1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the internal per-function state used for llvm translation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 15 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 16 17 #include "CGBuilder.h" 18 #include "CGDebugInfo.h" 19 #include "CGLoopInfo.h" 20 #include "CGValue.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "EHScopeStack.h" 24 #include "clang/AST/CharUnits.h" 25 #include "clang/AST/ExprCXX.h" 26 #include "clang/AST/ExprObjC.h" 27 #include "clang/AST/Type.h" 28 #include "clang/Basic/ABI.h" 29 #include "clang/Basic/CapturedStmt.h" 30 #include "clang/Basic/OpenMPKinds.h" 31 #include "clang/Basic/TargetInfo.h" 32 #include "clang/Frontend/CodeGenOptions.h" 33 #include "llvm/ADT/ArrayRef.h" 34 #include "llvm/ADT/DenseMap.h" 35 #include "llvm/ADT/SmallVector.h" 36 #include "llvm/IR/ValueHandle.h" 37 #include "llvm/Support/Debug.h" 38 39 namespace llvm { 40 class BasicBlock; 41 class LLVMContext; 42 class MDNode; 43 class Module; 44 class SwitchInst; 45 class Twine; 46 class Value; 47 class CallSite; 48 } 49 50 namespace clang { 51 class ASTContext; 52 class BlockDecl; 53 class CXXDestructorDecl; 54 class CXXForRangeStmt; 55 class CXXTryStmt; 56 class Decl; 57 class LabelDecl; 58 class EnumConstantDecl; 59 class FunctionDecl; 60 class FunctionProtoType; 61 class LabelStmt; 62 class ObjCContainerDecl; 63 class ObjCInterfaceDecl; 64 class ObjCIvarDecl; 65 class ObjCMethodDecl; 66 class ObjCImplementationDecl; 67 class ObjCPropertyImplDecl; 68 class TargetInfo; 69 class TargetCodeGenInfo; 70 class VarDecl; 71 class ObjCForCollectionStmt; 72 class ObjCAtTryStmt; 73 class ObjCAtThrowStmt; 74 class ObjCAtSynchronizedStmt; 75 class ObjCAutoreleasePoolStmt; 76 77 namespace CodeGen { 78 class CodeGenTypes; 79 class CGFunctionInfo; 80 class CGRecordLayout; 81 class CGBlockInfo; 82 class CGCXXABI; 83 class BlockFlags; 84 class BlockFieldFlags; 85 86 /// The kind of evaluation to perform on values of a particular 87 /// type. Basically, is the code in CGExprScalar, CGExprComplex, or 88 /// CGExprAgg? 89 /// 90 /// TODO: should vectors maybe be split out into their own thing? 91 enum TypeEvaluationKind { 92 TEK_Scalar, 93 TEK_Complex, 94 TEK_Aggregate 95 }; 96 97 /// CodeGenFunction - This class organizes the per-function state that is used 98 /// while generating LLVM code. 99 class CodeGenFunction : public CodeGenTypeCache { 100 CodeGenFunction(const CodeGenFunction &) = delete; 101 void operator=(const CodeGenFunction &) = delete; 102 103 friend class CGCXXABI; 104 public: 105 /// A jump destination is an abstract label, branching to which may 106 /// require a jump out through normal cleanups. 107 struct JumpDest { 108 JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {} 109 JumpDest(llvm::BasicBlock *Block, 110 EHScopeStack::stable_iterator Depth, 111 unsigned Index) 112 : Block(Block), ScopeDepth(Depth), Index(Index) {} 113 114 bool isValid() const { return Block != nullptr; } 115 llvm::BasicBlock *getBlock() const { return Block; } 116 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 117 unsigned getDestIndex() const { return Index; } 118 119 // This should be used cautiously. 120 void setScopeDepth(EHScopeStack::stable_iterator depth) { 121 ScopeDepth = depth; 122 } 123 124 private: 125 llvm::BasicBlock *Block; 126 EHScopeStack::stable_iterator ScopeDepth; 127 unsigned Index; 128 }; 129 130 CodeGenModule &CGM; // Per-module state. 131 const TargetInfo &Target; 132 133 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 134 LoopInfoStack LoopStack; 135 CGBuilderTy Builder; 136 137 /// \brief CGBuilder insert helper. This function is called after an 138 /// instruction is created using Builder. 139 void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name, 140 llvm::BasicBlock *BB, 141 llvm::BasicBlock::iterator InsertPt) const; 142 143 /// CurFuncDecl - Holds the Decl for the current outermost 144 /// non-closure context. 145 const Decl *CurFuncDecl; 146 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 147 const Decl *CurCodeDecl; 148 const CGFunctionInfo *CurFnInfo; 149 QualType FnRetTy; 150 llvm::Function *CurFn; 151 152 /// CurGD - The GlobalDecl for the current function being compiled. 153 GlobalDecl CurGD; 154 155 /// PrologueCleanupDepth - The cleanup depth enclosing all the 156 /// cleanups associated with the parameters. 157 EHScopeStack::stable_iterator PrologueCleanupDepth; 158 159 /// ReturnBlock - Unified return block. 160 JumpDest ReturnBlock; 161 162 /// ReturnValue - The temporary alloca to hold the return value. This is null 163 /// iff the function has no return value. 164 llvm::Value *ReturnValue; 165 166 /// AllocaInsertPoint - This is an instruction in the entry block before which 167 /// we prefer to insert allocas. 168 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 169 170 /// \brief API for captured statement code generation. 171 class CGCapturedStmtInfo { 172 public: 173 explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default) 174 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {} 175 explicit CGCapturedStmtInfo(const CapturedStmt &S, 176 CapturedRegionKind K = CR_Default) 177 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) { 178 179 RecordDecl::field_iterator Field = 180 S.getCapturedRecordDecl()->field_begin(); 181 for (CapturedStmt::const_capture_iterator I = S.capture_begin(), 182 E = S.capture_end(); 183 I != E; ++I, ++Field) { 184 if (I->capturesThis()) 185 CXXThisFieldDecl = *Field; 186 else if (I->capturesVariable()) 187 CaptureFields[I->getCapturedVar()] = *Field; 188 } 189 } 190 191 virtual ~CGCapturedStmtInfo(); 192 193 CapturedRegionKind getKind() const { return Kind; } 194 195 virtual void setContextValue(llvm::Value *V) { ThisValue = V; } 196 // \brief Retrieve the value of the context parameter. 197 virtual llvm::Value *getContextValue() const { return ThisValue; } 198 199 /// \brief Lookup the captured field decl for a variable. 200 virtual const FieldDecl *lookup(const VarDecl *VD) const { 201 return CaptureFields.lookup(VD); 202 } 203 204 bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; } 205 virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; } 206 207 static bool classof(const CGCapturedStmtInfo *) { 208 return true; 209 } 210 211 /// \brief Emit the captured statement body. 212 virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) { 213 CGF.incrementProfileCounter(S); 214 CGF.EmitStmt(S); 215 } 216 217 /// \brief Get the name of the capture helper. 218 virtual StringRef getHelperName() const { return "__captured_stmt"; } 219 220 private: 221 /// \brief The kind of captured statement being generated. 222 CapturedRegionKind Kind; 223 224 /// \brief Keep the map between VarDecl and FieldDecl. 225 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields; 226 227 /// \brief The base address of the captured record, passed in as the first 228 /// argument of the parallel region function. 229 llvm::Value *ThisValue; 230 231 /// \brief Captured 'this' type. 232 FieldDecl *CXXThisFieldDecl; 233 }; 234 CGCapturedStmtInfo *CapturedStmtInfo; 235 236 /// \brief RAII for correct setting/restoring of CapturedStmtInfo. 237 class CGCapturedStmtRAII { 238 private: 239 CodeGenFunction &CGF; 240 CGCapturedStmtInfo *PrevCapturedStmtInfo; 241 public: 242 CGCapturedStmtRAII(CodeGenFunction &CGF, 243 CGCapturedStmtInfo *NewCapturedStmtInfo) 244 : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) { 245 CGF.CapturedStmtInfo = NewCapturedStmtInfo; 246 } 247 ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; } 248 }; 249 250 /// BoundsChecking - Emit run-time bounds checks. Higher values mean 251 /// potentially higher performance penalties. 252 unsigned char BoundsChecking; 253 254 /// \brief Sanitizers enabled for this function. 255 SanitizerSet SanOpts; 256 257 /// \brief True if CodeGen currently emits code implementing sanitizer checks. 258 bool IsSanitizerScope; 259 260 /// \brief RAII object to set/unset CodeGenFunction::IsSanitizerScope. 261 class SanitizerScope { 262 CodeGenFunction *CGF; 263 public: 264 SanitizerScope(CodeGenFunction *CGF); 265 ~SanitizerScope(); 266 }; 267 268 /// In C++, whether we are code generating a thunk. This controls whether we 269 /// should emit cleanups. 270 bool CurFuncIsThunk; 271 272 /// In ARC, whether we should autorelease the return value. 273 bool AutoreleaseResult; 274 275 /// Whether we processed a Microsoft-style asm block during CodeGen. These can 276 /// potentially set the return value. 277 bool SawAsmBlock; 278 279 /// True if the current function is an outlined SEH helper. This can be a 280 /// finally block or filter expression. 281 bool IsOutlinedSEHHelper; 282 283 const CodeGen::CGBlockInfo *BlockInfo; 284 llvm::Value *BlockPointer; 285 286 llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; 287 FieldDecl *LambdaThisCaptureField; 288 289 /// \brief A mapping from NRVO variables to the flags used to indicate 290 /// when the NRVO has been applied to this variable. 291 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 292 293 EHScopeStack EHStack; 294 llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack; 295 llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack; 296 297 /// Header for data within LifetimeExtendedCleanupStack. 298 struct LifetimeExtendedCleanupHeader { 299 /// The size of the following cleanup object. 300 unsigned Size; 301 /// The kind of cleanup to push: a value from the CleanupKind enumeration. 302 CleanupKind Kind; 303 304 size_t getSize() const { return Size; } 305 CleanupKind getKind() const { return Kind; } 306 }; 307 308 /// i32s containing the indexes of the cleanup destinations. 309 llvm::AllocaInst *NormalCleanupDest; 310 311 unsigned NextCleanupDestIndex; 312 313 /// FirstBlockInfo - The head of a singly-linked-list of block layouts. 314 CGBlockInfo *FirstBlockInfo; 315 316 /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. 317 llvm::BasicBlock *EHResumeBlock; 318 319 /// The exception slot. All landing pads write the current exception pointer 320 /// into this alloca. 321 llvm::Value *ExceptionSlot; 322 323 /// The selector slot. Under the MandatoryCleanup model, all landing pads 324 /// write the current selector value into this alloca. 325 llvm::AllocaInst *EHSelectorSlot; 326 327 /// A stack of exception code slots. Entering an __except block pushes a slot 328 /// on the stack and leaving pops one. The __exception_code() intrinsic loads 329 /// a value from the top of the stack. 330 SmallVector<llvm::Value *, 1> SEHCodeSlotStack; 331 332 /// Value returned by __exception_info intrinsic. 333 llvm::Value *SEHInfo = nullptr; 334 335 /// Emits a landing pad for the current EH stack. 336 llvm::BasicBlock *EmitLandingPad(); 337 338 llvm::BasicBlock *getInvokeDestImpl(); 339 340 template <class T> 341 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 342 return DominatingValue<T>::save(*this, value); 343 } 344 345 public: 346 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 347 /// rethrows. 348 SmallVector<llvm::Value*, 8> ObjCEHValueStack; 349 350 /// A class controlling the emission of a finally block. 351 class FinallyInfo { 352 /// Where the catchall's edge through the cleanup should go. 353 JumpDest RethrowDest; 354 355 /// A function to call to enter the catch. 356 llvm::Constant *BeginCatchFn; 357 358 /// An i1 variable indicating whether or not the @finally is 359 /// running for an exception. 360 llvm::AllocaInst *ForEHVar; 361 362 /// An i8* variable into which the exception pointer to rethrow 363 /// has been saved. 364 llvm::AllocaInst *SavedExnVar; 365 366 public: 367 void enter(CodeGenFunction &CGF, const Stmt *Finally, 368 llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn, 369 llvm::Constant *rethrowFn); 370 void exit(CodeGenFunction &CGF); 371 }; 372 373 /// Returns true inside SEH __try blocks. 374 bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); } 375 376 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 377 /// current full-expression. Safe against the possibility that 378 /// we're currently inside a conditionally-evaluated expression. 379 template <class T, class... As> 380 void pushFullExprCleanup(CleanupKind kind, As... A) { 381 // If we're not in a conditional branch, or if none of the 382 // arguments requires saving, then use the unconditional cleanup. 383 if (!isInConditionalBranch()) 384 return EHStack.pushCleanup<T>(kind, A...); 385 386 // Stash values in a tuple so we can guarantee the order of saves. 387 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 388 SavedTuple Saved{saveValueInCond(A)...}; 389 390 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 391 EHStack.pushCleanupTuple<CleanupType>(kind, Saved); 392 initFullExprCleanup(); 393 } 394 395 /// \brief Queue a cleanup to be pushed after finishing the current 396 /// full-expression. 397 template <class T, class... As> 398 void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) { 399 assert(!isInConditionalBranch() && "can't defer conditional cleanup"); 400 401 LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind }; 402 403 size_t OldSize = LifetimeExtendedCleanupStack.size(); 404 LifetimeExtendedCleanupStack.resize( 405 LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size); 406 407 static_assert(sizeof(Header) % llvm::AlignOf<T>::Alignment == 0, 408 "Cleanup will be allocated on misaligned address"); 409 char *Buffer = &LifetimeExtendedCleanupStack[OldSize]; 410 new (Buffer) LifetimeExtendedCleanupHeader(Header); 411 new (Buffer + sizeof(Header)) T(A...); 412 } 413 414 /// Set up the last cleaup that was pushed as a conditional 415 /// full-expression cleanup. 