1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the internal per-function state used for llvm translation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 15 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 16 17 #include "CGBuilder.h" 18 #include "CGDebugInfo.h" 19 #include "CGLoopInfo.h" 20 #include "CGValue.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "EHScopeStack.h" 24 #include "VarBypassDetector.h" 25 #include "clang/AST/CharUnits.h" 26 #include "clang/AST/ExprCXX.h" 27 #include "clang/AST/ExprObjC.h" 28 #include "clang/AST/ExprOpenMP.h" 29 #include "clang/AST/Type.h" 30 #include "clang/Basic/ABI.h" 31 #include "clang/Basic/CapturedStmt.h" 32 #include "clang/Basic/OpenMPKinds.h" 33 #include "clang/Basic/TargetInfo.h" 34 #include "clang/Frontend/CodeGenOptions.h" 35 #include "llvm/ADT/ArrayRef.h" 36 #include "llvm/ADT/DenseMap.h" 37 #include "llvm/ADT/MapVector.h" 38 #include "llvm/ADT/SmallVector.h" 39 #include "llvm/IR/ValueHandle.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Transforms/Utils/SanitizerStats.h" 42 43 namespace llvm { 44 class BasicBlock; 45 class LLVMContext; 46 class MDNode; 47 class Module; 48 class SwitchInst; 49 class Twine; 50 class Value; 51 class CallSite; 52 } 53 54 namespace clang { 55 class ASTContext; 56 class BlockDecl; 57 class CXXDestructorDecl; 58 class CXXForRangeStmt; 59 class CXXTryStmt; 60 class Decl; 61 class LabelDecl; 62 class EnumConstantDecl; 63 class FunctionDecl; 64 class FunctionProtoType; 65 class LabelStmt; 66 class ObjCContainerDecl; 67 class ObjCInterfaceDecl; 68 class ObjCIvarDecl; 69 class ObjCMethodDecl; 70 class ObjCImplementationDecl; 71 class ObjCPropertyImplDecl; 72 class TargetInfo; 73 class VarDecl; 74 class ObjCForCollectionStmt; 75 class ObjCAtTryStmt; 76 class ObjCAtThrowStmt; 77 class ObjCAtSynchronizedStmt; 78 class ObjCAutoreleasePoolStmt; 79 80 namespace analyze_os_log { 81 class OSLogBufferLayout; 82 } 83 84 namespace CodeGen { 85 class CodeGenTypes; 86 class CGCallee; 87 class CGFunctionInfo; 88 class CGRecordLayout; 89 class CGBlockInfo; 90 class CGCXXABI; 91 class BlockByrefHelpers; 92 class BlockByrefInfo; 93 class BlockFlags; 94 class BlockFieldFlags; 95 class RegionCodeGenTy; 96 class TargetCodeGenInfo; 97 struct OMPTaskDataTy; 98 struct CGCoroData; 99 100 /// The kind of evaluation to perform on values of a particular 101 /// type. Basically, is the code in CGExprScalar, CGExprComplex, or 102 /// CGExprAgg? 103 /// 104 /// TODO: should vectors maybe be split out into their own thing? 105 enum TypeEvaluationKind { 106 TEK_Scalar, 107 TEK_Complex, 108 TEK_Aggregate 109 }; 110 111 #define LIST_SANITIZER_CHECKS \ 112 SANITIZER_CHECK(AddOverflow, add_overflow, 0) \ 113 SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0) \ 114 SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0) \ 115 SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0) \ 116 SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0) \ 117 SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0) \ 118 SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 0) \ 119 SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0) \ 120 SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0) \ 121 SANITIZER_CHECK(MissingReturn, missing_return, 0) \ 122 SANITIZER_CHECK(MulOverflow, mul_overflow, 0) \ 123 SANITIZER_CHECK(NegateOverflow, negate_overflow, 0) \ 124 SANITIZER_CHECK(NullabilityArg, nullability_arg, 0) \ 125 SANITIZER_CHECK(NullabilityReturn, nullability_return, 1) \ 126 SANITIZER_CHECK(NonnullArg, nonnull_arg, 0) \ 127 SANITIZER_CHECK(NonnullReturn, nonnull_return, 1) \ 128 SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0) \ 129 SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0) \ 130 SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0) \ 131 SANITIZER_CHECK(SubOverflow, sub_overflow, 0) \ 132 SANITIZER_CHECK(TypeMismatch, type_mismatch, 1) \ 133 SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0) 134 135 enum SanitizerHandler { 136 #define SANITIZER_CHECK(Enum, Name, Version) Enum, 137 LIST_SANITIZER_CHECKS 138 #undef SANITIZER_CHECK 139 }; 140 141 /// CodeGenFunction - This class organizes the per-function state that is used 142 /// while generating LLVM code. 143 class CodeGenFunction : public CodeGenTypeCache { 144 CodeGenFunction(const CodeGenFunction &) = delete; 145 void operator=(const CodeGenFunction &) = delete; 146 147 friend class CGCXXABI; 148 public: 149 /// A jump destination is an abstract label, branching to which may 150 /// require a jump out through normal cleanups. 151 struct JumpDest { 152 JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {} 153 JumpDest(llvm::BasicBlock *Block, 154 EHScopeStack::stable_iterator Depth, 155 unsigned Index) 156 : Block(Block), ScopeDepth(Depth), Index(Index) {} 157 158 bool isValid() const { return Block != nullptr; } 159 llvm::BasicBlock *getBlock() const { return Block; } 160 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 161 unsigned getDestIndex() const { return Index; } 162 163 // This should be used cautiously. 164 void setScopeDepth(EHScopeStack::stable_iterator depth) { 165 ScopeDepth = depth; 166 } 167 168 private: 169 llvm::BasicBlock *Block; 170 EHScopeStack::stable_iterator ScopeDepth; 171 unsigned Index; 172 }; 173 174 CodeGenModule &CGM; // Per-module state. 175 const TargetInfo &Target; 176 177 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 178 LoopInfoStack LoopStack; 179 CGBuilderTy Builder; 180 181 // Stores variables for which we can't generate correct lifetime markers 182 // because of jumps. 183 VarBypassDetector Bypasses; 184 185 // CodeGen lambda for loops and support for ordered clause 186 typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &, 187 JumpDest)> 188 CodeGenLoopTy; 189 typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation, 190 const unsigned, const bool)> 191 CodeGenOrderedTy; 192 193 // Codegen lambda for loop bounds in worksharing loop constructs 194 typedef llvm::function_ref<std::pair<LValue, LValue>( 195 CodeGenFunction &, const OMPExecutableDirective &S)> 196 CodeGenLoopBoundsTy; 197 198 // Codegen lambda for loop bounds in dispatch-based loop implementation 199 typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>( 200 CodeGenFunction &, const OMPExecutableDirective &S, Address LB, 201 Address UB)> 202 CodeGenDispatchBoundsTy; 203 204 /// CGBuilder insert helper. This function is called after an 205 /// instruction is created using Builder. 206 void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name, 207 llvm::BasicBlock *BB, 208 llvm::BasicBlock::iterator InsertPt) const; 209 210 /// CurFuncDecl - Holds the Decl for the current outermost 211 /// non-closure context. 212 const Decl *CurFuncDecl; 213 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 214 const Decl *CurCodeDecl; 215 const CGFunctionInfo *CurFnInfo; 216 QualType FnRetTy; 217 llvm::Function *CurFn; 218 219 // Holds coroutine data if the current function is a coroutine. We use a 220 // wrapper to manage its lifetime, so that we don't have to define CGCoroData 221 // in this header. 222 struct CGCoroInfo { 223 std::unique_ptr<CGCoroData> Data; 224 CGCoroInfo(); 225 ~CGCoroInfo(); 226 }; 227 CGCoroInfo CurCoro; 228 229 bool isCoroutine() const { 230 return CurCoro.Data != nullptr; 231 } 232 233 /// CurGD - The GlobalDecl for the current function being compiled. 234 GlobalDecl CurGD; 235 236 /// PrologueCleanupDepth - The cleanup depth enclosing all the 237 /// cleanups associated with the parameters. 238 EHScopeStack::stable_iterator PrologueCleanupDepth; 239 240 /// ReturnBlock - Unified return block. 241 JumpDest ReturnBlock; 242 243 /// ReturnValue - The temporary alloca to hold the return 244 /// value. This is invalid iff the function has no return value. 245 Address ReturnValue; 246 247 /// Return true if a label was seen in the current scope. 248 bool hasLabelBeenSeenInCurrentScope() const { 249 if (CurLexicalScope) 250 return CurLexicalScope->hasLabels(); 251 return !LabelMap.empty(); 252 } 253 254 /// AllocaInsertPoint - This is an instruction in the entry block before which 255 /// we prefer to insert allocas. 256 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 257 258 /// API for captured statement code generation. 259 class CGCapturedStmtInfo { 260 public: 261 explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default) 262 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {} 263 explicit CGCapturedStmtInfo(const CapturedStmt &S, 264 CapturedRegionKind K = CR_Default) 265 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) { 266 267 RecordDecl::field_iterator Field = 268 S.getCapturedRecordDecl()->field_begin(); 269 for (CapturedStmt::const_capture_iterator I = S.capture_begin(), 270 E = S.capture_end(); 271 I != E; ++I, ++Field) { 272 if (I->capturesThis()) 273 CXXThisFieldDecl = *Field; 274 else if (I->capturesVariable()) 275 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 276 else if (I->capturesVariableByCopy()) 277 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 278 } 279 } 280 281 virtual ~CGCapturedStmtInfo(); 282 283 CapturedRegionKind getKind() const { return Kind; } 284 285 virtual void setContextValue(llvm::Value *V) { ThisValue = V; } 286 // Retrieve the value of the context parameter. 287 virtual llvm::Value *getContextValue() const { return ThisValue; } 288 289 /// Lookup the captured field decl for a variable. 290 virtual const FieldDecl *lookup(const VarDecl *VD) const { 291 return CaptureFields.lookup(VD->getCanonicalDecl()); 292 } 293 294 bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; } 295 virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; } 296 297 static bool classof(const CGCapturedStmtInfo *) { 298 return true; 299 } 300 301 /// Emit the captured statement body. 302 virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) { 303 CGF.incrementProfileCounter(S); 304 CGF.EmitStmt(S); 305 } 306 307 /// Get the name of the capture helper. 308 virtual StringRef getHelperName() const { return "__captured_stmt"; } 309 310 private: 311 /// The kind of captured statement being generated. 312 CapturedRegionKind Kind; 313 314 /// Keep the map between VarDecl and FieldDecl. 315 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields; 316 317 /// The base address of the captured record, passed in as the first 318 /// argument of the parallel region function. 319 llvm::Value *ThisValue; 320 321 /// Captured 'this' type. 322 FieldDecl *CXXThisFieldDecl; 323 }; 324 CGCapturedStmtInfo *CapturedStmtInfo; 325 326 /// RAII for correct setting/restoring of CapturedStmtInfo. 327 class CGCapturedStmtRAII { 328 private: 329 CodeGenFunction &CGF; 330 CGCapturedStmtInfo *PrevCapturedStmtInfo; 331 public: 332 CGCapturedStmtRAII(CodeGenFunction &CGF, 333 CGCapturedStmtInfo *NewCapturedStmtInfo) 334 : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) { 335 CGF.CapturedStmtInfo = NewCapturedStmtInfo; 336 } 337 ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; } 338 }; 339 340 /// An abstract representation of regular/ObjC call/message targets. 341 class AbstractCallee { 342 /// The function declaration of the callee. 343 const Decl *CalleeDecl; 344 345 public: 346 AbstractCallee() : CalleeDecl(nullptr) {} 347 AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {} 348 AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {} 349 bool hasFunctionDecl() const { 350 return dyn_cast_or_null<FunctionDecl>(CalleeDecl); 351 } 352 const Decl *getDecl() const { return CalleeDecl; } 353 unsigned getNumParams() const { 354 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 355 return FD->getNumParams(); 356 return cast<ObjCMethodDecl>(CalleeDecl)->param_size(); 357 } 358 const ParmVarDecl *getParamDecl(unsigned I) const { 359 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 360 return FD->getParamDecl(I); 361 return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I); 362 } 363 }; 364 365 /// Sanitizers enabled for this function. 366 SanitizerSet SanOpts; 367 368 /// True if CodeGen currently emits code implementing sanitizer checks. 369 bool IsSanitizerScope; 370 371 /// RAII object to set/unset CodeGenFunction::IsSanitizerScope. 372 class SanitizerScope { 373 CodeGenFunction *CGF; 374 public: 375 SanitizerScope(CodeGenFunction *CGF); 376 ~SanitizerScope(); 377 }; 378 379 /// In C++, whether we are code generating a thunk. This controls whether we 380 /// should emit cleanups. 381 bool CurFuncIsThunk; 382 383 /// In ARC, whether we should autorelease the return value. 384 bool AutoreleaseResult; 385 386 /// Whether we processed a Microsoft-style asm block during CodeGen. These can 387 /// potentially set the return value. 388 bool SawAsmBlock; 389 390 const FunctionDecl *CurSEHParent = nullptr; 391 392 /// True if the current function is an outlined SEH helper. This can be a 393 /// finally block or filter expression. 394 bool IsOutlinedSEHHelper; 395 396 const CodeGen::CGBlockInfo *BlockInfo; 397 llvm::Value *BlockPointer; 398 399 llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; 400 FieldDecl *LambdaThisCaptureField; 401 402 /// A mapping from NRVO variables to the flags used to indicate 403 /// when the NRVO has been applied to this variable. 404 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 405 406 EHScopeStack EHStack; 407 llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack; 408 llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack; 409 410 llvm::Instruction *CurrentFuncletPad = nullptr; 411 412 class CallLifetimeEnd final : public EHScopeStack::Cleanup { 413 llvm::Value *Addr; 414 llvm::Value *Size; 415 416 public: 417 CallLifetimeEnd(Address addr, llvm::Value *size) 418 : Addr(addr.getPointer()), Size(size) {} 419 420 void Emit(CodeGenFunction &CGF, Flags flags) override { 421 CGF.EmitLifetimeEnd(Size, Addr); 422 } 423 }; 424 425 /// Header for data within LifetimeExtendedCleanupStack. 426 struct LifetimeExtendedCleanupHeader { 427 /// The size of the following cleanup object. 428 unsigned Size; 429 /// The kind of cleanup to push: a value from the CleanupKind enumeration. 430 CleanupKind Kind; 431 432 size_t getSize() const { return Size; } 433 CleanupKind getKind() const { return Kind; } 434 }; 435 436 /// i32s containing the indexes of the cleanup destinations. 437 Address NormalCleanupDest; 438 439 unsigned NextCleanupDestIndex; 440 441 /// FirstBlockInfo - The head of a singly-linked-list of block layouts. 442 CGBlockInfo *FirstBlockInfo; 443 444 /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. 445 llvm::BasicBlock *EHResumeBlock; 446 447 /// The exception slot. All landing pads write the current exception pointer 448 /// into this alloca. 449 llvm::Value *ExceptionSlot; 450 451 /// The selector slot. Under the MandatoryCleanup model, all landing pads 452 /// write the current selector value into this alloca. 453 llvm::AllocaInst *EHSelectorSlot; 454 455 /// A stack of exception code slots. Entering an __except block pushes a slot 456 /// on the stack and leaving pops one. The __exception_code() intrinsic loads 457 /// a value from the top of the stack. 458 SmallVector<Address, 1> SEHCodeSlotStack; 459 460 /// Value returned by __exception_info intrinsic. 461 llvm::Value *SEHInfo = nullptr; 462 463 /// Emits a landing pad for the current EH stack. 464 llvm::BasicBlock *EmitLandingPad(); 465 466 llvm::BasicBlock *getInvokeDestImpl(); 467 468 template <class T> 469 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 470 return DominatingValue<T>::save(*this, value); 471 } 472 473 public: 474 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 475 /// rethrows. 476 SmallVector<llvm::Value*, 8> ObjCEHValueStack; 477 478 /// A class controlling the emission of a finally block. 479 class FinallyInfo { 480 /// Where the catchall's edge through the cleanup should go. 481 JumpDest RethrowDest; 482 483 /// A function to call to enter the catch. 484 llvm::Constant *BeginCatchFn; 485 486 /// An i1 variable indicating whether or not the @finally is 487 /// running for an exception. 488 llvm::AllocaInst *ForEHVar; 489 490 /// An i8* variable into which the exception pointer to rethrow 491 /// has been saved. 492 llvm::AllocaInst *SavedExnVar; 493 494 public: 495 void enter(CodeGenFunction &CGF, const Stmt *Finally, 496 llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn, 497 llvm::Constant *rethrowFn); 498 void exit(CodeGenFunction &CGF); 499 }; 500 501 /// Returns true inside SEH __try blocks. 502 bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); } 503 504 /// Returns true while emitting a cleanuppad. 505 bool isCleanupPadScope() const { 506 return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad); 507 } 508 509 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 510 /// current full-expression. Safe against the possibility that 511 /// we're currently inside a conditionally-evaluated expression. 512 template <class T, class... As> 513 void pushFullExprCleanup(CleanupKind kind, As... A) { 514 // If we're not in a conditional branch, or if none of the 515 // arguments requires saving, then use the unconditional cleanup. 516 if (!isInConditionalBranch()) 517 return EHStack.pushCleanup<T>(kind, A...); 518 519 // Stash values in a tuple so we can guarantee the order of saves. 520 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 521 SavedTuple Saved{saveValueInCond(A)...}; 522 523 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 524 EHStack.pushCleanupTuple<CleanupType>(kind, Saved); 525 initFullExprCleanup(); 526 } 527 528 /// Queue a cleanup to be pushed after finishing the current 529 /// full-expression. 530 template <class T, class... As> 531 void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) { 532 assert(!isInConditionalBranch() && "can't defer conditional cleanup"); 533 534 LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind }; 535 536 size_t OldSize = LifetimeExtendedCleanupStack.size(); 537 LifetimeExtendedCleanupStack.resize( 538 LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size); 539 540 static_assert(sizeof(Header) % alignof(T) == 0, 541 "Cleanup will be allocated on misaligned address"); 542 char *Buffer = &LifetimeExtendedCleanupStack[OldSize]; 543 new (Buffer) LifetimeExtendedCleanupHeader(Header); 544 new (Buffer + sizeof(Header)) T(A...); 545 } 546 547 /// Set up the last cleaup that was pushed as a conditional 548 /// full-expression cleanup. 549 void initFullExprCleanup(); 550 551 /// PushDestructorCleanup - Push a cleanup to call the 552 /// complete-object destructor of an object of the given type at the 553 /// given address. Does nothing if T is not a C++ class type with a 554 /// non-trivial destructor. 555 void PushDestructorCleanup(QualType T, Address Addr); 556 557 /// PushDestructorCleanup - Push a cleanup to call the 558 /// complete-object variant of the given destructor on the object at 559 /// the given address. 560 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, Address Addr); 561 562 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 563 /// process all branch fixups. 564 void PopCleanupBlock(bool FallThroughIsBranchThrough = false); 565 566 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 567 /// The block cannot be reactivated. Pops it if it's the top of the 568 /// stack. 569 /// 570 /// \param DominatingIP - An instruction which is known to 571 /// dominate the current IP (if set) and which lies along 572 /// all paths of execution between the current IP and the 573 /// the point at which the cleanup comes into scope. 574 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 575 llvm::Instruction *DominatingIP); 576 577 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 578 /// Cannot be used to resurrect a deactivated cleanup. 579 /// 580 /// \param DominatingIP - An instruction which is known to 581 /// dominate the current IP (if set) and which lies along 582 /// all paths of execution between the current IP and the 583 /// the point at which the cleanup comes into scope. 584 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 585 llvm::Instruction *DominatingIP); 586 587 /// Enters a new scope for capturing cleanups, all of which 588 /// will be executed once the scope is exited. 589 class RunCleanupsScope { 590 EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth; 591 size_t LifetimeExtendedCleanupStackSize; 592 bool OldDidCallStackSave; 593 protected: 594 bool PerformCleanup; 595 private: 596 597 RunCleanupsScope(const RunCleanupsScope &) = delete; 598 void operator=(const RunCleanupsScope &) = delete; 599 600 protected: 601 CodeGenFunction& CGF; 602 603 public: 604 /// Enter a new cleanup scope. 605 explicit RunCleanupsScope(CodeGenFunction &CGF) 606 : PerformCleanup(true), CGF(CGF) 607 { 608 CleanupStackDepth = CGF.EHStack.stable_begin(); 609 LifetimeExtendedCleanupStackSize = 610 CGF.LifetimeExtendedCleanupStack.size(); 611 OldDidCallStackSave = CGF.DidCallStackSave; 612 CGF.DidCallStackSave = false; 613 OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth; 614 CGF.CurrentCleanupScopeDepth = CleanupStackDepth; 615 } 616 617 /// Exit this cleanup scope, emitting any accumulated cleanups. 618 ~RunCleanupsScope() { 619 if (PerformCleanup) 620 ForceCleanup(); 621 } 622 623 /// Determine whether this scope requires any cleanups. 624 bool requiresCleanups() const { 625 return CGF.EHStack.stable_begin() != CleanupStackDepth; 626 } 627 628 /// Force the emission of cleanups now, instead of waiting 629 /// until this object is destroyed. 