1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the internal per-function state used for llvm translation.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
14 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
15 
16 #include "CGBuilder.h"
17 #include "CGDebugInfo.h"
18 #include "CGLoopInfo.h"
19 #include "CGValue.h"
20 #include "CodeGenModule.h"
21 #include "CodeGenPGO.h"
22 #include "EHScopeStack.h"
23 #include "VarBypassDetector.h"
24 #include "clang/AST/CharUnits.h"
25 #include "clang/AST/CurrentSourceLocExprScope.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/ExprObjC.h"
28 #include "clang/AST/ExprOpenMP.h"
29 #include "clang/AST/StmtOpenMP.h"
30 #include "clang/AST/Type.h"
31 #include "clang/Basic/ABI.h"
32 #include "clang/Basic/CapturedStmt.h"
33 #include "clang/Basic/CodeGenOptions.h"
34 #include "clang/Basic/OpenMPKinds.h"
35 #include "clang/Basic/TargetInfo.h"
36 #include "llvm/ADT/ArrayRef.h"
37 #include "llvm/ADT/DenseMap.h"
38 #include "llvm/ADT/MapVector.h"
39 #include "llvm/ADT/SmallVector.h"
40 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
41 #include "llvm/IR/ValueHandle.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Transforms/Utils/SanitizerStats.h"
44 
45 namespace llvm {
46 class BasicBlock;
47 class LLVMContext;
48 class MDNode;
49 class SwitchInst;
50 class Twine;
51 class Value;
52 class CanonicalLoopInfo;
53 }
54 
55 namespace clang {
56 class ASTContext;
57 class CXXDestructorDecl;
58 class CXXForRangeStmt;
59 class CXXTryStmt;
60 class Decl;
61 class LabelDecl;
62 class FunctionDecl;
63 class FunctionProtoType;
64 class LabelStmt;
65 class ObjCContainerDecl;
66 class ObjCInterfaceDecl;
67 class ObjCIvarDecl;
68 class ObjCMethodDecl;
69 class ObjCImplementationDecl;
70 class ObjCPropertyImplDecl;
71 class TargetInfo;
72 class VarDecl;
73 class ObjCForCollectionStmt;
74 class ObjCAtTryStmt;
75 class ObjCAtThrowStmt;
76 class ObjCAtSynchronizedStmt;
77 class ObjCAutoreleasePoolStmt;
78 class OMPUseDevicePtrClause;
79 class OMPUseDeviceAddrClause;
80 class SVETypeFlags;
81 class OMPExecutableDirective;
82 
83 namespace analyze_os_log {
84 class OSLogBufferLayout;
85 }
86 
87 namespace CodeGen {
88 class CodeGenTypes;
89 class CGCallee;
90 class CGFunctionInfo;
91 class CGBlockInfo;
92 class CGCXXABI;
93 class BlockByrefHelpers;
94 class BlockByrefInfo;
95 class BlockFieldFlags;
96 class RegionCodeGenTy;
97 class TargetCodeGenInfo;
98 struct OMPTaskDataTy;
99 struct CGCoroData;
100 
101 /// The kind of evaluation to perform on values of a particular
102 /// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
103 /// CGExprAgg?
104 ///
105 /// TODO: should vectors maybe be split out into their own thing?
106 enum TypeEvaluationKind {
107   TEK_Scalar,
108   TEK_Complex,
109   TEK_Aggregate
110 };
111 
112 #define LIST_SANITIZER_CHECKS                                                  \
113   SANITIZER_CHECK(AddOverflow, add_overflow, 0)                                \
114   SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0)                  \
115   SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0)                             \
116   SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0)                          \
117   SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0)            \
118   SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0)                   \
119   SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 1)             \
120   SANITIZER_CHECK(ImplicitConversion, implicit_conversion, 0)                  \
121   SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0)                          \
122   SANITIZER_CHECK(InvalidObjCCast, invalid_objc_cast, 0)                       \
123   SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0)                     \
124   SANITIZER_CHECK(MissingReturn, missing_return, 0)                            \
125   SANITIZER_CHECK(MulOverflow, mul_overflow, 0)                                \
126   SANITIZER_CHECK(NegateOverflow, negate_overflow, 0)                          \
127   SANITIZER_CHECK(NullabilityArg, nullability_arg, 0)                          \
128   SANITIZER_CHECK(NullabilityReturn, nullability_return, 1)                    \
129   SANITIZER_CHECK(NonnullArg, nonnull_arg, 0)                                  \
130   SANITIZER_CHECK(NonnullReturn, nonnull_return, 1)                            \
131   SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0)                               \
132   SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0)                        \
133   SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0)                    \
134   SANITIZER_CHECK(SubOverflow, sub_overflow, 0)                                \
135   SANITIZER_CHECK(TypeMismatch, type_mismatch, 1)                              \
136   SANITIZER_CHECK(AlignmentAssumption, alignment_assumption, 0)                \
137   SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0)
138 
139 enum SanitizerHandler {
140 #define SANITIZER_CHECK(Enum, Name, Version) Enum,
141   LIST_SANITIZER_CHECKS
142 #undef SANITIZER_CHECK
143 };
144 
145 /// Helper class with most of the code for saving a value for a
146 /// conditional expression cleanup.
147 struct DominatingLLVMValue {
148   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
149 
150   /// Answer whether the given value needs extra work to be saved.
151   static bool needsSaving(llvm::Value *value) {
152     // If it's not an instruction, we don't need to save.
153     if (!isa<llvm::Instruction>(value)) return false;
154 
155     // If it's an instruction in the entry block, we don't need to save.
156     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
157     return (block != &block->getParent()->getEntryBlock());
158   }
159 
160   static saved_type save(CodeGenFunction &CGF, llvm::Value *value);
161   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value);
162 };
163 
164 /// A partial specialization of DominatingValue for llvm::Values that
165 /// might be llvm::Instructions.
166 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
167   typedef T *type;
168   static type restore(CodeGenFunction &CGF, saved_type value) {
169     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
170   }
171 };
172 
173 /// A specialization of DominatingValue for Address.
174 template <> struct DominatingValue<Address> {
175   typedef Address type;
176 
177   struct saved_type {
178     DominatingLLVMValue::saved_type SavedValue;
179     llvm::Type *ElementType;
180     CharUnits Alignment;
181   };
182 
183   static bool needsSaving(type value) {
184     return DominatingLLVMValue::needsSaving(value.getPointer());
185   }
186   static saved_type save(CodeGenFunction &CGF, type value) {
187     return { DominatingLLVMValue::save(CGF, value.getPointer()),
188              value.getElementType(), value.getAlignment() };
189   }
190   static type restore(CodeGenFunction &CGF, saved_type value) {
191     return Address(DominatingLLVMValue::restore(CGF, value.SavedValue),
192                    value.ElementType, value.Alignment);
193   }
194 };
195 
196 /// A specialization of DominatingValue for RValue.
197 template <> struct DominatingValue<RValue> {
198   typedef RValue type;
199   class saved_type {
200     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
201                 AggregateAddress, ComplexAddress };
202 
203     llvm::Value *Value;
204     llvm::Type *ElementType;
205     unsigned K : 3;
206     unsigned Align : 29;
207     saved_type(llvm::Value *v, llvm::Type *e, Kind k, unsigned a = 0)
208       : Value(v), ElementType(e), K(k), Align(a) {}
209 
210   public:
211     static bool needsSaving(RValue value);
212     static saved_type save(CodeGenFunction &CGF, RValue value);
213     RValue restore(CodeGenFunction &CGF);
214 
215     // implementations in CGCleanup.cpp
216   };
217 
218   static bool needsSaving(type value) {
219     return saved_type::needsSaving(value);
220   }
221   static saved_type save(CodeGenFunction &CGF, type value) {
222     return saved_type::save(CGF, value);
223   }
224   static type restore(CodeGenFunction &CGF, saved_type value) {
225     return value.restore(CGF);
226   }
227 };
228 
229 /// CodeGenFunction - This class organizes the per-function state that is used
230 /// while generating LLVM code.
231 class CodeGenFunction : public CodeGenTypeCache {
232   CodeGenFunction(const CodeGenFunction &) = delete;
233   void operator=(const CodeGenFunction &) = delete;
234 
235   friend class CGCXXABI;
236 public:
237   /// A jump destination is an abstract label, branching to which may
238   /// require a jump out through normal cleanups.
239   struct JumpDest {
240     JumpDest() : Block(nullptr), Index(0) {}
241     JumpDest(llvm::BasicBlock *Block, EHScopeStack::stable_iterator Depth,
242              unsigned Index)
243         : Block(Block), ScopeDepth(Depth), Index(Index) {}
244 
245     bool isValid() const { return Block != nullptr; }
246     llvm::BasicBlock *getBlock() const { return Block; }
247     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
248     unsigned getDestIndex() const { return Index; }
249 
250     // This should be used cautiously.
251     void setScopeDepth(EHScopeStack::stable_iterator depth) {
252       ScopeDepth = depth;
253     }
254 
255   private:
256     llvm::BasicBlock *Block;
257     EHScopeStack::stable_iterator ScopeDepth;
258     unsigned Index;
259   };
260 
261   CodeGenModule &CGM;  // Per-module state.
262   const TargetInfo &Target;
263 
264   // For EH/SEH outlined funclets, this field points to parent's CGF
265   CodeGenFunction *ParentCGF = nullptr;
266 
267   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
268   LoopInfoStack LoopStack;
269   CGBuilderTy Builder;
270 
271   // Stores variables for which we can't generate correct lifetime markers
272   // because of jumps.
273   VarBypassDetector Bypasses;
274 
275   /// List of recently emitted OMPCanonicalLoops.
276   ///
277   /// Since OMPCanonicalLoops are nested inside other statements (in particular
278   /// CapturedStmt generated by OMPExecutableDirective and non-perfectly nested
279   /// loops), we cannot directly call OMPEmitOMPCanonicalLoop and receive its
280   /// llvm::CanonicalLoopInfo. Instead, we call EmitStmt and any
281   /// OMPEmitOMPCanonicalLoop called by it will add its CanonicalLoopInfo to
282   /// this stack when done. Entering a new loop requires clearing this list; it
283   /// either means we start parsing a new loop nest (in which case the previous
284   /// loop nest goes out of scope) or a second loop in the same level in which
285   /// case it would be ambiguous into which of the two (or more) loops the loop
286   /// nest would extend.
287   SmallVector<llvm::CanonicalLoopInfo *, 4> OMPLoopNestStack;
288 
289   /// Number of nested loop to be consumed by the last surrounding
290   /// loop-associated directive.
291   int ExpectedOMPLoopDepth = 0;
292 
293   // CodeGen lambda for loops and support for ordered clause
294   typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &,
295                                   JumpDest)>
296       CodeGenLoopTy;
297   typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation,
298                                   const unsigned, const bool)>
299       CodeGenOrderedTy;
300 
301   // Codegen lambda for loop bounds in worksharing loop constructs
302   typedef llvm::function_ref<std::pair<LValue, LValue>(
303       CodeGenFunction &, const OMPExecutableDirective &S)>
304       CodeGenLoopBoundsTy;
305 
306   // Codegen lambda for loop bounds in dispatch-based loop implementation
307   typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>(
308       CodeGenFunction &, const OMPExecutableDirective &S, Address LB,
309       Address UB)>
310       CodeGenDispatchBoundsTy;
311 
312   /// CGBuilder insert helper. This function is called after an
313   /// instruction is created using Builder.
314   void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
315                     llvm::BasicBlock *BB,
316                     llvm::BasicBlock::iterator InsertPt) const;
317 
318   /// CurFuncDecl - Holds the Decl for the current outermost
319   /// non-closure context.
320   const Decl *CurFuncDecl;
321   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
322   const Decl *CurCodeDecl;
323   const CGFunctionInfo *CurFnInfo;
324   QualType FnRetTy;
325   llvm::Function *CurFn = nullptr;
326 
327   /// Save Parameter Decl for coroutine.
328   llvm::SmallVector<const ParmVarDecl *, 4> FnArgs;
329 
330   // Holds coroutine data if the current function is a coroutine. We use a
331   // wrapper to manage its lifetime, so that we don't have to define CGCoroData
332   // in this header.
333   struct CGCoroInfo {
334     std::unique_ptr<CGCoroData> Data;
335     CGCoroInfo();
336     ~CGCoroInfo();
337   };
338   CGCoroInfo CurCoro;
339 
340   bool isCoroutine() const {
341     return CurCoro.Data != nullptr;
342   }
343 
344   /// CurGD - The GlobalDecl for the current function being compiled.
345   GlobalDecl CurGD;
346 
347   /// PrologueCleanupDepth - The cleanup depth enclosing all the
348   /// cleanups associated with the parameters.
349   EHScopeStack::stable_iterator PrologueCleanupDepth;
350 
351   /// ReturnBlock - Unified return block.
352   JumpDest ReturnBlock;
353 
354   /// ReturnValue - The temporary alloca to hold the return
355   /// value. This is invalid iff the function has no return value.
356   Address ReturnValue = Address::invalid();
357 
358   /// ReturnValuePointer - The temporary alloca to hold a pointer to sret.
359   /// This is invalid if sret is not in use.
360   Address ReturnValuePointer = Address::invalid();
361 
362   /// If a return statement is being visited, this holds the return statment's
363   /// result expression.
364   const Expr *RetExpr = nullptr;
365 
366   /// Return true if a label was seen in the current scope.
367   bool hasLabelBeenSeenInCurrentScope() const {
368     if (CurLexicalScope)
369       return CurLexicalScope->hasLabels();
370     return !LabelMap.empty();
371   }
372 
373   /// AllocaInsertPoint - This is an instruction in the entry block before which
374   /// we prefer to insert allocas.
375   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
376 
377 private:
378   /// PostAllocaInsertPt - This is a place in the prologue where code can be
379   /// inserted that will be dominated by all the static allocas. This helps
380   /// achieve two things:
381   ///   1. Contiguity of all static allocas (within the prologue) is maintained.
382   ///   2. All other prologue code (which are dominated by static allocas) do
383   ///      appear in the source order immediately after all static allocas.
384   ///
385   /// PostAllocaInsertPt will be lazily created when it is *really* required.
386   llvm::AssertingVH<llvm::Instruction> PostAllocaInsertPt = nullptr;
387 
388 public:
389   /// Return PostAllocaInsertPt. If it is not yet created, then insert it
390   /// immediately after AllocaInsertPt.
391   llvm::Instruction *getPostAllocaInsertPoint() {
392     if (!PostAllocaInsertPt) {
393       assert(AllocaInsertPt &&
394              "Expected static alloca insertion point at function prologue");
395       assert(AllocaInsertPt->getParent()->isEntryBlock() &&
396              "EBB should be entry block of the current code gen function");
397       PostAllocaInsertPt = AllocaInsertPt->clone();
398       PostAllocaInsertPt->setName("postallocapt");
399       PostAllocaInsertPt->insertAfter(AllocaInsertPt);
400     }
401 
402     return PostAllocaInsertPt;
403   }
404 
405   /// API for captured statement code generation.
406   class CGCapturedStmtInfo {
407   public:
408     explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default)
409         : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
410     explicit CGCapturedStmtInfo(const CapturedStmt &S,
411                                 CapturedRegionKind K = CR_Default)
412       : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
413 
414       RecordDecl::field_iterator Field =
415         S.getCapturedRecordDecl()->field_begin();
416       for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
417                                                 E = S.capture_end();
418            I != E; ++I, ++Field) {
419         if (I->capturesThis())
420           CXXThisFieldDecl = *Field;
421         else if (I->capturesVariable())
422           CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
423         else if (I->capturesVariableByCopy())
424           CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
425       }
426     }
427 
428     virtual ~CGCapturedStmtInfo();
429 
430     CapturedRegionKind getKind() const { return Kind; }
431 
432     virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
433     // Retrieve the value of the context parameter.
434     virtual llvm::Value *getContextValue() const { return ThisValue; }
435 
436     /// Lookup the captured field decl for a variable.
437     virtual const FieldDecl *lookup(const VarDecl *VD) const {
438       return CaptureFields.lookup(VD->getCanonicalDecl());
439     }
440 
441     bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
442     virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
443 
444     static bool classof(const CGCapturedStmtInfo *) {
445       return true;
446     }
447 
448     /// Emit the captured statement body.
449     virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
450       CGF.incrementProfileCounter(S);
451       CGF.EmitStmt(S);
452     }
453 
454     /// Get the name of the capture helper.
455     virtual StringRef getHelperName() const { return "__captured_stmt"; }
456 
457     /// Get the CaptureFields
458     llvm::SmallDenseMap<const VarDecl *, FieldDecl *> getCaptureFields() {
459       return CaptureFields;
460     }
461 
462   private:
463     /// The kind of captured statement being generated.
464     CapturedRegionKind Kind;
465 
466     /// Keep the map between VarDecl and FieldDecl.
467     llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
468 
469     /// The base address of the captured record, passed in as the first
470     /// argument of the parallel region function.
471     llvm::Value *ThisValue;
472 
473     /// Captured 'this' type.
474     FieldDecl *CXXThisFieldDecl;
475   };
476   CGCapturedStmtInfo *CapturedStmtInfo = nullptr;
477 
478   /// RAII for correct setting/restoring of CapturedStmtInfo.
479   class CGCapturedStmtRAII {
480   private:
481     CodeGenFunction &CGF;
482     CGCapturedStmtInfo *PrevCapturedStmtInfo;
483   public:
484     CGCapturedStmtRAII(CodeGenFunction &CGF,
485                        CGCapturedStmtInfo *NewCapturedStmtInfo)
486         : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) {
487       CGF.CapturedStmtInfo = NewCapturedStmtInfo;
488     }
489     ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; }
490   };
491 
492   /// An abstract representation of regular/ObjC call/message targets.
493   class AbstractCallee {
494     /// The function declaration of the callee.
495     const Decl *CalleeDecl;
496 
497   public:
498     AbstractCallee() : CalleeDecl(nullptr) {}
499     AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {}
500     AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {}
501     bool hasFunctionDecl() const {
502       return isa_and_nonnull<FunctionDecl>(CalleeDecl);
503     }
504     const Decl *getDecl() const { return CalleeDecl; }
505     unsigned getNumParams() const {
506       if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
507         return FD->getNumParams();
508       return cast<ObjCMethodDecl>(CalleeDecl)->param_size();
509     }
510     const ParmVarDecl *getParamDecl(unsigned I) const {
511       if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
512         return FD->getParamDecl(I);
513       return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I);
514     }
515   };
516 
517   /// Sanitizers enabled for this function.
518   SanitizerSet SanOpts;
519 
520   /// True if CodeGen currently emits code implementing sanitizer checks.
521   bool IsSanitizerScope = false;
522 
523   /// RAII object to set/unset CodeGenFunction::IsSanitizerScope.
524   class SanitizerScope {
525     CodeGenFunction *CGF;
526   public:
527     SanitizerScope(CodeGenFunction *CGF);
528     ~SanitizerScope();
529   };
530 
531   /// In C++, whether we are code generating a thunk.  This controls whether we
532   /// should emit cleanups.
533   bool CurFuncIsThunk = false;
534 
535   /// In ARC, whether we should autorelease the return value.
536   bool AutoreleaseResult = false;
537 
538   /// Whether we processed a Microsoft-style asm block during CodeGen. These can
539   /// potentially set the return value.
540   bool SawAsmBlock = false;
541 
542   const NamedDecl *CurSEHParent = nullptr;
543 
544   /// True if the current function is an outlined SEH helper. This can be a
545   /// finally block or filter expression.
546   bool IsOutlinedSEHHelper = false;
547 
548   /// True if CodeGen currently emits code inside presereved access index
549   /// region.
550   bool IsInPreservedAIRegion = false;
551 
552   /// True if the current statement has nomerge attribute.
553   bool InNoMergeAttributedStmt = false;
554 
555   /// True if the current statement has noinline attribute.
556   bool InNoInlineAttributedStmt = false;
557 
558   /// True if the current statement has always_inline attribute.
559   bool InAlwaysInlineAttributedStmt = false;
560 
561   // The CallExpr within the current statement that the musttail attribute
562   // applies to.  nullptr if there is no 'musttail' on the current statement.
563   const CallExpr *MustTailCall = nullptr;
564 
565   /// Returns true if a function must make progress, which means the
566   /// mustprogress attribute can be added.
567   bool checkIfFunctionMustProgress() {
568     if (CGM.getCodeGenOpts().getFiniteLoops() ==
569         CodeGenOptions::FiniteLoopsKind::Never)
570       return false;
571 
572     // C++11 and later guarantees that a thread eventually will do one of the
573     // following (6.9.2.3.1 in C++11):
574     // - terminate,
575     //  - make a call to a library I/O function,
576     //  - perform an access through a volatile glvalue, or
577     //  - perform a synchronization operation or an atomic operation.
578     //
579     // Hence each function is 'mustprogress' in C++11 or later.
580     return getLangOpts().CPlusPlus11;
581   }
582 
583   /// Returns true if a loop must make progress, which means the mustprogress
584   /// attribute can be added. \p HasConstantCond indicates whether the branch
585   /// condition is a known constant.
586   bool checkIfLoopMustProgress(bool HasConstantCond) {
587     if (CGM.getCodeGenOpts().getFiniteLoops() ==
588         CodeGenOptions::FiniteLoopsKind::Always)
589       return true;
590     if (CGM.getCodeGenOpts().getFiniteLoops() ==
591         CodeGenOptions::FiniteLoopsKind::Never)
592       return false;
593 
594     // If the containing function must make progress, loops also must make
595     // progress (as in C++11 and later).
596     if (checkIfFunctionMustProgress())
597       return true;
598 
599     // Now apply rules for plain C (see  6.8.5.6 in C11).
600     // Loops with constant conditions do not have to make progress in any C
601     // version.
602     if (HasConstantCond)
603       return false;
604 
605     // Loops with non-constant conditions must make progress in C11 and later.
606     return getLangOpts().C11;
607   }
608 
609   const CodeGen::CGBlockInfo *BlockInfo = nullptr;
610   llvm::Value *BlockPointer = nullptr;
611 
612   llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
613   FieldDecl *LambdaThisCaptureField = nullptr;
614 
615   /// A mapping from NRVO variables to the flags used to indicate
616   /// when the NRVO has been applied to this variable.
617   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
618 
619   EHScopeStack EHStack;
620   llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
621   llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack;
622 
623   llvm::Instruction *CurrentFuncletPad = nullptr;
624 
625   class CallLifetimeEnd final : public EHScopeStack::Cleanup {
626     bool isRedundantBeforeReturn() override { return true; }
627 
628     llvm::Value *Addr;
629     llvm::Value *Size;
630 
631   public:
632     CallLifetimeEnd(Address addr, llvm::Value *size)
633         : Addr(addr.getPointer()), Size(size) {}
634 
635     void Emit(CodeGenFunction &CGF, Flags flags) override {
636       CGF.EmitLifetimeEnd(Size, Addr);
637     }
638   };
639 
640   /// Header for data within LifetimeExtendedCleanupStack.
641   struct LifetimeExtendedCleanupHeader {
642     /// The size of the following cleanup object.
643     unsigned Size;
644     /// The kind of cleanup to push: a value from the CleanupKind enumeration.
645     unsigned Kind : 31;
646     /// Whether this is a conditional cleanup.
647     unsigned IsConditional : 1;
648 
649     size_t getSize() const { return Size; }
650     CleanupKind getKind() const { return (CleanupKind)Kind; }
651     bool isConditional() const { return IsConditional; }
652   };
653 
654   /// i32s containing the indexes of the cleanup destinations.
655   Address NormalCleanupDest = Address::invalid();
656 
657   unsigned NextCleanupDestIndex = 1;
658 
659   /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
660   llvm::BasicBlock *EHResumeBlock = nullptr;
661 
662   /// The exception slot.  All landing pads write the current exception pointer
663   /// into this alloca.
664   llvm::Value *ExceptionSlot = nullptr;
665 
666   /// The selector slot.  Under the MandatoryCleanup model, all landing pads
667   /// write the current selector value into this alloca.
668   llvm::AllocaInst *EHSelectorSlot = nullptr;
669 
670   /// A stack of exception code slots. Entering an __except block pushes a slot
671   /// on the stack and leaving pops one. The __exception_code() intrinsic loads
672   /// a value from the top of the stack.