416 void initFullExprCleanup(); 417 418 /// PushDestructorCleanup - Push a cleanup to call the 419 /// complete-object destructor of an object of the given type at the 420 /// given address. Does nothing if T is not a C++ class type with a 421 /// non-trivial destructor. 422 void PushDestructorCleanup(QualType T, llvm::Value *Addr); 423 424 /// PushDestructorCleanup - Push a cleanup to call the 425 /// complete-object variant of the given destructor on the object at 426 /// the given address. 427 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, 428 llvm::Value *Addr); 429 430 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 431 /// process all branch fixups. 432 void PopCleanupBlock(bool FallThroughIsBranchThrough = false); 433 434 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 435 /// The block cannot be reactivated. Pops it if it's the top of the 436 /// stack. 437 /// 438 /// \param DominatingIP - An instruction which is known to 439 /// dominate the current IP (if set) and which lies along 440 /// all paths of execution between the current IP and the 441 /// the point at which the cleanup comes into scope. 442 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 443 llvm::Instruction *DominatingIP); 444 445 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 446 /// Cannot be used to resurrect a deactivated cleanup. 447 /// 448 /// \param DominatingIP - An instruction which is known to 449 /// dominate the current IP (if set) and which lies along 450 /// all paths of execution between the current IP and the 451 /// the point at which the cleanup comes into scope. 452 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 453 llvm::Instruction *DominatingIP); 454 455 /// \brief Enters a new scope for capturing cleanups, all of which 456 /// will be executed once the scope is exited. 457 class RunCleanupsScope { 458 EHScopeStack::stable_iterator CleanupStackDepth; 459 size_t LifetimeExtendedCleanupStackSize; 460 bool OldDidCallStackSave; 461 protected: 462 bool PerformCleanup; 463 private: 464 465 RunCleanupsScope(const RunCleanupsScope &) = delete; 466 void operator=(const RunCleanupsScope &) = delete; 467 468 protected: 469 CodeGenFunction& CGF; 470 471 public: 472 /// \brief Enter a new cleanup scope. 473 explicit RunCleanupsScope(CodeGenFunction &CGF) 474 : PerformCleanup(true), CGF(CGF) 475 { 476 CleanupStackDepth = CGF.EHStack.stable_begin(); 477 LifetimeExtendedCleanupStackSize = 478 CGF.LifetimeExtendedCleanupStack.size(); 479 OldDidCallStackSave = CGF.DidCallStackSave; 480 CGF.DidCallStackSave = false; 481 } 482 483 /// \brief Exit this cleanup scope, emitting any accumulated 484 /// cleanups. 485 ~RunCleanupsScope() { 486 if (PerformCleanup) { 487 CGF.DidCallStackSave = OldDidCallStackSave; 488 CGF.PopCleanupBlocks(CleanupStackDepth, 489 LifetimeExtendedCleanupStackSize); 490 } 491 } 492 493 /// \brief Determine whether this scope requires any cleanups. 494 bool requiresCleanups() const { 495 return CGF.EHStack.stable_begin() != CleanupStackDepth; 496 } 497 498 /// \brief Force the emission of cleanups now, instead of waiting 499 /// until this object is destroyed. 500 void ForceCleanup() { 501 assert(PerformCleanup && "Already forced cleanup"); 502 CGF.DidCallStackSave = OldDidCallStackSave; 503 CGF.PopCleanupBlocks(CleanupStackDepth, 504 LifetimeExtendedCleanupStackSize); 505 PerformCleanup = false; 506 } 507 }; 508 509 class LexicalScope : public RunCleanupsScope { 510 SourceRange Range; 511 SmallVector<const LabelDecl*, 4> Labels; 512 LexicalScope *ParentScope; 513 514 LexicalScope(const LexicalScope &) = delete; 515 void operator=(const LexicalScope &) = delete; 516 517 public: 518 /// \brief Enter a new cleanup scope. 519 explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) 520 : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) { 521 CGF.CurLexicalScope = this; 522 if (CGDebugInfo *DI = CGF.getDebugInfo()) 523 DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); 524 } 525 526 void addLabel(const LabelDecl *label) { 527 assert(PerformCleanup && "adding label to dead scope?"); 528 Labels.push_back(label); 529 } 530 531 /// \brief Exit this cleanup scope, emitting any accumulated 532 /// cleanups. 533 ~LexicalScope() { 534 if (CGDebugInfo *DI = CGF.getDebugInfo()) 535 DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 536 537 // If we should perform a cleanup, force them now. Note that 538 // this ends the cleanup scope before rescoping any labels. 539 if (PerformCleanup) { 540 ApplyDebugLocation DL(CGF, Range.getEnd()); 541 ForceCleanup(); 542 } 543 } 544 545 /// \brief Force the emission of cleanups now, instead of waiting 546 /// until this object is destroyed. 547 void ForceCleanup() { 548 CGF.CurLexicalScope = ParentScope; 549 RunCleanupsScope::ForceCleanup(); 550 551 if (!Labels.empty()) 552 rescopeLabels(); 553 } 554 555 void rescopeLabels(); 556 }; 557 558 /// \brief The scope used to remap some variables as private in the OpenMP 559 /// loop body (or other captured region emitted without outlining), and to 560 /// restore old vars back on exit. 561 class OMPPrivateScope : public RunCleanupsScope { 562 typedef llvm::DenseMap<const VarDecl *, llvm::Value *> VarDeclMapTy; 563 VarDeclMapTy SavedLocals; 564 VarDeclMapTy SavedPrivates; 565 566 private: 567 OMPPrivateScope(const OMPPrivateScope &) = delete; 568 void operator=(const OMPPrivateScope &) = delete; 569 570 public: 571 /// \brief Enter a new OpenMP private scope. 572 explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {} 573 574 /// \brief Registers \a LocalVD variable as a private and apply \a 575 /// PrivateGen function for it to generate corresponding private variable. 576 /// \a PrivateGen returns an address of the generated private variable. 577 /// \return true if the variable is registered as private, false if it has 578 /// been privatized already. 579 bool 580 addPrivate(const VarDecl *LocalVD, 581 const std::function<llvm::Value *()> &PrivateGen) { 582 assert(PerformCleanup && "adding private to dead scope"); 583 if (SavedLocals.count(LocalVD) > 0) return false; 584 SavedLocals[LocalVD] = CGF.LocalDeclMap.lookup(LocalVD); 585 CGF.LocalDeclMap.erase(LocalVD); 586 SavedPrivates[LocalVD] = PrivateGen(); 587 CGF.LocalDeclMap[LocalVD] = SavedLocals[LocalVD]; 588 return true; 589 } 590 591 /// \brief Privatizes local variables previously registered as private. 592 /// Registration is separate from the actual privatization to allow 593 /// initializers use values of the original variables, not the private one. 594 /// This is important, for example, if the private variable is a class 595 /// variable initialized by a constructor that references other private 596 /// variables. But at initialization original variables must be used, not 597 /// private copies. 598 /// \return true if at least one variable was privatized, false otherwise. 599 bool Privatize() { 600 for (auto VDPair : SavedPrivates) { 601 CGF.LocalDeclMap[VDPair.first] = VDPair.second; 602 } 603 SavedPrivates.clear(); 604 return !SavedLocals.empty(); 605 } 606 607 void ForceCleanup() { 608 RunCleanupsScope::ForceCleanup(); 609 // Remap vars back to the original values. 610 for (auto I : SavedLocals) { 611 CGF.LocalDeclMap[I.first] = I.second; 612 } 613 SavedLocals.clear(); 614 } 615 616 /// \brief Exit scope - all the mapped variables are restored. 617 ~OMPPrivateScope() { 618 if (PerformCleanup) 619 ForceCleanup(); 620 } 621 }; 622 623 /// \brief Takes the old cleanup stack size and emits the cleanup blocks 624 /// that have been added. 625 void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize); 626 627 /// \brief Takes the old cleanup stack size and emits the cleanup blocks 628 /// that have been added, then adds all lifetime-extended cleanups from 629 /// the given position to the stack. 630 void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 631 size_t OldLifetimeExtendedStackSize); 632 633 void ResolveBranchFixups(llvm::BasicBlock *Target); 634 635 /// The given basic block lies in the current EH scope, but may be a 636 /// target of a potentially scope-crossing jump; get a stable handle 637 /// to which we can perform this jump later. 638 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 639 return JumpDest(Target, 640 EHStack.getInnermostNormalCleanup(), 641 NextCleanupDestIndex++); 642 } 643 644 /// The given basic block lies in the current EH scope, but may be a 645 /// target of a potentially scope-crossing jump; get a stable handle 646 /// to which we can perform this jump later. 647 JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { 648 return getJumpDestInCurrentScope(createBasicBlock(Name)); 649 } 650 651 /// EmitBranchThroughCleanup - Emit a branch from the current insert 652 /// block through the normal cleanup handling code (if any) and then 653 /// on to \arg Dest. 654 void EmitBranchThroughCleanup(JumpDest Dest); 655 656 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 657 /// specified destination obviously has no cleanups to run. 'false' is always 658 /// a conservatively correct answer for this method. 659 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 660 661 /// popCatchScope - Pops the catch scope at the top of the EHScope 662 /// stack, emitting any required code (other than the catch handlers 663 /// themselves). 664 void popCatchScope(); 665 666 llvm::BasicBlock *getEHResumeBlock(bool isCleanup); 667 llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); 668 llvm::BasicBlock *getMSVCDispatchBlock(EHScopeStack::stable_iterator scope); 669 670 /// An object to manage conditionally-evaluated expressions. 671 class ConditionalEvaluation { 672 llvm::BasicBlock *StartBB; 673 674 public: 675 ConditionalEvaluation(CodeGenFunction &CGF) 676 : StartBB(CGF.Builder.GetInsertBlock()) {} 677 678 void begin(CodeGenFunction &CGF) { 679 assert(CGF.OutermostConditional != this); 680 if (!CGF.OutermostConditional) 681 CGF.OutermostConditional = this; 682 } 683 684 void end(CodeGenFunction &CGF) { 685 assert(CGF.OutermostConditional != nullptr); 686 if (CGF.OutermostConditional == this) 687 CGF.OutermostConditional = nullptr; 688 } 689 690 /// Returns a block which will be executed prior to each 691 /// evaluation of the conditional code. 692 llvm::BasicBlock *getStartingBlock() const { 693 return StartBB; 694 } 695 }; 696 697 /// isInConditionalBranch - Return true if we're currently emitting 698 /// one branch or the other of a conditional expression. 699 bool isInConditionalBranch() const { return OutermostConditional != nullptr; } 700 701 void setBeforeOutermostConditional(llvm::Value *value, llvm::Value *addr) { 702 assert(isInConditionalBranch()); 703 llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); 704 new llvm::StoreInst(value, addr, &block->back()); 705 } 706 707 /// An RAII object to record that we're evaluating a statement 708 /// expression. 709 class StmtExprEvaluation { 710 CodeGenFunction &CGF; 711 712 /// We have to save the outermost conditional: cleanups in a 713 /// statement expression aren't conditional just because the 714 /// StmtExpr is. 715 ConditionalEvaluation *SavedOutermostConditional; 716 717 public: 718 StmtExprEvaluation(CodeGenFunction &CGF) 719 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 720 CGF.OutermostConditional = nullptr; 721 } 722 723 ~StmtExprEvaluation() { 724 CGF.OutermostConditional = SavedOutermostConditional; 725 CGF.EnsureInsertPoint(); 726 } 727 }; 728 729 /// An object which temporarily prevents a value from being 730 /// destroyed by aggressive peephole optimizations that assume that 731 /// all uses of a value have been realized in the IR. 732 class PeepholeProtection { 733 llvm::Instruction *Inst; 734 friend class CodeGenFunction; 735 736 public: 737 PeepholeProtection() : Inst(nullptr) {} 738 }; 739 740 /// A non-RAII class containing all the information about a bound 741 /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for 742 /// this which makes individual mappings very simple; using this 743 /// class directly is useful when you have a variable number of 744 /// opaque values or don't want the RAII functionality for some 745 /// reason. 746 class OpaqueValueMappingData { 747 const OpaqueValueExpr *OpaqueValue; 748 bool BoundLValue; 749 CodeGenFunction::PeepholeProtection Protection; 750 751 OpaqueValueMappingData(const OpaqueValueExpr *ov, 752 bool boundLValue) 753 : OpaqueValue(ov), BoundLValue(boundLValue) {} 754 public: 755 OpaqueValueMappingData() : OpaqueValue(nullptr) {} 756 757 static bool shouldBindAsLValue(const Expr *expr) { 758 // gl-values should be bound as l-values for obvious reasons. 