630 /// \param ValuesToReload - A list of values that need to be available at 631 /// the insertion point after cleanup emission. If cleanup emission created 632 /// a shared cleanup block, these value pointers will be rewritten. 633 /// Otherwise, they not will be modified. 634 void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) { 635 assert(PerformCleanup && "Already forced cleanup"); 636 CGF.DidCallStackSave = OldDidCallStackSave; 637 CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize, 638 ValuesToReload); 639 PerformCleanup = false; 640 CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth; 641 } 642 }; 643 644 // Cleanup stack depth of the RunCleanupsScope that was pushed most recently. 645 EHScopeStack::stable_iterator CurrentCleanupScopeDepth = 646 EHScopeStack::stable_end(); 647 648 class LexicalScope : public RunCleanupsScope { 649 SourceRange Range; 650 SmallVector<const LabelDecl*, 4> Labels; 651 LexicalScope *ParentScope; 652 653 LexicalScope(const LexicalScope &) = delete; 654 void operator=(const LexicalScope &) = delete; 655 656 public: 657 /// Enter a new cleanup scope. 658 explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) 659 : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) { 660 CGF.CurLexicalScope = this; 661 if (CGDebugInfo *DI = CGF.getDebugInfo()) 662 DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); 663 } 664 665 void addLabel(const LabelDecl *label) { 666 assert(PerformCleanup && "adding label to dead scope?"); 667 Labels.push_back(label); 668 } 669 670 /// Exit this cleanup scope, emitting any accumulated 671 /// cleanups. 672 ~LexicalScope() { 673 if (CGDebugInfo *DI = CGF.getDebugInfo()) 674 DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 675 676 // If we should perform a cleanup, force them now. Note that 677 // this ends the cleanup scope before rescoping any labels. 678 if (PerformCleanup) { 679 ApplyDebugLocation DL(CGF, Range.getEnd()); 680 ForceCleanup(); 681 } 682 } 683 684 /// Force the emission of cleanups now, instead of waiting 685 /// until this object is destroyed. 686 void ForceCleanup() { 687 CGF.CurLexicalScope = ParentScope; 688 RunCleanupsScope::ForceCleanup(); 689 690 if (!Labels.empty()) 691 rescopeLabels(); 692 } 693 694 bool hasLabels() const { 695 return !Labels.empty(); 696 } 697 698 void rescopeLabels(); 699 }; 700 701 typedef llvm::DenseMap<const Decl *, Address> DeclMapTy; 702 703 /// The class used to assign some variables some temporarily addresses. 704 class OMPMapVars { 705 DeclMapTy SavedLocals; 706 DeclMapTy SavedTempAddresses; 707 OMPMapVars(const OMPMapVars &) = delete; 708 void operator=(const OMPMapVars &) = delete; 709 710 public: 711 explicit OMPMapVars() = default; 712 ~OMPMapVars() { 713 assert(SavedLocals.empty() && "Did not restored original addresses."); 714 }; 715 716 /// Sets the address of the variable \p LocalVD to be \p TempAddr in 717 /// function \p CGF. 718 /// \return true if at least one variable was set already, false otherwise. 719 bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD, 720 Address TempAddr) { 721 LocalVD = LocalVD->getCanonicalDecl(); 722 // Only save it once. 723 if (SavedLocals.count(LocalVD)) return false; 724 725 // Copy the existing local entry to SavedLocals. 726 auto it = CGF.LocalDeclMap.find(LocalVD); 727 if (it != CGF.LocalDeclMap.end()) 728 SavedLocals.try_emplace(LocalVD, it->second); 729 else 730 SavedLocals.try_emplace(LocalVD, Address::invalid()); 731 732 // Generate the private entry. 733 QualType VarTy = LocalVD->getType(); 734 if (VarTy->isReferenceType()) { 735 Address Temp = CGF.CreateMemTemp(VarTy); 736 CGF.Builder.CreateStore(TempAddr.getPointer(), Temp); 737 TempAddr = Temp; 738 } 739 SavedTempAddresses.try_emplace(LocalVD, TempAddr); 740 741 return true; 742 } 743 744 /// Applies new addresses to the list of the variables. 745 /// \return true if at least one variable is using new address, false 746 /// otherwise. 747 bool apply(CodeGenFunction &CGF) { 748 copyInto(SavedTempAddresses, CGF.LocalDeclMap); 749 SavedTempAddresses.clear(); 750 return !SavedLocals.empty(); 751 } 752 753 /// Restores original addresses of the variables. 754 void restore(CodeGenFunction &CGF) { 755 if (!SavedLocals.empty()) { 756 copyInto(SavedLocals, CGF.LocalDeclMap); 757 SavedLocals.clear(); 758 } 759 } 760 761 private: 762 /// Copy all the entries in the source map over the corresponding 763 /// entries in the destination, which must exist. 764 static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) { 765 for (auto &Pair : Src) { 766 if (!Pair.second.isValid()) { 767 Dest.erase(Pair.first); 768 continue; 769 } 770 771 auto I = Dest.find(Pair.first); 772 if (I != Dest.end()) 773 I->second = Pair.second; 774 else 775 Dest.insert(Pair); 776 } 777 } 778 }; 779 780 /// The scope used to remap some variables as private in the OpenMP loop body 781 /// (or other captured region emitted without outlining), and to restore old 782 /// vars back on exit. 783 class OMPPrivateScope : public RunCleanupsScope { 784 OMPMapVars MappedVars; 785 OMPPrivateScope(const OMPPrivateScope &) = delete; 786 void operator=(const OMPPrivateScope &) = delete; 787 788 public: 789 /// Enter a new OpenMP private scope. 790 explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {} 791 792 /// Registers \p LocalVD variable as a private and apply \p PrivateGen 793 /// function for it to generate corresponding private variable. \p 794 /// PrivateGen returns an address of the generated private variable. 795 /// \return true if the variable is registered as private, false if it has 796 /// been privatized already. 797 bool addPrivate(const VarDecl *LocalVD, 798 const llvm::function_ref<Address()> PrivateGen) { 799 assert(PerformCleanup && "adding private to dead scope"); 800 return MappedVars.setVarAddr(CGF, LocalVD, PrivateGen()); 801 } 802 803 /// Privatizes local variables previously registered as private. 804 /// Registration is separate from the actual privatization to allow 805 /// initializers use values of the original variables, not the private one. 806 /// This is important, for example, if the private variable is a class 807 /// variable initialized by a constructor that references other private 808 /// variables. But at initialization original variables must be used, not 809 /// private copies. 810 /// \return true if at least one variable was privatized, false otherwise. 811 bool Privatize() { return MappedVars.apply(CGF); } 812 813 void ForceCleanup() { 814 RunCleanupsScope::ForceCleanup(); 815 MappedVars.restore(CGF); 816 } 817 818 /// Exit scope - all the mapped variables are restored. 819 ~OMPPrivateScope() { 820 if (PerformCleanup) 821 ForceCleanup(); 822 } 823 824 /// Checks if the global variable is captured in current function. 825 bool isGlobalVarCaptured(const VarDecl *VD) const { 826 VD = VD->getCanonicalDecl(); 827 return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0; 828 } 829 }; 830 831 /// Takes the old cleanup stack size and emits the cleanup blocks 832 /// that have been added. 833 void 834 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 835 std::initializer_list<llvm::Value **> ValuesToReload = {}); 836 837 /// Takes the old cleanup stack size and emits the cleanup blocks 838 /// that have been added, then adds all lifetime-extended cleanups from 839 /// the given position to the stack. 840 void 841 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 842 size_t OldLifetimeExtendedStackSize, 843 std::initializer_list<llvm::Value **> ValuesToReload = {}); 844 845 void ResolveBranchFixups(llvm::BasicBlock *Target); 846 847 /// The given basic block lies in the current EH scope, but may be a 848 /// target of a potentially scope-crossing jump; get a stable handle 849 /// to which we can perform this jump later. 850 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 851 return JumpDest(Target, 852 EHStack.getInnermostNormalCleanup(), 853 NextCleanupDestIndex++); 854 } 855 856 /// The given basic block lies in the current EH scope, but may be a 857 /// target of a potentially scope-crossing jump; get a stable handle 858 /// to which we can perform this jump later. 859 JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { 860 return getJumpDestInCurrentScope(createBasicBlock(Name)); 861 } 862 863 /// EmitBranchThroughCleanup - Emit a branch from the current insert 864 /// block through the normal cleanup handling code (if any) and then 865 /// on to \arg Dest. 866 void EmitBranchThroughCleanup(JumpDest Dest); 867 868 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 869 /// specified destination obviously has no cleanups to run. 'false' is always 870 /// a conservatively correct answer for this method. 871 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 872 873 /// popCatchScope - Pops the catch scope at the top of the EHScope 874 /// stack, emitting any required code (other than the catch handlers 875 /// themselves). 876 void popCatchScope(); 877 878 llvm::BasicBlock *getEHResumeBlock(bool isCleanup); 879 llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); 880 llvm::BasicBlock * 881 getFuncletEHDispatchBlock(EHScopeStack::stable_iterator scope); 882 883 /// An object to manage conditionally-evaluated expressions. 884 class ConditionalEvaluation { 885 llvm::BasicBlock *StartBB; 886 887 public: 888 ConditionalEvaluation(CodeGenFunction &CGF) 889 : StartBB(CGF.Builder.GetInsertBlock()) {} 890 891 void begin(CodeGenFunction &CGF) { 892 assert(CGF.OutermostConditional != this); 893 if (!CGF.OutermostConditional) 894 CGF.OutermostConditional = this; 895 } 896 897 void end(CodeGenFunction &CGF) { 898 assert(CGF.OutermostConditional != nullptr); 899 if (CGF.OutermostConditional == this) 900 CGF.OutermostConditional = nullptr; 901 } 902 903 /// Returns a block which will be executed prior to each 904 /// evaluation of the conditional code. 905 llvm::BasicBlock *getStartingBlock() const { 906 return StartBB; 907 } 908 }; 909 910 /// isInConditionalBranch - Return true if we're currently emitting 911 /// one branch or the other of a conditional expression. 912 bool isInConditionalBranch() const { return OutermostConditional != nullptr; } 913 914 void setBeforeOutermostConditional(llvm::Value *value, Address addr) { 915 assert(isInConditionalBranch()); 916 llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); 917 auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back()); 918 store->setAlignment(addr.getAlignment().getQuantity()); 919 } 920 921 /// An RAII object to record that we're evaluating a statement 922 /// expression. 923 class StmtExprEvaluation { 924 CodeGenFunction &CGF; 925 926 /// We have to save the outermost conditional: cleanups in a 927 /// statement expression aren't conditional just because the 928 /// StmtExpr is. 929 ConditionalEvaluation *SavedOutermostConditional; 930 931 public: 932 StmtExprEvaluation(CodeGenFunction &CGF) 933 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 934 CGF.OutermostConditional = nullptr; 935 } 936 937 ~StmtExprEvaluation() { 938 CGF.OutermostConditional = SavedOutermostConditional; 939 CGF.EnsureInsertPoint(); 940 } 941 }; 942 943 /// An object which temporarily prevents a value from being 944 /// destroyed by aggressive peephole optimizations that assume that 945 /// all uses of a value have been realized in the IR. 946 class PeepholeProtection { 947 llvm::Instruction *Inst; 948 friend class CodeGenFunction; 949 950 public: 951 PeepholeProtection() : Inst(nullptr) {} 952 }; 953 954 /// A non-RAII class containing all the information about a bound 955 /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for 956 /// this which makes individual mappings very simple; using this 957 /// class directly is useful when you have a variable number of 958 /// opaque values or don't want the RAII functionality for some 959 /// reason. 960 class OpaqueValueMappingData { 961 const OpaqueValueExpr *OpaqueValue; 962 bool BoundLValue; 963 CodeGenFunction::PeepholeProtection Protection; 964 965 OpaqueValueMappingData(const OpaqueValueExpr *ov, 966 bool boundLValue) 967 : OpaqueValue(ov), BoundLValue(boundLValue) {} 968 public: 969 OpaqueValueMappingData() : OpaqueValue(nullptr) {} 970 971 static bool shouldBindAsLValue(const Expr *expr) { 972 // gl-values should be bound as l-values for obvious reasons. 973 // Records should be bound as l-values because IR generation 974 // always keeps them in memory. Expressions of function type 975 // act exactly like l-values but are formally required to be 976 // r-values in C. 977 return expr->isGLValue() || 978 expr->getType()->isFunctionType() || 979 hasAggregateEvaluationKind(expr->getType()); 980 } 981 982 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 983 const OpaqueValueExpr *ov, 984 const Expr *e) { 985 if (shouldBindAsLValue(ov)) 986 return bind(CGF, ov, CGF.EmitLValue(e)); 987 return bind(CGF, ov, CGF.EmitAnyExpr(e)); 988 } 989 990 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 991 const OpaqueValueExpr *ov, 992 const LValue &lv) { 993 assert(shouldBindAsLValue(ov)); 994 CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); 995 return OpaqueValueMappingData(ov, true); 996 } 997 998 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 999 const OpaqueValueExpr *ov, 1000 const RValue &rv) { 1001 assert(!shouldBindAsLValue(ov)); 1002 CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); 1003 1004 OpaqueValueMappingData data(ov, false); 1005 1006 // Work around an extremely aggressive peephole optimization in 1007 // EmitScalarConversion which assumes that all other uses of a 1008 // value are extant. 1009 data.Protection = CGF.protectFromPeepholes(rv); 1010 1011 return data; 1012 } 1013 1014 bool isValid() const { return OpaqueValue != nullptr; } 1015 void clear() { OpaqueValue = nullptr; } 1016 1017 void unbind(CodeGenFunction &CGF) { 1018 assert(OpaqueValue && "no data to unbind!"); 1019 1020 if (BoundLValue) { 1021 CGF.OpaqueLValues.erase(OpaqueValue); 1022 } else { 1023 CGF.OpaqueRValues.erase(OpaqueValue); 1024 CGF.unprotectFromPeepholes(Protection); 1025 } 1026 } 1027 }; 1028 1029 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 1030 class OpaqueValueMapping { 1031 CodeGenFunction &CGF; 1032 OpaqueValueMappingData Data; 1033 1034 public: 1035 static bool shouldBindAsLValue(const Expr *expr) { 1036 return OpaqueValueMappingData::shouldBindAsLValue(expr); 1037 } 1038 1039 /// Build the opaque value mapping for the given conditional 1040 /// operator if it's the GNU ?: extension. This is a common 1041 /// enough pattern that the convenience operator is really 1042 /// helpful. 1043 /// 1044 OpaqueValueMapping(CodeGenFunction &CGF, 1045 const AbstractConditionalOperator *op) : CGF(CGF) { 1046 if (isa<ConditionalOperator>(op)) 1047 // Leave Data empty. 1048 return; 1049 1050 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 1051 Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), 1052 e->getCommon()); 1053 } 1054 1055 /// Build the opaque value mapping for an OpaqueValueExpr whose source 1056 /// expression is set to the expression the OVE represents. 1057 OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV) 1058 : CGF(CGF) { 1059 if (OV) { 1060 assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used " 1061 "for OVE with no source expression"); 1062 Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr()); 1063 } 1064 } 1065 1066 OpaqueValueMapping(CodeGenFunction &CGF, 1067 const OpaqueValueExpr *opaqueValue, 1068 LValue lvalue) 1069 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { 1070 } 1071 1072 OpaqueValueMapping(CodeGenFunction &CGF, 1073 const OpaqueValueExpr *opaqueValue, 1074 RValue rvalue) 1075 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { 1076 } 1077 1078 void pop() { 1079 Data.unbind(CGF); 1080 Data.clear(); 1081 } 1082 1083 ~OpaqueValueMapping() { 1084 if (Data.isValid()) Data.unbind(CGF); 1085 } 1086 }; 1087 1088 private: 1089 CGDebugInfo *DebugInfo; 1090 bool DisableDebugInfo; 1091 1092 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 1093 /// calling llvm.stacksave for multiple VLAs in the same scope. 1094 bool DidCallStackSave; 1095 1096 /// IndirectBranch - The first time an indirect goto is seen we create a block 1097 /// with an indirect branch. Every time we see the address of a label taken, 1098 /// we add the label to the indirect goto. Every subsequent indirect goto is 1099 /// codegen'd as a jump to the IndirectBranch's basic block. 1100 llvm::IndirectBrInst *IndirectBranch; 1101 1102 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 1103 /// decls. 1104 DeclMapTy LocalDeclMap; 1105 1106 // Keep track of the cleanups for callee-destructed parameters pushed to the 1107 // cleanup stack so that they can be deactivated later. 1108 llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator> 1109 CalleeDestructedParamCleanups; 1110 1111 /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this 1112 /// will contain a mapping from said ParmVarDecl to its implicit "object_size" 1113 /// parameter. 1114 llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2> 1115 SizeArguments; 1116 1117 /// Track escaped local variables with auto storage. Used during SEH 1118 /// outlining to produce a call to llvm.localescape. 1119 llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals; 1120 1121 /// LabelMap - This keeps track of the LLVM basic block for each C label. 1122 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 1123 1124 // BreakContinueStack - This keeps track of where break and continue 1125 // statements should jump to. 1126 struct BreakContinue { 1127 BreakContinue(JumpDest Break, JumpDest Continue) 1128 : BreakBlock(Break), ContinueBlock(Continue) {} 1129 1130 JumpDest BreakBlock; 1131 JumpDest ContinueBlock; 1132 }; 1133 SmallVector<BreakContinue, 8> BreakContinueStack; 1134 1135 /// Handles cancellation exit points in OpenMP-related constructs. 1136 class OpenMPCancelExitStack { 1137 /// Tracks cancellation exit point and join point for cancel-related exit 1138 /// and normal exit. 1139 struct CancelExit { 1140 CancelExit() = default; 1141 CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock, 1142 JumpDest ContBlock) 1143 : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {} 1144 OpenMPDirectiveKind Kind = OMPD_unknown; 1145 /// true if the exit block has been emitted already by the special 1146 /// emitExit() call, false if the default codegen is used. 1147 bool HasBeenEmitted = false; 1148 JumpDest ExitBlock; 1149 JumpDest ContBlock; 1150 }; 1151 1152 SmallVector<CancelExit, 8> Stack; 1153 1154 public: 1155 OpenMPCancelExitStack() : Stack(1) {} 1156 ~OpenMPCancelExitStack() = default; 1157 /// Fetches the exit block for the current OpenMP construct. 1158 JumpDest getExitBlock() const { return Stack.back().ExitBlock; } 1159 /// Emits exit block with special codegen procedure specific for the related 1160 /// OpenMP construct + emits code for normal construct cleanup. 1161 void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 1162 const llvm::function_ref<void(CodeGenFunction &)> CodeGen) { 1163 if (Stack.back().Kind == Kind && getExitBlock().isValid()) { 1164 assert(CGF.getOMPCancelDestination(Kind).isValid()); 1165 assert(CGF.HaveInsertPoint()); 1166 assert(!Stack.back().HasBeenEmitted); 1167 auto IP = CGF.Builder.saveAndClearIP(); 1168 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1169 CodeGen(CGF); 1170 CGF.EmitBranch(Stack.back().ContBlock.getBlock()); 1171 CGF.Builder.restoreIP(IP); 1172 Stack.back().HasBeenEmitted = true; 1173 } 1174 CodeGen(CGF); 1175 } 1176 /// Enter the cancel supporting \a Kind construct. 1177 /// \param Kind OpenMP directive that supports cancel constructs. 1178 /// \param HasCancel true, if the construct has inner cancel directive, 1179 /// false otherwise. 1180 void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) { 1181 Stack.push_back({Kind, 1182 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit") 1183 : JumpDest(), 1184 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont") 1185 : JumpDest()}); 1186 } 1187 /// Emits default exit point for the cancel construct (if the special one 1188 /// has not be used) + join point for cancel/normal exits. 1189 void exit(CodeGenFunction &CGF) { 1190 if (getExitBlock().isValid()) { 1191 assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid()); 1192 bool HaveIP = CGF.HaveInsertPoint(); 1193 if (!Stack.back().HasBeenEmitted) { 1194 if (HaveIP) 1195 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1196 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1197 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1198 } 1199 CGF.EmitBlock(Stack.back().ContBlock.getBlock()); 1200 if (!HaveIP) { 1201 CGF.Builder.CreateUnreachable(); 1202 CGF.Builder.ClearInsertionPoint(); 1203 } 1204 } 1205 Stack.pop_back(); 1206 } 1207 }; 1208 OpenMPCancelExitStack OMPCancelStack; 1209 1210 CodeGenPGO PGO; 1211 1212 /// Calculate branch weights appropriate for PGO data 1213 llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount); 1214 llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights); 1215 llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond, 1216 uint64_t LoopCount); 1217 1218 public: 1219 /// Increment the profiler's counter for the given statement by \p StepV. 1220 /// If \p StepV is null, the default increment is 1. 1221 void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) { 1222 if (CGM.getCodeGenOpts().hasProfileClangInstr()) 1223 PGO.emitCounterIncrement(Builder, S, StepV); 1224 PGO.setCurrentStmt(S); 1225 } 1226 1227 /// Get the profiler's count for the given statement. 