1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the internal per-function state used for llvm translation.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
14 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
15 
16 #include "CGBuilder.h"
17 #include "CGDebugInfo.h"
18 #include "CGLoopInfo.h"
19 #include "CGValue.h"
20 #include "CodeGenModule.h"
21 #include "CodeGenPGO.h"
22 #include "EHScopeStack.h"
23 #include "VarBypassDetector.h"
24 #include "clang/AST/CharUnits.h"
25 #include "clang/AST/CurrentSourceLocExprScope.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/ExprObjC.h"
28 #include "clang/AST/ExprOpenMP.h"
29 #include "clang/AST/StmtOpenMP.h"
30 #include "clang/AST/Type.h"
31 #include "clang/Basic/ABI.h"
32 #include "clang/Basic/CapturedStmt.h"
33 #include "clang/Basic/CodeGenOptions.h"
34 #include "clang/Basic/OpenMPKinds.h"
35 #include "clang/Basic/TargetInfo.h"
36 #include "llvm/ADT/ArrayRef.h"
37 #include "llvm/ADT/DenseMap.h"
38 #include "llvm/ADT/MapVector.h"
39 #include "llvm/ADT/SmallVector.h"
40 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
41 #include "llvm/IR/ValueHandle.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Transforms/Utils/SanitizerStats.h"
44 
45 namespace llvm {
46 class BasicBlock;
47 class LLVMContext;
48 class MDNode;
49 class Module;
50 class SwitchInst;
51 class Twine;
52 class Value;
53 }
54 
55 namespace clang {
56 class ASTContext;
57 class BlockDecl;
58 class CXXDestructorDecl;
59 class CXXForRangeStmt;
60 class CXXTryStmt;
61 class Decl;
62 class LabelDecl;
63 class EnumConstantDecl;
64 class FunctionDecl;
65 class FunctionProtoType;
66 class LabelStmt;
67 class ObjCContainerDecl;
68 class ObjCInterfaceDecl;
69 class ObjCIvarDecl;
70 class ObjCMethodDecl;
71 class ObjCImplementationDecl;
72 class ObjCPropertyImplDecl;
73 class TargetInfo;
74 class VarDecl;
75 class ObjCForCollectionStmt;
76 class ObjCAtTryStmt;
77 class ObjCAtThrowStmt;
78 class ObjCAtSynchronizedStmt;
79 class ObjCAutoreleasePoolStmt;
80 class OMPUseDevicePtrClause;
81 class OMPUseDeviceAddrClause;
82 class ReturnsNonNullAttr;
83 class SVETypeFlags;
84 class OMPExecutableDirective;
85 
86 namespace analyze_os_log {
87 class OSLogBufferLayout;
88 }
89 
90 namespace CodeGen {
91 class CodeGenTypes;
92 class CGCallee;
93 class CGFunctionInfo;
94 class CGRecordLayout;
95 class CGBlockInfo;
96 class CGCXXABI;
97 class BlockByrefHelpers;
98 class BlockByrefInfo;
99 class BlockFlags;
100 class BlockFieldFlags;
101 class RegionCodeGenTy;
102 class TargetCodeGenInfo;
103 struct OMPTaskDataTy;
104 struct CGCoroData;
105 
106 /// The kind of evaluation to perform on values of a particular
107 /// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
108 /// CGExprAgg?
109 ///
110 /// TODO: should vectors maybe be split out into their own thing?
111 enum TypeEvaluationKind {
112   TEK_Scalar,
113   TEK_Complex,
114   TEK_Aggregate
115 };
116 
117 #define LIST_SANITIZER_CHECKS                                                  \
118   SANITIZER_CHECK(AddOverflow, add_overflow, 0)                                \
119   SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0)                  \
120   SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0)                             \
121   SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0)                          \
122   SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0)            \
123   SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0)                   \
124   SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 1)             \
125   SANITIZER_CHECK(ImplicitConversion, implicit_conversion, 0)                  \
126   SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0)                          \
127   SANITIZER_CHECK(InvalidObjCCast, invalid_objc_cast, 0)                       \
128   SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0)                     \
129   SANITIZER_CHECK(MissingReturn, missing_return, 0)                            \
130   SANITIZER_CHECK(MulOverflow, mul_overflow, 0)                                \
131   SANITIZER_CHECK(NegateOverflow, negate_overflow, 0)                          \
132   SANITIZER_CHECK(NullabilityArg, nullability_arg, 0)                          \
133   SANITIZER_CHECK(NullabilityReturn, nullability_return, 1)                    \
134   SANITIZER_CHECK(NonnullArg, nonnull_arg, 0)                                  \
135   SANITIZER_CHECK(NonnullReturn, nonnull_return, 1)                            \
136   SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0)                               \
137   SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0)                        \
138   SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0)                    \
139   SANITIZER_CHECK(SubOverflow, sub_overflow, 0)                                \
140   SANITIZER_CHECK(TypeMismatch, type_mismatch, 1)                              \
141   SANITIZER_CHECK(AlignmentAssumption, alignment_assumption, 0)                \
142   SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0)
143 
144 enum SanitizerHandler {
145 #define SANITIZER_CHECK(Enum, Name, Version) Enum,
146   LIST_SANITIZER_CHECKS
147 #undef SANITIZER_CHECK
148 };
149 
150 /// Helper class with most of the code for saving a value for a
151 /// conditional expression cleanup.
152 struct DominatingLLVMValue {
153   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
154 
155   /// Answer whether the given value needs extra work to be saved.
156   static bool needsSaving(llvm::Value *value) {
157     // If it's not an instruction, we don't need to save.
158     if (!isa<llvm::Instruction>(value)) return false;
159 
160     // If it's an instruction in the entry block, we don't need to save.
161     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
162     return (block != &block->getParent()->getEntryBlock());
163   }
164 
165   static saved_type save(CodeGenFunction &CGF, llvm::Value *value);
166   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value);
167 };
168 
169 /// A partial specialization of DominatingValue for llvm::Values that
170 /// might be llvm::Instructions.
171 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
172   typedef T *type;
173   static type restore(CodeGenFunction &CGF, saved_type value) {
174     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
175   }
176 };
177 
178 /// A specialization of DominatingValue for Address.
179 template <> struct DominatingValue<Address> {
180   typedef Address type;
181 
182   struct saved_type {
183     DominatingLLVMValue::saved_type SavedValue;
184     CharUnits Alignment;
185   };
186 
187   static bool needsSaving(type value) {
188     return DominatingLLVMValue::needsSaving(value.getPointer());
189   }
190   static saved_type save(CodeGenFunction &CGF, type value) {
191     return { DominatingLLVMValue::save(CGF, value.getPointer()),
192              value.getAlignment() };
193   }
194   static type restore(CodeGenFunction &CGF, saved_type value) {
195     return Address(DominatingLLVMValue::restore(CGF, value.SavedValue),
196                    value.Alignment);
197   }
198 };
199 
200 /// A specialization of DominatingValue for RValue.
201 template <> struct DominatingValue<RValue> {
202   typedef RValue type;
203   class saved_type {
204     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
205                 AggregateAddress, ComplexAddress };
206 
207     llvm::Value *Value;
208     unsigned K : 3;
209     unsigned Align : 29;
210     saved_type(llvm::Value *v, Kind k, unsigned a = 0)
211       : Value(v), K(k), Align(a) {}
212 
213   public:
214     static bool needsSaving(RValue value);
215     static saved_type save(CodeGenFunction &CGF, RValue value);
216     RValue restore(CodeGenFunction &CGF);
217 
218     // implementations in CGCleanup.cpp
219   };
220 
221   static bool needsSaving(type value) {
222     return saved_type::needsSaving(value);
223   }
224   static saved_type save(CodeGenFunction &CGF, type value) {
225     return saved_type::save(CGF, value);
226   }
227   static type restore(CodeGenFunction &CGF, saved_type value) {
228     return value.restore(CGF);
229   }
230 };
231 
232 /// CodeGenFunction - This class organizes the per-function state that is used
233 /// while generating LLVM code.
234 class CodeGenFunction : public CodeGenTypeCache {
235   CodeGenFunction(const CodeGenFunction &) = delete;
236   void operator=(const CodeGenFunction &) = delete;
237 
238   friend class CGCXXABI;
239 public:
240   /// A jump destination is an abstract label, branching to which may
241   /// require a jump out through normal cleanups.
242   struct JumpDest {
243     JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {}
244     JumpDest(llvm::BasicBlock *Block,
245              EHScopeStack::stable_iterator Depth,
246              unsigned Index)
247       : Block(Block), ScopeDepth(Depth), Index(Index) {}
248 
249     bool isValid() const { return Block != nullptr; }
250     llvm::BasicBlock *getBlock() const { return Block; }
251     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
252     unsigned getDestIndex() const { return Index; }
253 
254     // This should be used cautiously.
255     void setScopeDepth(EHScopeStack::stable_iterator depth) {
256       ScopeDepth = depth;
257     }
258 
259   private:
260     llvm::BasicBlock *Block;
261     EHScopeStack::stable_iterator ScopeDepth;
262     unsigned Index;
263   };
264 
265   CodeGenModule &CGM;  // Per-module state.
266   const TargetInfo &Target;
267 
268   // For EH/SEH outlined funclets, this field points to parent's CGF
269   CodeGenFunction *ParentCGF = nullptr;
270 
271   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
272   LoopInfoStack LoopStack;
273   CGBuilderTy Builder;
274 
275   // Stores variables for which we can't generate correct lifetime markers
276   // because of jumps.
277   VarBypassDetector Bypasses;
278 
279   // CodeGen lambda for loops and support for ordered clause
280   typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &,
281                                   JumpDest)>
282       CodeGenLoopTy;
283   typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation,
284                                   const unsigned, const bool)>
285       CodeGenOrderedTy;
286 
287   // Codegen lambda for loop bounds in worksharing loop constructs
288   typedef llvm::function_ref<std::pair<LValue, LValue>(
289       CodeGenFunction &, const OMPExecutableDirective &S)>
290       CodeGenLoopBoundsTy;
291 
292   // Codegen lambda for loop bounds in dispatch-based loop implementation
293   typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>(
294       CodeGenFunction &, const OMPExecutableDirective &S, Address LB,
295       Address UB)>
296       CodeGenDispatchBoundsTy;
297 
298   /// CGBuilder insert helper. This function is called after an
299   /// instruction is created using Builder.
300   void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
301                     llvm::BasicBlock *BB,
302                     llvm::BasicBlock::iterator InsertPt) const;
303 
304   /// CurFuncDecl - Holds the Decl for the current outermost
305   /// non-closure context.
306   const Decl *CurFuncDecl;
307   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
308   const Decl *CurCodeDecl;
309   const CGFunctionInfo *CurFnInfo;
310   QualType FnRetTy;
311   llvm::Function *CurFn = nullptr;
312 
313   // Holds coroutine data if the current function is a coroutine. We use a
314   // wrapper to manage its lifetime, so that we don't have to define CGCoroData
315   // in this header.
316   struct CGCoroInfo {
317     std::unique_ptr<CGCoroData> Data;
318     CGCoroInfo();
319     ~CGCoroInfo();
320   };
321   CGCoroInfo CurCoro;
322 
323   bool isCoroutine() const {
324     return CurCoro.Data != nullptr;
325   }
326 
327   /// CurGD - The GlobalDecl for the current function being compiled.
328   GlobalDecl CurGD;
329 
330   /// PrologueCleanupDepth - The cleanup depth enclosing all the
331   /// cleanups associated with the parameters.
332   EHScopeStack::stable_iterator PrologueCleanupDepth;
333 
334   /// ReturnBlock - Unified return block.
335   JumpDest ReturnBlock;
336 
337   /// ReturnValue - The temporary alloca to hold the return
338   /// value. This is invalid iff the function has no return value.
339   Address ReturnValue = Address::invalid();
340 
341   /// ReturnValuePointer - The temporary alloca to hold a pointer to sret.
342   /// This is invalid if sret is not in use.
343   Address ReturnValuePointer = Address::invalid();
344 
345   /// If a return statement is being visited, this holds the return statment's
346   /// result expression.
347   const Expr *RetExpr = nullptr;
348 
349   /// Return true if a label was seen in the current scope.
350   bool hasLabelBeenSeenInCurrentScope() const {
351     if (CurLexicalScope)
352       return CurLexicalScope->hasLabels();
353     return !LabelMap.empty();
354   }
355 
356   /// AllocaInsertPoint - This is an instruction in the entry block before which
357   /// we prefer to insert allocas.
358   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
359 
360   /// API for captured statement code generation.
361   class CGCapturedStmtInfo {
362   public:
363     explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default)
364         : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
365     explicit CGCapturedStmtInfo(const CapturedStmt &S,
366                                 CapturedRegionKind K = CR_Default)
367       : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
368 
369       RecordDecl::field_iterator Field =
370         S.getCapturedRecordDecl()->field_begin();
371       for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
372                                                 E = S.capture_end();
373            I != E; ++I, ++Field) {
374         if (I->capturesThis())
375           CXXThisFieldDecl = *Field;
376         else if (I->capturesVariable())
377           CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
378         else if (I->capturesVariableByCopy())
379           CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
380       }
381     }
382 
383     virtual ~CGCapturedStmtInfo();
384 
385     CapturedRegionKind getKind() const { return Kind; }
386 
387     virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
388     // Retrieve the value of the context parameter.
389     virtual llvm::Value *getContextValue() const { return ThisValue; }
390 
391     /// Lookup the captured field decl for a variable.
392     virtual const FieldDecl *lookup(const VarDecl *VD) const {
393       return CaptureFields.lookup(VD->getCanonicalDecl());
394     }
395 
396     bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
397     virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
398 
399     static bool classof(const CGCapturedStmtInfo *) {
400       return true;
401     }
402 
403     /// Emit the captured statement body.
404     virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
405       CGF.incrementProfileCounter(S);
406       CGF.EmitStmt(S);
407     }
408 
409     /// Get the name of the capture helper.
410     virtual StringRef getHelperName() const { return "__captured_stmt"; }
411 
412   private:
413     /// The kind of captured statement being generated.
414     CapturedRegionKind Kind;
415 
416     /// Keep the map between VarDecl and FieldDecl.
417     llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
418 
419     /// The base address of the captured record, passed in as the first
420     /// argument of the parallel region function.
421     llvm::Value *ThisValue;
422 
423     /// Captured 'this' type.
424     FieldDecl *CXXThisFieldDecl;
425   };
426   CGCapturedStmtInfo *CapturedStmtInfo = nullptr;
427 
428   /// RAII for correct setting/restoring of CapturedStmtInfo.
429   class CGCapturedStmtRAII {
430   private:
431     CodeGenFunction &CGF;
432     CGCapturedStmtInfo *PrevCapturedStmtInfo;
433   public:
434     CGCapturedStmtRAII(CodeGenFunction &CGF,
435                        CGCapturedStmtInfo *NewCapturedStmtInfo)
436         : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) {
437       CGF.CapturedStmtInfo = NewCapturedStmtInfo;
438     }
439     ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; }
440   };
441 
442   /// An abstract representation of regular/ObjC call/message targets.
443   class AbstractCallee {
444     /// The function declaration of the callee.
445     const Decl *CalleeDecl;
446 
447   public:
448     AbstractCallee() : CalleeDecl(nullptr) {}
449     AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {}
450     AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {}
451     bool hasFunctionDecl() const {
452       return dyn_cast_or_null<FunctionDecl>(CalleeDecl);
453     }
454     const Decl *getDecl() const { return CalleeDecl; }
455     unsigned getNumParams() const {
456       if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
457         return FD->getNumParams();
458       return cast<ObjCMethodDecl>(CalleeDecl)->param_size();
459     }
460     const ParmVarDecl *getParamDecl(unsigned I) const {
461       if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
462         return FD->getParamDecl(I);
463       return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I);
464     }
465   };
466 
467   /// Sanitizers enabled for this function.
468   SanitizerSet SanOpts;
469 
470   /// True if CodeGen currently emits code implementing sanitizer checks.
471   bool IsSanitizerScope = false;
472 
473   /// RAII object to set/unset CodeGenFunction::IsSanitizerScope.
474   class SanitizerScope {
475     CodeGenFunction *CGF;
476   public:
477     SanitizerScope(CodeGenFunction *CGF);
478     ~SanitizerScope();
479   };
480 
481   /// In C++, whether we are code generating a thunk.  This controls whether we
482   /// should emit cleanups.
483   bool CurFuncIsThunk = false;
484 
485   /// In ARC, whether we should autorelease the return value.
486   bool AutoreleaseResult = false;
487 
488   /// Whether we processed a Microsoft-style asm block during CodeGen. These can
489   /// potentially set the return value.
490   bool SawAsmBlock = false;
491 
492   const NamedDecl *CurSEHParent = nullptr;
493 
494   /// True if the current function is an outlined SEH helper. This can be a
495   /// finally block or filter expression.
496   bool IsOutlinedSEHHelper = false;
497 
498   /// True if CodeGen currently emits code inside presereved access index
499   /// region.
500   bool IsInPreservedAIRegion = false;
501 
502   /// True if the current statement has nomerge attribute.
503   bool InNoMergeAttributedStmt = false;
504 
505   const CodeGen::CGBlockInfo *BlockInfo = nullptr;
506   llvm::Value *BlockPointer = nullptr;
507 
508   llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
509   FieldDecl *LambdaThisCaptureField = nullptr;
510 
511   /// A mapping from NRVO variables to the flags used to indicate
512   /// when the NRVO has been applied to this variable.
513   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
514 
515   EHScopeStack EHStack;
516   llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
517   llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack;
518 
519   llvm::Instruction *CurrentFuncletPad = nullptr;
520 
521   class CallLifetimeEnd final : public EHScopeStack::Cleanup {
522     llvm::Value *Addr;
523     llvm::Value *Size;
524 
525   public:
526     CallLifetimeEnd(Address addr, llvm::Value *size)
527         : Addr(addr.getPointer()), Size(size) {}
528 
529     void Emit(CodeGenFunction &CGF, Flags flags) override {
530       CGF.EmitLifetimeEnd(Size, Addr);
531     }
532   };
533 
534   /// Header for data within LifetimeExtendedCleanupStack.
535   struct LifetimeExtendedCleanupHeader {
536     /// The size of the following cleanup object.
537     unsigned Size;
538     /// The kind of cleanup to push: a value from the CleanupKind enumeration.
539     unsigned Kind : 31;
540     /// Whether this is a conditional cleanup.
541     unsigned IsConditional : 1;
542 
543     size_t getSize() const { return Size; }
544     CleanupKind getKind() const { return (CleanupKind)Kind; }
545     bool isConditional() const { return IsConditional; }
546   };
547 
548   /// i32s containing the indexes of the cleanup destinations.
549   Address NormalCleanupDest = Address::invalid();
550 
551   unsigned NextCleanupDestIndex = 1;
552 
553   /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
554   llvm::BasicBlock *EHResumeBlock = nullptr;
555 
556   /// The exception slot.  All landing pads write the current exception pointer
557   /// into this alloca.
558   llvm::Value *ExceptionSlot = nullptr;
559 
560   /// The selector slot.  Under the MandatoryCleanup model, all landing pads
561   /// write the current selector value into this alloca.
562   llvm::AllocaInst *EHSelectorSlot = nullptr;
563 
564   /// A stack of exception code slots. Entering an __except block pushes a slot
565   /// on the stack and leaving pops one. The __exception_code() intrinsic loads
566   /// a value from the top of the stack.
567   SmallVector<Address, 1> SEHCodeSlotStack;
568 
569   /// Value returned by __exception_info intrinsic.
570   llvm::Value *SEHInfo = nullptr;
571 
572   /// Emits a landing pad for the current EH stack.
573   llvm::BasicBlock *EmitLandingPad();
574 
575   llvm::BasicBlock *getInvokeDestImpl();
576 
577   /// Parent loop-based directive for scan directive.
578   const OMPExecutableDirective *OMPParentLoopDirectiveForScan = nullptr;
579   llvm::BasicBlock *OMPBeforeScanBlock = nullptr;
580   llvm::BasicBlock *OMPAfterScanBlock = nullptr;
581   llvm::BasicBlock *OMPScanExitBlock = nullptr;
582   llvm::BasicBlock *OMPScanDispatch = nullptr;
583   bool OMPFirstScanLoop = false;
584 
585   /// Manages parent directive for scan directives.
586   class ParentLoopDirectiveForScanRegion {
587     CodeGenFunction &CGF;
588     const OMPExecutableDirective *ParentLoopDirectiveForScan;
589 
590   public:
591     ParentLoopDirectiveForScanRegion(
592         CodeGenFunction &CGF,
593         const OMPExecutableDirective &ParentLoopDirectiveForScan)
594         : CGF(CGF),
595           ParentLoopDirectiveForScan(CGF.OMPParentLoopDirectiveForScan) {
596       CGF.OMPParentLoopDirectiveForScan = &ParentLoopDirectiveForScan;
597     }
598     ~ParentLoopDirectiveForScanRegion() {
599       CGF.OMPParentLoopDirectiveForScan = ParentLoopDirectiveForScan;
600     }
601   };
602 
603   template <class T>
604   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
605     return DominatingValue<T>::save(*this, value);
606   }
607 
608   class CGFPOptionsRAII {
609   public:
610     CGFPOptionsRAII(CodeGenFunction &CGF, FPOptions FPFeatures);
611     ~CGFPOptionsRAII();
612 
613   private:
614     CodeGenFunction &CGF;
615     FPOptions OldFPFeatures;
616     Optional<CGBuilderTy::FastMathFlagGuard> FMFGuard;
617   };
618   FPOptions CurFPFeatures;
619 
620 public:
621   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
622   /// rethrows.
623   SmallVector<llvm::Value*, 8> ObjCEHValueStack;
624 
625   /// A class controlling the emission of a finally block.
626   class FinallyInfo {
627     /// Where the catchall's edge through the cleanup should go.
628     JumpDest RethrowDest;
629 
630     /// A function to call to enter the catch.
631     llvm::FunctionCallee BeginCatchFn;
632 
633     /// An i1 variable indicating whether or not the @finally is
634     /// running for an exception.
635     llvm::AllocaInst *ForEHVar;
636 
637     /// An i8* variable into which the exception pointer to rethrow
638     /// has been saved.
639     llvm::AllocaInst *SavedExnVar;
640 
641   public:
642     void enter(CodeGenFunction &CGF, const Stmt *Finally,
643                llvm::FunctionCallee beginCatchFn,
644                llvm::FunctionCallee endCatchFn, llvm::FunctionCallee rethrowFn);
645     void exit(CodeGenFunction &CGF);
646   };
647 
648   /// Returns true inside SEH __try blocks.
649   bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }
650 
651   /// Returns true while emitting a cleanuppad.
652   bool isCleanupPadScope() const {
653     return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad);
654   }
655 
656   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
657   /// current full-expression.  Safe against the possibility that
658   /// we're currently inside a conditionally-evaluated expression.
659   template <class T, class... As>
660   void pushFullExprCleanup(CleanupKind kind, As... A) {
661     // If we're not in a conditional branch, or if none of the
662     // arguments requires saving, then use the unconditional cleanup.
663     if (!isInConditionalBranch())
664       return EHStack.pushCleanup<T>(kind, A...);
665 
666     // Stash values in a tuple so we can guarantee the order of saves.
667     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
668     SavedTuple Saved{saveValueInCond(A)...};
669 
670     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
671     EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
672     initFullExprCleanup();
673   }
674 
675   /// Queue a cleanup to be pushed after finishing the current full-expression,
676   /// potentially with an active flag.