759 // Records should be bound as l-values because IR generation 760 // always keeps them in memory. Expressions of function type 761 // act exactly like l-values but are formally required to be 762 // r-values in C. 763 return expr->isGLValue() || 764 expr->getType()->isFunctionType() || 765 hasAggregateEvaluationKind(expr->getType()); 766 } 767 768 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 769 const OpaqueValueExpr *ov, 770 const Expr *e) { 771 if (shouldBindAsLValue(ov)) 772 return bind(CGF, ov, CGF.EmitLValue(e)); 773 return bind(CGF, ov, CGF.EmitAnyExpr(e)); 774 } 775 776 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 777 const OpaqueValueExpr *ov, 778 const LValue &lv) { 779 assert(shouldBindAsLValue(ov)); 780 CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); 781 return OpaqueValueMappingData(ov, true); 782 } 783 784 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 785 const OpaqueValueExpr *ov, 786 const RValue &rv) { 787 assert(!shouldBindAsLValue(ov)); 788 CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); 789 790 OpaqueValueMappingData data(ov, false); 791 792 // Work around an extremely aggressive peephole optimization in 793 // EmitScalarConversion which assumes that all other uses of a 794 // value are extant. 795 data.Protection = CGF.protectFromPeepholes(rv); 796 797 return data; 798 } 799 800 bool isValid() const { return OpaqueValue != nullptr; } 801 void clear() { OpaqueValue = nullptr; } 802 803 void unbind(CodeGenFunction &CGF) { 804 assert(OpaqueValue && "no data to unbind!"); 805 806 if (BoundLValue) { 807 CGF.OpaqueLValues.erase(OpaqueValue); 808 } else { 809 CGF.OpaqueRValues.erase(OpaqueValue); 810 CGF.unprotectFromPeepholes(Protection); 811 } 812 } 813 }; 814 815 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 816 class OpaqueValueMapping { 817 CodeGenFunction &CGF; 818 OpaqueValueMappingData Data; 819 820 public: 821 static bool shouldBindAsLValue(const Expr *expr) { 822 return OpaqueValueMappingData::shouldBindAsLValue(expr); 823 } 824 825 /// Build the opaque value mapping for the given conditional 826 /// operator if it's the GNU ?: extension. This is a common 827 /// enough pattern that the convenience operator is really 828 /// helpful. 829 /// 830 OpaqueValueMapping(CodeGenFunction &CGF, 831 const AbstractConditionalOperator *op) : CGF(CGF) { 832 if (isa<ConditionalOperator>(op)) 833 // Leave Data empty. 834 return; 835 836 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 837 Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), 838 e->getCommon()); 839 } 840 841 OpaqueValueMapping(CodeGenFunction &CGF, 842 const OpaqueValueExpr *opaqueValue, 843 LValue lvalue) 844 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { 845 } 846 847 OpaqueValueMapping(CodeGenFunction &CGF, 848 const OpaqueValueExpr *opaqueValue, 849 RValue rvalue) 850 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { 851 } 852 853 void pop() { 854 Data.unbind(CGF); 855 Data.clear(); 856 } 857 858 ~OpaqueValueMapping() { 859 if (Data.isValid()) Data.unbind(CGF); 860 } 861 }; 862 863 /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field 864 /// number that holds the value. 865 std::pair<llvm::Type *, unsigned> 866 getByRefValueLLVMField(const ValueDecl *VD) const; 867 868 /// BuildBlockByrefAddress - Computes address location of the 869 /// variable which is declared as __block. 870 llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr, 871 const VarDecl *V); 872 private: 873 CGDebugInfo *DebugInfo; 874 bool DisableDebugInfo; 875 876 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 877 /// calling llvm.stacksave for multiple VLAs in the same scope. 878 bool DidCallStackSave; 879 880 /// IndirectBranch - The first time an indirect goto is seen we create a block 881 /// with an indirect branch. Every time we see the address of a label taken, 882 /// we add the label to the indirect goto. Every subsequent indirect goto is 883 /// codegen'd as a jump to the IndirectBranch's basic block. 884 llvm::IndirectBrInst *IndirectBranch; 885 886 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 887 /// decls. 888 typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy; 889 DeclMapTy LocalDeclMap; 890 891 /// Track escaped local variables with auto storage. Used during SEH 892 /// outlining to produce a call to llvm.localescape. 893 llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals; 894 895 /// LabelMap - This keeps track of the LLVM basic block for each C label. 896 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 897 898 // BreakContinueStack - This keeps track of where break and continue 899 // statements should jump to. 900 struct BreakContinue { 901 BreakContinue(JumpDest Break, JumpDest Continue) 902 : BreakBlock(Break), ContinueBlock(Continue) {} 903 904 JumpDest BreakBlock; 905 JumpDest ContinueBlock; 906 }; 907 SmallVector<BreakContinue, 8> BreakContinueStack; 908 909 CodeGenPGO PGO; 910 911 /// Calculate branch weights appropriate for PGO data 912 llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount); 913 llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights); 914 llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond, 915 uint64_t LoopCount); 916 917 public: 918 /// Increment the profiler's counter for the given statement. 919 void incrementProfileCounter(const Stmt *S) { 920 if (CGM.getCodeGenOpts().ProfileInstrGenerate) 921 PGO.emitCounterIncrement(Builder, S); 922 PGO.setCurrentStmt(S); 923 } 924 925 /// Get the profiler's count for the given statement. 926 uint64_t getProfileCount(const Stmt *S) { 927 Optional<uint64_t> Count = PGO.getStmtCount(S); 928 if (!Count.hasValue()) 929 return 0; 930 return *Count; 931 } 932 933 /// Set the profiler's current count. 934 void setCurrentProfileCount(uint64_t Count) { 935 PGO.setCurrentRegionCount(Count); 936 } 937 938 /// Get the profiler's current count. This is generally the count for the most 939 /// recently incremented counter. 940 uint64_t getCurrentProfileCount() { 941 return PGO.getCurrentRegionCount(); 942 } 943 944 private: 945 946 /// SwitchInsn - This is nearest current switch instruction. It is null if 947 /// current context is not in a switch. 948 llvm::SwitchInst *SwitchInsn; 949 /// The branch weights of SwitchInsn when doing instrumentation based PGO. 950 SmallVector<uint64_t, 16> *SwitchWeights; 951 952 /// CaseRangeBlock - This block holds if condition check for last case 953 /// statement range in current switch instruction. 954 llvm::BasicBlock *CaseRangeBlock; 955 956 /// OpaqueLValues - Keeps track of the current set of opaque value 957 /// expressions. 958 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 959 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 960 961 // VLASizeMap - This keeps track of the associated size for each VLA type. 962 // We track this by the size expression rather than the type itself because 963 // in certain situations, like a const qualifier applied to an VLA typedef, 964 // multiple VLA types can share the same size expression. 965 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 966 // enter/leave scopes. 967 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 968 969 /// A block containing a single 'unreachable' instruction. Created 970 /// lazily by getUnreachableBlock(). 971 llvm::BasicBlock *UnreachableBlock; 972 973 /// Counts of the number return expressions in the function. 974 unsigned NumReturnExprs; 975 976 /// Count the number of simple (constant) return expressions in the function. 977 unsigned NumSimpleReturnExprs; 978 979 /// The last regular (non-return) debug location (breakpoint) in the function. 980 SourceLocation LastStopPoint; 981 982 public: 983 /// A scope within which we are constructing the fields of an object which 984 /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use 985 /// if we need to evaluate a CXXDefaultInitExpr within the evaluation. 986 class FieldConstructionScope { 987 public: 988 FieldConstructionScope(CodeGenFunction &CGF, llvm::Value *This) 989 : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) { 990 CGF.CXXDefaultInitExprThis = This; 991 } 992 ~FieldConstructionScope() { 993 CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis; 994 } 995 996 private: 997 CodeGenFunction &CGF; 998 llvm::Value *OldCXXDefaultInitExprThis; 999 }; 1000 1001 /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this' 1002 /// is overridden to be the object under construction. 1003 class CXXDefaultInitExprScope { 1004 public: 1005 CXXDefaultInitExprScope(CodeGenFunction &CGF) 1006 : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue) { 1007 CGF.CXXThisValue = CGF.CXXDefaultInitExprThis; 1008 } 1009 ~CXXDefaultInitExprScope() { 1010 CGF.CXXThisValue = OldCXXThisValue; 1011 } 1012 1013 public: 1014 CodeGenFunction &CGF; 1015 llvm::Value *OldCXXThisValue; 1016 }; 1017 1018 private: 1019 /// CXXThisDecl - When generating code for a C++ member function, 1020 /// this will hold the implicit 'this' declaration. 1021 ImplicitParamDecl *CXXABIThisDecl; 1022 llvm::Value *CXXABIThisValue; 1023 llvm::Value *CXXThisValue; 1024 1025 /// The value of 'this' to use when evaluating CXXDefaultInitExprs within 1026 /// this expression. 1027 llvm::Value *CXXDefaultInitExprThis; 1028 1029 /// CXXStructorImplicitParamDecl - When generating code for a constructor or 1030 /// destructor, this will hold the implicit argument (e.g. VTT). 1031 ImplicitParamDecl *CXXStructorImplicitParamDecl; 1032 llvm::Value *CXXStructorImplicitParamValue; 1033 1034 /// OutermostConditional - Points to the outermost active 1035 /// conditional control. This is used so that we know if a 1036 /// temporary should be destroyed conditionally. 1037 ConditionalEvaluation *OutermostConditional; 1038 1039 /// The current lexical scope. 1040 LexicalScope *CurLexicalScope; 1041 1042 /// The current source location that should be used for exception 1043 /// handling code. 1044 SourceLocation CurEHLocation; 1045 1046 /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM 1047 /// type as well as the field number that contains the actual data. 1048 llvm::DenseMap<const ValueDecl *, std::pair<llvm::Type *, 1049 unsigned> > ByRefValueInfo; 1050 1051 llvm::BasicBlock *TerminateLandingPad; 1052 llvm::BasicBlock *TerminateHandler; 1053 llvm::BasicBlock *TrapBB; 1054 1055 /// Add a kernel metadata node to the named metadata node 'opencl.kernels'. 1056 /// In the kernel metadata node, reference the kernel function and metadata 1057 /// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2): 1058 /// - A node for the vec_type_hint(<type>) qualifier contains string 1059 /// "vec_type_hint", an undefined value of the <type> data type, 1060 /// and a Boolean that is true if the <type> is integer and signed. 1061 /// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string 1062 /// "work_group_size_hint", and three 32-bit integers X, Y and Z. 1063 /// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string 1064 /// "reqd_work_group_size", and three 32-bit integers X, Y and Z. 1065 void EmitOpenCLKernelMetadata(const FunctionDecl *FD, 1066 llvm::Function *Fn); 1067 1068 public: 1069 CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false); 1070 ~CodeGenFunction(); 1071 1072 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 1073 ASTContext &getContext() const { return CGM.getContext(); } 1074 CGDebugInfo *getDebugInfo() { 1075 if (DisableDebugInfo) 1076 return nullptr; 1077 return DebugInfo; 1078 } 1079 void disableDebugInfo() { DisableDebugInfo = true; } 1080 void enableDebugInfo() { DisableDebugInfo = false; } 1081 1082 bool shouldUseFusedARCCalls() { 1083 return CGM.getCodeGenOpts().OptimizationLevel == 0; 1084 } 1085 1086 const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } 1087 1088 /// Returns a pointer to the function's exception object and selector slot, 1089 /// which is assigned in every landing pad. 1090 llvm::Value *getExceptionSlot(); 1091 llvm::Value *getEHSelectorSlot(); 1092 1093 /// Returns the contents of the function's exception object and selector 1094 /// slots. 