1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the internal per-function state used for llvm translation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef CLANG_CODEGEN_CODEGENFUNCTION_H
15 #define CLANG_CODEGEN_CODEGENFUNCTION_H
16 
17 #include "CGBuilder.h"
18 #include "CGDebugInfo.h"
19 #include "CGValue.h"
20 #include "CodeGenModule.h"
21 #include "CodeGenPGO.h"
22 #include "EHScopeStack.h"
23 #include "clang/AST/CharUnits.h"
24 #include "clang/AST/ExprCXX.h"
25 #include "clang/AST/ExprObjC.h"
26 #include "clang/AST/Type.h"
27 #include "clang/Basic/ABI.h"
28 #include "clang/Basic/CapturedStmt.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/Frontend/CodeGenOptions.h"
31 #include "llvm/ADT/ArrayRef.h"
32 #include "llvm/ADT/DenseMap.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ValueHandle.h"
36 
37 namespace llvm {
38   class BasicBlock;
39   class LLVMContext;
40   class MDNode;
41   class Module;
42   class SwitchInst;
43   class Twine;
44   class Value;
45   class CallSite;
46 }
47 
48 namespace clang {
49   class ASTContext;
50   class BlockDecl;
51   class CXXDestructorDecl;
52   class CXXForRangeStmt;
53   class CXXTryStmt;
54   class Decl;
55   class LabelDecl;
56   class EnumConstantDecl;
57   class FunctionDecl;
58   class FunctionProtoType;
59   class LabelStmt;
60   class ObjCContainerDecl;
61   class ObjCInterfaceDecl;
62   class ObjCIvarDecl;
63   class ObjCMethodDecl;
64   class ObjCImplementationDecl;
65   class ObjCPropertyImplDecl;
66   class TargetInfo;
67   class TargetCodeGenInfo;
68   class VarDecl;
69   class ObjCForCollectionStmt;
70   class ObjCAtTryStmt;
71   class ObjCAtThrowStmt;
72   class ObjCAtSynchronizedStmt;
73   class ObjCAutoreleasePoolStmt;
74 
75 namespace CodeGen {
76   class CodeGenTypes;
77   class CGFunctionInfo;
78   class CGRecordLayout;
79   class CGBlockInfo;
80   class CGCXXABI;
81   class BlockFlags;
82   class BlockFieldFlags;
83 
84 /// The kind of evaluation to perform on values of a particular
85 /// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
86 /// CGExprAgg?
87 ///
88 /// TODO: should vectors maybe be split out into their own thing?
89 enum TypeEvaluationKind {
90   TEK_Scalar,
91   TEK_Complex,
92   TEK_Aggregate
93 };
94 
95 /// CodeGenFunction - This class organizes the per-function state that is used
96 /// while generating LLVM code.
97 class CodeGenFunction : public CodeGenTypeCache {
98   CodeGenFunction(const CodeGenFunction &) LLVM_DELETED_FUNCTION;
99   void operator=(const CodeGenFunction &) LLVM_DELETED_FUNCTION;
100 
101   friend class CGCXXABI;
102 public:
103   /// A jump destination is an abstract label, branching to which may
104   /// require a jump out through normal cleanups.
105   struct JumpDest {
106     JumpDest() : Block(0), ScopeDepth(), Index(0) {}
107     JumpDest(llvm::BasicBlock *Block,
108              EHScopeStack::stable_iterator Depth,
109              unsigned Index)
110       : Block(Block), ScopeDepth(Depth), Index(Index) {}
111 
112     bool isValid() const { return Block != 0; }
113     llvm::BasicBlock *getBlock() const { return Block; }
114     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
115     unsigned getDestIndex() const { return Index; }
116 
117     // This should be used cautiously.
118     void setScopeDepth(EHScopeStack::stable_iterator depth) {
119       ScopeDepth = depth;
120     }
121 
122   private:
123     llvm::BasicBlock *Block;
124     EHScopeStack::stable_iterator ScopeDepth;
125     unsigned Index;
126   };
127 
128   CodeGenModule &CGM;  // Per-module state.
129   const TargetInfo &Target;
130 
131   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
132   CGBuilderTy Builder;
133 
134   /// CurFuncDecl - Holds the Decl for the current outermost
135   /// non-closure context.
136   const Decl *CurFuncDecl;
137   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
138   const Decl *CurCodeDecl;
139   const CGFunctionInfo *CurFnInfo;
140   QualType FnRetTy;
141   llvm::Function *CurFn;
142 
143   /// CurGD - The GlobalDecl for the current function being compiled.
144   GlobalDecl CurGD;
145 
146   /// PrologueCleanupDepth - The cleanup depth enclosing all the
147   /// cleanups associated with the parameters.
148   EHScopeStack::stable_iterator PrologueCleanupDepth;
149 
150   /// ReturnBlock - Unified return block.
151   JumpDest ReturnBlock;
152 
153   /// ReturnValue - The temporary alloca to hold the return value. This is null
154   /// iff the function has no return value.
155   llvm::Value *ReturnValue;
156 
157   /// AllocaInsertPoint - This is an instruction in the entry block before which
158   /// we prefer to insert allocas.
159   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
160 
161   /// \brief API for captured statement code generation.
162   class CGCapturedStmtInfo {
163   public:
164     explicit CGCapturedStmtInfo(const CapturedStmt &S,
165                                 CapturedRegionKind K = CR_Default)
166       : Kind(K), ThisValue(0), CXXThisFieldDecl(0) {
167 
168       RecordDecl::field_iterator Field =
169         S.getCapturedRecordDecl()->field_begin();
170       for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
171                                                 E = S.capture_end();
172            I != E; ++I, ++Field) {
173         if (I->capturesThis())
174           CXXThisFieldDecl = *Field;
175         else
176           CaptureFields[I->getCapturedVar()] = *Field;
177       }
178     }
179 
180     virtual ~CGCapturedStmtInfo();
181 
182     CapturedRegionKind getKind() const { return Kind; }
183 
184     void setContextValue(llvm::Value *V) { ThisValue = V; }
185     // \brief Retrieve the value of the context parameter.
186     llvm::Value *getContextValue() const { return ThisValue; }
187 
188     /// \brief Lookup the captured field decl for a variable.
189     const FieldDecl *lookup(const VarDecl *VD) const {
190       return CaptureFields.lookup(VD);
191     }
192 
193     bool isCXXThisExprCaptured() const { return CXXThisFieldDecl != 0; }
194     FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
195 
196     /// \brief Emit the captured statement body.
197     virtual void EmitBody(CodeGenFunction &CGF, Stmt *S) {
198       CGF.EmitStmt(S);
199     }
200 
201     /// \brief Get the name of the capture helper.
202     virtual StringRef getHelperName() const { return "__captured_stmt"; }
203 
204   private:
205     /// \brief The kind of captured statement being generated.
206     CapturedRegionKind Kind;
207 
208     /// \brief Keep the map between VarDecl and FieldDecl.
209     llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
210 
211     /// \brief The base address of the captured record, passed in as the first
212     /// argument of the parallel region function.
213     llvm::Value *ThisValue;
214 
215     /// \brief Captured 'this' type.
216     FieldDecl *CXXThisFieldDecl;
217   };
218   CGCapturedStmtInfo *CapturedStmtInfo;
219 
220   /// BoundsChecking - Emit run-time bounds checks. Higher values mean
221   /// potentially higher performance penalties.
222   unsigned char BoundsChecking;
223 
224   /// \brief Whether any type-checking sanitizers are enabled. If \c false,
225   /// calls to EmitTypeCheck can be skipped.
226   bool SanitizePerformTypeCheck;
227 
228   /// \brief Sanitizer options to use for this function.
229   const SanitizerOptions *SanOpts;
230 
231   /// In ARC, whether we should autorelease the return value.
232   bool AutoreleaseResult;
233 
234   const CodeGen::CGBlockInfo *BlockInfo;
235   llvm::Value *BlockPointer;
236 
237   llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
238   FieldDecl *LambdaThisCaptureField;
239 
240   /// \brief A mapping from NRVO variables to the flags used to indicate
241   /// when the NRVO has been applied to this variable.
242   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
243 
244   EHScopeStack EHStack;
245   llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
246 
247   /// Header for data within LifetimeExtendedCleanupStack.
248   struct LifetimeExtendedCleanupHeader {
249     /// The size of the following cleanup object.
250     size_t Size : 29;
251     /// The kind of cleanup to push: a value from the CleanupKind enumeration.
252     unsigned Kind : 3;
253 
254     size_t getSize() const { return Size; }
255     CleanupKind getKind() const { return static_cast<CleanupKind>(Kind); }
256   };
257 
258   /// i32s containing the indexes of the cleanup destinations.
259   llvm::AllocaInst *NormalCleanupDest;
260 
261   unsigned NextCleanupDestIndex;
262 
263   /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
264   CGBlockInfo *FirstBlockInfo;
265 
266   /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
267   llvm::BasicBlock *EHResumeBlock;
268 
269   /// The exception slot.  All landing pads write the current exception pointer
270   /// into this alloca.
271   llvm::Value *ExceptionSlot;
272 
273   /// The selector slot.  Under the MandatoryCleanup model, all landing pads
274   /// write the current selector value into this alloca.
275   llvm::AllocaInst *EHSelectorSlot;
276 
277   /// Emits a landing pad for the current EH stack.
278   llvm::BasicBlock *EmitLandingPad();
279 
280   llvm::BasicBlock *getInvokeDestImpl();
281 
282   template <class T>
283   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
284     return DominatingValue<T>::save(*this, value);
285   }
286 
287 public:
288   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
289   /// rethrows.
290   SmallVector<llvm::Value*, 8> ObjCEHValueStack;
291 
292   /// A class controlling the emission of a finally block.
293   class FinallyInfo {
294     /// Where the catchall's edge through the cleanup should go.
295     JumpDest RethrowDest;
296 
297     /// A function to call to enter the catch.
298     llvm::Constant *BeginCatchFn;
299 
300     /// An i1 variable indicating whether or not the @finally is
301     /// running for an exception.
302     llvm::AllocaInst *ForEHVar;
303 
304     /// An i8* variable into which the exception pointer to rethrow
305     /// has been saved.
306     llvm::AllocaInst *SavedExnVar;
307 
308   public:
309     void enter(CodeGenFunction &CGF, const Stmt *Finally,
310                llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
311                llvm::Constant *rethrowFn);
312     void exit(CodeGenFunction &CGF);
313   };
314 
315   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
316   /// current full-expression.  Safe against the possibility that
317   /// we're currently inside a conditionally-evaluated expression.
318   template <class T, class A0>
319   void pushFullExprCleanup(CleanupKind kind, A0 a0) {
320     // If we're not in a conditional branch, or if none of the
321     // arguments requires saving, then use the unconditional cleanup.
322     if (!isInConditionalBranch())
323       return EHStack.pushCleanup<T>(kind, a0);
324 
325     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
326 
327     typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType;
328     EHStack.pushCleanup<CleanupType>(kind, a0_saved);
329     initFullExprCleanup();
330   }
331 
332   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
333   /// current full-expression.  Safe against the possibility that
334   /// we're currently inside a conditionally-evaluated expression.
335   template <class T, class A0, class A1>
336   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) {
337     // If we're not in a conditional branch, or if none of the
338     // arguments requires saving, then use the unconditional cleanup.
339     if (!isInConditionalBranch())
340       return EHStack.pushCleanup<T>(kind, a0, a1);
341 
342     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
343     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
344 
345     typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType;
346     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved);
347     initFullExprCleanup();
348   }
349 
350   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
351   /// current full-expression.  Safe against the possibility that
352   /// we're currently inside a conditionally-evaluated expression.
353   template <class T, class A0, class A1, class A2>
354   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2) {
355     // If we're not in a conditional branch, or if none of the
356     // arguments requires saving, then use the unconditional cleanup.
357     if (!isInConditionalBranch()) {
358       return EHStack.pushCleanup<T>(kind, a0, a1, a2);
359     }
360 
361     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
362     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
363     typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
364 
365     typedef EHScopeStack::ConditionalCleanup3<T, A0, A1, A2> CleanupType;
366     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, a2_saved);
367     initFullExprCleanup();
368   }
369 
370   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
371   /// current full-expression.  Safe against the possibility that
372   /// we're currently inside a conditionally-evaluated expression.
