1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the internal per-function state used for llvm translation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
15 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
16 
17 #include "CGBuilder.h"
18 #include "CGDebugInfo.h"
19 #include "CGLoopInfo.h"
20 #include "CGValue.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "EHScopeStack.h"
24 #include "VarBypassDetector.h"
25 #include "clang/AST/CharUnits.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/ExprObjC.h"
28 #include "clang/AST/ExprOpenMP.h"
29 #include "clang/AST/Type.h"
30 #include "clang/Basic/ABI.h"
31 #include "clang/Basic/CapturedStmt.h"
32 #include "clang/Basic/OpenMPKinds.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "clang/Frontend/CodeGenOptions.h"
35 #include "llvm/ADT/ArrayRef.h"
36 #include "llvm/ADT/DenseMap.h"
37 #include "llvm/ADT/SmallVector.h"
38 #include "llvm/IR/ValueHandle.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Transforms/Utils/SanitizerStats.h"
41 
42 namespace llvm {
43 class BasicBlock;
44 class LLVMContext;
45 class MDNode;
46 class Module;
47 class SwitchInst;
48 class Twine;
49 class Value;
50 class CallSite;
51 }
52 
53 namespace clang {
54 class ASTContext;
55 class BlockDecl;
56 class CXXDestructorDecl;
57 class CXXForRangeStmt;
58 class CXXTryStmt;
59 class Decl;
60 class LabelDecl;
61 class EnumConstantDecl;
62 class FunctionDecl;
63 class FunctionProtoType;
64 class LabelStmt;
65 class ObjCContainerDecl;
66 class ObjCInterfaceDecl;
67 class ObjCIvarDecl;
68 class ObjCMethodDecl;
69 class ObjCImplementationDecl;
70 class ObjCPropertyImplDecl;
71 class TargetInfo;
72 class VarDecl;
73 class ObjCForCollectionStmt;
74 class ObjCAtTryStmt;
75 class ObjCAtThrowStmt;
76 class ObjCAtSynchronizedStmt;
77 class ObjCAutoreleasePoolStmt;
78 
79 namespace analyze_os_log {
80 class OSLogBufferLayout;
81 }
82 
83 namespace CodeGen {
84 class CodeGenTypes;
85 class CGCallee;
86 class CGFunctionInfo;
87 class CGRecordLayout;
88 class CGBlockInfo;
89 class CGCXXABI;
90 class BlockByrefHelpers;
91 class BlockByrefInfo;
92 class BlockFlags;
93 class BlockFieldFlags;
94 class RegionCodeGenTy;
95 class TargetCodeGenInfo;
96 struct OMPTaskDataTy;
97 struct CGCoroData;
98 
99 /// The kind of evaluation to perform on values of a particular
100 /// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
101 /// CGExprAgg?
102 ///
103 /// TODO: should vectors maybe be split out into their own thing?
104 enum TypeEvaluationKind {
105   TEK_Scalar,
106   TEK_Complex,
107   TEK_Aggregate
108 };
109 
110 #define LIST_SANITIZER_CHECKS                                                  \
111   SANITIZER_CHECK(AddOverflow, add_overflow, 0)                                \
112   SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0)                  \
113   SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0)                             \
114   SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0)                          \
115   SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0)            \
116   SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0)                   \
117   SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 0)             \
118   SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0)                          \
119   SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0)                     \
120   SANITIZER_CHECK(MissingReturn, missing_return, 0)                            \
121   SANITIZER_CHECK(MulOverflow, mul_overflow, 0)                                \
122   SANITIZER_CHECK(NegateOverflow, negate_overflow, 0)                          \
123   SANITIZER_CHECK(NullabilityArg, nullability_arg, 0)                          \
124   SANITIZER_CHECK(NullabilityReturn, nullability_return, 1)                    \
125   SANITIZER_CHECK(NonnullArg, nonnull_arg, 0)                                  \
126   SANITIZER_CHECK(NonnullReturn, nonnull_return, 1)                            \
127   SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0)                               \
128   SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0)                        \
129   SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0)                    \
130   SANITIZER_CHECK(SubOverflow, sub_overflow, 0)                                \
131   SANITIZER_CHECK(TypeMismatch, type_mismatch, 1)                              \
132   SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0)
133 
134 enum SanitizerHandler {
135 #define SANITIZER_CHECK(Enum, Name, Version) Enum,
136   LIST_SANITIZER_CHECKS
137 #undef SANITIZER_CHECK
138 };
139 
140 /// CodeGenFunction - This class organizes the per-function state that is used
141 /// while generating LLVM code.
142 class CodeGenFunction : public CodeGenTypeCache {
143   CodeGenFunction(const CodeGenFunction &) = delete;
144   void operator=(const CodeGenFunction &) = delete;
145 
146   friend class CGCXXABI;
147 public:
148   /// A jump destination is an abstract label, branching to which may
149   /// require a jump out through normal cleanups.
150   struct JumpDest {
151     JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {}
152     JumpDest(llvm::BasicBlock *Block,
153              EHScopeStack::stable_iterator Depth,
154              unsigned Index)
155       : Block(Block), ScopeDepth(Depth), Index(Index) {}
156 
157     bool isValid() const { return Block != nullptr; }
158     llvm::BasicBlock *getBlock() const { return Block; }
159     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
160     unsigned getDestIndex() const { return Index; }
161 
162     // This should be used cautiously.
163     void setScopeDepth(EHScopeStack::stable_iterator depth) {
164       ScopeDepth = depth;
165     }
166 
167   private:
168     llvm::BasicBlock *Block;
169     EHScopeStack::stable_iterator ScopeDepth;
170     unsigned Index;
171   };
172 
173   CodeGenModule &CGM;  // Per-module state.
174   const TargetInfo &Target;
175 
176   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
177   LoopInfoStack LoopStack;
178   CGBuilderTy Builder;
179 
180   // Stores variables for which we can't generate correct lifetime markers
181   // because of jumps.
182   VarBypassDetector Bypasses;
183 
184   // CodeGen lambda for loops and support for ordered clause
185   typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &,
186                                   JumpDest)>
187       CodeGenLoopTy;
188   typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation,
189                                   const unsigned, const bool)>
190       CodeGenOrderedTy;
191 
192   // Codegen lambda for loop bounds in worksharing loop constructs
193   typedef llvm::function_ref<std::pair<LValue, LValue>(
194       CodeGenFunction &, const OMPExecutableDirective &S)>
195       CodeGenLoopBoundsTy;
196 
197   // Codegen lambda for loop bounds in dispatch-based loop implementation
198   typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>(
199       CodeGenFunction &, const OMPExecutableDirective &S, Address LB,
200       Address UB)>
201       CodeGenDispatchBoundsTy;
202 
203   /// \brief CGBuilder insert helper. This function is called after an
204   /// instruction is created using Builder.
205   void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
206                     llvm::BasicBlock *BB,
207                     llvm::BasicBlock::iterator InsertPt) const;
208 
209   /// CurFuncDecl - Holds the Decl for the current outermost
210   /// non-closure context.
211   const Decl *CurFuncDecl;
212   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
213   const Decl *CurCodeDecl;
214   const CGFunctionInfo *CurFnInfo;
215   QualType FnRetTy;
216   llvm::Function *CurFn;
217 
218   // Holds coroutine data if the current function is a coroutine. We use a
219   // wrapper to manage its lifetime, so that we don't have to define CGCoroData
220   // in this header.
221   struct CGCoroInfo {
222     std::unique_ptr<CGCoroData> Data;
223     CGCoroInfo();
224     ~CGCoroInfo();
225   };
226   CGCoroInfo CurCoro;
227 
228   bool isCoroutine() const {
229     return CurCoro.Data != nullptr;
230   }
231 
232   /// CurGD - The GlobalDecl for the current function being compiled.
233   GlobalDecl CurGD;
234 
235   /// PrologueCleanupDepth - The cleanup depth enclosing all the
236   /// cleanups associated with the parameters.
237   EHScopeStack::stable_iterator PrologueCleanupDepth;
238 
239   /// ReturnBlock - Unified return block.
240   JumpDest ReturnBlock;
241 
242   /// ReturnValue - The temporary alloca to hold the return
243   /// value. This is invalid iff the function has no return value.
244   Address ReturnValue;
245 
246   /// Return true if a label was seen in the current scope.
247   bool hasLabelBeenSeenInCurrentScope() const {
248     if (CurLexicalScope)
249       return CurLexicalScope->hasLabels();
250     return !LabelMap.empty();
251   }
252 
253   /// AllocaInsertPoint - This is an instruction in the entry block before which
254   /// we prefer to insert allocas.
255   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
256 
257   /// \brief API for captured statement code generation.
258   class CGCapturedStmtInfo {
259   public:
260     explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default)
261         : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
262     explicit CGCapturedStmtInfo(const CapturedStmt &S,
263                                 CapturedRegionKind K = CR_Default)
264       : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
265 
266       RecordDecl::field_iterator Field =
267         S.getCapturedRecordDecl()->field_begin();
268       for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
269                                                 E = S.capture_end();
270            I != E; ++I, ++Field) {
271         if (I->capturesThis())
272           CXXThisFieldDecl = *Field;
273         else if (I->capturesVariable())
274           CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
275         else if (I->capturesVariableByCopy())
276           CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
277       }
278     }
279 
280     virtual ~CGCapturedStmtInfo();
281 
282     CapturedRegionKind getKind() const { return Kind; }
283 
284     virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
285     // \brief Retrieve the value of the context parameter.
286     virtual llvm::Value *getContextValue() const { return ThisValue; }
287 
288     /// \brief Lookup the captured field decl for a variable.
289     virtual const FieldDecl *lookup(const VarDecl *VD) const {
290       return CaptureFields.lookup(VD->getCanonicalDecl());
291     }
292 
293     bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
294     virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
295 
296     static bool classof(const CGCapturedStmtInfo *) {
297       return true;
298     }
299 
300     /// \brief Emit the captured statement body.
301     virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
302       CGF.incrementProfileCounter(S);
303       CGF.EmitStmt(S);
304     }
305 
306     /// \brief Get the name of the capture helper.
307     virtual StringRef getHelperName() const { return "__captured_stmt"; }
308 
309   private:
310     /// \brief The kind of captured statement being generated.
311     CapturedRegionKind Kind;
312 
313     /// \brief Keep the map between VarDecl and FieldDecl.
314     llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
315 
316     /// \brief The base address of the captured record, passed in as the first
317     /// argument of the parallel region function.
318     llvm::Value *ThisValue;
319 
320     /// \brief Captured 'this' type.
321     FieldDecl *CXXThisFieldDecl;
322   };
323   CGCapturedStmtInfo *CapturedStmtInfo;
324 
325   /// \brief RAII for correct setting/restoring of CapturedStmtInfo.
326   class CGCapturedStmtRAII {
327   private:
328     CodeGenFunction &CGF;
329     CGCapturedStmtInfo *PrevCapturedStmtInfo;
330   public:
331     CGCapturedStmtRAII(CodeGenFunction &CGF,
332                        CGCapturedStmtInfo *NewCapturedStmtInfo)
333         : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) {
334       CGF.CapturedStmtInfo = NewCapturedStmtInfo;
335     }
336     ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; }
337   };
338 
339   /// An abstract representation of regular/ObjC call/message targets.
340   class AbstractCallee {
341     /// The function declaration of the callee.
342     const Decl *CalleeDecl;
343 
344   public:
345     AbstractCallee() : CalleeDecl(nullptr) {}
346     AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {}
347     AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {}
348     bool hasFunctionDecl() const {
349       return dyn_cast_or_null<FunctionDecl>(CalleeDecl);
350     }
351     const Decl *getDecl() const { return CalleeDecl; }
352     unsigned getNumParams() const {
353       if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
354         return FD->getNumParams();
355       return cast<ObjCMethodDecl>(CalleeDecl)->param_size();
356     }
357     const ParmVarDecl *getParamDecl(unsigned I) const {
358       if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
359         return FD->getParamDecl(I);
360       return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I);
361     }
362   };
363 
364   /// \brief Sanitizers enabled for this function.
365   SanitizerSet SanOpts;
366 
367   /// \brief True if CodeGen currently emits code implementing sanitizer checks.
368   bool IsSanitizerScope;
369 
370   /// \brief RAII object to set/unset CodeGenFunction::IsSanitizerScope.
371   class SanitizerScope {
372     CodeGenFunction *CGF;
373   public:
374     SanitizerScope(CodeGenFunction *CGF);
375     ~SanitizerScope();
376   };
377 
378   /// In C++, whether we are code generating a thunk.  This controls whether we
379   /// should emit cleanups.
380   bool CurFuncIsThunk;
381 
382   /// In ARC, whether we should autorelease the return value.
383   bool AutoreleaseResult;
384 
385   /// Whether we processed a Microsoft-style asm block during CodeGen. These can
386   /// potentially set the return value.
387   bool SawAsmBlock;
388 
389   const FunctionDecl *CurSEHParent = nullptr;
390 
391   /// True if the current function is an outlined SEH helper. This can be a
392   /// finally block or filter expression.
393   bool IsOutlinedSEHHelper;
394 
395   const CodeGen::CGBlockInfo *BlockInfo;
396   llvm::Value *BlockPointer;
397 
398   llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
399   FieldDecl *LambdaThisCaptureField;
400 
401   /// \brief A mapping from NRVO variables to the flags used to indicate
402   /// when the NRVO has been applied to this variable.
403   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
404 
405   EHScopeStack EHStack;
406   llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
407   llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack;
408 
409   llvm::Instruction *CurrentFuncletPad = nullptr;
410 
411   class CallLifetimeEnd final : public EHScopeStack::Cleanup {
412     llvm::Value *Addr;
413     llvm::Value *Size;
414 
415   public:
416     CallLifetimeEnd(Address addr, llvm::Value *size)
417         : Addr(addr.getPointer()), Size(size) {}
418 
419     void Emit(CodeGenFunction &CGF, Flags flags) override {
420       CGF.EmitLifetimeEnd(Size, Addr);
421     }
422   };
423 
424   /// Header for data within LifetimeExtendedCleanupStack.
425   struct LifetimeExtendedCleanupHeader {
426     /// The size of the following cleanup object.
427     unsigned Size;
428     /// The kind of cleanup to push: a value from the CleanupKind enumeration.
429     CleanupKind Kind;
430 
431     size_t getSize() const { return Size; }
432     CleanupKind getKind() const { return Kind; }
433   };
434 
435   /// i32s containing the indexes of the cleanup destinations.
436   llvm::AllocaInst *NormalCleanupDest;
437 
438   unsigned NextCleanupDestIndex;
439 
440   /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
441   CGBlockInfo *FirstBlockInfo;
442 
443   /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
444   llvm::BasicBlock *EHResumeBlock;
445 
446   /// The exception slot.  All landing pads write the current exception pointer
447   /// into this alloca.
448   llvm::Value *ExceptionSlot;
449 
450   /// The selector slot.  Under the MandatoryCleanup model, all landing pads
451   /// write the current selector value into this alloca.
452   llvm::AllocaInst *EHSelectorSlot;
453 
454   /// A stack of exception code slots. Entering an __except block pushes a slot
455   /// on the stack and leaving pops one. The __exception_code() intrinsic loads
456   /// a value from the top of the stack.
457   SmallVector<Address, 1> SEHCodeSlotStack;
458 
459   /// Value returned by __exception_info intrinsic.
460   llvm::Value *SEHInfo = nullptr;
461 
462   /// Emits a landing pad for the current EH stack.
463   llvm::BasicBlock *EmitLandingPad();
464 
465   llvm::BasicBlock *getInvokeDestImpl();
466 
467   template <class T>
468   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
469     return DominatingValue<T>::save(*this, value);
470   }
471 
472 public:
473   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
474   /// rethrows.
475   SmallVector<llvm::Value*, 8> ObjCEHValueStack;
476 
477   /// A class controlling the emission of a finally block.
478   class FinallyInfo {
479     /// Where the catchall's edge through the cleanup should go.
480     JumpDest RethrowDest;
481 
482     /// A function to call to enter the catch.
483     llvm::Constant *BeginCatchFn;
484 
485     /// An i1 variable indicating whether or not the @finally is
486     /// running for an exception.
487     llvm::AllocaInst *ForEHVar;
488 
489     /// An i8* variable into which the exception pointer to rethrow
490     /// has been saved.
491     llvm::AllocaInst *SavedExnVar;
492 
493   public:
494     void enter(CodeGenFunction &CGF, const Stmt *Finally,
495                llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
496                llvm::Constant *rethrowFn);
497     void exit(CodeGenFunction &CGF);
498   };
499 
500   /// Returns true inside SEH __try blocks.
501   bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }
502 
503   /// Returns true while emitting a cleanuppad.
504   bool isCleanupPadScope() const {
505     return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad);
506   }
507 
508   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
509   /// current full-expression.  Safe against the possibility that
510   /// we're currently inside a conditionally-evaluated expression.
511   template <class T, class... As>
512   void pushFullExprCleanup(CleanupKind kind, As... A) {
513     // If we're not in a conditional branch, or if none of the
514     // arguments requires saving, then use the unconditional cleanup.
515     if (!isInConditionalBranch())
516       return EHStack.pushCleanup<T>(kind, A...);
517 
518     // Stash values in a tuple so we can guarantee the order of saves.
519     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
520     SavedTuple Saved{saveValueInCond(A)...};
521 
522     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
523     EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
524     initFullExprCleanup();
525   }
526 
527   /// \brief Queue a cleanup to be pushed after finishing the current
528   /// full-expression.
529   template <class T, class... As>
530   void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
531     assert(!isInConditionalBranch() && "can't defer conditional cleanup");
532 
533     LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind };
534 
535     size_t OldSize = LifetimeExtendedCleanupStack.size();
536     LifetimeExtendedCleanupStack.resize(
537         LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size);
538 
539     static_assert(sizeof(Header) % alignof(T) == 0,
540                   "Cleanup will be allocated on misaligned address");
541     char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
542     new (Buffer) LifetimeExtendedCleanupHeader(Header);
543     new (Buffer + sizeof(Header)) T(A...);
544   }
545 
546   /// Set up the last cleaup that was pushed as a conditional
547   /// full-expression cleanup.
548   void initFullExprCleanup();
549 
550   /// PushDestructorCleanup - Push a cleanup to call the
551   /// complete-object destructor of an object of the given type at the
552   /// given address.  Does nothing if T is not a C++ class type with a
553   /// non-trivial destructor.
554   void PushDestructorCleanup(QualType T, Address Addr);
555 
556   /// PushDestructorCleanup - Push a cleanup to call the
557   /// complete-object variant of the given destructor on the object at
558   /// the given address.
559   void PushDestructorCleanup(const CXXDestructorDecl *Dtor, Address Addr);
560 
561   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
562   /// process all branch fixups.
563   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
564 
565   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
566   /// The block cannot be reactivated.  Pops it if it's the top of the
567   /// stack.