673   SmallVector<Address, 1> SEHCodeSlotStack;
674 
675   /// Value returned by __exception_info intrinsic.
676   llvm::Value *SEHInfo = nullptr;
677 
678   /// Emits a landing pad for the current EH stack.
679   llvm::BasicBlock *EmitLandingPad();
680 
681   llvm::BasicBlock *getInvokeDestImpl();
682 
683   /// Parent loop-based directive for scan directive.
684   const OMPExecutableDirective *OMPParentLoopDirectiveForScan = nullptr;
685   llvm::BasicBlock *OMPBeforeScanBlock = nullptr;
686   llvm::BasicBlock *OMPAfterScanBlock = nullptr;
687   llvm::BasicBlock *OMPScanExitBlock = nullptr;
688   llvm::BasicBlock *OMPScanDispatch = nullptr;
689   bool OMPFirstScanLoop = false;
690 
691   /// Manages parent directive for scan directives.
692   class ParentLoopDirectiveForScanRegion {
693     CodeGenFunction &CGF;
694     const OMPExecutableDirective *ParentLoopDirectiveForScan;
695 
696   public:
697     ParentLoopDirectiveForScanRegion(
698         CodeGenFunction &CGF,
699         const OMPExecutableDirective &ParentLoopDirectiveForScan)
700         : CGF(CGF),
701           ParentLoopDirectiveForScan(CGF.OMPParentLoopDirectiveForScan) {
702       CGF.OMPParentLoopDirectiveForScan = &ParentLoopDirectiveForScan;
703     }
704     ~ParentLoopDirectiveForScanRegion() {
705       CGF.OMPParentLoopDirectiveForScan = ParentLoopDirectiveForScan;
706     }
707   };
708 
709   template <class T>
710   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
711     return DominatingValue<T>::save(*this, value);
712   }
713 
714   class CGFPOptionsRAII {
715   public:
716     CGFPOptionsRAII(CodeGenFunction &CGF, FPOptions FPFeatures);
717     CGFPOptionsRAII(CodeGenFunction &CGF, const Expr *E);
718     ~CGFPOptionsRAII();
719 
720   private:
721     void ConstructorHelper(FPOptions FPFeatures);
722     CodeGenFunction &CGF;
723     FPOptions OldFPFeatures;
724     llvm::fp::ExceptionBehavior OldExcept;
725     llvm::RoundingMode OldRounding;
726     Optional<CGBuilderTy::FastMathFlagGuard> FMFGuard;
727   };
728   FPOptions CurFPFeatures;
729 
730 public:
731   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
732   /// rethrows.
733   SmallVector<llvm::Value*, 8> ObjCEHValueStack;
734 
735   /// A class controlling the emission of a finally block.
736   class FinallyInfo {
737     /// Where the catchall's edge through the cleanup should go.
738     JumpDest RethrowDest;
739 
740     /// A function to call to enter the catch.
741     llvm::FunctionCallee BeginCatchFn;
742 
743     /// An i1 variable indicating whether or not the @finally is
744     /// running for an exception.
745     llvm::AllocaInst *ForEHVar;
746 
747     /// An i8* variable into which the exception pointer to rethrow
748     /// has been saved.
749     llvm::AllocaInst *SavedExnVar;
750 
751   public:
752     void enter(CodeGenFunction &CGF, const Stmt *Finally,
753                llvm::FunctionCallee beginCatchFn,
754                llvm::FunctionCallee endCatchFn, llvm::FunctionCallee rethrowFn);
755     void exit(CodeGenFunction &CGF);
756   };
757 
758   /// Returns true inside SEH __try blocks.
759   bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }
760 
761   /// Returns true while emitting a cleanuppad.
762   bool isCleanupPadScope() const {
763     return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad);
764   }
765 
766   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
767   /// current full-expression.  Safe against the possibility that
768   /// we're currently inside a conditionally-evaluated expression.
769   template <class T, class... As>
770   void pushFullExprCleanup(CleanupKind kind, As... A) {
771     // If we're not in a conditional branch, or if none of the
772     // arguments requires saving, then use the unconditional cleanup.
773     if (!isInConditionalBranch())
774       return EHStack.pushCleanup<T>(kind, A...);
775 
776     // Stash values in a tuple so we can guarantee the order of saves.
777     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
778     SavedTuple Saved{saveValueInCond(A)...};
779 
780     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
781     EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
782     initFullExprCleanup();
783   }
784 
785   /// Queue a cleanup to be pushed after finishing the current full-expression,
786   /// potentially with an active flag.
787   template <class T, class... As>
788   void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
789     if (!isInConditionalBranch())
790       return pushCleanupAfterFullExprWithActiveFlag<T>(Kind, Address::invalid(),
791                                                        A...);
792 
793     Address ActiveFlag = createCleanupActiveFlag();
794     assert(!DominatingValue<Address>::needsSaving(ActiveFlag) &&
795            "cleanup active flag should never need saving");
796 
797     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
798     SavedTuple Saved{saveValueInCond(A)...};
799 
800     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
801     pushCleanupAfterFullExprWithActiveFlag<CleanupType>(Kind, ActiveFlag, Saved);
802   }
803 
804   template <class T, class... As>
805   void pushCleanupAfterFullExprWithActiveFlag(CleanupKind Kind,
806                                               Address ActiveFlag, As... A) {
807     LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind,
808                                             ActiveFlag.isValid()};
809 
810     size_t OldSize = LifetimeExtendedCleanupStack.size();
811     LifetimeExtendedCleanupStack.resize(
812         LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size +
813         (Header.IsConditional ? sizeof(ActiveFlag) : 0));
814 
815     static_assert(sizeof(Header) % alignof(T) == 0,
816                   "Cleanup will be allocated on misaligned address");
817     char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
818     new (Buffer) LifetimeExtendedCleanupHeader(Header);
819     new (Buffer + sizeof(Header)) T(A...);
820     if (Header.IsConditional)
821       new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag);
822   }
823 
824   /// Set up the last cleanup that was pushed as a conditional
825   /// full-expression cleanup.
826   void initFullExprCleanup() {
827     initFullExprCleanupWithFlag(createCleanupActiveFlag());
828   }
829 
830   void initFullExprCleanupWithFlag(Address ActiveFlag);
831   Address createCleanupActiveFlag();
832 
833   /// PushDestructorCleanup - Push a cleanup to call the
834   /// complete-object destructor of an object of the given type at the
835   /// given address.  Does nothing if T is not a C++ class type with a
836   /// non-trivial destructor.
837   void PushDestructorCleanup(QualType T, Address Addr);
838 
839   /// PushDestructorCleanup - Push a cleanup to call the
840   /// complete-object variant of the given destructor on the object at
841   /// the given address.
842   void PushDestructorCleanup(const CXXDestructorDecl *Dtor, QualType T,
843                              Address Addr);
844 
845   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
846   /// process all branch fixups.
847   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
848 
849   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
850   /// The block cannot be reactivated.  Pops it if it's the top of the
851   /// stack.
852   ///
853   /// \param DominatingIP - An instruction which is known to
854   ///   dominate the current IP (if set) and which lies along
855   ///   all paths of execution between the current IP and the
856   ///   the point at which the cleanup comes into scope.
857   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
858                               llvm::Instruction *DominatingIP);
859 
860   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
861   /// Cannot be used to resurrect a deactivated cleanup.
862   ///
863   /// \param DominatingIP - An instruction which is known to
864   ///   dominate the current IP (if set) and which lies along
865   ///   all paths of execution between the current IP and the
866   ///   the point at which the cleanup comes into scope.
867   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
868                             llvm::Instruction *DominatingIP);
869 
870   /// Enters a new scope for capturing cleanups, all of which
871   /// will be executed once the scope is exited.
872   class RunCleanupsScope {
873     EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth;
874     size_t LifetimeExtendedCleanupStackSize;
875     bool OldDidCallStackSave;
876   protected:
877     bool PerformCleanup;
878   private:
879 
880     RunCleanupsScope(const RunCleanupsScope &) = delete;
881     void operator=(const RunCleanupsScope &) = delete;
882 
883   protected:
884     CodeGenFunction& CGF;
885 
886   public:
887     /// Enter a new cleanup scope.
888     explicit RunCleanupsScope(CodeGenFunction &CGF)
889       : PerformCleanup(true), CGF(CGF)
890     {
891       CleanupStackDepth = CGF.EHStack.stable_begin();
892       LifetimeExtendedCleanupStackSize =
893           CGF.LifetimeExtendedCleanupStack.size();
894       OldDidCallStackSave = CGF.DidCallStackSave;
895       CGF.DidCallStackSave = false;
896       OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth;
897       CGF.CurrentCleanupScopeDepth = CleanupStackDepth;
898     }
899 
900     /// Exit this cleanup scope, emitting any accumulated cleanups.
901     ~RunCleanupsScope() {
902       if (PerformCleanup)
903         ForceCleanup();
904     }
905 
906     /// Determine whether this scope requires any cleanups.
907     bool requiresCleanups() const {
908       return CGF.EHStack.stable_begin() != CleanupStackDepth;
909     }
910 
911     /// Force the emission of cleanups now, instead of waiting
912     /// until this object is destroyed.
913     /// \param ValuesToReload - A list of values that need to be available at
914     /// the insertion point after cleanup emission. If cleanup emission created
915     /// a shared cleanup block, these value pointers will be rewritten.
916     /// Otherwise, they not will be modified.
917     void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) {
918       assert(PerformCleanup && "Already forced cleanup");
919       CGF.DidCallStackSave = OldDidCallStackSave;
920       CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize,
921                            ValuesToReload);
922       PerformCleanup = false;
923       CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth;
924     }
925   };
926 
927   // Cleanup stack depth of the RunCleanupsScope that was pushed most recently.
928   EHScopeStack::stable_iterator CurrentCleanupScopeDepth =
929       EHScopeStack::stable_end();
930 
931   class LexicalScope : public RunCleanupsScope {
932     SourceRange Range;
933     SmallVector<const LabelDecl*, 4> Labels;
934     LexicalScope *ParentScope;
935 
936     LexicalScope(const LexicalScope &) = delete;
937     void operator=(const LexicalScope &) = delete;
938 
939   public:
940     /// Enter a new cleanup scope.
941     explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
942       : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
943       CGF.CurLexicalScope = this;
944       if (CGDebugInfo *DI = CGF.getDebugInfo())
945         DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
946     }
947 
948     void addLabel(const LabelDecl *label) {
949       assert(PerformCleanup && "adding label to dead scope?");
950       Labels.push_back(label);
951     }
952 
953     /// Exit this cleanup scope, emitting any accumulated
954     /// cleanups.
955     ~LexicalScope() {
956       if (CGDebugInfo *DI = CGF.getDebugInfo())
957         DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
958 
959       // If we should perform a cleanup, force them now.  Note that
960       // this ends the cleanup scope before rescoping any labels.
961       if (PerformCleanup) {
962         ApplyDebugLocation DL(CGF, Range.getEnd());
963         ForceCleanup();
964       }
965     }
966 
967     /// Force the emission of cleanups now, instead of waiting
968     /// until this object is destroyed.
969     void ForceCleanup() {
970       CGF.CurLexicalScope = ParentScope;
971       RunCleanupsScope::ForceCleanup();
972 
973       if (!Labels.empty())
974         rescopeLabels();
975     }
976 
977     bool hasLabels() const {
978       return !Labels.empty();
979     }
980 
981     void rescopeLabels();
982   };
983 
984   typedef llvm::DenseMap<const Decl *, Address> DeclMapTy;
985 
986   /// The class used to assign some variables some temporarily addresses.
987   class OMPMapVars {
988     DeclMapTy SavedLocals;
989     DeclMapTy SavedTempAddresses;
990     OMPMapVars(const OMPMapVars &) = delete;
991     void operator=(const OMPMapVars &) = delete;
992 
993   public:
994     explicit OMPMapVars() = default;
995     ~OMPMapVars() {
996       assert(SavedLocals.empty() && "Did not restored original addresses.");
997     };
998 
999     /// Sets the address of the variable \p LocalVD to be \p TempAddr in
1000     /// function \p CGF.
1001     /// \return true if at least one variable was set already, false otherwise.
1002     bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD,
1003                     Address TempAddr) {
1004       LocalVD = LocalVD->getCanonicalDecl();
1005       // Only save it once.
1006       if (SavedLocals.count(LocalVD)) return false;
1007 
1008       // Copy the existing local entry to SavedLocals.
1009       auto it = CGF.LocalDeclMap.find(LocalVD);
1010       if (it != CGF.LocalDeclMap.end())
1011         SavedLocals.try_emplace(LocalVD, it->second);
1012       else
1013         SavedLocals.try_emplace(LocalVD, Address::invalid());
1014 
1015       // Generate the private entry.
1016       QualType VarTy = LocalVD->getType();
1017       if (VarTy->isReferenceType()) {
1018         Address Temp = CGF.CreateMemTemp(VarTy);
1019         CGF.Builder.CreateStore(TempAddr.getPointer(), Temp);
1020         TempAddr = Temp;
1021       }
1022       SavedTempAddresses.try_emplace(LocalVD, TempAddr);
1023 
1024       return true;
1025     }
1026 
1027     /// Applies new addresses to the list of the variables.
1028     /// \return true if at least one variable is using new address, false
1029     /// otherwise.
1030     bool apply(CodeGenFunction &CGF) {
1031       copyInto(SavedTempAddresses, CGF.LocalDeclMap);
1032       SavedTempAddresses.clear();
1033       return !SavedLocals.empty();
1034     }
1035 
1036     /// Restores original addresses of the variables.
1037     void restore(CodeGenFunction &CGF) {
1038       if (!SavedLocals.empty()) {
1039         copyInto(SavedLocals, CGF.LocalDeclMap);
1040         SavedLocals.clear();
1041       }
1042     }
1043 
1044   private:
1045     /// Copy all the entries in the source map over the corresponding
1046     /// entries in the destination, which must exist.
1047     static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) {
1048       for (auto &Pair : Src) {
1049         if (!Pair.second.isValid()) {
1050           Dest.erase(Pair.first);
1051           continue;
1052         }
1053 
1054         auto I = Dest.find(Pair.first);
1055         if (I != Dest.end())
1056           I->second = Pair.second;
1057         else
1058           Dest.insert(Pair);
1059       }
1060     }
1061   };
1062 
1063   /// The scope used to remap some variables as private in the OpenMP loop body
1064   /// (or other captured region emitted without outlining), and to restore old
1065   /// vars back on exit.
1066   class OMPPrivateScope : public RunCleanupsScope {
1067     OMPMapVars MappedVars;
1068     OMPPrivateScope(const OMPPrivateScope &) = delete;
1069     void operator=(const OMPPrivateScope &) = delete;
1070 
1071   public:
1072     /// Enter a new OpenMP private scope.
1073     explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}
1074 
1075     /// Registers \p LocalVD variable as a private with \p Addr as the address
1076     /// of the corresponding private variable. \p
1077     /// PrivateGen is the address of the generated private variable.
1078     /// \return true if the variable is registered as private, false if it has
1079     /// been privatized already.
1080     bool addPrivate(const VarDecl *LocalVD, Address Addr) {
1081       assert(PerformCleanup && "adding private to dead scope");
1082       return MappedVars.setVarAddr(CGF, LocalVD, Addr);
1083     }
1084 
1085     /// Privatizes local variables previously registered as private.
1086     /// Registration is separate from the actual privatization to allow
1087     /// initializers use values of the original variables, not the private one.
1088     /// This is important, for example, if the private variable is a class
1089     /// variable initialized by a constructor that references other private
1090     /// variables. But at initialization original variables must be used, not
1091     /// private copies.
1092     /// \return true if at least one variable was privatized, false otherwise.
1093     bool Privatize() { return MappedVars.apply(CGF); }
1094 
1095     void ForceCleanup() {
1096       RunCleanupsScope::ForceCleanup();
1097       MappedVars.restore(CGF);
1098     }
1099 
1100     /// Exit scope - all the mapped variables are restored.
1101     ~OMPPrivateScope() {
1102       if (PerformCleanup)
1103         ForceCleanup();
1104     }
1105 
1106     /// Checks if the global variable is captured in current function.
1107     bool isGlobalVarCaptured(const VarDecl *VD) const {
1108       VD = VD->getCanonicalDecl();
1109       return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0;
1110     }
1111   };
1112 
1113   /// Save/restore original map of previously emitted local vars in case when we
1114   /// need to duplicate emission of the same code several times in the same
1115   /// function for OpenMP code.
1116   class OMPLocalDeclMapRAII {
1117     CodeGenFunction &CGF;
1118     DeclMapTy SavedMap;
1119 
1120   public:
1121     OMPLocalDeclMapRAII(CodeGenFunction &CGF)
1122         : CGF(CGF), SavedMap(CGF.LocalDeclMap) {}
1123     ~OMPLocalDeclMapRAII() { SavedMap.swap(CGF.LocalDeclMap); }
1124   };
1125 
1126   /// Takes the old cleanup stack size and emits the cleanup blocks
1127   /// that have been added.
1128   void
1129   PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
1130                    std::initializer_list<llvm::Value **> ValuesToReload = {});
1131 
1132   /// Takes the old cleanup stack size and emits the cleanup blocks
1133   /// that have been added, then adds all lifetime-extended cleanups from
1134   /// the given position to the stack.
1135   void
1136   PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
1137                    size_t OldLifetimeExtendedStackSize,
1138                    std::initializer_list<llvm::Value **> ValuesToReload = {});
1139 
1140   void ResolveBranchFixups(llvm::BasicBlock *Target);
1141 
1142   /// The given basic block lies in the current EH scope, but may be a
1143   /// target of a potentially scope-crossing jump; get a stable handle
1144   /// to which we can perform this jump later.
1145   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
1146     return JumpDest(Target,
1147                     EHStack.getInnermostNormalCleanup(),
1148                     NextCleanupDestIndex++);
1149   }
1150 
1151   /// The given basic block lies in the current EH scope, but may be a
1152   /// target of a potentially scope-crossing jump; get a stable handle
1153   /// to which we can perform this jump later.
1154   JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
1155     return getJumpDestInCurrentScope(createBasicBlock(Name));
1156   }
1157 
1158   /// EmitBranchThroughCleanup - Emit a branch from the current insert
1159   /// block through the normal cleanup handling code (if any) and then
1160   /// on to \arg Dest.
1161   void EmitBranchThroughCleanup(JumpDest Dest);
1162 
1163   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
1164   /// specified destination obviously has no cleanups to run.  'false' is always
1165   /// a conservatively correct answer for this method.
1166   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
1167 
1168   /// popCatchScope - Pops the catch scope at the top of the EHScope
1169   /// stack, emitting any required code (other than the catch handlers
1170   /// themselves).
1171   void popCatchScope();
1172 
1173   llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
1174   llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
1175   llvm::BasicBlock *
1176   getFuncletEHDispatchBlock(EHScopeStack::stable_iterator scope);
1177 
1178   /// An object to manage conditionally-evaluated expressions.
1179   class ConditionalEvaluation {
1180     llvm::BasicBlock *StartBB;
1181 
1182   public:
1183     ConditionalEvaluation(CodeGenFunction &CGF)
1184       : StartBB(CGF.Builder.GetInsertBlock()) {}
1185 
1186     void begin(CodeGenFunction &CGF) {
1187       assert(CGF.OutermostConditional != this);
1188       if (!CGF.OutermostConditional)
1189         CGF.OutermostConditional = this;
1190     }
1191 
1192     void end(CodeGenFunction &CGF) {
1193       assert(CGF.OutermostConditional != nullptr);
1194       if (CGF.OutermostConditional == this)
1195         CGF.OutermostConditional = nullptr;
1196     }
1197 
1198     /// Returns a block which will be executed prior to each
1199     /// evaluation of the conditional code.
1200     llvm::BasicBlock *getStartingBlock() const {
1201       return StartBB;
1202     }
1203   };
1204 
1205   /// isInConditionalBranch - Return true if we're currently emitting
1206   /// one branch or the other of a conditional expression.
1207   bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
1208 
1209   void setBeforeOutermostConditional(llvm::Value *value, Address addr) {
1210     assert(isInConditionalBranch());
1211     llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
1212     auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back());
1213     store->setAlignment(addr.getAlignment().getAsAlign());
1214   }
1215 
1216   /// An RAII object to record that we're evaluating a statement
1217   /// expression.
1218   class StmtExprEvaluation {
1219     CodeGenFunction &CGF;
1220 
1221     /// We have to save the outermost conditional: cleanups in a
1222     /// statement expression aren't conditional just because the
1223     /// StmtExpr is.
1224     ConditionalEvaluation *SavedOutermostConditional;
1225 
1226   public:
1227     StmtExprEvaluation(CodeGenFunction &CGF)
1228       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
1229       CGF.OutermostConditional = nullptr;
1230     }
1231 
1232     ~StmtExprEvaluation() {
1233       CGF.OutermostConditional = SavedOutermostConditional;
1234       CGF.EnsureInsertPoint();
1235     }
1236   };
1237 
1238   /// An object which temporarily prevents a value from being
1239   /// destroyed by aggressive peephole optimizations that assume that
1240   /// all uses of a value have been realized in the IR.
1241   class PeepholeProtection {
1242     llvm::Instruction *Inst;
1243     friend class CodeGenFunction;
1244 
1245   public:
1246     PeepholeProtection() : Inst(nullptr) {}
1247   };
1248 
1249   /// A non-RAII class containing all the information about a bound
1250   /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
1251   /// this which makes individual mappings very simple; using this
1252   /// class directly is useful when you have a variable number of
1253   /// opaque values or don't want the RAII functionality for some
1254   /// reason.
1255   class OpaqueValueMappingData {
1256     const OpaqueValueExpr *OpaqueValue;
1257     bool BoundLValue;
1258     CodeGenFunction::PeepholeProtection Protection;
1259 
1260     OpaqueValueMappingData(const OpaqueValueExpr *ov,
1261                            bool boundLValue)
1262       : OpaqueValue(ov), BoundLValue(boundLValue) {}
1263   public:
1264     OpaqueValueMappingData() : OpaqueValue(nullptr) {}
1265 
1266     static bool shouldBindAsLValue(const Expr *expr) {
1267       // gl-values should be bound as l-values for obvious reasons.
1268       // Records should be bound as l-values because IR generation
1269       // always keeps them in memory.  Expressions of function type
1270       // act exactly like l-values but are formally required to be
1271       // r-values in C.
1272       return expr->isGLValue() ||
1273              expr->getType()->isFunctionType() ||
1274              hasAggregateEvaluationKind(expr->getType());
1275     }
1276 
1277     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1278                                        const OpaqueValueExpr *ov,
1279                                        const Expr *e) {
1280       if (shouldBindAsLValue(ov))
1281         return bind(CGF, ov, CGF.EmitLValue(e));
1282       return bind(CGF, ov, CGF.EmitAnyExpr(e));
1283     }
1284 
1285     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1286                                        const OpaqueValueExpr *ov,
1287                                        const LValue &lv) {
1288       assert(shouldBindAsLValue(ov));
1289       CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
1290       return OpaqueValueMappingData(ov, true);
1291     }
1292 
1293     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1294                                        const OpaqueValueExpr *ov,
1295                                        const RValue &rv) {
1296       assert(!shouldBindAsLValue(ov));
1297       CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
1298 
1299       OpaqueValueMappingData data(ov, false);
1300 
1301       // Work around an extremely aggressive peephole optimization in
1302       // EmitScalarConversion which assumes that all other uses of a
1303       // value are extant.
1304       data.Protection = CGF.protectFromPeepholes(rv);
1305 
1306       return data;
1307     }
1308 
1309     bool isValid() const { return OpaqueValue != nullptr; }
1310     void clear() { OpaqueValue = nullptr; }
1311 
1312     void unbind(CodeGenFunction &CGF) {
1313       assert(OpaqueValue && "no data to unbind!");
1314 
1315       if (BoundLValue) {
1316         CGF.OpaqueLValues.erase(OpaqueValue);
1317       } else {
1318         CGF.OpaqueRValues.erase(OpaqueValue);
1319         CGF.unprotectFromPeepholes(Protection);
1320       }
1321     }
1322   };
1323 
1324   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
1325   class OpaqueValueMapping {
1326     CodeGenFunction &CGF;
1327     OpaqueValueMappingData Data;
1328 
1329   public:
1330     static bool shouldBindAsLValue(const Expr *expr) {
1331       return OpaqueValueMappingData::shouldBindAsLValue(expr);
1332     }
1333 
1334     /// Build the opaque value mapping for the given conditional
1335     /// operator if it's the GNU ?: extension.  This is a common
1336     /// enough pattern that the convenience operator is really
1337     /// helpful.