373   template <class T, class A0, class A1, class A2, class A3>
374   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2, A3 a3) {
375     // If we're not in a conditional branch, or if none of the
376     // arguments requires saving, then use the unconditional cleanup.
377     if (!isInConditionalBranch()) {
378       return EHStack.pushCleanup<T>(kind, a0, a1, a2, a3);
379     }
380 
381     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
382     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
383     typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
384     typename DominatingValue<A3>::saved_type a3_saved = saveValueInCond(a3);
385 
386     typedef EHScopeStack::ConditionalCleanup4<T, A0, A1, A2, A3> CleanupType;
387     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved,
388                                      a2_saved, a3_saved);
389     initFullExprCleanup();
390   }
391 
392   /// \brief Queue a cleanup to be pushed after finishing the current
393   /// full-expression.
394   template <class T, class A0, class A1, class A2, class A3>
395   void pushCleanupAfterFullExpr(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) {
396     assert(!isInConditionalBranch() && "can't defer conditional cleanup");
397 
398     LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind };
399 
400     size_t OldSize = LifetimeExtendedCleanupStack.size();
401     LifetimeExtendedCleanupStack.resize(
402         LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size);
403 
404     char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
405     new (Buffer) LifetimeExtendedCleanupHeader(Header);
406     new (Buffer + sizeof(Header)) T(a0, a1, a2, a3);
407   }
408 
409   /// Set up the last cleaup that was pushed as a conditional
410   /// full-expression cleanup.
411   void initFullExprCleanup();
412 
413   /// PushDestructorCleanup - Push a cleanup to call the
414   /// complete-object destructor of an object of the given type at the
415   /// given address.  Does nothing if T is not a C++ class type with a
416   /// non-trivial destructor.
417   void PushDestructorCleanup(QualType T, llvm::Value *Addr);
418 
419   /// PushDestructorCleanup - Push a cleanup to call the
420   /// complete-object variant of the given destructor on the object at
421   /// the given address.
422   void PushDestructorCleanup(const CXXDestructorDecl *Dtor,
423                              llvm::Value *Addr);
424 
425   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
426   /// process all branch fixups.
427   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
428 
429   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
430   /// The block cannot be reactivated.  Pops it if it's the top of the
431   /// stack.
432   ///
433   /// \param DominatingIP - An instruction which is known to
434   ///   dominate the current IP (if set) and which lies along
435   ///   all paths of execution between the current IP and the
436   ///   the point at which the cleanup comes into scope.
437   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
438                               llvm::Instruction *DominatingIP);
439 
440   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
441   /// Cannot be used to resurrect a deactivated cleanup.
442   ///
443   /// \param DominatingIP - An instruction which is known to
444   ///   dominate the current IP (if set) and which lies along
445   ///   all paths of execution between the current IP and the
446   ///   the point at which the cleanup comes into scope.
447   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
448                             llvm::Instruction *DominatingIP);
449 
450   /// \brief Enters a new scope for capturing cleanups, all of which
451   /// will be executed once the scope is exited.
452   class RunCleanupsScope {
453     EHScopeStack::stable_iterator CleanupStackDepth;
454     size_t LifetimeExtendedCleanupStackSize;
455     bool OldDidCallStackSave;
456   protected:
457     bool PerformCleanup;
458   private:
459 
460     RunCleanupsScope(const RunCleanupsScope &) LLVM_DELETED_FUNCTION;
461     void operator=(const RunCleanupsScope &) LLVM_DELETED_FUNCTION;
462 
463   protected:
464     CodeGenFunction& CGF;
465 
466   public:
467     /// \brief Enter a new cleanup scope.
468     explicit RunCleanupsScope(CodeGenFunction &CGF)
469       : PerformCleanup(true), CGF(CGF)
470     {
471       CleanupStackDepth = CGF.EHStack.stable_begin();
472       LifetimeExtendedCleanupStackSize =
473           CGF.LifetimeExtendedCleanupStack.size();
474       OldDidCallStackSave = CGF.DidCallStackSave;
475       CGF.DidCallStackSave = false;
476     }
477 
478     /// \brief Exit this cleanup scope, emitting any accumulated
479     /// cleanups.
480     ~RunCleanupsScope() {
481       if (PerformCleanup) {
482         CGF.DidCallStackSave = OldDidCallStackSave;
483         CGF.PopCleanupBlocks(CleanupStackDepth,
484                              LifetimeExtendedCleanupStackSize);
485       }
486     }
487 
488     /// \brief Determine whether this scope requires any cleanups.
489     bool requiresCleanups() const {
490       return CGF.EHStack.stable_begin() != CleanupStackDepth;
491     }
492 
493     /// \brief Force the emission of cleanups now, instead of waiting
494     /// until this object is destroyed.
495     void ForceCleanup() {
496       assert(PerformCleanup && "Already forced cleanup");
497       CGF.DidCallStackSave = OldDidCallStackSave;
498       CGF.PopCleanupBlocks(CleanupStackDepth,
499                            LifetimeExtendedCleanupStackSize);
500       PerformCleanup = false;
501     }
502   };
503 
504   class LexicalScope: protected RunCleanupsScope {
505     SourceRange Range;
506     SmallVector<const LabelDecl*, 4> Labels;
507     LexicalScope *ParentScope;
508 
509     LexicalScope(const LexicalScope &) LLVM_DELETED_FUNCTION;
510     void operator=(const LexicalScope &) LLVM_DELETED_FUNCTION;
511 
512   public:
513     /// \brief Enter a new cleanup scope.
514     explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
515       : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
516       CGF.CurLexicalScope = this;
517       if (CGDebugInfo *DI = CGF.getDebugInfo())
518         DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
519     }
520 
521     void addLabel(const LabelDecl *label) {
522       assert(PerformCleanup && "adding label to dead scope?");
523       Labels.push_back(label);
524     }
525 
526     /// \brief Exit this cleanup scope, emitting any accumulated
527     /// cleanups.
528     ~LexicalScope() {
529       if (CGDebugInfo *DI = CGF.getDebugInfo())
530         DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
531 
532       // If we should perform a cleanup, force them now.  Note that
533       // this ends the cleanup scope before rescoping any labels.
534       if (PerformCleanup) ForceCleanup();
535     }
536 
537     /// \brief Force the emission of cleanups now, instead of waiting
538     /// until this object is destroyed.
539     void ForceCleanup() {
540       CGF.CurLexicalScope = ParentScope;
541       RunCleanupsScope::ForceCleanup();
542 
543       if (!Labels.empty())
544         rescopeLabels();
545     }
546 
547     void rescopeLabels();
548   };
549 
550 
551   /// \brief Takes the old cleanup stack size and emits the cleanup blocks
552   /// that have been added.
553   void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize);
554 
555   /// \brief Takes the old cleanup stack size and emits the cleanup blocks
556   /// that have been added, then adds all lifetime-extended cleanups from
557   /// the given position to the stack.
558   void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
559                         size_t OldLifetimeExtendedStackSize);
560 
561   void ResolveBranchFixups(llvm::BasicBlock *Target);
562 
563   /// The given basic block lies in the current EH scope, but may be a
564   /// target of a potentially scope-crossing jump; get a stable handle
565   /// to which we can perform this jump later.
566   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
567     return JumpDest(Target,
568                     EHStack.getInnermostNormalCleanup(),
569                     NextCleanupDestIndex++);
570   }
571 
572   /// The given basic block lies in the current EH scope, but may be a
573   /// target of a potentially scope-crossing jump; get a stable handle
574   /// to which we can perform this jump later.
575   JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
576     return getJumpDestInCurrentScope(createBasicBlock(Name));
577   }
578 
579   /// EmitBranchThroughCleanup - Emit a branch from the current insert
580   /// block through the normal cleanup handling code (if any) and then
581   /// on to \arg Dest.
582   void EmitBranchThroughCleanup(JumpDest Dest);
583 
584   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
585   /// specified destination obviously has no cleanups to run.  'false' is always
586   /// a conservatively correct answer for this method.
587   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
588 
589   /// popCatchScope - Pops the catch scope at the top of the EHScope
590   /// stack, emitting any required code (other than the catch handlers
591   /// themselves).
592   void popCatchScope();
593 
594   llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
595   llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
596 
597   /// An object to manage conditionally-evaluated expressions.
598   class ConditionalEvaluation {
599     llvm::BasicBlock *StartBB;
600 
601   public:
602     ConditionalEvaluation(CodeGenFunction &CGF)
603       : StartBB(CGF.Builder.GetInsertBlock()) {}
604 
605     void begin(CodeGenFunction &CGF) {
606       assert(CGF.OutermostConditional != this);
607       if (!CGF.OutermostConditional)
608         CGF.OutermostConditional = this;
609     }
610 
611     void end(CodeGenFunction &CGF) {
612       assert(CGF.OutermostConditional != 0);
613       if (CGF.OutermostConditional == this)
614         CGF.OutermostConditional = 0;
615     }
616 
617     /// Returns a block which will be executed prior to each
618     /// evaluation of the conditional code.
619     llvm::BasicBlock *getStartingBlock() const {
620       return StartBB;
621     }
622   };
623 
624   /// isInConditionalBranch - Return true if we're currently emitting
625   /// one branch or the other of a conditional expression.
626   bool isInConditionalBranch() const { return OutermostConditional != 0; }
627 
628   void setBeforeOutermostConditional(llvm::Value *value, llvm::Value *addr) {
629     assert(isInConditionalBranch());
630     llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
631     new llvm::StoreInst(value, addr, &block->back());
632   }
633 
634   /// An RAII object to record that we're evaluating a statement
635   /// expression.
636   class StmtExprEvaluation {
637     CodeGenFunction &CGF;
638 
639     /// We have to save the outermost conditional: cleanups in a
640     /// statement expression aren't conditional just because the
641     /// StmtExpr is.
642     ConditionalEvaluation *SavedOutermostConditional;
643 
644   public:
645     StmtExprEvaluation(CodeGenFunction &CGF)
646       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
647       CGF.OutermostConditional = 0;
648     }
649 
650     ~StmtExprEvaluation() {
651       CGF.OutermostConditional = SavedOutermostConditional;
652       CGF.EnsureInsertPoint();
653     }
654   };
655 
656   /// An object which temporarily prevents a value from being
657   /// destroyed by aggressive peephole optimizations that assume that
658   /// all uses of a value have been realized in the IR.
659   class PeepholeProtection {
660     llvm::Instruction *Inst;
661     friend class CodeGenFunction;
662 
663   public:
664     PeepholeProtection() : Inst(0) {}
665   };
666 
667   /// A non-RAII class containing all the information about a bound
668   /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
669   /// this which makes individual mappings very simple; using this
670   /// class directly is useful when you have a variable number of
671   /// opaque values or don't want the RAII functionality for some
672   /// reason.
673   class OpaqueValueMappingData {
674     const OpaqueValueExpr *OpaqueValue;
675     bool BoundLValue;
676     CodeGenFunction::PeepholeProtection Protection;
677 
678     OpaqueValueMappingData(const OpaqueValueExpr *ov,
679                            bool boundLValue)
680       : OpaqueValue(ov), BoundLValue(boundLValue) {}
681   public:
682     OpaqueValueMappingData() : OpaqueValue(0) {}
683 
684     static bool shouldBindAsLValue(const Expr *expr) {
685       // gl-values should be bound as l-values for obvious reasons.
686       // Records should be bound as l-values because IR generation
687       // always keeps them in memory.  Expressions of function type
688       // act exactly like l-values but are formally required to be
689       // r-values in C.
690       return expr->isGLValue() ||
691              expr->getType()->isRecordType() ||
692              expr->getType()->isFunctionType();
693     }
694 
695     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
696                                        const OpaqueValueExpr *ov,
697                                        const Expr *e) {
698       if (shouldBindAsLValue(ov))
699         return bind(CGF, ov, CGF.EmitLValue(e));
700       return bind(CGF, ov, CGF.EmitAnyExpr(e));
701     }
702 
703     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
704                                        const OpaqueValueExpr *ov,
705                                        const LValue &lv) {
706       assert(shouldBindAsLValue(ov));
707       CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
708       return OpaqueValueMappingData(ov, true);
709     }
710 
711     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
712                                        const OpaqueValueExpr *ov,
713                                        const RValue &rv) {
714       assert(!shouldBindAsLValue(ov));
715       CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
716 
717       OpaqueValueMappingData data(ov, false);
718 
719       // Work around an extremely aggressive peephole optimization in
720       // EmitScalarConversion which assumes that all other uses of a
721       // value are extant.