1095 llvm::Value *getExceptionFromSlot(); 1096 llvm::Value *getSelectorFromSlot(); 1097 1098 llvm::Value *getNormalCleanupDestSlot(); 1099 1100 llvm::BasicBlock *getUnreachableBlock() { 1101 if (!UnreachableBlock) { 1102 UnreachableBlock = createBasicBlock("unreachable"); 1103 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 1104 } 1105 return UnreachableBlock; 1106 } 1107 1108 llvm::BasicBlock *getInvokeDest() { 1109 if (!EHStack.requiresLandingPad()) return nullptr; 1110 return getInvokeDestImpl(); 1111 } 1112 1113 bool currentFunctionUsesSEHTry() const { 1114 const auto *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl); 1115 return FD && FD->usesSEHTry(); 1116 } 1117 1118 const TargetInfo &getTarget() const { return Target; } 1119 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 1120 1121 //===--------------------------------------------------------------------===// 1122 // Cleanups 1123 //===--------------------------------------------------------------------===// 1124 1125 typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty); 1126 1127 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1128 llvm::Value *arrayEndPointer, 1129 QualType elementType, 1130 Destroyer *destroyer); 1131 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1132 llvm::Value *arrayEnd, 1133 QualType elementType, 1134 Destroyer *destroyer); 1135 1136 void pushDestroy(QualType::DestructionKind dtorKind, 1137 llvm::Value *addr, QualType type); 1138 void pushEHDestroy(QualType::DestructionKind dtorKind, 1139 llvm::Value *addr, QualType type); 1140 void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type, 1141 Destroyer *destroyer, bool useEHCleanupForArray); 1142 void pushLifetimeExtendedDestroy(CleanupKind kind, llvm::Value *addr, 1143 QualType type, Destroyer *destroyer, 1144 bool useEHCleanupForArray); 1145 void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 1146 llvm::Value *CompletePtr, 1147 QualType ElementType); 1148 void pushStackRestore(CleanupKind kind, llvm::Value *SPMem); 1149 void emitDestroy(llvm::Value *addr, QualType type, Destroyer *destroyer, 1150 bool useEHCleanupForArray); 1151 llvm::Function *generateDestroyHelper(llvm::Constant *addr, QualType type, 1152 Destroyer *destroyer, 1153 bool useEHCleanupForArray, 1154 const VarDecl *VD); 1155 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 1156 QualType type, Destroyer *destroyer, 1157 bool checkZeroLength, bool useEHCleanup); 1158 1159 Destroyer *getDestroyer(QualType::DestructionKind destructionKind); 1160 1161 /// Determines whether an EH cleanup is required to destroy a type 1162 /// with the given destruction kind. 1163 bool needsEHCleanup(QualType::DestructionKind kind) { 1164 switch (kind) { 1165 case QualType::DK_none: 1166 return false; 1167 case QualType::DK_cxx_destructor: 1168 case QualType::DK_objc_weak_lifetime: 1169 return getLangOpts().Exceptions; 1170 case QualType::DK_objc_strong_lifetime: 1171 return getLangOpts().Exceptions && 1172 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 1173 } 1174 llvm_unreachable("bad destruction kind"); 1175 } 1176 1177 CleanupKind getCleanupKind(QualType::DestructionKind kind) { 1178 return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); 1179 } 1180 1181 //===--------------------------------------------------------------------===// 1182 // Objective-C 1183 //===--------------------------------------------------------------------===// 1184 1185 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 1186 1187 void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD); 1188 1189 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 1190 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 1191 const ObjCPropertyImplDecl *PID); 1192 void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 1193 const ObjCPropertyImplDecl *propImpl, 1194 const ObjCMethodDecl *GetterMothodDecl, 1195 llvm::Constant *AtomicHelperFn); 1196 1197 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1198 ObjCMethodDecl *MD, bool ctor); 1199 1200 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 1201 /// for the given property. 1202 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 1203 const ObjCPropertyImplDecl *PID); 1204 void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1205 const ObjCPropertyImplDecl *propImpl, 1206 llvm::Constant *AtomicHelperFn); 1207 bool IndirectObjCSetterArg(const CGFunctionInfo &FI); 1208 bool IvarTypeWithAggrGCObjects(QualType Ty); 1209 1210 //===--------------------------------------------------------------------===// 1211 // Block Bits 1212 //===--------------------------------------------------------------------===// 1213 1214 llvm::Value *EmitBlockLiteral(const BlockExpr *); 1215 llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); 1216 static void destroyBlockInfos(CGBlockInfo *info); 1217 llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *, 1218 const CGBlockInfo &Info, 1219 llvm::StructType *, 1220 llvm::Constant *BlockVarLayout); 1221 1222 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 1223 const CGBlockInfo &Info, 1224 const DeclMapTy &ldm, 1225 bool IsLambdaConversionToBlock); 1226 1227 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 1228 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 1229 llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( 1230 const ObjCPropertyImplDecl *PID); 1231 llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( 1232 const ObjCPropertyImplDecl *PID); 1233 llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); 1234 1235 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags); 1236 1237 class AutoVarEmission; 1238 1239 void emitByrefStructureInit(const AutoVarEmission &emission); 1240 void enterByrefCleanup(const AutoVarEmission &emission); 1241 1242 llvm::Value *LoadBlockStruct() { 1243 assert(BlockPointer && "no block pointer set!"); 1244 return BlockPointer; 1245 } 1246 1247 void AllocateBlockCXXThisPointer(const CXXThisExpr *E); 1248 void AllocateBlockDecl(const DeclRefExpr *E); 1249 llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef); 1250 llvm::Type *BuildByRefType(const VarDecl *var); 1251 1252 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1253 const CGFunctionInfo &FnInfo); 1254 /// \brief Emit code for the start of a function. 1255 /// \param Loc The location to be associated with the function. 1256 /// \param StartLoc The location of the function body. 1257 void StartFunction(GlobalDecl GD, 1258 QualType RetTy, 1259 llvm::Function *Fn, 1260 const CGFunctionInfo &FnInfo, 1261 const FunctionArgList &Args, 1262 SourceLocation Loc = SourceLocation(), 1263 SourceLocation StartLoc = SourceLocation()); 1264 1265 void EmitConstructorBody(FunctionArgList &Args); 1266 void EmitDestructorBody(FunctionArgList &Args); 1267 void emitImplicitAssignmentOperatorBody(FunctionArgList &Args); 1268 void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body); 1269 void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S); 1270 1271 void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator, 1272 CallArgList &CallArgs); 1273 void EmitLambdaToBlockPointerBody(FunctionArgList &Args); 1274 void EmitLambdaBlockInvokeBody(); 1275 void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD); 1276 void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD); 1277 void EmitAsanPrologueOrEpilogue(bool Prologue); 1278 1279 /// \brief Emit the unified return block, trying to avoid its emission when 1280 /// possible. 1281 /// \return The debug location of the user written return statement if the 1282 /// return block is is avoided. 1283 llvm::DebugLoc EmitReturnBlock(); 1284 1285 /// FinishFunction - Complete IR generation of the current function. It is 1286 /// legal to call this function even if there is no current insertion point. 1287 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 1288 1289 void StartThunk(llvm::Function *Fn, GlobalDecl GD, 1290 const CGFunctionInfo &FnInfo); 1291 1292 void EmitCallAndReturnForThunk(llvm::Value *Callee, const ThunkInfo *Thunk); 1293 1294 /// Emit a musttail call for a thunk with a potentially adjusted this pointer. 1295 void EmitMustTailThunk(const CXXMethodDecl *MD, llvm::Value *AdjustedThisPtr, 1296 llvm::Value *Callee); 1297 1298 /// Generate a thunk for the given method. 1299 void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1300 GlobalDecl GD, const ThunkInfo &Thunk); 1301 1302 llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn, 1303 const CGFunctionInfo &FnInfo, 1304 GlobalDecl GD, const ThunkInfo &Thunk); 1305 1306 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 1307 FunctionArgList &Args); 1308 1309 void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init, 1310 ArrayRef<VarDecl *> ArrayIndexes); 1311 1312 /// InitializeVTablePointer - Initialize the vtable pointer of the given 1313 /// subobject. 1314 /// 1315 void InitializeVTablePointer(BaseSubobject Base, 1316 const CXXRecordDecl *NearestVBase, 1317 CharUnits OffsetFromNearestVBase, 1318 const CXXRecordDecl *VTableClass); 1319 1320 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 1321 void InitializeVTablePointers(BaseSubobject Base, 1322 const CXXRecordDecl *NearestVBase, 1323 CharUnits OffsetFromNearestVBase, 1324 bool BaseIsNonVirtualPrimaryBase, 1325 const CXXRecordDecl *VTableClass, 1326 VisitedVirtualBasesSetTy& VBases); 1327 1328 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 1329 1330 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 1331 /// to by This. 1332 llvm::Value *GetVTablePtr(llvm::Value *This, llvm::Type *Ty); 1333 1334 enum CFITypeCheckKind { 1335 CFITCK_VCall, 1336 CFITCK_NVCall, 1337 CFITCK_DerivedCast, 1338 CFITCK_UnrelatedCast, 1339 }; 1340 1341 /// \brief Derived is the presumed address of an object of type T after a 1342 /// cast. If T is a polymorphic class type, emit a check that the virtual 1343 /// table for Derived belongs to a class derived from T. 1344 void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived, 1345 bool MayBeNull, CFITypeCheckKind TCK, 1346 SourceLocation Loc); 1347 1348 /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable. 1349 /// If vptr CFI is enabled, emit a check that VTable is valid. 1350 void EmitVTablePtrCheckForCall(const CXXMethodDecl *MD, llvm::Value *VTable, 1351 CFITypeCheckKind TCK, SourceLocation Loc); 1352 1353 /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for 1354 /// RD using llvm.bitset.test. 1355 void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable, 1356 CFITypeCheckKind TCK, SourceLocation Loc); 1357 1358 /// CanDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given 1359 /// expr can be devirtualized. 1360 bool CanDevirtualizeMemberFunctionCall(const Expr *Base, 1361 const CXXMethodDecl *MD); 1362 1363 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 1364 /// given phase of destruction for a destructor. The end result 1365 /// should call destructors on members and base classes in reverse 1366 /// order of their construction. 1367 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 1368 1369 /// ShouldInstrumentFunction - Return true if the current function should be 1370 /// instrumented with __cyg_profile_func_* calls 1371 bool ShouldInstrumentFunction(); 1372 1373 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 1374 /// instrumentation function with the current function and the call site, if 1375 /// function instrumentation is enabled. 1376 void EmitFunctionInstrumentation(const char *Fn); 1377 1378 /// EmitMCountInstrumentation - Emit call to .mcount. 1379 void EmitMCountInstrumentation(); 1380 1381 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 1382 /// arguments for the given function. This is also responsible for naming the 1383 /// LLVM function arguments. 1384 void EmitFunctionProlog(const CGFunctionInfo &FI, 1385 llvm::Function *Fn, 1386 const FunctionArgList &Args); 1387 1388 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 1389 /// given temporary. 1390 void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc, 1391 SourceLocation EndLoc); 1392 1393 /// EmitStartEHSpec - Emit the start of the exception spec. 1394 void EmitStartEHSpec(const Decl *D); 1395 1396 /// EmitEndEHSpec - Emit the end of the exception spec. 1397 void EmitEndEHSpec(const Decl *D); 1398 1399 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 1400 llvm::BasicBlock *getTerminateLandingPad(); 1401 1402 /// getTerminateHandler - Return a handler (not a landing pad, just 1403 /// a catch handler) that just calls terminate. This is used when 1404 /// a terminate scope encloses a try. 1405 llvm::BasicBlock *getTerminateHandler(); 1406 1407 llvm::Type *ConvertTypeForMem(QualType T); 1408 llvm::Type *ConvertType(QualType T); 1409 llvm::Type *ConvertType(const TypeDecl *T) { 1410 return ConvertType(getContext().getTypeDeclType(T)); 1411 } 1412 1413 /// LoadObjCSelf - Load the value of self. This function is only valid while 1414 /// generating code for an Objective-C method. 1415 llvm::Value *LoadObjCSelf(); 1416 1417 /// TypeOfSelfObject - Return type of object that this self represents. 1418 QualType TypeOfSelfObject(); 1419 1420 /// hasAggregateLLVMType - Return true if the specified AST type will map into 1421 /// an aggregate LLVM type or is void. 1422 static TypeEvaluationKind getEvaluationKind(QualType T); 1423 1424 static bool hasScalarEvaluationKind(QualType T) { 1425 return getEvaluationKind(T) == TEK_Scalar; 1426 } 1427 1428 static bool hasAggregateEvaluationKind(QualType T) { 1429 return getEvaluationKind(T) == TEK_Aggregate; 1430 } 1431 1432 /// createBasicBlock - Create an LLVM basic block. 1433 llvm::BasicBlock *createBasicBlock(const Twine &name = "", 1434 llvm::Function *parent = nullptr, 1435 llvm::BasicBlock *before = nullptr) { 1436 #ifdef NDEBUG 1437 return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before); 1438 #else 1439 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 1440 #endif 1441 } 1442 1443 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 1444 /// label maps to. 1445 JumpDest getJumpDestForLabel(const LabelDecl *S); 1446 1447 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 1448 /// another basic block, simplify it. This assumes that no other code could 1449 /// potentially reference the basic block. 1450 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 1451 1452 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 1453 /// adding a fall-through branch from the current insert block if 1454 /// necessary. It is legal to call this function even if there is no current 1455 /// insertion point. 1456 /// 1457 /// IsFinished - If true, indicates that the caller has finished emitting 1458 /// branches to the given block and does not expect to emit code into it. This 1459 /// means the block can be ignored if it is unreachable. 1460 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 1461 1462 /// EmitBlockAfterUses - Emit the given block somewhere hopefully 1463 /// near its uses, and leave the insertion point in it. 1464 void EmitBlockAfterUses(llvm::BasicBlock *BB); 1465 1466 /// EmitBranch - Emit a branch to the specified basic block from the current 1467 /// insert block, taking care to avoid creation of branches from dummy 1468 /// blocks. It is legal to call this function even if there is no current 1469 /// insertion point. 