1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the internal per-function state used for llvm translation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 14 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 15 16 #include "CGBuilder.h" 17 #include "CGDebugInfo.h" 18 #include "CGLoopInfo.h" 19 #include "CGValue.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenPGO.h" 22 #include "EHScopeStack.h" 23 #include "VarBypassDetector.h" 24 #include "clang/AST/CharUnits.h" 25 #include "clang/AST/CurrentSourceLocExprScope.h" 26 #include "clang/AST/ExprCXX.h" 27 #include "clang/AST/ExprObjC.h" 28 #include "clang/AST/ExprOpenMP.h" 29 #include "clang/AST/StmtOpenMP.h" 30 #include "clang/AST/Type.h" 31 #include "clang/Basic/ABI.h" 32 #include "clang/Basic/CapturedStmt.h" 33 #include "clang/Basic/CodeGenOptions.h" 34 #include "clang/Basic/OpenMPKinds.h" 35 #include "clang/Basic/TargetInfo.h" 36 #include "llvm/ADT/ArrayRef.h" 37 #include "llvm/ADT/DenseMap.h" 38 #include "llvm/ADT/MapVector.h" 39 #include "llvm/ADT/SmallVector.h" 40 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 41 #include "llvm/IR/ValueHandle.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Transforms/Utils/SanitizerStats.h" 44 45 namespace llvm { 46 class BasicBlock; 47 class LLVMContext; 48 class MDNode; 49 class Module; 50 class SwitchInst; 51 class Twine; 52 class Value; 53 } 54 55 namespace clang { 56 class ASTContext; 57 class BlockDecl; 58 class CXXDestructorDecl; 59 class CXXForRangeStmt; 60 class CXXTryStmt; 61 class Decl; 62 class LabelDecl; 63 class EnumConstantDecl; 64 class FunctionDecl; 65 class FunctionProtoType; 66 class LabelStmt; 67 class ObjCContainerDecl; 68 class ObjCInterfaceDecl; 69 class ObjCIvarDecl; 70 class ObjCMethodDecl; 71 class ObjCImplementationDecl; 72 class ObjCPropertyImplDecl; 73 class TargetInfo; 74 class VarDecl; 75 class ObjCForCollectionStmt; 76 class ObjCAtTryStmt; 77 class ObjCAtThrowStmt; 78 class ObjCAtSynchronizedStmt; 79 class ObjCAutoreleasePoolStmt; 80 class OMPUseDevicePtrClause; 81 class OMPUseDeviceAddrClause; 82 class ReturnsNonNullAttr; 83 class SVETypeFlags; 84 class OMPExecutableDirective; 85 86 namespace analyze_os_log { 87 class OSLogBufferLayout; 88 } 89 90 namespace CodeGen { 91 class CodeGenTypes; 92 class CGCallee; 93 class CGFunctionInfo; 94 class CGRecordLayout; 95 class CGBlockInfo; 96 class CGCXXABI; 97 class BlockByrefHelpers; 98 class BlockByrefInfo; 99 class BlockFlags; 100 class BlockFieldFlags; 101 class RegionCodeGenTy; 102 class TargetCodeGenInfo; 103 struct OMPTaskDataTy; 104 struct CGCoroData; 105 106 /// The kind of evaluation to perform on values of a particular 107 /// type. Basically, is the code in CGExprScalar, CGExprComplex, or 108 /// CGExprAgg? 109 /// 110 /// TODO: should vectors maybe be split out into their own thing? 111 enum TypeEvaluationKind { 112 TEK_Scalar, 113 TEK_Complex, 114 TEK_Aggregate 115 }; 116 117 #define LIST_SANITIZER_CHECKS \ 118 SANITIZER_CHECK(AddOverflow, add_overflow, 0) \ 119 SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0) \ 120 SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0) \ 121 SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0) \ 122 SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0) \ 123 SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0) \ 124 SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 1) \ 125 SANITIZER_CHECK(ImplicitConversion, implicit_conversion, 0) \ 126 SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0) \ 127 SANITIZER_CHECK(InvalidObjCCast, invalid_objc_cast, 0) \ 128 SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0) \ 129 SANITIZER_CHECK(MissingReturn, missing_return, 0) \ 130 SANITIZER_CHECK(MulOverflow, mul_overflow, 0) \ 131 SANITIZER_CHECK(NegateOverflow, negate_overflow, 0) \ 132 SANITIZER_CHECK(NullabilityArg, nullability_arg, 0) \ 133 SANITIZER_CHECK(NullabilityReturn, nullability_return, 1) \ 134 SANITIZER_CHECK(NonnullArg, nonnull_arg, 0) \ 135 SANITIZER_CHECK(NonnullReturn, nonnull_return, 1) \ 136 SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0) \ 137 SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0) \ 138 SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0) \ 139 SANITIZER_CHECK(SubOverflow, sub_overflow, 0) \ 140 SANITIZER_CHECK(TypeMismatch, type_mismatch, 1) \ 141 SANITIZER_CHECK(AlignmentAssumption, alignment_assumption, 0) \ 142 SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0) 143 144 enum SanitizerHandler { 145 #define SANITIZER_CHECK(Enum, Name, Version) Enum, 146 LIST_SANITIZER_CHECKS 147 #undef SANITIZER_CHECK 148 }; 149 150 /// Helper class with most of the code for saving a value for a 151 /// conditional expression cleanup. 152 struct DominatingLLVMValue { 153 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 154 155 /// Answer whether the given value needs extra work to be saved. 156 static bool needsSaving(llvm::Value *value) { 157 // If it's not an instruction, we don't need to save. 158 if (!isa<llvm::Instruction>(value)) return false; 159 160 // If it's an instruction in the entry block, we don't need to save. 161 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 162 return (block != &block->getParent()->getEntryBlock()); 163 } 164 165 static saved_type save(CodeGenFunction &CGF, llvm::Value *value); 166 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value); 167 }; 168 169 /// A partial specialization of DominatingValue for llvm::Values that 170 /// might be llvm::Instructions. 171 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 172 typedef T *type; 173 static type restore(CodeGenFunction &CGF, saved_type value) { 174 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 175 } 176 }; 177 178 /// A specialization of DominatingValue for Address. 179 template <> struct DominatingValue<Address> { 180 typedef Address type; 181 182 struct saved_type { 183 DominatingLLVMValue::saved_type SavedValue; 184 CharUnits Alignment; 185 }; 186 187 static bool needsSaving(type value) { 188 return DominatingLLVMValue::needsSaving(value.getPointer()); 189 } 190 static saved_type save(CodeGenFunction &CGF, type value) { 191 return { DominatingLLVMValue::save(CGF, value.getPointer()), 192 value.getAlignment() }; 193 } 194 static type restore(CodeGenFunction &CGF, saved_type value) { 195 return Address(DominatingLLVMValue::restore(CGF, value.SavedValue), 196 value.Alignment); 197 } 198 }; 199 200 /// A specialization of DominatingValue for RValue. 201 template <> struct DominatingValue<RValue> { 202 typedef RValue type; 203 class saved_type { 204 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 205 AggregateAddress, ComplexAddress }; 206 207 llvm::Value *Value; 208 unsigned K : 3; 209 unsigned Align : 29; 210 saved_type(llvm::Value *v, Kind k, unsigned a = 0) 211 : Value(v), K(k), Align(a) {} 212 213 public: 214 static bool needsSaving(RValue value); 215 static saved_type save(CodeGenFunction &CGF, RValue value); 216 RValue restore(CodeGenFunction &CGF); 217 218 // implementations in CGCleanup.cpp 219 }; 220 221 static bool needsSaving(type value) { 222 return saved_type::needsSaving(value); 223 } 224 static saved_type save(CodeGenFunction &CGF, type value) { 225 return saved_type::save(CGF, value); 226 } 227 static type restore(CodeGenFunction &CGF, saved_type value) { 228 return value.restore(CGF); 229 } 230 }; 231 232 /// CodeGenFunction - This class organizes the per-function state that is used 233 /// while generating LLVM code. 234 class CodeGenFunction : public CodeGenTypeCache { 235 CodeGenFunction(const CodeGenFunction &) = delete; 236 void operator=(const CodeGenFunction &) = delete; 237 238 friend class CGCXXABI; 239 public: 240 /// A jump destination is an abstract label, branching to which may 241 /// require a jump out through normal cleanups. 242 struct JumpDest { 243 JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {} 244 JumpDest(llvm::BasicBlock *Block, 245 EHScopeStack::stable_iterator Depth, 246 unsigned Index) 247 : Block(Block), ScopeDepth(Depth), Index(Index) {} 248 249 bool isValid() const { return Block != nullptr; } 250 llvm::BasicBlock *getBlock() const { return Block; } 251 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 252 unsigned getDestIndex() const { return Index; } 253 254 // This should be used cautiously. 255 void setScopeDepth(EHScopeStack::stable_iterator depth) { 256 ScopeDepth = depth; 257 } 258 259 private: 260 llvm::BasicBlock *Block; 261 EHScopeStack::stable_iterator ScopeDepth; 262 unsigned Index; 263 }; 264 265 CodeGenModule &CGM; // Per-module state. 266 const TargetInfo &Target; 267 268 // For EH/SEH outlined funclets, this field points to parent's CGF 269 CodeGenFunction *ParentCGF = nullptr; 270 271 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 272 LoopInfoStack LoopStack; 273 CGBuilderTy Builder; 274 275 // Stores variables for which we can't generate correct lifetime markers 276 // because of jumps. 277 VarBypassDetector Bypasses; 278 279 // CodeGen lambda for loops and support for ordered clause 280 typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &, 281 JumpDest)> 282 CodeGenLoopTy; 283 typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation, 284 const unsigned, const bool)> 285 CodeGenOrderedTy; 286 287 // Codegen lambda for loop bounds in worksharing loop constructs 288 typedef llvm::function_ref<std::pair<LValue, LValue>( 289 CodeGenFunction &, const OMPExecutableDirective &S)> 290 CodeGenLoopBoundsTy; 291 292 // Codegen lambda for loop bounds in dispatch-based loop implementation 293 typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>( 294 CodeGenFunction &, const OMPExecutableDirective &S, Address LB, 295 Address UB)> 296 CodeGenDispatchBoundsTy; 297 298 /// CGBuilder insert helper. This function is called after an 299 /// instruction is created using Builder. 300 void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name, 301 llvm::BasicBlock *BB, 302 llvm::BasicBlock::iterator InsertPt) const; 303 304 /// CurFuncDecl - Holds the Decl for the current outermost 305 /// non-closure context. 306 const Decl *CurFuncDecl; 307 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 308 const Decl *CurCodeDecl; 309 const CGFunctionInfo *CurFnInfo; 310 QualType FnRetTy; 311 llvm::Function *CurFn = nullptr; 312 313 // Holds coroutine data if the current function is a coroutine. We use a 314 // wrapper to manage its lifetime, so that we don't have to define CGCoroData 315 // in this header. 316 struct CGCoroInfo { 317 std::unique_ptr<CGCoroData> Data; 318 CGCoroInfo(); 319 ~CGCoroInfo(); 320 }; 321 CGCoroInfo CurCoro; 322 323 bool isCoroutine() const { 324 return CurCoro.Data != nullptr; 325 } 326 327 /// CurGD - The GlobalDecl for the current function being compiled. 328 GlobalDecl CurGD; 329 330 /// PrologueCleanupDepth - The cleanup depth enclosing all the 331 /// cleanups associated with the parameters. 332 EHScopeStack::stable_iterator PrologueCleanupDepth; 333 334 /// ReturnBlock - Unified return block. 335 JumpDest ReturnBlock; 336 337 /// ReturnValue - The temporary alloca to hold the return 338 /// value. This is invalid iff the function has no return value. 339 Address ReturnValue = Address::invalid(); 340 341 /// ReturnValuePointer - The temporary alloca to hold a pointer to sret. 342 /// This is invalid if sret is not in use. 343 Address ReturnValuePointer = Address::invalid(); 344 345 /// If a return statement is being visited, this holds the return statment's 346 /// result expression. 347 const Expr *RetExpr = nullptr; 348 349 /// Return true if a label was seen in the current scope. 350 bool hasLabelBeenSeenInCurrentScope() const { 351 if (CurLexicalScope) 352 return CurLexicalScope->hasLabels(); 353 return !LabelMap.empty(); 354 } 355 356 /// AllocaInsertPoint - This is an instruction in the entry block before which 357 /// we prefer to insert allocas. 358 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 359 360 /// API for captured statement code generation. 361 class CGCapturedStmtInfo { 362 public: 363 explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default) 364 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {} 365 explicit CGCapturedStmtInfo(const CapturedStmt &S, 366 CapturedRegionKind K = CR_Default) 367 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) { 368 369 RecordDecl::field_iterator Field = 370 S.getCapturedRecordDecl()->field_begin(); 371 for (CapturedStmt::const_capture_iterator I = S.capture_begin(), 372 E = S.capture_end(); 373 I != E; ++I, ++Field) { 374 if (I->capturesThis()) 375 CXXThisFieldDecl = *Field; 376 else if (I->capturesVariable()) 377 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 378 else if (I->capturesVariableByCopy()) 379 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 380 } 381 } 382 383 virtual ~CGCapturedStmtInfo(); 384 385 CapturedRegionKind getKind() const { return Kind; } 386 387 virtual void setContextValue(llvm::Value *V) { ThisValue = V; } 388 // Retrieve the value of the context parameter. 389 virtual llvm::Value *getContextValue() const { return ThisValue; } 390 391 /// Lookup the captured field decl for a variable. 392 virtual const FieldDecl *lookup(const VarDecl *VD) const { 393 return CaptureFields.lookup(VD->getCanonicalDecl()); 394 } 395 396 bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; } 397 virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; } 398 399 static bool classof(const CGCapturedStmtInfo *) { 400 return true; 401 } 402 403 /// Emit the captured statement body. 404 virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) { 405 CGF.incrementProfileCounter(S); 406 CGF.EmitStmt(S); 407 } 408 409 /// Get the name of the capture helper. 410 virtual StringRef getHelperName() const { return "__captured_stmt"; } 411 412 private: 413 /// The kind of captured statement being generated. 414 CapturedRegionKind Kind; 415 416 /// Keep the map between VarDecl and FieldDecl. 417 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields; 418 419 /// The base address of the captured record, passed in as the first 420 /// argument of the parallel region function. 421 llvm::Value *ThisValue; 422 423 /// Captured 'this' type. 424 FieldDecl *CXXThisFieldDecl; 425 }; 426 CGCapturedStmtInfo *CapturedStmtInfo = nullptr; 427 428 /// RAII for correct setting/restoring of CapturedStmtInfo. 429 class CGCapturedStmtRAII { 430 private: 431 CodeGenFunction &CGF; 432 CGCapturedStmtInfo *PrevCapturedStmtInfo; 433 public: 434 CGCapturedStmtRAII(CodeGenFunction &CGF, 435 CGCapturedStmtInfo *NewCapturedStmtInfo) 436 : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) { 437 CGF.CapturedStmtInfo = NewCapturedStmtInfo; 438 } 439 ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; } 440 }; 441 442 /// An abstract representation of regular/ObjC call/message targets. 443 class AbstractCallee { 444 /// The function declaration of the callee. 445 const Decl *CalleeDecl; 446 447 public: 448 AbstractCallee() : CalleeDecl(nullptr) {} 449 AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {} 450 AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {} 451 bool hasFunctionDecl() const { 452 return dyn_cast_or_null<FunctionDecl>(CalleeDecl); 453 } 454 const Decl *getDecl() const { return CalleeDecl; } 455 unsigned getNumParams() const { 456 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 457 return FD->getNumParams(); 458 return cast<ObjCMethodDecl>(CalleeDecl)->param_size(); 459 } 460 const ParmVarDecl *getParamDecl(unsigned I) const { 461 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 462 return FD->getParamDecl(I); 463 return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I); 464 } 465 }; 466 467 /// Sanitizers enabled for this function. 468 SanitizerSet SanOpts; 469 470 /// True if CodeGen currently emits code implementing sanitizer checks. 471 bool IsSanitizerScope = false; 472 473 /// RAII object to set/unset CodeGenFunction::IsSanitizerScope. 474 class SanitizerScope { 475 CodeGenFunction *CGF; 476 public: 477 SanitizerScope(CodeGenFunction *CGF); 478 ~SanitizerScope(); 479 }; 480 481 /// In C++, whether we are code generating a thunk. This controls whether we 482 /// should emit cleanups. 483 bool CurFuncIsThunk = false; 484 485 /// In ARC, whether we should autorelease the return value. 486 bool AutoreleaseResult = false; 487 488 /// Whether we processed a Microsoft-style asm block during CodeGen. These can 489 /// potentially set the return value. 490 bool SawAsmBlock = false; 491 492 const NamedDecl *CurSEHParent = nullptr; 493 494 /// True if the current function is an outlined SEH helper. This can be a 495 /// finally block or filter expression. 496 bool IsOutlinedSEHHelper = false; 497 498 /// True if CodeGen currently emits code inside presereved access index 499 /// region. 500 bool IsInPreservedAIRegion = false; 501 502 /// True if the current statement has nomerge attribute. 503 bool InNoMergeAttributedStmt = false; 504 505 const CodeGen::CGBlockInfo *BlockInfo = nullptr; 506 llvm::Value *BlockPointer = nullptr; 507 508 llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; 509 FieldDecl *LambdaThisCaptureField = nullptr; 510 511 /// A mapping from NRVO variables to the flags used to indicate 512 /// when the NRVO has been applied to this variable. 513 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 514 515 EHScopeStack EHStack; 516 llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack; 517 llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack; 518 519 llvm::Instruction *CurrentFuncletPad = nullptr; 520 521 class CallLifetimeEnd final : public EHScopeStack::Cleanup { 522 llvm::Value *Addr; 523 llvm::Value *Size; 524 525 public: 526 CallLifetimeEnd(Address addr, llvm::Value *size) 527 : Addr(addr.getPointer()), Size(size) {} 528 529 void Emit(CodeGenFunction &CGF, Flags flags) override { 530 CGF.EmitLifetimeEnd(Size, Addr); 531 } 532 }; 533 534 /// Header for data within LifetimeExtendedCleanupStack. 535 struct LifetimeExtendedCleanupHeader { 536 /// The size of the following cleanup object. 537 unsigned Size; 538 /// The kind of cleanup to push: a value from the CleanupKind enumeration. 539 unsigned Kind : 31; 540 /// Whether this is a conditional cleanup. 541 unsigned IsConditional : 1; 542 543 size_t getSize() const { return Size; } 544 CleanupKind getKind() const { return (CleanupKind)Kind; } 545 bool isConditional() const { return IsConditional; } 546 }; 547 548 /// i32s containing the indexes of the cleanup destinations. 549 Address NormalCleanupDest = Address::invalid(); 550 551 unsigned NextCleanupDestIndex = 1; 552 553 /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. 554 llvm::BasicBlock *EHResumeBlock = nullptr; 555 556 /// The exception slot. All landing pads write the current exception pointer 557 /// into this alloca. 558 llvm::Value *ExceptionSlot = nullptr; 559 560 /// The selector slot. Under the MandatoryCleanup model, all landing pads 561 /// write the current selector value into this alloca. 562 llvm::AllocaInst *EHSelectorSlot = nullptr; 563 564 /// A stack of exception code slots. Entering an __except block pushes a slot 565 /// on the stack and leaving pops one. The __exception_code() intrinsic loads 566 /// a value from the top of the stack. 567 SmallVector<Address, 1> SEHCodeSlotStack; 568 569 /// Value returned by __exception_info intrinsic. 570 llvm::Value *SEHInfo = nullptr; 571 572 /// Emits a landing pad for the current EH stack. 573 llvm::BasicBlock *EmitLandingPad(); 574 575 llvm::BasicBlock *getInvokeDestImpl(); 576 577 /// Parent loop-based directive for scan directive. 578 const OMPExecutableDirective *OMPParentLoopDirectiveForScan = nullptr; 579 llvm::BasicBlock *OMPBeforeScanBlock = nullptr; 580 llvm::BasicBlock *OMPAfterScanBlock = nullptr; 581 llvm::BasicBlock *OMPScanExitBlock = nullptr; 582 llvm::BasicBlock *OMPScanDispatch = nullptr; 583 bool OMPFirstScanLoop = false; 584 585 /// Manages parent directive for scan directives. 586 class ParentLoopDirectiveForScanRegion { 587 CodeGenFunction &CGF; 588 const OMPExecutableDirective *ParentLoopDirectiveForScan; 589 590 public: 591 ParentLoopDirectiveForScanRegion( 592 CodeGenFunction &CGF, 593 const OMPExecutableDirective &ParentLoopDirectiveForScan) 594 : CGF(CGF), 595 ParentLoopDirectiveForScan(CGF.OMPParentLoopDirectiveForScan) { 596 CGF.OMPParentLoopDirectiveForScan = &ParentLoopDirectiveForScan; 597 } 598 ~ParentLoopDirectiveForScanRegion() { 599 CGF.OMPParentLoopDirectiveForScan = ParentLoopDirectiveForScan; 600 } 601 }; 602 603 template <class T> 604 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 605 return DominatingValue<T>::save(*this, value); 606 } 607 608 class CGFPOptionsRAII { 609 public: 610 CGFPOptionsRAII(CodeGenFunction &CGF, FPOptions FPFeatures); 611 ~CGFPOptionsRAII(); 612 613 private: 614 CodeGenFunction &CGF; 615 FPOptions OldFPFeatures; 616 Optional<CGBuilderTy::FastMathFlagGuard> FMFGuard; 617 }; 618 FPOptions CurFPFeatures; 619 620 public: 621 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 622 /// rethrows. 623 SmallVector<llvm::Value*, 8> ObjCEHValueStack; 624 625 /// A class controlling the emission of a finally block. 626 class FinallyInfo { 627 /// Where the catchall's edge through the cleanup should go. 628 JumpDest RethrowDest; 629 630 /// A function to call to enter the catch. 631 llvm::FunctionCallee BeginCatchFn; 632 633 /// An i1 variable indicating whether or not the @finally is 634 /// running for an exception. 635 llvm::AllocaInst *ForEHVar; 636 637 /// An i8* variable into which the exception pointer to rethrow 638 /// has been saved. 639 llvm::AllocaInst *SavedExnVar; 640 641 public: 642 void enter(CodeGenFunction &CGF, const Stmt *Finally, 643 llvm::FunctionCallee beginCatchFn, 644 llvm::FunctionCallee endCatchFn, llvm::FunctionCallee rethrowFn); 645 void exit(CodeGenFunction &CGF); 646 }; 647 648 /// Returns true inside SEH __try blocks. 649 bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); } 650 651 /// Returns true while emitting a cleanuppad. 652 bool isCleanupPadScope() const { 653 return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad); 654 } 655 656 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 657 /// current full-expression. Safe against the possibility that 658 /// we're currently inside a conditionally-evaluated expression. 659 template <class T, class... As> 660 void pushFullExprCleanup(CleanupKind kind, As... A) { 661 // If we're not in a conditional branch, or if none of the 662 // arguments requires saving, then use the unconditional cleanup. 663 if (!isInConditionalBranch()) 664 return EHStack.pushCleanup<T>(kind, A...); 665 666 // Stash values in a tuple so we can guarantee the order of saves. 667 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 668 SavedTuple Saved{saveValueInCond(A)...}; 669 670 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 671 EHStack.pushCleanupTuple<CleanupType>(kind, Saved); 672 initFullExprCleanup(); 673 } 674 675 /// Queue a cleanup to be pushed after finishing the current full-expression, 676 /// potentially with an active flag. 677 template <class T, class... As> 678 void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) { 679 if (!isInConditionalBranch()) 680 return pushCleanupAfterFullExprWithActiveFlag<T>(Kind, Address::invalid(), 681 A...); 682 683 Address ActiveFlag = createCleanupActiveFlag(); 684 assert(!DominatingValue<Address>::needsSaving(ActiveFlag) && 685 "cleanup active flag should never need saving"); 686 687 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 688 SavedTuple Saved{saveValueInCond(A)...