350 351 /// A class controlling the emission of a finally block. 352 class FinallyInfo { 353 /// Where the catchall's edge through the cleanup should go. 354 JumpDest RethrowDest; 355 356 /// A function to call to enter the catch. 357 llvm::Constant *BeginCatchFn; 358 359 /// An i1 variable indicating whether or not the @finally is 360 /// running for an exception. 361 llvm::AllocaInst *ForEHVar; 362 363 /// An i8* variable into which the exception pointer to rethrow 364 /// has been saved. 365 llvm::AllocaInst *SavedExnVar; 366 367 public: 368 void enter(CodeGenFunction &CGF, const Stmt *Finally, 369 llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn, 370 llvm::Constant *rethrowFn); 371 void exit(CodeGenFunction &CGF); 372 }; 373 374 /// Returns true inside SEH __try blocks. 375 bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); } 376 377 /// Returns true while emitting a cleanuppad. 378 bool isCleanupPadScope() const { return IsCleanupPadScope; } 379 380 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 381 /// current full-expression. Safe against the possibility that 382 /// we're currently inside a conditionally-evaluated expression. 383 template <class T, class... As> 384 void pushFullExprCleanup(CleanupKind kind, As... A) { 385 // If we're not in a conditional branch, or if none of the 386 // arguments requires saving, then use the unconditional cleanup. 387 if (!isInConditionalBranch()) 388 return EHStack.pushCleanup<T>(kind, A...); 389 390 // Stash values in a tuple so we can guarantee the order of saves. 391 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 392 SavedTuple Saved{saveValueInCond(A)...}; 393 394 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 395 EHStack.pushCleanupTuple<CleanupType>(kind, Saved); 396 initFullExprCleanup(); 397 } 398 399 /// \brief Queue a cleanup to be pushed after finishing the current 400 /// full-expression. 401 template <class T, class... As> 402 void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) { 403 assert(!isInConditionalBranch() && "can't defer conditional cleanup"); 404 405 LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind }; 406 407 size_t OldSize = LifetimeExtendedCleanupStack.size(); 408 LifetimeExtendedCleanupStack.resize( 409 LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size); 410 411 static_assert(sizeof(Header) % llvm::AlignOf<T>::Alignment == 0, 412 "Cleanup will be allocated on misaligned address"); 413 char *Buffer = &LifetimeExtendedCleanupStack[OldSize]; 414 new (Buffer) LifetimeExtendedCleanupHeader(Header); 415 new (Buffer + sizeof(Header)) T(A...); 416 } 417 418 /// Set up the last cleaup that was pushed as a conditional 419 /// full-expression cleanup. 420 void initFullExprCleanup(); 421 422 /// PushDestructorCleanup - Push a cleanup to call the 423 /// complete-object destructor of an object of the given type at the 424 /// given address. Does nothing if T is not a C++ class type with a 425 /// non-trivial destructor. 426 void PushDestructorCleanup(QualType T, Address Addr); 427 428 /// PushDestructorCleanup - Push a cleanup to call the 429 /// complete-object variant of the given destructor on the object at 430 /// the given address. 431 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, Address Addr); 432 433 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 434 /// process all branch fixups. 435 void PopCleanupBlock(bool FallThroughIsBranchThrough = false); 436 437 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 438 /// The block cannot be reactivated. Pops it if it's the top of the 439 /// stack. 440 /// 441 /// \param DominatingIP - An instruction which is known to 442 /// dominate the current IP (if set) and which lies along 443 /// all paths of execution between the current IP and the 444 /// the point at which the cleanup comes into scope. 445 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 446 llvm::Instruction *DominatingIP); 447 448 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 449 /// Cannot be used to resurrect a deactivated cleanup. 450 /// 451 /// \param DominatingIP - An instruction which is known to 452 /// dominate the current IP (if set) and which lies along 453 /// all paths of execution between the current IP and the 454 /// the point at which the cleanup comes into scope. 455 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 456 llvm::Instruction *DominatingIP); 457 458 /// \brief Enters a new scope for capturing cleanups, all of which 459 /// will be executed once the scope is exited. 460 class RunCleanupsScope { 461 EHScopeStack::stable_iterator CleanupStackDepth; 462 size_t LifetimeExtendedCleanupStackSize; 463 bool OldDidCallStackSave; 464 protected: 465 bool PerformCleanup; 466 private: 467 468 RunCleanupsScope(const RunCleanupsScope &) = delete; 469 void operator=(const RunCleanupsScope &) = delete; 470 471 protected: 472 CodeGenFunction& CGF; 473 474 public: 475 /// \brief Enter a new cleanup scope. 476 explicit RunCleanupsScope(CodeGenFunction &CGF) 477 : PerformCleanup(true), CGF(CGF) 478 { 479 CleanupStackDepth = CGF.EHStack.stable_begin(); 480 LifetimeExtendedCleanupStackSize = 481 CGF.LifetimeExtendedCleanupStack.size(); 482 OldDidCallStackSave = CGF.DidCallStackSave; 483 CGF.DidCallStackSave = false; 484 } 485 486 /// \brief Exit this cleanup scope, emitting any accumulated 487 /// cleanups. 488 ~RunCleanupsScope() { 489 if (PerformCleanup) { 490 CGF.DidCallStackSave = OldDidCallStackSave; 491 CGF.PopCleanupBlocks(CleanupStackDepth, 492 LifetimeExtendedCleanupStackSize); 493 } 494 } 495 496 /// \brief Determine whether this scope requires any cleanups. 497 bool requiresCleanups() const { 498 return CGF.EHStack.stable_begin() != CleanupStackDepth; 499 } 500 501 /// \brief Force the emission of cleanups now, instead of waiting 502 /// until this object is destroyed. 503 void ForceCleanup() { 504 assert(PerformCleanup && "Already forced cleanup"); 505 CGF.DidCallStackSave = OldDidCallStackSave; 506 CGF.PopCleanupBlocks(CleanupStackDepth, 507 LifetimeExtendedCleanupStackSize); 508 PerformCleanup = false; 509 } 510 }; 511 512 class LexicalScope : public RunCleanupsScope { 513 SourceRange Range; 514 SmallVector<const LabelDecl*, 4> Labels; 515 LexicalScope *ParentScope; 516 517 LexicalScope(const LexicalScope &) = delete; 518 void operator=(const LexicalScope &) = delete; 519 520 public: 521 /// \brief Enter a new cleanup scope. 522 explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) 523 : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) { 524 CGF.CurLexicalScope = this; 525 if (CGDebugInfo *DI = CGF.getDebugInfo()) 526 DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); 527 } 528 529 void addLabel(const LabelDecl *label) { 530 assert(PerformCleanup && "adding label to dead scope?"); 531 Labels.push_back(label); 532 } 533 534 /// \brief Exit this cleanup scope, emitting any accumulated 535 /// cleanups. 536 ~LexicalScope() { 537 if (CGDebugInfo *DI = CGF.getDebugInfo()) 538 DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 539 540 // If we should perform a cleanup, force them now. Note that 541 // this ends the cleanup scope before rescoping any labels. 542 if (PerformCleanup) { 543 ApplyDebugLocation DL(CGF, Range.getEnd()); 544 ForceCleanup(); 545 } 546 } 547 548 /// \brief Force the emission of cleanups now, instead of waiting 549 /// until this object is destroyed. 550 void ForceCleanup() { 551 CGF.CurLexicalScope = ParentScope; 552 RunCleanupsScope::ForceCleanup(); 553 554 if (!Labels.empty()) 555 rescopeLabels(); 556 } 557 558 void rescopeLabels(); 559 }; 560 561 typedef llvm::DenseMap<const Decl *, Address> DeclMapTy; 562 563 /// \brief The scope used to remap some variables as private in the OpenMP 564 /// loop body (or other captured region emitted without outlining), and to 565 /// restore old vars back on exit. 566 class OMPPrivateScope : public RunCleanupsScope { 567 DeclMapTy SavedLocals; 568 DeclMapTy SavedPrivates; 569 570 private: 571 OMPPrivateScope(const OMPPrivateScope &) = delete; 572 void operator=(const OMPPrivateScope &) = delete; 573 574 public: 575 /// \brief Enter a new OpenMP private scope. 576 explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {} 577 578 /// \brief Registers \a LocalVD variable as a private and apply \a 579 /// PrivateGen function for it to generate corresponding private variable. 580 /// \a PrivateGen returns an address of the generated private variable. 581 /// \return true if the variable is registered as private, false if it has 582 /// been privatized already. 583 bool 584 addPrivate(const VarDecl *LocalVD, 585 llvm::function_ref<Address()> PrivateGen) { 586 assert(PerformCleanup && "adding private to dead scope"); 587 588 // Only save it once. 589 if (SavedLocals.count(LocalVD)) return false; 590 591 // Copy the existing local entry to SavedLocals. 592 auto it = CGF.LocalDeclMap.find(LocalVD); 593 if (it != CGF.LocalDeclMap.end()) { 594 SavedLocals.insert({LocalVD, it->second}); 595 } else { 596 SavedLocals.insert({LocalVD, Address::invalid()}); 597 } 598 599 // Generate the private entry. 600 Address Addr = PrivateGen(); 601 QualType VarTy = LocalVD->getType(); 602 if (VarTy->isReferenceType()) { 603 Address Temp = CGF.CreateMemTemp(VarTy); 604 CGF.Builder.CreateStore(Addr.getPointer(), Temp); 605 Addr = Temp; 606 } 607 SavedPrivates.insert({LocalVD, Addr}); 608 609 return true; 610 } 611 612 /// \brief Privatizes local variables previously registered as private. 613 /// Registration is separate from the actual privatization to allow 614 /// initializers use values of the original variables, not the private one. 615 /// This is important, for example, if the private variable is a class 616 /// variable initialized by a constructor that references other private 617 /// variables. But at initialization original variables must be used, not 618 /// private copies. 619 /// \return true if at least one variable was privatized, false otherwise. 620 bool Privatize() { 621 copyInto(SavedPrivates, CGF.LocalDeclMap); 622 SavedPrivates.clear(); 623 return !SavedLocals.empty(); 624 } 625 626 void ForceCleanup() { 627 RunCleanupsScope::ForceCleanup(); 628 copyInto(SavedLocals, CGF.LocalDeclMap); 629 SavedLocals.clear(); 630 } 631 632 /// \brief Exit scope - all the mapped variables are restored. 633 ~OMPPrivateScope() { 634 if (PerformCleanup) 635 ForceCleanup(); 636 } 637 638 private: 639 /// Copy all the entries in the source map over the corresponding 640 /// entries in the destination, which must exist. 641 static void copyInto(const DeclMapTy &src, DeclMapTy &dest) { 642 for (auto &pair : src) { 643 if (!pair.second.isValid()) { 644 dest.erase(pair.first); 645 continue; 646 } 647 648 auto it = dest.find(pair.first); 649 if (it != dest.end()) { 650 it->second = pair.second; 651 } else { 652 dest.insert(pair); 653 } 654 } 655 } 656 }; 657 658 /// \brief Takes the old cleanup stack size and emits the cleanup blocks 659 /// that have been added. 660 void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize); 661 662 /// \brief Takes the old cleanup stack size and emits the cleanup blocks 663 /// that have been added, then adds all lifetime-extended cleanups from 664 /// the given position to the stack. 665 void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 666 size_t OldLifetimeExtendedStackSize); 667 668 void ResolveBranchFixups(llvm::BasicBlock *Target); 669 670 /// The given basic block lies in the current EH scope, but may be a 671 /// target of a potentially scope-crossing jump; get a stable handle 672 /// to which we can perform this jump later. 673 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 674 return JumpDest(Target, 675 EHStack.getInnermostNormalCleanup(), 676 NextCleanupDestIndex++); 677 } 678 679 /// The given basic block lies in the current EH scope, but may be a 680 /// target of a potentially scope-crossing jump; get a stable handle 681 /// to which we can perform this jump later. 682 JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { 683 return getJumpDestInCurrentScope(createBasicBlock(Name)); 684 } 685 686 /// EmitBranchThroughCleanup - Emit a branch from the current insert 687 /// block through the normal cleanup handling code (if any) and then 688 /// on to \arg Dest. 689 void EmitBranchThroughCleanup(JumpDest Dest); 690 691 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 692 /// specified destination obviously has no cleanups to run. 'false' is always 693 /// a conservatively correct answer for this method. 694 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 695 696 /// popCatchScope - Pops the catch scope at the top of the EHScope 697 /// stack, emitting any required code (other than the catch handlers 698 /// themselves). 699 void popCatchScope(); 700 701 llvm::BasicBlock *getEHResumeBlock(bool isCleanup); 702 llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); 703 llvm::BasicBlock *getMSVCDispatchBlock(EHScopeStack::stable_iterator scope); 704 705 /// An object to manage conditionally-evaluated expressions. 706 class ConditionalEvaluation { 707 llvm::BasicBlock *StartBB; 708 709 public: 710 ConditionalEvaluation(CodeGenFunction &CGF) 711 : StartBB(CGF.Builder.GetInsertBlock()) {} 712 713 void begin(CodeGenFunction &CGF) { 714 assert(CGF.OutermostConditional != this); 715 if (!CGF.OutermostConditional) 716 CGF.OutermostConditional = this; 717 } 718 719 void end(CodeGenFunction &CGF) { 720 assert(CGF.OutermostConditional != nullptr); 721 if (CGF.OutermostConditional == this) 722 CGF.OutermostConditional = nullptr; 723 } 724 725 /// Returns a block which will be executed prior to each 726 /// evaluation of the conditional code. 727 llvm::BasicBlock *getStartingBlock() const { 728 return StartBB; 729 } 730 }; 731 732 /// isInConditionalBranch - Return true if we're currently emitting 733 /// one branch or the other of a conditional expression. 734 bool isInConditionalBranch() const { return OutermostConditional != nullptr; } 735 736 void setBeforeOutermostConditional(llvm::Value *value, Address addr) { 737 assert(isInConditionalBranch()); 738 llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); 739 auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back()); 740 store->setAlignment(addr.getAlignment().getQuantity()); 741 } 742 743 /// An RAII object to record that we're evaluating a statement 744 /// expression. 745 class StmtExprEvaluation { 746 CodeGenFunction &CGF; 747 748 /// We have to save the outermost conditional: cleanups in a 749 /// statement expression aren't conditional just because the 750 /// StmtExpr is. 751 ConditionalEvaluation *SavedOutermostConditional; 752 753 public: 754 StmtExprEvaluation(CodeGenFunction &CGF) 755 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 756 CGF.OutermostConditional = nullptr; 757 } 758 759 ~StmtExprEvaluation() { 760 CGF.OutermostConditional = SavedOutermostConditional; 761 CGF.EnsureInsertPoint(); 762 } 763 }; 764 765 /// An object which temporarily prevents a value from being 766 /// destroyed by aggressive peephole optimizations that assume that 767 /// all uses of a value have been realized in the IR. 768 class PeepholeProtection { 769 llvm::Instruction *Inst; 770 friend class CodeGenFunction; 771 772 public: 773 PeepholeProtection() : Inst(nullptr) {} 774 }; 775 776 /// A non-RAII class containing all the information about a bound 777 /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for 778 /// this which makes individual mappings very simple; using this 779 /// class directly is useful when you have a variable number of 780 /// opaque values or don't want the RAII functionality for some 781 /// reason. 