568   ///
569   /// \param DominatingIP - An instruction which is known to
570   ///   dominate the current IP (if set) and which lies along
571   ///   all paths of execution between the current IP and the
572   ///   the point at which the cleanup comes into scope.
573   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
574                               llvm::Instruction *DominatingIP);
575 
576   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
577   /// Cannot be used to resurrect a deactivated cleanup.
578   ///
579   /// \param DominatingIP - An instruction which is known to
580   ///   dominate the current IP (if set) and which lies along
581   ///   all paths of execution between the current IP and the
582   ///   the point at which the cleanup comes into scope.
583   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
584                             llvm::Instruction *DominatingIP);
585 
586   /// \brief Enters a new scope for capturing cleanups, all of which
587   /// will be executed once the scope is exited.
588   class RunCleanupsScope {
589     EHScopeStack::stable_iterator CleanupStackDepth;
590     size_t LifetimeExtendedCleanupStackSize;
591     bool OldDidCallStackSave;
592   protected:
593     bool PerformCleanup;
594   private:
595 
596     RunCleanupsScope(const RunCleanupsScope &) = delete;
597     void operator=(const RunCleanupsScope &) = delete;
598 
599   protected:
600     CodeGenFunction& CGF;
601 
602   public:
603     /// \brief Enter a new cleanup scope.
604     explicit RunCleanupsScope(CodeGenFunction &CGF)
605       : PerformCleanup(true), CGF(CGF)
606     {
607       CleanupStackDepth = CGF.EHStack.stable_begin();
608       LifetimeExtendedCleanupStackSize =
609           CGF.LifetimeExtendedCleanupStack.size();
610       OldDidCallStackSave = CGF.DidCallStackSave;
611       CGF.DidCallStackSave = false;
612     }
613 
614     /// \brief Exit this cleanup scope, emitting any accumulated cleanups.
615     ~RunCleanupsScope() {
616       if (PerformCleanup)
617         ForceCleanup();
618     }
619 
620     /// \brief Determine whether this scope requires any cleanups.
621     bool requiresCleanups() const {
622       return CGF.EHStack.stable_begin() != CleanupStackDepth;
623     }
624 
625     /// \brief Force the emission of cleanups now, instead of waiting
626     /// until this object is destroyed.
627     /// \param ValuesToReload - A list of values that need to be available at
628     /// the insertion point after cleanup emission. If cleanup emission created
629     /// a shared cleanup block, these value pointers will be rewritten.
630     /// Otherwise, they not will be modified.
631     void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) {
632       assert(PerformCleanup && "Already forced cleanup");
633       CGF.DidCallStackSave = OldDidCallStackSave;
634       CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize,
635                            ValuesToReload);
636       PerformCleanup = false;
637     }
638   };
639 
640   class LexicalScope : public RunCleanupsScope {
641     SourceRange Range;
642     SmallVector<const LabelDecl*, 4> Labels;
643     LexicalScope *ParentScope;
644 
645     LexicalScope(const LexicalScope &) = delete;
646     void operator=(const LexicalScope &) = delete;
647 
648   public:
649     /// \brief Enter a new cleanup scope.
650     explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
651       : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
652       CGF.CurLexicalScope = this;
653       if (CGDebugInfo *DI = CGF.getDebugInfo())
654         DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
655     }
656 
657     void addLabel(const LabelDecl *label) {
658       assert(PerformCleanup && "adding label to dead scope?");
659       Labels.push_back(label);
660     }
661 
662     /// \brief Exit this cleanup scope, emitting any accumulated
663     /// cleanups.
664     ~LexicalScope() {
665       if (CGDebugInfo *DI = CGF.getDebugInfo())
666         DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
667 
668       // If we should perform a cleanup, force them now.  Note that
669       // this ends the cleanup scope before rescoping any labels.
670       if (PerformCleanup) {
671         ApplyDebugLocation DL(CGF, Range.getEnd());
672         ForceCleanup();
673       }
674     }
675 
676     /// \brief Force the emission of cleanups now, instead of waiting
677     /// until this object is destroyed.
678     void ForceCleanup() {
679       CGF.CurLexicalScope = ParentScope;
680       RunCleanupsScope::ForceCleanup();
681 
682       if (!Labels.empty())
683         rescopeLabels();
684     }
685 
686     bool hasLabels() const {
687       return !Labels.empty();
688     }
689 
690     void rescopeLabels();
691   };
692 
693   typedef llvm::DenseMap<const Decl *, Address> DeclMapTy;
694 
695   /// \brief The scope used to remap some variables as private in the OpenMP
696   /// loop body (or other captured region emitted without outlining), and to
697   /// restore old vars back on exit.
698   class OMPPrivateScope : public RunCleanupsScope {
699     DeclMapTy SavedLocals;
700     DeclMapTy SavedPrivates;
701 
702   private:
703     OMPPrivateScope(const OMPPrivateScope &) = delete;
704     void operator=(const OMPPrivateScope &) = delete;
705 
706   public:
707     /// \brief Enter a new OpenMP private scope.
708     explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}
709 
710     /// \brief Registers \a LocalVD variable as a private and apply \a
711     /// PrivateGen function for it to generate corresponding private variable.
712     /// \a PrivateGen returns an address of the generated private variable.
713     /// \return true if the variable is registered as private, false if it has
714     /// been privatized already.
715     bool
716     addPrivate(const VarDecl *LocalVD,
717                llvm::function_ref<Address()> PrivateGen) {
718       assert(PerformCleanup && "adding private to dead scope");
719 
720       LocalVD = LocalVD->getCanonicalDecl();
721       // Only save it once.
722       if (SavedLocals.count(LocalVD)) return false;
723 
724       // Copy the existing local entry to SavedLocals.
725       auto it = CGF.LocalDeclMap.find(LocalVD);
726       if (it != CGF.LocalDeclMap.end()) {
727         SavedLocals.insert({LocalVD, it->second});
728       } else {
729         SavedLocals.insert({LocalVD, Address::invalid()});
730       }
731 
732       // Generate the private entry.
733       Address Addr = PrivateGen();
734       QualType VarTy = LocalVD->getType();
735       if (VarTy->isReferenceType()) {
736         Address Temp = CGF.CreateMemTemp(VarTy);
737         CGF.Builder.CreateStore(Addr.getPointer(), Temp);
738         Addr = Temp;
739       }
740       SavedPrivates.insert({LocalVD, Addr});
741 
742       return true;
743     }
744 
745     /// \brief Privatizes local variables previously registered as private.
746     /// Registration is separate from the actual privatization to allow
747     /// initializers use values of the original variables, not the private one.
748     /// This is important, for example, if the private variable is a class
749     /// variable initialized by a constructor that references other private
750     /// variables. But at initialization original variables must be used, not
751     /// private copies.
752     /// \return true if at least one variable was privatized, false otherwise.
753     bool Privatize() {
754       copyInto(SavedPrivates, CGF.LocalDeclMap);
755       SavedPrivates.clear();
756       return !SavedLocals.empty();
757     }
758 
759     void ForceCleanup() {
760       RunCleanupsScope::ForceCleanup();
761       copyInto(SavedLocals, CGF.LocalDeclMap);
762       SavedLocals.clear();
763     }
764 
765     /// \brief Exit scope - all the mapped variables are restored.
766     ~OMPPrivateScope() {
767       if (PerformCleanup)
768         ForceCleanup();
769     }
770 
771     /// Checks if the global variable is captured in current function.
772     bool isGlobalVarCaptured(const VarDecl *VD) const {
773       VD = VD->getCanonicalDecl();
774       return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0;
775     }
776 
777   private:
778     /// Copy all the entries in the source map over the corresponding
779     /// entries in the destination, which must exist.
780     static void copyInto(const DeclMapTy &src, DeclMapTy &dest) {
781       for (auto &pair : src) {
782         if (!pair.second.isValid()) {
783           dest.erase(pair.first);
784           continue;
785         }
786 
787         auto it = dest.find(pair.first);
788         if (it != dest.end()) {
789           it->second = pair.second;
790         } else {
791           dest.insert(pair);
792         }
793       }
794     }
795   };
796 
797   /// \brief Takes the old cleanup stack size and emits the cleanup blocks
798   /// that have been added.
799   void
800   PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
801                    std::initializer_list<llvm::Value **> ValuesToReload = {});
802 
803   /// \brief Takes the old cleanup stack size and emits the cleanup blocks
804   /// that have been added, then adds all lifetime-extended cleanups from
805   /// the given position to the stack.
806   void
807   PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
808                    size_t OldLifetimeExtendedStackSize,
809                    std::initializer_list<llvm::Value **> ValuesToReload = {});
810 
811   void ResolveBranchFixups(llvm::BasicBlock *Target);
812 
813   /// The given basic block lies in the current EH scope, but may be a
814   /// target of a potentially scope-crossing jump; get a stable handle
815   /// to which we can perform this jump later.
816   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
817     return JumpDest(Target,
818                     EHStack.getInnermostNormalCleanup(),
819                     NextCleanupDestIndex++);
820   }
821 
822   /// The given basic block lies in the current EH scope, but may be a
823   /// target of a potentially scope-crossing jump; get a stable handle
824   /// to which we can perform this jump later.
825   JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
826     return getJumpDestInCurrentScope(createBasicBlock(Name));
827   }
828 
829   /// EmitBranchThroughCleanup - Emit a branch from the current insert
830   /// block through the normal cleanup handling code (if any) and then
831   /// on to \arg Dest.
832   void EmitBranchThroughCleanup(JumpDest Dest);
833 
834   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
835   /// specified destination obviously has no cleanups to run.  'false' is always
836   /// a conservatively correct answer for this method.
837   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
838 
839   /// popCatchScope - Pops the catch scope at the top of the EHScope
840   /// stack, emitting any required code (other than the catch handlers
841   /// themselves).
842   void popCatchScope();
843 
844   llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
845   llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
846   llvm::BasicBlock *getMSVCDispatchBlock(EHScopeStack::stable_iterator scope);
847 
848   /// An object to manage conditionally-evaluated expressions.
849   class ConditionalEvaluation {
850     llvm::BasicBlock *StartBB;
851 
852   public:
853     ConditionalEvaluation(CodeGenFunction &CGF)
854       : StartBB(CGF.Builder.GetInsertBlock()) {}
855 
856     void begin(CodeGenFunction &CGF) {
857       assert(CGF.OutermostConditional != this);
858       if (!CGF.OutermostConditional)
859         CGF.OutermostConditional = this;
860     }
861 
862     void end(CodeGenFunction &CGF) {
863       assert(CGF.OutermostConditional != nullptr);
864       if (CGF.OutermostConditional == this)
865         CGF.OutermostConditional = nullptr;
866     }
867 
868     /// Returns a block which will be executed prior to each
869     /// evaluation of the conditional code.
870     llvm::BasicBlock *getStartingBlock() const {
871       return StartBB;
872     }
873   };
874 
875   /// isInConditionalBranch - Return true if we're currently emitting
876   /// one branch or the other of a conditional expression.
877   bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
878 
879   void setBeforeOutermostConditional(llvm::Value *value, Address addr) {
880     assert(isInConditionalBranch());
881     llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
882     auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back());
883     store->setAlignment(addr.getAlignment().getQuantity());
884   }
885 
886   /// An RAII object to record that we're evaluating a statement
887   /// expression.
888   class StmtExprEvaluation {
889     CodeGenFunction &CGF;
890 
891     /// We have to save the outermost conditional: cleanups in a
892     /// statement expression aren't conditional just because the
893     /// StmtExpr is.
894     ConditionalEvaluation *SavedOutermostConditional;
895 
896   public:
897     StmtExprEvaluation(CodeGenFunction &CGF)
898       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
899       CGF.OutermostConditional = nullptr;
900     }
901 
902     ~StmtExprEvaluation() {
903       CGF.OutermostConditional = SavedOutermostConditional;
904       CGF.EnsureInsertPoint();
905     }
906   };
907 
908   /// An object which temporarily prevents a value from being
909   /// destroyed by aggressive peephole optimizations that assume that
910   /// all uses of a value have been realized in the IR.
911   class PeepholeProtection {
912     llvm::Instruction *Inst;
913     friend class CodeGenFunction;
914 
915   public:
916     PeepholeProtection() : Inst(nullptr) {}
917   };
918 
919   /// A non-RAII class containing all the information about a bound
920   /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
921   /// this which makes individual mappings very simple; using this
922   /// class directly is useful when you have a variable number of
923   /// opaque values or don't want the RAII functionality for some
924   /// reason.
925   class OpaqueValueMappingData {
926     const OpaqueValueExpr *OpaqueValue;
927     bool BoundLValue;
928     CodeGenFunction::PeepholeProtection Protection;
929 
930     OpaqueValueMappingData(const OpaqueValueExpr *ov,
931                            bool boundLValue)
932       : OpaqueValue(ov), BoundLValue(boundLValue) {}
933   public:
934     OpaqueValueMappingData() : OpaqueValue(nullptr) {}
935 
936     static bool shouldBindAsLValue(const Expr *expr) {
937       // gl-values should be bound as l-values for obvious reasons.
938       // Records should be bound as l-values because IR generation
939       // always keeps them in memory.  Expressions of function type
940       // act exactly like l-values but are formally required to be
941       // r-values in C.
942       return expr->isGLValue() ||
943              expr->getType()->isFunctionType() ||
944              hasAggregateEvaluationKind(expr->getType());
945     }
946 
947     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
948                                        const OpaqueValueExpr *ov,
949                                        const Expr *e) {
950       if (shouldBindAsLValue(ov))
951         return bind(CGF, ov, CGF.EmitLValue(e));
952       return bind(CGF, ov, CGF.EmitAnyExpr(e));
953     }
954 
955     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
956                                        const OpaqueValueExpr *ov,
957                                        const LValue &lv) {
958       assert(shouldBindAsLValue(ov));
959       CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
960       return OpaqueValueMappingData(ov, true);
961     }
962 
963     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
964                                        const OpaqueValueExpr *ov,
965                                        const RValue &rv) {
966       assert(!shouldBindAsLValue(ov));
967       CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
968 
969       OpaqueValueMappingData data(ov, false);
970 
971       // Work around an extremely aggressive peephole optimization in
972       // EmitScalarConversion which assumes that all other uses of a
973       // value are extant.
974       data.Protection = CGF.protectFromPeepholes(rv);
975 
976       return data;
977     }
978 
979     bool isValid() const { return OpaqueValue != nullptr; }
980     void clear() { OpaqueValue = nullptr; }
981 
982     void unbind(CodeGenFunction &CGF) {
983       assert(OpaqueValue && "no data to unbind!");
984 
985       if (BoundLValue) {
986         CGF.OpaqueLValues.erase(OpaqueValue);
987       } else {
988         CGF.OpaqueRValues.erase(OpaqueValue);
989         CGF.unprotectFromPeepholes(Protection);
990       }
991     }
992   };
993 
994   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
995   class OpaqueValueMapping {
996     CodeGenFunction &CGF;
997     OpaqueValueMappingData Data;
998 
999   public:
1000     static bool shouldBindAsLValue(const Expr *expr) {
1001       return OpaqueValueMappingData::shouldBindAsLValue(expr);
1002     }
1003 
1004     /// Build the opaque value mapping for the given conditional
1005     /// operator if it's the GNU ?: extension.  This is a common
1006     /// enough pattern that the convenience operator is really
1007     /// helpful.
1008     ///
1009     OpaqueValueMapping(CodeGenFunction &CGF,
1010                        const AbstractConditionalOperator *op) : CGF(CGF) {
1011       if (isa<ConditionalOperator>(op))
1012         // Leave Data empty.
1013         return;
1014 
1015       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
1016       Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
1017                                           e->getCommon());
1018     }
1019 
1020     /// Build the opaque value mapping for an OpaqueValueExpr whose source
1021     /// expression is set to the expression the OVE represents.
1022     OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV)
1023         : CGF(CGF) {
1024       if (OV) {
1025         assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used "
1026                                       "for OVE with no source expression");
1027         Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr());
1028       }
1029     }
1030 
1031     OpaqueValueMapping(CodeGenFunction &CGF,
1032                        const OpaqueValueExpr *opaqueValue,
1033                        LValue lvalue)
1034       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
1035     }
1036 
1037     OpaqueValueMapping(CodeGenFunction &CGF,
1038                        const OpaqueValueExpr *opaqueValue,
1039                        RValue rvalue)
1040       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
1041     }
1042 
1043     void pop() {
1044       Data.unbind(CGF);
1045       Data.clear();
1046     }
1047 
1048     ~OpaqueValueMapping() {
1049       if (Data.isValid()) Data.unbind(CGF);
1050     }
1051   };
1052 
1053 private:
1054   CGDebugInfo *DebugInfo;
1055   bool DisableDebugInfo;
1056 
1057   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
1058   /// calling llvm.stacksave for multiple VLAs in the same scope.
1059   bool DidCallStackSave;
1060 
1061   /// IndirectBranch - The first time an indirect goto is seen we create a block
1062   /// with an indirect branch.  Every time we see the address of a label taken,
1063   /// we add the label to the indirect goto.  Every subsequent indirect goto is
1064   /// codegen'd as a jump to the IndirectBranch's basic block.
1065   llvm::IndirectBrInst *IndirectBranch;
1066 
1067   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1068   /// decls.
1069   DeclMapTy LocalDeclMap;
1070 
1071   /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this
1072   /// will contain a mapping from said ParmVarDecl to its implicit "object_size"
1073   /// parameter.
1074   llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2>
1075       SizeArguments;
1076 
1077   /// Track escaped local variables with auto storage. Used during SEH
1078   /// outlining to produce a call to llvm.localescape.
1079   llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;
1080 
1081   /// LabelMap - This keeps track of the LLVM basic block for each C label.
1082   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1083 
1084   // BreakContinueStack - This keeps track of where break and continue
1085   // statements should jump to.
1086   struct BreakContinue {
1087     BreakContinue(JumpDest Break, JumpDest Continue)
1088       : BreakBlock(Break), ContinueBlock(Continue) {}
1089 
1090     JumpDest BreakBlock;
1091     JumpDest ContinueBlock;
1092   };
1093   SmallVector<BreakContinue, 8> BreakContinueStack;
1094 
1095   /// Handles cancellation exit points in OpenMP-related constructs.
1096   class OpenMPCancelExitStack {
1097     /// Tracks cancellation exit point and join point for cancel-related exit
1098     /// and normal exit.
1099     struct CancelExit {
1100       CancelExit() = default;
1101       CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock,
1102                  JumpDest ContBlock)
1103           : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {}
1104       OpenMPDirectiveKind Kind = OMPD_unknown;
1105       /// true if the exit block has been emitted already by the special
1106       /// emitExit() call, false if the default codegen is used.
1107       bool HasBeenEmitted = false;
1108       JumpDest ExitBlock;
1109       JumpDest ContBlock;
1110     };
1111 
1112     SmallVector<CancelExit, 8> Stack;
1113 
1114   public:
1115     OpenMPCancelExitStack() : Stack(1) {}
1116     ~OpenMPCancelExitStack() = default;
1117     /// Fetches the exit block for the current OpenMP construct.