}; 689 690 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 691 pushCleanupAfterFullExprWithActiveFlag<CleanupType>(Kind, ActiveFlag, Saved); 692 } 693 694 template <class T, class... As> 695 void pushCleanupAfterFullExprWithActiveFlag(CleanupKind Kind, 696 Address ActiveFlag, As... A) { 697 LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind, 698 ActiveFlag.isValid()}; 699 700 size_t OldSize = LifetimeExtendedCleanupStack.size(); 701 LifetimeExtendedCleanupStack.resize( 702 LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size + 703 (Header.IsConditional ? sizeof(ActiveFlag) : 0)); 704 705 static_assert(sizeof(Header) % alignof(T) == 0, 706 "Cleanup will be allocated on misaligned address"); 707 char *Buffer = &LifetimeExtendedCleanupStack[OldSize]; 708 new (Buffer) LifetimeExtendedCleanupHeader(Header); 709 new (Buffer + sizeof(Header)) T(A...); 710 if (Header.IsConditional) 711 new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag); 712 } 713 714 /// Set up the last cleanup that was pushed as a conditional 715 /// full-expression cleanup. 716 void initFullExprCleanup() { 717 initFullExprCleanupWithFlag(createCleanupActiveFlag()); 718 } 719 720 void initFullExprCleanupWithFlag(Address ActiveFlag); 721 Address createCleanupActiveFlag(); 722 723 /// PushDestructorCleanup - Push a cleanup to call the 724 /// complete-object destructor of an object of the given type at the 725 /// given address. Does nothing if T is not a C++ class type with a 726 /// non-trivial destructor. 727 void PushDestructorCleanup(QualType T, Address Addr); 728 729 /// PushDestructorCleanup - Push a cleanup to call the 730 /// complete-object variant of the given destructor on the object at 731 /// the given address. 732 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, QualType T, 733 Address Addr); 734 735 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 736 /// process all branch fixups. 737 void PopCleanupBlock(bool FallThroughIsBranchThrough = false); 738 739 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 740 /// The block cannot be reactivated. Pops it if it's the top of the 741 /// stack. 742 /// 743 /// \param DominatingIP - An instruction which is known to 744 /// dominate the current IP (if set) and which lies along 745 /// all paths of execution between the current IP and the 746 /// the point at which the cleanup comes into scope. 747 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 748 llvm::Instruction *DominatingIP); 749 750 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 751 /// Cannot be used to resurrect a deactivated cleanup. 752 /// 753 /// \param DominatingIP - An instruction which is known to 754 /// dominate the current IP (if set) and which lies along 755 /// all paths of execution between the current IP and the 756 /// the point at which the cleanup comes into scope. 757 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 758 llvm::Instruction *DominatingIP); 759 760 /// Enters a new scope for capturing cleanups, all of which 761 /// will be executed once the scope is exited. 762 class RunCleanupsScope { 763 EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth; 764 size_t LifetimeExtendedCleanupStackSize; 765 bool OldDidCallStackSave; 766 protected: 767 bool PerformCleanup; 768 private: 769 770 RunCleanupsScope(const RunCleanupsScope &) = delete; 771 void operator=(const RunCleanupsScope &) = delete; 772 773 protected: 774 CodeGenFunction& CGF; 775 776 public: 777 /// Enter a new cleanup scope. 778 explicit RunCleanupsScope(CodeGenFunction &CGF) 779 : PerformCleanup(true), CGF(CGF) 780 { 781 CleanupStackDepth = CGF.EHStack.stable_begin(); 782 LifetimeExtendedCleanupStackSize = 783 CGF.LifetimeExtendedCleanupStack.size(); 784 OldDidCallStackSave = CGF.DidCallStackSave; 785 CGF.DidCallStackSave = false; 786 OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth; 787 CGF.CurrentCleanupScopeDepth = CleanupStackDepth; 788 } 789 790 /// Exit this cleanup scope, emitting any accumulated cleanups. 791 ~RunCleanupsScope() { 792 if (PerformCleanup) 793 ForceCleanup(); 794 } 795 796 /// Determine whether this scope requires any cleanups. 797 bool requiresCleanups() const { 798 return CGF.EHStack.stable_begin() != CleanupStackDepth; 799 } 800 801 /// Force the emission of cleanups now, instead of waiting 802 /// until this object is destroyed. 803 /// \param ValuesToReload - A list of values that need to be available at 804 /// the insertion point after cleanup emission. If cleanup emission created 805 /// a shared cleanup block, these value pointers will be rewritten. 806 /// Otherwise, they not will be modified. 807 void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) { 808 assert(PerformCleanup && "Already forced cleanup"); 809 CGF.DidCallStackSave = OldDidCallStackSave; 810 CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize, 811 ValuesToReload); 812 PerformCleanup = false; 813 CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth; 814 } 815 }; 816 817 // Cleanup stack depth of the RunCleanupsScope that was pushed most recently. 818 EHScopeStack::stable_iterator CurrentCleanupScopeDepth = 819 EHScopeStack::stable_end(); 820 821 class LexicalScope : public RunCleanupsScope { 822 SourceRange Range; 823 SmallVector<const LabelDecl*, 4> Labels; 824 LexicalScope *ParentScope; 825 826 LexicalScope(const LexicalScope &) = delete; 827 void operator=(const LexicalScope &) = delete; 828 829 public: 830 /// Enter a new cleanup scope. 831 explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) 832 : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) { 833 CGF.CurLexicalScope = this; 834 if (CGDebugInfo *DI = CGF.getDebugInfo()) 835 DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); 836 } 837 838 void addLabel(const LabelDecl *label) { 839 assert(PerformCleanup && "adding label to dead scope?"); 840 Labels.push_back(label); 841 } 842 843 /// Exit this cleanup scope, emitting any accumulated 844 /// cleanups. 845 ~LexicalScope() { 846 if (CGDebugInfo *DI = CGF.getDebugInfo()) 847 DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 848 849 // If we should perform a cleanup, force them now. Note that 850 // this ends the cleanup scope before rescoping any labels. 851 if (PerformCleanup) { 852 ApplyDebugLocation DL(CGF, Range.getEnd()); 853 ForceCleanup(); 854 } 855 } 856 857 /// Force the emission of cleanups now, instead of waiting 858 /// until this object is destroyed. 859 void ForceCleanup() { 860 CGF.CurLexicalScope = ParentScope; 861 RunCleanupsScope::ForceCleanup(); 862 863 if (!Labels.empty()) 864 rescopeLabels(); 865 } 866 867 bool hasLabels() const { 868 return !Labels.empty(); 869 } 870 871 void rescopeLabels(); 872 }; 873 874 typedef llvm::DenseMap<const Decl *, Address> DeclMapTy; 875 876 /// The class used to assign some variables some temporarily addresses. 877 class OMPMapVars { 878 DeclMapTy SavedLocals; 879 DeclMapTy SavedTempAddresses; 880 OMPMapVars(const OMPMapVars &) = delete; 881 void operator=(const OMPMapVars &) = delete; 882 883 public: 884 explicit OMPMapVars() = default; 885 ~OMPMapVars() { 886 assert(SavedLocals.empty() && "Did not restored original addresses."); 887 }; 888 889 /// Sets the address of the variable \p LocalVD to be \p TempAddr in 890 /// function \p CGF. 891 /// \return true if at least one variable was set already, false otherwise. 892 bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD, 893 Address TempAddr) { 894 LocalVD = LocalVD->getCanonicalDecl(); 895 // Only save it once. 896 if (SavedLocals.count(LocalVD)) return false; 897 898 // Copy the existing local entry to SavedLocals. 899 auto it = CGF.LocalDeclMap.find(LocalVD); 900 if (it != CGF.LocalDeclMap.end()) 901 SavedLocals.try_emplace(LocalVD, it->second); 902 else 903 SavedLocals.try_emplace(LocalVD, Address::invalid()); 904 905 // Generate the private entry. 906 QualType VarTy = LocalVD->getType(); 907 if (VarTy->isReferenceType()) { 908 Address Temp = CGF.CreateMemTemp(VarTy); 909 CGF.Builder.CreateStore(TempAddr.getPointer(), Temp); 910 TempAddr = Temp; 911 } 912 SavedTempAddresses.try_emplace(LocalVD, TempAddr); 913 914 return true; 915 } 916 917 /// Applies new addresses to the list of the variables. 918 /// \return true if at least one variable is using new address, false 919 /// otherwise. 920 bool apply(CodeGenFunction &CGF) { 921 copyInto(SavedTempAddresses, CGF.LocalDeclMap); 922 SavedTempAddresses.clear(); 923 return !SavedLocals.empty(); 924 } 925 926 /// Restores original addresses of the variables. 927 void restore(CodeGenFunction &CGF) { 928 if (!SavedLocals.empty()) { 929 copyInto(SavedLocals, CGF.LocalDeclMap); 930 SavedLocals.clear(); 931 } 932 } 933 934 private: 935 /// Copy all the entries in the source map over the corresponding 936 /// entries in the destination, which must exist. 937 static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) { 938 for (auto &Pair : Src) { 939 if (!Pair.second.isValid()) { 940 Dest.erase(Pair.first); 941 continue; 942 } 943 944 auto I = Dest.find(Pair.first); 945 if (I != Dest.end()) 946 I->second = Pair.second; 947 else 948 Dest.insert(Pair); 949 } 950 } 951 }; 952 953 /// The scope used to remap some variables as private in the OpenMP loop body 954 /// (or other captured region emitted without outlining), and to restore old 955 /// vars back on exit. 956 class OMPPrivateScope : public RunCleanupsScope { 957 OMPMapVars MappedVars; 958 OMPPrivateScope(const OMPPrivateScope &) = delete; 959 void operator=(const OMPPrivateScope &) = delete; 960 961 public: 962 /// Enter a new OpenMP private scope. 963 explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {} 964 965 /// Registers \p LocalVD variable as a private and apply \p PrivateGen 966 /// function for it to generate corresponding private variable. \p 967 /// PrivateGen returns an address of the generated private variable. 968 /// \return true if the variable is registered as private, false if it has 969 /// been privatized already. 970 bool addPrivate(const VarDecl *LocalVD, 971 const llvm::function_ref<Address()> PrivateGen) { 972 assert(PerformCleanup && "adding private to dead scope"); 973 return MappedVars.setVarAddr(CGF, LocalVD, PrivateGen()); 974 } 975 976 /// Privatizes local variables previously registered as private. 977 /// Registration is separate from the actual privatization to allow 978 /// initializers use values of the original variables, not the private one. 979 /// This is important, for example, if the private variable is a class 980 /// variable initialized by a constructor that references other private 981 /// variables. But at initialization original variables must be used, not 982 /// private copies. 983 /// \return true if at least one variable was privatized, false otherwise. 984 bool Privatize() { return MappedVars.apply(CGF); } 985 986 void ForceCleanup() { 987 RunCleanupsScope::ForceCleanup(); 988 MappedVars.restore(CGF); 989 } 990 991 /// Exit scope - all the mapped variables are restored. 992 ~OMPPrivateScope() { 993 if (PerformCleanup) 994 ForceCleanup(); 995 } 996 997 /// Checks if the global variable is captured in current function. 998 bool isGlobalVarCaptured(const VarDecl *VD) const { 999 VD = VD->getCanonicalDecl(); 1000 return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0; 1001 } 1002 }; 1003 1004 /// Save/restore original map of previously emitted local vars in case when we 1005 /// need to duplicate emission of the same code several times in the same 1006 /// function for OpenMP code. 1007 class OMPLocalDeclMapRAII { 1008 CodeGenFunction &CGF; 1009 DeclMapTy SavedMap; 1010 1011 public: 1012 OMPLocalDeclMapRAII(CodeGenFunction &CGF) 1013 : CGF(CGF), SavedMap(CGF.LocalDeclMap) {} 1014 ~OMPLocalDeclMapRAII() { SavedMap.swap(CGF.LocalDeclMap); } 1015 }; 1016 1017 /// Takes the old cleanup stack size and emits the cleanup blocks 1018 /// that have been added. 1019 void 1020 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 1021 std::initializer_list<llvm::Value **> ValuesToReload = {}); 1022 1023 /// Takes the old cleanup stack size and emits the cleanup blocks 1024 /// that have been added, then adds all lifetime-extended cleanups from 1025 /// the given position to the stack. 1026 void 1027 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 1028 size_t OldLifetimeExtendedStackSize, 1029 std::initializer_list<llvm::Value **> ValuesToReload = {}); 1030 1031 void ResolveBranchFixups(llvm::BasicBlock *Target); 1032 1033 /// The given basic block lies in the current EH scope, but may be a 1034 /// target of a potentially scope-crossing jump; get a stable handle 1035 /// to which we can perform this jump later. 1036 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 1037 return JumpDest(Target, 1038 EHStack.getInnermostNormalCleanup(), 1039 NextCleanupDestIndex++); 1040 } 1041 1042 /// The given basic block lies in the current EH scope, but may be a 1043 /// target of a potentially scope-crossing jump; get a stable handle 1044 /// to which we can perform this jump later. 1045 JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { 1046 return getJumpDestInCurrentScope(createBasicBlock(Name)); 1047 } 1048 1049 /// EmitBranchThroughCleanup - Emit a branch from the current insert 1050 /// block through the normal cleanup handling code (if any) and then 1051 /// on to \arg Dest. 1052 void EmitBranchThroughCleanup(JumpDest Dest); 1053 1054 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 1055 /// specified destination obviously has no cleanups to run. 'false' is always 1056 /// a conservatively correct answer for this method. 1057 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 1058 1059 /// popCatchScope - Pops the catch scope at the top of the EHScope 1060 /// stack, emitting any required code (other than the catch handlers 1061 /// themselves). 1062 void popCatchScope(); 1063 1064 llvm::BasicBlock *getEHResumeBlock(bool isCleanup); 1065 llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); 1066 llvm::BasicBlock * 1067 getFuncletEHDispatchBlock(EHScopeStack::stable_iterator scope); 1068 1069 /// An object to manage conditionally-evaluated expressions. 1070 class ConditionalEvaluation { 1071 llvm::BasicBlock *StartBB; 1072 1073 public: 1074 ConditionalEvaluation(CodeGenFunction &CGF) 1075 : StartBB(CGF.Builder.GetInsertBlock()) {} 1076 1077 void begin(CodeGenFunction &CGF) { 1078 assert(CGF.OutermostConditional != this); 1079 if (!CGF.OutermostConditional) 1080 CGF.OutermostConditional = this; 1081 } 1082 1083 void end(CodeGenFunction &CGF) { 1084 assert(CGF.OutermostConditional != nullptr); 1085 if (CGF.OutermostConditional == this) 1086 CGF.OutermostConditional = nullptr; 1087 } 1088 1089 /// Returns a block which will be executed prior to each 1090 /// evaluation of the conditional code. 1091 llvm::BasicBlock *getStartingBlock() const { 1092 return StartBB; 1093 } 1094 }; 1095 1096 /// isInConditionalBranch - Return true if we're currently emitting 1097 /// one branch or the other of a conditional expression. 1098 bool isInConditionalBranch() const { return OutermostConditional != nullptr; } 1099 1100 void setBeforeOutermostConditional(llvm::Value *value, Address addr) { 1101 assert(isInConditionalBranch()); 1102 llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); 1103 auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back()); 1104 store->setAlignment(addr.getAlignment().getAsAlign()); 1105 } 1106 1107 /// An RAII object to record that we're evaluating a statement 1108 /// expression. 1109 class StmtExprEvaluation { 1110 CodeGenFunction &CGF; 1111 1112 /// We have to save the outermost conditional: cleanups in a 1113 /// statement expression aren't conditional just because the 1114 /// StmtExpr is. 1115 ConditionalEvaluation *SavedOutermostConditional; 1116 1117 public: 1118 StmtExprEvaluation(CodeGenFunction &CGF) 1119 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 1120 CGF.OutermostConditional = nullptr; 1121 } 1122 1123 ~StmtExprEvaluation() { 1124 CGF.OutermostConditional = SavedOutermostConditional; 1125 CGF.EnsureInsertPoint(); 1126 } 1127 }; 1128 1129 /// An object which temporarily prevents a value from being 1130 /// destroyed by aggressive peephole optimizations that assume that 1131 /// all uses of a value have been realized in the IR. 1132 class PeepholeProtection { 1133 llvm::Instruction *Inst; 1134 friend class CodeGenFunction; 1135 1136 public: 1137 PeepholeProtection() : Inst(nullptr) {} 1138 }; 1139 1140 /// A non-RAII class containing all the information about a bound 1141 /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for 1142 /// this which makes individual mappings very simple; using this 1143 /// class directly is useful when you have a variable number of 1144 /// opaque values or don't want the RAII functionality for some 1145 /// reason. 1146 class OpaqueValueMappingData { 1147 const OpaqueValueExpr *OpaqueValue; 1148 bool BoundLValue; 1149 CodeGenFunction::PeepholeProtection Protection; 1150 1151 OpaqueValueMappingData(const OpaqueValueExpr *ov, 1152 bool boundLValue) 1153 : OpaqueValue(ov), BoundLValue(boundLValue) {} 1154 public: 1155 OpaqueValueMappingData() : OpaqueValue(nullptr) {} 1156 1157 static bool shouldBindAsLValue(const Expr *expr) { 1158 // gl-values should be bound as l-values for obvious reasons. 1159 // Records should be bound as l-values because IR generation 1160 // always keeps them in memory. Expressions of function type 1161 // act exactly like l-values but are formally required to be 1162 // r-values in C. 1163 return expr->isGLValue() || 1164 expr->getType()->isFunctionType() || 1165 hasAggregateEvaluationKind(expr->getType()); 1166 } 1167 1168 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1169 const OpaqueValueExpr *ov, 1170 const Expr *e) { 1171 if (shouldBindAsLValue(ov)) 1172 return bind(CGF, ov, CGF.EmitLValue(e)); 1173 return bind(CGF, ov, CGF.EmitAnyExpr(e)); 1174 } 1175 1176 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1177 const OpaqueValueExpr *ov, 1178 const LValue &lv) { 1179 assert(shouldBindAsLValue(ov)); 1180 CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); 1181 return OpaqueValueMappingData(ov, true); 1182 } 1183 1184 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1185 const OpaqueValueExpr *ov, 1186 const RValue &rv) { 1187 assert(!shouldBindAsLValue(ov)); 1188 CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); 1189 1190 OpaqueValueMappingData data(ov, false); 1191 1192 // Work around an extremely aggressive peephole optimization in 1193 // EmitScalarConversion which assumes that all other uses of a 1194 // value are extant. 1195 data.Protection = CGF.protectFromPeepholes(rv); 1196 1197 return data; 1198 } 1199 1200 bool isValid() const { return OpaqueValue != nullptr; } 1201 void clear() { OpaqueValue = nullptr; } 1202 1203 void unbind(CodeGenFunction &CGF) { 1204 assert(OpaqueValue && "no data to unbind!"); 1205 1206 if (BoundLValue) { 1207 CGF.OpaqueLValues.erase(OpaqueValue); 1208 } else { 1209 CGF.OpaqueRValues.erase(OpaqueValue); 1210 CGF.unprotectFromPeepholes(Protection); 1211 } 1212 } 1213 }; 1214 1215 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 1216 class OpaqueValueMapping { 1217 CodeGenFunction &CGF; 1218 OpaqueValueMappingData Data; 1219 1220 public: 1221 static bool shouldBindAsLValue(const Expr *expr) { 1222 return OpaqueValueMappingData::shouldBindAsLValue(expr); 1223 } 1224 1225 /// Build the opaque value mapping for the given conditional 1226 /// operator if it's the GNU ?: extension. This is a common 1227 /// enough pattern that the convenience operator is really 1228 /// helpful. 1229 /// 1230 OpaqueValueMapping(CodeGenFunction &CGF, 1231 const AbstractConditionalOperator *op) : CGF(CGF) { 1232 if (isa<ConditionalOperator>(op)) 1233 // Leave Data empty. 1234 return; 1235 1236 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 1237 Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), 1238 e->getCommon()); 1239 } 1240 1241 /// Build the opaque value mapping for an OpaqueValueExpr whose source 1242 /// expression is set to the expression the OVE represents. 1243 OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV) 1244 : CGF(CGF) { 1245 if (OV) { 1246 assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used " 1247 "for OVE with no source expression"); 1248 Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr()); 1249 } 1250 } 1251 1252 OpaqueValueMapping(CodeGenFunction &CGF, 1253 const OpaqueValueExpr *opaqueValue, 1254 LValue lvalue) 1255 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { 1256 } 1257 1258 OpaqueValueMapping(CodeGenFunction &CGF, 1259 const OpaqueValueExpr *opaqueValue, 1260 RValue rvalue) 1261 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { 1262 } 1263 1264 void pop() { 1265 Data.unbind(CGF); 1266 Data.clear(); 1267 } 1268 1269 ~OpaqueValueMapping() { 1270 if (Data.isValid()) Data.unbind(CGF); 1271 } 1272 }; 1273 1274 private: 1275 CGDebugInfo *DebugInfo; 1276 /// Used to create unique names for artificial VLA size debug info variables. 1277 unsigned VLAExprCounter = 0; 1278 bool DisableDebugInfo = false; 1279 1280 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 1281 /// calling llvm.stacksave for multiple VLAs in the same scope. 1282 bool DidCallStackSave = false; 1283 1284 /// IndirectBranch - The first time an indirect goto is seen we create a block 1285 /// with an indirect branch. Every time we see the address of a label taken, 1286 /// we add the label to the indirect goto. Every subsequent indirect goto is 1287 /// codegen'd as a jump to the IndirectBranch's basic block. 1288 llvm::IndirectBrInst *IndirectBranch = nullptr; 1289 1290 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 1291 /// decls. 1292 DeclMapTy LocalDeclMap; 1293 1294 // Keep track of the cleanups for callee-destructed parameters pushed to the 1295 // cleanup stack so that they can be deactivated later. 1296 llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator> 1297 CalleeDestructedParamCleanups; 1298 1299 /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this 1300 /// will contain a mapping from said ParmVarDecl to its implicit "object_size" 1301 /// parameter. 1302 llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2> 1303 SizeArguments; 1304 1305 /// Track escaped local variables with auto storage. Used during SEH 1306 /// outlining to produce a call to llvm.localescape. 1307 llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals; 1308 1309 /// LabelMap - This keeps track of the LLVM basic block for each C label. 1310 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 1311 1312 // BreakContinueStack - This keeps track of where break and continue 1313 // statements should jump to. 1314 struct BreakContinue { 1315 BreakContinue(JumpDest Break, JumpDest Continue) 1316 : BreakBlock(Break), ContinueBlock(Continue) {} 1317 1318 JumpDest BreakBlock; 1319 JumpDest ContinueBlock; 1320 }; 1321 SmallVector<BreakContinue, 8> BreakContinueStack; 1322 1323 /// Handles cancellation exit points in OpenMP-related constructs. 1324 class OpenMPCancelExitStack { 1325 /// Tracks cancellation exit point and join point for cancel-related exit 1326 /// and normal exit. 1327 struct CancelExit { 1328 CancelExit() = default; 1329 CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock, 1330 JumpDest ContBlock) 1331 : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {} 1332 OpenMPDirectiveKind Kind = llvm::omp::OMPD_unknown; 1333 /// true if the exit block has been emitted already by the special 1334 /// emitExit() call, false if the default codegen is used. 1335 bool HasBeenEmitted = false; 1336 JumpDest ExitBlock; 1337 JumpDest ContBlock; 1338 }; 1339 1340 SmallVector<CancelExit, 8> Stack; 1341 1342 public: 1343 OpenMPCancelExitStack() : Stack(1) {} 1344 ~OpenMPCancelExitStack() = default; 1345 /// Fetches the exit block for the current OpenMP construct. 1346 JumpDest getExitBlock() const { return Stack.back().ExitBlock; } 1347 /// Emits exit block with special codegen procedure specific for the related 1348 /// OpenMP construct + emits code for normal construct cleanup. 