782 class OpaqueValueMappingData { 783 const OpaqueValueExpr *OpaqueValue; 784 bool BoundLValue; 785 CodeGenFunction::PeepholeProtection Protection; 786 787 OpaqueValueMappingData(const OpaqueValueExpr *ov, 788 bool boundLValue) 789 : OpaqueValue(ov), BoundLValue(boundLValue) {} 790 public: 791 OpaqueValueMappingData() : OpaqueValue(nullptr) {} 792 793 static bool shouldBindAsLValue(const Expr *expr) { 794 // gl-values should be bound as l-values for obvious reasons. 795 // Records should be bound as l-values because IR generation 796 // always keeps them in memory. Expressions of function type 797 // act exactly like l-values but are formally required to be 798 // r-values in C. 799 return expr->isGLValue() || 800 expr->getType()->isFunctionType() || 801 hasAggregateEvaluationKind(expr->getType()); 802 } 803 804 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 805 const OpaqueValueExpr *ov, 806 const Expr *e) { 807 if (shouldBindAsLValue(ov)) 808 return bind(CGF, ov, CGF.EmitLValue(e)); 809 return bind(CGF, ov, CGF.EmitAnyExpr(e)); 810 } 811 812 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 813 const OpaqueValueExpr *ov, 814 const LValue &lv) { 815 assert(shouldBindAsLValue(ov)); 816 CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); 817 return OpaqueValueMappingData(ov, true); 818 } 819 820 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 821 const OpaqueValueExpr *ov, 822 const RValue &rv) { 823 assert(!shouldBindAsLValue(ov)); 824 CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); 825 826 OpaqueValueMappingData data(ov, false); 827 828 // Work around an extremely aggressive peephole optimization in 829 // EmitScalarConversion which assumes that all other uses of a 830 // value are extant. 831 data.Protection = CGF.protectFromPeepholes(rv); 832 833 return data; 834 } 835 836 bool isValid() const { return OpaqueValue != nullptr; } 837 void clear() { OpaqueValue = nullptr; } 838 839 void unbind(CodeGenFunction &CGF) { 840 assert(OpaqueValue && "no data to unbind!"); 841 842 if (BoundLValue) { 843 CGF.OpaqueLValues.erase(OpaqueValue); 844 } else { 845 CGF.OpaqueRValues.erase(OpaqueValue); 846 CGF.unprotectFromPeepholes(Protection); 847 } 848 } 849 }; 850 851 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 852 class OpaqueValueMapping { 853 CodeGenFunction &CGF; 854 OpaqueValueMappingData Data; 855 856 public: 857 static bool shouldBindAsLValue(const Expr *expr) { 858 return OpaqueValueMappingData::shouldBindAsLValue(expr); 859 } 860 861 /// Build the opaque value mapping for the given conditional 862 /// operator if it's the GNU ?: extension. This is a common 863 /// enough pattern that the convenience operator is really 864 /// helpful. 865 /// 866 OpaqueValueMapping(CodeGenFunction &CGF, 867 const AbstractConditionalOperator *op) : CGF(CGF) { 868 if (isa<ConditionalOperator>(op)) 869 // Leave Data empty. 870 return; 871 872 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 873 Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), 874 e->getCommon()); 875 } 876 877 OpaqueValueMapping(CodeGenFunction &CGF, 878 const OpaqueValueExpr *opaqueValue, 879 LValue lvalue) 880 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { 881 } 882 883 OpaqueValueMapping(CodeGenFunction &CGF, 884 const OpaqueValueExpr *opaqueValue, 885 RValue rvalue) 886 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { 887 } 888 889 void pop() { 890 Data.unbind(CGF); 891 Data.clear(); 892 } 893 894 ~OpaqueValueMapping() { 895 if (Data.isValid()) Data.unbind(CGF); 896 } 897 }; 898 899 private: 900 CGDebugInfo *DebugInfo; 901 bool DisableDebugInfo; 902 903 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 904 /// calling llvm.stacksave for multiple VLAs in the same scope. 905 bool DidCallStackSave; 906 907 /// IndirectBranch - The first time an indirect goto is seen we create a block 908 /// with an indirect branch. Every time we see the address of a label taken, 909 /// we add the label to the indirect goto. Every subsequent indirect goto is 910 /// codegen'd as a jump to the IndirectBranch's basic block. 911 llvm::IndirectBrInst *IndirectBranch; 912 913 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 914 /// decls. 915 DeclMapTy LocalDeclMap; 916 917 /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this 918 /// will contain a mapping from said ParmVarDecl to its implicit "object_size" 919 /// parameter. 920 llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2> 921 SizeArguments; 922 923 /// Track escaped local variables with auto storage. Used during SEH 924 /// outlining to produce a call to llvm.localescape. 925 llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals; 926 927 /// LabelMap - This keeps track of the LLVM basic block for each C label. 928 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 929 930 // BreakContinueStack - This keeps track of where break and continue 931 // statements should jump to. 932 struct BreakContinue { 933 BreakContinue(JumpDest Break, JumpDest Continue) 934 : BreakBlock(Break), ContinueBlock(Continue) {} 935 936 JumpDest BreakBlock; 937 JumpDest ContinueBlock; 938 }; 939 SmallVector<BreakContinue, 8> BreakContinueStack; 940 941 CodeGenPGO PGO; 942 943 /// Calculate branch weights appropriate for PGO data 944 llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount); 945 llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights); 946 llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond, 947 uint64_t LoopCount); 948 949 public: 950 /// Increment the profiler's counter for the given statement. 951 void incrementProfileCounter(const Stmt *S) { 952 if (CGM.getCodeGenOpts().ProfileInstrGenerate) 953 PGO.emitCounterIncrement(Builder, S); 954 PGO.setCurrentStmt(S); 955 } 956 957 /// Get the profiler's count for the given statement. 958 uint64_t getProfileCount(const Stmt *S) { 959 Optional<uint64_t> Count = PGO.getStmtCount(S); 960 if (!Count.hasValue()) 961 return 0; 962 return *Count; 963 } 964 965 /// Set the profiler's current count. 966 void setCurrentProfileCount(uint64_t Count) { 967 PGO.setCurrentRegionCount(Count); 968 } 969 970 /// Get the profiler's current count. This is generally the count for the most 971 /// recently incremented counter. 972 uint64_t getCurrentProfileCount() { 973 return PGO.getCurrentRegionCount(); 974 } 975 976 private: 977 978 /// SwitchInsn - This is nearest current switch instruction. It is null if 979 /// current context is not in a switch. 980 llvm::SwitchInst *SwitchInsn; 981 /// The branch weights of SwitchInsn when doing instrumentation based PGO. 982 SmallVector<uint64_t, 16> *SwitchWeights; 983 984 /// CaseRangeBlock - This block holds if condition check for last case 985 /// statement range in current switch instruction. 986 llvm::BasicBlock *CaseRangeBlock; 987 988 /// OpaqueLValues - Keeps track of the current set of opaque value 989 /// expressions. 990 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 991 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 992 993 // VLASizeMap - This keeps track of the associated size for each VLA type. 994 // We track this by the size expression rather than the type itself because 995 // in certain situations, like a const qualifier applied to an VLA typedef, 996 // multiple VLA types can share the same size expression. 997 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 998 // enter/leave scopes. 999 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 1000 1001 /// A block containing a single 'unreachable' instruction. Created 1002 /// lazily by getUnreachableBlock(). 1003 llvm::BasicBlock *UnreachableBlock; 1004 1005 /// Counts of the number return expressions in the function. 1006 unsigned NumReturnExprs; 1007 1008 /// Count the number of simple (constant) return expressions in the function. 1009 unsigned NumSimpleReturnExprs; 1010 1011 /// The last regular (non-return) debug location (breakpoint) in the function. 1012 SourceLocation LastStopPoint; 1013 1014 public: 1015 /// A scope within which we are constructing the fields of an object which 1016 /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use 1017 /// if we need to evaluate a CXXDefaultInitExpr within the evaluation. 1018 class FieldConstructionScope { 1019 public: 1020 FieldConstructionScope(CodeGenFunction &CGF, Address This) 1021 : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) { 1022 CGF.CXXDefaultInitExprThis = This; 1023 } 1024 ~FieldConstructionScope() { 1025 CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis; 1026 } 1027 1028 private: 1029 CodeGenFunction &CGF; 1030 Address OldCXXDefaultInitExprThis; 1031 }; 1032 1033 /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this' 1034 /// is overridden to be the object under construction. 1035 class CXXDefaultInitExprScope { 1036 public: 1037 CXXDefaultInitExprScope(CodeGenFunction &CGF) 1038 : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue), 1039 OldCXXThisAlignment(CGF.CXXThisAlignment) { 1040 CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer(); 1041 CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment(); 1042 } 1043 ~CXXDefaultInitExprScope() { 1044 CGF.CXXThisValue = OldCXXThisValue; 1045 CGF.CXXThisAlignment = OldCXXThisAlignment; 1046 } 1047 1048 public: 1049 CodeGenFunction &CGF; 1050 llvm::Value *OldCXXThisValue; 1051 CharUnits OldCXXThisAlignment; 1052 }; 1053 1054 private: 1055 /// CXXThisDecl - When generating code for a C++ member function, 1056 /// this will hold the implicit 'this' declaration. 1057 ImplicitParamDecl *CXXABIThisDecl; 1058 llvm::Value *CXXABIThisValue; 1059 llvm::Value *CXXThisValue; 1060 CharUnits CXXABIThisAlignment; 1061 CharUnits CXXThisAlignment; 1062 1063 /// The value of 'this' to use when evaluating CXXDefaultInitExprs within 1064 /// this expression. 1065 Address CXXDefaultInitExprThis = Address::invalid(); 1066 1067 /// CXXStructorImplicitParamDecl - When generating code for a constructor or 1068 /// destructor, this will hold the implicit argument (e.g. VTT). 1069 ImplicitParamDecl *CXXStructorImplicitParamDecl; 1070 llvm::Value *CXXStructorImplicitParamValue; 1071 1072 /// OutermostConditional - Points to the outermost active 1073 /// conditional control. This is used so that we know if a 1074 /// temporary should be destroyed conditionally. 1075 ConditionalEvaluation *OutermostConditional; 1076 1077 /// The current lexical scope. 1078 LexicalScope *CurLexicalScope; 1079 1080 /// The current source location that should be used for exception 1081 /// handling code. 1082 SourceLocation CurEHLocation; 1083 1084 /// BlockByrefInfos - For each __block variable, contains 1085 /// information about the layout of the variable. 1086 llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos; 1087 1088 llvm::BasicBlock *TerminateLandingPad; 1089 llvm::BasicBlock *TerminateHandler; 1090 llvm::BasicBlock *TrapBB; 1091 1092 /// Add a kernel metadata node to the named metadata node 'opencl.kernels'. 1093 /// In the kernel metadata node, reference the kernel function and metadata 1094 /// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2): 1095 /// - A node for the vec_type_hint(<type>) qualifier contains string 1096 /// "vec_type_hint", an undefined value of the <type> data type, 1097 /// and a Boolean that is true if the <type> is integer and signed. 1098 /// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string 1099 /// "work_group_size_hint", and three 32-bit integers X, Y and Z. 1100 /// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string 1101 /// "reqd_work_group_size", and three 32-bit integers X, Y and Z. 1102 void EmitOpenCLKernelMetadata(const FunctionDecl *FD, 1103 llvm::Function *Fn); 1104 1105 public: 1106 CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false); 1107 ~CodeGenFunction(); 1108 1109 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 1110 ASTContext &getContext() const { return CGM.getContext(); } 1111 CGDebugInfo *getDebugInfo() { 1112 if (DisableDebugInfo) 1113 return nullptr; 1114 return DebugInfo; 1115 } 1116 void disableDebugInfo() { DisableDebugInfo = true; } 1117 void enableDebugInfo() { DisableDebugInfo = false; } 1118 1119 bool shouldUseFusedARCCalls() { 1120 return CGM.getCodeGenOpts().OptimizationLevel == 0; 1121 } 1122 1123 const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } 1124 1125 /// Returns a pointer to the function's exception object and selector slot, 1126 /// which is assigned in every landing pad. 1127 Address getExceptionSlot(); 1128 Address getEHSelectorSlot(); 1129 1130 /// Returns the contents of the function's exception object and selector 1131 /// slots. 