1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the internal per-function state used for llvm translation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
15 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
16 
17 #include "CGBuilder.h"
18 #include "CGDebugInfo.h"
19 #include "CGLoopInfo.h"
20 #include "CGValue.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "EHScopeStack.h"
24 #include "VarBypassDetector.h"
25 #include "clang/AST/CharUnits.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/ExprObjC.h"
28 #include "clang/AST/ExprOpenMP.h"
29 #include "clang/AST/Type.h"
30 #include "clang/Basic/ABI.h"
31 #include "clang/Basic/CapturedStmt.h"
32 #include "clang/Basic/OpenMPKinds.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "clang/Frontend/CodeGenOptions.h"
35 #include "llvm/ADT/ArrayRef.h"
36 #include "llvm/ADT/DenseMap.h"
37 #include "llvm/ADT/SmallVector.h"
38 #include "llvm/IR/ValueHandle.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Transforms/Utils/SanitizerStats.h"
41 
42 namespace llvm {
43 class BasicBlock;
44 class LLVMContext;
45 class MDNode;
46 class Module;
47 class SwitchInst;
48 class Twine;
49 class Value;
50 class CallSite;
51 }
52 
53 namespace clang {
54 class ASTContext;
55 class BlockDecl;
56 class CXXDestructorDecl;
57 class CXXForRangeStmt;
58 class CXXTryStmt;
59 class Decl;
60 class LabelDecl;
61 class EnumConstantDecl;
62 class FunctionDecl;
63 class FunctionProtoType;
64 class LabelStmt;
65 class ObjCContainerDecl;
66 class ObjCInterfaceDecl;
67 class ObjCIvarDecl;
68 class ObjCMethodDecl;
69 class ObjCImplementationDecl;
70 class ObjCPropertyImplDecl;
71 class TargetInfo;
72 class VarDecl;
73 class ObjCForCollectionStmt;
74 class ObjCAtTryStmt;
75 class ObjCAtThrowStmt;
76 class ObjCAtSynchronizedStmt;
77 class ObjCAutoreleasePoolStmt;
78 
79 namespace CodeGen {
80 class CodeGenTypes;
81 class CGCallee;
82 class CGFunctionInfo;
83 class CGRecordLayout;
84 class CGBlockInfo;
85 class CGCXXABI;
86 class BlockByrefHelpers;
87 class BlockByrefInfo;
88 class BlockFlags;
89 class BlockFieldFlags;
90 class RegionCodeGenTy;
91 class TargetCodeGenInfo;
92 struct OMPTaskDataTy;
93 struct CGCoroData;
94 
95 /// The kind of evaluation to perform on values of a particular
96 /// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
97 /// CGExprAgg?
98 ///
99 /// TODO: should vectors maybe be split out into their own thing?
100 enum TypeEvaluationKind {
101   TEK_Scalar,
102   TEK_Complex,
103   TEK_Aggregate
104 };
105 
106 #define LIST_SANITIZER_CHECKS                                                  \
107   SANITIZER_CHECK(AddOverflow, add_overflow, 0)                                \
108   SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0)                  \
109   SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0)                             \
110   SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0)                          \
111   SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0)            \
112   SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0)                   \
113   SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 0)             \
114   SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0)                          \
115   SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0)                     \
116   SANITIZER_CHECK(MissingReturn, missing_return, 0)                            \
117   SANITIZER_CHECK(MulOverflow, mul_overflow, 0)                                \
118   SANITIZER_CHECK(NegateOverflow, negate_overflow, 0)                          \
119   SANITIZER_CHECK(NullabilityArg, nullability_arg, 0)                          \
120   SANITIZER_CHECK(NullabilityReturn, nullability_return, 1)                    \
121   SANITIZER_CHECK(NonnullArg, nonnull_arg, 0)                                  \
122   SANITIZER_CHECK(NonnullReturn, nonnull_return, 1)                            \
123   SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0)                               \
124   SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0)                        \
125   SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0)                    \
126   SANITIZER_CHECK(SubOverflow, sub_overflow, 0)                                \
127   SANITIZER_CHECK(TypeMismatch, type_mismatch, 1)                              \
128   SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0)
129 
130 enum SanitizerHandler {
131 #define SANITIZER_CHECK(Enum, Name, Version) Enum,
132   LIST_SANITIZER_CHECKS
133 #undef SANITIZER_CHECK
134 };
135 
136 /// CodeGenFunction - This class organizes the per-function state that is used
137 /// while generating LLVM code.
138 class CodeGenFunction : public CodeGenTypeCache {
139   CodeGenFunction(const CodeGenFunction &) = delete;
140   void operator=(const CodeGenFunction &) = delete;
141 
142   friend class CGCXXABI;
143 public:
144   /// A jump destination is an abstract label, branching to which may
145   /// require a jump out through normal cleanups.
146   struct JumpDest {
147     JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {}
148     JumpDest(llvm::BasicBlock *Block,
149              EHScopeStack::stable_iterator Depth,
150              unsigned Index)
151       : Block(Block), ScopeDepth(Depth), Index(Index) {}
152 
153     bool isValid() const { return Block != nullptr; }
154     llvm::BasicBlock *getBlock() const { return Block; }
155     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
156     unsigned getDestIndex() const { return Index; }
157 
158     // This should be used cautiously.
159     void setScopeDepth(EHScopeStack::stable_iterator depth) {
160       ScopeDepth = depth;
161     }
162 
163   private:
164     llvm::BasicBlock *Block;
165     EHScopeStack::stable_iterator ScopeDepth;
166     unsigned Index;
167   };
168 
169   CodeGenModule &CGM;  // Per-module state.
170   const TargetInfo &Target;
171 
172   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
173   LoopInfoStack LoopStack;
174   CGBuilderTy Builder;
175 
176   // Stores variables for which we can't generate correct lifetime markers
177   // because of jumps.
178   VarBypassDetector Bypasses;
179 
180   // CodeGen lambda for loops and support for ordered clause
181   typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &,
182                                   JumpDest)>
183       CodeGenLoopTy;
184   typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation,
185                                   const unsigned, const bool)>
186       CodeGenOrderedTy;
187 
188   // Codegen lambda for loop bounds in worksharing loop constructs
189   typedef llvm::function_ref<std::pair<LValue, LValue>(
190       CodeGenFunction &, const OMPExecutableDirective &S)>
191       CodeGenLoopBoundsTy;
192 
193   // Codegen lambda for loop bounds in dispatch-based loop implementation
194   typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>(
195       CodeGenFunction &, const OMPExecutableDirective &S, Address LB,
196       Address UB)>
197       CodeGenDispatchBoundsTy;
198 
199   /// \brief CGBuilder insert helper. This function is called after an
200   /// instruction is created using Builder.
201   void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
202                     llvm::BasicBlock *BB,
203                     llvm::BasicBlock::iterator InsertPt) const;
204 
205   /// CurFuncDecl - Holds the Decl for the current outermost
206   /// non-closure context.
207   const Decl *CurFuncDecl;
208   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
209   const Decl *CurCodeDecl;
210   const CGFunctionInfo *CurFnInfo;
211   QualType FnRetTy;
212   llvm::Function *CurFn;
213 
214   // Holds coroutine data if the current function is a coroutine. We use a
215   // wrapper to manage its lifetime, so that we don't have to define CGCoroData
216   // in this header.
217   struct CGCoroInfo {
218     std::unique_ptr<CGCoroData> Data;
219     CGCoroInfo();
220     ~CGCoroInfo();
221   };
222   CGCoroInfo CurCoro;
223 
224   /// CurGD - The GlobalDecl for the current function being compiled.
225   GlobalDecl CurGD;
226 
227   /// PrologueCleanupDepth - The cleanup depth enclosing all the
228   /// cleanups associated with the parameters.
229   EHScopeStack::stable_iterator PrologueCleanupDepth;
230 
231   /// ReturnBlock - Unified return block.
232   JumpDest ReturnBlock;
233 
234   /// ReturnValue - The temporary alloca to hold the return
235   /// value. This is invalid iff the function has no return value.
236   Address ReturnValue;
237 
238   /// Return true if a label was seen in the current scope.
239   bool hasLabelBeenSeenInCurrentScope() const {
240     if (CurLexicalScope)
241       return CurLexicalScope->hasLabels();
242     return !LabelMap.empty();
243   }
244 
245   /// AllocaInsertPoint - This is an instruction in the entry block before which
246   /// we prefer to insert allocas.
247   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
248 
249   /// \brief API for captured statement code generation.
250   class CGCapturedStmtInfo {
251   public:
252     explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default)
253         : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
254     explicit CGCapturedStmtInfo(const CapturedStmt &S,
255                                 CapturedRegionKind K = CR_Default)
256       : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
257 
258       RecordDecl::field_iterator Field =
259         S.getCapturedRecordDecl()->field_begin();
260       for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
261                                                 E = S.capture_end();
262            I != E; ++I, ++Field) {
263         if (I->capturesThis())
264           CXXThisFieldDecl = *Field;
265         else if (I->capturesVariable())
266           CaptureFields[I->getCapturedVar()] = *Field;
267         else if (I->capturesVariableByCopy())
268           CaptureFields[I->getCapturedVar()] = *Field;
269       }
270     }
271 
272     virtual ~CGCapturedStmtInfo();
273 
274     CapturedRegionKind getKind() const { return Kind; }
275 
276     virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
277     // \brief Retrieve the value of the context parameter.
278     virtual llvm::Value *getContextValue() const { return ThisValue; }
279 
280     /// \brief Lookup the captured field decl for a variable.
281     virtual const FieldDecl *lookup(const VarDecl *VD) const {
282       return CaptureFields.lookup(VD);
283     }
284 
285     bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
286     virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
287 
288     static bool classof(const CGCapturedStmtInfo *) {
289       return true;
290     }
291 
292     /// \brief Emit the captured statement body.
293     virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
294       CGF.incrementProfileCounter(S);
295       CGF.EmitStmt(S);
296     }
297 
298     /// \brief Get the name of the capture helper.
299     virtual StringRef getHelperName() const { return "__captured_stmt"; }
300 
301   private:
302     /// \brief The kind of captured statement being generated.
303     CapturedRegionKind Kind;
304 
305     /// \brief Keep the map between VarDecl and FieldDecl.
306     llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
307 
308     /// \brief The base address of the captured record, passed in as the first
309     /// argument of the parallel region function.
310     llvm::Value *ThisValue;
311 
312     /// \brief Captured 'this' type.
313     FieldDecl *CXXThisFieldDecl;
314   };
315   CGCapturedStmtInfo *CapturedStmtInfo;
316 
317   /// \brief RAII for correct setting/restoring of CapturedStmtInfo.
318   class CGCapturedStmtRAII {
319   private:
320     CodeGenFunction &CGF;
321     CGCapturedStmtInfo *PrevCapturedStmtInfo;
322   public:
323     CGCapturedStmtRAII(CodeGenFunction &CGF,
324                        CGCapturedStmtInfo *NewCapturedStmtInfo)
325         : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) {
326       CGF.CapturedStmtInfo = NewCapturedStmtInfo;
327     }
328     ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; }
329   };
330 
331   /// An abstract representation of regular/ObjC call/message targets.
332   class AbstractCallee {
333     /// The function declaration of the callee.
334     const Decl *CalleeDecl;
335 
336   public:
337     AbstractCallee() : CalleeDecl(nullptr) {}
338     AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {}
339     AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {}
340     bool hasFunctionDecl() const {
341       return dyn_cast_or_null<FunctionDecl>(CalleeDecl);
342     }
343     const Decl *getDecl() const { return CalleeDecl; }
344     unsigned getNumParams() const {
345       if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
346         return FD->getNumParams();
347       return cast<ObjCMethodDecl>(CalleeDecl)->param_size();
348     }
349     const ParmVarDecl *getParamDecl(unsigned I) const {
350       if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
351         return FD->getParamDecl(I);
352       return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I);
353     }
354   };
355 
356   /// \brief Sanitizers enabled for this function.
357   SanitizerSet SanOpts;
358 
359   /// \brief True if CodeGen currently emits code implementing sanitizer checks.
360   bool IsSanitizerScope;
361 
362   /// \brief RAII object to set/unset CodeGenFunction::IsSanitizerScope.
363   class SanitizerScope {
364     CodeGenFunction *CGF;
365   public:
366     SanitizerScope(CodeGenFunction *CGF);
367     ~SanitizerScope();
368   };
369 
370   /// In C++, whether we are code generating a thunk.  This controls whether we
371   /// should emit cleanups.
372   bool CurFuncIsThunk;
373 
374   /// In ARC, whether we should autorelease the return value.
375   bool AutoreleaseResult;
376 
377   /// Whether we processed a Microsoft-style asm block during CodeGen. These can
378   /// potentially set the return value.
379   bool SawAsmBlock;
380 
381   const FunctionDecl *CurSEHParent = nullptr;
382 
383   /// True if the current function is an outlined SEH helper. This can be a
384   /// finally block or filter expression.
385   bool IsOutlinedSEHHelper;
386 
387   const CodeGen::CGBlockInfo *BlockInfo;
388   llvm::Value *BlockPointer;
389 
390   llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
391   FieldDecl *LambdaThisCaptureField;
392 
393   /// \brief A mapping from NRVO variables to the flags used to indicate
394   /// when the NRVO has been applied to this variable.
395   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
396 
397   EHScopeStack EHStack;
398   llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
399   llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack;
400 
401   llvm::Instruction *CurrentFuncletPad = nullptr;
402 
403   class CallLifetimeEnd final : public EHScopeStack::Cleanup {
404     llvm::Value *Addr;
405     llvm::Value *Size;
406 
407   public:
408     CallLifetimeEnd(Address addr, llvm::Value *size)
409         : Addr(addr.getPointer()), Size(size) {}
410 
411     void Emit(CodeGenFunction &CGF, Flags flags) override {
412       CGF.EmitLifetimeEnd(Size, Addr);
413     }
414   };
415 
416   /// Header for data within LifetimeExtendedCleanupStack.
417   struct LifetimeExtendedCleanupHeader {
418     /// The size of the following cleanup object.
419     unsigned Size;
420     /// The kind of cleanup to push: a value from the CleanupKind enumeration.
421     CleanupKind Kind;
422 
423     size_t getSize() const { return Size; }
424     CleanupKind getKind() const { return Kind; }
425   };
426 
427   /// i32s containing the indexes of the cleanup destinations.
428   llvm::AllocaInst *NormalCleanupDest;
429 
430   unsigned NextCleanupDestIndex;
431 
432   /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
433   CGBlockInfo *FirstBlockInfo;
434 
435   /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
436   llvm::BasicBlock *EHResumeBlock;
437 
438   /// The exception slot.  All landing pads write the current exception pointer
439   /// into this alloca.
440   llvm::Value *ExceptionSlot;
441 
442   /// The selector slot.  Under the MandatoryCleanup model, all landing pads
443   /// write the current selector value into this alloca.
444   llvm::AllocaInst *EHSelectorSlot;
445 
446   /// A stack of exception code slots. Entering an __except block pushes a slot
447   /// on the stack and leaving pops one. The __exception_code() intrinsic loads
448   /// a value from the top of the stack.
449   SmallVector<Address, 1> SEHCodeSlotStack;
450 
451   /// Value returned by __exception_info intrinsic.
452   llvm::Value *SEHInfo = nullptr;
453 
454   /// Emits a landing pad for the current EH stack.
455   llvm::BasicBlock *EmitLandingPad();
456 
457   llvm::BasicBlock *getInvokeDestImpl();
458 
459   template <class T>
460   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
461     return DominatingValue<T>::save(*this, value);
462   }
463 
464 public:
465   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
466   /// rethrows.
467   SmallVector<llvm::Value*, 8> ObjCEHValueStack;
468 
469   /// A class controlling the emission of a finally block.
470   class FinallyInfo {
471     /// Where the catchall's edge through the cleanup should go.
472     JumpDest RethrowDest;
473 
474     /// A function to call to enter the catch.
475     llvm::Constant *BeginCatchFn;
476 
477     /// An i1 variable indicating whether or not the @finally is
478     /// running for an exception.
479     llvm::AllocaInst *ForEHVar;
480 
481     /// An i8* variable into which the exception pointer to rethrow
482     /// has been saved.
483     llvm::AllocaInst *SavedExnVar;
484 
485   public:
486     void enter(CodeGenFunction &CGF, const Stmt *Finally,
487                llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
488                llvm::Constant *rethrowFn);
489     void exit(CodeGenFunction &CGF);
490   };
491 
492   /// Returns true inside SEH __try blocks.
493   bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }
494 
495   /// Returns true while emitting a cleanuppad.
496   bool isCleanupPadScope() const {
497     return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad);
498   }
499 
500   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
501   /// current full-expression.  Safe against the possibility that
502   /// we're currently inside a conditionally-evaluated expression.
503   template <class T, class... As>
504   void pushFullExprCleanup(CleanupKind kind, As... A) {
505     // If we're not in a conditional branch, or if none of the
506     // arguments requires saving, then use the unconditional cleanup.
507     if (!isInConditionalBranch())
508       return EHStack.pushCleanup<T>(kind, A...);
509 
510     // Stash values in a tuple so we can guarantee the order of saves.
511     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
512     SavedTuple Saved{saveValueInCond(A)...};
513 
514     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
515     EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
516     initFullExprCleanup();
517   }
518 
519   /// \brief Queue a cleanup to be pushed after finishing the current
520   /// full-expression.
521   template <class T, class... As>
522   void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
523     assert(!isInConditionalBranch() && "can't defer conditional cleanup");
524 
525     LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind };
526 
527     size_t OldSize = LifetimeExtendedCleanupStack.size();
528     LifetimeExtendedCleanupStack.resize(
529         LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size);
530 
531     static_assert(sizeof(Header) % alignof(T) == 0,
532                   "Cleanup will be allocated on misaligned address");
533     char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
534     new (Buffer) LifetimeExtendedCleanupHeader(Header);
535     new (Buffer + sizeof(Header)) T(A...);
536   }
537 
538   /// Set up the last cleaup that was pushed as a conditional
539   /// full-expression cleanup.
540   void initFullExprCleanup();
541 
542   /// PushDestructorCleanup - Push a cleanup to call the
543   /// complete-object destructor of an object of the given type at the
544   /// given address.  Does nothing if T is not a C++ class type with a
545   /// non-trivial destructor.
546   void PushDestructorCleanup(QualType T, Address Addr);
547 
548   /// PushDestructorCleanup - Push a cleanup to call the
549   /// complete-object variant of the given destructor on the object at
550   /// the given address.