1228 uint64_t getProfileCount(const Stmt *S) { 1229 Optional<uint64_t> Count = PGO.getStmtCount(S); 1230 if (!Count.hasValue()) 1231 return 0; 1232 return *Count; 1233 } 1234 1235 /// Set the profiler's current count. 1236 void setCurrentProfileCount(uint64_t Count) { 1237 PGO.setCurrentRegionCount(Count); 1238 } 1239 1240 /// Get the profiler's current count. This is generally the count for the most 1241 /// recently incremented counter. 1242 uint64_t getCurrentProfileCount() { 1243 return PGO.getCurrentRegionCount(); 1244 } 1245 1246 private: 1247 1248 /// SwitchInsn - This is nearest current switch instruction. It is null if 1249 /// current context is not in a switch. 1250 llvm::SwitchInst *SwitchInsn; 1251 /// The branch weights of SwitchInsn when doing instrumentation based PGO. 1252 SmallVector<uint64_t, 16> *SwitchWeights; 1253 1254 /// CaseRangeBlock - This block holds if condition check for last case 1255 /// statement range in current switch instruction. 1256 llvm::BasicBlock *CaseRangeBlock; 1257 1258 /// OpaqueLValues - Keeps track of the current set of opaque value 1259 /// expressions. 1260 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 1261 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 1262 1263 // VLASizeMap - This keeps track of the associated size for each VLA type. 1264 // We track this by the size expression rather than the type itself because 1265 // in certain situations, like a const qualifier applied to an VLA typedef, 1266 // multiple VLA types can share the same size expression. 1267 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 1268 // enter/leave scopes. 1269 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 1270 1271 /// A block containing a single 'unreachable' instruction. Created 1272 /// lazily by getUnreachableBlock(). 1273 llvm::BasicBlock *UnreachableBlock; 1274 1275 /// Counts of the number return expressions in the function. 1276 unsigned NumReturnExprs; 1277 1278 /// Count the number of simple (constant) return expressions in the function. 1279 unsigned NumSimpleReturnExprs; 1280 1281 /// The last regular (non-return) debug location (breakpoint) in the function. 1282 SourceLocation LastStopPoint; 1283 1284 public: 1285 /// A scope within which we are constructing the fields of an object which 1286 /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use 1287 /// if we need to evaluate a CXXDefaultInitExpr within the evaluation. 1288 class FieldConstructionScope { 1289 public: 1290 FieldConstructionScope(CodeGenFunction &CGF, Address This) 1291 : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) { 1292 CGF.CXXDefaultInitExprThis = This; 1293 } 1294 ~FieldConstructionScope() { 1295 CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis; 1296 } 1297 1298 private: 1299 CodeGenFunction &CGF; 1300 Address OldCXXDefaultInitExprThis; 1301 }; 1302 1303 /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this' 1304 /// is overridden to be the object under construction. 1305 class CXXDefaultInitExprScope { 1306 public: 1307 CXXDefaultInitExprScope(CodeGenFunction &CGF) 1308 : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue), 1309 OldCXXThisAlignment(CGF.CXXThisAlignment) { 1310 CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer(); 1311 CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment(); 1312 } 1313 ~CXXDefaultInitExprScope() { 1314 CGF.CXXThisValue = OldCXXThisValue; 1315 CGF.CXXThisAlignment = OldCXXThisAlignment; 1316 } 1317 1318 public: 1319 CodeGenFunction &CGF; 1320 llvm::Value *OldCXXThisValue; 1321 CharUnits OldCXXThisAlignment; 1322 }; 1323 1324 /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the 1325 /// current loop index is overridden. 1326 class ArrayInitLoopExprScope { 1327 public: 1328 ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index) 1329 : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) { 1330 CGF.ArrayInitIndex = Index; 1331 } 1332 ~ArrayInitLoopExprScope() { 1333 CGF.ArrayInitIndex = OldArrayInitIndex; 1334 } 1335 1336 private: 1337 CodeGenFunction &CGF; 1338 llvm::Value *OldArrayInitIndex; 1339 }; 1340 1341 class InlinedInheritingConstructorScope { 1342 public: 1343 InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD) 1344 : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl), 1345 OldCurCodeDecl(CGF.CurCodeDecl), 1346 OldCXXABIThisDecl(CGF.CXXABIThisDecl), 1347 OldCXXABIThisValue(CGF.CXXABIThisValue), 1348 OldCXXThisValue(CGF.CXXThisValue), 1349 OldCXXABIThisAlignment(CGF.CXXABIThisAlignment), 1350 OldCXXThisAlignment(CGF.CXXThisAlignment), 1351 OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy), 1352 OldCXXInheritedCtorInitExprArgs( 1353 std::move(CGF.CXXInheritedCtorInitExprArgs)) { 1354 CGF.CurGD = GD; 1355 CGF.CurFuncDecl = CGF.CurCodeDecl = 1356 cast<CXXConstructorDecl>(GD.getDecl()); 1357 CGF.CXXABIThisDecl = nullptr; 1358 CGF.CXXABIThisValue = nullptr; 1359 CGF.CXXThisValue = nullptr; 1360 CGF.CXXABIThisAlignment = CharUnits(); 1361 CGF.CXXThisAlignment = CharUnits(); 1362 CGF.ReturnValue = Address::invalid(); 1363 CGF.FnRetTy = QualType(); 1364 CGF.CXXInheritedCtorInitExprArgs.clear(); 1365 } 1366 ~InlinedInheritingConstructorScope() { 1367 CGF.CurGD = OldCurGD; 1368 CGF.CurFuncDecl = OldCurFuncDecl; 1369 CGF.CurCodeDecl = OldCurCodeDecl; 1370 CGF.CXXABIThisDecl = OldCXXABIThisDecl; 1371 CGF.CXXABIThisValue = OldCXXABIThisValue; 1372 CGF.CXXThisValue = OldCXXThisValue; 1373 CGF.CXXABIThisAlignment = OldCXXABIThisAlignment; 1374 CGF.CXXThisAlignment = OldCXXThisAlignment; 1375 CGF.ReturnValue = OldReturnValue; 1376 CGF.FnRetTy = OldFnRetTy; 1377 CGF.CXXInheritedCtorInitExprArgs = 1378 std::move(OldCXXInheritedCtorInitExprArgs); 1379 } 1380 1381 private: 1382 CodeGenFunction &CGF; 1383 GlobalDecl OldCurGD; 1384 const Decl *OldCurFuncDecl; 1385 const Decl *OldCurCodeDecl; 1386 ImplicitParamDecl *OldCXXABIThisDecl; 1387 llvm::Value *OldCXXABIThisValue; 1388 llvm::Value *OldCXXThisValue; 1389 CharUnits OldCXXABIThisAlignment; 1390 CharUnits OldCXXThisAlignment; 1391 Address OldReturnValue; 1392 QualType OldFnRetTy; 1393 CallArgList OldCXXInheritedCtorInitExprArgs; 1394 }; 1395 1396 private: 1397 /// CXXThisDecl - When generating code for a C++ member function, 1398 /// this will hold the implicit 'this' declaration. 1399 ImplicitParamDecl *CXXABIThisDecl; 1400 llvm::Value *CXXABIThisValue; 1401 llvm::Value *CXXThisValue; 1402 CharUnits CXXABIThisAlignment; 1403 CharUnits CXXThisAlignment; 1404 1405 /// The value of 'this' to use when evaluating CXXDefaultInitExprs within 1406 /// this expression. 1407 Address CXXDefaultInitExprThis = Address::invalid(); 1408 1409 /// The current array initialization index when evaluating an 1410 /// ArrayInitIndexExpr within an ArrayInitLoopExpr. 1411 llvm::Value *ArrayInitIndex = nullptr; 1412 1413 /// The values of function arguments to use when evaluating 1414 /// CXXInheritedCtorInitExprs within this context. 1415 CallArgList CXXInheritedCtorInitExprArgs; 1416 1417 /// CXXStructorImplicitParamDecl - When generating code for a constructor or 1418 /// destructor, this will hold the implicit argument (e.g. VTT). 1419 ImplicitParamDecl *CXXStructorImplicitParamDecl; 1420 llvm::Value *CXXStructorImplicitParamValue; 1421 1422 /// OutermostConditional - Points to the outermost active 1423 /// conditional control. This is used so that we know if a 1424 /// temporary should be destroyed conditionally. 1425 ConditionalEvaluation *OutermostConditional; 1426 1427 /// The current lexical scope. 1428 LexicalScope *CurLexicalScope; 1429 1430 /// The current source location that should be used for exception 1431 /// handling code. 1432 SourceLocation CurEHLocation; 1433 1434 /// BlockByrefInfos - For each __block variable, contains 1435 /// information about the layout of the variable. 1436 llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos; 1437 1438 /// Used by -fsanitize=nullability-return to determine whether the return 1439 /// value can be checked. 1440 llvm::Value *RetValNullabilityPrecondition = nullptr; 1441 1442 /// Check if -fsanitize=nullability-return instrumentation is required for 1443 /// this function. 1444 bool requiresReturnValueNullabilityCheck() const { 1445 return RetValNullabilityPrecondition; 1446 } 1447 1448 /// Used to store precise source locations for return statements by the 1449 /// runtime return value checks. 1450 Address ReturnLocation = Address::invalid(); 1451 1452 /// Check if the return value of this function requires sanitization. 1453 bool requiresReturnValueCheck() const { 1454 return requiresReturnValueNullabilityCheck() || 1455 (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 1456 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()); 1457 } 1458 1459 llvm::BasicBlock *TerminateLandingPad; 1460 llvm::BasicBlock *TerminateHandler; 1461 llvm::BasicBlock *TrapBB; 1462 1463 /// Terminate funclets keyed by parent funclet pad. 1464 llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets; 1465 1466 /// True if we need emit the life-time markers. 1467 const bool ShouldEmitLifetimeMarkers; 1468 1469 /// Add OpenCL kernel arg metadata and the kernel attribute metadata to 1470 /// the function metadata. 1471 void EmitOpenCLKernelMetadata(const FunctionDecl *FD, 1472 llvm::Function *Fn); 1473 1474 public: 1475 CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false); 1476 ~CodeGenFunction(); 1477 1478 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 1479 ASTContext &getContext() const { return CGM.getContext(); } 1480 CGDebugInfo *getDebugInfo() { 1481 if (DisableDebugInfo) 1482 return nullptr; 1483 return DebugInfo; 1484 } 1485 void disableDebugInfo() { DisableDebugInfo = true; } 1486 void enableDebugInfo() { DisableDebugInfo = false; } 1487 1488 bool shouldUseFusedARCCalls() { 1489 return CGM.getCodeGenOpts().OptimizationLevel == 0; 1490 } 1491 1492 const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } 1493 1494 /// Returns a pointer to the function's exception object and selector slot, 1495 /// which is assigned in every landing pad. 1496 Address getExceptionSlot(); 1497 Address getEHSelectorSlot(); 1498 1499 /// Returns the contents of the function's exception object and selector 1500 /// slots. 1501 llvm::Value *getExceptionFromSlot(); 1502 llvm::Value *getSelectorFromSlot(); 1503 1504 Address getNormalCleanupDestSlot(); 1505 1506 llvm::BasicBlock *getUnreachableBlock() { 1507 if (!UnreachableBlock) { 1508 UnreachableBlock = createBasicBlock("unreachable"); 1509 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 1510 } 1511 return UnreachableBlock; 1512 } 1513 1514 llvm::BasicBlock *getInvokeDest() { 1515 if (!EHStack.requiresLandingPad()) return nullptr; 1516 return getInvokeDestImpl(); 1517 } 1518 1519 bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; } 1520 1521 const TargetInfo &getTarget() const { return Target; } 1522 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 1523 const TargetCodeGenInfo &getTargetHooks() const { 1524 return CGM.getTargetCodeGenInfo(); 1525 } 1526 1527 //===--------------------------------------------------------------------===// 1528 // Cleanups 1529 //===--------------------------------------------------------------------===// 1530 1531 typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty); 1532 1533 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1534 Address arrayEndPointer, 1535 QualType elementType, 1536 CharUnits elementAlignment, 1537 Destroyer *destroyer); 1538 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1539 llvm::Value *arrayEnd, 1540 QualType elementType, 1541 CharUnits elementAlignment, 1542 Destroyer *destroyer); 1543 1544 void pushDestroy(QualType::DestructionKind dtorKind, 1545 Address addr, QualType type); 1546 void pushEHDestroy(QualType::DestructionKind dtorKind, 1547 Address addr, QualType type); 1548 void pushDestroy(CleanupKind kind, Address addr, QualType type, 1549 Destroyer *destroyer, bool useEHCleanupForArray); 1550 void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr, 1551 QualType type, Destroyer *destroyer, 1552 bool useEHCleanupForArray); 1553 void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 1554 llvm::Value *CompletePtr, 1555 QualType ElementType); 1556 void pushStackRestore(CleanupKind kind, Address SPMem); 1557 void emitDestroy(Address addr, QualType type, Destroyer *destroyer, 1558 bool useEHCleanupForArray); 1559 llvm::Function *generateDestroyHelper(Address addr, QualType type, 1560 Destroyer *destroyer, 1561 bool useEHCleanupForArray, 1562 const VarDecl *VD); 1563 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 1564 QualType elementType, CharUnits elementAlign, 1565 Destroyer *destroyer, 1566 bool checkZeroLength, bool useEHCleanup); 1567 1568 Destroyer *getDestroyer(QualType::DestructionKind destructionKind); 1569 1570 /// Determines whether an EH cleanup is required to destroy a type 1571 /// with the given destruction kind. 1572 bool needsEHCleanup(QualType::DestructionKind kind) { 1573 switch (kind) { 1574 case QualType::DK_none: 1575 return false; 1576 case QualType::DK_cxx_destructor: 1577 case QualType::DK_objc_weak_lifetime: 1578 case QualType::DK_nontrivial_c_struct: 1579 return getLangOpts().Exceptions; 1580 case QualType::DK_objc_strong_lifetime: 1581 return getLangOpts().Exceptions && 1582 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 1583 } 1584 llvm_unreachable("bad destruction kind"); 1585 } 1586 1587 CleanupKind getCleanupKind(QualType::DestructionKind kind) { 1588 return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); 1589 } 1590 1591 //===--------------------------------------------------------------------===// 1592 // Objective-C 1593 //===--------------------------------------------------------------------===// 1594 1595 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 1596 1597 void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD); 1598 1599 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 1600 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 1601 const ObjCPropertyImplDecl *PID); 1602 void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 1603 const ObjCPropertyImplDecl *propImpl, 1604 const ObjCMethodDecl *GetterMothodDecl, 1605 llvm::Constant *AtomicHelperFn); 1606 1607 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1608 ObjCMethodDecl *MD, bool ctor); 1609 1610 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 1611 /// for the given property. 1612 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 1613 const ObjCPropertyImplDecl *PID); 1614 void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1615 const ObjCPropertyImplDecl *propImpl, 1616 llvm::Constant *AtomicHelperFn); 1617 1618 //===--------------------------------------------------------------------===// 1619 // Block Bits 1620 //===--------------------------------------------------------------------===// 1621 1622 /// Emit block literal. 1623 /// \return an LLVM value which is a pointer to a struct which contains 1624 /// information about the block, including the block invoke function, the 1625 /// captured variables, etc. 1626 llvm::Value *EmitBlockLiteral(const BlockExpr *); 1627 static void destroyBlockInfos(CGBlockInfo *info); 1628 1629 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 1630 const CGBlockInfo &Info, 1631 const DeclMapTy &ldm, 1632 bool IsLambdaConversionToBlock, 1633 bool BuildGlobalBlock); 1634 1635 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 1636 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 1637 llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( 1638 const ObjCPropertyImplDecl *PID); 1639 llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( 1640 const ObjCPropertyImplDecl *PID); 1641 llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); 1642 1643 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags); 1644 1645 class AutoVarEmission; 1646 1647 void emitByrefStructureInit(const AutoVarEmission &emission); 1648 void enterByrefCleanup(const AutoVarEmission &emission); 1649 1650 void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum, 1651 llvm::Value *ptr); 1652 1653 Address LoadBlockStruct(); 1654 Address GetAddrOfBlockDecl(const VarDecl *var, bool ByRef); 1655 1656 /// BuildBlockByrefAddress - Computes the location of the 1657 /// data in a variable which is declared as __block. 1658 Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V, 1659 bool followForward = true); 1660 Address emitBlockByrefAddress(Address baseAddr, 1661 const BlockByrefInfo &info, 1662 bool followForward, 1663 const llvm::Twine &name); 1664 1665 const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var); 1666 1667 QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args); 1668 1669 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1670 const CGFunctionInfo &FnInfo); 1671 /// Emit code for the start of a function. 1672 /// \param Loc The location to be associated with the function. 1673 /// \param StartLoc The location of the function body. 1674 void StartFunction(GlobalDecl GD, 1675 QualType RetTy, 1676 llvm::Function *Fn, 1677 const CGFunctionInfo &FnInfo, 1678 const FunctionArgList &Args, 1679 SourceLocation Loc = SourceLocation(), 1680 SourceLocation StartLoc = SourceLocation()); 1681 1682 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor); 1683 1684 void EmitConstructorBody(FunctionArgList &Args); 1685 void EmitDestructorBody(FunctionArgList &Args); 1686 void emitImplicitAssignmentOperatorBody(FunctionArgList &Args); 1687 void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body); 1688 void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S); 1689 1690 void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator, 1691 CallArgList &CallArgs); 1692 void EmitLambdaBlockInvokeBody(); 1693 void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD); 1694 void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD); 1695 void EmitAsanPrologueOrEpilogue(bool Prologue); 1696 1697 /// Emit the unified return block, trying to avoid its emission when 1698 /// possible. 1699 /// \return The debug location of the user written return statement if the 1700 /// return block is is avoided. 1701 llvm::DebugLoc EmitReturnBlock(); 1702 1703 /// FinishFunction - Complete IR generation of the current function. It is 1704 /// legal to call this function even if there is no current insertion point. 1705 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 1706 1707 void StartThunk(llvm::Function *Fn, GlobalDecl GD, 1708 const CGFunctionInfo &FnInfo, bool IsUnprototyped); 1709 1710 void EmitCallAndReturnForThunk(llvm::Constant *Callee, const ThunkInfo *Thunk, 1711 bool IsUnprototyped); 1712 1713 void FinishThunk(); 1714 1715 /// Emit a musttail call for a thunk with a potentially adjusted this pointer. 1716 void EmitMustTailThunk(const CXXMethodDecl *MD, llvm::Value *AdjustedThisPtr, 1717 llvm::Value *Callee); 1718 1719 /// Generate a thunk for the given method. 1720 void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1721 GlobalDecl GD, const ThunkInfo &Thunk, 1722 bool IsUnprototyped); 1723 1724 llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn, 1725 const CGFunctionInfo &FnInfo, 1726 GlobalDecl GD, const ThunkInfo &Thunk); 1727 1728 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 1729 FunctionArgList &Args); 1730 1731 void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init); 1732 1733 /// Struct with all information about dynamic [sub]class needed to set vptr. 1734 struct VPtr { 1735 BaseSubobject Base; 1736 const CXXRecordDecl *NearestVBase; 1737 CharUnits OffsetFromNearestVBase; 1738 const CXXRecordDecl *VTableClass; 1739 }; 1740 1741 /// Initialize the vtable pointer of the given subobject. 1742 void InitializeVTablePointer(const VPtr &vptr); 1743 1744 typedef llvm::SmallVector<VPtr, 4> VPtrsVector; 1745 1746 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 1747 VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass); 1748 1749 void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase, 1750 CharUnits OffsetFromNearestVBase, 1751 bool BaseIsNonVirtualPrimaryBase, 1752 const CXXRecordDecl *VTableClass, 1753 VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs); 1754 1755 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 1756 1757 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 1758 /// to by This. 1759 llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy, 1760 const CXXRecordDecl *VTableClass); 1761 1762 enum CFITypeCheckKind { 1763 CFITCK_VCall, 1764 CFITCK_NVCall, 1765 CFITCK_DerivedCast, 1766 CFITCK_UnrelatedCast, 1767 CFITCK_ICall, 1768 CFITCK_NVMFCall, 1769 CFITCK_VMFCall, 1770 }; 1771 1772 /// Derived is the presumed address of an object of type T after a 1773 /// cast. If T is a polymorphic class type, emit a check that the virtual 1774 /// table for Derived belongs to a class derived from T. 1775 void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived, 1776 bool MayBeNull, CFITypeCheckKind TCK, 1777 SourceLocation Loc); 1778 1779 /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable. 1780 /// If vptr CFI is enabled, emit a check that VTable is valid. 1781 void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable, 1782 CFITypeCheckKind TCK, SourceLocation Loc); 1783 1784 /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for 1785 /// RD using llvm.type.test. 1786 void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable, 1787 CFITypeCheckKind TCK, SourceLocation Loc); 1788 1789 /// If whole-program virtual table optimization is enabled, emit an assumption 1790 /// that VTable is a member of RD's type identifier. Or, if vptr CFI is 1791 /// enabled, emit a check that VTable is a member of RD's type identifier. 