1118     JumpDest getExitBlock() const { return Stack.back().ExitBlock; }
1119     /// Emits exit block with special codegen procedure specific for the related
1120     /// OpenMP construct + emits code for normal construct cleanup.
1121     void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
1122                   const llvm::function_ref<void(CodeGenFunction &)> &CodeGen) {
1123       if (Stack.back().Kind == Kind && getExitBlock().isValid()) {
1124         assert(CGF.getOMPCancelDestination(Kind).isValid());
1125         assert(CGF.HaveInsertPoint());
1126         assert(!Stack.back().HasBeenEmitted);
1127         auto IP = CGF.Builder.saveAndClearIP();
1128         CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1129         CodeGen(CGF);
1130         CGF.EmitBranch(Stack.back().ContBlock.getBlock());
1131         CGF.Builder.restoreIP(IP);
1132         Stack.back().HasBeenEmitted = true;
1133       }
1134       CodeGen(CGF);
1135     }
1136     /// Enter the cancel supporting \a Kind construct.
1137     /// \param Kind OpenMP directive that supports cancel constructs.
1138     /// \param HasCancel true, if the construct has inner cancel directive,
1139     /// false otherwise.
1140     void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) {
1141       Stack.push_back({Kind,
1142                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit")
1143                                  : JumpDest(),
1144                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont")
1145                                  : JumpDest()});
1146     }
1147     /// Emits default exit point for the cancel construct (if the special one
1148     /// has not be used) + join point for cancel/normal exits.
1149     void exit(CodeGenFunction &CGF) {
1150       if (getExitBlock().isValid()) {
1151         assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid());
1152         bool HaveIP = CGF.HaveInsertPoint();
1153         if (!Stack.back().HasBeenEmitted) {
1154           if (HaveIP)
1155             CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1156           CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1157           CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1158         }
1159         CGF.EmitBlock(Stack.back().ContBlock.getBlock());
1160         if (!HaveIP) {
1161           CGF.Builder.CreateUnreachable();
1162           CGF.Builder.ClearInsertionPoint();
1163         }
1164       }
1165       Stack.pop_back();
1166     }
1167   };
1168   OpenMPCancelExitStack OMPCancelStack;
1169 
1170   CodeGenPGO PGO;
1171 
1172   /// Calculate branch weights appropriate for PGO data
1173   llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount);
1174   llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights);
1175   llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond,
1176                                             uint64_t LoopCount);
1177 
1178 public:
1179   /// Increment the profiler's counter for the given statement by \p StepV.
1180   /// If \p StepV is null, the default increment is 1.
1181   void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) {
1182     if (CGM.getCodeGenOpts().hasProfileClangInstr())
1183       PGO.emitCounterIncrement(Builder, S, StepV);
1184     PGO.setCurrentStmt(S);
1185   }
1186 
1187   /// Get the profiler's count for the given statement.
1188   uint64_t getProfileCount(const Stmt *S) {
1189     Optional<uint64_t> Count = PGO.getStmtCount(S);
1190     if (!Count.hasValue())
1191       return 0;
1192     return *Count;
1193   }
1194 
1195   /// Set the profiler's current count.
1196   void setCurrentProfileCount(uint64_t Count) {
1197     PGO.setCurrentRegionCount(Count);
1198   }
1199 
1200   /// Get the profiler's current count. This is generally the count for the most
1201   /// recently incremented counter.
1202   uint64_t getCurrentProfileCount() {
1203     return PGO.getCurrentRegionCount();
1204   }
1205 
1206 private:
1207 
1208   /// SwitchInsn - This is nearest current switch instruction. It is null if
1209   /// current context is not in a switch.
1210   llvm::SwitchInst *SwitchInsn;
1211   /// The branch weights of SwitchInsn when doing instrumentation based PGO.
1212   SmallVector<uint64_t, 16> *SwitchWeights;
1213 
1214   /// CaseRangeBlock - This block holds if condition check for last case
1215   /// statement range in current switch instruction.
1216   llvm::BasicBlock *CaseRangeBlock;
1217 
1218   /// OpaqueLValues - Keeps track of the current set of opaque value
1219   /// expressions.
1220   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1221   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1222 
1223   // VLASizeMap - This keeps track of the associated size for each VLA type.
1224   // We track this by the size expression rather than the type itself because
1225   // in certain situations, like a const qualifier applied to an VLA typedef,
1226   // multiple VLA types can share the same size expression.
1227   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1228   // enter/leave scopes.
1229   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1230 
1231   /// A block containing a single 'unreachable' instruction.  Created
1232   /// lazily by getUnreachableBlock().
1233   llvm::BasicBlock *UnreachableBlock;
1234 
1235   /// Counts of the number return expressions in the function.
1236   unsigned NumReturnExprs;
1237 
1238   /// Count the number of simple (constant) return expressions in the function.
1239   unsigned NumSimpleReturnExprs;
1240 
1241   /// The last regular (non-return) debug location (breakpoint) in the function.
1242   SourceLocation LastStopPoint;
1243 
1244 public:
1245   /// A scope within which we are constructing the fields of an object which
1246   /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
1247   /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
1248   class FieldConstructionScope {
1249   public:
1250     FieldConstructionScope(CodeGenFunction &CGF, Address This)
1251         : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
1252       CGF.CXXDefaultInitExprThis = This;
1253     }
1254     ~FieldConstructionScope() {
1255       CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
1256     }
1257 
1258   private:
1259     CodeGenFunction &CGF;
1260     Address OldCXXDefaultInitExprThis;
1261   };
1262 
1263   /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
1264   /// is overridden to be the object under construction.
1265   class CXXDefaultInitExprScope {
1266   public:
1267     CXXDefaultInitExprScope(CodeGenFunction &CGF)
1268       : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue),
1269         OldCXXThisAlignment(CGF.CXXThisAlignment) {
1270       CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer();
1271       CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment();
1272     }
1273     ~CXXDefaultInitExprScope() {
1274       CGF.CXXThisValue = OldCXXThisValue;
1275       CGF.CXXThisAlignment = OldCXXThisAlignment;
1276     }
1277 
1278   public:
1279     CodeGenFunction &CGF;
1280     llvm::Value *OldCXXThisValue;
1281     CharUnits OldCXXThisAlignment;
1282   };
1283 
1284   /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the
1285   /// current loop index is overridden.
1286   class ArrayInitLoopExprScope {
1287   public:
1288     ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index)
1289       : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) {
1290       CGF.ArrayInitIndex = Index;
1291     }
1292     ~ArrayInitLoopExprScope() {
1293       CGF.ArrayInitIndex = OldArrayInitIndex;
1294     }
1295 
1296   private:
1297     CodeGenFunction &CGF;
1298     llvm::Value *OldArrayInitIndex;
1299   };
1300 
1301   class InlinedInheritingConstructorScope {
1302   public:
1303     InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD)
1304         : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl),
1305           OldCurCodeDecl(CGF.CurCodeDecl),
1306           OldCXXABIThisDecl(CGF.CXXABIThisDecl),
1307           OldCXXABIThisValue(CGF.CXXABIThisValue),
1308           OldCXXThisValue(CGF.CXXThisValue),
1309           OldCXXABIThisAlignment(CGF.CXXABIThisAlignment),
1310           OldCXXThisAlignment(CGF.CXXThisAlignment),
1311           OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy),
1312           OldCXXInheritedCtorInitExprArgs(
1313               std::move(CGF.CXXInheritedCtorInitExprArgs)) {
1314       CGF.CurGD = GD;
1315       CGF.CurFuncDecl = CGF.CurCodeDecl =
1316           cast<CXXConstructorDecl>(GD.getDecl());
1317       CGF.CXXABIThisDecl = nullptr;
1318       CGF.CXXABIThisValue = nullptr;
1319       CGF.CXXThisValue = nullptr;
1320       CGF.CXXABIThisAlignment = CharUnits();
1321       CGF.CXXThisAlignment = CharUnits();
1322       CGF.ReturnValue = Address::invalid();
1323       CGF.FnRetTy = QualType();
1324       CGF.CXXInheritedCtorInitExprArgs.clear();
1325     }
1326     ~InlinedInheritingConstructorScope() {
1327       CGF.CurGD = OldCurGD;
1328       CGF.CurFuncDecl = OldCurFuncDecl;
1329       CGF.CurCodeDecl = OldCurCodeDecl;
1330       CGF.CXXABIThisDecl = OldCXXABIThisDecl;
1331       CGF.CXXABIThisValue = OldCXXABIThisValue;
1332       CGF.CXXThisValue = OldCXXThisValue;
1333       CGF.CXXABIThisAlignment = OldCXXABIThisAlignment;
1334       CGF.CXXThisAlignment = OldCXXThisAlignment;
1335       CGF.ReturnValue = OldReturnValue;
1336       CGF.FnRetTy = OldFnRetTy;
1337       CGF.CXXInheritedCtorInitExprArgs =
1338           std::move(OldCXXInheritedCtorInitExprArgs);
1339     }
1340 
1341   private:
1342     CodeGenFunction &CGF;
1343     GlobalDecl OldCurGD;
1344     const Decl *OldCurFuncDecl;
1345     const Decl *OldCurCodeDecl;
1346     ImplicitParamDecl *OldCXXABIThisDecl;
1347     llvm::Value *OldCXXABIThisValue;
1348     llvm::Value *OldCXXThisValue;
1349     CharUnits OldCXXABIThisAlignment;
1350     CharUnits OldCXXThisAlignment;
1351     Address OldReturnValue;
1352     QualType OldFnRetTy;
1353     CallArgList OldCXXInheritedCtorInitExprArgs;
1354   };
1355 
1356 private:
1357   /// CXXThisDecl - When generating code for a C++ member function,
1358   /// this will hold the implicit 'this' declaration.
1359   ImplicitParamDecl *CXXABIThisDecl;
1360   llvm::Value *CXXABIThisValue;
1361   llvm::Value *CXXThisValue;
1362   CharUnits CXXABIThisAlignment;
1363   CharUnits CXXThisAlignment;
1364 
1365   /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
1366   /// this expression.
1367   Address CXXDefaultInitExprThis = Address::invalid();
1368 
1369   /// The current array initialization index when evaluating an
1370   /// ArrayInitIndexExpr within an ArrayInitLoopExpr.
1371   llvm::Value *ArrayInitIndex = nullptr;
1372 
1373   /// The values of function arguments to use when evaluating
1374   /// CXXInheritedCtorInitExprs within this context.
1375   CallArgList CXXInheritedCtorInitExprArgs;
1376 
1377   /// CXXStructorImplicitParamDecl - When generating code for a constructor or
1378   /// destructor, this will hold the implicit argument (e.g. VTT).
1379   ImplicitParamDecl *CXXStructorImplicitParamDecl;
1380   llvm::Value *CXXStructorImplicitParamValue;
1381 
1382   /// OutermostConditional - Points to the outermost active
1383   /// conditional control.  This is used so that we know if a
1384   /// temporary should be destroyed conditionally.
1385   ConditionalEvaluation *OutermostConditional;
1386 
1387   /// The current lexical scope.
1388   LexicalScope *CurLexicalScope;
1389 
1390   /// The current source location that should be used for exception
1391   /// handling code.
1392   SourceLocation CurEHLocation;
1393 
1394   /// BlockByrefInfos - For each __block variable, contains
1395   /// information about the layout of the variable.
1396   llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos;
1397 
1398   /// Used by -fsanitize=nullability-return to determine whether the return
1399   /// value can be checked.
1400   llvm::Value *RetValNullabilityPrecondition = nullptr;
1401 
1402   /// Check if -fsanitize=nullability-return instrumentation is required for
1403   /// this function.
1404   bool requiresReturnValueNullabilityCheck() const {
1405     return RetValNullabilityPrecondition;
1406   }
1407 
1408   /// Used to store precise source locations for return statements by the
1409   /// runtime return value checks.
1410   Address ReturnLocation = Address::invalid();
1411 
1412   /// Check if the return value of this function requires sanitization.
1413   bool requiresReturnValueCheck() const {
1414     return requiresReturnValueNullabilityCheck() ||
1415            (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
1416             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>());
1417   }
1418 
1419   llvm::BasicBlock *TerminateLandingPad;
1420   llvm::BasicBlock *TerminateHandler;
1421   llvm::BasicBlock *TrapBB;
1422 
1423   /// True if we need emit the life-time markers.
1424   const bool ShouldEmitLifetimeMarkers;
1425 
1426   /// Add OpenCL kernel arg metadata and the kernel attribute meatadata to
1427   /// the function metadata.
1428   void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
1429                                 llvm::Function *Fn);
1430 
1431 public:
1432   CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1433   ~CodeGenFunction();
1434 
1435   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1436   ASTContext &getContext() const { return CGM.getContext(); }
1437   CGDebugInfo *getDebugInfo() {
1438     if (DisableDebugInfo)
1439       return nullptr;
1440     return DebugInfo;
1441   }
1442   void disableDebugInfo() { DisableDebugInfo = true; }
1443   void enableDebugInfo() { DisableDebugInfo = false; }
1444 
1445   bool shouldUseFusedARCCalls() {
1446     return CGM.getCodeGenOpts().OptimizationLevel == 0;
1447   }
1448 
1449   const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1450 
1451   /// Returns a pointer to the function's exception object and selector slot,
1452   /// which is assigned in every landing pad.
1453   Address getExceptionSlot();
1454   Address getEHSelectorSlot();
1455 
1456   /// Returns the contents of the function's exception object and selector
1457   /// slots.
1458   llvm::Value *getExceptionFromSlot();
1459   llvm::Value *getSelectorFromSlot();
1460 
1461   Address getNormalCleanupDestSlot();
1462 
1463   llvm::BasicBlock *getUnreachableBlock() {
1464     if (!UnreachableBlock) {
1465       UnreachableBlock = createBasicBlock("unreachable");
1466       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1467     }
1468     return UnreachableBlock;
1469   }
1470 
1471   llvm::BasicBlock *getInvokeDest() {
1472     if (!EHStack.requiresLandingPad()) return nullptr;
1473     return getInvokeDestImpl();
1474   }
1475 
1476   bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; }
1477 
1478   const TargetInfo &getTarget() const { return Target; }
1479   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1480   const TargetCodeGenInfo &getTargetHooks() const {
1481     return CGM.getTargetCodeGenInfo();
1482   }
1483 
1484   //===--------------------------------------------------------------------===//
1485   //                                  Cleanups
1486   //===--------------------------------------------------------------------===//
1487 
1488   typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty);
1489 
1490   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1491                                         Address arrayEndPointer,
1492                                         QualType elementType,
1493                                         CharUnits elementAlignment,
1494                                         Destroyer *destroyer);
1495   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1496                                       llvm::Value *arrayEnd,
1497                                       QualType elementType,
1498                                       CharUnits elementAlignment,
1499                                       Destroyer *destroyer);
1500 
1501   void pushDestroy(QualType::DestructionKind dtorKind,
1502                    Address addr, QualType type);
1503   void pushEHDestroy(QualType::DestructionKind dtorKind,
1504                      Address addr, QualType type);
1505   void pushDestroy(CleanupKind kind, Address addr, QualType type,
1506                    Destroyer *destroyer, bool useEHCleanupForArray);
1507   void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr,
1508                                    QualType type, Destroyer *destroyer,
1509                                    bool useEHCleanupForArray);
1510   void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1511                                    llvm::Value *CompletePtr,
1512                                    QualType ElementType);
1513   void pushStackRestore(CleanupKind kind, Address SPMem);
1514   void emitDestroy(Address addr, QualType type, Destroyer *destroyer,
1515                    bool useEHCleanupForArray);
1516   llvm::Function *generateDestroyHelper(Address addr, QualType type,
1517                                         Destroyer *destroyer,
1518                                         bool useEHCleanupForArray,
1519                                         const VarDecl *VD);
1520   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1521                         QualType elementType, CharUnits elementAlign,
1522                         Destroyer *destroyer,
1523                         bool checkZeroLength, bool useEHCleanup);
1524 
1525   Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1526 
1527   /// Determines whether an EH cleanup is required to destroy a type
1528   /// with the given destruction kind.
1529   bool needsEHCleanup(QualType::DestructionKind kind) {
1530     switch (kind) {
1531     case QualType::DK_none:
1532       return false;
1533     case QualType::DK_cxx_destructor:
1534     case QualType::DK_objc_weak_lifetime:
1535       return getLangOpts().Exceptions;
1536     case QualType::DK_objc_strong_lifetime:
1537       return getLangOpts().Exceptions &&
1538              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1539     }
1540     llvm_unreachable("bad destruction kind");
1541   }
1542 
1543   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
1544     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1545   }
1546 
1547   //===--------------------------------------------------------------------===//
1548   //                                  Objective-C
1549   //===--------------------------------------------------------------------===//
1550 
1551   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1552 
1553   void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
1554 
1555   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1556   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1557                           const ObjCPropertyImplDecl *PID);
1558   void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1559                               const ObjCPropertyImplDecl *propImpl,
1560                               const ObjCMethodDecl *GetterMothodDecl,
1561                               llvm::Constant *AtomicHelperFn);
1562 
1563   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1564                                   ObjCMethodDecl *MD, bool ctor);
1565 
1566   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1567   /// for the given property.
1568   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1569                           const ObjCPropertyImplDecl *PID);
1570   void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1571                               const ObjCPropertyImplDecl *propImpl,
1572                               llvm::Constant *AtomicHelperFn);
1573 
1574   //===--------------------------------------------------------------------===//
1575   //                                  Block Bits
1576   //===--------------------------------------------------------------------===//
1577 
1578   /// Emit block literal.
1579   /// \return an LLVM value which is a pointer to a struct which contains
1580   /// information about the block, including the block invoke function, the
1581   /// captured variables, etc.
1582   /// \param InvokeF will contain the block invoke function if it is not
1583   /// nullptr.
1584   llvm::Value *EmitBlockLiteral(const BlockExpr *,
1585                                 llvm::Function **InvokeF = nullptr);
1586   static void destroyBlockInfos(CGBlockInfo *info);
1587 
1588   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1589                                         const CGBlockInfo &Info,
1590                                         const DeclMapTy &ldm,
1591                                         bool IsLambdaConversionToBlock,
1592                                         bool BuildGlobalBlock);
1593 
1594   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1595   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1596   llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
1597                                              const ObjCPropertyImplDecl *PID);
1598   llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
1599                                              const ObjCPropertyImplDecl *PID);
1600   llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
1601 
1602   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
1603 
1604   class AutoVarEmission;
1605 
1606   void emitByrefStructureInit(const AutoVarEmission &emission);
1607   void enterByrefCleanup(const AutoVarEmission &emission);
1608 
1609   void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum,
1610                                 llvm::Value *ptr);
1611 
1612   Address LoadBlockStruct();
1613   Address GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
1614 
1615   /// BuildBlockByrefAddress - Computes the location of the
1616   /// data in a variable which is declared as __block.
