1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the internal per-function state used for llvm translation.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
14 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
15 
16 #include "CGBuilder.h"
17 #include "CGDebugInfo.h"
18 #include "CGLoopInfo.h"
19 #include "CGValue.h"
20 #include "CodeGenModule.h"
21 #include "CodeGenPGO.h"
22 #include "EHScopeStack.h"
23 #include "VarBypassDetector.h"
24 #include "clang/AST/CharUnits.h"
25 #include "clang/AST/CurrentSourceLocExprScope.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/ExprObjC.h"
28 #include "clang/AST/ExprOpenMP.h"
29 #include "clang/AST/StmtOpenMP.h"
30 #include "clang/AST/Type.h"
31 #include "clang/Basic/ABI.h"
32 #include "clang/Basic/CapturedStmt.h"
33 #include "clang/Basic/CodeGenOptions.h"
34 #include "clang/Basic/OpenMPKinds.h"
35 #include "clang/Basic/TargetInfo.h"
36 #include "llvm/ADT/ArrayRef.h"
37 #include "llvm/ADT/DenseMap.h"
38 #include "llvm/ADT/MapVector.h"
39 #include "llvm/ADT/SmallVector.h"
40 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
41 #include "llvm/IR/ValueHandle.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Transforms/Utils/SanitizerStats.h"
44 
45 namespace llvm {
46 class BasicBlock;
47 class LLVMContext;
48 class MDNode;
49 class Module;
50 class SwitchInst;
51 class Twine;
52 class Value;
53 }
54 
55 namespace clang {
56 class ASTContext;
57 class BlockDecl;
58 class CXXDestructorDecl;
59 class CXXForRangeStmt;
60 class CXXTryStmt;
61 class Decl;
62 class LabelDecl;
63 class EnumConstantDecl;
64 class FunctionDecl;
65 class FunctionProtoType;
66 class LabelStmt;
67 class ObjCContainerDecl;
68 class ObjCInterfaceDecl;
69 class ObjCIvarDecl;
70 class ObjCMethodDecl;
71 class ObjCImplementationDecl;
72 class ObjCPropertyImplDecl;
73 class TargetInfo;
74 class VarDecl;
75 class ObjCForCollectionStmt;
76 class ObjCAtTryStmt;
77 class ObjCAtThrowStmt;
78 class ObjCAtSynchronizedStmt;
79 class ObjCAutoreleasePoolStmt;
80 class OMPUseDevicePtrClause;
81 class OMPUseDeviceAddrClause;
82 class ReturnsNonNullAttr;
83 class SVETypeFlags;
84 class OMPExecutableDirective;
85 
86 namespace analyze_os_log {
87 class OSLogBufferLayout;
88 }
89 
90 namespace CodeGen {
91 class CodeGenTypes;
92 class CGCallee;
93 class CGFunctionInfo;
94 class CGRecordLayout;
95 class CGBlockInfo;
96 class CGCXXABI;
97 class BlockByrefHelpers;
98 class BlockByrefInfo;
99 class BlockFlags;
100 class BlockFieldFlags;
101 class RegionCodeGenTy;
102 class TargetCodeGenInfo;
103 struct OMPTaskDataTy;
104 struct CGCoroData;
105 
106 /// The kind of evaluation to perform on values of a particular
107 /// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
108 /// CGExprAgg?
109 ///
110 /// TODO: should vectors maybe be split out into their own thing?
111 enum TypeEvaluationKind {
112   TEK_Scalar,
113   TEK_Complex,
114   TEK_Aggregate
115 };
116 
117 #define LIST_SANITIZER_CHECKS                                                  \
118   SANITIZER_CHECK(AddOverflow, add_overflow, 0)                                \
119   SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0)                  \
120   SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0)                             \
121   SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0)                          \
122   SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0)            \
123   SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0)                   \
124   SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 1)             \
125   SANITIZER_CHECK(ImplicitConversion, implicit_conversion, 0)                  \
126   SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0)                          \
127   SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0)                     \
128   SANITIZER_CHECK(MissingReturn, missing_return, 0)                            \
129   SANITIZER_CHECK(MulOverflow, mul_overflow, 0)                                \
130   SANITIZER_CHECK(NegateOverflow, negate_overflow, 0)                          \
131   SANITIZER_CHECK(NullabilityArg, nullability_arg, 0)                          \
132   SANITIZER_CHECK(NullabilityReturn, nullability_return, 1)                    \
133   SANITIZER_CHECK(NonnullArg, nonnull_arg, 0)                                  \
134   SANITIZER_CHECK(NonnullReturn, nonnull_return, 1)                            \
135   SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0)                               \
136   SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0)                        \
137   SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0)                    \
138   SANITIZER_CHECK(SubOverflow, sub_overflow, 0)                                \
139   SANITIZER_CHECK(TypeMismatch, type_mismatch, 1)                              \
140   SANITIZER_CHECK(AlignmentAssumption, alignment_assumption, 0)                \
141   SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0)
142 
143 enum SanitizerHandler {
144 #define SANITIZER_CHECK(Enum, Name, Version) Enum,
145   LIST_SANITIZER_CHECKS
146 #undef SANITIZER_CHECK
147 };
148 
149 /// Helper class with most of the code for saving a value for a
150 /// conditional expression cleanup.
151 struct DominatingLLVMValue {
152   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
153 
154   /// Answer whether the given value needs extra work to be saved.
155   static bool needsSaving(llvm::Value *value) {
156     // If it's not an instruction, we don't need to save.
157     if (!isa<llvm::Instruction>(value)) return false;
158 
159     // If it's an instruction in the entry block, we don't need to save.
160     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
161     return (block != &block->getParent()->getEntryBlock());
162   }
163 
164   static saved_type save(CodeGenFunction &CGF, llvm::Value *value);
165   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value);
166 };
167 
168 /// A partial specialization of DominatingValue for llvm::Values that
169 /// might be llvm::Instructions.
170 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
171   typedef T *type;
172   static type restore(CodeGenFunction &CGF, saved_type value) {
173     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
174   }
175 };
176 
177 /// A specialization of DominatingValue for Address.
178 template <> struct DominatingValue<Address> {
179   typedef Address type;
180 
181   struct saved_type {
182     DominatingLLVMValue::saved_type SavedValue;
183     CharUnits Alignment;
184   };
185 
186   static bool needsSaving(type value) {
187     return DominatingLLVMValue::needsSaving(value.getPointer());
188   }
189   static saved_type save(CodeGenFunction &CGF, type value) {
190     return { DominatingLLVMValue::save(CGF, value.getPointer()),
191              value.getAlignment() };
192   }
193   static type restore(CodeGenFunction &CGF, saved_type value) {
194     return Address(DominatingLLVMValue::restore(CGF, value.SavedValue),
195                    value.Alignment);
196   }
197 };
198 
199 /// A specialization of DominatingValue for RValue.
200 template <> struct DominatingValue<RValue> {
201   typedef RValue type;
202   class saved_type {
203     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
204                 AggregateAddress, ComplexAddress };
205 
206     llvm::Value *Value;
207     unsigned K : 3;
208     unsigned Align : 29;
209     saved_type(llvm::Value *v, Kind k, unsigned a = 0)
210       : Value(v), K(k), Align(a) {}
211 
212   public:
213     static bool needsSaving(RValue value);
214     static saved_type save(CodeGenFunction &CGF, RValue value);
215     RValue restore(CodeGenFunction &CGF);
216 
217     // implementations in CGCleanup.cpp
218   };
219 
220   static bool needsSaving(type value) {
221     return saved_type::needsSaving(value);
222   }
223   static saved_type save(CodeGenFunction &CGF, type value) {
224     return saved_type::save(CGF, value);
225   }
226   static type restore(CodeGenFunction &CGF, saved_type value) {
227     return value.restore(CGF);
228   }
229 };
230 
231 /// CodeGenFunction - This class organizes the per-function state that is used
232 /// while generating LLVM code.
233 class CodeGenFunction : public CodeGenTypeCache {
234   CodeGenFunction(const CodeGenFunction &) = delete;
235   void operator=(const CodeGenFunction &) = delete;
236 
237   friend class CGCXXABI;
238 public:
239   /// A jump destination is an abstract label, branching to which may
240   /// require a jump out through normal cleanups.
241   struct JumpDest {
242     JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {}
243     JumpDest(llvm::BasicBlock *Block,
244              EHScopeStack::stable_iterator Depth,
245              unsigned Index)
246       : Block(Block), ScopeDepth(Depth), Index(Index) {}
247 
248     bool isValid() const { return Block != nullptr; }
249     llvm::BasicBlock *getBlock() const { return Block; }
250     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
251     unsigned getDestIndex() const { return Index; }
252 
253     // This should be used cautiously.
254     void setScopeDepth(EHScopeStack::stable_iterator depth) {
255       ScopeDepth = depth;
256     }
257 
258   private:
259     llvm::BasicBlock *Block;
260     EHScopeStack::stable_iterator ScopeDepth;
261     unsigned Index;
262   };
263 
264   CodeGenModule &CGM;  // Per-module state.
265   const TargetInfo &Target;
266 
267   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
268   LoopInfoStack LoopStack;
269   CGBuilderTy Builder;
270 
271   // Stores variables for which we can't generate correct lifetime markers
272   // because of jumps.
273   VarBypassDetector Bypasses;
274 
275   // CodeGen lambda for loops and support for ordered clause
276   typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &,
277                                   JumpDest)>
278       CodeGenLoopTy;
279   typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation,
280                                   const unsigned, const bool)>
281       CodeGenOrderedTy;
282 
283   // Codegen lambda for loop bounds in worksharing loop constructs
284   typedef llvm::function_ref<std::pair<LValue, LValue>(
285       CodeGenFunction &, const OMPExecutableDirective &S)>
286       CodeGenLoopBoundsTy;
287 
288   // Codegen lambda for loop bounds in dispatch-based loop implementation
289   typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>(
290       CodeGenFunction &, const OMPExecutableDirective &S, Address LB,
291       Address UB)>
292       CodeGenDispatchBoundsTy;
293 
294   /// CGBuilder insert helper. This function is called after an
295   /// instruction is created using Builder.
296   void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
297                     llvm::BasicBlock *BB,
298                     llvm::BasicBlock::iterator InsertPt) const;
299 
300   /// CurFuncDecl - Holds the Decl for the current outermost
301   /// non-closure context.
302   const Decl *CurFuncDecl;
303   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
304   const Decl *CurCodeDecl;
305   const CGFunctionInfo *CurFnInfo;
306   QualType FnRetTy;
307   llvm::Function *CurFn = nullptr;
308 
309   // Holds coroutine data if the current function is a coroutine. We use a
310   // wrapper to manage its lifetime, so that we don't have to define CGCoroData
311   // in this header.
312   struct CGCoroInfo {
313     std::unique_ptr<CGCoroData> Data;
314     CGCoroInfo();
315     ~CGCoroInfo();
316   };
317   CGCoroInfo CurCoro;
318 
319   bool isCoroutine() const {
320     return CurCoro.Data != nullptr;
321   }
322 
323   /// CurGD - The GlobalDecl for the current function being compiled.
324   GlobalDecl CurGD;
325 
326   /// PrologueCleanupDepth - The cleanup depth enclosing all the
327   /// cleanups associated with the parameters.
328   EHScopeStack::stable_iterator PrologueCleanupDepth;
329 
330   /// ReturnBlock - Unified return block.
331   JumpDest ReturnBlock;
332 
333   /// ReturnValue - The temporary alloca to hold the return
334   /// value. This is invalid iff the function has no return value.
335   Address ReturnValue = Address::invalid();
336 
337   /// ReturnValuePointer - The temporary alloca to hold a pointer to sret.
338   /// This is invalid if sret is not in use.
339   Address ReturnValuePointer = Address::invalid();
340 
341   /// If a return statement is being visited, this holds the return statment's
342   /// result expression.
343   const Expr *RetExpr = nullptr;
344 
345   /// Return true if a label was seen in the current scope.
346   bool hasLabelBeenSeenInCurrentScope() const {
347     if (CurLexicalScope)
348       return CurLexicalScope->hasLabels();
349     return !LabelMap.empty();
350   }
351 
352   /// AllocaInsertPoint - This is an instruction in the entry block before which
353   /// we prefer to insert allocas.
354   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
355 
356   /// API for captured statement code generation.
357   class CGCapturedStmtInfo {
358   public:
359     explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default)
360         : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
361     explicit CGCapturedStmtInfo(const CapturedStmt &S,
362                                 CapturedRegionKind K = CR_Default)
363       : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
364 
365       RecordDecl::field_iterator Field =
366         S.getCapturedRecordDecl()->field_begin();
367       for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
368                                                 E = S.capture_end();
369            I != E; ++I, ++Field) {
370         if (I->capturesThis())
371           CXXThisFieldDecl = *Field;
372         else if (I->capturesVariable())
373           CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
374         else if (I->capturesVariableByCopy())
375           CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
376       }
377     }
378 
379     virtual ~CGCapturedStmtInfo();
380 
381     CapturedRegionKind getKind() const { return Kind; }
382 
383     virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
384     // Retrieve the value of the context parameter.
385     virtual llvm::Value *getContextValue() const { return ThisValue; }
386 
387     /// Lookup the captured field decl for a variable.
388     virtual const FieldDecl *lookup(const VarDecl *VD) const {
389       return CaptureFields.lookup(VD->getCanonicalDecl());
390     }
391 
392     bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
393     virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
394 
395     static bool classof(const CGCapturedStmtInfo *) {
396       return true;
397     }
398 
399     /// Emit the captured statement body.
400     virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
401       CGF.incrementProfileCounter(S);
402       CGF.EmitStmt(S);
403     }
404 
405     /// Get the name of the capture helper.
406     virtual StringRef getHelperName() const { return "__captured_stmt"; }
407 
408   private:
409     /// The kind of captured statement being generated.
410     CapturedRegionKind Kind;
411 
412     /// Keep the map between VarDecl and FieldDecl.
413     llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
414 
415     /// The base address of the captured record, passed in as the first
416     /// argument of the parallel region function.
417     llvm::Value *ThisValue;
418 
419     /// Captured 'this' type.
420     FieldDecl *CXXThisFieldDecl;
421   };
422   CGCapturedStmtInfo *CapturedStmtInfo = nullptr;
423 
424   /// RAII for correct setting/restoring of CapturedStmtInfo.
425   class CGCapturedStmtRAII {
426   private:
427     CodeGenFunction &CGF;
428     CGCapturedStmtInfo *PrevCapturedStmtInfo;
429   public:
430     CGCapturedStmtRAII(CodeGenFunction &CGF,
431                        CGCapturedStmtInfo *NewCapturedStmtInfo)
432         : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) {
433       CGF.CapturedStmtInfo = NewCapturedStmtInfo;
434     }
435     ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; }
436   };
437 
438   /// An abstract representation of regular/ObjC call/message targets.
439   class AbstractCallee {
440     /// The function declaration of the callee.
441     const Decl *CalleeDecl;
442 
443   public:
444     AbstractCallee() : CalleeDecl(nullptr) {}
445     AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {}
446     AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {}
447     bool hasFunctionDecl() const {
448       return dyn_cast_or_null<FunctionDecl>(CalleeDecl);
449     }
450     const Decl *getDecl() const { return CalleeDecl; }
451     unsigned getNumParams() const {
452       if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
453         return FD->getNumParams();
454       return cast<ObjCMethodDecl>(CalleeDecl)->param_size();
455     }
456     const ParmVarDecl *getParamDecl(unsigned I) const {
457       if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
458         return FD->getParamDecl(I);
459       return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I);
460     }
461   };
462 
463   /// Sanitizers enabled for this function.
464   SanitizerSet SanOpts;
465 
466   /// True if CodeGen currently emits code implementing sanitizer checks.
467   bool IsSanitizerScope = false;
468 
469   /// RAII object to set/unset CodeGenFunction::IsSanitizerScope.
470   class SanitizerScope {
471     CodeGenFunction *CGF;
472   public:
473     SanitizerScope(CodeGenFunction *CGF);
474     ~SanitizerScope();
475   };
476 
477   /// In C++, whether we are code generating a thunk.  This controls whether we
478   /// should emit cleanups.
479   bool CurFuncIsThunk = false;
480 
481   /// In ARC, whether we should autorelease the return value.
482   bool AutoreleaseResult = false;
483 
484   /// Whether we processed a Microsoft-style asm block during CodeGen. These can
485   /// potentially set the return value.
486   bool SawAsmBlock = false;
487 
488   const NamedDecl *CurSEHParent = nullptr;
489 
490   /// True if the current function is an outlined SEH helper. This can be a
491   /// finally block or filter expression.
492   bool IsOutlinedSEHHelper = false;
493 
494   /// True if CodeGen currently emits code inside presereved access index
495   /// region.
496   bool IsInPreservedAIRegion = false;
497 
498   /// True if the current statement has nomerge attribute.
499   bool InNoMergeAttributedStmt = false;
500 
501   const CodeGen::CGBlockInfo *BlockInfo = nullptr;
502   llvm::Value *BlockPointer = nullptr;
503 
504   llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
505   FieldDecl *LambdaThisCaptureField = nullptr;
506 
507   /// A mapping from NRVO variables to the flags used to indicate
508   /// when the NRVO has been applied to this variable.
509   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
510 
511   EHScopeStack EHStack;
512   llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
513   llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack;
514 
515   llvm::Instruction *CurrentFuncletPad = nullptr;
516 
517   class CallLifetimeEnd final : public EHScopeStack::Cleanup {
518     llvm::Value *Addr;
519     llvm::Value *Size;
520 
521   public:
522     CallLifetimeEnd(Address addr, llvm::Value *size)
523         : Addr(addr.getPointer()), Size(size) {}
524 
525     void Emit(CodeGenFunction &CGF, Flags flags) override {
526       CGF.EmitLifetimeEnd(Size, Addr);
527     }
528   };
529 
530   /// Header for data within LifetimeExtendedCleanupStack.
531   struct LifetimeExtendedCleanupHeader {
532     /// The size of the following cleanup object.
533     unsigned Size;
534     /// The kind of cleanup to push: a value from the CleanupKind enumeration.
535     unsigned Kind : 31;
536     /// Whether this is a conditional cleanup.
537     unsigned IsConditional : 1;
538 
539     size_t getSize() const { return Size; }
540     CleanupKind getKind() const { return (CleanupKind)Kind; }
541     bool isConditional() const { return IsConditional; }
542   };
543 
544   /// i32s containing the indexes of the cleanup destinations.
545   Address NormalCleanupDest = Address::invalid();
546 
547   unsigned NextCleanupDestIndex = 1;
548 
549   /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
550   llvm::BasicBlock *EHResumeBlock = nullptr;
551 
552   /// The exception slot.  All landing pads write the current exception pointer
553   /// into this alloca.
554   llvm::Value *ExceptionSlot = nullptr;
555 
556   /// The selector slot.  Under the MandatoryCleanup model, all landing pads
557   /// write the current selector value into this alloca.
558   llvm::AllocaInst *EHSelectorSlot = nullptr;
559 
560   /// A stack of exception code slots. Entering an __except block pushes a slot
561   /// on the stack and leaving pops one. The __exception_code() intrinsic loads
562   /// a value from the top of the stack.
563   SmallVector<Address, 1> SEHCodeSlotStack;
564 
565   /// Value returned by __exception_info intrinsic.
566   llvm::Value *SEHInfo = nullptr;
567 
568   /// Emits a landing pad for the current EH stack.
569   llvm::BasicBlock *EmitLandingPad();
570 
571   llvm::BasicBlock *getInvokeDestImpl();
572 
573   /// Parent loop-based directive for scan directive.
574   const OMPExecutableDirective *OMPParentLoopDirectiveForScan = nullptr;
575   llvm::BasicBlock *OMPBeforeScanBlock = nullptr;
576   llvm::BasicBlock *OMPAfterScanBlock = nullptr;
577   llvm::BasicBlock *OMPScanExitBlock = nullptr;
578   llvm::BasicBlock *OMPScanDispatch = nullptr;
579   bool OMPFirstScanLoop = false;
580 
581   /// Manages parent directive for scan directives.
582   class ParentLoopDirectiveForScanRegion {
583     CodeGenFunction &CGF;
584     const OMPExecutableDirective *ParentLoopDirectiveForScan;
585 
586   public:
587     ParentLoopDirectiveForScanRegion(
588         CodeGenFunction &CGF,
589         const OMPExecutableDirective &ParentLoopDirectiveForScan)
590         : CGF(CGF),
591           ParentLoopDirectiveForScan(CGF.OMPParentLoopDirectiveForScan) {
592       CGF.OMPParentLoopDirectiveForScan = &ParentLoopDirectiveForScan;
593     }
594     ~ParentLoopDirectiveForScanRegion() {
595       CGF.OMPParentLoopDirectiveForScan = ParentLoopDirectiveForScan;
596     }
597   };
598 
599   template <class T>
600   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
601     return DominatingValue<T>::save(*this, value);
602   }
603 
604   class CGFPOptionsRAII {
605   public:
606     CGFPOptionsRAII(CodeGenFunction &CGF, FPOptions FPFeatures);
607     ~CGFPOptionsRAII();
608 
609   private:
610     CodeGenFunction &CGF;
611     FPOptions OldFPFeatures;
612     Optional<CGBuilderTy::FastMathFlagGuard> FMFGuard;
613   };
614   FPOptions CurFPFeatures;
615 
616 public:
617   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
618   /// rethrows.
619   SmallVector<llvm::Value*, 8> ObjCEHValueStack;
620 
621   /// A class controlling the emission of a finally block.
622   class FinallyInfo {
623     /// Where the catchall's edge through the cleanup should go.
624     JumpDest RethrowDest;
625 
626     /// A function to call to enter the catch.
627     llvm::FunctionCallee BeginCatchFn;
628 
629     /// An i1 variable indicating whether or not the @finally is
630     /// running for an exception.
631     llvm::AllocaInst *ForEHVar;
632 
633     /// An i8* variable into which the exception pointer to rethrow
634     /// has been saved.
635     llvm::AllocaInst *SavedExnVar;
636 
637   public:
638     void enter(CodeGenFunction &CGF, const Stmt *Finally,
639                llvm::FunctionCallee beginCatchFn,
640                llvm::FunctionCallee endCatchFn, llvm::FunctionCallee rethrowFn);
641     void exit(CodeGenFunction &CGF);
642   };
643 
644   /// Returns true inside SEH __try blocks.
645   bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }
646 
647   /// Returns true while emitting a cleanuppad.
648   bool isCleanupPadScope() const {
649     return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad);
650   }
651 
652   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
653   /// current full-expression.  Safe against the possibility that
654   /// we're currently inside a conditionally-evaluated expression.
655   template <class T, class... As>
656   void pushFullExprCleanup(CleanupKind kind, As... A) {
657     // If we're not in a conditional branch, or if none of the
658     // arguments requires saving, then use the unconditional cleanup.
659     if (!isInConditionalBranch())
660       return EHStack.pushCleanup<T>(kind, A...);
661 
662     // Stash values in a tuple so we can guarantee the order of saves.
