1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the internal per-function state used for llvm translation.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
14 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
15 
16 #include "CGBuilder.h"
17 #include "CGDebugInfo.h"
18 #include "CGLoopInfo.h"
19 #include "CGValue.h"
20 #include "CodeGenModule.h"
21 #include "CodeGenPGO.h"
22 #include "EHScopeStack.h"
23 #include "VarBypassDetector.h"
24 #include "clang/AST/CharUnits.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/AST/ExprObjC.h"
27 #include "clang/AST/ExprOpenMP.h"
28 #include "clang/AST/Type.h"
29 #include "clang/Basic/ABI.h"
30 #include "clang/Basic/CapturedStmt.h"
31 #include "clang/Basic/CodeGenOptions.h"
32 #include "clang/Basic/OpenMPKinds.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "llvm/ADT/ArrayRef.h"
35 #include "llvm/ADT/DenseMap.h"
36 #include "llvm/ADT/MapVector.h"
37 #include "llvm/ADT/SmallVector.h"
38 #include "llvm/IR/ValueHandle.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Transforms/Utils/SanitizerStats.h"
41 
42 namespace llvm {
43 class BasicBlock;
44 class LLVMContext;
45 class MDNode;
46 class Module;
47 class SwitchInst;
48 class Twine;
49 class Value;
50 }
51 
52 namespace clang {
53 class ASTContext;
54 class BlockDecl;
55 class CXXDestructorDecl;
56 class CXXForRangeStmt;
57 class CXXTryStmt;
58 class Decl;
59 class LabelDecl;
60 class EnumConstantDecl;
61 class FunctionDecl;
62 class FunctionProtoType;
63 class LabelStmt;
64 class ObjCContainerDecl;
65 class ObjCInterfaceDecl;
66 class ObjCIvarDecl;
67 class ObjCMethodDecl;
68 class ObjCImplementationDecl;
69 class ObjCPropertyImplDecl;
70 class TargetInfo;
71 class VarDecl;
72 class ObjCForCollectionStmt;
73 class ObjCAtTryStmt;
74 class ObjCAtThrowStmt;
75 class ObjCAtSynchronizedStmt;
76 class ObjCAutoreleasePoolStmt;
77 
78 namespace analyze_os_log {
79 class OSLogBufferLayout;
80 }
81 
82 namespace CodeGen {
83 class CodeGenTypes;
84 class CGCallee;
85 class CGFunctionInfo;
86 class CGRecordLayout;
87 class CGBlockInfo;
88 class CGCXXABI;
89 class BlockByrefHelpers;
90 class BlockByrefInfo;
91 class BlockFlags;
92 class BlockFieldFlags;
93 class RegionCodeGenTy;
94 class TargetCodeGenInfo;
95 struct OMPTaskDataTy;
96 struct CGCoroData;
97 
98 /// The kind of evaluation to perform on values of a particular
99 /// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
100 /// CGExprAgg?
101 ///
102 /// TODO: should vectors maybe be split out into their own thing?
103 enum TypeEvaluationKind {
104   TEK_Scalar,
105   TEK_Complex,
106   TEK_Aggregate
107 };
108 
109 #define LIST_SANITIZER_CHECKS                                                  \
110   SANITIZER_CHECK(AddOverflow, add_overflow, 0)                                \
111   SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0)                  \
112   SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0)                             \
113   SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0)                          \
114   SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0)            \
115   SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0)                   \
116   SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 0)             \
117   SANITIZER_CHECK(ImplicitConversion, implicit_conversion, 0)                  \
118   SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0)                          \
119   SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0)                     \
120   SANITIZER_CHECK(MissingReturn, missing_return, 0)                            \
121   SANITIZER_CHECK(MulOverflow, mul_overflow, 0)                                \
122   SANITIZER_CHECK(NegateOverflow, negate_overflow, 0)                          \
123   SANITIZER_CHECK(NullabilityArg, nullability_arg, 0)                          \
124   SANITIZER_CHECK(NullabilityReturn, nullability_return, 1)                    \
125   SANITIZER_CHECK(NonnullArg, nonnull_arg, 0)                                  \
126   SANITIZER_CHECK(NonnullReturn, nonnull_return, 1)                            \
127   SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0)                               \
128   SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0)                        \
129   SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0)                    \
130   SANITIZER_CHECK(SubOverflow, sub_overflow, 0)                                \
131   SANITIZER_CHECK(TypeMismatch, type_mismatch, 1)                              \
132   SANITIZER_CHECK(AlignmentAssumption, alignment_assumption, 0)                \
133   SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0)
134 
135 enum SanitizerHandler {
136 #define SANITIZER_CHECK(Enum, Name, Version) Enum,
137   LIST_SANITIZER_CHECKS
138 #undef SANITIZER_CHECK
139 };
140 
141 /// Helper class with most of the code for saving a value for a
142 /// conditional expression cleanup.
143 struct DominatingLLVMValue {
144   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
145 
146   /// Answer whether the given value needs extra work to be saved.
147   static bool needsSaving(llvm::Value *value) {
148     // If it's not an instruction, we don't need to save.
149     if (!isa<llvm::Instruction>(value)) return false;
150 
151     // If it's an instruction in the entry block, we don't need to save.
152     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
153     return (block != &block->getParent()->getEntryBlock());
154   }
155 
156   static saved_type save(CodeGenFunction &CGF, llvm::Value *value);
157   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value);
158 };
159 
160 /// A partial specialization of DominatingValue for llvm::Values that
161 /// might be llvm::Instructions.
162 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
163   typedef T *type;
164   static type restore(CodeGenFunction &CGF, saved_type value) {
165     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
166   }
167 };
168 
169 /// A specialization of DominatingValue for Address.
170 template <> struct DominatingValue<Address> {
171   typedef Address type;
172 
173   struct saved_type {
174     DominatingLLVMValue::saved_type SavedValue;
175     CharUnits Alignment;
176   };
177 
178   static bool needsSaving(type value) {
179     return DominatingLLVMValue::needsSaving(value.getPointer());
180   }
181   static saved_type save(CodeGenFunction &CGF, type value) {
182     return { DominatingLLVMValue::save(CGF, value.getPointer()),
183              value.getAlignment() };
184   }
185   static type restore(CodeGenFunction &CGF, saved_type value) {
186     return Address(DominatingLLVMValue::restore(CGF, value.SavedValue),
187                    value.Alignment);
188   }
189 };
190 
191 /// A specialization of DominatingValue for RValue.
192 template <> struct DominatingValue<RValue> {
193   typedef RValue type;
194   class saved_type {
195     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
196                 AggregateAddress, ComplexAddress };
197 
198     llvm::Value *Value;
199     unsigned K : 3;
200     unsigned Align : 29;
201     saved_type(llvm::Value *v, Kind k, unsigned a = 0)
202       : Value(v), K(k), Align(a) {}
203 
204   public:
205     static bool needsSaving(RValue value);
206     static saved_type save(CodeGenFunction &CGF, RValue value);
207     RValue restore(CodeGenFunction &CGF);
208 
209     // implementations in CGCleanup.cpp
210   };
211 
212   static bool needsSaving(type value) {
213     return saved_type::needsSaving(value);
214   }
215   static saved_type save(CodeGenFunction &CGF, type value) {
216     return saved_type::save(CGF, value);
217   }
218   static type restore(CodeGenFunction &CGF, saved_type value) {
219     return value.restore(CGF);
220   }
221 };
222 
223 /// CodeGenFunction - This class organizes the per-function state that is used
224 /// while generating LLVM code.
225 class CodeGenFunction : public CodeGenTypeCache {
226   CodeGenFunction(const CodeGenFunction &) = delete;
227   void operator=(const CodeGenFunction &) = delete;
228 
229   friend class CGCXXABI;
230 public:
231   /// A jump destination is an abstract label, branching to which may
232   /// require a jump out through normal cleanups.
233   struct JumpDest {
234     JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {}
235     JumpDest(llvm::BasicBlock *Block,
236              EHScopeStack::stable_iterator Depth,
237              unsigned Index)
238       : Block(Block), ScopeDepth(Depth), Index(Index) {}
239 
240     bool isValid() const { return Block != nullptr; }
241     llvm::BasicBlock *getBlock() const { return Block; }
242     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
243     unsigned getDestIndex() const { return Index; }
244 
245     // This should be used cautiously.
246     void setScopeDepth(EHScopeStack::stable_iterator depth) {
247       ScopeDepth = depth;
248     }
249 
250   private:
251     llvm::BasicBlock *Block;
252     EHScopeStack::stable_iterator ScopeDepth;
253     unsigned Index;
254   };
255 
256   CodeGenModule &CGM;  // Per-module state.
257   const TargetInfo &Target;
258 
259   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
260   LoopInfoStack LoopStack;
261   CGBuilderTy Builder;
262 
263   // Stores variables for which we can't generate correct lifetime markers
264   // because of jumps.
265   VarBypassDetector Bypasses;
266 
267   // CodeGen lambda for loops and support for ordered clause
268   typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &,
269                                   JumpDest)>
270       CodeGenLoopTy;
271   typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation,
272                                   const unsigned, const bool)>
273       CodeGenOrderedTy;
274 
275   // Codegen lambda for loop bounds in worksharing loop constructs
276   typedef llvm::function_ref<std::pair<LValue, LValue>(
277       CodeGenFunction &, const OMPExecutableDirective &S)>
278       CodeGenLoopBoundsTy;
279 
280   // Codegen lambda for loop bounds in dispatch-based loop implementation
281   typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>(
282       CodeGenFunction &, const OMPExecutableDirective &S, Address LB,
283       Address UB)>
284       CodeGenDispatchBoundsTy;
285 
286   /// CGBuilder insert helper. This function is called after an
287   /// instruction is created using Builder.
288   void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
289                     llvm::BasicBlock *BB,
290                     llvm::BasicBlock::iterator InsertPt) const;
291 
292   /// CurFuncDecl - Holds the Decl for the current outermost
293   /// non-closure context.
294   const Decl *CurFuncDecl;
295   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
296   const Decl *CurCodeDecl;
297   const CGFunctionInfo *CurFnInfo;
298   QualType FnRetTy;
299   llvm::Function *CurFn = nullptr;
300 
301   // Holds coroutine data if the current function is a coroutine. We use a
302   // wrapper to manage its lifetime, so that we don't have to define CGCoroData
303   // in this header.
304   struct CGCoroInfo {
305     std::unique_ptr<CGCoroData> Data;
306     CGCoroInfo();
307     ~CGCoroInfo();
308   };
309   CGCoroInfo CurCoro;
310 
311   bool isCoroutine() const {
312     return CurCoro.Data != nullptr;
313   }
314 
315   /// CurGD - The GlobalDecl for the current function being compiled.
316   GlobalDecl CurGD;
317 
318   /// PrologueCleanupDepth - The cleanup depth enclosing all the
319   /// cleanups associated with the parameters.
320   EHScopeStack::stable_iterator PrologueCleanupDepth;
321 
322   /// ReturnBlock - Unified return block.
323   JumpDest ReturnBlock;
324 
325   /// ReturnValue - The temporary alloca to hold the return
326   /// value. This is invalid iff the function has no return value.
327   Address ReturnValue = Address::invalid();
328 
329   /// Return true if a label was seen in the current scope.
330   bool hasLabelBeenSeenInCurrentScope() const {
331     if (CurLexicalScope)
332       return CurLexicalScope->hasLabels();
333     return !LabelMap.empty();
334   }
335 
336   /// AllocaInsertPoint - This is an instruction in the entry block before which
337   /// we prefer to insert allocas.
338   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
339 
340   /// API for captured statement code generation.
341   class CGCapturedStmtInfo {
342   public:
343     explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default)
344         : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
345     explicit CGCapturedStmtInfo(const CapturedStmt &S,
346                                 CapturedRegionKind K = CR_Default)
347       : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
348 
349       RecordDecl::field_iterator Field =
350         S.getCapturedRecordDecl()->field_begin();
351       for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
352                                                 E = S.capture_end();
353            I != E; ++I, ++Field) {
354         if (I->capturesThis())
355           CXXThisFieldDecl = *Field;
356         else if (I->capturesVariable())
357           CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
358         else if (I->capturesVariableByCopy())
359           CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
360       }
361     }
362 
363     virtual ~CGCapturedStmtInfo();
364 
365     CapturedRegionKind getKind() const { return Kind; }
366 
367     virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
368     // Retrieve the value of the context parameter.
369     virtual llvm::Value *getContextValue() const { return ThisValue; }
370 
371     /// Lookup the captured field decl for a variable.
372     virtual const FieldDecl *lookup(const VarDecl *VD) const {
373       return CaptureFields.lookup(VD->getCanonicalDecl());
374     }
375 
376     bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
377     virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
378 
379     static bool classof(const CGCapturedStmtInfo *) {
380       return true;
381     }
382 
383     /// Emit the captured statement body.
384     virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
385       CGF.incrementProfileCounter(S);
386       CGF.EmitStmt(S);
387     }
388 
389     /// Get the name of the capture helper.
390     virtual StringRef getHelperName() const { return "__captured_stmt"; }
391 
392   private:
393     /// The kind of captured statement being generated.
394     CapturedRegionKind Kind;
395 
396     /// Keep the map between VarDecl and FieldDecl.
397     llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
398 
399     /// The base address of the captured record, passed in as the first
400     /// argument of the parallel region function.
401     llvm::Value *ThisValue;
402 
403     /// Captured 'this' type.
404     FieldDecl *CXXThisFieldDecl;
405   };
406   CGCapturedStmtInfo *CapturedStmtInfo = nullptr;
407 
408   /// RAII for correct setting/restoring of CapturedStmtInfo.
409   class CGCapturedStmtRAII {
410   private:
411     CodeGenFunction &CGF;
412     CGCapturedStmtInfo *PrevCapturedStmtInfo;
413   public:
414     CGCapturedStmtRAII(CodeGenFunction &CGF,
415                        CGCapturedStmtInfo *NewCapturedStmtInfo)
416         : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) {
417       CGF.CapturedStmtInfo = NewCapturedStmtInfo;
418     }
419     ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; }
420   };
421 
422   /// An abstract representation of regular/ObjC call/message targets.
423   class AbstractCallee {
424     /// The function declaration of the callee.
425     const Decl *CalleeDecl;
426 
427   public:
428     AbstractCallee() : CalleeDecl(nullptr) {}
429     AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {}
430     AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {}
431     bool hasFunctionDecl() const {
432       return dyn_cast_or_null<FunctionDecl>(CalleeDecl);
433     }
434     const Decl *getDecl() const { return CalleeDecl; }
435     unsigned getNumParams() const {
436       if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
437         return FD->getNumParams();
438       return cast<ObjCMethodDecl>(CalleeDecl)->param_size();
439     }
440     const ParmVarDecl *getParamDecl(unsigned I) const {
441       if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
442         return FD->getParamDecl(I);
443       return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I);
444     }
445   };
446 
447   /// Sanitizers enabled for this function.
448   SanitizerSet SanOpts;
449 
450   /// True if CodeGen currently emits code implementing sanitizer checks.
451   bool IsSanitizerScope = false;
452 
453   /// RAII object to set/unset CodeGenFunction::IsSanitizerScope.
454   class SanitizerScope {
455     CodeGenFunction *CGF;
456   public:
457     SanitizerScope(CodeGenFunction *CGF);
458     ~SanitizerScope();
459   };
460 
461   /// In C++, whether we are code generating a thunk.  This controls whether we
462   /// should emit cleanups.
463   bool CurFuncIsThunk = false;
464 
465   /// In ARC, whether we should autorelease the return value.
466   bool AutoreleaseResult = false;
467 
468   /// Whether we processed a Microsoft-style asm block during CodeGen. These can
469   /// potentially set the return value.
470   bool SawAsmBlock = false;
471 
472   const NamedDecl *CurSEHParent = nullptr;
473 
474   /// True if the current function is an outlined SEH helper. This can be a
475   /// finally block or filter expression.
476   bool IsOutlinedSEHHelper = false;
477 
478   const CodeGen::CGBlockInfo *BlockInfo = nullptr;
479   llvm::Value *BlockPointer = nullptr;
480 
481   llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
482   FieldDecl *LambdaThisCaptureField = nullptr;
483 
484   /// A mapping from NRVO variables to the flags used to indicate
485   /// when the NRVO has been applied to this variable.
486   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
487 
488   EHScopeStack EHStack;
489   llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
490   llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack;
491 
492   llvm::Instruction *CurrentFuncletPad = nullptr;
493 
494   class CallLifetimeEnd final : public EHScopeStack::Cleanup {
495     llvm::Value *Addr;
496     llvm::Value *Size;
497 
498   public:
499     CallLifetimeEnd(Address addr, llvm::Value *size)
500         : Addr(addr.getPointer()), Size(size) {}
501 
502     void Emit(CodeGenFunction &CGF, Flags flags) override {
503       CGF.EmitLifetimeEnd(Size, Addr);
504     }
505   };
506 
507   /// Header for data within LifetimeExtendedCleanupStack.
508   struct LifetimeExtendedCleanupHeader {
509     /// The size of the following cleanup object.
510     unsigned Size;
511     /// The kind of cleanup to push: a value from the CleanupKind enumeration.
512     unsigned Kind : 31;
513     /// Whether this is a conditional cleanup.
514     unsigned IsConditional : 1;
515 
516     size_t getSize() const { return Size; }
517     CleanupKind getKind() const { return (CleanupKind)Kind; }
518     bool isConditional() const { return IsConditional; }
519   };
520 
521   /// i32s containing the indexes of the cleanup destinations.
522   Address NormalCleanupDest = Address::invalid();
523 
524   unsigned NextCleanupDestIndex = 1;
525 
526   /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
527   CGBlockInfo *FirstBlockInfo = nullptr;
528 
529   /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
530   llvm::BasicBlock *EHResumeBlock = nullptr;
531 
532   /// The exception slot.  All landing pads write the current exception pointer
533   /// into this alloca.
534   llvm::Value *ExceptionSlot = nullptr;
535 
536   /// The selector slot.  Under the MandatoryCleanup model, all landing pads
537   /// write the current selector value into this alloca.
538   llvm::AllocaInst *EHSelectorSlot = nullptr;
539 
540   /// A stack of exception code slots. Entering an __except block pushes a slot
541   /// on the stack and leaving pops one. The __exception_code() intrinsic loads
542   /// a value from the top of the stack.
543   SmallVector<Address, 1> SEHCodeSlotStack;
544 
545   /// Value returned by __exception_info intrinsic.
546   llvm::Value *SEHInfo = nullptr;
547 
548   /// Emits a landing pad for the current EH stack.
549   llvm::BasicBlock *EmitLandingPad();
550 
551   llvm::BasicBlock *getInvokeDestImpl();
552 
553   template <class T>
554   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
555     return DominatingValue<T>::save(*this, value);
556   }
557 
558 public:
559   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
560   /// rethrows.
561   SmallVector<llvm::Value*, 8> ObjCEHValueStack;
562 
563   /// A class controlling the emission of a finally block.
564   class FinallyInfo {
565     /// Where the catchall's edge through the cleanup should go.
566     JumpDest RethrowDest;
567 
568     /// A function to call to enter the catch.
569     llvm::FunctionCallee BeginCatchFn;
570 
571     /// An i1 variable indicating whether or not the @finally is
572     /// running for an exception.
573     llvm::AllocaInst *ForEHVar;
574 
575     /// An i8* variable into which the exception pointer to rethrow
576     /// has been saved.
577     llvm::AllocaInst *SavedExnVar;
578 
579   public:
580     void enter(CodeGenFunction &CGF, const Stmt *Finally,
581                llvm::FunctionCallee beginCatchFn,
582                llvm::FunctionCallee endCatchFn, llvm::FunctionCallee rethrowFn);
583     void exit(CodeGenFunction &CGF);
584   };
585 
586   /// Returns true inside SEH __try blocks.
587   bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }
588 
589   /// Returns true while emitting a cleanuppad.
590   bool isCleanupPadScope() const {
591     return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad);
592   }
593 
594   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
595   /// current full-expression.  Safe against the possibility that
596   /// we're currently inside a conditionally-evaluated expression.
597   template <class T, class... As>
598   void pushFullExprCleanup(CleanupKind kind, As... A) {
599     // If we're not in a conditional branch, or if none of the
600     // arguments requires saving, then use the unconditional cleanup.
601     if (!isInConditionalBranch())
602       return EHStack.pushCleanup<T>(kind, A...);
603 
604     // Stash values in a tuple so we can guarantee the order of saves.
605     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
606     SavedTuple Saved{saveValueInCond(A)...};
607 
608     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
609     EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
610     initFullExprCleanup();
611   }
612 
613   /// Queue a cleanup to be pushed after finishing the current
614   /// full-expression.