1617   Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V,
1618                                 bool followForward = true);
1619   Address emitBlockByrefAddress(Address baseAddr,
1620                                 const BlockByrefInfo &info,
1621                                 bool followForward,
1622                                 const llvm::Twine &name);
1623 
1624   const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var);
1625 
1626   QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args);
1627 
1628   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1629                     const CGFunctionInfo &FnInfo);
1630   /// \brief Emit code for the start of a function.
1631   /// \param Loc       The location to be associated with the function.
1632   /// \param StartLoc  The location of the function body.
1633   void StartFunction(GlobalDecl GD,
1634                      QualType RetTy,
1635                      llvm::Function *Fn,
1636                      const CGFunctionInfo &FnInfo,
1637                      const FunctionArgList &Args,
1638                      SourceLocation Loc = SourceLocation(),
1639                      SourceLocation StartLoc = SourceLocation());
1640 
1641   static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor);
1642 
1643   void EmitConstructorBody(FunctionArgList &Args);
1644   void EmitDestructorBody(FunctionArgList &Args);
1645   void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
1646   void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body);
1647   void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S);
1648 
1649   void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
1650                                   CallArgList &CallArgs);
1651   void EmitLambdaBlockInvokeBody();
1652   void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
1653   void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD);
1654   void EmitAsanPrologueOrEpilogue(bool Prologue);
1655 
1656   /// \brief Emit the unified return block, trying to avoid its emission when
1657   /// possible.
1658   /// \return The debug location of the user written return statement if the
1659   /// return block is is avoided.
1660   llvm::DebugLoc EmitReturnBlock();
1661 
1662   /// FinishFunction - Complete IR generation of the current function. It is
1663   /// legal to call this function even if there is no current insertion point.
1664   void FinishFunction(SourceLocation EndLoc=SourceLocation());
1665 
1666   void StartThunk(llvm::Function *Fn, GlobalDecl GD,
1667                   const CGFunctionInfo &FnInfo);
1668 
1669   void EmitCallAndReturnForThunk(llvm::Constant *Callee,
1670                                  const ThunkInfo *Thunk);
1671 
1672   void FinishThunk();
1673 
1674   /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
1675   void EmitMustTailThunk(const CXXMethodDecl *MD, llvm::Value *AdjustedThisPtr,
1676                          llvm::Value *Callee);
1677 
1678   /// Generate a thunk for the given method.
1679   void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1680                      GlobalDecl GD, const ThunkInfo &Thunk);
1681 
1682   llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn,
1683                                        const CGFunctionInfo &FnInfo,
1684                                        GlobalDecl GD, const ThunkInfo &Thunk);
1685 
1686   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1687                         FunctionArgList &Args);
1688 
1689   void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init);
1690 
1691   /// Struct with all informations about dynamic [sub]class needed to set vptr.
1692   struct VPtr {
1693     BaseSubobject Base;
1694     const CXXRecordDecl *NearestVBase;
1695     CharUnits OffsetFromNearestVBase;
1696     const CXXRecordDecl *VTableClass;
1697   };
1698 
1699   /// Initialize the vtable pointer of the given subobject.
1700   void InitializeVTablePointer(const VPtr &vptr);
1701 
1702   typedef llvm::SmallVector<VPtr, 4> VPtrsVector;
1703 
1704   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1705   VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass);
1706 
1707   void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase,
1708                          CharUnits OffsetFromNearestVBase,
1709                          bool BaseIsNonVirtualPrimaryBase,
1710                          const CXXRecordDecl *VTableClass,
1711                          VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs);
1712 
1713   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1714 
1715   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1716   /// to by This.
1717   llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy,
1718                             const CXXRecordDecl *VTableClass);
1719 
1720   enum CFITypeCheckKind {
1721     CFITCK_VCall,
1722     CFITCK_NVCall,
1723     CFITCK_DerivedCast,
1724     CFITCK_UnrelatedCast,
1725     CFITCK_ICall,
1726   };
1727 
1728   /// \brief Derived is the presumed address of an object of type T after a
1729   /// cast. If T is a polymorphic class type, emit a check that the virtual
1730   /// table for Derived belongs to a class derived from T.
1731   void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived,
1732                                  bool MayBeNull, CFITypeCheckKind TCK,
1733                                  SourceLocation Loc);
1734 
1735   /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
1736   /// If vptr CFI is enabled, emit a check that VTable is valid.
1737   void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable,
1738                                  CFITypeCheckKind TCK, SourceLocation Loc);
1739 
1740   /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
1741   /// RD using llvm.type.test.
1742   void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable,
1743                           CFITypeCheckKind TCK, SourceLocation Loc);
1744 
1745   /// If whole-program virtual table optimization is enabled, emit an assumption
1746   /// that VTable is a member of RD's type identifier. Or, if vptr CFI is
1747   /// enabled, emit a check that VTable is a member of RD's type identifier.
1748   void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
1749                                     llvm::Value *VTable, SourceLocation Loc);
1750 
1751   /// Returns whether we should perform a type checked load when loading a
1752   /// virtual function for virtual calls to members of RD. This is generally
1753   /// true when both vcall CFI and whole-program-vtables are enabled.
1754   bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD);
1755 
1756   /// Emit a type checked load from the given vtable.
1757   llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable,
1758                                          uint64_t VTableByteOffset);
1759 
1760   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1761   /// given phase of destruction for a destructor.  The end result
1762   /// should call destructors on members and base classes in reverse
1763   /// order of their construction.
1764   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1765 
1766   /// ShouldInstrumentFunction - Return true if the current function should be
1767   /// instrumented with __cyg_profile_func_* calls
1768   bool ShouldInstrumentFunction();
1769 
1770   /// ShouldXRayInstrument - Return true if the current function should be
1771   /// instrumented with XRay nop sleds.
1772   bool ShouldXRayInstrumentFunction() const;
1773 
1774   /// Encode an address into a form suitable for use in a function prologue.
1775   llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F,
1776                                              llvm::Constant *Addr);
1777 
1778   /// Decode an address used in a function prologue, encoded by \c
1779   /// EncodeAddrForUseInPrologue.
1780   llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F,
1781                                         llvm::Value *EncodedAddr);
1782 
1783   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1784   /// arguments for the given function. This is also responsible for naming the
1785   /// LLVM function arguments.
1786   void EmitFunctionProlog(const CGFunctionInfo &FI,
1787                           llvm::Function *Fn,
1788                           const FunctionArgList &Args);
1789 
1790   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1791   /// given temporary.
1792   void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
1793                           SourceLocation EndLoc);
1794 
1795   /// Emit a test that checks if the return value \p RV is nonnull.
1796   void EmitReturnValueCheck(llvm::Value *RV);
1797 
1798   /// EmitStartEHSpec - Emit the start of the exception spec.
1799   void EmitStartEHSpec(const Decl *D);
1800 
1801   /// EmitEndEHSpec - Emit the end of the exception spec.
1802   void EmitEndEHSpec(const Decl *D);
1803 
1804   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
1805   llvm::BasicBlock *getTerminateLandingPad();
1806 
1807   /// getTerminateHandler - Return a handler (not a landing pad, just
1808   /// a catch handler) that just calls terminate.  This is used when
1809   /// a terminate scope encloses a try.
1810   llvm::BasicBlock *getTerminateHandler();
1811 
1812   llvm::Type *ConvertTypeForMem(QualType T);
1813   llvm::Type *ConvertType(QualType T);
1814   llvm::Type *ConvertType(const TypeDecl *T) {
1815     return ConvertType(getContext().getTypeDeclType(T));
1816   }
1817 
1818   /// LoadObjCSelf - Load the value of self. This function is only valid while
1819   /// generating code for an Objective-C method.
1820   llvm::Value *LoadObjCSelf();
1821 
1822   /// TypeOfSelfObject - Return type of object that this self represents.
1823   QualType TypeOfSelfObject();
1824 
1825   /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T.
1826   static TypeEvaluationKind getEvaluationKind(QualType T);
1827 
1828   static bool hasScalarEvaluationKind(QualType T) {
1829     return getEvaluationKind(T) == TEK_Scalar;
1830   }
1831 
1832   static bool hasAggregateEvaluationKind(QualType T) {
1833     return getEvaluationKind(T) == TEK_Aggregate;
1834   }
1835 
1836   /// createBasicBlock - Create an LLVM basic block.
1837   llvm::BasicBlock *createBasicBlock(const Twine &name = "",
1838                                      llvm::Function *parent = nullptr,
1839                                      llvm::BasicBlock *before = nullptr) {
1840 #ifdef NDEBUG
1841     return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
1842 #else
1843     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
1844 #endif
1845   }
1846 
1847   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
1848   /// label maps to.
1849   JumpDest getJumpDestForLabel(const LabelDecl *S);
1850 
1851   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
1852   /// another basic block, simplify it. This assumes that no other code could
1853   /// potentially reference the basic block.
1854   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
1855 
1856   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
1857   /// adding a fall-through branch from the current insert block if
1858   /// necessary. It is legal to call this function even if there is no current
1859   /// insertion point.
1860   ///
1861   /// IsFinished - If true, indicates that the caller has finished emitting
1862   /// branches to the given block and does not expect to emit code into it. This
1863   /// means the block can be ignored if it is unreachable.
1864   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
1865 
1866   /// EmitBlockAfterUses - Emit the given block somewhere hopefully
1867   /// near its uses, and leave the insertion point in it.
1868   void EmitBlockAfterUses(llvm::BasicBlock *BB);
1869 
1870   /// EmitBranch - Emit a branch to the specified basic block from the current
1871   /// insert block, taking care to avoid creation of branches from dummy
1872   /// blocks. It is legal to call this function even if there is no current
1873   /// insertion point.
1874   ///
1875   /// This function clears the current insertion point. The caller should follow
1876   /// calls to this function with calls to Emit*Block prior to generation new
1877   /// code.
1878   void EmitBranch(llvm::BasicBlock *Block);
1879 
1880   /// HaveInsertPoint - True if an insertion point is defined. If not, this
1881   /// indicates that the current code being emitted is unreachable.
1882   bool HaveInsertPoint() const {
1883     return Builder.GetInsertBlock() != nullptr;
1884   }
1885 
1886   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
1887   /// emitted IR has a place to go. Note that by definition, if this function
1888   /// creates a block then that block is unreachable; callers may do better to
1889   /// detect when no insertion point is defined and simply skip IR generation.
1890   void EnsureInsertPoint() {
1891     if (!HaveInsertPoint())
1892       EmitBlock(createBasicBlock());
1893   }
1894 
1895   /// ErrorUnsupported - Print out an error that codegen doesn't support the
1896   /// specified stmt yet.
1897   void ErrorUnsupported(const Stmt *S, const char *Type);
1898 
1899   //===--------------------------------------------------------------------===//
1900   //                                  Helpers
1901   //===--------------------------------------------------------------------===//
1902 
1903   LValue MakeAddrLValue(Address Addr, QualType T,
1904                         AlignmentSource Source = AlignmentSource::Type) {
1905     return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
1906                             CGM.getTBAAAccessInfo(T));
1907   }
1908 
1909   LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo,
1910                         TBAAAccessInfo TBAAInfo) {
1911     return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo);
1912   }
1913 
1914   LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
1915                         AlignmentSource Source = AlignmentSource::Type) {
1916     return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
1917                             LValueBaseInfo(Source), CGM.getTBAAAccessInfo(T));
1918   }
1919 
1920   LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
1921                         LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) {
1922     return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
1923                             BaseInfo, TBAAInfo);
1924   }
1925 
1926   LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T);
1927   LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T);
1928   CharUnits getNaturalTypeAlignment(QualType T,
1929                                     LValueBaseInfo *BaseInfo = nullptr,
1930                                     TBAAAccessInfo *TBAAInfo = nullptr,
1931                                     bool forPointeeType = false);
1932   CharUnits getNaturalPointeeTypeAlignment(QualType T,
1933                                            LValueBaseInfo *BaseInfo = nullptr,
1934                                            TBAAAccessInfo *TBAAInfo = nullptr);
1935 
1936   Address EmitLoadOfReference(LValue RefLVal,
1937                               LValueBaseInfo *PointeeBaseInfo = nullptr,
1938                               TBAAAccessInfo *PointeeTBAAInfo = nullptr);
1939   LValue EmitLoadOfReferenceLValue(LValue RefLVal);
1940   LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy,
1941                                    AlignmentSource Source =
1942                                        AlignmentSource::Type) {
1943     LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source),
1944                                     CGM.getTBAAAccessInfo(RefTy));
1945     return EmitLoadOfReferenceLValue(RefLVal);
1946   }
1947 
1948   Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy,
1949                             LValueBaseInfo *BaseInfo = nullptr,
1950                             TBAAAccessInfo *TBAAInfo = nullptr);
1951   LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy);
1952 
1953   /// CreateTempAlloca - This creates an alloca and inserts it into the entry
1954   /// block if \p ArraySize is nullptr, otherwise inserts it at the current
1955   /// insertion point of the builder. The caller is responsible for setting an
1956   /// appropriate alignment on
1957   /// the alloca.
1958   ///
1959   /// \p ArraySize is the number of array elements to be allocated if it
1960   ///    is not nullptr.
1961   ///
1962   /// LangAS::Default is the address space of pointers to local variables and
1963   /// temporaries, as exposed in the source language. In certain
1964   /// configurations, this is not the same as the alloca address space, and a
1965   /// cast is needed to lift the pointer from the alloca AS into
1966   /// LangAS::Default. This can happen when the target uses a restricted
1967   /// address space for the stack but the source language requires
1968   /// LangAS::Default to be a generic address space. The latter condition is
1969   /// common for most programming languages; OpenCL is an exception in that
1970   /// LangAS::Default is the private address space, which naturally maps
1971   /// to the stack.
1972   ///
1973   /// Because the address of a temporary is often exposed to the program in
1974   /// various ways, this function will perform the cast by default. The cast
1975   /// may be avoided by passing false as \p CastToDefaultAddrSpace; this is
1976   /// more efficient if the caller knows that the address will not be exposed.
1977   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp",
1978                                      llvm::Value *ArraySize = nullptr);
1979   Address CreateTempAlloca(llvm::Type *Ty, CharUnits align,
1980                            const Twine &Name = "tmp",
1981                            llvm::Value *ArraySize = nullptr,
1982                            bool CastToDefaultAddrSpace = true);
1983 
1984   /// CreateDefaultAlignedTempAlloca - This creates an alloca with the
1985   /// default ABI alignment of the given LLVM type.
1986   ///
1987   /// IMPORTANT NOTE: This is *not* generally the right alignment for
1988   /// any given AST type that happens to have been lowered to the
1989   /// given IR type.  This should only ever be used for function-local,
1990   /// IR-driven manipulations like saving and restoring a value.  Do
1991   /// not hand this address off to arbitrary IRGen routines, and especially
1992   /// do not pass it as an argument to a function that might expect a
1993   /// properly ABI-aligned value.
1994   Address CreateDefaultAlignTempAlloca(llvm::Type *Ty,
1995                                        const Twine &Name = "tmp");
1996 
1997   /// InitTempAlloca - Provide an initial value for the given alloca which
1998   /// will be observable at all locations in the function.
1999   ///
2000   /// The address should be something that was returned from one of
2001   /// the CreateTempAlloca or CreateMemTemp routines, and the
2002   /// initializer must be valid in the entry block (i.e. it must
2003   /// either be a constant or an argument value).
2004   void InitTempAlloca(Address Alloca, llvm::Value *Value);
2005 
2006   /// CreateIRTemp - Create a temporary IR object of the given type, with
2007   /// appropriate alignment. This routine should only be used when an temporary
2008   /// value needs to be stored into an alloca (for example, to avoid explicit
2009   /// PHI construction), but the type is the IR type, not the type appropriate
2010   /// for storing in memory.
2011   ///
2012   /// That is, this is exactly equivalent to CreateMemTemp, but calling
2013   /// ConvertType instead of ConvertTypeForMem.
2014   Address CreateIRTemp(QualType T, const Twine &Name = "tmp");
2015 
2016   /// CreateMemTemp - Create a temporary memory object of the given type, with
2017   /// appropriate alignment. Cast it to the default address space if
2018   /// \p CastToDefaultAddrSpace is true.
2019   Address CreateMemTemp(QualType T, const Twine &Name = "tmp",
2020                         bool CastToDefaultAddrSpace = true);
2021   Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp",
2022                         bool CastToDefaultAddrSpace = true);
2023 
2024   /// CreateAggTemp - Create a temporary memory object for the given
2025   /// aggregate type.
2026   AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
2027     return AggValueSlot::forAddr(CreateMemTemp(T, Name),
2028                                  T.getQualifiers(),
2029                                  AggValueSlot::IsNotDestructed,
2030                                  AggValueSlot::DoesNotNeedGCBarriers,
2031                                  AggValueSlot::IsNotAliased);
2032   }
2033 
2034   /// Emit a cast to void* in the appropriate address space.
2035   llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
2036 
2037   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
2038   /// expression and compare the result against zero, returning an Int1Ty value.
2039   llvm::Value *EvaluateExprAsBool(const Expr *E);
2040 
2041   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
2042   void EmitIgnoredExpr(const Expr *E);
2043 
2044   /// EmitAnyExpr - Emit code to compute the specified expression which can have
2045   /// any type.  The result is returned as an RValue struct.  If this is an
2046   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
2047   /// the result should be returned.
2048   ///
2049   /// \param ignoreResult True if the resulting value isn't used.
2050   RValue EmitAnyExpr(const Expr *E,
2051                      AggValueSlot aggSlot = AggValueSlot::ignored(),
2052                      bool ignoreResult = false);
2053 
2054   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
2055   // or the value of the expression, depending on how va_list is defined.
2056   Address EmitVAListRef(const Expr *E);
2057 
2058   /// Emit a "reference" to a __builtin_ms_va_list; this is
2059   /// always the value of the expression, because a __builtin_ms_va_list is a
2060   /// pointer to a char.
2061   Address EmitMSVAListRef(const Expr *E);
2062 
2063   /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will
2064   /// always be accessible even if no aggregate location is provided.
2065   RValue EmitAnyExprToTemp(const Expr *E);
2066 
2067   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
2068   /// arbitrary expression into the given memory location.
2069   void EmitAnyExprToMem(const Expr *E, Address Location,
2070                         Qualifiers Quals, bool IsInitializer);
2071 
2072   void EmitAnyExprToExn(const Expr *E, Address Addr);
2073 
2074   /// EmitExprAsInit - Emits the code necessary to initialize a
2075   /// location in memory with the given initializer.
2076   void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2077                       bool capturedByInit);
2078 
2079   /// hasVolatileMember - returns true if aggregate type has a volatile
2080   /// member.
2081   bool hasVolatileMember(QualType T) {
2082     if (const RecordType *RT = T->getAs<RecordType>()) {
2083       const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
2084       return RD->hasVolatileMember();
2085     }
2086     return false;
2087   }
2088   /// EmitAggregateCopy - Emit an aggregate assignment.