551   void PushDestructorCleanup(const CXXDestructorDecl *Dtor, Address Addr);
552 
553   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
554   /// process all branch fixups.
555   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
556 
557   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
558   /// The block cannot be reactivated.  Pops it if it's the top of the
559   /// stack.
560   ///
561   /// \param DominatingIP - An instruction which is known to
562   ///   dominate the current IP (if set) and which lies along
563   ///   all paths of execution between the current IP and the
564   ///   the point at which the cleanup comes into scope.
565   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
566                               llvm::Instruction *DominatingIP);
567 
568   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
569   /// Cannot be used to resurrect a deactivated cleanup.
570   ///
571   /// \param DominatingIP - An instruction which is known to
572   ///   dominate the current IP (if set) and which lies along
573   ///   all paths of execution between the current IP and the
574   ///   the point at which the cleanup comes into scope.
575   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
576                             llvm::Instruction *DominatingIP);
577 
578   /// \brief Enters a new scope for capturing cleanups, all of which
579   /// will be executed once the scope is exited.
580   class RunCleanupsScope {
581     EHScopeStack::stable_iterator CleanupStackDepth;
582     size_t LifetimeExtendedCleanupStackSize;
583     bool OldDidCallStackSave;
584   protected:
585     bool PerformCleanup;
586   private:
587 
588     RunCleanupsScope(const RunCleanupsScope &) = delete;
589     void operator=(const RunCleanupsScope &) = delete;
590 
591   protected:
592     CodeGenFunction& CGF;
593 
594   public:
595     /// \brief Enter a new cleanup scope.
596     explicit RunCleanupsScope(CodeGenFunction &CGF)
597       : PerformCleanup(true), CGF(CGF)
598     {
599       CleanupStackDepth = CGF.EHStack.stable_begin();
600       LifetimeExtendedCleanupStackSize =
601           CGF.LifetimeExtendedCleanupStack.size();
602       OldDidCallStackSave = CGF.DidCallStackSave;
603       CGF.DidCallStackSave = false;
604     }
605 
606     /// \brief Exit this cleanup scope, emitting any accumulated cleanups.
607     ~RunCleanupsScope() {
608       if (PerformCleanup)
609         ForceCleanup();
610     }
611 
612     /// \brief Determine whether this scope requires any cleanups.
613     bool requiresCleanups() const {
614       return CGF.EHStack.stable_begin() != CleanupStackDepth;
615     }
616 
617     /// \brief Force the emission of cleanups now, instead of waiting
618     /// until this object is destroyed.
619     /// \param ValuesToReload - A list of values that need to be available at
620     /// the insertion point after cleanup emission. If cleanup emission created
621     /// a shared cleanup block, these value pointers will be rewritten.
622     /// Otherwise, they not will be modified.
623     void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) {
624       assert(PerformCleanup && "Already forced cleanup");
625       CGF.DidCallStackSave = OldDidCallStackSave;
626       CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize,
627                            ValuesToReload);
628       PerformCleanup = false;
629     }
630   };
631 
632   class LexicalScope : public RunCleanupsScope {
633     SourceRange Range;
634     SmallVector<const LabelDecl*, 4> Labels;
635     LexicalScope *ParentScope;
636 
637     LexicalScope(const LexicalScope &) = delete;
638     void operator=(const LexicalScope &) = delete;
639 
640   public:
641     /// \brief Enter a new cleanup scope.
642     explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
643       : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
644       CGF.CurLexicalScope = this;
645       if (CGDebugInfo *DI = CGF.getDebugInfo())
646         DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
647     }
648 
649     void addLabel(const LabelDecl *label) {
650       assert(PerformCleanup && "adding label to dead scope?");
651       Labels.push_back(label);
652     }
653 
654     /// \brief Exit this cleanup scope, emitting any accumulated
655     /// cleanups.
656     ~LexicalScope() {
657       if (CGDebugInfo *DI = CGF.getDebugInfo())
658         DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
659 
660       // If we should perform a cleanup, force them now.  Note that
661       // this ends the cleanup scope before rescoping any labels.
662       if (PerformCleanup) {
663         ApplyDebugLocation DL(CGF, Range.getEnd());
664         ForceCleanup();
665       }
666     }
667 
668     /// \brief Force the emission of cleanups now, instead of waiting
669     /// until this object is destroyed.
670     void ForceCleanup() {
671       CGF.CurLexicalScope = ParentScope;
672       RunCleanupsScope::ForceCleanup();
673 
674       if (!Labels.empty())
675         rescopeLabels();
676     }
677 
678     bool hasLabels() const {
679       return !Labels.empty();
680     }
681 
682     void rescopeLabels();
683   };
684 
685   typedef llvm::DenseMap<const Decl *, Address> DeclMapTy;
686 
687   /// \brief The scope used to remap some variables as private in the OpenMP
688   /// loop body (or other captured region emitted without outlining), and to
689   /// restore old vars back on exit.
690   class OMPPrivateScope : public RunCleanupsScope {
691     DeclMapTy SavedLocals;
692     DeclMapTy SavedPrivates;
693 
694   private:
695     OMPPrivateScope(const OMPPrivateScope &) = delete;
696     void operator=(const OMPPrivateScope &) = delete;
697 
698   public:
699     /// \brief Enter a new OpenMP private scope.
700     explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}
701 
702     /// \brief Registers \a LocalVD variable as a private and apply \a
703     /// PrivateGen function for it to generate corresponding private variable.
704     /// \a PrivateGen returns an address of the generated private variable.
705     /// \return true if the variable is registered as private, false if it has
706     /// been privatized already.
707     bool
708     addPrivate(const VarDecl *LocalVD,
709                llvm::function_ref<Address()> PrivateGen) {
710       assert(PerformCleanup && "adding private to dead scope");
711 
712       // Only save it once.
713       if (SavedLocals.count(LocalVD)) return false;
714 
715       // Copy the existing local entry to SavedLocals.
716       auto it = CGF.LocalDeclMap.find(LocalVD);
717       if (it != CGF.LocalDeclMap.end()) {
718         SavedLocals.insert({LocalVD, it->second});
719       } else {
720         SavedLocals.insert({LocalVD, Address::invalid()});
721       }
722 
723       // Generate the private entry.
724       Address Addr = PrivateGen();
725       QualType VarTy = LocalVD->getType();
726       if (VarTy->isReferenceType()) {
727         Address Temp = CGF.CreateMemTemp(VarTy);
728         CGF.Builder.CreateStore(Addr.getPointer(), Temp);
729         Addr = Temp;
730       }
731       SavedPrivates.insert({LocalVD, Addr});
732 
733       return true;
734     }
735 
736     /// \brief Privatizes local variables previously registered as private.
737     /// Registration is separate from the actual privatization to allow
738     /// initializers use values of the original variables, not the private one.
739     /// This is important, for example, if the private variable is a class
740     /// variable initialized by a constructor that references other private
741     /// variables. But at initialization original variables must be used, not
742     /// private copies.
743     /// \return true if at least one variable was privatized, false otherwise.
744     bool Privatize() {
745       copyInto(SavedPrivates, CGF.LocalDeclMap);
746       SavedPrivates.clear();
747       return !SavedLocals.empty();
748     }
749 
750     void ForceCleanup() {
751       RunCleanupsScope::ForceCleanup();
752       copyInto(SavedLocals, CGF.LocalDeclMap);
753       SavedLocals.clear();
754     }
755 
756     /// \brief Exit scope - all the mapped variables are restored.
757     ~OMPPrivateScope() {
758       if (PerformCleanup)
759         ForceCleanup();
760     }
761 
762     /// Checks if the global variable is captured in current function.
763     bool isGlobalVarCaptured(const VarDecl *VD) const {
764       return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0;
765     }
766 
767   private:
768     /// Copy all the entries in the source map over the corresponding
769     /// entries in the destination, which must exist.
770     static void copyInto(const DeclMapTy &src, DeclMapTy &dest) {
771       for (auto &pair : src) {
772         if (!pair.second.isValid()) {
773           dest.erase(pair.first);
774           continue;
775         }
776 
777         auto it = dest.find(pair.first);
778         if (it != dest.end()) {
779           it->second = pair.second;
780         } else {
781           dest.insert(pair);
782         }
783       }
784     }
785   };
786 
787   /// \brief Takes the old cleanup stack size and emits the cleanup blocks
788   /// that have been added.
789   void
790   PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
791                    std::initializer_list<llvm::Value **> ValuesToReload = {});
792 
793   /// \brief Takes the old cleanup stack size and emits the cleanup blocks
794   /// that have been added, then adds all lifetime-extended cleanups from
795   /// the given position to the stack.
796   void
797   PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
798                    size_t OldLifetimeExtendedStackSize,
799                    std::initializer_list<llvm::Value **> ValuesToReload = {});
800 
801   void ResolveBranchFixups(llvm::BasicBlock *Target);
802 
803   /// The given basic block lies in the current EH scope, but may be a
804   /// target of a potentially scope-crossing jump; get a stable handle
805   /// to which we can perform this jump later.
806   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
807     return JumpDest(Target,
808                     EHStack.getInnermostNormalCleanup(),
809                     NextCleanupDestIndex++);
810   }
811 
812   /// The given basic block lies in the current EH scope, but may be a
813   /// target of a potentially scope-crossing jump; get a stable handle
814   /// to which we can perform this jump later.
815   JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
816     return getJumpDestInCurrentScope(createBasicBlock(Name));
817   }
818 
819   /// EmitBranchThroughCleanup - Emit a branch from the current insert
820   /// block through the normal cleanup handling code (if any) and then
821   /// on to \arg Dest.
822   void EmitBranchThroughCleanup(JumpDest Dest);
823 
824   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
825   /// specified destination obviously has no cleanups to run.  'false' is always
826   /// a conservatively correct answer for this method.
827   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
828 
829   /// popCatchScope - Pops the catch scope at the top of the EHScope
830   /// stack, emitting any required code (other than the catch handlers
831   /// themselves).
832   void popCatchScope();
833 
834   llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
835   llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
836   llvm::BasicBlock *getMSVCDispatchBlock(EHScopeStack::stable_iterator scope);
837 
838   /// An object to manage conditionally-evaluated expressions.
839   class ConditionalEvaluation {
840     llvm::BasicBlock *StartBB;
841 
842   public:
843     ConditionalEvaluation(CodeGenFunction &CGF)
844       : StartBB(CGF.Builder.GetInsertBlock()) {}
845 
846     void begin(CodeGenFunction &CGF) {
847       assert(CGF.OutermostConditional != this);
848       if (!CGF.OutermostConditional)
849         CGF.OutermostConditional = this;
850     }
851 
852     void end(CodeGenFunction &CGF) {
853       assert(CGF.OutermostConditional != nullptr);
854       if (CGF.OutermostConditional == this)
855         CGF.OutermostConditional = nullptr;
856     }
857 
858     /// Returns a block which will be executed prior to each
859     /// evaluation of the conditional code.
860     llvm::BasicBlock *getStartingBlock() const {
861       return StartBB;
862     }
863   };
864 
865   /// isInConditionalBranch - Return true if we're currently emitting
866   /// one branch or the other of a conditional expression.
867   bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
868 
869   void setBeforeOutermostConditional(llvm::Value *value, Address addr) {
870     assert(isInConditionalBranch());
871     llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
872     auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back());
873     store->setAlignment(addr.getAlignment().getQuantity());
874   }
875 
876   /// An RAII object to record that we're evaluating a statement
877   /// expression.
878   class StmtExprEvaluation {
879     CodeGenFunction &CGF;
880 
881     /// We have to save the outermost conditional: cleanups in a
882     /// statement expression aren't conditional just because the
883     /// StmtExpr is.
884     ConditionalEvaluation *SavedOutermostConditional;
885 
886   public:
887     StmtExprEvaluation(CodeGenFunction &CGF)
888       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
889       CGF.OutermostConditional = nullptr;
890     }
891 
892     ~StmtExprEvaluation() {
893       CGF.OutermostConditional = SavedOutermostConditional;
894       CGF.EnsureInsertPoint();
895     }
896   };
897 
898   /// An object which temporarily prevents a value from being
899   /// destroyed by aggressive peephole optimizations that assume that
900   /// all uses of a value have been realized in the IR.
901   class PeepholeProtection {
902     llvm::Instruction *Inst;
903     friend class CodeGenFunction;
904 
905   public:
906     PeepholeProtection() : Inst(nullptr) {}
907   };
908 
909   /// A non-RAII class containing all the information about a bound
910   /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
911   /// this which makes individual mappings very simple; using this
912   /// class directly is useful when you have a variable number of
913   /// opaque values or don't want the RAII functionality for some
914   /// reason.
915   class OpaqueValueMappingData {
916     const OpaqueValueExpr *OpaqueValue;
917     bool BoundLValue;
918     CodeGenFunction::PeepholeProtection Protection;
919 
920     OpaqueValueMappingData(const OpaqueValueExpr *ov,
921                            bool boundLValue)
922       : OpaqueValue(ov), BoundLValue(boundLValue) {}
923   public:
924     OpaqueValueMappingData() : OpaqueValue(nullptr) {}
925 
926     static bool shouldBindAsLValue(const Expr *expr) {
927       // gl-values should be bound as l-values for obvious reasons.
928       // Records should be bound as l-values because IR generation
929       // always keeps them in memory.  Expressions of function type
930       // act exactly like l-values but are formally required to be
931       // r-values in C.
932       return expr->isGLValue() ||
933              expr->getType()->isFunctionType() ||
934              hasAggregateEvaluationKind(expr->getType());
935     }
936 
937     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
938                                        const OpaqueValueExpr *ov,
939                                        const Expr *e) {
940       if (shouldBindAsLValue(ov))
941         return bind(CGF, ov, CGF.EmitLValue(e));
942       return bind(CGF, ov, CGF.EmitAnyExpr(e));
943     }
944 
945     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
946                                        const OpaqueValueExpr *ov,
947                                        const LValue &lv) {
948       assert(shouldBindAsLValue(ov));
949       CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
950       return OpaqueValueMappingData(ov, true);
951     }
952 
953     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
954                                        const OpaqueValueExpr *ov,
955                                        const RValue &rv) {
956       assert(!shouldBindAsLValue(ov));
957       CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
958 
959       OpaqueValueMappingData data(ov, false);
960 
961       // Work around an extremely aggressive peephole optimization in
962       // EmitScalarConversion which assumes that all other uses of a
963       // value are extant.
964       data.Protection = CGF.protectFromPeepholes(rv);
965 
966       return data;
967     }
968 
969     bool isValid() const { return OpaqueValue != nullptr; }
970     void clear() { OpaqueValue = nullptr; }
971 
972     void unbind(CodeGenFunction &CGF) {
973       assert(OpaqueValue && "no data to unbind!");
974 
975       if (BoundLValue) {
976         CGF.OpaqueLValues.erase(OpaqueValue);
977       } else {
978         CGF.OpaqueRValues.erase(OpaqueValue);
979         CGF.unprotectFromPeepholes(Protection);
980       }
981     }
982   };
983 
984   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
985   class OpaqueValueMapping {
986     CodeGenFunction &CGF;
987     OpaqueValueMappingData Data;
988 
989   public:
990     static bool shouldBindAsLValue(const Expr *expr) {
991       return OpaqueValueMappingData::shouldBindAsLValue(expr);
992     }
993 
994     /// Build the opaque value mapping for the given conditional
995     /// operator if it's the GNU ?: extension.  This is a common
996     /// enough pattern that the convenience operator is really
997     /// helpful.
998     ///
999     OpaqueValueMapping(CodeGenFunction &CGF,
1000                        const AbstractConditionalOperator *op) : CGF(CGF) {
1001       if (isa<ConditionalOperator>(op))
1002         // Leave Data empty.
1003         return;
1004 
1005       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
1006       Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
1007                                           e->getCommon());
1008     }
1009 
1010     /// Build the opaque value mapping for an OpaqueValueExpr whose source
1011     /// expression is set to the expression the OVE represents.
1012     OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV)
1013         : CGF(CGF) {
1014       if (OV) {
1015         assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used "
1016                                       "for OVE with no source expression");
1017         Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr());
1018       }
1019     }
1020 
1021     OpaqueValueMapping(CodeGenFunction &CGF,
1022                        const OpaqueValueExpr *opaqueValue,
1023                        LValue lvalue)
1024       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
1025     }
1026 
1027     OpaqueValueMapping(CodeGenFunction &CGF,
1028                        const OpaqueValueExpr *opaqueValue,
1029                        RValue rvalue)
1030       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
1031     }
1032 
1033     void pop() {
1034       Data.unbind(CGF);
1035       Data.clear();
1036     }
1037 
1038     ~OpaqueValueMapping() {
1039       if (Data.isValid()) Data.unbind(CGF);
1040     }
1041   };
1042 
1043 private:
1044   CGDebugInfo *DebugInfo;
1045   bool DisableDebugInfo;
1046 
1047   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
1048   /// calling llvm.stacksave for multiple VLAs in the same scope.
1049   bool DidCallStackSave;
1050 
1051   /// IndirectBranch - The first time an indirect goto is seen we create a block
1052   /// with an indirect branch.  Every time we see the address of a label taken,
1053   /// we add the label to the indirect goto.  Every subsequent indirect goto is
1054   /// codegen'd as a jump to the IndirectBranch's basic block.
1055   llvm::IndirectBrInst *IndirectBranch;
1056 
1057   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1058   /// decls.
1059   DeclMapTy LocalDeclMap;
1060 
1061   /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this
1062   /// will contain a mapping from said ParmVarDecl to its implicit "object_size"
1063   /// parameter.
1064   llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2>
1065       SizeArguments;
1066 
1067   /// Track escaped local variables with auto storage. Used during SEH
1068   /// outlining to produce a call to llvm.localescape.
1069   llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;
1070 
1071   /// LabelMap - This keeps track of the LLVM basic block for each C label.
1072   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1073 
1074   // BreakContinueStack - This keeps track of where break and continue
1075   // statements should jump to.
1076   struct BreakContinue {
1077     BreakContinue(JumpDest Break, JumpDest Continue)
1078       : BreakBlock(Break), ContinueBlock(Continue) {}
1079 
1080     JumpDest BreakBlock;
1081     JumpDest ContinueBlock;
1082   };
1083   SmallVector<BreakContinue, 8> BreakContinueStack;
1084 
1085   /// Handles cancellation exit points in OpenMP-related constructs.
1086   class OpenMPCancelExitStack {
1087     /// Tracks cancellation exit point and join point for cancel-related exit
1088     /// and normal exit.