1792 void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, 1793 llvm::Value *VTable, SourceLocation Loc); 1794 1795 /// Returns whether we should perform a type checked load when loading a 1796 /// virtual function for virtual calls to members of RD. This is generally 1797 /// true when both vcall CFI and whole-program-vtables are enabled. 1798 bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD); 1799 1800 /// Emit a type checked load from the given vtable. 1801 llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable, 1802 uint64_t VTableByteOffset); 1803 1804 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 1805 /// given phase of destruction for a destructor. The end result 1806 /// should call destructors on members and base classes in reverse 1807 /// order of their construction. 1808 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 1809 1810 /// ShouldInstrumentFunction - Return true if the current function should be 1811 /// instrumented with __cyg_profile_func_* calls 1812 bool ShouldInstrumentFunction(); 1813 1814 /// ShouldXRayInstrument - Return true if the current function should be 1815 /// instrumented with XRay nop sleds. 1816 bool ShouldXRayInstrumentFunction() const; 1817 1818 /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit 1819 /// XRay custom event handling calls. 1820 bool AlwaysEmitXRayCustomEvents() const; 1821 1822 /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit 1823 /// XRay typed event handling calls. 1824 bool AlwaysEmitXRayTypedEvents() const; 1825 1826 /// Encode an address into a form suitable for use in a function prologue. 1827 llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F, 1828 llvm::Constant *Addr); 1829 1830 /// Decode an address used in a function prologue, encoded by \c 1831 /// EncodeAddrForUseInPrologue. 1832 llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F, 1833 llvm::Value *EncodedAddr); 1834 1835 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 1836 /// arguments for the given function. This is also responsible for naming the 1837 /// LLVM function arguments. 1838 void EmitFunctionProlog(const CGFunctionInfo &FI, 1839 llvm::Function *Fn, 1840 const FunctionArgList &Args); 1841 1842 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 1843 /// given temporary. 1844 void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc, 1845 SourceLocation EndLoc); 1846 1847 /// Emit a test that checks if the return value \p RV is nonnull. 1848 void EmitReturnValueCheck(llvm::Value *RV); 1849 1850 /// EmitStartEHSpec - Emit the start of the exception spec. 1851 void EmitStartEHSpec(const Decl *D); 1852 1853 /// EmitEndEHSpec - Emit the end of the exception spec. 1854 void EmitEndEHSpec(const Decl *D); 1855 1856 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 1857 llvm::BasicBlock *getTerminateLandingPad(); 1858 1859 /// getTerminateLandingPad - Return a cleanup funclet that just calls 1860 /// terminate. 1861 llvm::BasicBlock *getTerminateFunclet(); 1862 1863 /// getTerminateHandler - Return a handler (not a landing pad, just 1864 /// a catch handler) that just calls terminate. This is used when 1865 /// a terminate scope encloses a try. 1866 llvm::BasicBlock *getTerminateHandler(); 1867 1868 llvm::Type *ConvertTypeForMem(QualType T); 1869 llvm::Type *ConvertType(QualType T); 1870 llvm::Type *ConvertType(const TypeDecl *T) { 1871 return ConvertType(getContext().getTypeDeclType(T)); 1872 } 1873 1874 /// LoadObjCSelf - Load the value of self. This function is only valid while 1875 /// generating code for an Objective-C method. 1876 llvm::Value *LoadObjCSelf(); 1877 1878 /// TypeOfSelfObject - Return type of object that this self represents. 1879 QualType TypeOfSelfObject(); 1880 1881 /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T. 1882 static TypeEvaluationKind getEvaluationKind(QualType T); 1883 1884 static bool hasScalarEvaluationKind(QualType T) { 1885 return getEvaluationKind(T) == TEK_Scalar; 1886 } 1887 1888 static bool hasAggregateEvaluationKind(QualType T) { 1889 return getEvaluationKind(T) == TEK_Aggregate; 1890 } 1891 1892 /// createBasicBlock - Create an LLVM basic block. 1893 llvm::BasicBlock *createBasicBlock(const Twine &name = "", 1894 llvm::Function *parent = nullptr, 1895 llvm::BasicBlock *before = nullptr) { 1896 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 1897 } 1898 1899 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 1900 /// label maps to. 1901 JumpDest getJumpDestForLabel(const LabelDecl *S); 1902 1903 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 1904 /// another basic block, simplify it. This assumes that no other code could 1905 /// potentially reference the basic block. 1906 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 1907 1908 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 1909 /// adding a fall-through branch from the current insert block if 1910 /// necessary. It is legal to call this function even if there is no current 1911 /// insertion point. 1912 /// 1913 /// IsFinished - If true, indicates that the caller has finished emitting 1914 /// branches to the given block and does not expect to emit code into it. This 1915 /// means the block can be ignored if it is unreachable. 1916 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 1917 1918 /// EmitBlockAfterUses - Emit the given block somewhere hopefully 1919 /// near its uses, and leave the insertion point in it. 1920 void EmitBlockAfterUses(llvm::BasicBlock *BB); 1921 1922 /// EmitBranch - Emit a branch to the specified basic block from the current 1923 /// insert block, taking care to avoid creation of branches from dummy 1924 /// blocks. It is legal to call this function even if there is no current 1925 /// insertion point. 1926 /// 1927 /// This function clears the current insertion point. The caller should follow 1928 /// calls to this function with calls to Emit*Block prior to generation new 1929 /// code. 1930 void EmitBranch(llvm::BasicBlock *Block); 1931 1932 /// HaveInsertPoint - True if an insertion point is defined. If not, this 1933 /// indicates that the current code being emitted is unreachable. 1934 bool HaveInsertPoint() const { 1935 return Builder.GetInsertBlock() != nullptr; 1936 } 1937 1938 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 1939 /// emitted IR has a place to go. Note that by definition, if this function 1940 /// creates a block then that block is unreachable; callers may do better to 1941 /// detect when no insertion point is defined and simply skip IR generation. 1942 void EnsureInsertPoint() { 1943 if (!HaveInsertPoint()) 1944 EmitBlock(createBasicBlock()); 1945 } 1946 1947 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1948 /// specified stmt yet. 1949 void ErrorUnsupported(const Stmt *S, const char *Type); 1950 1951 //===--------------------------------------------------------------------===// 1952 // Helpers 1953 //===--------------------------------------------------------------------===// 1954 1955 LValue MakeAddrLValue(Address Addr, QualType T, 1956 AlignmentSource Source = AlignmentSource::Type) { 1957 return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source), 1958 CGM.getTBAAAccessInfo(T)); 1959 } 1960 1961 LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo, 1962 TBAAAccessInfo TBAAInfo) { 1963 return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo); 1964 } 1965 1966 LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 1967 AlignmentSource Source = AlignmentSource::Type) { 1968 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), 1969 LValueBaseInfo(Source), CGM.getTBAAAccessInfo(T)); 1970 } 1971 1972 LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 1973 LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) { 1974 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), 1975 BaseInfo, TBAAInfo); 1976 } 1977 1978 LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T); 1979 LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T); 1980 CharUnits getNaturalTypeAlignment(QualType T, 1981 LValueBaseInfo *BaseInfo = nullptr, 1982 TBAAAccessInfo *TBAAInfo = nullptr, 1983 bool forPointeeType = false); 1984 CharUnits getNaturalPointeeTypeAlignment(QualType T, 1985 LValueBaseInfo *BaseInfo = nullptr, 1986 TBAAAccessInfo *TBAAInfo = nullptr); 1987 1988 Address EmitLoadOfReference(LValue RefLVal, 1989 LValueBaseInfo *PointeeBaseInfo = nullptr, 1990 TBAAAccessInfo *PointeeTBAAInfo = nullptr); 1991 LValue EmitLoadOfReferenceLValue(LValue RefLVal); 1992 LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy, 1993 AlignmentSource Source = 1994 AlignmentSource::Type) { 1995 LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source), 1996 CGM.getTBAAAccessInfo(RefTy)); 1997 return EmitLoadOfReferenceLValue(RefLVal); 1998 } 1999 2000 Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy, 2001 LValueBaseInfo *BaseInfo = nullptr, 2002 TBAAAccessInfo *TBAAInfo = nullptr); 2003 LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy); 2004 2005 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 2006 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 2007 /// insertion point of the builder. The caller is responsible for setting an 2008 /// appropriate alignment on 2009 /// the alloca. 2010 /// 2011 /// \p ArraySize is the number of array elements to be allocated if it 2012 /// is not nullptr. 2013 /// 2014 /// LangAS::Default is the address space of pointers to local variables and 2015 /// temporaries, as exposed in the source language. In certain 2016 /// configurations, this is not the same as the alloca address space, and a 2017 /// cast is needed to lift the pointer from the alloca AS into 2018 /// LangAS::Default. This can happen when the target uses a restricted 2019 /// address space for the stack but the source language requires 2020 /// LangAS::Default to be a generic address space. The latter condition is 2021 /// common for most programming languages; OpenCL is an exception in that 2022 /// LangAS::Default is the private address space, which naturally maps 2023 /// to the stack. 2024 /// 2025 /// Because the address of a temporary is often exposed to the program in 2026 /// various ways, this function will perform the cast. The original alloca 2027 /// instruction is returned through \p Alloca if it is not nullptr. 2028 /// 2029 /// The cast is not performaed in CreateTempAllocaWithoutCast. This is 2030 /// more efficient if the caller knows that the address will not be exposed. 2031 llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp", 2032 llvm::Value *ArraySize = nullptr); 2033 Address CreateTempAlloca(llvm::Type *Ty, CharUnits align, 2034 const Twine &Name = "tmp", 2035 llvm::Value *ArraySize = nullptr, 2036 Address *Alloca = nullptr); 2037 Address CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align, 2038 const Twine &Name = "tmp", 2039 llvm::Value *ArraySize = nullptr); 2040 2041 /// CreateDefaultAlignedTempAlloca - This creates an alloca with the 2042 /// default ABI alignment of the given LLVM type. 2043 /// 2044 /// IMPORTANT NOTE: This is *not* generally the right alignment for 2045 /// any given AST type that happens to have been lowered to the 2046 /// given IR type. This should only ever be used for function-local, 2047 /// IR-driven manipulations like saving and restoring a value. Do 2048 /// not hand this address off to arbitrary IRGen routines, and especially 2049 /// do not pass it as an argument to a function that might expect a 2050 /// properly ABI-aligned value. 2051 Address CreateDefaultAlignTempAlloca(llvm::Type *Ty, 2052 const Twine &Name = "tmp"); 2053 2054 /// InitTempAlloca - Provide an initial value for the given alloca which 2055 /// will be observable at all locations in the function. 2056 /// 2057 /// The address should be something that was returned from one of 2058 /// the CreateTempAlloca or CreateMemTemp routines, and the 2059 /// initializer must be valid in the entry block (i.e. it must 2060 /// either be a constant or an argument value). 2061 void InitTempAlloca(Address Alloca, llvm::Value *Value); 2062 2063 /// CreateIRTemp - Create a temporary IR object of the given type, with 2064 /// appropriate alignment. This routine should only be used when an temporary 2065 /// value needs to be stored into an alloca (for example, to avoid explicit 2066 /// PHI construction), but the type is the IR type, not the type appropriate 2067 /// for storing in memory. 2068 /// 2069 /// That is, this is exactly equivalent to CreateMemTemp, but calling 2070 /// ConvertType instead of ConvertTypeForMem. 2071 Address CreateIRTemp(QualType T, const Twine &Name = "tmp"); 2072 2073 /// CreateMemTemp - Create a temporary memory object of the given type, with 2074 /// appropriate alignmen and cast it to the default address space. Returns 2075 /// the original alloca instruction by \p Alloca if it is not nullptr. 2076 Address CreateMemTemp(QualType T, const Twine &Name = "tmp", 2077 Address *Alloca = nullptr); 2078 Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp", 2079 Address *Alloca = nullptr); 2080 2081 /// CreateMemTemp - Create a temporary memory object of the given type, with 2082 /// appropriate alignmen without casting it to the default address space. 2083 Address CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp"); 2084 Address CreateMemTempWithoutCast(QualType T, CharUnits Align, 2085 const Twine &Name = "tmp"); 2086 2087 /// CreateAggTemp - Create a temporary memory object for the given 2088 /// aggregate type. 2089 AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") { 2090 return AggValueSlot::forAddr(CreateMemTemp(T, Name), 2091 T.getQualifiers(), 2092 AggValueSlot::IsNotDestructed, 2093 AggValueSlot::DoesNotNeedGCBarriers, 2094 AggValueSlot::IsNotAliased, 2095 AggValueSlot::DoesNotOverlap); 2096 } 2097 2098 /// Emit a cast to void* in the appropriate address space. 2099 llvm::Value *EmitCastToVoidPtr(llvm::Value *value); 2100 2101 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 2102 /// expression and compare the result against zero, returning an Int1Ty value. 2103 llvm::Value *EvaluateExprAsBool(const Expr *E); 2104 2105 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 2106 void EmitIgnoredExpr(const Expr *E); 2107 2108 /// EmitAnyExpr - Emit code to compute the specified expression which can have 2109 /// any type. The result is returned as an RValue struct. If this is an 2110 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 2111 /// the result should be returned. 2112 /// 2113 /// \param ignoreResult True if the resulting value isn't used. 2114 RValue EmitAnyExpr(const Expr *E, 2115 AggValueSlot aggSlot = AggValueSlot::ignored(), 2116 bool ignoreResult = false); 2117 2118 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 2119 // or the value of the expression, depending on how va_list is defined. 2120 Address EmitVAListRef(const Expr *E); 2121 2122 /// Emit a "reference" to a __builtin_ms_va_list; this is 2123 /// always the value of the expression, because a __builtin_ms_va_list is a 2124 /// pointer to a char. 2125 Address EmitMSVAListRef(const Expr *E); 2126 2127 /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will 2128 /// always be accessible even if no aggregate location is provided. 2129 RValue EmitAnyExprToTemp(const Expr *E); 2130 2131 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 2132 /// arbitrary expression into the given memory location. 2133 void EmitAnyExprToMem(const Expr *E, Address Location, 2134 Qualifiers Quals, bool IsInitializer); 2135 2136 void EmitAnyExprToExn(const Expr *E, Address Addr); 2137 2138 /// EmitExprAsInit - Emits the code necessary to initialize a 2139 /// location in memory with the given initializer. 2140 void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2141 bool capturedByInit); 2142 2143 /// hasVolatileMember - returns true if aggregate type has a volatile 2144 /// member. 2145 bool hasVolatileMember(QualType T) { 2146 if (const RecordType *RT = T->getAs<RecordType>()) { 2147 const RecordDecl *RD = cast<RecordDecl>(RT->getDecl()); 2148 return RD->hasVolatileMember(); 2149 } 2150 return false; 2151 } 2152 2153 /// Determine whether a return value slot may overlap some other object. 2154 AggValueSlot::Overlap_t overlapForReturnValue() { 2155 // FIXME: Assuming no overlap here breaks guaranteed copy elision for base 2156 // class subobjects. These cases may need to be revisited depending on the 2157 // resolution of the relevant core issue. 2158 return AggValueSlot::DoesNotOverlap; 2159 } 2160 2161 /// Determine whether a field initialization may overlap some other object. 2162 AggValueSlot::Overlap_t overlapForFieldInit(const FieldDecl *FD) { 2163 // FIXME: These cases can result in overlap as a result of P0840R0's 2164 // [[no_unique_address]] attribute. We can still infer NoOverlap in the 2165 // presence of that attribute if the field is within the nvsize of its 2166 // containing class, because non-virtual subobjects are initialized in 2167 // address order. 2168 return AggValueSlot::DoesNotOverlap; 2169 } 2170 2171 /// Determine whether a base class initialization may overlap some other 2172 /// object. 2173 AggValueSlot::Overlap_t overlapForBaseInit(const CXXRecordDecl *RD, 2174 const CXXRecordDecl *BaseRD, 2175 bool IsVirtual); 2176 2177 /// Emit an aggregate assignment. 2178 void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) { 2179 bool IsVolatile = hasVolatileMember(EltTy); 2180 EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile); 2181 } 2182 2183 void EmitAggregateCopyCtor(LValue Dest, LValue Src, 2184 AggValueSlot::Overlap_t MayOverlap) { 2185 EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap); 2186 } 2187 2188 /// EmitAggregateCopy - Emit an aggregate copy. 2189 /// 2190 /// \param isVolatile \c true iff either the source or the destination is 2191 /// volatile. 2192 /// \param MayOverlap Whether the tail padding of the destination might be 2193 /// occupied by some other object. More efficient code can often be 2194 /// generated if not. 2195 void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy, 2196 AggValueSlot::Overlap_t MayOverlap, 2197 bool isVolatile = false); 2198 2199 /// GetAddrOfLocalVar - Return the address of a local variable. 2200 Address GetAddrOfLocalVar(const VarDecl *VD) { 2201 auto it = LocalDeclMap.find(VD); 2202 assert(it != LocalDeclMap.end() && 2203 "Invalid argument to GetAddrOfLocalVar(), no decl!"); 2204 return it->second; 2205 } 2206 2207 /// Given an opaque value expression, return its LValue mapping if it exists, 2208 /// otherwise create one. 2209 LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e); 2210 2211 /// Given an opaque value expression, return its RValue mapping if it exists, 2212 /// otherwise create one. 2213 RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e); 2214 2215 /// Get the index of the current ArrayInitLoopExpr, if any. 2216 llvm::Value *getArrayInitIndex() { return ArrayInitIndex; } 2217 2218 /// getAccessedFieldNo - Given an encoded value and a result number, return 2219 /// the input field number being accessed. 2220 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 2221 2222 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 2223 llvm::BasicBlock *GetIndirectGotoBlock(); 2224 2225 /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts. 2226 static bool IsWrappedCXXThis(const Expr *E); 2227 2228 /// EmitNullInitialization - Generate code to set a value of the given type to 2229 /// null, If the type contains data member pointers, they will be initialized 2230 /// to -1 in accordance with the Itanium C++ ABI. 2231 void EmitNullInitialization(Address DestPtr, QualType Ty); 2232 2233 /// Emits a call to an LLVM variable-argument intrinsic, either 2234 /// \c llvm.va_start or \c llvm.va_end. 2235 /// \param ArgValue A reference to the \c va_list as emitted by either 2236 /// \c EmitVAListRef or \c EmitMSVAListRef. 2237 /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise, 2238 /// calls \c llvm.va_end. 2239 llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart); 2240 2241 /// Generate code to get an argument from the passed in pointer 2242 /// and update it accordingly. 2243 /// \param VE The \c VAArgExpr for which to generate code. 2244 /// \param VAListAddr Receives a reference to the \c va_list as emitted by 2245 /// either \c EmitVAListRef or \c EmitMSVAListRef. 2246 /// \returns A pointer to the argument. 2247 // FIXME: We should be able to get rid of this method and use the va_arg 2248 // instruction in LLVM instead once it works well enough. 2249 Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr); 2250 2251 /// emitArrayLength - Compute the length of an array, even if it's a 2252 /// VLA, and drill down to the base element type. 2253 llvm::Value *emitArrayLength(const ArrayType *arrayType, 2254 QualType &baseType, 2255 Address &addr); 2256 2257 /// EmitVLASize - Capture all the sizes for the VLA expressions in 2258 /// the given variably-modified type and store them in the VLASizeMap. 2259 /// 2260 /// This function can be called with a null (unreachable) insert point. 