663     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
664     SavedTuple Saved{saveValueInCond(A)...};
665 
666     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
667     EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
668     initFullExprCleanup();
669   }
670 
671   /// Queue a cleanup to be pushed after finishing the current
672   /// full-expression.
673   template <class T, class... As>
674   void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
675     if (!isInConditionalBranch())
676       return pushCleanupAfterFullExprImpl<T>(Kind, Address::invalid(), A...);
677 
678     Address ActiveFlag = createCleanupActiveFlag();
679     assert(!DominatingValue<Address>::needsSaving(ActiveFlag) &&
680            "cleanup active flag should never need saving");
681 
682     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
683     SavedTuple Saved{saveValueInCond(A)...};
684 
685     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
686     pushCleanupAfterFullExprImpl<CleanupType>(Kind, ActiveFlag, Saved);
687   }
688 
689   template <class T, class... As>
690   void pushCleanupAfterFullExprImpl(CleanupKind Kind, Address ActiveFlag,
691                                     As... A) {
692     LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind,
693                                             ActiveFlag.isValid()};
694 
695     size_t OldSize = LifetimeExtendedCleanupStack.size();
696     LifetimeExtendedCleanupStack.resize(
697         LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size +
698         (Header.IsConditional ? sizeof(ActiveFlag) : 0));
699 
700     static_assert(sizeof(Header) % alignof(T) == 0,
701                   "Cleanup will be allocated on misaligned address");
702     char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
703     new (Buffer) LifetimeExtendedCleanupHeader(Header);
704     new (Buffer + sizeof(Header)) T(A...);
705     if (Header.IsConditional)
706       new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag);
707   }
708 
709   /// Set up the last cleanup that was pushed as a conditional
710   /// full-expression cleanup.
711   void initFullExprCleanup() {
712     initFullExprCleanupWithFlag(createCleanupActiveFlag());
713   }
714 
715   void initFullExprCleanupWithFlag(Address ActiveFlag);
716   Address createCleanupActiveFlag();
717 
718   /// PushDestructorCleanup - Push a cleanup to call the
719   /// complete-object destructor of an object of the given type at the
720   /// given address.  Does nothing if T is not a C++ class type with a
721   /// non-trivial destructor.
722   void PushDestructorCleanup(QualType T, Address Addr);
723 
724   /// PushDestructorCleanup - Push a cleanup to call the
725   /// complete-object variant of the given destructor on the object at
726   /// the given address.
727   void PushDestructorCleanup(const CXXDestructorDecl *Dtor, QualType T,
728                              Address Addr);
729 
730   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
731   /// process all branch fixups.
732   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
733 
734   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
735   /// The block cannot be reactivated.  Pops it if it's the top of the
736   /// stack.
737   ///
738   /// \param DominatingIP - An instruction which is known to
739   ///   dominate the current IP (if set) and which lies along
740   ///   all paths of execution between the current IP and the
741   ///   the point at which the cleanup comes into scope.
742   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
743                               llvm::Instruction *DominatingIP);
744 
745   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
746   /// Cannot be used to resurrect a deactivated cleanup.
747   ///
748   /// \param DominatingIP - An instruction which is known to
749   ///   dominate the current IP (if set) and which lies along
750   ///   all paths of execution between the current IP and the
751   ///   the point at which the cleanup comes into scope.
752   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
753                             llvm::Instruction *DominatingIP);
754 
755   /// Enters a new scope for capturing cleanups, all of which
756   /// will be executed once the scope is exited.
757   class RunCleanupsScope {
758     EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth;
759     size_t LifetimeExtendedCleanupStackSize;
760     bool OldDidCallStackSave;
761   protected:
762     bool PerformCleanup;
763   private:
764 
765     RunCleanupsScope(const RunCleanupsScope &) = delete;
766     void operator=(const RunCleanupsScope &) = delete;
767 
768   protected:
769     CodeGenFunction& CGF;
770 
771   public:
772     /// Enter a new cleanup scope.
773     explicit RunCleanupsScope(CodeGenFunction &CGF)
774       : PerformCleanup(true), CGF(CGF)
775     {
776       CleanupStackDepth = CGF.EHStack.stable_begin();
777       LifetimeExtendedCleanupStackSize =
778           CGF.LifetimeExtendedCleanupStack.size();
779       OldDidCallStackSave = CGF.DidCallStackSave;
780       CGF.DidCallStackSave = false;
781       OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth;
782       CGF.CurrentCleanupScopeDepth = CleanupStackDepth;
783     }
784 
785     /// Exit this cleanup scope, emitting any accumulated cleanups.
786     ~RunCleanupsScope() {
787       if (PerformCleanup)
788         ForceCleanup();
789     }
790 
791     /// Determine whether this scope requires any cleanups.
792     bool requiresCleanups() const {
793       return CGF.EHStack.stable_begin() != CleanupStackDepth;
794     }
795 
796     /// Force the emission of cleanups now, instead of waiting
797     /// until this object is destroyed.
798     /// \param ValuesToReload - A list of values that need to be available at
799     /// the insertion point after cleanup emission. If cleanup emission created
800     /// a shared cleanup block, these value pointers will be rewritten.
801     /// Otherwise, they not will be modified.
802     void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) {
803       assert(PerformCleanup && "Already forced cleanup");
804       CGF.DidCallStackSave = OldDidCallStackSave;
805       CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize,
806                            ValuesToReload);
807       PerformCleanup = false;
808       CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth;
809     }
810   };
811 
812   // Cleanup stack depth of the RunCleanupsScope that was pushed most recently.
813   EHScopeStack::stable_iterator CurrentCleanupScopeDepth =
814       EHScopeStack::stable_end();
815 
816   class LexicalScope : public RunCleanupsScope {
817     SourceRange Range;
818     SmallVector<const LabelDecl*, 4> Labels;
819     LexicalScope *ParentScope;
820 
821     LexicalScope(const LexicalScope &) = delete;
822     void operator=(const LexicalScope &) = delete;
823 
824   public:
825     /// Enter a new cleanup scope.
826     explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
827       : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
828       CGF.CurLexicalScope = this;
829       if (CGDebugInfo *DI = CGF.getDebugInfo())
830         DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
831     }
832 
833     void addLabel(const LabelDecl *label) {
834       assert(PerformCleanup && "adding label to dead scope?");
835       Labels.push_back(label);
836     }
837 
838     /// Exit this cleanup scope, emitting any accumulated
839     /// cleanups.
840     ~LexicalScope() {
841       if (CGDebugInfo *DI = CGF.getDebugInfo())
842         DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
843 
844       // If we should perform a cleanup, force them now.  Note that
845       // this ends the cleanup scope before rescoping any labels.
846       if (PerformCleanup) {
847         ApplyDebugLocation DL(CGF, Range.getEnd());
848         ForceCleanup();
849       }
850     }
851 
852     /// Force the emission of cleanups now, instead of waiting
853     /// until this object is destroyed.
854     void ForceCleanup() {
855       CGF.CurLexicalScope = ParentScope;
856       RunCleanupsScope::ForceCleanup();
857 
858       if (!Labels.empty())
859         rescopeLabels();
860     }
861 
862     bool hasLabels() const {
863       return !Labels.empty();
864     }
865 
866     void rescopeLabels();
867   };
868 
869   typedef llvm::DenseMap<const Decl *, Address> DeclMapTy;
870 
871   /// The class used to assign some variables some temporarily addresses.
872   class OMPMapVars {
873     DeclMapTy SavedLocals;
874     DeclMapTy SavedTempAddresses;
875     OMPMapVars(const OMPMapVars &) = delete;
876     void operator=(const OMPMapVars &) = delete;
877 
878   public:
879     explicit OMPMapVars() = default;
880     ~OMPMapVars() {
881       assert(SavedLocals.empty() && "Did not restored original addresses.");
882     };
883 
884     /// Sets the address of the variable \p LocalVD to be \p TempAddr in
885     /// function \p CGF.
886     /// \return true if at least one variable was set already, false otherwise.
887     bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD,
888                     Address TempAddr) {
889       LocalVD = LocalVD->getCanonicalDecl();
890       // Only save it once.
891       if (SavedLocals.count(LocalVD)) return false;
892 
893       // Copy the existing local entry to SavedLocals.
894       auto it = CGF.LocalDeclMap.find(LocalVD);
895       if (it != CGF.LocalDeclMap.end())
896         SavedLocals.try_emplace(LocalVD, it->second);
897       else
898         SavedLocals.try_emplace(LocalVD, Address::invalid());
899 
900       // Generate the private entry.
901       QualType VarTy = LocalVD->getType();
902       if (VarTy->isReferenceType()) {
903         Address Temp = CGF.CreateMemTemp(VarTy);
904         CGF.Builder.CreateStore(TempAddr.getPointer(), Temp);
905         TempAddr = Temp;
906       }
907       SavedTempAddresses.try_emplace(LocalVD, TempAddr);
908 
909       return true;
910     }
911 
912     /// Applies new addresses to the list of the variables.
913     /// \return true if at least one variable is using new address, false
914     /// otherwise.
915     bool apply(CodeGenFunction &CGF) {
916       copyInto(SavedTempAddresses, CGF.LocalDeclMap);
917       SavedTempAddresses.clear();
918       return !SavedLocals.empty();
919     }
920 
921     /// Restores original addresses of the variables.
922     void restore(CodeGenFunction &CGF) {
923       if (!SavedLocals.empty()) {
924         copyInto(SavedLocals, CGF.LocalDeclMap);
925         SavedLocals.clear();
926       }
927     }
928 
929   private:
930     /// Copy all the entries in the source map over the corresponding
931     /// entries in the destination, which must exist.
932     static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) {
933       for (auto &Pair : Src) {
934         if (!Pair.second.isValid()) {
935           Dest.erase(Pair.first);
936           continue;
937         }
938 
939         auto I = Dest.find(Pair.first);
940         if (I != Dest.end())
941           I->second = Pair.second;
942         else
943           Dest.insert(Pair);
944       }
945     }
946   };
947 
948   /// The scope used to remap some variables as private in the OpenMP loop body
949   /// (or other captured region emitted without outlining), and to restore old
950   /// vars back on exit.
951   class OMPPrivateScope : public RunCleanupsScope {
952     OMPMapVars MappedVars;
953     OMPPrivateScope(const OMPPrivateScope &) = delete;
954     void operator=(const OMPPrivateScope &) = delete;
955 
956   public:
957     /// Enter a new OpenMP private scope.
958     explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}
959 
960     /// Registers \p LocalVD variable as a private and apply \p PrivateGen
961     /// function for it to generate corresponding private variable. \p
962     /// PrivateGen returns an address of the generated private variable.
963     /// \return true if the variable is registered as private, false if it has
964     /// been privatized already.
965     bool addPrivate(const VarDecl *LocalVD,
966                     const llvm::function_ref<Address()> PrivateGen) {
967       assert(PerformCleanup && "adding private to dead scope");
968       return MappedVars.setVarAddr(CGF, LocalVD, PrivateGen());
969     }
970 
971     /// Privatizes local variables previously registered as private.
972     /// Registration is separate from the actual privatization to allow
973     /// initializers use values of the original variables, not the private one.
974     /// This is important, for example, if the private variable is a class
975     /// variable initialized by a constructor that references other private
976     /// variables. But at initialization original variables must be used, not
977     /// private copies.
978     /// \return true if at least one variable was privatized, false otherwise.
979     bool Privatize() { return MappedVars.apply(CGF); }
980 
981     void ForceCleanup() {
982       RunCleanupsScope::ForceCleanup();
983       MappedVars.restore(CGF);
984     }
985 
986     /// Exit scope - all the mapped variables are restored.
987     ~OMPPrivateScope() {
988       if (PerformCleanup)
989         ForceCleanup();
990     }
991 
992     /// Checks if the global variable is captured in current function.
993     bool isGlobalVarCaptured(const VarDecl *VD) const {
994       VD = VD->getCanonicalDecl();
995       return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0;
996     }
997   };
998 
999   /// Save/restore original map of previously emitted local vars in case when we
1000   /// need to duplicate emission of the same code several times in the same
1001   /// function for OpenMP code.
1002   class OMPLocalDeclMapRAII {
1003     CodeGenFunction &CGF;
1004     DeclMapTy SavedMap;
1005 
1006   public:
1007     OMPLocalDeclMapRAII(CodeGenFunction &CGF)
1008         : CGF(CGF), SavedMap(CGF.LocalDeclMap) {}
1009     ~OMPLocalDeclMapRAII() { SavedMap.swap(CGF.LocalDeclMap); }
1010   };
1011 
1012   /// Takes the old cleanup stack size and emits the cleanup blocks
1013   /// that have been added.
1014   void
1015   PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
1016                    std::initializer_list<llvm::Value **> ValuesToReload = {});
1017 
1018   /// Takes the old cleanup stack size and emits the cleanup blocks
1019   /// that have been added, then adds all lifetime-extended cleanups from
1020   /// the given position to the stack.
1021   void
1022   PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
1023                    size_t OldLifetimeExtendedStackSize,
1024                    std::initializer_list<llvm::Value **> ValuesToReload = {});
1025 
1026   void ResolveBranchFixups(llvm::BasicBlock *Target);
1027 
1028   /// The given basic block lies in the current EH scope, but may be a
1029   /// target of a potentially scope-crossing jump; get a stable handle
1030   /// to which we can perform this jump later.
1031   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
1032     return JumpDest(Target,
1033                     EHStack.getInnermostNormalCleanup(),
1034                     NextCleanupDestIndex++);
1035   }
1036 
1037   /// The given basic block lies in the current EH scope, but may be a
1038   /// target of a potentially scope-crossing jump; get a stable handle
1039   /// to which we can perform this jump later.
1040   JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
1041     return getJumpDestInCurrentScope(createBasicBlock(Name));
1042   }
1043 
1044   /// EmitBranchThroughCleanup - Emit a branch from the current insert
1045   /// block through the normal cleanup handling code (if any) and then
1046   /// on to \arg Dest.
1047   void EmitBranchThroughCleanup(JumpDest Dest);
1048 
1049   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
1050   /// specified destination obviously has no cleanups to run.  'false' is always
1051   /// a conservatively correct answer for this method.
1052   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
1053 
1054   /// popCatchScope - Pops the catch scope at the top of the EHScope
1055   /// stack, emitting any required code (other than the catch handlers
1056   /// themselves).
1057   void popCatchScope();
1058 
1059   llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
1060   llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
1061   llvm::BasicBlock *
1062   getFuncletEHDispatchBlock(EHScopeStack::stable_iterator scope);
1063 
1064   /// An object to manage conditionally-evaluated expressions.
1065   class ConditionalEvaluation {
1066     llvm::BasicBlock *StartBB;
1067 
1068   public:
1069     ConditionalEvaluation(CodeGenFunction &CGF)
1070       : StartBB(CGF.Builder.GetInsertBlock()) {}
1071 
1072     void begin(CodeGenFunction &CGF) {
1073       assert(CGF.OutermostConditional != this);
1074       if (!CGF.OutermostConditional)
1075         CGF.OutermostConditional = this;
1076     }
1077 
1078     void end(CodeGenFunction &CGF) {
1079       assert(CGF.OutermostConditional != nullptr);
1080       if (CGF.OutermostConditional == this)
1081         CGF.OutermostConditional = nullptr;
1082     }
1083 
1084     /// Returns a block which will be executed prior to each
1085     /// evaluation of the conditional code.
1086     llvm::BasicBlock *getStartingBlock() const {
1087       return StartBB;
1088     }
1089   };
1090 
1091   /// isInConditionalBranch - Return true if we're currently emitting
1092   /// one branch or the other of a conditional expression.
1093   bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
1094 
1095   void setBeforeOutermostConditional(llvm::Value *value, Address addr) {
1096     assert(isInConditionalBranch());
1097     llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
1098     auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back());
1099     store->setAlignment(addr.getAlignment().getAsAlign());
1100   }
1101 
1102   /// An RAII object to record that we're evaluating a statement
1103   /// expression.
1104   class StmtExprEvaluation {
1105     CodeGenFunction &CGF;
1106 
1107     /// We have to save the outermost conditional: cleanups in a
1108     /// statement expression aren't conditional just because the
1109     /// StmtExpr is.
1110     ConditionalEvaluation *SavedOutermostConditional;
1111 
1112   public:
1113     StmtExprEvaluation(CodeGenFunction &CGF)
1114       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
1115       CGF.OutermostConditional = nullptr;
1116     }
1117 
1118     ~StmtExprEvaluation() {
1119       CGF.OutermostConditional = SavedOutermostConditional;
1120       CGF.EnsureInsertPoint();
1121     }
1122   };
1123 
1124   /// An object which temporarily prevents a value from being
1125   /// destroyed by aggressive peephole optimizations that assume that
1126   /// all uses of a value have been realized in the IR.
1127   class PeepholeProtection {
1128     llvm::Instruction *Inst;
1129     friend class CodeGenFunction;
1130 
1131   public:
1132     PeepholeProtection() : Inst(nullptr) {}
1133   };
1134 
1135   /// A non-RAII class containing all the information about a bound
1136   /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
1137   /// this which makes individual mappings very simple; using this
1138   /// class directly is useful when you have a variable number of
1139   /// opaque values or don't want the RAII functionality for some
1140   /// reason.
1141   class OpaqueValueMappingData {
1142     const OpaqueValueExpr *OpaqueValue;
1143     bool BoundLValue;
1144     CodeGenFunction::PeepholeProtection Protection;
1145 
1146     OpaqueValueMappingData(const OpaqueValueExpr *ov,
1147                            bool boundLValue)
1148       : OpaqueValue(ov), BoundLValue(boundLValue) {}
1149   public:
1150     OpaqueValueMappingData() : OpaqueValue(nullptr) {}
1151 
1152     static bool shouldBindAsLValue(const Expr *expr) {
1153       // gl-values should be bound as l-values for obvious reasons.
1154       // Records should be bound as l-values because IR generation
1155       // always keeps them in memory.  Expressions of function type
1156       // act exactly like l-values but are formally required to be
1157       // r-values in C.
1158       return expr->isGLValue() ||
1159              expr->getType()->isFunctionType() ||
1160              hasAggregateEvaluationKind(expr->getType());
1161     }
1162 
1163     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1164                                        const OpaqueValueExpr *ov,
1165                                        const Expr *e) {
1166       if (shouldBindAsLValue(ov))
1167         return bind(CGF, ov, CGF.EmitLValue(e));
1168       return bind(CGF, ov, CGF.EmitAnyExpr(e));
1169     }
1170 
1171     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1172                                        const OpaqueValueExpr *ov,
1173                                        const LValue &lv) {
1174       assert(shouldBindAsLValue(ov));
1175       CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
1176       return OpaqueValueMappingData(ov, true);
1177     }
1178 
1179     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1180                                        const OpaqueValueExpr *ov,
1181                                        const RValue &rv) {
1182       assert(!shouldBindAsLValue(ov));
1183       CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
1184 
1185       OpaqueValueMappingData data(ov, false);
1186 
1187       // Work around an extremely aggressive peephole optimization in
1188       // EmitScalarConversion which assumes that all other uses of a
1189       // value are extant.
1190       data.Protection = CGF.protectFromPeepholes(rv);
1191 
1192       return data;
1193     }
1194 
1195     bool isValid() const { return OpaqueValue != nullptr; }
1196     void clear() { OpaqueValue = nullptr; }
1197 
1198     void unbind(CodeGenFunction &CGF) {
1199       assert(OpaqueValue && "no data to unbind!");
1200 
1201       if (BoundLValue) {
1202         CGF.OpaqueLValues.erase(OpaqueValue);
1203       } else {
1204         CGF.OpaqueRValues.erase(OpaqueValue);
1205         CGF.unprotectFromPeepholes(Protection);
1206       }
1207     }
1208   };
1209 
1210   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
1211   class OpaqueValueMapping {
1212     CodeGenFunction &CGF;
1213     OpaqueValueMappingData Data;
1214 
1215   public:
1216     static bool shouldBindAsLValue(const Expr *expr) {
1217       return OpaqueValueMappingData::shouldBindAsLValue(expr);
1218     }
1219 
1220     /// Build the opaque value mapping for the given conditional
1221     /// operator if it's the GNU ?: extension.  This is a common
1222     /// enough pattern that the convenience operator is really
1223     /// helpful.
1224     ///
1225     OpaqueValueMapping(CodeGenFunction &CGF,
1226                        const AbstractConditionalOperator *op) : CGF(CGF) {
1227       if (isa<ConditionalOperator>(op))
1228         // Leave Data empty.
1229         return;
1230 
1231       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
1232       Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
1233                                           e->getCommon());
1234     }
1235 
1236     /// Build the opaque value mapping for an OpaqueValueExpr whose source
1237     /// expression is set to the expression the OVE represents.
1238     OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV)
1239         : CGF(CGF) {
1240       if (OV) {
1241         assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used "
1242                                       "for OVE with no source expression");
1243         Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr());
1244       }
1245     }
1246 
1247     OpaqueValueMapping(CodeGenFunction &CGF,
1248                        const OpaqueValueExpr *opaqueValue,
1249                        LValue lvalue)
1250       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
1251     }
1252 
1253     OpaqueValueMapping(CodeGenFunction &CGF,
1254                        const OpaqueValueExpr *opaqueValue,
1255                        RValue rvalue)
1256       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
1257     }
1258 
1259     void pop() {
1260       Data.unbind(CGF);
1261       Data.clear();
1262     }
1263 
1264     ~OpaqueValueMapping() {
1265       if (Data.isValid()) Data.unbind(CGF);
1266     }
1267   };
1268 
1269 private:
1270   CGDebugInfo *DebugInfo;
1271   /// Used to create unique names for artificial VLA size debug info variables.
1272   unsigned VLAExprCounter = 0;
1273   bool DisableDebugInfo = false;
1274 
1275   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
1276   /// calling llvm.stacksave for multiple VLAs in the same scope.
1277   bool DidCallStackSave = false;
1278 
1279   /// IndirectBranch - The first time an indirect goto is seen we create a block
1280   /// with an indirect branch.  Every time we see the address of a label taken,
1281   /// we add the label to the indirect goto.  Every subsequent indirect goto is
1282   /// codegen'd as a jump to the IndirectBranch's basic block.
1283   llvm::IndirectBrInst *IndirectBranch = nullptr;
1284 
1285   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1286   /// decls.
1287   DeclMapTy LocalDeclMap;
1288 
1289   // Keep track of the cleanups for callee-destructed parameters pushed to the
1290   // cleanup stack so that they can be deactivated later.
1291   llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator>
1292       CalleeDestructedParamCleanups;
1293 
1294   /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this
1295   /// will contain a mapping from said ParmVarDecl to its implicit "object_size"
1296   /// parameter.
1297   llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2>
1298       SizeArguments;
1299 
1300   /// Track escaped local variables with auto storage. Used during SEH
1301   /// outlining to produce a call to llvm.localescape.
1302   llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;
1303 
1304   /// LabelMap - This keeps track of the LLVM basic block for each C label.