1132 llvm::Value *getExceptionFromSlot(); 1133 llvm::Value *getSelectorFromSlot(); 1134 1135 Address getNormalCleanupDestSlot(); 1136 1137 llvm::BasicBlock *getUnreachableBlock() { 1138 if (!UnreachableBlock) { 1139 UnreachableBlock = createBasicBlock("unreachable"); 1140 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 1141 } 1142 return UnreachableBlock; 1143 } 1144 1145 llvm::BasicBlock *getInvokeDest() { 1146 if (!EHStack.requiresLandingPad()) return nullptr; 1147 return getInvokeDestImpl(); 1148 } 1149 1150 bool currentFunctionUsesSEHTry() const { 1151 const auto *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl); 1152 return FD && FD->usesSEHTry(); 1153 } 1154 1155 const TargetInfo &getTarget() const { return Target; } 1156 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 1157 1158 //===--------------------------------------------------------------------===// 1159 // Cleanups 1160 //===--------------------------------------------------------------------===// 1161 1162 typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty); 1163 1164 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1165 Address arrayEndPointer, 1166 QualType elementType, 1167 CharUnits elementAlignment, 1168 Destroyer *destroyer); 1169 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1170 llvm::Value *arrayEnd, 1171 QualType elementType, 1172 CharUnits elementAlignment, 1173 Destroyer *destroyer); 1174 1175 void pushDestroy(QualType::DestructionKind dtorKind, 1176 Address addr, QualType type); 1177 void pushEHDestroy(QualType::DestructionKind dtorKind, 1178 Address addr, QualType type); 1179 void pushDestroy(CleanupKind kind, Address addr, QualType type, 1180 Destroyer *destroyer, bool useEHCleanupForArray); 1181 void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr, 1182 QualType type, Destroyer *destroyer, 1183 bool useEHCleanupForArray); 1184 void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 1185 llvm::Value *CompletePtr, 1186 QualType ElementType); 1187 void pushStackRestore(CleanupKind kind, Address SPMem); 1188 void emitDestroy(Address addr, QualType type, Destroyer *destroyer, 1189 bool useEHCleanupForArray); 1190 llvm::Function *generateDestroyHelper(Address addr, QualType type, 1191 Destroyer *destroyer, 1192 bool useEHCleanupForArray, 1193 const VarDecl *VD); 1194 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 1195 QualType elementType, CharUnits elementAlign, 1196 Destroyer *destroyer, 1197 bool checkZeroLength, bool useEHCleanup); 1198 1199 Destroyer *getDestroyer(QualType::DestructionKind destructionKind); 1200 1201 /// Determines whether an EH cleanup is required to destroy a type 1202 /// with the given destruction kind. 1203 bool needsEHCleanup(QualType::DestructionKind kind) { 1204 switch (kind) { 1205 case QualType::DK_none: 1206 return false; 1207 case QualType::DK_cxx_destructor: 1208 case QualType::DK_objc_weak_lifetime: 1209 return getLangOpts().Exceptions; 1210 case QualType::DK_objc_strong_lifetime: 1211 return getLangOpts().Exceptions && 1212 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 1213 } 1214 llvm_unreachable("bad destruction kind"); 1215 } 1216 1217 CleanupKind getCleanupKind(QualType::DestructionKind kind) { 1218 return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); 1219 } 1220 1221 //===--------------------------------------------------------------------===// 1222 // Objective-C 1223 //===--------------------------------------------------------------------===// 1224 1225 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 1226 1227 void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD); 1228 1229 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 1230 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 1231 const ObjCPropertyImplDecl *PID); 1232 void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 1233 const ObjCPropertyImplDecl *propImpl, 1234 const ObjCMethodDecl *GetterMothodDecl, 1235 llvm::Constant *AtomicHelperFn); 1236 1237 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1238 ObjCMethodDecl *MD, bool ctor); 1239 1240 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 1241 /// for the given property. 1242 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 1243 const ObjCPropertyImplDecl *PID); 1244 void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1245 const ObjCPropertyImplDecl *propImpl, 1246 llvm::Constant *AtomicHelperFn); 1247 1248 //===--------------------------------------------------------------------===// 1249 // Block Bits 1250 //===--------------------------------------------------------------------===// 1251 1252 llvm::Value *EmitBlockLiteral(const BlockExpr *); 1253 llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); 1254 static void destroyBlockInfos(CGBlockInfo *info); 1255 1256 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 1257 const CGBlockInfo &Info, 1258 const DeclMapTy &ldm, 1259 bool IsLambdaConversionToBlock); 1260 1261 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 1262 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 1263 llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( 1264 const ObjCPropertyImplDecl *PID); 1265 llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( 1266 const ObjCPropertyImplDecl *PID); 1267 llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); 1268 1269 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags); 1270 1271 class AutoVarEmission; 1272 1273 void emitByrefStructureInit(const AutoVarEmission &emission); 1274 void enterByrefCleanup(const AutoVarEmission &emission); 1275 1276 void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum, 1277 llvm::Value *ptr); 1278 1279 Address LoadBlockStruct(); 1280 Address GetAddrOfBlockDecl(const VarDecl *var, bool ByRef); 1281 1282 /// BuildBlockByrefAddress - Computes the location of the 1283 /// data in a variable which is declared as __block. 1284 Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V, 1285 bool followForward = true); 1286 Address emitBlockByrefAddress(Address baseAddr, 1287 const BlockByrefInfo &info, 1288 bool followForward, 1289 const llvm::Twine &name); 1290 1291 const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var); 1292 1293 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1294 const CGFunctionInfo &FnInfo); 1295 /// \brief Emit code for the start of a function. 1296 /// \param Loc The location to be associated with the function. 1297 /// \param StartLoc The location of the function body. 1298 void StartFunction(GlobalDecl GD, 1299 QualType RetTy, 1300 llvm::Function *Fn, 1301 const CGFunctionInfo &FnInfo, 1302 const FunctionArgList &Args, 1303 SourceLocation Loc = SourceLocation(), 1304 SourceLocation StartLoc = SourceLocation()); 1305 1306 void EmitConstructorBody(FunctionArgList &Args); 1307 void EmitDestructorBody(FunctionArgList &Args); 1308 void emitImplicitAssignmentOperatorBody(FunctionArgList &Args); 1309 void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body); 1310 void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S); 1311 1312 void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator, 1313 CallArgList &CallArgs); 1314 void EmitLambdaToBlockPointerBody(FunctionArgList &Args); 1315 void EmitLambdaBlockInvokeBody(); 1316 void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD); 1317 void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD); 1318 void EmitAsanPrologueOrEpilogue(bool Prologue); 1319 1320 /// \brief Emit the unified return block, trying to avoid its emission when 1321 /// possible. 1322 /// \return The debug location of the user written return statement if the 1323 /// return block is is avoided. 1324 llvm::DebugLoc EmitReturnBlock(); 1325 1326 /// FinishFunction - Complete IR generation of the current function. It is 1327 /// legal to call this function even if there is no current insertion point. 1328 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 1329 1330 void StartThunk(llvm::Function *Fn, GlobalDecl GD, 1331 const CGFunctionInfo &FnInfo); 1332 1333 void EmitCallAndReturnForThunk(llvm::Value *Callee, const ThunkInfo *Thunk); 1334 1335 void FinishThunk(); 1336 1337 /// Emit a musttail call for a thunk with a potentially adjusted this pointer. 1338 void EmitMustTailThunk(const CXXMethodDecl *MD, llvm::Value *AdjustedThisPtr, 1339 llvm::Value *Callee); 1340 1341 /// Generate a thunk for the given method. 1342 void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1343 GlobalDecl GD, const ThunkInfo &Thunk); 1344 1345 llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn, 1346 const CGFunctionInfo &FnInfo, 1347 GlobalDecl GD, const ThunkInfo &Thunk); 1348 1349 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 1350 FunctionArgList &Args); 1351 1352 void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init, 1353 ArrayRef<VarDecl *> ArrayIndexes); 1354 1355 /// Struct with all informations about dynamic [sub]class needed to set vptr. 1356 struct VPtr { 1357 BaseSubobject Base; 1358 const CXXRecordDecl *NearestVBase; 1359 CharUnits OffsetFromNearestVBase; 1360 const CXXRecordDecl *VTableClass; 1361 }; 1362 1363 /// Initialize the vtable pointer of the given subobject. 1364 void InitializeVTablePointer(const VPtr &vptr); 1365 1366 typedef llvm::SmallVector<VPtr, 4> VPtrsVector; 1367 1368 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 1369 VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass); 1370 1371 void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase, 1372 CharUnits OffsetFromNearestVBase, 1373 bool BaseIsNonVirtualPrimaryBase, 1374 const CXXRecordDecl *VTableClass, 1375 VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs); 1376 1377 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 1378 1379 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 1380 /// to by This. 1381 llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy, 1382 const CXXRecordDecl *VTableClass); 1383 1384 enum CFITypeCheckKind { 1385 CFITCK_VCall, 1386 CFITCK_NVCall, 1387 CFITCK_DerivedCast, 1388 CFITCK_UnrelatedCast, 1389 }; 1390 1391 /// \brief Derived is the presumed address of an object of type T after a 1392 /// cast. If T is a polymorphic class type, emit a check that the virtual 1393 /// table for Derived belongs to a class derived from T. 1394 void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived, 1395 bool MayBeNull, CFITypeCheckKind TCK, 1396 SourceLocation Loc); 1397 1398 /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable. 1399 /// If vptr CFI is enabled, emit a check that VTable is valid. 1400 void EmitVTablePtrCheckForCall(const CXXMethodDecl *MD, llvm::Value *VTable, 1401 CFITypeCheckKind TCK, SourceLocation Loc); 1402 1403 /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for 1404 /// RD using llvm.bitset.test. 1405 void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable, 1406 CFITypeCheckKind TCK, SourceLocation Loc); 1407 1408 /// CanDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given 1409 /// expr can be devirtualized. 1410 bool CanDevirtualizeMemberFunctionCall(const Expr *Base, 1411 const CXXMethodDecl *MD); 1412 1413 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 1414 /// given phase of destruction for a destructor. The end result 1415 /// should call destructors on members and base classes in reverse 1416 /// order of their construction. 1417 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 1418 1419 /// ShouldInstrumentFunction - Return true if the current function should be 1420 /// instrumented with __cyg_profile_func_* calls 1421 bool ShouldInstrumentFunction(); 1422 1423 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 1424 /// instrumentation function with the current function and the call site, if 1425 /// function instrumentation is enabled. 1426 void EmitFunctionInstrumentation(const char *Fn); 1427 1428 /// EmitMCountInstrumentation - Emit call to .mcount. 1429 void EmitMCountInstrumentation(); 1430 1431 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 1432 /// arguments for the given function. This is also responsible for naming the 1433 /// LLVM function arguments. 1434 void EmitFunctionProlog(const CGFunctionInfo &FI, 1435 llvm::Function *Fn, 1436 const FunctionArgList &Args); 1437 1438 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 1439 /// given temporary. 1440 void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc, 1441 SourceLocation EndLoc); 1442 1443 /// EmitStartEHSpec - Emit the start of the exception spec. 1444 void EmitStartEHSpec(const Decl *D); 1445 1446 /// EmitEndEHSpec - Emit the end of the exception spec. 1447 void EmitEndEHSpec(const Decl *D); 1448 1449 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 1450 llvm::BasicBlock *getTerminateLandingPad(); 1451 1452 /// getTerminateHandler - Return a handler (not a landing pad, just 1453 /// a catch handler) that just calls terminate. This is used when 1454 /// a terminate scope encloses a try. 1455 llvm::BasicBlock *getTerminateHandler(); 1456 1457 llvm::Type *ConvertTypeForMem(QualType T); 1458 llvm::Type *ConvertType(QualType T); 1459 llvm::Type *ConvertType(const TypeDecl *T) { 1460 return ConvertType(getContext().getTypeDeclType(T)); 1461 } 1462 1463 /// LoadObjCSelf - Load the value of self. This function is only valid while 1464 /// generating code for an Objective-C method. 1465 llvm::Value *LoadObjCSelf(); 1466 1467 /// TypeOfSelfObject - Return type of object that this self represents. 1468 QualType TypeOfSelfObject(); 1469 1470 /// hasAggregateLLVMType - Return true if the specified AST type will map into 1471 /// an aggregate LLVM type or is void. 1472 static TypeEvaluationKind getEvaluationKind(QualType T); 1473 1474 static bool hasScalarEvaluationKind(QualType T) { 1475 return getEvaluationKind(T) == TEK_Scalar; 1476 } 1477 1478 static bool hasAggregateEvaluationKind(QualType T) { 1479 return getEvaluationKind(T) == TEK_Aggregate; 1480 } 1481 1482 /// createBasicBlock - Create an LLVM basic block. 1483 llvm::BasicBlock *createBasicBlock(const Twine &name = "", 1484 llvm::Function *parent = nullptr, 1485 llvm::BasicBlock *before = nullptr) { 1486 #ifdef NDEBUG 1487 return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before); 1488 #else 1489 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 1490 #endif 1491 } 1492 1493 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 1494 /// label maps to. 1495 JumpDest getJumpDestForLabel(const LabelDecl *S); 1496 1497 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 1498 /// another basic block, simplify it. This assumes that no other code could 1499 /// potentially reference the basic block. 1500 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 1501 1502 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 1503 /// adding a fall-through branch from the current insert block if 1504 /// necessary. It is legal to call this function even if there is no current 1505 /// insertion point. 1506 /// 1507 /// IsFinished - If true, indicates that the caller has finished emitting 1508 /// branches to the given block and does not expect to emit code into it. This 1509 /// means the block can be ignored if it is unreachable. 1510 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 1511 1512 /// EmitBlockAfterUses - Emit the given block somewhere hopefully 1513 /// near its uses, and leave the insertion point in it. 1514 void EmitBlockAfterUses(llvm::BasicBlock *BB); 1515 1516 /// EmitBranch - Emit a branch to the specified basic block from the current 1517 /// insert block, taking care to avoid creation of branches from dummy 1518 /// blocks. It is legal to call this function even if there is no current 1519 /// insertion point. 1520 /// 1521 /// This function clears the current insertion point. The caller should follow 1522 /// calls to this function with calls to Emit*Block prior to generation new 1523 /// code. 1524 void EmitBranch(llvm::BasicBlock *Block); 1525 1526 /// HaveInsertPoint - True if an insertion point is defined. If not, this 1527 /// indicates that the current code being emitted is unreachable. 1528 bool HaveInsertPoint() const { 1529 return Builder.GetInsertBlock() != nullptr; 1530 } 1531 1532 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 1533 /// emitted IR has a place to go. Note that by definition, if this function 1534 /// creates a block then that block is unreachable; callers may do better to 1535 /// detect when no insertion point is defined and simply skip IR generation. 