2089   ///
2090   /// The difference to EmitAggregateCopy is that tail padding is not copied.
2091   /// This is required for correctness when assigning non-POD structures in C++.
2092   void EmitAggregateAssign(Address DestPtr, Address SrcPtr,
2093                            QualType EltTy) {
2094     bool IsVolatile = hasVolatileMember(EltTy);
2095     EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, true);
2096   }
2097 
2098   void EmitAggregateCopyCtor(Address DestPtr, Address SrcPtr,
2099                              QualType DestTy, QualType SrcTy) {
2100     EmitAggregateCopy(DestPtr, SrcPtr, SrcTy, /*IsVolatile=*/false,
2101                       /*IsAssignment=*/false);
2102   }
2103 
2104   /// EmitAggregateCopy - Emit an aggregate copy.
2105   ///
2106   /// \param isVolatile - True iff either the source or the destination is
2107   /// volatile.
2108   /// \param isAssignment - If false, allow padding to be copied.  This often
2109   /// yields more efficient.
2110   void EmitAggregateCopy(Address DestPtr, Address SrcPtr,
2111                          QualType EltTy, bool isVolatile=false,
2112                          bool isAssignment = false);
2113 
2114   /// GetAddrOfLocalVar - Return the address of a local variable.
2115   Address GetAddrOfLocalVar(const VarDecl *VD) {
2116     auto it = LocalDeclMap.find(VD);
2117     assert(it != LocalDeclMap.end() &&
2118            "Invalid argument to GetAddrOfLocalVar(), no decl!");
2119     return it->second;
2120   }
2121 
2122   /// getOpaqueLValueMapping - Given an opaque value expression (which
2123   /// must be mapped to an l-value), return its mapping.
2124   const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
2125     assert(OpaqueValueMapping::shouldBindAsLValue(e));
2126 
2127     llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
2128       it = OpaqueLValues.find(e);
2129     assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
2130     return it->second;
2131   }
2132 
2133   /// getOpaqueRValueMapping - Given an opaque value expression (which
2134   /// must be mapped to an r-value), return its mapping.
2135   const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
2136     assert(!OpaqueValueMapping::shouldBindAsLValue(e));
2137 
2138     llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
2139       it = OpaqueRValues.find(e);
2140     assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
2141     return it->second;
2142   }
2143 
2144   /// Get the index of the current ArrayInitLoopExpr, if any.
2145   llvm::Value *getArrayInitIndex() { return ArrayInitIndex; }
2146 
2147   /// getAccessedFieldNo - Given an encoded value and a result number, return
2148   /// the input field number being accessed.
2149   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
2150 
2151   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
2152   llvm::BasicBlock *GetIndirectGotoBlock();
2153 
2154   /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts.
2155   static bool IsWrappedCXXThis(const Expr *E);
2156 
2157   /// EmitNullInitialization - Generate code to set a value of the given type to
2158   /// null, If the type contains data member pointers, they will be initialized
2159   /// to -1 in accordance with the Itanium C++ ABI.
2160   void EmitNullInitialization(Address DestPtr, QualType Ty);
2161 
2162   /// Emits a call to an LLVM variable-argument intrinsic, either
2163   /// \c llvm.va_start or \c llvm.va_end.
2164   /// \param ArgValue A reference to the \c va_list as emitted by either
2165   /// \c EmitVAListRef or \c EmitMSVAListRef.
2166   /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise,
2167   /// calls \c llvm.va_end.
2168   llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart);
2169 
2170   /// Generate code to get an argument from the passed in pointer
2171   /// and update it accordingly.
2172   /// \param VE The \c VAArgExpr for which to generate code.
2173   /// \param VAListAddr Receives a reference to the \c va_list as emitted by
2174   /// either \c EmitVAListRef or \c EmitMSVAListRef.
2175   /// \returns A pointer to the argument.
2176   // FIXME: We should be able to get rid of this method and use the va_arg
2177   // instruction in LLVM instead once it works well enough.
2178   Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr);
2179 
2180   /// emitArrayLength - Compute the length of an array, even if it's a
2181   /// VLA, and drill down to the base element type.
2182   llvm::Value *emitArrayLength(const ArrayType *arrayType,
2183                                QualType &baseType,
2184                                Address &addr);
2185 
2186   /// EmitVLASize - Capture all the sizes for the VLA expressions in
2187   /// the given variably-modified type and store them in the VLASizeMap.
2188   ///
2189   /// This function can be called with a null (unreachable) insert point.
2190   void EmitVariablyModifiedType(QualType Ty);
2191 
2192   /// getVLASize - Returns an LLVM value that corresponds to the size,
2193   /// in non-variably-sized elements, of a variable length array type,
2194   /// plus that largest non-variably-sized element type.  Assumes that
2195   /// the type has already been emitted with EmitVariablyModifiedType.
2196   std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla);
2197   std::pair<llvm::Value*,QualType> getVLASize(QualType vla);
2198 
2199   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
2200   /// generating code for an C++ member function.
2201   llvm::Value *LoadCXXThis() {
2202     assert(CXXThisValue && "no 'this' value for this function");
2203     return CXXThisValue;
2204   }
2205   Address LoadCXXThisAddress();
2206 
2207   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
2208   /// virtual bases.
2209   // FIXME: Every place that calls LoadCXXVTT is something
2210   // that needs to be abstracted properly.
2211   llvm::Value *LoadCXXVTT() {
2212     assert(CXXStructorImplicitParamValue && "no VTT value for this function");
2213     return CXXStructorImplicitParamValue;
2214   }
2215 
2216   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
2217   /// complete class to the given direct base.
2218   Address
2219   GetAddressOfDirectBaseInCompleteClass(Address Value,
2220                                         const CXXRecordDecl *Derived,
2221                                         const CXXRecordDecl *Base,
2222                                         bool BaseIsVirtual);
2223 
2224   static bool ShouldNullCheckClassCastValue(const CastExpr *Cast);
2225 
2226   /// GetAddressOfBaseClass - This function will add the necessary delta to the
2227   /// load of 'this' and returns address of the base class.
2228   Address GetAddressOfBaseClass(Address Value,
2229                                 const CXXRecordDecl *Derived,
2230                                 CastExpr::path_const_iterator PathBegin,
2231                                 CastExpr::path_const_iterator PathEnd,
2232                                 bool NullCheckValue, SourceLocation Loc);
2233 
2234   Address GetAddressOfDerivedClass(Address Value,
2235                                    const CXXRecordDecl *Derived,
2236                                    CastExpr::path_const_iterator PathBegin,
2237                                    CastExpr::path_const_iterator PathEnd,
2238                                    bool NullCheckValue);
2239 
2240   /// GetVTTParameter - Return the VTT parameter that should be passed to a
2241   /// base constructor/destructor with virtual bases.
2242   /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
2243   /// to ItaniumCXXABI.cpp together with all the references to VTT.
2244   llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
2245                                bool Delegating);
2246 
2247   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
2248                                       CXXCtorType CtorType,
2249                                       const FunctionArgList &Args,
2250                                       SourceLocation Loc);
2251   // It's important not to confuse this and the previous function. Delegating
2252   // constructors are the C++0x feature. The constructor delegate optimization
2253   // is used to reduce duplication in the base and complete consturctors where
2254   // they are substantially the same.
2255   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2256                                         const FunctionArgList &Args);
2257 
2258   /// Emit a call to an inheriting constructor (that is, one that invokes a
2259   /// constructor inherited from a base class) by inlining its definition. This
2260   /// is necessary if the ABI does not support forwarding the arguments to the
2261   /// base class constructor (because they're variadic or similar).
2262   void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2263                                                CXXCtorType CtorType,
2264                                                bool ForVirtualBase,
2265                                                bool Delegating,
2266                                                CallArgList &Args);
2267 
2268   /// Emit a call to a constructor inherited from a base class, passing the
2269   /// current constructor's arguments along unmodified (without even making
2270   /// a copy).
2271   void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D,
2272                                        bool ForVirtualBase, Address This,
2273                                        bool InheritedFromVBase,
2274                                        const CXXInheritedCtorInitExpr *E);
2275 
2276   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2277                               bool ForVirtualBase, bool Delegating,
2278                               Address This, const CXXConstructExpr *E);
2279 
2280   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2281                               bool ForVirtualBase, bool Delegating,
2282                               Address This, CallArgList &Args);
2283 
2284   /// Emit assumption load for all bases. Requires to be be called only on
2285   /// most-derived class and not under construction of the object.
2286   void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This);
2287 
2288   /// Emit assumption that vptr load == global vtable.
2289   void EmitVTableAssumptionLoad(const VPtr &vptr, Address This);
2290 
2291   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
2292                                       Address This, Address Src,
2293                                       const CXXConstructExpr *E);
2294 
2295   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2296                                   const ArrayType *ArrayTy,
2297                                   Address ArrayPtr,
2298                                   const CXXConstructExpr *E,
2299                                   bool ZeroInitialization = false);
2300 
2301   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2302                                   llvm::Value *NumElements,
2303                                   Address ArrayPtr,
2304                                   const CXXConstructExpr *E,
2305                                   bool ZeroInitialization = false);
2306 
2307   static Destroyer destroyCXXObject;
2308 
2309   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
2310                              bool ForVirtualBase, bool Delegating,
2311                              Address This);
2312 
2313   void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
2314                                llvm::Type *ElementTy, Address NewPtr,
2315                                llvm::Value *NumElements,
2316                                llvm::Value *AllocSizeWithoutCookie);
2317 
2318   void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
2319                         Address Ptr);
2320 
2321   llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr);
2322   void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr);
2323 
2324   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
2325   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
2326 
2327   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
2328                       QualType DeleteTy, llvm::Value *NumElements = nullptr,
2329                       CharUnits CookieSize = CharUnits());
2330 
2331   RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
2332                                   const Expr *Arg, bool IsDelete);
2333 
2334   llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E);
2335   llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE);
2336   Address EmitCXXUuidofExpr(const CXXUuidofExpr *E);
2337 
2338   /// \brief Situations in which we might emit a check for the suitability of a
2339   ///        pointer or glvalue.
2340   enum TypeCheckKind {
2341     /// Checking the operand of a load. Must be suitably sized and aligned.
2342     TCK_Load,
2343     /// Checking the destination of a store. Must be suitably sized and aligned.
2344     TCK_Store,
2345     /// Checking the bound value in a reference binding. Must be suitably sized
2346     /// and aligned, but is not required to refer to an object (until the
2347     /// reference is used), per core issue 453.
2348     TCK_ReferenceBinding,
2349     /// Checking the object expression in a non-static data member access. Must
2350     /// be an object within its lifetime.
2351     TCK_MemberAccess,
2352     /// Checking the 'this' pointer for a call to a non-static member function.
2353     /// Must be an object within its lifetime.
2354     TCK_MemberCall,
2355     /// Checking the 'this' pointer for a constructor call.
2356     TCK_ConstructorCall,
2357     /// Checking the operand of a static_cast to a derived pointer type. Must be
2358     /// null or an object within its lifetime.
2359     TCK_DowncastPointer,
2360     /// Checking the operand of a static_cast to a derived reference type. Must
2361     /// be an object within its lifetime.
2362     TCK_DowncastReference,
2363     /// Checking the operand of a cast to a base object. Must be suitably sized
2364     /// and aligned.
2365     TCK_Upcast,
2366     /// Checking the operand of a cast to a virtual base object. Must be an
2367     /// object within its lifetime.
2368     TCK_UpcastToVirtualBase,
2369     /// Checking the value assigned to a _Nonnull pointer. Must not be null.
2370     TCK_NonnullAssign
2371   };
2372 
2373   /// Determine whether the pointer type check \p TCK permits null pointers.
2374   static bool isNullPointerAllowed(TypeCheckKind TCK);
2375 
2376   /// Determine whether the pointer type check \p TCK requires a vptr check.
2377   static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty);
2378 
2379   /// \brief Whether any type-checking sanitizers are enabled. If \c false,
2380   /// calls to EmitTypeCheck can be skipped.
2381   bool sanitizePerformTypeCheck() const;
2382 
2383   /// \brief Emit a check that \p V is the address of storage of the
2384   /// appropriate size and alignment for an object of type \p Type.
2385   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
2386                      QualType Type, CharUnits Alignment = CharUnits::Zero(),
2387                      SanitizerSet SkippedChecks = SanitizerSet());
2388 
2389   /// \brief Emit a check that \p Base points into an array object, which
2390   /// we can access at index \p Index. \p Accessed should be \c false if we
2391   /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
2392   void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
2393                        QualType IndexType, bool Accessed);
2394 
2395   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2396                                        bool isInc, bool isPre);
2397   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
2398                                          bool isInc, bool isPre);
2399 
2400   void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment,
2401                                llvm::Value *OffsetValue = nullptr) {
2402     Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment,
2403                                       OffsetValue);
2404   }
2405 
2406   /// Converts Location to a DebugLoc, if debug information is enabled.
2407   llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location);
2408 
2409 
2410   //===--------------------------------------------------------------------===//
2411   //                            Declaration Emission
2412   //===--------------------------------------------------------------------===//
2413 
2414   /// EmitDecl - Emit a declaration.
2415   ///
2416   /// This function can be called with a null (unreachable) insert point.
2417   void EmitDecl(const Decl &D);
2418 
2419   /// EmitVarDecl - Emit a local variable declaration.
2420   ///
2421   /// This function can be called with a null (unreachable) insert point.
2422   void EmitVarDecl(const VarDecl &D);
2423 
2424   void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2425                       bool capturedByInit);
2426 
2427   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
2428                              llvm::Value *Address);
2429 
2430   /// \brief Determine whether the given initializer is trivial in the sense
2431   /// that it requires no code to be generated.
2432   bool isTrivialInitializer(const Expr *Init);
2433 
2434   /// EmitAutoVarDecl - Emit an auto variable declaration.
2435   ///
2436   /// This function can be called with a null (unreachable) insert point.
2437   void EmitAutoVarDecl(const VarDecl &D);
2438 
2439   class AutoVarEmission {
2440     friend class CodeGenFunction;
2441 
2442     const VarDecl *Variable;
2443 
2444     /// The address of the alloca.  Invalid if the variable was emitted
2445     /// as a global constant.
2446     Address Addr;
2447 
2448     llvm::Value *NRVOFlag;
2449 
2450     /// True if the variable is a __block variable.
2451     bool IsByRef;
2452 
2453     /// True if the variable is of aggregate type and has a constant
2454     /// initializer.
2455     bool IsConstantAggregate;
2456 
2457     /// Non-null if we should use lifetime annotations.
2458     llvm::Value *SizeForLifetimeMarkers;
2459 
2460     struct Invalid {};
2461     AutoVarEmission(Invalid) : Variable(nullptr), Addr(Address::invalid()) {}
2462 
2463     AutoVarEmission(const VarDecl &variable)
2464       : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr),
2465         IsByRef(false), IsConstantAggregate(false),
2466         SizeForLifetimeMarkers(nullptr) {}
2467 
2468     bool wasEmittedAsGlobal() const { return !Addr.isValid(); }
2469 
2470   public:
2471     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
2472 
2473     bool useLifetimeMarkers() const {
2474       return SizeForLifetimeMarkers != nullptr;
2475     }
2476     llvm::Value *getSizeForLifetimeMarkers() const {
2477       assert(useLifetimeMarkers());
2478       return SizeForLifetimeMarkers;
2479     }
2480 
2481     /// Returns the raw, allocated address, which is not necessarily
2482     /// the address of the object itself.
2483     Address getAllocatedAddress() const {
2484       return Addr;
2485     }
2486 
2487     /// Returns the address of the object within this declaration.
2488     /// Note that this does not chase the forwarding pointer for
2489     /// __block decls.
2490     Address getObjectAddress(CodeGenFunction &CGF) const {
2491       if (!IsByRef) return Addr;
2492 
2493       return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false);
2494     }
2495   };
2496   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
2497   void EmitAutoVarInit(const AutoVarEmission &emission);
2498   void EmitAutoVarCleanups(const AutoVarEmission &emission);
2499   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
2500                               QualType::DestructionKind dtorKind);
2501 
2502   void EmitStaticVarDecl(const VarDecl &D,
2503                          llvm::GlobalValue::LinkageTypes Linkage);
2504 
2505   class ParamValue {
2506     llvm::Value *Value;
2507     unsigned Alignment;
2508     ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {}
2509   public:
2510     static ParamValue forDirect(llvm::Value *value) {
2511       return ParamValue(value, 0);
2512     }
2513     static ParamValue forIndirect(Address addr) {
2514       assert(!addr.getAlignment().isZero());
2515       return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity());
2516     }
2517 
2518     bool isIndirect() const { return Alignment != 0; }
2519     llvm::Value *getAnyValue() const { return Value; }
2520 
2521     llvm::Value *getDirectValue() const {
2522       assert(!isIndirect());
2523       return Value;
2524     }
2525 
2526     Address getIndirectAddress() const {
2527       assert(isIndirect());
2528       return Address(Value, CharUnits::fromQuantity(Alignment));
2529     }
2530   };
2531 
2532   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
2533   void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo);
2534 
2535   /// protectFromPeepholes - Protect a value that we're intending to
2536   /// store to the side, but which will probably be used later, from
2537   /// aggressive peepholing optimizations that might delete it.
2538   ///
2539   /// Pass the result to unprotectFromPeepholes to declare that
2540   /// protection is no longer required.
2541   ///
2542   /// There's no particular reason why this shouldn't apply to
2543   /// l-values, it's just that no existing peepholes work on pointers.
2544   PeepholeProtection protectFromPeepholes(RValue rvalue);
2545   void unprotectFromPeepholes(PeepholeProtection protection);
2546 
2547   void EmitAlignmentAssumption(llvm::Value *PtrValue, llvm::Value *Alignment,
2548                                llvm::Value *OffsetValue = nullptr) {
2549     Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment,
2550                                       OffsetValue);
2551   }
2552 
2553   //===--------------------------------------------------------------------===//
2554   //                             Statement Emission
2555   //===--------------------------------------------------------------------===//
2556 
2557   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
2558   void EmitStopPoint(const Stmt *S);
2559 
2560   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
2561   /// this function even if there is no current insertion point.
2562   ///
2563   /// This function may clear the current insertion point; callers should use
2564   /// EnsureInsertPoint if they wish to subsequently generate code without first
2565   /// calling EmitBlock, EmitBranch, or EmitStmt.
2566   void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None);
2567 
2568   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
2569   /// necessarily require an insertion point or debug information; typically
2570   /// because the statement amounts to a jump or a container of other
2571   /// statements.
2572   ///
2573   /// \return True if the statement was handled.
2574   bool EmitSimpleStmt(const Stmt *S);
2575 
2576   Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
2577                            AggValueSlot AVS = AggValueSlot::ignored());
2578   Address EmitCompoundStmtWithoutScope(const CompoundStmt &S,
2579                                        bool GetLast = false,
2580                                        AggValueSlot AVS =
2581                                                 AggValueSlot::ignored());
2582 
2583   /// EmitLabel - Emit the block for the given label. It is legal to call this
2584   /// function even if there is no current insertion point.