1349 void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 1350 const llvm::function_ref<void(CodeGenFunction &)> CodeGen) { 1351 if (Stack.back().Kind == Kind && getExitBlock().isValid()) { 1352 assert(CGF.getOMPCancelDestination(Kind).isValid()); 1353 assert(CGF.HaveInsertPoint()); 1354 assert(!Stack.back().HasBeenEmitted); 1355 auto IP = CGF.Builder.saveAndClearIP(); 1356 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1357 CodeGen(CGF); 1358 CGF.EmitBranch(Stack.back().ContBlock.getBlock()); 1359 CGF.Builder.restoreIP(IP); 1360 Stack.back().HasBeenEmitted = true; 1361 } 1362 CodeGen(CGF); 1363 } 1364 /// Enter the cancel supporting \a Kind construct. 1365 /// \param Kind OpenMP directive that supports cancel constructs. 1366 /// \param HasCancel true, if the construct has inner cancel directive, 1367 /// false otherwise. 1368 void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) { 1369 Stack.push_back({Kind, 1370 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit") 1371 : JumpDest(), 1372 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont") 1373 : JumpDest()}); 1374 } 1375 /// Emits default exit point for the cancel construct (if the special one 1376 /// has not be used) + join point for cancel/normal exits. 1377 void exit(CodeGenFunction &CGF) { 1378 if (getExitBlock().isValid()) { 1379 assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid()); 1380 bool HaveIP = CGF.HaveInsertPoint(); 1381 if (!Stack.back().HasBeenEmitted) { 1382 if (HaveIP) 1383 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1384 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1385 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1386 } 1387 CGF.EmitBlock(Stack.back().ContBlock.getBlock()); 1388 if (!HaveIP) { 1389 CGF.Builder.CreateUnreachable(); 1390 CGF.Builder.ClearInsertionPoint(); 1391 } 1392 } 1393 Stack.pop_back(); 1394 } 1395 }; 1396 OpenMPCancelExitStack OMPCancelStack; 1397 1398 CodeGenPGO PGO; 1399 1400 /// Calculate branch weights appropriate for PGO data 1401 llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount); 1402 llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights); 1403 llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond, 1404 uint64_t LoopCount); 1405 1406 public: 1407 /// Increment the profiler's counter for the given statement by \p StepV. 1408 /// If \p StepV is null, the default increment is 1. 1409 void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) { 1410 if (CGM.getCodeGenOpts().hasProfileClangInstr()) 1411 PGO.emitCounterIncrement(Builder, S, StepV); 1412 PGO.setCurrentStmt(S); 1413 } 1414 1415 /// Get the profiler's count for the given statement. 1416 uint64_t getProfileCount(const Stmt *S) { 1417 Optional<uint64_t> Count = PGO.getStmtCount(S); 1418 if (!Count.hasValue()) 1419 return 0; 1420 return *Count; 1421 } 1422 1423 /// Set the profiler's current count. 1424 void setCurrentProfileCount(uint64_t Count) { 1425 PGO.setCurrentRegionCount(Count); 1426 } 1427 1428 /// Get the profiler's current count. This is generally the count for the most 1429 /// recently incremented counter. 1430 uint64_t getCurrentProfileCount() { 1431 return PGO.getCurrentRegionCount(); 1432 } 1433 1434 private: 1435 1436 /// SwitchInsn - This is nearest current switch instruction. It is null if 1437 /// current context is not in a switch. 1438 llvm::SwitchInst *SwitchInsn = nullptr; 1439 /// The branch weights of SwitchInsn when doing instrumentation based PGO. 1440 SmallVector<uint64_t, 16> *SwitchWeights = nullptr; 1441 1442 /// CaseRangeBlock - This block holds if condition check for last case 1443 /// statement range in current switch instruction. 1444 llvm::BasicBlock *CaseRangeBlock = nullptr; 1445 1446 /// OpaqueLValues - Keeps track of the current set of opaque value 1447 /// expressions. 1448 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 1449 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 1450 1451 // VLASizeMap - This keeps track of the associated size for each VLA type. 1452 // We track this by the size expression rather than the type itself because 1453 // in certain situations, like a const qualifier applied to an VLA typedef, 1454 // multiple VLA types can share the same size expression. 1455 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 1456 // enter/leave scopes. 1457 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 1458 1459 /// A block containing a single 'unreachable' instruction. Created 1460 /// lazily by getUnreachableBlock(). 1461 llvm::BasicBlock *UnreachableBlock = nullptr; 1462 1463 /// Counts of the number return expressions in the function. 1464 unsigned NumReturnExprs = 0; 1465 1466 /// Count the number of simple (constant) return expressions in the function. 1467 unsigned NumSimpleReturnExprs = 0; 1468 1469 /// The last regular (non-return) debug location (breakpoint) in the function. 1470 SourceLocation LastStopPoint; 1471 1472 public: 1473 /// Source location information about the default argument or member 1474 /// initializer expression we're evaluating, if any. 1475 CurrentSourceLocExprScope CurSourceLocExprScope; 1476 using SourceLocExprScopeGuard = 1477 CurrentSourceLocExprScope::SourceLocExprScopeGuard; 1478 1479 /// A scope within which we are constructing the fields of an object which 1480 /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use 1481 /// if we need to evaluate a CXXDefaultInitExpr within the evaluation. 1482 class FieldConstructionScope { 1483 public: 1484 FieldConstructionScope(CodeGenFunction &CGF, Address This) 1485 : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) { 1486 CGF.CXXDefaultInitExprThis = This; 1487 } 1488 ~FieldConstructionScope() { 1489 CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis; 1490 } 1491 1492 private: 1493 CodeGenFunction &CGF; 1494 Address OldCXXDefaultInitExprThis; 1495 }; 1496 1497 /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this' 1498 /// is overridden to be the object under construction. 1499 class CXXDefaultInitExprScope { 1500 public: 1501 CXXDefaultInitExprScope(CodeGenFunction &CGF, const CXXDefaultInitExpr *E) 1502 : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue), 1503 OldCXXThisAlignment(CGF.CXXThisAlignment), 1504 SourceLocScope(E, CGF.CurSourceLocExprScope) { 1505 CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer(); 1506 CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment(); 1507 } 1508 ~CXXDefaultInitExprScope() { 1509 CGF.CXXThisValue = OldCXXThisValue; 1510 CGF.CXXThisAlignment = OldCXXThisAlignment; 1511 } 1512 1513 public: 1514 CodeGenFunction &CGF; 1515 llvm::Value *OldCXXThisValue; 1516 CharUnits OldCXXThisAlignment; 1517 SourceLocExprScopeGuard SourceLocScope; 1518 }; 1519 1520 struct CXXDefaultArgExprScope : SourceLocExprScopeGuard { 1521 CXXDefaultArgExprScope(CodeGenFunction &CGF, const CXXDefaultArgExpr *E) 1522 : SourceLocExprScopeGuard(E, CGF.CurSourceLocExprScope) {} 1523 }; 1524 1525 /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the 1526 /// current loop index is overridden. 1527 class ArrayInitLoopExprScope { 1528 public: 1529 ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index) 1530 : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) { 1531 CGF.ArrayInitIndex = Index; 1532 } 1533 ~ArrayInitLoopExprScope() { 1534 CGF.ArrayInitIndex = OldArrayInitIndex; 1535 } 1536 1537 private: 1538 CodeGenFunction &CGF; 1539 llvm::Value *OldArrayInitIndex; 1540 }; 1541 1542 class InlinedInheritingConstructorScope { 1543 public: 1544 InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD) 1545 : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl), 1546 OldCurCodeDecl(CGF.CurCodeDecl), 1547 OldCXXABIThisDecl(CGF.CXXABIThisDecl), 1548 OldCXXABIThisValue(CGF.CXXABIThisValue), 1549 OldCXXThisValue(CGF.CXXThisValue), 1550 OldCXXABIThisAlignment(CGF.CXXABIThisAlignment), 1551 OldCXXThisAlignment(CGF.CXXThisAlignment), 1552 OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy), 1553 OldCXXInheritedCtorInitExprArgs( 1554 std::move(CGF.CXXInheritedCtorInitExprArgs)) { 1555 CGF.CurGD = GD; 1556 CGF.CurFuncDecl = CGF.CurCodeDecl = 1557 cast<CXXConstructorDecl>(GD.getDecl()); 1558 CGF.CXXABIThisDecl = nullptr; 1559 CGF.CXXABIThisValue = nullptr; 1560 CGF.CXXThisValue = nullptr; 1561 CGF.CXXABIThisAlignment = CharUnits(); 1562 CGF.CXXThisAlignment = CharUnits(); 1563 CGF.ReturnValue = Address::invalid(); 1564 CGF.FnRetTy = QualType(); 1565 CGF.CXXInheritedCtorInitExprArgs.clear(); 1566 } 1567 ~InlinedInheritingConstructorScope() { 1568 CGF.CurGD = OldCurGD; 1569 CGF.CurFuncDecl = OldCurFuncDecl; 1570 CGF.CurCodeDecl = OldCurCodeDecl; 1571 CGF.CXXABIThisDecl = OldCXXABIThisDecl; 1572 CGF.CXXABIThisValue = OldCXXABIThisValue; 1573 CGF.CXXThisValue = OldCXXThisValue; 1574 CGF.CXXABIThisAlignment = OldCXXABIThisAlignment; 1575 CGF.CXXThisAlignment = OldCXXThisAlignment; 1576 CGF.ReturnValue = OldReturnValue; 1577 CGF.FnRetTy = OldFnRetTy; 1578 CGF.CXXInheritedCtorInitExprArgs = 1579 std::move(OldCXXInheritedCtorInitExprArgs); 1580 } 1581 1582 private: 1583 CodeGenFunction &CGF; 1584 GlobalDecl OldCurGD; 1585 const Decl *OldCurFuncDecl; 1586 const Decl *OldCurCodeDecl; 1587 ImplicitParamDecl *OldCXXABIThisDecl; 1588 llvm::Value *OldCXXABIThisValue; 1589 llvm::Value *OldCXXThisValue; 1590 CharUnits OldCXXABIThisAlignment; 1591 CharUnits OldCXXThisAlignment; 1592 Address OldReturnValue; 1593 QualType OldFnRetTy; 1594 CallArgList OldCXXInheritedCtorInitExprArgs; 1595 }; 1596 1597 // Helper class for the OpenMP IR Builder. Allows reusability of code used for 1598 // region body, and finalization codegen callbacks. This will class will also 1599 // contain privatization functions used by the privatization call backs 1600 // 1601 // TODO: this is temporary class for things that are being moved out of 1602 // CGOpenMPRuntime, new versions of current CodeGenFunction methods, or 1603 // utility function for use with the OMPBuilder. Once that move to use the 1604 // OMPBuilder is done, everything here will either become part of CodeGenFunc. 1605 // directly, or a new helper class that will contain functions used by both 1606 // this and the OMPBuilder 1607 1608 struct OMPBuilderCBHelpers { 1609 1610 OMPBuilderCBHelpers() = delete; 1611 OMPBuilderCBHelpers(const OMPBuilderCBHelpers &) = delete; 1612 OMPBuilderCBHelpers &operator=(const OMPBuilderCBHelpers &) = delete; 1613 1614 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 1615 1616 /// Cleanup action for allocate support. 1617 class OMPAllocateCleanupTy final : public EHScopeStack::Cleanup { 1618 1619 private: 1620 llvm::CallInst *RTLFnCI; 1621 1622 public: 1623 OMPAllocateCleanupTy(llvm::CallInst *RLFnCI) : RTLFnCI(RLFnCI) { 1624 RLFnCI->removeFromParent(); 1625 } 1626 1627 void Emit(CodeGenFunction &CGF, Flags /*flags*/) override { 1628 if (!CGF.HaveInsertPoint()) 1629 return; 1630 CGF.Builder.Insert(RTLFnCI); 1631 } 1632 }; 1633 1634 /// Returns address of the threadprivate variable for the current 1635 /// thread. This Also create any necessary OMP runtime calls. 1636 /// 1637 /// \param VD VarDecl for Threadprivate variable. 1638 /// \param VDAddr Address of the Vardecl 1639 /// \param Loc The location where the barrier directive was encountered 1640 static Address getAddrOfThreadPrivate(CodeGenFunction &CGF, 1641 const VarDecl *VD, Address VDAddr, 1642 SourceLocation Loc); 1643 1644 /// Gets the OpenMP-specific address of the local variable /p VD. 1645 static Address getAddressOfLocalVariable(CodeGenFunction &CGF, 1646 const VarDecl *VD); 1647 /// Get the platform-specific name separator. 1648 /// \param Parts different parts of the final name that needs separation 1649 /// \param FirstSeparator First separator used between the initial two 1650 /// parts of the name. 1651 /// \param Separator separator used between all of the rest consecutinve 1652 /// parts of the name 1653 static std::string getNameWithSeparators(ArrayRef<StringRef> Parts, 1654 StringRef FirstSeparator = ".", 1655 StringRef Separator = "."); 1656 /// Emit the Finalization for an OMP region 1657 /// \param CGF The Codegen function this belongs to 1658 /// \param IP Insertion point for generating the finalization code. 1659 static void FinalizeOMPRegion(CodeGenFunction &CGF, InsertPointTy IP) { 1660 CGBuilderTy::InsertPointGuard IPG(CGF.Builder); 1661 assert(IP.getBlock()->end() != IP.getPoint() && 1662 "OpenMP IR Builder should cause terminated block!"); 1663 1664 llvm::BasicBlock *IPBB = IP.getBlock(); 1665 llvm::BasicBlock *DestBB = IPBB->getUniqueSuccessor(); 1666 assert(DestBB && "Finalization block should have one successor!"); 1667 1668 // erase and replace with cleanup branch. 1669 IPBB->getTerminator()->eraseFromParent(); 1670 CGF.Builder.SetInsertPoint(IPBB); 1671 CodeGenFunction::JumpDest Dest = CGF.getJumpDestInCurrentScope(DestBB); 1672 CGF.EmitBranchThroughCleanup(Dest); 1673 } 1674 1675 /// Emit the body of an OMP region 1676 /// \param CGF The Codegen function this belongs to 1677 /// \param RegionBodyStmt The body statement for the OpenMP region being 1678 /// generated 1679 /// \param CodeGenIP Insertion point for generating the body code. 1680 /// \param FiniBB The finalization basic block 1681 static void EmitOMPRegionBody(CodeGenFunction &CGF, 1682 const Stmt *RegionBodyStmt, 1683 InsertPointTy CodeGenIP, 1684 llvm::BasicBlock &FiniBB) { 1685 llvm::BasicBlock *CodeGenIPBB = CodeGenIP.getBlock(); 1686 if (llvm::Instruction *CodeGenIPBBTI = CodeGenIPBB->getTerminator()) 1687 CodeGenIPBBTI->eraseFromParent(); 1688 1689 CGF.Builder.SetInsertPoint(CodeGenIPBB); 1690 1691 CGF.EmitStmt(RegionBodyStmt); 1692 1693 if (CGF.Builder.saveIP().isSet()) 1694 CGF.Builder.CreateBr(&FiniBB); 1695 } 1696 1697 /// RAII for preserving necessary info during Outlined region body codegen. 1698 class OutlinedRegionBodyRAII { 1699 1700 llvm::AssertingVH<llvm::Instruction> OldAllocaIP; 1701 CodeGenFunction::JumpDest OldReturnBlock; 1702 CGBuilderTy::InsertPoint IP; 1703 CodeGenFunction &CGF; 1704 1705 public: 1706 OutlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP, 1707 llvm::BasicBlock &RetBB) 1708 : CGF(cgf) { 1709 assert(AllocaIP.isSet() && 1710 "Must specify Insertion point for allocas of outlined function"); 1711 OldAllocaIP = CGF.AllocaInsertPt; 1712 CGF.AllocaInsertPt = &*AllocaIP.getPoint(); 1713 IP = CGF.Builder.saveIP(); 1714 1715 OldReturnBlock = CGF.ReturnBlock; 1716 CGF.ReturnBlock = CGF.getJumpDestInCurrentScope(&RetBB); 1717 } 1718 1719 ~OutlinedRegionBodyRAII() { 1720 CGF.AllocaInsertPt = OldAllocaIP; 1721 CGF.ReturnBlock = OldReturnBlock; 1722 CGF.Builder.restoreIP(IP); 1723 } 1724 }; 1725 1726 /// RAII for preserving necessary info during inlined region body codegen. 1727 class InlinedRegionBodyRAII { 1728 1729 llvm::AssertingVH<llvm::Instruction> OldAllocaIP; 1730 CodeGenFunction &CGF; 1731 1732 public: 1733 InlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP, 1734 llvm::BasicBlock &FiniBB) 1735 : CGF(cgf) { 1736 // Alloca insertion block should be in the entry block of the containing 1737 // function so it expects an empty AllocaIP in which case will reuse the 1738 // old alloca insertion point, or a new AllocaIP in the same block as 1739 // the old one 1740 assert((!AllocaIP.isSet() || 1741 CGF.AllocaInsertPt->getParent() == AllocaIP.getBlock()) && 1742 "Insertion point should be in the entry block of containing " 1743 "function!"); 1744 OldAllocaIP = CGF.AllocaInsertPt; 1745 if (AllocaIP.isSet()) 1746 CGF.AllocaInsertPt = &*AllocaIP.getPoint(); 1747 1748 // TODO: Remove the call, after making sure the counter is not used by 1749 // the EHStack. 1750 // Since this is an inlined region, it should not modify the 1751 // ReturnBlock, and should reuse the one for the enclosing outlined 1752 // region. So, the JumpDest being return by the function is discarded 1753 (void)CGF.getJumpDestInCurrentScope(&FiniBB); 1754 } 1755 1756 ~InlinedRegionBodyRAII() { CGF.AllocaInsertPt = OldAllocaIP; } 1757 }; 1758 }; 1759 1760 private: 1761 /// CXXThisDecl - When generating code for a C++ member function, 1762 /// this will hold the implicit 'this' declaration. 1763 ImplicitParamDecl *CXXABIThisDecl = nullptr; 1764 llvm::Value *CXXABIThisValue = nullptr; 1765 llvm::Value *CXXThisValue = nullptr; 1766 CharUnits CXXABIThisAlignment; 1767 CharUnits CXXThisAlignment; 1768 1769 /// The value of 'this' to use when evaluating CXXDefaultInitExprs within 1770 /// this expression. 1771 Address CXXDefaultInitExprThis = Address::invalid(); 1772 1773 /// The current array initialization index when evaluating an 1774 /// ArrayInitIndexExpr within an ArrayInitLoopExpr. 1775 llvm::Value *ArrayInitIndex = nullptr; 1776 1777 /// The values of function arguments to use when evaluating 1778 /// CXXInheritedCtorInitExprs within this context. 1779 CallArgList CXXInheritedCtorInitExprArgs; 1780 1781 /// CXXStructorImplicitParamDecl - When generating code for a constructor or 1782 /// destructor, this will hold the implicit argument (e.g. VTT). 1783 ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr; 1784 llvm::Value *CXXStructorImplicitParamValue = nullptr; 1785 1786 /// OutermostConditional - Points to the outermost active 1787 /// conditional control. This is used so that we know if a 1788 /// temporary should be destroyed conditionally. 1789 ConditionalEvaluation *OutermostConditional = nullptr; 1790 1791 /// The current lexical scope. 1792 LexicalScope *CurLexicalScope = nullptr; 1793 1794 /// The current source location that should be used for exception 1795 /// handling code. 1796 SourceLocation CurEHLocation; 1797 1798 /// BlockByrefInfos - For each __block variable, contains 1799 /// information about the layout of the variable. 1800 llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos; 1801 1802 /// Used by -fsanitize=nullability-return to determine whether the return 1803 /// value can be checked. 1804 llvm::Value *RetValNullabilityPrecondition = nullptr; 1805 1806 /// Check if -fsanitize=nullability-return instrumentation is required for 1807 /// this function. 1808 bool requiresReturnValueNullabilityCheck() const { 1809 return RetValNullabilityPrecondition; 1810 } 1811 1812 /// Used to store precise source locations for return statements by the 1813 /// runtime return value checks. 1814 Address ReturnLocation = Address::invalid(); 1815 1816 /// Check if the return value of this function requires sanitization. 1817 bool requiresReturnValueCheck() const; 1818 1819 llvm::BasicBlock *TerminateLandingPad = nullptr; 1820 llvm::BasicBlock *TerminateHandler = nullptr; 1821 llvm::BasicBlock *TrapBB = nullptr; 1822 1823 /// Terminate funclets keyed by parent funclet pad. 1824 llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets; 1825 1826 /// Largest vector width used in ths function. Will be used to create a 1827 /// function attribute. 1828 unsigned LargestVectorWidth = 0; 1829 1830 /// True if we need emit the life-time markers. 1831 const bool ShouldEmitLifetimeMarkers; 1832 1833 /// Add OpenCL kernel arg metadata and the kernel attribute metadata to 1834 /// the function metadata. 1835 void EmitOpenCLKernelMetadata(const FunctionDecl *FD, 1836 llvm::Function *Fn); 1837 1838 public: 1839 CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false); 1840 ~CodeGenFunction(); 1841 1842 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 1843 ASTContext &getContext() const { return CGM.getContext(); } 1844 CGDebugInfo *getDebugInfo() { 1845 if (DisableDebugInfo) 1846 return nullptr; 1847 return DebugInfo; 1848 } 1849 void disableDebugInfo() { DisableDebugInfo = true; } 1850 void enableDebugInfo() { DisableDebugInfo = false; } 1851 1852 bool shouldUseFusedARCCalls() { 1853 return CGM.getCodeGenOpts().OptimizationLevel == 0; 1854 } 1855 1856 const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } 1857 1858 /// Returns a pointer to the function's exception object and selector slot, 1859 /// which is assigned in every landing pad. 1860 Address getExceptionSlot(); 1861 Address getEHSelectorSlot(); 1862 1863 /// Returns the contents of the function's exception object and selector 1864 /// slots. 1865 llvm::Value *getExceptionFromSlot(); 1866 llvm::Value *getSelectorFromSlot(); 1867 1868 Address getNormalCleanupDestSlot(); 1869 1870 llvm::BasicBlock *getUnreachableBlock() { 1871 if (!UnreachableBlock) { 1872 UnreachableBlock = createBasicBlock("unreachable"); 1873 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 1874 } 1875 return UnreachableBlock; 1876 } 1877 1878 llvm::BasicBlock *getInvokeDest() { 1879 if (!EHStack.requiresLandingPad()) return nullptr; 1880 return getInvokeDestImpl(); 1881 } 1882 1883 bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; } 1884 1885 const TargetInfo &getTarget() const { return Target; } 1886 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 1887 const TargetCodeGenInfo &getTargetHooks() const { 1888 return CGM.getTargetCodeGenInfo(); 1889 } 1890 1891 //===--------------------------------------------------------------------===// 1892 // Cleanups 1893 //===--------------------------------------------------------------------===// 1894 1895 typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty); 1896 1897 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1898 Address arrayEndPointer, 1899 QualType elementType, 1900 CharUnits elementAlignment, 1901 Destroyer *destroyer); 1902 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1903 llvm::Value *arrayEnd, 1904 QualType elementType, 1905 CharUnits elementAlignment, 1906 Destroyer *destroyer); 1907 1908 void pushDestroy(QualType::DestructionKind dtorKind, 1909 Address addr, QualType type); 1910 void pushEHDestroy(QualType::DestructionKind dtorKind, 1911 Address addr, QualType type); 1912 void pushDestroy(CleanupKind kind, Address addr, QualType type, 1913 Destroyer *destroyer, bool useEHCleanupForArray); 1914 void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr, 1915 QualType type, Destroyer *destroyer, 1916 bool useEHCleanupForArray); 1917 void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 1918 llvm::Value *CompletePtr, 1919 QualType ElementType); 1920 void pushStackRestore(CleanupKind kind, Address SPMem); 1921 void emitDestroy(Address addr, QualType type, Destroyer *destroyer, 1922 bool useEHCleanupForArray); 1923 llvm::Function *generateDestroyHelper(Address addr, QualType type, 1924 Destroyer *destroyer, 1925 bool useEHCleanupForArray, 1926 const VarDecl *VD); 1927 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 1928 QualType elementType, CharUnits elementAlign, 1929 Destroyer *destroyer, 1930 bool checkZeroLength, bool useEHCleanup); 1931 1932 Destroyer *getDestroyer(QualType::DestructionKind destructionKind); 1933 1934 /// Determines whether an EH cleanup is required to destroy a type 1935 /// with the given destruction kind. 1936 bool needsEHCleanup(QualType::DestructionKind kind) { 1937 switch (kind) { 1938 case QualType::DK_none: 1939 return false; 1940 case QualType::DK_cxx_destructor: 1941 case QualType::DK_objc_weak_lifetime: 1942 case QualType::DK_nontrivial_c_struct: 1943 return getLangOpts().Exceptions; 1944 case QualType::DK_objc_strong_lifetime: 1945 return getLangOpts().Exceptions && 1946 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 1947 } 1948 llvm_unreachable("bad destruction kind"); 1949 } 1950 1951 CleanupKind getCleanupKind(QualType::DestructionKind kind) { 1952 return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); 1953 } 1954 1955 //===--------------------------------------------------------------------===// 1956 // Objective-C 1957 //===--------------------------------------------------------------------===// 1958 1959 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 1960 1961 void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD); 1962 1963 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 1964 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 1965 const ObjCPropertyImplDecl *PID); 1966 void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 1967 const ObjCPropertyImplDecl *propImpl, 1968 const ObjCMethodDecl *GetterMothodDecl, 1969 llvm::Constant *AtomicHelperFn); 1970 1971 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1972 ObjCMethodDecl *MD, bool ctor); 1973 1974 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 1975 /// for the given property. 