1089     struct CancelExit {
1090       CancelExit() = default;
1091       CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock,
1092                  JumpDest ContBlock)
1093           : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {}
1094       OpenMPDirectiveKind Kind = OMPD_unknown;
1095       /// true if the exit block has been emitted already by the special
1096       /// emitExit() call, false if the default codegen is used.
1097       bool HasBeenEmitted = false;
1098       JumpDest ExitBlock;
1099       JumpDest ContBlock;
1100     };
1101 
1102     SmallVector<CancelExit, 8> Stack;
1103 
1104   public:
1105     OpenMPCancelExitStack() : Stack(1) {}
1106     ~OpenMPCancelExitStack() = default;
1107     /// Fetches the exit block for the current OpenMP construct.
1108     JumpDest getExitBlock() const { return Stack.back().ExitBlock; }
1109     /// Emits exit block with special codegen procedure specific for the related
1110     /// OpenMP construct + emits code for normal construct cleanup.
1111     void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
1112                   const llvm::function_ref<void(CodeGenFunction &)> &CodeGen) {
1113       if (Stack.back().Kind == Kind && getExitBlock().isValid()) {
1114         assert(CGF.getOMPCancelDestination(Kind).isValid());
1115         assert(CGF.HaveInsertPoint());
1116         assert(!Stack.back().HasBeenEmitted);
1117         auto IP = CGF.Builder.saveAndClearIP();
1118         CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1119         CodeGen(CGF);
1120         CGF.EmitBranch(Stack.back().ContBlock.getBlock());
1121         CGF.Builder.restoreIP(IP);
1122         Stack.back().HasBeenEmitted = true;
1123       }
1124       CodeGen(CGF);
1125     }
1126     /// Enter the cancel supporting \a Kind construct.
1127     /// \param Kind OpenMP directive that supports cancel constructs.
1128     /// \param HasCancel true, if the construct has inner cancel directive,
1129     /// false otherwise.
1130     void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) {
1131       Stack.push_back({Kind,
1132                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit")
1133                                  : JumpDest(),
1134                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont")
1135                                  : JumpDest()});
1136     }
1137     /// Emits default exit point for the cancel construct (if the special one
1138     /// has not be used) + join point for cancel/normal exits.
1139     void exit(CodeGenFunction &CGF) {
1140       if (getExitBlock().isValid()) {
1141         assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid());
1142         bool HaveIP = CGF.HaveInsertPoint();
1143         if (!Stack.back().HasBeenEmitted) {
1144           if (HaveIP)
1145             CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1146           CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1147           CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1148         }
1149         CGF.EmitBlock(Stack.back().ContBlock.getBlock());
1150         if (!HaveIP) {
1151           CGF.Builder.CreateUnreachable();
1152           CGF.Builder.ClearInsertionPoint();
1153         }
1154       }
1155       Stack.pop_back();
1156     }
1157   };
1158   OpenMPCancelExitStack OMPCancelStack;
1159 
1160   /// Controls insertion of cancellation exit blocks in worksharing constructs.
1161   class OMPCancelStackRAII {
1162     CodeGenFunction &CGF;
1163 
1164   public:
1165     OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
1166                        bool HasCancel)
1167         : CGF(CGF) {
1168       CGF.OMPCancelStack.enter(CGF, Kind, HasCancel);
1169     }
1170     ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); }
1171   };
1172 
1173   CodeGenPGO PGO;
1174 
1175   /// Calculate branch weights appropriate for PGO data
1176   llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount);
1177   llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights);
1178   llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond,
1179                                             uint64_t LoopCount);
1180 
1181 public:
1182   /// Increment the profiler's counter for the given statement by \p StepV.
1183   /// If \p StepV is null, the default increment is 1.
1184   void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) {
1185     if (CGM.getCodeGenOpts().hasProfileClangInstr())
1186       PGO.emitCounterIncrement(Builder, S, StepV);
1187     PGO.setCurrentStmt(S);
1188   }
1189 
1190   /// Get the profiler's count for the given statement.
1191   uint64_t getProfileCount(const Stmt *S) {
1192     Optional<uint64_t> Count = PGO.getStmtCount(S);
1193     if (!Count.hasValue())
1194       return 0;
1195     return *Count;
1196   }
1197 
1198   /// Set the profiler's current count.
1199   void setCurrentProfileCount(uint64_t Count) {
1200     PGO.setCurrentRegionCount(Count);
1201   }
1202 
1203   /// Get the profiler's current count. This is generally the count for the most
1204   /// recently incremented counter.
1205   uint64_t getCurrentProfileCount() {
1206     return PGO.getCurrentRegionCount();
1207   }
1208 
1209 private:
1210 
1211   /// SwitchInsn - This is nearest current switch instruction. It is null if
1212   /// current context is not in a switch.
1213   llvm::SwitchInst *SwitchInsn;
1214   /// The branch weights of SwitchInsn when doing instrumentation based PGO.
1215   SmallVector<uint64_t, 16> *SwitchWeights;
1216 
1217   /// CaseRangeBlock - This block holds if condition check for last case
1218   /// statement range in current switch instruction.
1219   llvm::BasicBlock *CaseRangeBlock;
1220 
1221   /// OpaqueLValues - Keeps track of the current set of opaque value
1222   /// expressions.
1223   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1224   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1225 
1226   // VLASizeMap - This keeps track of the associated size for each VLA type.
1227   // We track this by the size expression rather than the type itself because
1228   // in certain situations, like a const qualifier applied to an VLA typedef,
1229   // multiple VLA types can share the same size expression.
1230   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1231   // enter/leave scopes.
1232   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1233 
1234   /// A block containing a single 'unreachable' instruction.  Created
1235   /// lazily by getUnreachableBlock().
1236   llvm::BasicBlock *UnreachableBlock;
1237 
1238   /// Counts of the number return expressions in the function.
1239   unsigned NumReturnExprs;
1240 
1241   /// Count the number of simple (constant) return expressions in the function.
1242   unsigned NumSimpleReturnExprs;
1243 
1244   /// The last regular (non-return) debug location (breakpoint) in the function.
1245   SourceLocation LastStopPoint;
1246 
1247 public:
1248   /// A scope within which we are constructing the fields of an object which
1249   /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
1250   /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
1251   class FieldConstructionScope {
1252   public:
1253     FieldConstructionScope(CodeGenFunction &CGF, Address This)
1254         : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
1255       CGF.CXXDefaultInitExprThis = This;
1256     }
1257     ~FieldConstructionScope() {
1258       CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
1259     }
1260 
1261   private:
1262     CodeGenFunction &CGF;
1263     Address OldCXXDefaultInitExprThis;
1264   };
1265 
1266   /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
1267   /// is overridden to be the object under construction.
1268   class CXXDefaultInitExprScope {
1269   public:
1270     CXXDefaultInitExprScope(CodeGenFunction &CGF)
1271       : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue),
1272         OldCXXThisAlignment(CGF.CXXThisAlignment) {
1273       CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer();
1274       CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment();
1275     }
1276     ~CXXDefaultInitExprScope() {
1277       CGF.CXXThisValue = OldCXXThisValue;
1278       CGF.CXXThisAlignment = OldCXXThisAlignment;
1279     }
1280 
1281   public:
1282     CodeGenFunction &CGF;
1283     llvm::Value *OldCXXThisValue;
1284     CharUnits OldCXXThisAlignment;
1285   };
1286 
1287   /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the
1288   /// current loop index is overridden.
1289   class ArrayInitLoopExprScope {
1290   public:
1291     ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index)
1292       : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) {
1293       CGF.ArrayInitIndex = Index;
1294     }
1295     ~ArrayInitLoopExprScope() {
1296       CGF.ArrayInitIndex = OldArrayInitIndex;
1297     }
1298 
1299   private:
1300     CodeGenFunction &CGF;
1301     llvm::Value *OldArrayInitIndex;
1302   };
1303 
1304   class InlinedInheritingConstructorScope {
1305   public:
1306     InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD)
1307         : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl),
1308           OldCurCodeDecl(CGF.CurCodeDecl),
1309           OldCXXABIThisDecl(CGF.CXXABIThisDecl),
1310           OldCXXABIThisValue(CGF.CXXABIThisValue),
1311           OldCXXThisValue(CGF.CXXThisValue),
1312           OldCXXABIThisAlignment(CGF.CXXABIThisAlignment),
1313           OldCXXThisAlignment(CGF.CXXThisAlignment),
1314           OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy),
1315           OldCXXInheritedCtorInitExprArgs(
1316               std::move(CGF.CXXInheritedCtorInitExprArgs)) {
1317       CGF.CurGD = GD;
1318       CGF.CurFuncDecl = CGF.CurCodeDecl =
1319           cast<CXXConstructorDecl>(GD.getDecl());
1320       CGF.CXXABIThisDecl = nullptr;
1321       CGF.CXXABIThisValue = nullptr;
1322       CGF.CXXThisValue = nullptr;
1323       CGF.CXXABIThisAlignment = CharUnits();
1324       CGF.CXXThisAlignment = CharUnits();
1325       CGF.ReturnValue = Address::invalid();
1326       CGF.FnRetTy = QualType();
1327       CGF.CXXInheritedCtorInitExprArgs.clear();
1328     }
1329     ~InlinedInheritingConstructorScope() {
1330       CGF.CurGD = OldCurGD;
1331       CGF.CurFuncDecl = OldCurFuncDecl;
1332       CGF.CurCodeDecl = OldCurCodeDecl;
1333       CGF.CXXABIThisDecl = OldCXXABIThisDecl;
1334       CGF.CXXABIThisValue = OldCXXABIThisValue;
1335       CGF.CXXThisValue = OldCXXThisValue;
1336       CGF.CXXABIThisAlignment = OldCXXABIThisAlignment;
1337       CGF.CXXThisAlignment = OldCXXThisAlignment;
1338       CGF.ReturnValue = OldReturnValue;
1339       CGF.FnRetTy = OldFnRetTy;
1340       CGF.CXXInheritedCtorInitExprArgs =
1341           std::move(OldCXXInheritedCtorInitExprArgs);
1342     }
1343 
1344   private:
1345     CodeGenFunction &CGF;
1346     GlobalDecl OldCurGD;
1347     const Decl *OldCurFuncDecl;
1348     const Decl *OldCurCodeDecl;
1349     ImplicitParamDecl *OldCXXABIThisDecl;
1350     llvm::Value *OldCXXABIThisValue;
1351     llvm::Value *OldCXXThisValue;
1352     CharUnits OldCXXABIThisAlignment;
1353     CharUnits OldCXXThisAlignment;
1354     Address OldReturnValue;
1355     QualType OldFnRetTy;
1356     CallArgList OldCXXInheritedCtorInitExprArgs;
1357   };
1358 
1359 private:
1360   /// CXXThisDecl - When generating code for a C++ member function,
1361   /// this will hold the implicit 'this' declaration.
1362   ImplicitParamDecl *CXXABIThisDecl;
1363   llvm::Value *CXXABIThisValue;
1364   llvm::Value *CXXThisValue;
1365   CharUnits CXXABIThisAlignment;
1366   CharUnits CXXThisAlignment;
1367 
1368   /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
1369   /// this expression.
1370   Address CXXDefaultInitExprThis = Address::invalid();
1371 
1372   /// The current array initialization index when evaluating an
1373   /// ArrayInitIndexExpr within an ArrayInitLoopExpr.
1374   llvm::Value *ArrayInitIndex = nullptr;
1375 
1376   /// The values of function arguments to use when evaluating
1377   /// CXXInheritedCtorInitExprs within this context.
1378   CallArgList CXXInheritedCtorInitExprArgs;
1379 
1380   /// CXXStructorImplicitParamDecl - When generating code for a constructor or
1381   /// destructor, this will hold the implicit argument (e.g. VTT).
1382   ImplicitParamDecl *CXXStructorImplicitParamDecl;
1383   llvm::Value *CXXStructorImplicitParamValue;
1384 
1385   /// OutermostConditional - Points to the outermost active
1386   /// conditional control.  This is used so that we know if a
1387   /// temporary should be destroyed conditionally.
1388   ConditionalEvaluation *OutermostConditional;
1389 
1390   /// The current lexical scope.
1391   LexicalScope *CurLexicalScope;
1392 
1393   /// The current source location that should be used for exception
1394   /// handling code.
1395   SourceLocation CurEHLocation;
1396 
1397   /// BlockByrefInfos - For each __block variable, contains
1398   /// information about the layout of the variable.
1399   llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos;
1400 
1401   /// Used by -fsanitize=nullability-return to determine whether the return
1402   /// value can be checked.
1403   llvm::Value *RetValNullabilityPrecondition = nullptr;
1404 
1405   /// Check if -fsanitize=nullability-return instrumentation is required for
1406   /// this function.
1407   bool requiresReturnValueNullabilityCheck() const {
1408     return RetValNullabilityPrecondition;
1409   }
1410 
1411   /// Used to store precise source locations for return statements by the
1412   /// runtime return value checks.
1413   Address ReturnLocation = Address::invalid();
1414 
1415   /// Check if the return value of this function requires sanitization.
1416   bool requiresReturnValueCheck() const {
1417     return requiresReturnValueNullabilityCheck() ||
1418            (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
1419             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>());
1420   }
1421 
1422   llvm::BasicBlock *TerminateLandingPad;
1423   llvm::BasicBlock *TerminateHandler;
1424   llvm::BasicBlock *TrapBB;
1425 
1426   /// True if we need emit the life-time markers.
1427   const bool ShouldEmitLifetimeMarkers;
1428 
1429   /// Add OpenCL kernel arg metadata and the kernel attribute meatadata to
1430   /// the function metadata.
1431   void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
1432                                 llvm::Function *Fn);
1433 
1434 public:
1435   CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1436   ~CodeGenFunction();
1437 
1438   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1439   ASTContext &getContext() const { return CGM.getContext(); }
1440   CGDebugInfo *getDebugInfo() {
1441     if (DisableDebugInfo)
1442       return nullptr;
1443     return DebugInfo;
1444   }
1445   void disableDebugInfo() { DisableDebugInfo = true; }
1446   void enableDebugInfo() { DisableDebugInfo = false; }
1447 
1448   bool shouldUseFusedARCCalls() {
1449     return CGM.getCodeGenOpts().OptimizationLevel == 0;
1450   }
1451 
1452   const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1453 
1454   /// Returns a pointer to the function's exception object and selector slot,
1455   /// which is assigned in every landing pad.
1456   Address getExceptionSlot();
1457   Address getEHSelectorSlot();
1458 
1459   /// Returns the contents of the function's exception object and selector
1460   /// slots.
1461   llvm::Value *getExceptionFromSlot();
1462   llvm::Value *getSelectorFromSlot();
1463 
1464   Address getNormalCleanupDestSlot();
1465 
1466   llvm::BasicBlock *getUnreachableBlock() {
1467     if (!UnreachableBlock) {
1468       UnreachableBlock = createBasicBlock("unreachable");
1469       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1470     }
1471     return UnreachableBlock;
1472   }
1473 
1474   llvm::BasicBlock *getInvokeDest() {
1475     if (!EHStack.requiresLandingPad()) return nullptr;
1476     return getInvokeDestImpl();
1477   }
1478 
1479   bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; }
1480 
1481   const TargetInfo &getTarget() const { return Target; }
1482   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1483   const TargetCodeGenInfo &getTargetHooks() const {
1484     return CGM.getTargetCodeGenInfo();
1485   }
1486 
1487   //===--------------------------------------------------------------------===//
1488   //                                  Cleanups
1489   //===--------------------------------------------------------------------===//
1490 
1491   typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty);
1492 
1493   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1494                                         Address arrayEndPointer,
1495                                         QualType elementType,
1496                                         CharUnits elementAlignment,
1497                                         Destroyer *destroyer);
1498   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1499                                       llvm::Value *arrayEnd,
1500                                       QualType elementType,
1501                                       CharUnits elementAlignment,
1502                                       Destroyer *destroyer);
1503 
1504   void pushDestroy(QualType::DestructionKind dtorKind,
1505                    Address addr, QualType type);
1506   void pushEHDestroy(QualType::DestructionKind dtorKind,
1507                      Address addr, QualType type);
1508   void pushDestroy(CleanupKind kind, Address addr, QualType type,
1509                    Destroyer *destroyer, bool useEHCleanupForArray);
1510   void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr,
1511                                    QualType type, Destroyer *destroyer,
1512                                    bool useEHCleanupForArray);
1513   void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1514                                    llvm::Value *CompletePtr,
1515                                    QualType ElementType);
1516   void pushStackRestore(CleanupKind kind, Address SPMem);
1517   void emitDestroy(Address addr, QualType type, Destroyer *destroyer,
1518                    bool useEHCleanupForArray);
1519   llvm::Function *generateDestroyHelper(Address addr, QualType type,
1520                                         Destroyer *destroyer,
1521                                         bool useEHCleanupForArray,
1522                                         const VarDecl *VD);
1523   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1524                         QualType elementType, CharUnits elementAlign,
1525                         Destroyer *destroyer,
1526                         bool checkZeroLength, bool useEHCleanup);
1527 
1528   Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1529 
1530   /// Determines whether an EH cleanup is required to destroy a type
1531   /// with the given destruction kind.
1532   bool needsEHCleanup(QualType::DestructionKind kind) {
1533     switch (kind) {
1534     case QualType::DK_none:
1535       return false;
1536     case QualType::DK_cxx_destructor:
1537     case QualType::DK_objc_weak_lifetime:
1538       return getLangOpts().Exceptions;
1539     case QualType::DK_objc_strong_lifetime:
1540       return getLangOpts().Exceptions &&
1541              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1542     }
1543     llvm_unreachable("bad destruction kind");
1544   }
1545 
1546   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
1547     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1548   }
1549 
1550   //===--------------------------------------------------------------------===//
1551   //                                  Objective-C
1552   //===--------------------------------------------------------------------===//
1553 
1554   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1555 
1556   void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
1557 
1558   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1559   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1560                           const ObjCPropertyImplDecl *PID);
1561   void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1562                               const ObjCPropertyImplDecl *propImpl,
1563                               const ObjCMethodDecl *GetterMothodDecl,
1564                               llvm::Constant *AtomicHelperFn);
1565 
1566   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1567                                   ObjCMethodDecl *MD, bool ctor);
1568 
1569   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1570   /// for the given property.