722       data.Protection = CGF.protectFromPeepholes(rv);
723 
724       return data;
725     }
726 
727     bool isValid() const { return OpaqueValue != 0; }
728     void clear() { OpaqueValue = 0; }
729 
730     void unbind(CodeGenFunction &CGF) {
731       assert(OpaqueValue && "no data to unbind!");
732 
733       if (BoundLValue) {
734         CGF.OpaqueLValues.erase(OpaqueValue);
735       } else {
736         CGF.OpaqueRValues.erase(OpaqueValue);
737         CGF.unprotectFromPeepholes(Protection);
738       }
739     }
740   };
741 
742   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
743   class OpaqueValueMapping {
744     CodeGenFunction &CGF;
745     OpaqueValueMappingData Data;
746 
747   public:
748     static bool shouldBindAsLValue(const Expr *expr) {
749       return OpaqueValueMappingData::shouldBindAsLValue(expr);
750     }
751 
752     /// Build the opaque value mapping for the given conditional
753     /// operator if it's the GNU ?: extension.  This is a common
754     /// enough pattern that the convenience operator is really
755     /// helpful.
756     ///
757     OpaqueValueMapping(CodeGenFunction &CGF,
758                        const AbstractConditionalOperator *op) : CGF(CGF) {
759       if (isa<ConditionalOperator>(op))
760         // Leave Data empty.
761         return;
762 
763       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
764       Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
765                                           e->getCommon());
766     }
767 
768     OpaqueValueMapping(CodeGenFunction &CGF,
769                        const OpaqueValueExpr *opaqueValue,
770                        LValue lvalue)
771       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
772     }
773 
774     OpaqueValueMapping(CodeGenFunction &CGF,
775                        const OpaqueValueExpr *opaqueValue,
776                        RValue rvalue)
777       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
778     }
779 
780     void pop() {
781       Data.unbind(CGF);
782       Data.clear();
783     }
784 
785     ~OpaqueValueMapping() {
786       if (Data.isValid()) Data.unbind(CGF);
787     }
788   };
789 
790   /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field
791   /// number that holds the value.
792   unsigned getByRefValueLLVMField(const ValueDecl *VD) const;
793 
794   /// BuildBlockByrefAddress - Computes address location of the
795   /// variable which is declared as __block.
796   llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr,
797                                       const VarDecl *V);
798 private:
799   CGDebugInfo *DebugInfo;
800   bool DisableDebugInfo;
801 
802   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
803   /// calling llvm.stacksave for multiple VLAs in the same scope.
804   bool DidCallStackSave;
805 
806   /// IndirectBranch - The first time an indirect goto is seen we create a block
807   /// with an indirect branch.  Every time we see the address of a label taken,
808   /// we add the label to the indirect goto.  Every subsequent indirect goto is
809   /// codegen'd as a jump to the IndirectBranch's basic block.
810   llvm::IndirectBrInst *IndirectBranch;
811 
812   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
813   /// decls.
814   typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy;
815   DeclMapTy LocalDeclMap;
816 
817   /// LabelMap - This keeps track of the LLVM basic block for each C label.
818   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
819 
820   // BreakContinueStack - This keeps track of where break and continue
821   // statements should jump to and the associated base counter for
822   // instrumentation.
823   struct BreakContinue {
824     BreakContinue(JumpDest Break, JumpDest Continue, RegionCounter *LoopCnt,
825                   bool CountBreak = true)
826       : BreakBlock(Break), ContinueBlock(Continue), LoopCnt(LoopCnt),
827         CountBreak(CountBreak) {}
828 
829     JumpDest BreakBlock;
830     JumpDest ContinueBlock;
831     RegionCounter *LoopCnt;
832     bool CountBreak;
833   };
834   SmallVector<BreakContinue, 8> BreakContinueStack;
835 
836   CodeGenPGO PGO;
837 
838 public:
839   /// Get a counter for instrumentation of the region associated with the given
840   /// statement.
841   RegionCounter getPGORegionCounter(const Stmt *S) {
842     return RegionCounter(PGO, S);
843   }
844 private:
845 
846   /// SwitchInsn - This is nearest current switch instruction. It is null if
847   /// current context is not in a switch.
848   llvm::SwitchInst *SwitchInsn;
849   /// The branch weights of SwitchInsn when doing instrumentation based PGO.
850   SmallVector<uint64_t, 16> *SwitchWeights;
851 
852   /// CaseRangeBlock - This block holds if condition check for last case
853   /// statement range in current switch instruction.
854   llvm::BasicBlock *CaseRangeBlock;
855 
856   /// OpaqueLValues - Keeps track of the current set of opaque value
857   /// expressions.
858   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
859   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
860 
861   // VLASizeMap - This keeps track of the associated size for each VLA type.
862   // We track this by the size expression rather than the type itself because
863   // in certain situations, like a const qualifier applied to an VLA typedef,
864   // multiple VLA types can share the same size expression.
865   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
866   // enter/leave scopes.
867   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
868 
869   /// A block containing a single 'unreachable' instruction.  Created
870   /// lazily by getUnreachableBlock().
871   llvm::BasicBlock *UnreachableBlock;
872 
873   /// Counts of the number return expressions in the function.
874   unsigned NumReturnExprs;
875 
876   /// Count the number of simple (constant) return expressions in the function.
877   unsigned NumSimpleReturnExprs;
878 
879   /// The last regular (non-return) debug location (breakpoint) in the function.
880   SourceLocation LastStopPoint;
881 
882 public:
883   /// A scope within which we are constructing the fields of an object which
884   /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
885   /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
886   class FieldConstructionScope {
887   public:
888     FieldConstructionScope(CodeGenFunction &CGF, llvm::Value *This)
889         : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
890       CGF.CXXDefaultInitExprThis = This;
891     }
892     ~FieldConstructionScope() {
893       CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
894     }
895 
896   private:
897     CodeGenFunction &CGF;
898     llvm::Value *OldCXXDefaultInitExprThis;
899   };
900 
901   /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
902   /// is overridden to be the object under construction.
903   class CXXDefaultInitExprScope {
904   public:
905     CXXDefaultInitExprScope(CodeGenFunction &CGF)
906         : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue) {
907       CGF.CXXThisValue = CGF.CXXDefaultInitExprThis;
908     }
909     ~CXXDefaultInitExprScope() {
910       CGF.CXXThisValue = OldCXXThisValue;
911     }
912 
913   public:
914     CodeGenFunction &CGF;
915     llvm::Value *OldCXXThisValue;
916   };
917 
918 private:
919   /// CXXThisDecl - When generating code for a C++ member function,
920   /// this will hold the implicit 'this' declaration.
921   ImplicitParamDecl *CXXABIThisDecl;
922   llvm::Value *CXXABIThisValue;
923   llvm::Value *CXXThisValue;
924 
925   /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
926   /// this expression.
927   llvm::Value *CXXDefaultInitExprThis;
928 
929   /// CXXStructorImplicitParamDecl - When generating code for a constructor or
930   /// destructor, this will hold the implicit argument (e.g. VTT).
931   ImplicitParamDecl *CXXStructorImplicitParamDecl;
932   llvm::Value *CXXStructorImplicitParamValue;
933 
934   /// OutermostConditional - Points to the outermost active
935   /// conditional control.  This is used so that we know if a
936   /// temporary should be destroyed conditionally.
937   ConditionalEvaluation *OutermostConditional;
938 
939   /// The current lexical scope.
940   LexicalScope *CurLexicalScope;
941 
942   /// The current source location that should be used for exception
943   /// handling code.
944   SourceLocation CurEHLocation;
945 
946   /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM
947   /// type as well as the field number that contains the actual data.
948   llvm::DenseMap<const ValueDecl *, std::pair<llvm::Type *,
949                                               unsigned> > ByRefValueInfo;
950 
951   llvm::BasicBlock *TerminateLandingPad;
952   llvm::BasicBlock *TerminateHandler;
953   llvm::BasicBlock *TrapBB;
954 
955   /// Add a kernel metadata node to the named metadata node 'opencl.kernels'.
956   /// In the kernel metadata node, reference the kernel function and metadata
957   /// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2):
958   /// - A node for the vec_type_hint(<type>) qualifier contains string
959   ///   "vec_type_hint", an undefined value of the <type> data type,
960   ///   and a Boolean that is true if the <type> is integer and signed.
961   /// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string
962   ///   "work_group_size_hint", and three 32-bit integers X, Y and Z.
963   /// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string
964   ///   "reqd_work_group_size", and three 32-bit integers X, Y and Z.
965   void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
966                                 llvm::Function *Fn);
967 
968 public:
969   CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
970   ~CodeGenFunction();
971 
972   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
973   ASTContext &getContext() const { return CGM.getContext(); }
974   CGDebugInfo *getDebugInfo() {
975     if (DisableDebugInfo)
976       return NULL;
977     return DebugInfo;
978   }
979   void disableDebugInfo() { DisableDebugInfo = true; }
980   void enableDebugInfo() { DisableDebugInfo = false; }
981 
982   bool shouldUseFusedARCCalls() {
983     return CGM.getCodeGenOpts().OptimizationLevel == 0;
984   }
985 
986   const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
987 
988   /// Returns a pointer to the function's exception object and selector slot,
989   /// which is assigned in every landing pad.
990   llvm::Value *getExceptionSlot();
991   llvm::Value *getEHSelectorSlot();
992 
993   /// Returns the contents of the function's exception object and selector
994   /// slots.
995   llvm::Value *getExceptionFromSlot();
996   llvm::Value *getSelectorFromSlot();
997 
998   llvm::Value *getNormalCleanupDestSlot();
999 
1000   llvm::BasicBlock *getUnreachableBlock() {
1001     if (!UnreachableBlock) {
1002       UnreachableBlock = createBasicBlock("unreachable");
1003       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1004     }
1005     return UnreachableBlock;
1006   }
1007 
1008   llvm::BasicBlock *getInvokeDest() {
1009     if (!EHStack.requiresLandingPad()) return 0;
1010     return getInvokeDestImpl();
1011   }
1012 
1013   const TargetInfo &getTarget() const { return Target; }
1014   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1015 
1016   //===--------------------------------------------------------------------===//
1017   //                                  Cleanups
1018   //===--------------------------------------------------------------------===//
1019 
1020   typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty);
1021 
1022   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1023                                         llvm::Value *arrayEndPointer,
1024                                         QualType elementType,
1025                                         Destroyer *destroyer);
1026   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1027                                       llvm::Value *arrayEnd,
1028                                       QualType elementType,
1029                                       Destroyer *destroyer);
1030 
1031   void pushDestroy(QualType::DestructionKind dtorKind,
1032                    llvm::Value *addr, QualType type);
1033   void pushEHDestroy(QualType::DestructionKind dtorKind,
1034                      llvm::Value *addr, QualType type);
1035   void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type,
1036                    Destroyer *destroyer, bool useEHCleanupForArray);
1037   void pushLifetimeExtendedDestroy(CleanupKind kind, llvm::Value *addr,
1038                                    QualType type, Destroyer *destroyer,
1039                                    bool useEHCleanupForArray);
1040   void pushStackRestore(CleanupKind kind, llvm::Value *SPMem);
1041   void emitDestroy(llvm::Value *addr, QualType type, Destroyer *destroyer,
1042                    bool useEHCleanupForArray);
1043   llvm::Function *generateDestroyHelper(llvm::Constant *addr, QualType type,
1044                                         Destroyer *destroyer,
1045                                         bool useEHCleanupForArray,
1046                                         const VarDecl *VD);
1047   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1048                         QualType type, Destroyer *destroyer,
1049                         bool checkZeroLength, bool useEHCleanup);
1050 
1051   Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1052 
1053   /// Determines whether an EH cleanup is required to destroy a type
1054   /// with the given destruction kind.