1976 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 1977 const ObjCPropertyImplDecl *PID); 1978 void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1979 const ObjCPropertyImplDecl *propImpl, 1980 llvm::Constant *AtomicHelperFn); 1981 1982 //===--------------------------------------------------------------------===// 1983 // Block Bits 1984 //===--------------------------------------------------------------------===// 1985 1986 /// Emit block literal. 1987 /// \return an LLVM value which is a pointer to a struct which contains 1988 /// information about the block, including the block invoke function, the 1989 /// captured variables, etc. 1990 llvm::Value *EmitBlockLiteral(const BlockExpr *); 1991 1992 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 1993 const CGBlockInfo &Info, 1994 const DeclMapTy &ldm, 1995 bool IsLambdaConversionToBlock, 1996 bool BuildGlobalBlock); 1997 1998 /// Check if \p T is a C++ class that has a destructor that can throw. 1999 static bool cxxDestructorCanThrow(QualType T); 2000 2001 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 2002 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 2003 llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( 2004 const ObjCPropertyImplDecl *PID); 2005 llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( 2006 const ObjCPropertyImplDecl *PID); 2007 llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); 2008 2009 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags, 2010 bool CanThrow); 2011 2012 class AutoVarEmission; 2013 2014 void emitByrefStructureInit(const AutoVarEmission &emission); 2015 2016 /// Enter a cleanup to destroy a __block variable. Note that this 2017 /// cleanup should be a no-op if the variable hasn't left the stack 2018 /// yet; if a cleanup is required for the variable itself, that needs 2019 /// to be done externally. 2020 /// 2021 /// \param Kind Cleanup kind. 2022 /// 2023 /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block 2024 /// structure that will be passed to _Block_object_dispose. When 2025 /// \p LoadBlockVarAddr is true, the address of the field of the block 2026 /// structure that holds the address of the __block structure. 2027 /// 2028 /// \param Flags The flag that will be passed to _Block_object_dispose. 2029 /// 2030 /// \param LoadBlockVarAddr Indicates whether we need to emit a load from 2031 /// \p Addr to get the address of the __block structure. 2032 void enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags, 2033 bool LoadBlockVarAddr, bool CanThrow); 2034 2035 void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum, 2036 llvm::Value *ptr); 2037 2038 Address LoadBlockStruct(); 2039 Address GetAddrOfBlockDecl(const VarDecl *var); 2040 2041 /// BuildBlockByrefAddress - Computes the location of the 2042 /// data in a variable which is declared as __block. 2043 Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V, 2044 bool followForward = true); 2045 Address emitBlockByrefAddress(Address baseAddr, 2046 const BlockByrefInfo &info, 2047 bool followForward, 2048 const llvm::Twine &name); 2049 2050 const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var); 2051 2052 QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args); 2053 2054 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 2055 const CGFunctionInfo &FnInfo); 2056 2057 /// Annotate the function with an attribute that disables TSan checking at 2058 /// runtime. 2059 void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn); 2060 2061 /// Emit code for the start of a function. 2062 /// \param Loc The location to be associated with the function. 2063 /// \param StartLoc The location of the function body. 2064 void StartFunction(GlobalDecl GD, 2065 QualType RetTy, 2066 llvm::Function *Fn, 2067 const CGFunctionInfo &FnInfo, 2068 const FunctionArgList &Args, 2069 SourceLocation Loc = SourceLocation(), 2070 SourceLocation StartLoc = SourceLocation()); 2071 2072 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor); 2073 2074 void EmitConstructorBody(FunctionArgList &Args); 2075 void EmitDestructorBody(FunctionArgList &Args); 2076 void emitImplicitAssignmentOperatorBody(FunctionArgList &Args); 2077 void EmitFunctionBody(const Stmt *Body); 2078 void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S); 2079 2080 void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator, 2081 CallArgList &CallArgs); 2082 void EmitLambdaBlockInvokeBody(); 2083 void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD); 2084 void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD); 2085 void EmitLambdaVLACapture(const VariableArrayType *VAT, LValue LV) { 2086 EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); 2087 } 2088 void EmitAsanPrologueOrEpilogue(bool Prologue); 2089 2090 /// Emit the unified return block, trying to avoid its emission when 2091 /// possible. 2092 /// \return The debug location of the user written return statement if the 2093 /// return block is is avoided. 2094 llvm::DebugLoc EmitReturnBlock(); 2095 2096 /// FinishFunction - Complete IR generation of the current function. It is 2097 /// legal to call this function even if there is no current insertion point. 2098 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 2099 2100 void StartThunk(llvm::Function *Fn, GlobalDecl GD, 2101 const CGFunctionInfo &FnInfo, bool IsUnprototyped); 2102 2103 void EmitCallAndReturnForThunk(llvm::FunctionCallee Callee, 2104 const ThunkInfo *Thunk, bool IsUnprototyped); 2105 2106 void FinishThunk(); 2107 2108 /// Emit a musttail call for a thunk with a potentially adjusted this pointer. 2109 void EmitMustTailThunk(GlobalDecl GD, llvm::Value *AdjustedThisPtr, 2110 llvm::FunctionCallee Callee); 2111 2112 /// Generate a thunk for the given method. 2113 void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 2114 GlobalDecl GD, const ThunkInfo &Thunk, 2115 bool IsUnprototyped); 2116 2117 llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn, 2118 const CGFunctionInfo &FnInfo, 2119 GlobalDecl GD, const ThunkInfo &Thunk); 2120 2121 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 2122 FunctionArgList &Args); 2123 2124 void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init); 2125 2126 /// Struct with all information about dynamic [sub]class needed to set vptr. 2127 struct VPtr { 2128 BaseSubobject Base; 2129 const CXXRecordDecl *NearestVBase; 2130 CharUnits OffsetFromNearestVBase; 2131 const CXXRecordDecl *VTableClass; 2132 }; 2133 2134 /// Initialize the vtable pointer of the given subobject. 2135 void InitializeVTablePointer(const VPtr &vptr); 2136 2137 typedef llvm::SmallVector<VPtr, 4> VPtrsVector; 2138 2139 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 2140 VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass); 2141 2142 void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase, 2143 CharUnits OffsetFromNearestVBase, 2144 bool BaseIsNonVirtualPrimaryBase, 2145 const CXXRecordDecl *VTableClass, 2146 VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs); 2147 2148 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 2149 2150 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 2151 /// to by This. 2152 llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy, 2153 const CXXRecordDecl *VTableClass); 2154 2155 enum CFITypeCheckKind { 2156 CFITCK_VCall, 2157 CFITCK_NVCall, 2158 CFITCK_DerivedCast, 2159 CFITCK_UnrelatedCast, 2160 CFITCK_ICall, 2161 CFITCK_NVMFCall, 2162 CFITCK_VMFCall, 2163 }; 2164 2165 /// Derived is the presumed address of an object of type T after a 2166 /// cast. If T is a polymorphic class type, emit a check that the virtual 2167 /// table for Derived belongs to a class derived from T. 2168 void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived, 2169 bool MayBeNull, CFITypeCheckKind TCK, 2170 SourceLocation Loc); 2171 2172 /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable. 2173 /// If vptr CFI is enabled, emit a check that VTable is valid. 2174 void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable, 2175 CFITypeCheckKind TCK, SourceLocation Loc); 2176 2177 /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for 2178 /// RD using llvm.type.test. 2179 void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable, 2180 CFITypeCheckKind TCK, SourceLocation Loc); 2181 2182 /// If whole-program virtual table optimization is enabled, emit an assumption 2183 /// that VTable is a member of RD's type identifier. Or, if vptr CFI is 2184 /// enabled, emit a check that VTable is a member of RD's type identifier. 2185 void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, 2186 llvm::Value *VTable, SourceLocation Loc); 2187 2188 /// Returns whether we should perform a type checked load when loading a 2189 /// virtual function for virtual calls to members of RD. This is generally 2190 /// true when both vcall CFI and whole-program-vtables are enabled. 2191 bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD); 2192 2193 /// Emit a type checked load from the given vtable. 2194 llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable, 2195 uint64_t VTableByteOffset); 2196 2197 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 2198 /// given phase of destruction for a destructor. The end result 2199 /// should call destructors on members and base classes in reverse 2200 /// order of their construction. 2201 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 2202 2203 /// ShouldInstrumentFunction - Return true if the current function should be 2204 /// instrumented with __cyg_profile_func_* calls 2205 bool ShouldInstrumentFunction(); 2206 2207 /// ShouldXRayInstrument - Return true if the current function should be 2208 /// instrumented with XRay nop sleds. 2209 bool ShouldXRayInstrumentFunction() const; 2210 2211 /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit 2212 /// XRay custom event handling calls. 2213 bool AlwaysEmitXRayCustomEvents() const; 2214 2215 /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit 2216 /// XRay typed event handling calls. 2217 bool AlwaysEmitXRayTypedEvents() const; 2218 2219 /// Encode an address into a form suitable for use in a function prologue. 2220 llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F, 2221 llvm::Constant *Addr); 2222 2223 /// Decode an address used in a function prologue, encoded by \c 2224 /// EncodeAddrForUseInPrologue. 2225 llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F, 2226 llvm::Value *EncodedAddr); 2227 2228 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 2229 /// arguments for the given function. This is also responsible for naming the 2230 /// LLVM function arguments. 2231 void EmitFunctionProlog(const CGFunctionInfo &FI, 2232 llvm::Function *Fn, 2233 const FunctionArgList &Args); 2234 2235 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 2236 /// given temporary. 2237 void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc, 2238 SourceLocation EndLoc); 2239 2240 /// Emit a test that checks if the return value \p RV is nonnull. 2241 void EmitReturnValueCheck(llvm::Value *RV); 2242 2243 /// EmitStartEHSpec - Emit the start of the exception spec. 2244 void EmitStartEHSpec(const Decl *D); 2245 2246 /// EmitEndEHSpec - Emit the end of the exception spec. 2247 void EmitEndEHSpec(const Decl *D); 2248 2249 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 2250 llvm::BasicBlock *getTerminateLandingPad(); 2251 2252 /// getTerminateLandingPad - Return a cleanup funclet that just calls 2253 /// terminate. 2254 llvm::BasicBlock *getTerminateFunclet(); 2255 2256 /// getTerminateHandler - Return a handler (not a landing pad, just 2257 /// a catch handler) that just calls terminate. This is used when 2258 /// a terminate scope encloses a try. 2259 llvm::BasicBlock *getTerminateHandler(); 2260 2261 llvm::Type *ConvertTypeForMem(QualType T); 2262 llvm::Type *ConvertType(QualType T); 2263 llvm::Type *ConvertType(const TypeDecl *T) { 2264 return ConvertType(getContext().getTypeDeclType(T)); 2265 } 2266 2267 /// LoadObjCSelf - Load the value of self. This function is only valid while 2268 /// generating code for an Objective-C method. 2269 llvm::Value *LoadObjCSelf(); 2270 2271 /// TypeOfSelfObject - Return type of object that this self represents. 2272 QualType TypeOfSelfObject(); 2273 2274 /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T. 2275 static TypeEvaluationKind getEvaluationKind(QualType T); 2276 2277 static bool hasScalarEvaluationKind(QualType T) { 2278 return getEvaluationKind(T) == TEK_Scalar; 2279 } 2280 2281 static bool hasAggregateEvaluationKind(QualType T) { 2282 return getEvaluationKind(T) == TEK_Aggregate; 2283 } 2284 2285 /// createBasicBlock - Create an LLVM basic block. 2286 llvm::BasicBlock *createBasicBlock(const Twine &name = "", 2287 llvm::Function *parent = nullptr, 2288 llvm::BasicBlock *before = nullptr) { 2289 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 2290 } 2291 2292 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 2293 /// label maps to. 2294 JumpDest getJumpDestForLabel(const LabelDecl *S); 2295 2296 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 2297 /// another basic block, simplify it. This assumes that no other code could 2298 /// potentially reference the basic block. 2299 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 2300 2301 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 2302 /// adding a fall-through branch from the current insert block if 2303 /// necessary. It is legal to call this function even if there is no current 2304 /// insertion point. 2305 /// 2306 /// IsFinished - If true, indicates that the caller has finished emitting 2307 /// branches to the given block and does not expect to emit code into it. This 2308 /// means the block can be ignored if it is unreachable. 2309 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 2310 2311 /// EmitBlockAfterUses - Emit the given block somewhere hopefully 2312 /// near its uses, and leave the insertion point in it. 2313 void EmitBlockAfterUses(llvm::BasicBlock *BB); 2314 2315 /// EmitBranch - Emit a branch to the specified basic block from the current 2316 /// insert block, taking care to avoid creation of branches from dummy 2317 /// blocks. It is legal to call this function even if there is no current 2318 /// insertion point. 2319 /// 2320 /// This function clears the current insertion point. The caller should follow 2321 /// calls to this function with calls to Emit*Block prior to generation new 2322 /// code. 2323 void EmitBranch(llvm::BasicBlock *Block); 2324 2325 /// HaveInsertPoint - True if an insertion point is defined. If not, this 2326 /// indicates that the current code being emitted is unreachable. 2327 bool HaveInsertPoint() const { 2328 return Builder.GetInsertBlock() != nullptr; 2329 } 2330 2331 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 2332 /// emitted IR has a place to go. Note that by definition, if this function 2333 /// creates a block then that block is unreachable; callers may do better to 2334 /// detect when no insertion point is defined and simply skip IR generation. 2335 void EnsureInsertPoint() { 2336 if (!HaveInsertPoint()) 2337 EmitBlock(createBasicBlock()); 2338 } 2339 2340 /// ErrorUnsupported - Print out an error that codegen doesn't support the 2341 /// specified stmt yet. 2342 void ErrorUnsupported(const Stmt *S, const char *Type); 2343 2344 //===--------------------------------------------------------------------===// 2345 // Helpers 2346 //===--------------------------------------------------------------------===// 2347 2348 LValue MakeAddrLValue(Address Addr, QualType T, 2349 AlignmentSource Source = AlignmentSource::Type) { 2350 return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source), 2351 CGM.getTBAAAccessInfo(T)); 2352 } 2353 2354 LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo, 2355 TBAAAccessInfo TBAAInfo) { 2356 return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo); 2357 } 2358 2359 LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 2360 AlignmentSource Source = AlignmentSource::Type) { 2361 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), 2362 LValueBaseInfo(Source), CGM.getTBAAAccessInfo(T)); 2363 } 2364 2365 LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 2366 LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) { 2367 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), 2368 BaseInfo, TBAAInfo); 2369 } 2370 2371 LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T); 2372 LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T); 2373 2374 Address EmitLoadOfReference(LValue RefLVal, 2375 LValueBaseInfo *PointeeBaseInfo = nullptr, 2376 TBAAAccessInfo *PointeeTBAAInfo = nullptr); 2377 LValue EmitLoadOfReferenceLValue(LValue RefLVal); 2378 LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy, 2379 AlignmentSource Source = 2380 AlignmentSource::Type) { 2381 LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source), 2382 CGM.getTBAAAccessInfo(RefTy)); 2383 return EmitLoadOfReferenceLValue(RefLVal); 2384 } 2385 2386 Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy, 2387 LValueBaseInfo *BaseInfo = nullptr, 2388 TBAAAccessInfo *TBAAInfo = nullptr); 2389 LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy); 2390 2391 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 2392 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 2393 /// insertion point of the builder. The caller is responsible for setting an 2394 /// appropriate alignment on 2395 /// the alloca. 2396 /// 2397 /// \p ArraySize is the number of array elements to be allocated if it 2398 /// is not nullptr. 2399 /// 2400 /// LangAS::Default is the address space of pointers to local variables and 2401 /// temporaries, as exposed in the source language. In certain 2402 /// configurations, this is not the same as the alloca address space, and a 2403 /// cast is needed to lift the pointer from the alloca AS into 2404 /// LangAS::Default. This can happen when the target uses a restricted 2405 /// address space for the stack but the source language requires 2406 /// LangAS::Default to be a generic address space. The latter condition is 2407 /// common for most programming languages; OpenCL is an exception in that 2408 /// LangAS::Default is the private address space, which naturally maps 2409 /// to the stack. 2410 /// 2411 /// Because the address of a temporary is often exposed to the program in 2412 /// various ways, this function will perform the cast. The original alloca 2413 /// instruction is returned through \p Alloca if it is not nullptr. 2414 /// 2415 /// The cast is not performaed in CreateTempAllocaWithoutCast. This is 2416 /// more efficient if the caller knows that the address will not be exposed. 2417 llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp", 2418 llvm::Value *ArraySize = nullptr); 2419 Address CreateTempAlloca(llvm::Type *Ty, CharUnits align, 2420 const Twine &Name = "tmp", 2421 llvm::Value *ArraySize = nullptr, 2422 Address *Alloca = nullptr); 2423 Address CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align, 2424 const Twine &Name = "tmp", 2425 llvm::Value *ArraySize = nullptr); 2426 2427 /// CreateDefaultAlignedTempAlloca - This creates an alloca with the 2428 /// default ABI alignment of the given LLVM type. 2429 /// 2430 /// IMPORTANT NOTE: This is *not* generally the right alignment for 2431 /// any given AST type that happens to have been lowered to the 2432 /// given IR type. This should only ever be used for function-local, 2433 /// IR-driven manipulations like saving and restoring a value. Do 2434 /// not hand this address off to arbitrary IRGen routines, and especially 2435 /// do not pass it as an argument to a function that might expect a 2436 /// properly ABI-aligned value. 2437 Address CreateDefaultAlignTempAlloca(llvm::Type *Ty, 2438 const Twine &Name = "tmp"); 2439 2440 /// InitTempAlloca - Provide an initial value for the given alloca which 2441 /// will be observable at all locations in the function. 2442 /// 2443 /// The address should be something that was returned from one of 2444 /// the CreateTempAlloca or CreateMemTemp routines, and the 2445 /// initializer must be valid in the entry block (i.e. it must 2446 /// either be a constant or an argument value). 2447 void InitTempAlloca(Address Alloca, llvm::Value *Value); 2448 2449 /// CreateIRTemp - Create a temporary IR object of the given type, with 2450 /// appropriate alignment. This routine should only be used when an temporary 2451 /// value needs to be stored into an alloca (for example, to avoid explicit 2452 /// PHI construction), but the type is the IR type, not the type appropriate 2453 /// for storing in memory. 2454 /// 2455 /// That is, this is exactly equivalent to CreateMemTemp, but calling 2456 /// ConvertType instead of ConvertTypeForMem. 2457 Address CreateIRTemp(QualType T, const Twine &Name = "tmp"); 2458 2459 /// CreateMemTemp - Create a temporary memory object of the given type, with 2460 /// appropriate alignmen and cast it to the default address space. Returns 2461 /// the original alloca instruction by \p Alloca if it is not nullptr. 2462 Address CreateMemTemp(QualType T, const Twine &Name = "tmp", 2463 Address *Alloca = nullptr); 2464 Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp", 2465 Address *Alloca = nullptr); 2466 2467 /// CreateMemTemp - Create a temporary memory object of the given type, with 2468 /// appropriate alignmen without casting it to the default address space. 2469 Address CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp"); 2470 Address CreateMemTempWithoutCast(QualType T, CharUnits Align, 2471 const Twine &Name = "tmp"); 2472 2473 /// CreateAggTemp - Create a temporary memory object for the given 2474 /// aggregate type. 2475 AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp", 2476 Address *Alloca = nullptr) { 2477 return AggValueSlot::forAddr(CreateMemTemp(T, Name, Alloca), 2478 T.getQualifiers(), 2479 AggValueSlot::IsNotDestructed, 2480 AggValueSlot::DoesNotNeedGCBarriers, 2481 AggValueSlot::IsNotAliased, 2482 AggValueSlot::DoesNotOverlap); 2483 } 2484 2485 /// Emit a cast to void* in the appropriate address space. 2486 llvm::Value *EmitCastToVoidPtr(llvm::Value *value); 2487 2488 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 2489 /// expression and compare the result against zero, returning an Int1Ty value. 2490 llvm::Value *EvaluateExprAsBool(const Expr *E); 2491 2492 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 2493 void EmitIgnoredExpr(const Expr *E); 2494 2495 /// EmitAnyExpr - Emit code to compute the specified expression which can have 2496 /// any type. The result is returned as an RValue struct. If this is an 2497 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 2498 /// the result should be returned. 2499 /// 2500 /// \param ignoreResult True if the resulting value isn't used. 2501 RValue EmitAnyExpr(const Expr *E, 2502 AggValueSlot aggSlot = AggValueSlot::ignored(), 2503 bool ignoreResult = false); 2504 2505 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 2506 // or the value of the expression, depending on how va_list is defined. 2507 Address EmitVAListRef(const Expr *E); 2508 2509 /// Emit a "reference" to a __builtin_ms_va_list; this is 2510 /// always the value of the expression, because a __builtin_ms_va_list is a 2511 /// pointer to a char. 2512 Address EmitMSVAListRef(const Expr *E); 2513 2514 /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will 2515 /// always be accessible even if no aggregate location is provided. 2516 RValue EmitAnyExprToTemp(const Expr *E); 2517 2518 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 2519 /// arbitrary expression into the given memory location. 2520 void EmitAnyExprToMem(const Expr *E, Address Location, 2521 Qualifiers Quals, bool IsInitializer); 2522 2523 void EmitAnyExprToExn(const Expr *E, Address Addr); 2524 2525 /// EmitExprAsInit - Emits the code necessary to initialize a 2526 /// location in memory with the given initializer. 