1571   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1572                           const ObjCPropertyImplDecl *PID);
1573   void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1574                               const ObjCPropertyImplDecl *propImpl,
1575                               llvm::Constant *AtomicHelperFn);
1576 
1577   //===--------------------------------------------------------------------===//
1578   //                                  Block Bits
1579   //===--------------------------------------------------------------------===//
1580 
1581   llvm::Value *EmitBlockLiteral(const BlockExpr *);
1582   static void destroyBlockInfos(CGBlockInfo *info);
1583 
1584   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1585                                         const CGBlockInfo &Info,
1586                                         const DeclMapTy &ldm,
1587                                         bool IsLambdaConversionToBlock);
1588 
1589   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1590   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1591   llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
1592                                              const ObjCPropertyImplDecl *PID);
1593   llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
1594                                              const ObjCPropertyImplDecl *PID);
1595   llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
1596 
1597   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
1598 
1599   class AutoVarEmission;
1600 
1601   void emitByrefStructureInit(const AutoVarEmission &emission);
1602   void enterByrefCleanup(const AutoVarEmission &emission);
1603 
1604   void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum,
1605                                 llvm::Value *ptr);
1606 
1607   Address LoadBlockStruct();
1608   Address GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
1609 
1610   /// BuildBlockByrefAddress - Computes the location of the
1611   /// data in a variable which is declared as __block.
1612   Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V,
1613                                 bool followForward = true);
1614   Address emitBlockByrefAddress(Address baseAddr,
1615                                 const BlockByrefInfo &info,
1616                                 bool followForward,
1617                                 const llvm::Twine &name);
1618 
1619   const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var);
1620 
1621   QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args);
1622 
1623   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1624                     const CGFunctionInfo &FnInfo);
1625   /// \brief Emit code for the start of a function.
1626   /// \param Loc       The location to be associated with the function.
1627   /// \param StartLoc  The location of the function body.
1628   void StartFunction(GlobalDecl GD,
1629                      QualType RetTy,
1630                      llvm::Function *Fn,
1631                      const CGFunctionInfo &FnInfo,
1632                      const FunctionArgList &Args,
1633                      SourceLocation Loc = SourceLocation(),
1634                      SourceLocation StartLoc = SourceLocation());
1635 
1636   static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor);
1637 
1638   void EmitConstructorBody(FunctionArgList &Args);
1639   void EmitDestructorBody(FunctionArgList &Args);
1640   void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
1641   void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body);
1642   void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S);
1643 
1644   void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
1645                                   CallArgList &CallArgs);
1646   void EmitLambdaBlockInvokeBody();
1647   void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
1648   void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD);
1649   void EmitAsanPrologueOrEpilogue(bool Prologue);
1650 
1651   /// \brief Emit the unified return block, trying to avoid its emission when
1652   /// possible.
1653   /// \return The debug location of the user written return statement if the
1654   /// return block is is avoided.
1655   llvm::DebugLoc EmitReturnBlock();
1656 
1657   /// FinishFunction - Complete IR generation of the current function. It is
1658   /// legal to call this function even if there is no current insertion point.
1659   void FinishFunction(SourceLocation EndLoc=SourceLocation());
1660 
1661   void StartThunk(llvm::Function *Fn, GlobalDecl GD,
1662                   const CGFunctionInfo &FnInfo);
1663 
1664   void EmitCallAndReturnForThunk(llvm::Constant *Callee,
1665                                  const ThunkInfo *Thunk);
1666 
1667   void FinishThunk();
1668 
1669   /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
1670   void EmitMustTailThunk(const CXXMethodDecl *MD, llvm::Value *AdjustedThisPtr,
1671                          llvm::Value *Callee);
1672 
1673   /// Generate a thunk for the given method.
1674   void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1675                      GlobalDecl GD, const ThunkInfo &Thunk);
1676 
1677   llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn,
1678                                        const CGFunctionInfo &FnInfo,
1679                                        GlobalDecl GD, const ThunkInfo &Thunk);
1680 
1681   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1682                         FunctionArgList &Args);
1683 
1684   void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init);
1685 
1686   /// Struct with all informations about dynamic [sub]class needed to set vptr.
1687   struct VPtr {
1688     BaseSubobject Base;
1689     const CXXRecordDecl *NearestVBase;
1690     CharUnits OffsetFromNearestVBase;
1691     const CXXRecordDecl *VTableClass;
1692   };
1693 
1694   /// Initialize the vtable pointer of the given subobject.
1695   void InitializeVTablePointer(const VPtr &vptr);
1696 
1697   typedef llvm::SmallVector<VPtr, 4> VPtrsVector;
1698 
1699   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1700   VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass);
1701 
1702   void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase,
1703                          CharUnits OffsetFromNearestVBase,
1704                          bool BaseIsNonVirtualPrimaryBase,
1705                          const CXXRecordDecl *VTableClass,
1706                          VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs);
1707 
1708   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1709 
1710   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1711   /// to by This.
1712   llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy,
1713                             const CXXRecordDecl *VTableClass);
1714 
1715   enum CFITypeCheckKind {
1716     CFITCK_VCall,
1717     CFITCK_NVCall,
1718     CFITCK_DerivedCast,
1719     CFITCK_UnrelatedCast,
1720     CFITCK_ICall,
1721   };
1722 
1723   /// \brief Derived is the presumed address of an object of type T after a
1724   /// cast. If T is a polymorphic class type, emit a check that the virtual
1725   /// table for Derived belongs to a class derived from T.
1726   void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived,
1727                                  bool MayBeNull, CFITypeCheckKind TCK,
1728                                  SourceLocation Loc);
1729 
1730   /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
1731   /// If vptr CFI is enabled, emit a check that VTable is valid.
1732   void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable,
1733                                  CFITypeCheckKind TCK, SourceLocation Loc);
1734 
1735   /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
1736   /// RD using llvm.type.test.
1737   void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable,
1738                           CFITypeCheckKind TCK, SourceLocation Loc);
1739 
1740   /// If whole-program virtual table optimization is enabled, emit an assumption
1741   /// that VTable is a member of RD's type identifier. Or, if vptr CFI is
1742   /// enabled, emit a check that VTable is a member of RD's type identifier.
1743   void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
1744                                     llvm::Value *VTable, SourceLocation Loc);
1745 
1746   /// Returns whether we should perform a type checked load when loading a
1747   /// virtual function for virtual calls to members of RD. This is generally
1748   /// true when both vcall CFI and whole-program-vtables are enabled.
1749   bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD);
1750 
1751   /// Emit a type checked load from the given vtable.
1752   llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable,
1753                                          uint64_t VTableByteOffset);
1754 
1755   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1756   /// given phase of destruction for a destructor.  The end result
1757   /// should call destructors on members and base classes in reverse
1758   /// order of their construction.
1759   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1760 
1761   /// ShouldInstrumentFunction - Return true if the current function should be
1762   /// instrumented with __cyg_profile_func_* calls
1763   bool ShouldInstrumentFunction();
1764 
1765   /// ShouldXRayInstrument - Return true if the current function should be
1766   /// instrumented with XRay nop sleds.
1767   bool ShouldXRayInstrumentFunction() const;
1768 
1769   /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
1770   /// instrumentation function with the current function and the call site, if
1771   /// function instrumentation is enabled.
1772   void EmitFunctionInstrumentation(const char *Fn);
1773 
1774   /// EmitMCountInstrumentation - Emit call to .mcount.
1775   void EmitMCountInstrumentation();
1776 
1777   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1778   /// arguments for the given function. This is also responsible for naming the
1779   /// LLVM function arguments.
1780   void EmitFunctionProlog(const CGFunctionInfo &FI,
1781                           llvm::Function *Fn,
1782                           const FunctionArgList &Args);
1783 
1784   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1785   /// given temporary.
1786   void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
1787                           SourceLocation EndLoc);
1788 
1789   /// Emit a test that checks if the return value \p RV is nonnull.
1790   void EmitReturnValueCheck(llvm::Value *RV);
1791 
1792   /// EmitStartEHSpec - Emit the start of the exception spec.
1793   void EmitStartEHSpec(const Decl *D);
1794 
1795   /// EmitEndEHSpec - Emit the end of the exception spec.
1796   void EmitEndEHSpec(const Decl *D);
1797 
1798   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
1799   llvm::BasicBlock *getTerminateLandingPad();
1800 
1801   /// getTerminateHandler - Return a handler (not a landing pad, just
1802   /// a catch handler) that just calls terminate.  This is used when
1803   /// a terminate scope encloses a try.
1804   llvm::BasicBlock *getTerminateHandler();
1805 
1806   llvm::Type *ConvertTypeForMem(QualType T);
1807   llvm::Type *ConvertType(QualType T);
1808   llvm::Type *ConvertType(const TypeDecl *T) {
1809     return ConvertType(getContext().getTypeDeclType(T));
1810   }
1811 
1812   /// LoadObjCSelf - Load the value of self. This function is only valid while
1813   /// generating code for an Objective-C method.
1814   llvm::Value *LoadObjCSelf();
1815 
1816   /// TypeOfSelfObject - Return type of object that this self represents.
1817   QualType TypeOfSelfObject();
1818 
1819   /// hasAggregateLLVMType - Return true if the specified AST type will map into
1820   /// an aggregate LLVM type or is void.
1821   static TypeEvaluationKind getEvaluationKind(QualType T);
1822 
1823   static bool hasScalarEvaluationKind(QualType T) {
1824     return getEvaluationKind(T) == TEK_Scalar;
1825   }
1826 
1827   static bool hasAggregateEvaluationKind(QualType T) {
1828     return getEvaluationKind(T) == TEK_Aggregate;
1829   }
1830 
1831   /// createBasicBlock - Create an LLVM basic block.
1832   llvm::BasicBlock *createBasicBlock(const Twine &name = "",
1833                                      llvm::Function *parent = nullptr,
1834                                      llvm::BasicBlock *before = nullptr) {
1835 #ifdef NDEBUG
1836     return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
1837 #else
1838     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
1839 #endif
1840   }
1841 
1842   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
1843   /// label maps to.
1844   JumpDest getJumpDestForLabel(const LabelDecl *S);
1845 
1846   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
1847   /// another basic block, simplify it. This assumes that no other code could
1848   /// potentially reference the basic block.
1849   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
1850 
1851   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
1852   /// adding a fall-through branch from the current insert block if
1853   /// necessary. It is legal to call this function even if there is no current
1854   /// insertion point.
1855   ///
1856   /// IsFinished - If true, indicates that the caller has finished emitting
1857   /// branches to the given block and does not expect to emit code into it. This
1858   /// means the block can be ignored if it is unreachable.
1859   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
1860 
1861   /// EmitBlockAfterUses - Emit the given block somewhere hopefully
1862   /// near its uses, and leave the insertion point in it.
1863   void EmitBlockAfterUses(llvm::BasicBlock *BB);
1864 
1865   /// EmitBranch - Emit a branch to the specified basic block from the current
1866   /// insert block, taking care to avoid creation of branches from dummy
1867   /// blocks. It is legal to call this function even if there is no current
1868   /// insertion point.
1869   ///
1870   /// This function clears the current insertion point. The caller should follow
1871   /// calls to this function with calls to Emit*Block prior to generation new
1872   /// code.
1873   void EmitBranch(llvm::BasicBlock *Block);
1874 
1875   /// HaveInsertPoint - True if an insertion point is defined. If not, this
1876   /// indicates that the current code being emitted is unreachable.
1877   bool HaveInsertPoint() const {
1878     return Builder.GetInsertBlock() != nullptr;
1879   }
1880 
1881   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
1882   /// emitted IR has a place to go. Note that by definition, if this function
1883   /// creates a block then that block is unreachable; callers may do better to
1884   /// detect when no insertion point is defined and simply skip IR generation.
1885   void EnsureInsertPoint() {
1886     if (!HaveInsertPoint())
1887       EmitBlock(createBasicBlock());
1888   }
1889 
1890   /// ErrorUnsupported - Print out an error that codegen doesn't support the
1891   /// specified stmt yet.
1892   void ErrorUnsupported(const Stmt *S, const char *Type);
1893 
1894   //===--------------------------------------------------------------------===//
1895   //                                  Helpers
1896   //===--------------------------------------------------------------------===//
1897 
1898   LValue MakeAddrLValue(Address Addr, QualType T,
1899                         LValueBaseInfo BaseInfo =
1900                             LValueBaseInfo(AlignmentSource::Type)) {
1901     return LValue::MakeAddr(Addr, T, getContext(), BaseInfo,
1902                             CGM.getTBAAInfo(T));
1903   }
1904 
1905   LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
1906                         LValueBaseInfo BaseInfo =
1907                             LValueBaseInfo(AlignmentSource::Type)) {
1908     return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
1909                             BaseInfo, CGM.getTBAAInfo(T));
1910   }
1911 
1912   LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T);
1913   LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T);
1914   CharUnits getNaturalTypeAlignment(QualType T,
1915                                     LValueBaseInfo *BaseInfo = nullptr,
1916                                     bool forPointeeType = false);
1917   CharUnits getNaturalPointeeTypeAlignment(QualType T,
1918                                            LValueBaseInfo *BaseInfo = nullptr);
1919 
1920   Address EmitLoadOfReference(Address Ref, const ReferenceType *RefTy,
1921                               LValueBaseInfo *BaseInfo = nullptr);
1922   LValue EmitLoadOfReferenceLValue(Address Ref, const ReferenceType *RefTy);
1923 
1924   Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy,
1925                             LValueBaseInfo *BaseInfo = nullptr);
1926   LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy);
1927 
1928   /// CreateTempAlloca - This creates an alloca and inserts it into the entry
1929   /// block if \p ArraySize is nullptr, otherwise inserts it at the current
1930   /// insertion point of the builder. The caller is responsible for setting an
1931   /// appropriate alignment on
1932   /// the alloca.
1933   ///
1934   /// \p ArraySize is the number of array elements to be allocated if it
1935   ///    is not nullptr.
1936   ///
1937   /// LangAS::Default is the address space of pointers to local variables and
1938   /// temporaries, as exposed in the source language. In certain
1939   /// configurations, this is not the same as the alloca address space, and a
1940   /// cast is needed to lift the pointer from the alloca AS into
1941   /// LangAS::Default. This can happen when the target uses a restricted
1942   /// address space for the stack but the source language requires
1943   /// LangAS::Default to be a generic address space. The latter condition is
1944   /// common for most programming languages; OpenCL is an exception in that
1945   /// LangAS::Default is the private address space, which naturally maps
1946   /// to the stack.
1947   ///
1948   /// Because the address of a temporary is often exposed to the program in
1949   /// various ways, this function will perform the cast by default. The cast
1950   /// may be avoided by passing false as \p CastToDefaultAddrSpace; this is
1951   /// more efficient if the caller knows that the address will not be exposed.
1952   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp",
1953                                      llvm::Value *ArraySize = nullptr);
1954   Address CreateTempAlloca(llvm::Type *Ty, CharUnits align,
1955                            const Twine &Name = "tmp",
1956                            llvm::Value *ArraySize = nullptr,
1957                            bool CastToDefaultAddrSpace = true);
1958 
1959   /// CreateDefaultAlignedTempAlloca - This creates an alloca with the
1960   /// default ABI alignment of the given LLVM type.
1961   ///
1962   /// IMPORTANT NOTE: This is *not* generally the right alignment for
1963   /// any given AST type that happens to have been lowered to the
1964   /// given IR type.  This should only ever be used for function-local,
1965   /// IR-driven manipulations like saving and restoring a value.  Do
1966   /// not hand this address off to arbitrary IRGen routines, and especially
1967   /// do not pass it as an argument to a function that might expect a
1968   /// properly ABI-aligned value.
1969   Address CreateDefaultAlignTempAlloca(llvm::Type *Ty,
1970                                        const Twine &Name = "tmp");
1971 
1972   /// InitTempAlloca - Provide an initial value for the given alloca which
1973   /// will be observable at all locations in the function.
1974   ///
1975   /// The address should be something that was returned from one of
1976   /// the CreateTempAlloca or CreateMemTemp routines, and the
1977   /// initializer must be valid in the entry block (i.e. it must
1978   /// either be a constant or an argument value).
1979   void InitTempAlloca(Address Alloca, llvm::Value *Value);
1980 
1981   /// CreateIRTemp - Create a temporary IR object of the given type, with
1982   /// appropriate alignment. This routine should only be used when an temporary
1983   /// value needs to be stored into an alloca (for example, to avoid explicit
1984   /// PHI construction), but the type is the IR type, not the type appropriate
1985   /// for storing in memory.
1986   ///
1987   /// That is, this is exactly equivalent to CreateMemTemp, but calling
1988   /// ConvertType instead of ConvertTypeForMem.
1989   Address CreateIRTemp(QualType T, const Twine &Name = "tmp");
1990 
1991   /// CreateMemTemp - Create a temporary memory object of the given type, with
1992   /// appropriate alignment. Cast it to the default address space if
1993   /// \p CastToDefaultAddrSpace is true.
1994   Address CreateMemTemp(QualType T, const Twine &Name = "tmp",
1995                         bool CastToDefaultAddrSpace = true);
1996   Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp",
1997                         bool CastToDefaultAddrSpace = true);
1998 
1999   /// CreateAggTemp - Create a temporary memory object for the given
2000   /// aggregate type.
2001   AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
2002     return AggValueSlot::forAddr(CreateMemTemp(T, Name),
2003                                  T.getQualifiers(),
2004                                  AggValueSlot::IsNotDestructed,
2005                                  AggValueSlot::DoesNotNeedGCBarriers,
2006                                  AggValueSlot::IsNotAliased);
2007   }
2008 
2009   /// Emit a cast to void* in the appropriate address space.
2010   llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
2011 
2012   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
2013   /// expression and compare the result against zero, returning an Int1Ty value.
2014   llvm::Value *EvaluateExprAsBool(const Expr *E);
2015 
2016   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
2017   void EmitIgnoredExpr(const Expr *E);
2018 
2019   /// EmitAnyExpr - Emit code to compute the specified expression which can have
2020   /// any type.  The result is returned as an RValue struct.  If this is an
2021   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
2022   /// the result should be returned.
2023   ///
2024   /// \param ignoreResult True if the resulting value isn't used.
2025   RValue EmitAnyExpr(const Expr *E,
2026                      AggValueSlot aggSlot = AggValueSlot::ignored(),
2027                      bool ignoreResult = false);
2028 
2029   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
2030   // or the value of the expression, depending on how va_list is defined.
2031   Address EmitVAListRef(const Expr *E);
2032 
2033   /// Emit a "reference" to a __builtin_ms_va_list; this is
2034   /// always the value of the expression, because a __builtin_ms_va_list is a
2035   /// pointer to a char.
2036   Address EmitMSVAListRef(const Expr *E);
2037 
2038   /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will
2039   /// always be accessible even if no aggregate location is provided.