2261 void EmitVariablyModifiedType(QualType Ty); 2262 2263 struct VlaSizePair { 2264 llvm::Value *NumElts; 2265 QualType Type; 2266 2267 VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {} 2268 }; 2269 2270 /// Return the number of elements for a single dimension 2271 /// for the given array type. 2272 VlaSizePair getVLAElements1D(const VariableArrayType *vla); 2273 VlaSizePair getVLAElements1D(QualType vla); 2274 2275 /// Returns an LLVM value that corresponds to the size, 2276 /// in non-variably-sized elements, of a variable length array type, 2277 /// plus that largest non-variably-sized element type. Assumes that 2278 /// the type has already been emitted with EmitVariablyModifiedType. 2279 VlaSizePair getVLASize(const VariableArrayType *vla); 2280 VlaSizePair getVLASize(QualType vla); 2281 2282 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 2283 /// generating code for an C++ member function. 2284 llvm::Value *LoadCXXThis() { 2285 assert(CXXThisValue && "no 'this' value for this function"); 2286 return CXXThisValue; 2287 } 2288 Address LoadCXXThisAddress(); 2289 2290 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 2291 /// virtual bases. 2292 // FIXME: Every place that calls LoadCXXVTT is something 2293 // that needs to be abstracted properly. 2294 llvm::Value *LoadCXXVTT() { 2295 assert(CXXStructorImplicitParamValue && "no VTT value for this function"); 2296 return CXXStructorImplicitParamValue; 2297 } 2298 2299 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 2300 /// complete class to the given direct base. 2301 Address 2302 GetAddressOfDirectBaseInCompleteClass(Address Value, 2303 const CXXRecordDecl *Derived, 2304 const CXXRecordDecl *Base, 2305 bool BaseIsVirtual); 2306 2307 static bool ShouldNullCheckClassCastValue(const CastExpr *Cast); 2308 2309 /// GetAddressOfBaseClass - This function will add the necessary delta to the 2310 /// load of 'this' and returns address of the base class. 2311 Address GetAddressOfBaseClass(Address Value, 2312 const CXXRecordDecl *Derived, 2313 CastExpr::path_const_iterator PathBegin, 2314 CastExpr::path_const_iterator PathEnd, 2315 bool NullCheckValue, SourceLocation Loc); 2316 2317 Address GetAddressOfDerivedClass(Address Value, 2318 const CXXRecordDecl *Derived, 2319 CastExpr::path_const_iterator PathBegin, 2320 CastExpr::path_const_iterator PathEnd, 2321 bool NullCheckValue); 2322 2323 /// GetVTTParameter - Return the VTT parameter that should be passed to a 2324 /// base constructor/destructor with virtual bases. 2325 /// FIXME: VTTs are Itanium ABI-specific, so the definition should move 2326 /// to ItaniumCXXABI.cpp together with all the references to VTT. 2327 llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase, 2328 bool Delegating); 2329 2330 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 2331 CXXCtorType CtorType, 2332 const FunctionArgList &Args, 2333 SourceLocation Loc); 2334 // It's important not to confuse this and the previous function. Delegating 2335 // constructors are the C++0x feature. The constructor delegate optimization 2336 // is used to reduce duplication in the base and complete consturctors where 2337 // they are substantially the same. 2338 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2339 const FunctionArgList &Args); 2340 2341 /// Emit a call to an inheriting constructor (that is, one that invokes a 2342 /// constructor inherited from a base class) by inlining its definition. This 2343 /// is necessary if the ABI does not support forwarding the arguments to the 2344 /// base class constructor (because they're variadic or similar). 2345 void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2346 CXXCtorType CtorType, 2347 bool ForVirtualBase, 2348 bool Delegating, 2349 CallArgList &Args); 2350 2351 /// Emit a call to a constructor inherited from a base class, passing the 2352 /// current constructor's arguments along unmodified (without even making 2353 /// a copy). 2354 void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D, 2355 bool ForVirtualBase, Address This, 2356 bool InheritedFromVBase, 2357 const CXXInheritedCtorInitExpr *E); 2358 2359 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2360 bool ForVirtualBase, bool Delegating, 2361 Address This, const CXXConstructExpr *E, 2362 AggValueSlot::Overlap_t Overlap); 2363 2364 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2365 bool ForVirtualBase, bool Delegating, 2366 Address This, CallArgList &Args, 2367 AggValueSlot::Overlap_t Overlap, 2368 SourceLocation Loc); 2369 2370 /// Emit assumption load for all bases. Requires to be be called only on 2371 /// most-derived class and not under construction of the object. 2372 void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This); 2373 2374 /// Emit assumption that vptr load == global vtable. 2375 void EmitVTableAssumptionLoad(const VPtr &vptr, Address This); 2376 2377 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 2378 Address This, Address Src, 2379 const CXXConstructExpr *E); 2380 2381 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2382 const ArrayType *ArrayTy, 2383 Address ArrayPtr, 2384 const CXXConstructExpr *E, 2385 bool ZeroInitialization = false); 2386 2387 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2388 llvm::Value *NumElements, 2389 Address ArrayPtr, 2390 const CXXConstructExpr *E, 2391 bool ZeroInitialization = false); 2392 2393 static Destroyer destroyCXXObject; 2394 2395 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 2396 bool ForVirtualBase, bool Delegating, 2397 Address This); 2398 2399 void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, 2400 llvm::Type *ElementTy, Address NewPtr, 2401 llvm::Value *NumElements, 2402 llvm::Value *AllocSizeWithoutCookie); 2403 2404 void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, 2405 Address Ptr); 2406 2407 llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr); 2408 void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr); 2409 2410 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 2411 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 2412 2413 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 2414 QualType DeleteTy, llvm::Value *NumElements = nullptr, 2415 CharUnits CookieSize = CharUnits()); 2416 2417 RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 2418 const CallExpr *TheCallExpr, bool IsDelete); 2419 2420 llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E); 2421 llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE); 2422 Address EmitCXXUuidofExpr(const CXXUuidofExpr *E); 2423 2424 /// Situations in which we might emit a check for the suitability of a 2425 /// pointer or glvalue. 2426 enum TypeCheckKind { 2427 /// Checking the operand of a load. Must be suitably sized and aligned. 2428 TCK_Load, 2429 /// Checking the destination of a store. Must be suitably sized and aligned. 2430 TCK_Store, 2431 /// Checking the bound value in a reference binding. Must be suitably sized 2432 /// and aligned, but is not required to refer to an object (until the 2433 /// reference is used), per core issue 453. 2434 TCK_ReferenceBinding, 2435 /// Checking the object expression in a non-static data member access. Must 2436 /// be an object within its lifetime. 2437 TCK_MemberAccess, 2438 /// Checking the 'this' pointer for a call to a non-static member function. 2439 /// Must be an object within its lifetime. 2440 TCK_MemberCall, 2441 /// Checking the 'this' pointer for a constructor call. 2442 TCK_ConstructorCall, 2443 /// Checking the operand of a static_cast to a derived pointer type. Must be 2444 /// null or an object within its lifetime. 2445 TCK_DowncastPointer, 2446 /// Checking the operand of a static_cast to a derived reference type. Must 2447 /// be an object within its lifetime. 2448 TCK_DowncastReference, 2449 /// Checking the operand of a cast to a base object. Must be suitably sized 2450 /// and aligned. 2451 TCK_Upcast, 2452 /// Checking the operand of a cast to a virtual base object. Must be an 2453 /// object within its lifetime. 2454 TCK_UpcastToVirtualBase, 2455 /// Checking the value assigned to a _Nonnull pointer. Must not be null. 2456 TCK_NonnullAssign, 2457 /// Checking the operand of a dynamic_cast or a typeid expression. Must be 2458 /// null or an object within its lifetime. 2459 TCK_DynamicOperation 2460 }; 2461 2462 /// Determine whether the pointer type check \p TCK permits null pointers. 2463 static bool isNullPointerAllowed(TypeCheckKind TCK); 2464 2465 /// Determine whether the pointer type check \p TCK requires a vptr check. 2466 static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty); 2467 2468 /// Whether any type-checking sanitizers are enabled. If \c false, 2469 /// calls to EmitTypeCheck can be skipped. 2470 bool sanitizePerformTypeCheck() const; 2471 2472 /// Emit a check that \p V is the address of storage of the 2473 /// appropriate size and alignment for an object of type \p Type. 2474 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, 2475 QualType Type, CharUnits Alignment = CharUnits::Zero(), 2476 SanitizerSet SkippedChecks = SanitizerSet()); 2477 2478 /// Emit a check that \p Base points into an array object, which 2479 /// we can access at index \p Index. \p Accessed should be \c false if we 2480 /// this expression is used as an lvalue, for instance in "&Arr[Idx]". 2481 void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, 2482 QualType IndexType, bool Accessed); 2483 2484 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 2485 bool isInc, bool isPre); 2486 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 2487 bool isInc, bool isPre); 2488 2489 void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment, 2490 llvm::Value *OffsetValue = nullptr) { 2491 Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment, 2492 OffsetValue); 2493 } 2494 2495 /// Converts Location to a DebugLoc, if debug information is enabled. 2496 llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location); 2497 2498 2499 //===--------------------------------------------------------------------===// 2500 // Declaration Emission 2501 //===--------------------------------------------------------------------===// 2502 2503 /// EmitDecl - Emit a declaration. 2504 /// 2505 /// This function can be called with a null (unreachable) insert point. 2506 void EmitDecl(const Decl &D); 2507 2508 /// EmitVarDecl - Emit a local variable declaration. 2509 /// 2510 /// This function can be called with a null (unreachable) insert point. 2511 void EmitVarDecl(const VarDecl &D); 2512 2513 void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2514 bool capturedByInit); 2515 2516 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 2517 llvm::Value *Address); 2518 2519 /// Determine whether the given initializer is trivial in the sense 2520 /// that it requires no code to be generated. 2521 bool isTrivialInitializer(const Expr *Init); 2522 2523 /// EmitAutoVarDecl - Emit an auto variable declaration. 2524 /// 2525 /// This function can be called with a null (unreachable) insert point. 2526 void EmitAutoVarDecl(const VarDecl &D); 2527 2528 class AutoVarEmission { 2529 friend class CodeGenFunction; 2530 2531 const VarDecl *Variable; 2532 2533 /// The address of the alloca for languages with explicit address space 2534 /// (e.g. OpenCL) or alloca casted to generic pointer for address space 2535 /// agnostic languages (e.g. C++). Invalid if the variable was emitted 2536 /// as a global constant. 2537 Address Addr; 2538 2539 llvm::Value *NRVOFlag; 2540 2541 /// True if the variable is a __block variable. 2542 bool IsByRef; 2543 2544 /// True if the variable is of aggregate type and has a constant 2545 /// initializer. 2546 bool IsConstantAggregate; 2547 2548 /// Non-null if we should use lifetime annotations. 2549 llvm::Value *SizeForLifetimeMarkers; 2550 2551 /// Address with original alloca instruction. Invalid if the variable was 2552 /// emitted as a global constant. 2553 Address AllocaAddr; 2554 2555 struct Invalid {}; 2556 AutoVarEmission(Invalid) 2557 : Variable(nullptr), Addr(Address::invalid()), 2558 AllocaAddr(Address::invalid()) {} 2559 2560 AutoVarEmission(const VarDecl &variable) 2561 : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr), 2562 IsByRef(false), IsConstantAggregate(false), 2563 SizeForLifetimeMarkers(nullptr), AllocaAddr(Address::invalid()) {} 2564 2565 bool wasEmittedAsGlobal() const { return !Addr.isValid(); } 2566 2567 public: 2568 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 2569 2570 bool useLifetimeMarkers() const { 2571 return SizeForLifetimeMarkers != nullptr; 2572 } 2573 llvm::Value *getSizeForLifetimeMarkers() const { 2574 assert(useLifetimeMarkers()); 2575 return SizeForLifetimeMarkers; 2576 } 2577 2578 /// Returns the raw, allocated address, which is not necessarily 2579 /// the address of the object itself. It is casted to default 2580 /// address space for address space agnostic languages. 2581 Address getAllocatedAddress() const { 2582 return Addr; 2583 } 2584 2585 /// Returns the address for the original alloca instruction. 2586 Address getOriginalAllocatedAddress() const { return AllocaAddr; } 2587 2588 /// Returns the address of the object within this declaration. 2589 /// Note that this does not chase the forwarding pointer for 2590 /// __block decls. 2591 Address getObjectAddress(CodeGenFunction &CGF) const { 2592 if (!IsByRef) return Addr; 2593 2594 return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false); 2595 } 2596 }; 2597 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 2598 void EmitAutoVarInit(const AutoVarEmission &emission); 2599 void EmitAutoVarCleanups(const AutoVarEmission &emission); 2600 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 2601 QualType::DestructionKind dtorKind); 2602 2603 /// Emits the alloca and debug information for the size expressions for each 2604 /// dimension of an array. It registers the association of its (1-dimensional) 2605 /// QualTypes and size expression's debug node, so that CGDebugInfo can 2606 /// reference this node when creating the DISubrange object to describe the 2607 /// array types. 2608 void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI, 2609 const VarDecl &D, 2610 bool EmitDebugInfo); 2611 2612 void EmitStaticVarDecl(const VarDecl &D, 2613 llvm::GlobalValue::LinkageTypes Linkage); 2614 2615 class ParamValue { 2616 llvm::Value *Value; 2617 unsigned Alignment; 2618 ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {} 2619 public: 2620 static ParamValue forDirect(llvm::Value *value) { 2621 return ParamValue(value, 0); 2622 } 2623 static ParamValue forIndirect(Address addr) { 2624 assert(!addr.getAlignment().isZero()); 2625 return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity()); 2626 } 2627 2628 bool isIndirect() const { return Alignment != 0; } 2629 llvm::Value *getAnyValue() const { return Value; } 2630 2631 llvm::Value *getDirectValue() const { 2632 assert(!isIndirect()); 2633 return Value; 2634 } 2635 2636 Address getIndirectAddress() const { 2637 assert(isIndirect()); 2638 return Address(Value, CharUnits::fromQuantity(Alignment)); 2639 } 2640 }; 2641 2642 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 2643 void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo); 2644 2645 /// protectFromPeepholes - Protect a value that we're intending to 2646 /// store to the side, but which will probably be used later, from 2647 /// aggressive peepholing optimizations that might delete it. 2648 /// 2649 /// Pass the result to unprotectFromPeepholes to declare that 2650 /// protection is no longer required. 2651 /// 2652 /// There's no particular reason why this shouldn't apply to 2653 /// l-values, it's just that no existing peepholes work on pointers. 2654 PeepholeProtection protectFromPeepholes(RValue rvalue); 2655 void unprotectFromPeepholes(PeepholeProtection protection); 2656 2657 void EmitAlignmentAssumption(llvm::Value *PtrValue, llvm::Value *Alignment, 2658 llvm::Value *OffsetValue = nullptr) { 2659 Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment, 2660 OffsetValue); 2661 } 2662 2663 //===--------------------------------------------------------------------===// 2664 // Statement Emission 2665 //===--------------------------------------------------------------------===// 2666 2667 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 2668 void EmitStopPoint(const Stmt *S); 2669 2670 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 2671 /// this function even if there is no current insertion point. 2672 /// 2673 /// This function may clear the current insertion point; callers should use 2674 /// EnsureInsertPoint if they wish to subsequently generate code without first 2675 /// calling EmitBlock, EmitBranch, or EmitStmt. 2676 void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None); 2677 2678 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 2679 /// necessarily require an insertion point or debug information; typically 2680 /// because the statement amounts to a jump or a container of other 2681 /// statements. 2682 /// 2683 /// \return True if the statement was handled. 2684 bool EmitSimpleStmt(const Stmt *S); 2685 2686 Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 2687 AggValueSlot AVS = AggValueSlot::ignored()); 2688 Address EmitCompoundStmtWithoutScope(const CompoundStmt &S, 2689 bool GetLast = false, 2690 AggValueSlot AVS = 2691 AggValueSlot::ignored()); 2692 2693 /// EmitLabel - Emit the block for the given label. It is legal to call this 2694 /// function even if there is no current insertion point. 2695 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 2696 2697 void EmitLabelStmt(const LabelStmt &S); 2698 void EmitAttributedStmt(const AttributedStmt &S); 2699 void EmitGotoStmt(const GotoStmt &S); 2700 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 2701 void EmitIfStmt(const IfStmt &S); 2702 2703 void EmitWhileStmt(const WhileStmt &S, 2704 ArrayRef<const Attr *> Attrs = None); 2705 void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None); 2706 void EmitForStmt(const ForStmt &S, 2707 ArrayRef<const Attr *> Attrs = None); 2708 void EmitReturnStmt(const ReturnStmt &S); 2709 void EmitDeclStmt(const DeclStmt &S); 2710 void EmitBreakStmt(const BreakStmt &S); 2711 void EmitContinueStmt(const ContinueStmt &S); 2712 void EmitSwitchStmt(const SwitchStmt &S); 2713 void EmitDefaultStmt(const DefaultStmt &S); 2714 void EmitCaseStmt(const CaseStmt &S); 2715 void EmitCaseStmtRange(const CaseStmt &S); 2716 void EmitAsmStmt(const AsmStmt &S); 2717 2718 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 2719 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 2720 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 2721 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 2722 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 2723 2724 void EmitCoroutineBody(const CoroutineBodyStmt &S); 2725 void EmitCoreturnStmt(const CoreturnStmt &S); 2726 RValue EmitCoawaitExpr(const CoawaitExpr &E, 2727 AggValueSlot aggSlot = AggValueSlot::ignored(), 2728 bool ignoreResult = false); 2729 LValue EmitCoawaitLValue(const CoawaitExpr *E); 2730 RValue EmitCoyieldExpr(const CoyieldExpr &E, 2731 AggValueSlot aggSlot = AggValueSlot::ignored(), 2732 bool ignoreResult = false); 2733 LValue EmitCoyieldLValue(const CoyieldExpr *E); 2734 RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID); 2735 2736 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 2737 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 2738 2739 void EmitCXXTryStmt(const CXXTryStmt &S); 2740 void EmitSEHTryStmt(const SEHTryStmt &S); 2741 void EmitSEHLeaveStmt(const SEHLeaveStmt &S); 2742 void EnterSEHTryStmt(const SEHTryStmt &S); 2743 void ExitSEHTryStmt(const SEHTryStmt &S); 2744 2745 void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter, 2746 const Stmt *OutlinedStmt); 2747 2748 llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF, 2749 const SEHExceptStmt &Except); 2750 2751 llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF, 2752 const SEHFinallyStmt &Finally); 2753 2754 void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF, 2755 llvm::Value *ParentFP, 2756 llvm::Value *EntryEBP); 2757 llvm::Value *EmitSEHExceptionCode(); 2758 llvm::Value *EmitSEHExceptionInfo(); 2759 llvm::Value *EmitSEHAbnormalTermination(); 2760 2761 /// Emit simple code for OpenMP directives in Simd-only mode. 2762 void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D); 2763 2764 /// Scan the outlined statement for captures from the parent function. For 2765 /// each capture, mark the capture as escaped and emit a call to 2766 /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap. 2767 void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt, 2768 bool IsFilter); 2769 2770 /// Recovers the address of a local in a parent function. ParentVar is the 2771 /// address of the variable used in the immediate parent function. It can 2772 /// either be an alloca or a call to llvm.localrecover if there are nested 2773 /// outlined functions. ParentFP is the frame pointer of the outermost parent 2774 /// frame. 2775 Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF, 2776 Address ParentVar, 2777 llvm::Value *ParentFP); 2778 2779 void EmitCXXForRangeStmt(const CXXForRangeStmt &S, 2780 ArrayRef<const Attr *> Attrs = None); 2781 2782 /// Controls insertion of cancellation exit blocks in worksharing constructs. 