615   template <class T, class... As>
616   void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
617     if (!isInConditionalBranch())
618       return pushCleanupAfterFullExprImpl<T>(Kind, Address::invalid(), A...);
619 
620     Address ActiveFlag = createCleanupActiveFlag();
621     assert(!DominatingValue<Address>::needsSaving(ActiveFlag) &&
622            "cleanup active flag should never need saving");
623 
624     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
625     SavedTuple Saved{saveValueInCond(A)...};
626 
627     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
628     pushCleanupAfterFullExprImpl<CleanupType>(Kind, ActiveFlag, Saved);
629   }
630 
631   template <class T, class... As>
632   void pushCleanupAfterFullExprImpl(CleanupKind Kind, Address ActiveFlag,
633                                     As... A) {
634     LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind,
635                                             ActiveFlag.isValid()};
636 
637     size_t OldSize = LifetimeExtendedCleanupStack.size();
638     LifetimeExtendedCleanupStack.resize(
639         LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size +
640         (Header.IsConditional ? sizeof(ActiveFlag) : 0));
641 
642     static_assert(sizeof(Header) % alignof(T) == 0,
643                   "Cleanup will be allocated on misaligned address");
644     char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
645     new (Buffer) LifetimeExtendedCleanupHeader(Header);
646     new (Buffer + sizeof(Header)) T(A...);
647     if (Header.IsConditional)
648       new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag);
649   }
650 
651   /// Set up the last cleanup that was pushed as a conditional
652   /// full-expression cleanup.
653   void initFullExprCleanup() {
654     initFullExprCleanupWithFlag(createCleanupActiveFlag());
655   }
656 
657   void initFullExprCleanupWithFlag(Address ActiveFlag);
658   Address createCleanupActiveFlag();
659 
660   /// PushDestructorCleanup - Push a cleanup to call the
661   /// complete-object destructor of an object of the given type at the
662   /// given address.  Does nothing if T is not a C++ class type with a
663   /// non-trivial destructor.
664   void PushDestructorCleanup(QualType T, Address Addr);
665 
666   /// PushDestructorCleanup - Push a cleanup to call the
667   /// complete-object variant of the given destructor on the object at
668   /// the given address.
669   void PushDestructorCleanup(const CXXDestructorDecl *Dtor, Address Addr);
670 
671   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
672   /// process all branch fixups.
673   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
674 
675   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
676   /// The block cannot be reactivated.  Pops it if it's the top of the
677   /// stack.
678   ///
679   /// \param DominatingIP - An instruction which is known to
680   ///   dominate the current IP (if set) and which lies along
681   ///   all paths of execution between the current IP and the
682   ///   the point at which the cleanup comes into scope.
683   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
684                               llvm::Instruction *DominatingIP);
685 
686   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
687   /// Cannot be used to resurrect a deactivated cleanup.
688   ///
689   /// \param DominatingIP - An instruction which is known to
690   ///   dominate the current IP (if set) and which lies along
691   ///   all paths of execution between the current IP and the
692   ///   the point at which the cleanup comes into scope.
693   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
694                             llvm::Instruction *DominatingIP);
695 
696   /// Enters a new scope for capturing cleanups, all of which
697   /// will be executed once the scope is exited.
698   class RunCleanupsScope {
699     EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth;
700     size_t LifetimeExtendedCleanupStackSize;
701     bool OldDidCallStackSave;
702   protected:
703     bool PerformCleanup;
704   private:
705 
706     RunCleanupsScope(const RunCleanupsScope &) = delete;
707     void operator=(const RunCleanupsScope &) = delete;
708 
709   protected:
710     CodeGenFunction& CGF;
711 
712   public:
713     /// Enter a new cleanup scope.
714     explicit RunCleanupsScope(CodeGenFunction &CGF)
715       : PerformCleanup(true), CGF(CGF)
716     {
717       CleanupStackDepth = CGF.EHStack.stable_begin();
718       LifetimeExtendedCleanupStackSize =
719           CGF.LifetimeExtendedCleanupStack.size();
720       OldDidCallStackSave = CGF.DidCallStackSave;
721       CGF.DidCallStackSave = false;
722       OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth;
723       CGF.CurrentCleanupScopeDepth = CleanupStackDepth;
724     }
725 
726     /// Exit this cleanup scope, emitting any accumulated cleanups.
727     ~RunCleanupsScope() {
728       if (PerformCleanup)
729         ForceCleanup();
730     }
731 
732     /// Determine whether this scope requires any cleanups.
733     bool requiresCleanups() const {
734       return CGF.EHStack.stable_begin() != CleanupStackDepth;
735     }
736 
737     /// Force the emission of cleanups now, instead of waiting
738     /// until this object is destroyed.
739     /// \param ValuesToReload - A list of values that need to be available at
740     /// the insertion point after cleanup emission. If cleanup emission created
741     /// a shared cleanup block, these value pointers will be rewritten.
742     /// Otherwise, they not will be modified.
743     void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) {
744       assert(PerformCleanup && "Already forced cleanup");
745       CGF.DidCallStackSave = OldDidCallStackSave;
746       CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize,
747                            ValuesToReload);
748       PerformCleanup = false;
749       CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth;
750     }
751   };
752 
753   // Cleanup stack depth of the RunCleanupsScope that was pushed most recently.
754   EHScopeStack::stable_iterator CurrentCleanupScopeDepth =
755       EHScopeStack::stable_end();
756 
757   class LexicalScope : public RunCleanupsScope {
758     SourceRange Range;
759     SmallVector<const LabelDecl*, 4> Labels;
760     LexicalScope *ParentScope;
761 
762     LexicalScope(const LexicalScope &) = delete;
763     void operator=(const LexicalScope &) = delete;
764 
765   public:
766     /// Enter a new cleanup scope.
767     explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
768       : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
769       CGF.CurLexicalScope = this;
770       if (CGDebugInfo *DI = CGF.getDebugInfo())
771         DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
772     }
773 
774     void addLabel(const LabelDecl *label) {
775       assert(PerformCleanup && "adding label to dead scope?");
776       Labels.push_back(label);
777     }
778 
779     /// Exit this cleanup scope, emitting any accumulated
780     /// cleanups.
781     ~LexicalScope() {
782       if (CGDebugInfo *DI = CGF.getDebugInfo())
783         DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
784 
785       // If we should perform a cleanup, force them now.  Note that
786       // this ends the cleanup scope before rescoping any labels.
787       if (PerformCleanup) {
788         ApplyDebugLocation DL(CGF, Range.getEnd());
789         ForceCleanup();
790       }
791     }
792 
793     /// Force the emission of cleanups now, instead of waiting
794     /// until this object is destroyed.
795     void ForceCleanup() {
796       CGF.CurLexicalScope = ParentScope;
797       RunCleanupsScope::ForceCleanup();
798 
799       if (!Labels.empty())
800         rescopeLabels();
801     }
802 
803     bool hasLabels() const {
804       return !Labels.empty();
805     }
806 
807     void rescopeLabels();
808   };
809 
810   typedef llvm::DenseMap<const Decl *, Address> DeclMapTy;
811 
812   /// The class used to assign some variables some temporarily addresses.
813   class OMPMapVars {
814     DeclMapTy SavedLocals;
815     DeclMapTy SavedTempAddresses;
816     OMPMapVars(const OMPMapVars &) = delete;
817     void operator=(const OMPMapVars &) = delete;
818 
819   public:
820     explicit OMPMapVars() = default;
821     ~OMPMapVars() {
822       assert(SavedLocals.empty() && "Did not restored original addresses.");
823     };
824 
825     /// Sets the address of the variable \p LocalVD to be \p TempAddr in
826     /// function \p CGF.
827     /// \return true if at least one variable was set already, false otherwise.
828     bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD,
829                     Address TempAddr) {
830       LocalVD = LocalVD->getCanonicalDecl();
831       // Only save it once.
832       if (SavedLocals.count(LocalVD)) return false;
833 
834       // Copy the existing local entry to SavedLocals.
835       auto it = CGF.LocalDeclMap.find(LocalVD);
836       if (it != CGF.LocalDeclMap.end())
837         SavedLocals.try_emplace(LocalVD, it->second);
838       else
839         SavedLocals.try_emplace(LocalVD, Address::invalid());
840 
841       // Generate the private entry.
842       QualType VarTy = LocalVD->getType();
843       if (VarTy->isReferenceType()) {
844         Address Temp = CGF.CreateMemTemp(VarTy);
845         CGF.Builder.CreateStore(TempAddr.getPointer(), Temp);
846         TempAddr = Temp;
847       }
848       SavedTempAddresses.try_emplace(LocalVD, TempAddr);
849 
850       return true;
851     }
852 
853     /// Applies new addresses to the list of the variables.
854     /// \return true if at least one variable is using new address, false
855     /// otherwise.
856     bool apply(CodeGenFunction &CGF) {
857       copyInto(SavedTempAddresses, CGF.LocalDeclMap);
858       SavedTempAddresses.clear();
859       return !SavedLocals.empty();
860     }
861 
862     /// Restores original addresses of the variables.
863     void restore(CodeGenFunction &CGF) {
864       if (!SavedLocals.empty()) {
865         copyInto(SavedLocals, CGF.LocalDeclMap);
866         SavedLocals.clear();
867       }
868     }
869 
870   private:
871     /// Copy all the entries in the source map over the corresponding
872     /// entries in the destination, which must exist.
873     static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) {
874       for (auto &Pair : Src) {
875         if (!Pair.second.isValid()) {
876           Dest.erase(Pair.first);
877           continue;
878         }
879 
880         auto I = Dest.find(Pair.first);
881         if (I != Dest.end())
882           I->second = Pair.second;
883         else
884           Dest.insert(Pair);
885       }
886     }
887   };
888 
889   /// The scope used to remap some variables as private in the OpenMP loop body
890   /// (or other captured region emitted without outlining), and to restore old
891   /// vars back on exit.
892   class OMPPrivateScope : public RunCleanupsScope {
893     OMPMapVars MappedVars;
894     OMPPrivateScope(const OMPPrivateScope &) = delete;
895     void operator=(const OMPPrivateScope &) = delete;
896 
897   public:
898     /// Enter a new OpenMP private scope.
899     explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}
900 
901     /// Registers \p LocalVD variable as a private and apply \p PrivateGen
902     /// function for it to generate corresponding private variable. \p
903     /// PrivateGen returns an address of the generated private variable.
904     /// \return true if the variable is registered as private, false if it has
905     /// been privatized already.
906     bool addPrivate(const VarDecl *LocalVD,
907                     const llvm::function_ref<Address()> PrivateGen) {
908       assert(PerformCleanup && "adding private to dead scope");
909       return MappedVars.setVarAddr(CGF, LocalVD, PrivateGen());
910     }
911 
912     /// Privatizes local variables previously registered as private.
913     /// Registration is separate from the actual privatization to allow
914     /// initializers use values of the original variables, not the private one.
915     /// This is important, for example, if the private variable is a class
916     /// variable initialized by a constructor that references other private
917     /// variables. But at initialization original variables must be used, not
918     /// private copies.
919     /// \return true if at least one variable was privatized, false otherwise.
920     bool Privatize() { return MappedVars.apply(CGF); }
921 
922     void ForceCleanup() {
923       RunCleanupsScope::ForceCleanup();
924       MappedVars.restore(CGF);
925     }
926 
927     /// Exit scope - all the mapped variables are restored.
928     ~OMPPrivateScope() {
929       if (PerformCleanup)
930         ForceCleanup();
931     }
932 
933     /// Checks if the global variable is captured in current function.
934     bool isGlobalVarCaptured(const VarDecl *VD) const {
935       VD = VD->getCanonicalDecl();
936       return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0;
937     }
938   };
939 
940   /// Takes the old cleanup stack size and emits the cleanup blocks
941   /// that have been added.
942   void
943   PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
944                    std::initializer_list<llvm::Value **> ValuesToReload = {});
945 
946   /// Takes the old cleanup stack size and emits the cleanup blocks
947   /// that have been added, then adds all lifetime-extended cleanups from
948   /// the given position to the stack.
949   void
950   PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
951                    size_t OldLifetimeExtendedStackSize,
952                    std::initializer_list<llvm::Value **> ValuesToReload = {});
953 
954   void ResolveBranchFixups(llvm::BasicBlock *Target);
955 
956   /// The given basic block lies in the current EH scope, but may be a
957   /// target of a potentially scope-crossing jump; get a stable handle
958   /// to which we can perform this jump later.
959   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
960     return JumpDest(Target,
961                     EHStack.getInnermostNormalCleanup(),
962                     NextCleanupDestIndex++);
963   }
964 
965   /// The given basic block lies in the current EH scope, but may be a
966   /// target of a potentially scope-crossing jump; get a stable handle
967   /// to which we can perform this jump later.
968   JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
969     return getJumpDestInCurrentScope(createBasicBlock(Name));
970   }
971 
972   /// EmitBranchThroughCleanup - Emit a branch from the current insert
973   /// block through the normal cleanup handling code (if any) and then
974   /// on to \arg Dest.
975   void EmitBranchThroughCleanup(JumpDest Dest);
976 
977   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
978   /// specified destination obviously has no cleanups to run.  'false' is always
979   /// a conservatively correct answer for this method.
980   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
981 
982   /// popCatchScope - Pops the catch scope at the top of the EHScope
983   /// stack, emitting any required code (other than the catch handlers
984   /// themselves).
985   void popCatchScope();
986 
987   llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
988   llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
989   llvm::BasicBlock *
990   getFuncletEHDispatchBlock(EHScopeStack::stable_iterator scope);
991 
992   /// An object to manage conditionally-evaluated expressions.
993   class ConditionalEvaluation {
994     llvm::BasicBlock *StartBB;
995 
996   public:
997     ConditionalEvaluation(CodeGenFunction &CGF)
998       : StartBB(CGF.Builder.GetInsertBlock()) {}
999 
1000     void begin(CodeGenFunction &CGF) {
1001       assert(CGF.OutermostConditional != this);
1002       if (!CGF.OutermostConditional)
1003         CGF.OutermostConditional = this;
1004     }
1005 
1006     void end(CodeGenFunction &CGF) {
1007       assert(CGF.OutermostConditional != nullptr);
1008       if (CGF.OutermostConditional == this)
1009         CGF.OutermostConditional = nullptr;
1010     }
1011 
1012     /// Returns a block which will be executed prior to each
1013     /// evaluation of the conditional code.
1014     llvm::BasicBlock *getStartingBlock() const {
1015       return StartBB;
1016     }
1017   };
1018 
1019   /// isInConditionalBranch - Return true if we're currently emitting
1020   /// one branch or the other of a conditional expression.
1021   bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
1022 
1023   void setBeforeOutermostConditional(llvm::Value *value, Address addr) {
1024     assert(isInConditionalBranch());
1025     llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
1026     auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back());
1027     store->setAlignment(addr.getAlignment().getQuantity());
1028   }
1029 
1030   /// An RAII object to record that we're evaluating a statement
1031   /// expression.
1032   class StmtExprEvaluation {
1033     CodeGenFunction &CGF;
1034 
1035     /// We have to save the outermost conditional: cleanups in a
1036     /// statement expression aren't conditional just because the
1037     /// StmtExpr is.
1038     ConditionalEvaluation *SavedOutermostConditional;
1039 
1040   public:
1041     StmtExprEvaluation(CodeGenFunction &CGF)
1042       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
1043       CGF.OutermostConditional = nullptr;
1044     }
1045 
1046     ~StmtExprEvaluation() {
1047       CGF.OutermostConditional = SavedOutermostConditional;
1048       CGF.EnsureInsertPoint();
1049     }
1050   };
1051 
1052   /// An object which temporarily prevents a value from being
1053   /// destroyed by aggressive peephole optimizations that assume that
1054   /// all uses of a value have been realized in the IR.
1055   class PeepholeProtection {
1056     llvm::Instruction *Inst;
1057     friend class CodeGenFunction;
1058 
1059   public:
1060     PeepholeProtection() : Inst(nullptr) {}
1061   };
1062 
1063   /// A non-RAII class containing all the information about a bound
1064   /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
1065   /// this which makes individual mappings very simple; using this
1066   /// class directly is useful when you have a variable number of
1067   /// opaque values or don't want the RAII functionality for some
1068   /// reason.
1069   class OpaqueValueMappingData {
1070     const OpaqueValueExpr *OpaqueValue;
1071     bool BoundLValue;
1072     CodeGenFunction::PeepholeProtection Protection;
1073 
1074     OpaqueValueMappingData(const OpaqueValueExpr *ov,
1075                            bool boundLValue)
1076       : OpaqueValue(ov), BoundLValue(boundLValue) {}
1077   public:
1078     OpaqueValueMappingData() : OpaqueValue(nullptr) {}
1079 
1080     static bool shouldBindAsLValue(const Expr *expr) {
1081       // gl-values should be bound as l-values for obvious reasons.
1082       // Records should be bound as l-values because IR generation
1083       // always keeps them in memory.  Expressions of function type
1084       // act exactly like l-values but are formally required to be
1085       // r-values in C.
1086       return expr->isGLValue() ||
1087              expr->getType()->isFunctionType() ||
1088              hasAggregateEvaluationKind(expr->getType());
1089     }
1090 
1091     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1092                                        const OpaqueValueExpr *ov,
1093                                        const Expr *e) {
1094       if (shouldBindAsLValue(ov))
1095         return bind(CGF, ov, CGF.EmitLValue(e));
1096       return bind(CGF, ov, CGF.EmitAnyExpr(e));
1097     }
1098 
1099     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1100                                        const OpaqueValueExpr *ov,
1101                                        const LValue &lv) {
1102       assert(shouldBindAsLValue(ov));
1103       CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
1104       return OpaqueValueMappingData(ov, true);
1105     }
1106 
1107     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1108                                        const OpaqueValueExpr *ov,
1109                                        const RValue &rv) {
1110       assert(!shouldBindAsLValue(ov));
1111       CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
1112 
1113       OpaqueValueMappingData data(ov, false);
1114 
1115       // Work around an extremely aggressive peephole optimization in
1116       // EmitScalarConversion which assumes that all other uses of a
1117       // value are extant.
1118       data.Protection = CGF.protectFromPeepholes(rv);
1119 
1120       return data;
1121     }
1122 
1123     bool isValid() const { return OpaqueValue != nullptr; }
1124     void clear() { OpaqueValue = nullptr; }
1125 
1126     void unbind(CodeGenFunction &CGF) {
1127       assert(OpaqueValue && "no data to unbind!");
1128 
1129       if (BoundLValue) {
1130         CGF.OpaqueLValues.erase(OpaqueValue);
1131       } else {
1132         CGF.OpaqueRValues.erase(OpaqueValue);
1133         CGF.unprotectFromPeepholes(Protection);
1134       }
1135     }
1136   };
1137 
1138   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
1139   class OpaqueValueMapping {
1140     CodeGenFunction &CGF;
1141     OpaqueValueMappingData Data;
1142 
1143   public:
1144     static bool shouldBindAsLValue(const Expr *expr) {
1145       return OpaqueValueMappingData::shouldBindAsLValue(expr);
1146     }
1147 
1148     /// Build the opaque value mapping for the given conditional
1149     /// operator if it's the GNU ?: extension.  This is a common
1150     /// enough pattern that the convenience operator is really
1151     /// helpful.
1152     ///
1153     OpaqueValueMapping(CodeGenFunction &CGF,
1154                        const AbstractConditionalOperator *op) : CGF(CGF) {
1155       if (isa<ConditionalOperator>(op))
1156         // Leave Data empty.
1157         return;
1158 
1159       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
1160       Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
1161                                           e->getCommon());
1162     }
1163 
1164     /// Build the opaque value mapping for an OpaqueValueExpr whose source
1165     /// expression is set to the expression the OVE represents.
1166     OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV)
1167         : CGF(CGF) {
1168       if (OV) {
1169         assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used "
1170                                       "for OVE with no source expression");
1171         Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr());
1172       }
1173     }
1174 
1175     OpaqueValueMapping(CodeGenFunction &CGF,
1176                        const OpaqueValueExpr *opaqueValue,
1177                        LValue lvalue)
1178       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
1179     }
1180 
1181     OpaqueValueMapping(CodeGenFunction &CGF,
1182                        const OpaqueValueExpr *opaqueValue,
1183                        RValue rvalue)
1184       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
1185     }
1186 
1187     void pop() {
1188       Data.unbind(CGF);
1189       Data.clear();
1190     }
1191 
1192     ~OpaqueValueMapping() {
1193       if (Data.isValid()) Data.unbind(CGF);
1194     }
1195   };
1196 
1197 private:
1198   CGDebugInfo *DebugInfo;
1199   /// Used to create unique names for artificial VLA size debug info variables.
1200   unsigned VLAExprCounter = 0;
1201   bool DisableDebugInfo = false;
1202 
1203   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
1204   /// calling llvm.stacksave for multiple VLAs in the same scope.