1536 void EnsureInsertPoint() { 1537 if (!HaveInsertPoint()) 1538 EmitBlock(createBasicBlock()); 1539 } 1540 1541 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1542 /// specified stmt yet. 1543 void ErrorUnsupported(const Stmt *S, const char *Type); 1544 1545 //===--------------------------------------------------------------------===// 1546 // Helpers 1547 //===--------------------------------------------------------------------===// 1548 1549 LValue MakeAddrLValue(Address Addr, QualType T, 1550 AlignmentSource AlignSource = AlignmentSource::Type) { 1551 return LValue::MakeAddr(Addr, T, getContext(), AlignSource, 1552 CGM.getTBAAInfo(T)); 1553 } 1554 1555 LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 1556 AlignmentSource AlignSource = AlignmentSource::Type) { 1557 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), 1558 AlignSource, CGM.getTBAAInfo(T)); 1559 } 1560 1561 LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T); 1562 LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T); 1563 CharUnits getNaturalTypeAlignment(QualType T, 1564 AlignmentSource *Source = nullptr, 1565 bool forPointeeType = false); 1566 CharUnits getNaturalPointeeTypeAlignment(QualType T, 1567 AlignmentSource *Source = nullptr); 1568 1569 Address EmitLoadOfReference(Address Ref, const ReferenceType *RefTy, 1570 AlignmentSource *Source = nullptr); 1571 LValue EmitLoadOfReferenceLValue(Address Ref, const ReferenceType *RefTy); 1572 1573 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 1574 /// block. The caller is responsible for setting an appropriate alignment on 1575 /// the alloca. 1576 llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, 1577 const Twine &Name = "tmp"); 1578 Address CreateTempAlloca(llvm::Type *Ty, CharUnits align, 1579 const Twine &Name = "tmp"); 1580 1581 /// CreateDefaultAlignedTempAlloca - This creates an alloca with the 1582 /// default ABI alignment of the given LLVM type. 1583 /// 1584 /// IMPORTANT NOTE: This is *not* generally the right alignment for 1585 /// any given AST type that happens to have been lowered to the 1586 /// given IR type. This should only ever be used for function-local, 1587 /// IR-driven manipulations like saving and restoring a value. Do 1588 /// not hand this address off to arbitrary IRGen routines, and especially 1589 /// do not pass it as an argument to a function that might expect a 1590 /// properly ABI-aligned value. 1591 Address CreateDefaultAlignTempAlloca(llvm::Type *Ty, 1592 const Twine &Name = "tmp"); 1593 1594 /// InitTempAlloca - Provide an initial value for the given alloca which 1595 /// will be observable at all locations in the function. 1596 /// 1597 /// The address should be something that was returned from one of 1598 /// the CreateTempAlloca or CreateMemTemp routines, and the 1599 /// initializer must be valid in the entry block (i.e. it must 1600 /// either be a constant or an argument value). 1601 void InitTempAlloca(Address Alloca, llvm::Value *Value); 1602 1603 /// CreateIRTemp - Create a temporary IR object of the given type, with 1604 /// appropriate alignment. This routine should only be used when an temporary 1605 /// value needs to be stored into an alloca (for example, to avoid explicit 1606 /// PHI construction), but the type is the IR type, not the type appropriate 1607 /// for storing in memory. 1608 /// 1609 /// That is, this is exactly equivalent to CreateMemTemp, but calling 1610 /// ConvertType instead of ConvertTypeForMem. 1611 Address CreateIRTemp(QualType T, const Twine &Name = "tmp"); 1612 1613 /// CreateMemTemp - Create a temporary memory object of the given type, with 1614 /// appropriate alignment. 1615 Address CreateMemTemp(QualType T, const Twine &Name = "tmp"); 1616 Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp"); 1617 1618 /// CreateAggTemp - Create a temporary memory object for the given 1619 /// aggregate type. 1620 AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") { 1621 return AggValueSlot::forAddr(CreateMemTemp(T, Name), 1622 T.getQualifiers(), 1623 AggValueSlot::IsNotDestructed, 1624 AggValueSlot::DoesNotNeedGCBarriers, 1625 AggValueSlot::IsNotAliased); 1626 } 1627 1628 /// Emit a cast to void* in the appropriate address space. 1629 llvm::Value *EmitCastToVoidPtr(llvm::Value *value); 1630 1631 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 1632 /// expression and compare the result against zero, returning an Int1Ty value. 1633 llvm::Value *EvaluateExprAsBool(const Expr *E); 1634 1635 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 1636 void EmitIgnoredExpr(const Expr *E); 1637 1638 /// EmitAnyExpr - Emit code to compute the specified expression which can have 1639 /// any type. The result is returned as an RValue struct. If this is an 1640 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 1641 /// the result should be returned. 1642 /// 1643 /// \param ignoreResult True if the resulting value isn't used. 1644 RValue EmitAnyExpr(const Expr *E, 1645 AggValueSlot aggSlot = AggValueSlot::ignored(), 1646 bool ignoreResult = false); 1647 1648 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 1649 // or the value of the expression, depending on how va_list is defined. 1650 Address EmitVAListRef(const Expr *E); 1651 1652 /// Emit a "reference" to a __builtin_ms_va_list; this is 1653 /// always the value of the expression, because a __builtin_ms_va_list is a 1654 /// pointer to a char. 1655 Address EmitMSVAListRef(const Expr *E); 1656 1657 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 1658 /// always be accessible even if no aggregate location is provided. 1659 RValue EmitAnyExprToTemp(const Expr *E); 1660 1661 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 1662 /// arbitrary expression into the given memory location. 1663 void EmitAnyExprToMem(const Expr *E, Address Location, 1664 Qualifiers Quals, bool IsInitializer); 1665 1666 void EmitAnyExprToExn(const Expr *E, Address Addr); 1667 1668 /// EmitExprAsInit - Emits the code necessary to initialize a 1669 /// location in memory with the given initializer. 1670 void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue, 1671 bool capturedByInit); 1672 1673 /// hasVolatileMember - returns true if aggregate type has a volatile 1674 /// member. 1675 bool hasVolatileMember(QualType T) { 1676 if (const RecordType *RT = T->getAs<RecordType>()) { 1677 const RecordDecl *RD = cast<RecordDecl>(RT->getDecl()); 1678 return RD->hasVolatileMember(); 1679 } 1680 return false; 1681 } 1682 /// EmitAggregateCopy - Emit an aggregate assignment. 1683 /// 1684 /// The difference to EmitAggregateCopy is that tail padding is not copied. 1685 /// This is required for correctness when assigning non-POD structures in C++. 1686 void EmitAggregateAssign(Address DestPtr, Address SrcPtr, 1687 QualType EltTy) { 1688 bool IsVolatile = hasVolatileMember(EltTy); 1689 EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, true); 1690 } 1691 1692 void EmitAggregateCopyCtor(Address DestPtr, Address SrcPtr, 1693 QualType DestTy, QualType SrcTy) { 1694 EmitAggregateCopy(DestPtr, SrcPtr, SrcTy, /*IsVolatile=*/false, 1695 /*IsAssignment=*/false); 1696 } 1697 1698 /// EmitAggregateCopy - Emit an aggregate copy. 1699 /// 1700 /// \param isVolatile - True iff either the source or the destination is 1701 /// volatile. 1702 /// \param isAssignment - If false, allow padding to be copied. This often 1703 /// yields more efficient. 1704 void EmitAggregateCopy(Address DestPtr, Address SrcPtr, 1705 QualType EltTy, bool isVolatile=false, 1706 bool isAssignment = false); 1707 1708 /// GetAddrOfLocalVar - Return the address of a local variable. 1709 Address GetAddrOfLocalVar(const VarDecl *VD) { 1710 auto it = LocalDeclMap.find(VD); 1711 assert(it != LocalDeclMap.end() && 1712 "Invalid argument to GetAddrOfLocalVar(), no decl!"); 1713 return it->second; 1714 } 1715 1716 /// getOpaqueLValueMapping - Given an opaque value expression (which 1717 /// must be mapped to an l-value), return its mapping. 1718 const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) { 1719 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 1720 1721 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 1722 it = OpaqueLValues.find(e); 1723 assert(it != OpaqueLValues.end() && "no mapping for opaque value!"); 1724 return it->second; 1725 } 1726 1727 /// getOpaqueRValueMapping - Given an opaque value expression (which 1728 /// must be mapped to an r-value), return its mapping. 1729 const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) { 1730 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 1731 1732 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 1733 it = OpaqueRValues.find(e); 1734 assert(it != OpaqueRValues.end() && "no mapping for opaque value!"); 1735 return it->second; 1736 } 1737 1738 /// getAccessedFieldNo - Given an encoded value and a result number, return 1739 /// the input field number being accessed. 1740 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 1741 1742 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 1743 llvm::BasicBlock *GetIndirectGotoBlock(); 1744 1745 /// EmitNullInitialization - Generate code to set a value of the given type to 1746 /// null, If the type contains data member pointers, they will be initialized 1747 /// to -1 in accordance with the Itanium C++ ABI. 1748 void EmitNullInitialization(Address DestPtr, QualType Ty); 1749 1750 /// Emits a call to an LLVM variable-argument intrinsic, either 1751 /// \c llvm.va_start or \c llvm.va_end. 1752 /// \param ArgValue A reference to the \c va_list as emitted by either 1753 /// \c EmitVAListRef or \c EmitMSVAListRef. 1754 /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise, 1755 /// calls \c llvm.va_end. 1756 llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart); 1757 1758 /// Generate code to get an argument from the passed in pointer 1759 /// and update it accordingly. 1760 /// \param VE The \c VAArgExpr for which to generate code. 1761 /// \param VAListAddr Receives a reference to the \c va_list as emitted by 1762 /// either \c EmitVAListRef or \c EmitMSVAListRef. 1763 /// \returns A pointer to the argument. 1764 // FIXME: We should be able to get rid of this method and use the va_arg 1765 // instruction in LLVM instead once it works well enough. 1766 Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr); 1767 1768 /// emitArrayLength - Compute the length of an array, even if it's a 1769 /// VLA, and drill down to the base element type. 1770 llvm::Value *emitArrayLength(const ArrayType *arrayType, 1771 QualType &baseType, 1772 Address &addr); 1773 1774 /// EmitVLASize - Capture all the sizes for the VLA expressions in 1775 /// the given variably-modified type and store them in the VLASizeMap. 1776 /// 1777 /// This function can be called with a null (unreachable) insert point. 1778 void EmitVariablyModifiedType(QualType Ty); 1779 1780 /// getVLASize - Returns an LLVM value that corresponds to the size, 1781 /// in non-variably-sized elements, of a variable length array type, 1782 /// plus that largest non-variably-sized element type. Assumes that 1783 /// the type has already been emitted with EmitVariablyModifiedType. 1784 std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla); 1785 std::pair<llvm::Value*,QualType> getVLASize(QualType vla); 1786 1787 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 1788 /// generating code for an C++ member function. 1789 llvm::Value *LoadCXXThis() { 1790 assert(CXXThisValue && "no 'this' value for this function"); 1791 return CXXThisValue; 1792 } 1793 Address LoadCXXThisAddress(); 1794 1795 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 1796 /// virtual bases. 1797 // FIXME: Every place that calls LoadCXXVTT is something 1798 // that needs to be abstracted properly. 1799 llvm::Value *LoadCXXVTT() { 1800 assert(CXXStructorImplicitParamValue && "no VTT value for this function"); 1801 return CXXStructorImplicitParamValue; 1802 } 1803 1804 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 1805 /// complete class to the given direct base. 1806 Address 1807 GetAddressOfDirectBaseInCompleteClass(Address Value, 1808 const CXXRecordDecl *Derived, 1809 const CXXRecordDecl *Base, 1810 bool BaseIsVirtual); 1811 1812 static bool ShouldNullCheckClassCastValue(const CastExpr *Cast); 1813 1814 /// GetAddressOfBaseClass - This function will add the necessary delta to the 1815 /// load of 'this' and returns address of the base class. 1816 Address GetAddressOfBaseClass(Address Value, 1817 const CXXRecordDecl *Derived, 1818 CastExpr::path_const_iterator PathBegin, 1819 CastExpr::path_const_iterator PathEnd, 1820 bool NullCheckValue, SourceLocation Loc); 1821 1822 Address GetAddressOfDerivedClass(Address Value, 1823 const CXXRecordDecl *Derived, 1824 CastExpr::path_const_iterator PathBegin, 1825 CastExpr::path_const_iterator PathEnd, 1826 bool NullCheckValue); 1827 1828 /// GetVTTParameter - Return the VTT parameter that should be passed to a 1829 /// base constructor/destructor with virtual bases. 1830 /// FIXME: VTTs are Itanium ABI-specific, so the definition should move 1831 /// to ItaniumCXXABI.cpp together with all the references to VTT. 1832 llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase, 1833 bool Delegating); 1834 1835 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 1836 CXXCtorType CtorType, 1837 const FunctionArgList &Args, 1838 SourceLocation Loc); 1839 // It's important not to confuse this and the previous function. Delegating 1840 // constructors are the C++0x feature. The constructor delegate optimization 1841 // is used to reduce duplication in the base and complete consturctors where 1842 // they are substantially the same. 1843 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 1844 const FunctionArgList &Args); 1845 1846 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 1847 bool ForVirtualBase, bool Delegating, 1848 Address This, const CXXConstructExpr *E); 1849 1850 /// Emit assumption load for all bases. Requires to be be called only on 1851 /// most-derived class and not under construction of the object. 1852 void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This); 1853 1854 /// Emit assumption that vptr load == global vtable. 1855 void EmitVTableAssumptionLoad(const VPtr &vptr, Address This); 1856 1857 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 1858 Address This, Address Src, 1859 const CXXConstructExpr *E); 1860 1861 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 1862 const ConstantArrayType *ArrayTy, 1863 Address ArrayPtr, 1864 const CXXConstructExpr *E, 1865 bool ZeroInitialization = false); 1866 1867 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 1868 llvm::Value *NumElements, 1869 Address ArrayPtr, 1870 const CXXConstructExpr *E, 1871 bool ZeroInitialization = false); 1872 1873 static Destroyer destroyCXXObject; 1874 1875 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 1876 bool ForVirtualBase, bool Delegating, 1877 Address This); 1878 1879 void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, 1880 llvm::Type *ElementTy, Address NewPtr, 1881 llvm::Value *NumElements, 1882 llvm::Value *AllocSizeWithoutCookie); 1883 1884 void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, 1885 Address Ptr); 1886 1887 llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr); 1888 void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr); 1889 1890 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 1891 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 1892 1893 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 1894 QualType DeleteTy); 1895 1896 RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 1897 const Expr *Arg, bool IsDelete); 1898 1899 llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E); 1900 llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE); 1901 Address EmitCXXUuidofExpr(const CXXUuidofExpr *E); 1902 1903 /// \brief Situations in which we might emit a check for the suitability of a 1904 /// pointer or glvalue. 