2783 class OMPCancelStackRAII { 2784 CodeGenFunction &CGF; 2785 2786 public: 2787 OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 2788 bool HasCancel) 2789 : CGF(CGF) { 2790 CGF.OMPCancelStack.enter(CGF, Kind, HasCancel); 2791 } 2792 ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); } 2793 }; 2794 2795 /// Returns calculated size of the specified type. 2796 llvm::Value *getTypeSize(QualType Ty); 2797 LValue InitCapturedStruct(const CapturedStmt &S); 2798 llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K); 2799 llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S); 2800 Address GenerateCapturedStmtArgument(const CapturedStmt &S); 2801 llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S); 2802 void GenerateOpenMPCapturedVars(const CapturedStmt &S, 2803 SmallVectorImpl<llvm::Value *> &CapturedVars); 2804 void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy, 2805 SourceLocation Loc); 2806 /// Perform element by element copying of arrays with type \a 2807 /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure 2808 /// generated by \a CopyGen. 2809 /// 2810 /// \param DestAddr Address of the destination array. 2811 /// \param SrcAddr Address of the source array. 2812 /// \param OriginalType Type of destination and source arrays. 2813 /// \param CopyGen Copying procedure that copies value of single array element 2814 /// to another single array element. 2815 void EmitOMPAggregateAssign( 2816 Address DestAddr, Address SrcAddr, QualType OriginalType, 2817 const llvm::function_ref<void(Address, Address)> CopyGen); 2818 /// Emit proper copying of data from one variable to another. 2819 /// 2820 /// \param OriginalType Original type of the copied variables. 2821 /// \param DestAddr Destination address. 2822 /// \param SrcAddr Source address. 2823 /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has 2824 /// type of the base array element). 2825 /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of 2826 /// the base array element). 2827 /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a 2828 /// DestVD. 2829 void EmitOMPCopy(QualType OriginalType, 2830 Address DestAddr, Address SrcAddr, 2831 const VarDecl *DestVD, const VarDecl *SrcVD, 2832 const Expr *Copy); 2833 /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or 2834 /// \a X = \a E \a BO \a E. 2835 /// 2836 /// \param X Value to be updated. 2837 /// \param E Update value. 2838 /// \param BO Binary operation for update operation. 2839 /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update 2840 /// expression, false otherwise. 2841 /// \param AO Atomic ordering of the generated atomic instructions. 2842 /// \param CommonGen Code generator for complex expressions that cannot be 2843 /// expressed through atomicrmw instruction. 2844 /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was 2845 /// generated, <false, RValue::get(nullptr)> otherwise. 2846 std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr( 2847 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 2848 llvm::AtomicOrdering AO, SourceLocation Loc, 2849 const llvm::function_ref<RValue(RValue)> CommonGen); 2850 bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 2851 OMPPrivateScope &PrivateScope); 2852 void EmitOMPPrivateClause(const OMPExecutableDirective &D, 2853 OMPPrivateScope &PrivateScope); 2854 void EmitOMPUseDevicePtrClause( 2855 const OMPClause &C, OMPPrivateScope &PrivateScope, 2856 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap); 2857 /// Emit code for copyin clause in \a D directive. The next code is 2858 /// generated at the start of outlined functions for directives: 2859 /// \code 2860 /// threadprivate_var1 = master_threadprivate_var1; 2861 /// operator=(threadprivate_var2, master_threadprivate_var2); 2862 /// ... 2863 /// __kmpc_barrier(&loc, global_tid); 2864 /// \endcode 2865 /// 2866 /// \param D OpenMP directive possibly with 'copyin' clause(s). 2867 /// \returns true if at least one copyin variable is found, false otherwise. 2868 bool EmitOMPCopyinClause(const OMPExecutableDirective &D); 2869 /// Emit initial code for lastprivate variables. If some variable is 2870 /// not also firstprivate, then the default initialization is used. Otherwise 2871 /// initialization of this variable is performed by EmitOMPFirstprivateClause 2872 /// method. 2873 /// 2874 /// \param D Directive that may have 'lastprivate' directives. 2875 /// \param PrivateScope Private scope for capturing lastprivate variables for 2876 /// proper codegen in internal captured statement. 2877 /// 2878 /// \returns true if there is at least one lastprivate variable, false 2879 /// otherwise. 2880 bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D, 2881 OMPPrivateScope &PrivateScope); 2882 /// Emit final copying of lastprivate values to original variables at 2883 /// the end of the worksharing or simd directive. 2884 /// 2885 /// \param D Directive that has at least one 'lastprivate' directives. 2886 /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if 2887 /// it is the last iteration of the loop code in associated directive, or to 2888 /// 'i1 false' otherwise. If this item is nullptr, no final check is required. 2889 void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D, 2890 bool NoFinals, 2891 llvm::Value *IsLastIterCond = nullptr); 2892 /// Emit initial code for linear clauses. 2893 void EmitOMPLinearClause(const OMPLoopDirective &D, 2894 CodeGenFunction::OMPPrivateScope &PrivateScope); 2895 /// Emit final code for linear clauses. 2896 /// \param CondGen Optional conditional code for final part of codegen for 2897 /// linear clause. 2898 void EmitOMPLinearClauseFinal( 2899 const OMPLoopDirective &D, 2900 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); 2901 /// Emit initial code for reduction variables. Creates reduction copies 2902 /// and initializes them with the values according to OpenMP standard. 2903 /// 2904 /// \param D Directive (possibly) with the 'reduction' clause. 2905 /// \param PrivateScope Private scope for capturing reduction variables for 2906 /// proper codegen in internal captured statement. 2907 /// 2908 void EmitOMPReductionClauseInit(const OMPExecutableDirective &D, 2909 OMPPrivateScope &PrivateScope); 2910 /// Emit final update of reduction values to original variables at 2911 /// the end of the directive. 2912 /// 2913 /// \param D Directive that has at least one 'reduction' directives. 2914 /// \param ReductionKind The kind of reduction to perform. 2915 void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D, 2916 const OpenMPDirectiveKind ReductionKind); 2917 /// Emit initial code for linear variables. Creates private copies 2918 /// and initializes them with the values according to OpenMP standard. 2919 /// 2920 /// \param D Directive (possibly) with the 'linear' clause. 2921 /// \return true if at least one linear variable is found that should be 2922 /// initialized with the value of the original variable, false otherwise. 2923 bool EmitOMPLinearClauseInit(const OMPLoopDirective &D); 2924 2925 typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/, 2926 llvm::Value * /*OutlinedFn*/, 2927 const OMPTaskDataTy & /*Data*/)> 2928 TaskGenTy; 2929 void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S, 2930 const OpenMPDirectiveKind CapturedRegion, 2931 const RegionCodeGenTy &BodyGen, 2932 const TaskGenTy &TaskGen, OMPTaskDataTy &Data); 2933 struct OMPTargetDataInfo { 2934 Address BasePointersArray = Address::invalid(); 2935 Address PointersArray = Address::invalid(); 2936 Address SizesArray = Address::invalid(); 2937 unsigned NumberOfTargetItems = 0; 2938 explicit OMPTargetDataInfo() = default; 2939 OMPTargetDataInfo(Address BasePointersArray, Address PointersArray, 2940 Address SizesArray, unsigned NumberOfTargetItems) 2941 : BasePointersArray(BasePointersArray), PointersArray(PointersArray), 2942 SizesArray(SizesArray), NumberOfTargetItems(NumberOfTargetItems) {} 2943 }; 2944 void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S, 2945 const RegionCodeGenTy &BodyGen, 2946 OMPTargetDataInfo &InputInfo); 2947 2948 void EmitOMPParallelDirective(const OMPParallelDirective &S); 2949 void EmitOMPSimdDirective(const OMPSimdDirective &S); 2950 void EmitOMPForDirective(const OMPForDirective &S); 2951 void EmitOMPForSimdDirective(const OMPForSimdDirective &S); 2952 void EmitOMPSectionsDirective(const OMPSectionsDirective &S); 2953 void EmitOMPSectionDirective(const OMPSectionDirective &S); 2954 void EmitOMPSingleDirective(const OMPSingleDirective &S); 2955 void EmitOMPMasterDirective(const OMPMasterDirective &S); 2956 void EmitOMPCriticalDirective(const OMPCriticalDirective &S); 2957 void EmitOMPParallelForDirective(const OMPParallelForDirective &S); 2958 void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S); 2959 void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S); 2960 void EmitOMPTaskDirective(const OMPTaskDirective &S); 2961 void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S); 2962 void EmitOMPBarrierDirective(const OMPBarrierDirective &S); 2963 void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S); 2964 void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S); 2965 void EmitOMPFlushDirective(const OMPFlushDirective &S); 2966 void EmitOMPOrderedDirective(const OMPOrderedDirective &S); 2967 void EmitOMPAtomicDirective(const OMPAtomicDirective &S); 2968 void EmitOMPTargetDirective(const OMPTargetDirective &S); 2969 void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S); 2970 void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S); 2971 void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S); 2972 void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S); 2973 void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S); 2974 void 2975 EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S); 2976 void EmitOMPTeamsDirective(const OMPTeamsDirective &S); 2977 void 2978 EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S); 2979 void EmitOMPCancelDirective(const OMPCancelDirective &S); 2980 void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S); 2981 void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S); 2982 void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S); 2983 void EmitOMPDistributeDirective(const OMPDistributeDirective &S); 2984 void EmitOMPDistributeParallelForDirective( 2985 const OMPDistributeParallelForDirective &S); 2986 void EmitOMPDistributeParallelForSimdDirective( 2987 const OMPDistributeParallelForSimdDirective &S); 2988 void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S); 2989 void EmitOMPTargetParallelForSimdDirective( 2990 const OMPTargetParallelForSimdDirective &S); 2991 void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S); 2992 void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S); 2993 void 2994 EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S); 2995 void EmitOMPTeamsDistributeParallelForSimdDirective( 2996 const OMPTeamsDistributeParallelForSimdDirective &S); 2997 void EmitOMPTeamsDistributeParallelForDirective( 2998 const OMPTeamsDistributeParallelForDirective &S); 2999 void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S); 3000 void EmitOMPTargetTeamsDistributeDirective( 3001 const OMPTargetTeamsDistributeDirective &S); 3002 void EmitOMPTargetTeamsDistributeParallelForDirective( 3003 const OMPTargetTeamsDistributeParallelForDirective &S); 3004 void EmitOMPTargetTeamsDistributeParallelForSimdDirective( 3005 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 3006 void EmitOMPTargetTeamsDistributeSimdDirective( 3007 const OMPTargetTeamsDistributeSimdDirective &S); 3008 3009 /// Emit device code for the target directive. 3010 static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 3011 StringRef ParentName, 3012 const OMPTargetDirective &S); 3013 static void 3014 EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 3015 const OMPTargetParallelDirective &S); 3016 /// Emit device code for the target parallel for directive. 3017 static void EmitOMPTargetParallelForDeviceFunction( 3018 CodeGenModule &CGM, StringRef ParentName, 3019 const OMPTargetParallelForDirective &S); 3020 /// Emit device code for the target parallel for simd directive. 3021 static void EmitOMPTargetParallelForSimdDeviceFunction( 3022 CodeGenModule &CGM, StringRef ParentName, 3023 const OMPTargetParallelForSimdDirective &S); 3024 /// Emit device code for the target teams directive. 3025 static void 3026 EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 3027 const OMPTargetTeamsDirective &S); 3028 /// Emit device code for the target teams distribute directive. 3029 static void EmitOMPTargetTeamsDistributeDeviceFunction( 3030 CodeGenModule &CGM, StringRef ParentName, 3031 const OMPTargetTeamsDistributeDirective &S); 3032 /// Emit device code for the target teams distribute simd directive. 3033 static void EmitOMPTargetTeamsDistributeSimdDeviceFunction( 3034 CodeGenModule &CGM, StringRef ParentName, 3035 const OMPTargetTeamsDistributeSimdDirective &S); 3036 /// Emit device code for the target simd directive. 3037 static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM, 3038 StringRef ParentName, 3039 const OMPTargetSimdDirective &S); 3040 /// Emit device code for the target teams distribute parallel for simd 3041 /// directive. 3042 static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( 3043 CodeGenModule &CGM, StringRef ParentName, 3044 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 3045 3046 static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 3047 CodeGenModule &CGM, StringRef ParentName, 3048 const OMPTargetTeamsDistributeParallelForDirective &S); 3049 /// Emit inner loop of the worksharing/simd construct. 3050 /// 3051 /// \param S Directive, for which the inner loop must be emitted. 3052 /// \param RequiresCleanup true, if directive has some associated private 3053 /// variables. 3054 /// \param LoopCond Bollean condition for loop continuation. 3055 /// \param IncExpr Increment expression for loop control variable. 3056 /// \param BodyGen Generator for the inner body of the inner loop. 3057 /// \param PostIncGen Genrator for post-increment code (required for ordered 3058 /// loop directvies). 3059 void EmitOMPInnerLoop( 3060 const Stmt &S, bool RequiresCleanup, const Expr *LoopCond, 3061 const Expr *IncExpr, 3062 const llvm::function_ref<void(CodeGenFunction &)> BodyGen, 3063 const llvm::function_ref<void(CodeGenFunction &)> PostIncGen); 3064 3065 JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind); 3066 /// Emit initial code for loop counters of loop-based directives. 3067 void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S, 3068 OMPPrivateScope &LoopScope); 3069 3070 /// Helper for the OpenMP loop directives. 3071 void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit); 3072 3073 /// Emit code for the worksharing loop-based directive. 3074 /// \return true, if this construct has any lastprivate clause, false - 3075 /// otherwise. 3076 bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB, 3077 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 3078 const CodeGenDispatchBoundsTy &CGDispatchBounds); 3079 3080 /// Emit code for the distribute loop-based directive. 3081 void EmitOMPDistributeLoop(const OMPLoopDirective &S, 3082 const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr); 3083 3084 /// Helpers for the OpenMP loop directives. 3085 void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false); 3086 void EmitOMPSimdFinal( 3087 const OMPLoopDirective &D, 3088 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); 3089 3090 /// Emits the lvalue for the expression with possibly captured variable. 3091 LValue EmitOMPSharedLValue(const Expr *E); 3092 3093 private: 3094 /// Helpers for blocks. 3095 llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); 3096 3097 /// struct with the values to be passed to the OpenMP loop-related functions 3098 struct OMPLoopArguments { 3099 /// loop lower bound 3100 Address LB = Address::invalid(); 3101 /// loop upper bound 3102 Address UB = Address::invalid(); 3103 /// loop stride 3104 Address ST = Address::invalid(); 3105 /// isLastIteration argument for runtime functions 3106 Address IL = Address::invalid(); 3107 /// Chunk value generated by sema 3108 llvm::Value *Chunk = nullptr; 3109 /// EnsureUpperBound 3110 Expr *EUB = nullptr; 3111 /// IncrementExpression 3112 Expr *IncExpr = nullptr; 3113 /// Loop initialization 3114 Expr *Init = nullptr; 3115 /// Loop exit condition 3116 Expr *Cond = nullptr; 3117 /// Update of LB after a whole chunk has been executed 3118 Expr *NextLB = nullptr; 3119 /// Update of UB after a whole chunk has been executed 3120 Expr *NextUB = nullptr; 3121 OMPLoopArguments() = default; 3122 OMPLoopArguments(Address LB, Address UB, Address ST, Address IL, 3123 llvm::Value *Chunk = nullptr, Expr *EUB = nullptr, 3124 Expr *IncExpr = nullptr, Expr *Init = nullptr, 3125 Expr *Cond = nullptr, Expr *NextLB = nullptr, 3126 Expr *NextUB = nullptr) 3127 : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB), 3128 IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB), 3129 NextUB(NextUB) {} 3130 }; 3131 void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic, 3132 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, 3133 const OMPLoopArguments &LoopArgs, 3134 const CodeGenLoopTy &CodeGenLoop, 3135 const CodeGenOrderedTy &CodeGenOrdered); 3136 void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind, 3137 bool IsMonotonic, const OMPLoopDirective &S, 3138 OMPPrivateScope &LoopScope, bool Ordered, 3139 const OMPLoopArguments &LoopArgs, 3140 const CodeGenDispatchBoundsTy &CGDispatchBounds); 3141 void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind, 3142 const OMPLoopDirective &S, 3143 OMPPrivateScope &LoopScope, 3144 const OMPLoopArguments &LoopArgs, 3145 const CodeGenLoopTy &CodeGenLoopContent); 3146 /// Emit code for sections directive. 3147 void EmitSections(const OMPExecutableDirective &S); 3148 3149 public: 3150 3151 //===--------------------------------------------------------------------===// 3152 // LValue Expression Emission 3153 //===--------------------------------------------------------------------===// 3154 3155 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 3156 RValue GetUndefRValue(QualType Ty); 3157 3158 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 3159 /// and issue an ErrorUnsupported style diagnostic (using the 3160 /// provided Name). 3161 RValue EmitUnsupportedRValue(const Expr *E, 3162 const char *Name); 3163 3164 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 3165 /// an ErrorUnsupported style diagnostic (using the provided Name). 3166 LValue EmitUnsupportedLValue(const Expr *E, 3167 const char *Name); 3168 3169 /// EmitLValue - Emit code to compute a designator that specifies the location 3170 /// of the expression. 3171 /// 3172 /// This can return one of two things: a simple address or a bitfield 3173 /// reference. In either case, the LLVM Value* in the LValue structure is 3174 /// guaranteed to be an LLVM pointer type. 3175 /// 3176 /// If this returns a bitfield reference, nothing about the pointee type of 3177 /// the LLVM value is known: For example, it may not be a pointer to an 3178 /// integer. 3179 /// 3180 /// If this returns a normal address, and if the lvalue's C type is fixed 3181 /// size, this method guarantees that the returned pointer type will point to 3182 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 3183 /// variable length type, this is not possible. 3184 /// 3185 LValue EmitLValue(const Expr *E); 3186 3187 /// Same as EmitLValue but additionally we generate checking code to 3188 /// guard against undefined behavior. This is only suitable when we know 3189 /// that the address will be used to access the object. 3190 LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK); 3191 3192 RValue convertTempToRValue(Address addr, QualType type, 3193 SourceLocation Loc); 3194 3195 void EmitAtomicInit(Expr *E, LValue lvalue); 3196 3197 bool LValueIsSuitableForInlineAtomic(LValue Src); 3198 3199 RValue EmitAtomicLoad(LValue LV, SourceLocation SL, 3200 AggValueSlot Slot = AggValueSlot::ignored()); 3201 3202 RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc, 3203 llvm::AtomicOrdering AO, bool IsVolatile = false, 3204 AggValueSlot slot = AggValueSlot::ignored()); 3205 3206 void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit); 3207 3208 void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO, 3209 bool IsVolatile, bool isInit); 3210 3211 std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange( 3212 LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, 3213 llvm::AtomicOrdering Success = 3214 llvm::AtomicOrdering::SequentiallyConsistent, 3215 llvm::AtomicOrdering Failure = 3216 llvm::AtomicOrdering::SequentiallyConsistent, 3217 bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored()); 3218 3219 void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO, 3220 const llvm::function_ref<RValue(RValue)> &UpdateOp, 3221 bool IsVolatile); 3222 3223 /// EmitToMemory - Change a scalar value from its value 3224 /// representation to its in-memory representation. 3225 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 3226 3227 /// EmitFromMemory - Change a scalar value from its memory 3228 /// representation to its value representation. 3229 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 3230 3231 /// Check if the scalar \p Value is within the valid range for the given 3232 /// type \p Ty. 3233 /// 3234 /// Returns true if a check is needed (even if the range is unknown). 3235 bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 3236 SourceLocation Loc); 3237 3238 /// EmitLoadOfScalar - Load a scalar value from an address, taking 3239 /// care to appropriately convert from the memory representation to 3240 /// the LLVM value representation. 