1305   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1306 
1307   // BreakContinueStack - This keeps track of where break and continue
1308   // statements should jump to.
1309   struct BreakContinue {
1310     BreakContinue(JumpDest Break, JumpDest Continue)
1311       : BreakBlock(Break), ContinueBlock(Continue) {}
1312 
1313     JumpDest BreakBlock;
1314     JumpDest ContinueBlock;
1315   };
1316   SmallVector<BreakContinue, 8> BreakContinueStack;
1317 
1318   /// Handles cancellation exit points in OpenMP-related constructs.
1319   class OpenMPCancelExitStack {
1320     /// Tracks cancellation exit point and join point for cancel-related exit
1321     /// and normal exit.
1322     struct CancelExit {
1323       CancelExit() = default;
1324       CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock,
1325                  JumpDest ContBlock)
1326           : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {}
1327       OpenMPDirectiveKind Kind = llvm::omp::OMPD_unknown;
1328       /// true if the exit block has been emitted already by the special
1329       /// emitExit() call, false if the default codegen is used.
1330       bool HasBeenEmitted = false;
1331       JumpDest ExitBlock;
1332       JumpDest ContBlock;
1333     };
1334 
1335     SmallVector<CancelExit, 8> Stack;
1336 
1337   public:
1338     OpenMPCancelExitStack() : Stack(1) {}
1339     ~OpenMPCancelExitStack() = default;
1340     /// Fetches the exit block for the current OpenMP construct.
1341     JumpDest getExitBlock() const { return Stack.back().ExitBlock; }
1342     /// Emits exit block with special codegen procedure specific for the related
1343     /// OpenMP construct + emits code for normal construct cleanup.
1344     void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
1345                   const llvm::function_ref<void(CodeGenFunction &)> CodeGen) {
1346       if (Stack.back().Kind == Kind && getExitBlock().isValid()) {
1347         assert(CGF.getOMPCancelDestination(Kind).isValid());
1348         assert(CGF.HaveInsertPoint());
1349         assert(!Stack.back().HasBeenEmitted);
1350         auto IP = CGF.Builder.saveAndClearIP();
1351         CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1352         CodeGen(CGF);
1353         CGF.EmitBranch(Stack.back().ContBlock.getBlock());
1354         CGF.Builder.restoreIP(IP);
1355         Stack.back().HasBeenEmitted = true;
1356       }
1357       CodeGen(CGF);
1358     }
1359     /// Enter the cancel supporting \a Kind construct.
1360     /// \param Kind OpenMP directive that supports cancel constructs.
1361     /// \param HasCancel true, if the construct has inner cancel directive,
1362     /// false otherwise.
1363     void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) {
1364       Stack.push_back({Kind,
1365                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit")
1366                                  : JumpDest(),
1367                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont")
1368                                  : JumpDest()});
1369     }
1370     /// Emits default exit point for the cancel construct (if the special one
1371     /// has not be used) + join point for cancel/normal exits.
1372     void exit(CodeGenFunction &CGF) {
1373       if (getExitBlock().isValid()) {
1374         assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid());
1375         bool HaveIP = CGF.HaveInsertPoint();
1376         if (!Stack.back().HasBeenEmitted) {
1377           if (HaveIP)
1378             CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1379           CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1380           CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1381         }
1382         CGF.EmitBlock(Stack.back().ContBlock.getBlock());
1383         if (!HaveIP) {
1384           CGF.Builder.CreateUnreachable();
1385           CGF.Builder.ClearInsertionPoint();
1386         }
1387       }
1388       Stack.pop_back();
1389     }
1390   };
1391   OpenMPCancelExitStack OMPCancelStack;
1392 
1393   CodeGenPGO PGO;
1394 
1395   /// Calculate branch weights appropriate for PGO data
1396   llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount);
1397   llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights);
1398   llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond,
1399                                             uint64_t LoopCount);
1400 
1401 public:
1402   /// Increment the profiler's counter for the given statement by \p StepV.
1403   /// If \p StepV is null, the default increment is 1.
1404   void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) {
1405     if (CGM.getCodeGenOpts().hasProfileClangInstr())
1406       PGO.emitCounterIncrement(Builder, S, StepV);
1407     PGO.setCurrentStmt(S);
1408   }
1409 
1410   /// Get the profiler's count for the given statement.
1411   uint64_t getProfileCount(const Stmt *S) {
1412     Optional<uint64_t> Count = PGO.getStmtCount(S);
1413     if (!Count.hasValue())
1414       return 0;
1415     return *Count;
1416   }
1417 
1418   /// Set the profiler's current count.
1419   void setCurrentProfileCount(uint64_t Count) {
1420     PGO.setCurrentRegionCount(Count);
1421   }
1422 
1423   /// Get the profiler's current count. This is generally the count for the most
1424   /// recently incremented counter.
1425   uint64_t getCurrentProfileCount() {
1426     return PGO.getCurrentRegionCount();
1427   }
1428 
1429 private:
1430 
1431   /// SwitchInsn - This is nearest current switch instruction. It is null if
1432   /// current context is not in a switch.
1433   llvm::SwitchInst *SwitchInsn = nullptr;
1434   /// The branch weights of SwitchInsn when doing instrumentation based PGO.
1435   SmallVector<uint64_t, 16> *SwitchWeights = nullptr;
1436 
1437   /// CaseRangeBlock - This block holds if condition check for last case
1438   /// statement range in current switch instruction.
1439   llvm::BasicBlock *CaseRangeBlock = nullptr;
1440 
1441   /// OpaqueLValues - Keeps track of the current set of opaque value
1442   /// expressions.
1443   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1444   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1445 
1446   // VLASizeMap - This keeps track of the associated size for each VLA type.
1447   // We track this by the size expression rather than the type itself because
1448   // in certain situations, like a const qualifier applied to an VLA typedef,
1449   // multiple VLA types can share the same size expression.
1450   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1451   // enter/leave scopes.
1452   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1453 
1454   /// A block containing a single 'unreachable' instruction.  Created
1455   /// lazily by getUnreachableBlock().
1456   llvm::BasicBlock *UnreachableBlock = nullptr;
1457 
1458   /// Counts of the number return expressions in the function.
1459   unsigned NumReturnExprs = 0;
1460 
1461   /// Count the number of simple (constant) return expressions in the function.
1462   unsigned NumSimpleReturnExprs = 0;
1463 
1464   /// The last regular (non-return) debug location (breakpoint) in the function.
1465   SourceLocation LastStopPoint;
1466 
1467 public:
1468   /// Source location information about the default argument or member
1469   /// initializer expression we're evaluating, if any.
1470   CurrentSourceLocExprScope CurSourceLocExprScope;
1471   using SourceLocExprScopeGuard =
1472       CurrentSourceLocExprScope::SourceLocExprScopeGuard;
1473 
1474   /// A scope within which we are constructing the fields of an object which
1475   /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
1476   /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
1477   class FieldConstructionScope {
1478   public:
1479     FieldConstructionScope(CodeGenFunction &CGF, Address This)
1480         : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
1481       CGF.CXXDefaultInitExprThis = This;
1482     }
1483     ~FieldConstructionScope() {
1484       CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
1485     }
1486 
1487   private:
1488     CodeGenFunction &CGF;
1489     Address OldCXXDefaultInitExprThis;
1490   };
1491 
1492   /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
1493   /// is overridden to be the object under construction.
1494   class CXXDefaultInitExprScope  {
1495   public:
1496     CXXDefaultInitExprScope(CodeGenFunction &CGF, const CXXDefaultInitExpr *E)
1497         : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue),
1498           OldCXXThisAlignment(CGF.CXXThisAlignment),
1499           SourceLocScope(E, CGF.CurSourceLocExprScope) {
1500       CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer();
1501       CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment();
1502     }
1503     ~CXXDefaultInitExprScope() {
1504       CGF.CXXThisValue = OldCXXThisValue;
1505       CGF.CXXThisAlignment = OldCXXThisAlignment;
1506     }
1507 
1508   public:
1509     CodeGenFunction &CGF;
1510     llvm::Value *OldCXXThisValue;
1511     CharUnits OldCXXThisAlignment;
1512     SourceLocExprScopeGuard SourceLocScope;
1513   };
1514 
1515   struct CXXDefaultArgExprScope : SourceLocExprScopeGuard {
1516     CXXDefaultArgExprScope(CodeGenFunction &CGF, const CXXDefaultArgExpr *E)
1517         : SourceLocExprScopeGuard(E, CGF.CurSourceLocExprScope) {}
1518   };
1519 
1520   /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the
1521   /// current loop index is overridden.
1522   class ArrayInitLoopExprScope {
1523   public:
1524     ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index)
1525       : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) {
1526       CGF.ArrayInitIndex = Index;
1527     }
1528     ~ArrayInitLoopExprScope() {
1529       CGF.ArrayInitIndex = OldArrayInitIndex;
1530     }
1531 
1532   private:
1533     CodeGenFunction &CGF;
1534     llvm::Value *OldArrayInitIndex;
1535   };
1536 
1537   class InlinedInheritingConstructorScope {
1538   public:
1539     InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD)
1540         : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl),
1541           OldCurCodeDecl(CGF.CurCodeDecl),
1542           OldCXXABIThisDecl(CGF.CXXABIThisDecl),
1543           OldCXXABIThisValue(CGF.CXXABIThisValue),
1544           OldCXXThisValue(CGF.CXXThisValue),
1545           OldCXXABIThisAlignment(CGF.CXXABIThisAlignment),
1546           OldCXXThisAlignment(CGF.CXXThisAlignment),
1547           OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy),
1548           OldCXXInheritedCtorInitExprArgs(
1549               std::move(CGF.CXXInheritedCtorInitExprArgs)) {
1550       CGF.CurGD = GD;
1551       CGF.CurFuncDecl = CGF.CurCodeDecl =
1552           cast<CXXConstructorDecl>(GD.getDecl());
1553       CGF.CXXABIThisDecl = nullptr;
1554       CGF.CXXABIThisValue = nullptr;
1555       CGF.CXXThisValue = nullptr;
1556       CGF.CXXABIThisAlignment = CharUnits();
1557       CGF.CXXThisAlignment = CharUnits();
1558       CGF.ReturnValue = Address::invalid();
1559       CGF.FnRetTy = QualType();
1560       CGF.CXXInheritedCtorInitExprArgs.clear();
1561     }
1562     ~InlinedInheritingConstructorScope() {
1563       CGF.CurGD = OldCurGD;
1564       CGF.CurFuncDecl = OldCurFuncDecl;
1565       CGF.CurCodeDecl = OldCurCodeDecl;
1566       CGF.CXXABIThisDecl = OldCXXABIThisDecl;
1567       CGF.CXXABIThisValue = OldCXXABIThisValue;
1568       CGF.CXXThisValue = OldCXXThisValue;
1569       CGF.CXXABIThisAlignment = OldCXXABIThisAlignment;
1570       CGF.CXXThisAlignment = OldCXXThisAlignment;
1571       CGF.ReturnValue = OldReturnValue;
1572       CGF.FnRetTy = OldFnRetTy;
1573       CGF.CXXInheritedCtorInitExprArgs =
1574           std::move(OldCXXInheritedCtorInitExprArgs);
1575     }
1576 
1577   private:
1578     CodeGenFunction &CGF;
1579     GlobalDecl OldCurGD;
1580     const Decl *OldCurFuncDecl;
1581     const Decl *OldCurCodeDecl;
1582     ImplicitParamDecl *OldCXXABIThisDecl;
1583     llvm::Value *OldCXXABIThisValue;
1584     llvm::Value *OldCXXThisValue;
1585     CharUnits OldCXXABIThisAlignment;
1586     CharUnits OldCXXThisAlignment;
1587     Address OldReturnValue;
1588     QualType OldFnRetTy;
1589     CallArgList OldCXXInheritedCtorInitExprArgs;
1590   };
1591 
1592   // Helper class for the OpenMP IR Builder. Allows reusability of code used for
1593   // region body, and finalization codegen callbacks. This will class will also
1594   // contain privatization functions used by the privatization call backs
1595   //
1596   // TODO: this is temporary class for things that are being moved out of
1597   // CGOpenMPRuntime, new versions of current CodeGenFunction methods, or
1598   // utility function for use with the OMPBuilder. Once that move to use the
1599   // OMPBuilder is done, everything here will either become part of CodeGenFunc.
1600   // directly, or a new helper class that will contain functions used by both
1601   // this and the OMPBuilder
1602 
1603   struct OMPBuilderCBHelpers {
1604 
1605     OMPBuilderCBHelpers() = delete;
1606     OMPBuilderCBHelpers(const OMPBuilderCBHelpers &) = delete;
1607     OMPBuilderCBHelpers &operator=(const OMPBuilderCBHelpers &) = delete;
1608 
1609     using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
1610 
1611     /// Cleanup action for allocate support.
1612     class OMPAllocateCleanupTy final : public EHScopeStack::Cleanup {
1613 
1614     private:
1615       llvm::CallInst *RTLFnCI;
1616 
1617     public:
1618       OMPAllocateCleanupTy(llvm::CallInst *RLFnCI) : RTLFnCI(RLFnCI) {
1619         RLFnCI->removeFromParent();
1620       }
1621 
1622       void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
1623         if (!CGF.HaveInsertPoint())
1624           return;
1625         CGF.Builder.Insert(RTLFnCI);
1626       }
1627     };
1628 
1629     /// Returns address of the threadprivate variable for the current
1630     /// thread. This Also create any necessary OMP runtime calls.
1631     ///
1632     /// \param VD VarDecl for Threadprivate variable.
1633     /// \param VDAddr Address of the Vardecl
1634     /// \param Loc  The location where the barrier directive was encountered
1635     static Address getAddrOfThreadPrivate(CodeGenFunction &CGF,
1636                                           const VarDecl *VD, Address VDAddr,
1637                                           SourceLocation Loc);
1638 
1639     /// Gets the OpenMP-specific address of the local variable /p VD.
1640     static Address getAddressOfLocalVariable(CodeGenFunction &CGF,
1641                                              const VarDecl *VD);
1642     /// Get the platform-specific name separator.
1643     /// \param Parts different parts of the final name that needs separation
1644     /// \param FirstSeparator First separator used between the initial two
1645     ///        parts of the name.
1646     /// \param Separator separator used between all of the rest consecutinve
1647     ///        parts of the name
1648     static std::string getNameWithSeparators(ArrayRef<StringRef> Parts,
1649                                              StringRef FirstSeparator = ".",
1650                                              StringRef Separator = ".");
1651     /// Emit the Finalization for an OMP region
1652     /// \param CGF	The Codegen function this belongs to
1653     /// \param IP	Insertion point for generating the finalization code.
1654     static void FinalizeOMPRegion(CodeGenFunction &CGF, InsertPointTy IP) {
1655       CGBuilderTy::InsertPointGuard IPG(CGF.Builder);
1656       assert(IP.getBlock()->end() != IP.getPoint() &&
1657              "OpenMP IR Builder should cause terminated block!");
1658 
1659       llvm::BasicBlock *IPBB = IP.getBlock();
1660       llvm::BasicBlock *DestBB = IPBB->getUniqueSuccessor();
1661       assert(DestBB && "Finalization block should have one successor!");
1662 
1663       // erase and replace with cleanup branch.
1664       IPBB->getTerminator()->eraseFromParent();
1665       CGF.Builder.SetInsertPoint(IPBB);
1666       CodeGenFunction::JumpDest Dest = CGF.getJumpDestInCurrentScope(DestBB);
1667       CGF.EmitBranchThroughCleanup(Dest);
1668     }
1669 
1670     /// Emit the body of an OMP region
1671     /// \param CGF	The Codegen function this belongs to
1672     /// \param RegionBodyStmt	The body statement for the OpenMP region being
1673     /// 			 generated
1674     /// \param CodeGenIP	Insertion point for generating the body code.
1675     /// \param FiniBB	The finalization basic block
1676     static void EmitOMPRegionBody(CodeGenFunction &CGF,
1677                                   const Stmt *RegionBodyStmt,
1678                                   InsertPointTy CodeGenIP,
1679                                   llvm::BasicBlock &FiniBB) {
1680       llvm::BasicBlock *CodeGenIPBB = CodeGenIP.getBlock();
1681       if (llvm::Instruction *CodeGenIPBBTI = CodeGenIPBB->getTerminator())
1682         CodeGenIPBBTI->eraseFromParent();
1683 
1684       CGF.Builder.SetInsertPoint(CodeGenIPBB);
1685 
1686       CGF.EmitStmt(RegionBodyStmt);
1687 
1688       if (CGF.Builder.saveIP().isSet())
1689         CGF.Builder.CreateBr(&FiniBB);
1690     }
1691 
1692     /// RAII for preserving necessary info during Outlined region body codegen.
1693     class OutlinedRegionBodyRAII {
1694 
1695       llvm::AssertingVH<llvm::Instruction> OldAllocaIP;
1696       CodeGenFunction::JumpDest OldReturnBlock;
1697       CGBuilderTy::InsertPoint IP;
1698       CodeGenFunction &CGF;
1699 
1700     public:
1701       OutlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP,
1702                              llvm::BasicBlock &RetBB)
1703           : CGF(cgf) {
1704         assert(AllocaIP.isSet() &&
1705                "Must specify Insertion point for allocas of outlined function");
1706         OldAllocaIP = CGF.AllocaInsertPt;
1707         CGF.AllocaInsertPt = &*AllocaIP.getPoint();
1708         IP = CGF.Builder.saveIP();
1709 
1710         OldReturnBlock = CGF.ReturnBlock;
1711         CGF.ReturnBlock = CGF.getJumpDestInCurrentScope(&RetBB);
1712       }
1713 
1714       ~OutlinedRegionBodyRAII() {
1715         CGF.AllocaInsertPt = OldAllocaIP;
1716         CGF.ReturnBlock = OldReturnBlock;
1717         CGF.Builder.restoreIP(IP);
1718       }
1719     };
1720 
1721     /// RAII for preserving necessary info during inlined region body codegen.
1722     class InlinedRegionBodyRAII {
1723 
1724       llvm::AssertingVH<llvm::Instruction> OldAllocaIP;
1725       CodeGenFunction &CGF;
1726 
1727     public:
1728       InlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP,
1729                             llvm::BasicBlock &FiniBB)
1730           : CGF(cgf) {
1731         // Alloca insertion block should be in the entry block of the containing
1732         // function so it expects an empty AllocaIP in which case will reuse the
1733         // old alloca insertion point, or a new AllocaIP in the same block as
1734         // the old one
1735         assert((!AllocaIP.isSet() ||
1736                 CGF.AllocaInsertPt->getParent() == AllocaIP.getBlock()) &&
1737                "Insertion point should be in the entry block of containing "
1738                "function!");
1739         OldAllocaIP = CGF.AllocaInsertPt;
1740         if (AllocaIP.isSet())
1741           CGF.AllocaInsertPt = &*AllocaIP.getPoint();
1742 
1743         // TODO: Remove the call, after making sure the counter is not used by
1744         //       the EHStack.
1745         // Since this is an inlined region, it should not modify the
1746         // ReturnBlock, and should reuse the one for the enclosing outlined
1747         // region. So, the JumpDest being return by the function is discarded
1748         (void)CGF.getJumpDestInCurrentScope(&FiniBB);
1749       }
1750 
1751       ~InlinedRegionBodyRAII() { CGF.AllocaInsertPt = OldAllocaIP; }
1752     };
1753   };
1754 
1755 private:
1756   /// CXXThisDecl - When generating code for a C++ member function,
1757   /// this will hold the implicit 'this' declaration.
1758   ImplicitParamDecl *CXXABIThisDecl = nullptr;
1759   llvm::Value *CXXABIThisValue = nullptr;
1760   llvm::Value *CXXThisValue = nullptr;
1761   CharUnits CXXABIThisAlignment;
1762   CharUnits CXXThisAlignment;
1763 
1764   /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
1765   /// this expression.
1766   Address CXXDefaultInitExprThis = Address::invalid();
1767 
1768   /// The current array initialization index when evaluating an
1769   /// ArrayInitIndexExpr within an ArrayInitLoopExpr.
1770   llvm::Value *ArrayInitIndex = nullptr;
1771 
1772   /// The values of function arguments to use when evaluating
1773   /// CXXInheritedCtorInitExprs within this context.
1774   CallArgList CXXInheritedCtorInitExprArgs;
1775 
1776   /// CXXStructorImplicitParamDecl - When generating code for a constructor or
1777   /// destructor, this will hold the implicit argument (e.g. VTT).
1778   ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr;
1779   llvm::Value *CXXStructorImplicitParamValue = nullptr;
1780 
1781   /// OutermostConditional - Points to the outermost active
1782   /// conditional control.  This is used so that we know if a
1783   /// temporary should be destroyed conditionally.
1784   ConditionalEvaluation *OutermostConditional = nullptr;
1785 
1786   /// The current lexical scope.
1787   LexicalScope *CurLexicalScope = nullptr;
1788 
1789   /// The current source location that should be used for exception
1790   /// handling code.
1791   SourceLocation CurEHLocation;
1792 
1793   /// BlockByrefInfos - For each __block variable, contains
1794   /// information about the layout of the variable.
1795   llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos;
1796 
1797   /// Used by -fsanitize=nullability-return to determine whether the return
1798   /// value can be checked.
1799   llvm::Value *RetValNullabilityPrecondition = nullptr;
1800 
1801   /// Check if -fsanitize=nullability-return instrumentation is required for
1802   /// this function.
1803   bool requiresReturnValueNullabilityCheck() const {
1804     return RetValNullabilityPrecondition;
1805   }
1806 
1807   /// Used to store precise source locations for return statements by the
1808   /// runtime return value checks.
1809   Address ReturnLocation = Address::invalid();
1810 
1811   /// Check if the return value of this function requires sanitization.
1812   bool requiresReturnValueCheck() const;
1813 
1814   llvm::BasicBlock *TerminateLandingPad = nullptr;
1815   llvm::BasicBlock *TerminateHandler = nullptr;
1816   llvm::BasicBlock *TrapBB = nullptr;
1817 
1818   /// Terminate funclets keyed by parent funclet pad.
1819   llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets;
1820 
1821   /// Largest vector width used in ths function. Will be used to create a
1822   /// function attribute.
1823   unsigned LargestVectorWidth = 0;
1824 
1825   /// True if we need emit the life-time markers.
1826   const bool ShouldEmitLifetimeMarkers;
1827 
1828   /// Add OpenCL kernel arg metadata and the kernel attribute metadata to
1829   /// the function metadata.
1830   void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
1831                                 llvm::Function *Fn);
1832 
1833 public:
1834   CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1835   ~CodeGenFunction();
1836 
1837   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1838   ASTContext &getContext() const { return CGM.getContext(); }
1839   CGDebugInfo *getDebugInfo() {
1840     if (DisableDebugInfo)
1841       return nullptr;
1842     return DebugInfo;
1843   }
1844   void disableDebugInfo() { DisableDebugInfo = true; }
1845   void enableDebugInfo() { DisableDebugInfo = false; }
1846 
1847   bool shouldUseFusedARCCalls() {
1848     return CGM.getCodeGenOpts().OptimizationLevel == 0;
1849   }
1850 
1851   const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1852 
1853   /// Returns a pointer to the function's exception object and selector slot,
1854   /// which is assigned in every landing pad.