1905 enum TypeCheckKind { 1906 /// Checking the operand of a load. Must be suitably sized and aligned. 1907 TCK_Load, 1908 /// Checking the destination of a store. Must be suitably sized and aligned. 1909 TCK_Store, 1910 /// Checking the bound value in a reference binding. Must be suitably sized 1911 /// and aligned, but is not required to refer to an object (until the 1912 /// reference is used), per core issue 453. 1913 TCK_ReferenceBinding, 1914 /// Checking the object expression in a non-static data member access. Must 1915 /// be an object within its lifetime. 1916 TCK_MemberAccess, 1917 /// Checking the 'this' pointer for a call to a non-static member function. 1918 /// Must be an object within its lifetime. 1919 TCK_MemberCall, 1920 /// Checking the 'this' pointer for a constructor call. 1921 TCK_ConstructorCall, 1922 /// Checking the operand of a static_cast to a derived pointer type. Must be 1923 /// null or an object within its lifetime. 1924 TCK_DowncastPointer, 1925 /// Checking the operand of a static_cast to a derived reference type. Must 1926 /// be an object within its lifetime. 1927 TCK_DowncastReference, 1928 /// Checking the operand of a cast to a base object. Must be suitably sized 1929 /// and aligned. 1930 TCK_Upcast, 1931 /// Checking the operand of a cast to a virtual base object. Must be an 1932 /// object within its lifetime. 1933 TCK_UpcastToVirtualBase 1934 }; 1935 1936 /// \brief Whether any type-checking sanitizers are enabled. If \c false, 1937 /// calls to EmitTypeCheck can be skipped. 1938 bool sanitizePerformTypeCheck() const; 1939 1940 /// \brief Emit a check that \p V is the address of storage of the 1941 /// appropriate size and alignment for an object of type \p Type. 1942 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, 1943 QualType Type, CharUnits Alignment = CharUnits::Zero(), 1944 bool SkipNullCheck = false); 1945 1946 /// \brief Emit a check that \p Base points into an array object, which 1947 /// we can access at index \p Index. \p Accessed should be \c false if we 1948 /// this expression is used as an lvalue, for instance in "&Arr[Idx]". 1949 void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, 1950 QualType IndexType, bool Accessed); 1951 1952 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 1953 bool isInc, bool isPre); 1954 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 1955 bool isInc, bool isPre); 1956 1957 void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment, 1958 llvm::Value *OffsetValue = nullptr) { 1959 Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment, 1960 OffsetValue); 1961 } 1962 1963 //===--------------------------------------------------------------------===// 1964 // Declaration Emission 1965 //===--------------------------------------------------------------------===// 1966 1967 /// EmitDecl - Emit a declaration. 1968 /// 1969 /// This function can be called with a null (unreachable) insert point. 1970 void EmitDecl(const Decl &D); 1971 1972 /// EmitVarDecl - Emit a local variable declaration. 1973 /// 1974 /// This function can be called with a null (unreachable) insert point. 1975 void EmitVarDecl(const VarDecl &D); 1976 1977 void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue, 1978 bool capturedByInit); 1979 void EmitScalarInit(llvm::Value *init, LValue lvalue); 1980 1981 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 1982 llvm::Value *Address); 1983 1984 /// \brief Determine whether the given initializer is trivial in the sense 1985 /// that it requires no code to be generated. 1986 bool isTrivialInitializer(const Expr *Init); 1987 1988 /// EmitAutoVarDecl - Emit an auto variable declaration. 1989 /// 1990 /// This function can be called with a null (unreachable) insert point. 1991 void EmitAutoVarDecl(const VarDecl &D); 1992 1993 class AutoVarEmission { 1994 friend class CodeGenFunction; 1995 1996 const VarDecl *Variable; 1997 1998 /// The address of the alloca. Invalid if the variable was emitted 1999 /// as a global constant. 2000 Address Addr; 2001 2002 llvm::Value *NRVOFlag; 2003 2004 /// True if the variable is a __block variable. 2005 bool IsByRef; 2006 2007 /// True if the variable is of aggregate type and has a constant 2008 /// initializer. 2009 bool IsConstantAggregate; 2010 2011 /// Non-null if we should use lifetime annotations. 2012 llvm::Value *SizeForLifetimeMarkers; 2013 2014 struct Invalid {}; 2015 AutoVarEmission(Invalid) : Variable(nullptr), Addr(Address::invalid()) {} 2016 2017 AutoVarEmission(const VarDecl &variable) 2018 : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr), 2019 IsByRef(false), IsConstantAggregate(false), 2020 SizeForLifetimeMarkers(nullptr) {} 2021 2022 bool wasEmittedAsGlobal() const { return !Addr.isValid(); } 2023 2024 public: 2025 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 2026 2027 bool useLifetimeMarkers() const { 2028 return SizeForLifetimeMarkers != nullptr; 2029 } 2030 llvm::Value *getSizeForLifetimeMarkers() const { 2031 assert(useLifetimeMarkers()); 2032 return SizeForLifetimeMarkers; 2033 } 2034 2035 /// Returns the raw, allocated address, which is not necessarily 2036 /// the address of the object itself. 2037 Address getAllocatedAddress() const { 2038 return Addr; 2039 } 2040 2041 /// Returns the address of the object within this declaration. 2042 /// Note that this does not chase the forwarding pointer for 2043 /// __block decls. 2044 Address getObjectAddress(CodeGenFunction &CGF) const { 2045 if (!IsByRef) return Addr; 2046 2047 return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false); 2048 } 2049 }; 2050 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 2051 void EmitAutoVarInit(const AutoVarEmission &emission); 2052 void EmitAutoVarCleanups(const AutoVarEmission &emission); 2053 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 2054 QualType::DestructionKind dtorKind); 2055 2056 void EmitStaticVarDecl(const VarDecl &D, 2057 llvm::GlobalValue::LinkageTypes Linkage); 2058 2059 class ParamValue { 2060 llvm::Value *Value; 2061 unsigned Alignment; 2062 ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {} 2063 public: 2064 static ParamValue forDirect(llvm::Value *value) { 2065 return ParamValue(value, 0); 2066 } 2067 static ParamValue forIndirect(Address addr) { 2068 assert(!addr.getAlignment().isZero()); 2069 return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity()); 2070 } 2071 2072 bool isIndirect() const { return Alignment != 0; } 2073 llvm::Value *getAnyValue() const { return Value; } 2074 2075 llvm::Value *getDirectValue() const { 2076 assert(!isIndirect()); 2077 return Value; 2078 } 2079 2080 Address getIndirectAddress() const { 2081 assert(isIndirect()); 2082 return Address(Value, CharUnits::fromQuantity(Alignment)); 2083 } 2084 }; 2085 2086 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 2087 void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo); 2088 2089 /// protectFromPeepholes - Protect a value that we're intending to 2090 /// store to the side, but which will probably be used later, from 2091 /// aggressive peepholing optimizations that might delete it. 2092 /// 2093 /// Pass the result to unprotectFromPeepholes to declare that 2094 /// protection is no longer required. 2095 /// 2096 /// There's no particular reason why this shouldn't apply to 2097 /// l-values, it's just that no existing peepholes work on pointers. 2098 PeepholeProtection protectFromPeepholes(RValue rvalue); 2099 void unprotectFromPeepholes(PeepholeProtection protection); 2100 2101 //===--------------------------------------------------------------------===// 2102 // Statement Emission 2103 //===--------------------------------------------------------------------===// 2104 2105 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 2106 void EmitStopPoint(const Stmt *S); 2107 2108 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 2109 /// this function even if there is no current insertion point. 2110 /// 2111 /// This function may clear the current insertion point; callers should use 2112 /// EnsureInsertPoint if they wish to subsequently generate code without first 2113 /// calling EmitBlock, EmitBranch, or EmitStmt. 2114 void EmitStmt(const Stmt *S); 2115 2116 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 2117 /// necessarily require an insertion point or debug information; typically 2118 /// because the statement amounts to a jump or a container of other 2119 /// statements. 2120 /// 2121 /// \return True if the statement was handled. 2122 bool EmitSimpleStmt(const Stmt *S); 2123 2124 Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 2125 AggValueSlot AVS = AggValueSlot::ignored()); 2126 Address EmitCompoundStmtWithoutScope(const CompoundStmt &S, 2127 bool GetLast = false, 2128 AggValueSlot AVS = 2129 AggValueSlot::ignored()); 2130 2131 /// EmitLabel - Emit the block for the given label. It is legal to call this 2132 /// function even if there is no current insertion point. 2133 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 2134 2135 void EmitLabelStmt(const LabelStmt &S); 2136 void EmitAttributedStmt(const AttributedStmt &S); 2137 void EmitGotoStmt(const GotoStmt &S); 2138 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 2139 void EmitIfStmt(const IfStmt &S); 2140 2141 void EmitWhileStmt(const WhileStmt &S, 2142 ArrayRef<const Attr *> Attrs = None); 2143 void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None); 2144 void EmitForStmt(const ForStmt &S, 2145 ArrayRef<const Attr *> Attrs = None); 2146 void EmitReturnStmt(const ReturnStmt &S); 2147 void EmitDeclStmt(const DeclStmt &S); 2148 void EmitBreakStmt(const BreakStmt &S); 2149 void EmitContinueStmt(const ContinueStmt &S); 2150 void EmitSwitchStmt(const SwitchStmt &S); 2151 void EmitDefaultStmt(const DefaultStmt &S); 2152 void EmitCaseStmt(const CaseStmt &S); 2153 void EmitCaseStmtRange(const CaseStmt &S); 2154 void EmitAsmStmt(const AsmStmt &S); 2155 2156 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 2157 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 2158 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 2159 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 2160 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 2161 2162 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 2163 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 2164 2165 void EmitCXXTryStmt(const CXXTryStmt &S); 2166 void EmitSEHTryStmt(const SEHTryStmt &S); 2167 void EmitSEHLeaveStmt(const SEHLeaveStmt &S); 2168 void EnterSEHTryStmt(const SEHTryStmt &S); 2169 void ExitSEHTryStmt(const SEHTryStmt &S); 2170 2171 void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter, 2172 const Stmt *OutlinedStmt); 2173 2174 llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF, 2175 const SEHExceptStmt &Except); 2176 2177 llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF, 2178 const SEHFinallyStmt &Finally); 2179 2180 void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF, 2181 llvm::Value *ParentFP, 2182 llvm::Value *EntryEBP); 2183 llvm::Value *EmitSEHExceptionCode(); 2184 llvm::Value *EmitSEHExceptionInfo(); 2185 llvm::Value *EmitSEHAbnormalTermination(); 2186 2187 /// Scan the outlined statement for captures from the parent function. For 2188 /// each capture, mark the capture as escaped and emit a call to 2189 /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap. 2190 void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt, 2191 bool IsFilter); 2192 2193 /// Recovers the address of a local in a parent function. ParentVar is the 2194 /// address of the variable used in the immediate parent function. It can 2195 /// either be an alloca or a call to llvm.localrecover if there are nested 2196 /// outlined functions. ParentFP is the frame pointer of the outermost parent 2197 /// frame. 2198 Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF, 2199 Address ParentVar, 2200 llvm::Value *ParentFP); 2201 2202 void EmitCXXForRangeStmt(const CXXForRangeStmt &S, 2203 ArrayRef<const Attr *> Attrs = None); 2204 2205 LValue InitCapturedStruct(const CapturedStmt &S); 2206 llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K); 2207 llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S); 2208 Address GenerateCapturedStmtArgument(const CapturedStmt &S); 2209 llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S); 2210 void GenerateOpenMPCapturedVars(const CapturedStmt &S, 2211 SmallVectorImpl<llvm::Value *> &CapturedVars); 2212 /// \brief Perform element by element copying of arrays with type \a 2213 /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure 2214 /// generated by \a CopyGen. 2215 /// 2216 /// \param DestAddr Address of the destination array. 2217 /// \param SrcAddr Address of the source array. 2218 /// \param OriginalType Type of destination and source arrays. 2219 /// \param CopyGen Copying procedure that copies value of single array element 2220 /// to another single array element. 2221 void EmitOMPAggregateAssign( 2222 Address DestAddr, Address SrcAddr, QualType OriginalType, 2223 const llvm::function_ref<void(Address, Address)> &CopyGen); 2224 /// \brief Emit proper copying of data from one variable to another. 2225 /// 2226 /// \param OriginalType Original type of the copied variables. 2227 /// \param DestAddr Destination address. 2228 /// \param SrcAddr Source address. 2229 /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has 2230 /// type of the base array element). 2231 /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of 2232 /// the base array element). 2233 /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a 2234 /// DestVD. 2235 void EmitOMPCopy(QualType OriginalType, 2236 Address DestAddr, Address SrcAddr, 2237 const VarDecl *DestVD, const VarDecl *SrcVD, 2238 const Expr *Copy); 2239 /// \brief Emit atomic update code for constructs: \a X = \a X \a BO \a E or 2240 /// \a X = \a E \a BO \a E. 2241 /// 2242 /// \param X Value to be updated. 2243 /// \param E Update value. 2244 /// \param BO Binary operation for update operation. 2245 /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update 2246 /// expression, false otherwise. 2247 /// \param AO Atomic ordering of the generated atomic instructions. 2248 /// \param CommonGen Code generator for complex expressions that cannot be 2249 /// expressed through atomicrmw instruction. 2250 /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was 2251 /// generated, <false, RValue::get(nullptr)> otherwise. 2252 std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr( 2253 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 2254 llvm::AtomicOrdering AO, SourceLocation Loc, 2255 const llvm::function_ref<RValue(RValue)> &CommonGen); 2256 bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 2257 OMPPrivateScope &PrivateScope); 2258 void EmitOMPPrivateClause(const OMPExecutableDirective &D, 2259 OMPPrivateScope &PrivateScope); 2260 /// \brief Emit code for copyin clause in \a D directive. The next code is 2261 /// generated at the start of outlined functions for directives: 2262 /// \code 2263 /// threadprivate_var1 = master_threadprivate_var1; 2264 /// operator=(threadprivate_var2, master_threadprivate_var2); 2265 /// ... 