3241 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 3242 SourceLocation Loc, 3243 AlignmentSource Source = AlignmentSource::Type, 3244 bool isNontemporal = false) { 3245 return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source), 3246 CGM.getTBAAAccessInfo(Ty), isNontemporal); 3247 } 3248 3249 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 3250 SourceLocation Loc, LValueBaseInfo BaseInfo, 3251 TBAAAccessInfo TBAAInfo, 3252 bool isNontemporal = false); 3253 3254 /// EmitLoadOfScalar - Load a scalar value from an address, taking 3255 /// care to appropriately convert from the memory representation to 3256 /// the LLVM value representation. The l-value must be a simple 3257 /// l-value. 3258 llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc); 3259 3260 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3261 /// care to appropriately convert from the memory representation to 3262 /// the LLVM value representation. 3263 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 3264 bool Volatile, QualType Ty, 3265 AlignmentSource Source = AlignmentSource::Type, 3266 bool isInit = false, bool isNontemporal = false) { 3267 EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source), 3268 CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal); 3269 } 3270 3271 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 3272 bool Volatile, QualType Ty, 3273 LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo, 3274 bool isInit = false, bool isNontemporal = false); 3275 3276 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3277 /// care to appropriately convert from the memory representation to 3278 /// the LLVM value representation. The l-value must be a simple 3279 /// l-value. The isInit flag indicates whether this is an initialization. 3280 /// If so, atomic qualifiers are ignored and the store is always non-atomic. 3281 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); 3282 3283 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 3284 /// this method emits the address of the lvalue, then loads the result as an 3285 /// rvalue, returning the rvalue. 3286 RValue EmitLoadOfLValue(LValue V, SourceLocation Loc); 3287 RValue EmitLoadOfExtVectorElementLValue(LValue V); 3288 RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc); 3289 RValue EmitLoadOfGlobalRegLValue(LValue LV); 3290 3291 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 3292 /// lvalue, where both are guaranteed to the have the same type, and that type 3293 /// is 'Ty'. 3294 void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false); 3295 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 3296 void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst); 3297 3298 /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints 3299 /// as EmitStoreThroughLValue. 3300 /// 3301 /// \param Result [out] - If non-null, this will be set to a Value* for the 3302 /// bit-field contents after the store, appropriate for use as the result of 3303 /// an assignment to the bit-field. 3304 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 3305 llvm::Value **Result=nullptr); 3306 3307 /// Emit an l-value for an assignment (simple or compound) of complex type. 3308 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 3309 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 3310 LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 3311 llvm::Value *&Result); 3312 3313 // Note: only available for agg return types 3314 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 3315 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 3316 // Note: only available for agg return types 3317 LValue EmitCallExprLValue(const CallExpr *E); 3318 // Note: only available for agg return types 3319 LValue EmitVAArgExprLValue(const VAArgExpr *E); 3320 LValue EmitDeclRefLValue(const DeclRefExpr *E); 3321 LValue EmitStringLiteralLValue(const StringLiteral *E); 3322 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 3323 LValue EmitPredefinedLValue(const PredefinedExpr *E); 3324 LValue EmitUnaryOpLValue(const UnaryOperator *E); 3325 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3326 bool Accessed = false); 3327 LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3328 bool IsLowerBound = true); 3329 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 3330 LValue EmitMemberExpr(const MemberExpr *E); 3331 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 3332 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 3333 LValue EmitInitListLValue(const InitListExpr *E); 3334 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 3335 LValue EmitCastLValue(const CastExpr *E); 3336 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 3337 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 3338 3339 Address EmitExtVectorElementLValue(LValue V); 3340 3341 RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc); 3342 3343 Address EmitArrayToPointerDecay(const Expr *Array, 3344 LValueBaseInfo *BaseInfo = nullptr, 3345 TBAAAccessInfo *TBAAInfo = nullptr); 3346 3347 class ConstantEmission { 3348 llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; 3349 ConstantEmission(llvm::Constant *C, bool isReference) 3350 : ValueAndIsReference(C, isReference) {} 3351 public: 3352 ConstantEmission() {} 3353 static ConstantEmission forReference(llvm::Constant *C) { 3354 return ConstantEmission(C, true); 3355 } 3356 static ConstantEmission forValue(llvm::Constant *C) { 3357 return ConstantEmission(C, false); 3358 } 3359 3360 explicit operator bool() const { 3361 return ValueAndIsReference.getOpaqueValue() != nullptr; 3362 } 3363 3364 bool isReference() const { return ValueAndIsReference.getInt(); } 3365 LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { 3366 assert(isReference()); 3367 return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), 3368 refExpr->getType()); 3369 } 3370 3371 llvm::Constant *getValue() const { 3372 assert(!isReference()); 3373 return ValueAndIsReference.getPointer(); 3374 } 3375 }; 3376 3377 ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); 3378 ConstantEmission tryEmitAsConstant(const MemberExpr *ME); 3379 3380 RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, 3381 AggValueSlot slot = AggValueSlot::ignored()); 3382 LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); 3383 3384 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 3385 const ObjCIvarDecl *Ivar); 3386 LValue EmitLValueForField(LValue Base, const FieldDecl* Field); 3387 LValue EmitLValueForLambdaField(const FieldDecl *Field); 3388 3389 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 3390 /// if the Field is a reference, this will return the address of the reference 3391 /// and not the address of the value stored in the reference. 3392 LValue EmitLValueForFieldInitialization(LValue Base, 3393 const FieldDecl* Field); 3394 3395 LValue EmitLValueForIvar(QualType ObjectTy, 3396 llvm::Value* Base, const ObjCIvarDecl *Ivar, 3397 unsigned CVRQualifiers); 3398 3399 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 3400 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 3401 LValue EmitLambdaLValue(const LambdaExpr *E); 3402 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 3403 LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E); 3404 3405 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 3406 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 3407 LValue EmitStmtExprLValue(const StmtExpr *E); 3408 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 3409 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 3410 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init); 3411 3412 //===--------------------------------------------------------------------===// 3413 // Scalar Expression Emission 3414 //===--------------------------------------------------------------------===// 3415 3416 /// EmitCall - Generate a call of the given function, expecting the given 3417 /// result type, and using the given argument list which specifies both the 3418 /// LLVM arguments and the types they were derived from. 3419 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 3420 ReturnValueSlot ReturnValue, const CallArgList &Args, 3421 llvm::Instruction **callOrInvoke, SourceLocation Loc); 3422 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 3423 ReturnValueSlot ReturnValue, const CallArgList &Args, 3424 llvm::Instruction **callOrInvoke = nullptr) { 3425 return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke, 3426 SourceLocation()); 3427 } 3428 RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E, 3429 ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr); 3430 RValue EmitCallExpr(const CallExpr *E, 3431 ReturnValueSlot ReturnValue = ReturnValueSlot()); 3432 RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 3433 CGCallee EmitCallee(const Expr *E); 3434 3435 void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl); 3436 3437 llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, 3438 const Twine &name = ""); 3439 llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, 3440 ArrayRef<llvm::Value*> args, 3441 const Twine &name = ""); 3442 llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, 3443 const Twine &name = ""); 3444 llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, 3445 ArrayRef<llvm::Value*> args, 3446 const Twine &name = ""); 3447 3448 SmallVector<llvm::OperandBundleDef, 1> 3449 getBundlesForFunclet(llvm::Value *Callee); 3450 3451 llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, 3452 ArrayRef<llvm::Value *> Args, 3453 const Twine &Name = ""); 3454 llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, 3455 ArrayRef<llvm::Value*> args, 3456 const Twine &name = ""); 3457 llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, 3458 const Twine &name = ""); 3459 void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee, 3460 ArrayRef<llvm::Value*> args); 3461 3462 CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 3463 NestedNameSpecifier *Qual, 3464 llvm::Type *Ty); 3465 3466 CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 3467 CXXDtorType Type, 3468 const CXXRecordDecl *RD); 3469 3470 // These functions emit calls to the special functions of non-trivial C 3471 // structs. 3472 void defaultInitNonTrivialCStructVar(LValue Dst); 3473 void callCStructDefaultConstructor(LValue Dst); 3474 void callCStructDestructor(LValue Dst); 3475 void callCStructCopyConstructor(LValue Dst, LValue Src); 3476 void callCStructMoveConstructor(LValue Dst, LValue Src); 3477 void callCStructCopyAssignmentOperator(LValue Dst, LValue Src); 3478 void callCStructMoveAssignmentOperator(LValue Dst, LValue Src); 3479 3480 RValue 3481 EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method, 3482 const CGCallee &Callee, 3483 ReturnValueSlot ReturnValue, llvm::Value *This, 3484 llvm::Value *ImplicitParam, 3485 QualType ImplicitParamTy, const CallExpr *E, 3486 CallArgList *RtlArgs); 3487 RValue EmitCXXDestructorCall(const CXXDestructorDecl *DD, 3488 const CGCallee &Callee, 3489 llvm::Value *This, llvm::Value *ImplicitParam, 3490 QualType ImplicitParamTy, const CallExpr *E, 3491 StructorType Type); 3492 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 3493 ReturnValueSlot ReturnValue); 3494 RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE, 3495 const CXXMethodDecl *MD, 3496 ReturnValueSlot ReturnValue, 3497 bool HasQualifier, 3498 NestedNameSpecifier *Qualifier, 3499 bool IsArrow, const Expr *Base); 3500 // Compute the object pointer. 3501 Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base, 3502 llvm::Value *memberPtr, 3503 const MemberPointerType *memberPtrType, 3504 LValueBaseInfo *BaseInfo = nullptr, 3505 TBAAAccessInfo *TBAAInfo = nullptr); 3506 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 3507 ReturnValueSlot ReturnValue); 3508 3509 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 3510 const CXXMethodDecl *MD, 3511 ReturnValueSlot ReturnValue); 3512 RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E); 3513 3514 RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 3515 ReturnValueSlot ReturnValue); 3516 3517 RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E, 3518 ReturnValueSlot ReturnValue); 3519 3520 RValue EmitBuiltinExpr(const FunctionDecl *FD, 3521 unsigned BuiltinID, const CallExpr *E, 3522 ReturnValueSlot ReturnValue); 3523 3524 /// Emit IR for __builtin_os_log_format. 3525 RValue emitBuiltinOSLogFormat(const CallExpr &E); 3526 3527 llvm::Function *generateBuiltinOSLogHelperFunction( 3528 const analyze_os_log::OSLogBufferLayout &Layout, 3529 CharUnits BufferAlignment); 3530 3531 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 3532 3533 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 3534 /// is unhandled by the current target. 3535 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3536 3537 llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty, 3538 const llvm::CmpInst::Predicate Fp, 3539 const llvm::CmpInst::Predicate Ip, 3540 const llvm::Twine &Name = ""); 3541 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 3542 llvm::Triple::ArchType Arch); 3543 3544 llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID, 3545 unsigned LLVMIntrinsic, 3546 unsigned AltLLVMIntrinsic, 3547 const char *NameHint, 3548 unsigned Modifier, 3549 const CallExpr *E, 3550 SmallVectorImpl<llvm::Value *> &Ops, 3551 Address PtrOp0, Address PtrOp1, 3552 llvm::Triple::ArchType Arch); 3553 3554 llvm::Value *EmitISOVolatileLoad(const CallExpr *E); 3555 llvm::Value *EmitISOVolatileStore(const CallExpr *E); 3556 3557 llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID, 3558 unsigned Modifier, llvm::Type *ArgTy, 3559 const CallExpr *E); 3560 llvm::Value *EmitNeonCall(llvm::Function *F, 3561 SmallVectorImpl<llvm::Value*> &O, 3562 const char *name, 3563 unsigned shift = 0, bool rightshift = false); 3564 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 3565 llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, 3566 bool negateForRightShift); 3567 llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt, 3568 llvm::Type *Ty, bool usgn, const char *name); 3569 llvm::Value *vectorWrapScalar16(llvm::Value *Op); 3570 llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E, 3571 llvm::Triple::ArchType Arch); 3572 3573 llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); 3574 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3575 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3576 llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3577 llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3578 llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3579 llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID, 3580 const CallExpr *E); 3581 llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3582 3583 private: 3584 enum class MSVCIntrin; 3585 3586 public: 3587 llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E); 3588 3589 llvm::Value *EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args); 3590 3591 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 3592 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 3593 llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); 3594 llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); 3595 llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); 3596 llvm::Value *EmitObjCCollectionLiteral(const Expr *E, 3597 const ObjCMethodDecl *MethodWithObjects); 3598 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 3599 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 3600 ReturnValueSlot Return = ReturnValueSlot()); 3601 3602 /// Retrieves the default cleanup kind for an ARC cleanup. 3603 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. 3604 CleanupKind getARCCleanupKind() { 3605 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 3606 ? NormalAndEHCleanup : NormalCleanup; 3607 } 3608 3609 // ARC primitives. 3610 void EmitARCInitWeak(Address addr, llvm::Value *value); 3611 void EmitARCDestroyWeak(Address addr); 3612 llvm::Value *EmitARCLoadWeak(Address addr); 3613 llvm::Value *EmitARCLoadWeakRetained(Address addr); 3614 llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored); 3615 void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); 3616 void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); 3617 void EmitARCCopyWeak(Address dst, Address src); 3618 void EmitARCMoveWeak(Address dst, Address src); 3619 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 3620 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 3621 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 3622 bool resultIgnored); 3623 llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value, 3624 bool resultIgnored); 3625 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 3626 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 3627 llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); 3628 void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise); 3629 void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 3630 llvm::Value *EmitARCAutorelease(llvm::Value *value); 3631 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 3632 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 3633 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 3634 llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value); 3635 3636 std::pair<LValue,llvm::Value*> 3637 EmitARCStoreAutoreleasing(const BinaryOperator *e); 3638 std::pair<LValue,llvm::Value*> 3639 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 3640 std::pair<LValue,llvm::Value*> 3641 EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored); 3642 3643 llvm::Value *EmitObjCThrowOperand(const Expr *expr); 3644 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 3645 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 3646 3647 llvm::Value *EmitARCExtendBlockObject(const Expr *expr); 3648 llvm::Value *EmitARCReclaimReturnedObject(const Expr *e, 3649 bool allowUnsafeClaim); 3650 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 3651 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 3652 llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr); 3653 3654 void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values); 3655 3656 static Destroyer destroyARCStrongImprecise; 3657 static Destroyer destroyARCStrongPrecise; 3658 static Destroyer destroyARCWeak; 3659 static Destroyer emitARCIntrinsicUse; 3660 static Destroyer destroyNonTrivialCStruct; 3661 3662 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 3663 llvm::Value *EmitObjCAutoreleasePoolPush(); 3664 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 3665 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 3666 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 3667 3668 /// Emits a reference binding to the passed in expression. 3669 RValue EmitReferenceBindingToExpr(const Expr *E); 3670 3671 //===--------------------------------------------------------------------===// 3672 // Expression Emission 3673 //===--------------------------------------------------------------------===// 3674 3675 // Expressions are broken into three classes: scalar, complex, aggregate. 3676 3677 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 3678 /// scalar type, returning the result. 3679 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 3680 3681 /// Emit a conversion from the specified type to the specified destination 3682 /// type, both of which are LLVM scalar types. 3683 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 3684 QualType DstTy, SourceLocation Loc); 3685 3686 /// Emit a conversion from the specified complex type to the specified 3687 /// destination type, where the destination type is an LLVM scalar type. 3688 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 3689 QualType DstTy, 3690 SourceLocation Loc); 3691 3692 /// EmitAggExpr - Emit the computation of the specified expression 3693 /// of aggregate type. The result is computed into the given slot, 3694 /// which may be null to indicate that the value is not needed. 3695 void EmitAggExpr(const Expr *E, AggValueSlot AS); 3696 3697 /// EmitAggExprToLValue - Emit the computation of the specified expression of 3698 /// aggregate type into a temporary LValue. 3699 LValue EmitAggExprToLValue(const Expr *E); 3700 3701 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 3702 /// make sure it survives garbage collection until this point. 3703 void EmitExtendGCLifetime(llvm::Value *object); 3704 3705 /// EmitComplexExpr - Emit the computation of the specified expression of 3706 /// complex type, returning the result. 3707 ComplexPairTy EmitComplexExpr(const Expr *E, 3708 bool IgnoreReal = false, 3709 bool IgnoreImag = false); 3710 3711 /// EmitComplexExprIntoLValue - Emit the given expression of complex 3712 /// type and place its result into the specified l-value. 3713 void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit); 3714 3715 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 3716 void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit); 3717 3718 /// EmitLoadOfComplex - Load a complex number from the specified l-value. 3719 ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc); 3720 3721 Address emitAddrOfRealComponent(Address complex, QualType complexType); 3722 Address emitAddrOfImagComponent(Address complex, QualType complexType); 3723 3724 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 3725 /// global variable that has already been created for it. If the initializer 3726 /// has a different type than GV does, this may free GV and return a different 3727 /// one. Otherwise it just returns GV. 3728 llvm::GlobalVariable * 3729 AddInitializerToStaticVarDecl(const VarDecl &D, 3730 llvm::GlobalVariable *GV); 3731 3732 3733 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 3734 /// variable with global storage. 