1055   bool needsEHCleanup(QualType::DestructionKind kind) {
1056     switch (kind) {
1057     case QualType::DK_none:
1058       return false;
1059     case QualType::DK_cxx_destructor:
1060     case QualType::DK_objc_weak_lifetime:
1061       return getLangOpts().Exceptions;
1062     case QualType::DK_objc_strong_lifetime:
1063       return getLangOpts().Exceptions &&
1064              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1065     }
1066     llvm_unreachable("bad destruction kind");
1067   }
1068 
1069   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
1070     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1071   }
1072 
1073   //===--------------------------------------------------------------------===//
1074   //                                  Objective-C
1075   //===--------------------------------------------------------------------===//
1076 
1077   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1078 
1079   void StartObjCMethod(const ObjCMethodDecl *MD,
1080                        const ObjCContainerDecl *CD,
1081                        SourceLocation StartLoc);
1082 
1083   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1084   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1085                           const ObjCPropertyImplDecl *PID);
1086   void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1087                               const ObjCPropertyImplDecl *propImpl,
1088                               const ObjCMethodDecl *GetterMothodDecl,
1089                               llvm::Constant *AtomicHelperFn);
1090 
1091   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1092                                   ObjCMethodDecl *MD, bool ctor);
1093 
1094   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1095   /// for the given property.
1096   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1097                           const ObjCPropertyImplDecl *PID);
1098   void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1099                               const ObjCPropertyImplDecl *propImpl,
1100                               llvm::Constant *AtomicHelperFn);
1101   bool IndirectObjCSetterArg(const CGFunctionInfo &FI);
1102   bool IvarTypeWithAggrGCObjects(QualType Ty);
1103 
1104   //===--------------------------------------------------------------------===//
1105   //                                  Block Bits
1106   //===--------------------------------------------------------------------===//
1107 
1108   llvm::Value *EmitBlockLiteral(const BlockExpr *);
1109   llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
1110   static void destroyBlockInfos(CGBlockInfo *info);
1111   llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *,
1112                                            const CGBlockInfo &Info,
1113                                            llvm::StructType *,
1114                                            llvm::Constant *BlockVarLayout);
1115 
1116   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1117                                         const CGBlockInfo &Info,
1118                                         const DeclMapTy &ldm,
1119                                         bool IsLambdaConversionToBlock);
1120 
1121   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1122   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1123   llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
1124                                              const ObjCPropertyImplDecl *PID);
1125   llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
1126                                              const ObjCPropertyImplDecl *PID);
1127   llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
1128 
1129   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
1130 
1131   class AutoVarEmission;
1132 
1133   void emitByrefStructureInit(const AutoVarEmission &emission);
1134   void enterByrefCleanup(const AutoVarEmission &emission);
1135 
1136   llvm::Value *LoadBlockStruct() {
1137     assert(BlockPointer && "no block pointer set!");
1138     return BlockPointer;
1139   }
1140 
1141   void AllocateBlockCXXThisPointer(const CXXThisExpr *E);
1142   void AllocateBlockDecl(const DeclRefExpr *E);
1143   llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
1144   llvm::Type *BuildByRefType(const VarDecl *var);
1145 
1146   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1147                     const CGFunctionInfo &FnInfo);
1148   void StartFunction(GlobalDecl GD,
1149                      QualType RetTy,
1150                      llvm::Function *Fn,
1151                      const CGFunctionInfo &FnInfo,
1152                      const FunctionArgList &Args,
1153                      SourceLocation StartLoc);
1154 
1155   void EmitConstructorBody(FunctionArgList &Args);
1156   void EmitDestructorBody(FunctionArgList &Args);
1157   void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
1158   void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body);
1159 
1160   void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
1161                                   CallArgList &CallArgs);
1162   void EmitLambdaToBlockPointerBody(FunctionArgList &Args);
1163   void EmitLambdaBlockInvokeBody();
1164   void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
1165   void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD);
1166 
1167   /// EmitReturnBlock - Emit the unified return block, trying to avoid its
1168   /// emission when possible.
1169   void EmitReturnBlock();
1170 
1171   /// FinishFunction - Complete IR generation of the current function. It is
1172   /// legal to call this function even if there is no current insertion point.
1173   void FinishFunction(SourceLocation EndLoc=SourceLocation());
1174 
1175   void StartThunk(llvm::Function *Fn, GlobalDecl GD, const CGFunctionInfo &FnInfo);
1176 
1177   void EmitCallAndReturnForThunk(GlobalDecl GD, llvm::Value *Callee,
1178                                  const ThunkInfo *Thunk);
1179 
1180   /// GenerateThunk - Generate a thunk for the given method.
1181   void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1182                      GlobalDecl GD, const ThunkInfo &Thunk);
1183 
1184   void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1185                             GlobalDecl GD, const ThunkInfo &Thunk);
1186 
1187   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1188                         FunctionArgList &Args);
1189 
1190   void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init,
1191                                ArrayRef<VarDecl *> ArrayIndexes);
1192 
1193   /// InitializeVTablePointer - Initialize the vtable pointer of the given
1194   /// subobject.
1195   ///
1196   void InitializeVTablePointer(BaseSubobject Base,
1197                                const CXXRecordDecl *NearestVBase,
1198                                CharUnits OffsetFromNearestVBase,
1199                                const CXXRecordDecl *VTableClass);
1200 
1201   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1202   void InitializeVTablePointers(BaseSubobject Base,
1203                                 const CXXRecordDecl *NearestVBase,
1204                                 CharUnits OffsetFromNearestVBase,
1205                                 bool BaseIsNonVirtualPrimaryBase,
1206                                 const CXXRecordDecl *VTableClass,
1207                                 VisitedVirtualBasesSetTy& VBases);
1208 
1209   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1210 
1211   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1212   /// to by This.
1213   llvm::Value *GetVTablePtr(llvm::Value *This, llvm::Type *Ty);
1214 
1215 
1216   /// CanDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given
1217   /// expr can be devirtualized.
1218   bool CanDevirtualizeMemberFunctionCall(const Expr *Base,
1219                                          const CXXMethodDecl *MD);
1220 
1221   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1222   /// given phase of destruction for a destructor.  The end result
1223   /// should call destructors on members and base classes in reverse
1224   /// order of their construction.
1225   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1226 
1227   /// ShouldInstrumentFunction - Return true if the current function should be
1228   /// instrumented with __cyg_profile_func_* calls
1229   bool ShouldInstrumentFunction();
1230 
1231   /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
1232   /// instrumentation function with the current function and the call site, if
1233   /// function instrumentation is enabled.
1234   void EmitFunctionInstrumentation(const char *Fn);
1235 
1236   /// EmitMCountInstrumentation - Emit call to .mcount.
1237   void EmitMCountInstrumentation();
1238 
1239   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1240   /// arguments for the given function. This is also responsible for naming the
1241   /// LLVM function arguments.
1242   void EmitFunctionProlog(const CGFunctionInfo &FI,
1243                           llvm::Function *Fn,
1244                           const FunctionArgList &Args);
1245 
1246   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1247   /// given temporary.
1248   void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
1249                           SourceLocation EndLoc);
1250 
1251   /// EmitStartEHSpec - Emit the start of the exception spec.
1252   void EmitStartEHSpec(const Decl *D);
1253 
1254   /// EmitEndEHSpec - Emit the end of the exception spec.
1255   void EmitEndEHSpec(const Decl *D);
1256 
1257   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
1258   llvm::BasicBlock *getTerminateLandingPad();
1259 
1260   /// getTerminateHandler - Return a handler (not a landing pad, just
1261   /// a catch handler) that just calls terminate.  This is used when
1262   /// a terminate scope encloses a try.
1263   llvm::BasicBlock *getTerminateHandler();
1264 
1265   llvm::Type *ConvertTypeForMem(QualType T);
1266   llvm::Type *ConvertType(QualType T);
1267   llvm::Type *ConvertType(const TypeDecl *T) {
1268     return ConvertType(getContext().getTypeDeclType(T));
1269   }
1270 
1271   /// LoadObjCSelf - Load the value of self. This function is only valid while
1272   /// generating code for an Objective-C method.
1273   llvm::Value *LoadObjCSelf();
1274 
1275   /// TypeOfSelfObject - Return type of object that this self represents.
1276   QualType TypeOfSelfObject();
1277 
1278   /// hasAggregateLLVMType - Return true if the specified AST type will map into
1279   /// an aggregate LLVM type or is void.
1280   static TypeEvaluationKind getEvaluationKind(QualType T);
1281 
1282   static bool hasScalarEvaluationKind(QualType T) {
1283     return getEvaluationKind(T) == TEK_Scalar;
1284   }
1285 
1286   static bool hasAggregateEvaluationKind(QualType T) {
1287     return getEvaluationKind(T) == TEK_Aggregate;
1288   }
1289 
1290   /// createBasicBlock - Create an LLVM basic block.
1291   llvm::BasicBlock *createBasicBlock(const Twine &name = "",
1292                                      llvm::Function *parent = 0,
1293                                      llvm::BasicBlock *before = 0) {
1294 #ifdef NDEBUG
1295     return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
1296 #else
1297     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
1298 #endif
1299   }
1300 
1301   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
1302   /// label maps to.
1303   JumpDest getJumpDestForLabel(const LabelDecl *S);
1304 
1305   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
1306   /// another basic block, simplify it. This assumes that no other code could
1307   /// potentially reference the basic block.
1308   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
1309 
1310   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
1311   /// adding a fall-through branch from the current insert block if
1312   /// necessary. It is legal to call this function even if there is no current
1313   /// insertion point.
1314   ///
1315   /// IsFinished - If true, indicates that the caller has finished emitting
1316   /// branches to the given block and does not expect to emit code into it. This
1317   /// means the block can be ignored if it is unreachable.
1318   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
1319 
1320   /// EmitBlockAfterUses - Emit the given block somewhere hopefully
1321   /// near its uses, and leave the insertion point in it.
1322   void EmitBlockAfterUses(llvm::BasicBlock *BB);
1323 
1324   /// EmitBranch - Emit a branch to the specified basic block from the current
1325   /// insert block, taking care to avoid creation of branches from dummy
1326   /// blocks. It is legal to call this function even if there is no current
1327   /// insertion point.
1328   ///
1329   /// This function clears the current insertion point. The caller should follow
1330   /// calls to this function with calls to Emit*Block prior to generation new
1331   /// code.
1332   void EmitBranch(llvm::BasicBlock *Block);
1333 
1334   /// HaveInsertPoint - True if an insertion point is defined. If not, this
1335   /// indicates that the current code being emitted is unreachable.
1336   bool HaveInsertPoint() const {
1337     return Builder.GetInsertBlock() != 0;
1338   }
1339 
1340   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
1341   /// emitted IR has a place to go. Note that by definition, if this function
1342   /// creates a block then that block is unreachable; callers may do better to
1343   /// detect when no insertion point is defined and simply skip IR generation.
1344   void EnsureInsertPoint() {
1345     if (!HaveInsertPoint())
1346       EmitBlock(createBasicBlock());
1347   }
1348 
1349   /// ErrorUnsupported - Print out an error that codegen doesn't support the
1350   /// specified stmt yet.
1351   void ErrorUnsupported(const Stmt *S, const char *Type);
1352 
1353   //===--------------------------------------------------------------------===//
1354   //                                  Helpers
1355   //===--------------------------------------------------------------------===//
1356 
1357   LValue MakeAddrLValue(llvm::Value *V, QualType T,
1358                         CharUnits Alignment = CharUnits()) {
1359     return LValue::MakeAddr(V, T, Alignment, getContext(),
1360                             CGM.getTBAAInfo(T));
1361   }
1362 
1363   LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
1364     CharUnits Alignment;
1365     if (!T->isIncompleteType())
1366       Alignment = getContext().getTypeAlignInChars(T);
1367     return LValue::MakeAddr(V, T, Alignment, getContext(),
1368                             CGM.getTBAAInfo(T));
1369   }
1370 
1371   /// CreateTempAlloca - This creates a alloca and inserts it into the entry
1372   /// block. The caller is responsible for setting an appropriate alignment on
1373   /// the alloca.
1374   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty,
1375                                      const Twine &Name = "tmp");
1376 
1377   /// InitTempAlloca - Provide an initial value for the given alloca.
1378   void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value);
1379 
1380   /// CreateIRTemp - Create a temporary IR object of the given type, with
1381   /// appropriate alignment. This routine should only be used when an temporary
1382   /// value needs to be stored into an alloca (for example, to avoid explicit
1383   /// PHI construction), but the type is the IR type, not the type appropriate
1384   /// for storing in memory.
1385   llvm::AllocaInst *CreateIRTemp(QualType T, const Twine &Name = "tmp");
1386 
1387   /// CreateMemTemp - Create a temporary memory object of the given type, with
1388   /// appropriate alignment.
1389   llvm::AllocaInst *CreateMemTemp(QualType T, const Twine &Name = "tmp");
1390 
1391   /// CreateAggTemp - Create a temporary memory object for the given
1392   /// aggregate type.