677   template <class T, class... As>
678   void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
679     if (!isInConditionalBranch())
680       return pushCleanupAfterFullExprWithActiveFlag<T>(Kind, Address::invalid(),
681                                                        A...);
682 
683     Address ActiveFlag = createCleanupActiveFlag();
684     assert(!DominatingValue<Address>::needsSaving(ActiveFlag) &&
685            "cleanup active flag should never need saving");
686 
687     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
688     SavedTuple Saved{saveValueInCond(A)...};
689 
690     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
691     pushCleanupAfterFullExprWithActiveFlag<CleanupType>(Kind, ActiveFlag, Saved);
692   }
693 
694   template <class T, class... As>
695   void pushCleanupAfterFullExprWithActiveFlag(CleanupKind Kind,
696                                               Address ActiveFlag, As... A) {
697     LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind,
698                                             ActiveFlag.isValid()};
699 
700     size_t OldSize = LifetimeExtendedCleanupStack.size();
701     LifetimeExtendedCleanupStack.resize(
702         LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size +
703         (Header.IsConditional ? sizeof(ActiveFlag) : 0));
704 
705     static_assert(sizeof(Header) % alignof(T) == 0,
706                   "Cleanup will be allocated on misaligned address");
707     char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
708     new (Buffer) LifetimeExtendedCleanupHeader(Header);
709     new (Buffer + sizeof(Header)) T(A...);
710     if (Header.IsConditional)
711       new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag);
712   }
713 
714   /// Set up the last cleanup that was pushed as a conditional
715   /// full-expression cleanup.
716   void initFullExprCleanup() {
717     initFullExprCleanupWithFlag(createCleanupActiveFlag());
718   }
719 
720   void initFullExprCleanupWithFlag(Address ActiveFlag);
721   Address createCleanupActiveFlag();
722 
723   /// PushDestructorCleanup - Push a cleanup to call the
724   /// complete-object destructor of an object of the given type at the
725   /// given address.  Does nothing if T is not a C++ class type with a
726   /// non-trivial destructor.
727   void PushDestructorCleanup(QualType T, Address Addr);
728 
729   /// PushDestructorCleanup - Push a cleanup to call the
730   /// complete-object variant of the given destructor on the object at
731   /// the given address.
732   void PushDestructorCleanup(const CXXDestructorDecl *Dtor, QualType T,
733                              Address Addr);
734 
735   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
736   /// process all branch fixups.
737   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
738 
739   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
740   /// The block cannot be reactivated.  Pops it if it's the top of the
741   /// stack.
742   ///
743   /// \param DominatingIP - An instruction which is known to
744   ///   dominate the current IP (if set) and which lies along
745   ///   all paths of execution between the current IP and the
746   ///   the point at which the cleanup comes into scope.
747   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
748                               llvm::Instruction *DominatingIP);
749 
750   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
751   /// Cannot be used to resurrect a deactivated cleanup.
752   ///
753   /// \param DominatingIP - An instruction which is known to
754   ///   dominate the current IP (if set) and which lies along
755   ///   all paths of execution between the current IP and the
756   ///   the point at which the cleanup comes into scope.
757   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
758                             llvm::Instruction *DominatingIP);
759 
760   /// Enters a new scope for capturing cleanups, all of which
761   /// will be executed once the scope is exited.
762   class RunCleanupsScope {
763     EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth;
764     size_t LifetimeExtendedCleanupStackSize;
765     bool OldDidCallStackSave;
766   protected:
767     bool PerformCleanup;
768   private:
769 
770     RunCleanupsScope(const RunCleanupsScope &) = delete;
771     void operator=(const RunCleanupsScope &) = delete;
772 
773   protected:
774     CodeGenFunction& CGF;
775 
776   public:
777     /// Enter a new cleanup scope.
778     explicit RunCleanupsScope(CodeGenFunction &CGF)
779       : PerformCleanup(true), CGF(CGF)
780     {
781       CleanupStackDepth = CGF.EHStack.stable_begin();
782       LifetimeExtendedCleanupStackSize =
783           CGF.LifetimeExtendedCleanupStack.size();
784       OldDidCallStackSave = CGF.DidCallStackSave;
785       CGF.DidCallStackSave = false;
786       OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth;
787       CGF.CurrentCleanupScopeDepth = CleanupStackDepth;
788     }
789 
790     /// Exit this cleanup scope, emitting any accumulated cleanups.
791     ~RunCleanupsScope() {
792       if (PerformCleanup)
793         ForceCleanup();
794     }
795 
796     /// Determine whether this scope requires any cleanups.
797     bool requiresCleanups() const {
798       return CGF.EHStack.stable_begin() != CleanupStackDepth;
799     }
800 
801     /// Force the emission of cleanups now, instead of waiting
802     /// until this object is destroyed.
803     /// \param ValuesToReload - A list of values that need to be available at
804     /// the insertion point after cleanup emission. If cleanup emission created
805     /// a shared cleanup block, these value pointers will be rewritten.
806     /// Otherwise, they not will be modified.
807     void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) {
808       assert(PerformCleanup && "Already forced cleanup");
809       CGF.DidCallStackSave = OldDidCallStackSave;
810       CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize,
811                            ValuesToReload);
812       PerformCleanup = false;
813       CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth;
814     }
815   };
816 
817   // Cleanup stack depth of the RunCleanupsScope that was pushed most recently.
818   EHScopeStack::stable_iterator CurrentCleanupScopeDepth =
819       EHScopeStack::stable_end();
820 
821   class LexicalScope : public RunCleanupsScope {
822     SourceRange Range;
823     SmallVector<const LabelDecl*, 4> Labels;
824     LexicalScope *ParentScope;
825 
826     LexicalScope(const LexicalScope &) = delete;
827     void operator=(const LexicalScope &) = delete;
828 
829   public:
830     /// Enter a new cleanup scope.
831     explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
832       : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
833       CGF.CurLexicalScope = this;
834       if (CGDebugInfo *DI = CGF.getDebugInfo())
835         DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
836     }
837 
838     void addLabel(const LabelDecl *label) {
839       assert(PerformCleanup && "adding label to dead scope?");
840       Labels.push_back(label);
841     }
842 
843     /// Exit this cleanup scope, emitting any accumulated
844     /// cleanups.
845     ~LexicalScope() {
846       if (CGDebugInfo *DI = CGF.getDebugInfo())
847         DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
848 
849       // If we should perform a cleanup, force them now.  Note that
850       // this ends the cleanup scope before rescoping any labels.
851       if (PerformCleanup) {
852         ApplyDebugLocation DL(CGF, Range.getEnd());
853         ForceCleanup();
854       }
855     }
856 
857     /// Force the emission of cleanups now, instead of waiting
858     /// until this object is destroyed.
859     void ForceCleanup() {
860       CGF.CurLexicalScope = ParentScope;
861       RunCleanupsScope::ForceCleanup();
862 
863       if (!Labels.empty())
864         rescopeLabels();
865     }
866 
867     bool hasLabels() const {
868       return !Labels.empty();
869     }
870 
871     void rescopeLabels();
872   };
873 
874   typedef llvm::DenseMap<const Decl *, Address> DeclMapTy;
875 
876   /// The class used to assign some variables some temporarily addresses.
877   class OMPMapVars {
878     DeclMapTy SavedLocals;
879     DeclMapTy SavedTempAddresses;
880     OMPMapVars(const OMPMapVars &) = delete;
881     void operator=(const OMPMapVars &) = delete;
882 
883   public:
884     explicit OMPMapVars() = default;
885     ~OMPMapVars() {
886       assert(SavedLocals.empty() && "Did not restored original addresses.");
887     };
888 
889     /// Sets the address of the variable \p LocalVD to be \p TempAddr in
890     /// function \p CGF.
891     /// \return true if at least one variable was set already, false otherwise.
892     bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD,
893                     Address TempAddr) {
894       LocalVD = LocalVD->getCanonicalDecl();
895       // Only save it once.
896       if (SavedLocals.count(LocalVD)) return false;
897 
898       // Copy the existing local entry to SavedLocals.
899       auto it = CGF.LocalDeclMap.find(LocalVD);
900       if (it != CGF.LocalDeclMap.end())
901         SavedLocals.try_emplace(LocalVD, it->second);
902       else
903         SavedLocals.try_emplace(LocalVD, Address::invalid());
904 
905       // Generate the private entry.
906       QualType VarTy = LocalVD->getType();
907       if (VarTy->isReferenceType()) {
908         Address Temp = CGF.CreateMemTemp(VarTy);
909         CGF.Builder.CreateStore(TempAddr.getPointer(), Temp);
910         TempAddr = Temp;
911       }
912       SavedTempAddresses.try_emplace(LocalVD, TempAddr);
913 
914       return true;
915     }
916 
917     /// Applies new addresses to the list of the variables.
918     /// \return true if at least one variable is using new address, false
919     /// otherwise.
920     bool apply(CodeGenFunction &CGF) {
921       copyInto(SavedTempAddresses, CGF.LocalDeclMap);
922       SavedTempAddresses.clear();
923       return !SavedLocals.empty();
924     }
925 
926     /// Restores original addresses of the variables.
927     void restore(CodeGenFunction &CGF) {
928       if (!SavedLocals.empty()) {
929         copyInto(SavedLocals, CGF.LocalDeclMap);
930         SavedLocals.clear();
931       }
932     }
933 
934   private:
935     /// Copy all the entries in the source map over the corresponding
936     /// entries in the destination, which must exist.
937     static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) {
938       for (auto &Pair : Src) {
939         if (!Pair.second.isValid()) {
940           Dest.erase(Pair.first);
941           continue;
942         }
943 
944         auto I = Dest.find(Pair.first);
945         if (I != Dest.end())
946           I->second = Pair.second;
947         else
948           Dest.insert(Pair);
949       }
950     }
951   };
952 
953   /// The scope used to remap some variables as private in the OpenMP loop body
954   /// (or other captured region emitted without outlining), and to restore old
955   /// vars back on exit.
956   class OMPPrivateScope : public RunCleanupsScope {
957     OMPMapVars MappedVars;
958     OMPPrivateScope(const OMPPrivateScope &) = delete;
959     void operator=(const OMPPrivateScope &) = delete;
960 
961   public:
962     /// Enter a new OpenMP private scope.
963     explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}
964 
965     /// Registers \p LocalVD variable as a private and apply \p PrivateGen
966     /// function for it to generate corresponding private variable. \p
967     /// PrivateGen returns an address of the generated private variable.
968     /// \return true if the variable is registered as private, false if it has
969     /// been privatized already.
970     bool addPrivate(const VarDecl *LocalVD,
971                     const llvm::function_ref<Address()> PrivateGen) {
972       assert(PerformCleanup && "adding private to dead scope");
973       return MappedVars.setVarAddr(CGF, LocalVD, PrivateGen());
974     }
975 
976     /// Privatizes local variables previously registered as private.
977     /// Registration is separate from the actual privatization to allow
978     /// initializers use values of the original variables, not the private one.
979     /// This is important, for example, if the private variable is a class
980     /// variable initialized by a constructor that references other private
981     /// variables. But at initialization original variables must be used, not
982     /// private copies.
983     /// \return true if at least one variable was privatized, false otherwise.
984     bool Privatize() { return MappedVars.apply(CGF); }
985 
986     void ForceCleanup() {
987       RunCleanupsScope::ForceCleanup();
988       MappedVars.restore(CGF);
989     }
990 
991     /// Exit scope - all the mapped variables are restored.
992     ~OMPPrivateScope() {
993       if (PerformCleanup)
994         ForceCleanup();
995     }
996 
997     /// Checks if the global variable is captured in current function.
998     bool isGlobalVarCaptured(const VarDecl *VD) const {
999       VD = VD->getCanonicalDecl();
1000       return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0;
1001     }
1002   };
1003 
1004   /// Save/restore original map of previously emitted local vars in case when we
1005   /// need to duplicate emission of the same code several times in the same
1006   /// function for OpenMP code.
1007   class OMPLocalDeclMapRAII {
1008     CodeGenFunction &CGF;
1009     DeclMapTy SavedMap;
1010 
1011   public:
1012     OMPLocalDeclMapRAII(CodeGenFunction &CGF)
1013         : CGF(CGF), SavedMap(CGF.LocalDeclMap) {}
1014     ~OMPLocalDeclMapRAII() { SavedMap.swap(CGF.LocalDeclMap); }
1015   };
1016 
1017   /// Takes the old cleanup stack size and emits the cleanup blocks
1018   /// that have been added.
1019   void
1020   PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
1021                    std::initializer_list<llvm::Value **> ValuesToReload = {});
1022 
1023   /// Takes the old cleanup stack size and emits the cleanup blocks
1024   /// that have been added, then adds all lifetime-extended cleanups from
1025   /// the given position to the stack.
1026   void
1027   PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
1028                    size_t OldLifetimeExtendedStackSize,
1029                    std::initializer_list<llvm::Value **> ValuesToReload = {});
1030 
1031   void ResolveBranchFixups(llvm::BasicBlock *Target);
1032 
1033   /// The given basic block lies in the current EH scope, but may be a
1034   /// target of a potentially scope-crossing jump; get a stable handle
1035   /// to which we can perform this jump later.
1036   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
1037     return JumpDest(Target,
1038                     EHStack.getInnermostNormalCleanup(),
1039                     NextCleanupDestIndex++);
1040   }
1041 
1042   /// The given basic block lies in the current EH scope, but may be a
1043   /// target of a potentially scope-crossing jump; get a stable handle
1044   /// to which we can perform this jump later.
1045   JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
1046     return getJumpDestInCurrentScope(createBasicBlock(Name));
1047   }
1048 
1049   /// EmitBranchThroughCleanup - Emit a branch from the current insert
1050   /// block through the normal cleanup handling code (if any) and then
1051   /// on to \arg Dest.
1052   void EmitBranchThroughCleanup(JumpDest Dest);
1053 
1054   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
1055   /// specified destination obviously has no cleanups to run.  'false' is always
1056   /// a conservatively correct answer for this method.
1057   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
1058 
1059   /// popCatchScope - Pops the catch scope at the top of the EHScope
1060   /// stack, emitting any required code (other than the catch handlers
1061   /// themselves).
1062   void popCatchScope();
1063 
1064   llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
1065   llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
1066   llvm::BasicBlock *
1067   getFuncletEHDispatchBlock(EHScopeStack::stable_iterator scope);
1068 
1069   /// An object to manage conditionally-evaluated expressions.
1070   class ConditionalEvaluation {
1071     llvm::BasicBlock *StartBB;
1072 
1073   public:
1074     ConditionalEvaluation(CodeGenFunction &CGF)
1075       : StartBB(CGF.Builder.GetInsertBlock()) {}
1076 
1077     void begin(CodeGenFunction &CGF) {
1078       assert(CGF.OutermostConditional != this);
1079       if (!CGF.OutermostConditional)
1080         CGF.OutermostConditional = this;
1081     }
1082 
1083     void end(CodeGenFunction &CGF) {
1084       assert(CGF.OutermostConditional != nullptr);
1085       if (CGF.OutermostConditional == this)
1086         CGF.OutermostConditional = nullptr;
1087     }
1088 
1089     /// Returns a block which will be executed prior to each
1090     /// evaluation of the conditional code.
1091     llvm::BasicBlock *getStartingBlock() const {
1092       return StartBB;
1093     }
1094   };
1095 
1096   /// isInConditionalBranch - Return true if we're currently emitting
1097   /// one branch or the other of a conditional expression.
1098   bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
1099 
1100   void setBeforeOutermostConditional(llvm::Value *value, Address addr) {
1101     assert(isInConditionalBranch());
1102     llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
1103     auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back());
1104     store->setAlignment(addr.getAlignment().getAsAlign());
1105   }
1106 
1107   /// An RAII object to record that we're evaluating a statement
1108   /// expression.
1109   class StmtExprEvaluation {
1110     CodeGenFunction &CGF;
1111 
1112     /// We have to save the outermost conditional: cleanups in a
1113     /// statement expression aren't conditional just because the
1114     /// StmtExpr is.
1115     ConditionalEvaluation *SavedOutermostConditional;
1116 
1117   public:
1118     StmtExprEvaluation(CodeGenFunction &CGF)
1119       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
1120       CGF.OutermostConditional = nullptr;
1121     }
1122 
1123     ~StmtExprEvaluation() {
1124       CGF.OutermostConditional = SavedOutermostConditional;
1125       CGF.EnsureInsertPoint();
1126     }
1127   };
1128 
1129   /// An object which temporarily prevents a value from being
1130   /// destroyed by aggressive peephole optimizations that assume that
1131   /// all uses of a value have been realized in the IR.
1132   class PeepholeProtection {
1133     llvm::Instruction *Inst;
1134     friend class CodeGenFunction;
1135 
1136   public:
1137     PeepholeProtection() : Inst(nullptr) {}
1138   };
1139 
1140   /// A non-RAII class containing all the information about a bound
1141   /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
1142   /// this which makes individual mappings very simple; using this
1143   /// class directly is useful when you have a variable number of
1144   /// opaque values or don't want the RAII functionality for some
1145   /// reason.
1146   class OpaqueValueMappingData {
1147     const OpaqueValueExpr *OpaqueValue;
1148     bool BoundLValue;
1149     CodeGenFunction::PeepholeProtection Protection;
1150 
1151     OpaqueValueMappingData(const OpaqueValueExpr *ov,
1152                            bool boundLValue)
1153       : OpaqueValue(ov), BoundLValue(boundLValue) {}
1154   public:
1155     OpaqueValueMappingData() : OpaqueValue(nullptr) {}
1156 
1157     static bool shouldBindAsLValue(const Expr *expr) {
1158       // gl-values should be bound as l-values for obvious reasons.
1159       // Records should be bound as l-values because IR generation
1160       // always keeps them in memory.  Expressions of function type
1161       // act exactly like l-values but are formally required to be
1162       // r-values in C.
1163       return expr->isGLValue() ||
1164              expr->getType()->isFunctionType() ||
1165              hasAggregateEvaluationKind(expr->getType());
1166     }
1167 
1168     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1169                                        const OpaqueValueExpr *ov,
1170                                        const Expr *e) {
1171       if (shouldBindAsLValue(ov))
1172         return bind(CGF, ov, CGF.EmitLValue(e));
1173       return bind(CGF, ov, CGF.EmitAnyExpr(e));
1174     }
1175 
1176     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1177                                        const OpaqueValueExpr *ov,
1178                                        const LValue &lv) {
1179       assert(shouldBindAsLValue(ov));
1180       CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
1181       return OpaqueValueMappingData(ov, true);
1182     }
1183 
1184     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1185                                        const OpaqueValueExpr *ov,
1186                                        const RValue &rv) {
1187       assert(!shouldBindAsLValue(ov));
1188       CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
1189 
1190       OpaqueValueMappingData data(ov, false);
1191 
1192       // Work around an extremely aggressive peephole optimization in
1193       // EmitScalarConversion which assumes that all other uses of a
1194       // value are extant.
1195       data.Protection = CGF.protectFromPeepholes(rv);
1196 
1197       return data;
1198     }
1199 
1200     bool isValid() const { return OpaqueValue != nullptr; }
1201     void clear() { OpaqueValue = nullptr; }
1202 
1203     void unbind(CodeGenFunction &CGF) {
1204       assert(OpaqueValue && "no data to unbind!");
1205 
1206       if (BoundLValue) {
1207         CGF.OpaqueLValues.erase(OpaqueValue);
1208       } else {
1209         CGF.OpaqueRValues.erase(OpaqueValue);
1210         CGF.unprotectFromPeepholes(Protection);
1211       }
1212     }
1213   };
1214 
1215   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
1216   class OpaqueValueMapping {
1217     CodeGenFunction &CGF;
1218     OpaqueValueMappingData Data;
1219 
1220   public:
1221     static bool shouldBindAsLValue(const Expr *expr) {
1222       return OpaqueValueMappingData::shouldBindAsLValue(expr);
1223     }
1224 
1225     /// Build the opaque value mapping for the given conditional
1226     /// operator if it's the GNU ?: extension.  This is a common
1227     /// enough pattern that the convenience operator is really
1228     /// helpful.
1229     ///
1230     OpaqueValueMapping(CodeGenFunction &CGF,
1231                        const AbstractConditionalOperator *op) : CGF(CGF) {
1232       if (isa<ConditionalOperator>(op))
1233         // Leave Data empty.
1234         return;
1235 
1236       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
1237       Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
1238                                           e->getCommon());
1239     }
1240 
1241     /// Build the opaque value mapping for an OpaqueValueExpr whose source
1242     /// expression is set to the expression the OVE represents.
1243     OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV)
1244         : CGF(CGF) {
1245       if (OV) {
1246         assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used "
1247                                       "for OVE with no source expression");
1248         Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr());
1249       }
1250     }
1251 
1252     OpaqueValueMapping(CodeGenFunction &CGF,
1253                        const OpaqueValueExpr *opaqueValue,
1254                        LValue lvalue)
1255       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
1256     }
1257 
1258     OpaqueValueMapping(CodeGenFunction &CGF,
1259                        const OpaqueValueExpr *opaqueValue,
1260                        RValue rvalue)
1261       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
1262     }
1263 
1264     void pop() {
1265       Data.unbind(CGF);
1266       Data.clear();
1267     }
1268 
1269     ~OpaqueValueMapping() {
1270       if (Data.isValid()) Data.unbind(CGF);
1271     }
1272   };
1273 
1274 private:
1275   CGDebugInfo *DebugInfo;
1276   /// Used to create unique names for artificial VLA size debug info variables.
1277   unsigned VLAExprCounter = 0;
1278   bool DisableDebugInfo = false;
1279 
1280   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
1281   /// calling llvm.stacksave for multiple VLAs in the same scope.
1282   bool DidCallStackSave = false;
1283 
1284   /// IndirectBranch - The first time an indirect goto is seen we create a block
1285   /// with an indirect branch.  Every time we see the address of a label taken,
1286   /// we add the label to the indirect goto.  Every subsequent indirect goto is
1287   /// codegen'd as a jump to the IndirectBranch's basic block.
1288   llvm::IndirectBrInst *IndirectBranch = nullptr;
1289 
1290   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1291   /// decls.
1292   DeclMapTy LocalDeclMap;
1293 
1294   // Keep track of the cleanups for callee-destructed parameters pushed to the
1295   // cleanup stack so that they can be deactivated later.
1296   llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator>
1297       CalleeDestructedParamCleanups;
1298 
1299   /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this
1300   /// will contain a mapping from said ParmVarDecl to its implicit "object_size"
1301   /// parameter.
1302   llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2>
1303       SizeArguments;
1304 
1305   /// Track escaped local variables with auto storage. Used during SEH
1306   /// outlining to produce a call to llvm.localescape.
1307   llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;
1308 
1309   /// LabelMap - This keeps track of the LLVM basic block for each C label.
1310   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1311 
1312   // BreakContinueStack - This keeps track of where break and continue
1313   // statements should jump to.
1314   struct BreakContinue {
1315     BreakContinue(JumpDest Break, JumpDest Continue)
1316       : BreakBlock(Break), ContinueBlock(Continue) {}
1317 
1318     JumpDest BreakBlock;
1319     JumpDest ContinueBlock;
1320   };
1321   SmallVector<BreakContinue, 8> BreakContinueStack;
1322 
1323   /// Handles cancellation exit points in OpenMP-related constructs.
1324   class OpenMPCancelExitStack {
1325     /// Tracks cancellation exit point and join point for cancel-related exit
1326     /// and normal exit.
1327     struct CancelExit {
1328       CancelExit() = default;
1329       CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock,
1330                  JumpDest ContBlock)
1331           : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {}
1332       OpenMPDirectiveKind Kind = llvm::omp::OMPD_unknown;
1333       /// true if the exit block has been emitted already by the special
1334       /// emitExit() call, false if the default codegen is used.