2266 /// __kmpc_barrier(&loc, global_tid); 2267 /// \endcode 2268 /// 2269 /// \param D OpenMP directive possibly with 'copyin' clause(s). 2270 /// \returns true if at least one copyin variable is found, false otherwise. 2271 bool EmitOMPCopyinClause(const OMPExecutableDirective &D); 2272 /// \brief Emit initial code for lastprivate variables. If some variable is 2273 /// not also firstprivate, then the default initialization is used. Otherwise 2274 /// initialization of this variable is performed by EmitOMPFirstprivateClause 2275 /// method. 2276 /// 2277 /// \param D Directive that may have 'lastprivate' directives. 2278 /// \param PrivateScope Private scope for capturing lastprivate variables for 2279 /// proper codegen in internal captured statement. 2280 /// 2281 /// \returns true if there is at least one lastprivate variable, false 2282 /// otherwise. 2283 bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D, 2284 OMPPrivateScope &PrivateScope); 2285 /// \brief Emit final copying of lastprivate values to original variables at 2286 /// the end of the worksharing or simd directive. 2287 /// 2288 /// \param D Directive that has at least one 'lastprivate' directives. 2289 /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if 2290 /// it is the last iteration of the loop code in associated directive, or to 2291 /// 'i1 false' otherwise. If this item is nullptr, no final check is required. 2292 void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D, 2293 llvm::Value *IsLastIterCond = nullptr); 2294 /// \brief Emit initial code for reduction variables. Creates reduction copies 2295 /// and initializes them with the values according to OpenMP standard. 2296 /// 2297 /// \param D Directive (possibly) with the 'reduction' clause. 2298 /// \param PrivateScope Private scope for capturing reduction variables for 2299 /// proper codegen in internal captured statement. 2300 /// 2301 void EmitOMPReductionClauseInit(const OMPExecutableDirective &D, 2302 OMPPrivateScope &PrivateScope); 2303 /// \brief Emit final update of reduction values to original variables at 2304 /// the end of the directive. 2305 /// 2306 /// \param D Directive that has at least one 'reduction' directives. 2307 void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D); 2308 /// \brief Emit initial code for linear variables. Creates private copies 2309 /// and initializes them with the values according to OpenMP standard. 2310 /// 2311 /// \param D Directive (possibly) with the 'linear' clause. 2312 void EmitOMPLinearClauseInit(const OMPLoopDirective &D); 2313 2314 void EmitOMPParallelDirective(const OMPParallelDirective &S); 2315 void EmitOMPSimdDirective(const OMPSimdDirective &S); 2316 void EmitOMPForDirective(const OMPForDirective &S); 2317 void EmitOMPForSimdDirective(const OMPForSimdDirective &S); 2318 void EmitOMPSectionsDirective(const OMPSectionsDirective &S); 2319 void EmitOMPSectionDirective(const OMPSectionDirective &S); 2320 void EmitOMPSingleDirective(const OMPSingleDirective &S); 2321 void EmitOMPMasterDirective(const OMPMasterDirective &S); 2322 void EmitOMPCriticalDirective(const OMPCriticalDirective &S); 2323 void EmitOMPParallelForDirective(const OMPParallelForDirective &S); 2324 void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S); 2325 void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S); 2326 void EmitOMPTaskDirective(const OMPTaskDirective &S); 2327 void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S); 2328 void EmitOMPBarrierDirective(const OMPBarrierDirective &S); 2329 void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S); 2330 void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S); 2331 void EmitOMPFlushDirective(const OMPFlushDirective &S); 2332 void EmitOMPOrderedDirective(const OMPOrderedDirective &S); 2333 void EmitOMPAtomicDirective(const OMPAtomicDirective &S); 2334 void EmitOMPTargetDirective(const OMPTargetDirective &S); 2335 void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S); 2336 void EmitOMPTeamsDirective(const OMPTeamsDirective &S); 2337 void 2338 EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S); 2339 void EmitOMPCancelDirective(const OMPCancelDirective &S); 2340 void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S); 2341 void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S); 2342 void EmitOMPDistributeDirective(const OMPDistributeDirective &S); 2343 2344 /// \brief Emit inner loop of the worksharing/simd construct. 2345 /// 2346 /// \param S Directive, for which the inner loop must be emitted. 2347 /// \param RequiresCleanup true, if directive has some associated private 2348 /// variables. 2349 /// \param LoopCond Bollean condition for loop continuation. 2350 /// \param IncExpr Increment expression for loop control variable. 2351 /// \param BodyGen Generator for the inner body of the inner loop. 2352 /// \param PostIncGen Genrator for post-increment code (required for ordered 2353 /// loop directvies). 2354 void EmitOMPInnerLoop( 2355 const Stmt &S, bool RequiresCleanup, const Expr *LoopCond, 2356 const Expr *IncExpr, 2357 const llvm::function_ref<void(CodeGenFunction &)> &BodyGen, 2358 const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen); 2359 2360 JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind); 2361 2362 private: 2363 2364 /// Helpers for the OpenMP loop directives. 2365 void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit); 2366 void EmitOMPSimdInit(const OMPLoopDirective &D); 2367 void EmitOMPSimdFinal(const OMPLoopDirective &D); 2368 /// \brief Emit code for the worksharing loop-based directive. 2369 /// \return true, if this construct has any lastprivate clause, false - 2370 /// otherwise. 2371 bool EmitOMPWorksharingLoop(const OMPLoopDirective &S); 2372 void EmitOMPForOuterLoop(OpenMPScheduleClauseKind ScheduleKind, 2373 const OMPLoopDirective &S, 2374 OMPPrivateScope &LoopScope, bool Ordered, 2375 Address LB, Address UB, Address ST, 2376 Address IL, llvm::Value *Chunk); 2377 /// \brief Emit code for sections directive. 2378 OpenMPDirectiveKind EmitSections(const OMPExecutableDirective &S); 2379 2380 public: 2381 2382 //===--------------------------------------------------------------------===// 2383 // LValue Expression Emission 2384 //===--------------------------------------------------------------------===// 2385 2386 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 2387 RValue GetUndefRValue(QualType Ty); 2388 2389 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 2390 /// and issue an ErrorUnsupported style diagnostic (using the 2391 /// provided Name). 2392 RValue EmitUnsupportedRValue(const Expr *E, 2393 const char *Name); 2394 2395 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 2396 /// an ErrorUnsupported style diagnostic (using the provided Name). 2397 LValue EmitUnsupportedLValue(const Expr *E, 2398 const char *Name); 2399 2400 /// EmitLValue - Emit code to compute a designator that specifies the location 2401 /// of the expression. 2402 /// 2403 /// This can return one of two things: a simple address or a bitfield 2404 /// reference. In either case, the LLVM Value* in the LValue structure is 2405 /// guaranteed to be an LLVM pointer type. 2406 /// 2407 /// If this returns a bitfield reference, nothing about the pointee type of 2408 /// the LLVM value is known: For example, it may not be a pointer to an 2409 /// integer. 2410 /// 2411 /// If this returns a normal address, and if the lvalue's C type is fixed 2412 /// size, this method guarantees that the returned pointer type will point to 2413 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 2414 /// variable length type, this is not possible. 2415 /// 2416 LValue EmitLValue(const Expr *E); 2417 2418 /// \brief Same as EmitLValue but additionally we generate checking code to 2419 /// guard against undefined behavior. This is only suitable when we know 2420 /// that the address will be used to access the object. 2421 LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK); 2422 2423 RValue convertTempToRValue(Address addr, QualType type, 2424 SourceLocation Loc); 2425 2426 void EmitAtomicInit(Expr *E, LValue lvalue); 2427 2428 bool LValueIsSuitableForInlineAtomic(LValue Src); 2429 bool typeIsSuitableForInlineAtomic(QualType Ty, bool IsVolatile) const; 2430 2431 RValue EmitAtomicLoad(LValue LV, SourceLocation SL, 2432 AggValueSlot Slot = AggValueSlot::ignored()); 2433 2434 RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc, 2435 llvm::AtomicOrdering AO, bool IsVolatile = false, 2436 AggValueSlot slot = AggValueSlot::ignored()); 2437 2438 void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit); 2439 2440 void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO, 2441 bool IsVolatile, bool isInit); 2442 2443 std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange( 2444 LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, 2445 llvm::AtomicOrdering Success = llvm::SequentiallyConsistent, 2446 llvm::AtomicOrdering Failure = llvm::SequentiallyConsistent, 2447 bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored()); 2448 2449 void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO, 2450 const llvm::function_ref<RValue(RValue)> &UpdateOp, 2451 bool IsVolatile); 2452 2453 /// EmitToMemory - Change a scalar value from its value 2454 /// representation to its in-memory representation. 2455 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 2456 2457 /// EmitFromMemory - Change a scalar value from its memory 2458 /// representation to its value representation. 2459 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 2460 2461 /// EmitLoadOfScalar - Load a scalar value from an address, taking 2462 /// care to appropriately convert from the memory representation to 2463 /// the LLVM value representation. 2464 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 2465 SourceLocation Loc, 2466 AlignmentSource AlignSource = 2467 AlignmentSource::Type, 2468 llvm::MDNode *TBAAInfo = nullptr, 2469 QualType TBAABaseTy = QualType(), 2470 uint64_t TBAAOffset = 0, 2471 bool isNontemporal = false); 2472 2473 /// EmitLoadOfScalar - Load a scalar value from an address, taking 2474 /// care to appropriately convert from the memory representation to 2475 /// the LLVM value representation. The l-value must be a simple 2476 /// l-value. 2477 llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc); 2478 2479 /// EmitStoreOfScalar - Store a scalar value to an address, taking 2480 /// care to appropriately convert from the memory representation to 2481 /// the LLVM value representation. 2482 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 2483 bool Volatile, QualType Ty, 2484 AlignmentSource AlignSource = AlignmentSource::Type, 2485 llvm::MDNode *TBAAInfo = nullptr, bool isInit = false, 2486 QualType TBAABaseTy = QualType(), 2487 uint64_t TBAAOffset = 0, bool isNontemporal = false); 2488 2489 /// EmitStoreOfScalar - Store a scalar value to an address, taking 2490 /// care to appropriately convert from the memory representation to 2491 /// the LLVM value representation. The l-value must be a simple 2492 /// l-value. The isInit flag indicates whether this is an initialization. 2493 /// If so, atomic qualifiers are ignored and the store is always non-atomic. 2494 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); 2495 2496 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 2497 /// this method emits the address of the lvalue, then loads the result as an 2498 /// rvalue, returning the rvalue. 2499 RValue EmitLoadOfLValue(LValue V, SourceLocation Loc); 2500 RValue EmitLoadOfExtVectorElementLValue(LValue V); 2501 RValue EmitLoadOfBitfieldLValue(LValue LV); 2502 RValue EmitLoadOfGlobalRegLValue(LValue LV); 2503 2504 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 2505 /// lvalue, where both are guaranteed to the have the same type, and that type 2506 /// is 'Ty'. 2507 void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false); 2508 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 2509 void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst); 2510 2511 /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints 2512 /// as EmitStoreThroughLValue. 2513 /// 2514 /// \param Result [out] - If non-null, this will be set to a Value* for the 2515 /// bit-field contents after the store, appropriate for use as the result of 2516 /// an assignment to the bit-field. 2517 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 2518 llvm::Value **Result=nullptr); 2519 2520 /// Emit an l-value for an assignment (simple or compound) of complex type. 2521 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 2522 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 2523 LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 2524 llvm::Value *&Result); 2525 2526 // Note: only available for agg return types 2527 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 2528 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 2529 // Note: only available for agg return types 2530 LValue EmitCallExprLValue(const CallExpr *E); 2531 // Note: only available for agg return types 2532 LValue EmitVAArgExprLValue(const VAArgExpr *E); 2533 LValue EmitDeclRefLValue(const DeclRefExpr *E); 2534 LValue EmitStringLiteralLValue(const StringLiteral *E); 2535 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 2536 LValue EmitPredefinedLValue(const PredefinedExpr *E); 2537 LValue EmitUnaryOpLValue(const UnaryOperator *E); 2538 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 2539 bool Accessed = false); 2540 LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 2541 bool IsLowerBound = true); 2542 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 2543 LValue EmitMemberExpr(const MemberExpr *E); 2544 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 2545 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 2546 LValue EmitInitListLValue(const InitListExpr *E); 2547 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 2548 LValue EmitCastLValue(const CastExpr *E); 2549 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 2550 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 2551 2552 Address EmitExtVectorElementLValue(LValue V); 2553 2554 RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc); 2555 2556 Address EmitArrayToPointerDecay(const Expr *Array, 2557 AlignmentSource *AlignSource = nullptr); 2558 2559 class ConstantEmission { 2560 llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; 2561 ConstantEmission(llvm::Constant *C, bool isReference) 2562 : ValueAndIsReference(C, isReference) {} 2563 public: 2564 ConstantEmission() {} 2565 static ConstantEmission forReference(llvm::Constant *C) { 2566 return ConstantEmission(C, true); 2567 } 2568 static ConstantEmission forValue(llvm::Constant *C) { 2569 return ConstantEmission(C, false); 2570 } 2571 2572 explicit operator bool() const { 2573 return ValueAndIsReference.getOpaqueValue() != nullptr; 2574 } 2575 2576 bool isReference() const { return ValueAndIsReference.getInt(); } 2577 LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { 2578 assert(isReference()); 2579 return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), 2580 refExpr->getType()); 2581 } 2582 2583 llvm::Constant *getValue() const { 2584 assert(!isReference()); 2585 return ValueAndIsReference.getPointer(); 2586 } 2587 }; 2588 2589 ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); 2590 2591 RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, 2592 AggValueSlot slot = AggValueSlot::ignored()); 2593 LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); 2594 2595 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 2596 const ObjCIvarDecl *Ivar); 2597 LValue EmitLValueForField(LValue Base, const FieldDecl* Field); 2598 LValue EmitLValueForLambdaField(const FieldDecl *Field); 2599 2600 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 2601 /// if the Field is a reference, this will return the address of the reference 2602 /// and not the address of the value stored in the reference. 