1855   Address getExceptionSlot();
1856   Address getEHSelectorSlot();
1857 
1858   /// Returns the contents of the function's exception object and selector
1859   /// slots.
1860   llvm::Value *getExceptionFromSlot();
1861   llvm::Value *getSelectorFromSlot();
1862 
1863   Address getNormalCleanupDestSlot();
1864 
1865   llvm::BasicBlock *getUnreachableBlock() {
1866     if (!UnreachableBlock) {
1867       UnreachableBlock = createBasicBlock("unreachable");
1868       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1869     }
1870     return UnreachableBlock;
1871   }
1872 
1873   llvm::BasicBlock *getInvokeDest() {
1874     if (!EHStack.requiresLandingPad()) return nullptr;
1875     return getInvokeDestImpl();
1876   }
1877 
1878   bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; }
1879 
1880   const TargetInfo &getTarget() const { return Target; }
1881   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1882   const TargetCodeGenInfo &getTargetHooks() const {
1883     return CGM.getTargetCodeGenInfo();
1884   }
1885 
1886   //===--------------------------------------------------------------------===//
1887   //                                  Cleanups
1888   //===--------------------------------------------------------------------===//
1889 
1890   typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty);
1891 
1892   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1893                                         Address arrayEndPointer,
1894                                         QualType elementType,
1895                                         CharUnits elementAlignment,
1896                                         Destroyer *destroyer);
1897   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1898                                       llvm::Value *arrayEnd,
1899                                       QualType elementType,
1900                                       CharUnits elementAlignment,
1901                                       Destroyer *destroyer);
1902 
1903   void pushDestroy(QualType::DestructionKind dtorKind,
1904                    Address addr, QualType type);
1905   void pushEHDestroy(QualType::DestructionKind dtorKind,
1906                      Address addr, QualType type);
1907   void pushDestroy(CleanupKind kind, Address addr, QualType type,
1908                    Destroyer *destroyer, bool useEHCleanupForArray);
1909   void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr,
1910                                    QualType type, Destroyer *destroyer,
1911                                    bool useEHCleanupForArray);
1912   void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1913                                    llvm::Value *CompletePtr,
1914                                    QualType ElementType);
1915   void pushStackRestore(CleanupKind kind, Address SPMem);
1916   void emitDestroy(Address addr, QualType type, Destroyer *destroyer,
1917                    bool useEHCleanupForArray);
1918   llvm::Function *generateDestroyHelper(Address addr, QualType type,
1919                                         Destroyer *destroyer,
1920                                         bool useEHCleanupForArray,
1921                                         const VarDecl *VD);
1922   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1923                         QualType elementType, CharUnits elementAlign,
1924                         Destroyer *destroyer,
1925                         bool checkZeroLength, bool useEHCleanup);
1926 
1927   Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1928 
1929   /// Determines whether an EH cleanup is required to destroy a type
1930   /// with the given destruction kind.
1931   bool needsEHCleanup(QualType::DestructionKind kind) {
1932     switch (kind) {
1933     case QualType::DK_none:
1934       return false;
1935     case QualType::DK_cxx_destructor:
1936     case QualType::DK_objc_weak_lifetime:
1937     case QualType::DK_nontrivial_c_struct:
1938       return getLangOpts().Exceptions;
1939     case QualType::DK_objc_strong_lifetime:
1940       return getLangOpts().Exceptions &&
1941              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1942     }
1943     llvm_unreachable("bad destruction kind");
1944   }
1945 
1946   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
1947     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1948   }
1949 
1950   //===--------------------------------------------------------------------===//
1951   //                                  Objective-C
1952   //===--------------------------------------------------------------------===//
1953 
1954   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1955 
1956   void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
1957 
1958   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1959   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1960                           const ObjCPropertyImplDecl *PID);
1961   void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1962                               const ObjCPropertyImplDecl *propImpl,
1963                               const ObjCMethodDecl *GetterMothodDecl,
1964                               llvm::Constant *AtomicHelperFn);
1965 
1966   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1967                                   ObjCMethodDecl *MD, bool ctor);
1968 
1969   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1970   /// for the given property.
1971   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1972                           const ObjCPropertyImplDecl *PID);
1973   void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1974                               const ObjCPropertyImplDecl *propImpl,
1975                               llvm::Constant *AtomicHelperFn);
1976 
1977   //===--------------------------------------------------------------------===//
1978   //                                  Block Bits
1979   //===--------------------------------------------------------------------===//
1980 
1981   /// Emit block literal.
1982   /// \return an LLVM value which is a pointer to a struct which contains
1983   /// information about the block, including the block invoke function, the
1984   /// captured variables, etc.
1985   llvm::Value *EmitBlockLiteral(const BlockExpr *);
1986 
1987   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1988                                         const CGBlockInfo &Info,
1989                                         const DeclMapTy &ldm,
1990                                         bool IsLambdaConversionToBlock,
1991                                         bool BuildGlobalBlock);
1992 
1993   /// Check if \p T is a C++ class that has a destructor that can throw.
1994   static bool cxxDestructorCanThrow(QualType T);
1995 
1996   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1997   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1998   llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
1999                                              const ObjCPropertyImplDecl *PID);
2000   llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
2001                                              const ObjCPropertyImplDecl *PID);
2002   llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
2003 
2004   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags,
2005                          bool CanThrow);
2006 
2007   class AutoVarEmission;
2008 
2009   void emitByrefStructureInit(const AutoVarEmission &emission);
2010 
2011   /// Enter a cleanup to destroy a __block variable.  Note that this
2012   /// cleanup should be a no-op if the variable hasn't left the stack
2013   /// yet; if a cleanup is required for the variable itself, that needs
2014   /// to be done externally.
2015   ///
2016   /// \param Kind Cleanup kind.
2017   ///
2018   /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block
2019   /// structure that will be passed to _Block_object_dispose. When
2020   /// \p LoadBlockVarAddr is true, the address of the field of the block
2021   /// structure that holds the address of the __block structure.
2022   ///
2023   /// \param Flags The flag that will be passed to _Block_object_dispose.
2024   ///
2025   /// \param LoadBlockVarAddr Indicates whether we need to emit a load from
2026   /// \p Addr to get the address of the __block structure.
2027   void enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags,
2028                          bool LoadBlockVarAddr, bool CanThrow);
2029 
2030   void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum,
2031                                 llvm::Value *ptr);
2032 
2033   Address LoadBlockStruct();
2034   Address GetAddrOfBlockDecl(const VarDecl *var);
2035 
2036   /// BuildBlockByrefAddress - Computes the location of the
2037   /// data in a variable which is declared as __block.
2038   Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V,
2039                                 bool followForward = true);
2040   Address emitBlockByrefAddress(Address baseAddr,
2041                                 const BlockByrefInfo &info,
2042                                 bool followForward,
2043                                 const llvm::Twine &name);
2044 
2045   const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var);
2046 
2047   QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args);
2048 
2049   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
2050                     const CGFunctionInfo &FnInfo);
2051 
2052   /// Annotate the function with an attribute that disables TSan checking at
2053   /// runtime.
2054   void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn);
2055 
2056   /// Emit code for the start of a function.
2057   /// \param Loc       The location to be associated with the function.
2058   /// \param StartLoc  The location of the function body.
2059   void StartFunction(GlobalDecl GD,
2060                      QualType RetTy,
2061                      llvm::Function *Fn,
2062                      const CGFunctionInfo &FnInfo,
2063                      const FunctionArgList &Args,
2064                      SourceLocation Loc = SourceLocation(),
2065                      SourceLocation StartLoc = SourceLocation());
2066 
2067   static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor);
2068 
2069   void EmitConstructorBody(FunctionArgList &Args);
2070   void EmitDestructorBody(FunctionArgList &Args);
2071   void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
2072   void EmitFunctionBody(const Stmt *Body);
2073   void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S);
2074 
2075   void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
2076                                   CallArgList &CallArgs);
2077   void EmitLambdaBlockInvokeBody();
2078   void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
2079   void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD);
2080   void EmitLambdaVLACapture(const VariableArrayType *VAT, LValue LV) {
2081     EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
2082   }
2083   void EmitAsanPrologueOrEpilogue(bool Prologue);
2084 
2085   /// Emit the unified return block, trying to avoid its emission when
2086   /// possible.
2087   /// \return The debug location of the user written return statement if the
2088   /// return block is is avoided.
2089   llvm::DebugLoc EmitReturnBlock();
2090 
2091   /// FinishFunction - Complete IR generation of the current function. It is
2092   /// legal to call this function even if there is no current insertion point.
2093   void FinishFunction(SourceLocation EndLoc=SourceLocation());
2094 
2095   void StartThunk(llvm::Function *Fn, GlobalDecl GD,
2096                   const CGFunctionInfo &FnInfo, bool IsUnprototyped);
2097 
2098   void EmitCallAndReturnForThunk(llvm::FunctionCallee Callee,
2099                                  const ThunkInfo *Thunk, bool IsUnprototyped);
2100 
2101   void FinishThunk();
2102 
2103   /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
2104   void EmitMustTailThunk(GlobalDecl GD, llvm::Value *AdjustedThisPtr,
2105                          llvm::FunctionCallee Callee);
2106 
2107   /// Generate a thunk for the given method.
2108   void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
2109                      GlobalDecl GD, const ThunkInfo &Thunk,
2110                      bool IsUnprototyped);
2111 
2112   llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn,
2113                                        const CGFunctionInfo &FnInfo,
2114                                        GlobalDecl GD, const ThunkInfo &Thunk);
2115 
2116   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
2117                         FunctionArgList &Args);
2118 
2119   void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init);
2120 
2121   /// Struct with all information about dynamic [sub]class needed to set vptr.
2122   struct VPtr {
2123     BaseSubobject Base;
2124     const CXXRecordDecl *NearestVBase;
2125     CharUnits OffsetFromNearestVBase;
2126     const CXXRecordDecl *VTableClass;
2127   };
2128 
2129   /// Initialize the vtable pointer of the given subobject.
2130   void InitializeVTablePointer(const VPtr &vptr);
2131 
2132   typedef llvm::SmallVector<VPtr, 4> VPtrsVector;
2133 
2134   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
2135   VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass);
2136 
2137   void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase,
2138                          CharUnits OffsetFromNearestVBase,
2139                          bool BaseIsNonVirtualPrimaryBase,
2140                          const CXXRecordDecl *VTableClass,
2141                          VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs);
2142 
2143   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
2144 
2145   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
2146   /// to by This.
2147   llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy,
2148                             const CXXRecordDecl *VTableClass);
2149 
2150   enum CFITypeCheckKind {
2151     CFITCK_VCall,
2152     CFITCK_NVCall,
2153     CFITCK_DerivedCast,
2154     CFITCK_UnrelatedCast,
2155     CFITCK_ICall,
2156     CFITCK_NVMFCall,
2157     CFITCK_VMFCall,
2158   };
2159 
2160   /// Derived is the presumed address of an object of type T after a
2161   /// cast. If T is a polymorphic class type, emit a check that the virtual
2162   /// table for Derived belongs to a class derived from T.
2163   void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived,
2164                                  bool MayBeNull, CFITypeCheckKind TCK,
2165                                  SourceLocation Loc);
2166 
2167   /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
2168   /// If vptr CFI is enabled, emit a check that VTable is valid.
2169   void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable,
2170                                  CFITypeCheckKind TCK, SourceLocation Loc);
2171 
2172   /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
2173   /// RD using llvm.type.test.
2174   void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable,
2175                           CFITypeCheckKind TCK, SourceLocation Loc);
2176 
2177   /// If whole-program virtual table optimization is enabled, emit an assumption
2178   /// that VTable is a member of RD's type identifier. Or, if vptr CFI is
2179   /// enabled, emit a check that VTable is a member of RD's type identifier.
2180   void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
2181                                     llvm::Value *VTable, SourceLocation Loc);
2182 
2183   /// Returns whether we should perform a type checked load when loading a
2184   /// virtual function for virtual calls to members of RD. This is generally
2185   /// true when both vcall CFI and whole-program-vtables are enabled.
2186   bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD);
2187 
2188   /// Emit a type checked load from the given vtable.
2189   llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable,
2190                                          uint64_t VTableByteOffset);
2191 
2192   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
2193   /// given phase of destruction for a destructor.  The end result
2194   /// should call destructors on members and base classes in reverse
2195   /// order of their construction.
2196   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
2197 
2198   /// ShouldInstrumentFunction - Return true if the current function should be
2199   /// instrumented with __cyg_profile_func_* calls
2200   bool ShouldInstrumentFunction();
2201 
2202   /// ShouldXRayInstrument - Return true if the current function should be
2203   /// instrumented with XRay nop sleds.
2204   bool ShouldXRayInstrumentFunction() const;
2205 
2206   /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit
2207   /// XRay custom event handling calls.
2208   bool AlwaysEmitXRayCustomEvents() const;
2209 
2210   /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit
2211   /// XRay typed event handling calls.
2212   bool AlwaysEmitXRayTypedEvents() const;
2213 
2214   /// Encode an address into a form suitable for use in a function prologue.
2215   llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F,
2216                                              llvm::Constant *Addr);
2217 
2218   /// Decode an address used in a function prologue, encoded by \c
2219   /// EncodeAddrForUseInPrologue.
2220   llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F,
2221                                         llvm::Value *EncodedAddr);
2222 
2223   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
2224   /// arguments for the given function. This is also responsible for naming the
2225   /// LLVM function arguments.
2226   void EmitFunctionProlog(const CGFunctionInfo &FI,
2227                           llvm::Function *Fn,
2228                           const FunctionArgList &Args);
2229 
2230   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
2231   /// given temporary.
2232   void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
2233                           SourceLocation EndLoc);
2234 
2235   /// Emit a test that checks if the return value \p RV is nonnull.
2236   void EmitReturnValueCheck(llvm::Value *RV);
2237 
2238   /// EmitStartEHSpec - Emit the start of the exception spec.
2239   void EmitStartEHSpec(const Decl *D);
2240 
2241   /// EmitEndEHSpec - Emit the end of the exception spec.
2242   void EmitEndEHSpec(const Decl *D);
2243 
2244   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
2245   llvm::BasicBlock *getTerminateLandingPad();
2246 
2247   /// getTerminateLandingPad - Return a cleanup funclet that just calls
2248   /// terminate.
2249   llvm::BasicBlock *getTerminateFunclet();
2250 
2251   /// getTerminateHandler - Return a handler (not a landing pad, just
2252   /// a catch handler) that just calls terminate.  This is used when
2253   /// a terminate scope encloses a try.
2254   llvm::BasicBlock *getTerminateHandler();
2255 
2256   llvm::Type *ConvertTypeForMem(QualType T);
2257   llvm::Type *ConvertType(QualType T);
2258   llvm::Type *ConvertType(const TypeDecl *T) {
2259     return ConvertType(getContext().getTypeDeclType(T));
2260   }
2261 
2262   /// LoadObjCSelf - Load the value of self. This function is only valid while
2263   /// generating code for an Objective-C method.
2264   llvm::Value *LoadObjCSelf();
2265 
2266   /// TypeOfSelfObject - Return type of object that this self represents.
2267   QualType TypeOfSelfObject();
2268 
2269   /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T.
2270   static TypeEvaluationKind getEvaluationKind(QualType T);
2271 
2272   static bool hasScalarEvaluationKind(QualType T) {
2273     return getEvaluationKind(T) == TEK_Scalar;
2274   }
2275 
2276   static bool hasAggregateEvaluationKind(QualType T) {
2277     return getEvaluationKind(T) == TEK_Aggregate;
2278   }
2279 
2280   /// createBasicBlock - Create an LLVM basic block.
2281   llvm::BasicBlock *createBasicBlock(const Twine &name = "",
2282                                      llvm::Function *parent = nullptr,
2283                                      llvm::BasicBlock *before = nullptr) {
2284     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
2285   }
2286 
2287   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
2288   /// label maps to.
2289   JumpDest getJumpDestForLabel(const LabelDecl *S);
2290 
2291   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
2292   /// another basic block, simplify it. This assumes that no other code could
2293   /// potentially reference the basic block.
2294   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
2295 
2296   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
2297   /// adding a fall-through branch from the current insert block if
2298   /// necessary. It is legal to call this function even if there is no current
2299   /// insertion point.
2300   ///
2301   /// IsFinished - If true, indicates that the caller has finished emitting
2302   /// branches to the given block and does not expect to emit code into it. This
2303   /// means the block can be ignored if it is unreachable.
2304   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
2305 
2306   /// EmitBlockAfterUses - Emit the given block somewhere hopefully
2307   /// near its uses, and leave the insertion point in it.
2308   void EmitBlockAfterUses(llvm::BasicBlock *BB);
2309 
2310   /// EmitBranch - Emit a branch to the specified basic block from the current
2311   /// insert block, taking care to avoid creation of branches from dummy
2312   /// blocks. It is legal to call this function even if there is no current
2313   /// insertion point.
2314   ///
2315   /// This function clears the current insertion point. The caller should follow
2316   /// calls to this function with calls to Emit*Block prior to generation new
2317   /// code.
2318   void EmitBranch(llvm::BasicBlock *Block);
2319 
2320   /// HaveInsertPoint - True if an insertion point is defined. If not, this
2321   /// indicates that the current code being emitted is unreachable.
2322   bool HaveInsertPoint() const {
2323     return Builder.GetInsertBlock() != nullptr;
2324   }
2325 
2326   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
2327   /// emitted IR has a place to go. Note that by definition, if this function
2328   /// creates a block then that block is unreachable; callers may do better to
2329   /// detect when no insertion point is defined and simply skip IR generation.
2330   void EnsureInsertPoint() {
2331     if (!HaveInsertPoint())
2332       EmitBlock(createBasicBlock());
2333   }
2334 
2335   /// ErrorUnsupported - Print out an error that codegen doesn't support the
2336   /// specified stmt yet.
2337   void ErrorUnsupported(const Stmt *S, const char *Type);
2338 
2339   //===--------------------------------------------------------------------===//
2340   //                                  Helpers
2341   //===--------------------------------------------------------------------===//
2342 
2343   LValue MakeAddrLValue(Address Addr, QualType T,
2344                         AlignmentSource Source = AlignmentSource::Type) {
2345     return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
2346                             CGM.getTBAAAccessInfo(T));
2347   }
2348 
2349   LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo,
2350                         TBAAAccessInfo TBAAInfo) {
2351     return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo);
2352   }
2353 
2354   LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
2355                         AlignmentSource Source = AlignmentSource::Type) {
2356     return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
2357                             LValueBaseInfo(Source), CGM.getTBAAAccessInfo(T));
2358   }
2359 
2360   LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
2361                         LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) {
2362     return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
2363                             BaseInfo, TBAAInfo);
2364   }
2365 
2366   LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T);
2367   LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T);
2368 
2369   Address EmitLoadOfReference(LValue RefLVal,
2370                               LValueBaseInfo *PointeeBaseInfo = nullptr,
2371                               TBAAAccessInfo *PointeeTBAAInfo = nullptr);
2372   LValue EmitLoadOfReferenceLValue(LValue RefLVal);
2373   LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy,
2374                                    AlignmentSource Source =
2375                                        AlignmentSource::Type) {
2376     LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source),
2377                                     CGM.getTBAAAccessInfo(RefTy));
2378     return EmitLoadOfReferenceLValue(RefLVal);
2379   }
2380 
2381   Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy,
2382                             LValueBaseInfo *BaseInfo = nullptr,
2383                             TBAAAccessInfo *TBAAInfo = nullptr);
2384   LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy);
2385 
2386   /// CreateTempAlloca - This creates an alloca and inserts it into the entry
2387   /// block if \p ArraySize is nullptr, otherwise inserts it at the current
2388   /// insertion point of the builder. The caller is responsible for setting an
2389   /// appropriate alignment on
2390   /// the alloca.
2391   ///
2392   /// \p ArraySize is the number of array elements to be allocated if it
2393   ///    is not nullptr.
2394   ///
2395   /// LangAS::Default is the address space of pointers to local variables and
2396   /// temporaries, as exposed in the source language. In certain
2397   /// configurations, this is not the same as the alloca address space, and a
2398   /// cast is needed to lift the pointer from the alloca AS into
2399   /// LangAS::Default. This can happen when the target uses a restricted
2400   /// address space for the stack but the source language requires
2401   /// LangAS::Default to be a generic address space. The latter condition is
2402   /// common for most programming languages; OpenCL is an exception in that
2403   /// LangAS::Default is the private address space, which naturally maps
2404   /// to the stack.
2405   ///
2406   /// Because the address of a temporary is often exposed to the program in
2407   /// various ways, this function will perform the cast. The original alloca
2408   /// instruction is returned through \p Alloca if it is not nullptr.
2409   ///
2410   /// The cast is not performaed in CreateTempAllocaWithoutCast. This is
2411   /// more efficient if the caller knows that the address will not be exposed.
2412   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp",
2413                                      llvm::Value *ArraySize = nullptr);
2414   Address CreateTempAlloca(llvm::Type *Ty, CharUnits align,
2415                            const Twine &Name = "tmp",
2416                            llvm::Value *ArraySize = nullptr,
2417                            Address *Alloca = nullptr);
2418   Address CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align,
2419                                       const Twine &Name = "tmp",
2420                                       llvm::Value *ArraySize = nullptr);
2421 
2422   /// CreateDefaultAlignedTempAlloca - This creates an alloca with the
2423   /// default ABI alignment of the given LLVM type.
2424   ///
2425   /// IMPORTANT NOTE: This is *not* generally the right alignment for
2426   /// any given AST type that happens to have been lowered to the
2427   /// given IR type.  This should only ever be used for function-local,
2428   /// IR-driven manipulations like saving and restoring a value.  Do
2429   /// not hand this address off to arbitrary IRGen routines, and especially
2430   /// do not pass it as an argument to a function that might expect a
2431   /// properly ABI-aligned value.
2432   Address CreateDefaultAlignTempAlloca(llvm::Type *Ty,
2433                                        const Twine &Name = "tmp");
2434 
2435   /// InitTempAlloca - Provide an initial value for the given alloca which
2436   /// will be observable at all locations in the function.
2437   ///
2438   /// The address should be something that was returned from one of
2439   /// the CreateTempAlloca or CreateMemTemp routines, and the
2440   /// initializer must be valid in the entry block (i.e. it must
2441   /// either be a constant or an argument value).
2442   void InitTempAlloca(Address Alloca, llvm::Value *Value);
2443 
2444   /// CreateIRTemp - Create a temporary IR object of the given type, with
2445   /// appropriate alignment. This routine should only be used when an temporary
2446   /// value needs to be stored into an alloca (for example, to avoid explicit
2447   /// PHI construction), but the type is the IR type, not the type appropriate
2448   /// for storing in memory.
2449   ///
2450   /// That is, this is exactly equivalent to CreateMemTemp, but calling
2451   /// ConvertType instead of ConvertTypeForMem.