2527 void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2528 bool capturedByInit); 2529 2530 /// hasVolatileMember - returns true if aggregate type has a volatile 2531 /// member. 2532 bool hasVolatileMember(QualType T) { 2533 if (const RecordType *RT = T->getAs<RecordType>()) { 2534 const RecordDecl *RD = cast<RecordDecl>(RT->getDecl()); 2535 return RD->hasVolatileMember(); 2536 } 2537 return false; 2538 } 2539 2540 /// Determine whether a return value slot may overlap some other object. 2541 AggValueSlot::Overlap_t getOverlapForReturnValue() { 2542 // FIXME: Assuming no overlap here breaks guaranteed copy elision for base 2543 // class subobjects. These cases may need to be revisited depending on the 2544 // resolution of the relevant core issue. 2545 return AggValueSlot::DoesNotOverlap; 2546 } 2547 2548 /// Determine whether a field initialization may overlap some other object. 2549 AggValueSlot::Overlap_t getOverlapForFieldInit(const FieldDecl *FD); 2550 2551 /// Determine whether a base class initialization may overlap some other 2552 /// object. 2553 AggValueSlot::Overlap_t getOverlapForBaseInit(const CXXRecordDecl *RD, 2554 const CXXRecordDecl *BaseRD, 2555 bool IsVirtual); 2556 2557 /// Emit an aggregate assignment. 2558 void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) { 2559 bool IsVolatile = hasVolatileMember(EltTy); 2560 EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile); 2561 } 2562 2563 void EmitAggregateCopyCtor(LValue Dest, LValue Src, 2564 AggValueSlot::Overlap_t MayOverlap) { 2565 EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap); 2566 } 2567 2568 /// EmitAggregateCopy - Emit an aggregate copy. 2569 /// 2570 /// \param isVolatile \c true iff either the source or the destination is 2571 /// volatile. 2572 /// \param MayOverlap Whether the tail padding of the destination might be 2573 /// occupied by some other object. More efficient code can often be 2574 /// generated if not. 2575 void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy, 2576 AggValueSlot::Overlap_t MayOverlap, 2577 bool isVolatile = false); 2578 2579 /// GetAddrOfLocalVar - Return the address of a local variable. 2580 Address GetAddrOfLocalVar(const VarDecl *VD) { 2581 auto it = LocalDeclMap.find(VD); 2582 assert(it != LocalDeclMap.end() && 2583 "Invalid argument to GetAddrOfLocalVar(), no decl!"); 2584 return it->second; 2585 } 2586 2587 /// Given an opaque value expression, return its LValue mapping if it exists, 2588 /// otherwise create one. 2589 LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e); 2590 2591 /// Given an opaque value expression, return its RValue mapping if it exists, 2592 /// otherwise create one. 2593 RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e); 2594 2595 /// Get the index of the current ArrayInitLoopExpr, if any. 2596 llvm::Value *getArrayInitIndex() { return ArrayInitIndex; } 2597 2598 /// getAccessedFieldNo - Given an encoded value and a result number, return 2599 /// the input field number being accessed. 2600 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 2601 2602 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 2603 llvm::BasicBlock *GetIndirectGotoBlock(); 2604 2605 /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts. 2606 static bool IsWrappedCXXThis(const Expr *E); 2607 2608 /// EmitNullInitialization - Generate code to set a value of the given type to 2609 /// null, If the type contains data member pointers, they will be initialized 2610 /// to -1 in accordance with the Itanium C++ ABI. 2611 void EmitNullInitialization(Address DestPtr, QualType Ty); 2612 2613 /// Emits a call to an LLVM variable-argument intrinsic, either 2614 /// \c llvm.va_start or \c llvm.va_end. 2615 /// \param ArgValue A reference to the \c va_list as emitted by either 2616 /// \c EmitVAListRef or \c EmitMSVAListRef. 2617 /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise, 2618 /// calls \c llvm.va_end. 2619 llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart); 2620 2621 /// Generate code to get an argument from the passed in pointer 2622 /// and update it accordingly. 2623 /// \param VE The \c VAArgExpr for which to generate code. 2624 /// \param VAListAddr Receives a reference to the \c va_list as emitted by 2625 /// either \c EmitVAListRef or \c EmitMSVAListRef. 2626 /// \returns A pointer to the argument. 2627 // FIXME: We should be able to get rid of this method and use the va_arg 2628 // instruction in LLVM instead once it works well enough. 2629 Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr); 2630 2631 /// emitArrayLength - Compute the length of an array, even if it's a 2632 /// VLA, and drill down to the base element type. 2633 llvm::Value *emitArrayLength(const ArrayType *arrayType, 2634 QualType &baseType, 2635 Address &addr); 2636 2637 /// EmitVLASize - Capture all the sizes for the VLA expressions in 2638 /// the given variably-modified type and store them in the VLASizeMap. 2639 /// 2640 /// This function can be called with a null (unreachable) insert point. 2641 void EmitVariablyModifiedType(QualType Ty); 2642 2643 struct VlaSizePair { 2644 llvm::Value *NumElts; 2645 QualType Type; 2646 2647 VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {} 2648 }; 2649 2650 /// Return the number of elements for a single dimension 2651 /// for the given array type. 2652 VlaSizePair getVLAElements1D(const VariableArrayType *vla); 2653 VlaSizePair getVLAElements1D(QualType vla); 2654 2655 /// Returns an LLVM value that corresponds to the size, 2656 /// in non-variably-sized elements, of a variable length array type, 2657 /// plus that largest non-variably-sized element type. Assumes that 2658 /// the type has already been emitted with EmitVariablyModifiedType. 2659 VlaSizePair getVLASize(const VariableArrayType *vla); 2660 VlaSizePair getVLASize(QualType vla); 2661 2662 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 2663 /// generating code for an C++ member function. 2664 llvm::Value *LoadCXXThis() { 2665 assert(CXXThisValue && "no 'this' value for this function"); 2666 return CXXThisValue; 2667 } 2668 Address LoadCXXThisAddress(); 2669 2670 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 2671 /// virtual bases. 2672 // FIXME: Every place that calls LoadCXXVTT is something 2673 // that needs to be abstracted properly. 2674 llvm::Value *LoadCXXVTT() { 2675 assert(CXXStructorImplicitParamValue && "no VTT value for this function"); 2676 return CXXStructorImplicitParamValue; 2677 } 2678 2679 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 2680 /// complete class to the given direct base. 2681 Address 2682 GetAddressOfDirectBaseInCompleteClass(Address Value, 2683 const CXXRecordDecl *Derived, 2684 const CXXRecordDecl *Base, 2685 bool BaseIsVirtual); 2686 2687 static bool ShouldNullCheckClassCastValue(const CastExpr *Cast); 2688 2689 /// GetAddressOfBaseClass - This function will add the necessary delta to the 2690 /// load of 'this' and returns address of the base class. 2691 Address GetAddressOfBaseClass(Address Value, 2692 const CXXRecordDecl *Derived, 2693 CastExpr::path_const_iterator PathBegin, 2694 CastExpr::path_const_iterator PathEnd, 2695 bool NullCheckValue, SourceLocation Loc); 2696 2697 Address GetAddressOfDerivedClass(Address Value, 2698 const CXXRecordDecl *Derived, 2699 CastExpr::path_const_iterator PathBegin, 2700 CastExpr::path_const_iterator PathEnd, 2701 bool NullCheckValue); 2702 2703 /// GetVTTParameter - Return the VTT parameter that should be passed to a 2704 /// base constructor/destructor with virtual bases. 2705 /// FIXME: VTTs are Itanium ABI-specific, so the definition should move 2706 /// to ItaniumCXXABI.cpp together with all the references to VTT. 2707 llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase, 2708 bool Delegating); 2709 2710 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 2711 CXXCtorType CtorType, 2712 const FunctionArgList &Args, 2713 SourceLocation Loc); 2714 // It's important not to confuse this and the previous function. Delegating 2715 // constructors are the C++0x feature. The constructor delegate optimization 2716 // is used to reduce duplication in the base and complete consturctors where 2717 // they are substantially the same. 2718 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2719 const FunctionArgList &Args); 2720 2721 /// Emit a call to an inheriting constructor (that is, one that invokes a 2722 /// constructor inherited from a base class) by inlining its definition. This 2723 /// is necessary if the ABI does not support forwarding the arguments to the 2724 /// base class constructor (because they're variadic or similar). 2725 void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2726 CXXCtorType CtorType, 2727 bool ForVirtualBase, 2728 bool Delegating, 2729 CallArgList &Args); 2730 2731 /// Emit a call to a constructor inherited from a base class, passing the 2732 /// current constructor's arguments along unmodified (without even making 2733 /// a copy). 2734 void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D, 2735 bool ForVirtualBase, Address This, 2736 bool InheritedFromVBase, 2737 const CXXInheritedCtorInitExpr *E); 2738 2739 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2740 bool ForVirtualBase, bool Delegating, 2741 AggValueSlot ThisAVS, const CXXConstructExpr *E); 2742 2743 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2744 bool ForVirtualBase, bool Delegating, 2745 Address This, CallArgList &Args, 2746 AggValueSlot::Overlap_t Overlap, 2747 SourceLocation Loc, bool NewPointerIsChecked); 2748 2749 /// Emit assumption load for all bases. Requires to be be called only on 2750 /// most-derived class and not under construction of the object. 2751 void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This); 2752 2753 /// Emit assumption that vptr load == global vtable. 2754 void EmitVTableAssumptionLoad(const VPtr &vptr, Address This); 2755 2756 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 2757 Address This, Address Src, 2758 const CXXConstructExpr *E); 2759 2760 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2761 const ArrayType *ArrayTy, 2762 Address ArrayPtr, 2763 const CXXConstructExpr *E, 2764 bool NewPointerIsChecked, 2765 bool ZeroInitialization = false); 2766 2767 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2768 llvm::Value *NumElements, 2769 Address ArrayPtr, 2770 const CXXConstructExpr *E, 2771 bool NewPointerIsChecked, 2772 bool ZeroInitialization = false); 2773 2774 static Destroyer destroyCXXObject; 2775 2776 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 2777 bool ForVirtualBase, bool Delegating, Address This, 2778 QualType ThisTy); 2779 2780 void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, 2781 llvm::Type *ElementTy, Address NewPtr, 2782 llvm::Value *NumElements, 2783 llvm::Value *AllocSizeWithoutCookie); 2784 2785 void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, 2786 Address Ptr); 2787 2788 llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr); 2789 void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr); 2790 2791 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 2792 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 2793 2794 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 2795 QualType DeleteTy, llvm::Value *NumElements = nullptr, 2796 CharUnits CookieSize = CharUnits()); 2797 2798 RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 2799 const CallExpr *TheCallExpr, bool IsDelete); 2800 2801 llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E); 2802 llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE); 2803 Address EmitCXXUuidofExpr(const CXXUuidofExpr *E); 2804 2805 /// Situations in which we might emit a check for the suitability of a 2806 /// pointer or glvalue. Needs to be kept in sync with ubsan_handlers.cpp in 2807 /// compiler-rt. 2808 enum TypeCheckKind { 2809 /// Checking the operand of a load. Must be suitably sized and aligned. 2810 TCK_Load, 2811 /// Checking the destination of a store. Must be suitably sized and aligned. 2812 TCK_Store, 2813 /// Checking the bound value in a reference binding. Must be suitably sized 2814 /// and aligned, but is not required to refer to an object (until the 2815 /// reference is used), per core issue 453. 2816 TCK_ReferenceBinding, 2817 /// Checking the object expression in a non-static data member access. Must 2818 /// be an object within its lifetime. 2819 TCK_MemberAccess, 2820 /// Checking the 'this' pointer for a call to a non-static member function. 2821 /// Must be an object within its lifetime. 2822 TCK_MemberCall, 2823 /// Checking the 'this' pointer for a constructor call. 2824 TCK_ConstructorCall, 2825 /// Checking the operand of a static_cast to a derived pointer type. Must be 2826 /// null or an object within its lifetime. 2827 TCK_DowncastPointer, 2828 /// Checking the operand of a static_cast to a derived reference type. Must 2829 /// be an object within its lifetime. 2830 TCK_DowncastReference, 2831 /// Checking the operand of a cast to a base object. Must be suitably sized 2832 /// and aligned. 2833 TCK_Upcast, 2834 /// Checking the operand of a cast to a virtual base object. Must be an 2835 /// object within its lifetime. 2836 TCK_UpcastToVirtualBase, 2837 /// Checking the value assigned to a _Nonnull pointer. Must not be null. 2838 TCK_NonnullAssign, 2839 /// Checking the operand of a dynamic_cast or a typeid expression. Must be 2840 /// null or an object within its lifetime. 2841 TCK_DynamicOperation 2842 }; 2843 2844 /// Determine whether the pointer type check \p TCK permits null pointers. 2845 static bool isNullPointerAllowed(TypeCheckKind TCK); 2846 2847 /// Determine whether the pointer type check \p TCK requires a vptr check. 2848 static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty); 2849 2850 /// Whether any type-checking sanitizers are enabled. If \c false, 2851 /// calls to EmitTypeCheck can be skipped. 2852 bool sanitizePerformTypeCheck() const; 2853 2854 /// Emit a check that \p V is the address of storage of the 2855 /// appropriate size and alignment for an object of type \p Type 2856 /// (or if ArraySize is provided, for an array of that bound). 2857 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, 2858 QualType Type, CharUnits Alignment = CharUnits::Zero(), 2859 SanitizerSet SkippedChecks = SanitizerSet(), 2860 llvm::Value *ArraySize = nullptr); 2861 2862 /// Emit a check that \p Base points into an array object, which 2863 /// we can access at index \p Index. \p Accessed should be \c false if we 2864 /// this expression is used as an lvalue, for instance in "&Arr[Idx]". 2865 void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, 2866 QualType IndexType, bool Accessed); 2867 2868 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 2869 bool isInc, bool isPre); 2870 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 2871 bool isInc, bool isPre); 2872 2873 /// Converts Location to a DebugLoc, if debug information is enabled. 2874 llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location); 2875 2876 /// Get the record field index as represented in debug info. 2877 unsigned getDebugInfoFIndex(const RecordDecl *Rec, unsigned FieldIndex); 2878 2879 2880 //===--------------------------------------------------------------------===// 2881 // Declaration Emission 2882 //===--------------------------------------------------------------------===// 2883 2884 /// EmitDecl - Emit a declaration. 2885 /// 2886 /// This function can be called with a null (unreachable) insert point. 2887 void EmitDecl(const Decl &D); 2888 2889 /// EmitVarDecl - Emit a local variable declaration. 2890 /// 2891 /// This function can be called with a null (unreachable) insert point. 2892 void EmitVarDecl(const VarDecl &D); 2893 2894 void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2895 bool capturedByInit); 2896 2897 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 2898 llvm::Value *Address); 2899 2900 /// Determine whether the given initializer is trivial in the sense 2901 /// that it requires no code to be generated. 2902 bool isTrivialInitializer(const Expr *Init); 2903 2904 /// EmitAutoVarDecl - Emit an auto variable declaration. 2905 /// 2906 /// This function can be called with a null (unreachable) insert point. 2907 void EmitAutoVarDecl(const VarDecl &D); 2908 2909 class AutoVarEmission { 2910 friend class CodeGenFunction; 2911 2912 const VarDecl *Variable; 2913 2914 /// The address of the alloca for languages with explicit address space 2915 /// (e.g. OpenCL) or alloca casted to generic pointer for address space 2916 /// agnostic languages (e.g. C++). Invalid if the variable was emitted 2917 /// as a global constant. 2918 Address Addr; 2919 2920 llvm::Value *NRVOFlag; 2921 2922 /// True if the variable is a __block variable that is captured by an 2923 /// escaping block. 2924 bool IsEscapingByRef; 2925 2926 /// True if the variable is of aggregate type and has a constant 2927 /// initializer. 2928 bool IsConstantAggregate; 2929 2930 /// Non-null if we should use lifetime annotations. 2931 llvm::Value *SizeForLifetimeMarkers; 2932 2933 /// Address with original alloca instruction. Invalid if the variable was 2934 /// emitted as a global constant. 2935 Address AllocaAddr; 2936 2937 struct Invalid {}; 2938 AutoVarEmission(Invalid) 2939 : Variable(nullptr), Addr(Address::invalid()), 2940 AllocaAddr(Address::invalid()) {} 2941 2942 AutoVarEmission(const VarDecl &variable) 2943 : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr), 2944 IsEscapingByRef(false), IsConstantAggregate(false), 2945 SizeForLifetimeMarkers(nullptr), AllocaAddr(Address::invalid()) {} 2946 2947 bool wasEmittedAsGlobal() const { return !Addr.isValid(); } 2948 2949 public: 2950 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 2951 2952 bool useLifetimeMarkers() const { 2953 return SizeForLifetimeMarkers != nullptr; 2954 } 2955 llvm::Value *getSizeForLifetimeMarkers() const { 2956 assert(useLifetimeMarkers()); 2957 return SizeForLifetimeMarkers; 2958 } 2959 2960 /// Returns the raw, allocated address, which is not necessarily 2961 /// the address of the object itself. It is casted to default 2962 /// address space for address space agnostic languages. 2963 Address getAllocatedAddress() const { 2964 return Addr; 2965 } 2966 2967 /// Returns the address for the original alloca instruction. 2968 Address getOriginalAllocatedAddress() const { return AllocaAddr; } 2969 2970 /// Returns the address of the object within this declaration. 2971 /// Note that this does not chase the forwarding pointer for 2972 /// __block decls. 2973 Address getObjectAddress(CodeGenFunction &CGF) const { 2974 if (!IsEscapingByRef) return Addr; 2975 2976 return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false); 2977 } 2978 }; 2979 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 2980 void EmitAutoVarInit(const AutoVarEmission &emission); 2981 void EmitAutoVarCleanups(const AutoVarEmission &emission); 2982 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 2983 QualType::DestructionKind dtorKind); 2984 2985 /// Emits the alloca and debug information for the size expressions for each 2986 /// dimension of an array. It registers the association of its (1-dimensional) 2987 /// QualTypes and size expression's debug node, so that CGDebugInfo can 2988 /// reference this node when creating the DISubrange object to describe the 2989 /// array types. 2990 void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI, 2991 const VarDecl &D, 2992 bool EmitDebugInfo); 2993 2994 void EmitStaticVarDecl(const VarDecl &D, 2995 llvm::GlobalValue::LinkageTypes Linkage); 2996 2997 class ParamValue { 2998 llvm::Value *Value; 2999 unsigned Alignment; 3000 ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {} 3001 public: 3002 static ParamValue forDirect(llvm::Value *value) { 3003 return ParamValue(value, 0); 3004 } 3005 static ParamValue forIndirect(Address addr) { 3006 assert(!addr.getAlignment().isZero()); 3007 return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity()); 3008 } 3009 3010 bool isIndirect() const { return Alignment != 0; } 3011 llvm::Value *getAnyValue() const { return Value; } 3012 3013 llvm::Value *getDirectValue() const { 3014 assert(!isIndirect()); 3015 return Value; 3016 } 3017 3018 Address getIndirectAddress() const { 3019 assert(isIndirect()); 3020 return Address(Value, CharUnits::fromQuantity(Alignment)); 3021 } 3022 }; 3023 3024 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 3025 void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo); 3026 3027 /// protectFromPeepholes - Protect a value that we're intending to 3028 /// store to the side, but which will probably be used later, from 3029 /// aggressive peepholing optimizations that might delete it. 3030 /// 3031 /// Pass the result to unprotectFromPeepholes to declare that 3032 /// protection is no longer required. 3033 /// 3034 /// There's no particular reason why this shouldn't apply to 3035 /// l-values, it's just that no existing peepholes work on pointers. 3036 PeepholeProtection protectFromPeepholes(RValue rvalue); 3037 void unprotectFromPeepholes(PeepholeProtection protection); 3038 3039 void emitAlignmentAssumptionCheck(llvm::Value *Ptr, QualType Ty, 3040 SourceLocation Loc, 3041 SourceLocation AssumptionLoc, 3042 llvm::Value *Alignment, 3043 llvm::Value *OffsetValue, 3044 llvm::Value *TheCheck, 3045 llvm::Instruction *Assumption); 3046 3047 void emitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty, 3048 SourceLocation Loc, SourceLocation AssumptionLoc, 3049 llvm::Value *Alignment, 3050 llvm::Value *OffsetValue = nullptr); 3051 3052 void emitAlignmentAssumption(llvm::Value *PtrValue, const Expr *E, 3053 SourceLocation AssumptionLoc, 3054 llvm::Value *Alignment, 3055 llvm::Value *OffsetValue = nullptr); 3056 3057 //===--------------------------------------------------------------------===// 3058 // Statement Emission 3059 //===--------------------------------------------------------------------===// 3060 3061 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 3062 void EmitStopPoint(const Stmt *S); 3063 3064 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 3065 /// this function even if there is no current insertion point. 3066 /// 3067 /// This function may clear the current insertion point; callers should use 3068 /// EnsureInsertPoint if they wish to subsequently generate code without first 3069 /// calling EmitBlock, EmitBranch, or EmitStmt. 3070 void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None); 3071 3072 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 3073 /// necessarily require an insertion point or debug information; typically 3074 /// because the statement amounts to a jump or a container of other 3075 /// statements. 3076 /// 3077 /// \return True if the statement was handled. 3078 bool EmitSimpleStmt(const Stmt *S); 3079 3080 Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 3081 AggValueSlot AVS = AggValueSlot::ignored()); 3082 Address EmitCompoundStmtWithoutScope(const CompoundStmt &S, 3083 bool GetLast = false, 3084 AggValueSlot AVS = 3085 AggValueSlot::ignored()); 3086 3087 /// EmitLabel - Emit the block for the given label. It is legal to call this 3088 /// function even if there is no current insertion point. 