2040   RValue EmitAnyExprToTemp(const Expr *E);
2041 
2042   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
2043   /// arbitrary expression into the given memory location.
2044   void EmitAnyExprToMem(const Expr *E, Address Location,
2045                         Qualifiers Quals, bool IsInitializer);
2046 
2047   void EmitAnyExprToExn(const Expr *E, Address Addr);
2048 
2049   /// EmitExprAsInit - Emits the code necessary to initialize a
2050   /// location in memory with the given initializer.
2051   void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2052                       bool capturedByInit);
2053 
2054   /// hasVolatileMember - returns true if aggregate type has a volatile
2055   /// member.
2056   bool hasVolatileMember(QualType T) {
2057     if (const RecordType *RT = T->getAs<RecordType>()) {
2058       const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
2059       return RD->hasVolatileMember();
2060     }
2061     return false;
2062   }
2063   /// EmitAggregateCopy - Emit an aggregate assignment.
2064   ///
2065   /// The difference to EmitAggregateCopy is that tail padding is not copied.
2066   /// This is required for correctness when assigning non-POD structures in C++.
2067   void EmitAggregateAssign(Address DestPtr, Address SrcPtr,
2068                            QualType EltTy) {
2069     bool IsVolatile = hasVolatileMember(EltTy);
2070     EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, true);
2071   }
2072 
2073   void EmitAggregateCopyCtor(Address DestPtr, Address SrcPtr,
2074                              QualType DestTy, QualType SrcTy) {
2075     EmitAggregateCopy(DestPtr, SrcPtr, SrcTy, /*IsVolatile=*/false,
2076                       /*IsAssignment=*/false);
2077   }
2078 
2079   /// EmitAggregateCopy - Emit an aggregate copy.
2080   ///
2081   /// \param isVolatile - True iff either the source or the destination is
2082   /// volatile.
2083   /// \param isAssignment - If false, allow padding to be copied.  This often
2084   /// yields more efficient.
2085   void EmitAggregateCopy(Address DestPtr, Address SrcPtr,
2086                          QualType EltTy, bool isVolatile=false,
2087                          bool isAssignment = false);
2088 
2089   /// GetAddrOfLocalVar - Return the address of a local variable.
2090   Address GetAddrOfLocalVar(const VarDecl *VD) {
2091     auto it = LocalDeclMap.find(VD);
2092     assert(it != LocalDeclMap.end() &&
2093            "Invalid argument to GetAddrOfLocalVar(), no decl!");
2094     return it->second;
2095   }
2096 
2097   /// getOpaqueLValueMapping - Given an opaque value expression (which
2098   /// must be mapped to an l-value), return its mapping.
2099   const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
2100     assert(OpaqueValueMapping::shouldBindAsLValue(e));
2101 
2102     llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
2103       it = OpaqueLValues.find(e);
2104     assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
2105     return it->second;
2106   }
2107 
2108   /// getOpaqueRValueMapping - Given an opaque value expression (which
2109   /// must be mapped to an r-value), return its mapping.
2110   const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
2111     assert(!OpaqueValueMapping::shouldBindAsLValue(e));
2112 
2113     llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
2114       it = OpaqueRValues.find(e);
2115     assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
2116     return it->second;
2117   }
2118 
2119   /// Get the index of the current ArrayInitLoopExpr, if any.
2120   llvm::Value *getArrayInitIndex() { return ArrayInitIndex; }
2121 
2122   /// getAccessedFieldNo - Given an encoded value and a result number, return
2123   /// the input field number being accessed.
2124   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
2125 
2126   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
2127   llvm::BasicBlock *GetIndirectGotoBlock();
2128 
2129   /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts.
2130   static bool IsWrappedCXXThis(const Expr *E);
2131 
2132   /// EmitNullInitialization - Generate code to set a value of the given type to
2133   /// null, If the type contains data member pointers, they will be initialized
2134   /// to -1 in accordance with the Itanium C++ ABI.
2135   void EmitNullInitialization(Address DestPtr, QualType Ty);
2136 
2137   /// Emits a call to an LLVM variable-argument intrinsic, either
2138   /// \c llvm.va_start or \c llvm.va_end.
2139   /// \param ArgValue A reference to the \c va_list as emitted by either
2140   /// \c EmitVAListRef or \c EmitMSVAListRef.
2141   /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise,
2142   /// calls \c llvm.va_end.
2143   llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart);
2144 
2145   /// Generate code to get an argument from the passed in pointer
2146   /// and update it accordingly.
2147   /// \param VE The \c VAArgExpr for which to generate code.
2148   /// \param VAListAddr Receives a reference to the \c va_list as emitted by
2149   /// either \c EmitVAListRef or \c EmitMSVAListRef.
2150   /// \returns A pointer to the argument.
2151   // FIXME: We should be able to get rid of this method and use the va_arg
2152   // instruction in LLVM instead once it works well enough.
2153   Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr);
2154 
2155   /// emitArrayLength - Compute the length of an array, even if it's a
2156   /// VLA, and drill down to the base element type.
2157   llvm::Value *emitArrayLength(const ArrayType *arrayType,
2158                                QualType &baseType,
2159                                Address &addr);
2160 
2161   /// EmitVLASize - Capture all the sizes for the VLA expressions in
2162   /// the given variably-modified type and store them in the VLASizeMap.
2163   ///
2164   /// This function can be called with a null (unreachable) insert point.
2165   void EmitVariablyModifiedType(QualType Ty);
2166 
2167   /// getVLASize - Returns an LLVM value that corresponds to the size,
2168   /// in non-variably-sized elements, of a variable length array type,
2169   /// plus that largest non-variably-sized element type.  Assumes that
2170   /// the type has already been emitted with EmitVariablyModifiedType.
2171   std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla);
2172   std::pair<llvm::Value*,QualType> getVLASize(QualType vla);
2173 
2174   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
2175   /// generating code for an C++ member function.
2176   llvm::Value *LoadCXXThis() {
2177     assert(CXXThisValue && "no 'this' value for this function");
2178     return CXXThisValue;
2179   }
2180   Address LoadCXXThisAddress();
2181 
2182   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
2183   /// virtual bases.
2184   // FIXME: Every place that calls LoadCXXVTT is something
2185   // that needs to be abstracted properly.
2186   llvm::Value *LoadCXXVTT() {
2187     assert(CXXStructorImplicitParamValue && "no VTT value for this function");
2188     return CXXStructorImplicitParamValue;
2189   }
2190 
2191   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
2192   /// complete class to the given direct base.
2193   Address
2194   GetAddressOfDirectBaseInCompleteClass(Address Value,
2195                                         const CXXRecordDecl *Derived,
2196                                         const CXXRecordDecl *Base,
2197                                         bool BaseIsVirtual);
2198 
2199   static bool ShouldNullCheckClassCastValue(const CastExpr *Cast);
2200 
2201   /// GetAddressOfBaseClass - This function will add the necessary delta to the
2202   /// load of 'this' and returns address of the base class.
2203   Address GetAddressOfBaseClass(Address Value,
2204                                 const CXXRecordDecl *Derived,
2205                                 CastExpr::path_const_iterator PathBegin,
2206                                 CastExpr::path_const_iterator PathEnd,
2207                                 bool NullCheckValue, SourceLocation Loc);
2208 
2209   Address GetAddressOfDerivedClass(Address Value,
2210                                    const CXXRecordDecl *Derived,
2211                                    CastExpr::path_const_iterator PathBegin,
2212                                    CastExpr::path_const_iterator PathEnd,
2213                                    bool NullCheckValue);
2214 
2215   /// GetVTTParameter - Return the VTT parameter that should be passed to a
2216   /// base constructor/destructor with virtual bases.
2217   /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
2218   /// to ItaniumCXXABI.cpp together with all the references to VTT.
2219   llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
2220                                bool Delegating);
2221 
2222   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
2223                                       CXXCtorType CtorType,
2224                                       const FunctionArgList &Args,
2225                                       SourceLocation Loc);
2226   // It's important not to confuse this and the previous function. Delegating
2227   // constructors are the C++0x feature. The constructor delegate optimization
2228   // is used to reduce duplication in the base and complete consturctors where
2229   // they are substantially the same.
2230   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2231                                         const FunctionArgList &Args);
2232 
2233   /// Emit a call to an inheriting constructor (that is, one that invokes a
2234   /// constructor inherited from a base class) by inlining its definition. This
2235   /// is necessary if the ABI does not support forwarding the arguments to the
2236   /// base class constructor (because they're variadic or similar).
2237   void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2238                                                CXXCtorType CtorType,
2239                                                bool ForVirtualBase,
2240                                                bool Delegating,
2241                                                CallArgList &Args);
2242 
2243   /// Emit a call to a constructor inherited from a base class, passing the
2244   /// current constructor's arguments along unmodified (without even making
2245   /// a copy).
2246   void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D,
2247                                        bool ForVirtualBase, Address This,
2248                                        bool InheritedFromVBase,
2249                                        const CXXInheritedCtorInitExpr *E);
2250 
2251   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2252                               bool ForVirtualBase, bool Delegating,
2253                               Address This, const CXXConstructExpr *E);
2254 
2255   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2256                               bool ForVirtualBase, bool Delegating,
2257                               Address This, CallArgList &Args);
2258 
2259   /// Emit assumption load for all bases. Requires to be be called only on
2260   /// most-derived class and not under construction of the object.
2261   void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This);
2262 
2263   /// Emit assumption that vptr load == global vtable.
2264   void EmitVTableAssumptionLoad(const VPtr &vptr, Address This);
2265 
2266   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
2267                                       Address This, Address Src,
2268                                       const CXXConstructExpr *E);
2269 
2270   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2271                                   const ArrayType *ArrayTy,
2272                                   Address ArrayPtr,
2273                                   const CXXConstructExpr *E,
2274                                   bool ZeroInitialization = false);
2275 
2276   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2277                                   llvm::Value *NumElements,
2278                                   Address ArrayPtr,
2279                                   const CXXConstructExpr *E,
2280                                   bool ZeroInitialization = false);
2281 
2282   static Destroyer destroyCXXObject;
2283 
2284   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
2285                              bool ForVirtualBase, bool Delegating,
2286                              Address This);
2287 
2288   void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
2289                                llvm::Type *ElementTy, Address NewPtr,
2290                                llvm::Value *NumElements,
2291                                llvm::Value *AllocSizeWithoutCookie);
2292 
2293   void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
2294                         Address Ptr);
2295 
2296   llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr);
2297   void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr);
2298 
2299   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
2300   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
2301 
2302   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
2303                       QualType DeleteTy, llvm::Value *NumElements = nullptr,
2304                       CharUnits CookieSize = CharUnits());
2305 
2306   RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
2307                                   const Expr *Arg, bool IsDelete);
2308 
2309   llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E);
2310   llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE);
2311   Address EmitCXXUuidofExpr(const CXXUuidofExpr *E);
2312 
2313   /// \brief Situations in which we might emit a check for the suitability of a
2314   ///        pointer or glvalue.
2315   enum TypeCheckKind {
2316     /// Checking the operand of a load. Must be suitably sized and aligned.
2317     TCK_Load,
2318     /// Checking the destination of a store. Must be suitably sized and aligned.
2319     TCK_Store,
2320     /// Checking the bound value in a reference binding. Must be suitably sized
2321     /// and aligned, but is not required to refer to an object (until the
2322     /// reference is used), per core issue 453.
2323     TCK_ReferenceBinding,
2324     /// Checking the object expression in a non-static data member access. Must
2325     /// be an object within its lifetime.
2326     TCK_MemberAccess,
2327     /// Checking the 'this' pointer for a call to a non-static member function.
2328     /// Must be an object within its lifetime.
2329     TCK_MemberCall,
2330     /// Checking the 'this' pointer for a constructor call.
2331     TCK_ConstructorCall,
2332     /// Checking the operand of a static_cast to a derived pointer type. Must be
2333     /// null or an object within its lifetime.
2334     TCK_DowncastPointer,
2335     /// Checking the operand of a static_cast to a derived reference type. Must
2336     /// be an object within its lifetime.
2337     TCK_DowncastReference,
2338     /// Checking the operand of a cast to a base object. Must be suitably sized
2339     /// and aligned.
2340     TCK_Upcast,
2341     /// Checking the operand of a cast to a virtual base object. Must be an
2342     /// object within its lifetime.
2343     TCK_UpcastToVirtualBase,
2344     /// Checking the value assigned to a _Nonnull pointer. Must not be null.
2345     TCK_NonnullAssign
2346   };
2347 
2348   /// \brief Whether any type-checking sanitizers are enabled. If \c false,
2349   /// calls to EmitTypeCheck can be skipped.
2350   bool sanitizePerformTypeCheck() const;
2351 
2352   /// \brief Emit a check that \p V is the address of storage of the
2353   /// appropriate size and alignment for an object of type \p Type.
2354   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
2355                      QualType Type, CharUnits Alignment = CharUnits::Zero(),
2356                      SanitizerSet SkippedChecks = SanitizerSet());
2357 
2358   /// \brief Emit a check that \p Base points into an array object, which
2359   /// we can access at index \p Index. \p Accessed should be \c false if we
2360   /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
2361   void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
2362                        QualType IndexType, bool Accessed);
2363 
2364   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2365                                        bool isInc, bool isPre);
2366   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
2367                                          bool isInc, bool isPre);
2368 
2369   void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment,
2370                                llvm::Value *OffsetValue = nullptr) {
2371     Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment,
2372                                       OffsetValue);
2373   }
2374 
2375   /// Converts Location to a DebugLoc, if debug information is enabled.
2376   llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location);
2377 
2378 
2379   //===--------------------------------------------------------------------===//
2380   //                            Declaration Emission
2381   //===--------------------------------------------------------------------===//
2382 
2383   /// EmitDecl - Emit a declaration.
2384   ///
2385   /// This function can be called with a null (unreachable) insert point.
2386   void EmitDecl(const Decl &D);
2387 
2388   /// EmitVarDecl - Emit a local variable declaration.
2389   ///
2390   /// This function can be called with a null (unreachable) insert point.
2391   void EmitVarDecl(const VarDecl &D);
2392 
2393   void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2394                       bool capturedByInit);
2395 
2396   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
2397                              llvm::Value *Address);
2398 
2399   /// \brief Determine whether the given initializer is trivial in the sense
2400   /// that it requires no code to be generated.
2401   bool isTrivialInitializer(const Expr *Init);
2402 
2403   /// EmitAutoVarDecl - Emit an auto variable declaration.
2404   ///
2405   /// This function can be called with a null (unreachable) insert point.
2406   void EmitAutoVarDecl(const VarDecl &D);
2407 
2408   class AutoVarEmission {
2409     friend class CodeGenFunction;
2410 
2411     const VarDecl *Variable;
2412 
2413     /// The address of the alloca.  Invalid if the variable was emitted
2414     /// as a global constant.
2415     Address Addr;
2416 
2417     llvm::Value *NRVOFlag;
2418 
2419     /// True if the variable is a __block variable.
2420     bool IsByRef;
2421 
2422     /// True if the variable is of aggregate type and has a constant
2423     /// initializer.
2424     bool IsConstantAggregate;
2425 
2426     /// Non-null if we should use lifetime annotations.
2427     llvm::Value *SizeForLifetimeMarkers;
2428 
2429     struct Invalid {};
2430     AutoVarEmission(Invalid) : Variable(nullptr), Addr(Address::invalid()) {}
2431 
2432     AutoVarEmission(const VarDecl &variable)
2433       : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr),
2434         IsByRef(false), IsConstantAggregate(false),
2435         SizeForLifetimeMarkers(nullptr) {}
2436 
2437     bool wasEmittedAsGlobal() const { return !Addr.isValid(); }
2438 
2439   public:
2440     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
2441 
2442     bool useLifetimeMarkers() const {
2443       return SizeForLifetimeMarkers != nullptr;
2444     }
2445     llvm::Value *getSizeForLifetimeMarkers() const {
2446       assert(useLifetimeMarkers());
2447       return SizeForLifetimeMarkers;
2448     }
2449 
2450     /// Returns the raw, allocated address, which is not necessarily
2451     /// the address of the object itself.
2452     Address getAllocatedAddress() const {
2453       return Addr;
2454     }
2455 
2456     /// Returns the address of the object within this declaration.
2457     /// Note that this does not chase the forwarding pointer for
2458     /// __block decls.
2459     Address getObjectAddress(CodeGenFunction &CGF) const {
2460       if (!IsByRef) return Addr;
2461 
2462       return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false);
2463     }
2464   };
2465   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
2466   void EmitAutoVarInit(const AutoVarEmission &emission);
2467   void EmitAutoVarCleanups(const AutoVarEmission &emission);
2468   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
2469                               QualType::DestructionKind dtorKind);
2470 
2471   void EmitStaticVarDecl(const VarDecl &D,
2472                          llvm::GlobalValue::LinkageTypes Linkage);
2473 
2474   class ParamValue {
2475     llvm::Value *Value;
2476     unsigned Alignment;
2477     ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {}
2478   public:
2479     static ParamValue forDirect(llvm::Value *value) {
2480       return ParamValue(value, 0);
2481     }
2482     static ParamValue forIndirect(Address addr) {
2483       assert(!addr.getAlignment().isZero());
2484       return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity());
2485     }
2486 
2487     bool isIndirect() const { return Alignment != 0; }
2488     llvm::Value *getAnyValue() const { return Value; }
2489 
2490     llvm::Value *getDirectValue() const {
2491       assert(!isIndirect());
2492       return Value;
2493     }
2494 
2495     Address getIndirectAddress() const {
2496       assert(isIndirect());
2497       return Address(Value, CharUnits::fromQuantity(Alignment));
2498     }
2499   };
2500 
2501   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
2502   void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo);
2503 
2504   /// protectFromPeepholes - Protect a value that we're intending to
2505   /// store to the side, but which will probably be used later, from
2506   /// aggressive peepholing optimizations that might delete it.
2507   ///
2508   /// Pass the result to unprotectFromPeepholes to declare that
2509   /// protection is no longer required.
2510   ///
2511   /// There's no particular reason why this shouldn't apply to
2512   /// l-values, it's just that no existing peepholes work on pointers.