2585   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
2586 
2587   void EmitLabelStmt(const LabelStmt &S);
2588   void EmitAttributedStmt(const AttributedStmt &S);
2589   void EmitGotoStmt(const GotoStmt &S);
2590   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
2591   void EmitIfStmt(const IfStmt &S);
2592 
2593   void EmitWhileStmt(const WhileStmt &S,
2594                      ArrayRef<const Attr *> Attrs = None);
2595   void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None);
2596   void EmitForStmt(const ForStmt &S,
2597                    ArrayRef<const Attr *> Attrs = None);
2598   void EmitReturnStmt(const ReturnStmt &S);
2599   void EmitDeclStmt(const DeclStmt &S);
2600   void EmitBreakStmt(const BreakStmt &S);
2601   void EmitContinueStmt(const ContinueStmt &S);
2602   void EmitSwitchStmt(const SwitchStmt &S);
2603   void EmitDefaultStmt(const DefaultStmt &S);
2604   void EmitCaseStmt(const CaseStmt &S);
2605   void EmitCaseStmtRange(const CaseStmt &S);
2606   void EmitAsmStmt(const AsmStmt &S);
2607 
2608   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
2609   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
2610   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
2611   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
2612   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
2613 
2614   void EmitCoroutineBody(const CoroutineBodyStmt &S);
2615   void EmitCoreturnStmt(const CoreturnStmt &S);
2616   RValue EmitCoawaitExpr(const CoawaitExpr &E,
2617                          AggValueSlot aggSlot = AggValueSlot::ignored(),
2618                          bool ignoreResult = false);
2619   LValue EmitCoawaitLValue(const CoawaitExpr *E);
2620   RValue EmitCoyieldExpr(const CoyieldExpr &E,
2621                          AggValueSlot aggSlot = AggValueSlot::ignored(),
2622                          bool ignoreResult = false);
2623   LValue EmitCoyieldLValue(const CoyieldExpr *E);
2624   RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID);
2625 
2626   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2627   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2628 
2629   void EmitCXXTryStmt(const CXXTryStmt &S);
2630   void EmitSEHTryStmt(const SEHTryStmt &S);
2631   void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
2632   void EnterSEHTryStmt(const SEHTryStmt &S);
2633   void ExitSEHTryStmt(const SEHTryStmt &S);
2634 
2635   void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter,
2636                               const Stmt *OutlinedStmt);
2637 
2638   llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
2639                                             const SEHExceptStmt &Except);
2640 
2641   llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF,
2642                                              const SEHFinallyStmt &Finally);
2643 
2644   void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF,
2645                                 llvm::Value *ParentFP,
2646                                 llvm::Value *EntryEBP);
2647   llvm::Value *EmitSEHExceptionCode();
2648   llvm::Value *EmitSEHExceptionInfo();
2649   llvm::Value *EmitSEHAbnormalTermination();
2650 
2651   /// Scan the outlined statement for captures from the parent function. For
2652   /// each capture, mark the capture as escaped and emit a call to
2653   /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap.
2654   void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
2655                           bool IsFilter);
2656 
2657   /// Recovers the address of a local in a parent function. ParentVar is the
2658   /// address of the variable used in the immediate parent function. It can
2659   /// either be an alloca or a call to llvm.localrecover if there are nested
2660   /// outlined functions. ParentFP is the frame pointer of the outermost parent
2661   /// frame.
2662   Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF,
2663                                     Address ParentVar,
2664                                     llvm::Value *ParentFP);
2665 
2666   void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
2667                            ArrayRef<const Attr *> Attrs = None);
2668 
2669   /// Controls insertion of cancellation exit blocks in worksharing constructs.
2670   class OMPCancelStackRAII {
2671     CodeGenFunction &CGF;
2672 
2673   public:
2674     OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
2675                        bool HasCancel)
2676         : CGF(CGF) {
2677       CGF.OMPCancelStack.enter(CGF, Kind, HasCancel);
2678     }
2679     ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); }
2680   };
2681 
2682   /// Returns calculated size of the specified type.
2683   llvm::Value *getTypeSize(QualType Ty);
2684   LValue InitCapturedStruct(const CapturedStmt &S);
2685   llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
2686   llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
2687   Address GenerateCapturedStmtArgument(const CapturedStmt &S);
2688   llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S);
2689   void GenerateOpenMPCapturedVars(const CapturedStmt &S,
2690                                   SmallVectorImpl<llvm::Value *> &CapturedVars);
2691   void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy,
2692                           SourceLocation Loc);
2693   /// \brief Perform element by element copying of arrays with type \a
2694   /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
2695   /// generated by \a CopyGen.
2696   ///
2697   /// \param DestAddr Address of the destination array.
2698   /// \param SrcAddr Address of the source array.
2699   /// \param OriginalType Type of destination and source arrays.
2700   /// \param CopyGen Copying procedure that copies value of single array element
2701   /// to another single array element.
2702   void EmitOMPAggregateAssign(
2703       Address DestAddr, Address SrcAddr, QualType OriginalType,
2704       const llvm::function_ref<void(Address, Address)> &CopyGen);
2705   /// \brief Emit proper copying of data from one variable to another.
2706   ///
2707   /// \param OriginalType Original type of the copied variables.
2708   /// \param DestAddr Destination address.
2709   /// \param SrcAddr Source address.
2710   /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
2711   /// type of the base array element).
2712   /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
2713   /// the base array element).
2714   /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
2715   /// DestVD.
2716   void EmitOMPCopy(QualType OriginalType,
2717                    Address DestAddr, Address SrcAddr,
2718                    const VarDecl *DestVD, const VarDecl *SrcVD,
2719                    const Expr *Copy);
2720   /// \brief Emit atomic update code for constructs: \a X = \a X \a BO \a E or
2721   /// \a X = \a E \a BO \a E.
2722   ///
2723   /// \param X Value to be updated.
2724   /// \param E Update value.
2725   /// \param BO Binary operation for update operation.
2726   /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
2727   /// expression, false otherwise.
2728   /// \param AO Atomic ordering of the generated atomic instructions.
2729   /// \param CommonGen Code generator for complex expressions that cannot be
2730   /// expressed through atomicrmw instruction.
2731   /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was
2732   /// generated, <false, RValue::get(nullptr)> otherwise.
2733   std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr(
2734       LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
2735       llvm::AtomicOrdering AO, SourceLocation Loc,
2736       const llvm::function_ref<RValue(RValue)> &CommonGen);
2737   bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
2738                                  OMPPrivateScope &PrivateScope);
2739   void EmitOMPPrivateClause(const OMPExecutableDirective &D,
2740                             OMPPrivateScope &PrivateScope);
2741   void EmitOMPUseDevicePtrClause(
2742       const OMPClause &C, OMPPrivateScope &PrivateScope,
2743       const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap);
2744   /// \brief Emit code for copyin clause in \a D directive. The next code is
2745   /// generated at the start of outlined functions for directives:
2746   /// \code
2747   /// threadprivate_var1 = master_threadprivate_var1;
2748   /// operator=(threadprivate_var2, master_threadprivate_var2);
2749   /// ...
2750   /// __kmpc_barrier(&loc, global_tid);
2751   /// \endcode
2752   ///
2753   /// \param D OpenMP directive possibly with 'copyin' clause(s).
2754   /// \returns true if at least one copyin variable is found, false otherwise.
2755   bool EmitOMPCopyinClause(const OMPExecutableDirective &D);
2756   /// \brief Emit initial code for lastprivate variables. If some variable is
2757   /// not also firstprivate, then the default initialization is used. Otherwise
2758   /// initialization of this variable is performed by EmitOMPFirstprivateClause
2759   /// method.
2760   ///
2761   /// \param D Directive that may have 'lastprivate' directives.
2762   /// \param PrivateScope Private scope for capturing lastprivate variables for
2763   /// proper codegen in internal captured statement.
2764   ///
2765   /// \returns true if there is at least one lastprivate variable, false
2766   /// otherwise.
2767   bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D,
2768                                     OMPPrivateScope &PrivateScope);
2769   /// \brief Emit final copying of lastprivate values to original variables at
2770   /// the end of the worksharing or simd directive.
2771   ///
2772   /// \param D Directive that has at least one 'lastprivate' directives.
2773   /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
2774   /// it is the last iteration of the loop code in associated directive, or to
2775   /// 'i1 false' otherwise. If this item is nullptr, no final check is required.
2776   void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D,
2777                                      bool NoFinals,
2778                                      llvm::Value *IsLastIterCond = nullptr);
2779   /// Emit initial code for linear clauses.
2780   void EmitOMPLinearClause(const OMPLoopDirective &D,
2781                            CodeGenFunction::OMPPrivateScope &PrivateScope);
2782   /// Emit final code for linear clauses.
2783   /// \param CondGen Optional conditional code for final part of codegen for
2784   /// linear clause.
2785   void EmitOMPLinearClauseFinal(
2786       const OMPLoopDirective &D,
2787       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen);
2788   /// \brief Emit initial code for reduction variables. Creates reduction copies
2789   /// and initializes them with the values according to OpenMP standard.
2790   ///
2791   /// \param D Directive (possibly) with the 'reduction' clause.
2792   /// \param PrivateScope Private scope for capturing reduction variables for
2793   /// proper codegen in internal captured statement.
2794   ///
2795   void EmitOMPReductionClauseInit(const OMPExecutableDirective &D,
2796                                   OMPPrivateScope &PrivateScope);
2797   /// \brief Emit final update of reduction values to original variables at
2798   /// the end of the directive.
2799   ///
2800   /// \param D Directive that has at least one 'reduction' directives.
2801   /// \param ReductionKind The kind of reduction to perform.
2802   void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D,
2803                                    const OpenMPDirectiveKind ReductionKind);
2804   /// \brief Emit initial code for linear variables. Creates private copies
2805   /// and initializes them with the values according to OpenMP standard.
2806   ///
2807   /// \param D Directive (possibly) with the 'linear' clause.
2808   /// \return true if at least one linear variable is found that should be
2809   /// initialized with the value of the original variable, false otherwise.
2810   bool EmitOMPLinearClauseInit(const OMPLoopDirective &D);
2811 
2812   typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/,
2813                                         llvm::Value * /*OutlinedFn*/,
2814                                         const OMPTaskDataTy & /*Data*/)>
2815       TaskGenTy;
2816   void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S,
2817                                  const RegionCodeGenTy &BodyGen,
2818                                  const TaskGenTy &TaskGen, OMPTaskDataTy &Data);
2819 
2820   void EmitOMPParallelDirective(const OMPParallelDirective &S);
2821   void EmitOMPSimdDirective(const OMPSimdDirective &S);
2822   void EmitOMPForDirective(const OMPForDirective &S);
2823   void EmitOMPForSimdDirective(const OMPForSimdDirective &S);
2824   void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
2825   void EmitOMPSectionDirective(const OMPSectionDirective &S);
2826   void EmitOMPSingleDirective(const OMPSingleDirective &S);
2827   void EmitOMPMasterDirective(const OMPMasterDirective &S);
2828   void EmitOMPCriticalDirective(const OMPCriticalDirective &S);
2829   void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
2830   void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S);
2831   void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
2832   void EmitOMPTaskDirective(const OMPTaskDirective &S);
2833   void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
2834   void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
2835   void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
2836   void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S);
2837   void EmitOMPFlushDirective(const OMPFlushDirective &S);
2838   void EmitOMPOrderedDirective(const OMPOrderedDirective &S);
2839   void EmitOMPAtomicDirective(const OMPAtomicDirective &S);
2840   void EmitOMPTargetDirective(const OMPTargetDirective &S);
2841   void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S);
2842   void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S);
2843   void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S);
2844   void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S);
2845   void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S);
2846   void
2847   EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S);
2848   void EmitOMPTeamsDirective(const OMPTeamsDirective &S);
2849   void
2850   EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S);
2851   void EmitOMPCancelDirective(const OMPCancelDirective &S);
2852   void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S);
2853   void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S);
2854   void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S);
2855   void EmitOMPDistributeDirective(const OMPDistributeDirective &S);
2856   void EmitOMPDistributeParallelForDirective(
2857       const OMPDistributeParallelForDirective &S);
2858   void EmitOMPDistributeParallelForSimdDirective(
2859       const OMPDistributeParallelForSimdDirective &S);
2860   void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S);
2861   void EmitOMPTargetParallelForSimdDirective(
2862       const OMPTargetParallelForSimdDirective &S);
2863   void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S);
2864   void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S);
2865   void
2866   EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S);
2867   void EmitOMPTeamsDistributeParallelForSimdDirective(
2868       const OMPTeamsDistributeParallelForSimdDirective &S);
2869   void EmitOMPTeamsDistributeParallelForDirective(
2870       const OMPTeamsDistributeParallelForDirective &S);
2871   void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S);
2872   void EmitOMPTargetTeamsDistributeDirective(
2873       const OMPTargetTeamsDistributeDirective &S);
2874   void EmitOMPTargetTeamsDistributeParallelForDirective(
2875       const OMPTargetTeamsDistributeParallelForDirective &S);
2876   void EmitOMPTargetTeamsDistributeParallelForSimdDirective(
2877       const OMPTargetTeamsDistributeParallelForSimdDirective &S);
2878   void EmitOMPTargetTeamsDistributeSimdDirective(
2879       const OMPTargetTeamsDistributeSimdDirective &S);
2880 
2881   /// Emit device code for the target directive.
2882   static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM,
2883                                           StringRef ParentName,
2884                                           const OMPTargetDirective &S);
2885   static void
2886   EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
2887                                       const OMPTargetParallelDirective &S);
2888   /// Emit device code for the target parallel for directive.
2889   static void EmitOMPTargetParallelForDeviceFunction(
2890       CodeGenModule &CGM, StringRef ParentName,
2891       const OMPTargetParallelForDirective &S);
2892   /// Emit device code for the target parallel for simd directive.
2893   static void EmitOMPTargetParallelForSimdDeviceFunction(
2894       CodeGenModule &CGM, StringRef ParentName,
2895       const OMPTargetParallelForSimdDirective &S);
2896   static void
2897   EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
2898                                    const OMPTargetTeamsDirective &S);
2899   /// Emit device code for the target simd directive.
2900   static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM,
2901                                               StringRef ParentName,
2902                                               const OMPTargetSimdDirective &S);
2903   /// \brief Emit inner loop of the worksharing/simd construct.
2904   ///
2905   /// \param S Directive, for which the inner loop must be emitted.
2906   /// \param RequiresCleanup true, if directive has some associated private
2907   /// variables.
2908   /// \param LoopCond Bollean condition for loop continuation.
2909   /// \param IncExpr Increment expression for loop control variable.
2910   /// \param BodyGen Generator for the inner body of the inner loop.
2911   /// \param PostIncGen Genrator for post-increment code (required for ordered
2912   /// loop directvies).
2913   void EmitOMPInnerLoop(
2914       const Stmt &S, bool RequiresCleanup, const Expr *LoopCond,
2915       const Expr *IncExpr,
2916       const llvm::function_ref<void(CodeGenFunction &)> &BodyGen,
2917       const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen);
2918 
2919   JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind);
2920   /// Emit initial code for loop counters of loop-based directives.
2921   void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S,
2922                                   OMPPrivateScope &LoopScope);
2923 
2924   /// Helper for the OpenMP loop directives.
2925   void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit);
2926 
2927   /// \brief Emit code for the worksharing loop-based directive.
2928   /// \return true, if this construct has any lastprivate clause, false -
2929   /// otherwise.
2930   bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB,
2931                               const CodeGenLoopBoundsTy &CodeGenLoopBounds,
2932                               const CodeGenDispatchBoundsTy &CGDispatchBounds);
2933 
2934   /// Helpers for the OpenMP loop directives.
2935   void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false);
2936   void EmitOMPSimdFinal(
2937       const OMPLoopDirective &D,
2938       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen);
2939 
2940   /// Emits the lvalue for the expression with possibly captured variable.
2941   LValue EmitOMPSharedLValue(const Expr *E);
2942 
2943 private:
2944   /// Helpers for blocks. Returns invoke function by \p InvokeF if it is not
2945   /// nullptr. It should be called without \p InvokeF if the caller does not
2946   /// need invoke function to be returned.
2947   llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info,
2948                                 llvm::Function **InvokeF = nullptr);
2949 
2950   void EmitOMPDistributeLoop(const OMPLoopDirective &S,
2951                              const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr);
2952 
2953   /// struct with the values to be passed to the OpenMP loop-related functions
2954   struct OMPLoopArguments {
2955     /// loop lower bound
2956     Address LB = Address::invalid();
2957     /// loop upper bound
2958     Address UB = Address::invalid();
2959     /// loop stride
2960     Address ST = Address::invalid();
2961     /// isLastIteration argument for runtime functions
2962     Address IL = Address::invalid();
2963     /// Chunk value generated by sema
2964     llvm::Value *Chunk = nullptr;
2965     /// EnsureUpperBound
2966     Expr *EUB = nullptr;
2967     /// IncrementExpression
2968     Expr *IncExpr = nullptr;
2969     /// Loop initialization
2970     Expr *Init = nullptr;
2971     /// Loop exit condition
2972     Expr *Cond = nullptr;
2973     /// Update of LB after a whole chunk has been executed
2974     Expr *NextLB = nullptr;
2975     /// Update of UB after a whole chunk has been executed
2976     Expr *NextUB = nullptr;
2977     OMPLoopArguments() = default;
2978     OMPLoopArguments(Address LB, Address UB, Address ST, Address IL,
2979                      llvm::Value *Chunk = nullptr, Expr *EUB = nullptr,
2980                      Expr *IncExpr = nullptr, Expr *Init = nullptr,
2981                      Expr *Cond = nullptr, Expr *NextLB = nullptr,
2982                      Expr *NextUB = nullptr)
2983         : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB),
2984           IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB),
2985           NextUB(NextUB) {}
2986   };
2987   void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic,
2988                         const OMPLoopDirective &S, OMPPrivateScope &LoopScope,
2989                         const OMPLoopArguments &LoopArgs,
2990                         const CodeGenLoopTy &CodeGenLoop,
2991                         const CodeGenOrderedTy &CodeGenOrdered);
2992   void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind,
2993                            bool IsMonotonic, const OMPLoopDirective &S,
2994                            OMPPrivateScope &LoopScope, bool Ordered,
2995                            const OMPLoopArguments &LoopArgs,
2996                            const CodeGenDispatchBoundsTy &CGDispatchBounds);
2997   void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind,
2998                                   const OMPLoopDirective &S,
2999                                   OMPPrivateScope &LoopScope,
3000                                   const OMPLoopArguments &LoopArgs,
3001                                   const CodeGenLoopTy &CodeGenLoopContent);
3002   /// \brief Emit code for sections directive.