1393   AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
1394     CharUnits Alignment = getContext().getTypeAlignInChars(T);
1395     return AggValueSlot::forAddr(CreateMemTemp(T, Name), Alignment,
1396                                  T.getQualifiers(),
1397                                  AggValueSlot::IsNotDestructed,
1398                                  AggValueSlot::DoesNotNeedGCBarriers,
1399                                  AggValueSlot::IsNotAliased);
1400   }
1401 
1402   /// CreateInAllocaTmp - Create a temporary memory object for the given
1403   /// aggregate type.
1404   AggValueSlot CreateInAllocaTmp(QualType T, const Twine &Name = "inalloca");
1405 
1406   /// Emit a cast to void* in the appropriate address space.
1407   llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
1408 
1409   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
1410   /// expression and compare the result against zero, returning an Int1Ty value.
1411   llvm::Value *EvaluateExprAsBool(const Expr *E);
1412 
1413   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
1414   void EmitIgnoredExpr(const Expr *E);
1415 
1416   /// EmitAnyExpr - Emit code to compute the specified expression which can have
1417   /// any type.  The result is returned as an RValue struct.  If this is an
1418   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
1419   /// the result should be returned.
1420   ///
1421   /// \param ignoreResult True if the resulting value isn't used.
1422   RValue EmitAnyExpr(const Expr *E,
1423                      AggValueSlot aggSlot = AggValueSlot::ignored(),
1424                      bool ignoreResult = false);
1425 
1426   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
1427   // or the value of the expression, depending on how va_list is defined.
1428   llvm::Value *EmitVAListRef(const Expr *E);
1429 
1430   /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
1431   /// always be accessible even if no aggregate location is provided.
1432   RValue EmitAnyExprToTemp(const Expr *E);
1433 
1434   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
1435   /// arbitrary expression into the given memory location.
1436   void EmitAnyExprToMem(const Expr *E, llvm::Value *Location,
1437                         Qualifiers Quals, bool IsInitializer);
1438 
1439   /// EmitExprAsInit - Emits the code necessary to initialize a
1440   /// location in memory with the given initializer.
1441   void EmitExprAsInit(const Expr *init, const ValueDecl *D,
1442                       LValue lvalue, bool capturedByInit);
1443 
1444   /// hasVolatileMember - returns true if aggregate type has a volatile
1445   /// member.
1446   bool hasVolatileMember(QualType T) {
1447     if (const RecordType *RT = T->getAs<RecordType>()) {
1448       const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
1449       return RD->hasVolatileMember();
1450     }
1451     return false;
1452   }
1453   /// EmitAggregateCopy - Emit an aggregate assignment.
1454   ///
1455   /// The difference to EmitAggregateCopy is that tail padding is not copied.
1456   /// This is required for correctness when assigning non-POD structures in C++.
1457   void EmitAggregateAssign(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1458                            QualType EltTy) {
1459     bool IsVolatile = hasVolatileMember(EltTy);
1460     EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, CharUnits::Zero(),
1461                       true);
1462   }
1463 
1464   /// EmitAggregateCopy - Emit an aggregate copy.
1465   ///
1466   /// \param isVolatile - True iff either the source or the destination is
1467   /// volatile.
1468   /// \param isAssignment - If false, allow padding to be copied.  This often
1469   /// yields more efficient.
1470   void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1471                          QualType EltTy, bool isVolatile=false,
1472                          CharUnits Alignment = CharUnits::Zero(),
1473                          bool isAssignment = false);
1474 
1475   /// StartBlock - Start new block named N. If insert block is a dummy block
1476   /// then reuse it.
1477   void StartBlock(const char *N);
1478 
1479   /// GetAddrOfLocalVar - Return the address of a local variable.
1480   llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) {
1481     llvm::Value *Res = LocalDeclMap[VD];
1482     assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!");
1483     return Res;
1484   }
1485 
1486   /// getOpaqueLValueMapping - Given an opaque value expression (which
1487   /// must be mapped to an l-value), return its mapping.
1488   const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
1489     assert(OpaqueValueMapping::shouldBindAsLValue(e));
1490 
1491     llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
1492       it = OpaqueLValues.find(e);
1493     assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
1494     return it->second;
1495   }
1496 
1497   /// getOpaqueRValueMapping - Given an opaque value expression (which
1498   /// must be mapped to an r-value), return its mapping.
1499   const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
1500     assert(!OpaqueValueMapping::shouldBindAsLValue(e));
1501 
1502     llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
1503       it = OpaqueRValues.find(e);
1504     assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
1505     return it->second;
1506   }
1507 
1508   /// getAccessedFieldNo - Given an encoded value and a result number, return
1509   /// the input field number being accessed.
1510   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
1511 
1512   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
1513   llvm::BasicBlock *GetIndirectGotoBlock();
1514 
1515   /// EmitNullInitialization - Generate code to set a value of the given type to
1516   /// null, If the type contains data member pointers, they will be initialized
1517   /// to -1 in accordance with the Itanium C++ ABI.
1518   void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty);
1519 
1520   // EmitVAArg - Generate code to get an argument from the passed in pointer
1521   // and update it accordingly. The return value is a pointer to the argument.
1522   // FIXME: We should be able to get rid of this method and use the va_arg
1523   // instruction in LLVM instead once it works well enough.
1524   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty);
1525 
1526   /// emitArrayLength - Compute the length of an array, even if it's a
1527   /// VLA, and drill down to the base element type.
1528   llvm::Value *emitArrayLength(const ArrayType *arrayType,
1529                                QualType &baseType,
1530                                llvm::Value *&addr);
1531 
1532   /// EmitVLASize - Capture all the sizes for the VLA expressions in
1533   /// the given variably-modified type and store them in the VLASizeMap.
1534   ///
1535   /// This function can be called with a null (unreachable) insert point.
1536   void EmitVariablyModifiedType(QualType Ty);
1537 
1538   /// getVLASize - Returns an LLVM value that corresponds to the size,
1539   /// in non-variably-sized elements, of a variable length array type,
1540   /// plus that largest non-variably-sized element type.  Assumes that
1541   /// the type has already been emitted with EmitVariablyModifiedType.
1542   std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla);
1543   std::pair<llvm::Value*,QualType> getVLASize(QualType vla);
1544 
1545   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
1546   /// generating code for an C++ member function.
1547   llvm::Value *LoadCXXThis() {
1548     assert(CXXThisValue && "no 'this' value for this function");
1549     return CXXThisValue;
1550   }
1551 
1552   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
1553   /// virtual bases.
1554   // FIXME: Every place that calls LoadCXXVTT is something
1555   // that needs to be abstracted properly.
1556   llvm::Value *LoadCXXVTT() {
1557     assert(CXXStructorImplicitParamValue && "no VTT value for this function");
1558     return CXXStructorImplicitParamValue;
1559   }
1560 
1561   /// LoadCXXStructorImplicitParam - Load the implicit parameter
1562   /// for a constructor/destructor.
1563   llvm::Value *LoadCXXStructorImplicitParam() {
1564     assert(CXXStructorImplicitParamValue &&
1565            "no implicit argument value for this function");
1566     return CXXStructorImplicitParamValue;
1567   }
1568 
1569   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
1570   /// complete class to the given direct base.
1571   llvm::Value *
1572   GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value,
1573                                         const CXXRecordDecl *Derived,
1574                                         const CXXRecordDecl *Base,
1575                                         bool BaseIsVirtual);
1576 
1577   /// GetAddressOfBaseClass - This function will add the necessary delta to the
1578   /// load of 'this' and returns address of the base class.
1579   llvm::Value *GetAddressOfBaseClass(llvm::Value *Value,
1580                                      const CXXRecordDecl *Derived,
1581                                      CastExpr::path_const_iterator PathBegin,
1582                                      CastExpr::path_const_iterator PathEnd,
1583                                      bool NullCheckValue);
1584 
1585   llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value,
1586                                         const CXXRecordDecl *Derived,
1587                                         CastExpr::path_const_iterator PathBegin,
1588                                         CastExpr::path_const_iterator PathEnd,
1589                                         bool NullCheckValue);
1590 
1591   /// GetVTTParameter - Return the VTT parameter that should be passed to a
1592   /// base constructor/destructor with virtual bases.
1593   /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
1594   /// to ItaniumCXXABI.cpp together with all the references to VTT.
1595   llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
1596                                bool Delegating);
1597 
1598   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
1599                                       CXXCtorType CtorType,
1600                                       const FunctionArgList &Args,
1601                                       SourceLocation Loc);
1602   // It's important not to confuse this and the previous function. Delegating
1603   // constructors are the C++0x feature. The constructor delegate optimization
1604   // is used to reduce duplication in the base and complete consturctors where
1605   // they are substantially the same.
1606   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
1607                                         const FunctionArgList &Args);
1608   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
1609                               bool ForVirtualBase, bool Delegating,
1610                               llvm::Value *This,
1611                               CallExpr::const_arg_iterator ArgBeg,
1612                               CallExpr::const_arg_iterator ArgEnd);
1613 
1614   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
1615                               llvm::Value *This, llvm::Value *Src,
1616                               CallExpr::const_arg_iterator ArgBeg,
1617                               CallExpr::const_arg_iterator ArgEnd);
1618 
1619   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1620                                   const ConstantArrayType *ArrayTy,
1621                                   llvm::Value *ArrayPtr,
1622                                   CallExpr::const_arg_iterator ArgBeg,
1623                                   CallExpr::const_arg_iterator ArgEnd,
1624                                   bool ZeroInitialization = false);
1625 
1626   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1627                                   llvm::Value *NumElements,
1628                                   llvm::Value *ArrayPtr,
1629                                   CallExpr::const_arg_iterator ArgBeg,
1630                                   CallExpr::const_arg_iterator ArgEnd,
1631                                   bool ZeroInitialization = false);
1632 
1633   static Destroyer destroyCXXObject;
1634 
1635   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
1636                              bool ForVirtualBase, bool Delegating,
1637                              llvm::Value *This);
1638 
1639   void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
1640                                llvm::Value *NewPtr, llvm::Value *NumElements);
1641 
1642   void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
1643                         llvm::Value *Ptr);
1644 
1645   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
1646   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
1647 
1648   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
1649                       QualType DeleteTy);
1650 
1651   llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E);
1652   llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE);
1653   llvm::Value* EmitCXXUuidofExpr(const CXXUuidofExpr *E);
1654 
1655   /// \brief Situations in which we might emit a check for the suitability of a
1656   ///        pointer or glvalue.
1657   enum TypeCheckKind {
1658     /// Checking the operand of a load. Must be suitably sized and aligned.
1659     TCK_Load,
1660     /// Checking the destination of a store. Must be suitably sized and aligned.
1661     TCK_Store,
1662     /// Checking the bound value in a reference binding. Must be suitably sized
1663     /// and aligned, but is not required to refer to an object (until the
1664     /// reference is used), per core issue 453.
1665     TCK_ReferenceBinding,
1666     /// Checking the object expression in a non-static data member access. Must
1667     /// be an object within its lifetime.
1668     TCK_MemberAccess,
1669     /// Checking the 'this' pointer for a call to a non-static member function.
1670     /// Must be an object within its lifetime.
1671     TCK_MemberCall,
1672     /// Checking the 'this' pointer for a constructor call.
1673     TCK_ConstructorCall,
1674     /// Checking the operand of a static_cast to a derived pointer type. Must be
1675     /// null or an object within its lifetime.
1676     TCK_DowncastPointer,
1677     /// Checking the operand of a static_cast to a derived reference type. Must
1678     /// be an object within its lifetime.
1679     TCK_DowncastReference
1680   };
1681 
1682   /// \brief Emit a check that \p V is the address of storage of the
1683   /// appropriate size and alignment for an object of type \p Type.
1684   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
1685                      QualType Type, CharUnits Alignment = CharUnits::Zero());
1686 
1687   /// \brief Emit a check that \p Base points into an array object, which
1688   /// we can access at index \p Index. \p Accessed should be \c false if we
1689   /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
1690   void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
1691                        QualType IndexType, bool Accessed);
1692 
1693   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1694                                        bool isInc, bool isPre);
1695   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1696                                          bool isInc, bool isPre);
1697   //===--------------------------------------------------------------------===//
1698   //                            Declaration Emission
1699   //===--------------------------------------------------------------------===//
1700 
1701   /// EmitDecl - Emit a declaration.