2452   Address CreateIRTemp(QualType T, const Twine &Name = "tmp");
2453 
2454   /// CreateMemTemp - Create a temporary memory object of the given type, with
2455   /// appropriate alignmen and cast it to the default address space. Returns
2456   /// the original alloca instruction by \p Alloca if it is not nullptr.
2457   Address CreateMemTemp(QualType T, const Twine &Name = "tmp",
2458                         Address *Alloca = nullptr);
2459   Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp",
2460                         Address *Alloca = nullptr);
2461 
2462   /// CreateMemTemp - Create a temporary memory object of the given type, with
2463   /// appropriate alignmen without casting it to the default address space.
2464   Address CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp");
2465   Address CreateMemTempWithoutCast(QualType T, CharUnits Align,
2466                                    const Twine &Name = "tmp");
2467 
2468   /// CreateAggTemp - Create a temporary memory object for the given
2469   /// aggregate type.
2470   AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp",
2471                              Address *Alloca = nullptr) {
2472     return AggValueSlot::forAddr(CreateMemTemp(T, Name, Alloca),
2473                                  T.getQualifiers(),
2474                                  AggValueSlot::IsNotDestructed,
2475                                  AggValueSlot::DoesNotNeedGCBarriers,
2476                                  AggValueSlot::IsNotAliased,
2477                                  AggValueSlot::DoesNotOverlap);
2478   }
2479 
2480   /// Emit a cast to void* in the appropriate address space.
2481   llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
2482 
2483   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
2484   /// expression and compare the result against zero, returning an Int1Ty value.
2485   llvm::Value *EvaluateExprAsBool(const Expr *E);
2486 
2487   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
2488   void EmitIgnoredExpr(const Expr *E);
2489 
2490   /// EmitAnyExpr - Emit code to compute the specified expression which can have
2491   /// any type.  The result is returned as an RValue struct.  If this is an
2492   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
2493   /// the result should be returned.
2494   ///
2495   /// \param ignoreResult True if the resulting value isn't used.
2496   RValue EmitAnyExpr(const Expr *E,
2497                      AggValueSlot aggSlot = AggValueSlot::ignored(),
2498                      bool ignoreResult = false);
2499 
2500   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
2501   // or the value of the expression, depending on how va_list is defined.
2502   Address EmitVAListRef(const Expr *E);
2503 
2504   /// Emit a "reference" to a __builtin_ms_va_list; this is
2505   /// always the value of the expression, because a __builtin_ms_va_list is a
2506   /// pointer to a char.
2507   Address EmitMSVAListRef(const Expr *E);
2508 
2509   /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will
2510   /// always be accessible even if no aggregate location is provided.
2511   RValue EmitAnyExprToTemp(const Expr *E);
2512 
2513   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
2514   /// arbitrary expression into the given memory location.
2515   void EmitAnyExprToMem(const Expr *E, Address Location,
2516                         Qualifiers Quals, bool IsInitializer);
2517 
2518   void EmitAnyExprToExn(const Expr *E, Address Addr);
2519 
2520   /// EmitExprAsInit - Emits the code necessary to initialize a
2521   /// location in memory with the given initializer.
2522   void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2523                       bool capturedByInit);
2524 
2525   /// hasVolatileMember - returns true if aggregate type has a volatile
2526   /// member.
2527   bool hasVolatileMember(QualType T) {
2528     if (const RecordType *RT = T->getAs<RecordType>()) {
2529       const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
2530       return RD->hasVolatileMember();
2531     }
2532     return false;
2533   }
2534 
2535   /// Determine whether a return value slot may overlap some other object.
2536   AggValueSlot::Overlap_t getOverlapForReturnValue() {
2537     // FIXME: Assuming no overlap here breaks guaranteed copy elision for base
2538     // class subobjects. These cases may need to be revisited depending on the
2539     // resolution of the relevant core issue.
2540     return AggValueSlot::DoesNotOverlap;
2541   }
2542 
2543   /// Determine whether a field initialization may overlap some other object.
2544   AggValueSlot::Overlap_t getOverlapForFieldInit(const FieldDecl *FD);
2545 
2546   /// Determine whether a base class initialization may overlap some other
2547   /// object.
2548   AggValueSlot::Overlap_t getOverlapForBaseInit(const CXXRecordDecl *RD,
2549                                                 const CXXRecordDecl *BaseRD,
2550                                                 bool IsVirtual);
2551 
2552   /// Emit an aggregate assignment.
2553   void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) {
2554     bool IsVolatile = hasVolatileMember(EltTy);
2555     EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile);
2556   }
2557 
2558   void EmitAggregateCopyCtor(LValue Dest, LValue Src,
2559                              AggValueSlot::Overlap_t MayOverlap) {
2560     EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap);
2561   }
2562 
2563   /// EmitAggregateCopy - Emit an aggregate copy.
2564   ///
2565   /// \param isVolatile \c true iff either the source or the destination is
2566   ///        volatile.
2567   /// \param MayOverlap Whether the tail padding of the destination might be
2568   ///        occupied by some other object. More efficient code can often be
2569   ///        generated if not.
2570   void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy,
2571                          AggValueSlot::Overlap_t MayOverlap,
2572                          bool isVolatile = false);
2573 
2574   /// GetAddrOfLocalVar - Return the address of a local variable.
2575   Address GetAddrOfLocalVar(const VarDecl *VD) {
2576     auto it = LocalDeclMap.find(VD);
2577     assert(it != LocalDeclMap.end() &&
2578            "Invalid argument to GetAddrOfLocalVar(), no decl!");
2579     return it->second;
2580   }
2581 
2582   /// Given an opaque value expression, return its LValue mapping if it exists,
2583   /// otherwise create one.
2584   LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e);
2585 
2586   /// Given an opaque value expression, return its RValue mapping if it exists,
2587   /// otherwise create one.
2588   RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e);
2589 
2590   /// Get the index of the current ArrayInitLoopExpr, if any.
2591   llvm::Value *getArrayInitIndex() { return ArrayInitIndex; }
2592 
2593   /// getAccessedFieldNo - Given an encoded value and a result number, return
2594   /// the input field number being accessed.
2595   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
2596 
2597   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
2598   llvm::BasicBlock *GetIndirectGotoBlock();
2599 
2600   /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts.
2601   static bool IsWrappedCXXThis(const Expr *E);
2602 
2603   /// EmitNullInitialization - Generate code to set a value of the given type to
2604   /// null, If the type contains data member pointers, they will be initialized
2605   /// to -1 in accordance with the Itanium C++ ABI.
2606   void EmitNullInitialization(Address DestPtr, QualType Ty);
2607 
2608   /// Emits a call to an LLVM variable-argument intrinsic, either
2609   /// \c llvm.va_start or \c llvm.va_end.
2610   /// \param ArgValue A reference to the \c va_list as emitted by either
2611   /// \c EmitVAListRef or \c EmitMSVAListRef.
2612   /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise,
2613   /// calls \c llvm.va_end.
2614   llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart);
2615 
2616   /// Generate code to get an argument from the passed in pointer
2617   /// and update it accordingly.
2618   /// \param VE The \c VAArgExpr for which to generate code.
2619   /// \param VAListAddr Receives a reference to the \c va_list as emitted by
2620   /// either \c EmitVAListRef or \c EmitMSVAListRef.
2621   /// \returns A pointer to the argument.
2622   // FIXME: We should be able to get rid of this method and use the va_arg
2623   // instruction in LLVM instead once it works well enough.
2624   Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr);
2625 
2626   /// emitArrayLength - Compute the length of an array, even if it's a
2627   /// VLA, and drill down to the base element type.
2628   llvm::Value *emitArrayLength(const ArrayType *arrayType,
2629                                QualType &baseType,
2630                                Address &addr);
2631 
2632   /// EmitVLASize - Capture all the sizes for the VLA expressions in
2633   /// the given variably-modified type and store them in the VLASizeMap.
2634   ///
2635   /// This function can be called with a null (unreachable) insert point.
2636   void EmitVariablyModifiedType(QualType Ty);
2637 
2638   struct VlaSizePair {
2639     llvm::Value *NumElts;
2640     QualType Type;
2641 
2642     VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {}
2643   };
2644 
2645   /// Return the number of elements for a single dimension
2646   /// for the given array type.
2647   VlaSizePair getVLAElements1D(const VariableArrayType *vla);
2648   VlaSizePair getVLAElements1D(QualType vla);
2649 
2650   /// Returns an LLVM value that corresponds to the size,
2651   /// in non-variably-sized elements, of a variable length array type,
2652   /// plus that largest non-variably-sized element type.  Assumes that
2653   /// the type has already been emitted with EmitVariablyModifiedType.
2654   VlaSizePair getVLASize(const VariableArrayType *vla);
2655   VlaSizePair getVLASize(QualType vla);
2656 
2657   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
2658   /// generating code for an C++ member function.
2659   llvm::Value *LoadCXXThis() {
2660     assert(CXXThisValue && "no 'this' value for this function");
2661     return CXXThisValue;
2662   }
2663   Address LoadCXXThisAddress();
2664 
2665   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
2666   /// virtual bases.
2667   // FIXME: Every place that calls LoadCXXVTT is something
2668   // that needs to be abstracted properly.
2669   llvm::Value *LoadCXXVTT() {
2670     assert(CXXStructorImplicitParamValue && "no VTT value for this function");
2671     return CXXStructorImplicitParamValue;
2672   }
2673 
2674   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
2675   /// complete class to the given direct base.
2676   Address
2677   GetAddressOfDirectBaseInCompleteClass(Address Value,
2678                                         const CXXRecordDecl *Derived,
2679                                         const CXXRecordDecl *Base,
2680                                         bool BaseIsVirtual);
2681 
2682   static bool ShouldNullCheckClassCastValue(const CastExpr *Cast);
2683 
2684   /// GetAddressOfBaseClass - This function will add the necessary delta to the
2685   /// load of 'this' and returns address of the base class.
2686   Address GetAddressOfBaseClass(Address Value,
2687                                 const CXXRecordDecl *Derived,
2688                                 CastExpr::path_const_iterator PathBegin,
2689                                 CastExpr::path_const_iterator PathEnd,
2690                                 bool NullCheckValue, SourceLocation Loc);
2691 
2692   Address GetAddressOfDerivedClass(Address Value,
2693                                    const CXXRecordDecl *Derived,
2694                                    CastExpr::path_const_iterator PathBegin,
2695                                    CastExpr::path_const_iterator PathEnd,
2696                                    bool NullCheckValue);
2697 
2698   /// GetVTTParameter - Return the VTT parameter that should be passed to a
2699   /// base constructor/destructor with virtual bases.
2700   /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
2701   /// to ItaniumCXXABI.cpp together with all the references to VTT.
2702   llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
2703                                bool Delegating);
2704 
2705   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
2706                                       CXXCtorType CtorType,
2707                                       const FunctionArgList &Args,
2708                                       SourceLocation Loc);
2709   // It's important not to confuse this and the previous function. Delegating
2710   // constructors are the C++0x feature. The constructor delegate optimization
2711   // is used to reduce duplication in the base and complete consturctors where
2712   // they are substantially the same.
2713   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2714                                         const FunctionArgList &Args);
2715 
2716   /// Emit a call to an inheriting constructor (that is, one that invokes a
2717   /// constructor inherited from a base class) by inlining its definition. This
2718   /// is necessary if the ABI does not support forwarding the arguments to the
2719   /// base class constructor (because they're variadic or similar).
2720   void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2721                                                CXXCtorType CtorType,
2722                                                bool ForVirtualBase,
2723                                                bool Delegating,
2724                                                CallArgList &Args);
2725 
2726   /// Emit a call to a constructor inherited from a base class, passing the
2727   /// current constructor's arguments along unmodified (without even making
2728   /// a copy).
2729   void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D,
2730                                        bool ForVirtualBase, Address This,
2731                                        bool InheritedFromVBase,
2732                                        const CXXInheritedCtorInitExpr *E);
2733 
2734   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2735                               bool ForVirtualBase, bool Delegating,
2736                               AggValueSlot ThisAVS, const CXXConstructExpr *E);
2737 
2738   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2739                               bool ForVirtualBase, bool Delegating,
2740                               Address This, CallArgList &Args,
2741                               AggValueSlot::Overlap_t Overlap,
2742                               SourceLocation Loc, bool NewPointerIsChecked);
2743 
2744   /// Emit assumption load for all bases. Requires to be be called only on
2745   /// most-derived class and not under construction of the object.
2746   void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This);
2747 
2748   /// Emit assumption that vptr load == global vtable.
2749   void EmitVTableAssumptionLoad(const VPtr &vptr, Address This);
2750 
2751   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
2752                                       Address This, Address Src,
2753                                       const CXXConstructExpr *E);
2754 
2755   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2756                                   const ArrayType *ArrayTy,
2757                                   Address ArrayPtr,
2758                                   const CXXConstructExpr *E,
2759                                   bool NewPointerIsChecked,
2760                                   bool ZeroInitialization = false);
2761 
2762   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2763                                   llvm::Value *NumElements,
2764                                   Address ArrayPtr,
2765                                   const CXXConstructExpr *E,
2766                                   bool NewPointerIsChecked,
2767                                   bool ZeroInitialization = false);
2768 
2769   static Destroyer destroyCXXObject;
2770 
2771   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
2772                              bool ForVirtualBase, bool Delegating, Address This,
2773                              QualType ThisTy);
2774 
2775   void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
2776                                llvm::Type *ElementTy, Address NewPtr,
2777                                llvm::Value *NumElements,
2778                                llvm::Value *AllocSizeWithoutCookie);
2779 
2780   void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
2781                         Address Ptr);
2782 
2783   llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr);
2784   void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr);
2785 
2786   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
2787   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
2788 
2789   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
2790                       QualType DeleteTy, llvm::Value *NumElements = nullptr,
2791                       CharUnits CookieSize = CharUnits());
2792 
2793   RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
2794                                   const CallExpr *TheCallExpr, bool IsDelete);
2795 
2796   llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E);
2797   llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE);
2798   Address EmitCXXUuidofExpr(const CXXUuidofExpr *E);
2799 
2800   /// Situations in which we might emit a check for the suitability of a
2801   /// pointer or glvalue. Needs to be kept in sync with ubsan_handlers.cpp in
2802   /// compiler-rt.
2803   enum TypeCheckKind {
2804     /// Checking the operand of a load. Must be suitably sized and aligned.
2805     TCK_Load,
2806     /// Checking the destination of a store. Must be suitably sized and aligned.
2807     TCK_Store,
2808     /// Checking the bound value in a reference binding. Must be suitably sized
2809     /// and aligned, but is not required to refer to an object (until the
2810     /// reference is used), per core issue 453.
2811     TCK_ReferenceBinding,
2812     /// Checking the object expression in a non-static data member access. Must
2813     /// be an object within its lifetime.
2814     TCK_MemberAccess,
2815     /// Checking the 'this' pointer for a call to a non-static member function.
2816     /// Must be an object within its lifetime.
2817     TCK_MemberCall,
2818     /// Checking the 'this' pointer for a constructor call.
2819     TCK_ConstructorCall,
2820     /// Checking the operand of a static_cast to a derived pointer type. Must be
2821     /// null or an object within its lifetime.
2822     TCK_DowncastPointer,
2823     /// Checking the operand of a static_cast to a derived reference type. Must
2824     /// be an object within its lifetime.
2825     TCK_DowncastReference,
2826     /// Checking the operand of a cast to a base object. Must be suitably sized
2827     /// and aligned.
2828     TCK_Upcast,
2829     /// Checking the operand of a cast to a virtual base object. Must be an
2830     /// object within its lifetime.
2831     TCK_UpcastToVirtualBase,
2832     /// Checking the value assigned to a _Nonnull pointer. Must not be null.
2833     TCK_NonnullAssign,
2834     /// Checking the operand of a dynamic_cast or a typeid expression.  Must be
2835     /// null or an object within its lifetime.
2836     TCK_DynamicOperation
2837   };
2838 
2839   /// Determine whether the pointer type check \p TCK permits null pointers.
2840   static bool isNullPointerAllowed(TypeCheckKind TCK);
2841 
2842   /// Determine whether the pointer type check \p TCK requires a vptr check.
2843   static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty);
2844 
2845   /// Whether any type-checking sanitizers are enabled. If \c false,
2846   /// calls to EmitTypeCheck can be skipped.
2847   bool sanitizePerformTypeCheck() const;
2848 
2849   /// Emit a check that \p V is the address of storage of the
2850   /// appropriate size and alignment for an object of type \p Type
2851   /// (or if ArraySize is provided, for an array of that bound).
2852   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
2853                      QualType Type, CharUnits Alignment = CharUnits::Zero(),
2854                      SanitizerSet SkippedChecks = SanitizerSet(),
2855                      llvm::Value *ArraySize = nullptr);
2856 
2857   /// Emit a check that \p Base points into an array object, which
2858   /// we can access at index \p Index. \p Accessed should be \c false if we
2859   /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
2860   void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
2861                        QualType IndexType, bool Accessed);
2862 
2863   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2864                                        bool isInc, bool isPre);
2865   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
2866                                          bool isInc, bool isPre);
2867 
2868   /// Converts Location to a DebugLoc, if debug information is enabled.
2869   llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location);
2870 
2871   /// Get the record field index as represented in debug info.
2872   unsigned getDebugInfoFIndex(const RecordDecl *Rec, unsigned FieldIndex);
2873 
2874 
2875   //===--------------------------------------------------------------------===//
2876   //                            Declaration Emission
2877   //===--------------------------------------------------------------------===//
2878 
2879   /// EmitDecl - Emit a declaration.
2880   ///
2881   /// This function can be called with a null (unreachable) insert point.
2882   void EmitDecl(const Decl &D);
2883 
2884   /// EmitVarDecl - Emit a local variable declaration.
2885   ///
2886   /// This function can be called with a null (unreachable) insert point.
2887   void EmitVarDecl(const VarDecl &D);
2888 
2889   void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2890                       bool capturedByInit);
2891 
2892   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
2893                              llvm::Value *Address);
2894 
2895   /// Determine whether the given initializer is trivial in the sense
2896   /// that it requires no code to be generated.
2897   bool isTrivialInitializer(const Expr *Init);
2898 
2899   /// EmitAutoVarDecl - Emit an auto variable declaration.
2900   ///
2901   /// This function can be called with a null (unreachable) insert point.
2902   void EmitAutoVarDecl(const VarDecl &D);
2903 
2904   class AutoVarEmission {
2905     friend class CodeGenFunction;
2906 
2907     const VarDecl *Variable;
2908 
2909     /// The address of the alloca for languages with explicit address space
2910     /// (e.g. OpenCL) or alloca casted to generic pointer for address space
2911     /// agnostic languages (e.g. C++). Invalid if the variable was emitted
2912     /// as a global constant.
2913     Address Addr;
2914 
2915     llvm::Value *NRVOFlag;
2916 
2917     /// True if the variable is a __block variable that is captured by an
2918     /// escaping block.
2919     bool IsEscapingByRef;
2920 
2921     /// True if the variable is of aggregate type and has a constant
2922     /// initializer.
2923     bool IsConstantAggregate;
2924 
2925     /// Non-null if we should use lifetime annotations.
2926     llvm::Value *SizeForLifetimeMarkers;
2927 
2928     /// Address with original alloca instruction. Invalid if the variable was
2929     /// emitted as a global constant.
2930     Address AllocaAddr;
2931 
2932     struct Invalid {};
2933     AutoVarEmission(Invalid)
2934         : Variable(nullptr), Addr(Address::invalid()),
2935           AllocaAddr(Address::invalid()) {}
2936 
2937     AutoVarEmission(const VarDecl &variable)
2938         : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr),
2939           IsEscapingByRef(false), IsConstantAggregate(false),
2940           SizeForLifetimeMarkers(nullptr), AllocaAddr(Address::invalid()) {}
2941 
2942     bool wasEmittedAsGlobal() const { return !Addr.isValid(); }
2943 
2944   public:
2945     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
2946 
2947     bool useLifetimeMarkers() const {
2948       return SizeForLifetimeMarkers != nullptr;
2949     }
2950     llvm::Value *getSizeForLifetimeMarkers() const {
2951       assert(useLifetimeMarkers());
2952       return SizeForLifetimeMarkers;
2953     }
2954 
2955     /// Returns the raw, allocated address, which is not necessarily
2956     /// the address of the object itself. It is casted to default
2957     /// address space for address space agnostic languages.
2958     Address getAllocatedAddress() const {
2959       return Addr;
2960     }
2961 
2962     /// Returns the address for the original alloca instruction.
2963     Address getOriginalAllocatedAddress() const { return AllocaAddr; }
2964 
2965     /// Returns the address of the object within this declaration.
2966     /// Note that this does not chase the forwarding pointer for
2967     /// __block decls.
2968     Address getObjectAddress(CodeGenFunction &CGF) const {
2969       if (!IsEscapingByRef) return Addr;
2970 
2971       return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false);
2972     }
2973   };
2974   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
2975   void EmitAutoVarInit(const AutoVarEmission &emission);
2976   void EmitAutoVarCleanups(const AutoVarEmission &emission);
2977   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
2978                               QualType::DestructionKind dtorKind);
2979 
2980   /// Emits the alloca and debug information for the size expressions for each
2981   /// dimension of an array. It registers the association of its (1-dimensional)
2982   /// QualTypes and size expression's debug node, so that CGDebugInfo can
2983   /// reference this node when creating the DISubrange object to describe the
2984   /// array types.
2985   void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI,
2986                                               const VarDecl &D,
2987                                               bool EmitDebugInfo);
2988 
2989   void EmitStaticVarDecl(const VarDecl &D,
2990                          llvm::GlobalValue::LinkageTypes Linkage);
2991 
2992   class ParamValue {
2993     llvm::Value *Value;
2994     unsigned Alignment;
2995     ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {}
2996   public:
2997     static ParamValue forDirect(llvm::Value *value) {
2998       return ParamValue(value, 0);
2999     }
3000     static ParamValue forIndirect(Address addr) {
3001       assert(!addr.getAlignment().isZero());
3002       return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity());
3003     }
3004 
3005     bool isIndirect() const { return Alignment != 0; }
3006     llvm::Value *getAnyValue() const { return Value; }
3007 
3008     llvm::Value *getDirectValue() const {
3009       assert(!isIndirect());
3010       return Value;
3011     }
3012 
3013     Address getIndirectAddress() const {
3014       assert(isIndirect());
3015       return Address(Value, CharUnits::fromQuantity(Alignment));
3016     }
3017   };
3018 
3019   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
3020   void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo);
3021 
3022   /// protectFromPeepholes - Protect a value that we're intending to
3023   /// store to the side, but which will probably be used later, from
3024   /// aggressive peepholing optimizations that might delete it.
3025   ///
3026   /// Pass the result to unprotectFromPeepholes to declare that
3027   /// protection is no longer required.
3028   ///
3029   /// There's no particular reason why this shouldn't apply to
3030   /// l-values, it's just that no existing peepholes work on pointers.