1205   bool DidCallStackSave = false;
1206 
1207   /// IndirectBranch - The first time an indirect goto is seen we create a block
1208   /// with an indirect branch.  Every time we see the address of a label taken,
1209   /// we add the label to the indirect goto.  Every subsequent indirect goto is
1210   /// codegen'd as a jump to the IndirectBranch's basic block.
1211   llvm::IndirectBrInst *IndirectBranch = nullptr;
1212 
1213   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1214   /// decls.
1215   DeclMapTy LocalDeclMap;
1216 
1217   // Keep track of the cleanups for callee-destructed parameters pushed to the
1218   // cleanup stack so that they can be deactivated later.
1219   llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator>
1220       CalleeDestructedParamCleanups;
1221 
1222   /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this
1223   /// will contain a mapping from said ParmVarDecl to its implicit "object_size"
1224   /// parameter.
1225   llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2>
1226       SizeArguments;
1227 
1228   /// Track escaped local variables with auto storage. Used during SEH
1229   /// outlining to produce a call to llvm.localescape.
1230   llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;
1231 
1232   /// LabelMap - This keeps track of the LLVM basic block for each C label.
1233   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1234 
1235   // BreakContinueStack - This keeps track of where break and continue
1236   // statements should jump to.
1237   struct BreakContinue {
1238     BreakContinue(JumpDest Break, JumpDest Continue)
1239       : BreakBlock(Break), ContinueBlock(Continue) {}
1240 
1241     JumpDest BreakBlock;
1242     JumpDest ContinueBlock;
1243   };
1244   SmallVector<BreakContinue, 8> BreakContinueStack;
1245 
1246   /// Handles cancellation exit points in OpenMP-related constructs.
1247   class OpenMPCancelExitStack {
1248     /// Tracks cancellation exit point and join point for cancel-related exit
1249     /// and normal exit.
1250     struct CancelExit {
1251       CancelExit() = default;
1252       CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock,
1253                  JumpDest ContBlock)
1254           : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {}
1255       OpenMPDirectiveKind Kind = OMPD_unknown;
1256       /// true if the exit block has been emitted already by the special
1257       /// emitExit() call, false if the default codegen is used.
1258       bool HasBeenEmitted = false;
1259       JumpDest ExitBlock;
1260       JumpDest ContBlock;
1261     };
1262 
1263     SmallVector<CancelExit, 8> Stack;
1264 
1265   public:
1266     OpenMPCancelExitStack() : Stack(1) {}
1267     ~OpenMPCancelExitStack() = default;
1268     /// Fetches the exit block for the current OpenMP construct.
1269     JumpDest getExitBlock() const { return Stack.back().ExitBlock; }
1270     /// Emits exit block with special codegen procedure specific for the related
1271     /// OpenMP construct + emits code for normal construct cleanup.
1272     void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
1273                   const llvm::function_ref<void(CodeGenFunction &)> CodeGen) {
1274       if (Stack.back().Kind == Kind && getExitBlock().isValid()) {
1275         assert(CGF.getOMPCancelDestination(Kind).isValid());
1276         assert(CGF.HaveInsertPoint());
1277         assert(!Stack.back().HasBeenEmitted);
1278         auto IP = CGF.Builder.saveAndClearIP();
1279         CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1280         CodeGen(CGF);
1281         CGF.EmitBranch(Stack.back().ContBlock.getBlock());
1282         CGF.Builder.restoreIP(IP);
1283         Stack.back().HasBeenEmitted = true;
1284       }
1285       CodeGen(CGF);
1286     }
1287     /// Enter the cancel supporting \a Kind construct.
1288     /// \param Kind OpenMP directive that supports cancel constructs.
1289     /// \param HasCancel true, if the construct has inner cancel directive,
1290     /// false otherwise.
1291     void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) {
1292       Stack.push_back({Kind,
1293                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit")
1294                                  : JumpDest(),
1295                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont")
1296                                  : JumpDest()});
1297     }
1298     /// Emits default exit point for the cancel construct (if the special one
1299     /// has not be used) + join point for cancel/normal exits.
1300     void exit(CodeGenFunction &CGF) {
1301       if (getExitBlock().isValid()) {
1302         assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid());
1303         bool HaveIP = CGF.HaveInsertPoint();
1304         if (!Stack.back().HasBeenEmitted) {
1305           if (HaveIP)
1306             CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1307           CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1308           CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1309         }
1310         CGF.EmitBlock(Stack.back().ContBlock.getBlock());
1311         if (!HaveIP) {
1312           CGF.Builder.CreateUnreachable();
1313           CGF.Builder.ClearInsertionPoint();
1314         }
1315       }
1316       Stack.pop_back();
1317     }
1318   };
1319   OpenMPCancelExitStack OMPCancelStack;
1320 
1321   CodeGenPGO PGO;
1322 
1323   /// Calculate branch weights appropriate for PGO data
1324   llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount);
1325   llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights);
1326   llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond,
1327                                             uint64_t LoopCount);
1328 
1329 public:
1330   /// Increment the profiler's counter for the given statement by \p StepV.
1331   /// If \p StepV is null, the default increment is 1.
1332   void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) {
1333     if (CGM.getCodeGenOpts().hasProfileClangInstr())
1334       PGO.emitCounterIncrement(Builder, S, StepV);
1335     PGO.setCurrentStmt(S);
1336   }
1337 
1338   /// Get the profiler's count for the given statement.
1339   uint64_t getProfileCount(const Stmt *S) {
1340     Optional<uint64_t> Count = PGO.getStmtCount(S);
1341     if (!Count.hasValue())
1342       return 0;
1343     return *Count;
1344   }
1345 
1346   /// Set the profiler's current count.
1347   void setCurrentProfileCount(uint64_t Count) {
1348     PGO.setCurrentRegionCount(Count);
1349   }
1350 
1351   /// Get the profiler's current count. This is generally the count for the most
1352   /// recently incremented counter.
1353   uint64_t getCurrentProfileCount() {
1354     return PGO.getCurrentRegionCount();
1355   }
1356 
1357 private:
1358 
1359   /// SwitchInsn - This is nearest current switch instruction. It is null if
1360   /// current context is not in a switch.
1361   llvm::SwitchInst *SwitchInsn = nullptr;
1362   /// The branch weights of SwitchInsn when doing instrumentation based PGO.
1363   SmallVector<uint64_t, 16> *SwitchWeights = nullptr;
1364 
1365   /// CaseRangeBlock - This block holds if condition check for last case
1366   /// statement range in current switch instruction.
1367   llvm::BasicBlock *CaseRangeBlock = nullptr;
1368 
1369   /// OpaqueLValues - Keeps track of the current set of opaque value
1370   /// expressions.
1371   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1372   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1373 
1374   // VLASizeMap - This keeps track of the associated size for each VLA type.
1375   // We track this by the size expression rather than the type itself because
1376   // in certain situations, like a const qualifier applied to an VLA typedef,
1377   // multiple VLA types can share the same size expression.
1378   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1379   // enter/leave scopes.
1380   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1381 
1382   /// A block containing a single 'unreachable' instruction.  Created
1383   /// lazily by getUnreachableBlock().
1384   llvm::BasicBlock *UnreachableBlock = nullptr;
1385 
1386   /// Counts of the number return expressions in the function.
1387   unsigned NumReturnExprs = 0;
1388 
1389   /// Count the number of simple (constant) return expressions in the function.
1390   unsigned NumSimpleReturnExprs = 0;
1391 
1392   /// The last regular (non-return) debug location (breakpoint) in the function.
1393   SourceLocation LastStopPoint;
1394 
1395 public:
1396   /// A scope within which we are constructing the fields of an object which
1397   /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
1398   /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
1399   class FieldConstructionScope {
1400   public:
1401     FieldConstructionScope(CodeGenFunction &CGF, Address This)
1402         : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
1403       CGF.CXXDefaultInitExprThis = This;
1404     }
1405     ~FieldConstructionScope() {
1406       CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
1407     }
1408 
1409   private:
1410     CodeGenFunction &CGF;
1411     Address OldCXXDefaultInitExprThis;
1412   };
1413 
1414   /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
1415   /// is overridden to be the object under construction.
1416   class CXXDefaultInitExprScope {
1417   public:
1418     CXXDefaultInitExprScope(CodeGenFunction &CGF)
1419       : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue),
1420         OldCXXThisAlignment(CGF.CXXThisAlignment) {
1421       CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer();
1422       CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment();
1423     }
1424     ~CXXDefaultInitExprScope() {
1425       CGF.CXXThisValue = OldCXXThisValue;
1426       CGF.CXXThisAlignment = OldCXXThisAlignment;
1427     }
1428 
1429   public:
1430     CodeGenFunction &CGF;
1431     llvm::Value *OldCXXThisValue;
1432     CharUnits OldCXXThisAlignment;
1433   };
1434 
1435   /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the
1436   /// current loop index is overridden.
1437   class ArrayInitLoopExprScope {
1438   public:
1439     ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index)
1440       : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) {
1441       CGF.ArrayInitIndex = Index;
1442     }
1443     ~ArrayInitLoopExprScope() {
1444       CGF.ArrayInitIndex = OldArrayInitIndex;
1445     }
1446 
1447   private:
1448     CodeGenFunction &CGF;
1449     llvm::Value *OldArrayInitIndex;
1450   };
1451 
1452   class InlinedInheritingConstructorScope {
1453   public:
1454     InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD)
1455         : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl),
1456           OldCurCodeDecl(CGF.CurCodeDecl),
1457           OldCXXABIThisDecl(CGF.CXXABIThisDecl),
1458           OldCXXABIThisValue(CGF.CXXABIThisValue),
1459           OldCXXThisValue(CGF.CXXThisValue),
1460           OldCXXABIThisAlignment(CGF.CXXABIThisAlignment),
1461           OldCXXThisAlignment(CGF.CXXThisAlignment),
1462           OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy),
1463           OldCXXInheritedCtorInitExprArgs(
1464               std::move(CGF.CXXInheritedCtorInitExprArgs)) {
1465       CGF.CurGD = GD;
1466       CGF.CurFuncDecl = CGF.CurCodeDecl =
1467           cast<CXXConstructorDecl>(GD.getDecl());
1468       CGF.CXXABIThisDecl = nullptr;
1469       CGF.CXXABIThisValue = nullptr;
1470       CGF.CXXThisValue = nullptr;
1471       CGF.CXXABIThisAlignment = CharUnits();
1472       CGF.CXXThisAlignment = CharUnits();
1473       CGF.ReturnValue = Address::invalid();
1474       CGF.FnRetTy = QualType();
1475       CGF.CXXInheritedCtorInitExprArgs.clear();
1476     }
1477     ~InlinedInheritingConstructorScope() {
1478       CGF.CurGD = OldCurGD;
1479       CGF.CurFuncDecl = OldCurFuncDecl;
1480       CGF.CurCodeDecl = OldCurCodeDecl;
1481       CGF.CXXABIThisDecl = OldCXXABIThisDecl;
1482       CGF.CXXABIThisValue = OldCXXABIThisValue;
1483       CGF.CXXThisValue = OldCXXThisValue;
1484       CGF.CXXABIThisAlignment = OldCXXABIThisAlignment;
1485       CGF.CXXThisAlignment = OldCXXThisAlignment;
1486       CGF.ReturnValue = OldReturnValue;
1487       CGF.FnRetTy = OldFnRetTy;
1488       CGF.CXXInheritedCtorInitExprArgs =
1489           std::move(OldCXXInheritedCtorInitExprArgs);
1490     }
1491 
1492   private:
1493     CodeGenFunction &CGF;
1494     GlobalDecl OldCurGD;
1495     const Decl *OldCurFuncDecl;
1496     const Decl *OldCurCodeDecl;
1497     ImplicitParamDecl *OldCXXABIThisDecl;
1498     llvm::Value *OldCXXABIThisValue;
1499     llvm::Value *OldCXXThisValue;
1500     CharUnits OldCXXABIThisAlignment;
1501     CharUnits OldCXXThisAlignment;
1502     Address OldReturnValue;
1503     QualType OldFnRetTy;
1504     CallArgList OldCXXInheritedCtorInitExprArgs;
1505   };
1506 
1507 private:
1508   /// CXXThisDecl - When generating code for a C++ member function,
1509   /// this will hold the implicit 'this' declaration.
1510   ImplicitParamDecl *CXXABIThisDecl = nullptr;
1511   llvm::Value *CXXABIThisValue = nullptr;
1512   llvm::Value *CXXThisValue = nullptr;
1513   CharUnits CXXABIThisAlignment;
1514   CharUnits CXXThisAlignment;
1515 
1516   /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
1517   /// this expression.
1518   Address CXXDefaultInitExprThis = Address::invalid();
1519 
1520   /// The current array initialization index when evaluating an
1521   /// ArrayInitIndexExpr within an ArrayInitLoopExpr.
1522   llvm::Value *ArrayInitIndex = nullptr;
1523 
1524   /// The values of function arguments to use when evaluating
1525   /// CXXInheritedCtorInitExprs within this context.
1526   CallArgList CXXInheritedCtorInitExprArgs;
1527 
1528   /// CXXStructorImplicitParamDecl - When generating code for a constructor or
1529   /// destructor, this will hold the implicit argument (e.g. VTT).
1530   ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr;
1531   llvm::Value *CXXStructorImplicitParamValue = nullptr;
1532 
1533   /// OutermostConditional - Points to the outermost active
1534   /// conditional control.  This is used so that we know if a
1535   /// temporary should be destroyed conditionally.
1536   ConditionalEvaluation *OutermostConditional = nullptr;
1537 
1538   /// The current lexical scope.
1539   LexicalScope *CurLexicalScope = nullptr;
1540 
1541   /// The current source location that should be used for exception
1542   /// handling code.
1543   SourceLocation CurEHLocation;
1544 
1545   /// BlockByrefInfos - For each __block variable, contains
1546   /// information about the layout of the variable.
1547   llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos;
1548 
1549   /// Used by -fsanitize=nullability-return to determine whether the return
1550   /// value can be checked.
1551   llvm::Value *RetValNullabilityPrecondition = nullptr;
1552 
1553   /// Check if -fsanitize=nullability-return instrumentation is required for
1554   /// this function.
1555   bool requiresReturnValueNullabilityCheck() const {
1556     return RetValNullabilityPrecondition;
1557   }
1558 
1559   /// Used to store precise source locations for return statements by the
1560   /// runtime return value checks.
1561   Address ReturnLocation = Address::invalid();
1562 
1563   /// Check if the return value of this function requires sanitization.
1564   bool requiresReturnValueCheck() const {
1565     return requiresReturnValueNullabilityCheck() ||
1566            (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
1567             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>());
1568   }
1569 
1570   llvm::BasicBlock *TerminateLandingPad = nullptr;
1571   llvm::BasicBlock *TerminateHandler = nullptr;
1572   llvm::BasicBlock *TrapBB = nullptr;
1573 
1574   /// Terminate funclets keyed by parent funclet pad.
1575   llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets;
1576 
1577   /// Largest vector width used in ths function. Will be used to create a
1578   /// function attribute.
1579   unsigned LargestVectorWidth = 0;
1580 
1581   /// True if we need emit the life-time markers.
1582   const bool ShouldEmitLifetimeMarkers;
1583 
1584   /// Add OpenCL kernel arg metadata and the kernel attribute metadata to
1585   /// the function metadata.
1586   void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
1587                                 llvm::Function *Fn);
1588 
1589 public:
1590   CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1591   ~CodeGenFunction();
1592 
1593   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1594   ASTContext &getContext() const { return CGM.getContext(); }
1595   CGDebugInfo *getDebugInfo() {
1596     if (DisableDebugInfo)
1597       return nullptr;
1598     return DebugInfo;
1599   }
1600   void disableDebugInfo() { DisableDebugInfo = true; }
1601   void enableDebugInfo() { DisableDebugInfo = false; }
1602 
1603   bool shouldUseFusedARCCalls() {
1604     return CGM.getCodeGenOpts().OptimizationLevel == 0;
1605   }
1606 
1607   const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1608 
1609   /// Returns a pointer to the function's exception object and selector slot,
1610   /// which is assigned in every landing pad.
1611   Address getExceptionSlot();
1612   Address getEHSelectorSlot();
1613 
1614   /// Returns the contents of the function's exception object and selector
1615   /// slots.
1616   llvm::Value *getExceptionFromSlot();
1617   llvm::Value *getSelectorFromSlot();
1618 
1619   Address getNormalCleanupDestSlot();
1620 
1621   llvm::BasicBlock *getUnreachableBlock() {
1622     if (!UnreachableBlock) {
1623       UnreachableBlock = createBasicBlock("unreachable");
1624       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1625     }
1626     return UnreachableBlock;
1627   }
1628 
1629   llvm::BasicBlock *getInvokeDest() {
1630     if (!EHStack.requiresLandingPad()) return nullptr;
1631     return getInvokeDestImpl();
1632   }
1633 
1634   bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; }
1635 
1636   const TargetInfo &getTarget() const { return Target; }
1637   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1638   const TargetCodeGenInfo &getTargetHooks() const {
1639     return CGM.getTargetCodeGenInfo();
1640   }
1641 
1642   //===--------------------------------------------------------------------===//
1643   //                                  Cleanups
1644   //===--------------------------------------------------------------------===//
1645 
1646   typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty);
1647 
1648   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1649                                         Address arrayEndPointer,
1650                                         QualType elementType,
1651                                         CharUnits elementAlignment,
1652                                         Destroyer *destroyer);
1653   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1654                                       llvm::Value *arrayEnd,
1655                                       QualType elementType,
1656                                       CharUnits elementAlignment,
1657                                       Destroyer *destroyer);
1658 
1659   void pushDestroy(QualType::DestructionKind dtorKind,
1660                    Address addr, QualType type);
1661   void pushEHDestroy(QualType::DestructionKind dtorKind,
1662                      Address addr, QualType type);
1663   void pushDestroy(CleanupKind kind, Address addr, QualType type,
1664                    Destroyer *destroyer, bool useEHCleanupForArray);
1665   void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr,
1666                                    QualType type, Destroyer *destroyer,
1667                                    bool useEHCleanupForArray);
1668   void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1669                                    llvm::Value *CompletePtr,
1670                                    QualType ElementType);
1671   void pushStackRestore(CleanupKind kind, Address SPMem);
1672   void emitDestroy(Address addr, QualType type, Destroyer *destroyer,
1673                    bool useEHCleanupForArray);
1674   llvm::Function *generateDestroyHelper(Address addr, QualType type,
1675                                         Destroyer *destroyer,
1676                                         bool useEHCleanupForArray,
1677                                         const VarDecl *VD);
1678   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1679                         QualType elementType, CharUnits elementAlign,
1680                         Destroyer *destroyer,
1681                         bool checkZeroLength, bool useEHCleanup);
1682 
1683   Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1684 
1685   /// Determines whether an EH cleanup is required to destroy a type
1686   /// with the given destruction kind.
1687   bool needsEHCleanup(QualType::DestructionKind kind) {
1688     switch (kind) {
1689     case QualType::DK_none:
1690       return false;
1691     case QualType::DK_cxx_destructor:
1692     case QualType::DK_objc_weak_lifetime:
1693     case QualType::DK_nontrivial_c_struct:
1694       return getLangOpts().Exceptions;
1695     case QualType::DK_objc_strong_lifetime:
1696       return getLangOpts().Exceptions &&
1697              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1698     }
1699     llvm_unreachable("bad destruction kind");
1700   }
1701 
1702   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
1703     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1704   }
1705 
1706   //===--------------------------------------------------------------------===//
1707   //                                  Objective-C
1708   //===--------------------------------------------------------------------===//
1709 
1710   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1711 
1712   void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
1713 
1714   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1715   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1716                           const ObjCPropertyImplDecl *PID);
1717   void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1718                               const ObjCPropertyImplDecl *propImpl,
1719                               const ObjCMethodDecl *GetterMothodDecl,
1720                               llvm::Constant *AtomicHelperFn);
1721 
1722   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1723                                   ObjCMethodDecl *MD, bool ctor);
1724 
1725   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1726   /// for the given property.
1727   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1728                           const ObjCPropertyImplDecl *PID);
1729   void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1730                               const ObjCPropertyImplDecl *propImpl,
1731                               llvm::Constant *AtomicHelperFn);
1732 
1733   //===--------------------------------------------------------------------===//
1734   //                                  Block Bits
1735   //===--------------------------------------------------------------------===//
1736 
1737   /// Emit block literal.
1738   /// \return an LLVM value which is a pointer to a struct which contains
1739   /// information about the block, including the block invoke function, the
1740   /// captured variables, etc.
1741   llvm::Value *EmitBlockLiteral(const BlockExpr *);
1742   static void destroyBlockInfos(CGBlockInfo *info);
1743 
1744   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1745                                         const CGBlockInfo &Info,
1746                                         const DeclMapTy &ldm,
1747                                         bool IsLambdaConversionToBlock,
1748                                         bool BuildGlobalBlock);
1749 
1750   /// Check if \p T is a C++ class that has a destructor that can throw.