3003   void EmitSections(const OMPExecutableDirective &S);
3004 
3005 public:
3006 
3007   //===--------------------------------------------------------------------===//
3008   //                         LValue Expression Emission
3009   //===--------------------------------------------------------------------===//
3010 
3011   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
3012   RValue GetUndefRValue(QualType Ty);
3013 
3014   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
3015   /// and issue an ErrorUnsupported style diagnostic (using the
3016   /// provided Name).
3017   RValue EmitUnsupportedRValue(const Expr *E,
3018                                const char *Name);
3019 
3020   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
3021   /// an ErrorUnsupported style diagnostic (using the provided Name).
3022   LValue EmitUnsupportedLValue(const Expr *E,
3023                                const char *Name);
3024 
3025   /// EmitLValue - Emit code to compute a designator that specifies the location
3026   /// of the expression.
3027   ///
3028   /// This can return one of two things: a simple address or a bitfield
3029   /// reference.  In either case, the LLVM Value* in the LValue structure is
3030   /// guaranteed to be an LLVM pointer type.
3031   ///
3032   /// If this returns a bitfield reference, nothing about the pointee type of
3033   /// the LLVM value is known: For example, it may not be a pointer to an
3034   /// integer.
3035   ///
3036   /// If this returns a normal address, and if the lvalue's C type is fixed
3037   /// size, this method guarantees that the returned pointer type will point to
3038   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
3039   /// variable length type, this is not possible.
3040   ///
3041   LValue EmitLValue(const Expr *E);
3042 
3043   /// \brief Same as EmitLValue but additionally we generate checking code to
3044   /// guard against undefined behavior.  This is only suitable when we know
3045   /// that the address will be used to access the object.
3046   LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
3047 
3048   RValue convertTempToRValue(Address addr, QualType type,
3049                              SourceLocation Loc);
3050 
3051   void EmitAtomicInit(Expr *E, LValue lvalue);
3052 
3053   bool LValueIsSuitableForInlineAtomic(LValue Src);
3054 
3055   RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
3056                         AggValueSlot Slot = AggValueSlot::ignored());
3057 
3058   RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
3059                         llvm::AtomicOrdering AO, bool IsVolatile = false,
3060                         AggValueSlot slot = AggValueSlot::ignored());
3061 
3062   void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
3063 
3064   void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
3065                        bool IsVolatile, bool isInit);
3066 
3067   std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
3068       LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
3069       llvm::AtomicOrdering Success =
3070           llvm::AtomicOrdering::SequentiallyConsistent,
3071       llvm::AtomicOrdering Failure =
3072           llvm::AtomicOrdering::SequentiallyConsistent,
3073       bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
3074 
3075   void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
3076                         const llvm::function_ref<RValue(RValue)> &UpdateOp,
3077                         bool IsVolatile);
3078 
3079   /// EmitToMemory - Change a scalar value from its value
3080   /// representation to its in-memory representation.
3081   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
3082 
3083   /// EmitFromMemory - Change a scalar value from its memory
3084   /// representation to its value representation.
3085   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
3086 
3087   /// Check if the scalar \p Value is within the valid range for the given
3088   /// type \p Ty.
3089   ///
3090   /// Returns true if a check is needed (even if the range is unknown).
3091   bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
3092                             SourceLocation Loc);
3093 
3094   /// EmitLoadOfScalar - Load a scalar value from an address, taking
3095   /// care to appropriately convert from the memory representation to
3096   /// the LLVM value representation.
3097   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3098                                 SourceLocation Loc,
3099                                 AlignmentSource Source = AlignmentSource::Type,
3100                                 bool isNontemporal = false) {
3101     return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source),
3102                             CGM.getTBAAAccessInfo(Ty), isNontemporal);
3103   }
3104 
3105   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3106                                 SourceLocation Loc, LValueBaseInfo BaseInfo,
3107                                 TBAAAccessInfo TBAAInfo,
3108                                 bool isNontemporal = false);
3109 
3110   /// EmitLoadOfScalar - Load a scalar value from an address, taking
3111   /// care to appropriately convert from the memory representation to
3112   /// the LLVM value representation.  The l-value must be a simple
3113   /// l-value.
3114   llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
3115 
3116   /// EmitStoreOfScalar - Store a scalar value to an address, taking
3117   /// care to appropriately convert from the memory representation to
3118   /// the LLVM value representation.
3119   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3120                          bool Volatile, QualType Ty,
3121                          AlignmentSource Source = AlignmentSource::Type,
3122                          bool isInit = false, bool isNontemporal = false) {
3123     EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source),
3124                       CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal);
3125   }
3126 
3127   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3128                          bool Volatile, QualType Ty,
3129                          LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo,
3130                          bool isInit = false, bool isNontemporal = false);
3131 
3132   /// EmitStoreOfScalar - Store a scalar value to an address, taking
3133   /// care to appropriately convert from the memory representation to
3134   /// the LLVM value representation.  The l-value must be a simple
3135   /// l-value.  The isInit flag indicates whether this is an initialization.
3136   /// If so, atomic qualifiers are ignored and the store is always non-atomic.
3137   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
3138 
3139   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
3140   /// this method emits the address of the lvalue, then loads the result as an
3141   /// rvalue, returning the rvalue.
3142   RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
3143   RValue EmitLoadOfExtVectorElementLValue(LValue V);
3144   RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc);
3145   RValue EmitLoadOfGlobalRegLValue(LValue LV);
3146 
3147   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
3148   /// lvalue, where both are guaranteed to the have the same type, and that type
3149   /// is 'Ty'.
3150   void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
3151   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
3152   void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
3153 
3154   /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
3155   /// as EmitStoreThroughLValue.
3156   ///
3157   /// \param Result [out] - If non-null, this will be set to a Value* for the
3158   /// bit-field contents after the store, appropriate for use as the result of
3159   /// an assignment to the bit-field.
3160   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
3161                                       llvm::Value **Result=nullptr);
3162 
3163   /// Emit an l-value for an assignment (simple or compound) of complex type.
3164   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
3165   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
3166   LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
3167                                              llvm::Value *&Result);
3168 
3169   // Note: only available for agg return types
3170   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
3171   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
3172   // Note: only available for agg return types
3173   LValue EmitCallExprLValue(const CallExpr *E);
3174   // Note: only available for agg return types
3175   LValue EmitVAArgExprLValue(const VAArgExpr *E);
3176   LValue EmitDeclRefLValue(const DeclRefExpr *E);
3177   LValue EmitStringLiteralLValue(const StringLiteral *E);
3178   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
3179   LValue EmitPredefinedLValue(const PredefinedExpr *E);
3180   LValue EmitUnaryOpLValue(const UnaryOperator *E);
3181   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3182                                 bool Accessed = false);
3183   LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3184                                  bool IsLowerBound = true);
3185   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
3186   LValue EmitMemberExpr(const MemberExpr *E);
3187   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
3188   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
3189   LValue EmitInitListLValue(const InitListExpr *E);
3190   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
3191   LValue EmitCastLValue(const CastExpr *E);
3192   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
3193   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
3194 
3195   Address EmitExtVectorElementLValue(LValue V);
3196 
3197   RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
3198 
3199   Address EmitArrayToPointerDecay(const Expr *Array,
3200                                   LValueBaseInfo *BaseInfo = nullptr,
3201                                   TBAAAccessInfo *TBAAInfo = nullptr);
3202 
3203   class ConstantEmission {
3204     llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
3205     ConstantEmission(llvm::Constant *C, bool isReference)
3206       : ValueAndIsReference(C, isReference) {}
3207   public:
3208     ConstantEmission() {}
3209     static ConstantEmission forReference(llvm::Constant *C) {
3210       return ConstantEmission(C, true);
3211     }
3212     static ConstantEmission forValue(llvm::Constant *C) {
3213       return ConstantEmission(C, false);
3214     }
3215 
3216     explicit operator bool() const {
3217       return ValueAndIsReference.getOpaqueValue() != nullptr;
3218     }
3219 
3220     bool isReference() const { return ValueAndIsReference.getInt(); }
3221     LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
3222       assert(isReference());
3223       return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
3224                                             refExpr->getType());
3225     }
3226 
3227     llvm::Constant *getValue() const {
3228       assert(!isReference());
3229       return ValueAndIsReference.getPointer();
3230     }
3231   };
3232 
3233   ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
3234   ConstantEmission tryEmitAsConstant(const MemberExpr *ME);
3235 
3236   RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
3237                                 AggValueSlot slot = AggValueSlot::ignored());
3238   LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
3239 
3240   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3241                               const ObjCIvarDecl *Ivar);
3242   LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
3243   LValue EmitLValueForLambdaField(const FieldDecl *Field);
3244 
3245   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
3246   /// if the Field is a reference, this will return the address of the reference
3247   /// and not the address of the value stored in the reference.
3248   LValue EmitLValueForFieldInitialization(LValue Base,
3249                                           const FieldDecl* Field);
3250 
3251   LValue EmitLValueForIvar(QualType ObjectTy,
3252                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
3253                            unsigned CVRQualifiers);
3254 
3255   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
3256   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
3257   LValue EmitLambdaLValue(const LambdaExpr *E);
3258   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
3259   LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
3260 
3261   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
3262   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
3263   LValue EmitStmtExprLValue(const StmtExpr *E);
3264   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
3265   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
3266   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init);
3267 
3268   //===--------------------------------------------------------------------===//
3269   //                         Scalar Expression Emission
3270   //===--------------------------------------------------------------------===//
3271 
3272   /// EmitCall - Generate a call of the given function, expecting the given
3273   /// result type, and using the given argument list which specifies both the
3274   /// LLVM arguments and the types they were derived from.
3275   RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
3276                   ReturnValueSlot ReturnValue, const CallArgList &Args,
3277                   llvm::Instruction **callOrInvoke = nullptr);
3278 
3279   RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E,
3280                   ReturnValueSlot ReturnValue,
3281                   llvm::Value *Chain = nullptr);
3282   RValue EmitCallExpr(const CallExpr *E,
3283                       ReturnValueSlot ReturnValue = ReturnValueSlot());
3284   RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
3285   CGCallee EmitCallee(const Expr *E);
3286 
3287   void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl);
3288 
3289   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
3290                                   const Twine &name = "");
3291   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
3292                                   ArrayRef<llvm::Value*> args,
3293                                   const Twine &name = "");
3294   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
3295                                           const Twine &name = "");
3296   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
3297                                           ArrayRef<llvm::Value*> args,
3298                                           const Twine &name = "");
3299 
3300   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
3301                                   ArrayRef<llvm::Value *> Args,
3302                                   const Twine &Name = "");
3303   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
3304                                          ArrayRef<llvm::Value*> args,
3305                                          const Twine &name = "");
3306   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
3307                                          const Twine &name = "");
3308   void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
3309                                        ArrayRef<llvm::Value*> args);
3310 
3311   CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
3312                                      NestedNameSpecifier *Qual,
3313                                      llvm::Type *Ty);
3314 
3315   CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
3316                                                CXXDtorType Type,
3317                                                const CXXRecordDecl *RD);
3318 
3319   RValue
3320   EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method,
3321                               const CGCallee &Callee,
3322                               ReturnValueSlot ReturnValue, llvm::Value *This,
3323                               llvm::Value *ImplicitParam,
3324                               QualType ImplicitParamTy, const CallExpr *E,
3325                               CallArgList *RtlArgs);
3326   RValue EmitCXXDestructorCall(const CXXDestructorDecl *DD,
3327                                const CGCallee &Callee,
3328                                llvm::Value *This, llvm::Value *ImplicitParam,
3329                                QualType ImplicitParamTy, const CallExpr *E,
3330                                StructorType Type);
3331   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
3332                                ReturnValueSlot ReturnValue);
3333   RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE,
3334                                                const CXXMethodDecl *MD,
3335                                                ReturnValueSlot ReturnValue,
3336                                                bool HasQualifier,
3337                                                NestedNameSpecifier *Qualifier,
3338                                                bool IsArrow, const Expr *Base);
3339   // Compute the object pointer.
3340   Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
3341                                           llvm::Value *memberPtr,
3342                                           const MemberPointerType *memberPtrType,
3343                                           LValueBaseInfo *BaseInfo = nullptr,
3344                                           TBAAAccessInfo *TBAAInfo = nullptr);
3345   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
3346                                       ReturnValueSlot ReturnValue);
3347 
3348   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
3349                                        const CXXMethodDecl *MD,
3350                                        ReturnValueSlot ReturnValue);
3351   RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E);
3352 
3353   RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
3354                                 ReturnValueSlot ReturnValue);
3355 
3356   RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E,
3357                                        ReturnValueSlot ReturnValue);
3358 
3359   RValue EmitBuiltinExpr(const FunctionDecl *FD,
3360                          unsigned BuiltinID, const CallExpr *E,
3361                          ReturnValueSlot ReturnValue);
3362 
3363   /// Emit IR for __builtin_os_log_format.
3364   RValue emitBuiltinOSLogFormat(const CallExpr &E);
3365 
3366   llvm::Function *generateBuiltinOSLogHelperFunction(
3367       const analyze_os_log::OSLogBufferLayout &Layout,
3368       CharUnits BufferAlignment);
3369 
3370   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
3371 
3372   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
3373   /// is unhandled by the current target.
3374   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3375 
3376   llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
3377                                              const llvm::CmpInst::Predicate Fp,
3378                                              const llvm::CmpInst::Predicate Ip,
3379                                              const llvm::Twine &Name = "");
3380   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3381 
3382   llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
3383                                          unsigned LLVMIntrinsic,
3384                                          unsigned AltLLVMIntrinsic,
3385                                          const char *NameHint,
3386                                          unsigned Modifier,
3387                                          const CallExpr *E,
3388                                          SmallVectorImpl<llvm::Value *> &Ops,
3389                                          Address PtrOp0, Address PtrOp1);
3390   llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
3391                                           unsigned Modifier, llvm::Type *ArgTy,
3392                                           const CallExpr *E);
3393   llvm::Value *EmitNeonCall(llvm::Function *F,
3394                             SmallVectorImpl<llvm::Value*> &O,
3395                             const char *name,
3396                             unsigned shift = 0, bool rightshift = false);
3397   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
3398   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
3399                                    bool negateForRightShift);
3400   llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
3401                                  llvm::Type *Ty, bool usgn, const char *name);
3402   llvm::Value *vectorWrapScalar16(llvm::Value *Op);
3403   llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3404 
3405   llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
3406   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3407   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3408   llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3409   llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3410   llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3411   llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
3412                                           const CallExpr *E);
3413 
3414 private:
3415   enum class MSVCIntrin;
3416 
3417 public:
3418   llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E);
3419 
3420   llvm::Value *EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args);
3421 
3422   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
3423   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
3424   llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
3425   llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
3426   llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
3427   llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
3428                                 const ObjCMethodDecl *MethodWithObjects);
3429   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
3430   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
3431                              ReturnValueSlot Return = ReturnValueSlot());
3432 
3433   /// Retrieves the default cleanup kind for an ARC cleanup.
3434   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
3435   CleanupKind getARCCleanupKind() {
3436     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
3437              ? NormalAndEHCleanup : NormalCleanup;
3438   }
3439 
3440   // ARC primitives.
3441   void EmitARCInitWeak(Address addr, llvm::Value *value);
3442   void EmitARCDestroyWeak(Address addr);
3443   llvm::Value *EmitARCLoadWeak(Address addr);
3444   llvm::Value *EmitARCLoadWeakRetained(Address addr);
3445   llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored);
3446   void EmitARCCopyWeak(Address dst, Address src);
3447   void EmitARCMoveWeak(Address dst, Address src);
3448   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
3449   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
3450   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
3451                                   bool resultIgnored);
3452   llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value,
3453                                       bool resultIgnored);
3454   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
3455   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
3456   llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
3457   void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise);
3458   void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
3459   llvm::Value *EmitARCAutorelease(llvm::Value *value);
3460   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
3461   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
3462   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
3463   llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value);
3464 
3465   std::pair<LValue,llvm::Value*>
3466   EmitARCStoreAutoreleasing(const BinaryOperator *e);
3467   std::pair<LValue,llvm::Value*>
3468   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
3469   std::pair<LValue,llvm::Value*>
3470   EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored);
3471 
3472   llvm::Value *EmitObjCThrowOperand(const Expr *expr);
3473   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
3474   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
3475 
3476   llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
3477   llvm::Value *EmitARCReclaimReturnedObject(const Expr *e,
3478                                             bool allowUnsafeClaim);
3479   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
3480   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
3481   llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr);
3482 
3483   void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
3484 
3485   static Destroyer destroyARCStrongImprecise;
3486   static Destroyer destroyARCStrongPrecise;
3487   static Destroyer destroyARCWeak;
3488   static Destroyer emitARCIntrinsicUse;
3489 
3490   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
3491   llvm::Value *EmitObjCAutoreleasePoolPush();
3492   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
3493   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
3494   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
3495 
3496   /// \brief Emits a reference binding to the passed in expression.
3497   RValue EmitReferenceBindingToExpr(const Expr *E);
3498 
3499   //===--------------------------------------------------------------------===//
3500   //                           Expression Emission
3501   //===--------------------------------------------------------------------===//
3502 
3503   // Expressions are broken into three classes: scalar, complex, aggregate.
3504 
3505   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
3506   /// scalar type, returning the result.
3507   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
3508 
3509   /// Emit a conversion from the specified type to the specified destination
3510   /// type, both of which are LLVM scalar types.
3511   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
3512                                     QualType DstTy, SourceLocation Loc);
3513 
3514   /// Emit a conversion from the specified complex type to the specified
3515   /// destination type, where the destination type is an LLVM scalar type.
3516   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
3517                                              QualType DstTy,
3518                                              SourceLocation Loc);
3519 
3520   /// EmitAggExpr - Emit the computation of the specified expression
3521   /// of aggregate type.  The result is computed into the given slot,
3522   /// which may be null to indicate that the value is not needed.
3523   void EmitAggExpr(const Expr *E, AggValueSlot AS);
3524 
3525   /// EmitAggExprToLValue - Emit the computation of the specified expression of
3526   /// aggregate type into a temporary LValue.
3527   LValue EmitAggExprToLValue(const Expr *E);
3528 
3529   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
3530   /// make sure it survives garbage collection until this point.
3531   void EmitExtendGCLifetime(llvm::Value *object);
3532 
3533   /// EmitComplexExpr - Emit the computation of the specified expression of
3534   /// complex type, returning the result.
3535   ComplexPairTy EmitComplexExpr(const Expr *E,
3536                                 bool IgnoreReal = false,
3537                                 bool IgnoreImag = false);
3538 
3539   /// EmitComplexExprIntoLValue - Emit the given expression of complex
3540   /// type and place its result into the specified l-value.
3541   void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
3542 
3543   /// EmitStoreOfComplex - Store a complex number into the specified l-value.
3544   void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
3545 
3546   /// EmitLoadOfComplex - Load a complex number from the specified l-value.