1335       bool HasBeenEmitted = false;
1336       JumpDest ExitBlock;
1337       JumpDest ContBlock;
1338     };
1339 
1340     SmallVector<CancelExit, 8> Stack;
1341 
1342   public:
1343     OpenMPCancelExitStack() : Stack(1) {}
1344     ~OpenMPCancelExitStack() = default;
1345     /// Fetches the exit block for the current OpenMP construct.
1346     JumpDest getExitBlock() const { return Stack.back().ExitBlock; }
1347     /// Emits exit block with special codegen procedure specific for the related
1348     /// OpenMP construct + emits code for normal construct cleanup.
1349     void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
1350                   const llvm::function_ref<void(CodeGenFunction &)> CodeGen) {
1351       if (Stack.back().Kind == Kind && getExitBlock().isValid()) {
1352         assert(CGF.getOMPCancelDestination(Kind).isValid());
1353         assert(CGF.HaveInsertPoint());
1354         assert(!Stack.back().HasBeenEmitted);
1355         auto IP = CGF.Builder.saveAndClearIP();
1356         CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1357         CodeGen(CGF);
1358         CGF.EmitBranch(Stack.back().ContBlock.getBlock());
1359         CGF.Builder.restoreIP(IP);
1360         Stack.back().HasBeenEmitted = true;
1361       }
1362       CodeGen(CGF);
1363     }
1364     /// Enter the cancel supporting \a Kind construct.
1365     /// \param Kind OpenMP directive that supports cancel constructs.
1366     /// \param HasCancel true, if the construct has inner cancel directive,
1367     /// false otherwise.
1368     void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) {
1369       Stack.push_back({Kind,
1370                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit")
1371                                  : JumpDest(),
1372                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont")
1373                                  : JumpDest()});
1374     }
1375     /// Emits default exit point for the cancel construct (if the special one
1376     /// has not be used) + join point for cancel/normal exits.
1377     void exit(CodeGenFunction &CGF) {
1378       if (getExitBlock().isValid()) {
1379         assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid());
1380         bool HaveIP = CGF.HaveInsertPoint();
1381         if (!Stack.back().HasBeenEmitted) {
1382           if (HaveIP)
1383             CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1384           CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1385           CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1386         }
1387         CGF.EmitBlock(Stack.back().ContBlock.getBlock());
1388         if (!HaveIP) {
1389           CGF.Builder.CreateUnreachable();
1390           CGF.Builder.ClearInsertionPoint();
1391         }
1392       }
1393       Stack.pop_back();
1394     }
1395   };
1396   OpenMPCancelExitStack OMPCancelStack;
1397 
1398   /// Calculate branch weights for the likelihood attribute
1399   llvm::MDNode *createBranchWeights(Stmt::Likelihood LH) const;
1400 
1401   CodeGenPGO PGO;
1402 
1403   /// Calculate branch weights appropriate for PGO data
1404   llvm::MDNode *createProfileWeights(uint64_t TrueCount,
1405                                      uint64_t FalseCount) const;
1406   llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights) const;
1407   llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond,
1408                                             uint64_t LoopCount) const;
1409 
1410   /// Calculate the branch weight for PGO data or the likelihood attribute.
1411   /// The function tries to get the weight of \ref createProfileWeightsForLoop.
1412   /// If that fails it gets the weight of \ref createBranchWeights.
1413   llvm::MDNode *createProfileOrBranchWeightsForLoop(const Stmt *Cond,
1414                                                     uint64_t LoopCount,
1415                                                     const Stmt *Body) const;
1416 
1417 public:
1418   /// Increment the profiler's counter for the given statement by \p StepV.
1419   /// If \p StepV is null, the default increment is 1.
1420   void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) {
1421     if (CGM.getCodeGenOpts().hasProfileClangInstr())
1422       PGO.emitCounterIncrement(Builder, S, StepV);
1423     PGO.setCurrentStmt(S);
1424   }
1425 
1426   /// Get the profiler's count for the given statement.
1427   uint64_t getProfileCount(const Stmt *S) {
1428     Optional<uint64_t> Count = PGO.getStmtCount(S);
1429     if (!Count.hasValue())
1430       return 0;
1431     return *Count;
1432   }
1433 
1434   /// Set the profiler's current count.
1435   void setCurrentProfileCount(uint64_t Count) {
1436     PGO.setCurrentRegionCount(Count);
1437   }
1438 
1439   /// Get the profiler's current count. This is generally the count for the most
1440   /// recently incremented counter.
1441   uint64_t getCurrentProfileCount() {
1442     return PGO.getCurrentRegionCount();
1443   }
1444 
1445 private:
1446 
1447   /// SwitchInsn - This is nearest current switch instruction. It is null if
1448   /// current context is not in a switch.
1449   llvm::SwitchInst *SwitchInsn = nullptr;
1450   /// The branch weights of SwitchInsn when doing instrumentation based PGO.
1451   SmallVector<uint64_t, 16> *SwitchWeights = nullptr;
1452 
1453   /// The likelihood attributes of the SwitchCase.
1454   SmallVector<Stmt::Likelihood, 16> *SwitchLikelihood = nullptr;
1455 
1456   /// CaseRangeBlock - This block holds if condition check for last case
1457   /// statement range in current switch instruction.
1458   llvm::BasicBlock *CaseRangeBlock = nullptr;
1459 
1460   /// OpaqueLValues - Keeps track of the current set of opaque value
1461   /// expressions.
1462   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1463   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1464 
1465   // VLASizeMap - This keeps track of the associated size for each VLA type.
1466   // We track this by the size expression rather than the type itself because
1467   // in certain situations, like a const qualifier applied to an VLA typedef,
1468   // multiple VLA types can share the same size expression.
1469   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1470   // enter/leave scopes.
1471   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1472 
1473   /// A block containing a single 'unreachable' instruction.  Created
1474   /// lazily by getUnreachableBlock().
1475   llvm::BasicBlock *UnreachableBlock = nullptr;
1476 
1477   /// Counts of the number return expressions in the function.
1478   unsigned NumReturnExprs = 0;
1479 
1480   /// Count the number of simple (constant) return expressions in the function.
1481   unsigned NumSimpleReturnExprs = 0;
1482 
1483   /// The last regular (non-return) debug location (breakpoint) in the function.
1484   SourceLocation LastStopPoint;
1485 
1486 public:
1487   /// Source location information about the default argument or member
1488   /// initializer expression we're evaluating, if any.
1489   CurrentSourceLocExprScope CurSourceLocExprScope;
1490   using SourceLocExprScopeGuard =
1491       CurrentSourceLocExprScope::SourceLocExprScopeGuard;
1492 
1493   /// A scope within which we are constructing the fields of an object which
1494   /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
1495   /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
1496   class FieldConstructionScope {
1497   public:
1498     FieldConstructionScope(CodeGenFunction &CGF, Address This)
1499         : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
1500       CGF.CXXDefaultInitExprThis = This;
1501     }
1502     ~FieldConstructionScope() {
1503       CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
1504     }
1505 
1506   private:
1507     CodeGenFunction &CGF;
1508     Address OldCXXDefaultInitExprThis;
1509   };
1510 
1511   /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
1512   /// is overridden to be the object under construction.
1513   class CXXDefaultInitExprScope  {
1514   public:
1515     CXXDefaultInitExprScope(CodeGenFunction &CGF, const CXXDefaultInitExpr *E)
1516         : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue),
1517           OldCXXThisAlignment(CGF.CXXThisAlignment),
1518           SourceLocScope(E, CGF.CurSourceLocExprScope) {
1519       CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer();
1520       CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment();
1521     }
1522     ~CXXDefaultInitExprScope() {
1523       CGF.CXXThisValue = OldCXXThisValue;
1524       CGF.CXXThisAlignment = OldCXXThisAlignment;
1525     }
1526 
1527   public:
1528     CodeGenFunction &CGF;
1529     llvm::Value *OldCXXThisValue;
1530     CharUnits OldCXXThisAlignment;
1531     SourceLocExprScopeGuard SourceLocScope;
1532   };
1533 
1534   struct CXXDefaultArgExprScope : SourceLocExprScopeGuard {
1535     CXXDefaultArgExprScope(CodeGenFunction &CGF, const CXXDefaultArgExpr *E)
1536         : SourceLocExprScopeGuard(E, CGF.CurSourceLocExprScope) {}
1537   };
1538 
1539   /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the
1540   /// current loop index is overridden.
1541   class ArrayInitLoopExprScope {
1542   public:
1543     ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index)
1544       : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) {
1545       CGF.ArrayInitIndex = Index;
1546     }
1547     ~ArrayInitLoopExprScope() {
1548       CGF.ArrayInitIndex = OldArrayInitIndex;
1549     }
1550 
1551   private:
1552     CodeGenFunction &CGF;
1553     llvm::Value *OldArrayInitIndex;
1554   };
1555 
1556   class InlinedInheritingConstructorScope {
1557   public:
1558     InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD)
1559         : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl),
1560           OldCurCodeDecl(CGF.CurCodeDecl),
1561           OldCXXABIThisDecl(CGF.CXXABIThisDecl),
1562           OldCXXABIThisValue(CGF.CXXABIThisValue),
1563           OldCXXThisValue(CGF.CXXThisValue),
1564           OldCXXABIThisAlignment(CGF.CXXABIThisAlignment),
1565           OldCXXThisAlignment(CGF.CXXThisAlignment),
1566           OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy),
1567           OldCXXInheritedCtorInitExprArgs(
1568               std::move(CGF.CXXInheritedCtorInitExprArgs)) {
1569       CGF.CurGD = GD;
1570       CGF.CurFuncDecl = CGF.CurCodeDecl =
1571           cast<CXXConstructorDecl>(GD.getDecl());
1572       CGF.CXXABIThisDecl = nullptr;
1573       CGF.CXXABIThisValue = nullptr;
1574       CGF.CXXThisValue = nullptr;
1575       CGF.CXXABIThisAlignment = CharUnits();
1576       CGF.CXXThisAlignment = CharUnits();
1577       CGF.ReturnValue = Address::invalid();
1578       CGF.FnRetTy = QualType();
1579       CGF.CXXInheritedCtorInitExprArgs.clear();
1580     }
1581     ~InlinedInheritingConstructorScope() {
1582       CGF.CurGD = OldCurGD;
1583       CGF.CurFuncDecl = OldCurFuncDecl;
1584       CGF.CurCodeDecl = OldCurCodeDecl;
1585       CGF.CXXABIThisDecl = OldCXXABIThisDecl;
1586       CGF.CXXABIThisValue = OldCXXABIThisValue;
1587       CGF.CXXThisValue = OldCXXThisValue;
1588       CGF.CXXABIThisAlignment = OldCXXABIThisAlignment;
1589       CGF.CXXThisAlignment = OldCXXThisAlignment;
1590       CGF.ReturnValue = OldReturnValue;
1591       CGF.FnRetTy = OldFnRetTy;
1592       CGF.CXXInheritedCtorInitExprArgs =
1593           std::move(OldCXXInheritedCtorInitExprArgs);
1594     }
1595 
1596   private:
1597     CodeGenFunction &CGF;
1598     GlobalDecl OldCurGD;
1599     const Decl *OldCurFuncDecl;
1600     const Decl *OldCurCodeDecl;
1601     ImplicitParamDecl *OldCXXABIThisDecl;
1602     llvm::Value *OldCXXABIThisValue;
1603     llvm::Value *OldCXXThisValue;
1604     CharUnits OldCXXABIThisAlignment;
1605     CharUnits OldCXXThisAlignment;
1606     Address OldReturnValue;
1607     QualType OldFnRetTy;
1608     CallArgList OldCXXInheritedCtorInitExprArgs;
1609   };
1610 
1611   // Helper class for the OpenMP IR Builder. Allows reusability of code used for
1612   // region body, and finalization codegen callbacks. This will class will also
1613   // contain privatization functions used by the privatization call backs
1614   //
1615   // TODO: this is temporary class for things that are being moved out of
1616   // CGOpenMPRuntime, new versions of current CodeGenFunction methods, or
1617   // utility function for use with the OMPBuilder. Once that move to use the
1618   // OMPBuilder is done, everything here will either become part of CodeGenFunc.
1619   // directly, or a new helper class that will contain functions used by both
1620   // this and the OMPBuilder
1621 
1622   struct OMPBuilderCBHelpers {
1623 
1624     OMPBuilderCBHelpers() = delete;
1625     OMPBuilderCBHelpers(const OMPBuilderCBHelpers &) = delete;
1626     OMPBuilderCBHelpers &operator=(const OMPBuilderCBHelpers &) = delete;
1627 
1628     using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
1629 
1630     /// Cleanup action for allocate support.
1631     class OMPAllocateCleanupTy final : public EHScopeStack::Cleanup {
1632 
1633     private:
1634       llvm::CallInst *RTLFnCI;
1635 
1636     public:
1637       OMPAllocateCleanupTy(llvm::CallInst *RLFnCI) : RTLFnCI(RLFnCI) {
1638         RLFnCI->removeFromParent();
1639       }
1640 
1641       void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
1642         if (!CGF.HaveInsertPoint())
1643           return;
1644         CGF.Builder.Insert(RTLFnCI);
1645       }
1646     };
1647 
1648     /// Returns address of the threadprivate variable for the current
1649     /// thread. This Also create any necessary OMP runtime calls.
1650     ///
1651     /// \param VD VarDecl for Threadprivate variable.
1652     /// \param VDAddr Address of the Vardecl
1653     /// \param Loc  The location where the barrier directive was encountered
1654     static Address getAddrOfThreadPrivate(CodeGenFunction &CGF,
1655                                           const VarDecl *VD, Address VDAddr,
1656                                           SourceLocation Loc);
1657 
1658     /// Gets the OpenMP-specific address of the local variable /p VD.
1659     static Address getAddressOfLocalVariable(CodeGenFunction &CGF,
1660                                              const VarDecl *VD);
1661     /// Get the platform-specific name separator.
1662     /// \param Parts different parts of the final name that needs separation
1663     /// \param FirstSeparator First separator used between the initial two
1664     ///        parts of the name.
1665     /// \param Separator separator used between all of the rest consecutinve
1666     ///        parts of the name
1667     static std::string getNameWithSeparators(ArrayRef<StringRef> Parts,
1668                                              StringRef FirstSeparator = ".",
1669                                              StringRef Separator = ".");
1670     /// Emit the Finalization for an OMP region
1671     /// \param CGF	The Codegen function this belongs to
1672     /// \param IP	Insertion point for generating the finalization code.
1673     static void FinalizeOMPRegion(CodeGenFunction &CGF, InsertPointTy IP) {
1674       CGBuilderTy::InsertPointGuard IPG(CGF.Builder);
1675       assert(IP.getBlock()->end() != IP.getPoint() &&
1676              "OpenMP IR Builder should cause terminated block!");
1677 
1678       llvm::BasicBlock *IPBB = IP.getBlock();
1679       llvm::BasicBlock *DestBB = IPBB->getUniqueSuccessor();
1680       assert(DestBB && "Finalization block should have one successor!");
1681 
1682       // erase and replace with cleanup branch.
1683       IPBB->getTerminator()->eraseFromParent();
1684       CGF.Builder.SetInsertPoint(IPBB);
1685       CodeGenFunction::JumpDest Dest = CGF.getJumpDestInCurrentScope(DestBB);
1686       CGF.EmitBranchThroughCleanup(Dest);
1687     }
1688 
1689     /// Emit the body of an OMP region
1690     /// \param CGF	The Codegen function this belongs to
1691     /// \param RegionBodyStmt	The body statement for the OpenMP region being
1692     /// 			 generated
1693     /// \param CodeGenIP	Insertion point for generating the body code.
1694     /// \param FiniBB	The finalization basic block
1695     static void EmitOMPRegionBody(CodeGenFunction &CGF,
1696                                   const Stmt *RegionBodyStmt,
1697                                   InsertPointTy CodeGenIP,
1698                                   llvm::BasicBlock &FiniBB) {
1699       llvm::BasicBlock *CodeGenIPBB = CodeGenIP.getBlock();
1700       if (llvm::Instruction *CodeGenIPBBTI = CodeGenIPBB->getTerminator())
1701         CodeGenIPBBTI->eraseFromParent();
1702 
1703       CGF.Builder.SetInsertPoint(CodeGenIPBB);
1704 
1705       CGF.EmitStmt(RegionBodyStmt);
1706 
1707       if (CGF.Builder.saveIP().isSet())
1708         CGF.Builder.CreateBr(&FiniBB);
1709     }
1710 
1711     /// RAII for preserving necessary info during Outlined region body codegen.
1712     class OutlinedRegionBodyRAII {
1713 
1714       llvm::AssertingVH<llvm::Instruction> OldAllocaIP;
1715       CodeGenFunction::JumpDest OldReturnBlock;
1716       CGBuilderTy::InsertPoint IP;
1717       CodeGenFunction &CGF;
1718 
1719     public:
1720       OutlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP,
1721                              llvm::BasicBlock &RetBB)
1722           : CGF(cgf) {
1723         assert(AllocaIP.isSet() &&
1724                "Must specify Insertion point for allocas of outlined function");
1725         OldAllocaIP = CGF.AllocaInsertPt;
1726         CGF.AllocaInsertPt = &*AllocaIP.getPoint();
1727         IP = CGF.Builder.saveIP();
1728 
1729         OldReturnBlock = CGF.ReturnBlock;
1730         CGF.ReturnBlock = CGF.getJumpDestInCurrentScope(&RetBB);
1731       }
1732 
1733       ~OutlinedRegionBodyRAII() {
1734         CGF.AllocaInsertPt = OldAllocaIP;
1735         CGF.ReturnBlock = OldReturnBlock;
1736         CGF.Builder.restoreIP(IP);
1737       }
1738     };
1739 
1740     /// RAII for preserving necessary info during inlined region body codegen.
1741     class InlinedRegionBodyRAII {
1742 
1743       llvm::AssertingVH<llvm::Instruction> OldAllocaIP;
1744       CodeGenFunction &CGF;
1745 
1746     public:
1747       InlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP,
1748                             llvm::BasicBlock &FiniBB)
1749           : CGF(cgf) {
1750         // Alloca insertion block should be in the entry block of the containing
1751         // function so it expects an empty AllocaIP in which case will reuse the
1752         // old alloca insertion point, or a new AllocaIP in the same block as
1753         // the old one
1754         assert((!AllocaIP.isSet() ||
1755                 CGF.AllocaInsertPt->getParent() == AllocaIP.getBlock()) &&
1756                "Insertion point should be in the entry block of containing "
1757                "function!");
1758         OldAllocaIP = CGF.AllocaInsertPt;
1759         if (AllocaIP.isSet())
1760           CGF.AllocaInsertPt = &*AllocaIP.getPoint();
1761 
1762         // TODO: Remove the call, after making sure the counter is not used by
1763         //       the EHStack.
1764         // Since this is an inlined region, it should not modify the
1765         // ReturnBlock, and should reuse the one for the enclosing outlined
1766         // region. So, the JumpDest being return by the function is discarded
1767         (void)CGF.getJumpDestInCurrentScope(&FiniBB);
1768       }
1769 
1770       ~InlinedRegionBodyRAII() { CGF.AllocaInsertPt = OldAllocaIP; }
1771     };
1772   };
1773 
1774 private:
1775   /// CXXThisDecl - When generating code for a C++ member function,
1776   /// this will hold the implicit 'this' declaration.
1777   ImplicitParamDecl *CXXABIThisDecl = nullptr;
1778   llvm::Value *CXXABIThisValue = nullptr;
1779   llvm::Value *CXXThisValue = nullptr;
1780   CharUnits CXXABIThisAlignment;
1781   CharUnits CXXThisAlignment;
1782 
1783   /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
1784   /// this expression.
1785   Address CXXDefaultInitExprThis = Address::invalid();
1786 
1787   /// The current array initialization index when evaluating an
1788   /// ArrayInitIndexExpr within an ArrayInitLoopExpr.
1789   llvm::Value *ArrayInitIndex = nullptr;
1790 
1791   /// The values of function arguments to use when evaluating
1792   /// CXXInheritedCtorInitExprs within this context.
1793   CallArgList CXXInheritedCtorInitExprArgs;
1794 
1795   /// CXXStructorImplicitParamDecl - When generating code for a constructor or
1796   /// destructor, this will hold the implicit argument (e.g. VTT).
1797   ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr;
1798   llvm::Value *CXXStructorImplicitParamValue = nullptr;
1799 
1800   /// OutermostConditional - Points to the outermost active
1801   /// conditional control.  This is used so that we know if a
1802   /// temporary should be destroyed conditionally.
1803   ConditionalEvaluation *OutermostConditional = nullptr;
1804 
1805   /// The current lexical scope.
1806   LexicalScope *CurLexicalScope = nullptr;
1807 
1808   /// The current source location that should be used for exception
1809   /// handling code.
1810   SourceLocation CurEHLocation;
1811 
1812   /// BlockByrefInfos - For each __block variable, contains
1813   /// information about the layout of the variable.
1814   llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos;
1815 
1816   /// Used by -fsanitize=nullability-return to determine whether the return
1817   /// value can be checked.
1818   llvm::Value *RetValNullabilityPrecondition = nullptr;
1819 
1820   /// Check if -fsanitize=nullability-return instrumentation is required for
1821   /// this function.
1822   bool requiresReturnValueNullabilityCheck() const {
1823     return RetValNullabilityPrecondition;
1824   }
1825 
1826   /// Used to store precise source locations for return statements by the
1827   /// runtime return value checks.
1828   Address ReturnLocation = Address::invalid();
1829 
1830   /// Check if the return value of this function requires sanitization.
1831   bool requiresReturnValueCheck() const;
1832 
1833   llvm::BasicBlock *TerminateLandingPad = nullptr;
1834   llvm::BasicBlock *TerminateHandler = nullptr;
1835   llvm::BasicBlock *TrapBB = nullptr;
1836 
1837   /// Terminate funclets keyed by parent funclet pad.
1838   llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets;
1839 
1840   /// Largest vector width used in ths function. Will be used to create a
1841   /// function attribute.
1842   unsigned LargestVectorWidth = 0;
1843 
1844   /// True if we need emit the life-time markers.
1845   const bool ShouldEmitLifetimeMarkers;
1846 
1847   /// Add OpenCL kernel arg metadata and the kernel attribute metadata to
1848   /// the function metadata.
1849   void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
1850                                 llvm::Function *Fn);
1851 
1852 public:
1853   CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1854   ~CodeGenFunction();
1855 
1856   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1857   ASTContext &getContext() const { return CGM.getContext(); }
1858   CGDebugInfo *getDebugInfo() {
1859     if (DisableDebugInfo)
1860       return nullptr;
1861     return DebugInfo;
1862   }
1863   void disableDebugInfo() { DisableDebugInfo = true; }
1864   void enableDebugInfo() { DisableDebugInfo = false; }
1865 
1866   bool shouldUseFusedARCCalls() {
1867     return CGM.getCodeGenOpts().OptimizationLevel == 0;
1868   }
1869 
1870   const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1871 
1872   /// Returns a pointer to the function's exception object and selector slot,
1873   /// which is assigned in every landing pad.
1874   Address getExceptionSlot();
1875   Address getEHSelectorSlot();
1876 
1877   /// Returns the contents of the function's exception object and selector
1878   /// slots.