3031   PeepholeProtection protectFromPeepholes(RValue rvalue);
3032   void unprotectFromPeepholes(PeepholeProtection protection);
3033 
3034   void emitAlignmentAssumptionCheck(llvm::Value *Ptr, QualType Ty,
3035                                     SourceLocation Loc,
3036                                     SourceLocation AssumptionLoc,
3037                                     llvm::Value *Alignment,
3038                                     llvm::Value *OffsetValue,
3039                                     llvm::Value *TheCheck,
3040                                     llvm::Instruction *Assumption);
3041 
3042   void emitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty,
3043                                SourceLocation Loc, SourceLocation AssumptionLoc,
3044                                llvm::Value *Alignment,
3045                                llvm::Value *OffsetValue = nullptr);
3046 
3047   void emitAlignmentAssumption(llvm::Value *PtrValue, const Expr *E,
3048                                SourceLocation AssumptionLoc,
3049                                llvm::Value *Alignment,
3050                                llvm::Value *OffsetValue = nullptr);
3051 
3052   //===--------------------------------------------------------------------===//
3053   //                             Statement Emission
3054   //===--------------------------------------------------------------------===//
3055 
3056   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
3057   void EmitStopPoint(const Stmt *S);
3058 
3059   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
3060   /// this function even if there is no current insertion point.
3061   ///
3062   /// This function may clear the current insertion point; callers should use
3063   /// EnsureInsertPoint if they wish to subsequently generate code without first
3064   /// calling EmitBlock, EmitBranch, or EmitStmt.
3065   void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None);
3066 
3067   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
3068   /// necessarily require an insertion point or debug information; typically
3069   /// because the statement amounts to a jump or a container of other
3070   /// statements.
3071   ///
3072   /// \return True if the statement was handled.
3073   bool EmitSimpleStmt(const Stmt *S);
3074 
3075   Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
3076                            AggValueSlot AVS = AggValueSlot::ignored());
3077   Address EmitCompoundStmtWithoutScope(const CompoundStmt &S,
3078                                        bool GetLast = false,
3079                                        AggValueSlot AVS =
3080                                                 AggValueSlot::ignored());
3081 
3082   /// EmitLabel - Emit the block for the given label. It is legal to call this
3083   /// function even if there is no current insertion point.
3084   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
3085 
3086   void EmitLabelStmt(const LabelStmt &S);
3087   void EmitAttributedStmt(const AttributedStmt &S);
3088   void EmitGotoStmt(const GotoStmt &S);
3089   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
3090   void EmitIfStmt(const IfStmt &S);
3091 
3092   void EmitWhileStmt(const WhileStmt &S,
3093                      ArrayRef<const Attr *> Attrs = None);
3094   void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None);
3095   void EmitForStmt(const ForStmt &S,
3096                    ArrayRef<const Attr *> Attrs = None);
3097   void EmitReturnStmt(const ReturnStmt &S);
3098   void EmitDeclStmt(const DeclStmt &S);
3099   void EmitBreakStmt(const BreakStmt &S);
3100   void EmitContinueStmt(const ContinueStmt &S);
3101   void EmitSwitchStmt(const SwitchStmt &S);
3102   void EmitDefaultStmt(const DefaultStmt &S);
3103   void EmitCaseStmt(const CaseStmt &S);
3104   void EmitCaseStmtRange(const CaseStmt &S);
3105   void EmitAsmStmt(const AsmStmt &S);
3106 
3107   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
3108   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
3109   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
3110   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
3111   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
3112 
3113   void EmitCoroutineBody(const CoroutineBodyStmt &S);
3114   void EmitCoreturnStmt(const CoreturnStmt &S);
3115   RValue EmitCoawaitExpr(const CoawaitExpr &E,
3116                          AggValueSlot aggSlot = AggValueSlot::ignored(),
3117                          bool ignoreResult = false);
3118   LValue EmitCoawaitLValue(const CoawaitExpr *E);
3119   RValue EmitCoyieldExpr(const CoyieldExpr &E,
3120                          AggValueSlot aggSlot = AggValueSlot::ignored(),
3121                          bool ignoreResult = false);
3122   LValue EmitCoyieldLValue(const CoyieldExpr *E);
3123   RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID);
3124 
3125   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
3126   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
3127 
3128   void EmitCXXTryStmt(const CXXTryStmt &S);
3129   void EmitSEHTryStmt(const SEHTryStmt &S);
3130   void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
3131   void EnterSEHTryStmt(const SEHTryStmt &S);
3132   void ExitSEHTryStmt(const SEHTryStmt &S);
3133 
3134   void pushSEHCleanup(CleanupKind kind,
3135                       llvm::Function *FinallyFunc);
3136   void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter,
3137                               const Stmt *OutlinedStmt);
3138 
3139   llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
3140                                             const SEHExceptStmt &Except);
3141 
3142   llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF,
3143                                              const SEHFinallyStmt &Finally);
3144 
3145   void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF,
3146                                 llvm::Value *ParentFP,
3147                                 llvm::Value *EntryEBP);
3148   llvm::Value *EmitSEHExceptionCode();
3149   llvm::Value *EmitSEHExceptionInfo();
3150   llvm::Value *EmitSEHAbnormalTermination();
3151 
3152   /// Emit simple code for OpenMP directives in Simd-only mode.
3153   void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D);
3154 
3155   /// Scan the outlined statement for captures from the parent function. For
3156   /// each capture, mark the capture as escaped and emit a call to
3157   /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap.
3158   void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
3159                           bool IsFilter);
3160 
3161   /// Recovers the address of a local in a parent function. ParentVar is the
3162   /// address of the variable used in the immediate parent function. It can
3163   /// either be an alloca or a call to llvm.localrecover if there are nested
3164   /// outlined functions. ParentFP is the frame pointer of the outermost parent
3165   /// frame.
3166   Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF,
3167                                     Address ParentVar,
3168                                     llvm::Value *ParentFP);
3169 
3170   void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
3171                            ArrayRef<const Attr *> Attrs = None);
3172 
3173   /// Controls insertion of cancellation exit blocks in worksharing constructs.
3174   class OMPCancelStackRAII {
3175     CodeGenFunction &CGF;
3176 
3177   public:
3178     OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
3179                        bool HasCancel)
3180         : CGF(CGF) {
3181       CGF.OMPCancelStack.enter(CGF, Kind, HasCancel);
3182     }
3183     ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); }
3184   };
3185 
3186   /// Returns calculated size of the specified type.
3187   llvm::Value *getTypeSize(QualType Ty);
3188   LValue InitCapturedStruct(const CapturedStmt &S);
3189   llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
3190   llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
3191   Address GenerateCapturedStmtArgument(const CapturedStmt &S);
3192   llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S,
3193                                                      SourceLocation Loc);
3194   void GenerateOpenMPCapturedVars(const CapturedStmt &S,
3195                                   SmallVectorImpl<llvm::Value *> &CapturedVars);
3196   void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy,
3197                           SourceLocation Loc);
3198   /// Perform element by element copying of arrays with type \a
3199   /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
3200   /// generated by \a CopyGen.
3201   ///
3202   /// \param DestAddr Address of the destination array.
3203   /// \param SrcAddr Address of the source array.
3204   /// \param OriginalType Type of destination and source arrays.
3205   /// \param CopyGen Copying procedure that copies value of single array element
3206   /// to another single array element.
3207   void EmitOMPAggregateAssign(
3208       Address DestAddr, Address SrcAddr, QualType OriginalType,
3209       const llvm::function_ref<void(Address, Address)> CopyGen);
3210   /// Emit proper copying of data from one variable to another.
3211   ///
3212   /// \param OriginalType Original type of the copied variables.
3213   /// \param DestAddr Destination address.
3214   /// \param SrcAddr Source address.
3215   /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
3216   /// type of the base array element).
3217   /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
3218   /// the base array element).
3219   /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
3220   /// DestVD.
3221   void EmitOMPCopy(QualType OriginalType,
3222                    Address DestAddr, Address SrcAddr,
3223                    const VarDecl *DestVD, const VarDecl *SrcVD,
3224                    const Expr *Copy);
3225   /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or
3226   /// \a X = \a E \a BO \a E.
3227   ///
3228   /// \param X Value to be updated.
3229   /// \param E Update value.
3230   /// \param BO Binary operation for update operation.
3231   /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
3232   /// expression, false otherwise.
3233   /// \param AO Atomic ordering of the generated atomic instructions.
3234   /// \param CommonGen Code generator for complex expressions that cannot be
3235   /// expressed through atomicrmw instruction.
3236   /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was
3237   /// generated, <false, RValue::get(nullptr)> otherwise.
3238   std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr(
3239       LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
3240       llvm::AtomicOrdering AO, SourceLocation Loc,
3241       const llvm::function_ref<RValue(RValue)> CommonGen);
3242   bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
3243                                  OMPPrivateScope &PrivateScope);
3244   void EmitOMPPrivateClause(const OMPExecutableDirective &D,
3245                             OMPPrivateScope &PrivateScope);
3246   void EmitOMPUseDevicePtrClause(
3247       const OMPUseDevicePtrClause &C, OMPPrivateScope &PrivateScope,
3248       const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap);
3249   void EmitOMPUseDeviceAddrClause(
3250       const OMPUseDeviceAddrClause &C, OMPPrivateScope &PrivateScope,
3251       const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap);
3252   /// Emit code for copyin clause in \a D directive. The next code is
3253   /// generated at the start of outlined functions for directives:
3254   /// \code
3255   /// threadprivate_var1 = master_threadprivate_var1;
3256   /// operator=(threadprivate_var2, master_threadprivate_var2);
3257   /// ...
3258   /// __kmpc_barrier(&loc, global_tid);
3259   /// \endcode
3260   ///
3261   /// \param D OpenMP directive possibly with 'copyin' clause(s).
3262   /// \returns true if at least one copyin variable is found, false otherwise.
3263   bool EmitOMPCopyinClause(const OMPExecutableDirective &D);
3264   /// Emit initial code for lastprivate variables. If some variable is
3265   /// not also firstprivate, then the default initialization is used. Otherwise
3266   /// initialization of this variable is performed by EmitOMPFirstprivateClause
3267   /// method.
3268   ///
3269   /// \param D Directive that may have 'lastprivate' directives.
3270   /// \param PrivateScope Private scope for capturing lastprivate variables for
3271   /// proper codegen in internal captured statement.
3272   ///
3273   /// \returns true if there is at least one lastprivate variable, false
3274   /// otherwise.
3275   bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D,
3276                                     OMPPrivateScope &PrivateScope);
3277   /// Emit final copying of lastprivate values to original variables at
3278   /// the end of the worksharing or simd directive.
3279   ///
3280   /// \param D Directive that has at least one 'lastprivate' directives.
3281   /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
3282   /// it is the last iteration of the loop code in associated directive, or to
3283   /// 'i1 false' otherwise. If this item is nullptr, no final check is required.
3284   void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D,
3285                                      bool NoFinals,
3286                                      llvm::Value *IsLastIterCond = nullptr);
3287   /// Emit initial code for linear clauses.
3288   void EmitOMPLinearClause(const OMPLoopDirective &D,
3289                            CodeGenFunction::OMPPrivateScope &PrivateScope);
3290   /// Emit final code for linear clauses.
3291   /// \param CondGen Optional conditional code for final part of codegen for
3292   /// linear clause.
3293   void EmitOMPLinearClauseFinal(
3294       const OMPLoopDirective &D,
3295       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
3296   /// Emit initial code for reduction variables. Creates reduction copies
3297   /// and initializes them with the values according to OpenMP standard.
3298   ///
3299   /// \param D Directive (possibly) with the 'reduction' clause.
3300   /// \param PrivateScope Private scope for capturing reduction variables for
3301   /// proper codegen in internal captured statement.
3302   ///
3303   void EmitOMPReductionClauseInit(const OMPExecutableDirective &D,
3304                                   OMPPrivateScope &PrivateScope,
3305                                   bool ForInscan = false);
3306   /// Emit final update of reduction values to original variables at
3307   /// the end of the directive.
3308   ///
3309   /// \param D Directive that has at least one 'reduction' directives.
3310   /// \param ReductionKind The kind of reduction to perform.
3311   void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D,
3312                                    const OpenMPDirectiveKind ReductionKind);
3313   /// Emit initial code for linear variables. Creates private copies
3314   /// and initializes them with the values according to OpenMP standard.
3315   ///
3316   /// \param D Directive (possibly) with the 'linear' clause.
3317   /// \return true if at least one linear variable is found that should be
3318   /// initialized with the value of the original variable, false otherwise.
3319   bool EmitOMPLinearClauseInit(const OMPLoopDirective &D);
3320 
3321   typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/,
3322                                         llvm::Function * /*OutlinedFn*/,
3323                                         const OMPTaskDataTy & /*Data*/)>
3324       TaskGenTy;
3325   void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S,
3326                                  const OpenMPDirectiveKind CapturedRegion,
3327                                  const RegionCodeGenTy &BodyGen,
3328                                  const TaskGenTy &TaskGen, OMPTaskDataTy &Data);
3329   struct OMPTargetDataInfo {
3330     Address BasePointersArray = Address::invalid();
3331     Address PointersArray = Address::invalid();
3332     Address SizesArray = Address::invalid();
3333     unsigned NumberOfTargetItems = 0;
3334     explicit OMPTargetDataInfo() = default;
3335     OMPTargetDataInfo(Address BasePointersArray, Address PointersArray,
3336                       Address SizesArray, unsigned NumberOfTargetItems)
3337         : BasePointersArray(BasePointersArray), PointersArray(PointersArray),
3338           SizesArray(SizesArray), NumberOfTargetItems(NumberOfTargetItems) {}
3339   };
3340   void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S,
3341                                        const RegionCodeGenTy &BodyGen,
3342                                        OMPTargetDataInfo &InputInfo);
3343 
3344   void EmitOMPParallelDirective(const OMPParallelDirective &S);
3345   void EmitOMPSimdDirective(const OMPSimdDirective &S);
3346   void EmitOMPForDirective(const OMPForDirective &S);
3347   void EmitOMPForSimdDirective(const OMPForSimdDirective &S);
3348   void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
3349   void EmitOMPSectionDirective(const OMPSectionDirective &S);
3350   void EmitOMPSingleDirective(const OMPSingleDirective &S);
3351   void EmitOMPMasterDirective(const OMPMasterDirective &S);
3352   void EmitOMPCriticalDirective(const OMPCriticalDirective &S);
3353   void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
3354   void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S);
3355   void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
3356   void EmitOMPParallelMasterDirective(const OMPParallelMasterDirective &S);
3357   void EmitOMPTaskDirective(const OMPTaskDirective &S);
3358   void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
3359   void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
3360   void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
3361   void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S);
3362   void EmitOMPFlushDirective(const OMPFlushDirective &S);
3363   void EmitOMPDepobjDirective(const OMPDepobjDirective &S);
3364   void EmitOMPScanDirective(const OMPScanDirective &S);
3365   void EmitOMPOrderedDirective(const OMPOrderedDirective &S);
3366   void EmitOMPAtomicDirective(const OMPAtomicDirective &S);
3367   void EmitOMPTargetDirective(const OMPTargetDirective &S);
3368   void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S);
3369   void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S);
3370   void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S);
3371   void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S);
3372   void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S);
3373   void
3374   EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S);
3375   void EmitOMPTeamsDirective(const OMPTeamsDirective &S);
3376   void
3377   EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S);
3378   void EmitOMPCancelDirective(const OMPCancelDirective &S);
3379   void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S);
3380   void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S);
3381   void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S);
3382   void EmitOMPMasterTaskLoopDirective(const OMPMasterTaskLoopDirective &S);
3383   void
3384   EmitOMPMasterTaskLoopSimdDirective(const OMPMasterTaskLoopSimdDirective &S);
3385   void EmitOMPParallelMasterTaskLoopDirective(
3386       const OMPParallelMasterTaskLoopDirective &S);
3387   void EmitOMPParallelMasterTaskLoopSimdDirective(
3388       const OMPParallelMasterTaskLoopSimdDirective &S);
3389   void EmitOMPDistributeDirective(const OMPDistributeDirective &S);
3390   void EmitOMPDistributeParallelForDirective(
3391       const OMPDistributeParallelForDirective &S);
3392   void EmitOMPDistributeParallelForSimdDirective(
3393       const OMPDistributeParallelForSimdDirective &S);
3394   void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S);
3395   void EmitOMPTargetParallelForSimdDirective(
3396       const OMPTargetParallelForSimdDirective &S);
3397   void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S);
3398   void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S);
3399   void
3400   EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S);
3401   void EmitOMPTeamsDistributeParallelForSimdDirective(
3402       const OMPTeamsDistributeParallelForSimdDirective &S);
3403   void EmitOMPTeamsDistributeParallelForDirective(
3404       const OMPTeamsDistributeParallelForDirective &S);
3405   void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S);
3406   void EmitOMPTargetTeamsDistributeDirective(
3407       const OMPTargetTeamsDistributeDirective &S);
3408   void EmitOMPTargetTeamsDistributeParallelForDirective(
3409       const OMPTargetTeamsDistributeParallelForDirective &S);
3410   void EmitOMPTargetTeamsDistributeParallelForSimdDirective(
3411       const OMPTargetTeamsDistributeParallelForSimdDirective &S);
3412   void EmitOMPTargetTeamsDistributeSimdDirective(
3413       const OMPTargetTeamsDistributeSimdDirective &S);
3414 
3415   /// Emit device code for the target directive.
3416   static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM,
3417                                           StringRef ParentName,
3418                                           const OMPTargetDirective &S);
3419   static void
3420   EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3421                                       const OMPTargetParallelDirective &S);
3422   /// Emit device code for the target parallel for directive.
3423   static void EmitOMPTargetParallelForDeviceFunction(
3424       CodeGenModule &CGM, StringRef ParentName,
3425       const OMPTargetParallelForDirective &S);
3426   /// Emit device code for the target parallel for simd directive.
3427   static void EmitOMPTargetParallelForSimdDeviceFunction(
3428       CodeGenModule &CGM, StringRef ParentName,
3429       const OMPTargetParallelForSimdDirective &S);
3430   /// Emit device code for the target teams directive.
3431   static void
3432   EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3433                                    const OMPTargetTeamsDirective &S);
3434   /// Emit device code for the target teams distribute directive.
3435   static void EmitOMPTargetTeamsDistributeDeviceFunction(
3436       CodeGenModule &CGM, StringRef ParentName,
3437       const OMPTargetTeamsDistributeDirective &S);
3438   /// Emit device code for the target teams distribute simd directive.
3439   static void EmitOMPTargetTeamsDistributeSimdDeviceFunction(
3440       CodeGenModule &CGM, StringRef ParentName,
3441       const OMPTargetTeamsDistributeSimdDirective &S);
3442   /// Emit device code for the target simd directive.
3443   static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM,
3444                                               StringRef ParentName,
3445                                               const OMPTargetSimdDirective &S);
3446   /// Emit device code for the target teams distribute parallel for simd
3447   /// directive.
3448   static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction(
3449       CodeGenModule &CGM, StringRef ParentName,
3450       const OMPTargetTeamsDistributeParallelForSimdDirective &S);
3451 
3452   static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction(
3453       CodeGenModule &CGM, StringRef ParentName,
3454       const OMPTargetTeamsDistributeParallelForDirective &S);
3455   /// Emit inner loop of the worksharing/simd construct.
3456   ///
3457   /// \param S Directive, for which the inner loop must be emitted.
3458   /// \param RequiresCleanup true, if directive has some associated private
3459   /// variables.
3460   /// \param LoopCond Bollean condition for loop continuation.
3461   /// \param IncExpr Increment expression for loop control variable.
3462   /// \param BodyGen Generator for the inner body of the inner loop.
3463   /// \param PostIncGen Genrator for post-increment code (required for ordered
3464   /// loop directvies).
3465   void EmitOMPInnerLoop(
3466       const OMPExecutableDirective &S, bool RequiresCleanup,
3467       const Expr *LoopCond, const Expr *IncExpr,
3468       const llvm::function_ref<void(CodeGenFunction &)> BodyGen,
3469       const llvm::function_ref<void(CodeGenFunction &)> PostIncGen);
3470 
3471   JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind);
3472   /// Emit initial code for loop counters of loop-based directives.
3473   void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S,
3474                                   OMPPrivateScope &LoopScope);
3475 
3476   /// Helper for the OpenMP loop directives.
3477   void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit);
3478 
3479   /// Emit code for the worksharing loop-based directive.
3480   /// \return true, if this construct has any lastprivate clause, false -
3481   /// otherwise.
3482   bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB,
3483                               const CodeGenLoopBoundsTy &CodeGenLoopBounds,
3484                               const CodeGenDispatchBoundsTy &CGDispatchBounds);
3485 
3486   /// Emit code for the distribute loop-based directive.
3487   void EmitOMPDistributeLoop(const OMPLoopDirective &S,
3488                              const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr);
3489 
3490   /// Helpers for the OpenMP loop directives.
3491   void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false);
3492   void EmitOMPSimdFinal(
3493       const OMPLoopDirective &D,
3494       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
3495 
3496   /// Emits the lvalue for the expression with possibly captured variable.
3497   LValue EmitOMPSharedLValue(const Expr *E);
3498 
3499 private:
3500   /// Helpers for blocks.
3501   llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
3502 
3503   /// struct with the values to be passed to the OpenMP loop-related functions
3504   struct OMPLoopArguments {
3505     /// loop lower bound
3506     Address LB = Address::invalid();
3507     /// loop upper bound
3508     Address UB = Address::invalid();
3509     /// loop stride
3510     Address ST = Address::invalid();
3511     /// isLastIteration argument for runtime functions
3512     Address IL = Address::invalid();
3513     /// Chunk value generated by sema
3514     llvm::Value *Chunk = nullptr;
3515     /// EnsureUpperBound
3516     Expr *EUB = nullptr;
3517     /// IncrementExpression
3518     Expr *IncExpr = nullptr;
3519     /// Loop initialization
3520     Expr *Init = nullptr;
3521     /// Loop exit condition
3522     Expr *Cond = nullptr;
3523     /// Update of LB after a whole chunk has been executed
3524     Expr *NextLB = nullptr;
3525     /// Update of UB after a whole chunk has been executed
3526     Expr *NextUB = nullptr;
3527     OMPLoopArguments() = default;
3528     OMPLoopArguments(Address LB, Address UB, Address ST, Address IL,
3529                      llvm::Value *Chunk = nullptr, Expr *EUB = nullptr,
3530                      Expr *IncExpr = nullptr, Expr *Init = nullptr,
3531                      Expr *Cond = nullptr, Expr *NextLB = nullptr,
3532                      Expr *NextUB = nullptr)
3533         : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB),
3534           IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB),
3535           NextUB(NextUB) {}
3536   };
3537   void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic,
3538                         const OMPLoopDirective &S, OMPPrivateScope &LoopScope,
3539                         const OMPLoopArguments &LoopArgs,
3540                         const CodeGenLoopTy &CodeGenLoop,
3541                         const CodeGenOrderedTy &CodeGenOrdered);
3542   void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind,
3543                            bool IsMonotonic, const OMPLoopDirective &S,
3544                            OMPPrivateScope &LoopScope, bool Ordered,
3545                            const OMPLoopArguments &LoopArgs,
3546                            const CodeGenDispatchBoundsTy &CGDispatchBounds);
3547   void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind,
3548                                   const OMPLoopDirective &S,
3549                                   OMPPrivateScope &LoopScope,
3550                                   const OMPLoopArguments &LoopArgs,
3551                                   const CodeGenLoopTy &CodeGenLoopContent);
3552   /// Emit code for sections directive.