1751   static bool cxxDestructorCanThrow(QualType T);
1752 
1753   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1754   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1755   llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
1756                                              const ObjCPropertyImplDecl *PID);
1757   llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
1758                                              const ObjCPropertyImplDecl *PID);
1759   llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
1760 
1761   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags,
1762                          bool CanThrow);
1763 
1764   class AutoVarEmission;
1765 
1766   void emitByrefStructureInit(const AutoVarEmission &emission);
1767 
1768   /// Enter a cleanup to destroy a __block variable.  Note that this
1769   /// cleanup should be a no-op if the variable hasn't left the stack
1770   /// yet; if a cleanup is required for the variable itself, that needs
1771   /// to be done externally.
1772   ///
1773   /// \param Kind Cleanup kind.
1774   ///
1775   /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block
1776   /// structure that will be passed to _Block_object_dispose. When
1777   /// \p LoadBlockVarAddr is true, the address of the field of the block
1778   /// structure that holds the address of the __block structure.
1779   ///
1780   /// \param Flags The flag that will be passed to _Block_object_dispose.
1781   ///
1782   /// \param LoadBlockVarAddr Indicates whether we need to emit a load from
1783   /// \p Addr to get the address of the __block structure.
1784   void enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags,
1785                          bool LoadBlockVarAddr, bool CanThrow);
1786 
1787   void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum,
1788                                 llvm::Value *ptr);
1789 
1790   Address LoadBlockStruct();
1791   Address GetAddrOfBlockDecl(const VarDecl *var);
1792 
1793   /// BuildBlockByrefAddress - Computes the location of the
1794   /// data in a variable which is declared as __block.
1795   Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V,
1796                                 bool followForward = true);
1797   Address emitBlockByrefAddress(Address baseAddr,
1798                                 const BlockByrefInfo &info,
1799                                 bool followForward,
1800                                 const llvm::Twine &name);
1801 
1802   const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var);
1803 
1804   QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args);
1805 
1806   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1807                     const CGFunctionInfo &FnInfo);
1808 
1809   /// Annotate the function with an attribute that disables TSan checking at
1810   /// runtime.
1811   void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn);
1812 
1813   /// Emit code for the start of a function.
1814   /// \param Loc       The location to be associated with the function.
1815   /// \param StartLoc  The location of the function body.
1816   void StartFunction(GlobalDecl GD,
1817                      QualType RetTy,
1818                      llvm::Function *Fn,
1819                      const CGFunctionInfo &FnInfo,
1820                      const FunctionArgList &Args,
1821                      SourceLocation Loc = SourceLocation(),
1822                      SourceLocation StartLoc = SourceLocation());
1823 
1824   static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor);
1825 
1826   void EmitConstructorBody(FunctionArgList &Args);
1827   void EmitDestructorBody(FunctionArgList &Args);
1828   void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
1829   void EmitFunctionBody(const Stmt *Body);
1830   void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S);
1831 
1832   void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
1833                                   CallArgList &CallArgs);
1834   void EmitLambdaBlockInvokeBody();
1835   void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
1836   void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD);
1837   void EmitLambdaVLACapture(const VariableArrayType *VAT, LValue LV) {
1838     EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
1839   }
1840   void EmitAsanPrologueOrEpilogue(bool Prologue);
1841 
1842   /// Emit the unified return block, trying to avoid its emission when
1843   /// possible.
1844   /// \return The debug location of the user written return statement if the
1845   /// return block is is avoided.
1846   llvm::DebugLoc EmitReturnBlock();
1847 
1848   /// FinishFunction - Complete IR generation of the current function. It is
1849   /// legal to call this function even if there is no current insertion point.
1850   void FinishFunction(SourceLocation EndLoc=SourceLocation());
1851 
1852   void StartThunk(llvm::Function *Fn, GlobalDecl GD,
1853                   const CGFunctionInfo &FnInfo, bool IsUnprototyped);
1854 
1855   void EmitCallAndReturnForThunk(llvm::FunctionCallee Callee,
1856                                  const ThunkInfo *Thunk, bool IsUnprototyped);
1857 
1858   void FinishThunk();
1859 
1860   /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
1861   void EmitMustTailThunk(GlobalDecl GD, llvm::Value *AdjustedThisPtr,
1862                          llvm::FunctionCallee Callee);
1863 
1864   /// Generate a thunk for the given method.
1865   void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1866                      GlobalDecl GD, const ThunkInfo &Thunk,
1867                      bool IsUnprototyped);
1868 
1869   llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn,
1870                                        const CGFunctionInfo &FnInfo,
1871                                        GlobalDecl GD, const ThunkInfo &Thunk);
1872 
1873   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1874                         FunctionArgList &Args);
1875 
1876   void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init);
1877 
1878   /// Struct with all information about dynamic [sub]class needed to set vptr.
1879   struct VPtr {
1880     BaseSubobject Base;
1881     const CXXRecordDecl *NearestVBase;
1882     CharUnits OffsetFromNearestVBase;
1883     const CXXRecordDecl *VTableClass;
1884   };
1885 
1886   /// Initialize the vtable pointer of the given subobject.
1887   void InitializeVTablePointer(const VPtr &vptr);
1888 
1889   typedef llvm::SmallVector<VPtr, 4> VPtrsVector;
1890 
1891   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1892   VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass);
1893 
1894   void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase,
1895                          CharUnits OffsetFromNearestVBase,
1896                          bool BaseIsNonVirtualPrimaryBase,
1897                          const CXXRecordDecl *VTableClass,
1898                          VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs);
1899 
1900   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1901 
1902   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1903   /// to by This.
1904   llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy,
1905                             const CXXRecordDecl *VTableClass);
1906 
1907   enum CFITypeCheckKind {
1908     CFITCK_VCall,
1909     CFITCK_NVCall,
1910     CFITCK_DerivedCast,
1911     CFITCK_UnrelatedCast,
1912     CFITCK_ICall,
1913     CFITCK_NVMFCall,
1914     CFITCK_VMFCall,
1915   };
1916 
1917   /// Derived is the presumed address of an object of type T after a
1918   /// cast. If T is a polymorphic class type, emit a check that the virtual
1919   /// table for Derived belongs to a class derived from T.
1920   void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived,
1921                                  bool MayBeNull, CFITypeCheckKind TCK,
1922                                  SourceLocation Loc);
1923 
1924   /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
1925   /// If vptr CFI is enabled, emit a check that VTable is valid.
1926   void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable,
1927                                  CFITypeCheckKind TCK, SourceLocation Loc);
1928 
1929   /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
1930   /// RD using llvm.type.test.
1931   void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable,
1932                           CFITypeCheckKind TCK, SourceLocation Loc);
1933 
1934   /// If whole-program virtual table optimization is enabled, emit an assumption
1935   /// that VTable is a member of RD's type identifier. Or, if vptr CFI is
1936   /// enabled, emit a check that VTable is a member of RD's type identifier.
1937   void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
1938                                     llvm::Value *VTable, SourceLocation Loc);
1939 
1940   /// Returns whether we should perform a type checked load when loading a
1941   /// virtual function for virtual calls to members of RD. This is generally
1942   /// true when both vcall CFI and whole-program-vtables are enabled.
1943   bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD);
1944 
1945   /// Emit a type checked load from the given vtable.
1946   llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable,
1947                                          uint64_t VTableByteOffset);
1948 
1949   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1950   /// given phase of destruction for a destructor.  The end result
1951   /// should call destructors on members and base classes in reverse
1952   /// order of their construction.
1953   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1954 
1955   /// ShouldInstrumentFunction - Return true if the current function should be
1956   /// instrumented with __cyg_profile_func_* calls
1957   bool ShouldInstrumentFunction();
1958 
1959   /// ShouldXRayInstrument - Return true if the current function should be
1960   /// instrumented with XRay nop sleds.
1961   bool ShouldXRayInstrumentFunction() const;
1962 
1963   /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit
1964   /// XRay custom event handling calls.
1965   bool AlwaysEmitXRayCustomEvents() const;
1966 
1967   /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit
1968   /// XRay typed event handling calls.
1969   bool AlwaysEmitXRayTypedEvents() const;
1970 
1971   /// Encode an address into a form suitable for use in a function prologue.
1972   llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F,
1973                                              llvm::Constant *Addr);
1974 
1975   /// Decode an address used in a function prologue, encoded by \c
1976   /// EncodeAddrForUseInPrologue.
1977   llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F,
1978                                         llvm::Value *EncodedAddr);
1979 
1980   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1981   /// arguments for the given function. This is also responsible for naming the
1982   /// LLVM function arguments.
1983   void EmitFunctionProlog(const CGFunctionInfo &FI,
1984                           llvm::Function *Fn,
1985                           const FunctionArgList &Args);
1986 
1987   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1988   /// given temporary.
1989   void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
1990                           SourceLocation EndLoc);
1991 
1992   /// Emit a test that checks if the return value \p RV is nonnull.
1993   void EmitReturnValueCheck(llvm::Value *RV);
1994 
1995   /// EmitStartEHSpec - Emit the start of the exception spec.
1996   void EmitStartEHSpec(const Decl *D);
1997 
1998   /// EmitEndEHSpec - Emit the end of the exception spec.
1999   void EmitEndEHSpec(const Decl *D);
2000 
2001   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
2002   llvm::BasicBlock *getTerminateLandingPad();
2003 
2004   /// getTerminateLandingPad - Return a cleanup funclet that just calls
2005   /// terminate.
2006   llvm::BasicBlock *getTerminateFunclet();
2007 
2008   /// getTerminateHandler - Return a handler (not a landing pad, just
2009   /// a catch handler) that just calls terminate.  This is used when
2010   /// a terminate scope encloses a try.
2011   llvm::BasicBlock *getTerminateHandler();
2012 
2013   llvm::Type *ConvertTypeForMem(QualType T);
2014   llvm::Type *ConvertType(QualType T);
2015   llvm::Type *ConvertType(const TypeDecl *T) {
2016     return ConvertType(getContext().getTypeDeclType(T));
2017   }
2018 
2019   /// LoadObjCSelf - Load the value of self. This function is only valid while
2020   /// generating code for an Objective-C method.
2021   llvm::Value *LoadObjCSelf();
2022 
2023   /// TypeOfSelfObject - Return type of object that this self represents.
2024   QualType TypeOfSelfObject();
2025 
2026   /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T.
2027   static TypeEvaluationKind getEvaluationKind(QualType T);
2028 
2029   static bool hasScalarEvaluationKind(QualType T) {
2030     return getEvaluationKind(T) == TEK_Scalar;
2031   }
2032 
2033   static bool hasAggregateEvaluationKind(QualType T) {
2034     return getEvaluationKind(T) == TEK_Aggregate;
2035   }
2036 
2037   /// createBasicBlock - Create an LLVM basic block.
2038   llvm::BasicBlock *createBasicBlock(const Twine &name = "",
2039                                      llvm::Function *parent = nullptr,
2040                                      llvm::BasicBlock *before = nullptr) {
2041     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
2042   }
2043 
2044   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
2045   /// label maps to.
2046   JumpDest getJumpDestForLabel(const LabelDecl *S);
2047 
2048   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
2049   /// another basic block, simplify it. This assumes that no other code could
2050   /// potentially reference the basic block.
2051   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
2052 
2053   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
2054   /// adding a fall-through branch from the current insert block if
2055   /// necessary. It is legal to call this function even if there is no current
2056   /// insertion point.
2057   ///
2058   /// IsFinished - If true, indicates that the caller has finished emitting
2059   /// branches to the given block and does not expect to emit code into it. This
2060   /// means the block can be ignored if it is unreachable.
2061   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
2062 
2063   /// EmitBlockAfterUses - Emit the given block somewhere hopefully
2064   /// near its uses, and leave the insertion point in it.
2065   void EmitBlockAfterUses(llvm::BasicBlock *BB);
2066 
2067   /// EmitBranch - Emit a branch to the specified basic block from the current
2068   /// insert block, taking care to avoid creation of branches from dummy
2069   /// blocks. It is legal to call this function even if there is no current
2070   /// insertion point.
2071   ///
2072   /// This function clears the current insertion point. The caller should follow
2073   /// calls to this function with calls to Emit*Block prior to generation new
2074   /// code.
2075   void EmitBranch(llvm::BasicBlock *Block);
2076 
2077   /// HaveInsertPoint - True if an insertion point is defined. If not, this
2078   /// indicates that the current code being emitted is unreachable.
2079   bool HaveInsertPoint() const {
2080     return Builder.GetInsertBlock() != nullptr;
2081   }
2082 
2083   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
2084   /// emitted IR has a place to go. Note that by definition, if this function
2085   /// creates a block then that block is unreachable; callers may do better to
2086   /// detect when no insertion point is defined and simply skip IR generation.
2087   void EnsureInsertPoint() {
2088     if (!HaveInsertPoint())
2089       EmitBlock(createBasicBlock());
2090   }
2091 
2092   /// ErrorUnsupported - Print out an error that codegen doesn't support the
2093   /// specified stmt yet.
2094   void ErrorUnsupported(const Stmt *S, const char *Type);
2095 
2096   //===--------------------------------------------------------------------===//
2097   //                                  Helpers
2098   //===--------------------------------------------------------------------===//
2099 
2100   LValue MakeAddrLValue(Address Addr, QualType T,
2101                         AlignmentSource Source = AlignmentSource::Type) {
2102     return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
2103                             CGM.getTBAAAccessInfo(T));
2104   }
2105 
2106   LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo,
2107                         TBAAAccessInfo TBAAInfo) {
2108     return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo);
2109   }
2110 
2111   LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
2112                         AlignmentSource Source = AlignmentSource::Type) {
2113     return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
2114                             LValueBaseInfo(Source), CGM.getTBAAAccessInfo(T));
2115   }
2116 
2117   LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
2118                         LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) {
2119     return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
2120                             BaseInfo, TBAAInfo);
2121   }
2122 
2123   LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T);
2124   LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T);
2125   CharUnits getNaturalTypeAlignment(QualType T,
2126                                     LValueBaseInfo *BaseInfo = nullptr,
2127                                     TBAAAccessInfo *TBAAInfo = nullptr,
2128                                     bool forPointeeType = false);
2129   CharUnits getNaturalPointeeTypeAlignment(QualType T,
2130                                            LValueBaseInfo *BaseInfo = nullptr,
2131                                            TBAAAccessInfo *TBAAInfo = nullptr);
2132 
2133   Address EmitLoadOfReference(LValue RefLVal,
2134                               LValueBaseInfo *PointeeBaseInfo = nullptr,
2135                               TBAAAccessInfo *PointeeTBAAInfo = nullptr);
2136   LValue EmitLoadOfReferenceLValue(LValue RefLVal);
2137   LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy,
2138                                    AlignmentSource Source =
2139                                        AlignmentSource::Type) {
2140     LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source),
2141                                     CGM.getTBAAAccessInfo(RefTy));
2142     return EmitLoadOfReferenceLValue(RefLVal);
2143   }
2144 
2145   Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy,
2146                             LValueBaseInfo *BaseInfo = nullptr,
2147                             TBAAAccessInfo *TBAAInfo = nullptr);
2148   LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy);
2149 
2150   /// CreateTempAlloca - This creates an alloca and inserts it into the entry
2151   /// block if \p ArraySize is nullptr, otherwise inserts it at the current
2152   /// insertion point of the builder. The caller is responsible for setting an
2153   /// appropriate alignment on
2154   /// the alloca.
2155   ///
2156   /// \p ArraySize is the number of array elements to be allocated if it
2157   ///    is not nullptr.
2158   ///
2159   /// LangAS::Default is the address space of pointers to local variables and
2160   /// temporaries, as exposed in the source language. In certain
2161   /// configurations, this is not the same as the alloca address space, and a
2162   /// cast is needed to lift the pointer from the alloca AS into
2163   /// LangAS::Default. This can happen when the target uses a restricted
2164   /// address space for the stack but the source language requires
2165   /// LangAS::Default to be a generic address space. The latter condition is
2166   /// common for most programming languages; OpenCL is an exception in that
2167   /// LangAS::Default is the private address space, which naturally maps
2168   /// to the stack.
2169   ///
2170   /// Because the address of a temporary is often exposed to the program in
2171   /// various ways, this function will perform the cast. The original alloca
2172   /// instruction is returned through \p Alloca if it is not nullptr.
2173   ///
2174   /// The cast is not performaed in CreateTempAllocaWithoutCast. This is
2175   /// more efficient if the caller knows that the address will not be exposed.
2176   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp",
2177                                      llvm::Value *ArraySize = nullptr);
2178   Address CreateTempAlloca(llvm::Type *Ty, CharUnits align,
2179                            const Twine &Name = "tmp",
2180                            llvm::Value *ArraySize = nullptr,
2181                            Address *Alloca = nullptr);
2182   Address CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align,
2183                                       const Twine &Name = "tmp",
2184                                       llvm::Value *ArraySize = nullptr);
2185 
2186   /// CreateDefaultAlignedTempAlloca - This creates an alloca with the
2187   /// default ABI alignment of the given LLVM type.
2188   ///
2189   /// IMPORTANT NOTE: This is *not* generally the right alignment for
2190   /// any given AST type that happens to have been lowered to the
2191   /// given IR type.  This should only ever be used for function-local,
2192   /// IR-driven manipulations like saving and restoring a value.  Do
2193   /// not hand this address off to arbitrary IRGen routines, and especially
2194   /// do not pass it as an argument to a function that might expect a
2195   /// properly ABI-aligned value.
2196   Address CreateDefaultAlignTempAlloca(llvm::Type *Ty,
2197                                        const Twine &Name = "tmp");
2198 
2199   /// InitTempAlloca - Provide an initial value for the given alloca which
2200   /// will be observable at all locations in the function.
2201   ///
2202   /// The address should be something that was returned from one of
2203   /// the CreateTempAlloca or CreateMemTemp routines, and the
2204   /// initializer must be valid in the entry block (i.e. it must
2205   /// either be a constant or an argument value).
2206   void InitTempAlloca(Address Alloca, llvm::Value *Value);
2207 
2208   /// CreateIRTemp - Create a temporary IR object of the given type, with
2209   /// appropriate alignment. This routine should only be used when an temporary
2210   /// value needs to be stored into an alloca (for example, to avoid explicit
2211   /// PHI construction), but the type is the IR type, not the type appropriate
2212   /// for storing in memory.
2213   ///
2214   /// That is, this is exactly equivalent to CreateMemTemp, but calling
2215   /// ConvertType instead of ConvertTypeForMem.
2216   Address CreateIRTemp(QualType T, const Twine &Name = "tmp");
2217 
2218   /// CreateMemTemp - Create a temporary memory object of the given type, with
2219   /// appropriate alignmen and cast it to the default address space. Returns
2220   /// the original alloca instruction by \p Alloca if it is not nullptr.
2221   Address CreateMemTemp(QualType T, const Twine &Name = "tmp",
2222                         Address *Alloca = nullptr);
2223   Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp",
2224                         Address *Alloca = nullptr);
2225 
2226   /// CreateMemTemp - Create a temporary memory object of the given type, with
2227   /// appropriate alignmen without casting it to the default address space.
2228   Address CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp");
2229   Address CreateMemTempWithoutCast(QualType T, CharUnits Align,
2230                                    const Twine &Name = "tmp");
2231 
2232   /// CreateAggTemp - Create a temporary memory object for the given
2233   /// aggregate type.
2234   AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
2235     return AggValueSlot::forAddr(CreateMemTemp(T, Name),
2236                                  T.getQualifiers(),
2237                                  AggValueSlot::IsNotDestructed,
2238                                  AggValueSlot::DoesNotNeedGCBarriers,
2239                                  AggValueSlot::IsNotAliased,
2240                                  AggValueSlot::DoesNotOverlap);
2241   }
2242 
2243   /// Emit a cast to void* in the appropriate address space.
2244   llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
2245 
2246   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
2247   /// expression and compare the result against zero, returning an Int1Ty value.
2248   llvm::Value *EvaluateExprAsBool(const Expr *E);
2249 
2250   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
2251   void EmitIgnoredExpr(const Expr *E);
2252 
2253   /// EmitAnyExpr - Emit code to compute the specified expression which can have
2254   /// any type.  The result is returned as an RValue struct.  If this is an
2255   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
2256   /// the result should be returned.
2257   ///
2258   /// \param ignoreResult True if the resulting value isn't used.
2259   RValue EmitAnyExpr(const Expr *E,
2260                      AggValueSlot aggSlot = AggValueSlot::ignored(),
2261                      bool ignoreResult = false);
2262 
2263   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
2264   // or the value of the expression, depending on how va_list is defined.
2265   Address EmitVAListRef(const Expr *E);
2266 
2267   /// Emit a "reference" to a __builtin_ms_va_list; this is
2268   /// always the value of the expression, because a __builtin_ms_va_list is a
2269   /// pointer to a char.