1879   llvm::Value *getExceptionFromSlot();
1880   llvm::Value *getSelectorFromSlot();
1881 
1882   Address getNormalCleanupDestSlot();
1883 
1884   llvm::BasicBlock *getUnreachableBlock() {
1885     if (!UnreachableBlock) {
1886       UnreachableBlock = createBasicBlock("unreachable");
1887       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1888     }
1889     return UnreachableBlock;
1890   }
1891 
1892   llvm::BasicBlock *getInvokeDest() {
1893     if (!EHStack.requiresLandingPad()) return nullptr;
1894     return getInvokeDestImpl();
1895   }
1896 
1897   bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; }
1898 
1899   const TargetInfo &getTarget() const { return Target; }
1900   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1901   const TargetCodeGenInfo &getTargetHooks() const {
1902     return CGM.getTargetCodeGenInfo();
1903   }
1904 
1905   //===--------------------------------------------------------------------===//
1906   //                                  Cleanups
1907   //===--------------------------------------------------------------------===//
1908 
1909   typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty);
1910 
1911   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1912                                         Address arrayEndPointer,
1913                                         QualType elementType,
1914                                         CharUnits elementAlignment,
1915                                         Destroyer *destroyer);
1916   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1917                                       llvm::Value *arrayEnd,
1918                                       QualType elementType,
1919                                       CharUnits elementAlignment,
1920                                       Destroyer *destroyer);
1921 
1922   void pushDestroy(QualType::DestructionKind dtorKind,
1923                    Address addr, QualType type);
1924   void pushEHDestroy(QualType::DestructionKind dtorKind,
1925                      Address addr, QualType type);
1926   void pushDestroy(CleanupKind kind, Address addr, QualType type,
1927                    Destroyer *destroyer, bool useEHCleanupForArray);
1928   void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr,
1929                                    QualType type, Destroyer *destroyer,
1930                                    bool useEHCleanupForArray);
1931   void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1932                                    llvm::Value *CompletePtr,
1933                                    QualType ElementType);
1934   void pushStackRestore(CleanupKind kind, Address SPMem);
1935   void emitDestroy(Address addr, QualType type, Destroyer *destroyer,
1936                    bool useEHCleanupForArray);
1937   llvm::Function *generateDestroyHelper(Address addr, QualType type,
1938                                         Destroyer *destroyer,
1939                                         bool useEHCleanupForArray,
1940                                         const VarDecl *VD);
1941   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1942                         QualType elementType, CharUnits elementAlign,
1943                         Destroyer *destroyer,
1944                         bool checkZeroLength, bool useEHCleanup);
1945 
1946   Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1947 
1948   /// Determines whether an EH cleanup is required to destroy a type
1949   /// with the given destruction kind.
1950   bool needsEHCleanup(QualType::DestructionKind kind) {
1951     switch (kind) {
1952     case QualType::DK_none:
1953       return false;
1954     case QualType::DK_cxx_destructor:
1955     case QualType::DK_objc_weak_lifetime:
1956     case QualType::DK_nontrivial_c_struct:
1957       return getLangOpts().Exceptions;
1958     case QualType::DK_objc_strong_lifetime:
1959       return getLangOpts().Exceptions &&
1960              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1961     }
1962     llvm_unreachable("bad destruction kind");
1963   }
1964 
1965   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
1966     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1967   }
1968 
1969   //===--------------------------------------------------------------------===//
1970   //                                  Objective-C
1971   //===--------------------------------------------------------------------===//
1972 
1973   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1974 
1975   void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
1976 
1977   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1978   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1979                           const ObjCPropertyImplDecl *PID);
1980   void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1981                               const ObjCPropertyImplDecl *propImpl,
1982                               const ObjCMethodDecl *GetterMothodDecl,
1983                               llvm::Constant *AtomicHelperFn);
1984 
1985   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1986                                   ObjCMethodDecl *MD, bool ctor);
1987 
1988   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1989   /// for the given property.
1990   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1991                           const ObjCPropertyImplDecl *PID);
1992   void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1993                               const ObjCPropertyImplDecl *propImpl,
1994                               llvm::Constant *AtomicHelperFn);
1995 
1996   //===--------------------------------------------------------------------===//
1997   //                                  Block Bits
1998   //===--------------------------------------------------------------------===//
1999 
2000   /// Emit block literal.
2001   /// \return an LLVM value which is a pointer to a struct which contains
2002   /// information about the block, including the block invoke function, the
2003   /// captured variables, etc.
2004   llvm::Value *EmitBlockLiteral(const BlockExpr *);
2005 
2006   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
2007                                         const CGBlockInfo &Info,
2008                                         const DeclMapTy &ldm,
2009                                         bool IsLambdaConversionToBlock,
2010                                         bool BuildGlobalBlock);
2011 
2012   /// Check if \p T is a C++ class that has a destructor that can throw.
2013   static bool cxxDestructorCanThrow(QualType T);
2014 
2015   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
2016   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
2017   llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
2018                                              const ObjCPropertyImplDecl *PID);
2019   llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
2020                                              const ObjCPropertyImplDecl *PID);
2021   llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
2022 
2023   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags,
2024                          bool CanThrow);
2025 
2026   class AutoVarEmission;
2027 
2028   void emitByrefStructureInit(const AutoVarEmission &emission);
2029 
2030   /// Enter a cleanup to destroy a __block variable.  Note that this
2031   /// cleanup should be a no-op if the variable hasn't left the stack
2032   /// yet; if a cleanup is required for the variable itself, that needs
2033   /// to be done externally.
2034   ///
2035   /// \param Kind Cleanup kind.
2036   ///
2037   /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block
2038   /// structure that will be passed to _Block_object_dispose. When
2039   /// \p LoadBlockVarAddr is true, the address of the field of the block
2040   /// structure that holds the address of the __block structure.
2041   ///
2042   /// \param Flags The flag that will be passed to _Block_object_dispose.
2043   ///
2044   /// \param LoadBlockVarAddr Indicates whether we need to emit a load from
2045   /// \p Addr to get the address of the __block structure.
2046   void enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags,
2047                          bool LoadBlockVarAddr, bool CanThrow);
2048 
2049   void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum,
2050                                 llvm::Value *ptr);
2051 
2052   Address LoadBlockStruct();
2053   Address GetAddrOfBlockDecl(const VarDecl *var);
2054 
2055   /// BuildBlockByrefAddress - Computes the location of the
2056   /// data in a variable which is declared as __block.
2057   Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V,
2058                                 bool followForward = true);
2059   Address emitBlockByrefAddress(Address baseAddr,
2060                                 const BlockByrefInfo &info,
2061                                 bool followForward,
2062                                 const llvm::Twine &name);
2063 
2064   const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var);
2065 
2066   QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args);
2067 
2068   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
2069                     const CGFunctionInfo &FnInfo);
2070 
2071   /// Annotate the function with an attribute that disables TSan checking at
2072   /// runtime.
2073   void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn);
2074 
2075   /// Emit code for the start of a function.
2076   /// \param Loc       The location to be associated with the function.
2077   /// \param StartLoc  The location of the function body.
2078   void StartFunction(GlobalDecl GD,
2079                      QualType RetTy,
2080                      llvm::Function *Fn,
2081                      const CGFunctionInfo &FnInfo,
2082                      const FunctionArgList &Args,
2083                      SourceLocation Loc = SourceLocation(),
2084                      SourceLocation StartLoc = SourceLocation());
2085 
2086   static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor);
2087 
2088   void EmitConstructorBody(FunctionArgList &Args);
2089   void EmitDestructorBody(FunctionArgList &Args);
2090   void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
2091   void EmitFunctionBody(const Stmt *Body);
2092   void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S);
2093 
2094   void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
2095                                   CallArgList &CallArgs);
2096   void EmitLambdaBlockInvokeBody();
2097   void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
2098   void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD);
2099   void EmitLambdaVLACapture(const VariableArrayType *VAT, LValue LV) {
2100     EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
2101   }
2102   void EmitAsanPrologueOrEpilogue(bool Prologue);
2103 
2104   /// Emit the unified return block, trying to avoid its emission when
2105   /// possible.
2106   /// \return The debug location of the user written return statement if the
2107   /// return block is is avoided.
2108   llvm::DebugLoc EmitReturnBlock();
2109 
2110   /// FinishFunction - Complete IR generation of the current function. It is
2111   /// legal to call this function even if there is no current insertion point.
2112   void FinishFunction(SourceLocation EndLoc=SourceLocation());
2113 
2114   void StartThunk(llvm::Function *Fn, GlobalDecl GD,
2115                   const CGFunctionInfo &FnInfo, bool IsUnprototyped);
2116 
2117   void EmitCallAndReturnForThunk(llvm::FunctionCallee Callee,
2118                                  const ThunkInfo *Thunk, bool IsUnprototyped);
2119 
2120   void FinishThunk();
2121 
2122   /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
2123   void EmitMustTailThunk(GlobalDecl GD, llvm::Value *AdjustedThisPtr,
2124                          llvm::FunctionCallee Callee);
2125 
2126   /// Generate a thunk for the given method.
2127   void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
2128                      GlobalDecl GD, const ThunkInfo &Thunk,
2129                      bool IsUnprototyped);
2130 
2131   llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn,
2132                                        const CGFunctionInfo &FnInfo,
2133                                        GlobalDecl GD, const ThunkInfo &Thunk);
2134 
2135   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
2136                         FunctionArgList &Args);
2137 
2138   void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init);
2139 
2140   /// Struct with all information about dynamic [sub]class needed to set vptr.
2141   struct VPtr {
2142     BaseSubobject Base;
2143     const CXXRecordDecl *NearestVBase;
2144     CharUnits OffsetFromNearestVBase;
2145     const CXXRecordDecl *VTableClass;
2146   };
2147 
2148   /// Initialize the vtable pointer of the given subobject.
2149   void InitializeVTablePointer(const VPtr &vptr);
2150 
2151   typedef llvm::SmallVector<VPtr, 4> VPtrsVector;
2152 
2153   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
2154   VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass);
2155 
2156   void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase,
2157                          CharUnits OffsetFromNearestVBase,
2158                          bool BaseIsNonVirtualPrimaryBase,
2159                          const CXXRecordDecl *VTableClass,
2160                          VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs);
2161 
2162   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
2163 
2164   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
2165   /// to by This.
2166   llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy,
2167                             const CXXRecordDecl *VTableClass);
2168 
2169   enum CFITypeCheckKind {
2170     CFITCK_VCall,
2171     CFITCK_NVCall,
2172     CFITCK_DerivedCast,
2173     CFITCK_UnrelatedCast,
2174     CFITCK_ICall,
2175     CFITCK_NVMFCall,
2176     CFITCK_VMFCall,
2177   };
2178 
2179   /// Derived is the presumed address of an object of type T after a
2180   /// cast. If T is a polymorphic class type, emit a check that the virtual
2181   /// table for Derived belongs to a class derived from T.
2182   void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived,
2183                                  bool MayBeNull, CFITypeCheckKind TCK,
2184                                  SourceLocation Loc);
2185 
2186   /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
2187   /// If vptr CFI is enabled, emit a check that VTable is valid.
2188   void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable,
2189                                  CFITypeCheckKind TCK, SourceLocation Loc);
2190 
2191   /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
2192   /// RD using llvm.type.test.
2193   void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable,
2194                           CFITypeCheckKind TCK, SourceLocation Loc);
2195 
2196   /// If whole-program virtual table optimization is enabled, emit an assumption
2197   /// that VTable is a member of RD's type identifier. Or, if vptr CFI is
2198   /// enabled, emit a check that VTable is a member of RD's type identifier.
2199   void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
2200                                     llvm::Value *VTable, SourceLocation Loc);
2201 
2202   /// Returns whether we should perform a type checked load when loading a
2203   /// virtual function for virtual calls to members of RD. This is generally
2204   /// true when both vcall CFI and whole-program-vtables are enabled.
2205   bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD);
2206 
2207   /// Emit a type checked load from the given vtable.
2208   llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable,
2209                                          uint64_t VTableByteOffset);
2210 
2211   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
2212   /// given phase of destruction for a destructor.  The end result
2213   /// should call destructors on members and base classes in reverse
2214   /// order of their construction.
2215   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
2216 
2217   /// ShouldInstrumentFunction - Return true if the current function should be
2218   /// instrumented with __cyg_profile_func_* calls
2219   bool ShouldInstrumentFunction();
2220 
2221   /// ShouldXRayInstrument - Return true if the current function should be
2222   /// instrumented with XRay nop sleds.
2223   bool ShouldXRayInstrumentFunction() const;
2224 
2225   /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit
2226   /// XRay custom event handling calls.
2227   bool AlwaysEmitXRayCustomEvents() const;
2228 
2229   /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit
2230   /// XRay typed event handling calls.
2231   bool AlwaysEmitXRayTypedEvents() const;
2232 
2233   /// Encode an address into a form suitable for use in a function prologue.
2234   llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F,
2235                                              llvm::Constant *Addr);
2236 
2237   /// Decode an address used in a function prologue, encoded by \c
2238   /// EncodeAddrForUseInPrologue.
2239   llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F,
2240                                         llvm::Value *EncodedAddr);
2241 
2242   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
2243   /// arguments for the given function. This is also responsible for naming the
2244   /// LLVM function arguments.
2245   void EmitFunctionProlog(const CGFunctionInfo &FI,
2246                           llvm::Function *Fn,
2247                           const FunctionArgList &Args);
2248 
2249   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
2250   /// given temporary.
2251   void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
2252                           SourceLocation EndLoc);
2253 
2254   /// Emit a test that checks if the return value \p RV is nonnull.
2255   void EmitReturnValueCheck(llvm::Value *RV);
2256 
2257   /// EmitStartEHSpec - Emit the start of the exception spec.
2258   void EmitStartEHSpec(const Decl *D);
2259 
2260   /// EmitEndEHSpec - Emit the end of the exception spec.
2261   void EmitEndEHSpec(const Decl *D);
2262 
2263   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
2264   llvm::BasicBlock *getTerminateLandingPad();
2265 
2266   /// getTerminateLandingPad - Return a cleanup funclet that just calls
2267   /// terminate.
2268   llvm::BasicBlock *getTerminateFunclet();
2269 
2270   /// getTerminateHandler - Return a handler (not a landing pad, just
2271   /// a catch handler) that just calls terminate.  This is used when
2272   /// a terminate scope encloses a try.
2273   llvm::BasicBlock *getTerminateHandler();
2274 
2275   llvm::Type *ConvertTypeForMem(QualType T);
2276   llvm::Type *ConvertType(QualType T);
2277   llvm::Type *ConvertType(const TypeDecl *T) {
2278     return ConvertType(getContext().getTypeDeclType(T));
2279   }
2280 
2281   /// LoadObjCSelf - Load the value of self. This function is only valid while
2282   /// generating code for an Objective-C method.
2283   llvm::Value *LoadObjCSelf();
2284 
2285   /// TypeOfSelfObject - Return type of object that this self represents.
2286   QualType TypeOfSelfObject();
2287 
2288   /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T.
2289   static TypeEvaluationKind getEvaluationKind(QualType T);
2290 
2291   static bool hasScalarEvaluationKind(QualType T) {
2292     return getEvaluationKind(T) == TEK_Scalar;
2293   }
2294 
2295   static bool hasAggregateEvaluationKind(QualType T) {
2296     return getEvaluationKind(T) == TEK_Aggregate;
2297   }
2298 
2299   /// createBasicBlock - Create an LLVM basic block.
2300   llvm::BasicBlock *createBasicBlock(const Twine &name = "",
2301                                      llvm::Function *parent = nullptr,
2302                                      llvm::BasicBlock *before = nullptr) {
2303     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
2304   }
2305 
2306   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
2307   /// label maps to.
2308   JumpDest getJumpDestForLabel(const LabelDecl *S);
2309 
2310   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
2311   /// another basic block, simplify it. This assumes that no other code could
2312   /// potentially reference the basic block.
2313   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
2314 
2315   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
2316   /// adding a fall-through branch from the current insert block if
2317   /// necessary. It is legal to call this function even if there is no current
2318   /// insertion point.
2319   ///
2320   /// IsFinished - If true, indicates that the caller has finished emitting
2321   /// branches to the given block and does not expect to emit code into it. This
2322   /// means the block can be ignored if it is unreachable.
2323   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
2324 
2325   /// EmitBlockAfterUses - Emit the given block somewhere hopefully
2326   /// near its uses, and leave the insertion point in it.
2327   void EmitBlockAfterUses(llvm::BasicBlock *BB);
2328 
2329   /// EmitBranch - Emit a branch to the specified basic block from the current
2330   /// insert block, taking care to avoid creation of branches from dummy
2331   /// blocks. It is legal to call this function even if there is no current
2332   /// insertion point.
2333   ///
2334   /// This function clears the current insertion point. The caller should follow
2335   /// calls to this function with calls to Emit*Block prior to generation new
2336   /// code.
2337   void EmitBranch(llvm::BasicBlock *Block);
2338 
2339   /// HaveInsertPoint - True if an insertion point is defined. If not, this
2340   /// indicates that the current code being emitted is unreachable.
2341   bool HaveInsertPoint() const {
2342     return Builder.GetInsertBlock() != nullptr;
2343   }
2344 
2345   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
2346   /// emitted IR has a place to go. Note that by definition, if this function
2347   /// creates a block then that block is unreachable; callers may do better to
2348   /// detect when no insertion point is defined and simply skip IR generation.
2349   void EnsureInsertPoint() {
2350     if (!HaveInsertPoint())
2351       EmitBlock(createBasicBlock());
2352   }
2353 
2354   /// ErrorUnsupported - Print out an error that codegen doesn't support the
2355   /// specified stmt yet.
2356   void ErrorUnsupported(const Stmt *S, const char *Type);
2357 
2358   //===--------------------------------------------------------------------===//
2359   //                                  Helpers
2360   //===--------------------------------------------------------------------===//
2361 
2362   LValue MakeAddrLValue(Address Addr, QualType T,
2363                         AlignmentSource Source = AlignmentSource::Type) {
2364     return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
2365                             CGM.getTBAAAccessInfo(T));
2366   }
2367 
2368   LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo,
2369                         TBAAAccessInfo TBAAInfo) {
2370     return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo);
2371   }
2372 
2373   LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
2374                         AlignmentSource Source = AlignmentSource::Type) {
2375     return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
2376                             LValueBaseInfo(Source), CGM.getTBAAAccessInfo(T));
2377   }
2378 
2379   LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
2380                         LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) {
2381     return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
2382                             BaseInfo, TBAAInfo);
2383   }
2384 
2385   LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T);
2386   LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T);
2387 
2388   Address EmitLoadOfReference(LValue RefLVal,
2389                               LValueBaseInfo *PointeeBaseInfo = nullptr,
2390                               TBAAAccessInfo *PointeeTBAAInfo = nullptr);
2391   LValue EmitLoadOfReferenceLValue(LValue RefLVal);
2392   LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy,
2393                                    AlignmentSource Source =
2394                                        AlignmentSource::Type) {
2395     LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source),
2396                                     CGM.getTBAAAccessInfo(RefTy));
2397     return EmitLoadOfReferenceLValue(RefLVal);
2398   }
2399 
2400   Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy,
2401                             LValueBaseInfo *BaseInfo = nullptr,
2402                             TBAAAccessInfo *TBAAInfo = nullptr);
2403   LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy);
2404 
2405   /// CreateTempAlloca - This creates an alloca and inserts it into the entry
2406   /// block if \p ArraySize is nullptr, otherwise inserts it at the current
2407   /// insertion point of the builder. The caller is responsible for setting an
2408   /// appropriate alignment on
2409   /// the alloca.
2410   ///
2411   /// \p ArraySize is the number of array elements to be allocated if it
2412   ///    is not nullptr.
2413   ///
2414   /// LangAS::Default is the address space of pointers to local variables and
2415   /// temporaries, as exposed in the source language. In certain
2416   /// configurations, this is not the same as the alloca address space, and a
2417   /// cast is needed to lift the pointer from the alloca AS into
2418   /// LangAS::Default. This can happen when the target uses a restricted
2419   /// address space for the stack but the source language requires
2420   /// LangAS::Default to be a generic address space. The latter condition is
2421   /// common for most programming languages; OpenCL is an exception in that
2422   /// LangAS::Default is the private address space, which naturally maps
2423   /// to the stack.
2424   ///
2425   /// Because the address of a temporary is often exposed to the program in
2426   /// various ways, this function will perform the cast. The original alloca
2427   /// instruction is returned through \p Alloca if it is not nullptr.
2428   ///
2429   /// The cast is not performaed in CreateTempAllocaWithoutCast. This is
2430   /// more efficient if the caller knows that the address will not be exposed.
2431   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp",
2432                                      llvm::Value *ArraySize = nullptr);
2433   Address CreateTempAlloca(llvm::Type *Ty, CharUnits align,
2434                            const Twine &Name = "tmp",
2435                            llvm::Value *ArraySize = nullptr,
2436                            Address *Alloca = nullptr);
2437   Address CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align,
2438                                       const Twine &Name = "tmp",
2439                                       llvm::Value *ArraySize = nullptr);
2440 
2441   /// CreateDefaultAlignedTempAlloca - This creates an alloca with the
2442   /// default ABI alignment of the given LLVM type.
2443   ///
2444   /// IMPORTANT NOTE: This is *not* generally the right alignment for
2445   /// any given AST type that happens to have been lowered to the
2446   /// given IR type.  This should only ever be used for function-local,
2447   /// IR-driven manipulations like saving and restoring a value.  Do
2448   /// not hand this address off to arbitrary IRGen routines, and especially
2449   /// do not pass it as an argument to a function that might expect a
2450   /// properly ABI-aligned value.
2451   Address CreateDefaultAlignTempAlloca(llvm::Type *Ty,
2452                                        const Twine &Name = "tmp");
2453 
2454   /// InitTempAlloca - Provide an initial value for the given alloca which
2455   /// will be observable at all locations in the function.
2456   ///
2457   /// The address should be something that was returned from one of
2458   /// the CreateTempAlloca or CreateMemTemp routines, and the
2459   /// initializer must be valid in the entry block (i.e. it must
2460   /// either be a constant or an argument value).
2461   void InitTempAlloca(Address Alloca, llvm::Value *Value);
2462 
2463   /// CreateIRTemp - Create a temporary IR object of the given type, with
2464   /// appropriate alignment. This routine should only be used when an temporary
2465   /// value needs to be stored into an alloca (for example, to avoid explicit
2466   /// PHI construction), but the type is the IR type, not the type appropriate
2467   /// for storing in memory.
2468   ///
2469   /// That is, this is exactly equivalent to CreateMemTemp, but calling
2470   /// ConvertType instead of ConvertTypeForMem.
2471   Address CreateIRTemp(QualType T, const Twine &Name = "tmp");
2472 
2473   /// CreateMemTemp - Create a temporary memory object of the given type, with
2474   /// appropriate alignmen and cast it to the default address space. Returns
2475   /// the original alloca instruction by \p Alloca if it is not nullptr.
2476   Address CreateMemTemp(QualType T, const Twine &Name = "tmp",
2477                         Address *Alloca = nullptr);
2478   Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp",
2479                         Address *Alloca = nullptr);
2480 
2481   /// CreateMemTemp - Create a temporary memory object of the given type, with
2482   /// appropriate alignmen without casting it to the default address space.
2483   Address CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp");
2484   Address CreateMemTempWithoutCast(QualType T, CharUnits Align,
2485                                    const Twine &Name = "tmp");
2486 
2487   /// CreateAggTemp - Create a temporary memory object for the given
2488   /// aggregate type.