3553   void EmitSections(const OMPExecutableDirective &S);
3554 
3555 public:
3556 
3557   //===--------------------------------------------------------------------===//
3558   //                         LValue Expression Emission
3559   //===--------------------------------------------------------------------===//
3560 
3561   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
3562   RValue GetUndefRValue(QualType Ty);
3563 
3564   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
3565   /// and issue an ErrorUnsupported style diagnostic (using the
3566   /// provided Name).
3567   RValue EmitUnsupportedRValue(const Expr *E,
3568                                const char *Name);
3569 
3570   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
3571   /// an ErrorUnsupported style diagnostic (using the provided Name).
3572   LValue EmitUnsupportedLValue(const Expr *E,
3573                                const char *Name);
3574 
3575   /// EmitLValue - Emit code to compute a designator that specifies the location
3576   /// of the expression.
3577   ///
3578   /// This can return one of two things: a simple address or a bitfield
3579   /// reference.  In either case, the LLVM Value* in the LValue structure is
3580   /// guaranteed to be an LLVM pointer type.
3581   ///
3582   /// If this returns a bitfield reference, nothing about the pointee type of
3583   /// the LLVM value is known: For example, it may not be a pointer to an
3584   /// integer.
3585   ///
3586   /// If this returns a normal address, and if the lvalue's C type is fixed
3587   /// size, this method guarantees that the returned pointer type will point to
3588   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
3589   /// variable length type, this is not possible.
3590   ///
3591   LValue EmitLValue(const Expr *E);
3592 
3593   /// Same as EmitLValue but additionally we generate checking code to
3594   /// guard against undefined behavior.  This is only suitable when we know
3595   /// that the address will be used to access the object.
3596   LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
3597 
3598   RValue convertTempToRValue(Address addr, QualType type,
3599                              SourceLocation Loc);
3600 
3601   void EmitAtomicInit(Expr *E, LValue lvalue);
3602 
3603   bool LValueIsSuitableForInlineAtomic(LValue Src);
3604 
3605   RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
3606                         AggValueSlot Slot = AggValueSlot::ignored());
3607 
3608   RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
3609                         llvm::AtomicOrdering AO, bool IsVolatile = false,
3610                         AggValueSlot slot = AggValueSlot::ignored());
3611 
3612   void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
3613 
3614   void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
3615                        bool IsVolatile, bool isInit);
3616 
3617   std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
3618       LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
3619       llvm::AtomicOrdering Success =
3620           llvm::AtomicOrdering::SequentiallyConsistent,
3621       llvm::AtomicOrdering Failure =
3622           llvm::AtomicOrdering::SequentiallyConsistent,
3623       bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
3624 
3625   void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
3626                         const llvm::function_ref<RValue(RValue)> &UpdateOp,
3627                         bool IsVolatile);
3628 
3629   /// EmitToMemory - Change a scalar value from its value
3630   /// representation to its in-memory representation.
3631   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
3632 
3633   /// EmitFromMemory - Change a scalar value from its memory
3634   /// representation to its value representation.
3635   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
3636 
3637   /// Check if the scalar \p Value is within the valid range for the given
3638   /// type \p Ty.
3639   ///
3640   /// Returns true if a check is needed (even if the range is unknown).
3641   bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
3642                             SourceLocation Loc);
3643 
3644   /// EmitLoadOfScalar - Load a scalar value from an address, taking
3645   /// care to appropriately convert from the memory representation to
3646   /// the LLVM value representation.
3647   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3648                                 SourceLocation Loc,
3649                                 AlignmentSource Source = AlignmentSource::Type,
3650                                 bool isNontemporal = false) {
3651     return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source),
3652                             CGM.getTBAAAccessInfo(Ty), isNontemporal);
3653   }
3654 
3655   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3656                                 SourceLocation Loc, LValueBaseInfo BaseInfo,
3657                                 TBAAAccessInfo TBAAInfo,
3658                                 bool isNontemporal = false);
3659 
3660   /// EmitLoadOfScalar - Load a scalar value from an address, taking
3661   /// care to appropriately convert from the memory representation to
3662   /// the LLVM value representation.  The l-value must be a simple
3663   /// l-value.
3664   llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
3665 
3666   /// EmitStoreOfScalar - Store a scalar value to an address, taking
3667   /// care to appropriately convert from the memory representation to
3668   /// the LLVM value representation.
3669   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3670                          bool Volatile, QualType Ty,
3671                          AlignmentSource Source = AlignmentSource::Type,
3672                          bool isInit = false, bool isNontemporal = false) {
3673     EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source),
3674                       CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal);
3675   }
3676 
3677   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3678                          bool Volatile, QualType Ty,
3679                          LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo,
3680                          bool isInit = false, bool isNontemporal = false);
3681 
3682   /// EmitStoreOfScalar - Store a scalar value to an address, taking
3683   /// care to appropriately convert from the memory representation to
3684   /// the LLVM value representation.  The l-value must be a simple
3685   /// l-value.  The isInit flag indicates whether this is an initialization.
3686   /// If so, atomic qualifiers are ignored and the store is always non-atomic.
3687   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
3688 
3689   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
3690   /// this method emits the address of the lvalue, then loads the result as an
3691   /// rvalue, returning the rvalue.
3692   RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
3693   RValue EmitLoadOfExtVectorElementLValue(LValue V);
3694   RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc);
3695   RValue EmitLoadOfGlobalRegLValue(LValue LV);
3696 
3697   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
3698   /// lvalue, where both are guaranteed to the have the same type, and that type
3699   /// is 'Ty'.
3700   void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
3701   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
3702   void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
3703 
3704   /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
3705   /// as EmitStoreThroughLValue.
3706   ///
3707   /// \param Result [out] - If non-null, this will be set to a Value* for the
3708   /// bit-field contents after the store, appropriate for use as the result of
3709   /// an assignment to the bit-field.
3710   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
3711                                       llvm::Value **Result=nullptr);
3712 
3713   /// Emit an l-value for an assignment (simple or compound) of complex type.
3714   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
3715   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
3716   LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
3717                                              llvm::Value *&Result);
3718 
3719   // Note: only available for agg return types
3720   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
3721   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
3722   // Note: only available for agg return types
3723   LValue EmitCallExprLValue(const CallExpr *E);
3724   // Note: only available for agg return types
3725   LValue EmitVAArgExprLValue(const VAArgExpr *E);
3726   LValue EmitDeclRefLValue(const DeclRefExpr *E);
3727   LValue EmitStringLiteralLValue(const StringLiteral *E);
3728   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
3729   LValue EmitPredefinedLValue(const PredefinedExpr *E);
3730   LValue EmitUnaryOpLValue(const UnaryOperator *E);
3731   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3732                                 bool Accessed = false);
3733   LValue EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E);
3734   LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3735                                  bool IsLowerBound = true);
3736   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
3737   LValue EmitMemberExpr(const MemberExpr *E);
3738   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
3739   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
3740   LValue EmitInitListLValue(const InitListExpr *E);
3741   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
3742   LValue EmitCastLValue(const CastExpr *E);
3743   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
3744   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
3745 
3746   Address EmitExtVectorElementLValue(LValue V);
3747 
3748   RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
3749 
3750   Address EmitArrayToPointerDecay(const Expr *Array,
3751                                   LValueBaseInfo *BaseInfo = nullptr,
3752                                   TBAAAccessInfo *TBAAInfo = nullptr);
3753 
3754   class ConstantEmission {
3755     llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
3756     ConstantEmission(llvm::Constant *C, bool isReference)
3757       : ValueAndIsReference(C, isReference) {}
3758   public:
3759     ConstantEmission() {}
3760     static ConstantEmission forReference(llvm::Constant *C) {
3761       return ConstantEmission(C, true);
3762     }
3763     static ConstantEmission forValue(llvm::Constant *C) {
3764       return ConstantEmission(C, false);
3765     }
3766 
3767     explicit operator bool() const {
3768       return ValueAndIsReference.getOpaqueValue() != nullptr;
3769     }
3770 
3771     bool isReference() const { return ValueAndIsReference.getInt(); }
3772     LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
3773       assert(isReference());
3774       return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
3775                                             refExpr->getType());
3776     }
3777 
3778     llvm::Constant *getValue() const {
3779       assert(!isReference());
3780       return ValueAndIsReference.getPointer();
3781     }
3782   };
3783 
3784   ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
3785   ConstantEmission tryEmitAsConstant(const MemberExpr *ME);
3786   llvm::Value *emitScalarConstant(const ConstantEmission &Constant, Expr *E);
3787 
3788   RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
3789                                 AggValueSlot slot = AggValueSlot::ignored());
3790   LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
3791 
3792   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3793                               const ObjCIvarDecl *Ivar);
3794   LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
3795   LValue EmitLValueForLambdaField(const FieldDecl *Field);
3796 
3797   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
3798   /// if the Field is a reference, this will return the address of the reference
3799   /// and not the address of the value stored in the reference.
3800   LValue EmitLValueForFieldInitialization(LValue Base,
3801                                           const FieldDecl* Field);
3802 
3803   LValue EmitLValueForIvar(QualType ObjectTy,
3804                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
3805                            unsigned CVRQualifiers);
3806 
3807   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
3808   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
3809   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
3810   LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
3811 
3812   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
3813   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
3814   LValue EmitStmtExprLValue(const StmtExpr *E);
3815   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
3816   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
3817   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init);
3818 
3819   //===--------------------------------------------------------------------===//
3820   //                         Scalar Expression Emission
3821   //===--------------------------------------------------------------------===//
3822 
3823   /// EmitCall - Generate a call of the given function, expecting the given
3824   /// result type, and using the given argument list which specifies both the
3825   /// LLVM arguments and the types they were derived from.
3826   RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
3827                   ReturnValueSlot ReturnValue, const CallArgList &Args,
3828                   llvm::CallBase **callOrInvoke, SourceLocation Loc);
3829   RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
3830                   ReturnValueSlot ReturnValue, const CallArgList &Args,
3831                   llvm::CallBase **callOrInvoke = nullptr) {
3832     return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke,
3833                     SourceLocation());
3834   }
3835   RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E,
3836                   ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr);
3837   RValue EmitCallExpr(const CallExpr *E,
3838                       ReturnValueSlot ReturnValue = ReturnValueSlot());
3839   RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
3840   CGCallee EmitCallee(const Expr *E);
3841 
3842   void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl);
3843   void checkTargetFeatures(SourceLocation Loc, const FunctionDecl *TargetDecl);
3844 
3845   llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee,
3846                                   const Twine &name = "");
3847   llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee,
3848                                   ArrayRef<llvm::Value *> args,
3849                                   const Twine &name = "");
3850   llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
3851                                           const Twine &name = "");
3852   llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
3853                                           ArrayRef<llvm::Value *> args,
3854                                           const Twine &name = "");
3855 
3856   SmallVector<llvm::OperandBundleDef, 1>
3857   getBundlesForFunclet(llvm::Value *Callee);
3858 
3859   llvm::CallBase *EmitCallOrInvoke(llvm::FunctionCallee Callee,
3860                                    ArrayRef<llvm::Value *> Args,
3861                                    const Twine &Name = "");
3862   llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
3863                                           ArrayRef<llvm::Value *> args,
3864                                           const Twine &name = "");
3865   llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
3866                                           const Twine &name = "");
3867   void EmitNoreturnRuntimeCallOrInvoke(llvm::FunctionCallee callee,
3868                                        ArrayRef<llvm::Value *> args);
3869 
3870   CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
3871                                      NestedNameSpecifier *Qual,
3872                                      llvm::Type *Ty);
3873 
3874   CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
3875                                                CXXDtorType Type,
3876                                                const CXXRecordDecl *RD);
3877 
3878   // Return the copy constructor name with the prefix "__copy_constructor_"
3879   // removed.
3880   static std::string getNonTrivialCopyConstructorStr(QualType QT,
3881                                                      CharUnits Alignment,
3882                                                      bool IsVolatile,
3883                                                      ASTContext &Ctx);
3884 
3885   // Return the destructor name with the prefix "__destructor_" removed.
3886   static std::string getNonTrivialDestructorStr(QualType QT,
3887                                                 CharUnits Alignment,
3888                                                 bool IsVolatile,
3889                                                 ASTContext &Ctx);
3890 
3891   // These functions emit calls to the special functions of non-trivial C
3892   // structs.
3893   void defaultInitNonTrivialCStructVar(LValue Dst);
3894   void callCStructDefaultConstructor(LValue Dst);
3895   void callCStructDestructor(LValue Dst);
3896   void callCStructCopyConstructor(LValue Dst, LValue Src);
3897   void callCStructMoveConstructor(LValue Dst, LValue Src);
3898   void callCStructCopyAssignmentOperator(LValue Dst, LValue Src);
3899   void callCStructMoveAssignmentOperator(LValue Dst, LValue Src);
3900 
3901   RValue
3902   EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method,
3903                               const CGCallee &Callee,
3904                               ReturnValueSlot ReturnValue, llvm::Value *This,
3905                               llvm::Value *ImplicitParam,
3906                               QualType ImplicitParamTy, const CallExpr *E,
3907                               CallArgList *RtlArgs);
3908   RValue EmitCXXDestructorCall(GlobalDecl Dtor, const CGCallee &Callee,
3909                                llvm::Value *This, QualType ThisTy,
3910                                llvm::Value *ImplicitParam,
3911                                QualType ImplicitParamTy, const CallExpr *E);
3912   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
3913                                ReturnValueSlot ReturnValue);
3914   RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE,
3915                                                const CXXMethodDecl *MD,
3916                                                ReturnValueSlot ReturnValue,
3917                                                bool HasQualifier,
3918                                                NestedNameSpecifier *Qualifier,
3919                                                bool IsArrow, const Expr *Base);
3920   // Compute the object pointer.
3921   Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
3922                                           llvm::Value *memberPtr,
3923                                           const MemberPointerType *memberPtrType,
3924                                           LValueBaseInfo *BaseInfo = nullptr,
3925                                           TBAAAccessInfo *TBAAInfo = nullptr);
3926   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
3927                                       ReturnValueSlot ReturnValue);
3928 
3929   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
3930                                        const CXXMethodDecl *MD,
3931                                        ReturnValueSlot ReturnValue);
3932   RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E);
3933 
3934   RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
3935                                 ReturnValueSlot ReturnValue);
3936 
3937   RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E,
3938                                        ReturnValueSlot ReturnValue);
3939   RValue EmitAMDGPUDevicePrintfCallExpr(const CallExpr *E,
3940                                         ReturnValueSlot ReturnValue);
3941 
3942   RValue EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID,
3943                          const CallExpr *E, ReturnValueSlot ReturnValue);
3944 
3945   RValue emitRotate(const CallExpr *E, bool IsRotateRight);
3946 
3947   /// Emit IR for __builtin_os_log_format.
3948   RValue emitBuiltinOSLogFormat(const CallExpr &E);
3949 
3950   /// Emit IR for __builtin_is_aligned.
3951   RValue EmitBuiltinIsAligned(const CallExpr *E);
3952   /// Emit IR for __builtin_align_up/__builtin_align_down.
3953   RValue EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp);
3954 
3955   llvm::Function *generateBuiltinOSLogHelperFunction(
3956       const analyze_os_log::OSLogBufferLayout &Layout,
3957       CharUnits BufferAlignment);
3958 
3959   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
3960 
3961   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
3962   /// is unhandled by the current target.
3963   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
3964                                      ReturnValueSlot ReturnValue);
3965 
3966   llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
3967                                              const llvm::CmpInst::Predicate Fp,
3968                                              const llvm::CmpInst::Predicate Ip,
3969                                              const llvm::Twine &Name = "");
3970   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
3971                                   ReturnValueSlot ReturnValue,
3972                                   llvm::Triple::ArchType Arch);
3973   llvm::Value *EmitARMMVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
3974                                      ReturnValueSlot ReturnValue,
3975                                      llvm::Triple::ArchType Arch);
3976   llvm::Value *EmitARMCDEBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
3977                                      ReturnValueSlot ReturnValue,
3978                                      llvm::Triple::ArchType Arch);
3979   llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::IntegerType *ITy,
3980                                    QualType RTy);
3981   llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::ArrayType *ATy,
3982                                    QualType RTy);
3983 
3984   llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
3985                                          unsigned LLVMIntrinsic,
3986                                          unsigned AltLLVMIntrinsic,
3987                                          const char *NameHint,
3988                                          unsigned Modifier,
3989                                          const CallExpr *E,
3990                                          SmallVectorImpl<llvm::Value *> &Ops,
3991                                          Address PtrOp0, Address PtrOp1,
3992                                          llvm::Triple::ArchType Arch);
3993 
3994   llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
3995                                           unsigned Modifier, llvm::Type *ArgTy,
3996                                           const CallExpr *E);
3997   llvm::Value *EmitNeonCall(llvm::Function *F,
3998                             SmallVectorImpl<llvm::Value*> &O,
3999                             const char *name,
4000                             unsigned shift = 0, bool rightshift = false);
4001   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx,
4002                              const llvm::ElementCount &Count);
4003   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
4004   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
4005                                    bool negateForRightShift);
4006   llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
4007                                  llvm::Type *Ty, bool usgn, const char *name);
4008   llvm::Value *vectorWrapScalar16(llvm::Value *Op);
4009   /// SVEBuiltinMemEltTy - Returns the memory element type for this memory
4010   /// access builtin.  Only required if it can't be inferred from the base
4011   /// pointer operand.
4012   llvm::Type *SVEBuiltinMemEltTy(SVETypeFlags TypeFlags);
4013 
4014   SmallVector<llvm::Type *, 2> getSVEOverloadTypes(SVETypeFlags TypeFlags,
4015                                                    llvm::Type *ReturnType,
4016                                                    ArrayRef<llvm::Value *> Ops);
4017   llvm::Type *getEltType(SVETypeFlags TypeFlags);
4018   llvm::ScalableVectorType *getSVEType(const SVETypeFlags &TypeFlags);
4019   llvm::ScalableVectorType *getSVEPredType(SVETypeFlags TypeFlags);
4020   llvm::Value *EmitSVEAllTruePred(SVETypeFlags TypeFlags);
4021   llvm::Value *EmitSVEDupX(llvm::Value *Scalar);
4022   llvm::Value *EmitSVEDupX(llvm::Value *Scalar, llvm::Type *Ty);
4023   llvm::Value *EmitSVEReinterpret(llvm::Value *Val, llvm::Type *Ty);
4024   llvm::Value *EmitSVEPMull(SVETypeFlags TypeFlags,
4025                             llvm::SmallVectorImpl<llvm::Value *> &Ops,
4026                             unsigned BuiltinID);
4027   llvm::Value *EmitSVEMovl(SVETypeFlags TypeFlags,
4028                            llvm::ArrayRef<llvm::Value *> Ops,
4029                            unsigned BuiltinID);
4030   llvm::Value *EmitSVEPredicateCast(llvm::Value *Pred,
4031                                     llvm::ScalableVectorType *VTy);
4032   llvm::Value *EmitSVEGatherLoad(SVETypeFlags TypeFlags,
4033                                  llvm::SmallVectorImpl<llvm::Value *> &Ops,
4034                                  unsigned IntID);
4035   llvm::Value *EmitSVEScatterStore(SVETypeFlags TypeFlags,
4036                                    llvm::SmallVectorImpl<llvm::Value *> &Ops,
4037                                    unsigned IntID);
4038   llvm::Value *EmitSVEMaskedLoad(const CallExpr *, llvm::Type *ReturnTy,
4039                                  SmallVectorImpl<llvm::Value *> &Ops,
4040                                  unsigned BuiltinID, bool IsZExtReturn);
4041   llvm::Value *EmitSVEMaskedStore(const CallExpr *,
4042                                   SmallVectorImpl<llvm::Value *> &Ops,
4043                                   unsigned BuiltinID);
4044   llvm::Value *EmitSVEPrefetchLoad(SVETypeFlags TypeFlags,
4045                                    SmallVectorImpl<llvm::Value *> &Ops,
4046                                    unsigned BuiltinID);
4047   llvm::Value *EmitSVEGatherPrefetch(SVETypeFlags TypeFlags,
4048                                      SmallVectorImpl<llvm::Value *> &Ops,
4049                                      unsigned IntID);
4050   llvm::Value *EmitSVEStructLoad(SVETypeFlags TypeFlags,
4051                                  SmallVectorImpl<llvm::Value *> &Ops, unsigned IntID);
4052   llvm::Value *EmitSVEStructStore(SVETypeFlags TypeFlags,
4053                                   SmallVectorImpl<llvm::Value *> &Ops,
4054                                   unsigned IntID);
4055   llvm::Value *EmitAArch64SVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4056 
4057   llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4058                                       llvm::Triple::ArchType Arch);
4059   llvm::Value *EmitBPFBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4060 
4061   llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
4062   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4063   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4064   llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4065   llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4066   llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4067   llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
4068                                           const CallExpr *E);
4069   llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4070   bool ProcessOrderScopeAMDGCN(llvm::Value *Order, llvm::Value *Scope,
4071                                llvm::AtomicOrdering &AO,
4072                                llvm::SyncScope::ID &SSID);
4073 
4074 private:
4075   enum class MSVCIntrin;
4076 
4077 public:
4078   llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E);
4079 
4080   llvm::Value *EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args);
4081 
4082   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
4083   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
4084   llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
4085   llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
4086   llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
4087   llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
4088                                 const ObjCMethodDecl *MethodWithObjects);
4089   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
4090   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
4091                              ReturnValueSlot Return = ReturnValueSlot());
4092 
4093   /// Retrieves the default cleanup kind for an ARC cleanup.
4094   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
4095   CleanupKind getARCCleanupKind() {
4096     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
4097              ? NormalAndEHCleanup : NormalCleanup;
4098   }
4099 
4100   // ARC primitives.