3547   ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
3548 
3549   Address emitAddrOfRealComponent(Address complex, QualType complexType);
3550   Address emitAddrOfImagComponent(Address complex, QualType complexType);
3551 
3552   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
3553   /// global variable that has already been created for it.  If the initializer
3554   /// has a different type than GV does, this may free GV and return a different
3555   /// one.  Otherwise it just returns GV.
3556   llvm::GlobalVariable *
3557   AddInitializerToStaticVarDecl(const VarDecl &D,
3558                                 llvm::GlobalVariable *GV);
3559 
3560 
3561   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
3562   /// variable with global storage.
3563   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
3564                                 bool PerformInit);
3565 
3566   llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::Constant *Dtor,
3567                                    llvm::Constant *Addr);
3568 
3569   /// Call atexit() with a function that passes the given argument to
3570   /// the given function.
3571   void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn,
3572                                     llvm::Constant *addr);
3573 
3574   /// Emit code in this function to perform a guarded variable
3575   /// initialization.  Guarded initializations are used when it's not
3576   /// possible to prove that an initialization will be done exactly
3577   /// once, e.g. with a static local variable or a static data member
3578   /// of a class template.
3579   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
3580                           bool PerformInit);
3581 
3582   enum class GuardKind { VariableGuard, TlsGuard };
3583 
3584   /// Emit a branch to select whether or not to perform guarded initialization.
3585   void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit,
3586                                 llvm::BasicBlock *InitBlock,
3587                                 llvm::BasicBlock *NoInitBlock,
3588                                 GuardKind Kind, const VarDecl *D);
3589 
3590   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
3591   /// variables.
3592   void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
3593                                  ArrayRef<llvm::Function *> CXXThreadLocals,
3594                                  Address Guard = Address::invalid());
3595 
3596   /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
3597   /// variables.
3598   void GenerateCXXGlobalDtorsFunc(
3599       llvm::Function *Fn,
3600       const std::vector<std::pair<llvm::WeakTrackingVH, llvm::Constant *>>
3601           &DtorsAndObjects);
3602 
3603   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
3604                                         const VarDecl *D,
3605                                         llvm::GlobalVariable *Addr,
3606                                         bool PerformInit);
3607 
3608   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
3609 
3610   void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp);
3611 
3612   void enterFullExpression(const ExprWithCleanups *E) {
3613     if (E->getNumObjects() == 0) return;
3614     enterNonTrivialFullExpression(E);
3615   }
3616   void enterNonTrivialFullExpression(const ExprWithCleanups *E);
3617 
3618   void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
3619 
3620   void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest);
3621 
3622   RValue EmitAtomicExpr(AtomicExpr *E);
3623 
3624   //===--------------------------------------------------------------------===//
3625   //                         Annotations Emission
3626   //===--------------------------------------------------------------------===//
3627 
3628   /// Emit an annotation call (intrinsic or builtin).
3629   llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
3630                                   llvm::Value *AnnotatedVal,
3631                                   StringRef AnnotationStr,
3632                                   SourceLocation Location);
3633 
3634   /// Emit local annotations for the local variable V, declared by D.
3635   void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
3636 
3637   /// Emit field annotations for the given field & value. Returns the
3638   /// annotation result.
3639   Address EmitFieldAnnotations(const FieldDecl *D, Address V);
3640 
3641   //===--------------------------------------------------------------------===//
3642   //                             Internal Helpers
3643   //===--------------------------------------------------------------------===//
3644 
3645   /// ContainsLabel - Return true if the statement contains a label in it.  If
3646   /// this statement is not executed normally, it not containing a label means
3647   /// that we can just remove the code.
3648   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
3649 
3650   /// containsBreak - Return true if the statement contains a break out of it.
3651   /// If the statement (recursively) contains a switch or loop with a break
3652   /// inside of it, this is fine.
3653   static bool containsBreak(const Stmt *S);
3654 
3655   /// Determine if the given statement might introduce a declaration into the
3656   /// current scope, by being a (possibly-labelled) DeclStmt.
3657   static bool mightAddDeclToScope(const Stmt *S);
3658 
3659   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
3660   /// to a constant, or if it does but contains a label, return false.  If it
3661   /// constant folds return true and set the boolean result in Result.
3662   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result,
3663                                     bool AllowLabels = false);
3664 
3665   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
3666   /// to a constant, or if it does but contains a label, return false.  If it
3667   /// constant folds return true and set the folded value.
3668   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result,
3669                                     bool AllowLabels = false);
3670 
3671   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
3672   /// if statement) to the specified blocks.  Based on the condition, this might
3673   /// try to simplify the codegen of the conditional based on the branch.
3674   /// TrueCount should be the number of times we expect the condition to
3675   /// evaluate to true based on PGO data.
3676   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
3677                             llvm::BasicBlock *FalseBlock, uint64_t TrueCount);
3678 
3679   /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is
3680   /// nonnull, if \p LHS is marked _Nonnull.
3681   void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc);
3682 
3683   /// An enumeration which makes it easier to specify whether or not an
3684   /// operation is a subtraction.
3685   enum { NotSubtraction = false, IsSubtraction = true };
3686 
3687   /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to
3688   /// detect undefined behavior when the pointer overflow sanitizer is enabled.
3689   /// \p SignedIndices indicates whether any of the GEP indices are signed.
3690   /// \p IsSubtraction indicates whether the expression used to form the GEP
3691   /// is a subtraction.
3692   llvm::Value *EmitCheckedInBoundsGEP(llvm::Value *Ptr,
3693                                       ArrayRef<llvm::Value *> IdxList,
3694                                       bool SignedIndices,
3695                                       bool IsSubtraction,
3696                                       SourceLocation Loc,
3697                                       const Twine &Name = "");
3698 
3699   /// Specifies which type of sanitizer check to apply when handling a
3700   /// particular builtin.
3701   enum BuiltinCheckKind {
3702     BCK_CTZPassedZero,
3703     BCK_CLZPassedZero,
3704   };
3705 
3706   /// Emits an argument for a call to a builtin. If the builtin sanitizer is
3707   /// enabled, a runtime check specified by \p Kind is also emitted.
3708   llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind);
3709 
3710   /// \brief Emit a description of a type in a format suitable for passing to
3711   /// a runtime sanitizer handler.
3712   llvm::Constant *EmitCheckTypeDescriptor(QualType T);
3713 
3714   /// \brief Convert a value into a format suitable for passing to a runtime
3715   /// sanitizer handler.
3716   llvm::Value *EmitCheckValue(llvm::Value *V);
3717 
3718   /// \brief Emit a description of a source location in a format suitable for
3719   /// passing to a runtime sanitizer handler.
3720   llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
3721 
3722   /// \brief Create a basic block that will call a handler function in a
3723   /// sanitizer runtime with the provided arguments, and create a conditional
3724   /// branch to it.
3725   void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
3726                  SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs,
3727                  ArrayRef<llvm::Value *> DynamicArgs);
3728 
3729   /// \brief Emit a slow path cross-DSO CFI check which calls __cfi_slowpath
3730   /// if Cond if false.
3731   void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond,
3732                             llvm::ConstantInt *TypeId, llvm::Value *Ptr,
3733                             ArrayRef<llvm::Constant *> StaticArgs);
3734 
3735   /// \brief Create a basic block that will call the trap intrinsic, and emit a
3736   /// conditional branch to it, for the -ftrapv checks.
3737   void EmitTrapCheck(llvm::Value *Checked);
3738 
3739   /// \brief Emit a call to trap or debugtrap and attach function attribute
3740   /// "trap-func-name" if specified.
3741   llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID);
3742 
3743   /// \brief Emit a stub for the cross-DSO CFI check function.
3744   void EmitCfiCheckStub();
3745 
3746   /// \brief Emit a cross-DSO CFI failure handling function.
3747   void EmitCfiCheckFail();
3748 
3749   /// \brief Create a check for a function parameter that may potentially be
3750   /// declared as non-null.
3751   void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc,
3752                            AbstractCallee AC, unsigned ParmNum);
3753 
3754   /// EmitCallArg - Emit a single call argument.
3755   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
3756 
3757   /// EmitDelegateCallArg - We are performing a delegate call; that
3758   /// is, the current function is delegating to another one.  Produce
3759   /// a r-value suitable for passing the given parameter.
3760   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
3761                            SourceLocation loc);
3762 
3763   /// SetFPAccuracy - Set the minimum required accuracy of the given floating
3764   /// point operation, expressed as the maximum relative error in ulp.
3765   void SetFPAccuracy(llvm::Value *Val, float Accuracy);
3766 
3767 private:
3768   llvm::MDNode *getRangeForLoadFromType(QualType Ty);
3769   void EmitReturnOfRValue(RValue RV, QualType Ty);
3770 
3771   void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
3772 
3773   llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4>
3774   DeferredReplacements;
3775 
3776   /// Set the address of a local variable.
3777   void setAddrOfLocalVar(const VarDecl *VD, Address Addr) {
3778     assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!");
3779     LocalDeclMap.insert({VD, Addr});
3780   }
3781 
3782   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
3783   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
3784   ///
3785   /// \param AI - The first function argument of the expansion.
3786   void ExpandTypeFromArgs(QualType Ty, LValue Dst,
3787                           SmallVectorImpl<llvm::Value *>::iterator &AI);
3788 
3789   /// ExpandTypeToArgs - Expand an RValue \arg RV, with the LLVM type for \arg
3790   /// Ty, into individual arguments on the provided vector \arg IRCallArgs,
3791   /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand.
3792   void ExpandTypeToArgs(QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy,
3793                         SmallVectorImpl<llvm::Value *> &IRCallArgs,
3794                         unsigned &IRCallArgPos);
3795 
3796   llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
3797                             const Expr *InputExpr, std::string &ConstraintStr);
3798 
3799   llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
3800                                   LValue InputValue, QualType InputType,
3801                                   std::string &ConstraintStr,
3802                                   SourceLocation Loc);
3803 
3804   /// \brief Attempts to statically evaluate the object size of E. If that
3805   /// fails, emits code to figure the size of E out for us. This is
3806   /// pass_object_size aware.
3807   ///
3808   /// If EmittedExpr is non-null, this will use that instead of re-emitting E.
3809   llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
3810                                                llvm::IntegerType *ResType,
3811                                                llvm::Value *EmittedE);
3812 
3813   /// \brief Emits the size of E, as required by __builtin_object_size. This
3814   /// function is aware of pass_object_size parameters, and will act accordingly
3815   /// if E is a parameter with the pass_object_size attribute.
3816   llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type,
3817                                      llvm::IntegerType *ResType,
3818                                      llvm::Value *EmittedE);
3819 
3820 public:
3821 #ifndef NDEBUG
3822   // Determine whether the given argument is an Objective-C method
3823   // that may have type parameters in its signature.
3824   static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) {
3825     const DeclContext *dc = method->getDeclContext();
3826     if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) {
3827       return classDecl->getTypeParamListAsWritten();
3828     }
3829 
3830     if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) {
3831       return catDecl->getTypeParamList();
3832     }
3833 
3834     return false;
3835   }
3836 
3837   template<typename T>
3838   static bool isObjCMethodWithTypeParams(const T *) { return false; }
3839 #endif
3840 
3841   enum class EvaluationOrder {
3842     ///! No language constraints on evaluation order.
3843     Default,
3844     ///! Language semantics require left-to-right evaluation.
3845     ForceLeftToRight,
3846     ///! Language semantics require right-to-left evaluation.
3847     ForceRightToLeft
3848   };
3849 
3850   /// EmitCallArgs - Emit call arguments for a function.
3851   template <typename T>
3852   void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo,
3853                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3854                     AbstractCallee AC = AbstractCallee(),
3855                     unsigned ParamsToSkip = 0,
3856                     EvaluationOrder Order = EvaluationOrder::Default) {
3857     SmallVector<QualType, 16> ArgTypes;
3858     CallExpr::const_arg_iterator Arg = ArgRange.begin();
3859 
3860     assert((ParamsToSkip == 0 || CallArgTypeInfo) &&
3861            "Can't skip parameters if type info is not provided");
3862     if (CallArgTypeInfo) {
3863 #ifndef NDEBUG
3864       bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo);
3865 #endif
3866 
3867       // First, use the argument types that the type info knows about
3868       for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip,
3869                 E = CallArgTypeInfo->param_type_end();
3870            I != E; ++I, ++Arg) {
3871         assert(Arg != ArgRange.end() && "Running over edge of argument list!");
3872         assert((isGenericMethod ||
3873                 ((*I)->isVariablyModifiedType() ||
3874                  (*I).getNonReferenceType()->isObjCRetainableType() ||
3875                  getContext()
3876                          .getCanonicalType((*I).getNonReferenceType())
3877                          .getTypePtr() ==
3878                      getContext()
3879                          .getCanonicalType((*Arg)->getType())
3880                          .getTypePtr())) &&
3881                "type mismatch in call argument!");
3882         ArgTypes.push_back(*I);
3883       }
3884     }
3885 
3886     // Either we've emitted all the call args, or we have a call to variadic
3887     // function.
3888     assert((Arg == ArgRange.end() || !CallArgTypeInfo ||
3889             CallArgTypeInfo->isVariadic()) &&
3890            "Extra arguments in non-variadic function!");
3891 
3892     // If we still have any arguments, emit them using the type of the argument.
3893     for (auto *A : llvm::make_range(Arg, ArgRange.end()))
3894       ArgTypes.push_back(CallArgTypeInfo ? getVarArgType(A) : A->getType());
3895 
3896     EmitCallArgs(Args, ArgTypes, ArgRange, AC, ParamsToSkip, Order);
3897   }
3898 
3899   void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes,
3900                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3901                     AbstractCallee AC = AbstractCallee(),
3902                     unsigned ParamsToSkip = 0,
3903                     EvaluationOrder Order = EvaluationOrder::Default);
3904 
3905   /// EmitPointerWithAlignment - Given an expression with a pointer type,
3906   /// emit the value and compute our best estimate of the alignment of the
3907   /// pointee.
3908   ///
3909   /// \param BaseInfo - If non-null, this will be initialized with
3910   /// information about the source of the alignment and the may-alias
3911   /// attribute.  Note that this function will conservatively fall back on
3912   /// the type when it doesn't recognize the expression and may-alias will
3913   /// be set to false.
3914   ///
3915   /// One reasonable way to use this information is when there's a language
3916   /// guarantee that the pointer must be aligned to some stricter value, and
3917   /// we're simply trying to ensure that sufficiently obvious uses of under-
3918   /// aligned objects don't get miscompiled; for example, a placement new
3919   /// into the address of a local variable.  In such a case, it's quite
3920   /// reasonable to just ignore the returned alignment when it isn't from an
3921   /// explicit source.
3922   Address EmitPointerWithAlignment(const Expr *Addr,
3923                                    LValueBaseInfo *BaseInfo = nullptr,
3924                                    TBAAAccessInfo *TBAAInfo = nullptr);
3925 
3926   void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK);
3927 
3928 private:
3929   QualType getVarArgType(const Expr *Arg);
3930 
3931   void EmitDeclMetadata();
3932 
3933   BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType,
3934                                   const AutoVarEmission &emission);
3935 
3936   void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
3937 
3938   llvm::Value *GetValueForARMHint(unsigned BuiltinID);
3939   llvm::Value *EmitX86CpuIs(const CallExpr *E);
3940   llvm::Value *EmitX86CpuIs(StringRef CPUStr);
3941   llvm::Value *EmitX86CpuSupports(const CallExpr *E);
3942   llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs);
3943   llvm::Value *EmitX86CpuInit();
3944 };
3945 
3946 /// Helper class with most of the code for saving a value for a
3947 /// conditional expression cleanup.
3948 struct DominatingLLVMValue {
3949   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
3950 
3951   /// Answer whether the given value needs extra work to be saved.
3952   static bool needsSaving(llvm::Value *value) {
3953     // If it's not an instruction, we don't need to save.
3954     if (!isa<llvm::Instruction>(value)) return false;
3955 
3956     // If it's an instruction in the entry block, we don't need to save.
3957     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
3958     return (block != &block->getParent()->getEntryBlock());
3959   }
3960 
3961   /// Try to save the given value.
3962   static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
3963     if (!needsSaving(value)) return saved_type(value, false);
3964 
3965     // Otherwise, we need an alloca.
3966     auto align = CharUnits::fromQuantity(
3967               CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType()));
3968     Address alloca =
3969       CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save");
3970     CGF.Builder.CreateStore(value, alloca);
3971 
3972     return saved_type(alloca.getPointer(), true);
3973   }
3974 
3975   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
3976     // If the value says it wasn't saved, trust that it's still dominating.
3977     if (!value.getInt()) return value.getPointer();
3978 
3979     // Otherwise, it should be an alloca instruction, as set up in save().
3980     auto alloca = cast<llvm::AllocaInst>(value.getPointer());
3981     return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlignment());
3982   }
3983 };
3984 
3985 /// A partial specialization of DominatingValue for llvm::Values that
3986 /// might be llvm::Instructions.
3987 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
3988   typedef T *type;
3989   static type restore(CodeGenFunction &CGF, saved_type value) {
3990     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
3991   }
3992 };
3993 
3994 /// A specialization of DominatingValue for Address.
3995 template <> struct DominatingValue<Address> {
3996   typedef Address type;
3997 
3998   struct saved_type {
3999     DominatingLLVMValue::saved_type SavedValue;
4000     CharUnits Alignment;
4001   };
4002 
4003   static bool needsSaving(type value) {
4004     return DominatingLLVMValue::needsSaving(value.getPointer());
4005   }
4006   static saved_type save(CodeGenFunction &CGF, type value) {
4007     return { DominatingLLVMValue::save(CGF, value.getPointer()),
4008              value.getAlignment() };
4009   }
4010   static type restore(CodeGenFunction &CGF, saved_type value) {
4011     return Address(DominatingLLVMValue::restore(CGF, value.SavedValue),
4012                    value.Alignment);
4013   }
4014 };
4015 
4016 /// A specialization of DominatingValue for RValue.
4017 template <> struct DominatingValue<RValue> {
4018   typedef RValue type;
4019   class saved_type {
4020     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
4021                 AggregateAddress, ComplexAddress };
4022 
4023     llvm::Value *Value;
4024     unsigned K : 3;
4025     unsigned Align : 29;
4026     saved_type(llvm::Value *v, Kind k, unsigned a = 0)
4027       : Value(v), K(k), Align(a) {}
4028 
4029   public:
4030     static bool needsSaving(RValue value);
4031     static saved_type save(CodeGenFunction &CGF, RValue value);
4032     RValue restore(CodeGenFunction &CGF);
4033 
4034     // implementations in CGCleanup.cpp
4035   };
4036 
4037   static bool needsSaving(type value) {
4038     return saved_type::needsSaving(value);
4039   }
4040   static saved_type save(CodeGenFunction &CGF, type value) {
4041     return saved_type::save(CGF, value);
4042   }
4043   static type restore(CodeGenFunction &CGF, saved_type value) {
4044     return value.restore(CGF);
4045   }
4046 };
4047 
4048 }  // end namespace CodeGen
4049 }  // end namespace clang
4050 
4051 #endif
4052