2603 LValue EmitLValueForFieldInitialization(LValue Base, 2604 const FieldDecl* Field); 2605 2606 LValue EmitLValueForIvar(QualType ObjectTy, 2607 llvm::Value* Base, const ObjCIvarDecl *Ivar, 2608 unsigned CVRQualifiers); 2609 2610 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 2611 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 2612 LValue EmitLambdaLValue(const LambdaExpr *E); 2613 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 2614 LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E); 2615 2616 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 2617 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 2618 LValue EmitStmtExprLValue(const StmtExpr *E); 2619 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 2620 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 2621 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init); 2622 2623 //===--------------------------------------------------------------------===// 2624 // Scalar Expression Emission 2625 //===--------------------------------------------------------------------===// 2626 2627 /// EmitCall - Generate a call of the given function, expecting the given 2628 /// result type, and using the given argument list which specifies both the 2629 /// LLVM arguments and the types they were derived from. 2630 RValue EmitCall(const CGFunctionInfo &FnInfo, llvm::Value *Callee, 2631 ReturnValueSlot ReturnValue, const CallArgList &Args, 2632 CGCalleeInfo CalleeInfo = CGCalleeInfo(), 2633 llvm::Instruction **callOrInvoke = nullptr); 2634 2635 RValue EmitCall(QualType FnType, llvm::Value *Callee, const CallExpr *E, 2636 ReturnValueSlot ReturnValue, 2637 CGCalleeInfo CalleeInfo = CGCalleeInfo(), 2638 llvm::Value *Chain = nullptr); 2639 RValue EmitCallExpr(const CallExpr *E, 2640 ReturnValueSlot ReturnValue = ReturnValueSlot()); 2641 2642 void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl); 2643 2644 llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, 2645 const Twine &name = ""); 2646 llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, 2647 ArrayRef<llvm::Value*> args, 2648 const Twine &name = ""); 2649 llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, 2650 const Twine &name = ""); 2651 llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, 2652 ArrayRef<llvm::Value*> args, 2653 const Twine &name = ""); 2654 2655 llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, 2656 ArrayRef<llvm::Value *> Args, 2657 const Twine &Name = ""); 2658 llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, 2659 ArrayRef<llvm::Value*> args, 2660 const Twine &name = ""); 2661 llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, 2662 const Twine &name = ""); 2663 void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee, 2664 ArrayRef<llvm::Value*> args); 2665 2666 llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 2667 NestedNameSpecifier *Qual, 2668 llvm::Type *Ty); 2669 2670 llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 2671 CXXDtorType Type, 2672 const CXXRecordDecl *RD); 2673 2674 RValue 2675 EmitCXXMemberOrOperatorCall(const CXXMethodDecl *MD, llvm::Value *Callee, 2676 ReturnValueSlot ReturnValue, llvm::Value *This, 2677 llvm::Value *ImplicitParam, 2678 QualType ImplicitParamTy, const CallExpr *E); 2679 RValue EmitCXXStructorCall(const CXXMethodDecl *MD, llvm::Value *Callee, 2680 ReturnValueSlot ReturnValue, llvm::Value *This, 2681 llvm::Value *ImplicitParam, 2682 QualType ImplicitParamTy, const CallExpr *E, 2683 StructorType Type); 2684 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 2685 ReturnValueSlot ReturnValue); 2686 RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE, 2687 const CXXMethodDecl *MD, 2688 ReturnValueSlot ReturnValue, 2689 bool HasQualifier, 2690 NestedNameSpecifier *Qualifier, 2691 bool IsArrow, const Expr *Base); 2692 // Compute the object pointer. 2693 Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base, 2694 llvm::Value *memberPtr, 2695 const MemberPointerType *memberPtrType, 2696 AlignmentSource *AlignSource = nullptr); 2697 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 2698 ReturnValueSlot ReturnValue); 2699 2700 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 2701 const CXXMethodDecl *MD, 2702 ReturnValueSlot ReturnValue); 2703 2704 RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 2705 ReturnValueSlot ReturnValue); 2706 2707 2708 RValue EmitBuiltinExpr(const FunctionDecl *FD, 2709 unsigned BuiltinID, const CallExpr *E, 2710 ReturnValueSlot ReturnValue); 2711 2712 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 2713 2714 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 2715 /// is unhandled by the current target. 2716 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2717 2718 llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty, 2719 const llvm::CmpInst::Predicate Fp, 2720 const llvm::CmpInst::Predicate Ip, 2721 const llvm::Twine &Name = ""); 2722 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2723 2724 llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID, 2725 unsigned LLVMIntrinsic, 2726 unsigned AltLLVMIntrinsic, 2727 const char *NameHint, 2728 unsigned Modifier, 2729 const CallExpr *E, 2730 SmallVectorImpl<llvm::Value *> &Ops, 2731 Address PtrOp0, Address PtrOp1); 2732 llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID, 2733 unsigned Modifier, llvm::Type *ArgTy, 2734 const CallExpr *E); 2735 llvm::Value *EmitNeonCall(llvm::Function *F, 2736 SmallVectorImpl<llvm::Value*> &O, 2737 const char *name, 2738 unsigned shift = 0, bool rightshift = false); 2739 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 2740 llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, 2741 bool negateForRightShift); 2742 llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt, 2743 llvm::Type *Ty, bool usgn, const char *name); 2744 llvm::Value *vectorWrapScalar16(llvm::Value *Op); 2745 llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2746 2747 llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); 2748 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2749 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2750 llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2751 llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2752 llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2753 llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID, 2754 const CallExpr *E); 2755 2756 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 2757 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 2758 llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); 2759 llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); 2760 llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); 2761 llvm::Value *EmitObjCCollectionLiteral(const Expr *E, 2762 const ObjCMethodDecl *MethodWithObjects); 2763 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 2764 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 2765 ReturnValueSlot Return = ReturnValueSlot()); 2766 2767 /// Retrieves the default cleanup kind for an ARC cleanup. 2768 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. 2769 CleanupKind getARCCleanupKind() { 2770 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 2771 ? NormalAndEHCleanup : NormalCleanup; 2772 } 2773 2774 // ARC primitives. 2775 void EmitARCInitWeak(Address addr, llvm::Value *value); 2776 void EmitARCDestroyWeak(Address addr); 2777 llvm::Value *EmitARCLoadWeak(Address addr); 2778 llvm::Value *EmitARCLoadWeakRetained(Address addr); 2779 llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored); 2780 void EmitARCCopyWeak(Address dst, Address src); 2781 void EmitARCMoveWeak(Address dst, Address src); 2782 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 2783 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 2784 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 2785 bool resultIgnored); 2786 llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value, 2787 bool resultIgnored); 2788 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 2789 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 2790 llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); 2791 void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise); 2792 void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 2793 llvm::Value *EmitARCAutorelease(llvm::Value *value); 2794 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 2795 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 2796 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 2797 2798 std::pair<LValue,llvm::Value*> 2799 EmitARCStoreAutoreleasing(const BinaryOperator *e); 2800 std::pair<LValue,llvm::Value*> 2801 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 2802 2803 llvm::Value *EmitObjCThrowOperand(const Expr *expr); 2804 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 2805 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 2806 2807 llvm::Value *EmitARCExtendBlockObject(const Expr *expr); 2808 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 2809 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 2810 2811 void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values); 2812 2813 static Destroyer destroyARCStrongImprecise; 2814 static Destroyer destroyARCStrongPrecise; 2815 static Destroyer destroyARCWeak; 2816 2817 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 2818 llvm::Value *EmitObjCAutoreleasePoolPush(); 2819 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 2820 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 2821 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 2822 2823 /// \brief Emits a reference binding to the passed in expression. 2824 RValue EmitReferenceBindingToExpr(const Expr *E); 2825 2826 //===--------------------------------------------------------------------===// 2827 // Expression Emission 2828 //===--------------------------------------------------------------------===// 2829 2830 // Expressions are broken into three classes: scalar, complex, aggregate. 2831 2832 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 2833 /// scalar type, returning the result. 2834 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 2835 2836 /// Emit a conversion from the specified type to the specified destination 2837 /// type, both of which are LLVM scalar types. 2838 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 2839 QualType DstTy, SourceLocation Loc); 2840 2841 /// Emit a conversion from the specified complex type to the specified 2842 /// destination type, where the destination type is an LLVM scalar type. 2843 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 2844 QualType DstTy, 2845 SourceLocation Loc); 2846 2847 /// EmitAggExpr - Emit the computation of the specified expression 2848 /// of aggregate type. The result is computed into the given slot, 2849 /// which may be null to indicate that the value is not needed. 2850 void EmitAggExpr(const Expr *E, AggValueSlot AS); 2851 2852 /// EmitAggExprToLValue - Emit the computation of the specified expression of 2853 /// aggregate type into a temporary LValue. 2854 LValue EmitAggExprToLValue(const Expr *E); 2855 2856 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 2857 /// make sure it survives garbage collection until this point. 2858 void EmitExtendGCLifetime(llvm::Value *object); 2859 2860 /// EmitComplexExpr - Emit the computation of the specified expression of 2861 /// complex type, returning the result. 2862 ComplexPairTy EmitComplexExpr(const Expr *E, 2863 bool IgnoreReal = false, 2864 bool IgnoreImag = false); 2865 2866 /// EmitComplexExprIntoLValue - Emit the given expression of complex 2867 /// type and place its result into the specified l-value. 2868 void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit); 2869 2870 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 2871 void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit); 2872 2873 /// EmitLoadOfComplex - Load a complex number from the specified l-value. 2874 ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc); 2875 2876 Address emitAddrOfRealComponent(Address complex, QualType complexType); 2877 Address emitAddrOfImagComponent(Address complex, QualType complexType); 2878 2879 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 2880 /// global variable that has already been created for it. If the initializer 2881 /// has a different type than GV does, this may free GV and return a different 2882 /// one. Otherwise it just returns GV. 2883 llvm::GlobalVariable * 2884 AddInitializerToStaticVarDecl(const VarDecl &D, 2885 llvm::GlobalVariable *GV); 2886 2887 2888 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 2889 /// variable with global storage. 2890 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr, 2891 bool PerformInit); 2892 2893 llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::Constant *Dtor, 2894 llvm::Constant *Addr); 2895 2896 /// Call atexit() with a function that passes the given argument to 2897 /// the given function. 2898 void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn, 2899 llvm::Constant *addr); 2900 2901 /// Emit code in this function to perform a guarded variable 2902 /// initialization. Guarded initializations are used when it's not 2903 /// possible to prove that an initialization will be done exactly 2904 /// once, e.g. with a static local variable or a static data member 2905 /// of a class template. 2906 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, 2907 bool PerformInit); 2908 2909 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 2910 /// variables. 2911 void GenerateCXXGlobalInitFunc(llvm::Function *Fn, 2912 ArrayRef<llvm::Function *> CXXThreadLocals, 2913 Address Guard = Address::invalid()); 2914 2915 /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global 2916 /// variables. 