2270   Address EmitMSVAListRef(const Expr *E);
2271 
2272   /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will
2273   /// always be accessible even if no aggregate location is provided.
2274   RValue EmitAnyExprToTemp(const Expr *E);
2275 
2276   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
2277   /// arbitrary expression into the given memory location.
2278   void EmitAnyExprToMem(const Expr *E, Address Location,
2279                         Qualifiers Quals, bool IsInitializer);
2280 
2281   void EmitAnyExprToExn(const Expr *E, Address Addr);
2282 
2283   /// EmitExprAsInit - Emits the code necessary to initialize a
2284   /// location in memory with the given initializer.
2285   void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2286                       bool capturedByInit);
2287 
2288   /// hasVolatileMember - returns true if aggregate type has a volatile
2289   /// member.
2290   bool hasVolatileMember(QualType T) {
2291     if (const RecordType *RT = T->getAs<RecordType>()) {
2292       const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
2293       return RD->hasVolatileMember();
2294     }
2295     return false;
2296   }
2297 
2298   /// Determine whether a return value slot may overlap some other object.
2299   AggValueSlot::Overlap_t overlapForReturnValue() {
2300     // FIXME: Assuming no overlap here breaks guaranteed copy elision for base
2301     // class subobjects. These cases may need to be revisited depending on the
2302     // resolution of the relevant core issue.
2303     return AggValueSlot::DoesNotOverlap;
2304   }
2305 
2306   /// Determine whether a field initialization may overlap some other object.
2307   AggValueSlot::Overlap_t overlapForFieldInit(const FieldDecl *FD) {
2308     // FIXME: These cases can result in overlap as a result of P0840R0's
2309     // [[no_unique_address]] attribute. We can still infer NoOverlap in the
2310     // presence of that attribute if the field is within the nvsize of its
2311     // containing class, because non-virtual subobjects are initialized in
2312     // address order.
2313     return AggValueSlot::DoesNotOverlap;
2314   }
2315 
2316   /// Determine whether a base class initialization may overlap some other
2317   /// object.
2318   AggValueSlot::Overlap_t overlapForBaseInit(const CXXRecordDecl *RD,
2319                                              const CXXRecordDecl *BaseRD,
2320                                              bool IsVirtual);
2321 
2322   /// Emit an aggregate assignment.
2323   void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) {
2324     bool IsVolatile = hasVolatileMember(EltTy);
2325     EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile);
2326   }
2327 
2328   void EmitAggregateCopyCtor(LValue Dest, LValue Src,
2329                              AggValueSlot::Overlap_t MayOverlap) {
2330     EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap);
2331   }
2332 
2333   /// EmitAggregateCopy - Emit an aggregate copy.
2334   ///
2335   /// \param isVolatile \c true iff either the source or the destination is
2336   ///        volatile.
2337   /// \param MayOverlap Whether the tail padding of the destination might be
2338   ///        occupied by some other object. More efficient code can often be
2339   ///        generated if not.
2340   void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy,
2341                          AggValueSlot::Overlap_t MayOverlap,
2342                          bool isVolatile = false);
2343 
2344   /// GetAddrOfLocalVar - Return the address of a local variable.
2345   Address GetAddrOfLocalVar(const VarDecl *VD) {
2346     auto it = LocalDeclMap.find(VD);
2347     assert(it != LocalDeclMap.end() &&
2348            "Invalid argument to GetAddrOfLocalVar(), no decl!");
2349     return it->second;
2350   }
2351 
2352   /// Given an opaque value expression, return its LValue mapping if it exists,
2353   /// otherwise create one.
2354   LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e);
2355 
2356   /// Given an opaque value expression, return its RValue mapping if it exists,
2357   /// otherwise create one.
2358   RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e);
2359 
2360   /// Get the index of the current ArrayInitLoopExpr, if any.
2361   llvm::Value *getArrayInitIndex() { return ArrayInitIndex; }
2362 
2363   /// getAccessedFieldNo - Given an encoded value and a result number, return
2364   /// the input field number being accessed.
2365   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
2366 
2367   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
2368   llvm::BasicBlock *GetIndirectGotoBlock();
2369 
2370   /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts.
2371   static bool IsWrappedCXXThis(const Expr *E);
2372 
2373   /// EmitNullInitialization - Generate code to set a value of the given type to
2374   /// null, If the type contains data member pointers, they will be initialized
2375   /// to -1 in accordance with the Itanium C++ ABI.
2376   void EmitNullInitialization(Address DestPtr, QualType Ty);
2377 
2378   /// Emits a call to an LLVM variable-argument intrinsic, either
2379   /// \c llvm.va_start or \c llvm.va_end.
2380   /// \param ArgValue A reference to the \c va_list as emitted by either
2381   /// \c EmitVAListRef or \c EmitMSVAListRef.
2382   /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise,
2383   /// calls \c llvm.va_end.
2384   llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart);
2385 
2386   /// Generate code to get an argument from the passed in pointer
2387   /// and update it accordingly.
2388   /// \param VE The \c VAArgExpr for which to generate code.
2389   /// \param VAListAddr Receives a reference to the \c va_list as emitted by
2390   /// either \c EmitVAListRef or \c EmitMSVAListRef.
2391   /// \returns A pointer to the argument.
2392   // FIXME: We should be able to get rid of this method and use the va_arg
2393   // instruction in LLVM instead once it works well enough.
2394   Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr);
2395 
2396   /// emitArrayLength - Compute the length of an array, even if it's a
2397   /// VLA, and drill down to the base element type.
2398   llvm::Value *emitArrayLength(const ArrayType *arrayType,
2399                                QualType &baseType,
2400                                Address &addr);
2401 
2402   /// EmitVLASize - Capture all the sizes for the VLA expressions in
2403   /// the given variably-modified type and store them in the VLASizeMap.
2404   ///
2405   /// This function can be called with a null (unreachable) insert point.
2406   void EmitVariablyModifiedType(QualType Ty);
2407 
2408   struct VlaSizePair {
2409     llvm::Value *NumElts;
2410     QualType Type;
2411 
2412     VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {}
2413   };
2414 
2415   /// Return the number of elements for a single dimension
2416   /// for the given array type.
2417   VlaSizePair getVLAElements1D(const VariableArrayType *vla);
2418   VlaSizePair getVLAElements1D(QualType vla);
2419 
2420   /// Returns an LLVM value that corresponds to the size,
2421   /// in non-variably-sized elements, of a variable length array type,
2422   /// plus that largest non-variably-sized element type.  Assumes that
2423   /// the type has already been emitted with EmitVariablyModifiedType.
2424   VlaSizePair getVLASize(const VariableArrayType *vla);
2425   VlaSizePair getVLASize(QualType vla);
2426 
2427   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
2428   /// generating code for an C++ member function.
2429   llvm::Value *LoadCXXThis() {
2430     assert(CXXThisValue && "no 'this' value for this function");
2431     return CXXThisValue;
2432   }
2433   Address LoadCXXThisAddress();
2434 
2435   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
2436   /// virtual bases.
2437   // FIXME: Every place that calls LoadCXXVTT is something
2438   // that needs to be abstracted properly.
2439   llvm::Value *LoadCXXVTT() {
2440     assert(CXXStructorImplicitParamValue && "no VTT value for this function");
2441     return CXXStructorImplicitParamValue;
2442   }
2443 
2444   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
2445   /// complete class to the given direct base.
2446   Address
2447   GetAddressOfDirectBaseInCompleteClass(Address Value,
2448                                         const CXXRecordDecl *Derived,
2449                                         const CXXRecordDecl *Base,
2450                                         bool BaseIsVirtual);
2451 
2452   static bool ShouldNullCheckClassCastValue(const CastExpr *Cast);
2453 
2454   /// GetAddressOfBaseClass - This function will add the necessary delta to the
2455   /// load of 'this' and returns address of the base class.
2456   Address GetAddressOfBaseClass(Address Value,
2457                                 const CXXRecordDecl *Derived,
2458                                 CastExpr::path_const_iterator PathBegin,
2459                                 CastExpr::path_const_iterator PathEnd,
2460                                 bool NullCheckValue, SourceLocation Loc);
2461 
2462   Address GetAddressOfDerivedClass(Address Value,
2463                                    const CXXRecordDecl *Derived,
2464                                    CastExpr::path_const_iterator PathBegin,
2465                                    CastExpr::path_const_iterator PathEnd,
2466                                    bool NullCheckValue);
2467 
2468   /// GetVTTParameter - Return the VTT parameter that should be passed to a
2469   /// base constructor/destructor with virtual bases.
2470   /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
2471   /// to ItaniumCXXABI.cpp together with all the references to VTT.
2472   llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
2473                                bool Delegating);
2474 
2475   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
2476                                       CXXCtorType CtorType,
2477                                       const FunctionArgList &Args,
2478                                       SourceLocation Loc);
2479   // It's important not to confuse this and the previous function. Delegating
2480   // constructors are the C++0x feature. The constructor delegate optimization
2481   // is used to reduce duplication in the base and complete consturctors where
2482   // they are substantially the same.
2483   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2484                                         const FunctionArgList &Args);
2485 
2486   /// Emit a call to an inheriting constructor (that is, one that invokes a
2487   /// constructor inherited from a base class) by inlining its definition. This
2488   /// is necessary if the ABI does not support forwarding the arguments to the
2489   /// base class constructor (because they're variadic or similar).
2490   void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2491                                                CXXCtorType CtorType,
2492                                                bool ForVirtualBase,
2493                                                bool Delegating,
2494                                                CallArgList &Args);
2495 
2496   /// Emit a call to a constructor inherited from a base class, passing the
2497   /// current constructor's arguments along unmodified (without even making
2498   /// a copy).
2499   void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D,
2500                                        bool ForVirtualBase, Address This,
2501                                        bool InheritedFromVBase,
2502                                        const CXXInheritedCtorInitExpr *E);
2503 
2504   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2505                               bool ForVirtualBase, bool Delegating,
2506                               AggValueSlot ThisAVS, const CXXConstructExpr *E);
2507 
2508   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2509                               bool ForVirtualBase, bool Delegating,
2510                               Address This, CallArgList &Args,
2511                               AggValueSlot::Overlap_t Overlap,
2512                               SourceLocation Loc, bool NewPointerIsChecked);
2513 
2514   /// Emit assumption load for all bases. Requires to be be called only on
2515   /// most-derived class and not under construction of the object.
2516   void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This);
2517 
2518   /// Emit assumption that vptr load == global vtable.
2519   void EmitVTableAssumptionLoad(const VPtr &vptr, Address This);
2520 
2521   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
2522                                       Address This, Address Src,
2523                                       const CXXConstructExpr *E);
2524 
2525   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2526                                   const ArrayType *ArrayTy,
2527                                   Address ArrayPtr,
2528                                   const CXXConstructExpr *E,
2529                                   bool NewPointerIsChecked,
2530                                   bool ZeroInitialization = false);
2531 
2532   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2533                                   llvm::Value *NumElements,
2534                                   Address ArrayPtr,
2535                                   const CXXConstructExpr *E,
2536                                   bool NewPointerIsChecked,
2537                                   bool ZeroInitialization = false);
2538 
2539   static Destroyer destroyCXXObject;
2540 
2541   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
2542                              bool ForVirtualBase, bool Delegating,
2543                              Address This);
2544 
2545   void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
2546                                llvm::Type *ElementTy, Address NewPtr,
2547                                llvm::Value *NumElements,
2548                                llvm::Value *AllocSizeWithoutCookie);
2549 
2550   void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
2551                         Address Ptr);
2552 
2553   llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr);
2554   void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr);
2555 
2556   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
2557   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
2558 
2559   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
2560                       QualType DeleteTy, llvm::Value *NumElements = nullptr,
2561                       CharUnits CookieSize = CharUnits());
2562 
2563   RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
2564                                   const CallExpr *TheCallExpr, bool IsDelete);
2565 
2566   llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E);
2567   llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE);
2568   Address EmitCXXUuidofExpr(const CXXUuidofExpr *E);
2569 
2570   /// Situations in which we might emit a check for the suitability of a
2571   ///        pointer or glvalue.
2572   enum TypeCheckKind {
2573     /// Checking the operand of a load. Must be suitably sized and aligned.
2574     TCK_Load,
2575     /// Checking the destination of a store. Must be suitably sized and aligned.
2576     TCK_Store,
2577     /// Checking the bound value in a reference binding. Must be suitably sized
2578     /// and aligned, but is not required to refer to an object (until the
2579     /// reference is used), per core issue 453.
2580     TCK_ReferenceBinding,
2581     /// Checking the object expression in a non-static data member access. Must
2582     /// be an object within its lifetime.
2583     TCK_MemberAccess,
2584     /// Checking the 'this' pointer for a call to a non-static member function.
2585     /// Must be an object within its lifetime.
2586     TCK_MemberCall,
2587     /// Checking the 'this' pointer for a constructor call.
2588     TCK_ConstructorCall,
2589     /// Checking the operand of a static_cast to a derived pointer type. Must be
2590     /// null or an object within its lifetime.
2591     TCK_DowncastPointer,
2592     /// Checking the operand of a static_cast to a derived reference type. Must
2593     /// be an object within its lifetime.
2594     TCK_DowncastReference,
2595     /// Checking the operand of a cast to a base object. Must be suitably sized
2596     /// and aligned.
2597     TCK_Upcast,
2598     /// Checking the operand of a cast to a virtual base object. Must be an
2599     /// object within its lifetime.
2600     TCK_UpcastToVirtualBase,
2601     /// Checking the value assigned to a _Nonnull pointer. Must not be null.
2602     TCK_NonnullAssign,
2603     /// Checking the operand of a dynamic_cast or a typeid expression.  Must be
2604     /// null or an object within its lifetime.
2605     TCK_DynamicOperation
2606   };
2607 
2608   /// Determine whether the pointer type check \p TCK permits null pointers.
2609   static bool isNullPointerAllowed(TypeCheckKind TCK);
2610 
2611   /// Determine whether the pointer type check \p TCK requires a vptr check.
2612   static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty);
2613 
2614   /// Whether any type-checking sanitizers are enabled. If \c false,
2615   /// calls to EmitTypeCheck can be skipped.
2616   bool sanitizePerformTypeCheck() const;
2617 
2618   /// Emit a check that \p V is the address of storage of the
2619   /// appropriate size and alignment for an object of type \p Type
2620   /// (or if ArraySize is provided, for an array of that bound).
2621   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
2622                      QualType Type, CharUnits Alignment = CharUnits::Zero(),
2623                      SanitizerSet SkippedChecks = SanitizerSet(),
2624                      llvm::Value *ArraySize = nullptr);
2625 
2626   /// Emit a check that \p Base points into an array object, which
2627   /// we can access at index \p Index. \p Accessed should be \c false if we
2628   /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
2629   void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
2630                        QualType IndexType, bool Accessed);
2631 
2632   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2633                                        bool isInc, bool isPre);
2634   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
2635                                          bool isInc, bool isPre);
2636 
2637   /// Converts Location to a DebugLoc, if debug information is enabled.
2638   llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location);
2639 
2640 
2641   //===--------------------------------------------------------------------===//
2642   //                            Declaration Emission
2643   //===--------------------------------------------------------------------===//
2644 
2645   /// EmitDecl - Emit a declaration.
2646   ///
2647   /// This function can be called with a null (unreachable) insert point.
2648   void EmitDecl(const Decl &D);
2649 
2650   /// EmitVarDecl - Emit a local variable declaration.
2651   ///
2652   /// This function can be called with a null (unreachable) insert point.
2653   void EmitVarDecl(const VarDecl &D);
2654 
2655   void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2656                       bool capturedByInit);
2657 
2658   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
2659                              llvm::Value *Address);
2660 
2661   /// Determine whether the given initializer is trivial in the sense
2662   /// that it requires no code to be generated.
2663   bool isTrivialInitializer(const Expr *Init);
2664 
2665   /// EmitAutoVarDecl - Emit an auto variable declaration.
2666   ///
2667   /// This function can be called with a null (unreachable) insert point.
2668   void EmitAutoVarDecl(const VarDecl &D);
2669 
2670   class AutoVarEmission {
2671     friend class CodeGenFunction;
2672 
2673     const VarDecl *Variable;
2674 
2675     /// The address of the alloca for languages with explicit address space
2676     /// (e.g. OpenCL) or alloca casted to generic pointer for address space
2677     /// agnostic languages (e.g. C++). Invalid if the variable was emitted
2678     /// as a global constant.
2679     Address Addr;
2680 
2681     llvm::Value *NRVOFlag;
2682 
2683     /// True if the variable is a __block variable that is captured by an
2684     /// escaping block.
2685     bool IsEscapingByRef;
2686 
2687     /// True if the variable is of aggregate type and has a constant
2688     /// initializer.
2689     bool IsConstantAggregate;
2690 
2691     /// Non-null if we should use lifetime annotations.
2692     llvm::Value *SizeForLifetimeMarkers;
2693 
2694     /// Address with original alloca instruction. Invalid if the variable was
2695     /// emitted as a global constant.
2696     Address AllocaAddr;
2697 
2698     struct Invalid {};
2699     AutoVarEmission(Invalid)
2700         : Variable(nullptr), Addr(Address::invalid()),
2701           AllocaAddr(Address::invalid()) {}
2702 
2703     AutoVarEmission(const VarDecl &variable)
2704         : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr),
2705           IsEscapingByRef(false), IsConstantAggregate(false),
2706           SizeForLifetimeMarkers(nullptr), AllocaAddr(Address::invalid()) {}
2707 
2708     bool wasEmittedAsGlobal() const { return !Addr.isValid(); }
2709 
2710   public:
2711     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
2712 
2713     bool useLifetimeMarkers() const {
2714       return SizeForLifetimeMarkers != nullptr;
2715     }
2716     llvm::Value *getSizeForLifetimeMarkers() const {
2717       assert(useLifetimeMarkers());
2718       return SizeForLifetimeMarkers;
2719     }
2720 
2721     /// Returns the raw, allocated address, which is not necessarily
2722     /// the address of the object itself. It is casted to default
2723     /// address space for address space agnostic languages.
2724     Address getAllocatedAddress() const {
2725       return Addr;
2726     }
2727 
2728     /// Returns the address for the original alloca instruction.
2729     Address getOriginalAllocatedAddress() const { return AllocaAddr; }
2730 
2731     /// Returns the address of the object within this declaration.
2732     /// Note that this does not chase the forwarding pointer for
2733     /// __block decls.
2734     Address getObjectAddress(CodeGenFunction &CGF) const {
2735       if (!IsEscapingByRef) return Addr;
2736 
2737       return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false);
2738     }
2739   };
2740   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
2741   void EmitAutoVarInit(const AutoVarEmission &emission);
2742   void EmitAutoVarCleanups(const AutoVarEmission &emission);
2743   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
2744                               QualType::DestructionKind dtorKind);
2745 
2746   /// Emits the alloca and debug information for the size expressions for each
2747   /// dimension of an array. It registers the association of its (1-dimensional)
2748   /// QualTypes and size expression's debug node, so that CGDebugInfo can
2749   /// reference this node when creating the DISubrange object to describe the
2750   /// array types.
2751   void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI,
2752                                               const VarDecl &D,
2753                                               bool EmitDebugInfo);
2754 
2755   void EmitStaticVarDecl(const VarDecl &D,
2756                          llvm::GlobalValue::LinkageTypes Linkage);
2757 
2758   class ParamValue {
2759     llvm::Value *Value;
2760     unsigned Alignment;
2761     ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {}
2762   public:
2763     static ParamValue forDirect(llvm::Value *value) {
2764       return ParamValue(value, 0);
2765     }
2766     static ParamValue forIndirect(Address addr) {
2767       assert(!addr.getAlignment().isZero());
2768       return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity());
2769     }
2770 
2771     bool isIndirect() const { return Alignment != 0; }
2772     llvm::Value *getAnyValue() const { return Value; }
2773 
2774     llvm::Value *getDirectValue() const {
2775       assert(!isIndirect());
2776       return Value;
2777     }
2778 
2779     Address getIndirectAddress() const {
2780       assert(isIndirect());
2781       return Address(Value, CharUnits::fromQuantity(Alignment));
2782     }
2783   };
2784 
2785   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
2786   void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo);
2787 
2788   /// protectFromPeepholes - Protect a value that we're intending to
2789   /// store to the side, but which will probably be used later, from
2790   /// aggressive peepholing optimizations that might delete it.
2791   ///
2792   /// Pass the result to unprotectFromPeepholes to declare that
2793   /// protection is no longer required.
2794   ///
2795   /// There's no particular reason why this shouldn't apply to
2796   /// l-values, it's just that no existing peepholes work on pointers.