3735 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr, 3736 bool PerformInit); 3737 3738 llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::Constant *Dtor, 3739 llvm::Constant *Addr); 3740 3741 /// Call atexit() with a function that passes the given argument to 3742 /// the given function. 3743 void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn, 3744 llvm::Constant *addr); 3745 3746 /// Call atexit() with function dtorStub. 3747 void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub); 3748 3749 /// Emit code in this function to perform a guarded variable 3750 /// initialization. Guarded initializations are used when it's not 3751 /// possible to prove that an initialization will be done exactly 3752 /// once, e.g. with a static local variable or a static data member 3753 /// of a class template. 3754 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, 3755 bool PerformInit); 3756 3757 enum class GuardKind { VariableGuard, TlsGuard }; 3758 3759 /// Emit a branch to select whether or not to perform guarded initialization. 3760 void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit, 3761 llvm::BasicBlock *InitBlock, 3762 llvm::BasicBlock *NoInitBlock, 3763 GuardKind Kind, const VarDecl *D); 3764 3765 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 3766 /// variables. 3767 void GenerateCXXGlobalInitFunc(llvm::Function *Fn, 3768 ArrayRef<llvm::Function *> CXXThreadLocals, 3769 Address Guard = Address::invalid()); 3770 3771 /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global 3772 /// variables. 3773 void GenerateCXXGlobalDtorsFunc( 3774 llvm::Function *Fn, 3775 const std::vector<std::pair<llvm::WeakTrackingVH, llvm::Constant *>> 3776 &DtorsAndObjects); 3777 3778 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 3779 const VarDecl *D, 3780 llvm::GlobalVariable *Addr, 3781 bool PerformInit); 3782 3783 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 3784 3785 void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp); 3786 3787 void enterFullExpression(const ExprWithCleanups *E) { 3788 if (E->getNumObjects() == 0) return; 3789 enterNonTrivialFullExpression(E); 3790 } 3791 void enterNonTrivialFullExpression(const ExprWithCleanups *E); 3792 3793 void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true); 3794 3795 void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest); 3796 3797 RValue EmitAtomicExpr(AtomicExpr *E); 3798 3799 //===--------------------------------------------------------------------===// 3800 // Annotations Emission 3801 //===--------------------------------------------------------------------===// 3802 3803 /// Emit an annotation call (intrinsic or builtin). 3804 llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn, 3805 llvm::Value *AnnotatedVal, 3806 StringRef AnnotationStr, 3807 SourceLocation Location); 3808 3809 /// Emit local annotations for the local variable V, declared by D. 3810 void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); 3811 3812 /// Emit field annotations for the given field & value. Returns the 3813 /// annotation result. 3814 Address EmitFieldAnnotations(const FieldDecl *D, Address V); 3815 3816 //===--------------------------------------------------------------------===// 3817 // Internal Helpers 3818 //===--------------------------------------------------------------------===// 3819 3820 /// ContainsLabel - Return true if the statement contains a label in it. If 3821 /// this statement is not executed normally, it not containing a label means 3822 /// that we can just remove the code. 3823 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 3824 3825 /// containsBreak - Return true if the statement contains a break out of it. 3826 /// If the statement (recursively) contains a switch or loop with a break 3827 /// inside of it, this is fine. 3828 static bool containsBreak(const Stmt *S); 3829 3830 /// Determine if the given statement might introduce a declaration into the 3831 /// current scope, by being a (possibly-labelled) DeclStmt. 3832 static bool mightAddDeclToScope(const Stmt *S); 3833 3834 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 3835 /// to a constant, or if it does but contains a label, return false. If it 3836 /// constant folds return true and set the boolean result in Result. 3837 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result, 3838 bool AllowLabels = false); 3839 3840 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 3841 /// to a constant, or if it does but contains a label, return false. If it 3842 /// constant folds return true and set the folded value. 3843 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result, 3844 bool AllowLabels = false); 3845 3846 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 3847 /// if statement) to the specified blocks. Based on the condition, this might 3848 /// try to simplify the codegen of the conditional based on the branch. 3849 /// TrueCount should be the number of times we expect the condition to 3850 /// evaluate to true based on PGO data. 3851 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 3852 llvm::BasicBlock *FalseBlock, uint64_t TrueCount); 3853 3854 /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is 3855 /// nonnull, if \p LHS is marked _Nonnull. 3856 void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc); 3857 3858 /// An enumeration which makes it easier to specify whether or not an 3859 /// operation is a subtraction. 3860 enum { NotSubtraction = false, IsSubtraction = true }; 3861 3862 /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to 3863 /// detect undefined behavior when the pointer overflow sanitizer is enabled. 3864 /// \p SignedIndices indicates whether any of the GEP indices are signed. 3865 /// \p IsSubtraction indicates whether the expression used to form the GEP 3866 /// is a subtraction. 3867 llvm::Value *EmitCheckedInBoundsGEP(llvm::Value *Ptr, 3868 ArrayRef<llvm::Value *> IdxList, 3869 bool SignedIndices, 3870 bool IsSubtraction, 3871 SourceLocation Loc, 3872 const Twine &Name = ""); 3873 3874 /// Specifies which type of sanitizer check to apply when handling a 3875 /// particular builtin. 3876 enum BuiltinCheckKind { 3877 BCK_CTZPassedZero, 3878 BCK_CLZPassedZero, 3879 }; 3880 3881 /// Emits an argument for a call to a builtin. If the builtin sanitizer is 3882 /// enabled, a runtime check specified by \p Kind is also emitted. 3883 llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind); 3884 3885 /// Emit a description of a type in a format suitable for passing to 3886 /// a runtime sanitizer handler. 3887 llvm::Constant *EmitCheckTypeDescriptor(QualType T); 3888 3889 /// Convert a value into a format suitable for passing to a runtime 3890 /// sanitizer handler. 3891 llvm::Value *EmitCheckValue(llvm::Value *V); 3892 3893 /// Emit a description of a source location in a format suitable for 3894 /// passing to a runtime sanitizer handler. 3895 llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc); 3896 3897 /// Create a basic block that will call a handler function in a 3898 /// sanitizer runtime with the provided arguments, and create a conditional 3899 /// branch to it. 3900 void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 3901 SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs, 3902 ArrayRef<llvm::Value *> DynamicArgs); 3903 3904 /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath 3905 /// if Cond if false. 3906 void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond, 3907 llvm::ConstantInt *TypeId, llvm::Value *Ptr, 3908 ArrayRef<llvm::Constant *> StaticArgs); 3909 3910 /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime 3911 /// checking is enabled. Otherwise, just emit an unreachable instruction. 3912 void EmitUnreachable(SourceLocation Loc); 3913 3914 /// Create a basic block that will call the trap intrinsic, and emit a 3915 /// conditional branch to it, for the -ftrapv checks. 3916 void EmitTrapCheck(llvm::Value *Checked); 3917 3918 /// Emit a call to trap or debugtrap and attach function attribute 3919 /// "trap-func-name" if specified. 3920 llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID); 3921 3922 /// Emit a stub for the cross-DSO CFI check function. 3923 void EmitCfiCheckStub(); 3924 3925 /// Emit a cross-DSO CFI failure handling function. 3926 void EmitCfiCheckFail(); 3927 3928 /// Create a check for a function parameter that may potentially be 3929 /// declared as non-null. 3930 void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc, 3931 AbstractCallee AC, unsigned ParmNum); 3932 3933 /// EmitCallArg - Emit a single call argument. 3934 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 3935 3936 /// EmitDelegateCallArg - We are performing a delegate call; that 3937 /// is, the current function is delegating to another one. Produce 3938 /// a r-value suitable for passing the given parameter. 3939 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param, 3940 SourceLocation loc); 3941 3942 /// SetFPAccuracy - Set the minimum required accuracy of the given floating 3943 /// point operation, expressed as the maximum relative error in ulp. 3944 void SetFPAccuracy(llvm::Value *Val, float Accuracy); 3945 3946 private: 3947 llvm::MDNode *getRangeForLoadFromType(QualType Ty); 3948 void EmitReturnOfRValue(RValue RV, QualType Ty); 3949 3950 void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New); 3951 3952 llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4> 3953 DeferredReplacements; 3954 3955 /// Set the address of a local variable. 3956 void setAddrOfLocalVar(const VarDecl *VD, Address Addr) { 3957 assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!"); 3958 LocalDeclMap.insert({VD, Addr}); 3959 } 3960 3961 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 3962 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 3963 /// 3964 /// \param AI - The first function argument of the expansion. 3965 void ExpandTypeFromArgs(QualType Ty, LValue Dst, 3966 SmallVectorImpl<llvm::Value *>::iterator &AI); 3967 3968 /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg 3969 /// Ty, into individual arguments on the provided vector \arg IRCallArgs, 3970 /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand. 3971 void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, 3972 SmallVectorImpl<llvm::Value *> &IRCallArgs, 3973 unsigned &IRCallArgPos); 3974 3975 llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info, 3976 const Expr *InputExpr, std::string &ConstraintStr); 3977 3978 llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 3979 LValue InputValue, QualType InputType, 3980 std::string &ConstraintStr, 3981 SourceLocation Loc); 3982 3983 /// Attempts to statically evaluate the object size of E. If that 3984 /// fails, emits code to figure the size of E out for us. This is 3985 /// pass_object_size aware. 3986 /// 3987 /// If EmittedExpr is non-null, this will use that instead of re-emitting E. 3988 llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type, 3989 llvm::IntegerType *ResType, 3990 llvm::Value *EmittedE); 3991 3992 /// Emits the size of E, as required by __builtin_object_size. This 3993 /// function is aware of pass_object_size parameters, and will act accordingly 3994 /// if E is a parameter with the pass_object_size attribute. 3995 llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type, 3996 llvm::IntegerType *ResType, 3997 llvm::Value *EmittedE); 3998 3999 public: 4000 #ifndef NDEBUG 4001 // Determine whether the given argument is an Objective-C method 4002 // that may have type parameters in its signature. 4003 static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) { 4004 const DeclContext *dc = method->getDeclContext(); 4005 if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) { 4006 return classDecl->getTypeParamListAsWritten(); 4007 } 4008 4009 if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) { 4010 return catDecl->getTypeParamList(); 4011 } 4012 4013 return false; 4014 } 4015 4016 template<typename T> 4017 static bool isObjCMethodWithTypeParams(const T *) { return false; } 4018 #endif 4019 4020 enum class EvaluationOrder { 4021 ///! No language constraints on evaluation order. 4022 Default, 4023 ///! Language semantics require left-to-right evaluation. 4024 ForceLeftToRight, 4025 ///! Language semantics require right-to-left evaluation. 4026 ForceRightToLeft 4027 }; 4028 4029 /// EmitCallArgs - Emit call arguments for a function. 4030 template <typename T> 4031 void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo, 4032 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 4033 AbstractCallee AC = AbstractCallee(), 4034 unsigned ParamsToSkip = 0, 4035 EvaluationOrder Order = EvaluationOrder::Default) { 4036 SmallVector<QualType, 16> ArgTypes; 4037 CallExpr::const_arg_iterator Arg = ArgRange.begin(); 4038 4039 assert((ParamsToSkip == 0 || CallArgTypeInfo) && 4040 "Can't skip parameters if type info is not provided"); 4041 if (CallArgTypeInfo) { 4042 #ifndef NDEBUG 4043 bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo); 4044 #endif 4045 4046 // First, use the argument types that the type info knows about 4047 for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip, 4048 E = CallArgTypeInfo->param_type_end(); 4049 I != E; ++I, ++Arg) { 4050 assert(Arg != ArgRange.end() && "Running over edge of argument list!"); 4051 assert((isGenericMethod || 4052 ((*I)->isVariablyModifiedType() || 4053 (*I).getNonReferenceType()->isObjCRetainableType() || 4054 getContext() 4055 .getCanonicalType((*I).getNonReferenceType()) 4056 .getTypePtr() == 4057 getContext() 4058 .getCanonicalType((*Arg)->getType()) 4059 .getTypePtr())) && 4060 "type mismatch in call argument!"); 4061 ArgTypes.push_back(*I); 4062 } 4063 } 4064 4065 // Either we've emitted all the call args, or we have a call to variadic 4066 // function. 4067 assert((Arg == ArgRange.end() || !CallArgTypeInfo || 4068 CallArgTypeInfo->isVariadic()) && 4069 "Extra arguments in non-variadic function!"); 4070 4071 // If we still have any arguments, emit them using the type of the argument. 4072 for (auto *A : llvm::make_range(Arg, ArgRange.end())) 4073 ArgTypes.push_back(CallArgTypeInfo ? getVarArgType(A) : A->getType()); 4074 4075 EmitCallArgs(Args, ArgTypes, ArgRange, AC, ParamsToSkip, Order); 4076 } 4077 4078 void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes, 4079 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 4080 AbstractCallee AC = AbstractCallee(), 4081 unsigned ParamsToSkip = 0, 4082 EvaluationOrder Order = EvaluationOrder::Default); 4083 4084 /// EmitPointerWithAlignment - Given an expression with a pointer type, 4085 /// emit the value and compute our best estimate of the alignment of the 4086 /// pointee. 4087 /// 4088 /// \param BaseInfo - If non-null, this will be initialized with 4089 /// information about the source of the alignment and the may-alias 4090 /// attribute. Note that this function will conservatively fall back on 4091 /// the type when it doesn't recognize the expression and may-alias will 4092 /// be set to false. 4093 /// 4094 /// One reasonable way to use this information is when there's a language 4095 /// guarantee that the pointer must be aligned to some stricter value, and 4096 /// we're simply trying to ensure that sufficiently obvious uses of under- 4097 /// aligned objects don't get miscompiled; for example, a placement new 4098 /// into the address of a local variable. In such a case, it's quite 4099 /// reasonable to just ignore the returned alignment when it isn't from an 4100 /// explicit source. 4101 Address EmitPointerWithAlignment(const Expr *Addr, 4102 LValueBaseInfo *BaseInfo = nullptr, 4103 TBAAAccessInfo *TBAAInfo = nullptr); 4104 4105 /// If \p E references a parameter with pass_object_size info or a constant 4106 /// array size modifier, emit the object size divided by the size of \p EltTy. 4107 /// Otherwise return null. 4108 llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy); 4109 4110 void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK); 4111 4112 struct MultiVersionResolverOption { 4113 llvm::Function *Function; 4114 TargetAttr::ParsedTargetAttr ParsedAttribute; 4115 unsigned Priority; 4116 MultiVersionResolverOption(const TargetInfo &TargInfo, llvm::Function *F, 4117 const clang::TargetAttr::ParsedTargetAttr &PT) 4118 : Function(F), ParsedAttribute(PT), Priority(0u) { 4119 for (StringRef Feat : PT.Features) 4120 Priority = std::max(Priority, 4121 TargInfo.multiVersionSortPriority(Feat.substr(1))); 4122 4123 if (!PT.Architecture.empty()) 4124 Priority = std::max(Priority, 4125 TargInfo.multiVersionSortPriority(PT.Architecture)); 4126 } 4127 4128 bool operator>(const MultiVersionResolverOption &Other) const { 4129 return Priority > Other.Priority; 4130 } 4131 }; 4132 void EmitMultiVersionResolver(llvm::Function *Resolver, 4133 ArrayRef<MultiVersionResolverOption> Options); 4134 4135 private: 4136 QualType getVarArgType(const Expr *Arg); 4137 4138 void EmitDeclMetadata(); 4139 4140 BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType, 4141 const AutoVarEmission &emission); 4142 4143 void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); 4144 4145 llvm::Value *GetValueForARMHint(unsigned BuiltinID); 4146 llvm::Value *EmitX86CpuIs(const CallExpr *E); 4147 llvm::Value *EmitX86CpuIs(StringRef CPUStr); 4148 llvm::Value *EmitX86CpuSupports(const CallExpr *E); 4149 llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs); 4150 llvm::Value *EmitX86CpuInit(); 4151 llvm::Value *FormResolverCondition(const MultiVersionResolverOption &RO); 4152 }; 4153 4154 /// Helper class with most of the code for saving a value for a 4155 /// conditional expression cleanup. 4156 struct DominatingLLVMValue { 4157 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 4158 4159 /// Answer whether the given value needs extra work to be saved. 4160 static bool needsSaving(llvm::Value *value) { 4161 // If it's not an instruction, we don't need to save. 4162 if (!isa<llvm::Instruction>(value)) return false; 4163 4164 // If it's an instruction in the entry block, we don't need to save. 4165 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 4166 return (block != &block->getParent()->getEntryBlock()); 4167 } 4168 4169 /// Try to save the given value. 4170 static saved_type save(CodeGenFunction &CGF, llvm::Value *value) { 4171 if (!needsSaving(value)) return saved_type(value, false); 4172 4173 // Otherwise, we need an alloca. 4174 auto align = CharUnits::fromQuantity( 4175 CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType())); 4176 Address alloca = 4177 CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save"); 4178 CGF.Builder.CreateStore(value, alloca); 4179 4180 return saved_type(alloca.getPointer(), true); 4181 } 4182 4183 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) { 4184 // If the value says it wasn't saved, trust that it's still dominating. 4185 if (!value.getInt()) return value.getPointer(); 4186 4187 // Otherwise, it should be an alloca instruction, as set up in save(). 4188 auto alloca = cast<llvm::AllocaInst>(value.getPointer()); 4189 return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlignment()); 4190 } 4191 }; 4192 4193 /// A partial specialization of DominatingValue for llvm::Values that 4194 /// might be llvm::Instructions. 4195 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 4196 typedef T *type; 4197 static type restore(CodeGenFunction &CGF, saved_type value) { 4198 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 4199 } 4200 }; 4201 4202 /// A specialization of DominatingValue for Address. 4203 template <> struct DominatingValue<Address> { 4204 typedef Address type; 4205 4206 struct saved_type { 4207 DominatingLLVMValue::saved_type SavedValue; 4208 CharUnits Alignment; 4209 }; 4210 4211 static bool needsSaving(type value) { 4212 return DominatingLLVMValue::needsSaving(value.getPointer()); 4213 } 4214 static saved_type save(CodeGenFunction &CGF, type value) { 4215 return { DominatingLLVMValue::save(CGF, value.getPointer()), 4216 value.getAlignment() }; 4217 } 4218 static type restore(CodeGenFunction &CGF, saved_type value) { 4219 return Address(DominatingLLVMValue::restore(CGF, value.SavedValue), 4220 value.Alignment); 4221 } 4222 }; 4223 4224 /// A specialization of DominatingValue for RValue. 4225 template <> struct DominatingValue<RValue> { 4226 typedef RValue type; 4227 class saved_type { 4228 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 4229 AggregateAddress, ComplexAddress }; 4230 4231 llvm::Value *Value; 4232 unsigned K : 3; 4233 unsigned Align : 29; 4234 saved_type(llvm::Value *v, Kind k, unsigned a = 0) 4235 : Value(v), K(k), Align(a) {} 4236 4237 public: 4238 static bool needsSaving(RValue value); 4239 static saved_type save(CodeGenFunction &CGF, RValue value); 4240 RValue restore(CodeGenFunction &CGF); 4241 4242 // implementations in CGCleanup.cpp 4243 }; 4244 4245 static bool needsSaving(type value) { 4246 return saved_type::needsSaving(value); 4247 } 4248 static saved_type save(CodeGenFunction &CGF, type value) { 4249 return saved_type::save(CGF, value); 4250 } 4251 static type restore(CodeGenFunction &CGF, saved_type value) { 4252 return value.restore(CGF); 4253 } 4254 }; 4255 4256 } // end namespace CodeGen 4257 } // end namespace clang 4258 4259 #endif 4260