1470 /// 1471 /// This function clears the current insertion point. The caller should follow 1472 /// calls to this function with calls to Emit*Block prior to generation new 1473 /// code. 1474 void EmitBranch(llvm::BasicBlock *Block); 1475 1476 /// HaveInsertPoint - True if an insertion point is defined. If not, this 1477 /// indicates that the current code being emitted is unreachable. 1478 bool HaveInsertPoint() const { 1479 return Builder.GetInsertBlock() != nullptr; 1480 } 1481 1482 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 1483 /// emitted IR has a place to go. Note that by definition, if this function 1484 /// creates a block then that block is unreachable; callers may do better to 1485 /// detect when no insertion point is defined and simply skip IR generation. 1486 void EnsureInsertPoint() { 1487 if (!HaveInsertPoint()) 1488 EmitBlock(createBasicBlock()); 1489 } 1490 1491 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1492 /// specified stmt yet. 1493 void ErrorUnsupported(const Stmt *S, const char *Type); 1494 1495 //===--------------------------------------------------------------------===// 1496 // Helpers 1497 //===--------------------------------------------------------------------===// 1498 1499 LValue MakeAddrLValue(llvm::Value *V, QualType T, 1500 CharUnits Alignment = CharUnits()) { 1501 return LValue::MakeAddr(V, T, Alignment, getContext(), 1502 CGM.getTBAAInfo(T)); 1503 } 1504 1505 LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T); 1506 1507 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 1508 /// block. The caller is responsible for setting an appropriate alignment on 1509 /// the alloca. 1510 llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, 1511 const Twine &Name = "tmp"); 1512 1513 /// InitTempAlloca - Provide an initial value for the given alloca. 1514 void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value); 1515 1516 /// CreateIRTemp - Create a temporary IR object of the given type, with 1517 /// appropriate alignment. This routine should only be used when an temporary 1518 /// value needs to be stored into an alloca (for example, to avoid explicit 1519 /// PHI construction), but the type is the IR type, not the type appropriate 1520 /// for storing in memory. 1521 llvm::AllocaInst *CreateIRTemp(QualType T, const Twine &Name = "tmp"); 1522 1523 /// CreateMemTemp - Create a temporary memory object of the given type, with 1524 /// appropriate alignment. 1525 llvm::AllocaInst *CreateMemTemp(QualType T, const Twine &Name = "tmp"); 1526 1527 /// CreateAggTemp - Create a temporary memory object for the given 1528 /// aggregate type. 1529 AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") { 1530 CharUnits Alignment = getContext().getTypeAlignInChars(T); 1531 return AggValueSlot::forAddr(CreateMemTemp(T, Name), Alignment, 1532 T.getQualifiers(), 1533 AggValueSlot::IsNotDestructed, 1534 AggValueSlot::DoesNotNeedGCBarriers, 1535 AggValueSlot::IsNotAliased); 1536 } 1537 1538 /// CreateInAllocaTmp - Create a temporary memory object for the given 1539 /// aggregate type. 1540 AggValueSlot CreateInAllocaTmp(QualType T, const Twine &Name = "inalloca"); 1541 1542 /// Emit a cast to void* in the appropriate address space. 1543 llvm::Value *EmitCastToVoidPtr(llvm::Value *value); 1544 1545 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 1546 /// expression and compare the result against zero, returning an Int1Ty value. 1547 llvm::Value *EvaluateExprAsBool(const Expr *E); 1548 1549 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 1550 void EmitIgnoredExpr(const Expr *E); 1551 1552 /// EmitAnyExpr - Emit code to compute the specified expression which can have 1553 /// any type. The result is returned as an RValue struct. If this is an 1554 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 1555 /// the result should be returned. 1556 /// 1557 /// \param ignoreResult True if the resulting value isn't used. 1558 RValue EmitAnyExpr(const Expr *E, 1559 AggValueSlot aggSlot = AggValueSlot::ignored(), 1560 bool ignoreResult = false); 1561 1562 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 1563 // or the value of the expression, depending on how va_list is defined. 1564 llvm::Value *EmitVAListRef(const Expr *E); 1565 1566 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 1567 /// always be accessible even if no aggregate location is provided. 1568 RValue EmitAnyExprToTemp(const Expr *E); 1569 1570 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 1571 /// arbitrary expression into the given memory location. 1572 void EmitAnyExprToMem(const Expr *E, llvm::Value *Location, 1573 Qualifiers Quals, bool IsInitializer); 1574 1575 void EmitAnyExprToExn(const Expr *E, llvm::Value *Addr); 1576 1577 /// EmitExprAsInit - Emits the code necessary to initialize a 1578 /// location in memory with the given initializer. 1579 void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue, 1580 bool capturedByInit); 1581 1582 /// hasVolatileMember - returns true if aggregate type has a volatile 1583 /// member. 1584 bool hasVolatileMember(QualType T) { 1585 if (const RecordType *RT = T->getAs<RecordType>()) { 1586 const RecordDecl *RD = cast<RecordDecl>(RT->getDecl()); 1587 return RD->hasVolatileMember(); 1588 } 1589 return false; 1590 } 1591 /// EmitAggregateCopy - Emit an aggregate assignment. 1592 /// 1593 /// The difference to EmitAggregateCopy is that tail padding is not copied. 1594 /// This is required for correctness when assigning non-POD structures in C++. 1595 void EmitAggregateAssign(llvm::Value *DestPtr, llvm::Value *SrcPtr, 1596 QualType EltTy) { 1597 bool IsVolatile = hasVolatileMember(EltTy); 1598 EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, CharUnits::Zero(), 1599 true); 1600 } 1601 1602 void EmitAggregateCopyCtor(llvm::Value *DestPtr, llvm::Value *SrcPtr, 1603 QualType DestTy, QualType SrcTy) { 1604 CharUnits DestTypeAlign = getContext().getTypeAlignInChars(DestTy); 1605 CharUnits SrcTypeAlign = getContext().getTypeAlignInChars(SrcTy); 1606 EmitAggregateCopy(DestPtr, SrcPtr, SrcTy, /*IsVolatile=*/false, 1607 std::min(DestTypeAlign, SrcTypeAlign), 1608 /*IsAssignment=*/false); 1609 } 1610 1611 /// EmitAggregateCopy - Emit an aggregate copy. 1612 /// 1613 /// \param isVolatile - True iff either the source or the destination is 1614 /// volatile. 1615 /// \param isAssignment - If false, allow padding to be copied. This often 1616 /// yields more efficient. 1617 void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr, 1618 QualType EltTy, bool isVolatile=false, 1619 CharUnits Alignment = CharUnits::Zero(), 1620 bool isAssignment = false); 1621 1622 /// StartBlock - Start new block named N. If insert block is a dummy block 1623 /// then reuse it. 1624 void StartBlock(const char *N); 1625 1626 /// GetAddrOfLocalVar - Return the address of a local variable. 1627 llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) { 1628 llvm::Value *Res = LocalDeclMap[VD]; 1629 assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!"); 1630 return Res; 1631 } 1632 1633 /// getOpaqueLValueMapping - Given an opaque value expression (which 1634 /// must be mapped to an l-value), return its mapping. 1635 const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) { 1636 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 1637 1638 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 1639 it = OpaqueLValues.find(e); 1640 assert(it != OpaqueLValues.end() && "no mapping for opaque value!"); 1641 return it->second; 1642 } 1643 1644 /// getOpaqueRValueMapping - Given an opaque value expression (which 1645 /// must be mapped to an r-value), return its mapping. 1646 const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) { 1647 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 1648 1649 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 1650 it = OpaqueRValues.find(e); 1651 assert(it != OpaqueRValues.end() && "no mapping for opaque value!"); 1652 return it->second; 1653 } 1654 1655 /// getAccessedFieldNo - Given an encoded value and a result number, return 1656 /// the input field number being accessed. 1657 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 1658 1659 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 1660 llvm::BasicBlock *GetIndirectGotoBlock(); 1661 1662 /// EmitNullInitialization - Generate code to set a value of the given type to 1663 /// null, If the type contains data member pointers, they will be initialized 1664 /// to -1 in accordance with the Itanium C++ ABI. 1665 void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty); 1666 1667 // EmitVAArg - Generate code to get an argument from the passed in pointer 1668 // and update it accordingly. The return value is a pointer to the argument. 1669 // FIXME: We should be able to get rid of this method and use the va_arg 1670 // instruction in LLVM instead once it works well enough. 1671 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty); 1672 1673 /// emitArrayLength - Compute the length of an array, even if it's a 1674 /// VLA, and drill down to the base element type. 1675 llvm::Value *emitArrayLength(const ArrayType *arrayType, 1676 QualType &baseType, 1677 llvm::Value *&addr); 1678 1679 /// EmitVLASize - Capture all the sizes for the VLA expressions in 1680 /// the given variably-modified type and store them in the VLASizeMap. 1681 /// 1682 /// This function can be called with a null (unreachable) insert point. 1683 void EmitVariablyModifiedType(QualType Ty); 1684 1685 /// getVLASize - Returns an LLVM value that corresponds to the size, 1686 /// in non-variably-sized elements, of a variable length array type, 1687 /// plus that largest non-variably-sized element type. Assumes that 1688 /// the type has already been emitted with EmitVariablyModifiedType. 1689 std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla); 1690 std::pair<llvm::Value*,QualType> getVLASize(QualType vla); 1691 1692 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 1693 /// generating code for an C++ member function. 1694 llvm::Value *LoadCXXThis() { 1695 assert(CXXThisValue && "no 'this' value for this function"); 1696 return CXXThisValue; 1697 } 1698 1699 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 1700 /// virtual bases. 1701 // FIXME: Every place that calls LoadCXXVTT is something 1702 // that needs to be abstracted properly. 1703 llvm::Value *LoadCXXVTT() { 1704 assert(CXXStructorImplicitParamValue && "no VTT value for this function"); 1705 return CXXStructorImplicitParamValue; 1706 } 1707 1708 /// LoadCXXStructorImplicitParam - Load the implicit parameter 1709 /// for a constructor/destructor. 1710 llvm::Value *LoadCXXStructorImplicitParam() { 1711 assert(CXXStructorImplicitParamValue && 1712 "no implicit argument value for this function"); 1713 return CXXStructorImplicitParamValue; 1714 } 1715 1716 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 1717 /// complete class to the given direct base. 1718 llvm::Value * 1719 GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value, 1720 const CXXRecordDecl *Derived, 1721 const CXXRecordDecl *Base, 1722 bool BaseIsVirtual); 1723 1724 /// GetAddressOfBaseClass - This function will add the necessary delta to the 1725 /// load of 'this' and returns address of the base class. 1726 llvm::Value *GetAddressOfBaseClass(llvm::Value *Value, 1727 const CXXRecordDecl *Derived, 1728 CastExpr::path_const_iterator PathBegin, 1729 CastExpr::path_const_iterator PathEnd, 1730 bool NullCheckValue, SourceLocation Loc); 1731 1732 llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value, 1733 const CXXRecordDecl *Derived, 1734 CastExpr::path_const_iterator PathBegin, 1735 CastExpr::path_const_iterator PathEnd, 1736 bool NullCheckValue); 1737 1738 /// GetVTTParameter - Return the VTT parameter that should be passed to a 1739 /// base constructor/destructor with virtual bases. 1740 /// FIXME: VTTs are Itanium ABI-specific, so the definition should move 1741 /// to ItaniumCXXABI.cpp together with all the references to VTT. 1742 llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase, 1743 bool Delegating); 1744 1745 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 1746 CXXCtorType CtorType, 1747 const FunctionArgList &Args, 1748 SourceLocation Loc); 1749 // It's important not to confuse this and the previous function. Delegating 1750 // constructors are the C++0x feature. The constructor delegate optimization 1751 // is used to reduce duplication in the base and complete consturctors where 1752 // they are substantially the same. 1753 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 1754 const FunctionArgList &Args); 1755 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 1756 bool ForVirtualBase, bool Delegating, 1757 llvm::Value *This, const CXXConstructExpr *E); 1758 1759 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 1760 llvm::Value *This, llvm::Value *Src, 1761 const CXXConstructExpr *E); 1762 1763 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 1764 const ConstantArrayType *ArrayTy, 1765 llvm::Value *ArrayPtr, 1766 const CXXConstructExpr *E, 1767 bool ZeroInitialization = false); 1768 1769 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 1770 llvm::Value *NumElements, 1771 llvm::Value *ArrayPtr, 1772 const CXXConstructExpr *E, 1773 bool ZeroInitialization = false); 1774 1775 static Destroyer destroyCXXObject; 1776 1777 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 1778 bool ForVirtualBase, bool Delegating, 1779 llvm::Value *This); 1780 1781 void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, 1782 llvm::Type *ElementTy, llvm::Value *NewPtr, 1783 llvm::Value *NumElements, 1784 llvm::Value *AllocSizeWithoutCookie); 1785 1786 void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, 1787 llvm::Value *Ptr); 1788 1789 llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr); 1790 void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr); 1791 1792 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 1793 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 1794 1795 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 1796 QualType DeleteTy); 1797 1798 RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 1799 const Expr *Arg, bool IsDelete); 1800 1801 llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E); 1802 llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE); 1803 llvm::Value* EmitCXXUuidofExpr(const CXXUuidofExpr *E); 1804 1805 /// \brief Situations in which we might emit a check for the suitability of a 1806 /// pointer or glvalue. 