1702   ///
1703   /// This function can be called with a null (unreachable) insert point.
1704   void EmitDecl(const Decl &D);
1705 
1706   /// EmitVarDecl - Emit a local variable declaration.
1707   ///
1708   /// This function can be called with a null (unreachable) insert point.
1709   void EmitVarDecl(const VarDecl &D);
1710 
1711   void EmitScalarInit(const Expr *init, const ValueDecl *D,
1712                       LValue lvalue, bool capturedByInit);
1713   void EmitScalarInit(llvm::Value *init, LValue lvalue);
1714 
1715   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
1716                              llvm::Value *Address);
1717 
1718   /// EmitAutoVarDecl - Emit an auto variable declaration.
1719   ///
1720   /// This function can be called with a null (unreachable) insert point.
1721   void EmitAutoVarDecl(const VarDecl &D);
1722 
1723   class AutoVarEmission {
1724     friend class CodeGenFunction;
1725 
1726     const VarDecl *Variable;
1727 
1728     /// The alignment of the variable.
1729     CharUnits Alignment;
1730 
1731     /// The address of the alloca.  Null if the variable was emitted
1732     /// as a global constant.
1733     llvm::Value *Address;
1734 
1735     llvm::Value *NRVOFlag;
1736 
1737     /// True if the variable is a __block variable.
1738     bool IsByRef;
1739 
1740     /// True if the variable is of aggregate type and has a constant
1741     /// initializer.
1742     bool IsConstantAggregate;
1743 
1744     /// Non-null if we should use lifetime annotations.
1745     llvm::Value *SizeForLifetimeMarkers;
1746 
1747     struct Invalid {};
1748     AutoVarEmission(Invalid) : Variable(0) {}
1749 
1750     AutoVarEmission(const VarDecl &variable)
1751       : Variable(&variable), Address(0), NRVOFlag(0),
1752         IsByRef(false), IsConstantAggregate(false),
1753         SizeForLifetimeMarkers(0) {}
1754 
1755     bool wasEmittedAsGlobal() const { return Address == 0; }
1756 
1757   public:
1758     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
1759 
1760     bool useLifetimeMarkers() const { return SizeForLifetimeMarkers != 0; }
1761     llvm::Value *getSizeForLifetimeMarkers() const {
1762       assert(useLifetimeMarkers());
1763       return SizeForLifetimeMarkers;
1764     }
1765 
1766     /// Returns the raw, allocated address, which is not necessarily
1767     /// the address of the object itself.
1768     llvm::Value *getAllocatedAddress() const {
1769       return Address;
1770     }
1771 
1772     /// Returns the address of the object within this declaration.
1773     /// Note that this does not chase the forwarding pointer for
1774     /// __block decls.
1775     llvm::Value *getObjectAddress(CodeGenFunction &CGF) const {
1776       if (!IsByRef) return Address;
1777 
1778       return CGF.Builder.CreateStructGEP(Address,
1779                                          CGF.getByRefValueLLVMField(Variable),
1780                                          Variable->getNameAsString());
1781     }
1782   };
1783   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
1784   void EmitAutoVarInit(const AutoVarEmission &emission);
1785   void EmitAutoVarCleanups(const AutoVarEmission &emission);
1786   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
1787                               QualType::DestructionKind dtorKind);
1788 
1789   void EmitStaticVarDecl(const VarDecl &D,
1790                          llvm::GlobalValue::LinkageTypes Linkage);
1791 
1792   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
1793   void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, bool ArgIsPointer,
1794                     unsigned ArgNo);
1795 
1796   /// protectFromPeepholes - Protect a value that we're intending to
1797   /// store to the side, but which will probably be used later, from
1798   /// aggressive peepholing optimizations that might delete it.
1799   ///
1800   /// Pass the result to unprotectFromPeepholes to declare that
1801   /// protection is no longer required.
1802   ///
1803   /// There's no particular reason why this shouldn't apply to
1804   /// l-values, it's just that no existing peepholes work on pointers.
1805   PeepholeProtection protectFromPeepholes(RValue rvalue);
1806   void unprotectFromPeepholes(PeepholeProtection protection);
1807 
1808   //===--------------------------------------------------------------------===//
1809   //                             Statement Emission
1810   //===--------------------------------------------------------------------===//
1811 
1812   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
1813   void EmitStopPoint(const Stmt *S);
1814 
1815   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
1816   /// this function even if there is no current insertion point.
1817   ///
1818   /// This function may clear the current insertion point; callers should use
1819   /// EnsureInsertPoint if they wish to subsequently generate code without first
1820   /// calling EmitBlock, EmitBranch, or EmitStmt.
1821   void EmitStmt(const Stmt *S);
1822 
1823   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
1824   /// necessarily require an insertion point or debug information; typically
1825   /// because the statement amounts to a jump or a container of other
1826   /// statements.
1827   ///
1828   /// \return True if the statement was handled.
1829   bool EmitSimpleStmt(const Stmt *S);
1830 
1831   llvm::Value *EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
1832                                 AggValueSlot AVS = AggValueSlot::ignored());
1833   llvm::Value *EmitCompoundStmtWithoutScope(const CompoundStmt &S,
1834                                             bool GetLast = false,
1835                                             AggValueSlot AVS =
1836                                                 AggValueSlot::ignored());
1837 
1838   /// EmitLabel - Emit the block for the given label. It is legal to call this
1839   /// function even if there is no current insertion point.
1840   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
1841 
1842   void EmitLabelStmt(const LabelStmt &S);
1843   void EmitAttributedStmt(const AttributedStmt &S);
1844   void EmitGotoStmt(const GotoStmt &S);
1845   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
1846   void EmitIfStmt(const IfStmt &S);
1847   void EmitWhileStmt(const WhileStmt &S);
1848   void EmitDoStmt(const DoStmt &S);
1849   void EmitForStmt(const ForStmt &S);
1850   void EmitReturnStmt(const ReturnStmt &S);
1851   void EmitDeclStmt(const DeclStmt &S);
1852   void EmitBreakStmt(const BreakStmt &S);
1853   void EmitContinueStmt(const ContinueStmt &S);
1854   void EmitSwitchStmt(const SwitchStmt &S);
1855   void EmitDefaultStmt(const DefaultStmt &S);
1856   void EmitCaseStmt(const CaseStmt &S);
1857   void EmitCaseStmtRange(const CaseStmt &S);
1858   void EmitAsmStmt(const AsmStmt &S);
1859 
1860   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
1861   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
1862   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
1863   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
1864   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
1865 
1866   llvm::Constant *getUnwindResumeFn();
1867   llvm::Constant *getUnwindResumeOrRethrowFn();
1868   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
1869   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
1870 
1871   void EmitCXXTryStmt(const CXXTryStmt &S);
1872   void EmitSEHTryStmt(const SEHTryStmt &S);
1873   void EmitCXXForRangeStmt(const CXXForRangeStmt &S);
1874 
1875   llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
1876   llvm::Function *GenerateCapturedStmtFunction(const CapturedDecl *CD,
1877                                                const RecordDecl *RD,
1878                                                SourceLocation Loc);
1879 
1880   //===--------------------------------------------------------------------===//
1881   //                         LValue Expression Emission
1882   //===--------------------------------------------------------------------===//
1883 
1884   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
1885   RValue GetUndefRValue(QualType Ty);
1886 
1887   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
1888   /// and issue an ErrorUnsupported style diagnostic (using the
1889   /// provided Name).
1890   RValue EmitUnsupportedRValue(const Expr *E,
1891                                const char *Name);
1892 
1893   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
1894   /// an ErrorUnsupported style diagnostic (using the provided Name).
1895   LValue EmitUnsupportedLValue(const Expr *E,
1896                                const char *Name);
1897 
1898   /// EmitLValue - Emit code to compute a designator that specifies the location
1899   /// of the expression.
1900   ///
1901   /// This can return one of two things: a simple address or a bitfield
1902   /// reference.  In either case, the LLVM Value* in the LValue structure is
1903   /// guaranteed to be an LLVM pointer type.
1904   ///
1905   /// If this returns a bitfield reference, nothing about the pointee type of
1906   /// the LLVM value is known: For example, it may not be a pointer to an
1907   /// integer.
1908   ///
1909   /// If this returns a normal address, and if the lvalue's C type is fixed
1910   /// size, this method guarantees that the returned pointer type will point to
1911   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
1912   /// variable length type, this is not possible.
1913   ///
1914   LValue EmitLValue(const Expr *E);
1915 
1916   /// \brief Same as EmitLValue but additionally we generate checking code to
1917   /// guard against undefined behavior.  This is only suitable when we know
1918   /// that the address will be used to access the object.
1919   LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
1920 
1921   RValue convertTempToRValue(llvm::Value *addr, QualType type,
1922                              SourceLocation Loc);
1923 
1924   void EmitAtomicInit(Expr *E, LValue lvalue);
1925 
1926   RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
1927                         AggValueSlot slot = AggValueSlot::ignored());
1928 
1929   void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
1930 
1931   /// EmitToMemory - Change a scalar value from its value
1932   /// representation to its in-memory representation.
1933   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
1934 
1935   /// EmitFromMemory - Change a scalar value from its memory
1936   /// representation to its value representation.
1937   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
1938 
1939   /// EmitLoadOfScalar - Load a scalar value from an address, taking
1940   /// care to appropriately convert from the memory representation to
1941   /// the LLVM value representation.
1942   llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
1943                                 unsigned Alignment, QualType Ty,
1944                                 SourceLocation Loc,
1945                                 llvm::MDNode *TBAAInfo = 0,
1946                                 QualType TBAABaseTy = QualType(),
1947                                 uint64_t TBAAOffset = 0);
1948 
1949   /// EmitLoadOfScalar - Load a scalar value from an address, taking
1950   /// care to appropriately convert from the memory representation to
1951   /// the LLVM value representation.  The l-value must be a simple
1952   /// l-value.
1953   llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
1954 
1955   /// EmitStoreOfScalar - Store a scalar value to an address, taking
1956   /// care to appropriately convert from the memory representation to
1957   /// the LLVM value representation.
1958   void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
1959                          bool Volatile, unsigned Alignment, QualType Ty,
1960                          llvm::MDNode *TBAAInfo = 0, bool isInit = false,
1961                          QualType TBAABaseTy = QualType(),
1962                          uint64_t TBAAOffset = 0);
1963 
1964   /// EmitStoreOfScalar - Store a scalar value to an address, taking
1965   /// care to appropriately convert from the memory representation to
1966   /// the LLVM value representation.  The l-value must be a simple
1967   /// l-value.  The isInit flag indicates whether this is an initialization.
1968   /// If so, atomic qualifiers are ignored and the store is always non-atomic.
1969   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
1970 
1971   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
1972   /// this method emits the address of the lvalue, then loads the result as an
1973   /// rvalue, returning the rvalue.
1974   RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
1975   RValue EmitLoadOfExtVectorElementLValue(LValue V);
1976   RValue EmitLoadOfBitfieldLValue(LValue LV);
1977 
1978   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1979   /// lvalue, where both are guaranteed to the have the same type, and that type
1980   /// is 'Ty'.
1981   void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit=false);
1982   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
1983 
1984   /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
1985   /// as EmitStoreThroughLValue.
1986   ///
1987   /// \param Result [out] - If non-null, this will be set to a Value* for the
1988   /// bit-field contents after the store, appropriate for use as the result of
1989   /// an assignment to the bit-field.
1990   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1991                                       llvm::Value **Result=0);
1992 
1993   /// Emit an l-value for an assignment (simple or compound) of complex type.