2917 void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn, 2918 const std::vector<std::pair<llvm::WeakVH, 2919 llvm::Constant*> > &DtorsAndObjects); 2920 2921 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 2922 const VarDecl *D, 2923 llvm::GlobalVariable *Addr, 2924 bool PerformInit); 2925 2926 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 2927 2928 void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp); 2929 2930 void enterFullExpression(const ExprWithCleanups *E) { 2931 if (E->getNumObjects() == 0) return; 2932 enterNonTrivialFullExpression(E); 2933 } 2934 void enterNonTrivialFullExpression(const ExprWithCleanups *E); 2935 2936 void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true); 2937 2938 void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest); 2939 2940 RValue EmitAtomicExpr(AtomicExpr *E); 2941 2942 //===--------------------------------------------------------------------===// 2943 // Annotations Emission 2944 //===--------------------------------------------------------------------===// 2945 2946 /// Emit an annotation call (intrinsic or builtin). 2947 llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn, 2948 llvm::Value *AnnotatedVal, 2949 StringRef AnnotationStr, 2950 SourceLocation Location); 2951 2952 /// Emit local annotations for the local variable V, declared by D. 2953 void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); 2954 2955 /// Emit field annotations for the given field & value. Returns the 2956 /// annotation result. 2957 Address EmitFieldAnnotations(const FieldDecl *D, Address V); 2958 2959 //===--------------------------------------------------------------------===// 2960 // Internal Helpers 2961 //===--------------------------------------------------------------------===// 2962 2963 /// ContainsLabel - Return true if the statement contains a label in it. If 2964 /// this statement is not executed normally, it not containing a label means 2965 /// that we can just remove the code. 2966 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 2967 2968 /// containsBreak - Return true if the statement contains a break out of it. 2969 /// If the statement (recursively) contains a switch or loop with a break 2970 /// inside of it, this is fine. 2971 static bool containsBreak(const Stmt *S); 2972 2973 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 2974 /// to a constant, or if it does but contains a label, return false. If it 2975 /// constant folds return true and set the boolean result in Result. 2976 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result); 2977 2978 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 2979 /// to a constant, or if it does but contains a label, return false. If it 2980 /// constant folds return true and set the folded value. 2981 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result); 2982 2983 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 2984 /// if statement) to the specified blocks. Based on the condition, this might 2985 /// try to simplify the codegen of the conditional based on the branch. 2986 /// TrueCount should be the number of times we expect the condition to 2987 /// evaluate to true based on PGO data. 2988 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 2989 llvm::BasicBlock *FalseBlock, uint64_t TrueCount); 2990 2991 /// \brief Emit a description of a type in a format suitable for passing to 2992 /// a runtime sanitizer handler. 2993 llvm::Constant *EmitCheckTypeDescriptor(QualType T); 2994 2995 /// \brief Convert a value into a format suitable for passing to a runtime 2996 /// sanitizer handler. 2997 llvm::Value *EmitCheckValue(llvm::Value *V); 2998 2999 /// \brief Emit a description of a source location in a format suitable for 3000 /// passing to a runtime sanitizer handler. 3001 llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc); 3002 3003 /// \brief Create a basic block that will call a handler function in a 3004 /// sanitizer runtime with the provided arguments, and create a conditional 3005 /// branch to it. 3006 void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 3007 StringRef CheckName, ArrayRef<llvm::Constant *> StaticArgs, 3008 ArrayRef<llvm::Value *> DynamicArgs); 3009 3010 /// \brief Create a basic block that will call the trap intrinsic, and emit a 3011 /// conditional branch to it, for the -ftrapv checks. 3012 void EmitTrapCheck(llvm::Value *Checked); 3013 3014 /// \brief Emit a call to trap or debugtrap and attach function attribute 3015 /// "trap-func-name" if specified. 3016 llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID); 3017 3018 /// \brief Create a check for a function parameter that may potentially be 3019 /// declared as non-null. 3020 void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc, 3021 const FunctionDecl *FD, unsigned ParmNum); 3022 3023 /// EmitCallArg - Emit a single call argument. 3024 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 3025 3026 /// EmitDelegateCallArg - We are performing a delegate call; that 3027 /// is, the current function is delegating to another one. Produce 3028 /// a r-value suitable for passing the given parameter. 3029 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param, 3030 SourceLocation loc); 3031 3032 /// SetFPAccuracy - Set the minimum required accuracy of the given floating 3033 /// point operation, expressed as the maximum relative error in ulp. 3034 void SetFPAccuracy(llvm::Value *Val, float Accuracy); 3035 3036 private: 3037 llvm::MDNode *getRangeForLoadFromType(QualType Ty); 3038 void EmitReturnOfRValue(RValue RV, QualType Ty); 3039 3040 void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New); 3041 3042 llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4> 3043 DeferredReplacements; 3044 3045 /// Set the address of a local variable. 3046 void setAddrOfLocalVar(const VarDecl *VD, Address Addr) { 3047 assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!"); 3048 LocalDeclMap.insert({VD, Addr}); 3049 } 3050 3051 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 3052 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 3053 /// 3054 /// \param AI - The first function argument of the expansion. 3055 void ExpandTypeFromArgs(QualType Ty, LValue Dst, 3056 SmallVectorImpl<llvm::Argument *>::iterator &AI); 3057 3058 /// ExpandTypeToArgs - Expand an RValue \arg RV, with the LLVM type for \arg 3059 /// Ty, into individual arguments on the provided vector \arg IRCallArgs, 3060 /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand. 3061 void ExpandTypeToArgs(QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy, 3062 SmallVectorImpl<llvm::Value *> &IRCallArgs, 3063 unsigned &IRCallArgPos); 3064 3065 llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info, 3066 const Expr *InputExpr, std::string &ConstraintStr); 3067 3068 llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 3069 LValue InputValue, QualType InputType, 3070 std::string &ConstraintStr, 3071 SourceLocation Loc); 3072 3073 /// \brief Attempts to statically evaluate the object size of E. If that 3074 /// fails, emits code to figure the size of E out for us. This is 3075 /// pass_object_size aware. 3076 llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type, 3077 llvm::IntegerType *ResType); 3078 3079 /// \brief Emits the size of E, as required by __builtin_object_size. This 3080 /// function is aware of pass_object_size parameters, and will act accordingly 3081 /// if E is a parameter with the pass_object_size attribute. 3082 llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type, 3083 llvm::IntegerType *ResType); 3084 3085 public: 3086 #ifndef NDEBUG 3087 // Determine whether the given argument is an Objective-C method 3088 // that may have type parameters in its signature. 3089 static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) { 3090 const DeclContext *dc = method->getDeclContext(); 3091 if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) { 3092 return classDecl->getTypeParamListAsWritten(); 3093 } 3094 3095 if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) { 3096 return catDecl->getTypeParamList(); 3097 } 3098 3099 return false; 3100 } 3101 3102 template<typename T> 3103 static bool isObjCMethodWithTypeParams(const T *) { return false; } 3104 #endif 3105 3106 /// EmitCallArgs - Emit call arguments for a function. 3107 template <typename T> 3108 void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo, 3109 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 3110 const FunctionDecl *CalleeDecl = nullptr, 3111 unsigned ParamsToSkip = 0) { 3112 SmallVector<QualType, 16> ArgTypes; 3113 CallExpr::const_arg_iterator Arg = ArgRange.begin(); 3114 3115 assert((ParamsToSkip == 0 || CallArgTypeInfo) && 3116 "Can't skip parameters if type info is not provided"); 3117 if (CallArgTypeInfo) { 3118 #ifndef NDEBUG 3119 bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo); 3120 #endif 3121 3122 // First, use the argument types that the type info knows about 3123 for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip, 3124 E = CallArgTypeInfo->param_type_end(); 3125 I != E; ++I, ++Arg) { 3126 assert(Arg != ArgRange.end() && "Running over edge of argument list!"); 3127 assert((isGenericMethod || 3128 ((*I)->isVariablyModifiedType() || 3129 (*I).getNonReferenceType()->isObjCRetainableType() || 3130 getContext() 3131 .getCanonicalType((*I).getNonReferenceType()) 3132 .getTypePtr() == 3133 getContext() 3134 .getCanonicalType((*Arg)->getType()) 3135 .getTypePtr())) && 3136 "type mismatch in call argument!"); 3137 ArgTypes.push_back(*I); 3138 } 3139 } 3140 3141 // Either we've emitted all the call args, or we have a call to variadic 3142 // function. 3143 assert((Arg == ArgRange.end() || !CallArgTypeInfo || 3144 CallArgTypeInfo->isVariadic()) && 3145 "Extra arguments in non-variadic function!"); 3146 3147 // If we still have any arguments, emit them using the type of the argument. 3148 for (auto *A : llvm::make_range(Arg, ArgRange.end())) 3149 ArgTypes.push_back(getVarArgType(A)); 3150 3151 EmitCallArgs(Args, ArgTypes, ArgRange, CalleeDecl, ParamsToSkip); 3152 } 3153 3154 void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes, 3155 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 3156 const FunctionDecl *CalleeDecl = nullptr, 3157 unsigned ParamsToSkip = 0); 3158 3159 /// EmitPointerWithAlignment - Given an expression with a pointer 3160 /// type, emit the value and compute our best estimate of the 3161 /// alignment of the pointee. 3162 /// 3163 /// Note that this function will conservatively fall back on the type 3164 /// when it doesn't 3165 /// 3166 /// \param Source - If non-null, this will be initialized with 3167 /// information about the source of the alignment. Note that this 3168 /// function will conservatively fall back on the type when it 3169 /// doesn't recognize the expression, which means that sometimes 3170 /// 3171 /// a worst-case One 3172 /// reasonable way to use this information is when there's a 3173 /// language guarantee that the pointer must be aligned to some 3174 /// stricter value, and we're simply trying to ensure that 3175 /// sufficiently obvious uses of under-aligned objects don't get 3176 /// miscompiled; for example, a placement new into the address of 3177 /// a local variable. In such a case, it's quite reasonable to 3178 /// just ignore the returned alignment when it isn't from an 3179 /// explicit source. 3180 Address EmitPointerWithAlignment(const Expr *Addr, 3181 AlignmentSource *Source = nullptr); 3182 3183 private: 3184 QualType getVarArgType(const Expr *Arg); 3185 3186 const TargetCodeGenInfo &getTargetHooks() const { 3187 return CGM.getTargetCodeGenInfo(); 3188 } 3189 3190 void EmitDeclMetadata(); 3191 3192 BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType, 3193 const AutoVarEmission &emission); 3194 3195 void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); 3196 3197 llvm::Value *GetValueForARMHint(unsigned BuiltinID); 3198 }; 3199 3200 /// Helper class with most of the code for saving a value for a 3201 /// conditional expression cleanup. 3202 struct DominatingLLVMValue { 3203 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 3204 3205 /// Answer whether the given value needs extra work to be saved. 3206 static bool needsSaving(llvm::Value *value) { 3207 // If it's not an instruction, we don't need to save. 3208 if (!isa<llvm::Instruction>(value)) return false; 3209 3210 // If it's an instruction in the entry block, we don't need to save. 3211 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 3212 return (block != &block->getParent()->getEntryBlock()); 3213 } 3214 3215 /// Try to save the given value. 3216 static saved_type save(CodeGenFunction &CGF, llvm::Value *value) { 3217 if (!needsSaving(value)) return saved_type(value, false); 3218 3219 // Otherwise, we need an alloca. 3220 auto align = CharUnits::fromQuantity( 3221 CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType())); 3222 Address alloca = 3223 CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save"); 3224 CGF.Builder.CreateStore(value, alloca); 3225 3226 return saved_type(alloca.getPointer(), true); 3227 } 3228 3229 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) { 3230 // If the value says it wasn't saved, trust that it's still dominating. 3231 if (!value.getInt()) return value.getPointer(); 3232 3233 // Otherwise, it should be an alloca instruction, as set up in save(). 3234 auto alloca = cast<llvm::AllocaInst>(value.getPointer()); 3235 return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlignment()); 3236 } 3237 }; 3238 3239 /// A partial specialization of DominatingValue for llvm::Values that 3240 /// might be llvm::Instructions. 3241 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 3242 typedef T *type; 3243 static type restore(CodeGenFunction &CGF, saved_type value) { 3244 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 3245 } 3246 }; 3247 3248 /// A specialization of DominatingValue for Address. 3249 template <> struct DominatingValue<Address> { 3250 typedef Address type; 3251 3252 struct saved_type { 3253 DominatingLLVMValue::saved_type SavedValue; 3254 CharUnits Alignment; 3255 }; 3256 3257 static bool needsSaving(type value) { 3258 return DominatingLLVMValue::needsSaving(value.getPointer()); 3259 } 3260 static saved_type save(CodeGenFunction &CGF, type value) { 3261 return { DominatingLLVMValue::save(CGF, value.getPointer()), 3262 value.getAlignment() }; 3263 } 3264 static type restore(CodeGenFunction &CGF, saved_type value) { 3265 return Address(DominatingLLVMValue::restore(CGF, value.SavedValue), 3266 value.Alignment); 3267 } 3268 }; 3269 3270 /// A specialization of DominatingValue for RValue. 3271 template <> struct DominatingValue<RValue> { 3272 typedef RValue type; 3273 class saved_type { 3274 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 3275 AggregateAddress, ComplexAddress }; 3276 3277 llvm::Value *Value; 3278 unsigned K : 3; 3279 unsigned Align : 29; 3280 saved_type(llvm::Value *v, Kind k, unsigned a = 0) 3281 : Value(v), K(k), Align(a) {} 3282 3283 public: 3284 static bool needsSaving(RValue value); 3285 static saved_type save(CodeGenFunction &CGF, RValue value); 3286 RValue restore(CodeGenFunction &CGF); 3287 3288 // implementations in CGCleanup.cpp 3289 }; 3290 3291 static bool needsSaving(type value) { 3292 return saved_type::needsSaving(value); 3293 } 3294 static saved_type save(CodeGenFunction &CGF, type value) { 3295 return saved_type::save(CGF, value); 3296 } 3297 static type restore(CodeGenFunction &CGF, saved_type value) { 3298 return value.restore(CGF); 3299 } 3300 }; 3301 3302 } // end namespace CodeGen 3303 } // end namespace clang 3304 3305 #endif 3306