1338     ///
1339     OpaqueValueMapping(CodeGenFunction &CGF,
1340                        const AbstractConditionalOperator *op) : CGF(CGF) {
1341       if (isa<ConditionalOperator>(op))
1342         // Leave Data empty.
1343         return;
1344 
1345       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
1346       Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
1347                                           e->getCommon());
1348     }
1349 
1350     /// Build the opaque value mapping for an OpaqueValueExpr whose source
1351     /// expression is set to the expression the OVE represents.
1352     OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV)
1353         : CGF(CGF) {
1354       if (OV) {
1355         assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used "
1356                                       "for OVE with no source expression");
1357         Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr());
1358       }
1359     }
1360 
1361     OpaqueValueMapping(CodeGenFunction &CGF,
1362                        const OpaqueValueExpr *opaqueValue,
1363                        LValue lvalue)
1364       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
1365     }
1366 
1367     OpaqueValueMapping(CodeGenFunction &CGF,
1368                        const OpaqueValueExpr *opaqueValue,
1369                        RValue rvalue)
1370       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
1371     }
1372 
1373     void pop() {
1374       Data.unbind(CGF);
1375       Data.clear();
1376     }
1377 
1378     ~OpaqueValueMapping() {
1379       if (Data.isValid()) Data.unbind(CGF);
1380     }
1381   };
1382 
1383 private:
1384   CGDebugInfo *DebugInfo;
1385   /// Used to create unique names for artificial VLA size debug info variables.
1386   unsigned VLAExprCounter = 0;
1387   bool DisableDebugInfo = false;
1388 
1389   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
1390   /// calling llvm.stacksave for multiple VLAs in the same scope.
1391   bool DidCallStackSave = false;
1392 
1393   /// IndirectBranch - The first time an indirect goto is seen we create a block
1394   /// with an indirect branch.  Every time we see the address of a label taken,
1395   /// we add the label to the indirect goto.  Every subsequent indirect goto is
1396   /// codegen'd as a jump to the IndirectBranch's basic block.
1397   llvm::IndirectBrInst *IndirectBranch = nullptr;
1398 
1399   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1400   /// decls.
1401   DeclMapTy LocalDeclMap;
1402 
1403   // Keep track of the cleanups for callee-destructed parameters pushed to the
1404   // cleanup stack so that they can be deactivated later.
1405   llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator>
1406       CalleeDestructedParamCleanups;
1407 
1408   /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this
1409   /// will contain a mapping from said ParmVarDecl to its implicit "object_size"
1410   /// parameter.
1411   llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2>
1412       SizeArguments;
1413 
1414   /// Track escaped local variables with auto storage. Used during SEH
1415   /// outlining to produce a call to llvm.localescape.
1416   llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;
1417 
1418   /// LabelMap - This keeps track of the LLVM basic block for each C label.
1419   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1420 
1421   // BreakContinueStack - This keeps track of where break and continue
1422   // statements should jump to.
1423   struct BreakContinue {
1424     BreakContinue(JumpDest Break, JumpDest Continue)
1425       : BreakBlock(Break), ContinueBlock(Continue) {}
1426 
1427     JumpDest BreakBlock;
1428     JumpDest ContinueBlock;
1429   };
1430   SmallVector<BreakContinue, 8> BreakContinueStack;
1431 
1432   /// Handles cancellation exit points in OpenMP-related constructs.
1433   class OpenMPCancelExitStack {
1434     /// Tracks cancellation exit point and join point for cancel-related exit
1435     /// and normal exit.
1436     struct CancelExit {
1437       CancelExit() = default;
1438       CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock,
1439                  JumpDest ContBlock)
1440           : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {}
1441       OpenMPDirectiveKind Kind = llvm::omp::OMPD_unknown;
1442       /// true if the exit block has been emitted already by the special
1443       /// emitExit() call, false if the default codegen is used.
1444       bool HasBeenEmitted = false;
1445       JumpDest ExitBlock;
1446       JumpDest ContBlock;
1447     };
1448 
1449     SmallVector<CancelExit, 8> Stack;
1450 
1451   public:
1452     OpenMPCancelExitStack() : Stack(1) {}
1453     ~OpenMPCancelExitStack() = default;
1454     /// Fetches the exit block for the current OpenMP construct.
1455     JumpDest getExitBlock() const { return Stack.back().ExitBlock; }
1456     /// Emits exit block with special codegen procedure specific for the related
1457     /// OpenMP construct + emits code for normal construct cleanup.
1458     void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
1459                   const llvm::function_ref<void(CodeGenFunction &)> CodeGen) {
1460       if (Stack.back().Kind == Kind && getExitBlock().isValid()) {
1461         assert(CGF.getOMPCancelDestination(Kind).isValid());
1462         assert(CGF.HaveInsertPoint());
1463         assert(!Stack.back().HasBeenEmitted);
1464         auto IP = CGF.Builder.saveAndClearIP();
1465         CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1466         CodeGen(CGF);
1467         CGF.EmitBranch(Stack.back().ContBlock.getBlock());
1468         CGF.Builder.restoreIP(IP);
1469         Stack.back().HasBeenEmitted = true;
1470       }
1471       CodeGen(CGF);
1472     }
1473     /// Enter the cancel supporting \a Kind construct.
1474     /// \param Kind OpenMP directive that supports cancel constructs.
1475     /// \param HasCancel true, if the construct has inner cancel directive,
1476     /// false otherwise.
1477     void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) {
1478       Stack.push_back({Kind,
1479                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit")
1480                                  : JumpDest(),
1481                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont")
1482                                  : JumpDest()});
1483     }
1484     /// Emits default exit point for the cancel construct (if the special one
1485     /// has not be used) + join point for cancel/normal exits.
1486     void exit(CodeGenFunction &CGF) {
1487       if (getExitBlock().isValid()) {
1488         assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid());
1489         bool HaveIP = CGF.HaveInsertPoint();
1490         if (!Stack.back().HasBeenEmitted) {
1491           if (HaveIP)
1492             CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1493           CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1494           CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1495         }
1496         CGF.EmitBlock(Stack.back().ContBlock.getBlock());
1497         if (!HaveIP) {
1498           CGF.Builder.CreateUnreachable();
1499           CGF.Builder.ClearInsertionPoint();
1500         }
1501       }
1502       Stack.pop_back();
1503     }
1504   };
1505   OpenMPCancelExitStack OMPCancelStack;
1506 
1507   /// Lower the Likelihood knowledge about the \p Cond via llvm.expect intrin.
1508   llvm::Value *emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond,
1509                                                     Stmt::Likelihood LH);
1510 
1511   CodeGenPGO PGO;
1512 
1513   /// Calculate branch weights appropriate for PGO data
1514   llvm::MDNode *createProfileWeights(uint64_t TrueCount,
1515                                      uint64_t FalseCount) const;
1516   llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights) const;
1517   llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond,
1518                                             uint64_t LoopCount) const;
1519 
1520 public:
1521   /// Increment the profiler's counter for the given statement by \p StepV.
1522   /// If \p StepV is null, the default increment is 1.
1523   void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) {
1524     if (CGM.getCodeGenOpts().hasProfileClangInstr() &&
1525         !CurFn->hasFnAttribute(llvm::Attribute::NoProfile))
1526       PGO.emitCounterIncrement(Builder, S, StepV);
1527     PGO.setCurrentStmt(S);
1528   }
1529 
1530   /// Get the profiler's count for the given statement.
1531   uint64_t getProfileCount(const Stmt *S) {
1532     Optional<uint64_t> Count = PGO.getStmtCount(S);
1533     if (!Count.hasValue())
1534       return 0;
1535     return *Count;
1536   }
1537 
1538   /// Set the profiler's current count.
1539   void setCurrentProfileCount(uint64_t Count) {
1540     PGO.setCurrentRegionCount(Count);
1541   }
1542 
1543   /// Get the profiler's current count. This is generally the count for the most
1544   /// recently incremented counter.
1545   uint64_t getCurrentProfileCount() {
1546     return PGO.getCurrentRegionCount();
1547   }
1548 
1549 private:
1550 
1551   /// SwitchInsn - This is nearest current switch instruction. It is null if
1552   /// current context is not in a switch.
1553   llvm::SwitchInst *SwitchInsn = nullptr;
1554   /// The branch weights of SwitchInsn when doing instrumentation based PGO.
1555   SmallVector<uint64_t, 16> *SwitchWeights = nullptr;
1556 
1557   /// The likelihood attributes of the SwitchCase.
1558   SmallVector<Stmt::Likelihood, 16> *SwitchLikelihood = nullptr;
1559 
1560   /// CaseRangeBlock - This block holds if condition check for last case
1561   /// statement range in current switch instruction.
1562   llvm::BasicBlock *CaseRangeBlock = nullptr;
1563 
1564   /// OpaqueLValues - Keeps track of the current set of opaque value
1565   /// expressions.
1566   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1567   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1568 
1569   // VLASizeMap - This keeps track of the associated size for each VLA type.
1570   // We track this by the size expression rather than the type itself because
1571   // in certain situations, like a const qualifier applied to an VLA typedef,
1572   // multiple VLA types can share the same size expression.
1573   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1574   // enter/leave scopes.
1575   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1576 
1577   /// A block containing a single 'unreachable' instruction.  Created
1578   /// lazily by getUnreachableBlock().
1579   llvm::BasicBlock *UnreachableBlock = nullptr;
1580 
1581   /// Counts of the number return expressions in the function.
1582   unsigned NumReturnExprs = 0;
1583 
1584   /// Count the number of simple (constant) return expressions in the function.
1585   unsigned NumSimpleReturnExprs = 0;
1586 
1587   /// The last regular (non-return) debug location (breakpoint) in the function.
1588   SourceLocation LastStopPoint;
1589 
1590 public:
1591   /// Source location information about the default argument or member
1592   /// initializer expression we're evaluating, if any.
1593   CurrentSourceLocExprScope CurSourceLocExprScope;
1594   using SourceLocExprScopeGuard =
1595       CurrentSourceLocExprScope::SourceLocExprScopeGuard;
1596 
1597   /// A scope within which we are constructing the fields of an object which
1598   /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
1599   /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
1600   class FieldConstructionScope {
1601   public:
1602     FieldConstructionScope(CodeGenFunction &CGF, Address This)
1603         : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
1604       CGF.CXXDefaultInitExprThis = This;
1605     }
1606     ~FieldConstructionScope() {
1607       CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
1608     }
1609 
1610   private:
1611     CodeGenFunction &CGF;
1612     Address OldCXXDefaultInitExprThis;
1613   };
1614 
1615   /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
1616   /// is overridden to be the object under construction.
1617   class CXXDefaultInitExprScope  {
1618   public:
1619     CXXDefaultInitExprScope(CodeGenFunction &CGF, const CXXDefaultInitExpr *E)
1620         : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue),
1621           OldCXXThisAlignment(CGF.CXXThisAlignment),
1622           SourceLocScope(E, CGF.CurSourceLocExprScope) {
1623       CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer();
1624       CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment();
1625     }
1626     ~CXXDefaultInitExprScope() {
1627       CGF.CXXThisValue = OldCXXThisValue;
1628       CGF.CXXThisAlignment = OldCXXThisAlignment;
1629     }
1630 
1631   public:
1632     CodeGenFunction &CGF;
1633     llvm::Value *OldCXXThisValue;
1634     CharUnits OldCXXThisAlignment;
1635     SourceLocExprScopeGuard SourceLocScope;
1636   };
1637 
1638   struct CXXDefaultArgExprScope : SourceLocExprScopeGuard {
1639     CXXDefaultArgExprScope(CodeGenFunction &CGF, const CXXDefaultArgExpr *E)
1640         : SourceLocExprScopeGuard(E, CGF.CurSourceLocExprScope) {}
1641   };
1642 
1643   /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the
1644   /// current loop index is overridden.
1645   class ArrayInitLoopExprScope {
1646   public:
1647     ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index)
1648       : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) {
1649       CGF.ArrayInitIndex = Index;
1650     }
1651     ~ArrayInitLoopExprScope() {
1652       CGF.ArrayInitIndex = OldArrayInitIndex;
1653     }
1654 
1655   private:
1656     CodeGenFunction &CGF;
1657     llvm::Value *OldArrayInitIndex;
1658   };
1659 
1660   class InlinedInheritingConstructorScope {
1661   public:
1662     InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD)
1663         : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl),
1664           OldCurCodeDecl(CGF.CurCodeDecl),
1665           OldCXXABIThisDecl(CGF.CXXABIThisDecl),
1666           OldCXXABIThisValue(CGF.CXXABIThisValue),
1667           OldCXXThisValue(CGF.CXXThisValue),
1668           OldCXXABIThisAlignment(CGF.CXXABIThisAlignment),
1669           OldCXXThisAlignment(CGF.CXXThisAlignment),
1670           OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy),
1671           OldCXXInheritedCtorInitExprArgs(
1672               std::move(CGF.CXXInheritedCtorInitExprArgs)) {
1673       CGF.CurGD = GD;
1674       CGF.CurFuncDecl = CGF.CurCodeDecl =
1675           cast<CXXConstructorDecl>(GD.getDecl());
1676       CGF.CXXABIThisDecl = nullptr;
1677       CGF.CXXABIThisValue = nullptr;
1678       CGF.CXXThisValue = nullptr;
1679       CGF.CXXABIThisAlignment = CharUnits();
1680       CGF.CXXThisAlignment = CharUnits();
1681       CGF.ReturnValue = Address::invalid();
1682       CGF.FnRetTy = QualType();
1683       CGF.CXXInheritedCtorInitExprArgs.clear();
1684     }
1685     ~InlinedInheritingConstructorScope() {
1686       CGF.CurGD = OldCurGD;
1687       CGF.CurFuncDecl = OldCurFuncDecl;
1688       CGF.CurCodeDecl = OldCurCodeDecl;
1689       CGF.CXXABIThisDecl = OldCXXABIThisDecl;
1690       CGF.CXXABIThisValue = OldCXXABIThisValue;
1691       CGF.CXXThisValue = OldCXXThisValue;
1692       CGF.CXXABIThisAlignment = OldCXXABIThisAlignment;
1693       CGF.CXXThisAlignment = OldCXXThisAlignment;
1694       CGF.ReturnValue = OldReturnValue;
1695       CGF.FnRetTy = OldFnRetTy;
1696       CGF.CXXInheritedCtorInitExprArgs =
1697           std::move(OldCXXInheritedCtorInitExprArgs);
1698     }
1699 
1700   private:
1701     CodeGenFunction &CGF;
1702     GlobalDecl OldCurGD;
1703     const Decl *OldCurFuncDecl;
1704     const Decl *OldCurCodeDecl;
1705     ImplicitParamDecl *OldCXXABIThisDecl;
1706     llvm::Value *OldCXXABIThisValue;
1707     llvm::Value *OldCXXThisValue;
1708     CharUnits OldCXXABIThisAlignment;
1709     CharUnits OldCXXThisAlignment;
1710     Address OldReturnValue;
1711     QualType OldFnRetTy;
1712     CallArgList OldCXXInheritedCtorInitExprArgs;
1713   };
1714 
1715   // Helper class for the OpenMP IR Builder. Allows reusability of code used for
1716   // region body, and finalization codegen callbacks. This will class will also
1717   // contain privatization functions used by the privatization call backs
1718   //
1719   // TODO: this is temporary class for things that are being moved out of
1720   // CGOpenMPRuntime, new versions of current CodeGenFunction methods, or
1721   // utility function for use with the OMPBuilder. Once that move to use the
1722   // OMPBuilder is done, everything here will either become part of CodeGenFunc.
1723   // directly, or a new helper class that will contain functions used by both
1724   // this and the OMPBuilder
1725 
1726   struct OMPBuilderCBHelpers {
1727 
1728     OMPBuilderCBHelpers() = delete;
1729     OMPBuilderCBHelpers(const OMPBuilderCBHelpers &) = delete;
1730     OMPBuilderCBHelpers &operator=(const OMPBuilderCBHelpers &) = delete;
1731 
1732     using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
1733 
1734     /// Cleanup action for allocate support.
1735     class OMPAllocateCleanupTy final : public EHScopeStack::Cleanup {
1736 
1737     private:
1738       llvm::CallInst *RTLFnCI;
1739 
1740     public:
1741       OMPAllocateCleanupTy(llvm::CallInst *RLFnCI) : RTLFnCI(RLFnCI) {
1742         RLFnCI->removeFromParent();
1743       }
1744 
1745       void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
1746         if (!CGF.HaveInsertPoint())
1747           return;
1748         CGF.Builder.Insert(RTLFnCI);
1749       }
1750     };
1751 
1752     /// Returns address of the threadprivate variable for the current
1753     /// thread. This Also create any necessary OMP runtime calls.
1754     ///
1755     /// \param VD VarDecl for Threadprivate variable.
1756     /// \param VDAddr Address of the Vardecl
1757     /// \param Loc  The location where the barrier directive was encountered
1758     static Address getAddrOfThreadPrivate(CodeGenFunction &CGF,
1759                                           const VarDecl *VD, Address VDAddr,
1760                                           SourceLocation Loc);
1761 
1762     /// Gets the OpenMP-specific address of the local variable /p VD.
1763     static Address getAddressOfLocalVariable(CodeGenFunction &CGF,
1764                                              const VarDecl *VD);
1765     /// Get the platform-specific name separator.
1766     /// \param Parts different parts of the final name that needs separation
1767     /// \param FirstSeparator First separator used between the initial two
1768     ///        parts of the name.
1769     /// \param Separator separator used between all of the rest consecutinve
1770     ///        parts of the name
1771     static std::string getNameWithSeparators(ArrayRef<StringRef> Parts,
1772                                              StringRef FirstSeparator = ".",
1773                                              StringRef Separator = ".");
1774     /// Emit the Finalization for an OMP region
1775     /// \param CGF	The Codegen function this belongs to
1776     /// \param IP	Insertion point for generating the finalization code.
1777     static void FinalizeOMPRegion(CodeGenFunction &CGF, InsertPointTy IP) {
1778       CGBuilderTy::InsertPointGuard IPG(CGF.Builder);
1779       assert(IP.getBlock()->end() != IP.getPoint() &&
1780              "OpenMP IR Builder should cause terminated block!");
1781 
1782       llvm::BasicBlock *IPBB = IP.getBlock();
1783       llvm::BasicBlock *DestBB = IPBB->getUniqueSuccessor();
1784       assert(DestBB && "Finalization block should have one successor!");
1785 
1786       // erase and replace with cleanup branch.
1787       IPBB->getTerminator()->eraseFromParent();
1788       CGF.Builder.SetInsertPoint(IPBB);
1789       CodeGenFunction::JumpDest Dest = CGF.getJumpDestInCurrentScope(DestBB);
1790       CGF.EmitBranchThroughCleanup(Dest);
1791     }
1792 
1793     /// Emit the body of an OMP region
1794     /// \param CGF	          The Codegen function this belongs to
1795     /// \param RegionBodyStmt The body statement for the OpenMP region being
1796     ///                       generated
1797     /// \param AllocaIP       Where to insert alloca instructions
1798     /// \param CodeGenIP      Where to insert the region code
1799     /// \param RegionName     Name to be used for new blocks
1800     static void EmitOMPInlinedRegionBody(CodeGenFunction &CGF,
1801                                          const Stmt *RegionBodyStmt,
1802                                          InsertPointTy AllocaIP,
1803                                          InsertPointTy CodeGenIP,
1804                                          Twine RegionName);
1805 
1806     static void EmitCaptureStmt(CodeGenFunction &CGF, InsertPointTy CodeGenIP,
1807                                 llvm::BasicBlock &FiniBB, llvm::Function *Fn,
1808                                 ArrayRef<llvm::Value *> Args) {
1809       llvm::BasicBlock *CodeGenIPBB = CodeGenIP.getBlock();
1810       if (llvm::Instruction *CodeGenIPBBTI = CodeGenIPBB->getTerminator())
1811         CodeGenIPBBTI->eraseFromParent();
1812 
1813       CGF.Builder.SetInsertPoint(CodeGenIPBB);
1814 
1815       if (Fn->doesNotThrow())
1816         CGF.EmitNounwindRuntimeCall(Fn, Args);
1817       else
1818         CGF.EmitRuntimeCall(Fn, Args);
1819 
1820       if (CGF.Builder.saveIP().isSet())
1821         CGF.Builder.CreateBr(&FiniBB);
1822     }
1823 
1824     /// Emit the body of an OMP region that will be outlined in
1825     /// OpenMPIRBuilder::finalize().
1826     /// \param CGF	          The Codegen function this belongs to
1827     /// \param RegionBodyStmt The body statement for the OpenMP region being
1828     ///                       generated
1829     /// \param AllocaIP       Where to insert alloca instructions
1830     /// \param CodeGenIP      Where to insert the region code
1831     /// \param RegionName     Name to be used for new blocks
1832     static void EmitOMPOutlinedRegionBody(CodeGenFunction &CGF,
1833                                           const Stmt *RegionBodyStmt,
1834                                           InsertPointTy AllocaIP,
1835                                           InsertPointTy CodeGenIP,
1836                                           Twine RegionName);
1837 
1838     /// RAII for preserving necessary info during Outlined region body codegen.
1839     class OutlinedRegionBodyRAII {
1840 
1841       llvm::AssertingVH<llvm::Instruction> OldAllocaIP;
1842       CodeGenFunction::JumpDest OldReturnBlock;
1843       CodeGenFunction &CGF;
1844 
1845     public:
1846       OutlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP,
1847                              llvm::BasicBlock &RetBB)
1848           : CGF(cgf) {
1849         assert(AllocaIP.isSet() &&
1850                "Must specify Insertion point for allocas of outlined function");
1851         OldAllocaIP = CGF.AllocaInsertPt;
1852         CGF.AllocaInsertPt = &*AllocaIP.getPoint();
1853 
1854         OldReturnBlock = CGF.ReturnBlock;
1855         CGF.ReturnBlock = CGF.getJumpDestInCurrentScope(&RetBB);
1856       }
1857 
1858       ~OutlinedRegionBodyRAII() {
1859         CGF.AllocaInsertPt = OldAllocaIP;
1860         CGF.ReturnBlock = OldReturnBlock;
1861       }
1862     };
1863 
1864     /// RAII for preserving necessary info during inlined region body codegen.
1865     class InlinedRegionBodyRAII {
1866 
1867       llvm::AssertingVH<llvm::Instruction> OldAllocaIP;
1868       CodeGenFunction &CGF;
1869 
1870     public:
1871       InlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP,
1872                             llvm::BasicBlock &FiniBB)
1873           : CGF(cgf) {
1874         // Alloca insertion block should be in the entry block of the containing
1875         // function so it expects an empty AllocaIP in which case will reuse the
1876         // old alloca insertion point, or a new AllocaIP in the same block as
1877         // the old one
1878         assert((!AllocaIP.isSet() ||
1879                 CGF.AllocaInsertPt->getParent() == AllocaIP.getBlock()) &&
1880                "Insertion point should be in the entry block of containing "
1881                "function!");
1882         OldAllocaIP = CGF.AllocaInsertPt;
1883         if (AllocaIP.isSet())
1884           CGF.AllocaInsertPt = &*AllocaIP.getPoint();
1885 
1886         // TODO: Remove the call, after making sure the counter is not used by
1887         //       the EHStack.
1888         // Since this is an inlined region, it should not modify the
1889         // ReturnBlock, and should reuse the one for the enclosing outlined
1890         // region. So, the JumpDest being return by the function is discarded
1891         (void)CGF.getJumpDestInCurrentScope(&FiniBB);
1892       }
1893 
1894       ~InlinedRegionBodyRAII() { CGF.AllocaInsertPt = OldAllocaIP; }
1895     };
1896   };
1897 
1898 private:
1899   /// CXXThisDecl - When generating code for a C++ member function,
1900   /// this will hold the implicit 'this' declaration.