2797   PeepholeProtection protectFromPeepholes(RValue rvalue);
2798   void unprotectFromPeepholes(PeepholeProtection protection);
2799 
2800   void EmitAlignmentAssumptionCheck(llvm::Value *Ptr, QualType Ty,
2801                                     SourceLocation Loc,
2802                                     SourceLocation AssumptionLoc,
2803                                     llvm::Value *Alignment,
2804                                     llvm::Value *OffsetValue,
2805                                     llvm::Value *TheCheck,
2806                                     llvm::Instruction *Assumption);
2807 
2808   void EmitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty,
2809                                SourceLocation Loc, SourceLocation AssumptionLoc,
2810                                llvm::Value *Alignment,
2811                                llvm::Value *OffsetValue = nullptr);
2812 
2813   void EmitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty,
2814                                SourceLocation Loc, SourceLocation AssumptionLoc,
2815                                unsigned Alignment,
2816                                llvm::Value *OffsetValue = nullptr);
2817 
2818   void EmitAlignmentAssumption(llvm::Value *PtrValue, const Expr *E,
2819                                SourceLocation AssumptionLoc, unsigned Alignment,
2820                                llvm::Value *OffsetValue = nullptr);
2821 
2822   //===--------------------------------------------------------------------===//
2823   //                             Statement Emission
2824   //===--------------------------------------------------------------------===//
2825 
2826   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
2827   void EmitStopPoint(const Stmt *S);
2828 
2829   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
2830   /// this function even if there is no current insertion point.
2831   ///
2832   /// This function may clear the current insertion point; callers should use
2833   /// EnsureInsertPoint if they wish to subsequently generate code without first
2834   /// calling EmitBlock, EmitBranch, or EmitStmt.
2835   void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None);
2836 
2837   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
2838   /// necessarily require an insertion point or debug information; typically
2839   /// because the statement amounts to a jump or a container of other
2840   /// statements.
2841   ///
2842   /// \return True if the statement was handled.
2843   bool EmitSimpleStmt(const Stmt *S);
2844 
2845   Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
2846                            AggValueSlot AVS = AggValueSlot::ignored());
2847   Address EmitCompoundStmtWithoutScope(const CompoundStmt &S,
2848                                        bool GetLast = false,
2849                                        AggValueSlot AVS =
2850                                                 AggValueSlot::ignored());
2851 
2852   /// EmitLabel - Emit the block for the given label. It is legal to call this
2853   /// function even if there is no current insertion point.
2854   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
2855 
2856   void EmitLabelStmt(const LabelStmt &S);
2857   void EmitAttributedStmt(const AttributedStmt &S);
2858   void EmitGotoStmt(const GotoStmt &S);
2859   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
2860   void EmitIfStmt(const IfStmt &S);
2861 
2862   void EmitWhileStmt(const WhileStmt &S,
2863                      ArrayRef<const Attr *> Attrs = None);
2864   void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None);
2865   void EmitForStmt(const ForStmt &S,
2866                    ArrayRef<const Attr *> Attrs = None);
2867   void EmitReturnStmt(const ReturnStmt &S);
2868   void EmitDeclStmt(const DeclStmt &S);
2869   void EmitBreakStmt(const BreakStmt &S);
2870   void EmitContinueStmt(const ContinueStmt &S);
2871   void EmitSwitchStmt(const SwitchStmt &S);
2872   void EmitDefaultStmt(const DefaultStmt &S);
2873   void EmitCaseStmt(const CaseStmt &S);
2874   void EmitCaseStmtRange(const CaseStmt &S);
2875   void EmitAsmStmt(const AsmStmt &S);
2876 
2877   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
2878   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
2879   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
2880   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
2881   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
2882 
2883   void EmitCoroutineBody(const CoroutineBodyStmt &S);
2884   void EmitCoreturnStmt(const CoreturnStmt &S);
2885   RValue EmitCoawaitExpr(const CoawaitExpr &E,
2886                          AggValueSlot aggSlot = AggValueSlot::ignored(),
2887                          bool ignoreResult = false);
2888   LValue EmitCoawaitLValue(const CoawaitExpr *E);
2889   RValue EmitCoyieldExpr(const CoyieldExpr &E,
2890                          AggValueSlot aggSlot = AggValueSlot::ignored(),
2891                          bool ignoreResult = false);
2892   LValue EmitCoyieldLValue(const CoyieldExpr *E);
2893   RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID);
2894 
2895   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2896   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2897 
2898   void EmitCXXTryStmt(const CXXTryStmt &S);
2899   void EmitSEHTryStmt(const SEHTryStmt &S);
2900   void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
2901   void EnterSEHTryStmt(const SEHTryStmt &S);
2902   void ExitSEHTryStmt(const SEHTryStmt &S);
2903 
2904   void pushSEHCleanup(CleanupKind kind,
2905                       llvm::Function *FinallyFunc);
2906   void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter,
2907                               const Stmt *OutlinedStmt);
2908 
2909   llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
2910                                             const SEHExceptStmt &Except);
2911 
2912   llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF,
2913                                              const SEHFinallyStmt &Finally);
2914 
2915   void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF,
2916                                 llvm::Value *ParentFP,
2917                                 llvm::Value *EntryEBP);
2918   llvm::Value *EmitSEHExceptionCode();
2919   llvm::Value *EmitSEHExceptionInfo();
2920   llvm::Value *EmitSEHAbnormalTermination();
2921 
2922   /// Emit simple code for OpenMP directives in Simd-only mode.
2923   void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D);
2924 
2925   /// Scan the outlined statement for captures from the parent function. For
2926   /// each capture, mark the capture as escaped and emit a call to
2927   /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap.
2928   void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
2929                           bool IsFilter);
2930 
2931   /// Recovers the address of a local in a parent function. ParentVar is the
2932   /// address of the variable used in the immediate parent function. It can
2933   /// either be an alloca or a call to llvm.localrecover if there are nested
2934   /// outlined functions. ParentFP is the frame pointer of the outermost parent
2935   /// frame.
2936   Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF,
2937                                     Address ParentVar,
2938                                     llvm::Value *ParentFP);
2939 
2940   void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
2941                            ArrayRef<const Attr *> Attrs = None);
2942 
2943   /// Controls insertion of cancellation exit blocks in worksharing constructs.
2944   class OMPCancelStackRAII {
2945     CodeGenFunction &CGF;
2946 
2947   public:
2948     OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
2949                        bool HasCancel)
2950         : CGF(CGF) {
2951       CGF.OMPCancelStack.enter(CGF, Kind, HasCancel);
2952     }
2953     ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); }
2954   };
2955 
2956   /// Returns calculated size of the specified type.
2957   llvm::Value *getTypeSize(QualType Ty);
2958   LValue InitCapturedStruct(const CapturedStmt &S);
2959   llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
2960   llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
2961   Address GenerateCapturedStmtArgument(const CapturedStmt &S);
2962   llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S);
2963   void GenerateOpenMPCapturedVars(const CapturedStmt &S,
2964                                   SmallVectorImpl<llvm::Value *> &CapturedVars);
2965   void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy,
2966                           SourceLocation Loc);
2967   /// Perform element by element copying of arrays with type \a
2968   /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
2969   /// generated by \a CopyGen.
2970   ///
2971   /// \param DestAddr Address of the destination array.
2972   /// \param SrcAddr Address of the source array.
2973   /// \param OriginalType Type of destination and source arrays.
2974   /// \param CopyGen Copying procedure that copies value of single array element
2975   /// to another single array element.
2976   void EmitOMPAggregateAssign(
2977       Address DestAddr, Address SrcAddr, QualType OriginalType,
2978       const llvm::function_ref<void(Address, Address)> CopyGen);
2979   /// Emit proper copying of data from one variable to another.
2980   ///
2981   /// \param OriginalType Original type of the copied variables.
2982   /// \param DestAddr Destination address.
2983   /// \param SrcAddr Source address.
2984   /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
2985   /// type of the base array element).
2986   /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
2987   /// the base array element).
2988   /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
2989   /// DestVD.
2990   void EmitOMPCopy(QualType OriginalType,
2991                    Address DestAddr, Address SrcAddr,
2992                    const VarDecl *DestVD, const VarDecl *SrcVD,
2993                    const Expr *Copy);
2994   /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or
2995   /// \a X = \a E \a BO \a E.
2996   ///
2997   /// \param X Value to be updated.
2998   /// \param E Update value.
2999   /// \param BO Binary operation for update operation.
3000   /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
3001   /// expression, false otherwise.
3002   /// \param AO Atomic ordering of the generated atomic instructions.
3003   /// \param CommonGen Code generator for complex expressions that cannot be
3004   /// expressed through atomicrmw instruction.
3005   /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was
3006   /// generated, <false, RValue::get(nullptr)> otherwise.
3007   std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr(
3008       LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
3009       llvm::AtomicOrdering AO, SourceLocation Loc,
3010       const llvm::function_ref<RValue(RValue)> CommonGen);
3011   bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
3012                                  OMPPrivateScope &PrivateScope);
3013   void EmitOMPPrivateClause(const OMPExecutableDirective &D,
3014                             OMPPrivateScope &PrivateScope);
3015   void EmitOMPUseDevicePtrClause(
3016       const OMPClause &C, OMPPrivateScope &PrivateScope,
3017       const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap);
3018   /// Emit code for copyin clause in \a D directive. The next code is
3019   /// generated at the start of outlined functions for directives:
3020   /// \code
3021   /// threadprivate_var1 = master_threadprivate_var1;
3022   /// operator=(threadprivate_var2, master_threadprivate_var2);
3023   /// ...
3024   /// __kmpc_barrier(&loc, global_tid);
3025   /// \endcode
3026   ///
3027   /// \param D OpenMP directive possibly with 'copyin' clause(s).
3028   /// \returns true if at least one copyin variable is found, false otherwise.
3029   bool EmitOMPCopyinClause(const OMPExecutableDirective &D);
3030   /// Emit initial code for lastprivate variables. If some variable is
3031   /// not also firstprivate, then the default initialization is used. Otherwise
3032   /// initialization of this variable is performed by EmitOMPFirstprivateClause
3033   /// method.
3034   ///
3035   /// \param D Directive that may have 'lastprivate' directives.
3036   /// \param PrivateScope Private scope for capturing lastprivate variables for
3037   /// proper codegen in internal captured statement.
3038   ///
3039   /// \returns true if there is at least one lastprivate variable, false
3040   /// otherwise.
3041   bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D,
3042                                     OMPPrivateScope &PrivateScope);
3043   /// Emit final copying of lastprivate values to original variables at
3044   /// the end of the worksharing or simd directive.
3045   ///
3046   /// \param D Directive that has at least one 'lastprivate' directives.
3047   /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
3048   /// it is the last iteration of the loop code in associated directive, or to
3049   /// 'i1 false' otherwise. If this item is nullptr, no final check is required.
3050   void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D,
3051                                      bool NoFinals,
3052                                      llvm::Value *IsLastIterCond = nullptr);
3053   /// Emit initial code for linear clauses.
3054   void EmitOMPLinearClause(const OMPLoopDirective &D,
3055                            CodeGenFunction::OMPPrivateScope &PrivateScope);
3056   /// Emit final code for linear clauses.
3057   /// \param CondGen Optional conditional code for final part of codegen for
3058   /// linear clause.
3059   void EmitOMPLinearClauseFinal(
3060       const OMPLoopDirective &D,
3061       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
3062   /// Emit initial code for reduction variables. Creates reduction copies
3063   /// and initializes them with the values according to OpenMP standard.
3064   ///
3065   /// \param D Directive (possibly) with the 'reduction' clause.
3066   /// \param PrivateScope Private scope for capturing reduction variables for
3067   /// proper codegen in internal captured statement.
3068   ///
3069   void EmitOMPReductionClauseInit(const OMPExecutableDirective &D,
3070                                   OMPPrivateScope &PrivateScope);
3071   /// Emit final update of reduction values to original variables at
3072   /// the end of the directive.
3073   ///
3074   /// \param D Directive that has at least one 'reduction' directives.
3075   /// \param ReductionKind The kind of reduction to perform.
3076   void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D,
3077                                    const OpenMPDirectiveKind ReductionKind);
3078   /// Emit initial code for linear variables. Creates private copies
3079   /// and initializes them with the values according to OpenMP standard.
3080   ///
3081   /// \param D Directive (possibly) with the 'linear' clause.
3082   /// \return true if at least one linear variable is found that should be
3083   /// initialized with the value of the original variable, false otherwise.
3084   bool EmitOMPLinearClauseInit(const OMPLoopDirective &D);
3085 
3086   typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/,
3087                                         llvm::Function * /*OutlinedFn*/,
3088                                         const OMPTaskDataTy & /*Data*/)>
3089       TaskGenTy;
3090   void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S,
3091                                  const OpenMPDirectiveKind CapturedRegion,
3092                                  const RegionCodeGenTy &BodyGen,
3093                                  const TaskGenTy &TaskGen, OMPTaskDataTy &Data);
3094   struct OMPTargetDataInfo {
3095     Address BasePointersArray = Address::invalid();
3096     Address PointersArray = Address::invalid();
3097     Address SizesArray = Address::invalid();
3098     unsigned NumberOfTargetItems = 0;
3099     explicit OMPTargetDataInfo() = default;
3100     OMPTargetDataInfo(Address BasePointersArray, Address PointersArray,
3101                       Address SizesArray, unsigned NumberOfTargetItems)
3102         : BasePointersArray(BasePointersArray), PointersArray(PointersArray),
3103           SizesArray(SizesArray), NumberOfTargetItems(NumberOfTargetItems) {}
3104   };
3105   void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S,
3106                                        const RegionCodeGenTy &BodyGen,
3107                                        OMPTargetDataInfo &InputInfo);
3108 
3109   void EmitOMPParallelDirective(const OMPParallelDirective &S);
3110   void EmitOMPSimdDirective(const OMPSimdDirective &S);
3111   void EmitOMPForDirective(const OMPForDirective &S);
3112   void EmitOMPForSimdDirective(const OMPForSimdDirective &S);
3113   void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
3114   void EmitOMPSectionDirective(const OMPSectionDirective &S);
3115   void EmitOMPSingleDirective(const OMPSingleDirective &S);
3116   void EmitOMPMasterDirective(const OMPMasterDirective &S);
3117   void EmitOMPCriticalDirective(const OMPCriticalDirective &S);
3118   void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
3119   void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S);
3120   void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
3121   void EmitOMPTaskDirective(const OMPTaskDirective &S);
3122   void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
3123   void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
3124   void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
3125   void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S);
3126   void EmitOMPFlushDirective(const OMPFlushDirective &S);
3127   void EmitOMPOrderedDirective(const OMPOrderedDirective &S);
3128   void EmitOMPAtomicDirective(const OMPAtomicDirective &S);
3129   void EmitOMPTargetDirective(const OMPTargetDirective &S);
3130   void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S);
3131   void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S);
3132   void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S);
3133   void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S);
3134   void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S);
3135   void
3136   EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S);
3137   void EmitOMPTeamsDirective(const OMPTeamsDirective &S);
3138   void
3139   EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S);
3140   void EmitOMPCancelDirective(const OMPCancelDirective &S);
3141   void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S);
3142   void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S);
3143   void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S);
3144   void EmitOMPDistributeDirective(const OMPDistributeDirective &S);
3145   void EmitOMPDistributeParallelForDirective(
3146       const OMPDistributeParallelForDirective &S);
3147   void EmitOMPDistributeParallelForSimdDirective(
3148       const OMPDistributeParallelForSimdDirective &S);
3149   void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S);
3150   void EmitOMPTargetParallelForSimdDirective(
3151       const OMPTargetParallelForSimdDirective &S);
3152   void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S);
3153   void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S);
3154   void
3155   EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S);
3156   void EmitOMPTeamsDistributeParallelForSimdDirective(
3157       const OMPTeamsDistributeParallelForSimdDirective &S);
3158   void EmitOMPTeamsDistributeParallelForDirective(
3159       const OMPTeamsDistributeParallelForDirective &S);
3160   void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S);
3161   void EmitOMPTargetTeamsDistributeDirective(
3162       const OMPTargetTeamsDistributeDirective &S);
3163   void EmitOMPTargetTeamsDistributeParallelForDirective(
3164       const OMPTargetTeamsDistributeParallelForDirective &S);
3165   void EmitOMPTargetTeamsDistributeParallelForSimdDirective(
3166       const OMPTargetTeamsDistributeParallelForSimdDirective &S);
3167   void EmitOMPTargetTeamsDistributeSimdDirective(
3168       const OMPTargetTeamsDistributeSimdDirective &S);
3169 
3170   /// Emit device code for the target directive.
3171   static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM,
3172                                           StringRef ParentName,
3173                                           const OMPTargetDirective &S);
3174   static void
3175   EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3176                                       const OMPTargetParallelDirective &S);
3177   /// Emit device code for the target parallel for directive.
3178   static void EmitOMPTargetParallelForDeviceFunction(
3179       CodeGenModule &CGM, StringRef ParentName,
3180       const OMPTargetParallelForDirective &S);
3181   /// Emit device code for the target parallel for simd directive.
3182   static void EmitOMPTargetParallelForSimdDeviceFunction(
3183       CodeGenModule &CGM, StringRef ParentName,
3184       const OMPTargetParallelForSimdDirective &S);
3185   /// Emit device code for the target teams directive.
3186   static void
3187   EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3188                                    const OMPTargetTeamsDirective &S);
3189   /// Emit device code for the target teams distribute directive.
3190   static void EmitOMPTargetTeamsDistributeDeviceFunction(
3191       CodeGenModule &CGM, StringRef ParentName,
3192       const OMPTargetTeamsDistributeDirective &S);
3193   /// Emit device code for the target teams distribute simd directive.
3194   static void EmitOMPTargetTeamsDistributeSimdDeviceFunction(
3195       CodeGenModule &CGM, StringRef ParentName,
3196       const OMPTargetTeamsDistributeSimdDirective &S);
3197   /// Emit device code for the target simd directive.
3198   static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM,
3199                                               StringRef ParentName,
3200                                               const OMPTargetSimdDirective &S);
3201   /// Emit device code for the target teams distribute parallel for simd
3202   /// directive.
3203   static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction(
3204       CodeGenModule &CGM, StringRef ParentName,
3205       const OMPTargetTeamsDistributeParallelForSimdDirective &S);
3206 
3207   static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction(
3208       CodeGenModule &CGM, StringRef ParentName,
3209       const OMPTargetTeamsDistributeParallelForDirective &S);
3210   /// Emit inner loop of the worksharing/simd construct.
3211   ///
3212   /// \param S Directive, for which the inner loop must be emitted.
3213   /// \param RequiresCleanup true, if directive has some associated private
3214   /// variables.
3215   /// \param LoopCond Bollean condition for loop continuation.
3216   /// \param IncExpr Increment expression for loop control variable.
3217   /// \param BodyGen Generator for the inner body of the inner loop.
3218   /// \param PostIncGen Genrator for post-increment code (required for ordered
3219   /// loop directvies).
3220   void EmitOMPInnerLoop(
3221       const Stmt &S, bool RequiresCleanup, const Expr *LoopCond,
3222       const Expr *IncExpr,
3223       const llvm::function_ref<void(CodeGenFunction &)> BodyGen,
3224       const llvm::function_ref<void(CodeGenFunction &)> PostIncGen);
3225 
3226   JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind);
3227   /// Emit initial code for loop counters of loop-based directives.
3228   void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S,
3229                                   OMPPrivateScope &LoopScope);
3230 
3231   /// Helper for the OpenMP loop directives.
3232   void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit);
3233 
3234   /// Emit code for the worksharing loop-based directive.
3235   /// \return true, if this construct has any lastprivate clause, false -
3236   /// otherwise.
3237   bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB,
3238                               const CodeGenLoopBoundsTy &CodeGenLoopBounds,
3239                               const CodeGenDispatchBoundsTy &CGDispatchBounds);
3240 
3241   /// Emit code for the distribute loop-based directive.
3242   void EmitOMPDistributeLoop(const OMPLoopDirective &S,
3243                              const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr);
3244 
3245   /// Helpers for the OpenMP loop directives.
3246   void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false);
3247   void EmitOMPSimdFinal(
3248       const OMPLoopDirective &D,
3249       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
3250 
3251   /// Emits the lvalue for the expression with possibly captured variable.
3252   LValue EmitOMPSharedLValue(const Expr *E);
3253 
3254 private:
3255   /// Helpers for blocks.