3089 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 3090 3091 void EmitLabelStmt(const LabelStmt &S); 3092 void EmitAttributedStmt(const AttributedStmt &S); 3093 void EmitGotoStmt(const GotoStmt &S); 3094 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 3095 void EmitIfStmt(const IfStmt &S); 3096 3097 void EmitWhileStmt(const WhileStmt &S, 3098 ArrayRef<const Attr *> Attrs = None); 3099 void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None); 3100 void EmitForStmt(const ForStmt &S, 3101 ArrayRef<const Attr *> Attrs = None); 3102 void EmitReturnStmt(const ReturnStmt &S); 3103 void EmitDeclStmt(const DeclStmt &S); 3104 void EmitBreakStmt(const BreakStmt &S); 3105 void EmitContinueStmt(const ContinueStmt &S); 3106 void EmitSwitchStmt(const SwitchStmt &S); 3107 void EmitDefaultStmt(const DefaultStmt &S); 3108 void EmitCaseStmt(const CaseStmt &S); 3109 void EmitCaseStmtRange(const CaseStmt &S); 3110 void EmitAsmStmt(const AsmStmt &S); 3111 3112 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 3113 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 3114 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 3115 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 3116 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 3117 3118 void EmitCoroutineBody(const CoroutineBodyStmt &S); 3119 void EmitCoreturnStmt(const CoreturnStmt &S); 3120 RValue EmitCoawaitExpr(const CoawaitExpr &E, 3121 AggValueSlot aggSlot = AggValueSlot::ignored(), 3122 bool ignoreResult = false); 3123 LValue EmitCoawaitLValue(const CoawaitExpr *E); 3124 RValue EmitCoyieldExpr(const CoyieldExpr &E, 3125 AggValueSlot aggSlot = AggValueSlot::ignored(), 3126 bool ignoreResult = false); 3127 LValue EmitCoyieldLValue(const CoyieldExpr *E); 3128 RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID); 3129 3130 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 3131 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 3132 3133 void EmitCXXTryStmt(const CXXTryStmt &S); 3134 void EmitSEHTryStmt(const SEHTryStmt &S); 3135 void EmitSEHLeaveStmt(const SEHLeaveStmt &S); 3136 void EnterSEHTryStmt(const SEHTryStmt &S); 3137 void ExitSEHTryStmt(const SEHTryStmt &S); 3138 3139 void pushSEHCleanup(CleanupKind kind, 3140 llvm::Function *FinallyFunc); 3141 void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter, 3142 const Stmt *OutlinedStmt); 3143 3144 llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF, 3145 const SEHExceptStmt &Except); 3146 3147 llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF, 3148 const SEHFinallyStmt &Finally); 3149 3150 void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF, 3151 llvm::Value *ParentFP, 3152 llvm::Value *EntryEBP); 3153 llvm::Value *EmitSEHExceptionCode(); 3154 llvm::Value *EmitSEHExceptionInfo(); 3155 llvm::Value *EmitSEHAbnormalTermination(); 3156 3157 /// Emit simple code for OpenMP directives in Simd-only mode. 3158 void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D); 3159 3160 /// Scan the outlined statement for captures from the parent function. For 3161 /// each capture, mark the capture as escaped and emit a call to 3162 /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap. 3163 void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt, 3164 bool IsFilter); 3165 3166 /// Recovers the address of a local in a parent function. ParentVar is the 3167 /// address of the variable used in the immediate parent function. It can 3168 /// either be an alloca or a call to llvm.localrecover if there are nested 3169 /// outlined functions. ParentFP is the frame pointer of the outermost parent 3170 /// frame. 3171 Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF, 3172 Address ParentVar, 3173 llvm::Value *ParentFP); 3174 3175 void EmitCXXForRangeStmt(const CXXForRangeStmt &S, 3176 ArrayRef<const Attr *> Attrs = None); 3177 3178 /// Controls insertion of cancellation exit blocks in worksharing constructs. 3179 class OMPCancelStackRAII { 3180 CodeGenFunction &CGF; 3181 3182 public: 3183 OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 3184 bool HasCancel) 3185 : CGF(CGF) { 3186 CGF.OMPCancelStack.enter(CGF, Kind, HasCancel); 3187 } 3188 ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); } 3189 }; 3190 3191 /// Returns calculated size of the specified type. 3192 llvm::Value *getTypeSize(QualType Ty); 3193 LValue InitCapturedStruct(const CapturedStmt &S); 3194 llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K); 3195 llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S); 3196 Address GenerateCapturedStmtArgument(const CapturedStmt &S); 3197 llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S, 3198 SourceLocation Loc); 3199 void GenerateOpenMPCapturedVars(const CapturedStmt &S, 3200 SmallVectorImpl<llvm::Value *> &CapturedVars); 3201 void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy, 3202 SourceLocation Loc); 3203 /// Perform element by element copying of arrays with type \a 3204 /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure 3205 /// generated by \a CopyGen. 3206 /// 3207 /// \param DestAddr Address of the destination array. 3208 /// \param SrcAddr Address of the source array. 3209 /// \param OriginalType Type of destination and source arrays. 3210 /// \param CopyGen Copying procedure that copies value of single array element 3211 /// to another single array element. 3212 void EmitOMPAggregateAssign( 3213 Address DestAddr, Address SrcAddr, QualType OriginalType, 3214 const llvm::function_ref<void(Address, Address)> CopyGen); 3215 /// Emit proper copying of data from one variable to another. 3216 /// 3217 /// \param OriginalType Original type of the copied variables. 3218 /// \param DestAddr Destination address. 3219 /// \param SrcAddr Source address. 3220 /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has 3221 /// type of the base array element). 3222 /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of 3223 /// the base array element). 3224 /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a 3225 /// DestVD. 3226 void EmitOMPCopy(QualType OriginalType, 3227 Address DestAddr, Address SrcAddr, 3228 const VarDecl *DestVD, const VarDecl *SrcVD, 3229 const Expr *Copy); 3230 /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or 3231 /// \a X = \a E \a BO \a E. 3232 /// 3233 /// \param X Value to be updated. 3234 /// \param E Update value. 3235 /// \param BO Binary operation for update operation. 3236 /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update 3237 /// expression, false otherwise. 3238 /// \param AO Atomic ordering of the generated atomic instructions. 3239 /// \param CommonGen Code generator for complex expressions that cannot be 3240 /// expressed through atomicrmw instruction. 3241 /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was 3242 /// generated, <false, RValue::get(nullptr)> otherwise. 3243 std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr( 3244 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 3245 llvm::AtomicOrdering AO, SourceLocation Loc, 3246 const llvm::function_ref<RValue(RValue)> CommonGen); 3247 bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 3248 OMPPrivateScope &PrivateScope); 3249 void EmitOMPPrivateClause(const OMPExecutableDirective &D, 3250 OMPPrivateScope &PrivateScope); 3251 void EmitOMPUseDevicePtrClause( 3252 const OMPUseDevicePtrClause &C, OMPPrivateScope &PrivateScope, 3253 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap); 3254 void EmitOMPUseDeviceAddrClause( 3255 const OMPUseDeviceAddrClause &C, OMPPrivateScope &PrivateScope, 3256 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap); 3257 /// Emit code for copyin clause in \a D directive. The next code is 3258 /// generated at the start of outlined functions for directives: 3259 /// \code 3260 /// threadprivate_var1 = master_threadprivate_var1; 3261 /// operator=(threadprivate_var2, master_threadprivate_var2); 3262 /// ... 3263 /// __kmpc_barrier(&loc, global_tid); 3264 /// \endcode 3265 /// 3266 /// \param D OpenMP directive possibly with 'copyin' clause(s). 3267 /// \returns true if at least one copyin variable is found, false otherwise. 3268 bool EmitOMPCopyinClause(const OMPExecutableDirective &D); 3269 /// Emit initial code for lastprivate variables. If some variable is 3270 /// not also firstprivate, then the default initialization is used. Otherwise 3271 /// initialization of this variable is performed by EmitOMPFirstprivateClause 3272 /// method. 3273 /// 3274 /// \param D Directive that may have 'lastprivate' directives. 3275 /// \param PrivateScope Private scope for capturing lastprivate variables for 3276 /// proper codegen in internal captured statement. 3277 /// 3278 /// \returns true if there is at least one lastprivate variable, false 3279 /// otherwise. 3280 bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D, 3281 OMPPrivateScope &PrivateScope); 3282 /// Emit final copying of lastprivate values to original variables at 3283 /// the end of the worksharing or simd directive. 3284 /// 3285 /// \param D Directive that has at least one 'lastprivate' directives. 3286 /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if 3287 /// it is the last iteration of the loop code in associated directive, or to 3288 /// 'i1 false' otherwise. If this item is nullptr, no final check is required. 3289 void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D, 3290 bool NoFinals, 3291 llvm::Value *IsLastIterCond = nullptr); 3292 /// Emit initial code for linear clauses. 3293 void EmitOMPLinearClause(const OMPLoopDirective &D, 3294 CodeGenFunction::OMPPrivateScope &PrivateScope); 3295 /// Emit final code for linear clauses. 3296 /// \param CondGen Optional conditional code for final part of codegen for 3297 /// linear clause. 3298 void EmitOMPLinearClauseFinal( 3299 const OMPLoopDirective &D, 3300 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); 3301 /// Emit initial code for reduction variables. Creates reduction copies 3302 /// and initializes them with the values according to OpenMP standard. 3303 /// 3304 /// \param D Directive (possibly) with the 'reduction' clause. 3305 /// \param PrivateScope Private scope for capturing reduction variables for 3306 /// proper codegen in internal captured statement. 3307 /// 3308 void EmitOMPReductionClauseInit(const OMPExecutableDirective &D, 3309 OMPPrivateScope &PrivateScope, 3310 bool ForInscan = false); 3311 /// Emit final update of reduction values to original variables at 3312 /// the end of the directive. 3313 /// 3314 /// \param D Directive that has at least one 'reduction' directives. 3315 /// \param ReductionKind The kind of reduction to perform. 3316 void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D, 3317 const OpenMPDirectiveKind ReductionKind); 3318 /// Emit initial code for linear variables. Creates private copies 3319 /// and initializes them with the values according to OpenMP standard. 3320 /// 3321 /// \param D Directive (possibly) with the 'linear' clause. 3322 /// \return true if at least one linear variable is found that should be 3323 /// initialized with the value of the original variable, false otherwise. 3324 bool EmitOMPLinearClauseInit(const OMPLoopDirective &D); 3325 3326 typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/, 3327 llvm::Function * /*OutlinedFn*/, 3328 const OMPTaskDataTy & /*Data*/)> 3329 TaskGenTy; 3330 void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S, 3331 const OpenMPDirectiveKind CapturedRegion, 3332 const RegionCodeGenTy &BodyGen, 3333 const TaskGenTy &TaskGen, OMPTaskDataTy &Data); 3334 struct OMPTargetDataInfo { 3335 Address BasePointersArray = Address::invalid(); 3336 Address PointersArray = Address::invalid(); 3337 Address SizesArray = Address::invalid(); 3338 Address MappersArray = Address::invalid(); 3339 unsigned NumberOfTargetItems = 0; 3340 explicit OMPTargetDataInfo() = default; 3341 OMPTargetDataInfo(Address BasePointersArray, Address PointersArray, 3342 Address SizesArray, Address MappersArray, 3343 unsigned NumberOfTargetItems) 3344 : BasePointersArray(BasePointersArray), PointersArray(PointersArray), 3345 SizesArray(SizesArray), MappersArray(MappersArray), 3346 NumberOfTargetItems(NumberOfTargetItems) {} 3347 }; 3348 void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S, 3349 const RegionCodeGenTy &BodyGen, 3350 OMPTargetDataInfo &InputInfo); 3351 3352 void EmitOMPParallelDirective(const OMPParallelDirective &S); 3353 void EmitOMPSimdDirective(const OMPSimdDirective &S); 3354 void EmitOMPForDirective(const OMPForDirective &S); 3355 void EmitOMPForSimdDirective(const OMPForSimdDirective &S); 3356 void EmitOMPSectionsDirective(const OMPSectionsDirective &S); 3357 void EmitOMPSectionDirective(const OMPSectionDirective &S); 3358 void EmitOMPSingleDirective(const OMPSingleDirective &S); 3359 void EmitOMPMasterDirective(const OMPMasterDirective &S); 3360 void EmitOMPCriticalDirective(const OMPCriticalDirective &S); 3361 void EmitOMPParallelForDirective(const OMPParallelForDirective &S); 3362 void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S); 3363 void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S); 3364 void EmitOMPParallelMasterDirective(const OMPParallelMasterDirective &S); 3365 void EmitOMPTaskDirective(const OMPTaskDirective &S); 3366 void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S); 3367 void EmitOMPBarrierDirective(const OMPBarrierDirective &S); 3368 void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S); 3369 void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S); 3370 void EmitOMPFlushDirective(const OMPFlushDirective &S); 3371 void EmitOMPDepobjDirective(const OMPDepobjDirective &S); 3372 void EmitOMPScanDirective(const OMPScanDirective &S); 3373 void EmitOMPOrderedDirective(const OMPOrderedDirective &S); 3374 void EmitOMPAtomicDirective(const OMPAtomicDirective &S); 3375 void EmitOMPTargetDirective(const OMPTargetDirective &S); 3376 void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S); 3377 void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S); 3378 void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S); 3379 void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S); 3380 void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S); 3381 void 3382 EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S); 3383 void EmitOMPTeamsDirective(const OMPTeamsDirective &S); 3384 void 3385 EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S); 3386 void EmitOMPCancelDirective(const OMPCancelDirective &S); 3387 void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S); 3388 void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S); 3389 void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S); 3390 void EmitOMPMasterTaskLoopDirective(const OMPMasterTaskLoopDirective &S); 3391 void 3392 EmitOMPMasterTaskLoopSimdDirective(const OMPMasterTaskLoopSimdDirective &S); 3393 void EmitOMPParallelMasterTaskLoopDirective( 3394 const OMPParallelMasterTaskLoopDirective &S); 3395 void EmitOMPParallelMasterTaskLoopSimdDirective( 3396 const OMPParallelMasterTaskLoopSimdDirective &S); 3397 void EmitOMPDistributeDirective(const OMPDistributeDirective &S); 3398 void EmitOMPDistributeParallelForDirective( 3399 const OMPDistributeParallelForDirective &S); 3400 void EmitOMPDistributeParallelForSimdDirective( 3401 const OMPDistributeParallelForSimdDirective &S); 3402 void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S); 3403 void EmitOMPTargetParallelForSimdDirective( 3404 const OMPTargetParallelForSimdDirective &S); 3405 void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S); 3406 void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S); 3407 void 3408 EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S); 3409 void EmitOMPTeamsDistributeParallelForSimdDirective( 3410 const OMPTeamsDistributeParallelForSimdDirective &S); 3411 void EmitOMPTeamsDistributeParallelForDirective( 3412 const OMPTeamsDistributeParallelForDirective &S); 3413 void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S); 3414 void EmitOMPTargetTeamsDistributeDirective( 3415 const OMPTargetTeamsDistributeDirective &S); 3416 void EmitOMPTargetTeamsDistributeParallelForDirective( 3417 const OMPTargetTeamsDistributeParallelForDirective &S); 3418 void EmitOMPTargetTeamsDistributeParallelForSimdDirective( 3419 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 3420 void EmitOMPTargetTeamsDistributeSimdDirective( 3421 const OMPTargetTeamsDistributeSimdDirective &S); 3422 3423 /// Emit device code for the target directive. 3424 static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 3425 StringRef ParentName, 3426 const OMPTargetDirective &S); 3427 static void 3428 EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 3429 const OMPTargetParallelDirective &S); 3430 /// Emit device code for the target parallel for directive. 3431 static void EmitOMPTargetParallelForDeviceFunction( 3432 CodeGenModule &CGM, StringRef ParentName, 3433 const OMPTargetParallelForDirective &S); 3434 /// Emit device code for the target parallel for simd directive. 3435 static void EmitOMPTargetParallelForSimdDeviceFunction( 3436 CodeGenModule &CGM, StringRef ParentName, 3437 const OMPTargetParallelForSimdDirective &S); 3438 /// Emit device code for the target teams directive. 3439 static void 3440 EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 3441 const OMPTargetTeamsDirective &S); 3442 /// Emit device code for the target teams distribute directive. 3443 static void EmitOMPTargetTeamsDistributeDeviceFunction( 3444 CodeGenModule &CGM, StringRef ParentName, 3445 const OMPTargetTeamsDistributeDirective &S); 3446 /// Emit device code for the target teams distribute simd directive. 3447 static void EmitOMPTargetTeamsDistributeSimdDeviceFunction( 3448 CodeGenModule &CGM, StringRef ParentName, 3449 const OMPTargetTeamsDistributeSimdDirective &S); 3450 /// Emit device code for the target simd directive. 3451 static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM, 3452 StringRef ParentName, 3453 const OMPTargetSimdDirective &S); 3454 /// Emit device code for the target teams distribute parallel for simd 3455 /// directive. 3456 static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( 3457 CodeGenModule &CGM, StringRef ParentName, 3458 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 3459 3460 static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 3461 CodeGenModule &CGM, StringRef ParentName, 3462 const OMPTargetTeamsDistributeParallelForDirective &S); 3463 /// Emit inner loop of the worksharing/simd construct. 3464 /// 3465 /// \param S Directive, for which the inner loop must be emitted. 3466 /// \param RequiresCleanup true, if directive has some associated private 3467 /// variables. 3468 /// \param LoopCond Bollean condition for loop continuation. 3469 /// \param IncExpr Increment expression for loop control variable. 3470 /// \param BodyGen Generator for the inner body of the inner loop. 3471 /// \param PostIncGen Genrator for post-increment code (required for ordered 3472 /// loop directvies). 3473 void EmitOMPInnerLoop( 3474 const OMPExecutableDirective &S, bool RequiresCleanup, 3475 const Expr *LoopCond, const Expr *IncExpr, 3476 const llvm::function_ref<void(CodeGenFunction &)> BodyGen, 3477 const llvm::function_ref<void(CodeGenFunction &)> PostIncGen); 3478 3479 JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind); 3480 /// Emit initial code for loop counters of loop-based directives. 3481 void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S, 3482 OMPPrivateScope &LoopScope); 3483 3484 /// Helper for the OpenMP loop directives. 3485 void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit); 3486 3487 /// Emit code for the worksharing loop-based directive. 3488 /// \return true, if this construct has any lastprivate clause, false - 3489 /// otherwise. 3490 bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB, 3491 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 3492 const CodeGenDispatchBoundsTy &CGDispatchBounds); 3493 3494 /// Emit code for the distribute loop-based directive. 3495 void EmitOMPDistributeLoop(const OMPLoopDirective &S, 3496 const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr); 3497 3498 /// Helpers for the OpenMP loop directives. 3499 void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false); 3500 void EmitOMPSimdFinal( 3501 const OMPLoopDirective &D, 3502 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); 3503 3504 /// Emits the lvalue for the expression with possibly captured variable. 3505 LValue EmitOMPSharedLValue(const Expr *E); 3506 3507 private: 3508 /// Helpers for blocks. 3509 llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); 3510 3511 /// struct with the values to be passed to the OpenMP loop-related functions 3512 struct OMPLoopArguments { 3513 /// loop lower bound 3514 Address LB = Address::invalid(); 3515 /// loop upper bound 3516 Address UB = Address::invalid(); 3517 /// loop stride 3518 Address ST = Address::invalid(); 3519 /// isLastIteration argument for runtime functions 3520 Address IL = Address::invalid(); 3521 /// Chunk value generated by sema 3522 llvm::Value *Chunk = nullptr; 3523 /// EnsureUpperBound 3524 Expr *EUB = nullptr; 3525 /// IncrementExpression 3526 Expr *IncExpr = nullptr; 3527 /// Loop initialization 3528 Expr *Init = nullptr; 3529 /// Loop exit condition 3530 Expr *Cond = nullptr; 3531 /// Update of LB after a whole chunk has been executed 3532 Expr *NextLB = nullptr; 3533 /// Update of UB after a whole chunk has been executed 3534 Expr *NextUB = nullptr; 3535 OMPLoopArguments() = default; 3536 OMPLoopArguments(Address LB, Address UB, Address ST, Address IL, 3537 llvm::Value *Chunk = nullptr, Expr *EUB = nullptr, 3538 Expr *IncExpr = nullptr, Expr *Init = nullptr, 3539 Expr *Cond = nullptr, Expr *NextLB = nullptr, 3540 Expr *NextUB = nullptr) 3541 : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB), 3542 IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB), 3543 NextUB(NextUB) {} 3544 }; 3545 void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic, 3546 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, 3547 const OMPLoopArguments &LoopArgs, 3548 const CodeGenLoopTy &CodeGenLoop, 3549 const CodeGenOrderedTy &CodeGenOrdered); 3550 void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind, 3551 bool IsMonotonic, const OMPLoopDirective &S, 3552 OMPPrivateScope &LoopScope, bool Ordered, 3553 const OMPLoopArguments &LoopArgs, 3554 const CodeGenDispatchBoundsTy &CGDispatchBounds); 3555 void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind, 3556 const OMPLoopDirective &S, 3557 OMPPrivateScope &LoopScope, 3558 const OMPLoopArguments &LoopArgs, 3559 const CodeGenLoopTy &CodeGenLoopContent); 3560 /// Emit code for sections directive. 3561 void EmitSections(const OMPExecutableDirective &S); 3562 3563 public: 3564 3565 //===--------------------------------------------------------------------===// 3566 // LValue Expression Emission 3567 //===--------------------------------------------------------------------===// 3568 3569 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 3570 RValue GetUndefRValue(QualType Ty); 3571 3572 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 3573 /// and issue an ErrorUnsupported style diagnostic (using the 3574 /// provided Name). 3575 RValue EmitUnsupportedRValue(const Expr *E, 3576 const char *Name); 3577 3578 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 3579 /// an ErrorUnsupported style diagnostic (using the provided Name). 3580 LValue EmitUnsupportedLValue(const Expr *E, 3581 const char *Name); 3582 3583 /// EmitLValue - Emit code to compute a designator that specifies the location 3584 /// of the expression. 3585 /// 3586 /// This can return one of two things: a simple address or a bitfield 3587 /// reference. In either case, the LLVM Value* in the LValue structure is 3588 /// guaranteed to be an LLVM pointer type. 3589 /// 3590 /// If this returns a bitfield reference, nothing about the pointee type of 3591 /// the LLVM value is known: For example, it may not be a pointer to an 3592 /// integer. 3593 /// 3594 /// If this returns a normal address, and if the lvalue's C type is fixed 3595 /// size, this method guarantees that the returned pointer type will point to 3596 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 3597 /// variable length type, this is not possible. 3598 /// 3599 LValue EmitLValue(const Expr *E); 3600 3601 /// Same as EmitLValue but additionally we generate checking code to 3602 /// guard against undefined behavior. This is only suitable when we know 3603 /// that the address will be used to access the object. 