1901   ImplicitParamDecl *CXXABIThisDecl = nullptr;
1902   llvm::Value *CXXABIThisValue = nullptr;
1903   llvm::Value *CXXThisValue = nullptr;
1904   CharUnits CXXABIThisAlignment;
1905   CharUnits CXXThisAlignment;
1906 
1907   /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
1908   /// this expression.
1909   Address CXXDefaultInitExprThis = Address::invalid();
1910 
1911   /// The current array initialization index when evaluating an
1912   /// ArrayInitIndexExpr within an ArrayInitLoopExpr.
1913   llvm::Value *ArrayInitIndex = nullptr;
1914 
1915   /// The values of function arguments to use when evaluating
1916   /// CXXInheritedCtorInitExprs within this context.
1917   CallArgList CXXInheritedCtorInitExprArgs;
1918 
1919   /// CXXStructorImplicitParamDecl - When generating code for a constructor or
1920   /// destructor, this will hold the implicit argument (e.g. VTT).
1921   ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr;
1922   llvm::Value *CXXStructorImplicitParamValue = nullptr;
1923 
1924   /// OutermostConditional - Points to the outermost active
1925   /// conditional control.  This is used so that we know if a
1926   /// temporary should be destroyed conditionally.
1927   ConditionalEvaluation *OutermostConditional = nullptr;
1928 
1929   /// The current lexical scope.
1930   LexicalScope *CurLexicalScope = nullptr;
1931 
1932   /// The current source location that should be used for exception
1933   /// handling code.
1934   SourceLocation CurEHLocation;
1935 
1936   /// BlockByrefInfos - For each __block variable, contains
1937   /// information about the layout of the variable.
1938   llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos;
1939 
1940   /// Used by -fsanitize=nullability-return to determine whether the return
1941   /// value can be checked.
1942   llvm::Value *RetValNullabilityPrecondition = nullptr;
1943 
1944   /// Check if -fsanitize=nullability-return instrumentation is required for
1945   /// this function.
1946   bool requiresReturnValueNullabilityCheck() const {
1947     return RetValNullabilityPrecondition;
1948   }
1949 
1950   /// Used to store precise source locations for return statements by the
1951   /// runtime return value checks.
1952   Address ReturnLocation = Address::invalid();
1953 
1954   /// Check if the return value of this function requires sanitization.
1955   bool requiresReturnValueCheck() const;
1956 
1957   llvm::BasicBlock *TerminateLandingPad = nullptr;
1958   llvm::BasicBlock *TerminateHandler = nullptr;
1959   llvm::SmallVector<llvm::BasicBlock *, 2> TrapBBs;
1960 
1961   /// Terminate funclets keyed by parent funclet pad.
1962   llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets;
1963 
1964   /// Largest vector width used in ths function. Will be used to create a
1965   /// function attribute.
1966   unsigned LargestVectorWidth = 0;
1967 
1968   /// True if we need emit the life-time markers. This is initially set in
1969   /// the constructor, but could be overwritten to true if this is a coroutine.
1970   bool ShouldEmitLifetimeMarkers;
1971 
1972   /// Add OpenCL kernel arg metadata and the kernel attribute metadata to
1973   /// the function metadata.
1974   void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
1975                                 llvm::Function *Fn);
1976 
1977 public:
1978   CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1979   ~CodeGenFunction();
1980 
1981   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1982   ASTContext &getContext() const { return CGM.getContext(); }
1983   CGDebugInfo *getDebugInfo() {
1984     if (DisableDebugInfo)
1985       return nullptr;
1986     return DebugInfo;
1987   }
1988   void disableDebugInfo() { DisableDebugInfo = true; }
1989   void enableDebugInfo() { DisableDebugInfo = false; }
1990 
1991   bool shouldUseFusedARCCalls() {
1992     return CGM.getCodeGenOpts().OptimizationLevel == 0;
1993   }
1994 
1995   const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1996 
1997   /// Returns a pointer to the function's exception object and selector slot,
1998   /// which is assigned in every landing pad.
1999   Address getExceptionSlot();
2000   Address getEHSelectorSlot();
2001 
2002   /// Returns the contents of the function's exception object and selector
2003   /// slots.
2004   llvm::Value *getExceptionFromSlot();
2005   llvm::Value *getSelectorFromSlot();
2006 
2007   Address getNormalCleanupDestSlot();
2008 
2009   llvm::BasicBlock *getUnreachableBlock() {
2010     if (!UnreachableBlock) {
2011       UnreachableBlock = createBasicBlock("unreachable");
2012       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
2013     }
2014     return UnreachableBlock;
2015   }
2016 
2017   llvm::BasicBlock *getInvokeDest() {
2018     if (!EHStack.requiresLandingPad()) return nullptr;
2019     return getInvokeDestImpl();
2020   }
2021 
2022   bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; }
2023 
2024   const TargetInfo &getTarget() const { return Target; }
2025   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
2026   const TargetCodeGenInfo &getTargetHooks() const {
2027     return CGM.getTargetCodeGenInfo();
2028   }
2029 
2030   //===--------------------------------------------------------------------===//
2031   //                                  Cleanups
2032   //===--------------------------------------------------------------------===//
2033 
2034   typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty);
2035 
2036   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
2037                                         Address arrayEndPointer,
2038                                         QualType elementType,
2039                                         CharUnits elementAlignment,
2040                                         Destroyer *destroyer);
2041   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
2042                                       llvm::Value *arrayEnd,
2043                                       QualType elementType,
2044                                       CharUnits elementAlignment,
2045                                       Destroyer *destroyer);
2046 
2047   void pushDestroy(QualType::DestructionKind dtorKind,
2048                    Address addr, QualType type);
2049   void pushEHDestroy(QualType::DestructionKind dtorKind,
2050                      Address addr, QualType type);
2051   void pushDestroy(CleanupKind kind, Address addr, QualType type,
2052                    Destroyer *destroyer, bool useEHCleanupForArray);
2053   void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr,
2054                                    QualType type, Destroyer *destroyer,
2055                                    bool useEHCleanupForArray);
2056   void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
2057                                    llvm::Value *CompletePtr,
2058                                    QualType ElementType);
2059   void pushStackRestore(CleanupKind kind, Address SPMem);
2060   void emitDestroy(Address addr, QualType type, Destroyer *destroyer,
2061                    bool useEHCleanupForArray);
2062   llvm::Function *generateDestroyHelper(Address addr, QualType type,
2063                                         Destroyer *destroyer,
2064                                         bool useEHCleanupForArray,
2065                                         const VarDecl *VD);
2066   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
2067                         QualType elementType, CharUnits elementAlign,
2068                         Destroyer *destroyer,
2069                         bool checkZeroLength, bool useEHCleanup);
2070 
2071   Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
2072 
2073   /// Determines whether an EH cleanup is required to destroy a type
2074   /// with the given destruction kind.
2075   bool needsEHCleanup(QualType::DestructionKind kind) {
2076     switch (kind) {
2077     case QualType::DK_none:
2078       return false;
2079     case QualType::DK_cxx_destructor:
2080     case QualType::DK_objc_weak_lifetime:
2081     case QualType::DK_nontrivial_c_struct:
2082       return getLangOpts().Exceptions;
2083     case QualType::DK_objc_strong_lifetime:
2084       return getLangOpts().Exceptions &&
2085              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
2086     }
2087     llvm_unreachable("bad destruction kind");
2088   }
2089 
2090   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
2091     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
2092   }
2093 
2094   //===--------------------------------------------------------------------===//
2095   //                                  Objective-C
2096   //===--------------------------------------------------------------------===//
2097 
2098   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
2099 
2100   void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
2101 
2102   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
2103   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
2104                           const ObjCPropertyImplDecl *PID);
2105   void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
2106                               const ObjCPropertyImplDecl *propImpl,
2107                               const ObjCMethodDecl *GetterMothodDecl,
2108                               llvm::Constant *AtomicHelperFn);
2109 
2110   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
2111                                   ObjCMethodDecl *MD, bool ctor);
2112 
2113   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
2114   /// for the given property.
2115   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
2116                           const ObjCPropertyImplDecl *PID);
2117   void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
2118                               const ObjCPropertyImplDecl *propImpl,
2119                               llvm::Constant *AtomicHelperFn);
2120 
2121   //===--------------------------------------------------------------------===//
2122   //                                  Block Bits
2123   //===--------------------------------------------------------------------===//
2124 
2125   /// Emit block literal.
2126   /// \return an LLVM value which is a pointer to a struct which contains
2127   /// information about the block, including the block invoke function, the
2128   /// captured variables, etc.
2129   llvm::Value *EmitBlockLiteral(const BlockExpr *);
2130 
2131   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
2132                                         const CGBlockInfo &Info,
2133                                         const DeclMapTy &ldm,
2134                                         bool IsLambdaConversionToBlock,
2135                                         bool BuildGlobalBlock);
2136 
2137   /// Check if \p T is a C++ class that has a destructor that can throw.
2138   static bool cxxDestructorCanThrow(QualType T);
2139 
2140   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
2141   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
2142   llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
2143                                              const ObjCPropertyImplDecl *PID);
2144   llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
2145                                              const ObjCPropertyImplDecl *PID);
2146   llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
2147 
2148   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags,
2149                          bool CanThrow);
2150 
2151   class AutoVarEmission;
2152 
2153   void emitByrefStructureInit(const AutoVarEmission &emission);
2154 
2155   /// Enter a cleanup to destroy a __block variable.  Note that this
2156   /// cleanup should be a no-op if the variable hasn't left the stack
2157   /// yet; if a cleanup is required for the variable itself, that needs
2158   /// to be done externally.
2159   ///
2160   /// \param Kind Cleanup kind.
2161   ///
2162   /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block
2163   /// structure that will be passed to _Block_object_dispose. When
2164   /// \p LoadBlockVarAddr is true, the address of the field of the block
2165   /// structure that holds the address of the __block structure.
2166   ///
2167   /// \param Flags The flag that will be passed to _Block_object_dispose.
2168   ///
2169   /// \param LoadBlockVarAddr Indicates whether we need to emit a load from
2170   /// \p Addr to get the address of the __block structure.
2171   void enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags,
2172                          bool LoadBlockVarAddr, bool CanThrow);
2173 
2174   void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum,
2175                                 llvm::Value *ptr);
2176 
2177   Address LoadBlockStruct();
2178   Address GetAddrOfBlockDecl(const VarDecl *var);
2179 
2180   /// BuildBlockByrefAddress - Computes the location of the
2181   /// data in a variable which is declared as __block.
2182   Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V,
2183                                 bool followForward = true);
2184   Address emitBlockByrefAddress(Address baseAddr,
2185                                 const BlockByrefInfo &info,
2186                                 bool followForward,
2187                                 const llvm::Twine &name);
2188 
2189   const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var);
2190 
2191   QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args);
2192 
2193   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
2194                     const CGFunctionInfo &FnInfo);
2195 
2196   /// Annotate the function with an attribute that disables TSan checking at
2197   /// runtime.
2198   void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn);
2199 
2200   /// Emit code for the start of a function.
2201   /// \param Loc       The location to be associated with the function.
2202   /// \param StartLoc  The location of the function body.
2203   void StartFunction(GlobalDecl GD,
2204                      QualType RetTy,
2205                      llvm::Function *Fn,
2206                      const CGFunctionInfo &FnInfo,
2207                      const FunctionArgList &Args,
2208                      SourceLocation Loc = SourceLocation(),
2209                      SourceLocation StartLoc = SourceLocation());
2210 
2211   static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor);
2212 
2213   void EmitConstructorBody(FunctionArgList &Args);
2214   void EmitDestructorBody(FunctionArgList &Args);
2215   void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
2216   void EmitFunctionBody(const Stmt *Body);
2217   void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S);
2218 
2219   void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
2220                                   CallArgList &CallArgs);
2221   void EmitLambdaBlockInvokeBody();
2222   void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
2223   void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD);
2224   void EmitLambdaVLACapture(const VariableArrayType *VAT, LValue LV) {
2225     EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
2226   }
2227   void EmitAsanPrologueOrEpilogue(bool Prologue);
2228 
2229   /// Emit the unified return block, trying to avoid its emission when
2230   /// possible.
2231   /// \return The debug location of the user written return statement if the
2232   /// return block is is avoided.
2233   llvm::DebugLoc EmitReturnBlock();
2234 
2235   /// FinishFunction - Complete IR generation of the current function. It is
2236   /// legal to call this function even if there is no current insertion point.
2237   void FinishFunction(SourceLocation EndLoc=SourceLocation());
2238 
2239   void StartThunk(llvm::Function *Fn, GlobalDecl GD,
2240                   const CGFunctionInfo &FnInfo, bool IsUnprototyped);
2241 
2242   void EmitCallAndReturnForThunk(llvm::FunctionCallee Callee,
2243                                  const ThunkInfo *Thunk, bool IsUnprototyped);
2244 
2245   void FinishThunk();
2246 
2247   /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
2248   void EmitMustTailThunk(GlobalDecl GD, llvm::Value *AdjustedThisPtr,
2249                          llvm::FunctionCallee Callee);
2250 
2251   /// Generate a thunk for the given method.
2252   void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
2253                      GlobalDecl GD, const ThunkInfo &Thunk,
2254                      bool IsUnprototyped);
2255 
2256   llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn,
2257                                        const CGFunctionInfo &FnInfo,
2258                                        GlobalDecl GD, const ThunkInfo &Thunk);
2259 
2260   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
2261                         FunctionArgList &Args);
2262 
2263   void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init);
2264 
2265   /// Struct with all information about dynamic [sub]class needed to set vptr.
2266   struct VPtr {
2267     BaseSubobject Base;
2268     const CXXRecordDecl *NearestVBase;
2269     CharUnits OffsetFromNearestVBase;
2270     const CXXRecordDecl *VTableClass;
2271   };
2272 
2273   /// Initialize the vtable pointer of the given subobject.
2274   void InitializeVTablePointer(const VPtr &vptr);
2275 
2276   typedef llvm::SmallVector<VPtr, 4> VPtrsVector;
2277 
2278   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
2279   VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass);
2280 
2281   void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase,
2282                          CharUnits OffsetFromNearestVBase,
2283                          bool BaseIsNonVirtualPrimaryBase,
2284                          const CXXRecordDecl *VTableClass,
2285                          VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs);
2286 
2287   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
2288 
2289   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
2290   /// to by This.
2291   llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy,
2292                             const CXXRecordDecl *VTableClass);
2293 
2294   enum CFITypeCheckKind {
2295     CFITCK_VCall,
2296     CFITCK_NVCall,
2297     CFITCK_DerivedCast,
2298     CFITCK_UnrelatedCast,
2299     CFITCK_ICall,
2300     CFITCK_NVMFCall,
2301     CFITCK_VMFCall,
2302   };
2303 
2304   /// Derived is the presumed address of an object of type T after a
2305   /// cast. If T is a polymorphic class type, emit a check that the virtual
2306   /// table for Derived belongs to a class derived from T.
2307   void EmitVTablePtrCheckForCast(QualType T, Address Derived, bool MayBeNull,
2308                                  CFITypeCheckKind TCK, SourceLocation Loc);
2309 
2310   /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
2311   /// If vptr CFI is enabled, emit a check that VTable is valid.
2312   void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable,
2313                                  CFITypeCheckKind TCK, SourceLocation Loc);
2314 
2315   /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
2316   /// RD using llvm.type.test.
2317   void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable,
2318                           CFITypeCheckKind TCK, SourceLocation Loc);
2319 
2320   /// If whole-program virtual table optimization is enabled, emit an assumption
2321   /// that VTable is a member of RD's type identifier. Or, if vptr CFI is
2322   /// enabled, emit a check that VTable is a member of RD's type identifier.
2323   void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
2324                                     llvm::Value *VTable, SourceLocation Loc);
2325 
2326   /// Returns whether we should perform a type checked load when loading a
2327   /// virtual function for virtual calls to members of RD. This is generally
2328   /// true when both vcall CFI and whole-program-vtables are enabled.
2329   bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD);
2330 
2331   /// Emit a type checked load from the given vtable.
2332   llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD,
2333                                          llvm::Value *VTable,
2334                                          llvm::Type *VTableTy,
2335                                          uint64_t VTableByteOffset);
2336 
2337   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
2338   /// given phase of destruction for a destructor.  The end result
2339   /// should call destructors on members and base classes in reverse
2340   /// order of their construction.
2341   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
2342 
2343   /// ShouldInstrumentFunction - Return true if the current function should be
2344   /// instrumented with __cyg_profile_func_* calls
2345   bool ShouldInstrumentFunction();
2346 
2347   /// ShouldSkipSanitizerInstrumentation - Return true if the current function
2348   /// should not be instrumented with sanitizers.
2349   bool ShouldSkipSanitizerInstrumentation();
2350 
2351   /// ShouldXRayInstrument - Return true if the current function should be
2352   /// instrumented with XRay nop sleds.
2353   bool ShouldXRayInstrumentFunction() const;
2354 
2355   /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit
2356   /// XRay custom event handling calls.
2357   bool AlwaysEmitXRayCustomEvents() const;
2358 
2359   /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit
2360   /// XRay typed event handling calls.
2361   bool AlwaysEmitXRayTypedEvents() const;
2362 
2363   /// Encode an address into a form suitable for use in a function prologue.
2364   llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F,
2365                                              llvm::Constant *Addr);
2366 
2367   /// Decode an address used in a function prologue, encoded by \c
2368   /// EncodeAddrForUseInPrologue.
2369   llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F,
2370                                         llvm::Value *EncodedAddr);
2371 
2372   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
2373   /// arguments for the given function. This is also responsible for naming the
2374   /// LLVM function arguments.
2375   void EmitFunctionProlog(const CGFunctionInfo &FI,
2376                           llvm::Function *Fn,
2377                           const FunctionArgList &Args);
2378 
2379   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
2380   /// given temporary.
2381   void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
2382                           SourceLocation EndLoc);
2383 
2384   /// Emit a test that checks if the return value \p RV is nonnull.
2385   void EmitReturnValueCheck(llvm::Value *RV);
2386 
2387   /// EmitStartEHSpec - Emit the start of the exception spec.
2388   void EmitStartEHSpec(const Decl *D);
2389 
2390   /// EmitEndEHSpec - Emit the end of the exception spec.
2391   void EmitEndEHSpec(const Decl *D);
2392 
2393   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
2394   llvm::BasicBlock *getTerminateLandingPad();
2395 
2396   /// getTerminateLandingPad - Return a cleanup funclet that just calls
2397   /// terminate.
2398   llvm::BasicBlock *getTerminateFunclet();
2399 
2400   /// getTerminateHandler - Return a handler (not a landing pad, just
2401   /// a catch handler) that just calls terminate.  This is used when
2402   /// a terminate scope encloses a try.
2403   llvm::BasicBlock *getTerminateHandler();
2404 
2405   llvm::Type *ConvertTypeForMem(QualType T);
2406   llvm::Type *ConvertType(QualType T);
2407   llvm::Type *ConvertType(const TypeDecl *T) {
2408     return ConvertType(getContext().getTypeDeclType(T));
2409   }
2410 
2411   /// LoadObjCSelf - Load the value of self. This function is only valid while
2412   /// generating code for an Objective-C method.
2413   llvm::Value *LoadObjCSelf();
2414 
2415   /// TypeOfSelfObject - Return type of object that this self represents.
2416   QualType TypeOfSelfObject();
2417 
2418   /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T.
2419   static TypeEvaluationKind getEvaluationKind(QualType T);
2420 
2421   static bool hasScalarEvaluationKind(QualType T) {
2422     return getEvaluationKind(T) == TEK_Scalar;
2423   }
2424 
2425   static bool hasAggregateEvaluationKind(QualType T) {
2426     return getEvaluationKind(T) == TEK_Aggregate;
2427   }
2428 
2429   /// createBasicBlock - Create an LLVM basic block.
2430   llvm::BasicBlock *createBasicBlock(const Twine &name = "",
2431                                      llvm::Function *parent = nullptr,
2432                                      llvm::BasicBlock *before = nullptr) {
2433     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
2434   }
2435 
2436   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
2437   /// label maps to.
2438   JumpDest getJumpDestForLabel(const LabelDecl *S);
2439 
2440   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
2441   /// another basic block, simplify it. This assumes that no other code could
2442   /// potentially reference the basic block.
2443   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
2444 
2445   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
2446   /// adding a fall-through branch from the current insert block if
2447   /// necessary. It is legal to call this function even if there is no current
2448   /// insertion point.
2449   ///
2450   /// IsFinished - If true, indicates that the caller has finished emitting
2451   /// branches to the given block and does not expect to emit code into it. This
2452   /// means the block can be ignored if it is unreachable.
2453   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
2454 
2455   /// EmitBlockAfterUses - Emit the given block somewhere hopefully
2456   /// near its uses, and leave the insertion point in it.
2457   void EmitBlockAfterUses(llvm::BasicBlock *BB);
2458 
2459   /// EmitBranch - Emit a branch to the specified basic block from the current
2460   /// insert block, taking care to avoid creation of branches from dummy
2461   /// blocks. It is legal to call this function even if there is no current
2462   /// insertion point.
2463   ///
2464   /// This function clears the current insertion point. The caller should follow
2465   /// calls to this function with calls to Emit*Block prior to generation new
2466   /// code.
2467   void EmitBranch(llvm::BasicBlock *Block);
2468 
2469   /// HaveInsertPoint - True if an insertion point is defined. If not, this
2470   /// indicates that the current code being emitted is unreachable.
2471   bool HaveInsertPoint() const {
2472     return Builder.GetInsertBlock() != nullptr;
2473   }
2474 
2475   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
2476   /// emitted IR has a place to go. Note that by definition, if this function
2477   /// creates a block then that block is unreachable; callers may do better to
2478   /// detect when no insertion point is defined and simply skip IR generation.
2479   void EnsureInsertPoint() {
2480     if (!HaveInsertPoint())
2481       EmitBlock(createBasicBlock());
2482   }
2483 
2484   /// ErrorUnsupported - Print out an error that codegen doesn't support the
2485   /// specified stmt yet.
2486   void ErrorUnsupported(const Stmt *S, const char *Type);
2487 
2488   //===--------------------------------------------------------------------===//
2489   //                                  Helpers
2490   //===--------------------------------------------------------------------===//
2491 
2492   LValue MakeAddrLValue(Address Addr, QualType T,
2493                         AlignmentSource Source = AlignmentSource::Type) {
2494     return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
2495                             CGM.getTBAAAccessInfo(T));
2496   }
2497 
2498   LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo,
2499                         TBAAAccessInfo TBAAInfo) {
2500     return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo);
2501   }
2502 
2503   LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
2504                         AlignmentSource Source = AlignmentSource::Type) {
2505     Address Addr(V, ConvertTypeForMem(T), Alignment);
2506     return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
2507                             CGM.getTBAAAccessInfo(T));
2508   }
2509 
2510   LValue
2511   MakeAddrLValueWithoutTBAA(Address Addr, QualType T,
2512                             AlignmentSource Source = AlignmentSource::Type) {
2513     return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
2514                             TBAAAccessInfo());
2515   }
2516 
2517   LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T);
2518   LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T);
2519 
2520   Address EmitLoadOfReference(LValue RefLVal,
2521                               LValueBaseInfo *PointeeBaseInfo = nullptr,
2522                               TBAAAccessInfo *PointeeTBAAInfo = nullptr);
2523   LValue EmitLoadOfReferenceLValue(LValue RefLVal);
2524   LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy,
2525                                    AlignmentSource Source =
2526                                        AlignmentSource::Type) {
2527     LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source),
2528                                     CGM.getTBAAAccessInfo(RefTy));
2529     return EmitLoadOfReferenceLValue(RefLVal);
2530   }
2531 
2532   /// Load a pointer with type \p PtrTy stored at address \p Ptr.
2533   /// Note that \p PtrTy is the type of the loaded pointer, not the addresses
2534   /// it is loaded from.
2535   Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy,
2536                             LValueBaseInfo *BaseInfo = nullptr,
2537                             TBAAAccessInfo *TBAAInfo = nullptr);
2538   LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy);
2539 
2540   /// CreateTempAlloca - This creates an alloca and inserts it into the entry
2541   /// block if \p ArraySize is nullptr, otherwise inserts it at the current
2542   /// insertion point of the builder. The caller is responsible for setting an
2543   /// appropriate alignment on
2544   /// the alloca.