4101   void EmitARCInitWeak(Address addr, llvm::Value *value);
4102   void EmitARCDestroyWeak(Address addr);
4103   llvm::Value *EmitARCLoadWeak(Address addr);
4104   llvm::Value *EmitARCLoadWeakRetained(Address addr);
4105   llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored);
4106   void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
4107   void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
4108   void EmitARCCopyWeak(Address dst, Address src);
4109   void EmitARCMoveWeak(Address dst, Address src);
4110   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
4111   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
4112   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
4113                                   bool resultIgnored);
4114   llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value,
4115                                       bool resultIgnored);
4116   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
4117   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
4118   llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
4119   void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise);
4120   void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
4121   llvm::Value *EmitARCAutorelease(llvm::Value *value);
4122   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
4123   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
4124   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
4125   llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value);
4126 
4127   llvm::Value *EmitObjCAutorelease(llvm::Value *value, llvm::Type *returnType);
4128   llvm::Value *EmitObjCRetainNonBlock(llvm::Value *value,
4129                                       llvm::Type *returnType);
4130   void EmitObjCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
4131 
4132   std::pair<LValue,llvm::Value*>
4133   EmitARCStoreAutoreleasing(const BinaryOperator *e);
4134   std::pair<LValue,llvm::Value*>
4135   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
4136   std::pair<LValue,llvm::Value*>
4137   EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored);
4138 
4139   llvm::Value *EmitObjCAlloc(llvm::Value *value,
4140                              llvm::Type *returnType);
4141   llvm::Value *EmitObjCAllocWithZone(llvm::Value *value,
4142                                      llvm::Type *returnType);
4143   llvm::Value *EmitObjCAllocInit(llvm::Value *value, llvm::Type *resultType);
4144 
4145   llvm::Value *EmitObjCThrowOperand(const Expr *expr);
4146   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
4147   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
4148 
4149   llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
4150   llvm::Value *EmitARCReclaimReturnedObject(const Expr *e,
4151                                             bool allowUnsafeClaim);
4152   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
4153   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
4154   llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr);
4155 
4156   void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
4157 
4158   static Destroyer destroyARCStrongImprecise;
4159   static Destroyer destroyARCStrongPrecise;
4160   static Destroyer destroyARCWeak;
4161   static Destroyer emitARCIntrinsicUse;
4162   static Destroyer destroyNonTrivialCStruct;
4163 
4164   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
4165   llvm::Value *EmitObjCAutoreleasePoolPush();
4166   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
4167   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
4168   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
4169 
4170   /// Emits a reference binding to the passed in expression.
4171   RValue EmitReferenceBindingToExpr(const Expr *E);
4172 
4173   //===--------------------------------------------------------------------===//
4174   //                           Expression Emission
4175   //===--------------------------------------------------------------------===//
4176 
4177   // Expressions are broken into three classes: scalar, complex, aggregate.
4178 
4179   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
4180   /// scalar type, returning the result.
4181   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
4182 
4183   /// Emit a conversion from the specified type to the specified destination
4184   /// type, both of which are LLVM scalar types.
4185   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
4186                                     QualType DstTy, SourceLocation Loc);
4187 
4188   /// Emit a conversion from the specified complex type to the specified
4189   /// destination type, where the destination type is an LLVM scalar type.
4190   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
4191                                              QualType DstTy,
4192                                              SourceLocation Loc);
4193 
4194   /// EmitAggExpr - Emit the computation of the specified expression
4195   /// of aggregate type.  The result is computed into the given slot,
4196   /// which may be null to indicate that the value is not needed.
4197   void EmitAggExpr(const Expr *E, AggValueSlot AS);
4198 
4199   /// EmitAggExprToLValue - Emit the computation of the specified expression of
4200   /// aggregate type into a temporary LValue.
4201   LValue EmitAggExprToLValue(const Expr *E);
4202 
4203   /// Build all the stores needed to initialize an aggregate at Dest with the
4204   /// value Val.
4205   void EmitAggregateStore(llvm::Value *Val, Address Dest, bool DestIsVolatile);
4206 
4207   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
4208   /// make sure it survives garbage collection until this point.
4209   void EmitExtendGCLifetime(llvm::Value *object);
4210 
4211   /// EmitComplexExpr - Emit the computation of the specified expression of
4212   /// complex type, returning the result.
4213   ComplexPairTy EmitComplexExpr(const Expr *E,
4214                                 bool IgnoreReal = false,
4215                                 bool IgnoreImag = false);
4216 
4217   /// EmitComplexExprIntoLValue - Emit the given expression of complex
4218   /// type and place its result into the specified l-value.
4219   void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
4220 
4221   /// EmitStoreOfComplex - Store a complex number into the specified l-value.
4222   void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
4223 
4224   /// EmitLoadOfComplex - Load a complex number from the specified l-value.
4225   ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
4226 
4227   Address emitAddrOfRealComponent(Address complex, QualType complexType);
4228   Address emitAddrOfImagComponent(Address complex, QualType complexType);
4229 
4230   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
4231   /// global variable that has already been created for it.  If the initializer
4232   /// has a different type than GV does, this may free GV and return a different
4233   /// one.  Otherwise it just returns GV.
4234   llvm::GlobalVariable *
4235   AddInitializerToStaticVarDecl(const VarDecl &D,
4236                                 llvm::GlobalVariable *GV);
4237 
4238   // Emit an @llvm.invariant.start call for the given memory region.
4239   void EmitInvariantStart(llvm::Constant *Addr, CharUnits Size);
4240 
4241   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
4242   /// variable with global storage.
4243   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
4244                                 bool PerformInit);
4245 
4246   llvm::Function *createAtExitStub(const VarDecl &VD, llvm::FunctionCallee Dtor,
4247                                    llvm::Constant *Addr);
4248 
4249   /// Call atexit() with a function that passes the given argument to
4250   /// the given function.
4251   void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::FunctionCallee fn,
4252                                     llvm::Constant *addr);
4253 
4254   /// Call atexit() with function dtorStub.
4255   void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub);
4256 
4257   /// Call unatexit() with function dtorStub.
4258   llvm::Value *unregisterGlobalDtorWithUnAtExit(llvm::Function *dtorStub);
4259 
4260   /// Emit code in this function to perform a guarded variable
4261   /// initialization.  Guarded initializations are used when it's not
4262   /// possible to prove that an initialization will be done exactly
4263   /// once, e.g. with a static local variable or a static data member
4264   /// of a class template.
4265   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
4266                           bool PerformInit);
4267 
4268   enum class GuardKind { VariableGuard, TlsGuard };
4269 
4270   /// Emit a branch to select whether or not to perform guarded initialization.
4271   void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit,
4272                                 llvm::BasicBlock *InitBlock,
4273                                 llvm::BasicBlock *NoInitBlock,
4274                                 GuardKind Kind, const VarDecl *D);
4275 
4276   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
4277   /// variables.
4278   void
4279   GenerateCXXGlobalInitFunc(llvm::Function *Fn,
4280                             ArrayRef<llvm::Function *> CXXThreadLocals,
4281                             ConstantAddress Guard = ConstantAddress::invalid());
4282 
4283   /// GenerateCXXGlobalCleanUpFunc - Generates code for cleaning up global
4284   /// variables.
4285   void GenerateCXXGlobalCleanUpFunc(
4286       llvm::Function *Fn,
4287       const std::vector<std::tuple<llvm::FunctionType *, llvm::WeakTrackingVH,
4288                                    llvm::Constant *>> &DtorsOrStermFinalizers);
4289 
4290   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
4291                                         const VarDecl *D,
4292                                         llvm::GlobalVariable *Addr,
4293                                         bool PerformInit);
4294 
4295   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
4296 
4297   void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp);
4298 
4299   void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
4300 
4301   RValue EmitAtomicExpr(AtomicExpr *E);
4302 
4303   //===--------------------------------------------------------------------===//
4304   //                         Annotations Emission
4305   //===--------------------------------------------------------------------===//
4306 
4307   /// Emit an annotation call (intrinsic).
4308   llvm::Value *EmitAnnotationCall(llvm::Function *AnnotationFn,
4309                                   llvm::Value *AnnotatedVal,
4310                                   StringRef AnnotationStr,
4311                                   SourceLocation Location);
4312 
4313   /// Emit local annotations for the local variable V, declared by D.
4314   void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
4315 
4316   /// Emit field annotations for the given field & value. Returns the
4317   /// annotation result.
4318   Address EmitFieldAnnotations(const FieldDecl *D, Address V);
4319 
4320   //===--------------------------------------------------------------------===//
4321   //                             Internal Helpers
4322   //===--------------------------------------------------------------------===//
4323 
4324   /// ContainsLabel - Return true if the statement contains a label in it.  If
4325   /// this statement is not executed normally, it not containing a label means
4326   /// that we can just remove the code.
4327   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
4328 
4329   /// containsBreak - Return true if the statement contains a break out of it.
4330   /// If the statement (recursively) contains a switch or loop with a break
4331   /// inside of it, this is fine.
4332   static bool containsBreak(const Stmt *S);
4333 
4334   /// Determine if the given statement might introduce a declaration into the
4335   /// current scope, by being a (possibly-labelled) DeclStmt.
4336   static bool mightAddDeclToScope(const Stmt *S);
4337 
4338   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
4339   /// to a constant, or if it does but contains a label, return false.  If it
4340   /// constant folds return true and set the boolean result in Result.
4341   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result,
4342                                     bool AllowLabels = false);
4343 
4344   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
4345   /// to a constant, or if it does but contains a label, return false.  If it
4346   /// constant folds return true and set the folded value.
4347   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result,
4348                                     bool AllowLabels = false);
4349 
4350   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
4351   /// if statement) to the specified blocks.  Based on the condition, this might
4352   /// try to simplify the codegen of the conditional based on the branch.
4353   /// TrueCount should be the number of times we expect the condition to
4354   /// evaluate to true based on PGO data.
4355   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
4356                             llvm::BasicBlock *FalseBlock, uint64_t TrueCount);
4357 
4358   /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is
4359   /// nonnull, if \p LHS is marked _Nonnull.
4360   void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc);
4361 
4362   /// An enumeration which makes it easier to specify whether or not an
4363   /// operation is a subtraction.
4364   enum { NotSubtraction = false, IsSubtraction = true };
4365 
4366   /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to
4367   /// detect undefined behavior when the pointer overflow sanitizer is enabled.
4368   /// \p SignedIndices indicates whether any of the GEP indices are signed.
4369   /// \p IsSubtraction indicates whether the expression used to form the GEP
4370   /// is a subtraction.
4371   llvm::Value *EmitCheckedInBoundsGEP(llvm::Value *Ptr,
4372                                       ArrayRef<llvm::Value *> IdxList,
4373                                       bool SignedIndices,
4374                                       bool IsSubtraction,
4375                                       SourceLocation Loc,
4376                                       const Twine &Name = "");
4377 
4378   /// Specifies which type of sanitizer check to apply when handling a
4379   /// particular builtin.
4380   enum BuiltinCheckKind {
4381     BCK_CTZPassedZero,
4382     BCK_CLZPassedZero,
4383   };
4384 
4385   /// Emits an argument for a call to a builtin. If the builtin sanitizer is
4386   /// enabled, a runtime check specified by \p Kind is also emitted.
4387   llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind);
4388 
4389   /// Emit a description of a type in a format suitable for passing to
4390   /// a runtime sanitizer handler.
4391   llvm::Constant *EmitCheckTypeDescriptor(QualType T);
4392 
4393   /// Convert a value into a format suitable for passing to a runtime
4394   /// sanitizer handler.
4395   llvm::Value *EmitCheckValue(llvm::Value *V);
4396 
4397   /// Emit a description of a source location in a format suitable for
4398   /// passing to a runtime sanitizer handler.
4399   llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
4400 
4401   /// Create a basic block that will either trap or call a handler function in
4402   /// the UBSan runtime with the provided arguments, and create a conditional
4403   /// branch to it.
4404   void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
4405                  SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs,
4406                  ArrayRef<llvm::Value *> DynamicArgs);
4407 
4408   /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath
4409   /// if Cond if false.
4410   void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond,
4411                             llvm::ConstantInt *TypeId, llvm::Value *Ptr,
4412                             ArrayRef<llvm::Constant *> StaticArgs);
4413 
4414   /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime
4415   /// checking is enabled. Otherwise, just emit an unreachable instruction.
4416   void EmitUnreachable(SourceLocation Loc);
4417 
4418   /// Create a basic block that will call the trap intrinsic, and emit a
4419   /// conditional branch to it, for the -ftrapv checks.
4420   void EmitTrapCheck(llvm::Value *Checked);
4421 
4422   /// Emit a call to trap or debugtrap and attach function attribute
4423   /// "trap-func-name" if specified.
4424   llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID);
4425 
4426   /// Emit a stub for the cross-DSO CFI check function.
4427   void EmitCfiCheckStub();
4428 
4429   /// Emit a cross-DSO CFI failure handling function.
4430   void EmitCfiCheckFail();
4431 
4432   /// Create a check for a function parameter that may potentially be
4433   /// declared as non-null.
4434   void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc,
4435                            AbstractCallee AC, unsigned ParmNum);
4436 
4437   /// EmitCallArg - Emit a single call argument.
4438   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
4439 
4440   /// EmitDelegateCallArg - We are performing a delegate call; that
4441   /// is, the current function is delegating to another one.  Produce
4442   /// a r-value suitable for passing the given parameter.
4443   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
4444                            SourceLocation loc);
4445 
4446   /// SetFPAccuracy - Set the minimum required accuracy of the given floating
4447   /// point operation, expressed as the maximum relative error in ulp.
4448   void SetFPAccuracy(llvm::Value *Val, float Accuracy);
4449 
4450   /// SetFPModel - Control floating point behavior via fp-model settings.
4451   void SetFPModel();
4452 
4453   /// Set the codegen fast-math flags.
4454   void SetFastMathFlags(FPOptions FPFeatures);
4455 
4456 private:
4457   llvm::MDNode *getRangeForLoadFromType(QualType Ty);
4458   void EmitReturnOfRValue(RValue RV, QualType Ty);
4459 
4460   void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
4461 
4462   llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4>
4463   DeferredReplacements;
4464 
4465   /// Set the address of a local variable.
4466   void setAddrOfLocalVar(const VarDecl *VD, Address Addr) {
4467     assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!");
4468     LocalDeclMap.insert({VD, Addr});
4469   }
4470 
4471   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
4472   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
4473   ///
4474   /// \param AI - The first function argument of the expansion.
4475   void ExpandTypeFromArgs(QualType Ty, LValue Dst,
4476                           llvm::Function::arg_iterator &AI);
4477 
4478   /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg
4479   /// Ty, into individual arguments on the provided vector \arg IRCallArgs,
4480   /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand.
4481   void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
4482                         SmallVectorImpl<llvm::Value *> &IRCallArgs,
4483                         unsigned &IRCallArgPos);
4484 
4485   llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
4486                             const Expr *InputExpr, std::string &ConstraintStr);
4487 
4488   llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
4489                                   LValue InputValue, QualType InputType,
4490                                   std::string &ConstraintStr,
4491                                   SourceLocation Loc);
4492 
4493   /// Attempts to statically evaluate the object size of E. If that
4494   /// fails, emits code to figure the size of E out for us. This is
4495   /// pass_object_size aware.
4496   ///
4497   /// If EmittedExpr is non-null, this will use that instead of re-emitting E.
4498   llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
4499                                                llvm::IntegerType *ResType,
4500                                                llvm::Value *EmittedE,
4501                                                bool IsDynamic);
4502 
4503   /// Emits the size of E, as required by __builtin_object_size. This
4504   /// function is aware of pass_object_size parameters, and will act accordingly
4505   /// if E is a parameter with the pass_object_size attribute.
4506   llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type,
4507                                      llvm::IntegerType *ResType,
4508                                      llvm::Value *EmittedE,
4509                                      bool IsDynamic);
4510 
4511   void emitZeroOrPatternForAutoVarInit(QualType type, const VarDecl &D,
4512                                        Address Loc);
4513 
4514 public:
4515 #ifndef NDEBUG
4516   // Determine whether the given argument is an Objective-C method
4517   // that may have type parameters in its signature.
4518   static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) {
4519     const DeclContext *dc = method->getDeclContext();
4520     if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) {
4521       return classDecl->getTypeParamListAsWritten();
4522     }
4523 
4524     if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) {
4525       return catDecl->getTypeParamList();
4526     }
4527 
4528     return false;
4529   }
4530 
4531   template<typename T>
4532   static bool isObjCMethodWithTypeParams(const T *) { return false; }
4533 #endif
4534 
4535   enum class EvaluationOrder {
4536     ///! No language constraints on evaluation order.
4537     Default,
4538     ///! Language semantics require left-to-right evaluation.
4539     ForceLeftToRight,
4540     ///! Language semantics require right-to-left evaluation.
4541     ForceRightToLeft
4542   };
4543 
4544   /// EmitCallArgs - Emit call arguments for a function.
4545   template <typename T>
4546   void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo,
4547                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
4548                     AbstractCallee AC = AbstractCallee(),
4549                     unsigned ParamsToSkip = 0,
4550                     EvaluationOrder Order = EvaluationOrder::Default) {
4551     SmallVector<QualType, 16> ArgTypes;
4552     CallExpr::const_arg_iterator Arg = ArgRange.begin();
4553 
4554     assert((ParamsToSkip == 0 || CallArgTypeInfo) &&
4555            "Can't skip parameters if type info is not provided");
4556     if (CallArgTypeInfo) {
4557 #ifndef NDEBUG
4558       bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo);
4559 #endif
4560 
4561       // First, use the argument types that the type info knows about
4562       for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip,
4563                 E = CallArgTypeInfo->param_type_end();
4564            I != E; ++I, ++Arg) {
4565         assert(Arg != ArgRange.end() && "Running over edge of argument list!");
4566         assert((isGenericMethod ||
4567                 ((*I)->isVariablyModifiedType() ||
4568                  (*I).getNonReferenceType()->isObjCRetainableType() ||
4569                  getContext()
4570                          .getCanonicalType((*I).getNonReferenceType())
4571                          .getTypePtr() ==
4572                      getContext()
4573                          .getCanonicalType((*Arg)->getType())
4574                          .getTypePtr())) &&
4575                "type mismatch in call argument!");
4576         ArgTypes.push_back(*I);
4577       }
4578     }
4579 
4580     // Either we've emitted all the call args, or we have a call to variadic
4581     // function.
4582     assert((Arg == ArgRange.end() || !CallArgTypeInfo ||
4583             CallArgTypeInfo->isVariadic()) &&
4584            "Extra arguments in non-variadic function!");
4585 
4586     // If we still have any arguments, emit them using the type of the argument.
4587     for (auto *A : llvm::make_range(Arg, ArgRange.end()))
4588       ArgTypes.push_back(CallArgTypeInfo ? getVarArgType(A) : A->getType());
4589 
4590     EmitCallArgs(Args, ArgTypes, ArgRange, AC, ParamsToSkip, Order);
4591   }
4592 
4593   void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes,
4594                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
4595                     AbstractCallee AC = AbstractCallee(),
4596                     unsigned ParamsToSkip = 0,
4597                     EvaluationOrder Order = EvaluationOrder::Default);
4598 
4599   /// EmitPointerWithAlignment - Given an expression with a pointer type,
4600   /// emit the value and compute our best estimate of the alignment of the
4601   /// pointee.
4602   ///
4603   /// \param BaseInfo - If non-null, this will be initialized with
4604   /// information about the source of the alignment and the may-alias
4605   /// attribute.  Note that this function will conservatively fall back on
4606   /// the type when it doesn't recognize the expression and may-alias will
4607   /// be set to false.
4608   ///
4609   /// One reasonable way to use this information is when there's a language
4610   /// guarantee that the pointer must be aligned to some stricter value, and
4611   /// we're simply trying to ensure that sufficiently obvious uses of under-
4612   /// aligned objects don't get miscompiled; for example, a placement new
4613   /// into the address of a local variable.  In such a case, it's quite
4614   /// reasonable to just ignore the returned alignment when it isn't from an
4615   /// explicit source.
4616   Address EmitPointerWithAlignment(const Expr *Addr,
4617                                    LValueBaseInfo *BaseInfo = nullptr,
4618                                    TBAAAccessInfo *TBAAInfo = nullptr);
4619 
4620   /// If \p E references a parameter with pass_object_size info or a constant
4621   /// array size modifier, emit the object size divided by the size of \p EltTy.
4622   /// Otherwise return null.
4623   llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy);
4624 
4625   void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK);
4626 
4627   struct MultiVersionResolverOption {
4628     llvm::Function *Function;
4629     FunctionDecl *FD;
4630     struct Conds {
4631       StringRef Architecture;
4632       llvm::SmallVector<StringRef, 8> Features;
4633 
4634       Conds(StringRef Arch, ArrayRef<StringRef> Feats)
4635           : Architecture(Arch), Features(Feats.begin(), Feats.end()) {}
4636     } Conditions;
4637 
4638     MultiVersionResolverOption(llvm::Function *F, StringRef Arch,
4639                                ArrayRef<StringRef> Feats)
4640         : Function(F), Conditions(Arch, Feats) {}
4641   };
4642 
4643   // Emits the body of a multiversion function's resolver. Assumes that the
4644   // options are already sorted in the proper order, with the 'default' option
4645   // last (if it exists).
4646   void EmitMultiVersionResolver(llvm::Function *Resolver,
4647                                 ArrayRef<MultiVersionResolverOption> Options);
4648 
4649   static uint64_t GetX86CpuSupportsMask(ArrayRef<StringRef> FeatureStrs);
4650 
4651 private:
4652   QualType getVarArgType(const Expr *Arg);
4653 
4654   void EmitDeclMetadata();
4655 
4656   BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType,
4657                                   const AutoVarEmission &emission);
4658 
4659   void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
4660 
4661   llvm::Value *GetValueForARMHint(unsigned BuiltinID);
4662   llvm::Value *EmitX86CpuIs(const CallExpr *E);
4663   llvm::Value *EmitX86CpuIs(StringRef CPUStr);
4664   llvm::Value *EmitX86CpuSupports(const CallExpr *E);
4665   llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs);
4666   llvm::Value *EmitX86CpuSupports(uint64_t Mask);
4667   llvm::Value *EmitX86CpuInit();
4668   llvm::Value *FormResolverCondition(const MultiVersionResolverOption &RO);
4669 };
4670 
4671 inline DominatingLLVMValue::saved_type
4672 DominatingLLVMValue::save(CodeGenFunction &CGF, llvm::Value *value) {
4673   if (!needsSaving(value)) return saved_type(value, false);
4674 
4675   // Otherwise, we need an alloca.
4676   auto align = CharUnits::fromQuantity(
4677             CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType()));
4678   Address alloca =
4679     CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save");
4680   CGF.Builder.CreateStore(value, alloca);
4681 
4682   return saved_type(alloca.getPointer(), true);
4683 }
4684 
4685 inline llvm::Value *DominatingLLVMValue::restore(CodeGenFunction &CGF,
4686                                                  saved_type value) {
4687   // If the value says it wasn't saved, trust that it's still dominating.
4688   if (!value.getInt()) return value.getPointer();
4689 
4690   // Otherwise, it should be an alloca instruction, as set up in save().
4691   auto alloca = cast<llvm::AllocaInst>(value.getPointer());
4692   return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlign());
4693 }
4694 
4695 }  // end namespace CodeGen
4696 
4697 // Map the LangOption for floating point exception behavior into
4698 // the corresponding enum in the IR.
4699 llvm::fp::ExceptionBehavior
4700 ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind);
4701 }  // end namespace clang
4702 
4703 #endif
4704