1807 enum TypeCheckKind { 1808 /// Checking the operand of a load. Must be suitably sized and aligned. 1809 TCK_Load, 1810 /// Checking the destination of a store. Must be suitably sized and aligned. 1811 TCK_Store, 1812 /// Checking the bound value in a reference binding. Must be suitably sized 1813 /// and aligned, but is not required to refer to an object (until the 1814 /// reference is used), per core issue 453. 1815 TCK_ReferenceBinding, 1816 /// Checking the object expression in a non-static data member access. Must 1817 /// be an object within its lifetime. 1818 TCK_MemberAccess, 1819 /// Checking the 'this' pointer for a call to a non-static member function. 1820 /// Must be an object within its lifetime. 1821 TCK_MemberCall, 1822 /// Checking the 'this' pointer for a constructor call. 1823 TCK_ConstructorCall, 1824 /// Checking the operand of a static_cast to a derived pointer type. Must be 1825 /// null or an object within its lifetime. 1826 TCK_DowncastPointer, 1827 /// Checking the operand of a static_cast to a derived reference type. Must 1828 /// be an object within its lifetime. 1829 TCK_DowncastReference, 1830 /// Checking the operand of a cast to a base object. Must be suitably sized 1831 /// and aligned. 1832 TCK_Upcast, 1833 /// Checking the operand of a cast to a virtual base object. Must be an 1834 /// object within its lifetime. 1835 TCK_UpcastToVirtualBase 1836 }; 1837 1838 /// \brief Whether any type-checking sanitizers are enabled. If \c false, 1839 /// calls to EmitTypeCheck can be skipped. 1840 bool sanitizePerformTypeCheck() const; 1841 1842 /// \brief Emit a check that \p V is the address of storage of the 1843 /// appropriate size and alignment for an object of type \p Type. 1844 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, 1845 QualType Type, CharUnits Alignment = CharUnits::Zero(), 1846 bool SkipNullCheck = false); 1847 1848 /// \brief Emit a check that \p Base points into an array object, which 1849 /// we can access at index \p Index. \p Accessed should be \c false if we 1850 /// this expression is used as an lvalue, for instance in "&Arr[Idx]". 1851 void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, 1852 QualType IndexType, bool Accessed); 1853 1854 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 1855 bool isInc, bool isPre); 1856 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 1857 bool isInc, bool isPre); 1858 1859 void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment, 1860 llvm::Value *OffsetValue = nullptr) { 1861 Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment, 1862 OffsetValue); 1863 } 1864 1865 //===--------------------------------------------------------------------===// 1866 // Declaration Emission 1867 //===--------------------------------------------------------------------===// 1868 1869 /// EmitDecl - Emit a declaration. 1870 /// 1871 /// This function can be called with a null (unreachable) insert point. 1872 void EmitDecl(const Decl &D); 1873 1874 /// EmitVarDecl - Emit a local variable declaration. 1875 /// 1876 /// This function can be called with a null (unreachable) insert point. 1877 void EmitVarDecl(const VarDecl &D); 1878 1879 void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue, 1880 bool capturedByInit); 1881 void EmitScalarInit(llvm::Value *init, LValue lvalue); 1882 1883 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 1884 llvm::Value *Address); 1885 1886 /// \brief Determine whether the given initializer is trivial in the sense 1887 /// that it requires no code to be generated. 1888 bool isTrivialInitializer(const Expr *Init); 1889 1890 /// EmitAutoVarDecl - Emit an auto variable declaration. 1891 /// 1892 /// This function can be called with a null (unreachable) insert point. 1893 void EmitAutoVarDecl(const VarDecl &D); 1894 1895 class AutoVarEmission { 1896 friend class CodeGenFunction; 1897 1898 const VarDecl *Variable; 1899 1900 /// The alignment of the variable. 1901 CharUnits Alignment; 1902 1903 /// The address of the alloca. Null if the variable was emitted 1904 /// as a global constant. 1905 llvm::Value *Address; 1906 1907 llvm::Value *NRVOFlag; 1908 1909 /// True if the variable is a __block variable. 1910 bool IsByRef; 1911 1912 /// True if the variable is of aggregate type and has a constant 1913 /// initializer. 1914 bool IsConstantAggregate; 1915 1916 /// Non-null if we should use lifetime annotations. 1917 llvm::Value *SizeForLifetimeMarkers; 1918 1919 struct Invalid {}; 1920 AutoVarEmission(Invalid) : Variable(nullptr) {} 1921 1922 AutoVarEmission(const VarDecl &variable) 1923 : Variable(&variable), Address(nullptr), NRVOFlag(nullptr), 1924 IsByRef(false), IsConstantAggregate(false), 1925 SizeForLifetimeMarkers(nullptr) {} 1926 1927 bool wasEmittedAsGlobal() const { return Address == nullptr; } 1928 1929 public: 1930 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 1931 1932 bool useLifetimeMarkers() const { 1933 return SizeForLifetimeMarkers != nullptr; 1934 } 1935 llvm::Value *getSizeForLifetimeMarkers() const { 1936 assert(useLifetimeMarkers()); 1937 return SizeForLifetimeMarkers; 1938 } 1939 1940 /// Returns the raw, allocated address, which is not necessarily 1941 /// the address of the object itself. 1942 llvm::Value *getAllocatedAddress() const { 1943 return Address; 1944 } 1945 1946 /// Returns the address of the object within this declaration. 1947 /// Note that this does not chase the forwarding pointer for 1948 /// __block decls. 1949 llvm::Value *getObjectAddress(CodeGenFunction &CGF) const { 1950 if (!IsByRef) return Address; 1951 1952 auto F = CGF.getByRefValueLLVMField(Variable); 1953 return CGF.Builder.CreateStructGEP(F.first, Address, F.second, 1954 Variable->getNameAsString()); 1955 } 1956 }; 1957 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 1958 void EmitAutoVarInit(const AutoVarEmission &emission); 1959 void EmitAutoVarCleanups(const AutoVarEmission &emission); 1960 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 1961 QualType::DestructionKind dtorKind); 1962 1963 void EmitStaticVarDecl(const VarDecl &D, 1964 llvm::GlobalValue::LinkageTypes Linkage); 1965 1966 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 1967 void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, bool ArgIsPointer, 1968 unsigned ArgNo); 1969 1970 /// protectFromPeepholes - Protect a value that we're intending to 1971 /// store to the side, but which will probably be used later, from 1972 /// aggressive peepholing optimizations that might delete it. 1973 /// 1974 /// Pass the result to unprotectFromPeepholes to declare that 1975 /// protection is no longer required. 1976 /// 1977 /// There's no particular reason why this shouldn't apply to 1978 /// l-values, it's just that no existing peepholes work on pointers. 1979 PeepholeProtection protectFromPeepholes(RValue rvalue); 1980 void unprotectFromPeepholes(PeepholeProtection protection); 1981 1982 //===--------------------------------------------------------------------===// 1983 // Statement Emission 1984 //===--------------------------------------------------------------------===// 1985 1986 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 1987 void EmitStopPoint(const Stmt *S); 1988 1989 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 1990 /// this function even if there is no current insertion point. 1991 /// 1992 /// This function may clear the current insertion point; callers should use 1993 /// EnsureInsertPoint if they wish to subsequently generate code without first 1994 /// calling EmitBlock, EmitBranch, or EmitStmt. 1995 void EmitStmt(const Stmt *S); 1996 1997 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 1998 /// necessarily require an insertion point or debug information; typically 1999 /// because the statement amounts to a jump or a container of other 2000 /// statements. 2001 /// 2002 /// \return True if the statement was handled. 2003 bool EmitSimpleStmt(const Stmt *S); 2004 2005 llvm::Value *EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 2006 AggValueSlot AVS = AggValueSlot::ignored()); 2007 llvm::Value *EmitCompoundStmtWithoutScope(const CompoundStmt &S, 2008 bool GetLast = false, 2009 AggValueSlot AVS = 2010 AggValueSlot::ignored()); 2011 2012 /// EmitLabel - Emit the block for the given label. It is legal to call this 2013 /// function even if there is no current insertion point. 2014 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 2015 2016 void EmitLabelStmt(const LabelStmt &S); 2017 void EmitAttributedStmt(const AttributedStmt &S); 2018 void EmitGotoStmt(const GotoStmt &S); 2019 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 2020 void EmitIfStmt(const IfStmt &S); 2021 2022 void EmitWhileStmt(const WhileStmt &S, 2023 ArrayRef<const Attr *> Attrs = None); 2024 void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None); 2025 void EmitForStmt(const ForStmt &S, 2026 ArrayRef<const Attr *> Attrs = None); 2027 void EmitReturnStmt(const ReturnStmt &S); 2028 void EmitDeclStmt(const DeclStmt &S); 2029 void EmitBreakStmt(const BreakStmt &S); 2030 void EmitContinueStmt(const ContinueStmt &S); 2031 void EmitSwitchStmt(const SwitchStmt &S); 2032 void EmitDefaultStmt(const DefaultStmt &S); 2033 void EmitCaseStmt(const CaseStmt &S); 2034 void EmitCaseStmtRange(const CaseStmt &S); 2035 void EmitAsmStmt(const AsmStmt &S); 2036 2037 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 2038 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 2039 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 2040 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 2041 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 2042 2043 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 2044 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 2045 2046 void EmitCXXTryStmt(const CXXTryStmt &S); 2047 void EmitSEHTryStmt(const SEHTryStmt &S); 2048 void EmitSEHLeaveStmt(const SEHLeaveStmt &S); 2049 void EnterSEHTryStmt(const SEHTryStmt &S); 2050 void ExitSEHTryStmt(const SEHTryStmt &S); 2051 2052 void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter, 2053 const Stmt *OutlinedStmt); 2054 2055 llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF, 2056 const SEHExceptStmt &Except); 2057 2058 llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF, 2059 const SEHFinallyStmt &Finally); 2060 2061 void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF, 2062 llvm::Value *ParentFP, 2063 llvm::Value *EntryEBP); 2064 llvm::Value *EmitSEHExceptionCode(); 2065 llvm::Value *EmitSEHExceptionInfo(); 2066 llvm::Value *EmitSEHAbnormalTermination(); 2067 2068 /// Scan the outlined statement for captures from the parent function. For 2069 /// each capture, mark the capture as escaped and emit a call to 2070 /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap. 2071 void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt, 2072 bool IsFilter); 2073 2074 /// Recovers the address of a local in a parent function. ParentVar is the 2075 /// address of the variable used in the immediate parent function. It can 2076 /// either be an alloca or a call to llvm.localrecover if there are nested 2077 /// outlined functions. ParentFP is the frame pointer of the outermost parent 2078 /// frame. 2079 llvm::Value *recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF, 2080 llvm::Value *ParentVar, 2081 llvm::Value *ParentFP); 2082 2083 void EmitCXXForRangeStmt(const CXXForRangeStmt &S, 2084 ArrayRef<const Attr *> Attrs = None); 2085 2086 LValue InitCapturedStruct(const CapturedStmt &S); 2087 llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K); 2088 void GenerateCapturedStmtFunctionProlog(const CapturedStmt &S); 2089 llvm::Function *GenerateCapturedStmtFunctionEpilog(const CapturedStmt &S); 2090 llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S); 2091 llvm::Value *GenerateCapturedStmtArgument(const CapturedStmt &S); 2092 /// \brief Perform element by element copying of arrays with type \a 2093 /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure 2094 /// generated by \a CopyGen. 2095 /// 2096 /// \param DestAddr Address of the destination array. 