2545   ///
2546   /// \p ArraySize is the number of array elements to be allocated if it
2547   ///    is not nullptr.
2548   ///
2549   /// LangAS::Default is the address space of pointers to local variables and
2550   /// temporaries, as exposed in the source language. In certain
2551   /// configurations, this is not the same as the alloca address space, and a
2552   /// cast is needed to lift the pointer from the alloca AS into
2553   /// LangAS::Default. This can happen when the target uses a restricted
2554   /// address space for the stack but the source language requires
2555   /// LangAS::Default to be a generic address space. The latter condition is
2556   /// common for most programming languages; OpenCL is an exception in that
2557   /// LangAS::Default is the private address space, which naturally maps
2558   /// to the stack.
2559   ///
2560   /// Because the address of a temporary is often exposed to the program in
2561   /// various ways, this function will perform the cast. The original alloca
2562   /// instruction is returned through \p Alloca if it is not nullptr.
2563   ///
2564   /// The cast is not performaed in CreateTempAllocaWithoutCast. This is
2565   /// more efficient if the caller knows that the address will not be exposed.
2566   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp",
2567                                      llvm::Value *ArraySize = nullptr);
2568   Address CreateTempAlloca(llvm::Type *Ty, CharUnits align,
2569                            const Twine &Name = "tmp",
2570                            llvm::Value *ArraySize = nullptr,
2571                            Address *Alloca = nullptr);
2572   Address CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align,
2573                                       const Twine &Name = "tmp",
2574                                       llvm::Value *ArraySize = nullptr);
2575 
2576   /// CreateDefaultAlignedTempAlloca - This creates an alloca with the
2577   /// default ABI alignment of the given LLVM type.
2578   ///
2579   /// IMPORTANT NOTE: This is *not* generally the right alignment for
2580   /// any given AST type that happens to have been lowered to the
2581   /// given IR type.  This should only ever be used for function-local,
2582   /// IR-driven manipulations like saving and restoring a value.  Do
2583   /// not hand this address off to arbitrary IRGen routines, and especially
2584   /// do not pass it as an argument to a function that might expect a
2585   /// properly ABI-aligned value.
2586   Address CreateDefaultAlignTempAlloca(llvm::Type *Ty,
2587                                        const Twine &Name = "tmp");
2588 
2589   /// CreateIRTemp - Create a temporary IR object of the given type, with
2590   /// appropriate alignment. This routine should only be used when an temporary
2591   /// value needs to be stored into an alloca (for example, to avoid explicit
2592   /// PHI construction), but the type is the IR type, not the type appropriate
2593   /// for storing in memory.
2594   ///
2595   /// That is, this is exactly equivalent to CreateMemTemp, but calling
2596   /// ConvertType instead of ConvertTypeForMem.
2597   Address CreateIRTemp(QualType T, const Twine &Name = "tmp");
2598 
2599   /// CreateMemTemp - Create a temporary memory object of the given type, with
2600   /// appropriate alignmen and cast it to the default address space. Returns
2601   /// the original alloca instruction by \p Alloca if it is not nullptr.
2602   Address CreateMemTemp(QualType T, const Twine &Name = "tmp",
2603                         Address *Alloca = nullptr);
2604   Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp",
2605                         Address *Alloca = nullptr);
2606 
2607   /// CreateMemTemp - Create a temporary memory object of the given type, with
2608   /// appropriate alignmen without casting it to the default address space.
2609   Address CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp");
2610   Address CreateMemTempWithoutCast(QualType T, CharUnits Align,
2611                                    const Twine &Name = "tmp");
2612 
2613   /// CreateAggTemp - Create a temporary memory object for the given
2614   /// aggregate type.
2615   AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp",
2616                              Address *Alloca = nullptr) {
2617     return AggValueSlot::forAddr(CreateMemTemp(T, Name, Alloca),
2618                                  T.getQualifiers(),
2619                                  AggValueSlot::IsNotDestructed,
2620                                  AggValueSlot::DoesNotNeedGCBarriers,
2621                                  AggValueSlot::IsNotAliased,
2622                                  AggValueSlot::DoesNotOverlap);
2623   }
2624 
2625   /// Emit a cast to void* in the appropriate address space.
2626   llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
2627 
2628   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
2629   /// expression and compare the result against zero, returning an Int1Ty value.
2630   llvm::Value *EvaluateExprAsBool(const Expr *E);
2631 
2632   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
2633   void EmitIgnoredExpr(const Expr *E);
2634 
2635   /// EmitAnyExpr - Emit code to compute the specified expression which can have
2636   /// any type.  The result is returned as an RValue struct.  If this is an
2637   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
2638   /// the result should be returned.
2639   ///
2640   /// \param ignoreResult True if the resulting value isn't used.
2641   RValue EmitAnyExpr(const Expr *E,
2642                      AggValueSlot aggSlot = AggValueSlot::ignored(),
2643                      bool ignoreResult = false);
2644 
2645   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
2646   // or the value of the expression, depending on how va_list is defined.
2647   Address EmitVAListRef(const Expr *E);
2648 
2649   /// Emit a "reference" to a __builtin_ms_va_list; this is
2650   /// always the value of the expression, because a __builtin_ms_va_list is a
2651   /// pointer to a char.
2652   Address EmitMSVAListRef(const Expr *E);
2653 
2654   /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will
2655   /// always be accessible even if no aggregate location is provided.
2656   RValue EmitAnyExprToTemp(const Expr *E);
2657 
2658   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
2659   /// arbitrary expression into the given memory location.
2660   void EmitAnyExprToMem(const Expr *E, Address Location,
2661                         Qualifiers Quals, bool IsInitializer);
2662 
2663   void EmitAnyExprToExn(const Expr *E, Address Addr);
2664 
2665   /// EmitExprAsInit - Emits the code necessary to initialize a
2666   /// location in memory with the given initializer.
2667   void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2668                       bool capturedByInit);
2669 
2670   /// hasVolatileMember - returns true if aggregate type has a volatile
2671   /// member.
2672   bool hasVolatileMember(QualType T) {
2673     if (const RecordType *RT = T->getAs<RecordType>()) {
2674       const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
2675       return RD->hasVolatileMember();
2676     }
2677     return false;
2678   }
2679 
2680   /// Determine whether a return value slot may overlap some other object.
2681   AggValueSlot::Overlap_t getOverlapForReturnValue() {
2682     // FIXME: Assuming no overlap here breaks guaranteed copy elision for base
2683     // class subobjects. These cases may need to be revisited depending on the
2684     // resolution of the relevant core issue.
2685     return AggValueSlot::DoesNotOverlap;
2686   }
2687 
2688   /// Determine whether a field initialization may overlap some other object.
2689   AggValueSlot::Overlap_t getOverlapForFieldInit(const FieldDecl *FD);
2690 
2691   /// Determine whether a base class initialization may overlap some other
2692   /// object.
2693   AggValueSlot::Overlap_t getOverlapForBaseInit(const CXXRecordDecl *RD,
2694                                                 const CXXRecordDecl *BaseRD,
2695                                                 bool IsVirtual);
2696 
2697   /// Emit an aggregate assignment.
2698   void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) {
2699     bool IsVolatile = hasVolatileMember(EltTy);
2700     EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile);
2701   }
2702 
2703   void EmitAggregateCopyCtor(LValue Dest, LValue Src,
2704                              AggValueSlot::Overlap_t MayOverlap) {
2705     EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap);
2706   }
2707 
2708   /// EmitAggregateCopy - Emit an aggregate copy.
2709   ///
2710   /// \param isVolatile \c true iff either the source or the destination is
2711   ///        volatile.
2712   /// \param MayOverlap Whether the tail padding of the destination might be
2713   ///        occupied by some other object. More efficient code can often be
2714   ///        generated if not.
2715   void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy,
2716                          AggValueSlot::Overlap_t MayOverlap,
2717                          bool isVolatile = false);
2718 
2719   /// GetAddrOfLocalVar - Return the address of a local variable.
2720   Address GetAddrOfLocalVar(const VarDecl *VD) {
2721     auto it = LocalDeclMap.find(VD);
2722     assert(it != LocalDeclMap.end() &&
2723            "Invalid argument to GetAddrOfLocalVar(), no decl!");
2724     return it->second;
2725   }
2726 
2727   /// Given an opaque value expression, return its LValue mapping if it exists,
2728   /// otherwise create one.
2729   LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e);
2730 
2731   /// Given an opaque value expression, return its RValue mapping if it exists,
2732   /// otherwise create one.
2733   RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e);
2734 
2735   /// Get the index of the current ArrayInitLoopExpr, if any.
2736   llvm::Value *getArrayInitIndex() { return ArrayInitIndex; }
2737 
2738   /// getAccessedFieldNo - Given an encoded value and a result number, return
2739   /// the input field number being accessed.
2740   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
2741 
2742   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
2743   llvm::BasicBlock *GetIndirectGotoBlock();
2744 
2745   /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts.
2746   static bool IsWrappedCXXThis(const Expr *E);
2747 
2748   /// EmitNullInitialization - Generate code to set a value of the given type to
2749   /// null, If the type contains data member pointers, they will be initialized
2750   /// to -1 in accordance with the Itanium C++ ABI.
2751   void EmitNullInitialization(Address DestPtr, QualType Ty);
2752 
2753   /// Emits a call to an LLVM variable-argument intrinsic, either
2754   /// \c llvm.va_start or \c llvm.va_end.
2755   /// \param ArgValue A reference to the \c va_list as emitted by either
2756   /// \c EmitVAListRef or \c EmitMSVAListRef.
2757   /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise,
2758   /// calls \c llvm.va_end.
2759   llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart);
2760 
2761   /// Generate code to get an argument from the passed in pointer
2762   /// and update it accordingly.
2763   /// \param VE The \c VAArgExpr for which to generate code.
2764   /// \param VAListAddr Receives a reference to the \c va_list as emitted by
2765   /// either \c EmitVAListRef or \c EmitMSVAListRef.
2766   /// \returns A pointer to the argument.
2767   // FIXME: We should be able to get rid of this method and use the va_arg
2768   // instruction in LLVM instead once it works well enough.
2769   Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr);
2770 
2771   /// emitArrayLength - Compute the length of an array, even if it's a
2772   /// VLA, and drill down to the base element type.
2773   llvm::Value *emitArrayLength(const ArrayType *arrayType,
2774                                QualType &baseType,
2775                                Address &addr);
2776 
2777   /// EmitVLASize - Capture all the sizes for the VLA expressions in
2778   /// the given variably-modified type and store them in the VLASizeMap.
2779   ///
2780   /// This function can be called with a null (unreachable) insert point.
2781   void EmitVariablyModifiedType(QualType Ty);
2782 
2783   struct VlaSizePair {
2784     llvm::Value *NumElts;
2785     QualType Type;
2786 
2787     VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {}
2788   };
2789 
2790   /// Return the number of elements for a single dimension
2791   /// for the given array type.
2792   VlaSizePair getVLAElements1D(const VariableArrayType *vla);
2793   VlaSizePair getVLAElements1D(QualType vla);
2794 
2795   /// Returns an LLVM value that corresponds to the size,
2796   /// in non-variably-sized elements, of a variable length array type,
2797   /// plus that largest non-variably-sized element type.  Assumes that
2798   /// the type has already been emitted with EmitVariablyModifiedType.
2799   VlaSizePair getVLASize(const VariableArrayType *vla);
2800   VlaSizePair getVLASize(QualType vla);
2801 
2802   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
2803   /// generating code for an C++ member function.
2804   llvm::Value *LoadCXXThis() {
2805     assert(CXXThisValue && "no 'this' value for this function");
2806     return CXXThisValue;
2807   }
2808   Address LoadCXXThisAddress();
2809 
2810   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
2811   /// virtual bases.
2812   // FIXME: Every place that calls LoadCXXVTT is something
2813   // that needs to be abstracted properly.
2814   llvm::Value *LoadCXXVTT() {
2815     assert(CXXStructorImplicitParamValue && "no VTT value for this function");
2816     return CXXStructorImplicitParamValue;
2817   }
2818 
2819   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
2820   /// complete class to the given direct base.
2821   Address
2822   GetAddressOfDirectBaseInCompleteClass(Address Value,
2823                                         const CXXRecordDecl *Derived,
2824                                         const CXXRecordDecl *Base,
2825                                         bool BaseIsVirtual);
2826 
2827   static bool ShouldNullCheckClassCastValue(const CastExpr *Cast);
2828 
2829   /// GetAddressOfBaseClass - This function will add the necessary delta to the
2830   /// load of 'this' and returns address of the base class.
2831   Address GetAddressOfBaseClass(Address Value,
2832                                 const CXXRecordDecl *Derived,
2833                                 CastExpr::path_const_iterator PathBegin,
2834                                 CastExpr::path_const_iterator PathEnd,
2835                                 bool NullCheckValue, SourceLocation Loc);
2836 
2837   Address GetAddressOfDerivedClass(Address Value,
2838                                    const CXXRecordDecl *Derived,
2839                                    CastExpr::path_const_iterator PathBegin,
2840                                    CastExpr::path_const_iterator PathEnd,
2841                                    bool NullCheckValue);
2842 
2843   /// GetVTTParameter - Return the VTT parameter that should be passed to a
2844   /// base constructor/destructor with virtual bases.
2845   /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
2846   /// to ItaniumCXXABI.cpp together with all the references to VTT.
2847   llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
2848                                bool Delegating);
2849 
2850   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
2851                                       CXXCtorType CtorType,
2852                                       const FunctionArgList &Args,
2853                                       SourceLocation Loc);
2854   // It's important not to confuse this and the previous function. Delegating
2855   // constructors are the C++0x feature. The constructor delegate optimization
2856   // is used to reduce duplication in the base and complete consturctors where
2857   // they are substantially the same.
2858   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2859                                         const FunctionArgList &Args);
2860 
2861   /// Emit a call to an inheriting constructor (that is, one that invokes a
2862   /// constructor inherited from a base class) by inlining its definition. This
2863   /// is necessary if the ABI does not support forwarding the arguments to the
2864   /// base class constructor (because they're variadic or similar).
2865   void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2866                                                CXXCtorType CtorType,
2867                                                bool ForVirtualBase,
2868                                                bool Delegating,
2869                                                CallArgList &Args);
2870 
2871   /// Emit a call to a constructor inherited from a base class, passing the
2872   /// current constructor's arguments along unmodified (without even making
2873   /// a copy).
2874   void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D,
2875                                        bool ForVirtualBase, Address This,
2876                                        bool InheritedFromVBase,
2877                                        const CXXInheritedCtorInitExpr *E);
2878 
2879   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2880                               bool ForVirtualBase, bool Delegating,
2881                               AggValueSlot ThisAVS, const CXXConstructExpr *E);
2882 
2883   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2884                               bool ForVirtualBase, bool Delegating,
2885                               Address This, CallArgList &Args,
2886                               AggValueSlot::Overlap_t Overlap,
2887                               SourceLocation Loc, bool NewPointerIsChecked);
2888 
2889   /// Emit assumption load for all bases. Requires to be be called only on
2890   /// most-derived class and not under construction of the object.
2891   void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This);
2892 
2893   /// Emit assumption that vptr load == global vtable.
2894   void EmitVTableAssumptionLoad(const VPtr &vptr, Address This);
2895 
2896   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
2897                                       Address This, Address Src,
2898                                       const CXXConstructExpr *E);
2899 
2900   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2901                                   const ArrayType *ArrayTy,
2902                                   Address ArrayPtr,
2903                                   const CXXConstructExpr *E,
2904                                   bool NewPointerIsChecked,
2905                                   bool ZeroInitialization = false);
2906 
2907   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2908                                   llvm::Value *NumElements,
2909                                   Address ArrayPtr,
2910                                   const CXXConstructExpr *E,
2911                                   bool NewPointerIsChecked,
2912                                   bool ZeroInitialization = false);
2913 
2914   static Destroyer destroyCXXObject;
2915 
2916   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
2917                              bool ForVirtualBase, bool Delegating, Address This,
2918                              QualType ThisTy);
2919 
2920   void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
2921                                llvm::Type *ElementTy, Address NewPtr,
2922                                llvm::Value *NumElements,
2923                                llvm::Value *AllocSizeWithoutCookie);
2924 
2925   void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
2926                         Address Ptr);
2927 
2928   void EmitSehCppScopeBegin();
2929   void EmitSehCppScopeEnd();
2930   void EmitSehTryScopeBegin();
2931   void EmitSehTryScopeEnd();
2932 
2933   llvm::Value *EmitLifetimeStart(llvm::TypeSize Size, llvm::Value *Addr);
2934   void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr);
2935 
2936   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
2937   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
2938 
2939   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
2940                       QualType DeleteTy, llvm::Value *NumElements = nullptr,
2941                       CharUnits CookieSize = CharUnits());
2942 
2943   RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
2944                                   const CallExpr *TheCallExpr, bool IsDelete);
2945 
2946   llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E);
2947   llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE);
2948   Address EmitCXXUuidofExpr(const CXXUuidofExpr *E);
2949 
2950   /// Situations in which we might emit a check for the suitability of a
2951   /// pointer or glvalue. Needs to be kept in sync with ubsan_handlers.cpp in
2952   /// compiler-rt.
2953   enum TypeCheckKind {
2954     /// Checking the operand of a load. Must be suitably sized and aligned.
2955     TCK_Load,
2956     /// Checking the destination of a store. Must be suitably sized and aligned.
2957     TCK_Store,
2958     /// Checking the bound value in a reference binding. Must be suitably sized
2959     /// and aligned, but is not required to refer to an object (until the
2960     /// reference is used), per core issue 453.
2961     TCK_ReferenceBinding,
2962     /// Checking the object expression in a non-static data member access. Must
2963     /// be an object within its lifetime.
2964     TCK_MemberAccess,
2965     /// Checking the 'this' pointer for a call to a non-static member function.
2966     /// Must be an object within its lifetime.
2967     TCK_MemberCall,
2968     /// Checking the 'this' pointer for a constructor call.
2969     TCK_ConstructorCall,
2970     /// Checking the operand of a static_cast to a derived pointer type. Must be
2971     /// null or an object within its lifetime.
2972     TCK_DowncastPointer,
2973     /// Checking the operand of a static_cast to a derived reference type. Must
2974     /// be an object within its lifetime.
2975     TCK_DowncastReference,
2976     /// Checking the operand of a cast to a base object. Must be suitably sized
2977     /// and aligned.
2978     TCK_Upcast,
2979     /// Checking the operand of a cast to a virtual base object. Must be an
2980     /// object within its lifetime.
2981     TCK_UpcastToVirtualBase,
2982     /// Checking the value assigned to a _Nonnull pointer. Must not be null.
2983     TCK_NonnullAssign,
2984     /// Checking the operand of a dynamic_cast or a typeid expression.  Must be
2985     /// null or an object within its lifetime.
2986     TCK_DynamicOperation
2987   };
2988 
2989   /// Determine whether the pointer type check \p TCK permits null pointers.
2990   static bool isNullPointerAllowed(TypeCheckKind TCK);
2991 
2992   /// Determine whether the pointer type check \p TCK requires a vptr check.
2993   static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty);
2994 
2995   /// Whether any type-checking sanitizers are enabled. If \c false,
2996   /// calls to EmitTypeCheck can be skipped.
2997   bool sanitizePerformTypeCheck() const;
2998 
2999   /// Emit a check that \p V is the address of storage of the
3000   /// appropriate size and alignment for an object of type \p Type
3001   /// (or if ArraySize is provided, for an array of that bound).
3002   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
3003                      QualType Type, CharUnits Alignment = CharUnits::Zero(),
3004                      SanitizerSet SkippedChecks = SanitizerSet(),
3005                      llvm::Value *ArraySize = nullptr);
3006 
3007   /// Emit a check that \p Base points into an array object, which
3008   /// we can access at index \p Index. \p Accessed should be \c false if we
3009   /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
3010   void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
3011                        QualType IndexType, bool Accessed);
3012 
3013   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
3014                                        bool isInc, bool isPre);
3015   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
3016                                          bool isInc, bool isPre);
3017 
3018   /// Converts Location to a DebugLoc, if debug information is enabled.
3019   llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location);
3020 
3021   /// Get the record field index as represented in debug info.
3022   unsigned getDebugInfoFIndex(const RecordDecl *Rec, unsigned FieldIndex);
3023 
3024 
3025   //===--------------------------------------------------------------------===//
3026   //                            Declaration Emission
3027   //===--------------------------------------------------------------------===//
3028 
3029   /// EmitDecl - Emit a declaration.
3030   ///
3031   /// This function can be called with a null (unreachable) insert point.
3032   void EmitDecl(const Decl &D);
3033 
3034   /// EmitVarDecl - Emit a local variable declaration.
3035   ///
3036   /// This function can be called with a null (unreachable) insert point.
3037   void EmitVarDecl(const VarDecl &D);
3038 
3039   void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
3040                       bool capturedByInit);
3041 
3042   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
3043                              llvm::Value *Address);
3044 
3045   /// Determine whether the given initializer is trivial in the sense
3046   /// that it requires no code to be generated.
3047   bool isTrivialInitializer(const Expr *Init);
3048 
3049   /// EmitAutoVarDecl - Emit an auto variable declaration.
3050   ///
3051   /// This function can be called with a null (unreachable) insert point.
3052   void EmitAutoVarDecl(const VarDecl &D);
3053 
3054   class AutoVarEmission {
3055     friend class CodeGenFunction;
3056 
3057     const VarDecl *Variable;
3058 
3059     /// The address of the alloca for languages with explicit address space
3060     /// (e.g. OpenCL) or alloca casted to generic pointer for address space
3061     /// agnostic languages (e.g. C++). Invalid if the variable was emitted
3062     /// as a global constant.
3063     Address Addr;
3064 
3065     llvm::Value *NRVOFlag;
3066 
3067     /// True if the variable is a __block variable that is captured by an
3068     /// escaping block.
3069     bool IsEscapingByRef;
3070 
3071     /// True if the variable is of aggregate type and has a constant
3072     /// initializer.
3073     bool IsConstantAggregate;
3074 
3075     /// Non-null if we should use lifetime annotations.
3076     llvm::Value *SizeForLifetimeMarkers;
3077 
3078     /// Address with original alloca instruction. Invalid if the variable was
3079     /// emitted as a global constant.
3080     Address AllocaAddr;
3081 
3082     struct Invalid {};
3083     AutoVarEmission(Invalid)
3084         : Variable(nullptr), Addr(Address::invalid()),
3085           AllocaAddr(Address::invalid()) {}
3086 
3087     AutoVarEmission(const VarDecl &variable)
3088         : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr),
3089           IsEscapingByRef(false), IsConstantAggregate(false),
3090           SizeForLifetimeMarkers(nullptr), AllocaAddr(Address::invalid()) {}
3091 
3092     bool wasEmittedAsGlobal() const { return !Addr.isValid(); }
3093 
3094   public:
3095     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
3096 
3097     bool useLifetimeMarkers() const {
3098       return SizeForLifetimeMarkers != nullptr;
3099     }
3100     llvm::Value *getSizeForLifetimeMarkers() const {
3101       assert(useLifetimeMarkers());
3102       return SizeForLifetimeMarkers;
3103     }
3104 
3105     /// Returns the raw, allocated address, which is not necessarily
3106     /// the address of the object itself. It is casted to default
3107     /// address space for address space agnostic languages.
3108     Address getAllocatedAddress() const {
3109       return Addr;
3110     }
3111 
3112     /// Returns the address for the original alloca instruction.
3113     Address getOriginalAllocatedAddress() const { return AllocaAddr; }
3114 
3115     /// Returns the address of the object within this declaration.
3116     /// Note that this does not chase the forwarding pointer for
3117     /// __block decls.
3118     Address getObjectAddress(CodeGenFunction &CGF) const {
3119       if (!IsEscapingByRef) return Addr;
3120 
3121       return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false);
3122     }
3123   };
3124   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
3125   void EmitAutoVarInit(const AutoVarEmission &emission);
3126   void EmitAutoVarCleanups(const AutoVarEmission &emission);
3127   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
3128                               QualType::DestructionKind dtorKind);
3129 
3130   /// Emits the alloca and debug information for the size expressions for each
3131   /// dimension of an array. It registers the association of its (1-dimensional)
3132   /// QualTypes and size expression's debug node, so that CGDebugInfo can
3133   /// reference this node when creating the DISubrange object to describe the
3134   /// array types.