2489   AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp",
2490                              Address *Alloca = nullptr) {
2491     return AggValueSlot::forAddr(CreateMemTemp(T, Name, Alloca),
2492                                  T.getQualifiers(),
2493                                  AggValueSlot::IsNotDestructed,
2494                                  AggValueSlot::DoesNotNeedGCBarriers,
2495                                  AggValueSlot::IsNotAliased,
2496                                  AggValueSlot::DoesNotOverlap);
2497   }
2498 
2499   /// Emit a cast to void* in the appropriate address space.
2500   llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
2501 
2502   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
2503   /// expression and compare the result against zero, returning an Int1Ty value.
2504   llvm::Value *EvaluateExprAsBool(const Expr *E);
2505 
2506   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
2507   void EmitIgnoredExpr(const Expr *E);
2508 
2509   /// EmitAnyExpr - Emit code to compute the specified expression which can have
2510   /// any type.  The result is returned as an RValue struct.  If this is an
2511   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
2512   /// the result should be returned.
2513   ///
2514   /// \param ignoreResult True if the resulting value isn't used.
2515   RValue EmitAnyExpr(const Expr *E,
2516                      AggValueSlot aggSlot = AggValueSlot::ignored(),
2517                      bool ignoreResult = false);
2518 
2519   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
2520   // or the value of the expression, depending on how va_list is defined.
2521   Address EmitVAListRef(const Expr *E);
2522 
2523   /// Emit a "reference" to a __builtin_ms_va_list; this is
2524   /// always the value of the expression, because a __builtin_ms_va_list is a
2525   /// pointer to a char.
2526   Address EmitMSVAListRef(const Expr *E);
2527 
2528   /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will
2529   /// always be accessible even if no aggregate location is provided.
2530   RValue EmitAnyExprToTemp(const Expr *E);
2531 
2532   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
2533   /// arbitrary expression into the given memory location.
2534   void EmitAnyExprToMem(const Expr *E, Address Location,
2535                         Qualifiers Quals, bool IsInitializer);
2536 
2537   void EmitAnyExprToExn(const Expr *E, Address Addr);
2538 
2539   /// EmitExprAsInit - Emits the code necessary to initialize a
2540   /// location in memory with the given initializer.
2541   void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2542                       bool capturedByInit);
2543 
2544   /// hasVolatileMember - returns true if aggregate type has a volatile
2545   /// member.
2546   bool hasVolatileMember(QualType T) {
2547     if (const RecordType *RT = T->getAs<RecordType>()) {
2548       const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
2549       return RD->hasVolatileMember();
2550     }
2551     return false;
2552   }
2553 
2554   /// Determine whether a return value slot may overlap some other object.
2555   AggValueSlot::Overlap_t getOverlapForReturnValue() {
2556     // FIXME: Assuming no overlap here breaks guaranteed copy elision for base
2557     // class subobjects. These cases may need to be revisited depending on the
2558     // resolution of the relevant core issue.
2559     return AggValueSlot::DoesNotOverlap;
2560   }
2561 
2562   /// Determine whether a field initialization may overlap some other object.
2563   AggValueSlot::Overlap_t getOverlapForFieldInit(const FieldDecl *FD);
2564 
2565   /// Determine whether a base class initialization may overlap some other
2566   /// object.
2567   AggValueSlot::Overlap_t getOverlapForBaseInit(const CXXRecordDecl *RD,
2568                                                 const CXXRecordDecl *BaseRD,
2569                                                 bool IsVirtual);
2570 
2571   /// Emit an aggregate assignment.
2572   void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) {
2573     bool IsVolatile = hasVolatileMember(EltTy);
2574     EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile);
2575   }
2576 
2577   void EmitAggregateCopyCtor(LValue Dest, LValue Src,
2578                              AggValueSlot::Overlap_t MayOverlap) {
2579     EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap);
2580   }
2581 
2582   /// EmitAggregateCopy - Emit an aggregate copy.
2583   ///
2584   /// \param isVolatile \c true iff either the source or the destination is
2585   ///        volatile.
2586   /// \param MayOverlap Whether the tail padding of the destination might be
2587   ///        occupied by some other object. More efficient code can often be
2588   ///        generated if not.
2589   void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy,
2590                          AggValueSlot::Overlap_t MayOverlap,
2591                          bool isVolatile = false);
2592 
2593   /// GetAddrOfLocalVar - Return the address of a local variable.
2594   Address GetAddrOfLocalVar(const VarDecl *VD) {
2595     auto it = LocalDeclMap.find(VD);
2596     assert(it != LocalDeclMap.end() &&
2597            "Invalid argument to GetAddrOfLocalVar(), no decl!");
2598     return it->second;
2599   }
2600 
2601   /// Given an opaque value expression, return its LValue mapping if it exists,
2602   /// otherwise create one.
2603   LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e);
2604 
2605   /// Given an opaque value expression, return its RValue mapping if it exists,
2606   /// otherwise create one.
2607   RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e);
2608 
2609   /// Get the index of the current ArrayInitLoopExpr, if any.
2610   llvm::Value *getArrayInitIndex() { return ArrayInitIndex; }
2611 
2612   /// getAccessedFieldNo - Given an encoded value and a result number, return
2613   /// the input field number being accessed.
2614   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
2615 
2616   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
2617   llvm::BasicBlock *GetIndirectGotoBlock();
2618 
2619   /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts.
2620   static bool IsWrappedCXXThis(const Expr *E);
2621 
2622   /// EmitNullInitialization - Generate code to set a value of the given type to
2623   /// null, If the type contains data member pointers, they will be initialized
2624   /// to -1 in accordance with the Itanium C++ ABI.
2625   void EmitNullInitialization(Address DestPtr, QualType Ty);
2626 
2627   /// Emits a call to an LLVM variable-argument intrinsic, either
2628   /// \c llvm.va_start or \c llvm.va_end.
2629   /// \param ArgValue A reference to the \c va_list as emitted by either
2630   /// \c EmitVAListRef or \c EmitMSVAListRef.
2631   /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise,
2632   /// calls \c llvm.va_end.
2633   llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart);
2634 
2635   /// Generate code to get an argument from the passed in pointer
2636   /// and update it accordingly.
2637   /// \param VE The \c VAArgExpr for which to generate code.
2638   /// \param VAListAddr Receives a reference to the \c va_list as emitted by
2639   /// either \c EmitVAListRef or \c EmitMSVAListRef.
2640   /// \returns A pointer to the argument.
2641   // FIXME: We should be able to get rid of this method and use the va_arg
2642   // instruction in LLVM instead once it works well enough.
2643   Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr);
2644 
2645   /// emitArrayLength - Compute the length of an array, even if it's a
2646   /// VLA, and drill down to the base element type.
2647   llvm::Value *emitArrayLength(const ArrayType *arrayType,
2648                                QualType &baseType,
2649                                Address &addr);
2650 
2651   /// EmitVLASize - Capture all the sizes for the VLA expressions in
2652   /// the given variably-modified type and store them in the VLASizeMap.
2653   ///
2654   /// This function can be called with a null (unreachable) insert point.
2655   void EmitVariablyModifiedType(QualType Ty);
2656 
2657   struct VlaSizePair {
2658     llvm::Value *NumElts;
2659     QualType Type;
2660 
2661     VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {}
2662   };
2663 
2664   /// Return the number of elements for a single dimension
2665   /// for the given array type.
2666   VlaSizePair getVLAElements1D(const VariableArrayType *vla);
2667   VlaSizePair getVLAElements1D(QualType vla);
2668 
2669   /// Returns an LLVM value that corresponds to the size,
2670   /// in non-variably-sized elements, of a variable length array type,
2671   /// plus that largest non-variably-sized element type.  Assumes that
2672   /// the type has already been emitted with EmitVariablyModifiedType.
2673   VlaSizePair getVLASize(const VariableArrayType *vla);
2674   VlaSizePair getVLASize(QualType vla);
2675 
2676   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
2677   /// generating code for an C++ member function.
2678   llvm::Value *LoadCXXThis() {
2679     assert(CXXThisValue && "no 'this' value for this function");
2680     return CXXThisValue;
2681   }
2682   Address LoadCXXThisAddress();
2683 
2684   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
2685   /// virtual bases.
2686   // FIXME: Every place that calls LoadCXXVTT is something
2687   // that needs to be abstracted properly.
2688   llvm::Value *LoadCXXVTT() {
2689     assert(CXXStructorImplicitParamValue && "no VTT value for this function");
2690     return CXXStructorImplicitParamValue;
2691   }
2692 
2693   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
2694   /// complete class to the given direct base.
2695   Address
2696   GetAddressOfDirectBaseInCompleteClass(Address Value,
2697                                         const CXXRecordDecl *Derived,
2698                                         const CXXRecordDecl *Base,
2699                                         bool BaseIsVirtual);
2700 
2701   static bool ShouldNullCheckClassCastValue(const CastExpr *Cast);
2702 
2703   /// GetAddressOfBaseClass - This function will add the necessary delta to the
2704   /// load of 'this' and returns address of the base class.
2705   Address GetAddressOfBaseClass(Address Value,
2706                                 const CXXRecordDecl *Derived,
2707                                 CastExpr::path_const_iterator PathBegin,
2708                                 CastExpr::path_const_iterator PathEnd,
2709                                 bool NullCheckValue, SourceLocation Loc);
2710 
2711   Address GetAddressOfDerivedClass(Address Value,
2712                                    const CXXRecordDecl *Derived,
2713                                    CastExpr::path_const_iterator PathBegin,
2714                                    CastExpr::path_const_iterator PathEnd,
2715                                    bool NullCheckValue);
2716 
2717   /// GetVTTParameter - Return the VTT parameter that should be passed to a
2718   /// base constructor/destructor with virtual bases.
2719   /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
2720   /// to ItaniumCXXABI.cpp together with all the references to VTT.
2721   llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
2722                                bool Delegating);
2723 
2724   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
2725                                       CXXCtorType CtorType,
2726                                       const FunctionArgList &Args,
2727                                       SourceLocation Loc);
2728   // It's important not to confuse this and the previous function. Delegating
2729   // constructors are the C++0x feature. The constructor delegate optimization
2730   // is used to reduce duplication in the base and complete consturctors where
2731   // they are substantially the same.
2732   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2733                                         const FunctionArgList &Args);
2734 
2735   /// Emit a call to an inheriting constructor (that is, one that invokes a
2736   /// constructor inherited from a base class) by inlining its definition. This
2737   /// is necessary if the ABI does not support forwarding the arguments to the
2738   /// base class constructor (because they're variadic or similar).
2739   void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2740                                                CXXCtorType CtorType,
2741                                                bool ForVirtualBase,
2742                                                bool Delegating,
2743                                                CallArgList &Args);
2744 
2745   /// Emit a call to a constructor inherited from a base class, passing the
2746   /// current constructor's arguments along unmodified (without even making
2747   /// a copy).
2748   void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D,
2749                                        bool ForVirtualBase, Address This,
2750                                        bool InheritedFromVBase,
2751                                        const CXXInheritedCtorInitExpr *E);
2752 
2753   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2754                               bool ForVirtualBase, bool Delegating,
2755                               AggValueSlot ThisAVS, const CXXConstructExpr *E);
2756 
2757   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2758                               bool ForVirtualBase, bool Delegating,
2759                               Address This, CallArgList &Args,
2760                               AggValueSlot::Overlap_t Overlap,
2761                               SourceLocation Loc, bool NewPointerIsChecked);
2762 
2763   /// Emit assumption load for all bases. Requires to be be called only on
2764   /// most-derived class and not under construction of the object.
2765   void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This);
2766 
2767   /// Emit assumption that vptr load == global vtable.
2768   void EmitVTableAssumptionLoad(const VPtr &vptr, Address This);
2769 
2770   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
2771                                       Address This, Address Src,
2772                                       const CXXConstructExpr *E);
2773 
2774   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2775                                   const ArrayType *ArrayTy,
2776                                   Address ArrayPtr,
2777                                   const CXXConstructExpr *E,
2778                                   bool NewPointerIsChecked,
2779                                   bool ZeroInitialization = false);
2780 
2781   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2782                                   llvm::Value *NumElements,
2783                                   Address ArrayPtr,
2784                                   const CXXConstructExpr *E,
2785                                   bool NewPointerIsChecked,
2786                                   bool ZeroInitialization = false);
2787 
2788   static Destroyer destroyCXXObject;
2789 
2790   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
2791                              bool ForVirtualBase, bool Delegating, Address This,
2792                              QualType ThisTy);
2793 
2794   void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
2795                                llvm::Type *ElementTy, Address NewPtr,
2796                                llvm::Value *NumElements,
2797                                llvm::Value *AllocSizeWithoutCookie);
2798 
2799   void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
2800                         Address Ptr);
2801 
2802   llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr);
2803   void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr);
2804 
2805   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
2806   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
2807 
2808   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
2809                       QualType DeleteTy, llvm::Value *NumElements = nullptr,
2810                       CharUnits CookieSize = CharUnits());
2811 
2812   RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
2813                                   const CallExpr *TheCallExpr, bool IsDelete);
2814 
2815   llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E);
2816   llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE);
2817   Address EmitCXXUuidofExpr(const CXXUuidofExpr *E);
2818 
2819   /// Situations in which we might emit a check for the suitability of a
2820   /// pointer or glvalue. Needs to be kept in sync with ubsan_handlers.cpp in
2821   /// compiler-rt.
2822   enum TypeCheckKind {
2823     /// Checking the operand of a load. Must be suitably sized and aligned.
2824     TCK_Load,
2825     /// Checking the destination of a store. Must be suitably sized and aligned.
2826     TCK_Store,
2827     /// Checking the bound value in a reference binding. Must be suitably sized
2828     /// and aligned, but is not required to refer to an object (until the
2829     /// reference is used), per core issue 453.
2830     TCK_ReferenceBinding,
2831     /// Checking the object expression in a non-static data member access. Must
2832     /// be an object within its lifetime.
2833     TCK_MemberAccess,
2834     /// Checking the 'this' pointer for a call to a non-static member function.
2835     /// Must be an object within its lifetime.
2836     TCK_MemberCall,
2837     /// Checking the 'this' pointer for a constructor call.
2838     TCK_ConstructorCall,
2839     /// Checking the operand of a static_cast to a derived pointer type. Must be
2840     /// null or an object within its lifetime.
2841     TCK_DowncastPointer,
2842     /// Checking the operand of a static_cast to a derived reference type. Must
2843     /// be an object within its lifetime.
2844     TCK_DowncastReference,
2845     /// Checking the operand of a cast to a base object. Must be suitably sized
2846     /// and aligned.
2847     TCK_Upcast,
2848     /// Checking the operand of a cast to a virtual base object. Must be an
2849     /// object within its lifetime.
2850     TCK_UpcastToVirtualBase,
2851     /// Checking the value assigned to a _Nonnull pointer. Must not be null.
2852     TCK_NonnullAssign,
2853     /// Checking the operand of a dynamic_cast or a typeid expression.  Must be
2854     /// null or an object within its lifetime.
2855     TCK_DynamicOperation
2856   };
2857 
2858   /// Determine whether the pointer type check \p TCK permits null pointers.
2859   static bool isNullPointerAllowed(TypeCheckKind TCK);
2860 
2861   /// Determine whether the pointer type check \p TCK requires a vptr check.
2862   static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty);
2863 
2864   /// Whether any type-checking sanitizers are enabled. If \c false,
2865   /// calls to EmitTypeCheck can be skipped.
2866   bool sanitizePerformTypeCheck() const;
2867 
2868   /// Emit a check that \p V is the address of storage of the
2869   /// appropriate size and alignment for an object of type \p Type
2870   /// (or if ArraySize is provided, for an array of that bound).
2871   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
2872                      QualType Type, CharUnits Alignment = CharUnits::Zero(),
2873                      SanitizerSet SkippedChecks = SanitizerSet(),
2874                      llvm::Value *ArraySize = nullptr);
2875 
2876   /// Emit a check that \p Base points into an array object, which
2877   /// we can access at index \p Index. \p Accessed should be \c false if we
2878   /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
2879   void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
2880                        QualType IndexType, bool Accessed);
2881 
2882   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2883                                        bool isInc, bool isPre);
2884   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
2885                                          bool isInc, bool isPre);
2886 
2887   /// Converts Location to a DebugLoc, if debug information is enabled.
2888   llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location);
2889 
2890   /// Get the record field index as represented in debug info.
2891   unsigned getDebugInfoFIndex(const RecordDecl *Rec, unsigned FieldIndex);
2892 
2893 
2894   //===--------------------------------------------------------------------===//
2895   //                            Declaration Emission
2896   //===--------------------------------------------------------------------===//
2897 
2898   /// EmitDecl - Emit a declaration.
2899   ///
2900   /// This function can be called with a null (unreachable) insert point.
2901   void EmitDecl(const Decl &D);
2902 
2903   /// EmitVarDecl - Emit a local variable declaration.
2904   ///
2905   /// This function can be called with a null (unreachable) insert point.
2906   void EmitVarDecl(const VarDecl &D);
2907 
2908   void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2909                       bool capturedByInit);
2910 
2911   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
2912                              llvm::Value *Address);
2913 
2914   /// Determine whether the given initializer is trivial in the sense
2915   /// that it requires no code to be generated.
2916   bool isTrivialInitializer(const Expr *Init);
2917 
2918   /// EmitAutoVarDecl - Emit an auto variable declaration.
2919   ///
2920   /// This function can be called with a null (unreachable) insert point.
2921   void EmitAutoVarDecl(const VarDecl &D);
2922 
2923   class AutoVarEmission {
2924     friend class CodeGenFunction;
2925 
2926     const VarDecl *Variable;
2927 
2928     /// The address of the alloca for languages with explicit address space
2929     /// (e.g. OpenCL) or alloca casted to generic pointer for address space
2930     /// agnostic languages (e.g. C++). Invalid if the variable was emitted
2931     /// as a global constant.
2932     Address Addr;
2933 
2934     llvm::Value *NRVOFlag;
2935 
2936     /// True if the variable is a __block variable that is captured by an
2937     /// escaping block.
2938     bool IsEscapingByRef;
2939 
2940     /// True if the variable is of aggregate type and has a constant
2941     /// initializer.
2942     bool IsConstantAggregate;
2943 
2944     /// Non-null if we should use lifetime annotations.
2945     llvm::Value *SizeForLifetimeMarkers;
2946 
2947     /// Address with original alloca instruction. Invalid if the variable was
2948     /// emitted as a global constant.
2949     Address AllocaAddr;
2950 
2951     struct Invalid {};
2952     AutoVarEmission(Invalid)
2953         : Variable(nullptr), Addr(Address::invalid()),
2954           AllocaAddr(Address::invalid()) {}
2955 
2956     AutoVarEmission(const VarDecl &variable)
2957         : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr),
2958           IsEscapingByRef(false), IsConstantAggregate(false),
2959           SizeForLifetimeMarkers(nullptr), AllocaAddr(Address::invalid()) {}
2960 
2961     bool wasEmittedAsGlobal() const { return !Addr.isValid(); }
2962 
2963   public:
2964     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
2965 
2966     bool useLifetimeMarkers() const {
2967       return SizeForLifetimeMarkers != nullptr;
2968     }
2969     llvm::Value *getSizeForLifetimeMarkers() const {
2970       assert(useLifetimeMarkers());
2971       return SizeForLifetimeMarkers;
2972     }
2973 
2974     /// Returns the raw, allocated address, which is not necessarily
2975     /// the address of the object itself. It is casted to default
2976     /// address space for address space agnostic languages.
2977     Address getAllocatedAddress() const {
2978       return Addr;
2979     }
2980 
2981     /// Returns the address for the original alloca instruction.
2982     Address getOriginalAllocatedAddress() const { return AllocaAddr; }
2983 
2984     /// Returns the address of the object within this declaration.
2985     /// Note that this does not chase the forwarding pointer for
2986     /// __block decls.
2987     Address getObjectAddress(CodeGenFunction &CGF) const {
2988       if (!IsEscapingByRef) return Addr;
2989 
2990       return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false);
2991     }
2992   };
2993   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
2994   void EmitAutoVarInit(const AutoVarEmission &emission);
2995   void EmitAutoVarCleanups(const AutoVarEmission &emission);
2996   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
2997                               QualType::DestructionKind dtorKind);
2998 
2999   /// Emits the alloca and debug information for the size expressions for each
3000   /// dimension of an array. It registers the association of its (1-dimensional)
3001   /// QualTypes and size expression's debug node, so that CGDebugInfo can
3002   /// reference this node when creating the DISubrange object to describe the
3003   /// array types.
3004   void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI,
3005                                               const VarDecl &D,
3006                                               bool EmitDebugInfo);
3007 
3008   void EmitStaticVarDecl(const VarDecl &D,
3009                          llvm::GlobalValue::LinkageTypes Linkage);
3010 
3011   class ParamValue {
3012     llvm::Value *Value;
3013     unsigned Alignment;
3014     ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {}
3015   public:
3016     static ParamValue forDirect(llvm::Value *value) {
3017       return ParamValue(value, 0);
3018     }
3019     static ParamValue forIndirect(Address addr) {
3020       assert(!addr.getAlignment().isZero());
3021       return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity());
3022     }
3023 
3024     bool isIndirect() const { return Alignment != 0; }
3025     llvm::Value *getAnyValue() const { return Value; }
3026 
3027     llvm::Value *getDirectValue() const {
3028       assert(!isIndirect());
3029       return Value;
3030     }
3031 
3032     Address getIndirectAddress() const {
3033       assert(isIndirect());
3034       return Address(Value, CharUnits::fromQuantity(Alignment));
3035     }
3036   };
3037 
3038   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
3039   void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo);
3040 
3041   /// protectFromPeepholes - Protect a value that we're intending to
3042   /// store to the side, but which will probably be used later, from
3043   /// aggressive peepholing optimizations that might delete it.
3044   ///
3045   /// Pass the result to unprotectFromPeepholes to declare that
3046   /// protection is no longer required.
3047   ///
3048   /// There's no particular reason why this shouldn't apply to
3049   /// l-values, it's just that no existing peepholes work on pointers.
3050   PeepholeProtection protectFromPeepholes(RValue rvalue);
3051   void unprotectFromPeepholes(PeepholeProtection protection);
3052 
3053   void emitAlignmentAssumptionCheck(llvm::Value *Ptr, QualType Ty,
3054                                     SourceLocation Loc,
3055                                     SourceLocation AssumptionLoc,
3056                                     llvm::Value *Alignment,
3057                                     llvm::Value *OffsetValue,
3058                                     llvm::Value *TheCheck,
3059                                     llvm::Instruction *Assumption);
3060 
3061   void emitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty,
3062                                SourceLocation Loc, SourceLocation AssumptionLoc,
3063                                llvm::Value *Alignment,
3064                                llvm::Value *OffsetValue = nullptr);
3065 
3066   void emitAlignmentAssumption(llvm::Value *PtrValue, const Expr *E,
3067                                SourceLocation AssumptionLoc,
3068                                llvm::Value *Alignment,
3069                                llvm::Value *OffsetValue = nullptr);
3070 
3071   //===--------------------------------------------------------------------===//
3072   //                             Statement Emission
3073   //===--------------------------------------------------------------------===//
3074 
3075   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
3076   void EmitStopPoint(const Stmt *S);
3077 
3078   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
3079   /// this function even if there is no current insertion point.
3080   ///
3081   /// This function may clear the current insertion point; callers should use
3082   /// EnsureInsertPoint if they wish to subsequently generate code without first
3083   /// calling EmitBlock, EmitBranch, or EmitStmt.
3084   void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None);
3085 
3086   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
3087   /// necessarily require an insertion point or debug information; typically
3088   /// because the statement amounts to a jump or a container of other
3089   /// statements.
3090   ///
3091   /// \return True if the statement was handled.