2097 /// \param SrcAddr Address of the source array. 2098 /// \param OriginalType Type of destination and source arrays. 2099 /// \param CopyGen Copying procedure that copies value of single array element 2100 /// to another single array element. 2101 void EmitOMPAggregateAssign( 2102 llvm::Value *DestAddr, llvm::Value *SrcAddr, QualType OriginalType, 2103 const llvm::function_ref<void(llvm::Value *, llvm::Value *)> &CopyGen); 2104 /// \brief Emit proper copying of data from one variable to another. 2105 /// 2106 /// \param OriginalType Original type of the copied variables. 2107 /// \param DestAddr Destination address. 2108 /// \param SrcAddr Source address. 2109 /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has 2110 /// type of the base array element). 2111 /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of 2112 /// the base array element). 2113 /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a 2114 /// DestVD. 2115 void EmitOMPCopy(CodeGenFunction &CGF, QualType OriginalType, 2116 llvm::Value *DestAddr, llvm::Value *SrcAddr, 2117 const VarDecl *DestVD, const VarDecl *SrcVD, 2118 const Expr *Copy); 2119 /// \brief Emit atomic update code for constructs: \a X = \a X \a BO \a E or 2120 /// \a X = \a E \a BO \a E. 2121 /// 2122 /// \param X Value to be updated. 2123 /// \param E Update value. 2124 /// \param BO Binary operation for update operation. 2125 /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update 2126 /// expression, false otherwise. 2127 /// \param AO Atomic ordering of the generated atomic instructions. 2128 /// \param CommonGen Code generator for complex expressions that cannot be 2129 /// expressed through atomicrmw instruction. 2130 /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was 2131 /// generated, <false, RValue::get(nullptr)> otherwise. 2132 std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr( 2133 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 2134 llvm::AtomicOrdering AO, SourceLocation Loc, 2135 const llvm::function_ref<RValue(RValue)> &CommonGen); 2136 bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 2137 OMPPrivateScope &PrivateScope); 2138 void EmitOMPPrivateClause(const OMPExecutableDirective &D, 2139 OMPPrivateScope &PrivateScope); 2140 /// \brief Emit code for copyin clause in \a D directive. The next code is 2141 /// generated at the start of outlined functions for directives: 2142 /// \code 2143 /// threadprivate_var1 = master_threadprivate_var1; 2144 /// operator=(threadprivate_var2, master_threadprivate_var2); 2145 /// ... 2146 /// __kmpc_barrier(&loc, global_tid); 2147 /// \endcode 2148 /// 2149 /// \param D OpenMP directive possibly with 'copyin' clause(s). 2150 /// \returns true if at least one copyin variable is found, false otherwise. 2151 bool EmitOMPCopyinClause(const OMPExecutableDirective &D); 2152 /// \brief Emit initial code for lastprivate variables. If some variable is 2153 /// not also firstprivate, then the default initialization is used. Otherwise 2154 /// initialization of this variable is performed by EmitOMPFirstprivateClause 2155 /// method. 2156 /// 2157 /// \param D Directive that may have 'lastprivate' directives. 2158 /// \param PrivateScope Private scope for capturing lastprivate variables for 2159 /// proper codegen in internal captured statement. 2160 /// 2161 /// \returns true if there is at least one lastprivate variable, false 2162 /// otherwise. 2163 bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D, 2164 OMPPrivateScope &PrivateScope); 2165 /// \brief Emit final copying of lastprivate values to original variables at 2166 /// the end of the worksharing or simd directive. 2167 /// 2168 /// \param D Directive that has at least one 'lastprivate' directives. 2169 /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if 2170 /// it is the last iteration of the loop code in associated directive, or to 2171 /// 'i1 false' otherwise. If this item is nullptr, no final check is required. 2172 void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D, 2173 llvm::Value *IsLastIterCond = nullptr); 2174 /// \brief Emit initial code for reduction variables. Creates reduction copies 2175 /// and initializes them with the values according to OpenMP standard. 2176 /// 2177 /// \param D Directive (possibly) with the 'reduction' clause. 2178 /// \param PrivateScope Private scope for capturing reduction variables for 2179 /// proper codegen in internal captured statement. 2180 /// 2181 void EmitOMPReductionClauseInit(const OMPExecutableDirective &D, 2182 OMPPrivateScope &PrivateScope); 2183 /// \brief Emit final update of reduction values to original variables at 2184 /// the end of the directive. 2185 /// 2186 /// \param D Directive that has at least one 'reduction' directives. 2187 void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D); 2188 /// \brief Emit initial code for linear variables. Creates private copies 2189 /// and initializes them with the values according to OpenMP standard. 2190 /// 2191 /// \param D Directive (possibly) with the 'linear' clause. 2192 void EmitOMPLinearClauseInit(const OMPLoopDirective &D); 2193 2194 void EmitOMPParallelDirective(const OMPParallelDirective &S); 2195 void EmitOMPSimdDirective(const OMPSimdDirective &S); 2196 void EmitOMPForDirective(const OMPForDirective &S); 2197 void EmitOMPForSimdDirective(const OMPForSimdDirective &S); 2198 void EmitOMPSectionsDirective(const OMPSectionsDirective &S); 2199 void EmitOMPSectionDirective(const OMPSectionDirective &S); 2200 void EmitOMPSingleDirective(const OMPSingleDirective &S); 2201 void EmitOMPMasterDirective(const OMPMasterDirective &S); 2202 void EmitOMPCriticalDirective(const OMPCriticalDirective &S); 2203 void EmitOMPParallelForDirective(const OMPParallelForDirective &S); 2204 void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S); 2205 void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S); 2206 void EmitOMPTaskDirective(const OMPTaskDirective &S); 2207 void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S); 2208 void EmitOMPBarrierDirective(const OMPBarrierDirective &S); 2209 void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S); 2210 void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S); 2211 void EmitOMPFlushDirective(const OMPFlushDirective &S); 2212 void EmitOMPOrderedDirective(const OMPOrderedDirective &S); 2213 void EmitOMPAtomicDirective(const OMPAtomicDirective &S); 2214 void EmitOMPTargetDirective(const OMPTargetDirective &S); 2215 void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S); 2216 void EmitOMPTeamsDirective(const OMPTeamsDirective &S); 2217 void 2218 EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S); 2219 void EmitOMPCancelDirective(const OMPCancelDirective &S); 2220 2221 /// \brief Emit inner loop of the worksharing/simd construct. 2222 /// 2223 /// \param S Directive, for which the inner loop must be emitted. 2224 /// \param RequiresCleanup true, if directive has some associated private 2225 /// variables. 2226 /// \param LoopCond Bollean condition for loop continuation. 2227 /// \param IncExpr Increment expression for loop control variable. 2228 /// \param BodyGen Generator for the inner body of the inner loop. 2229 /// \param PostIncGen Genrator for post-increment code (required for ordered 2230 /// loop directvies). 2231 void EmitOMPInnerLoop( 2232 const Stmt &S, bool RequiresCleanup, const Expr *LoopCond, 2233 const Expr *IncExpr, 2234 const llvm::function_ref<void(CodeGenFunction &)> &BodyGen, 2235 const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen); 2236 2237 JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind); 2238 2239 private: 2240 2241 /// Helpers for the OpenMP loop directives. 2242 void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit); 2243 void EmitOMPSimdInit(const OMPLoopDirective &D); 2244 void EmitOMPSimdFinal(const OMPLoopDirective &D); 2245 /// \brief Emit code for the worksharing loop-based directive. 2246 /// \return true, if this construct has any lastprivate clause, false - 2247 /// otherwise. 2248 bool EmitOMPWorksharingLoop(const OMPLoopDirective &S); 2249 void EmitOMPForOuterLoop(OpenMPScheduleClauseKind ScheduleKind, 2250 const OMPLoopDirective &S, 2251 OMPPrivateScope &LoopScope, bool Ordered, 2252 llvm::Value *LB, llvm::Value *UB, llvm::Value *ST, 2253 llvm::Value *IL, llvm::Value *Chunk); 2254 /// \brief Emit code for sections directive. 2255 OpenMPDirectiveKind EmitSections(const OMPExecutableDirective &S); 2256 2257 public: 2258 2259 //===--------------------------------------------------------------------===// 2260 // LValue Expression Emission 2261 //===--------------------------------------------------------------------===// 2262 2263 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 2264 RValue GetUndefRValue(QualType Ty); 2265 2266 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 2267 /// and issue an ErrorUnsupported style diagnostic (using the 2268 /// provided Name). 2269 RValue EmitUnsupportedRValue(const Expr *E, 2270 const char *Name); 2271 2272 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 2273 /// an ErrorUnsupported style diagnostic (using the provided Name). 2274 LValue EmitUnsupportedLValue(const Expr *E, 2275 const char *Name); 2276 2277 /// EmitLValue - Emit code to compute a designator that specifies the location 2278 /// of the expression. 2279 /// 2280 /// This can return one of two things: a simple address or a bitfield 2281 /// reference. In either case, the LLVM Value* in the LValue structure is 2282 /// guaranteed to be an LLVM pointer type. 2283 /// 2284 /// If this returns a bitfield reference, nothing about the pointee type of 2285 /// the LLVM value is known: For example, it may not be a pointer to an 2286 /// integer. 2287 /// 2288 /// If this returns a normal address, and if the lvalue's C type is fixed 2289 /// size, this method guarantees that the returned pointer type will point to 2290 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 2291 /// variable length type, this is not possible. 2292 /// 2293 LValue EmitLValue(const Expr *E); 2294 2295 /// \brief Same as EmitLValue but additionally we generate checking code to 2296 /// guard against undefined behavior. This is only suitable when we know 2297 /// that the address will be used to access the object. 2298 LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK); 2299 2300 RValue convertTempToRValue(llvm::Value *addr, QualType type, 2301 SourceLocation Loc); 2302 2303 void EmitAtomicInit(Expr *E, LValue lvalue); 2304 2305 bool LValueIsSuitableForInlineAtomic(LValue Src); 2306 bool typeIsSuitableForInlineAtomic(QualType Ty, bool IsVolatile) const; 2307 2308 RValue EmitAtomicLoad(LValue LV, SourceLocation SL, 2309 AggValueSlot Slot = AggValueSlot::ignored()); 2310 2311 RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc, 2312 llvm::AtomicOrdering AO, bool IsVolatile = false, 2313 AggValueSlot slot = AggValueSlot::ignored()); 2314 2315 void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit); 2316 2317 void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO, 2318 bool IsVolatile, bool isInit); 2319 2320 std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange( 2321 LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, 2322 llvm::AtomicOrdering Success = llvm::SequentiallyConsistent, 2323 llvm::AtomicOrdering Failure = llvm::SequentiallyConsistent, 2324 bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored()); 2325 2326 void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO, 2327 const llvm::function_ref<RValue(RValue)> &UpdateOp, 2328 bool IsVolatile); 2329 2330 /// EmitToMemory - Change a scalar value from its value 2331 /// representation to its in-memory representation. 2332 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 2333 2334 /// EmitFromMemory - Change a scalar value from its memory 2335 /// representation to its value representation. 2336 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 2337 2338 /// EmitLoadOfScalar - Load a scalar value from an address, taking 2339 /// care to appropriately convert from the memory representation to 2340 /// the LLVM value representation. 2341 llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile, 2342 unsigned Alignment, QualType Ty, 2343 SourceLocation Loc, 2344 llvm::MDNode *TBAAInfo = nullptr, 2345 QualType TBAABaseTy = QualType(), 2346 uint64_t TBAAOffset = 0); 2347 2348 /// EmitLoadOfScalar - Load a scalar value from an address, taking 2349 /// care to appropriately convert from the memory representation to 2350 /// the LLVM value representation. The l-value must be a simple 2351 /// l-value. 2352 llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc); 2353 2354 /// EmitStoreOfScalar - Store a scalar value to an address, taking 2355 /// care to appropriately convert from the memory representation to 2356 /// the LLVM value representation. 2357 void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr, 2358 bool Volatile, unsigned Alignment, QualType Ty, 2359 llvm::MDNode *TBAAInfo = nullptr, bool isInit = false, 2360 QualType TBAABaseTy = QualType(), 2361 uint64_t TBAAOffset = 0); 2362 2363 /// EmitStoreOfScalar - Store a scalar value to an address, taking 2364 /// care to appropriately convert from the memory representation to 2365 /// the LLVM value representation. The l-value must be a simple 2366 /// l-value. The isInit flag indicates whether this is an initialization. 