3135   void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI,
3136                                               const VarDecl &D,
3137                                               bool EmitDebugInfo);
3138 
3139   void EmitStaticVarDecl(const VarDecl &D,
3140                          llvm::GlobalValue::LinkageTypes Linkage);
3141 
3142   class ParamValue {
3143     llvm::Value *Value;
3144     llvm::Type *ElementType;
3145     unsigned Alignment;
3146     ParamValue(llvm::Value *V, llvm::Type *T, unsigned A)
3147         : Value(V), ElementType(T), Alignment(A) {}
3148   public:
3149     static ParamValue forDirect(llvm::Value *value) {
3150       return ParamValue(value, nullptr, 0);
3151     }
3152     static ParamValue forIndirect(Address addr) {
3153       assert(!addr.getAlignment().isZero());
3154       return ParamValue(addr.getPointer(), addr.getElementType(),
3155                         addr.getAlignment().getQuantity());
3156     }
3157 
3158     bool isIndirect() const { return Alignment != 0; }
3159     llvm::Value *getAnyValue() const { return Value; }
3160 
3161     llvm::Value *getDirectValue() const {
3162       assert(!isIndirect());
3163       return Value;
3164     }
3165 
3166     Address getIndirectAddress() const {
3167       assert(isIndirect());
3168       return Address(Value, ElementType, CharUnits::fromQuantity(Alignment));
3169     }
3170   };
3171 
3172   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
3173   void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo);
3174 
3175   /// protectFromPeepholes - Protect a value that we're intending to
3176   /// store to the side, but which will probably be used later, from
3177   /// aggressive peepholing optimizations that might delete it.
3178   ///
3179   /// Pass the result to unprotectFromPeepholes to declare that
3180   /// protection is no longer required.
3181   ///
3182   /// There's no particular reason why this shouldn't apply to
3183   /// l-values, it's just that no existing peepholes work on pointers.
3184   PeepholeProtection protectFromPeepholes(RValue rvalue);
3185   void unprotectFromPeepholes(PeepholeProtection protection);
3186 
3187   void emitAlignmentAssumptionCheck(llvm::Value *Ptr, QualType Ty,
3188                                     SourceLocation Loc,
3189                                     SourceLocation AssumptionLoc,
3190                                     llvm::Value *Alignment,
3191                                     llvm::Value *OffsetValue,
3192                                     llvm::Value *TheCheck,
3193                                     llvm::Instruction *Assumption);
3194 
3195   void emitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty,
3196                                SourceLocation Loc, SourceLocation AssumptionLoc,
3197                                llvm::Value *Alignment,
3198                                llvm::Value *OffsetValue = nullptr);
3199 
3200   void emitAlignmentAssumption(llvm::Value *PtrValue, const Expr *E,
3201                                SourceLocation AssumptionLoc,
3202                                llvm::Value *Alignment,
3203                                llvm::Value *OffsetValue = nullptr);
3204 
3205   //===--------------------------------------------------------------------===//
3206   //                             Statement Emission
3207   //===--------------------------------------------------------------------===//
3208 
3209   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
3210   void EmitStopPoint(const Stmt *S);
3211 
3212   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
3213   /// this function even if there is no current insertion point.
3214   ///
3215   /// This function may clear the current insertion point; callers should use
3216   /// EnsureInsertPoint if they wish to subsequently generate code without first
3217   /// calling EmitBlock, EmitBranch, or EmitStmt.
3218   void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None);
3219 
3220   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
3221   /// necessarily require an insertion point or debug information; typically
3222   /// because the statement amounts to a jump or a container of other
3223   /// statements.
3224   ///
3225   /// \return True if the statement was handled.
3226   bool EmitSimpleStmt(const Stmt *S, ArrayRef<const Attr *> Attrs);
3227 
3228   Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
3229                            AggValueSlot AVS = AggValueSlot::ignored());
3230   Address EmitCompoundStmtWithoutScope(const CompoundStmt &S,
3231                                        bool GetLast = false,
3232                                        AggValueSlot AVS =
3233                                                 AggValueSlot::ignored());
3234 
3235   /// EmitLabel - Emit the block for the given label. It is legal to call this
3236   /// function even if there is no current insertion point.
3237   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
3238 
3239   void EmitLabelStmt(const LabelStmt &S);
3240   void EmitAttributedStmt(const AttributedStmt &S);
3241   void EmitGotoStmt(const GotoStmt &S);
3242   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
3243   void EmitIfStmt(const IfStmt &S);
3244 
3245   void EmitWhileStmt(const WhileStmt &S,
3246                      ArrayRef<const Attr *> Attrs = None);
3247   void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None);
3248   void EmitForStmt(const ForStmt &S,
3249                    ArrayRef<const Attr *> Attrs = None);
3250   void EmitReturnStmt(const ReturnStmt &S);
3251   void EmitDeclStmt(const DeclStmt &S);
3252   void EmitBreakStmt(const BreakStmt &S);
3253   void EmitContinueStmt(const ContinueStmt &S);
3254   void EmitSwitchStmt(const SwitchStmt &S);
3255   void EmitDefaultStmt(const DefaultStmt &S, ArrayRef<const Attr *> Attrs);
3256   void EmitCaseStmt(const CaseStmt &S, ArrayRef<const Attr *> Attrs);
3257   void EmitCaseStmtRange(const CaseStmt &S, ArrayRef<const Attr *> Attrs);
3258   void EmitAsmStmt(const AsmStmt &S);
3259 
3260   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
3261   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
3262   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
3263   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
3264   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
3265 
3266   void EmitCoroutineBody(const CoroutineBodyStmt &S);
3267   void EmitCoreturnStmt(const CoreturnStmt &S);
3268   RValue EmitCoawaitExpr(const CoawaitExpr &E,
3269                          AggValueSlot aggSlot = AggValueSlot::ignored(),
3270                          bool ignoreResult = false);
3271   LValue EmitCoawaitLValue(const CoawaitExpr *E);
3272   RValue EmitCoyieldExpr(const CoyieldExpr &E,
3273                          AggValueSlot aggSlot = AggValueSlot::ignored(),
3274                          bool ignoreResult = false);
3275   LValue EmitCoyieldLValue(const CoyieldExpr *E);
3276   RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID);
3277 
3278   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
3279   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
3280 
3281   void EmitCXXTryStmt(const CXXTryStmt &S);
3282   void EmitSEHTryStmt(const SEHTryStmt &S);
3283   void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
3284   void EnterSEHTryStmt(const SEHTryStmt &S);
3285   void ExitSEHTryStmt(const SEHTryStmt &S);
3286   void VolatilizeTryBlocks(llvm::BasicBlock *BB,
3287                            llvm::SmallPtrSet<llvm::BasicBlock *, 10> &V);
3288 
3289   void pushSEHCleanup(CleanupKind kind,
3290                       llvm::Function *FinallyFunc);
3291   void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter,
3292                               const Stmt *OutlinedStmt);
3293 
3294   llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
3295                                             const SEHExceptStmt &Except);
3296 
3297   llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF,
3298                                              const SEHFinallyStmt &Finally);
3299 
3300   void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF,
3301                                 llvm::Value *ParentFP,
3302                                 llvm::Value *EntryEBP);
3303   llvm::Value *EmitSEHExceptionCode();
3304   llvm::Value *EmitSEHExceptionInfo();
3305   llvm::Value *EmitSEHAbnormalTermination();
3306 
3307   /// Emit simple code for OpenMP directives in Simd-only mode.
3308   void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D);
3309 
3310   /// Scan the outlined statement for captures from the parent function. For
3311   /// each capture, mark the capture as escaped and emit a call to
3312   /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap.
3313   void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
3314                           bool IsFilter);
3315 
3316   /// Recovers the address of a local in a parent function. ParentVar is the
3317   /// address of the variable used in the immediate parent function. It can
3318   /// either be an alloca or a call to llvm.localrecover if there are nested
3319   /// outlined functions. ParentFP is the frame pointer of the outermost parent
3320   /// frame.
3321   Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF,
3322                                     Address ParentVar,
3323                                     llvm::Value *ParentFP);
3324 
3325   void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
3326                            ArrayRef<const Attr *> Attrs = None);
3327 
3328   /// Controls insertion of cancellation exit blocks in worksharing constructs.
3329   class OMPCancelStackRAII {
3330     CodeGenFunction &CGF;
3331 
3332   public:
3333     OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
3334                        bool HasCancel)
3335         : CGF(CGF) {
3336       CGF.OMPCancelStack.enter(CGF, Kind, HasCancel);
3337     }
3338     ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); }
3339   };
3340 
3341   /// Returns calculated size of the specified type.
3342   llvm::Value *getTypeSize(QualType Ty);
3343   LValue InitCapturedStruct(const CapturedStmt &S);
3344   llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
3345   llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
3346   Address GenerateCapturedStmtArgument(const CapturedStmt &S);
3347   llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S,
3348                                                      SourceLocation Loc);
3349   void GenerateOpenMPCapturedVars(const CapturedStmt &S,
3350                                   SmallVectorImpl<llvm::Value *> &CapturedVars);
3351   void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy,
3352                           SourceLocation Loc);
3353   /// Perform element by element copying of arrays with type \a
3354   /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
3355   /// generated by \a CopyGen.
3356   ///
3357   /// \param DestAddr Address of the destination array.
3358   /// \param SrcAddr Address of the source array.
3359   /// \param OriginalType Type of destination and source arrays.
3360   /// \param CopyGen Copying procedure that copies value of single array element
3361   /// to another single array element.
3362   void EmitOMPAggregateAssign(
3363       Address DestAddr, Address SrcAddr, QualType OriginalType,
3364       const llvm::function_ref<void(Address, Address)> CopyGen);
3365   /// Emit proper copying of data from one variable to another.
3366   ///
3367   /// \param OriginalType Original type of the copied variables.
3368   /// \param DestAddr Destination address.
3369   /// \param SrcAddr Source address.
3370   /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
3371   /// type of the base array element).
3372   /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
3373   /// the base array element).
3374   /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
3375   /// DestVD.
3376   void EmitOMPCopy(QualType OriginalType,
3377                    Address DestAddr, Address SrcAddr,
3378                    const VarDecl *DestVD, const VarDecl *SrcVD,
3379                    const Expr *Copy);
3380   /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or
3381   /// \a X = \a E \a BO \a E.
3382   ///
3383   /// \param X Value to be updated.
3384   /// \param E Update value.
3385   /// \param BO Binary operation for update operation.
3386   /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
3387   /// expression, false otherwise.
3388   /// \param AO Atomic ordering of the generated atomic instructions.
3389   /// \param CommonGen Code generator for complex expressions that cannot be
3390   /// expressed through atomicrmw instruction.
3391   /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was
3392   /// generated, <false, RValue::get(nullptr)> otherwise.
3393   std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr(
3394       LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
3395       llvm::AtomicOrdering AO, SourceLocation Loc,
3396       const llvm::function_ref<RValue(RValue)> CommonGen);
3397   bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
3398                                  OMPPrivateScope &PrivateScope);
3399   void EmitOMPPrivateClause(const OMPExecutableDirective &D,
3400                             OMPPrivateScope &PrivateScope);
3401   void EmitOMPUseDevicePtrClause(
3402       const OMPUseDevicePtrClause &C, OMPPrivateScope &PrivateScope,
3403       const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap);
3404   void EmitOMPUseDeviceAddrClause(
3405       const OMPUseDeviceAddrClause &C, OMPPrivateScope &PrivateScope,
3406       const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap);
3407   /// Emit code for copyin clause in \a D directive. The next code is
3408   /// generated at the start of outlined functions for directives:
3409   /// \code
3410   /// threadprivate_var1 = master_threadprivate_var1;
3411   /// operator=(threadprivate_var2, master_threadprivate_var2);
3412   /// ...
3413   /// __kmpc_barrier(&loc, global_tid);
3414   /// \endcode
3415   ///
3416   /// \param D OpenMP directive possibly with 'copyin' clause(s).
3417   /// \returns true if at least one copyin variable is found, false otherwise.
3418   bool EmitOMPCopyinClause(const OMPExecutableDirective &D);
3419   /// Emit initial code for lastprivate variables. If some variable is
3420   /// not also firstprivate, then the default initialization is used. Otherwise
3421   /// initialization of this variable is performed by EmitOMPFirstprivateClause
3422   /// method.
3423   ///
3424   /// \param D Directive that may have 'lastprivate' directives.
3425   /// \param PrivateScope Private scope for capturing lastprivate variables for
3426   /// proper codegen in internal captured statement.
3427   ///
3428   /// \returns true if there is at least one lastprivate variable, false
3429   /// otherwise.
3430   bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D,
3431                                     OMPPrivateScope &PrivateScope);
3432   /// Emit final copying of lastprivate values to original variables at
3433   /// the end of the worksharing or simd directive.
3434   ///
3435   /// \param D Directive that has at least one 'lastprivate' directives.
3436   /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
3437   /// it is the last iteration of the loop code in associated directive, or to
3438   /// 'i1 false' otherwise. If this item is nullptr, no final check is required.
3439   void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D,
3440                                      bool NoFinals,
3441                                      llvm::Value *IsLastIterCond = nullptr);
3442   /// Emit initial code for linear clauses.
3443   void EmitOMPLinearClause(const OMPLoopDirective &D,
3444                            CodeGenFunction::OMPPrivateScope &PrivateScope);
3445   /// Emit final code for linear clauses.
3446   /// \param CondGen Optional conditional code for final part of codegen for
3447   /// linear clause.
3448   void EmitOMPLinearClauseFinal(
3449       const OMPLoopDirective &D,
3450       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
3451   /// Emit initial code for reduction variables. Creates reduction copies
3452   /// and initializes them with the values according to OpenMP standard.
3453   ///
3454   /// \param D Directive (possibly) with the 'reduction' clause.
3455   /// \param PrivateScope Private scope for capturing reduction variables for
3456   /// proper codegen in internal captured statement.
3457   ///
3458   void EmitOMPReductionClauseInit(const OMPExecutableDirective &D,
3459                                   OMPPrivateScope &PrivateScope,
3460                                   bool ForInscan = false);
3461   /// Emit final update of reduction values to original variables at
3462   /// the end of the directive.
3463   ///
3464   /// \param D Directive that has at least one 'reduction' directives.
3465   /// \param ReductionKind The kind of reduction to perform.
3466   void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D,
3467                                    const OpenMPDirectiveKind ReductionKind);
3468   /// Emit initial code for linear variables. Creates private copies
3469   /// and initializes them with the values according to OpenMP standard.
3470   ///
3471   /// \param D Directive (possibly) with the 'linear' clause.
3472   /// \return true if at least one linear variable is found that should be
3473   /// initialized with the value of the original variable, false otherwise.
3474   bool EmitOMPLinearClauseInit(const OMPLoopDirective &D);
3475 
3476   typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/,
3477                                         llvm::Function * /*OutlinedFn*/,
3478                                         const OMPTaskDataTy & /*Data*/)>
3479       TaskGenTy;
3480   void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S,
3481                                  const OpenMPDirectiveKind CapturedRegion,
3482                                  const RegionCodeGenTy &BodyGen,
3483                                  const TaskGenTy &TaskGen, OMPTaskDataTy &Data);
3484   struct OMPTargetDataInfo {
3485     Address BasePointersArray = Address::invalid();
3486     Address PointersArray = Address::invalid();
3487     Address SizesArray = Address::invalid();
3488     Address MappersArray = Address::invalid();
3489     unsigned NumberOfTargetItems = 0;
3490     explicit OMPTargetDataInfo() = default;
3491     OMPTargetDataInfo(Address BasePointersArray, Address PointersArray,
3492                       Address SizesArray, Address MappersArray,
3493                       unsigned NumberOfTargetItems)
3494         : BasePointersArray(BasePointersArray), PointersArray(PointersArray),
3495           SizesArray(SizesArray), MappersArray(MappersArray),
3496           NumberOfTargetItems(NumberOfTargetItems) {}
3497   };
3498   void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S,
3499                                        const RegionCodeGenTy &BodyGen,
3500                                        OMPTargetDataInfo &InputInfo);
3501 
3502   void EmitOMPMetaDirective(const OMPMetaDirective &S);
3503   void EmitOMPParallelDirective(const OMPParallelDirective &S);
3504   void EmitOMPSimdDirective(const OMPSimdDirective &S);
3505   void EmitOMPTileDirective(const OMPTileDirective &S);
3506   void EmitOMPUnrollDirective(const OMPUnrollDirective &S);
3507   void EmitOMPForDirective(const OMPForDirective &S);
3508   void EmitOMPForSimdDirective(const OMPForSimdDirective &S);
3509   void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
3510   void EmitOMPSectionDirective(const OMPSectionDirective &S);
3511   void EmitOMPSingleDirective(const OMPSingleDirective &S);
3512   void EmitOMPMasterDirective(const OMPMasterDirective &S);
3513   void EmitOMPMaskedDirective(const OMPMaskedDirective &S);
3514   void EmitOMPCriticalDirective(const OMPCriticalDirective &S);
3515   void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
3516   void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S);
3517   void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
3518   void EmitOMPParallelMasterDirective(const OMPParallelMasterDirective &S);
3519   void EmitOMPTaskDirective(const OMPTaskDirective &S);
3520   void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
3521   void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
3522   void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
3523   void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S);
3524   void EmitOMPFlushDirective(const OMPFlushDirective &S);
3525   void EmitOMPDepobjDirective(const OMPDepobjDirective &S);
3526   void EmitOMPScanDirective(const OMPScanDirective &S);
3527   void EmitOMPOrderedDirective(const OMPOrderedDirective &S);
3528   void EmitOMPAtomicDirective(const OMPAtomicDirective &S);
3529   void EmitOMPTargetDirective(const OMPTargetDirective &S);
3530   void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S);
3531   void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S);
3532   void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S);
3533   void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S);
3534   void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S);
3535   void
3536   EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S);
3537   void EmitOMPTeamsDirective(const OMPTeamsDirective &S);
3538   void
3539   EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S);
3540   void EmitOMPCancelDirective(const OMPCancelDirective &S);
3541   void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S);
3542   void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S);
3543   void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S);
3544   void EmitOMPMasterTaskLoopDirective(const OMPMasterTaskLoopDirective &S);
3545   void
3546   EmitOMPMasterTaskLoopSimdDirective(const OMPMasterTaskLoopSimdDirective &S);
3547   void EmitOMPParallelMasterTaskLoopDirective(
3548       const OMPParallelMasterTaskLoopDirective &S);
3549   void EmitOMPParallelMasterTaskLoopSimdDirective(
3550       const OMPParallelMasterTaskLoopSimdDirective &S);
3551   void EmitOMPDistributeDirective(const OMPDistributeDirective &S);
3552   void EmitOMPDistributeParallelForDirective(
3553       const OMPDistributeParallelForDirective &S);
3554   void EmitOMPDistributeParallelForSimdDirective(
3555       const OMPDistributeParallelForSimdDirective &S);
3556   void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S);
3557   void EmitOMPTargetParallelForSimdDirective(
3558       const OMPTargetParallelForSimdDirective &S);
3559   void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S);
3560   void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S);
3561   void
3562   EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S);
3563   void EmitOMPTeamsDistributeParallelForSimdDirective(
3564       const OMPTeamsDistributeParallelForSimdDirective &S);
3565   void EmitOMPTeamsDistributeParallelForDirective(
3566       const OMPTeamsDistributeParallelForDirective &S);
3567   void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S);
3568   void EmitOMPTargetTeamsDistributeDirective(
3569       const OMPTargetTeamsDistributeDirective &S);
3570   void EmitOMPTargetTeamsDistributeParallelForDirective(
3571       const OMPTargetTeamsDistributeParallelForDirective &S);
3572   void EmitOMPTargetTeamsDistributeParallelForSimdDirective(
3573       const OMPTargetTeamsDistributeParallelForSimdDirective &S);
3574   void EmitOMPTargetTeamsDistributeSimdDirective(
3575       const OMPTargetTeamsDistributeSimdDirective &S);
3576   void EmitOMPGenericLoopDirective(const OMPGenericLoopDirective &S);
3577   void EmitOMPInteropDirective(const OMPInteropDirective &S);
3578 
3579   /// Emit device code for the target directive.
3580   static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM,
3581                                           StringRef ParentName,
3582                                           const OMPTargetDirective &S);
3583   static void
3584   EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3585                                       const OMPTargetParallelDirective &S);
3586   /// Emit device code for the target parallel for directive.
3587   static void EmitOMPTargetParallelForDeviceFunction(
3588       CodeGenModule &CGM, StringRef ParentName,
3589       const OMPTargetParallelForDirective &S);
3590   /// Emit device code for the target parallel for simd directive.
3591   static void EmitOMPTargetParallelForSimdDeviceFunction(
3592       CodeGenModule &CGM, StringRef ParentName,
3593       const OMPTargetParallelForSimdDirective &S);
3594   /// Emit device code for the target teams directive.
3595   static void
3596   EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3597                                    const OMPTargetTeamsDirective &S);
3598   /// Emit device code for the target teams distribute directive.
3599   static void EmitOMPTargetTeamsDistributeDeviceFunction(
3600       CodeGenModule &CGM, StringRef ParentName,
3601       const OMPTargetTeamsDistributeDirective &S);
3602   /// Emit device code for the target teams distribute simd directive.
3603   static void EmitOMPTargetTeamsDistributeSimdDeviceFunction(
3604       CodeGenModule &CGM, StringRef ParentName,
3605       const OMPTargetTeamsDistributeSimdDirective &S);
3606   /// Emit device code for the target simd directive.
3607   static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM,
3608                                               StringRef ParentName,
3609                                               const OMPTargetSimdDirective &S);
3610   /// Emit device code for the target teams distribute parallel for simd
3611   /// directive.
3612   static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction(
3613       CodeGenModule &CGM, StringRef ParentName,
3614       const OMPTargetTeamsDistributeParallelForSimdDirective &S);
3615 
3616   static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction(
3617       CodeGenModule &CGM, StringRef ParentName,
3618       const OMPTargetTeamsDistributeParallelForDirective &S);
3619 
3620   /// Emit the Stmt \p S and return its topmost canonical loop, if any.
3621   /// TODO: The \p Depth paramter is not yet implemented and must be 1. In the
3622   /// future it is meant to be the number of loops expected in the loop nests
3623   /// (usually specified by the "collapse" clause) that are collapsed to a
3624   /// single loop by this function.
3625   llvm::CanonicalLoopInfo *EmitOMPCollapsedCanonicalLoopNest(const Stmt *S,
3626                                                              int Depth);
3627 
3628   /// Emit an OMPCanonicalLoop using the OpenMPIRBuilder.
3629   void EmitOMPCanonicalLoop(const OMPCanonicalLoop *S);
3630 
3631   /// Emit inner loop of the worksharing/simd construct.
3632   ///
3633   /// \param S Directive, for which the inner loop must be emitted.
3634   /// \param RequiresCleanup true, if directive has some associated private
3635   /// variables.
3636   /// \param LoopCond Bollean condition for loop continuation.
3637   /// \param IncExpr Increment expression for loop control variable.
3638   /// \param BodyGen Generator for the inner body of the inner loop.
3639   /// \param PostIncGen Genrator for post-increment code (required for ordered
3640   /// loop directvies).
3641   void EmitOMPInnerLoop(
3642       const OMPExecutableDirective &S, bool RequiresCleanup,
3643       const Expr *LoopCond, const Expr *IncExpr,
3644       const llvm::function_ref<void(CodeGenFunction &)> BodyGen,
3645       const llvm::function_ref<void(CodeGenFunction &)> PostIncGen);
3646 
3647   JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind);
3648   /// Emit initial code for loop counters of loop-based directives.
3649   void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S,
3650                                   OMPPrivateScope &LoopScope);
3651 
3652   /// Helper for the OpenMP loop directives.
3653   void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit);
3654 
3655   /// Emit code for the worksharing loop-based directive.
3656   /// \return true, if this construct has any lastprivate clause, false -
3657   /// otherwise.