2513   PeepholeProtection protectFromPeepholes(RValue rvalue);
2514   void unprotectFromPeepholes(PeepholeProtection protection);
2515 
2516   void EmitAlignmentAssumption(llvm::Value *PtrValue, llvm::Value *Alignment,
2517                                llvm::Value *OffsetValue = nullptr) {
2518     Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment,
2519                                       OffsetValue);
2520   }
2521 
2522   //===--------------------------------------------------------------------===//
2523   //                             Statement Emission
2524   //===--------------------------------------------------------------------===//
2525 
2526   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
2527   void EmitStopPoint(const Stmt *S);
2528 
2529   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
2530   /// this function even if there is no current insertion point.
2531   ///
2532   /// This function may clear the current insertion point; callers should use
2533   /// EnsureInsertPoint if they wish to subsequently generate code without first
2534   /// calling EmitBlock, EmitBranch, or EmitStmt.
2535   void EmitStmt(const Stmt *S);
2536 
2537   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
2538   /// necessarily require an insertion point or debug information; typically
2539   /// because the statement amounts to a jump or a container of other
2540   /// statements.
2541   ///
2542   /// \return True if the statement was handled.
2543   bool EmitSimpleStmt(const Stmt *S);
2544 
2545   Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
2546                            AggValueSlot AVS = AggValueSlot::ignored());
2547   Address EmitCompoundStmtWithoutScope(const CompoundStmt &S,
2548                                        bool GetLast = false,
2549                                        AggValueSlot AVS =
2550                                                 AggValueSlot::ignored());
2551 
2552   /// EmitLabel - Emit the block for the given label. It is legal to call this
2553   /// function even if there is no current insertion point.
2554   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
2555 
2556   void EmitLabelStmt(const LabelStmt &S);
2557   void EmitAttributedStmt(const AttributedStmt &S);
2558   void EmitGotoStmt(const GotoStmt &S);
2559   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
2560   void EmitIfStmt(const IfStmt &S);
2561 
2562   void EmitWhileStmt(const WhileStmt &S,
2563                      ArrayRef<const Attr *> Attrs = None);
2564   void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None);
2565   void EmitForStmt(const ForStmt &S,
2566                    ArrayRef<const Attr *> Attrs = None);
2567   void EmitReturnStmt(const ReturnStmt &S);
2568   void EmitDeclStmt(const DeclStmt &S);
2569   void EmitBreakStmt(const BreakStmt &S);
2570   void EmitContinueStmt(const ContinueStmt &S);
2571   void EmitSwitchStmt(const SwitchStmt &S);
2572   void EmitDefaultStmt(const DefaultStmt &S);
2573   void EmitCaseStmt(const CaseStmt &S);
2574   void EmitCaseStmtRange(const CaseStmt &S);
2575   void EmitAsmStmt(const AsmStmt &S);
2576 
2577   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
2578   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
2579   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
2580   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
2581   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
2582 
2583   void EmitCoroutineBody(const CoroutineBodyStmt &S);
2584   void EmitCoreturnStmt(const CoreturnStmt &S);
2585   RValue EmitCoawaitExpr(const CoawaitExpr &E,
2586                          AggValueSlot aggSlot = AggValueSlot::ignored(),
2587                          bool ignoreResult = false);
2588   LValue EmitCoawaitLValue(const CoawaitExpr *E);
2589   RValue EmitCoyieldExpr(const CoyieldExpr &E,
2590                          AggValueSlot aggSlot = AggValueSlot::ignored(),
2591                          bool ignoreResult = false);
2592   LValue EmitCoyieldLValue(const CoyieldExpr *E);
2593   RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID);
2594 
2595   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2596   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2597 
2598   void EmitCXXTryStmt(const CXXTryStmt &S);
2599   void EmitSEHTryStmt(const SEHTryStmt &S);
2600   void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
2601   void EnterSEHTryStmt(const SEHTryStmt &S);
2602   void ExitSEHTryStmt(const SEHTryStmt &S);
2603 
2604   void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter,
2605                               const Stmt *OutlinedStmt);
2606 
2607   llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
2608                                             const SEHExceptStmt &Except);
2609 
2610   llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF,
2611                                              const SEHFinallyStmt &Finally);
2612 
2613   void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF,
2614                                 llvm::Value *ParentFP,
2615                                 llvm::Value *EntryEBP);
2616   llvm::Value *EmitSEHExceptionCode();
2617   llvm::Value *EmitSEHExceptionInfo();
2618   llvm::Value *EmitSEHAbnormalTermination();
2619 
2620   /// Scan the outlined statement for captures from the parent function. For
2621   /// each capture, mark the capture as escaped and emit a call to
2622   /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap.
2623   void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
2624                           bool IsFilter);
2625 
2626   /// Recovers the address of a local in a parent function. ParentVar is the
2627   /// address of the variable used in the immediate parent function. It can
2628   /// either be an alloca or a call to llvm.localrecover if there are nested
2629   /// outlined functions. ParentFP is the frame pointer of the outermost parent
2630   /// frame.
2631   Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF,
2632                                     Address ParentVar,
2633                                     llvm::Value *ParentFP);
2634 
2635   void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
2636                            ArrayRef<const Attr *> Attrs = None);
2637 
2638   /// Returns calculated size of the specified type.
2639   llvm::Value *getTypeSize(QualType Ty);
2640   LValue InitCapturedStruct(const CapturedStmt &S);
2641   llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
2642   llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
2643   Address GenerateCapturedStmtArgument(const CapturedStmt &S);
2644   llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S);
2645   void GenerateOpenMPCapturedVars(const CapturedStmt &S,
2646                                   SmallVectorImpl<llvm::Value *> &CapturedVars);
2647   void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy,
2648                           SourceLocation Loc);
2649   /// \brief Perform element by element copying of arrays with type \a
2650   /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
2651   /// generated by \a CopyGen.
2652   ///
2653   /// \param DestAddr Address of the destination array.
2654   /// \param SrcAddr Address of the source array.
2655   /// \param OriginalType Type of destination and source arrays.
2656   /// \param CopyGen Copying procedure that copies value of single array element
2657   /// to another single array element.
2658   void EmitOMPAggregateAssign(
2659       Address DestAddr, Address SrcAddr, QualType OriginalType,
2660       const llvm::function_ref<void(Address, Address)> &CopyGen);
2661   /// \brief Emit proper copying of data from one variable to another.
2662   ///
2663   /// \param OriginalType Original type of the copied variables.
2664   /// \param DestAddr Destination address.
2665   /// \param SrcAddr Source address.
2666   /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
2667   /// type of the base array element).
2668   /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
2669   /// the base array element).
2670   /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
2671   /// DestVD.
2672   void EmitOMPCopy(QualType OriginalType,
2673                    Address DestAddr, Address SrcAddr,
2674                    const VarDecl *DestVD, const VarDecl *SrcVD,
2675                    const Expr *Copy);
2676   /// \brief Emit atomic update code for constructs: \a X = \a X \a BO \a E or
2677   /// \a X = \a E \a BO \a E.
2678   ///
2679   /// \param X Value to be updated.
2680   /// \param E Update value.
2681   /// \param BO Binary operation for update operation.
2682   /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
2683   /// expression, false otherwise.
2684   /// \param AO Atomic ordering of the generated atomic instructions.
2685   /// \param CommonGen Code generator for complex expressions that cannot be
2686   /// expressed through atomicrmw instruction.
2687   /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was
2688   /// generated, <false, RValue::get(nullptr)> otherwise.
2689   std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr(
2690       LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
2691       llvm::AtomicOrdering AO, SourceLocation Loc,
2692       const llvm::function_ref<RValue(RValue)> &CommonGen);
2693   bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
2694                                  OMPPrivateScope &PrivateScope);
2695   void EmitOMPPrivateClause(const OMPExecutableDirective &D,
2696                             OMPPrivateScope &PrivateScope);
2697   void EmitOMPUseDevicePtrClause(
2698       const OMPClause &C, OMPPrivateScope &PrivateScope,
2699       const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap);
2700   /// \brief Emit code for copyin clause in \a D directive. The next code is
2701   /// generated at the start of outlined functions for directives:
2702   /// \code
2703   /// threadprivate_var1 = master_threadprivate_var1;
2704   /// operator=(threadprivate_var2, master_threadprivate_var2);
2705   /// ...
2706   /// __kmpc_barrier(&loc, global_tid);
2707   /// \endcode
2708   ///
2709   /// \param D OpenMP directive possibly with 'copyin' clause(s).
2710   /// \returns true if at least one copyin variable is found, false otherwise.
2711   bool EmitOMPCopyinClause(const OMPExecutableDirective &D);
2712   /// \brief Emit initial code for lastprivate variables. If some variable is
2713   /// not also firstprivate, then the default initialization is used. Otherwise
2714   /// initialization of this variable is performed by EmitOMPFirstprivateClause
2715   /// method.
2716   ///
2717   /// \param D Directive that may have 'lastprivate' directives.
2718   /// \param PrivateScope Private scope for capturing lastprivate variables for
2719   /// proper codegen in internal captured statement.
2720   ///
2721   /// \returns true if there is at least one lastprivate variable, false
2722   /// otherwise.
2723   bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D,
2724                                     OMPPrivateScope &PrivateScope);
2725   /// \brief Emit final copying of lastprivate values to original variables at
2726   /// the end of the worksharing or simd directive.
2727   ///
2728   /// \param D Directive that has at least one 'lastprivate' directives.
2729   /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
2730   /// it is the last iteration of the loop code in associated directive, or to
2731   /// 'i1 false' otherwise. If this item is nullptr, no final check is required.
2732   void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D,
2733                                      bool NoFinals,
2734                                      llvm::Value *IsLastIterCond = nullptr);
2735   /// Emit initial code for linear clauses.
2736   void EmitOMPLinearClause(const OMPLoopDirective &D,
2737                            CodeGenFunction::OMPPrivateScope &PrivateScope);
2738   /// Emit final code for linear clauses.
2739   /// \param CondGen Optional conditional code for final part of codegen for
2740   /// linear clause.
2741   void EmitOMPLinearClauseFinal(
2742       const OMPLoopDirective &D,
2743       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen);
2744   /// \brief Emit initial code for reduction variables. Creates reduction copies
2745   /// and initializes them with the values according to OpenMP standard.
2746   ///
2747   /// \param D Directive (possibly) with the 'reduction' clause.
2748   /// \param PrivateScope Private scope for capturing reduction variables for
2749   /// proper codegen in internal captured statement.
2750   ///
2751   void EmitOMPReductionClauseInit(const OMPExecutableDirective &D,
2752                                   OMPPrivateScope &PrivateScope);
2753   /// \brief Emit final update of reduction values to original variables at
2754   /// the end of the directive.
2755   ///
2756   /// \param D Directive that has at least one 'reduction' directives.
2757   /// \param ReductionKind The kind of reduction to perform.
2758   void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D,
2759                                    const OpenMPDirectiveKind ReductionKind);
2760   /// \brief Emit initial code for linear variables. Creates private copies
2761   /// and initializes them with the values according to OpenMP standard.
2762   ///
2763   /// \param D Directive (possibly) with the 'linear' clause.
2764   void EmitOMPLinearClauseInit(const OMPLoopDirective &D);
2765 
2766   typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/,
2767                                         llvm::Value * /*OutlinedFn*/,
2768                                         const OMPTaskDataTy & /*Data*/)>
2769       TaskGenTy;
2770   void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S,
2771                                  const RegionCodeGenTy &BodyGen,
2772                                  const TaskGenTy &TaskGen, OMPTaskDataTy &Data);
2773 
2774   void EmitOMPParallelDirective(const OMPParallelDirective &S);
2775   void EmitOMPSimdDirective(const OMPSimdDirective &S);
2776   void EmitOMPForDirective(const OMPForDirective &S);
2777   void EmitOMPForSimdDirective(const OMPForSimdDirective &S);
2778   void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
2779   void EmitOMPSectionDirective(const OMPSectionDirective &S);
2780   void EmitOMPSingleDirective(const OMPSingleDirective &S);
2781   void EmitOMPMasterDirective(const OMPMasterDirective &S);
2782   void EmitOMPCriticalDirective(const OMPCriticalDirective &S);
2783   void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
2784   void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S);
2785   void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
2786   void EmitOMPTaskDirective(const OMPTaskDirective &S);
2787   void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
2788   void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
2789   void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
2790   void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S);
2791   void EmitOMPFlushDirective(const OMPFlushDirective &S);
2792   void EmitOMPOrderedDirective(const OMPOrderedDirective &S);
2793   void EmitOMPAtomicDirective(const OMPAtomicDirective &S);
2794   void EmitOMPTargetDirective(const OMPTargetDirective &S);
2795   void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S);
2796   void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S);
2797   void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S);
2798   void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S);
2799   void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S);
2800   void
2801   EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S);
2802   void EmitOMPTeamsDirective(const OMPTeamsDirective &S);
2803   void
2804   EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S);
2805   void EmitOMPCancelDirective(const OMPCancelDirective &S);
2806   void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S);
2807   void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S);
2808   void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S);
2809   void EmitOMPDistributeDirective(const OMPDistributeDirective &S);
2810   void EmitOMPDistributeParallelForDirective(
2811       const OMPDistributeParallelForDirective &S);
2812   void EmitOMPDistributeParallelForSimdDirective(
2813       const OMPDistributeParallelForSimdDirective &S);
2814   void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S);
2815   void EmitOMPTargetParallelForSimdDirective(
2816       const OMPTargetParallelForSimdDirective &S);
2817   void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S);
2818   void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S);
2819   void
2820   EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S);
2821   void EmitOMPTeamsDistributeParallelForSimdDirective(
2822       const OMPTeamsDistributeParallelForSimdDirective &S);
2823   void EmitOMPTeamsDistributeParallelForDirective(
2824       const OMPTeamsDistributeParallelForDirective &S);
2825   void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S);
2826   void EmitOMPTargetTeamsDistributeDirective(
2827       const OMPTargetTeamsDistributeDirective &S);
2828   void EmitOMPTargetTeamsDistributeParallelForDirective(
2829       const OMPTargetTeamsDistributeParallelForDirective &S);
2830   void EmitOMPTargetTeamsDistributeParallelForSimdDirective(
2831       const OMPTargetTeamsDistributeParallelForSimdDirective &S);
2832   void EmitOMPTargetTeamsDistributeSimdDirective(
2833       const OMPTargetTeamsDistributeSimdDirective &S);
2834 
2835   /// Emit device code for the target directive.
2836   static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM,
2837                                           StringRef ParentName,
2838                                           const OMPTargetDirective &S);
2839   static void
2840   EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
2841                                       const OMPTargetParallelDirective &S);
2842   static void
2843   EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
2844                                    const OMPTargetTeamsDirective &S);
2845   /// \brief Emit inner loop of the worksharing/simd construct.
2846   ///
2847   /// \param S Directive, for which the inner loop must be emitted.
2848   /// \param RequiresCleanup true, if directive has some associated private
2849   /// variables.
2850   /// \param LoopCond Bollean condition for loop continuation.
2851   /// \param IncExpr Increment expression for loop control variable.
2852   /// \param BodyGen Generator for the inner body of the inner loop.
2853   /// \param PostIncGen Genrator for post-increment code (required for ordered
2854   /// loop directvies).
2855   void EmitOMPInnerLoop(
2856       const Stmt &S, bool RequiresCleanup, const Expr *LoopCond,
2857       const Expr *IncExpr,
2858       const llvm::function_ref<void(CodeGenFunction &)> &BodyGen,
2859       const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen);
2860 
2861   JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind);
2862   /// Emit initial code for loop counters of loop-based directives.
2863   void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S,
2864                                   OMPPrivateScope &LoopScope);
2865 
2866   /// Helper for the OpenMP loop directives.
2867   void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit);
2868 
2869   /// \brief Emit code for the worksharing loop-based directive.
2870   /// \return true, if this construct has any lastprivate clause, false -
2871   /// otherwise.
2872   bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB,
2873                               const CodeGenLoopBoundsTy &CodeGenLoopBounds,
2874                               const CodeGenDispatchBoundsTy &CGDispatchBounds);
2875 
2876 private:
2877   /// Helpers for blocks
2878   llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
2879 
2880   /// Helpers for the OpenMP loop directives.
2881   void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false);
2882   void EmitOMPSimdFinal(
2883       const OMPLoopDirective &D,
2884       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen);
2885 
2886   void EmitOMPDistributeLoop(const OMPLoopDirective &S,
2887                              const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr);
2888 
2889   /// struct with the values to be passed to the OpenMP loop-related functions
2890   struct OMPLoopArguments {
2891     /// loop lower bound
2892     Address LB = Address::invalid();
2893     /// loop upper bound
2894     Address UB = Address::invalid();
2895     /// loop stride
2896     Address ST = Address::invalid();
2897     /// isLastIteration argument for runtime functions
2898     Address IL = Address::invalid();
2899     /// Chunk value generated by sema
2900     llvm::Value *Chunk = nullptr;
2901     /// EnsureUpperBound
2902     Expr *EUB = nullptr;
2903     /// IncrementExpression
2904     Expr *IncExpr = nullptr;
2905     /// Loop initialization
2906     Expr *Init = nullptr;
2907     /// Loop exit condition
2908     Expr *Cond = nullptr;
2909     /// Update of LB after a whole chunk has been executed
2910     Expr *NextLB = nullptr;
2911     /// Update of UB after a whole chunk has been executed
2912     Expr *NextUB = nullptr;
2913     OMPLoopArguments() = default;
2914     OMPLoopArguments(Address LB, Address UB, Address ST, Address IL,
2915                      llvm::Value *Chunk = nullptr, Expr *EUB = nullptr,
2916                      Expr *IncExpr = nullptr, Expr *Init = nullptr,
2917                      Expr *Cond = nullptr, Expr *NextLB = nullptr,
2918                      Expr *NextUB = nullptr)
2919         : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB),
2920           IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB),
2921           NextUB(NextUB) {}
2922   };
2923   void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic,
2924                         const OMPLoopDirective &S, OMPPrivateScope &LoopScope,
2925                         const OMPLoopArguments &LoopArgs,
2926                         const CodeGenLoopTy &CodeGenLoop,
2927                         const CodeGenOrderedTy &CodeGenOrdered);
2928   void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind,
2929                            bool IsMonotonic, const OMPLoopDirective &S,
2930                            OMPPrivateScope &LoopScope, bool Ordered,
2931                            const OMPLoopArguments &LoopArgs,
2932                            const CodeGenDispatchBoundsTy &CGDispatchBounds);
2933   void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind,
2934                                   const OMPLoopDirective &S,
2935                                   OMPPrivateScope &LoopScope,
2936                                   const OMPLoopArguments &LoopArgs,
2937                                   const CodeGenLoopTy &CodeGenLoopContent);
2938   /// \brief Emit code for sections directive.