3604 LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK); 3605 3606 RValue convertTempToRValue(Address addr, QualType type, 3607 SourceLocation Loc); 3608 3609 void EmitAtomicInit(Expr *E, LValue lvalue); 3610 3611 bool LValueIsSuitableForInlineAtomic(LValue Src); 3612 3613 RValue EmitAtomicLoad(LValue LV, SourceLocation SL, 3614 AggValueSlot Slot = AggValueSlot::ignored()); 3615 3616 RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc, 3617 llvm::AtomicOrdering AO, bool IsVolatile = false, 3618 AggValueSlot slot = AggValueSlot::ignored()); 3619 3620 void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit); 3621 3622 void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO, 3623 bool IsVolatile, bool isInit); 3624 3625 std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange( 3626 LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, 3627 llvm::AtomicOrdering Success = 3628 llvm::AtomicOrdering::SequentiallyConsistent, 3629 llvm::AtomicOrdering Failure = 3630 llvm::AtomicOrdering::SequentiallyConsistent, 3631 bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored()); 3632 3633 void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO, 3634 const llvm::function_ref<RValue(RValue)> &UpdateOp, 3635 bool IsVolatile); 3636 3637 /// EmitToMemory - Change a scalar value from its value 3638 /// representation to its in-memory representation. 3639 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 3640 3641 /// EmitFromMemory - Change a scalar value from its memory 3642 /// representation to its value representation. 3643 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 3644 3645 /// Check if the scalar \p Value is within the valid range for the given 3646 /// type \p Ty. 3647 /// 3648 /// Returns true if a check is needed (even if the range is unknown). 3649 bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 3650 SourceLocation Loc); 3651 3652 /// EmitLoadOfScalar - Load a scalar value from an address, taking 3653 /// care to appropriately convert from the memory representation to 3654 /// the LLVM value representation. 3655 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 3656 SourceLocation Loc, 3657 AlignmentSource Source = AlignmentSource::Type, 3658 bool isNontemporal = false) { 3659 return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source), 3660 CGM.getTBAAAccessInfo(Ty), isNontemporal); 3661 } 3662 3663 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 3664 SourceLocation Loc, LValueBaseInfo BaseInfo, 3665 TBAAAccessInfo TBAAInfo, 3666 bool isNontemporal = false); 3667 3668 /// EmitLoadOfScalar - Load a scalar value from an address, taking 3669 /// care to appropriately convert from the memory representation to 3670 /// the LLVM value representation. The l-value must be a simple 3671 /// l-value. 3672 llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc); 3673 3674 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3675 /// care to appropriately convert from the memory representation to 3676 /// the LLVM value representation. 3677 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 3678 bool Volatile, QualType Ty, 3679 AlignmentSource Source = AlignmentSource::Type, 3680 bool isInit = false, bool isNontemporal = false) { 3681 EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source), 3682 CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal); 3683 } 3684 3685 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 3686 bool Volatile, QualType Ty, 3687 LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo, 3688 bool isInit = false, bool isNontemporal = false); 3689 3690 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3691 /// care to appropriately convert from the memory representation to 3692 /// the LLVM value representation. The l-value must be a simple 3693 /// l-value. The isInit flag indicates whether this is an initialization. 3694 /// If so, atomic qualifiers are ignored and the store is always non-atomic. 3695 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); 3696 3697 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 3698 /// this method emits the address of the lvalue, then loads the result as an 3699 /// rvalue, returning the rvalue. 3700 RValue EmitLoadOfLValue(LValue V, SourceLocation Loc); 3701 RValue EmitLoadOfExtVectorElementLValue(LValue V); 3702 RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc); 3703 RValue EmitLoadOfGlobalRegLValue(LValue LV); 3704 3705 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 3706 /// lvalue, where both are guaranteed to the have the same type, and that type 3707 /// is 'Ty'. 3708 void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false); 3709 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 3710 void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst); 3711 3712 /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints 3713 /// as EmitStoreThroughLValue. 3714 /// 3715 /// \param Result [out] - If non-null, this will be set to a Value* for the 3716 /// bit-field contents after the store, appropriate for use as the result of 3717 /// an assignment to the bit-field. 3718 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 3719 llvm::Value **Result=nullptr); 3720 3721 /// Emit an l-value for an assignment (simple or compound) of complex type. 3722 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 3723 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 3724 LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 3725 llvm::Value *&Result); 3726 3727 // Note: only available for agg return types 3728 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 3729 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 3730 // Note: only available for agg return types 3731 LValue EmitCallExprLValue(const CallExpr *E); 3732 // Note: only available for agg return types 3733 LValue EmitVAArgExprLValue(const VAArgExpr *E); 3734 LValue EmitDeclRefLValue(const DeclRefExpr *E); 3735 LValue EmitStringLiteralLValue(const StringLiteral *E); 3736 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 3737 LValue EmitPredefinedLValue(const PredefinedExpr *E); 3738 LValue EmitUnaryOpLValue(const UnaryOperator *E); 3739 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3740 bool Accessed = false); 3741 LValue EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E); 3742 LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3743 bool IsLowerBound = true); 3744 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 3745 LValue EmitMemberExpr(const MemberExpr *E); 3746 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 3747 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 3748 LValue EmitInitListLValue(const InitListExpr *E); 3749 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 3750 LValue EmitCastLValue(const CastExpr *E); 3751 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 3752 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 3753 3754 Address EmitExtVectorElementLValue(LValue V); 3755 3756 RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc); 3757 3758 Address EmitArrayToPointerDecay(const Expr *Array, 3759 LValueBaseInfo *BaseInfo = nullptr, 3760 TBAAAccessInfo *TBAAInfo = nullptr); 3761 3762 class ConstantEmission { 3763 llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; 3764 ConstantEmission(llvm::Constant *C, bool isReference) 3765 : ValueAndIsReference(C, isReference) {} 3766 public: 3767 ConstantEmission() {} 3768 static ConstantEmission forReference(llvm::Constant *C) { 3769 return ConstantEmission(C, true); 3770 } 3771 static ConstantEmission forValue(llvm::Constant *C) { 3772 return ConstantEmission(C, false); 3773 } 3774 3775 explicit operator bool() const { 3776 return ValueAndIsReference.getOpaqueValue() != nullptr; 3777 } 3778 3779 bool isReference() const { return ValueAndIsReference.getInt(); } 3780 LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { 3781 assert(isReference()); 3782 return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), 3783 refExpr->getType()); 3784 } 3785 3786 llvm::Constant *getValue() const { 3787 assert(!isReference()); 3788 return ValueAndIsReference.getPointer(); 3789 } 3790 }; 3791 3792 ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); 3793 ConstantEmission tryEmitAsConstant(const MemberExpr *ME); 3794 llvm::Value *emitScalarConstant(const ConstantEmission &Constant, Expr *E); 3795 3796 RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, 3797 AggValueSlot slot = AggValueSlot::ignored()); 3798 LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); 3799 3800 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 3801 const ObjCIvarDecl *Ivar); 3802 LValue EmitLValueForField(LValue Base, const FieldDecl* Field); 3803 LValue EmitLValueForLambdaField(const FieldDecl *Field); 3804 3805 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 3806 /// if the Field is a reference, this will return the address of the reference 3807 /// and not the address of the value stored in the reference. 3808 LValue EmitLValueForFieldInitialization(LValue Base, 3809 const FieldDecl* Field); 3810 3811 LValue EmitLValueForIvar(QualType ObjectTy, 3812 llvm::Value* Base, const ObjCIvarDecl *Ivar, 3813 unsigned CVRQualifiers); 3814 3815 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 3816 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 3817 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 3818 LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E); 3819 3820 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 3821 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 3822 LValue EmitStmtExprLValue(const StmtExpr *E); 3823 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 3824 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 3825 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init); 3826 3827 //===--------------------------------------------------------------------===// 3828 // Scalar Expression Emission 3829 //===--------------------------------------------------------------------===// 3830 3831 /// EmitCall - Generate a call of the given function, expecting the given 3832 /// result type, and using the given argument list which specifies both the 3833 /// LLVM arguments and the types they were derived from. 3834 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 3835 ReturnValueSlot ReturnValue, const CallArgList &Args, 3836 llvm::CallBase **callOrInvoke, SourceLocation Loc); 3837 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 3838 ReturnValueSlot ReturnValue, const CallArgList &Args, 3839 llvm::CallBase **callOrInvoke = nullptr) { 3840 return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke, 3841 SourceLocation()); 3842 } 3843 RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E, 3844 ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr); 3845 RValue EmitCallExpr(const CallExpr *E, 3846 ReturnValueSlot ReturnValue = ReturnValueSlot()); 3847 RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 3848 CGCallee EmitCallee(const Expr *E); 3849 3850 void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl); 3851 void checkTargetFeatures(SourceLocation Loc, const FunctionDecl *TargetDecl); 3852 3853 llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee, 3854 const Twine &name = ""); 3855 llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee, 3856 ArrayRef<llvm::Value *> args, 3857 const Twine &name = ""); 3858 llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 3859 const Twine &name = ""); 3860 llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 3861 ArrayRef<llvm::Value *> args, 3862 const Twine &name = ""); 3863 3864 SmallVector<llvm::OperandBundleDef, 1> 3865 getBundlesForFunclet(llvm::Value *Callee); 3866 3867 llvm::CallBase *EmitCallOrInvoke(llvm::FunctionCallee Callee, 3868 ArrayRef<llvm::Value *> Args, 3869 const Twine &Name = ""); 3870 llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 3871 ArrayRef<llvm::Value *> args, 3872 const Twine &name = ""); 3873 llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 3874 const Twine &name = ""); 3875 void EmitNoreturnRuntimeCallOrInvoke(llvm::FunctionCallee callee, 3876 ArrayRef<llvm::Value *> args); 3877 3878 CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 3879 NestedNameSpecifier *Qual, 3880 llvm::Type *Ty); 3881 3882 CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 3883 CXXDtorType Type, 3884 const CXXRecordDecl *RD); 3885 3886 // Return the copy constructor name with the prefix "__copy_constructor_" 3887 // removed. 3888 static std::string getNonTrivialCopyConstructorStr(QualType QT, 3889 CharUnits Alignment, 3890 bool IsVolatile, 3891 ASTContext &Ctx); 3892 3893 // Return the destructor name with the prefix "__destructor_" removed. 3894 static std::string getNonTrivialDestructorStr(QualType QT, 3895 CharUnits Alignment, 3896 bool IsVolatile, 3897 ASTContext &Ctx); 3898 3899 // These functions emit calls to the special functions of non-trivial C 3900 // structs. 3901 void defaultInitNonTrivialCStructVar(LValue Dst); 3902 void callCStructDefaultConstructor(LValue Dst); 3903 void callCStructDestructor(LValue Dst); 3904 void callCStructCopyConstructor(LValue Dst, LValue Src); 3905 void callCStructMoveConstructor(LValue Dst, LValue Src); 3906 void callCStructCopyAssignmentOperator(LValue Dst, LValue Src); 3907 void callCStructMoveAssignmentOperator(LValue Dst, LValue Src); 3908 3909 RValue 3910 EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method, 3911 const CGCallee &Callee, 3912 ReturnValueSlot ReturnValue, llvm::Value *This, 3913 llvm::Value *ImplicitParam, 3914 QualType ImplicitParamTy, const CallExpr *E, 3915 CallArgList *RtlArgs); 3916 RValue EmitCXXDestructorCall(GlobalDecl Dtor, const CGCallee &Callee, 3917 llvm::Value *This, QualType ThisTy, 3918 llvm::Value *ImplicitParam, 3919 QualType ImplicitParamTy, const CallExpr *E); 3920 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 3921 ReturnValueSlot ReturnValue); 3922 RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE, 3923 const CXXMethodDecl *MD, 3924 ReturnValueSlot ReturnValue, 3925 bool HasQualifier, 3926 NestedNameSpecifier *Qualifier, 3927 bool IsArrow, const Expr *Base); 3928 // Compute the object pointer. 3929 Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base, 3930 llvm::Value *memberPtr, 3931 const MemberPointerType *memberPtrType, 3932 LValueBaseInfo *BaseInfo = nullptr, 3933 TBAAAccessInfo *TBAAInfo = nullptr); 3934 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 3935 ReturnValueSlot ReturnValue); 3936 3937 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 3938 const CXXMethodDecl *MD, 3939 ReturnValueSlot ReturnValue); 3940 RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E); 3941 3942 RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 3943 ReturnValueSlot ReturnValue); 3944 3945 RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E, 3946 ReturnValueSlot ReturnValue); 3947 RValue EmitAMDGPUDevicePrintfCallExpr(const CallExpr *E, 3948 ReturnValueSlot ReturnValue); 3949 3950 RValue EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID, 3951 const CallExpr *E, ReturnValueSlot ReturnValue); 3952 3953 RValue emitRotate(const CallExpr *E, bool IsRotateRight); 3954 3955 /// Emit IR for __builtin_os_log_format. 3956 RValue emitBuiltinOSLogFormat(const CallExpr &E); 3957 3958 /// Emit IR for __builtin_is_aligned. 3959 RValue EmitBuiltinIsAligned(const CallExpr *E); 3960 /// Emit IR for __builtin_align_up/__builtin_align_down. 3961 RValue EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp); 3962 3963 llvm::Function *generateBuiltinOSLogHelperFunction( 3964 const analyze_os_log::OSLogBufferLayout &Layout, 3965 CharUnits BufferAlignment); 3966 3967 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 3968 3969 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 3970 /// is unhandled by the current target. 3971 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 3972 ReturnValueSlot ReturnValue); 3973 3974 llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty, 3975 const llvm::CmpInst::Predicate Fp, 3976 const llvm::CmpInst::Predicate Ip, 3977 const llvm::Twine &Name = ""); 3978 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 3979 ReturnValueSlot ReturnValue, 3980 llvm::Triple::ArchType Arch); 3981 llvm::Value *EmitARMMVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 3982 ReturnValueSlot ReturnValue, 3983 llvm::Triple::ArchType Arch); 3984 llvm::Value *EmitARMCDEBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 3985 ReturnValueSlot ReturnValue, 3986 llvm::Triple::ArchType Arch); 3987 llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::IntegerType *ITy, 3988 QualType RTy); 3989 llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::ArrayType *ATy, 3990 QualType RTy); 3991 3992 llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID, 3993 unsigned LLVMIntrinsic, 3994 unsigned AltLLVMIntrinsic, 3995 const char *NameHint, 3996 unsigned Modifier, 3997 const CallExpr *E, 3998 SmallVectorImpl<llvm::Value *> &Ops, 3999 Address PtrOp0, Address PtrOp1, 4000 llvm::Triple::ArchType Arch); 4001 4002 llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID, 4003 unsigned Modifier, llvm::Type *ArgTy, 4004 const CallExpr *E); 4005 llvm::Value *EmitNeonCall(llvm::Function *F, 4006 SmallVectorImpl<llvm::Value*> &O, 4007 const char *name, 4008 unsigned shift = 0, bool rightshift = false); 4009 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx, 4010 const llvm::ElementCount &Count); 4011 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 4012 llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, 4013 bool negateForRightShift); 4014 llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt, 4015 llvm::Type *Ty, bool usgn, const char *name); 4016 llvm::Value *vectorWrapScalar16(llvm::Value *Op); 4017 /// SVEBuiltinMemEltTy - Returns the memory element type for this memory 4018 /// access builtin. Only required if it can't be inferred from the base 4019 /// pointer operand. 4020 llvm::Type *SVEBuiltinMemEltTy(SVETypeFlags TypeFlags); 4021 4022 SmallVector<llvm::Type *, 2> getSVEOverloadTypes(SVETypeFlags TypeFlags, 4023 llvm::Type *ReturnType, 4024 ArrayRef<llvm::Value *> Ops); 4025 llvm::Type *getEltType(SVETypeFlags TypeFlags); 4026 llvm::ScalableVectorType *getSVEType(const SVETypeFlags &TypeFlags); 4027 llvm::ScalableVectorType *getSVEPredType(SVETypeFlags TypeFlags); 4028 llvm::Value *EmitSVEAllTruePred(SVETypeFlags TypeFlags); 4029 llvm::Value *EmitSVEDupX(llvm::Value *Scalar); 4030 llvm::Value *EmitSVEDupX(llvm::Value *Scalar, llvm::Type *Ty); 4031 llvm::Value *EmitSVEReinterpret(llvm::Value *Val, llvm::Type *Ty); 4032 llvm::Value *EmitSVEPMull(SVETypeFlags TypeFlags, 4033 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4034 unsigned BuiltinID); 4035 llvm::Value *EmitSVEMovl(SVETypeFlags TypeFlags, 4036 llvm::ArrayRef<llvm::Value *> Ops, 4037 unsigned BuiltinID); 4038 llvm::Value *EmitSVEPredicateCast(llvm::Value *Pred, 4039 llvm::ScalableVectorType *VTy); 4040 llvm::Value *EmitSVEGatherLoad(SVETypeFlags TypeFlags, 4041 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4042 unsigned IntID); 4043 llvm::Value *EmitSVEScatterStore(SVETypeFlags TypeFlags, 4044 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4045 unsigned IntID); 4046 llvm::Value *EmitSVEMaskedLoad(const CallExpr *, llvm::Type *ReturnTy, 4047 SmallVectorImpl<llvm::Value *> &Ops, 4048 unsigned BuiltinID, bool IsZExtReturn); 4049 llvm::Value *EmitSVEMaskedStore(const CallExpr *, 4050 SmallVectorImpl<llvm::Value *> &Ops, 4051 unsigned BuiltinID); 4052 llvm::Value *EmitSVEPrefetchLoad(SVETypeFlags TypeFlags, 4053 SmallVectorImpl<llvm::Value *> &Ops, 4054 unsigned BuiltinID); 4055 llvm::Value *EmitSVEGatherPrefetch(SVETypeFlags TypeFlags, 4056 SmallVectorImpl<llvm::Value *> &Ops, 4057 unsigned IntID); 4058 llvm::Value *EmitSVEStructLoad(SVETypeFlags TypeFlags, 4059 SmallVectorImpl<llvm::Value *> &Ops, unsigned IntID); 4060 llvm::Value *EmitSVEStructStore(SVETypeFlags TypeFlags, 4061 SmallVectorImpl<llvm::Value *> &Ops, 4062 unsigned IntID); 4063 llvm::Value *EmitAArch64SVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4064 4065 llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4066 llvm::Triple::ArchType Arch); 4067 llvm::Value *EmitBPFBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4068 4069 llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); 4070 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4071 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4072 llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4073 llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4074 llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4075 llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID, 4076 const CallExpr *E); 4077 llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4078 bool ProcessOrderScopeAMDGCN(llvm::Value *Order, llvm::Value *Scope, 4079 llvm::AtomicOrdering &AO, 4080 llvm::SyncScope::ID &SSID); 4081 4082 private: 4083 enum class MSVCIntrin; 4084 4085 public: 4086 llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E); 4087 4088 llvm::Value *EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args); 4089 4090 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 4091 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 4092 llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); 4093 llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); 4094 llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); 4095 llvm::Value *EmitObjCCollectionLiteral(const Expr *E, 4096 const ObjCMethodDecl *MethodWithObjects); 4097 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 4098 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 4099 ReturnValueSlot Return = ReturnValueSlot()); 4100 4101 /// Retrieves the default cleanup kind for an ARC cleanup. 4102 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. 4103 CleanupKind getARCCleanupKind() { 4104 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 4105 ? NormalAndEHCleanup : NormalCleanup; 4106 } 4107 4108 // ARC primitives. 4109 void EmitARCInitWeak(Address addr, llvm::Value *value); 4110 void EmitARCDestroyWeak(Address addr); 4111 llvm::Value *EmitARCLoadWeak(Address addr); 4112 llvm::Value *EmitARCLoadWeakRetained(Address addr); 4113 llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored); 4114 void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); 4115 void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); 4116 void EmitARCCopyWeak(Address dst, Address src); 4117 void EmitARCMoveWeak(Address dst, Address src); 4118 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 4119 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 4120 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 4121 bool resultIgnored); 4122 llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value, 4123 bool resultIgnored); 4124 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 4125 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 4126 llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); 4127 void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise); 4128 void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 4129 llvm::Value *EmitARCAutorelease(llvm::Value *value); 4130 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 4131 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 4132 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 4133 llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value); 4134 4135 llvm::Value *EmitObjCAutorelease(llvm::Value *value, llvm::Type *returnType); 4136 llvm::Value *EmitObjCRetainNonBlock(llvm::Value *value, 4137 llvm::Type *returnType); 4138 void EmitObjCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 4139 4140 std::pair<LValue,llvm::Value*> 4141 EmitARCStoreAutoreleasing(const BinaryOperator *e); 4142 std::pair<LValue,llvm::Value*> 4143 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 4144 std::pair<LValue,llvm::Value*> 4145 EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored); 4146 4147 llvm::Value *EmitObjCAlloc(llvm::Value *value, 4148 llvm::Type *returnType); 4149 llvm::Value *EmitObjCAllocWithZone(llvm::Value *value, 4150 llvm::Type *returnType); 4151 llvm::Value *EmitObjCAllocInit(llvm::Value *value, llvm::Type *resultType); 4152 4153 llvm::Value *EmitObjCThrowOperand(const Expr *expr); 4154 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 4155 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 4156 4157 llvm::Value *EmitARCExtendBlockObject(const Expr *expr); 4158 llvm::Value *EmitARCReclaimReturnedObject(const Expr *e, 4159 bool allowUnsafeClaim); 4160 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 4161 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 4162 llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr); 4163 4164 void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values); 4165 4166 static Destroyer destroyARCStrongImprecise; 4167 static Destroyer destroyARCStrongPrecise; 4168 static Destroyer destroyARCWeak; 4169 static Destroyer emitARCIntrinsicUse; 4170 static Destroyer destroyNonTrivialCStruct; 4171 4172 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 4173 llvm::Value *EmitObjCAutoreleasePoolPush(); 4174 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 4175 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 4176 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 4177 4178 /// Emits a reference binding to the passed in expression. 