3658   bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB,
3659                               const CodeGenLoopBoundsTy &CodeGenLoopBounds,
3660                               const CodeGenDispatchBoundsTy &CGDispatchBounds);
3661 
3662   /// Emit code for the distribute loop-based directive.
3663   void EmitOMPDistributeLoop(const OMPLoopDirective &S,
3664                              const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr);
3665 
3666   /// Helpers for the OpenMP loop directives.
3667   void EmitOMPSimdInit(const OMPLoopDirective &D);
3668   void EmitOMPSimdFinal(
3669       const OMPLoopDirective &D,
3670       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
3671 
3672   /// Emits the lvalue for the expression with possibly captured variable.
3673   LValue EmitOMPSharedLValue(const Expr *E);
3674 
3675 private:
3676   /// Helpers for blocks.
3677   llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
3678 
3679   /// struct with the values to be passed to the OpenMP loop-related functions
3680   struct OMPLoopArguments {
3681     /// loop lower bound
3682     Address LB = Address::invalid();
3683     /// loop upper bound
3684     Address UB = Address::invalid();
3685     /// loop stride
3686     Address ST = Address::invalid();
3687     /// isLastIteration argument for runtime functions
3688     Address IL = Address::invalid();
3689     /// Chunk value generated by sema
3690     llvm::Value *Chunk = nullptr;
3691     /// EnsureUpperBound
3692     Expr *EUB = nullptr;
3693     /// IncrementExpression
3694     Expr *IncExpr = nullptr;
3695     /// Loop initialization
3696     Expr *Init = nullptr;
3697     /// Loop exit condition
3698     Expr *Cond = nullptr;
3699     /// Update of LB after a whole chunk has been executed
3700     Expr *NextLB = nullptr;
3701     /// Update of UB after a whole chunk has been executed
3702     Expr *NextUB = nullptr;
3703     OMPLoopArguments() = default;
3704     OMPLoopArguments(Address LB, Address UB, Address ST, Address IL,
3705                      llvm::Value *Chunk = nullptr, Expr *EUB = nullptr,
3706                      Expr *IncExpr = nullptr, Expr *Init = nullptr,
3707                      Expr *Cond = nullptr, Expr *NextLB = nullptr,
3708                      Expr *NextUB = nullptr)
3709         : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB),
3710           IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB),
3711           NextUB(NextUB) {}
3712   };
3713   void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic,
3714                         const OMPLoopDirective &S, OMPPrivateScope &LoopScope,
3715                         const OMPLoopArguments &LoopArgs,
3716                         const CodeGenLoopTy &CodeGenLoop,
3717                         const CodeGenOrderedTy &CodeGenOrdered);
3718   void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind,
3719                            bool IsMonotonic, const OMPLoopDirective &S,
3720                            OMPPrivateScope &LoopScope, bool Ordered,
3721                            const OMPLoopArguments &LoopArgs,
3722                            const CodeGenDispatchBoundsTy &CGDispatchBounds);
3723   void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind,
3724                                   const OMPLoopDirective &S,
3725                                   OMPPrivateScope &LoopScope,
3726                                   const OMPLoopArguments &LoopArgs,
3727                                   const CodeGenLoopTy &CodeGenLoopContent);
3728   /// Emit code for sections directive.
3729   void EmitSections(const OMPExecutableDirective &S);
3730 
3731 public:
3732 
3733   //===--------------------------------------------------------------------===//
3734   //                         LValue Expression Emission
3735   //===--------------------------------------------------------------------===//
3736 
3737   /// Create a check that a scalar RValue is non-null.
3738   llvm::Value *EmitNonNullRValueCheck(RValue RV, QualType T);
3739 
3740   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
3741   RValue GetUndefRValue(QualType Ty);
3742 
3743   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
3744   /// and issue an ErrorUnsupported style diagnostic (using the
3745   /// provided Name).
3746   RValue EmitUnsupportedRValue(const Expr *E,
3747                                const char *Name);
3748 
3749   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
3750   /// an ErrorUnsupported style diagnostic (using the provided Name).
3751   LValue EmitUnsupportedLValue(const Expr *E,
3752                                const char *Name);
3753 
3754   /// EmitLValue - Emit code to compute a designator that specifies the location
3755   /// of the expression.
3756   ///
3757   /// This can return one of two things: a simple address or a bitfield
3758   /// reference.  In either case, the LLVM Value* in the LValue structure is
3759   /// guaranteed to be an LLVM pointer type.
3760   ///
3761   /// If this returns a bitfield reference, nothing about the pointee type of
3762   /// the LLVM value is known: For example, it may not be a pointer to an
3763   /// integer.
3764   ///
3765   /// If this returns a normal address, and if the lvalue's C type is fixed
3766   /// size, this method guarantees that the returned pointer type will point to
3767   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
3768   /// variable length type, this is not possible.
3769   ///
3770   LValue EmitLValue(const Expr *E);
3771 
3772   /// Same as EmitLValue but additionally we generate checking code to
3773   /// guard against undefined behavior.  This is only suitable when we know
3774   /// that the address will be used to access the object.
3775   LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
3776 
3777   RValue convertTempToRValue(Address addr, QualType type,
3778                              SourceLocation Loc);
3779 
3780   void EmitAtomicInit(Expr *E, LValue lvalue);
3781 
3782   bool LValueIsSuitableForInlineAtomic(LValue Src);
3783 
3784   RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
3785                         AggValueSlot Slot = AggValueSlot::ignored());
3786 
3787   RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
3788                         llvm::AtomicOrdering AO, bool IsVolatile = false,
3789                         AggValueSlot slot = AggValueSlot::ignored());
3790 
3791   void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
3792 
3793   void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
3794                        bool IsVolatile, bool isInit);
3795 
3796   std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
3797       LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
3798       llvm::AtomicOrdering Success =
3799           llvm::AtomicOrdering::SequentiallyConsistent,
3800       llvm::AtomicOrdering Failure =
3801           llvm::AtomicOrdering::SequentiallyConsistent,
3802       bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
3803 
3804   void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
3805                         const llvm::function_ref<RValue(RValue)> &UpdateOp,
3806                         bool IsVolatile);
3807 
3808   /// EmitToMemory - Change a scalar value from its value
3809   /// representation to its in-memory representation.
3810   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
3811 
3812   /// EmitFromMemory - Change a scalar value from its memory
3813   /// representation to its value representation.
3814   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
3815 
3816   /// Check if the scalar \p Value is within the valid range for the given
3817   /// type \p Ty.
3818   ///
3819   /// Returns true if a check is needed (even if the range is unknown).
3820   bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
3821                             SourceLocation Loc);
3822 
3823   /// EmitLoadOfScalar - Load a scalar value from an address, taking
3824   /// care to appropriately convert from the memory representation to
3825   /// the LLVM value representation.
3826   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3827                                 SourceLocation Loc,
3828                                 AlignmentSource Source = AlignmentSource::Type,
3829                                 bool isNontemporal = false) {
3830     return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source),
3831                             CGM.getTBAAAccessInfo(Ty), isNontemporal);
3832   }
3833 
3834   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3835                                 SourceLocation Loc, LValueBaseInfo BaseInfo,
3836                                 TBAAAccessInfo TBAAInfo,
3837                                 bool isNontemporal = false);
3838 
3839   /// EmitLoadOfScalar - Load a scalar value from an address, taking
3840   /// care to appropriately convert from the memory representation to
3841   /// the LLVM value representation.  The l-value must be a simple
3842   /// l-value.
3843   llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
3844 
3845   /// EmitStoreOfScalar - Store a scalar value to an address, taking
3846   /// care to appropriately convert from the memory representation to
3847   /// the LLVM value representation.
3848   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3849                          bool Volatile, QualType Ty,
3850                          AlignmentSource Source = AlignmentSource::Type,
3851                          bool isInit = false, bool isNontemporal = false) {
3852     EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source),
3853                       CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal);
3854   }
3855 
3856   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3857                          bool Volatile, QualType Ty,
3858                          LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo,
3859                          bool isInit = false, bool isNontemporal = false);
3860 
3861   /// EmitStoreOfScalar - Store a scalar value to an address, taking
3862   /// care to appropriately convert from the memory representation to
3863   /// the LLVM value representation.  The l-value must be a simple
3864   /// l-value.  The isInit flag indicates whether this is an initialization.
3865   /// If so, atomic qualifiers are ignored and the store is always non-atomic.
3866   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
3867 
3868   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
3869   /// this method emits the address of the lvalue, then loads the result as an
3870   /// rvalue, returning the rvalue.
3871   RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
3872   RValue EmitLoadOfExtVectorElementLValue(LValue V);
3873   RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc);
3874   RValue EmitLoadOfGlobalRegLValue(LValue LV);
3875 
3876   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
3877   /// lvalue, where both are guaranteed to the have the same type, and that type
3878   /// is 'Ty'.
3879   void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
3880   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
3881   void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
3882 
3883   /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
3884   /// as EmitStoreThroughLValue.
3885   ///
3886   /// \param Result [out] - If non-null, this will be set to a Value* for the
3887   /// bit-field contents after the store, appropriate for use as the result of
3888   /// an assignment to the bit-field.
3889   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
3890                                       llvm::Value **Result=nullptr);
3891 
3892   /// Emit an l-value for an assignment (simple or compound) of complex type.
3893   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
3894   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
3895   LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
3896                                              llvm::Value *&Result);
3897 
3898   // Note: only available for agg return types
3899   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
3900   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
3901   // Note: only available for agg return types
3902   LValue EmitCallExprLValue(const CallExpr *E);
3903   // Note: only available for agg return types
3904   LValue EmitVAArgExprLValue(const VAArgExpr *E);
3905   LValue EmitDeclRefLValue(const DeclRefExpr *E);
3906   LValue EmitStringLiteralLValue(const StringLiteral *E);
3907   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
3908   LValue EmitPredefinedLValue(const PredefinedExpr *E);
3909   LValue EmitUnaryOpLValue(const UnaryOperator *E);
3910   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3911                                 bool Accessed = false);
3912   LValue EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E);
3913   LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3914                                  bool IsLowerBound = true);
3915   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
3916   LValue EmitMemberExpr(const MemberExpr *E);
3917   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
3918   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
3919   LValue EmitInitListLValue(const InitListExpr *E);
3920   void EmitIgnoredConditionalOperator(const AbstractConditionalOperator *E);
3921   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
3922   LValue EmitCastLValue(const CastExpr *E);
3923   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
3924   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
3925 
3926   Address EmitExtVectorElementLValue(LValue V);
3927 
3928   RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
3929 
3930   Address EmitArrayToPointerDecay(const Expr *Array,
3931                                   LValueBaseInfo *BaseInfo = nullptr,
3932                                   TBAAAccessInfo *TBAAInfo = nullptr);
3933 
3934   class ConstantEmission {
3935     llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
3936     ConstantEmission(llvm::Constant *C, bool isReference)
3937       : ValueAndIsReference(C, isReference) {}
3938   public:
3939     ConstantEmission() {}
3940     static ConstantEmission forReference(llvm::Constant *C) {
3941       return ConstantEmission(C, true);
3942     }
3943     static ConstantEmission forValue(llvm::Constant *C) {
3944       return ConstantEmission(C, false);
3945     }
3946 
3947     explicit operator bool() const {
3948       return ValueAndIsReference.getOpaqueValue() != nullptr;
3949     }
3950 
3951     bool isReference() const { return ValueAndIsReference.getInt(); }
3952     LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
3953       assert(isReference());
3954       return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
3955                                             refExpr->getType());
3956     }
3957 
3958     llvm::Constant *getValue() const {
3959       assert(!isReference());
3960       return ValueAndIsReference.getPointer();
3961     }
3962   };
3963 
3964   ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
3965   ConstantEmission tryEmitAsConstant(const MemberExpr *ME);
3966   llvm::Value *emitScalarConstant(const ConstantEmission &Constant, Expr *E);
3967 
3968   RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
3969                                 AggValueSlot slot = AggValueSlot::ignored());
3970   LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
3971 
3972   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3973                               const ObjCIvarDecl *Ivar);
3974   LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
3975   LValue EmitLValueForLambdaField(const FieldDecl *Field);
3976 
3977   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
3978   /// if the Field is a reference, this will return the address of the reference
3979   /// and not the address of the value stored in the reference.
3980   LValue EmitLValueForFieldInitialization(LValue Base,
3981                                           const FieldDecl* Field);
3982 
3983   LValue EmitLValueForIvar(QualType ObjectTy,
3984                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
3985                            unsigned CVRQualifiers);
3986 
3987   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
3988   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
3989   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
3990   LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
3991 
3992   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
3993   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
3994   LValue EmitStmtExprLValue(const StmtExpr *E);
3995   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
3996   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
3997   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init);
3998 
3999   //===--------------------------------------------------------------------===//
4000   //                         Scalar Expression Emission
4001   //===--------------------------------------------------------------------===//
4002 
4003   /// EmitCall - Generate a call of the given function, expecting the given
4004   /// result type, and using the given argument list which specifies both the
4005   /// LLVM arguments and the types they were derived from.
4006   RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
4007                   ReturnValueSlot ReturnValue, const CallArgList &Args,
4008                   llvm::CallBase **callOrInvoke, bool IsMustTail,
4009                   SourceLocation Loc);
4010   RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
4011                   ReturnValueSlot ReturnValue, const CallArgList &Args,
4012                   llvm::CallBase **callOrInvoke = nullptr,
4013                   bool IsMustTail = false) {
4014     return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke,
4015                     IsMustTail, SourceLocation());
4016   }
4017   RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E,
4018                   ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr);
4019   RValue EmitCallExpr(const CallExpr *E,
4020                       ReturnValueSlot ReturnValue = ReturnValueSlot());
4021   RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
4022   CGCallee EmitCallee(const Expr *E);
4023 
4024   void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl);
4025   void checkTargetFeatures(SourceLocation Loc, const FunctionDecl *TargetDecl);
4026 
4027   llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee,
4028                                   const Twine &name = "");
4029   llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee,
4030                                   ArrayRef<llvm::Value *> args,
4031                                   const Twine &name = "");
4032   llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4033                                           const Twine &name = "");
4034   llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4035                                           ArrayRef<llvm::Value *> args,
4036                                           const Twine &name = "");
4037 
4038   SmallVector<llvm::OperandBundleDef, 1>
4039   getBundlesForFunclet(llvm::Value *Callee);
4040 
4041   llvm::CallBase *EmitCallOrInvoke(llvm::FunctionCallee Callee,
4042                                    ArrayRef<llvm::Value *> Args,
4043                                    const Twine &Name = "");
4044   llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4045                                           ArrayRef<llvm::Value *> args,
4046                                           const Twine &name = "");
4047   llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4048                                           const Twine &name = "");
4049   void EmitNoreturnRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4050                                        ArrayRef<llvm::Value *> args);
4051 
4052   CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
4053                                      NestedNameSpecifier *Qual,
4054                                      llvm::Type *Ty);
4055 
4056   CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
4057                                                CXXDtorType Type,
4058                                                const CXXRecordDecl *RD);
4059 
4060   // Return the copy constructor name with the prefix "__copy_constructor_"
4061   // removed.
4062   static std::string getNonTrivialCopyConstructorStr(QualType QT,
4063                                                      CharUnits Alignment,
4064                                                      bool IsVolatile,
4065                                                      ASTContext &Ctx);
4066 
4067   // Return the destructor name with the prefix "__destructor_" removed.
4068   static std::string getNonTrivialDestructorStr(QualType QT,
4069                                                 CharUnits Alignment,
4070                                                 bool IsVolatile,
4071                                                 ASTContext &Ctx);
4072 
4073   // These functions emit calls to the special functions of non-trivial C
4074   // structs.
4075   void defaultInitNonTrivialCStructVar(LValue Dst);
4076   void callCStructDefaultConstructor(LValue Dst);
4077   void callCStructDestructor(LValue Dst);
4078   void callCStructCopyConstructor(LValue Dst, LValue Src);
4079   void callCStructMoveConstructor(LValue Dst, LValue Src);
4080   void callCStructCopyAssignmentOperator(LValue Dst, LValue Src);
4081   void callCStructMoveAssignmentOperator(LValue Dst, LValue Src);
4082 
4083   RValue
4084   EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method,
4085                               const CGCallee &Callee,
4086                               ReturnValueSlot ReturnValue, llvm::Value *This,
4087                               llvm::Value *ImplicitParam,
4088                               QualType ImplicitParamTy, const CallExpr *E,
4089                               CallArgList *RtlArgs);
4090   RValue EmitCXXDestructorCall(GlobalDecl Dtor, const CGCallee &Callee,
4091                                llvm::Value *This, QualType ThisTy,
4092                                llvm::Value *ImplicitParam,
4093                                QualType ImplicitParamTy, const CallExpr *E);
4094   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
4095                                ReturnValueSlot ReturnValue);
4096   RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE,
4097                                                const CXXMethodDecl *MD,
4098                                                ReturnValueSlot ReturnValue,
4099                                                bool HasQualifier,
4100                                                NestedNameSpecifier *Qualifier,
4101                                                bool IsArrow, const Expr *Base);
4102   // Compute the object pointer.
4103   Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
4104                                           llvm::Value *memberPtr,
4105                                           const MemberPointerType *memberPtrType,
4106                                           LValueBaseInfo *BaseInfo = nullptr,
4107                                           TBAAAccessInfo *TBAAInfo = nullptr);
4108   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
4109                                       ReturnValueSlot ReturnValue);
4110 
4111   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
4112                                        const CXXMethodDecl *MD,
4113                                        ReturnValueSlot ReturnValue);
4114   RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E);
4115 
4116   RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
4117                                 ReturnValueSlot ReturnValue);
4118 
4119   RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E);
4120   RValue EmitAMDGPUDevicePrintfCallExpr(const CallExpr *E);
4121   RValue EmitOpenMPDevicePrintfCallExpr(const CallExpr *E);
4122 
4123   RValue EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID,
4124                          const CallExpr *E, ReturnValueSlot ReturnValue);
4125 
4126   RValue emitRotate(const CallExpr *E, bool IsRotateRight);
4127 
4128   /// Emit IR for __builtin_os_log_format.
4129   RValue emitBuiltinOSLogFormat(const CallExpr &E);
4130 
4131   /// Emit IR for __builtin_is_aligned.
4132   RValue EmitBuiltinIsAligned(const CallExpr *E);
4133   /// Emit IR for __builtin_align_up/__builtin_align_down.
4134   RValue EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp);
4135 
4136   llvm::Function *generateBuiltinOSLogHelperFunction(
4137       const analyze_os_log::OSLogBufferLayout &Layout,
4138       CharUnits BufferAlignment);
4139 
4140   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
4141 
4142   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
4143   /// is unhandled by the current target.
4144   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4145                                      ReturnValueSlot ReturnValue);
4146 
4147   llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
4148                                              const llvm::CmpInst::Predicate Fp,
4149                                              const llvm::CmpInst::Predicate Ip,
4150                                              const llvm::Twine &Name = "");
4151   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4152                                   ReturnValueSlot ReturnValue,
4153                                   llvm::Triple::ArchType Arch);
4154   llvm::Value *EmitARMMVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4155                                      ReturnValueSlot ReturnValue,
4156                                      llvm::Triple::ArchType Arch);
4157   llvm::Value *EmitARMCDEBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4158                                      ReturnValueSlot ReturnValue,
4159                                      llvm::Triple::ArchType Arch);
4160   llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::IntegerType *ITy,
4161                                    QualType RTy);
4162   llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::ArrayType *ATy,
4163                                    QualType RTy);
4164 
4165   llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
4166                                          unsigned LLVMIntrinsic,
4167                                          unsigned AltLLVMIntrinsic,
4168                                          const char *NameHint,
4169                                          unsigned Modifier,
4170                                          const CallExpr *E,
4171                                          SmallVectorImpl<llvm::Value *> &Ops,
4172                                          Address PtrOp0, Address PtrOp1,
4173                                          llvm::Triple::ArchType Arch);
4174 
4175   llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
4176                                           unsigned Modifier, llvm::Type *ArgTy,
4177                                           const CallExpr *E);
4178   llvm::Value *EmitNeonCall(llvm::Function *F,
4179                             SmallVectorImpl<llvm::Value*> &O,
4180                             const char *name,
4181                             unsigned shift = 0, bool rightshift = false);
4182   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx,
4183                              const llvm::ElementCount &Count);
4184   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
4185   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
4186                                    bool negateForRightShift);
4187   llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
4188                                  llvm::Type *Ty, bool usgn, const char *name);
4189   llvm::Value *vectorWrapScalar16(llvm::Value *Op);
4190   /// SVEBuiltinMemEltTy - Returns the memory element type for this memory
4191   /// access builtin.  Only required if it can't be inferred from the base
4192   /// pointer operand.
4193   llvm::Type *SVEBuiltinMemEltTy(const SVETypeFlags &TypeFlags);
4194 
4195   SmallVector<llvm::Type *, 2>
4196   getSVEOverloadTypes(const SVETypeFlags &TypeFlags, llvm::Type *ReturnType,
4197                       ArrayRef<llvm::Value *> Ops);
4198   llvm::Type *getEltType(const SVETypeFlags &TypeFlags);
4199   llvm::ScalableVectorType *getSVEType(const SVETypeFlags &TypeFlags);
4200   llvm::ScalableVectorType *getSVEPredType(const SVETypeFlags &TypeFlags);
4201   llvm::Value *EmitSVEAllTruePred(const SVETypeFlags &TypeFlags);
4202   llvm::Value *EmitSVEDupX(llvm::Value *Scalar);
4203   llvm::Value *EmitSVEDupX(llvm::Value *Scalar, llvm::Type *Ty);
4204   llvm::Value *EmitSVEReinterpret(llvm::Value *Val, llvm::Type *Ty);
4205   llvm::Value *EmitSVEPMull(const SVETypeFlags &TypeFlags,
4206                             llvm::SmallVectorImpl<llvm::Value *> &Ops,
4207                             unsigned BuiltinID);
4208   llvm::Value *EmitSVEMovl(const SVETypeFlags &TypeFlags,
4209                            llvm::ArrayRef<llvm::Value *> Ops,
4210                            unsigned BuiltinID);
4211   llvm::Value *EmitSVEPredicateCast(llvm::Value *Pred,
4212                                     llvm::ScalableVectorType *VTy);
4213   llvm::Value *EmitSVEGatherLoad(const SVETypeFlags &TypeFlags,
4214                                  llvm::SmallVectorImpl<llvm::Value *> &Ops,
4215                                  unsigned IntID);
4216   llvm::Value *EmitSVEScatterStore(const SVETypeFlags &TypeFlags,
4217                                    llvm::SmallVectorImpl<llvm::Value *> &Ops,
4218                                    unsigned IntID);
4219   llvm::Value *EmitSVEMaskedLoad(const CallExpr *, llvm::Type *ReturnTy,
4220                                  SmallVectorImpl<llvm::Value *> &Ops,
4221                                  unsigned BuiltinID, bool IsZExtReturn);
4222   llvm::Value *EmitSVEMaskedStore(const CallExpr *,
4223                                   SmallVectorImpl<llvm::Value *> &Ops,
4224                                   unsigned BuiltinID);
4225   llvm::Value *EmitSVEPrefetchLoad(const SVETypeFlags &TypeFlags,
4226                                    SmallVectorImpl<llvm::Value *> &Ops,
4227                                    unsigned BuiltinID);
4228   llvm::Value *EmitSVEGatherPrefetch(const SVETypeFlags &TypeFlags,
4229                                      SmallVectorImpl<llvm::Value *> &Ops,
4230                                      unsigned IntID);
4231   llvm::Value *EmitSVEStructLoad(const SVETypeFlags &TypeFlags,
4232                                  SmallVectorImpl<llvm::Value *> &Ops,
4233                                  unsigned IntID);
4234   llvm::Value *EmitSVEStructStore(const SVETypeFlags &TypeFlags,
4235                                   SmallVectorImpl<llvm::Value *> &Ops,
4236                                   unsigned IntID);
4237   llvm::Value *EmitAArch64SVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4238 
4239   llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4240                                       llvm::Triple::ArchType Arch);
4241   llvm::Value *EmitBPFBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4242 
4243   llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
4244   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4245   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4246   llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4247   llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4248   llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4249   llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
4250                                           const CallExpr *E);
4251   llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4252   llvm::Value *EmitRISCVBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4253                                     ReturnValueSlot ReturnValue);
4254   bool ProcessOrderScopeAMDGCN(llvm::Value *Order, llvm::Value *Scope,
4255                                llvm::AtomicOrdering &AO,
4256                                llvm::SyncScope::ID &SSID);
4257 
4258   enum class MSVCIntrin;
4259   llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E);
4260 
4261   llvm::Value *EmitBuiltinAvailable(const VersionTuple &Version);
4262 
4263   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
4264   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
4265   llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
4266   llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
4267   llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
4268   llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
4269                                 const ObjCMethodDecl *MethodWithObjects);
4270   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
4271   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
4272                              ReturnValueSlot Return = ReturnValueSlot());
4273 
4274   /// Retrieves the default cleanup kind for an ARC cleanup.