3092   bool EmitSimpleStmt(const Stmt *S, ArrayRef<const Attr *> Attrs);
3093 
3094   Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
3095                            AggValueSlot AVS = AggValueSlot::ignored());
3096   Address EmitCompoundStmtWithoutScope(const CompoundStmt &S,
3097                                        bool GetLast = false,
3098                                        AggValueSlot AVS =
3099                                                 AggValueSlot::ignored());
3100 
3101   /// EmitLabel - Emit the block for the given label. It is legal to call this
3102   /// function even if there is no current insertion point.
3103   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
3104 
3105   void EmitLabelStmt(const LabelStmt &S);
3106   void EmitAttributedStmt(const AttributedStmt &S);
3107   void EmitGotoStmt(const GotoStmt &S);
3108   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
3109   void EmitIfStmt(const IfStmt &S);
3110 
3111   void EmitWhileStmt(const WhileStmt &S,
3112                      ArrayRef<const Attr *> Attrs = None);
3113   void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None);
3114   void EmitForStmt(const ForStmt &S,
3115                    ArrayRef<const Attr *> Attrs = None);
3116   void EmitReturnStmt(const ReturnStmt &S);
3117   void EmitDeclStmt(const DeclStmt &S);
3118   void EmitBreakStmt(const BreakStmt &S);
3119   void EmitContinueStmt(const ContinueStmt &S);
3120   void EmitSwitchStmt(const SwitchStmt &S);
3121   void EmitDefaultStmt(const DefaultStmt &S, ArrayRef<const Attr *> Attrs);
3122   void EmitCaseStmt(const CaseStmt &S, ArrayRef<const Attr *> Attrs);
3123   void EmitCaseStmtRange(const CaseStmt &S, ArrayRef<const Attr *> Attrs);
3124   void EmitAsmStmt(const AsmStmt &S);
3125 
3126   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
3127   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
3128   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
3129   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
3130   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
3131 
3132   void EmitCoroutineBody(const CoroutineBodyStmt &S);
3133   void EmitCoreturnStmt(const CoreturnStmt &S);
3134   RValue EmitCoawaitExpr(const CoawaitExpr &E,
3135                          AggValueSlot aggSlot = AggValueSlot::ignored(),
3136                          bool ignoreResult = false);
3137   LValue EmitCoawaitLValue(const CoawaitExpr *E);
3138   RValue EmitCoyieldExpr(const CoyieldExpr &E,
3139                          AggValueSlot aggSlot = AggValueSlot::ignored(),
3140                          bool ignoreResult = false);
3141   LValue EmitCoyieldLValue(const CoyieldExpr *E);
3142   RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID);
3143 
3144   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
3145   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
3146 
3147   void EmitCXXTryStmt(const CXXTryStmt &S);
3148   void EmitSEHTryStmt(const SEHTryStmt &S);
3149   void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
3150   void EnterSEHTryStmt(const SEHTryStmt &S);
3151   void ExitSEHTryStmt(const SEHTryStmt &S);
3152 
3153   void pushSEHCleanup(CleanupKind kind,
3154                       llvm::Function *FinallyFunc);
3155   void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter,
3156                               const Stmt *OutlinedStmt);
3157 
3158   llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
3159                                             const SEHExceptStmt &Except);
3160 
3161   llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF,
3162                                              const SEHFinallyStmt &Finally);
3163 
3164   void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF,
3165                                 llvm::Value *ParentFP,
3166                                 llvm::Value *EntryEBP);
3167   llvm::Value *EmitSEHExceptionCode();
3168   llvm::Value *EmitSEHExceptionInfo();
3169   llvm::Value *EmitSEHAbnormalTermination();
3170 
3171   /// Emit simple code for OpenMP directives in Simd-only mode.
3172   void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D);
3173 
3174   /// Scan the outlined statement for captures from the parent function. For
3175   /// each capture, mark the capture as escaped and emit a call to
3176   /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap.
3177   void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
3178                           bool IsFilter);
3179 
3180   /// Recovers the address of a local in a parent function. ParentVar is the
3181   /// address of the variable used in the immediate parent function. It can
3182   /// either be an alloca or a call to llvm.localrecover if there are nested
3183   /// outlined functions. ParentFP is the frame pointer of the outermost parent
3184   /// frame.
3185   Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF,
3186                                     Address ParentVar,
3187                                     llvm::Value *ParentFP);
3188 
3189   void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
3190                            ArrayRef<const Attr *> Attrs = None);
3191 
3192   /// Controls insertion of cancellation exit blocks in worksharing constructs.
3193   class OMPCancelStackRAII {
3194     CodeGenFunction &CGF;
3195 
3196   public:
3197     OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
3198                        bool HasCancel)
3199         : CGF(CGF) {
3200       CGF.OMPCancelStack.enter(CGF, Kind, HasCancel);
3201     }
3202     ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); }
3203   };
3204 
3205   /// Returns calculated size of the specified type.
3206   llvm::Value *getTypeSize(QualType Ty);
3207   LValue InitCapturedStruct(const CapturedStmt &S);
3208   llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
3209   llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
3210   Address GenerateCapturedStmtArgument(const CapturedStmt &S);
3211   llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S,
3212                                                      SourceLocation Loc);
3213   void GenerateOpenMPCapturedVars(const CapturedStmt &S,
3214                                   SmallVectorImpl<llvm::Value *> &CapturedVars);
3215   void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy,
3216                           SourceLocation Loc);
3217   /// Perform element by element copying of arrays with type \a
3218   /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
3219   /// generated by \a CopyGen.
3220   ///
3221   /// \param DestAddr Address of the destination array.
3222   /// \param SrcAddr Address of the source array.
3223   /// \param OriginalType Type of destination and source arrays.
3224   /// \param CopyGen Copying procedure that copies value of single array element
3225   /// to another single array element.
3226   void EmitOMPAggregateAssign(
3227       Address DestAddr, Address SrcAddr, QualType OriginalType,
3228       const llvm::function_ref<void(Address, Address)> CopyGen);
3229   /// Emit proper copying of data from one variable to another.
3230   ///
3231   /// \param OriginalType Original type of the copied variables.
3232   /// \param DestAddr Destination address.
3233   /// \param SrcAddr Source address.
3234   /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
3235   /// type of the base array element).
3236   /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
3237   /// the base array element).
3238   /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
3239   /// DestVD.
3240   void EmitOMPCopy(QualType OriginalType,
3241                    Address DestAddr, Address SrcAddr,
3242                    const VarDecl *DestVD, const VarDecl *SrcVD,
3243                    const Expr *Copy);
3244   /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or
3245   /// \a X = \a E \a BO \a E.
3246   ///
3247   /// \param X Value to be updated.
3248   /// \param E Update value.
3249   /// \param BO Binary operation for update operation.
3250   /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
3251   /// expression, false otherwise.
3252   /// \param AO Atomic ordering of the generated atomic instructions.
3253   /// \param CommonGen Code generator for complex expressions that cannot be
3254   /// expressed through atomicrmw instruction.
3255   /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was
3256   /// generated, <false, RValue::get(nullptr)> otherwise.
3257   std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr(
3258       LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
3259       llvm::AtomicOrdering AO, SourceLocation Loc,
3260       const llvm::function_ref<RValue(RValue)> CommonGen);
3261   bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
3262                                  OMPPrivateScope &PrivateScope);
3263   void EmitOMPPrivateClause(const OMPExecutableDirective &D,
3264                             OMPPrivateScope &PrivateScope);
3265   void EmitOMPUseDevicePtrClause(
3266       const OMPUseDevicePtrClause &C, OMPPrivateScope &PrivateScope,
3267       const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap);
3268   void EmitOMPUseDeviceAddrClause(
3269       const OMPUseDeviceAddrClause &C, OMPPrivateScope &PrivateScope,
3270       const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap);
3271   /// Emit code for copyin clause in \a D directive. The next code is
3272   /// generated at the start of outlined functions for directives:
3273   /// \code
3274   /// threadprivate_var1 = master_threadprivate_var1;
3275   /// operator=(threadprivate_var2, master_threadprivate_var2);
3276   /// ...
3277   /// __kmpc_barrier(&loc, global_tid);
3278   /// \endcode
3279   ///
3280   /// \param D OpenMP directive possibly with 'copyin' clause(s).
3281   /// \returns true if at least one copyin variable is found, false otherwise.
3282   bool EmitOMPCopyinClause(const OMPExecutableDirective &D);
3283   /// Emit initial code for lastprivate variables. If some variable is
3284   /// not also firstprivate, then the default initialization is used. Otherwise
3285   /// initialization of this variable is performed by EmitOMPFirstprivateClause
3286   /// method.
3287   ///
3288   /// \param D Directive that may have 'lastprivate' directives.
3289   /// \param PrivateScope Private scope for capturing lastprivate variables for
3290   /// proper codegen in internal captured statement.
3291   ///
3292   /// \returns true if there is at least one lastprivate variable, false
3293   /// otherwise.
3294   bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D,
3295                                     OMPPrivateScope &PrivateScope);
3296   /// Emit final copying of lastprivate values to original variables at
3297   /// the end of the worksharing or simd directive.
3298   ///
3299   /// \param D Directive that has at least one 'lastprivate' directives.
3300   /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
3301   /// it is the last iteration of the loop code in associated directive, or to
3302   /// 'i1 false' otherwise. If this item is nullptr, no final check is required.
3303   void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D,
3304                                      bool NoFinals,
3305                                      llvm::Value *IsLastIterCond = nullptr);
3306   /// Emit initial code for linear clauses.
3307   void EmitOMPLinearClause(const OMPLoopDirective &D,
3308                            CodeGenFunction::OMPPrivateScope &PrivateScope);
3309   /// Emit final code for linear clauses.
3310   /// \param CondGen Optional conditional code for final part of codegen for
3311   /// linear clause.
3312   void EmitOMPLinearClauseFinal(
3313       const OMPLoopDirective &D,
3314       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
3315   /// Emit initial code for reduction variables. Creates reduction copies
3316   /// and initializes them with the values according to OpenMP standard.
3317   ///
3318   /// \param D Directive (possibly) with the 'reduction' clause.
3319   /// \param PrivateScope Private scope for capturing reduction variables for
3320   /// proper codegen in internal captured statement.
3321   ///
3322   void EmitOMPReductionClauseInit(const OMPExecutableDirective &D,
3323                                   OMPPrivateScope &PrivateScope,
3324                                   bool ForInscan = false);
3325   /// Emit final update of reduction values to original variables at
3326   /// the end of the directive.
3327   ///
3328   /// \param D Directive that has at least one 'reduction' directives.
3329   /// \param ReductionKind The kind of reduction to perform.
3330   void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D,
3331                                    const OpenMPDirectiveKind ReductionKind);
3332   /// Emit initial code for linear variables. Creates private copies
3333   /// and initializes them with the values according to OpenMP standard.
3334   ///
3335   /// \param D Directive (possibly) with the 'linear' clause.
3336   /// \return true if at least one linear variable is found that should be
3337   /// initialized with the value of the original variable, false otherwise.
3338   bool EmitOMPLinearClauseInit(const OMPLoopDirective &D);
3339 
3340   typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/,
3341                                         llvm::Function * /*OutlinedFn*/,
3342                                         const OMPTaskDataTy & /*Data*/)>
3343       TaskGenTy;
3344   void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S,
3345                                  const OpenMPDirectiveKind CapturedRegion,
3346                                  const RegionCodeGenTy &BodyGen,
3347                                  const TaskGenTy &TaskGen, OMPTaskDataTy &Data);
3348   struct OMPTargetDataInfo {
3349     Address BasePointersArray = Address::invalid();
3350     Address PointersArray = Address::invalid();
3351     Address SizesArray = Address::invalid();
3352     Address MappersArray = Address::invalid();
3353     unsigned NumberOfTargetItems = 0;
3354     explicit OMPTargetDataInfo() = default;
3355     OMPTargetDataInfo(Address BasePointersArray, Address PointersArray,
3356                       Address SizesArray, Address MappersArray,
3357                       unsigned NumberOfTargetItems)
3358         : BasePointersArray(BasePointersArray), PointersArray(PointersArray),
3359           SizesArray(SizesArray), MappersArray(MappersArray),
3360           NumberOfTargetItems(NumberOfTargetItems) {}
3361   };
3362   void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S,
3363                                        const RegionCodeGenTy &BodyGen,
3364                                        OMPTargetDataInfo &InputInfo);
3365 
3366   void EmitOMPParallelDirective(const OMPParallelDirective &S);
3367   void EmitOMPSimdDirective(const OMPSimdDirective &S);
3368   void EmitOMPForDirective(const OMPForDirective &S);
3369   void EmitOMPForSimdDirective(const OMPForSimdDirective &S);
3370   void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
3371   void EmitOMPSectionDirective(const OMPSectionDirective &S);
3372   void EmitOMPSingleDirective(const OMPSingleDirective &S);
3373   void EmitOMPMasterDirective(const OMPMasterDirective &S);
3374   void EmitOMPCriticalDirective(const OMPCriticalDirective &S);
3375   void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
3376   void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S);
3377   void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
3378   void EmitOMPParallelMasterDirective(const OMPParallelMasterDirective &S);
3379   void EmitOMPTaskDirective(const OMPTaskDirective &S);
3380   void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
3381   void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
3382   void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
3383   void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S);
3384   void EmitOMPFlushDirective(const OMPFlushDirective &S);
3385   void EmitOMPDepobjDirective(const OMPDepobjDirective &S);
3386   void EmitOMPScanDirective(const OMPScanDirective &S);
3387   void EmitOMPOrderedDirective(const OMPOrderedDirective &S);
3388   void EmitOMPAtomicDirective(const OMPAtomicDirective &S);
3389   void EmitOMPTargetDirective(const OMPTargetDirective &S);
3390   void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S);
3391   void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S);
3392   void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S);
3393   void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S);
3394   void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S);
3395   void
3396   EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S);
3397   void EmitOMPTeamsDirective(const OMPTeamsDirective &S);
3398   void
3399   EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S);
3400   void EmitOMPCancelDirective(const OMPCancelDirective &S);
3401   void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S);
3402   void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S);
3403   void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S);
3404   void EmitOMPMasterTaskLoopDirective(const OMPMasterTaskLoopDirective &S);
3405   void
3406   EmitOMPMasterTaskLoopSimdDirective(const OMPMasterTaskLoopSimdDirective &S);
3407   void EmitOMPParallelMasterTaskLoopDirective(
3408       const OMPParallelMasterTaskLoopDirective &S);
3409   void EmitOMPParallelMasterTaskLoopSimdDirective(
3410       const OMPParallelMasterTaskLoopSimdDirective &S);
3411   void EmitOMPDistributeDirective(const OMPDistributeDirective &S);
3412   void EmitOMPDistributeParallelForDirective(
3413       const OMPDistributeParallelForDirective &S);
3414   void EmitOMPDistributeParallelForSimdDirective(
3415       const OMPDistributeParallelForSimdDirective &S);
3416   void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S);
3417   void EmitOMPTargetParallelForSimdDirective(
3418       const OMPTargetParallelForSimdDirective &S);
3419   void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S);
3420   void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S);
3421   void
3422   EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S);
3423   void EmitOMPTeamsDistributeParallelForSimdDirective(
3424       const OMPTeamsDistributeParallelForSimdDirective &S);
3425   void EmitOMPTeamsDistributeParallelForDirective(
3426       const OMPTeamsDistributeParallelForDirective &S);
3427   void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S);
3428   void EmitOMPTargetTeamsDistributeDirective(
3429       const OMPTargetTeamsDistributeDirective &S);
3430   void EmitOMPTargetTeamsDistributeParallelForDirective(
3431       const OMPTargetTeamsDistributeParallelForDirective &S);
3432   void EmitOMPTargetTeamsDistributeParallelForSimdDirective(
3433       const OMPTargetTeamsDistributeParallelForSimdDirective &S);
3434   void EmitOMPTargetTeamsDistributeSimdDirective(
3435       const OMPTargetTeamsDistributeSimdDirective &S);
3436 
3437   /// Emit device code for the target directive.
3438   static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM,
3439                                           StringRef ParentName,
3440                                           const OMPTargetDirective &S);
3441   static void
3442   EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3443                                       const OMPTargetParallelDirective &S);
3444   /// Emit device code for the target parallel for directive.
3445   static void EmitOMPTargetParallelForDeviceFunction(
3446       CodeGenModule &CGM, StringRef ParentName,
3447       const OMPTargetParallelForDirective &S);
3448   /// Emit device code for the target parallel for simd directive.
3449   static void EmitOMPTargetParallelForSimdDeviceFunction(
3450       CodeGenModule &CGM, StringRef ParentName,
3451       const OMPTargetParallelForSimdDirective &S);
3452   /// Emit device code for the target teams directive.
3453   static void
3454   EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3455                                    const OMPTargetTeamsDirective &S);
3456   /// Emit device code for the target teams distribute directive.
3457   static void EmitOMPTargetTeamsDistributeDeviceFunction(
3458       CodeGenModule &CGM, StringRef ParentName,
3459       const OMPTargetTeamsDistributeDirective &S);
3460   /// Emit device code for the target teams distribute simd directive.
3461   static void EmitOMPTargetTeamsDistributeSimdDeviceFunction(
3462       CodeGenModule &CGM, StringRef ParentName,
3463       const OMPTargetTeamsDistributeSimdDirective &S);
3464   /// Emit device code for the target simd directive.
3465   static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM,
3466                                               StringRef ParentName,
3467                                               const OMPTargetSimdDirective &S);
3468   /// Emit device code for the target teams distribute parallel for simd
3469   /// directive.
3470   static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction(
3471       CodeGenModule &CGM, StringRef ParentName,
3472       const OMPTargetTeamsDistributeParallelForSimdDirective &S);
3473 
3474   static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction(
3475       CodeGenModule &CGM, StringRef ParentName,
3476       const OMPTargetTeamsDistributeParallelForDirective &S);
3477   /// Emit inner loop of the worksharing/simd construct.
3478   ///
3479   /// \param S Directive, for which the inner loop must be emitted.
3480   /// \param RequiresCleanup true, if directive has some associated private
3481   /// variables.
3482   /// \param LoopCond Bollean condition for loop continuation.
3483   /// \param IncExpr Increment expression for loop control variable.
3484   /// \param BodyGen Generator for the inner body of the inner loop.
3485   /// \param PostIncGen Genrator for post-increment code (required for ordered
3486   /// loop directvies).
3487   void EmitOMPInnerLoop(
3488       const OMPExecutableDirective &S, bool RequiresCleanup,
3489       const Expr *LoopCond, const Expr *IncExpr,
3490       const llvm::function_ref<void(CodeGenFunction &)> BodyGen,
3491       const llvm::function_ref<void(CodeGenFunction &)> PostIncGen);
3492 
3493   JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind);
3494   /// Emit initial code for loop counters of loop-based directives.
3495   void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S,
3496                                   OMPPrivateScope &LoopScope);
3497 
3498   /// Helper for the OpenMP loop directives.
3499   void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit);
3500 
3501   /// Emit code for the worksharing loop-based directive.
3502   /// \return true, if this construct has any lastprivate clause, false -
3503   /// otherwise.
3504   bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB,
3505                               const CodeGenLoopBoundsTy &CodeGenLoopBounds,
3506                               const CodeGenDispatchBoundsTy &CGDispatchBounds);
3507 
3508   /// Emit code for the distribute loop-based directive.
3509   void EmitOMPDistributeLoop(const OMPLoopDirective &S,
3510                              const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr);
3511 
3512   /// Helpers for the OpenMP loop directives.
3513   void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false);
3514   void EmitOMPSimdFinal(
3515       const OMPLoopDirective &D,
3516       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
3517 
3518   /// Emits the lvalue for the expression with possibly captured variable.
3519   LValue EmitOMPSharedLValue(const Expr *E);
3520 
3521 private:
3522   /// Helpers for blocks.
3523   llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
3524 
3525   /// struct with the values to be passed to the OpenMP loop-related functions
3526   struct OMPLoopArguments {
3527     /// loop lower bound
3528     Address LB = Address::invalid();
3529     /// loop upper bound
3530     Address UB = Address::invalid();
3531     /// loop stride
3532     Address ST = Address::invalid();
3533     /// isLastIteration argument for runtime functions
3534     Address IL = Address::invalid();
3535     /// Chunk value generated by sema
3536     llvm::Value *Chunk = nullptr;
3537     /// EnsureUpperBound
3538     Expr *EUB = nullptr;
3539     /// IncrementExpression
3540     Expr *IncExpr = nullptr;
3541     /// Loop initialization
3542     Expr *Init = nullptr;
3543     /// Loop exit condition
3544     Expr *Cond = nullptr;
3545     /// Update of LB after a whole chunk has been executed
3546     Expr *NextLB = nullptr;
3547     /// Update of UB after a whole chunk has been executed
3548     Expr *NextUB = nullptr;
3549     OMPLoopArguments() = default;
3550     OMPLoopArguments(Address LB, Address UB, Address ST, Address IL,
3551                      llvm::Value *Chunk = nullptr, Expr *EUB = nullptr,
3552                      Expr *IncExpr = nullptr, Expr *Init = nullptr,
3553                      Expr *Cond = nullptr, Expr *NextLB = nullptr,
3554                      Expr *NextUB = nullptr)
3555         : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB),
3556           IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB),
3557           NextUB(NextUB) {}
3558   };
3559   void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic,
3560                         const OMPLoopDirective &S, OMPPrivateScope &LoopScope,
3561                         const OMPLoopArguments &LoopArgs,
3562                         const CodeGenLoopTy &CodeGenLoop,
3563                         const CodeGenOrderedTy &CodeGenOrdered);
3564   void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind,
3565                            bool IsMonotonic, const OMPLoopDirective &S,
3566                            OMPPrivateScope &LoopScope, bool Ordered,
3567                            const OMPLoopArguments &LoopArgs,
3568                            const CodeGenDispatchBoundsTy &CGDispatchBounds);
3569   void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind,
3570                                   const OMPLoopDirective &S,
3571                                   OMPPrivateScope &LoopScope,
3572                                   const OMPLoopArguments &LoopArgs,
3573                                   const CodeGenLoopTy &CodeGenLoopContent);
3574   /// Emit code for sections directive.
3575   void EmitSections(const OMPExecutableDirective &S);
3576 
3577 public:
3578 
3579   //===--------------------------------------------------------------------===//
3580   //                         LValue Expression Emission
3581   //===--------------------------------------------------------------------===//
3582 
3583   /// Create a check that a scalar RValue is non-null.
3584   llvm::Value *EmitNonNullRValueCheck(RValue RV, QualType T);
3585 
3586   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
3587   RValue GetUndefRValue(QualType Ty);
3588 
3589   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
3590   /// and issue an ErrorUnsupported style diagnostic (using the
3591   /// provided Name).
3592   RValue EmitUnsupportedRValue(const Expr *E,
3593                                const char *Name);
3594 
3595   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
3596   /// an ErrorUnsupported style diagnostic (using the provided Name).
3597   LValue EmitUnsupportedLValue(const Expr *E,
3598                                const char *Name);
3599 
3600   /// EmitLValue - Emit code to compute a designator that specifies the location
3601   /// of the expression.
3602   ///
3603   /// This can return one of two things: a simple address or a bitfield
3604   /// reference.  In either case, the LLVM Value* in the LValue structure is
3605   /// guaranteed to be an LLVM pointer type.
3606   ///
3607   /// If this returns a bitfield reference, nothing about the pointee type of
3608   /// the LLVM value is known: For example, it may not be a pointer to an
3609   /// integer.
3610   ///
3611   /// If this returns a normal address, and if the lvalue's C type is fixed
3612   /// size, this method guarantees that the returned pointer type will point to
3613   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
3614   /// variable length type, this is not possible.