4179 RValue EmitReferenceBindingToExpr(const Expr *E); 4180 4181 //===--------------------------------------------------------------------===// 4182 // Expression Emission 4183 //===--------------------------------------------------------------------===// 4184 4185 // Expressions are broken into three classes: scalar, complex, aggregate. 4186 4187 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 4188 /// scalar type, returning the result. 4189 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 4190 4191 /// Emit a conversion from the specified type to the specified destination 4192 /// type, both of which are LLVM scalar types. 4193 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 4194 QualType DstTy, SourceLocation Loc); 4195 4196 /// Emit a conversion from the specified complex type to the specified 4197 /// destination type, where the destination type is an LLVM scalar type. 4198 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 4199 QualType DstTy, 4200 SourceLocation Loc); 4201 4202 /// EmitAggExpr - Emit the computation of the specified expression 4203 /// of aggregate type. The result is computed into the given slot, 4204 /// which may be null to indicate that the value is not needed. 4205 void EmitAggExpr(const Expr *E, AggValueSlot AS); 4206 4207 /// EmitAggExprToLValue - Emit the computation of the specified expression of 4208 /// aggregate type into a temporary LValue. 4209 LValue EmitAggExprToLValue(const Expr *E); 4210 4211 /// Build all the stores needed to initialize an aggregate at Dest with the 4212 /// value Val. 4213 void EmitAggregateStore(llvm::Value *Val, Address Dest, bool DestIsVolatile); 4214 4215 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 4216 /// make sure it survives garbage collection until this point. 4217 void EmitExtendGCLifetime(llvm::Value *object); 4218 4219 /// EmitComplexExpr - Emit the computation of the specified expression of 4220 /// complex type, returning the result. 4221 ComplexPairTy EmitComplexExpr(const Expr *E, 4222 bool IgnoreReal = false, 4223 bool IgnoreImag = false); 4224 4225 /// EmitComplexExprIntoLValue - Emit the given expression of complex 4226 /// type and place its result into the specified l-value. 4227 void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit); 4228 4229 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 4230 void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit); 4231 4232 /// EmitLoadOfComplex - Load a complex number from the specified l-value. 4233 ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc); 4234 4235 Address emitAddrOfRealComponent(Address complex, QualType complexType); 4236 Address emitAddrOfImagComponent(Address complex, QualType complexType); 4237 4238 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 4239 /// global variable that has already been created for it. If the initializer 4240 /// has a different type than GV does, this may free GV and return a different 4241 /// one. Otherwise it just returns GV. 4242 llvm::GlobalVariable * 4243 AddInitializerToStaticVarDecl(const VarDecl &D, 4244 llvm::GlobalVariable *GV); 4245 4246 // Emit an @llvm.invariant.start call for the given memory region. 4247 void EmitInvariantStart(llvm::Constant *Addr, CharUnits Size); 4248 4249 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 4250 /// variable with global storage. 4251 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr, 4252 bool PerformInit); 4253 4254 llvm::Function *createAtExitStub(const VarDecl &VD, llvm::FunctionCallee Dtor, 4255 llvm::Constant *Addr); 4256 4257 /// Call atexit() with a function that passes the given argument to 4258 /// the given function. 4259 void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::FunctionCallee fn, 4260 llvm::Constant *addr); 4261 4262 /// Call atexit() with function dtorStub. 4263 void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub); 4264 4265 /// Call unatexit() with function dtorStub. 4266 llvm::Value *unregisterGlobalDtorWithUnAtExit(llvm::Function *dtorStub); 4267 4268 /// Emit code in this function to perform a guarded variable 4269 /// initialization. Guarded initializations are used when it's not 4270 /// possible to prove that an initialization will be done exactly 4271 /// once, e.g. with a static local variable or a static data member 4272 /// of a class template. 4273 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, 4274 bool PerformInit); 4275 4276 enum class GuardKind { VariableGuard, TlsGuard }; 4277 4278 /// Emit a branch to select whether or not to perform guarded initialization. 4279 void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit, 4280 llvm::BasicBlock *InitBlock, 4281 llvm::BasicBlock *NoInitBlock, 4282 GuardKind Kind, const VarDecl *D); 4283 4284 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 4285 /// variables. 4286 void 4287 GenerateCXXGlobalInitFunc(llvm::Function *Fn, 4288 ArrayRef<llvm::Function *> CXXThreadLocals, 4289 ConstantAddress Guard = ConstantAddress::invalid()); 4290 4291 /// GenerateCXXGlobalCleanUpFunc - Generates code for cleaning up global 4292 /// variables. 4293 void GenerateCXXGlobalCleanUpFunc( 4294 llvm::Function *Fn, 4295 const std::vector<std::tuple<llvm::FunctionType *, llvm::WeakTrackingVH, 4296 llvm::Constant *>> &DtorsOrStermFinalizers); 4297 4298 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 4299 const VarDecl *D, 4300 llvm::GlobalVariable *Addr, 4301 bool PerformInit); 4302 4303 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 4304 4305 void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp); 4306 4307 void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true); 4308 4309 RValue EmitAtomicExpr(AtomicExpr *E); 4310 4311 //===--------------------------------------------------------------------===// 4312 // Annotations Emission 4313 //===--------------------------------------------------------------------===// 4314 4315 /// Emit an annotation call (intrinsic). 4316 llvm::Value *EmitAnnotationCall(llvm::Function *AnnotationFn, 4317 llvm::Value *AnnotatedVal, 4318 StringRef AnnotationStr, 4319 SourceLocation Location); 4320 4321 /// Emit local annotations for the local variable V, declared by D. 4322 void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); 4323 4324 /// Emit field annotations for the given field & value. Returns the 4325 /// annotation result. 4326 Address EmitFieldAnnotations(const FieldDecl *D, Address V); 4327 4328 //===--------------------------------------------------------------------===// 4329 // Internal Helpers 4330 //===--------------------------------------------------------------------===// 4331 4332 /// ContainsLabel - Return true if the statement contains a label in it. If 4333 /// this statement is not executed normally, it not containing a label means 4334 /// that we can just remove the code. 4335 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 4336 4337 /// containsBreak - Return true if the statement contains a break out of it. 4338 /// If the statement (recursively) contains a switch or loop with a break 4339 /// inside of it, this is fine. 4340 static bool containsBreak(const Stmt *S); 4341 4342 /// Determine if the given statement might introduce a declaration into the 4343 /// current scope, by being a (possibly-labelled) DeclStmt. 4344 static bool mightAddDeclToScope(const Stmt *S); 4345 4346 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 4347 /// to a constant, or if it does but contains a label, return false. If it 4348 /// constant folds return true and set the boolean result in Result. 4349 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result, 4350 bool AllowLabels = false); 4351 4352 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 4353 /// to a constant, or if it does but contains a label, return false. If it 4354 /// constant folds return true and set the folded value. 4355 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result, 4356 bool AllowLabels = false); 4357 4358 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 4359 /// if statement) to the specified blocks. Based on the condition, this might 4360 /// try to simplify the codegen of the conditional based on the branch. 4361 /// TrueCount should be the number of times we expect the condition to 4362 /// evaluate to true based on PGO data. 4363 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 4364 llvm::BasicBlock *FalseBlock, uint64_t TrueCount, 4365 llvm::MDNode *Weights = nullptr); 4366 4367 /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is 4368 /// nonnull, if \p LHS is marked _Nonnull. 4369 void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc); 4370 4371 /// An enumeration which makes it easier to specify whether or not an 4372 /// operation is a subtraction. 4373 enum { NotSubtraction = false, IsSubtraction = true }; 4374 4375 /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to 4376 /// detect undefined behavior when the pointer overflow sanitizer is enabled. 4377 /// \p SignedIndices indicates whether any of the GEP indices are signed. 4378 /// \p IsSubtraction indicates whether the expression used to form the GEP 4379 /// is a subtraction. 4380 llvm::Value *EmitCheckedInBoundsGEP(llvm::Value *Ptr, 4381 ArrayRef<llvm::Value *> IdxList, 4382 bool SignedIndices, 4383 bool IsSubtraction, 4384 SourceLocation Loc, 4385 const Twine &Name = ""); 4386 4387 /// Specifies which type of sanitizer check to apply when handling a 4388 /// particular builtin. 4389 enum BuiltinCheckKind { 4390 BCK_CTZPassedZero, 4391 BCK_CLZPassedZero, 4392 }; 4393 4394 /// Emits an argument for a call to a builtin. If the builtin sanitizer is 4395 /// enabled, a runtime check specified by \p Kind is also emitted. 4396 llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind); 4397 4398 /// Emit a description of a type in a format suitable for passing to 4399 /// a runtime sanitizer handler. 4400 llvm::Constant *EmitCheckTypeDescriptor(QualType T); 4401 4402 /// Convert a value into a format suitable for passing to a runtime 4403 /// sanitizer handler. 4404 llvm::Value *EmitCheckValue(llvm::Value *V); 4405 4406 /// Emit a description of a source location in a format suitable for 4407 /// passing to a runtime sanitizer handler. 4408 llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc); 4409 4410 /// Create a basic block that will either trap or call a handler function in 4411 /// the UBSan runtime with the provided arguments, and create a conditional 4412 /// branch to it. 4413 void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 4414 SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs, 4415 ArrayRef<llvm::Value *> DynamicArgs); 4416 4417 /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath 4418 /// if Cond if false. 4419 void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond, 4420 llvm::ConstantInt *TypeId, llvm::Value *Ptr, 4421 ArrayRef<llvm::Constant *> StaticArgs); 4422 4423 /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime 4424 /// checking is enabled. Otherwise, just emit an unreachable instruction. 4425 void EmitUnreachable(SourceLocation Loc); 4426 4427 /// Create a basic block that will call the trap intrinsic, and emit a 4428 /// conditional branch to it, for the -ftrapv checks. 4429 void EmitTrapCheck(llvm::Value *Checked); 4430 4431 /// Emit a call to trap or debugtrap and attach function attribute 4432 /// "trap-func-name" if specified. 4433 llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID); 4434 4435 /// Emit a stub for the cross-DSO CFI check function. 4436 void EmitCfiCheckStub(); 4437 4438 /// Emit a cross-DSO CFI failure handling function. 4439 void EmitCfiCheckFail(); 4440 4441 /// Create a check for a function parameter that may potentially be 4442 /// declared as non-null. 4443 void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc, 4444 AbstractCallee AC, unsigned ParmNum); 4445 4446 /// EmitCallArg - Emit a single call argument. 4447 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 4448 4449 /// EmitDelegateCallArg - We are performing a delegate call; that 4450 /// is, the current function is delegating to another one. Produce 4451 /// a r-value suitable for passing the given parameter. 4452 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param, 4453 SourceLocation loc); 4454 4455 /// SetFPAccuracy - Set the minimum required accuracy of the given floating 4456 /// point operation, expressed as the maximum relative error in ulp. 4457 void SetFPAccuracy(llvm::Value *Val, float Accuracy); 4458 4459 /// SetFPModel - Control floating point behavior via fp-model settings. 4460 void SetFPModel(); 4461 4462 /// Set the codegen fast-math flags. 4463 void SetFastMathFlags(FPOptions FPFeatures); 4464 4465 private: 4466 llvm::MDNode *getRangeForLoadFromType(QualType Ty); 4467 void EmitReturnOfRValue(RValue RV, QualType Ty); 4468 4469 void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New); 4470 4471 llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4> 4472 DeferredReplacements; 4473 4474 /// Set the address of a local variable. 4475 void setAddrOfLocalVar(const VarDecl *VD, Address Addr) { 4476 assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!"); 4477 LocalDeclMap.insert({VD, Addr}); 4478 } 4479 4480 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 4481 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 4482 /// 4483 /// \param AI - The first function argument of the expansion. 4484 void ExpandTypeFromArgs(QualType Ty, LValue Dst, 4485 llvm::Function::arg_iterator &AI); 4486 4487 /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg 4488 /// Ty, into individual arguments on the provided vector \arg IRCallArgs, 4489 /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand. 4490 void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, 4491 SmallVectorImpl<llvm::Value *> &IRCallArgs, 4492 unsigned &IRCallArgPos); 4493 4494 llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info, 4495 const Expr *InputExpr, std::string &ConstraintStr); 4496 4497 llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 4498 LValue InputValue, QualType InputType, 4499 std::string &ConstraintStr, 4500 SourceLocation Loc); 4501 4502 /// Attempts to statically evaluate the object size of E. If that 4503 /// fails, emits code to figure the size of E out for us. This is 4504 /// pass_object_size aware. 4505 /// 4506 /// If EmittedExpr is non-null, this will use that instead of re-emitting E. 4507 llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type, 4508 llvm::IntegerType *ResType, 4509 llvm::Value *EmittedE, 4510 bool IsDynamic); 4511 4512 /// Emits the size of E, as required by __builtin_object_size. This 4513 /// function is aware of pass_object_size parameters, and will act accordingly 4514 /// if E is a parameter with the pass_object_size attribute. 4515 llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type, 4516 llvm::IntegerType *ResType, 4517 llvm::Value *EmittedE, 4518 bool IsDynamic); 4519 4520 void emitZeroOrPatternForAutoVarInit(QualType type, const VarDecl &D, 4521 Address Loc); 4522 4523 public: 4524 #ifndef NDEBUG 4525 // Determine whether the given argument is an Objective-C method 4526 // that may have type parameters in its signature. 4527 static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) { 4528 const DeclContext *dc = method->getDeclContext(); 4529 if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) { 4530 return classDecl->getTypeParamListAsWritten(); 4531 } 4532 4533 if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) { 4534 return catDecl->getTypeParamList(); 4535 } 4536 4537 return false; 4538 } 4539 4540 template<typename T> 4541 static bool isObjCMethodWithTypeParams(const T *) { return false; } 4542 #endif 4543 4544 enum class EvaluationOrder { 4545 ///! No language constraints on evaluation order. 4546 Default, 4547 ///! Language semantics require left-to-right evaluation. 4548 ForceLeftToRight, 4549 ///! Language semantics require right-to-left evaluation. 4550 ForceRightToLeft 4551 }; 4552 4553 /// EmitCallArgs - Emit call arguments for a function. 4554 template <typename T> 4555 void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo, 4556 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 4557 AbstractCallee AC = AbstractCallee(), 4558 unsigned ParamsToSkip = 0, 4559 EvaluationOrder Order = EvaluationOrder::Default) { 4560 SmallVector<QualType, 16> ArgTypes; 4561 CallExpr::const_arg_iterator Arg = ArgRange.begin(); 4562 4563 assert((ParamsToSkip == 0 || CallArgTypeInfo) && 4564 "Can't skip parameters if type info is not provided"); 4565 if (CallArgTypeInfo) { 4566 #ifndef NDEBUG 4567 bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo); 4568 #endif 4569 4570 // First, use the argument types that the type info knows about 4571 for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip, 4572 E = CallArgTypeInfo->param_type_end(); 4573 I != E; ++I, ++Arg) { 4574 assert(Arg != ArgRange.end() && "Running over edge of argument list!"); 4575 assert((isGenericMethod || 4576 ((*I)->isVariablyModifiedType() || 4577 (*I).getNonReferenceType()->isObjCRetainableType() || 4578 getContext() 4579 .getCanonicalType((*I).getNonReferenceType()) 4580 .getTypePtr() == 4581 getContext() 4582 .getCanonicalType((*Arg)->getType()) 4583 .getTypePtr())) && 4584 "type mismatch in call argument!"); 4585 ArgTypes.push_back(*I); 4586 } 4587 } 4588 4589 // Either we've emitted all the call args, or we have a call to variadic 4590 // function. 4591 assert((Arg == ArgRange.end() || !CallArgTypeInfo || 4592 CallArgTypeInfo->isVariadic()) && 4593 "Extra arguments in non-variadic function!"); 4594 4595 // If we still have any arguments, emit them using the type of the argument. 4596 for (auto *A : llvm::make_range(Arg, ArgRange.end())) 4597 ArgTypes.push_back(CallArgTypeInfo ? getVarArgType(A) : A->getType()); 4598 4599 EmitCallArgs(Args, ArgTypes, ArgRange, AC, ParamsToSkip, Order); 4600 } 4601 4602 void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes, 4603 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 4604 AbstractCallee AC = AbstractCallee(), 4605 unsigned ParamsToSkip = 0, 4606 EvaluationOrder Order = EvaluationOrder::Default); 4607 4608 /// EmitPointerWithAlignment - Given an expression with a pointer type, 4609 /// emit the value and compute our best estimate of the alignment of the 4610 /// pointee. 4611 /// 4612 /// \param BaseInfo - If non-null, this will be initialized with 4613 /// information about the source of the alignment and the may-alias 4614 /// attribute. Note that this function will conservatively fall back on 4615 /// the type when it doesn't recognize the expression and may-alias will 4616 /// be set to false. 4617 /// 4618 /// One reasonable way to use this information is when there's a language 4619 /// guarantee that the pointer must be aligned to some stricter value, and 4620 /// we're simply trying to ensure that sufficiently obvious uses of under- 4621 /// aligned objects don't get miscompiled; for example, a placement new 4622 /// into the address of a local variable. In such a case, it's quite 4623 /// reasonable to just ignore the returned alignment when it isn't from an 4624 /// explicit source. 4625 Address EmitPointerWithAlignment(const Expr *Addr, 4626 LValueBaseInfo *BaseInfo = nullptr, 4627 TBAAAccessInfo *TBAAInfo = nullptr); 4628 4629 /// If \p E references a parameter with pass_object_size info or a constant 4630 /// array size modifier, emit the object size divided by the size of \p EltTy. 4631 /// Otherwise return null. 4632 llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy); 4633 4634 void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK); 4635 4636 struct MultiVersionResolverOption { 4637 llvm::Function *Function; 4638 FunctionDecl *FD; 4639 struct Conds { 4640 StringRef Architecture; 4641 llvm::SmallVector<StringRef, 8> Features; 4642 4643 Conds(StringRef Arch, ArrayRef<StringRef> Feats) 4644 : Architecture(Arch), Features(Feats.begin(), Feats.end()) {} 4645 } Conditions; 4646 4647 MultiVersionResolverOption(llvm::Function *F, StringRef Arch, 4648 ArrayRef<StringRef> Feats) 4649 : Function(F), Conditions(Arch, Feats) {} 4650 }; 4651 4652 // Emits the body of a multiversion function's resolver. Assumes that the 4653 // options are already sorted in the proper order, with the 'default' option 4654 // last (if it exists). 4655 void EmitMultiVersionResolver(llvm::Function *Resolver, 4656 ArrayRef<MultiVersionResolverOption> Options); 4657 4658 static uint64_t GetX86CpuSupportsMask(ArrayRef<StringRef> FeatureStrs); 4659 4660 private: 4661 QualType getVarArgType(const Expr *Arg); 4662 4663 void EmitDeclMetadata(); 4664 4665 BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType, 4666 const AutoVarEmission &emission); 4667 4668 void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); 4669 4670 llvm::Value *GetValueForARMHint(unsigned BuiltinID); 4671 llvm::Value *EmitX86CpuIs(const CallExpr *E); 4672 llvm::Value *EmitX86CpuIs(StringRef CPUStr); 4673 llvm::Value *EmitX86CpuSupports(const CallExpr *E); 4674 llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs); 4675 llvm::Value *EmitX86CpuSupports(uint64_t Mask); 4676 llvm::Value *EmitX86CpuInit(); 4677 llvm::Value *FormResolverCondition(const MultiVersionResolverOption &RO); 4678 }; 4679 4680 inline DominatingLLVMValue::saved_type 4681 DominatingLLVMValue::save(CodeGenFunction &CGF, llvm::Value *value) { 4682 if (!needsSaving(value)) return saved_type(value, false); 4683 4684 // Otherwise, we need an alloca. 4685 auto align = CharUnits::fromQuantity( 4686 CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType())); 4687 Address alloca = 4688 CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save"); 4689 CGF.Builder.CreateStore(value, alloca); 4690 4691 return saved_type(alloca.getPointer(), true); 4692 } 4693 4694 inline llvm::Value *DominatingLLVMValue::restore(CodeGenFunction &CGF, 4695 saved_type value) { 4696 // If the value says it wasn't saved, trust that it's still dominating. 4697 if (!value.getInt()) return value.getPointer(); 4698 4699 // Otherwise, it should be an alloca instruction, as set up in save(). 4700 auto alloca = cast<llvm::AllocaInst>(value.getPointer()); 4701 return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlign()); 4702 } 4703 4704 } // end namespace CodeGen 4705 4706 // Map the LangOption for floating point exception behavior into 4707 // the corresponding enum in the IR. 4708 llvm::fp::ExceptionBehavior 4709 ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind); 4710 } // end namespace clang 4711 4712 #endif 4713