4275   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
4276   CleanupKind getARCCleanupKind() {
4277     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
4278              ? NormalAndEHCleanup : NormalCleanup;
4279   }
4280 
4281   // ARC primitives.
4282   void EmitARCInitWeak(Address addr, llvm::Value *value);
4283   void EmitARCDestroyWeak(Address addr);
4284   llvm::Value *EmitARCLoadWeak(Address addr);
4285   llvm::Value *EmitARCLoadWeakRetained(Address addr);
4286   llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored);
4287   void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
4288   void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
4289   void EmitARCCopyWeak(Address dst, Address src);
4290   void EmitARCMoveWeak(Address dst, Address src);
4291   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
4292   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
4293   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
4294                                   bool resultIgnored);
4295   llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value,
4296                                       bool resultIgnored);
4297   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
4298   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
4299   llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
4300   void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise);
4301   void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
4302   llvm::Value *EmitARCAutorelease(llvm::Value *value);
4303   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
4304   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
4305   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
4306   llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value);
4307 
4308   llvm::Value *EmitObjCAutorelease(llvm::Value *value, llvm::Type *returnType);
4309   llvm::Value *EmitObjCRetainNonBlock(llvm::Value *value,
4310                                       llvm::Type *returnType);
4311   void EmitObjCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
4312 
4313   std::pair<LValue,llvm::Value*>
4314   EmitARCStoreAutoreleasing(const BinaryOperator *e);
4315   std::pair<LValue,llvm::Value*>
4316   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
4317   std::pair<LValue,llvm::Value*>
4318   EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored);
4319 
4320   llvm::Value *EmitObjCAlloc(llvm::Value *value,
4321                              llvm::Type *returnType);
4322   llvm::Value *EmitObjCAllocWithZone(llvm::Value *value,
4323                                      llvm::Type *returnType);
4324   llvm::Value *EmitObjCAllocInit(llvm::Value *value, llvm::Type *resultType);
4325 
4326   llvm::Value *EmitObjCThrowOperand(const Expr *expr);
4327   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
4328   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
4329 
4330   llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
4331   llvm::Value *EmitARCReclaimReturnedObject(const Expr *e,
4332                                             bool allowUnsafeClaim);
4333   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
4334   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
4335   llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr);
4336 
4337   void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
4338 
4339   void EmitARCNoopIntrinsicUse(ArrayRef<llvm::Value *> values);
4340 
4341   static Destroyer destroyARCStrongImprecise;
4342   static Destroyer destroyARCStrongPrecise;
4343   static Destroyer destroyARCWeak;
4344   static Destroyer emitARCIntrinsicUse;
4345   static Destroyer destroyNonTrivialCStruct;
4346 
4347   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
4348   llvm::Value *EmitObjCAutoreleasePoolPush();
4349   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
4350   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
4351   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
4352 
4353   /// Emits a reference binding to the passed in expression.
4354   RValue EmitReferenceBindingToExpr(const Expr *E);
4355 
4356   //===--------------------------------------------------------------------===//
4357   //                           Expression Emission
4358   //===--------------------------------------------------------------------===//
4359 
4360   // Expressions are broken into three classes: scalar, complex, aggregate.
4361 
4362   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
4363   /// scalar type, returning the result.
4364   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
4365 
4366   /// Emit a conversion from the specified type to the specified destination
4367   /// type, both of which are LLVM scalar types.
4368   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
4369                                     QualType DstTy, SourceLocation Loc);
4370 
4371   /// Emit a conversion from the specified complex type to the specified
4372   /// destination type, where the destination type is an LLVM scalar type.
4373   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
4374                                              QualType DstTy,
4375                                              SourceLocation Loc);
4376 
4377   /// EmitAggExpr - Emit the computation of the specified expression
4378   /// of aggregate type.  The result is computed into the given slot,
4379   /// which may be null to indicate that the value is not needed.
4380   void EmitAggExpr(const Expr *E, AggValueSlot AS);
4381 
4382   /// EmitAggExprToLValue - Emit the computation of the specified expression of
4383   /// aggregate type into a temporary LValue.
4384   LValue EmitAggExprToLValue(const Expr *E);
4385 
4386   /// Build all the stores needed to initialize an aggregate at Dest with the
4387   /// value Val.
4388   void EmitAggregateStore(llvm::Value *Val, Address Dest, bool DestIsVolatile);
4389 
4390   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
4391   /// make sure it survives garbage collection until this point.
4392   void EmitExtendGCLifetime(llvm::Value *object);
4393 
4394   /// EmitComplexExpr - Emit the computation of the specified expression of
4395   /// complex type, returning the result.
4396   ComplexPairTy EmitComplexExpr(const Expr *E,
4397                                 bool IgnoreReal = false,
4398                                 bool IgnoreImag = false);
4399 
4400   /// EmitComplexExprIntoLValue - Emit the given expression of complex
4401   /// type and place its result into the specified l-value.
4402   void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
4403 
4404   /// EmitStoreOfComplex - Store a complex number into the specified l-value.
4405   void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
4406 
4407   /// EmitLoadOfComplex - Load a complex number from the specified l-value.
4408   ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
4409 
4410   Address emitAddrOfRealComponent(Address complex, QualType complexType);
4411   Address emitAddrOfImagComponent(Address complex, QualType complexType);
4412 
4413   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
4414   /// global variable that has already been created for it.  If the initializer
4415   /// has a different type than GV does, this may free GV and return a different
4416   /// one.  Otherwise it just returns GV.
4417   llvm::GlobalVariable *
4418   AddInitializerToStaticVarDecl(const VarDecl &D,
4419                                 llvm::GlobalVariable *GV);
4420 
4421   // Emit an @llvm.invariant.start call for the given memory region.
4422   void EmitInvariantStart(llvm::Constant *Addr, CharUnits Size);
4423 
4424   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
4425   /// variable with global storage.
4426   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::GlobalVariable *GV,
4427                                 bool PerformInit);
4428 
4429   llvm::Function *createAtExitStub(const VarDecl &VD, llvm::FunctionCallee Dtor,
4430                                    llvm::Constant *Addr);
4431 
4432   llvm::Function *createTLSAtExitStub(const VarDecl &VD,
4433                                       llvm::FunctionCallee Dtor,
4434                                       llvm::Constant *Addr,
4435                                       llvm::FunctionCallee &AtExit);
4436 
4437   /// Call atexit() with a function that passes the given argument to
4438   /// the given function.
4439   void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::FunctionCallee fn,
4440                                     llvm::Constant *addr);
4441 
4442   /// Call atexit() with function dtorStub.
4443   void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub);
4444 
4445   /// Call unatexit() with function dtorStub.
4446   llvm::Value *unregisterGlobalDtorWithUnAtExit(llvm::Constant *dtorStub);
4447 
4448   /// Emit code in this function to perform a guarded variable
4449   /// initialization.  Guarded initializations are used when it's not
4450   /// possible to prove that an initialization will be done exactly
4451   /// once, e.g. with a static local variable or a static data member
4452   /// of a class template.
4453   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
4454                           bool PerformInit);
4455 
4456   enum class GuardKind { VariableGuard, TlsGuard };
4457 
4458   /// Emit a branch to select whether or not to perform guarded initialization.
4459   void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit,
4460                                 llvm::BasicBlock *InitBlock,
4461                                 llvm::BasicBlock *NoInitBlock,
4462                                 GuardKind Kind, const VarDecl *D);
4463 
4464   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
4465   /// variables.
4466   void
4467   GenerateCXXGlobalInitFunc(llvm::Function *Fn,
4468                             ArrayRef<llvm::Function *> CXXThreadLocals,
4469                             ConstantAddress Guard = ConstantAddress::invalid());
4470 
4471   /// GenerateCXXGlobalCleanUpFunc - Generates code for cleaning up global
4472   /// variables.
4473   void GenerateCXXGlobalCleanUpFunc(
4474       llvm::Function *Fn,
4475       ArrayRef<std::tuple<llvm::FunctionType *, llvm::WeakTrackingVH,
4476                           llvm::Constant *>>
4477           DtorsOrStermFinalizers);
4478 
4479   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
4480                                         const VarDecl *D,
4481                                         llvm::GlobalVariable *Addr,
4482                                         bool PerformInit);
4483 
4484   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
4485 
4486   void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp);
4487 
4488   void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
4489 
4490   RValue EmitAtomicExpr(AtomicExpr *E);
4491 
4492   //===--------------------------------------------------------------------===//
4493   //                         Annotations Emission
4494   //===--------------------------------------------------------------------===//
4495 
4496   /// Emit an annotation call (intrinsic).
4497   llvm::Value *EmitAnnotationCall(llvm::Function *AnnotationFn,
4498                                   llvm::Value *AnnotatedVal,
4499                                   StringRef AnnotationStr,
4500                                   SourceLocation Location,
4501                                   const AnnotateAttr *Attr);
4502 
4503   /// Emit local annotations for the local variable V, declared by D.
4504   void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
4505 
4506   /// Emit field annotations for the given field & value. Returns the
4507   /// annotation result.
4508   Address EmitFieldAnnotations(const FieldDecl *D, Address V);
4509 
4510   //===--------------------------------------------------------------------===//
4511   //                             Internal Helpers
4512   //===--------------------------------------------------------------------===//
4513 
4514   /// ContainsLabel - Return true if the statement contains a label in it.  If
4515   /// this statement is not executed normally, it not containing a label means
4516   /// that we can just remove the code.
4517   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
4518 
4519   /// containsBreak - Return true if the statement contains a break out of it.
4520   /// If the statement (recursively) contains a switch or loop with a break
4521   /// inside of it, this is fine.
4522   static bool containsBreak(const Stmt *S);
4523 
4524   /// Determine if the given statement might introduce a declaration into the
4525   /// current scope, by being a (possibly-labelled) DeclStmt.
4526   static bool mightAddDeclToScope(const Stmt *S);
4527 
4528   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
4529   /// to a constant, or if it does but contains a label, return false.  If it
4530   /// constant folds return true and set the boolean result in Result.
4531   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result,
4532                                     bool AllowLabels = false);
4533 
4534   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
4535   /// to a constant, or if it does but contains a label, return false.  If it
4536   /// constant folds return true and set the folded value.
4537   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result,
4538                                     bool AllowLabels = false);
4539 
4540   /// isInstrumentedCondition - Determine whether the given condition is an
4541   /// instrumentable condition (i.e. no "&&" or "||").
4542   static bool isInstrumentedCondition(const Expr *C);
4543 
4544   /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that
4545   /// increments a profile counter based on the semantics of the given logical
4546   /// operator opcode.  This is used to instrument branch condition coverage
4547   /// for logical operators.
4548   void EmitBranchToCounterBlock(const Expr *Cond, BinaryOperator::Opcode LOp,
4549                                 llvm::BasicBlock *TrueBlock,
4550                                 llvm::BasicBlock *FalseBlock,
4551                                 uint64_t TrueCount = 0,
4552                                 Stmt::Likelihood LH = Stmt::LH_None,
4553                                 const Expr *CntrIdx = nullptr);
4554 
4555   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
4556   /// if statement) to the specified blocks.  Based on the condition, this might
4557   /// try to simplify the codegen of the conditional based on the branch.
4558   /// TrueCount should be the number of times we expect the condition to
4559   /// evaluate to true based on PGO data.
4560   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
4561                             llvm::BasicBlock *FalseBlock, uint64_t TrueCount,
4562                             Stmt::Likelihood LH = Stmt::LH_None);
4563 
4564   /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is
4565   /// nonnull, if \p LHS is marked _Nonnull.
4566   void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc);
4567 
4568   /// An enumeration which makes it easier to specify whether or not an
4569   /// operation is a subtraction.
4570   enum { NotSubtraction = false, IsSubtraction = true };
4571 
4572   /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to
4573   /// detect undefined behavior when the pointer overflow sanitizer is enabled.
4574   /// \p SignedIndices indicates whether any of the GEP indices are signed.
4575   /// \p IsSubtraction indicates whether the expression used to form the GEP
4576   /// is a subtraction.
4577   llvm::Value *EmitCheckedInBoundsGEP(llvm::Type *ElemTy, llvm::Value *Ptr,
4578                                       ArrayRef<llvm::Value *> IdxList,
4579                                       bool SignedIndices,
4580                                       bool IsSubtraction,
4581                                       SourceLocation Loc,
4582                                       const Twine &Name = "");
4583 
4584   /// Specifies which type of sanitizer check to apply when handling a
4585   /// particular builtin.
4586   enum BuiltinCheckKind {
4587     BCK_CTZPassedZero,
4588     BCK_CLZPassedZero,
4589   };
4590 
4591   /// Emits an argument for a call to a builtin. If the builtin sanitizer is
4592   /// enabled, a runtime check specified by \p Kind is also emitted.
4593   llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind);
4594 
4595   /// Emit a description of a type in a format suitable for passing to
4596   /// a runtime sanitizer handler.
4597   llvm::Constant *EmitCheckTypeDescriptor(QualType T);
4598 
4599   /// Convert a value into a format suitable for passing to a runtime
4600   /// sanitizer handler.
4601   llvm::Value *EmitCheckValue(llvm::Value *V);
4602 
4603   /// Emit a description of a source location in a format suitable for
4604   /// passing to a runtime sanitizer handler.
4605   llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
4606 
4607   /// Create a basic block that will either trap or call a handler function in
4608   /// the UBSan runtime with the provided arguments, and create a conditional
4609   /// branch to it.
4610   void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
4611                  SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs,
4612                  ArrayRef<llvm::Value *> DynamicArgs);
4613 
4614   /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath
4615   /// if Cond if false.
4616   void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond,
4617                             llvm::ConstantInt *TypeId, llvm::Value *Ptr,
4618                             ArrayRef<llvm::Constant *> StaticArgs);
4619 
4620   /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime
4621   /// checking is enabled. Otherwise, just emit an unreachable instruction.
4622   void EmitUnreachable(SourceLocation Loc);
4623 
4624   /// Create a basic block that will call the trap intrinsic, and emit a
4625   /// conditional branch to it, for the -ftrapv checks.
4626   void EmitTrapCheck(llvm::Value *Checked, SanitizerHandler CheckHandlerID);
4627 
4628   /// Emit a call to trap or debugtrap and attach function attribute
4629   /// "trap-func-name" if specified.
4630   llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID);
4631 
4632   /// Emit a stub for the cross-DSO CFI check function.
4633   void EmitCfiCheckStub();
4634 
4635   /// Emit a cross-DSO CFI failure handling function.
4636   void EmitCfiCheckFail();
4637 
4638   /// Create a check for a function parameter that may potentially be
4639   /// declared as non-null.
4640   void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc,
4641                            AbstractCallee AC, unsigned ParmNum);
4642 
4643   /// EmitCallArg - Emit a single call argument.
4644   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
4645 
4646   /// EmitDelegateCallArg - We are performing a delegate call; that
4647   /// is, the current function is delegating to another one.  Produce
4648   /// a r-value suitable for passing the given parameter.
4649   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
4650                            SourceLocation loc);
4651 
4652   /// SetFPAccuracy - Set the minimum required accuracy of the given floating
4653   /// point operation, expressed as the maximum relative error in ulp.
4654   void SetFPAccuracy(llvm::Value *Val, float Accuracy);
4655 
4656   /// Set the codegen fast-math flags.
4657   void SetFastMathFlags(FPOptions FPFeatures);
4658 
4659   // Truncate or extend a boolean vector to the requested number of elements.
4660   llvm::Value *emitBoolVecConversion(llvm::Value *SrcVec,
4661                                      unsigned NumElementsDst,
4662                                      const llvm::Twine &Name = "");
4663 
4664 private:
4665   llvm::MDNode *getRangeForLoadFromType(QualType Ty);
4666   void EmitReturnOfRValue(RValue RV, QualType Ty);
4667 
4668   void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
4669 
4670   llvm::SmallVector<std::pair<llvm::WeakTrackingVH, llvm::Value *>, 4>
4671       DeferredReplacements;
4672 
4673   /// Set the address of a local variable.
4674   void setAddrOfLocalVar(const VarDecl *VD, Address Addr) {
4675     assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!");
4676     LocalDeclMap.insert({VD, Addr});
4677   }
4678 
4679   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
4680   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
4681   ///
4682   /// \param AI - The first function argument of the expansion.
4683   void ExpandTypeFromArgs(QualType Ty, LValue Dst,
4684                           llvm::Function::arg_iterator &AI);
4685 
4686   /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg
4687   /// Ty, into individual arguments on the provided vector \arg IRCallArgs,
4688   /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand.
4689   void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
4690                         SmallVectorImpl<llvm::Value *> &IRCallArgs,
4691                         unsigned &IRCallArgPos);
4692 
4693   std::pair<llvm::Value *, llvm::Type *>
4694   EmitAsmInput(const TargetInfo::ConstraintInfo &Info, const Expr *InputExpr,
4695                std::string &ConstraintStr);
4696 
4697   std::pair<llvm::Value *, llvm::Type *>
4698   EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, LValue InputValue,
4699                      QualType InputType, std::string &ConstraintStr,
4700                      SourceLocation Loc);
4701 
4702   /// Attempts to statically evaluate the object size of E. If that
4703   /// fails, emits code to figure the size of E out for us. This is
4704   /// pass_object_size aware.
4705   ///
4706   /// If EmittedExpr is non-null, this will use that instead of re-emitting E.
4707   llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
4708                                                llvm::IntegerType *ResType,
4709                                                llvm::Value *EmittedE,
4710                                                bool IsDynamic);
4711 
4712   /// Emits the size of E, as required by __builtin_object_size. This
4713   /// function is aware of pass_object_size parameters, and will act accordingly
4714   /// if E is a parameter with the pass_object_size attribute.
4715   llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type,
4716                                      llvm::IntegerType *ResType,
4717                                      llvm::Value *EmittedE,
4718                                      bool IsDynamic);
4719 
4720   void emitZeroOrPatternForAutoVarInit(QualType type, const VarDecl &D,
4721                                        Address Loc);
4722 
4723 public:
4724   enum class EvaluationOrder {
4725     ///! No language constraints on evaluation order.
4726     Default,
4727     ///! Language semantics require left-to-right evaluation.
4728     ForceLeftToRight,
4729     ///! Language semantics require right-to-left evaluation.
4730     ForceRightToLeft
4731   };
4732 
4733   // Wrapper for function prototype sources. Wraps either a FunctionProtoType or
4734   // an ObjCMethodDecl.
4735   struct PrototypeWrapper {
4736     llvm::PointerUnion<const FunctionProtoType *, const ObjCMethodDecl *> P;
4737 
4738     PrototypeWrapper(const FunctionProtoType *FT) : P(FT) {}
4739     PrototypeWrapper(const ObjCMethodDecl *MD) : P(MD) {}
4740   };
4741 
4742   void EmitCallArgs(CallArgList &Args, PrototypeWrapper Prototype,
4743                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
4744                     AbstractCallee AC = AbstractCallee(),
4745                     unsigned ParamsToSkip = 0,
4746                     EvaluationOrder Order = EvaluationOrder::Default);
4747 
4748   /// EmitPointerWithAlignment - Given an expression with a pointer type,
4749   /// emit the value and compute our best estimate of the alignment of the
4750   /// pointee.
4751   ///
4752   /// \param BaseInfo - If non-null, this will be initialized with
4753   /// information about the source of the alignment and the may-alias
4754   /// attribute.  Note that this function will conservatively fall back on
4755   /// the type when it doesn't recognize the expression and may-alias will
4756   /// be set to false.
4757   ///
4758   /// One reasonable way to use this information is when there's a language
4759   /// guarantee that the pointer must be aligned to some stricter value, and
4760   /// we're simply trying to ensure that sufficiently obvious uses of under-
4761   /// aligned objects don't get miscompiled; for example, a placement new
4762   /// into the address of a local variable.  In such a case, it's quite
4763   /// reasonable to just ignore the returned alignment when it isn't from an
4764   /// explicit source.
4765   Address EmitPointerWithAlignment(const Expr *Addr,
4766                                    LValueBaseInfo *BaseInfo = nullptr,
4767                                    TBAAAccessInfo *TBAAInfo = nullptr);
4768 
4769   /// If \p E references a parameter with pass_object_size info or a constant
4770   /// array size modifier, emit the object size divided by the size of \p EltTy.
4771   /// Otherwise return null.
4772   llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy);
4773 
4774   void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK);
4775 
4776   struct MultiVersionResolverOption {
4777     llvm::Function *Function;
4778     struct Conds {
4779       StringRef Architecture;
4780       llvm::SmallVector<StringRef, 8> Features;
4781 
4782       Conds(StringRef Arch, ArrayRef<StringRef> Feats)
4783           : Architecture(Arch), Features(Feats.begin(), Feats.end()) {}
4784     } Conditions;
4785 
4786     MultiVersionResolverOption(llvm::Function *F, StringRef Arch,
4787                                ArrayRef<StringRef> Feats)
4788         : Function(F), Conditions(Arch, Feats) {}
4789   };
4790 
4791   // Emits the body of a multiversion function's resolver. Assumes that the
4792   // options are already sorted in the proper order, with the 'default' option
4793   // last (if it exists).
4794   void EmitMultiVersionResolver(llvm::Function *Resolver,
4795                                 ArrayRef<MultiVersionResolverOption> Options);
4796 
4797 private:
4798   QualType getVarArgType(const Expr *Arg);
4799 
4800   void EmitDeclMetadata();
4801 
4802   BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType,
4803                                   const AutoVarEmission &emission);
4804 
4805   void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
4806 
4807   llvm::Value *GetValueForARMHint(unsigned BuiltinID);
4808   llvm::Value *EmitX86CpuIs(const CallExpr *E);
4809   llvm::Value *EmitX86CpuIs(StringRef CPUStr);
4810   llvm::Value *EmitX86CpuSupports(const CallExpr *E);
4811   llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs);
4812   llvm::Value *EmitX86CpuSupports(uint64_t Mask);
4813   llvm::Value *EmitX86CpuInit();
4814   llvm::Value *FormResolverCondition(const MultiVersionResolverOption &RO);
4815 };
4816 
4817 
4818 inline DominatingLLVMValue::saved_type
4819 DominatingLLVMValue::save(CodeGenFunction &CGF, llvm::Value *value) {
4820   if (!needsSaving(value)) return saved_type(value, false);
4821 
4822   // Otherwise, we need an alloca.
4823   auto align = CharUnits::fromQuantity(
4824             CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType()));
4825   Address alloca =
4826     CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save");
4827   CGF.Builder.CreateStore(value, alloca);
4828 
4829   return saved_type(alloca.getPointer(), true);
4830 }
4831 
4832 inline llvm::Value *DominatingLLVMValue::restore(CodeGenFunction &CGF,
4833                                                  saved_type value) {
4834   // If the value says it wasn't saved, trust that it's still dominating.
4835   if (!value.getInt()) return value.getPointer();
4836 
4837   // Otherwise, it should be an alloca instruction, as set up in save().
4838   auto alloca = cast<llvm::AllocaInst>(value.getPointer());
4839   return CGF.Builder.CreateAlignedLoad(alloca->getAllocatedType(), alloca,
4840                                        alloca->getAlign());
4841 }
4842 
4843 }  // end namespace CodeGen
4844 
4845 // Map the LangOption for floating point exception behavior into
4846 // the corresponding enum in the IR.
4847 llvm::fp::ExceptionBehavior
4848 ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind);
4849 }  // end namespace clang
4850 
4851 #endif
4852