3615   ///
3616   LValue EmitLValue(const Expr *E);
3617 
3618   /// Same as EmitLValue but additionally we generate checking code to
3619   /// guard against undefined behavior.  This is only suitable when we know
3620   /// that the address will be used to access the object.
3621   LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
3622 
3623   RValue convertTempToRValue(Address addr, QualType type,
3624                              SourceLocation Loc);
3625 
3626   void EmitAtomicInit(Expr *E, LValue lvalue);
3627 
3628   bool LValueIsSuitableForInlineAtomic(LValue Src);
3629 
3630   RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
3631                         AggValueSlot Slot = AggValueSlot::ignored());
3632 
3633   RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
3634                         llvm::AtomicOrdering AO, bool IsVolatile = false,
3635                         AggValueSlot slot = AggValueSlot::ignored());
3636 
3637   void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
3638 
3639   void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
3640                        bool IsVolatile, bool isInit);
3641 
3642   std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
3643       LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
3644       llvm::AtomicOrdering Success =
3645           llvm::AtomicOrdering::SequentiallyConsistent,
3646       llvm::AtomicOrdering Failure =
3647           llvm::AtomicOrdering::SequentiallyConsistent,
3648       bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
3649 
3650   void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
3651                         const llvm::function_ref<RValue(RValue)> &UpdateOp,
3652                         bool IsVolatile);
3653 
3654   /// EmitToMemory - Change a scalar value from its value
3655   /// representation to its in-memory representation.
3656   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
3657 
3658   /// EmitFromMemory - Change a scalar value from its memory
3659   /// representation to its value representation.
3660   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
3661 
3662   /// Check if the scalar \p Value is within the valid range for the given
3663   /// type \p Ty.
3664   ///
3665   /// Returns true if a check is needed (even if the range is unknown).
3666   bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
3667                             SourceLocation Loc);
3668 
3669   /// EmitLoadOfScalar - Load a scalar value from an address, taking
3670   /// care to appropriately convert from the memory representation to
3671   /// the LLVM value representation.
3672   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3673                                 SourceLocation Loc,
3674                                 AlignmentSource Source = AlignmentSource::Type,
3675                                 bool isNontemporal = false) {
3676     return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source),
3677                             CGM.getTBAAAccessInfo(Ty), isNontemporal);
3678   }
3679 
3680   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3681                                 SourceLocation Loc, LValueBaseInfo BaseInfo,
3682                                 TBAAAccessInfo TBAAInfo,
3683                                 bool isNontemporal = false);
3684 
3685   /// EmitLoadOfScalar - Load a scalar value from an address, taking
3686   /// care to appropriately convert from the memory representation to
3687   /// the LLVM value representation.  The l-value must be a simple
3688   /// l-value.
3689   llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
3690 
3691   /// EmitStoreOfScalar - Store a scalar value to an address, taking
3692   /// care to appropriately convert from the memory representation to
3693   /// the LLVM value representation.
3694   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3695                          bool Volatile, QualType Ty,
3696                          AlignmentSource Source = AlignmentSource::Type,
3697                          bool isInit = false, bool isNontemporal = false) {
3698     EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source),
3699                       CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal);
3700   }
3701 
3702   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3703                          bool Volatile, QualType Ty,
3704                          LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo,
3705                          bool isInit = false, bool isNontemporal = false);
3706 
3707   /// EmitStoreOfScalar - Store a scalar value to an address, taking
3708   /// care to appropriately convert from the memory representation to
3709   /// the LLVM value representation.  The l-value must be a simple
3710   /// l-value.  The isInit flag indicates whether this is an initialization.
3711   /// If so, atomic qualifiers are ignored and the store is always non-atomic.
3712   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
3713 
3714   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
3715   /// this method emits the address of the lvalue, then loads the result as an
3716   /// rvalue, returning the rvalue.
3717   RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
3718   RValue EmitLoadOfExtVectorElementLValue(LValue V);
3719   RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc);
3720   RValue EmitLoadOfGlobalRegLValue(LValue LV);
3721 
3722   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
3723   /// lvalue, where both are guaranteed to the have the same type, and that type
3724   /// is 'Ty'.
3725   void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
3726   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
3727   void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
3728 
3729   /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
3730   /// as EmitStoreThroughLValue.
3731   ///
3732   /// \param Result [out] - If non-null, this will be set to a Value* for the
3733   /// bit-field contents after the store, appropriate for use as the result of
3734   /// an assignment to the bit-field.
3735   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
3736                                       llvm::Value **Result=nullptr);
3737 
3738   /// Emit an l-value for an assignment (simple or compound) of complex type.
3739   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
3740   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
3741   LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
3742                                              llvm::Value *&Result);
3743 
3744   // Note: only available for agg return types
3745   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
3746   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
3747   // Note: only available for agg return types
3748   LValue EmitCallExprLValue(const CallExpr *E);
3749   // Note: only available for agg return types
3750   LValue EmitVAArgExprLValue(const VAArgExpr *E);
3751   LValue EmitDeclRefLValue(const DeclRefExpr *E);
3752   LValue EmitStringLiteralLValue(const StringLiteral *E);
3753   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
3754   LValue EmitPredefinedLValue(const PredefinedExpr *E);
3755   LValue EmitUnaryOpLValue(const UnaryOperator *E);
3756   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3757                                 bool Accessed = false);
3758   LValue EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E);
3759   LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3760                                  bool IsLowerBound = true);
3761   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
3762   LValue EmitMemberExpr(const MemberExpr *E);
3763   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
3764   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
3765   LValue EmitInitListLValue(const InitListExpr *E);
3766   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
3767   LValue EmitCastLValue(const CastExpr *E);
3768   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
3769   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
3770 
3771   Address EmitExtVectorElementLValue(LValue V);
3772 
3773   RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
3774 
3775   Address EmitArrayToPointerDecay(const Expr *Array,
3776                                   LValueBaseInfo *BaseInfo = nullptr,
3777                                   TBAAAccessInfo *TBAAInfo = nullptr);
3778 
3779   class ConstantEmission {
3780     llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
3781     ConstantEmission(llvm::Constant *C, bool isReference)
3782       : ValueAndIsReference(C, isReference) {}
3783   public:
3784     ConstantEmission() {}
3785     static ConstantEmission forReference(llvm::Constant *C) {
3786       return ConstantEmission(C, true);
3787     }
3788     static ConstantEmission forValue(llvm::Constant *C) {
3789       return ConstantEmission(C, false);
3790     }
3791 
3792     explicit operator bool() const {
3793       return ValueAndIsReference.getOpaqueValue() != nullptr;
3794     }
3795 
3796     bool isReference() const { return ValueAndIsReference.getInt(); }
3797     LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
3798       assert(isReference());
3799       return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
3800                                             refExpr->getType());
3801     }
3802 
3803     llvm::Constant *getValue() const {
3804       assert(!isReference());
3805       return ValueAndIsReference.getPointer();
3806     }
3807   };
3808 
3809   ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
3810   ConstantEmission tryEmitAsConstant(const MemberExpr *ME);
3811   llvm::Value *emitScalarConstant(const ConstantEmission &Constant, Expr *E);
3812 
3813   RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
3814                                 AggValueSlot slot = AggValueSlot::ignored());
3815   LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
3816 
3817   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3818                               const ObjCIvarDecl *Ivar);
3819   LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
3820   LValue EmitLValueForLambdaField(const FieldDecl *Field);
3821 
3822   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
3823   /// if the Field is a reference, this will return the address of the reference
3824   /// and not the address of the value stored in the reference.
3825   LValue EmitLValueForFieldInitialization(LValue Base,
3826                                           const FieldDecl* Field);
3827 
3828   LValue EmitLValueForIvar(QualType ObjectTy,
3829                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
3830                            unsigned CVRQualifiers);
3831 
3832   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
3833   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
3834   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
3835   LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
3836 
3837   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
3838   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
3839   LValue EmitStmtExprLValue(const StmtExpr *E);
3840   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
3841   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
3842   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init);
3843 
3844   //===--------------------------------------------------------------------===//
3845   //                         Scalar Expression Emission
3846   //===--------------------------------------------------------------------===//
3847 
3848   /// EmitCall - Generate a call of the given function, expecting the given
3849   /// result type, and using the given argument list which specifies both the
3850   /// LLVM arguments and the types they were derived from.
3851   RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
3852                   ReturnValueSlot ReturnValue, const CallArgList &Args,
3853                   llvm::CallBase **callOrInvoke, SourceLocation Loc);
3854   RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
3855                   ReturnValueSlot ReturnValue, const CallArgList &Args,
3856                   llvm::CallBase **callOrInvoke = nullptr) {
3857     return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke,
3858                     SourceLocation());
3859   }
3860   RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E,
3861                   ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr);
3862   RValue EmitCallExpr(const CallExpr *E,
3863                       ReturnValueSlot ReturnValue = ReturnValueSlot());
3864   RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
3865   CGCallee EmitCallee(const Expr *E);
3866 
3867   void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl);
3868   void checkTargetFeatures(SourceLocation Loc, const FunctionDecl *TargetDecl);
3869 
3870   llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee,
3871                                   const Twine &name = "");
3872   llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee,
3873                                   ArrayRef<llvm::Value *> args,
3874                                   const Twine &name = "");
3875   llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
3876                                           const Twine &name = "");
3877   llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
3878                                           ArrayRef<llvm::Value *> args,
3879                                           const Twine &name = "");
3880 
3881   SmallVector<llvm::OperandBundleDef, 1>
3882   getBundlesForFunclet(llvm::Value *Callee);
3883 
3884   llvm::CallBase *EmitCallOrInvoke(llvm::FunctionCallee Callee,
3885                                    ArrayRef<llvm::Value *> Args,
3886                                    const Twine &Name = "");
3887   llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
3888                                           ArrayRef<llvm::Value *> args,
3889                                           const Twine &name = "");
3890   llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
3891                                           const Twine &name = "");
3892   void EmitNoreturnRuntimeCallOrInvoke(llvm::FunctionCallee callee,
3893                                        ArrayRef<llvm::Value *> args);
3894 
3895   CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
3896                                      NestedNameSpecifier *Qual,
3897                                      llvm::Type *Ty);
3898 
3899   CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
3900                                                CXXDtorType Type,
3901                                                const CXXRecordDecl *RD);
3902 
3903   // Return the copy constructor name with the prefix "__copy_constructor_"
3904   // removed.
3905   static std::string getNonTrivialCopyConstructorStr(QualType QT,
3906                                                      CharUnits Alignment,
3907                                                      bool IsVolatile,
3908                                                      ASTContext &Ctx);
3909 
3910   // Return the destructor name with the prefix "__destructor_" removed.
3911   static std::string getNonTrivialDestructorStr(QualType QT,
3912                                                 CharUnits Alignment,
3913                                                 bool IsVolatile,
3914                                                 ASTContext &Ctx);
3915 
3916   // These functions emit calls to the special functions of non-trivial C
3917   // structs.
3918   void defaultInitNonTrivialCStructVar(LValue Dst);
3919   void callCStructDefaultConstructor(LValue Dst);
3920   void callCStructDestructor(LValue Dst);
3921   void callCStructCopyConstructor(LValue Dst, LValue Src);
3922   void callCStructMoveConstructor(LValue Dst, LValue Src);
3923   void callCStructCopyAssignmentOperator(LValue Dst, LValue Src);
3924   void callCStructMoveAssignmentOperator(LValue Dst, LValue Src);
3925 
3926   RValue
3927   EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method,
3928                               const CGCallee &Callee,
3929                               ReturnValueSlot ReturnValue, llvm::Value *This,
3930                               llvm::Value *ImplicitParam,
3931                               QualType ImplicitParamTy, const CallExpr *E,
3932                               CallArgList *RtlArgs);
3933   RValue EmitCXXDestructorCall(GlobalDecl Dtor, const CGCallee &Callee,
3934                                llvm::Value *This, QualType ThisTy,
3935                                llvm::Value *ImplicitParam,
3936                                QualType ImplicitParamTy, const CallExpr *E);
3937   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
3938                                ReturnValueSlot ReturnValue);
3939   RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE,
3940                                                const CXXMethodDecl *MD,
3941                                                ReturnValueSlot ReturnValue,
3942                                                bool HasQualifier,
3943                                                NestedNameSpecifier *Qualifier,
3944                                                bool IsArrow, const Expr *Base);
3945   // Compute the object pointer.
3946   Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
3947                                           llvm::Value *memberPtr,
3948                                           const MemberPointerType *memberPtrType,
3949                                           LValueBaseInfo *BaseInfo = nullptr,
3950                                           TBAAAccessInfo *TBAAInfo = nullptr);
3951   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
3952                                       ReturnValueSlot ReturnValue);
3953 
3954   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
3955                                        const CXXMethodDecl *MD,
3956                                        ReturnValueSlot ReturnValue);
3957   RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E);
3958 
3959   RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
3960                                 ReturnValueSlot ReturnValue);
3961 
3962   RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E,
3963                                        ReturnValueSlot ReturnValue);
3964   RValue EmitAMDGPUDevicePrintfCallExpr(const CallExpr *E,
3965                                         ReturnValueSlot ReturnValue);
3966 
3967   RValue EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID,
3968                          const CallExpr *E, ReturnValueSlot ReturnValue);
3969 
3970   RValue emitRotate(const CallExpr *E, bool IsRotateRight);
3971 
3972   /// Emit IR for __builtin_os_log_format.
3973   RValue emitBuiltinOSLogFormat(const CallExpr &E);
3974 
3975   /// Emit IR for __builtin_is_aligned.
3976   RValue EmitBuiltinIsAligned(const CallExpr *E);
3977   /// Emit IR for __builtin_align_up/__builtin_align_down.
3978   RValue EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp);
3979 
3980   llvm::Function *generateBuiltinOSLogHelperFunction(
3981       const analyze_os_log::OSLogBufferLayout &Layout,
3982       CharUnits BufferAlignment);
3983 
3984   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
3985 
3986   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
3987   /// is unhandled by the current target.
3988   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
3989                                      ReturnValueSlot ReturnValue);
3990 
3991   llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
3992                                              const llvm::CmpInst::Predicate Fp,
3993                                              const llvm::CmpInst::Predicate Ip,
3994                                              const llvm::Twine &Name = "");
3995   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
3996                                   ReturnValueSlot ReturnValue,
3997                                   llvm::Triple::ArchType Arch);
3998   llvm::Value *EmitARMMVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
3999                                      ReturnValueSlot ReturnValue,
4000                                      llvm::Triple::ArchType Arch);
4001   llvm::Value *EmitARMCDEBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4002                                      ReturnValueSlot ReturnValue,
4003                                      llvm::Triple::ArchType Arch);
4004   llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::IntegerType *ITy,
4005                                    QualType RTy);
4006   llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::ArrayType *ATy,
4007                                    QualType RTy);
4008 
4009   llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
4010                                          unsigned LLVMIntrinsic,
4011                                          unsigned AltLLVMIntrinsic,
4012                                          const char *NameHint,
4013                                          unsigned Modifier,
4014                                          const CallExpr *E,
4015                                          SmallVectorImpl<llvm::Value *> &Ops,
4016                                          Address PtrOp0, Address PtrOp1,
4017                                          llvm::Triple::ArchType Arch);
4018 
4019   llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
4020                                           unsigned Modifier, llvm::Type *ArgTy,
4021                                           const CallExpr *E);
4022   llvm::Value *EmitNeonCall(llvm::Function *F,
4023                             SmallVectorImpl<llvm::Value*> &O,
4024                             const char *name,
4025                             unsigned shift = 0, bool rightshift = false);
4026   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx,
4027                              const llvm::ElementCount &Count);
4028   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
4029   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
4030                                    bool negateForRightShift);
4031   llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
4032                                  llvm::Type *Ty, bool usgn, const char *name);
4033   llvm::Value *vectorWrapScalar16(llvm::Value *Op);
4034   /// SVEBuiltinMemEltTy - Returns the memory element type for this memory
4035   /// access builtin.  Only required if it can't be inferred from the base
4036   /// pointer operand.
4037   llvm::Type *SVEBuiltinMemEltTy(SVETypeFlags TypeFlags);
4038 
4039   SmallVector<llvm::Type *, 2> getSVEOverloadTypes(SVETypeFlags TypeFlags,
4040                                                    llvm::Type *ReturnType,
4041                                                    ArrayRef<llvm::Value *> Ops);
4042   llvm::Type *getEltType(SVETypeFlags TypeFlags);
4043   llvm::ScalableVectorType *getSVEType(const SVETypeFlags &TypeFlags);
4044   llvm::ScalableVectorType *getSVEPredType(SVETypeFlags TypeFlags);
4045   llvm::Value *EmitSVEAllTruePred(SVETypeFlags TypeFlags);
4046   llvm::Value *EmitSVEDupX(llvm::Value *Scalar);
4047   llvm::Value *EmitSVEDupX(llvm::Value *Scalar, llvm::Type *Ty);
4048   llvm::Value *EmitSVEReinterpret(llvm::Value *Val, llvm::Type *Ty);
4049   llvm::Value *EmitSVEPMull(SVETypeFlags TypeFlags,
4050                             llvm::SmallVectorImpl<llvm::Value *> &Ops,
4051                             unsigned BuiltinID);
4052   llvm::Value *EmitSVEMovl(SVETypeFlags TypeFlags,
4053                            llvm::ArrayRef<llvm::Value *> Ops,
4054                            unsigned BuiltinID);
4055   llvm::Value *EmitSVEPredicateCast(llvm::Value *Pred,
4056                                     llvm::ScalableVectorType *VTy);
4057   llvm::Value *EmitSVEGatherLoad(SVETypeFlags TypeFlags,
4058                                  llvm::SmallVectorImpl<llvm::Value *> &Ops,
4059                                  unsigned IntID);
4060   llvm::Value *EmitSVEScatterStore(SVETypeFlags TypeFlags,
4061                                    llvm::SmallVectorImpl<llvm::Value *> &Ops,
4062                                    unsigned IntID);
4063   llvm::Value *EmitSVEMaskedLoad(const CallExpr *, llvm::Type *ReturnTy,
4064                                  SmallVectorImpl<llvm::Value *> &Ops,
4065                                  unsigned BuiltinID, bool IsZExtReturn);
4066   llvm::Value *EmitSVEMaskedStore(const CallExpr *,
4067                                   SmallVectorImpl<llvm::Value *> &Ops,
4068                                   unsigned BuiltinID);
4069   llvm::Value *EmitSVEPrefetchLoad(SVETypeFlags TypeFlags,
4070                                    SmallVectorImpl<llvm::Value *> &Ops,
4071                                    unsigned BuiltinID);
4072   llvm::Value *EmitSVEGatherPrefetch(SVETypeFlags TypeFlags,
4073                                      SmallVectorImpl<llvm::Value *> &Ops,
4074                                      unsigned IntID);
4075   llvm::Value *EmitSVEStructLoad(SVETypeFlags TypeFlags,
4076                                  SmallVectorImpl<llvm::Value *> &Ops, unsigned IntID);
4077   llvm::Value *EmitSVEStructStore(SVETypeFlags TypeFlags,
4078                                   SmallVectorImpl<llvm::Value *> &Ops,
4079                                   unsigned IntID);
4080   llvm::Value *EmitAArch64SVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4081 
4082   llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4083                                       llvm::Triple::ArchType Arch);
4084   llvm::Value *EmitBPFBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4085 
4086   llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
4087   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4088   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4089   llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4090   llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4091   llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4092   llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
4093                                           const CallExpr *E);
4094   llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4095   bool ProcessOrderScopeAMDGCN(llvm::Value *Order, llvm::Value *Scope,
4096                                llvm::AtomicOrdering &AO,
4097                                llvm::SyncScope::ID &SSID);
4098 
4099 private:
4100   enum class MSVCIntrin;
4101 
4102 public:
4103   llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E);
4104 
4105   llvm::Value *EmitBuiltinAvailable(const VersionTuple &Version);
4106 
4107   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
4108   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
4109   llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
4110   llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
4111   llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
4112   llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
4113                                 const ObjCMethodDecl *MethodWithObjects);
4114   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
4115   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
4116                              ReturnValueSlot Return = ReturnValueSlot());
4117 
4118   /// Retrieves the default cleanup kind for an ARC cleanup.
4119   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
4120   CleanupKind getARCCleanupKind() {
4121     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
4122              ? NormalAndEHCleanup : NormalCleanup;
4123   }
4124 
4125   // ARC primitives.
4126   void EmitARCInitWeak(Address addr, llvm::Value *value);
4127   void EmitARCDestroyWeak(Address addr);
4128   llvm::Value *EmitARCLoadWeak(Address addr);
4129   llvm::Value *EmitARCLoadWeakRetained(Address addr);
4130   llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored);
4131   void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
4132   void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
4133   void EmitARCCopyWeak(Address dst, Address src);
4134   void EmitARCMoveWeak(Address dst, Address src);
4135   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
4136   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
4137   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
4138                                   bool resultIgnored);
4139   llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value,
4140                                       bool resultIgnored);
4141   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
4142   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
4143   llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
4144   void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise);
4145   void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
4146   llvm::Value *EmitARCAutorelease(llvm::Value *value);
4147   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
4148   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
4149   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
4150   llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value);
4151 
4152   llvm::Value *EmitObjCAutorelease(llvm::Value *value, llvm::Type *returnType);
4153   llvm::Value *EmitObjCRetainNonBlock(llvm::Value *value,
4154                                       llvm::Type *returnType);
4155   void EmitObjCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
4156 
4157   std::pair<LValue,llvm::Value*>
4158   EmitARCStoreAutoreleasing(const BinaryOperator *e);
4159   std::pair<LValue,llvm::Value*>
4160   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
4161   std::pair<LValue,llvm::Value*>
4162   EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored);
4163 
4164   llvm::Value *EmitObjCAlloc(llvm::Value *value,
4165                              llvm::Type *returnType);
4166   llvm::Value *EmitObjCAllocWithZone(llvm::Value *value,
4167                                      llvm::Type *returnType);
4168   llvm::Value *EmitObjCAllocInit(llvm::Value *value, llvm::Type *resultType);
4169 
4170   llvm::Value *EmitObjCThrowOperand(const Expr *expr);
4171   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
4172   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
4173 
4174   llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
4175   llvm::Value *EmitARCReclaimReturnedObject(const Expr *e,
4176                                             bool allowUnsafeClaim);
4177   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
4178   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
4179   llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr);
4180 
4181   void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
4182 
4183   static Destroyer destroyARCStrongImprecise;
4184   static Destroyer destroyARCStrongPrecise;
4185   static Destroyer destroyARCWeak;
4186   static Destroyer emitARCIntrinsicUse;
4187   static Destroyer destroyNonTrivialCStruct;
4188 
4189   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
4190   llvm::Value *EmitObjCAutoreleasePoolPush();
4191   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
4192   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
4193   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
4194 
4195   /// Emits a reference binding to the passed in expression.
4196   RValue EmitReferenceBindingToExpr(const Expr *E);
4197 
4198   //===--------------------------------------------------------------------===//
4199   //                           Expression Emission
4200   //===--------------------------------------------------------------------===//
4201 
4202   // Expressions are broken into three classes: scalar, complex, aggregate.
4203 
4204   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
4205   /// scalar type, returning the result.
4206   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
4207 
4208   /// Emit a conversion from the specified type to the specified destination
4209   /// type, both of which are LLVM scalar types.
4210   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
4211                                     QualType DstTy, SourceLocation Loc);
4212 
4213   /// Emit a conversion from the specified complex type to the specified
4214   /// destination type, where the destination type is an LLVM scalar type.