1994   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
1995   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
1996   LValue EmitScalarCompooundAssignWithComplex(const CompoundAssignOperator *E,
1997                                               llvm::Value *&Result);
1998 
1999   // Note: only available for agg return types
2000   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
2001   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
2002   // Note: only available for agg return types
2003   LValue EmitCallExprLValue(const CallExpr *E);
2004   // Note: only available for agg return types
2005   LValue EmitVAArgExprLValue(const VAArgExpr *E);
2006   LValue EmitDeclRefLValue(const DeclRefExpr *E);
2007   LValue EmitStringLiteralLValue(const StringLiteral *E);
2008   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
2009   LValue EmitPredefinedLValue(const PredefinedExpr *E);
2010   LValue EmitUnaryOpLValue(const UnaryOperator *E);
2011   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
2012                                 bool Accessed = false);
2013   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
2014   LValue EmitMemberExpr(const MemberExpr *E);
2015   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
2016   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
2017   LValue EmitInitListLValue(const InitListExpr *E);
2018   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
2019   LValue EmitCastLValue(const CastExpr *E);
2020   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
2021   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
2022 
2023   RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
2024 
2025   class ConstantEmission {
2026     llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
2027     ConstantEmission(llvm::Constant *C, bool isReference)
2028       : ValueAndIsReference(C, isReference) {}
2029   public:
2030     ConstantEmission() {}
2031     static ConstantEmission forReference(llvm::Constant *C) {
2032       return ConstantEmission(C, true);
2033     }
2034     static ConstantEmission forValue(llvm::Constant *C) {
2035       return ConstantEmission(C, false);
2036     }
2037 
2038     LLVM_EXPLICIT operator bool() const { return ValueAndIsReference.getOpaqueValue() != 0; }
2039 
2040     bool isReference() const { return ValueAndIsReference.getInt(); }
2041     LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
2042       assert(isReference());
2043       return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
2044                                             refExpr->getType());
2045     }
2046 
2047     llvm::Constant *getValue() const {
2048       assert(!isReference());
2049       return ValueAndIsReference.getPointer();
2050     }
2051   };
2052 
2053   ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
2054 
2055   RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
2056                                 AggValueSlot slot = AggValueSlot::ignored());
2057   LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
2058 
2059   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
2060                               const ObjCIvarDecl *Ivar);
2061   LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
2062   LValue EmitLValueForLambdaField(const FieldDecl *Field);
2063 
2064   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
2065   /// if the Field is a reference, this will return the address of the reference
2066   /// and not the address of the value stored in the reference.
2067   LValue EmitLValueForFieldInitialization(LValue Base,
2068                                           const FieldDecl* Field);
2069 
2070   LValue EmitLValueForIvar(QualType ObjectTy,
2071                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
2072                            unsigned CVRQualifiers);
2073 
2074   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
2075   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
2076   LValue EmitLambdaLValue(const LambdaExpr *E);
2077   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
2078   LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
2079 
2080   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
2081   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
2082   LValue EmitStmtExprLValue(const StmtExpr *E);
2083   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
2084   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
2085   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init);
2086 
2087   //===--------------------------------------------------------------------===//
2088   //                         Scalar Expression Emission
2089   //===--------------------------------------------------------------------===//
2090 
2091   /// EmitCall - Generate a call of the given function, expecting the given
2092   /// result type, and using the given argument list which specifies both the
2093   /// LLVM arguments and the types they were derived from.
2094   ///
2095   /// \param TargetDecl - If given, the decl of the function in a direct call;
2096   /// used to set attributes on the call (noreturn, etc.).
2097   RValue EmitCall(const CGFunctionInfo &FnInfo,
2098                   llvm::Value *Callee,
2099                   ReturnValueSlot ReturnValue,
2100                   const CallArgList &Args,
2101                   const Decl *TargetDecl = 0,
2102                   llvm::Instruction **callOrInvoke = 0);
2103 
2104   RValue EmitCall(QualType FnType, llvm::Value *Callee,
2105                   SourceLocation CallLoc,
2106                   ReturnValueSlot ReturnValue,
2107                   CallExpr::const_arg_iterator ArgBeg,
2108                   CallExpr::const_arg_iterator ArgEnd,
2109                   const Decl *TargetDecl = 0);
2110   RValue EmitCallExpr(const CallExpr *E,
2111                       ReturnValueSlot ReturnValue = ReturnValueSlot());
2112 
2113   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
2114                                   const Twine &name = "");
2115   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
2116                                   ArrayRef<llvm::Value*> args,
2117                                   const Twine &name = "");
2118   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
2119                                           const Twine &name = "");
2120   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
2121                                           ArrayRef<llvm::Value*> args,
2122                                           const Twine &name = "");
2123 
2124   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2125                                   ArrayRef<llvm::Value *> Args,
2126                                   const Twine &Name = "");
2127   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2128                                   const Twine &Name = "");
2129   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
2130                                          ArrayRef<llvm::Value*> args,
2131                                          const Twine &name = "");
2132   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
2133                                          const Twine &name = "");
2134   void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
2135                                        ArrayRef<llvm::Value*> args);
2136 
2137   llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
2138                                          NestedNameSpecifier *Qual,
2139                                          llvm::Type *Ty);
2140 
2141   llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
2142                                                    CXXDtorType Type,
2143                                                    const CXXRecordDecl *RD);
2144 
2145   RValue EmitCXXMemberCall(const CXXMethodDecl *MD,
2146                            SourceLocation CallLoc,
2147                            llvm::Value *Callee,
2148                            ReturnValueSlot ReturnValue,
2149                            llvm::Value *This,
2150                            llvm::Value *ImplicitParam,
2151                            QualType ImplicitParamTy,
2152                            CallExpr::const_arg_iterator ArgBeg,
2153                            CallExpr::const_arg_iterator ArgEnd);
2154   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
2155                                ReturnValueSlot ReturnValue);
2156   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
2157                                       ReturnValueSlot ReturnValue);
2158 
2159   llvm::Value *EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E,
2160                                            const CXXMethodDecl *MD,
2161                                            llvm::Value *This);
2162   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
2163                                        const CXXMethodDecl *MD,
2164                                        ReturnValueSlot ReturnValue);
2165 
2166   RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
2167                                 ReturnValueSlot ReturnValue);
2168 
2169 
2170   RValue EmitBuiltinExpr(const FunctionDecl *FD,
2171                          unsigned BuiltinID, const CallExpr *E);
2172 
2173   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
2174 
2175   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
2176   /// is unhandled by the current target.
2177   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2178 
2179   llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
2180                                              const llvm::CmpInst::Predicate Fp,
2181                                              const llvm::CmpInst::Predicate Ip,
2182                                              const llvm::Twine &Name = "");
2183   llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty);
2184   llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2185   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2186   llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
2187                                          SmallVectorImpl<llvm::Value *> &Ops,
2188                                          llvm::Value *Align = 0);
2189   llvm::Value *EmitNeonCall(llvm::Function *F,
2190                             SmallVectorImpl<llvm::Value*> &O,
2191                             const char *name,
2192                             unsigned shift = 0, bool rightshift = false);
2193   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
2194   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
2195                                    bool negateForRightShift);
2196   llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
2197                                  llvm::Type *Ty, bool usgn, const char *name);
2198 
2199   llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
2200   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2201   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2202 
2203   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
2204   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
2205   llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
2206   llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
2207   llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
2208   llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
2209                                 const ObjCMethodDecl *MethodWithObjects);
2210   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
2211   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
2212                              ReturnValueSlot Return = ReturnValueSlot());
2213 
2214   /// Retrieves the default cleanup kind for an ARC cleanup.
2215   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
2216   CleanupKind getARCCleanupKind() {
2217     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
2218              ? NormalAndEHCleanup : NormalCleanup;
2219   }
2220 
2221   // ARC primitives.
2222   void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr);
2223   void EmitARCDestroyWeak(llvm::Value *addr);
2224   llvm::Value *EmitARCLoadWeak(llvm::Value *addr);
2225   llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr);
2226   llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr,
2227                                 bool ignored);
2228   void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src);
2229   void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src);
2230   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
2231   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
2232   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
2233                                   bool resultIgnored);
2234   llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value,
2235                                       bool resultIgnored);
2236   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
2237   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
2238   llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
2239   void EmitARCDestroyStrong(llvm::Value *addr, ARCPreciseLifetime_t precise);
2240   void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
2241   llvm::Value *EmitARCAutorelease(llvm::Value *value);
2242   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
2243   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
2244   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
2245 
2246   std::pair<LValue,llvm::Value*>
2247   EmitARCStoreAutoreleasing(const BinaryOperator *e);
2248   std::pair<LValue,llvm::Value*>
2249   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
2250 
2251   llvm::Value *EmitObjCThrowOperand(const Expr *expr);
2252 
2253   llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr);
2254   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
2255   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
2256 
2257   llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
2258   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
2259   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
2260 
2261   void EmitARCIntrinsicUse(llvm::ArrayRef<llvm::Value*> values);
2262 
2263   static Destroyer destroyARCStrongImprecise;
2264   static Destroyer destroyARCStrongPrecise;
2265   static Destroyer destroyARCWeak;
2266 
2267   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
2268   llvm::Value *EmitObjCAutoreleasePoolPush();
2269   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
2270   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
2271   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
2272 
2273   /// \brief Emits a reference binding to the passed in expression.
2274   RValue EmitReferenceBindingToExpr(const Expr *E);
2275 
2276   //===--------------------------------------------------------------------===//
2277   //                           Expression Emission
2278   //===--------------------------------------------------------------------===//
2279 
2280   // Expressions are broken into three classes: scalar, complex, aggregate.
2281 
2282   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
2283   /// scalar type, returning the result.
2284   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
2285 
2286   /// EmitScalarConversion - Emit a conversion from the specified type to the
2287   /// specified destination type, both of which are LLVM scalar types.
2288   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
2289                                     QualType DstTy);
2290 
2291   /// EmitComplexToScalarConversion - Emit a conversion from the specified
2292   /// complex type to the specified destination type, where the destination type
2293   /// is an LLVM scalar type.
2294   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
2295                                              QualType DstTy);
2296 
2297 
2298   /// EmitAggExpr - Emit the computation of the specified expression
2299   /// of aggregate type.  The result is computed into the given slot,
2300   /// which may be null to indicate that the value is not needed.
2301   void EmitAggExpr(const Expr *E, AggValueSlot AS);
2302 
2303   /// EmitAggExprToLValue - Emit the computation of the specified expression of
2304   /// aggregate type into a temporary LValue.
2305   LValue EmitAggExprToLValue(const Expr *E);
2306 
2307   /// EmitGCMemmoveCollectable - Emit special API for structs with object
2308   /// pointers.
2309   void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr,
2310                                 QualType Ty);
2311 
2312   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
2313   /// make sure it survives garbage collection until this point.
2314   void EmitExtendGCLifetime(llvm::Value *object);
2315 
2316   /// EmitComplexExpr - Emit the computation of the specified expression of
2317   /// complex type, returning the result.
2318   ComplexPairTy EmitComplexExpr(const Expr *E,
2319                                 bool IgnoreReal = false,
2320                                 bool IgnoreImag = false);
2321 
2322   /// EmitComplexExprIntoLValue - Emit the given expression of complex
2323   /// type and place its result into the specified l-value.
2324   void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
2325 
2326   /// EmitStoreOfComplex - Store a complex number into the specified l-value.
2327   void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
2328 
2329   /// EmitLoadOfComplex - Load a complex number from the specified l-value.
2330   ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
2331 
2332   /// CreateStaticVarDecl - Create a zero-initialized LLVM global for
2333   /// a static local variable.
2334   llvm::GlobalVariable *CreateStaticVarDecl(const VarDecl &D,
2335                                             const char *Separator,
2336                                        llvm::GlobalValue::LinkageTypes Linkage);
2337 
2338   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
2339   /// global variable that has already been created for it.  If the initializer
2340   /// has a different type than GV does, this may free GV and return a different
2341   /// one.  Otherwise it just returns GV.
2342   llvm::GlobalVariable *
2343   AddInitializerToStaticVarDecl(const VarDecl &D,
2344                                 llvm::GlobalVariable *GV);
2345 
2346 
2347   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
2348   /// variable with global storage.
2349   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
2350                                 bool PerformInit);
2351 
2352   /// Call atexit() with a function that passes the given argument to
2353   /// the given function.
2354   void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn,
2355                                     llvm::Constant *addr);
2356 
2357   /// Emit code in this function to perform a guarded variable
2358   /// initialization.  Guarded initializations are used when it's not
2359   /// possible to prove that an initialization will be done exactly
2360   /// once, e.g. with a static local variable or a static data member
2361   /// of a class template.
2362   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
2363                           bool PerformInit);
2364 
2365   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
2366   /// variables.
2367   void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
2368                                  ArrayRef<llvm::Constant *> Decls,
2369                                  llvm::GlobalVariable *Guard = 0);
2370 
2371   /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
2372   /// variables.