2939   void EmitSections(const OMPExecutableDirective &S);
2940 
2941 public:
2942 
2943   //===--------------------------------------------------------------------===//
2944   //                         LValue Expression Emission
2945   //===--------------------------------------------------------------------===//
2946 
2947   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
2948   RValue GetUndefRValue(QualType Ty);
2949 
2950   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
2951   /// and issue an ErrorUnsupported style diagnostic (using the
2952   /// provided Name).
2953   RValue EmitUnsupportedRValue(const Expr *E,
2954                                const char *Name);
2955 
2956   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
2957   /// an ErrorUnsupported style diagnostic (using the provided Name).
2958   LValue EmitUnsupportedLValue(const Expr *E,
2959                                const char *Name);
2960 
2961   /// EmitLValue - Emit code to compute a designator that specifies the location
2962   /// of the expression.
2963   ///
2964   /// This can return one of two things: a simple address or a bitfield
2965   /// reference.  In either case, the LLVM Value* in the LValue structure is
2966   /// guaranteed to be an LLVM pointer type.
2967   ///
2968   /// If this returns a bitfield reference, nothing about the pointee type of
2969   /// the LLVM value is known: For example, it may not be a pointer to an
2970   /// integer.
2971   ///
2972   /// If this returns a normal address, and if the lvalue's C type is fixed
2973   /// size, this method guarantees that the returned pointer type will point to
2974   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
2975   /// variable length type, this is not possible.
2976   ///
2977   LValue EmitLValue(const Expr *E);
2978 
2979   /// \brief Same as EmitLValue but additionally we generate checking code to
2980   /// guard against undefined behavior.  This is only suitable when we know
2981   /// that the address will be used to access the object.
2982   LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
2983 
2984   RValue convertTempToRValue(Address addr, QualType type,
2985                              SourceLocation Loc);
2986 
2987   void EmitAtomicInit(Expr *E, LValue lvalue);
2988 
2989   bool LValueIsSuitableForInlineAtomic(LValue Src);
2990 
2991   RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
2992                         AggValueSlot Slot = AggValueSlot::ignored());
2993 
2994   RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
2995                         llvm::AtomicOrdering AO, bool IsVolatile = false,
2996                         AggValueSlot slot = AggValueSlot::ignored());
2997 
2998   void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
2999 
3000   void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
3001                        bool IsVolatile, bool isInit);
3002 
3003   std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
3004       LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
3005       llvm::AtomicOrdering Success =
3006           llvm::AtomicOrdering::SequentiallyConsistent,
3007       llvm::AtomicOrdering Failure =
3008           llvm::AtomicOrdering::SequentiallyConsistent,
3009       bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
3010 
3011   void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
3012                         const llvm::function_ref<RValue(RValue)> &UpdateOp,
3013                         bool IsVolatile);
3014 
3015   /// EmitToMemory - Change a scalar value from its value
3016   /// representation to its in-memory representation.
3017   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
3018 
3019   /// EmitFromMemory - Change a scalar value from its memory
3020   /// representation to its value representation.
3021   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
3022 
3023   /// Check if the scalar \p Value is within the valid range for the given
3024   /// type \p Ty.
3025   ///
3026   /// Returns true if a check is needed (even if the range is unknown).
3027   bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
3028                             SourceLocation Loc);
3029 
3030   /// EmitLoadOfScalar - Load a scalar value from an address, taking
3031   /// care to appropriately convert from the memory representation to
3032   /// the LLVM value representation.
3033   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3034                                 SourceLocation Loc,
3035                                 LValueBaseInfo BaseInfo =
3036                                     LValueBaseInfo(AlignmentSource::Type),
3037                                 llvm::MDNode *TBAAInfo = nullptr,
3038                                 QualType TBAABaseTy = QualType(),
3039                                 uint64_t TBAAOffset = 0,
3040                                 bool isNontemporal = false);
3041 
3042   /// EmitLoadOfScalar - Load a scalar value from an address, taking
3043   /// care to appropriately convert from the memory representation to
3044   /// the LLVM value representation.  The l-value must be a simple
3045   /// l-value.
3046   llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
3047 
3048   /// EmitStoreOfScalar - Store a scalar value to an address, taking
3049   /// care to appropriately convert from the memory representation to
3050   /// the LLVM value representation.
3051   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3052                          bool Volatile, QualType Ty,
3053                          LValueBaseInfo BaseInfo =
3054                              LValueBaseInfo(AlignmentSource::Type),
3055                          llvm::MDNode *TBAAInfo = nullptr, bool isInit = false,
3056                          QualType TBAABaseTy = QualType(),
3057                          uint64_t TBAAOffset = 0, bool isNontemporal = false);
3058 
3059   /// EmitStoreOfScalar - Store a scalar value to an address, taking
3060   /// care to appropriately convert from the memory representation to
3061   /// the LLVM value representation.  The l-value must be a simple
3062   /// l-value.  The isInit flag indicates whether this is an initialization.
3063   /// If so, atomic qualifiers are ignored and the store is always non-atomic.
3064   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
3065 
3066   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
3067   /// this method emits the address of the lvalue, then loads the result as an
3068   /// rvalue, returning the rvalue.
3069   RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
3070   RValue EmitLoadOfExtVectorElementLValue(LValue V);
3071   RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc);
3072   RValue EmitLoadOfGlobalRegLValue(LValue LV);
3073 
3074   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
3075   /// lvalue, where both are guaranteed to the have the same type, and that type
3076   /// is 'Ty'.
3077   void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
3078   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
3079   void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
3080 
3081   /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
3082   /// as EmitStoreThroughLValue.
3083   ///
3084   /// \param Result [out] - If non-null, this will be set to a Value* for the
3085   /// bit-field contents after the store, appropriate for use as the result of
3086   /// an assignment to the bit-field.
3087   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
3088                                       llvm::Value **Result=nullptr);
3089 
3090   /// Emit an l-value for an assignment (simple or compound) of complex type.
3091   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
3092   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
3093   LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
3094                                              llvm::Value *&Result);
3095 
3096   // Note: only available for agg return types
3097   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
3098   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
3099   // Note: only available for agg return types
3100   LValue EmitCallExprLValue(const CallExpr *E);
3101   // Note: only available for agg return types
3102   LValue EmitVAArgExprLValue(const VAArgExpr *E);
3103   LValue EmitDeclRefLValue(const DeclRefExpr *E);
3104   LValue EmitStringLiteralLValue(const StringLiteral *E);
3105   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
3106   LValue EmitPredefinedLValue(const PredefinedExpr *E);
3107   LValue EmitUnaryOpLValue(const UnaryOperator *E);
3108   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3109                                 bool Accessed = false);
3110   LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3111                                  bool IsLowerBound = true);
3112   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
3113   LValue EmitMemberExpr(const MemberExpr *E);
3114   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
3115   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
3116   LValue EmitInitListLValue(const InitListExpr *E);
3117   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
3118   LValue EmitCastLValue(const CastExpr *E);
3119   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
3120   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
3121 
3122   Address EmitExtVectorElementLValue(LValue V);
3123 
3124   RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
3125 
3126   Address EmitArrayToPointerDecay(const Expr *Array,
3127                                   LValueBaseInfo *BaseInfo = nullptr);
3128 
3129   class ConstantEmission {
3130     llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
3131     ConstantEmission(llvm::Constant *C, bool isReference)
3132       : ValueAndIsReference(C, isReference) {}
3133   public:
3134     ConstantEmission() {}
3135     static ConstantEmission forReference(llvm::Constant *C) {
3136       return ConstantEmission(C, true);
3137     }
3138     static ConstantEmission forValue(llvm::Constant *C) {
3139       return ConstantEmission(C, false);
3140     }
3141 
3142     explicit operator bool() const {
3143       return ValueAndIsReference.getOpaqueValue() != nullptr;
3144     }
3145 
3146     bool isReference() const { return ValueAndIsReference.getInt(); }
3147     LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
3148       assert(isReference());
3149       return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
3150                                             refExpr->getType());
3151     }
3152 
3153     llvm::Constant *getValue() const {
3154       assert(!isReference());
3155       return ValueAndIsReference.getPointer();
3156     }
3157   };
3158 
3159   ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
3160 
3161   RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
3162                                 AggValueSlot slot = AggValueSlot::ignored());
3163   LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
3164 
3165   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3166                               const ObjCIvarDecl *Ivar);
3167   LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
3168   LValue EmitLValueForLambdaField(const FieldDecl *Field);
3169 
3170   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
3171   /// if the Field is a reference, this will return the address of the reference
3172   /// and not the address of the value stored in the reference.
3173   LValue EmitLValueForFieldInitialization(LValue Base,
3174                                           const FieldDecl* Field);
3175 
3176   LValue EmitLValueForIvar(QualType ObjectTy,
3177                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
3178                            unsigned CVRQualifiers);
3179 
3180   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
3181   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
3182   LValue EmitLambdaLValue(const LambdaExpr *E);
3183   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
3184   LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
3185 
3186   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
3187   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
3188   LValue EmitStmtExprLValue(const StmtExpr *E);
3189   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
3190   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
3191   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init);
3192 
3193   //===--------------------------------------------------------------------===//
3194   //                         Scalar Expression Emission
3195   //===--------------------------------------------------------------------===//
3196 
3197   /// EmitCall - Generate a call of the given function, expecting the given
3198   /// result type, and using the given argument list which specifies both the
3199   /// LLVM arguments and the types they were derived from.
3200   RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
3201                   ReturnValueSlot ReturnValue, const CallArgList &Args,
3202                   llvm::Instruction **callOrInvoke = nullptr);
3203 
3204   RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E,
3205                   ReturnValueSlot ReturnValue,
3206                   llvm::Value *Chain = nullptr);
3207   RValue EmitCallExpr(const CallExpr *E,
3208                       ReturnValueSlot ReturnValue = ReturnValueSlot());
3209   RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
3210   CGCallee EmitCallee(const Expr *E);
3211 
3212   void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl);
3213 
3214   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
3215                                   const Twine &name = "");
3216   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
3217                                   ArrayRef<llvm::Value*> args,
3218                                   const Twine &name = "");
3219   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
3220                                           const Twine &name = "");
3221   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
3222                                           ArrayRef<llvm::Value*> args,
3223                                           const Twine &name = "");
3224 
3225   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
3226                                   ArrayRef<llvm::Value *> Args,
3227                                   const Twine &Name = "");
3228   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
3229                                          ArrayRef<llvm::Value*> args,
3230                                          const Twine &name = "");
3231   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
3232                                          const Twine &name = "");
3233   void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
3234                                        ArrayRef<llvm::Value*> args);
3235 
3236   CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
3237                                      NestedNameSpecifier *Qual,
3238                                      llvm::Type *Ty);
3239 
3240   CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
3241                                                CXXDtorType Type,
3242                                                const CXXRecordDecl *RD);
3243 
3244   RValue
3245   EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method,
3246                               const CGCallee &Callee,
3247                               ReturnValueSlot ReturnValue, llvm::Value *This,
3248                               llvm::Value *ImplicitParam,
3249                               QualType ImplicitParamTy, const CallExpr *E,
3250                               CallArgList *RtlArgs);
3251   RValue EmitCXXDestructorCall(const CXXDestructorDecl *DD,
3252                                const CGCallee &Callee,
3253                                llvm::Value *This, llvm::Value *ImplicitParam,
3254                                QualType ImplicitParamTy, const CallExpr *E,
3255                                StructorType Type);
3256   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
3257                                ReturnValueSlot ReturnValue);
3258   RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE,
3259                                                const CXXMethodDecl *MD,
3260                                                ReturnValueSlot ReturnValue,
3261                                                bool HasQualifier,
3262                                                NestedNameSpecifier *Qualifier,
3263                                                bool IsArrow, const Expr *Base);
3264   // Compute the object pointer.
3265   Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
3266                                           llvm::Value *memberPtr,
3267                                           const MemberPointerType *memberPtrType,
3268                                           LValueBaseInfo *BaseInfo = nullptr);
3269   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
3270                                       ReturnValueSlot ReturnValue);
3271 
3272   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
3273                                        const CXXMethodDecl *MD,
3274                                        ReturnValueSlot ReturnValue);
3275   RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E);
3276 
3277   RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
3278                                 ReturnValueSlot ReturnValue);
3279 
3280   RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E,
3281                                        ReturnValueSlot ReturnValue);
3282 
3283   RValue EmitBuiltinExpr(const FunctionDecl *FD,
3284                          unsigned BuiltinID, const CallExpr *E,
3285                          ReturnValueSlot ReturnValue);
3286 
3287   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
3288 
3289   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
3290   /// is unhandled by the current target.
3291   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3292 
3293   llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
3294                                              const llvm::CmpInst::Predicate Fp,
3295                                              const llvm::CmpInst::Predicate Ip,
3296                                              const llvm::Twine &Name = "");
3297   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3298 
3299   llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
3300                                          unsigned LLVMIntrinsic,
3301                                          unsigned AltLLVMIntrinsic,
3302                                          const char *NameHint,
3303                                          unsigned Modifier,
3304                                          const CallExpr *E,
3305                                          SmallVectorImpl<llvm::Value *> &Ops,
3306                                          Address PtrOp0, Address PtrOp1);
3307   llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
3308                                           unsigned Modifier, llvm::Type *ArgTy,
3309                                           const CallExpr *E);
3310   llvm::Value *EmitNeonCall(llvm::Function *F,
3311                             SmallVectorImpl<llvm::Value*> &O,
3312                             const char *name,
3313                             unsigned shift = 0, bool rightshift = false);
3314   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
3315   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
3316                                    bool negateForRightShift);
3317   llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
3318                                  llvm::Type *Ty, bool usgn, const char *name);
3319   llvm::Value *vectorWrapScalar16(llvm::Value *Op);
3320   llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3321 
3322   llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
3323   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3324   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3325   llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3326   llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3327   llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3328   llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
3329                                           const CallExpr *E);
3330 
3331 private:
3332   enum class MSVCIntrin;
3333 
3334 public:
3335   llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E);
3336 
3337   llvm::Value *EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args);
3338 
3339   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
3340   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
3341   llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
3342   llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
3343   llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
3344   llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
3345                                 const ObjCMethodDecl *MethodWithObjects);
3346   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
3347   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
3348                              ReturnValueSlot Return = ReturnValueSlot());
3349 
3350   /// Retrieves the default cleanup kind for an ARC cleanup.
3351   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
3352   CleanupKind getARCCleanupKind() {
3353     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
3354              ? NormalAndEHCleanup : NormalCleanup;
3355   }
3356 
3357   // ARC primitives.
3358   void EmitARCInitWeak(Address addr, llvm::Value *value);
3359   void EmitARCDestroyWeak(Address addr);
3360   llvm::Value *EmitARCLoadWeak(Address addr);
3361   llvm::Value *EmitARCLoadWeakRetained(Address addr);
3362   llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored);
3363   void EmitARCCopyWeak(Address dst, Address src);
3364   void EmitARCMoveWeak(Address dst, Address src);
3365   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
3366   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
3367   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
3368                                   bool resultIgnored);
3369   llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value,
3370                                       bool resultIgnored);
3371   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
3372   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
3373   llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
3374   void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise);
3375   void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
3376   llvm::Value *EmitARCAutorelease(llvm::Value *value);
3377   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
3378   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
3379   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
3380   llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value);
3381 
3382   std::pair<LValue,llvm::Value*>
3383   EmitARCStoreAutoreleasing(const BinaryOperator *e);
3384   std::pair<LValue,llvm::Value*>
3385   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
3386   std::pair<LValue,llvm::Value*>
3387   EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored);
3388 
3389   llvm::Value *EmitObjCThrowOperand(const Expr *expr);
3390   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
3391   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
3392 
3393   llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
3394   llvm::Value *EmitARCReclaimReturnedObject(const Expr *e,
3395                                             bool allowUnsafeClaim);
3396   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
3397   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
3398   llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr);
3399 
3400   void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
3401 
3402   static Destroyer destroyARCStrongImprecise;
3403   static Destroyer destroyARCStrongPrecise;
3404   static Destroyer destroyARCWeak;
3405   static Destroyer emitARCIntrinsicUse;
3406 
3407   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
3408   llvm::Value *EmitObjCAutoreleasePoolPush();
3409   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
3410   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
3411   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
3412 
3413   /// \brief Emits a reference binding to the passed in expression.
3414   RValue EmitReferenceBindingToExpr(const Expr *E);
3415 
3416   //===--------------------------------------------------------------------===//
3417   //                           Expression Emission
3418   //===--------------------------------------------------------------------===//
3419 
3420   // Expressions are broken into three classes: scalar, complex, aggregate.
3421 
3422   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
3423   /// scalar type, returning the result.
3424   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
3425 
3426   /// Emit a conversion from the specified type to the specified destination
3427   /// type, both of which are LLVM scalar types.
3428   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
3429                                     QualType DstTy, SourceLocation Loc);
3430 
3431   /// Emit a conversion from the specified complex type to the specified
3432   /// destination type, where the destination type is an LLVM scalar type.
3433   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
3434                                              QualType DstTy,
3435                                              SourceLocation Loc);
3436 
3437   /// EmitAggExpr - Emit the computation of the specified expression
3438   /// of aggregate type.  The result is computed into the given slot,
3439   /// which may be null to indicate that the value is not needed.
3440   void EmitAggExpr(const Expr *E, AggValueSlot AS);
3441 
3442   /// EmitAggExprToLValue - Emit the computation of the specified expression of
3443   /// aggregate type into a temporary LValue.
3444   LValue EmitAggExprToLValue(const Expr *E);
3445 
3446   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
3447   /// make sure it survives garbage collection until this point.
3448   void EmitExtendGCLifetime(llvm::Value *object);
3449 
3450   /// EmitComplexExpr - Emit the computation of the specified expression of
3451   /// complex type, returning the result.
3452   ComplexPairTy EmitComplexExpr(const Expr *E,
3453                                 bool IgnoreReal = false,
3454                                 bool IgnoreImag = false);
3455 
3456   /// EmitComplexExprIntoLValue - Emit the given expression of complex
3457   /// type and place its result into the specified l-value.
3458   void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
3459 
3460   /// EmitStoreOfComplex - Store a complex number into the specified l-value.
3461   void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
3462 
3463   /// EmitLoadOfComplex - Load a complex number from the specified l-value.
3464   ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
3465 
3466   Address emitAddrOfRealComponent(Address complex, QualType complexType);
3467   Address emitAddrOfImagComponent(Address complex, QualType complexType);
3468 
3469   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
3470   /// global variable that has already been created for it.  If the initializer
3471   /// has a different type than GV does, this may free GV and return a different
3472   /// one.  Otherwise it just returns GV.