4215   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
4216                                              QualType DstTy,
4217                                              SourceLocation Loc);
4218 
4219   /// EmitAggExpr - Emit the computation of the specified expression
4220   /// of aggregate type.  The result is computed into the given slot,
4221   /// which may be null to indicate that the value is not needed.
4222   void EmitAggExpr(const Expr *E, AggValueSlot AS);
4223 
4224   /// EmitAggExprToLValue - Emit the computation of the specified expression of
4225   /// aggregate type into a temporary LValue.
4226   LValue EmitAggExprToLValue(const Expr *E);
4227 
4228   /// Build all the stores needed to initialize an aggregate at Dest with the
4229   /// value Val.
4230   void EmitAggregateStore(llvm::Value *Val, Address Dest, bool DestIsVolatile);
4231 
4232   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
4233   /// make sure it survives garbage collection until this point.
4234   void EmitExtendGCLifetime(llvm::Value *object);
4235 
4236   /// EmitComplexExpr - Emit the computation of the specified expression of
4237   /// complex type, returning the result.
4238   ComplexPairTy EmitComplexExpr(const Expr *E,
4239                                 bool IgnoreReal = false,
4240                                 bool IgnoreImag = false);
4241 
4242   /// EmitComplexExprIntoLValue - Emit the given expression of complex
4243   /// type and place its result into the specified l-value.
4244   void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
4245 
4246   /// EmitStoreOfComplex - Store a complex number into the specified l-value.
4247   void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
4248 
4249   /// EmitLoadOfComplex - Load a complex number from the specified l-value.
4250   ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
4251 
4252   Address emitAddrOfRealComponent(Address complex, QualType complexType);
4253   Address emitAddrOfImagComponent(Address complex, QualType complexType);
4254 
4255   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
4256   /// global variable that has already been created for it.  If the initializer
4257   /// has a different type than GV does, this may free GV and return a different
4258   /// one.  Otherwise it just returns GV.
4259   llvm::GlobalVariable *
4260   AddInitializerToStaticVarDecl(const VarDecl &D,
4261                                 llvm::GlobalVariable *GV);
4262 
4263   // Emit an @llvm.invariant.start call for the given memory region.
4264   void EmitInvariantStart(llvm::Constant *Addr, CharUnits Size);
4265 
4266   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
4267   /// variable with global storage.
4268   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
4269                                 bool PerformInit);
4270 
4271   llvm::Function *createAtExitStub(const VarDecl &VD, llvm::FunctionCallee Dtor,
4272                                    llvm::Constant *Addr);
4273 
4274   /// Call atexit() with a function that passes the given argument to
4275   /// the given function.
4276   void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::FunctionCallee fn,
4277                                     llvm::Constant *addr);
4278 
4279   /// Call atexit() with function dtorStub.
4280   void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub);
4281 
4282   /// Call unatexit() with function dtorStub.
4283   llvm::Value *unregisterGlobalDtorWithUnAtExit(llvm::Function *dtorStub);
4284 
4285   /// Emit code in this function to perform a guarded variable
4286   /// initialization.  Guarded initializations are used when it's not
4287   /// possible to prove that an initialization will be done exactly
4288   /// once, e.g. with a static local variable or a static data member
4289   /// of a class template.
4290   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
4291                           bool PerformInit);
4292 
4293   enum class GuardKind { VariableGuard, TlsGuard };
4294 
4295   /// Emit a branch to select whether or not to perform guarded initialization.
4296   void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit,
4297                                 llvm::BasicBlock *InitBlock,
4298                                 llvm::BasicBlock *NoInitBlock,
4299                                 GuardKind Kind, const VarDecl *D);
4300 
4301   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
4302   /// variables.
4303   void
4304   GenerateCXXGlobalInitFunc(llvm::Function *Fn,
4305                             ArrayRef<llvm::Function *> CXXThreadLocals,
4306                             ConstantAddress Guard = ConstantAddress::invalid());
4307 
4308   /// GenerateCXXGlobalCleanUpFunc - Generates code for cleaning up global
4309   /// variables.
4310   void GenerateCXXGlobalCleanUpFunc(
4311       llvm::Function *Fn,
4312       const std::vector<std::tuple<llvm::FunctionType *, llvm::WeakTrackingVH,
4313                                    llvm::Constant *>> &DtorsOrStermFinalizers);
4314 
4315   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
4316                                         const VarDecl *D,
4317                                         llvm::GlobalVariable *Addr,
4318                                         bool PerformInit);
4319 
4320   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
4321 
4322   void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp);
4323 
4324   void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
4325 
4326   RValue EmitAtomicExpr(AtomicExpr *E);
4327 
4328   //===--------------------------------------------------------------------===//
4329   //                         Annotations Emission
4330   //===--------------------------------------------------------------------===//
4331 
4332   /// Emit an annotation call (intrinsic).
4333   llvm::Value *EmitAnnotationCall(llvm::Function *AnnotationFn,
4334                                   llvm::Value *AnnotatedVal,
4335                                   StringRef AnnotationStr,
4336                                   SourceLocation Location,
4337                                   const AnnotateAttr *Attr);
4338 
4339   /// Emit local annotations for the local variable V, declared by D.
4340   void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
4341 
4342   /// Emit field annotations for the given field & value. Returns the
4343   /// annotation result.
4344   Address EmitFieldAnnotations(const FieldDecl *D, Address V);
4345 
4346   //===--------------------------------------------------------------------===//
4347   //                             Internal Helpers
4348   //===--------------------------------------------------------------------===//
4349 
4350   /// ContainsLabel - Return true if the statement contains a label in it.  If
4351   /// this statement is not executed normally, it not containing a label means
4352   /// that we can just remove the code.
4353   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
4354 
4355   /// containsBreak - Return true if the statement contains a break out of it.
4356   /// If the statement (recursively) contains a switch or loop with a break
4357   /// inside of it, this is fine.
4358   static bool containsBreak(const Stmt *S);
4359 
4360   /// Determine if the given statement might introduce a declaration into the
4361   /// current scope, by being a (possibly-labelled) DeclStmt.
4362   static bool mightAddDeclToScope(const Stmt *S);
4363 
4364   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
4365   /// to a constant, or if it does but contains a label, return false.  If it
4366   /// constant folds return true and set the boolean result in Result.
4367   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result,
4368                                     bool AllowLabels = false);
4369 
4370   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
4371   /// to a constant, or if it does but contains a label, return false.  If it
4372   /// constant folds return true and set the folded value.
4373   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result,
4374                                     bool AllowLabels = false);
4375 
4376   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
4377   /// if statement) to the specified blocks.  Based on the condition, this might
4378   /// try to simplify the codegen of the conditional based on the branch.
4379   /// TrueCount should be the number of times we expect the condition to
4380   /// evaluate to true based on PGO data.
4381   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
4382                             llvm::BasicBlock *FalseBlock, uint64_t TrueCount,
4383                             Stmt::Likelihood LH = Stmt::LH_None);
4384 
4385   /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is
4386   /// nonnull, if \p LHS is marked _Nonnull.
4387   void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc);
4388 
4389   /// An enumeration which makes it easier to specify whether or not an
4390   /// operation is a subtraction.
4391   enum { NotSubtraction = false, IsSubtraction = true };
4392 
4393   /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to
4394   /// detect undefined behavior when the pointer overflow sanitizer is enabled.
4395   /// \p SignedIndices indicates whether any of the GEP indices are signed.
4396   /// \p IsSubtraction indicates whether the expression used to form the GEP
4397   /// is a subtraction.
4398   llvm::Value *EmitCheckedInBoundsGEP(llvm::Value *Ptr,
4399                                       ArrayRef<llvm::Value *> IdxList,
4400                                       bool SignedIndices,
4401                                       bool IsSubtraction,
4402                                       SourceLocation Loc,
4403                                       const Twine &Name = "");
4404 
4405   /// Specifies which type of sanitizer check to apply when handling a
4406   /// particular builtin.
4407   enum BuiltinCheckKind {
4408     BCK_CTZPassedZero,
4409     BCK_CLZPassedZero,
4410   };
4411 
4412   /// Emits an argument for a call to a builtin. If the builtin sanitizer is
4413   /// enabled, a runtime check specified by \p Kind is also emitted.
4414   llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind);
4415 
4416   /// Emit a description of a type in a format suitable for passing to
4417   /// a runtime sanitizer handler.
4418   llvm::Constant *EmitCheckTypeDescriptor(QualType T);
4419 
4420   /// Convert a value into a format suitable for passing to a runtime
4421   /// sanitizer handler.
4422   llvm::Value *EmitCheckValue(llvm::Value *V);
4423 
4424   /// Emit a description of a source location in a format suitable for
4425   /// passing to a runtime sanitizer handler.
4426   llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
4427 
4428   /// Create a basic block that will either trap or call a handler function in
4429   /// the UBSan runtime with the provided arguments, and create a conditional
4430   /// branch to it.
4431   void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
4432                  SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs,
4433                  ArrayRef<llvm::Value *> DynamicArgs);
4434 
4435   /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath
4436   /// if Cond if false.
4437   void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond,
4438                             llvm::ConstantInt *TypeId, llvm::Value *Ptr,
4439                             ArrayRef<llvm::Constant *> StaticArgs);
4440 
4441   /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime
4442   /// checking is enabled. Otherwise, just emit an unreachable instruction.
4443   void EmitUnreachable(SourceLocation Loc);
4444 
4445   /// Create a basic block that will call the trap intrinsic, and emit a
4446   /// conditional branch to it, for the -ftrapv checks.
4447   void EmitTrapCheck(llvm::Value *Checked);
4448 
4449   /// Emit a call to trap or debugtrap and attach function attribute
4450   /// "trap-func-name" if specified.
4451   llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID);
4452 
4453   /// Emit a stub for the cross-DSO CFI check function.
4454   void EmitCfiCheckStub();
4455 
4456   /// Emit a cross-DSO CFI failure handling function.
4457   void EmitCfiCheckFail();
4458 
4459   /// Create a check for a function parameter that may potentially be
4460   /// declared as non-null.
4461   void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc,
4462                            AbstractCallee AC, unsigned ParmNum);
4463 
4464   /// EmitCallArg - Emit a single call argument.
4465   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
4466 
4467   /// EmitDelegateCallArg - We are performing a delegate call; that
4468   /// is, the current function is delegating to another one.  Produce
4469   /// a r-value suitable for passing the given parameter.
4470   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
4471                            SourceLocation loc);
4472 
4473   /// SetFPAccuracy - Set the minimum required accuracy of the given floating
4474   /// point operation, expressed as the maximum relative error in ulp.
4475   void SetFPAccuracy(llvm::Value *Val, float Accuracy);
4476 
4477   /// SetFPModel - Control floating point behavior via fp-model settings.
4478   void SetFPModel();
4479 
4480   /// Set the codegen fast-math flags.
4481   void SetFastMathFlags(FPOptions FPFeatures);
4482 
4483 private:
4484   llvm::MDNode *getRangeForLoadFromType(QualType Ty);
4485   void EmitReturnOfRValue(RValue RV, QualType Ty);
4486 
4487   void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
4488 
4489   llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4>
4490   DeferredReplacements;
4491 
4492   /// Set the address of a local variable.
4493   void setAddrOfLocalVar(const VarDecl *VD, Address Addr) {
4494     assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!");
4495     LocalDeclMap.insert({VD, Addr});
4496   }
4497 
4498   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
4499   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
4500   ///
4501   /// \param AI - The first function argument of the expansion.
4502   void ExpandTypeFromArgs(QualType Ty, LValue Dst,
4503                           llvm::Function::arg_iterator &AI);
4504 
4505   /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg
4506   /// Ty, into individual arguments on the provided vector \arg IRCallArgs,
4507   /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand.
4508   void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
4509                         SmallVectorImpl<llvm::Value *> &IRCallArgs,
4510                         unsigned &IRCallArgPos);
4511 
4512   llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
4513                             const Expr *InputExpr, std::string &ConstraintStr);
4514 
4515   llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
4516                                   LValue InputValue, QualType InputType,
4517                                   std::string &ConstraintStr,
4518                                   SourceLocation Loc);
4519 
4520   /// Attempts to statically evaluate the object size of E. If that
4521   /// fails, emits code to figure the size of E out for us. This is
4522   /// pass_object_size aware.
4523   ///
4524   /// If EmittedExpr is non-null, this will use that instead of re-emitting E.
4525   llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
4526                                                llvm::IntegerType *ResType,
4527                                                llvm::Value *EmittedE,
4528                                                bool IsDynamic);
4529 
4530   /// Emits the size of E, as required by __builtin_object_size. This
4531   /// function is aware of pass_object_size parameters, and will act accordingly
4532   /// if E is a parameter with the pass_object_size attribute.
4533   llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type,
4534                                      llvm::IntegerType *ResType,
4535                                      llvm::Value *EmittedE,
4536                                      bool IsDynamic);
4537 
4538   void emitZeroOrPatternForAutoVarInit(QualType type, const VarDecl &D,
4539                                        Address Loc);
4540 
4541 public:
4542 #ifndef NDEBUG
4543   // Determine whether the given argument is an Objective-C method
4544   // that may have type parameters in its signature.
4545   static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) {
4546     const DeclContext *dc = method->getDeclContext();
4547     if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) {
4548       return classDecl->getTypeParamListAsWritten();
4549     }
4550 
4551     if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) {
4552       return catDecl->getTypeParamList();
4553     }
4554 
4555     return false;
4556   }
4557 
4558   template<typename T>
4559   static bool isObjCMethodWithTypeParams(const T *) { return false; }
4560 #endif
4561 
4562   enum class EvaluationOrder {
4563     ///! No language constraints on evaluation order.
4564     Default,
4565     ///! Language semantics require left-to-right evaluation.
4566     ForceLeftToRight,
4567     ///! Language semantics require right-to-left evaluation.
4568     ForceRightToLeft
4569   };
4570 
4571   /// EmitCallArgs - Emit call arguments for a function.
4572   template <typename T>
4573   void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo,
4574                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
4575                     AbstractCallee AC = AbstractCallee(),
4576                     unsigned ParamsToSkip = 0,
4577                     EvaluationOrder Order = EvaluationOrder::Default) {
4578     SmallVector<QualType, 16> ArgTypes;
4579     CallExpr::const_arg_iterator Arg = ArgRange.begin();
4580 
4581     assert((ParamsToSkip == 0 || CallArgTypeInfo) &&
4582            "Can't skip parameters if type info is not provided");
4583     if (CallArgTypeInfo) {
4584 #ifndef NDEBUG
4585       bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo);
4586 #endif
4587 
4588       // First, use the argument types that the type info knows about
4589       for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip,
4590                 E = CallArgTypeInfo->param_type_end();
4591            I != E; ++I, ++Arg) {
4592         assert(Arg != ArgRange.end() && "Running over edge of argument list!");
4593         assert((isGenericMethod ||
4594                 ((*I)->isVariablyModifiedType() ||
4595                  (*I).getNonReferenceType()->isObjCRetainableType() ||
4596                  getContext()
4597                          .getCanonicalType((*I).getNonReferenceType())
4598                          .getTypePtr() ==
4599                      getContext()
4600                          .getCanonicalType((*Arg)->getType())
4601                          .getTypePtr())) &&
4602                "type mismatch in call argument!");
4603         ArgTypes.push_back(*I);
4604       }
4605     }
4606 
4607     // Either we've emitted all the call args, or we have a call to variadic
4608     // function.
4609     assert((Arg == ArgRange.end() || !CallArgTypeInfo ||
4610             CallArgTypeInfo->isVariadic()) &&
4611            "Extra arguments in non-variadic function!");
4612 
4613     // If we still have any arguments, emit them using the type of the argument.
4614     for (auto *A : llvm::make_range(Arg, ArgRange.end()))
4615       ArgTypes.push_back(CallArgTypeInfo ? getVarArgType(A) : A->getType());
4616 
4617     EmitCallArgs(Args, ArgTypes, ArgRange, AC, ParamsToSkip, Order);
4618   }
4619 
4620   void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes,
4621                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
4622                     AbstractCallee AC = AbstractCallee(),
4623                     unsigned ParamsToSkip = 0,
4624                     EvaluationOrder Order = EvaluationOrder::Default);
4625 
4626   /// EmitPointerWithAlignment - Given an expression with a pointer type,
4627   /// emit the value and compute our best estimate of the alignment of the
4628   /// pointee.
4629   ///
4630   /// \param BaseInfo - If non-null, this will be initialized with
4631   /// information about the source of the alignment and the may-alias
4632   /// attribute.  Note that this function will conservatively fall back on
4633   /// the type when it doesn't recognize the expression and may-alias will
4634   /// be set to false.
4635   ///
4636   /// One reasonable way to use this information is when there's a language
4637   /// guarantee that the pointer must be aligned to some stricter value, and
4638   /// we're simply trying to ensure that sufficiently obvious uses of under-
4639   /// aligned objects don't get miscompiled; for example, a placement new
4640   /// into the address of a local variable.  In such a case, it's quite
4641   /// reasonable to just ignore the returned alignment when it isn't from an
4642   /// explicit source.
4643   Address EmitPointerWithAlignment(const Expr *Addr,
4644                                    LValueBaseInfo *BaseInfo = nullptr,
4645                                    TBAAAccessInfo *TBAAInfo = nullptr);
4646 
4647   /// If \p E references a parameter with pass_object_size info or a constant
4648   /// array size modifier, emit the object size divided by the size of \p EltTy.
4649   /// Otherwise return null.
4650   llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy);
4651 
4652   void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK);
4653 
4654   struct MultiVersionResolverOption {
4655     llvm::Function *Function;
4656     FunctionDecl *FD;
4657     struct Conds {
4658       StringRef Architecture;
4659       llvm::SmallVector<StringRef, 8> Features;
4660 
4661       Conds(StringRef Arch, ArrayRef<StringRef> Feats)
4662           : Architecture(Arch), Features(Feats.begin(), Feats.end()) {}
4663     } Conditions;
4664 
4665     MultiVersionResolverOption(llvm::Function *F, StringRef Arch,
4666                                ArrayRef<StringRef> Feats)
4667         : Function(F), Conditions(Arch, Feats) {}
4668   };
4669 
4670   // Emits the body of a multiversion function's resolver. Assumes that the
4671   // options are already sorted in the proper order, with the 'default' option
4672   // last (if it exists).
4673   void EmitMultiVersionResolver(llvm::Function *Resolver,
4674                                 ArrayRef<MultiVersionResolverOption> Options);
4675 
4676   static uint64_t GetX86CpuSupportsMask(ArrayRef<StringRef> FeatureStrs);
4677 
4678 private:
4679   QualType getVarArgType(const Expr *Arg);
4680 
4681   void EmitDeclMetadata();
4682 
4683   BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType,
4684                                   const AutoVarEmission &emission);
4685 
4686   void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
4687 
4688   llvm::Value *GetValueForARMHint(unsigned BuiltinID);
4689   llvm::Value *EmitX86CpuIs(const CallExpr *E);
4690   llvm::Value *EmitX86CpuIs(StringRef CPUStr);
4691   llvm::Value *EmitX86CpuSupports(const CallExpr *E);
4692   llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs);
4693   llvm::Value *EmitX86CpuSupports(uint64_t Mask);
4694   llvm::Value *EmitX86CpuInit();
4695   llvm::Value *FormResolverCondition(const MultiVersionResolverOption &RO);
4696 };
4697 
4698 /// TargetFeatures - This class is used to check whether the builtin function
4699 /// has the required tagert specific features. It is able to support the
4700 /// combination of ','(and), '|'(or), and '()'. By default, the priority of
4701 /// ',' is higher than that of '|' .
4702 /// E.g:
4703 /// A,B|C means the builtin function requires both A and B, or C.
4704 /// If we want the builtin function requires both A and B, or both A and C,
4705 /// there are two ways: A,B|A,C or A,(B|C).
4706 /// The FeaturesList should not contain spaces, and brackets must appear in
4707 /// pairs.
4708 class TargetFeatures {
4709   struct FeatureListStatus {
4710     bool HasFeatures;
4711     StringRef CurFeaturesList;
4712   };
4713 
4714   const llvm::StringMap<bool> &CallerFeatureMap;
4715 
4716   FeatureListStatus getAndFeatures(StringRef FeatureList) {
4717     int InParentheses = 0;
4718     bool HasFeatures = true;
4719     size_t SubexpressionStart = 0;
4720     for (size_t i = 0, e = FeatureList.size(); i < e; ++i) {
4721       char CurrentToken = FeatureList[i];
4722       switch (CurrentToken) {
4723       default:
4724         break;
4725       case '(':
4726         if (InParentheses == 0)
4727           SubexpressionStart = i + 1;
4728         ++InParentheses;
4729         break;
4730       case ')':
4731         --InParentheses;
4732         assert(InParentheses >= 0 && "Parentheses are not in pair");
4733         LLVM_FALLTHROUGH;
4734       case '|':
4735       case ',':
4736         if (InParentheses == 0) {
4737           if (HasFeatures && i != SubexpressionStart) {
4738             StringRef F = FeatureList.slice(SubexpressionStart, i);
4739             HasFeatures = CurrentToken == ')' ? hasRequiredFeatures(F)
4740                                               : CallerFeatureMap.lookup(F);
4741           }
4742           SubexpressionStart = i + 1;
4743           if (CurrentToken == '|') {
4744             return {HasFeatures, FeatureList.substr(SubexpressionStart)};
4745           }
4746         }
4747         break;
4748       }
4749     }
4750     assert(InParentheses == 0 && "Parentheses are not in pair");
4751     if (HasFeatures && SubexpressionStart != FeatureList.size())
4752       HasFeatures =
4753           CallerFeatureMap.lookup(FeatureList.substr(SubexpressionStart));
4754     return {HasFeatures, StringRef()};
4755   }
4756 
4757 public:
4758   bool hasRequiredFeatures(StringRef FeatureList) {
4759     FeatureListStatus FS = {false, FeatureList};
4760     while (!FS.HasFeatures && !FS.CurFeaturesList.empty())
4761       FS = getAndFeatures(FS.CurFeaturesList);
4762     return FS.HasFeatures;
4763   }
4764 
4765   TargetFeatures(const llvm::StringMap<bool> &CallerFeatureMap)
4766       : CallerFeatureMap(CallerFeatureMap) {}
4767 };
4768 
4769 inline DominatingLLVMValue::saved_type
4770 DominatingLLVMValue::save(CodeGenFunction &CGF, llvm::Value *value) {
4771   if (!needsSaving(value)) return saved_type(value, false);
4772 
4773   // Otherwise, we need an alloca.
4774   auto align = CharUnits::fromQuantity(
4775             CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType()));
4776   Address alloca =
4777     CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save");
4778   CGF.Builder.CreateStore(value, alloca);
4779 
4780   return saved_type(alloca.getPointer(), true);
4781 }
4782 
4783 inline llvm::Value *DominatingLLVMValue::restore(CodeGenFunction &CGF,
4784                                                  saved_type value) {
4785   // If the value says it wasn't saved, trust that it's still dominating.
4786   if (!value.getInt()) return value.getPointer();
4787 
4788   // Otherwise, it should be an alloca instruction, as set up in save().
4789   auto alloca = cast<llvm::AllocaInst>(value.getPointer());
4790   return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlign());
4791 }
4792 
4793 }  // end namespace CodeGen
4794 
4795 // Map the LangOption for floating point exception behavior into
4796 // the corresponding enum in the IR.
4797 llvm::fp::ExceptionBehavior
4798 ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind);
4799 }  // end namespace clang
4800 
4801 #endif
4802