2373   void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn,
2374                                   const std::vector<std::pair<llvm::WeakVH,
2375                                   llvm::Constant*> > &DtorsAndObjects);
2376 
2377   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
2378                                         const VarDecl *D,
2379                                         llvm::GlobalVariable *Addr,
2380                                         bool PerformInit);
2381 
2382   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
2383 
2384   void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src,
2385                                   const Expr *Exp);
2386 
2387   void enterFullExpression(const ExprWithCleanups *E) {
2388     if (E->getNumObjects() == 0) return;
2389     enterNonTrivialFullExpression(E);
2390   }
2391   void enterNonTrivialFullExpression(const ExprWithCleanups *E);
2392 
2393   void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
2394 
2395   void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest);
2396 
2397   RValue EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest = 0);
2398 
2399   //===--------------------------------------------------------------------===//
2400   //                         Annotations Emission
2401   //===--------------------------------------------------------------------===//
2402 
2403   /// Emit an annotation call (intrinsic or builtin).
2404   llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
2405                                   llvm::Value *AnnotatedVal,
2406                                   StringRef AnnotationStr,
2407                                   SourceLocation Location);
2408 
2409   /// Emit local annotations for the local variable V, declared by D.
2410   void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
2411 
2412   /// Emit field annotations for the given field & value. Returns the
2413   /// annotation result.
2414   llvm::Value *EmitFieldAnnotations(const FieldDecl *D, llvm::Value *V);
2415 
2416   //===--------------------------------------------------------------------===//
2417   //                             Internal Helpers
2418   //===--------------------------------------------------------------------===//
2419 
2420   /// ContainsLabel - Return true if the statement contains a label in it.  If
2421   /// this statement is not executed normally, it not containing a label means
2422   /// that we can just remove the code.
2423   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
2424 
2425   /// containsBreak - Return true if the statement contains a break out of it.
2426   /// If the statement (recursively) contains a switch or loop with a break
2427   /// inside of it, this is fine.
2428   static bool containsBreak(const Stmt *S);
2429 
2430   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2431   /// to a constant, or if it does but contains a label, return false.  If it
2432   /// constant folds return true and set the boolean result in Result.
2433   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result);
2434 
2435   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2436   /// to a constant, or if it does but contains a label, return false.  If it
2437   /// constant folds return true and set the folded value.
2438   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result);
2439 
2440   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
2441   /// if statement) to the specified blocks.  Based on the condition, this might
2442   /// try to simplify the codegen of the conditional based on the branch.
2443   /// TrueCount should be the number of times we expect the condition to
2444   /// evaluate to true based on PGO data.
2445   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
2446                             llvm::BasicBlock *FalseBlock, uint64_t TrueCount);
2447 
2448   /// \brief Emit a description of a type in a format suitable for passing to
2449   /// a runtime sanitizer handler.
2450   llvm::Constant *EmitCheckTypeDescriptor(QualType T);
2451 
2452   /// \brief Convert a value into a format suitable for passing to a runtime
2453   /// sanitizer handler.
2454   llvm::Value *EmitCheckValue(llvm::Value *V);
2455 
2456   /// \brief Emit a description of a source location in a format suitable for
2457   /// passing to a runtime sanitizer handler.
2458   llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
2459 
2460   /// \brief Specify under what conditions this check can be recovered
2461   enum CheckRecoverableKind {
2462     /// Always terminate program execution if this check fails
2463     CRK_Unrecoverable,
2464     /// Check supports recovering, allows user to specify which
2465     CRK_Recoverable,
2466     /// Runtime conditionally aborts, always need to support recovery.
2467     CRK_AlwaysRecoverable
2468   };
2469 
2470   /// \brief Create a basic block that will call a handler function in a
2471   /// sanitizer runtime with the provided arguments, and create a conditional
2472   /// branch to it.
2473   void EmitCheck(llvm::Value *Checked, StringRef CheckName,
2474                  ArrayRef<llvm::Constant *> StaticArgs,
2475                  ArrayRef<llvm::Value *> DynamicArgs,
2476                  CheckRecoverableKind Recoverable);
2477 
2478   /// \brief Create a basic block that will call the trap intrinsic, and emit a
2479   /// conditional branch to it, for the -ftrapv checks.
2480   void EmitTrapCheck(llvm::Value *Checked);
2481 
2482   /// EmitCallArg - Emit a single call argument.
2483   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
2484 
2485   /// EmitDelegateCallArg - We are performing a delegate call; that
2486   /// is, the current function is delegating to another one.  Produce
2487   /// a r-value suitable for passing the given parameter.
2488   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
2489                            SourceLocation loc);
2490 
2491   /// SetFPAccuracy - Set the minimum required accuracy of the given floating
2492   /// point operation, expressed as the maximum relative error in ulp.
2493   void SetFPAccuracy(llvm::Value *Val, float Accuracy);
2494 
2495 private:
2496   llvm::MDNode *getRangeForLoadFromType(QualType Ty);
2497   void EmitReturnOfRValue(RValue RV, QualType Ty);
2498 
2499   void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
2500 
2501   llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4>
2502   DeferredReplacements;
2503 
2504   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
2505   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
2506   ///
2507   /// \param AI - The first function argument of the expansion.
2508   /// \return The argument following the last expanded function
2509   /// argument.
2510   llvm::Function::arg_iterator
2511   ExpandTypeFromArgs(QualType Ty, LValue Dst,
2512                      llvm::Function::arg_iterator AI);
2513 
2514   /// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg
2515   /// Ty, into individual arguments on the provided vector \arg Args. See
2516   /// ABIArgInfo::Expand.
2517   void ExpandTypeToArgs(QualType Ty, RValue Src,
2518                         SmallVectorImpl<llvm::Value *> &Args,
2519                         llvm::FunctionType *IRFuncTy);
2520 
2521   llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
2522                             const Expr *InputExpr, std::string &ConstraintStr);
2523 
2524   llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
2525                                   LValue InputValue, QualType InputType,
2526                                   std::string &ConstraintStr,
2527                                   SourceLocation Loc);
2528 
2529 public:
2530   /// EmitCallArgs - Emit call arguments for a function.
2531   template <typename T>
2532   void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo,
2533                     CallExpr::const_arg_iterator ArgBeg,
2534                     CallExpr::const_arg_iterator ArgEnd,
2535                     bool ForceColumnInfo = false) {
2536     if (CallArgTypeInfo) {
2537       EmitCallArgs(Args, CallArgTypeInfo->isVariadic(),
2538                    CallArgTypeInfo->param_type_begin(),
2539                    CallArgTypeInfo->param_type_end(), ArgBeg, ArgEnd,
2540                    ForceColumnInfo);
2541     } else {
2542       // T::param_type_iterator might not have a default ctor.
2543       const QualType *NoIter = 0;
2544       EmitCallArgs(Args, /*AllowExtraArguments=*/true, NoIter, NoIter, ArgBeg,
2545                    ArgEnd, ForceColumnInfo);
2546     }
2547   }
2548 
2549   template<typename ArgTypeIterator>
2550   void EmitCallArgs(CallArgList& Args,
2551                     bool AllowExtraArguments,
2552                     ArgTypeIterator ArgTypeBeg,
2553                     ArgTypeIterator ArgTypeEnd,
2554                     CallExpr::const_arg_iterator ArgBeg,
2555                     CallExpr::const_arg_iterator ArgEnd,
2556                     bool ForceColumnInfo = false) {
2557     SmallVector<QualType, 16> ArgTypes;
2558     CallExpr::const_arg_iterator Arg = ArgBeg;
2559 
2560     // First, use the argument types that the type info knows about
2561     for (ArgTypeIterator I = ArgTypeBeg, E = ArgTypeEnd; I != E; ++I, ++Arg) {
2562       assert(Arg != ArgEnd && "Running over edge of argument list!");
2563 #ifndef NDEBUG
2564       QualType ArgType = *I;
2565       QualType ActualArgType = Arg->getType();
2566       if (ArgType->isPointerType() && ActualArgType->isPointerType()) {
2567         QualType ActualBaseType =
2568             ActualArgType->getAs<PointerType>()->getPointeeType();
2569         QualType ArgBaseType =
2570             ArgType->getAs<PointerType>()->getPointeeType();
2571         if (ArgBaseType->isVariableArrayType()) {
2572           if (const VariableArrayType *VAT =
2573               getContext().getAsVariableArrayType(ActualBaseType)) {
2574             if (!VAT->getSizeExpr())
2575               ActualArgType = ArgType;
2576           }
2577         }
2578       }
2579       assert(getContext().getCanonicalType(ArgType.getNonReferenceType()).
2580              getTypePtr() ==
2581              getContext().getCanonicalType(ActualArgType).getTypePtr() &&
2582              "type mismatch in call argument!");
2583 #endif
2584       ArgTypes.push_back(*I);
2585     }
2586 
2587     // Either we've emitted all the call args, or we have a call to variadic
2588     // function or some other call that allows extra arguments.
2589     assert((Arg == ArgEnd || AllowExtraArguments) &&
2590            "Extra arguments in non-variadic function!");
2591 
2592     // If we still have any arguments, emit them using the type of the argument.
2593     for (; Arg != ArgEnd; ++Arg)
2594       ArgTypes.push_back(Arg->getType());
2595 
2596     EmitCallArgs(Args, ArgTypes, ArgBeg, ArgEnd, ForceColumnInfo);
2597   }
2598 
2599   void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes,
2600                     CallExpr::const_arg_iterator ArgBeg,
2601                     CallExpr::const_arg_iterator ArgEnd, bool ForceColumnInfo);
2602 
2603 private:
2604   const TargetCodeGenInfo &getTargetHooks() const {
2605     return CGM.getTargetCodeGenInfo();
2606   }
2607 
2608   void EmitDeclMetadata();
2609 
2610   CodeGenModule::ByrefHelpers *
2611   buildByrefHelpers(llvm::StructType &byrefType,
2612                     const AutoVarEmission &emission);
2613 
2614   void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
2615 
2616   /// GetPointeeAlignment - Given an expression with a pointer type, emit the
2617   /// value and compute our best estimate of the alignment of the pointee.
2618   std::pair<llvm::Value*, unsigned> EmitPointerWithAlignment(const Expr *Addr);
2619 };
2620 
2621 /// Helper class with most of the code for saving a value for a
2622 /// conditional expression cleanup.
2623 struct DominatingLLVMValue {
2624   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
2625 
2626   /// Answer whether the given value needs extra work to be saved.
2627   static bool needsSaving(llvm::Value *value) {
2628     // If it's not an instruction, we don't need to save.
2629     if (!isa<llvm::Instruction>(value)) return false;
2630 
2631     // If it's an instruction in the entry block, we don't need to save.
2632     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
2633     return (block != &block->getParent()->getEntryBlock());
2634   }
2635 
2636   /// Try to save the given value.
2637   static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
2638     if (!needsSaving(value)) return saved_type(value, false);
2639 
2640     // Otherwise we need an alloca.
2641     llvm::Value *alloca =
2642       CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save");
2643     CGF.Builder.CreateStore(value, alloca);
2644 
2645     return saved_type(alloca, true);
2646   }
2647 
2648   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
2649     if (!value.getInt()) return value.getPointer();
2650     return CGF.Builder.CreateLoad(value.getPointer());
2651   }
2652 };
2653 
2654 /// A partial specialization of DominatingValue for llvm::Values that
2655 /// might be llvm::Instructions.
2656 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
2657   typedef T *type;
2658   static type restore(CodeGenFunction &CGF, saved_type value) {
2659     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
2660   }
2661 };
2662 
2663 /// A specialization of DominatingValue for RValue.
2664 template <> struct DominatingValue<RValue> {
2665   typedef RValue type;
2666   class saved_type {
2667     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
2668                 AggregateAddress, ComplexAddress };
2669 
2670     llvm::Value *Value;
2671     Kind K;
2672     saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {}
2673 
2674   public:
2675     static bool needsSaving(RValue value);
2676     static saved_type save(CodeGenFunction &CGF, RValue value);
2677     RValue restore(CodeGenFunction &CGF);
2678 
2679     // implementations in CGExprCXX.cpp
2680   };
2681 
2682   static bool needsSaving(type value) {
2683     return saved_type::needsSaving(value);
2684   }
2685   static saved_type save(CodeGenFunction &CGF, type value) {
2686     return saved_type::save(CGF, value);
2687   }
2688   static type restore(CodeGenFunction &CGF, saved_type value) {
2689     return value.restore(CGF);
2690   }
2691 };
2692 
2693 }  // end namespace CodeGen
2694 }  // end namespace clang
2695 
2696 #endif
2697