3256   llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
3257 
3258   /// struct with the values to be passed to the OpenMP loop-related functions
3259   struct OMPLoopArguments {
3260     /// loop lower bound
3261     Address LB = Address::invalid();
3262     /// loop upper bound
3263     Address UB = Address::invalid();
3264     /// loop stride
3265     Address ST = Address::invalid();
3266     /// isLastIteration argument for runtime functions
3267     Address IL = Address::invalid();
3268     /// Chunk value generated by sema
3269     llvm::Value *Chunk = nullptr;
3270     /// EnsureUpperBound
3271     Expr *EUB = nullptr;
3272     /// IncrementExpression
3273     Expr *IncExpr = nullptr;
3274     /// Loop initialization
3275     Expr *Init = nullptr;
3276     /// Loop exit condition
3277     Expr *Cond = nullptr;
3278     /// Update of LB after a whole chunk has been executed
3279     Expr *NextLB = nullptr;
3280     /// Update of UB after a whole chunk has been executed
3281     Expr *NextUB = nullptr;
3282     OMPLoopArguments() = default;
3283     OMPLoopArguments(Address LB, Address UB, Address ST, Address IL,
3284                      llvm::Value *Chunk = nullptr, Expr *EUB = nullptr,
3285                      Expr *IncExpr = nullptr, Expr *Init = nullptr,
3286                      Expr *Cond = nullptr, Expr *NextLB = nullptr,
3287                      Expr *NextUB = nullptr)
3288         : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB),
3289           IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB),
3290           NextUB(NextUB) {}
3291   };
3292   void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic,
3293                         const OMPLoopDirective &S, OMPPrivateScope &LoopScope,
3294                         const OMPLoopArguments &LoopArgs,
3295                         const CodeGenLoopTy &CodeGenLoop,
3296                         const CodeGenOrderedTy &CodeGenOrdered);
3297   void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind,
3298                            bool IsMonotonic, const OMPLoopDirective &S,
3299                            OMPPrivateScope &LoopScope, bool Ordered,
3300                            const OMPLoopArguments &LoopArgs,
3301                            const CodeGenDispatchBoundsTy &CGDispatchBounds);
3302   void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind,
3303                                   const OMPLoopDirective &S,
3304                                   OMPPrivateScope &LoopScope,
3305                                   const OMPLoopArguments &LoopArgs,
3306                                   const CodeGenLoopTy &CodeGenLoopContent);
3307   /// Emit code for sections directive.
3308   void EmitSections(const OMPExecutableDirective &S);
3309 
3310 public:
3311 
3312   //===--------------------------------------------------------------------===//
3313   //                         LValue Expression Emission
3314   //===--------------------------------------------------------------------===//
3315 
3316   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
3317   RValue GetUndefRValue(QualType Ty);
3318 
3319   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
3320   /// and issue an ErrorUnsupported style diagnostic (using the
3321   /// provided Name).
3322   RValue EmitUnsupportedRValue(const Expr *E,
3323                                const char *Name);
3324 
3325   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
3326   /// an ErrorUnsupported style diagnostic (using the provided Name).
3327   LValue EmitUnsupportedLValue(const Expr *E,
3328                                const char *Name);
3329 
3330   /// EmitLValue - Emit code to compute a designator that specifies the location
3331   /// of the expression.
3332   ///
3333   /// This can return one of two things: a simple address or a bitfield
3334   /// reference.  In either case, the LLVM Value* in the LValue structure is
3335   /// guaranteed to be an LLVM pointer type.
3336   ///
3337   /// If this returns a bitfield reference, nothing about the pointee type of
3338   /// the LLVM value is known: For example, it may not be a pointer to an
3339   /// integer.
3340   ///
3341   /// If this returns a normal address, and if the lvalue's C type is fixed
3342   /// size, this method guarantees that the returned pointer type will point to
3343   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
3344   /// variable length type, this is not possible.
3345   ///
3346   LValue EmitLValue(const Expr *E);
3347 
3348   /// Same as EmitLValue but additionally we generate checking code to
3349   /// guard against undefined behavior.  This is only suitable when we know
3350   /// that the address will be used to access the object.
3351   LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
3352 
3353   RValue convertTempToRValue(Address addr, QualType type,
3354                              SourceLocation Loc);
3355 
3356   void EmitAtomicInit(Expr *E, LValue lvalue);
3357 
3358   bool LValueIsSuitableForInlineAtomic(LValue Src);
3359 
3360   RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
3361                         AggValueSlot Slot = AggValueSlot::ignored());
3362 
3363   RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
3364                         llvm::AtomicOrdering AO, bool IsVolatile = false,
3365                         AggValueSlot slot = AggValueSlot::ignored());
3366 
3367   void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
3368 
3369   void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
3370                        bool IsVolatile, bool isInit);
3371 
3372   std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
3373       LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
3374       llvm::AtomicOrdering Success =
3375           llvm::AtomicOrdering::SequentiallyConsistent,
3376       llvm::AtomicOrdering Failure =
3377           llvm::AtomicOrdering::SequentiallyConsistent,
3378       bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
3379 
3380   void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
3381                         const llvm::function_ref<RValue(RValue)> &UpdateOp,
3382                         bool IsVolatile);
3383 
3384   /// EmitToMemory - Change a scalar value from its value
3385   /// representation to its in-memory representation.
3386   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
3387 
3388   /// EmitFromMemory - Change a scalar value from its memory
3389   /// representation to its value representation.
3390   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
3391 
3392   /// Check if the scalar \p Value is within the valid range for the given
3393   /// type \p Ty.
3394   ///
3395   /// Returns true if a check is needed (even if the range is unknown).
3396   bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
3397                             SourceLocation Loc);
3398 
3399   /// EmitLoadOfScalar - Load a scalar value from an address, taking
3400   /// care to appropriately convert from the memory representation to
3401   /// the LLVM value representation.
3402   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3403                                 SourceLocation Loc,
3404                                 AlignmentSource Source = AlignmentSource::Type,
3405                                 bool isNontemporal = false) {
3406     return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source),
3407                             CGM.getTBAAAccessInfo(Ty), isNontemporal);
3408   }
3409 
3410   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3411                                 SourceLocation Loc, LValueBaseInfo BaseInfo,
3412                                 TBAAAccessInfo TBAAInfo,
3413                                 bool isNontemporal = false);
3414 
3415   /// EmitLoadOfScalar - Load a scalar value from an address, taking
3416   /// care to appropriately convert from the memory representation to
3417   /// the LLVM value representation.  The l-value must be a simple
3418   /// l-value.
3419   llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
3420 
3421   /// EmitStoreOfScalar - Store a scalar value to an address, taking
3422   /// care to appropriately convert from the memory representation to
3423   /// the LLVM value representation.
3424   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3425                          bool Volatile, QualType Ty,
3426                          AlignmentSource Source = AlignmentSource::Type,
3427                          bool isInit = false, bool isNontemporal = false) {
3428     EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source),
3429                       CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal);
3430   }
3431 
3432   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3433                          bool Volatile, QualType Ty,
3434                          LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo,
3435                          bool isInit = false, bool isNontemporal = false);
3436 
3437   /// EmitStoreOfScalar - Store a scalar value to an address, taking
3438   /// care to appropriately convert from the memory representation to
3439   /// the LLVM value representation.  The l-value must be a simple
3440   /// l-value.  The isInit flag indicates whether this is an initialization.
3441   /// If so, atomic qualifiers are ignored and the store is always non-atomic.
3442   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
3443 
3444   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
3445   /// this method emits the address of the lvalue, then loads the result as an
3446   /// rvalue, returning the rvalue.
3447   RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
3448   RValue EmitLoadOfExtVectorElementLValue(LValue V);
3449   RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc);
3450   RValue EmitLoadOfGlobalRegLValue(LValue LV);
3451 
3452   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
3453   /// lvalue, where both are guaranteed to the have the same type, and that type
3454   /// is 'Ty'.
3455   void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
3456   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
3457   void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
3458 
3459   /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
3460   /// as EmitStoreThroughLValue.
3461   ///
3462   /// \param Result [out] - If non-null, this will be set to a Value* for the
3463   /// bit-field contents after the store, appropriate for use as the result of
3464   /// an assignment to the bit-field.
3465   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
3466                                       llvm::Value **Result=nullptr);
3467 
3468   /// Emit an l-value for an assignment (simple or compound) of complex type.
3469   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
3470   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
3471   LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
3472                                              llvm::Value *&Result);
3473 
3474   // Note: only available for agg return types
3475   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
3476   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
3477   // Note: only available for agg return types
3478   LValue EmitCallExprLValue(const CallExpr *E);
3479   // Note: only available for agg return types
3480   LValue EmitVAArgExprLValue(const VAArgExpr *E);
3481   LValue EmitDeclRefLValue(const DeclRefExpr *E);
3482   LValue EmitStringLiteralLValue(const StringLiteral *E);
3483   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
3484   LValue EmitPredefinedLValue(const PredefinedExpr *E);
3485   LValue EmitUnaryOpLValue(const UnaryOperator *E);
3486   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3487                                 bool Accessed = false);
3488   LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3489                                  bool IsLowerBound = true);
3490   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
3491   LValue EmitMemberExpr(const MemberExpr *E);
3492   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
3493   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
3494   LValue EmitInitListLValue(const InitListExpr *E);
3495   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
3496   LValue EmitCastLValue(const CastExpr *E);
3497   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
3498   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
3499 
3500   Address EmitExtVectorElementLValue(LValue V);
3501 
3502   RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
3503 
3504   Address EmitArrayToPointerDecay(const Expr *Array,
3505                                   LValueBaseInfo *BaseInfo = nullptr,
3506                                   TBAAAccessInfo *TBAAInfo = nullptr);
3507 
3508   class ConstantEmission {
3509     llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
3510     ConstantEmission(llvm::Constant *C, bool isReference)
3511       : ValueAndIsReference(C, isReference) {}
3512   public:
3513     ConstantEmission() {}
3514     static ConstantEmission forReference(llvm::Constant *C) {
3515       return ConstantEmission(C, true);
3516     }
3517     static ConstantEmission forValue(llvm::Constant *C) {
3518       return ConstantEmission(C, false);
3519     }
3520 
3521     explicit operator bool() const {
3522       return ValueAndIsReference.getOpaqueValue() != nullptr;
3523     }
3524 
3525     bool isReference() const { return ValueAndIsReference.getInt(); }
3526     LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
3527       assert(isReference());
3528       return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
3529                                             refExpr->getType());
3530     }
3531 
3532     llvm::Constant *getValue() const {
3533       assert(!isReference());
3534       return ValueAndIsReference.getPointer();
3535     }
3536   };
3537 
3538   ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
3539   ConstantEmission tryEmitAsConstant(const MemberExpr *ME);
3540   llvm::Value *emitScalarConstant(const ConstantEmission &Constant, Expr *E);
3541 
3542   RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
3543                                 AggValueSlot slot = AggValueSlot::ignored());
3544   LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
3545 
3546   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3547                               const ObjCIvarDecl *Ivar);
3548   LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
3549   LValue EmitLValueForLambdaField(const FieldDecl *Field);
3550 
3551   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
3552   /// if the Field is a reference, this will return the address of the reference
3553   /// and not the address of the value stored in the reference.
3554   LValue EmitLValueForFieldInitialization(LValue Base,
3555                                           const FieldDecl* Field);
3556 
3557   LValue EmitLValueForIvar(QualType ObjectTy,
3558                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
3559                            unsigned CVRQualifiers);
3560 
3561   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
3562   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
3563   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
3564   LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
3565 
3566   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
3567   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
3568   LValue EmitStmtExprLValue(const StmtExpr *E);
3569   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
3570   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
3571   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init);
3572 
3573   //===--------------------------------------------------------------------===//
3574   //                         Scalar Expression Emission
3575   //===--------------------------------------------------------------------===//
3576 
3577   /// EmitCall - Generate a call of the given function, expecting the given
3578   /// result type, and using the given argument list which specifies both the
3579   /// LLVM arguments and the types they were derived from.
3580   RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
3581                   ReturnValueSlot ReturnValue, const CallArgList &Args,
3582                   llvm::CallBase **callOrInvoke, SourceLocation Loc);
3583   RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
3584                   ReturnValueSlot ReturnValue, const CallArgList &Args,
3585                   llvm::CallBase **callOrInvoke = nullptr) {
3586     return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke,
3587                     SourceLocation());
3588   }
3589   RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E,
3590                   ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr);
3591   RValue EmitCallExpr(const CallExpr *E,
3592                       ReturnValueSlot ReturnValue = ReturnValueSlot());
3593   RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
3594   CGCallee EmitCallee(const Expr *E);
3595 
3596   void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl);
3597 
3598   llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee,
3599                                   const Twine &name = "");
3600   llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee,
3601                                   ArrayRef<llvm::Value *> args,
3602                                   const Twine &name = "");
3603   llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
3604                                           const Twine &name = "");
3605   llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
3606                                           ArrayRef<llvm::Value *> args,
3607                                           const Twine &name = "");
3608 
3609   SmallVector<llvm::OperandBundleDef, 1>
3610   getBundlesForFunclet(llvm::Value *Callee);
3611 
3612   llvm::CallBase *EmitCallOrInvoke(llvm::FunctionCallee Callee,
3613                                    ArrayRef<llvm::Value *> Args,
3614                                    const Twine &Name = "");
3615   llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
3616                                           ArrayRef<llvm::Value *> args,
3617                                           const Twine &name = "");
3618   llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
3619                                           const Twine &name = "");
3620   void EmitNoreturnRuntimeCallOrInvoke(llvm::FunctionCallee callee,
3621                                        ArrayRef<llvm::Value *> args);
3622 
3623   CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
3624                                      NestedNameSpecifier *Qual,
3625                                      llvm::Type *Ty);
3626 
3627   CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
3628                                                CXXDtorType Type,
3629                                                const CXXRecordDecl *RD);
3630 
3631   // Return the copy constructor name with the prefix "__copy_constructor_"
3632   // removed.
3633   static std::string getNonTrivialCopyConstructorStr(QualType QT,
3634                                                      CharUnits Alignment,
3635                                                      bool IsVolatile,
3636                                                      ASTContext &Ctx);
3637 
3638   // Return the destructor name with the prefix "__destructor_" removed.
3639   static std::string getNonTrivialDestructorStr(QualType QT,
3640                                                 CharUnits Alignment,
3641                                                 bool IsVolatile,
3642                                                 ASTContext &Ctx);
3643 
3644   // These functions emit calls to the special functions of non-trivial C
3645   // structs.
3646   void defaultInitNonTrivialCStructVar(LValue Dst);
3647   void callCStructDefaultConstructor(LValue Dst);
3648   void callCStructDestructor(LValue Dst);
3649   void callCStructCopyConstructor(LValue Dst, LValue Src);
3650   void callCStructMoveConstructor(LValue Dst, LValue Src);
3651   void callCStructCopyAssignmentOperator(LValue Dst, LValue Src);
3652   void callCStructMoveAssignmentOperator(LValue Dst, LValue Src);
3653 
3654   RValue
3655   EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method,
3656                               const CGCallee &Callee,
3657                               ReturnValueSlot ReturnValue, llvm::Value *This,
3658                               llvm::Value *ImplicitParam,
3659                               QualType ImplicitParamTy, const CallExpr *E,
3660                               CallArgList *RtlArgs);
3661   RValue EmitCXXDestructorCall(GlobalDecl Dtor,
3662                                const CGCallee &Callee,
3663                                llvm::Value *This, llvm::Value *ImplicitParam,
3664                                QualType ImplicitParamTy, const CallExpr *E);
3665   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
3666                                ReturnValueSlot ReturnValue);
3667   RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE,
3668                                                const CXXMethodDecl *MD,
3669                                                ReturnValueSlot ReturnValue,
3670                                                bool HasQualifier,
3671                                                NestedNameSpecifier *Qualifier,
3672                                                bool IsArrow, const Expr *Base);
3673   // Compute the object pointer.
3674   Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
3675                                           llvm::Value *memberPtr,
3676                                           const MemberPointerType *memberPtrType,
3677                                           LValueBaseInfo *BaseInfo = nullptr,
3678                                           TBAAAccessInfo *TBAAInfo = nullptr);
3679   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
3680                                       ReturnValueSlot ReturnValue);
3681 
3682   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
3683                                        const CXXMethodDecl *MD,
3684                                        ReturnValueSlot ReturnValue);
3685   RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E);
3686 
3687   RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
3688                                 ReturnValueSlot ReturnValue);
3689 
3690   RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E,
3691                                        ReturnValueSlot ReturnValue);
3692 
3693   RValue EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID,
3694                          const CallExpr *E, ReturnValueSlot ReturnValue);
3695 
3696   RValue emitRotate(const CallExpr *E, bool IsRotateRight);
3697 
3698   /// Emit IR for __builtin_os_log_format.
3699   RValue emitBuiltinOSLogFormat(const CallExpr &E);
3700 
3701   llvm::Function *generateBuiltinOSLogHelperFunction(
3702       const analyze_os_log::OSLogBufferLayout &Layout,
3703       CharUnits BufferAlignment);
3704 
3705   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
3706 
3707   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
3708   /// is unhandled by the current target.
3709   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3710 
3711   llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
3712                                              const llvm::CmpInst::Predicate Fp,
3713                                              const llvm::CmpInst::Predicate Ip,
3714                                              const llvm::Twine &Name = "");
3715   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
3716                                   llvm::Triple::ArchType Arch);
3717 
3718   llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
3719                                          unsigned LLVMIntrinsic,
3720                                          unsigned AltLLVMIntrinsic,
3721                                          const char *NameHint,
3722                                          unsigned Modifier,
3723                                          const CallExpr *E,
3724                                          SmallVectorImpl<llvm::Value *> &Ops,
3725                                          Address PtrOp0, Address PtrOp1,
3726                                          llvm::Triple::ArchType Arch);
3727 
3728   llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
3729                                           unsigned Modifier, llvm::Type *ArgTy,
3730                                           const CallExpr *E);
3731   llvm::Value *EmitNeonCall(llvm::Function *F,
3732                             SmallVectorImpl<llvm::Value*> &O,
3733                             const char *name,
3734                             unsigned shift = 0, bool rightshift = false);
3735   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
3736   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
3737                                    bool negateForRightShift);
3738   llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
3739                                  llvm::Type *Ty, bool usgn, const char *name);
3740   llvm::Value *vectorWrapScalar16(llvm::Value *Op);
3741   llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E,
3742                                       llvm::Triple::ArchType Arch);
3743 
3744   llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
3745   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3746   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3747   llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3748   llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3749   llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3750   llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
3751                                           const CallExpr *E);
3752   llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3753 
3754 private:
3755   enum class MSVCIntrin;
3756 
3757 public:
3758   llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E);
3759 
3760   llvm::Value *EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args);
3761 
3762   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
3763   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
3764   llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
3765   llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
3766   llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
3767   llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
3768                                 const ObjCMethodDecl *MethodWithObjects);
3769   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
3770   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
3771                              ReturnValueSlot Return = ReturnValueSlot());
3772 
3773   /// Retrieves the default cleanup kind for an ARC cleanup.
3774   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
3775   CleanupKind getARCCleanupKind() {
3776     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
3777              ? NormalAndEHCleanup : NormalCleanup;
3778   }
3779 
3780   // ARC primitives.
3781   void EmitARCInitWeak(Address addr, llvm::Value *value);
3782   void EmitARCDestroyWeak(Address addr);
3783   llvm::Value *EmitARCLoadWeak(Address addr);
3784   llvm::Value *EmitARCLoadWeakRetained(Address addr);
3785   llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored);
3786   void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
3787   void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
3788   void EmitARCCopyWeak(Address dst, Address src);
3789   void EmitARCMoveWeak(Address dst, Address src);
3790   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
3791   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
3792   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
3793                                   bool resultIgnored);
3794   llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value,
3795                                       bool resultIgnored);
3796   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
3797   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
3798   llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
3799   void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise);
3800   void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
3801   llvm::Value *EmitARCAutorelease(llvm::Value *value);
3802   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
3803   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
3804   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
3805   llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value);
3806 
3807   llvm::Value *EmitObjCAutorelease(llvm::Value *value, llvm::Type *returnType);
3808   llvm::Value *EmitObjCRetainNonBlock(llvm::Value *value,
3809                                       llvm::Type *returnType);
3810   void EmitObjCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
3811 
3812   std::pair<LValue,llvm::Value*>
3813   EmitARCStoreAutoreleasing(const BinaryOperator *e);
3814   std::pair<LValue,llvm::Value*>
3815   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
3816   std::pair<LValue,llvm::Value*>
3817   EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored);
3818 
3819   llvm::Value *EmitObjCAlloc(llvm::Value *value,
3820                              llvm::Type *returnType);
3821   llvm::Value *EmitObjCAllocWithZone(llvm::Value *value,
3822                                      llvm::Type *returnType);
3823   llvm::Value *EmitObjCAllocInit(llvm::Value *value, llvm::Type *resultType);
3824 
3825   llvm::Value *EmitObjCThrowOperand(const Expr *expr);
3826   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
3827   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
3828 
3829   llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
3830   llvm::Value *EmitARCReclaimReturnedObject(const Expr *e,
3831                                             bool allowUnsafeClaim);
3832   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
3833   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
3834   llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr);
3835 
3836   void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
3837 
3838   static Destroyer destroyARCStrongImprecise;
3839   static Destroyer destroyARCStrongPrecise;
3840   static Destroyer destroyARCWeak;
3841   static Destroyer emitARCIntrinsicUse;
3842   static Destroyer destroyNonTrivialCStruct;
3843 
3844   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
3845   llvm::Value *EmitObjCAutoreleasePoolPush();
3846   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
3847   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
3848   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
3849 
3850   /// Emits a reference binding to the passed in expression.