3473   llvm::GlobalVariable *
3474   AddInitializerToStaticVarDecl(const VarDecl &D,
3475                                 llvm::GlobalVariable *GV);
3476 
3477 
3478   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
3479   /// variable with global storage.
3480   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
3481                                 bool PerformInit);
3482 
3483   llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::Constant *Dtor,
3484                                    llvm::Constant *Addr);
3485 
3486   /// Call atexit() with a function that passes the given argument to
3487   /// the given function.
3488   void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn,
3489                                     llvm::Constant *addr);
3490 
3491   /// Emit code in this function to perform a guarded variable
3492   /// initialization.  Guarded initializations are used when it's not
3493   /// possible to prove that an initialization will be done exactly
3494   /// once, e.g. with a static local variable or a static data member
3495   /// of a class template.
3496   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
3497                           bool PerformInit);
3498 
3499   enum class GuardKind { VariableGuard, TlsGuard };
3500 
3501   /// Emit a branch to select whether or not to perform guarded initialization.
3502   void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit,
3503                                 llvm::BasicBlock *InitBlock,
3504                                 llvm::BasicBlock *NoInitBlock,
3505                                 GuardKind Kind, const VarDecl *D);
3506 
3507   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
3508   /// variables.
3509   void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
3510                                  ArrayRef<llvm::Function *> CXXThreadLocals,
3511                                  Address Guard = Address::invalid());
3512 
3513   /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
3514   /// variables.
3515   void GenerateCXXGlobalDtorsFunc(
3516       llvm::Function *Fn,
3517       const std::vector<std::pair<llvm::WeakTrackingVH, llvm::Constant *>>
3518           &DtorsAndObjects);
3519 
3520   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
3521                                         const VarDecl *D,
3522                                         llvm::GlobalVariable *Addr,
3523                                         bool PerformInit);
3524 
3525   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
3526 
3527   void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp);
3528 
3529   void enterFullExpression(const ExprWithCleanups *E) {
3530     if (E->getNumObjects() == 0) return;
3531     enterNonTrivialFullExpression(E);
3532   }
3533   void enterNonTrivialFullExpression(const ExprWithCleanups *E);
3534 
3535   void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
3536 
3537   void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest);
3538 
3539   RValue EmitAtomicExpr(AtomicExpr *E);
3540 
3541   //===--------------------------------------------------------------------===//
3542   //                         Annotations Emission
3543   //===--------------------------------------------------------------------===//
3544 
3545   /// Emit an annotation call (intrinsic or builtin).
3546   llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
3547                                   llvm::Value *AnnotatedVal,
3548                                   StringRef AnnotationStr,
3549                                   SourceLocation Location);
3550 
3551   /// Emit local annotations for the local variable V, declared by D.
3552   void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
3553 
3554   /// Emit field annotations for the given field & value. Returns the
3555   /// annotation result.
3556   Address EmitFieldAnnotations(const FieldDecl *D, Address V);
3557 
3558   //===--------------------------------------------------------------------===//
3559   //                             Internal Helpers
3560   //===--------------------------------------------------------------------===//
3561 
3562   /// ContainsLabel - Return true if the statement contains a label in it.  If
3563   /// this statement is not executed normally, it not containing a label means
3564   /// that we can just remove the code.
3565   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
3566 
3567   /// containsBreak - Return true if the statement contains a break out of it.
3568   /// If the statement (recursively) contains a switch or loop with a break
3569   /// inside of it, this is fine.
3570   static bool containsBreak(const Stmt *S);
3571 
3572   /// Determine if the given statement might introduce a declaration into the
3573   /// current scope, by being a (possibly-labelled) DeclStmt.
3574   static bool mightAddDeclToScope(const Stmt *S);
3575 
3576   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
3577   /// to a constant, or if it does but contains a label, return false.  If it
3578   /// constant folds return true and set the boolean result in Result.
3579   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result,
3580                                     bool AllowLabels = false);
3581 
3582   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
3583   /// to a constant, or if it does but contains a label, return false.  If it
3584   /// constant folds return true and set the folded value.
3585   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result,
3586                                     bool AllowLabels = false);
3587 
3588   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
3589   /// if statement) to the specified blocks.  Based on the condition, this might
3590   /// try to simplify the codegen of the conditional based on the branch.
3591   /// TrueCount should be the number of times we expect the condition to
3592   /// evaluate to true based on PGO data.
3593   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
3594                             llvm::BasicBlock *FalseBlock, uint64_t TrueCount);
3595 
3596   /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is
3597   /// nonnull, if \p LHS is marked _Nonnull.
3598   void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc);
3599 
3600   /// An enumeration which makes it easier to specify whether or not an
3601   /// operation is a subtraction.
3602   enum { NotSubtraction = false, IsSubtraction = true };
3603 
3604   /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to
3605   /// detect undefined behavior when the pointer overflow sanitizer is enabled.
3606   /// \p SignedIndices indicates whether any of the GEP indices are signed.
3607   /// \p IsSubtraction indicates whether the expression used to form the GEP
3608   /// is a subtraction.
3609   llvm::Value *EmitCheckedInBoundsGEP(llvm::Value *Ptr,
3610                                       ArrayRef<llvm::Value *> IdxList,
3611                                       bool SignedIndices,
3612                                       bool IsSubtraction,
3613                                       SourceLocation Loc,
3614                                       const Twine &Name = "");
3615 
3616   /// Specifies which type of sanitizer check to apply when handling a
3617   /// particular builtin.
3618   enum BuiltinCheckKind {
3619     BCK_CTZPassedZero,
3620     BCK_CLZPassedZero,
3621   };
3622 
3623   /// Emits an argument for a call to a builtin. If the builtin sanitizer is
3624   /// enabled, a runtime check specified by \p Kind is also emitted.
3625   llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind);
3626 
3627   /// \brief Emit a description of a type in a format suitable for passing to
3628   /// a runtime sanitizer handler.
3629   llvm::Constant *EmitCheckTypeDescriptor(QualType T);
3630 
3631   /// \brief Convert a value into a format suitable for passing to a runtime
3632   /// sanitizer handler.
3633   llvm::Value *EmitCheckValue(llvm::Value *V);
3634 
3635   /// \brief Emit a description of a source location in a format suitable for
3636   /// passing to a runtime sanitizer handler.
3637   llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
3638 
3639   /// \brief Create a basic block that will call a handler function in a
3640   /// sanitizer runtime with the provided arguments, and create a conditional
3641   /// branch to it.
3642   void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
3643                  SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs,
3644                  ArrayRef<llvm::Value *> DynamicArgs);
3645 
3646   /// \brief Emit a slow path cross-DSO CFI check which calls __cfi_slowpath
3647   /// if Cond if false.
3648   void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond,
3649                             llvm::ConstantInt *TypeId, llvm::Value *Ptr,
3650                             ArrayRef<llvm::Constant *> StaticArgs);
3651 
3652   /// \brief Create a basic block that will call the trap intrinsic, and emit a
3653   /// conditional branch to it, for the -ftrapv checks.
3654   void EmitTrapCheck(llvm::Value *Checked);
3655 
3656   /// \brief Emit a call to trap or debugtrap and attach function attribute
3657   /// "trap-func-name" if specified.
3658   llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID);
3659 
3660   /// \brief Emit a stub for the cross-DSO CFI check function.
3661   void EmitCfiCheckStub();
3662 
3663   /// \brief Emit a cross-DSO CFI failure handling function.
3664   void EmitCfiCheckFail();
3665 
3666   /// \brief Create a check for a function parameter that may potentially be
3667   /// declared as non-null.
3668   void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc,
3669                            AbstractCallee AC, unsigned ParmNum);
3670 
3671   /// EmitCallArg - Emit a single call argument.
3672   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
3673 
3674   /// EmitDelegateCallArg - We are performing a delegate call; that
3675   /// is, the current function is delegating to another one.  Produce
3676   /// a r-value suitable for passing the given parameter.
3677   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
3678                            SourceLocation loc);
3679 
3680   /// SetFPAccuracy - Set the minimum required accuracy of the given floating
3681   /// point operation, expressed as the maximum relative error in ulp.
3682   void SetFPAccuracy(llvm::Value *Val, float Accuracy);
3683 
3684 private:
3685   llvm::MDNode *getRangeForLoadFromType(QualType Ty);
3686   void EmitReturnOfRValue(RValue RV, QualType Ty);
3687 
3688   void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
3689 
3690   llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4>
3691   DeferredReplacements;
3692 
3693   /// Set the address of a local variable.
3694   void setAddrOfLocalVar(const VarDecl *VD, Address Addr) {
3695     assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!");
3696     LocalDeclMap.insert({VD, Addr});
3697   }
3698 
3699   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
3700   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
3701   ///
3702   /// \param AI - The first function argument of the expansion.
3703   void ExpandTypeFromArgs(QualType Ty, LValue Dst,
3704                           SmallVectorImpl<llvm::Value *>::iterator &AI);
3705 
3706   /// ExpandTypeToArgs - Expand an RValue \arg RV, with the LLVM type for \arg
3707   /// Ty, into individual arguments on the provided vector \arg IRCallArgs,
3708   /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand.
3709   void ExpandTypeToArgs(QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy,
3710                         SmallVectorImpl<llvm::Value *> &IRCallArgs,
3711                         unsigned &IRCallArgPos);
3712 
3713   llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
3714                             const Expr *InputExpr, std::string &ConstraintStr);
3715 
3716   llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
3717                                   LValue InputValue, QualType InputType,
3718                                   std::string &ConstraintStr,
3719                                   SourceLocation Loc);
3720 
3721   /// \brief Attempts to statically evaluate the object size of E. If that
3722   /// fails, emits code to figure the size of E out for us. This is
3723   /// pass_object_size aware.
3724   ///
3725   /// If EmittedExpr is non-null, this will use that instead of re-emitting E.
3726   llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
3727                                                llvm::IntegerType *ResType,
3728                                                llvm::Value *EmittedE);
3729 
3730   /// \brief Emits the size of E, as required by __builtin_object_size. This
3731   /// function is aware of pass_object_size parameters, and will act accordingly
3732   /// if E is a parameter with the pass_object_size attribute.
3733   llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type,
3734                                      llvm::IntegerType *ResType,
3735                                      llvm::Value *EmittedE);
3736 
3737 public:
3738 #ifndef NDEBUG
3739   // Determine whether the given argument is an Objective-C method
3740   // that may have type parameters in its signature.
3741   static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) {
3742     const DeclContext *dc = method->getDeclContext();
3743     if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) {
3744       return classDecl->getTypeParamListAsWritten();
3745     }
3746 
3747     if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) {
3748       return catDecl->getTypeParamList();
3749     }
3750 
3751     return false;
3752   }
3753 
3754   template<typename T>
3755   static bool isObjCMethodWithTypeParams(const T *) { return false; }
3756 #endif
3757 
3758   enum class EvaluationOrder {
3759     ///! No language constraints on evaluation order.
3760     Default,
3761     ///! Language semantics require left-to-right evaluation.
3762     ForceLeftToRight,
3763     ///! Language semantics require right-to-left evaluation.
3764     ForceRightToLeft
3765   };
3766 
3767   /// EmitCallArgs - Emit call arguments for a function.
3768   template <typename T>
3769   void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo,
3770                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3771                     AbstractCallee AC = AbstractCallee(),
3772                     unsigned ParamsToSkip = 0,
3773                     EvaluationOrder Order = EvaluationOrder::Default) {
3774     SmallVector<QualType, 16> ArgTypes;
3775     CallExpr::const_arg_iterator Arg = ArgRange.begin();
3776 
3777     assert((ParamsToSkip == 0 || CallArgTypeInfo) &&
3778            "Can't skip parameters if type info is not provided");
3779     if (CallArgTypeInfo) {
3780 #ifndef NDEBUG
3781       bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo);
3782 #endif
3783 
3784       // First, use the argument types that the type info knows about
3785       for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip,
3786                 E = CallArgTypeInfo->param_type_end();
3787            I != E; ++I, ++Arg) {
3788         assert(Arg != ArgRange.end() && "Running over edge of argument list!");
3789         assert((isGenericMethod ||
3790                 ((*I)->isVariablyModifiedType() ||
3791                  (*I).getNonReferenceType()->isObjCRetainableType() ||
3792                  getContext()
3793                          .getCanonicalType((*I).getNonReferenceType())
3794                          .getTypePtr() ==
3795                      getContext()
3796                          .getCanonicalType((*Arg)->getType())
3797                          .getTypePtr())) &&
3798                "type mismatch in call argument!");
3799         ArgTypes.push_back(*I);
3800       }
3801     }
3802 
3803     // Either we've emitted all the call args, or we have a call to variadic
3804     // function.
3805     assert((Arg == ArgRange.end() || !CallArgTypeInfo ||
3806             CallArgTypeInfo->isVariadic()) &&
3807            "Extra arguments in non-variadic function!");
3808 
3809     // If we still have any arguments, emit them using the type of the argument.
3810     for (auto *A : llvm::make_range(Arg, ArgRange.end()))
3811       ArgTypes.push_back(CallArgTypeInfo ? getVarArgType(A) : A->getType());
3812 
3813     EmitCallArgs(Args, ArgTypes, ArgRange, AC, ParamsToSkip, Order);
3814   }
3815 
3816   void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes,
3817                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3818                     AbstractCallee AC = AbstractCallee(),
3819                     unsigned ParamsToSkip = 0,
3820                     EvaluationOrder Order = EvaluationOrder::Default);
3821 
3822   /// EmitPointerWithAlignment - Given an expression with a pointer type,
3823   /// emit the value and compute our best estimate of the alignment of the
3824   /// pointee.
3825   ///
3826   /// \param BaseInfo - If non-null, this will be initialized with
3827   /// information about the source of the alignment and the may-alias
3828   /// attribute.  Note that this function will conservatively fall back on
3829   /// the type when it doesn't recognize the expression and may-alias will
3830   /// be set to false.
3831   ///
3832   /// One reasonable way to use this information is when there's a language
3833   /// guarantee that the pointer must be aligned to some stricter value, and
3834   /// we're simply trying to ensure that sufficiently obvious uses of under-
3835   /// aligned objects don't get miscompiled; for example, a placement new
3836   /// into the address of a local variable.  In such a case, it's quite
3837   /// reasonable to just ignore the returned alignment when it isn't from an
3838   /// explicit source.
3839   Address EmitPointerWithAlignment(const Expr *Addr,
3840                                    LValueBaseInfo *BaseInfo = nullptr);
3841 
3842   void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK);
3843 
3844 private:
3845   QualType getVarArgType(const Expr *Arg);
3846 
3847   void EmitDeclMetadata();
3848 
3849   BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType,
3850                                   const AutoVarEmission &emission);
3851 
3852   void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
3853 
3854   llvm::Value *GetValueForARMHint(unsigned BuiltinID);
3855 };
3856 
3857 /// Helper class with most of the code for saving a value for a
3858 /// conditional expression cleanup.
3859 struct DominatingLLVMValue {
3860   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
3861 
3862   /// Answer whether the given value needs extra work to be saved.
3863   static bool needsSaving(llvm::Value *value) {
3864     // If it's not an instruction, we don't need to save.
3865     if (!isa<llvm::Instruction>(value)) return false;
3866 
3867     // If it's an instruction in the entry block, we don't need to save.
3868     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
3869     return (block != &block->getParent()->getEntryBlock());
3870   }
3871 
3872   /// Try to save the given value.
3873   static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
3874     if (!needsSaving(value)) return saved_type(value, false);
3875 
3876     // Otherwise, we need an alloca.
3877     auto align = CharUnits::fromQuantity(
3878               CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType()));
3879     Address alloca =
3880       CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save");
3881     CGF.Builder.CreateStore(value, alloca);
3882 
3883     return saved_type(alloca.getPointer(), true);
3884   }
3885 
3886   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
3887     // If the value says it wasn't saved, trust that it's still dominating.
3888     if (!value.getInt()) return value.getPointer();
3889 
3890     // Otherwise, it should be an alloca instruction, as set up in save().
3891     auto alloca = cast<llvm::AllocaInst>(value.getPointer());
3892     return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlignment());
3893   }
3894 };
3895 
3896 /// A partial specialization of DominatingValue for llvm::Values that
3897 /// might be llvm::Instructions.
3898 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
3899   typedef T *type;
3900   static type restore(CodeGenFunction &CGF, saved_type value) {
3901     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
3902   }
3903 };
3904 
3905 /// A specialization of DominatingValue for Address.
3906 template <> struct DominatingValue<Address> {
3907   typedef Address type;
3908 
3909   struct saved_type {
3910     DominatingLLVMValue::saved_type SavedValue;
3911     CharUnits Alignment;
3912   };
3913 
3914   static bool needsSaving(type value) {
3915     return DominatingLLVMValue::needsSaving(value.getPointer());
3916   }
3917   static saved_type save(CodeGenFunction &CGF, type value) {
3918     return { DominatingLLVMValue::save(CGF, value.getPointer()),
3919              value.getAlignment() };
3920   }
3921   static type restore(CodeGenFunction &CGF, saved_type value) {
3922     return Address(DominatingLLVMValue::restore(CGF, value.SavedValue),
3923                    value.Alignment);
3924   }
3925 };
3926 
3927 /// A specialization of DominatingValue for RValue.
3928 template <> struct DominatingValue<RValue> {
3929   typedef RValue type;
3930   class saved_type {
3931     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
3932                 AggregateAddress, ComplexAddress };
3933 
3934     llvm::Value *Value;
3935     unsigned K : 3;
3936     unsigned Align : 29;
3937     saved_type(llvm::Value *v, Kind k, unsigned a = 0)
3938       : Value(v), K(k), Align(a) {}
3939 
3940   public:
3941     static bool needsSaving(RValue value);
3942     static saved_type save(CodeGenFunction &CGF, RValue value);
3943     RValue restore(CodeGenFunction &CGF);
3944 
3945     // implementations in CGCleanup.cpp
3946   };
3947 
3948   static bool needsSaving(type value) {
3949     return saved_type::needsSaving(value);
3950   }
3951   static saved_type save(CodeGenFunction &CGF, type value) {
3952     return saved_type::save(CGF, value);
3953   }
3954   static type restore(CodeGenFunction &CGF, saved_type value) {
3955     return value.restore(CGF);
3956   }
3957 };
3958 
3959 }  // end namespace CodeGen
3960 }  // end namespace clang
3961 
3962 #endif
3963