3851   RValue EmitReferenceBindingToExpr(const Expr *E);
3852 
3853   //===--------------------------------------------------------------------===//
3854   //                           Expression Emission
3855   //===--------------------------------------------------------------------===//
3856 
3857   // Expressions are broken into three classes: scalar, complex, aggregate.
3858 
3859   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
3860   /// scalar type, returning the result.
3861   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
3862 
3863   /// Emit a conversion from the specified type to the specified destination
3864   /// type, both of which are LLVM scalar types.
3865   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
3866                                     QualType DstTy, SourceLocation Loc);
3867 
3868   /// Emit a conversion from the specified complex type to the specified
3869   /// destination type, where the destination type is an LLVM scalar type.
3870   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
3871                                              QualType DstTy,
3872                                              SourceLocation Loc);
3873 
3874   /// EmitAggExpr - Emit the computation of the specified expression
3875   /// of aggregate type.  The result is computed into the given slot,
3876   /// which may be null to indicate that the value is not needed.
3877   void EmitAggExpr(const Expr *E, AggValueSlot AS);
3878 
3879   /// EmitAggExprToLValue - Emit the computation of the specified expression of
3880   /// aggregate type into a temporary LValue.
3881   LValue EmitAggExprToLValue(const Expr *E);
3882 
3883   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
3884   /// make sure it survives garbage collection until this point.
3885   void EmitExtendGCLifetime(llvm::Value *object);
3886 
3887   /// EmitComplexExpr - Emit the computation of the specified expression of
3888   /// complex type, returning the result.
3889   ComplexPairTy EmitComplexExpr(const Expr *E,
3890                                 bool IgnoreReal = false,
3891                                 bool IgnoreImag = false);
3892 
3893   /// EmitComplexExprIntoLValue - Emit the given expression of complex
3894   /// type and place its result into the specified l-value.
3895   void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
3896 
3897   /// EmitStoreOfComplex - Store a complex number into the specified l-value.
3898   void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
3899 
3900   /// EmitLoadOfComplex - Load a complex number from the specified l-value.
3901   ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
3902 
3903   Address emitAddrOfRealComponent(Address complex, QualType complexType);
3904   Address emitAddrOfImagComponent(Address complex, QualType complexType);
3905 
3906   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
3907   /// global variable that has already been created for it.  If the initializer
3908   /// has a different type than GV does, this may free GV and return a different
3909   /// one.  Otherwise it just returns GV.
3910   llvm::GlobalVariable *
3911   AddInitializerToStaticVarDecl(const VarDecl &D,
3912                                 llvm::GlobalVariable *GV);
3913 
3914   // Emit an @llvm.invariant.start call for the given memory region.
3915   void EmitInvariantStart(llvm::Constant *Addr, CharUnits Size);
3916 
3917   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
3918   /// variable with global storage.
3919   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
3920                                 bool PerformInit);
3921 
3922   llvm::Function *createAtExitStub(const VarDecl &VD, llvm::FunctionCallee Dtor,
3923                                    llvm::Constant *Addr);
3924 
3925   /// Call atexit() with a function that passes the given argument to
3926   /// the given function.
3927   void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::FunctionCallee fn,
3928                                     llvm::Constant *addr);
3929 
3930   /// Call atexit() with function dtorStub.
3931   void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub);
3932 
3933   /// Emit code in this function to perform a guarded variable
3934   /// initialization.  Guarded initializations are used when it's not
3935   /// possible to prove that an initialization will be done exactly
3936   /// once, e.g. with a static local variable or a static data member
3937   /// of a class template.
3938   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
3939                           bool PerformInit);
3940 
3941   enum class GuardKind { VariableGuard, TlsGuard };
3942 
3943   /// Emit a branch to select whether or not to perform guarded initialization.
3944   void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit,
3945                                 llvm::BasicBlock *InitBlock,
3946                                 llvm::BasicBlock *NoInitBlock,
3947                                 GuardKind Kind, const VarDecl *D);
3948 
3949   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
3950   /// variables.
3951   void
3952   GenerateCXXGlobalInitFunc(llvm::Function *Fn,
3953                             ArrayRef<llvm::Function *> CXXThreadLocals,
3954                             ConstantAddress Guard = ConstantAddress::invalid());
3955 
3956   /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
3957   /// variables.
3958   void GenerateCXXGlobalDtorsFunc(
3959       llvm::Function *Fn,
3960       const std::vector<std::tuple<llvm::FunctionType *, llvm::WeakTrackingVH,
3961                                    llvm::Constant *>> &DtorsAndObjects);
3962 
3963   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
3964                                         const VarDecl *D,
3965                                         llvm::GlobalVariable *Addr,
3966                                         bool PerformInit);
3967 
3968   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
3969 
3970   void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp);
3971 
3972   void enterFullExpression(const FullExpr *E) {
3973     if (const auto *EWC = dyn_cast<ExprWithCleanups>(E))
3974       if (EWC->getNumObjects() == 0)
3975         return;
3976     enterNonTrivialFullExpression(E);
3977   }
3978   void enterNonTrivialFullExpression(const FullExpr *E);
3979 
3980   void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
3981 
3982   RValue EmitAtomicExpr(AtomicExpr *E);
3983 
3984   //===--------------------------------------------------------------------===//
3985   //                         Annotations Emission
3986   //===--------------------------------------------------------------------===//
3987 
3988   /// Emit an annotation call (intrinsic).
3989   llvm::Value *EmitAnnotationCall(llvm::Function *AnnotationFn,
3990                                   llvm::Value *AnnotatedVal,
3991                                   StringRef AnnotationStr,
3992                                   SourceLocation Location);
3993 
3994   /// Emit local annotations for the local variable V, declared by D.
3995   void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
3996 
3997   /// Emit field annotations for the given field & value. Returns the
3998   /// annotation result.
3999   Address EmitFieldAnnotations(const FieldDecl *D, Address V);
4000 
4001   //===--------------------------------------------------------------------===//
4002   //                             Internal Helpers
4003   //===--------------------------------------------------------------------===//
4004 
4005   /// ContainsLabel - Return true if the statement contains a label in it.  If
4006   /// this statement is not executed normally, it not containing a label means
4007   /// that we can just remove the code.
4008   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
4009 
4010   /// containsBreak - Return true if the statement contains a break out of it.
4011   /// If the statement (recursively) contains a switch or loop with a break
4012   /// inside of it, this is fine.
4013   static bool containsBreak(const Stmt *S);
4014 
4015   /// Determine if the given statement might introduce a declaration into the
4016   /// current scope, by being a (possibly-labelled) DeclStmt.
4017   static bool mightAddDeclToScope(const Stmt *S);
4018 
4019   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
4020   /// to a constant, or if it does but contains a label, return false.  If it
4021   /// constant folds return true and set the boolean result in Result.
4022   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result,
4023                                     bool AllowLabels = false);
4024 
4025   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
4026   /// to a constant, or if it does but contains a label, return false.  If it
4027   /// constant folds return true and set the folded value.
4028   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result,
4029                                     bool AllowLabels = false);
4030 
4031   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
4032   /// if statement) to the specified blocks.  Based on the condition, this might
4033   /// try to simplify the codegen of the conditional based on the branch.
4034   /// TrueCount should be the number of times we expect the condition to
4035   /// evaluate to true based on PGO data.
4036   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
4037                             llvm::BasicBlock *FalseBlock, uint64_t TrueCount);
4038 
4039   /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is
4040   /// nonnull, if \p LHS is marked _Nonnull.
4041   void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc);
4042 
4043   /// An enumeration which makes it easier to specify whether or not an
4044   /// operation is a subtraction.
4045   enum { NotSubtraction = false, IsSubtraction = true };
4046 
4047   /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to
4048   /// detect undefined behavior when the pointer overflow sanitizer is enabled.
4049   /// \p SignedIndices indicates whether any of the GEP indices are signed.
4050   /// \p IsSubtraction indicates whether the expression used to form the GEP
4051   /// is a subtraction.
4052   llvm::Value *EmitCheckedInBoundsGEP(llvm::Value *Ptr,
4053                                       ArrayRef<llvm::Value *> IdxList,
4054                                       bool SignedIndices,
4055                                       bool IsSubtraction,
4056                                       SourceLocation Loc,
4057                                       const Twine &Name = "");
4058 
4059   /// Specifies which type of sanitizer check to apply when handling a
4060   /// particular builtin.
4061   enum BuiltinCheckKind {
4062     BCK_CTZPassedZero,
4063     BCK_CLZPassedZero,
4064   };
4065 
4066   /// Emits an argument for a call to a builtin. If the builtin sanitizer is
4067   /// enabled, a runtime check specified by \p Kind is also emitted.
4068   llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind);
4069 
4070   /// Emit a description of a type in a format suitable for passing to
4071   /// a runtime sanitizer handler.
4072   llvm::Constant *EmitCheckTypeDescriptor(QualType T);
4073 
4074   /// Convert a value into a format suitable for passing to a runtime
4075   /// sanitizer handler.
4076   llvm::Value *EmitCheckValue(llvm::Value *V);
4077 
4078   /// Emit a description of a source location in a format suitable for
4079   /// passing to a runtime sanitizer handler.
4080   llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
4081 
4082   /// Create a basic block that will either trap or call a handler function in
4083   /// the UBSan runtime with the provided arguments, and create a conditional
4084   /// branch to it.
4085   void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
4086                  SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs,
4087                  ArrayRef<llvm::Value *> DynamicArgs);
4088 
4089   /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath
4090   /// if Cond if false.
4091   void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond,
4092                             llvm::ConstantInt *TypeId, llvm::Value *Ptr,
4093                             ArrayRef<llvm::Constant *> StaticArgs);
4094 
4095   /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime
4096   /// checking is enabled. Otherwise, just emit an unreachable instruction.
4097   void EmitUnreachable(SourceLocation Loc);
4098 
4099   /// Create a basic block that will call the trap intrinsic, and emit a
4100   /// conditional branch to it, for the -ftrapv checks.
4101   void EmitTrapCheck(llvm::Value *Checked);
4102 
4103   /// Emit a call to trap or debugtrap and attach function attribute
4104   /// "trap-func-name" if specified.
4105   llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID);
4106 
4107   /// Emit a stub for the cross-DSO CFI check function.
4108   void EmitCfiCheckStub();
4109 
4110   /// Emit a cross-DSO CFI failure handling function.
4111   void EmitCfiCheckFail();
4112 
4113   /// Create a check for a function parameter that may potentially be
4114   /// declared as non-null.
4115   void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc,
4116                            AbstractCallee AC, unsigned ParmNum);
4117 
4118   /// EmitCallArg - Emit a single call argument.
4119   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
4120 
4121   /// EmitDelegateCallArg - We are performing a delegate call; that
4122   /// is, the current function is delegating to another one.  Produce
4123   /// a r-value suitable for passing the given parameter.
4124   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
4125                            SourceLocation loc);
4126 
4127   /// SetFPAccuracy - Set the minimum required accuracy of the given floating
4128   /// point operation, expressed as the maximum relative error in ulp.
4129   void SetFPAccuracy(llvm::Value *Val, float Accuracy);
4130 
4131 private:
4132   llvm::MDNode *getRangeForLoadFromType(QualType Ty);
4133   void EmitReturnOfRValue(RValue RV, QualType Ty);
4134 
4135   void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
4136 
4137   llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4>
4138   DeferredReplacements;
4139 
4140   /// Set the address of a local variable.
4141   void setAddrOfLocalVar(const VarDecl *VD, Address Addr) {
4142     assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!");
4143     LocalDeclMap.insert({VD, Addr});
4144   }
4145 
4146   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
4147   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
4148   ///
4149   /// \param AI - The first function argument of the expansion.
4150   void ExpandTypeFromArgs(QualType Ty, LValue Dst,
4151                           SmallVectorImpl<llvm::Value *>::iterator &AI);
4152 
4153   /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg
4154   /// Ty, into individual arguments on the provided vector \arg IRCallArgs,
4155   /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand.
4156   void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
4157                         SmallVectorImpl<llvm::Value *> &IRCallArgs,
4158                         unsigned &IRCallArgPos);
4159 
4160   llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
4161                             const Expr *InputExpr, std::string &ConstraintStr);
4162 
4163   llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
4164                                   LValue InputValue, QualType InputType,
4165                                   std::string &ConstraintStr,
4166                                   SourceLocation Loc);
4167 
4168   /// Attempts to statically evaluate the object size of E. If that
4169   /// fails, emits code to figure the size of E out for us. This is
4170   /// pass_object_size aware.
4171   ///
4172   /// If EmittedExpr is non-null, this will use that instead of re-emitting E.
4173   llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
4174                                                llvm::IntegerType *ResType,
4175                                                llvm::Value *EmittedE,
4176                                                bool IsDynamic);
4177 
4178   /// Emits the size of E, as required by __builtin_object_size. This
4179   /// function is aware of pass_object_size parameters, and will act accordingly
4180   /// if E is a parameter with the pass_object_size attribute.
4181   llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type,
4182                                      llvm::IntegerType *ResType,
4183                                      llvm::Value *EmittedE,
4184                                      bool IsDynamic);
4185 
4186 public:
4187 #ifndef NDEBUG
4188   // Determine whether the given argument is an Objective-C method
4189   // that may have type parameters in its signature.
4190   static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) {
4191     const DeclContext *dc = method->getDeclContext();
4192     if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) {
4193       return classDecl->getTypeParamListAsWritten();
4194     }
4195 
4196     if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) {
4197       return catDecl->getTypeParamList();
4198     }
4199 
4200     return false;
4201   }
4202 
4203   template<typename T>
4204   static bool isObjCMethodWithTypeParams(const T *) { return false; }
4205 #endif
4206 
4207   enum class EvaluationOrder {
4208     ///! No language constraints on evaluation order.
4209     Default,
4210     ///! Language semantics require left-to-right evaluation.
4211     ForceLeftToRight,
4212     ///! Language semantics require right-to-left evaluation.
4213     ForceRightToLeft
4214   };
4215 
4216   /// EmitCallArgs - Emit call arguments for a function.
4217   template <typename T>
4218   void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo,
4219                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
4220                     AbstractCallee AC = AbstractCallee(),
4221                     unsigned ParamsToSkip = 0,
4222                     EvaluationOrder Order = EvaluationOrder::Default) {
4223     SmallVector<QualType, 16> ArgTypes;
4224     CallExpr::const_arg_iterator Arg = ArgRange.begin();
4225 
4226     assert((ParamsToSkip == 0 || CallArgTypeInfo) &&
4227            "Can't skip parameters if type info is not provided");
4228     if (CallArgTypeInfo) {
4229 #ifndef NDEBUG
4230       bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo);
4231 #endif
4232 
4233       // First, use the argument types that the type info knows about
4234       for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip,
4235                 E = CallArgTypeInfo->param_type_end();
4236            I != E; ++I, ++Arg) {
4237         assert(Arg != ArgRange.end() && "Running over edge of argument list!");
4238         assert((isGenericMethod ||
4239                 ((*I)->isVariablyModifiedType() ||
4240                  (*I).getNonReferenceType()->isObjCRetainableType() ||
4241                  getContext()
4242                          .getCanonicalType((*I).getNonReferenceType())
4243                          .getTypePtr() ==
4244                      getContext()
4245                          .getCanonicalType((*Arg)->getType())
4246                          .getTypePtr())) &&
4247                "type mismatch in call argument!");
4248         ArgTypes.push_back(*I);
4249       }
4250     }
4251 
4252     // Either we've emitted all the call args, or we have a call to variadic
4253     // function.
4254     assert((Arg == ArgRange.end() || !CallArgTypeInfo ||
4255             CallArgTypeInfo->isVariadic()) &&
4256            "Extra arguments in non-variadic function!");
4257 
4258     // If we still have any arguments, emit them using the type of the argument.
4259     for (auto *A : llvm::make_range(Arg, ArgRange.end()))
4260       ArgTypes.push_back(CallArgTypeInfo ? getVarArgType(A) : A->getType());
4261 
4262     EmitCallArgs(Args, ArgTypes, ArgRange, AC, ParamsToSkip, Order);
4263   }
4264 
4265   void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes,
4266                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
4267                     AbstractCallee AC = AbstractCallee(),
4268                     unsigned ParamsToSkip = 0,
4269                     EvaluationOrder Order = EvaluationOrder::Default);
4270 
4271   /// EmitPointerWithAlignment - Given an expression with a pointer type,
4272   /// emit the value and compute our best estimate of the alignment of the
4273   /// pointee.
4274   ///
4275   /// \param BaseInfo - If non-null, this will be initialized with
4276   /// information about the source of the alignment and the may-alias
4277   /// attribute.  Note that this function will conservatively fall back on
4278   /// the type when it doesn't recognize the expression and may-alias will
4279   /// be set to false.
4280   ///
4281   /// One reasonable way to use this information is when there's a language
4282   /// guarantee that the pointer must be aligned to some stricter value, and
4283   /// we're simply trying to ensure that sufficiently obvious uses of under-
4284   /// aligned objects don't get miscompiled; for example, a placement new
4285   /// into the address of a local variable.  In such a case, it's quite
4286   /// reasonable to just ignore the returned alignment when it isn't from an
4287   /// explicit source.
4288   Address EmitPointerWithAlignment(const Expr *Addr,
4289                                    LValueBaseInfo *BaseInfo = nullptr,
4290                                    TBAAAccessInfo *TBAAInfo = nullptr);
4291 
4292   /// If \p E references a parameter with pass_object_size info or a constant
4293   /// array size modifier, emit the object size divided by the size of \p EltTy.
4294   /// Otherwise return null.
4295   llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy);
4296 
4297   void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK);
4298 
4299   struct MultiVersionResolverOption {
4300     llvm::Function *Function;
4301     FunctionDecl *FD;
4302     struct Conds {
4303       StringRef Architecture;
4304       llvm::SmallVector<StringRef, 8> Features;
4305 
4306       Conds(StringRef Arch, ArrayRef<StringRef> Feats)
4307           : Architecture(Arch), Features(Feats.begin(), Feats.end()) {}
4308     } Conditions;
4309 
4310     MultiVersionResolverOption(llvm::Function *F, StringRef Arch,
4311                                ArrayRef<StringRef> Feats)
4312         : Function(F), Conditions(Arch, Feats) {}
4313   };
4314 
4315   // Emits the body of a multiversion function's resolver. Assumes that the
4316   // options are already sorted in the proper order, with the 'default' option
4317   // last (if it exists).
4318   void EmitMultiVersionResolver(llvm::Function *Resolver,
4319                                 ArrayRef<MultiVersionResolverOption> Options);
4320 
4321   static uint64_t GetX86CpuSupportsMask(ArrayRef<StringRef> FeatureStrs);
4322 
4323 private:
4324   QualType getVarArgType(const Expr *Arg);
4325 
4326   void EmitDeclMetadata();
4327 
4328   BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType,
4329                                   const AutoVarEmission &emission);
4330 
4331   void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
4332 
4333   llvm::Value *GetValueForARMHint(unsigned BuiltinID);
4334   llvm::Value *EmitX86CpuIs(const CallExpr *E);
4335   llvm::Value *EmitX86CpuIs(StringRef CPUStr);
4336   llvm::Value *EmitX86CpuSupports(const CallExpr *E);
4337   llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs);
4338   llvm::Value *EmitX86CpuSupports(uint64_t Mask);
4339   llvm::Value *EmitX86CpuInit();
4340   llvm::Value *FormResolverCondition(const MultiVersionResolverOption &RO);
4341 };
4342 
4343 inline DominatingLLVMValue::saved_type
4344 DominatingLLVMValue::save(CodeGenFunction &CGF, llvm::Value *value) {
4345   if (!needsSaving(value)) return saved_type(value, false);
4346 
4347   // Otherwise, we need an alloca.
4348   auto align = CharUnits::fromQuantity(
4349             CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType()));
4350   Address alloca =
4351     CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save");
4352   CGF.Builder.CreateStore(value, alloca);
4353 
4354   return saved_type(alloca.getPointer(), true);
4355 }
4356 
4357 inline llvm::Value *DominatingLLVMValue::restore(CodeGenFunction &CGF,
4358                                                  saved_type value) {
4359   // If the value says it wasn't saved, trust that it's still dominating.
4360   if (!value.getInt()) return value.getPointer();
4361 
4362   // Otherwise, it should be an alloca instruction, as set up in save().
4363   auto alloca = cast<llvm::AllocaInst>(value.getPointer());
4364   return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlignment());
4365 }
4366 
4367 }  // end namespace CodeGen
4368 }  // end namespace clang
4369 
4370 #endif
4371