2367 /// If so, atomic qualifiers are ignored and the store is always non-atomic. 2368 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); 2369 2370 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 2371 /// this method emits the address of the lvalue, then loads the result as an 2372 /// rvalue, returning the rvalue. 2373 RValue EmitLoadOfLValue(LValue V, SourceLocation Loc); 2374 RValue EmitLoadOfExtVectorElementLValue(LValue V); 2375 RValue EmitLoadOfBitfieldLValue(LValue LV); 2376 RValue EmitLoadOfGlobalRegLValue(LValue LV); 2377 2378 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 2379 /// lvalue, where both are guaranteed to the have the same type, and that type 2380 /// is 'Ty'. 2381 void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false); 2382 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 2383 void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst); 2384 2385 /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints 2386 /// as EmitStoreThroughLValue. 2387 /// 2388 /// \param Result [out] - If non-null, this will be set to a Value* for the 2389 /// bit-field contents after the store, appropriate for use as the result of 2390 /// an assignment to the bit-field. 2391 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 2392 llvm::Value **Result=nullptr); 2393 2394 /// Emit an l-value for an assignment (simple or compound) of complex type. 2395 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 2396 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 2397 LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 2398 llvm::Value *&Result); 2399 2400 // Note: only available for agg return types 2401 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 2402 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 2403 // Note: only available for agg return types 2404 LValue EmitCallExprLValue(const CallExpr *E); 2405 // Note: only available for agg return types 2406 LValue EmitVAArgExprLValue(const VAArgExpr *E); 2407 LValue EmitDeclRefLValue(const DeclRefExpr *E); 2408 LValue EmitReadRegister(const VarDecl *VD); 2409 LValue EmitStringLiteralLValue(const StringLiteral *E); 2410 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 2411 LValue EmitPredefinedLValue(const PredefinedExpr *E); 2412 LValue EmitUnaryOpLValue(const UnaryOperator *E); 2413 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 2414 bool Accessed = false); 2415 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 2416 LValue EmitMemberExpr(const MemberExpr *E); 2417 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 2418 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 2419 LValue EmitInitListLValue(const InitListExpr *E); 2420 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 2421 LValue EmitCastLValue(const CastExpr *E); 2422 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 2423 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 2424 2425 llvm::Value *EmitExtVectorElementLValue(LValue V); 2426 2427 RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc); 2428 2429 class ConstantEmission { 2430 llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; 2431 ConstantEmission(llvm::Constant *C, bool isReference) 2432 : ValueAndIsReference(C, isReference) {} 2433 public: 2434 ConstantEmission() {} 2435 static ConstantEmission forReference(llvm::Constant *C) { 2436 return ConstantEmission(C, true); 2437 } 2438 static ConstantEmission forValue(llvm::Constant *C) { 2439 return ConstantEmission(C, false); 2440 } 2441 2442 explicit operator bool() const { 2443 return ValueAndIsReference.getOpaqueValue() != nullptr; 2444 } 2445 2446 bool isReference() const { return ValueAndIsReference.getInt(); } 2447 LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { 2448 assert(isReference()); 2449 return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), 2450 refExpr->getType()); 2451 } 2452 2453 llvm::Constant *getValue() const { 2454 assert(!isReference()); 2455 return ValueAndIsReference.getPointer(); 2456 } 2457 }; 2458 2459 ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); 2460 2461 RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, 2462 AggValueSlot slot = AggValueSlot::ignored()); 2463 LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); 2464 2465 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 2466 const ObjCIvarDecl *Ivar); 2467 LValue EmitLValueForField(LValue Base, const FieldDecl* Field); 2468 LValue EmitLValueForLambdaField(const FieldDecl *Field); 2469 2470 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 2471 /// if the Field is a reference, this will return the address of the reference 2472 /// and not the address of the value stored in the reference. 2473 LValue EmitLValueForFieldInitialization(LValue Base, 2474 const FieldDecl* Field); 2475 2476 LValue EmitLValueForIvar(QualType ObjectTy, 2477 llvm::Value* Base, const ObjCIvarDecl *Ivar, 2478 unsigned CVRQualifiers); 2479 2480 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 2481 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 2482 LValue EmitLambdaLValue(const LambdaExpr *E); 2483 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 2484 LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E); 2485 2486 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 2487 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 2488 LValue EmitStmtExprLValue(const StmtExpr *E); 2489 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 2490 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 2491 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init); 2492 2493 //===--------------------------------------------------------------------===// 2494 // Scalar Expression Emission 2495 //===--------------------------------------------------------------------===// 2496 2497 /// EmitCall - Generate a call of the given function, expecting the given 2498 /// result type, and using the given argument list which specifies both the 2499 /// LLVM arguments and the types they were derived from. 2500 /// 2501 /// \param TargetDecl - If given, the decl of the function in a direct call; 2502 /// used to set attributes on the call (noreturn, etc.). 2503 RValue EmitCall(const CGFunctionInfo &FnInfo, 2504 llvm::Value *Callee, 2505 ReturnValueSlot ReturnValue, 2506 const CallArgList &Args, 2507 const Decl *TargetDecl = nullptr, 2508 llvm::Instruction **callOrInvoke = nullptr); 2509 2510 RValue EmitCall(QualType FnType, llvm::Value *Callee, const CallExpr *E, 2511 ReturnValueSlot ReturnValue, 2512 const Decl *TargetDecl = nullptr, 2513 llvm::Value *Chain = nullptr); 2514 RValue EmitCallExpr(const CallExpr *E, 2515 ReturnValueSlot ReturnValue = ReturnValueSlot()); 2516 2517 llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, 2518 const Twine &name = ""); 2519 llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, 2520 ArrayRef<llvm::Value*> args, 2521 const Twine &name = ""); 2522 llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, 2523 const Twine &name = ""); 2524 llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, 2525 ArrayRef<llvm::Value*> args, 2526 const Twine &name = ""); 2527 2528 llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, 2529 ArrayRef<llvm::Value *> Args, 2530 const Twine &Name = ""); 2531 llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, 2532 const Twine &Name = ""); 2533 llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, 2534 ArrayRef<llvm::Value*> args, 2535 const Twine &name = ""); 2536 llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, 2537 const Twine &name = ""); 2538 void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee, 2539 ArrayRef<llvm::Value*> args); 2540 2541 llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 2542 NestedNameSpecifier *Qual, 2543 llvm::Type *Ty); 2544 2545 llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 2546 CXXDtorType Type, 2547 const CXXRecordDecl *RD); 2548 2549 RValue 2550 EmitCXXMemberOrOperatorCall(const CXXMethodDecl *MD, llvm::Value *Callee, 2551 ReturnValueSlot ReturnValue, llvm::Value *This, 2552 llvm::Value *ImplicitParam, 2553 QualType ImplicitParamTy, const CallExpr *E); 2554 RValue EmitCXXStructorCall(const CXXMethodDecl *MD, llvm::Value *Callee, 2555 ReturnValueSlot ReturnValue, llvm::Value *This, 2556 llvm::Value *ImplicitParam, 2557 QualType ImplicitParamTy, const CallExpr *E, 2558 StructorType Type); 2559 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 2560 ReturnValueSlot ReturnValue); 2561 RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE, 2562 const CXXMethodDecl *MD, 2563 ReturnValueSlot ReturnValue, 2564 bool HasQualifier, 2565 NestedNameSpecifier *Qualifier, 2566 bool IsArrow, const Expr *Base); 2567 // Compute the object pointer. 2568 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 2569 ReturnValueSlot ReturnValue); 2570 2571 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 2572 const CXXMethodDecl *MD, 2573 ReturnValueSlot ReturnValue); 2574 2575 RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 2576 ReturnValueSlot ReturnValue); 2577 2578 2579 RValue EmitBuiltinExpr(const FunctionDecl *FD, 2580 unsigned BuiltinID, const CallExpr *E, 2581 ReturnValueSlot ReturnValue); 2582 2583 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 2584 2585 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 2586 /// is unhandled by the current target. 2587 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2588 2589 llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty, 2590 const llvm::CmpInst::Predicate Fp, 2591 const llvm::CmpInst::Predicate Ip, 2592 const llvm::Twine &Name = ""); 2593 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2594 2595 llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID, 2596 unsigned LLVMIntrinsic, 2597 unsigned AltLLVMIntrinsic, 2598 const char *NameHint, 2599 unsigned Modifier, 2600 const CallExpr *E, 2601 SmallVectorImpl<llvm::Value *> &Ops, 2602 llvm::Value *Align = nullptr); 2603 llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID, 2604 unsigned Modifier, llvm::Type *ArgTy, 2605 const CallExpr *E); 2606 llvm::Value *EmitNeonCall(llvm::Function *F, 2607 SmallVectorImpl<llvm::Value*> &O, 2608 const char *name, 2609 unsigned shift = 0, bool rightshift = false); 2610 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 2611 llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, 2612 bool negateForRightShift); 2613 llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt, 2614 llvm::Type *Ty, bool usgn, const char *name); 2615 // Helper functions for EmitAArch64BuiltinExpr. 2616 llvm::Value *vectorWrapScalar8(llvm::Value *Op); 2617 llvm::Value *vectorWrapScalar16(llvm::Value *Op); 2618 llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2619 2620 llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); 2621 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2622 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2623 llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2624 llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2625 llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2626 2627 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 2628 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 2629 llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); 2630 llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); 2631 llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); 2632 llvm::Value *EmitObjCCollectionLiteral(const Expr *E, 2633 const ObjCMethodDecl *MethodWithObjects); 2634 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 2635 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 2636 ReturnValueSlot Return = ReturnValueSlot()); 2637 2638 /// Retrieves the default cleanup kind for an ARC cleanup. 2639 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. 2640 CleanupKind getARCCleanupKind() { 2641 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 2642 ? NormalAndEHCleanup : NormalCleanup; 2643 } 2644 2645 // ARC primitives. 2646 void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr); 2647 void EmitARCDestroyWeak(llvm::Value *addr); 2648 llvm::Value *EmitARCLoadWeak(llvm::Value *addr); 2649 llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr); 2650 llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr, 2651 bool ignored); 2652 void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src); 2653 void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src); 2654 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 2655 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 2656 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 2657 bool resultIgnored); 2658 llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value, 2659 bool resultIgnored); 2660 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 2661 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 2662 llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); 2663 void EmitARCDestroyStrong(llvm::Value *addr, ARCPreciseLifetime_t precise); 2664 void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 2665 llvm::Value *EmitARCAutorelease(llvm::Value *value); 2666 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 2667 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 2668 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 2669 2670 std::pair<LValue,llvm::Value*> 2671 EmitARCStoreAutoreleasing(const BinaryOperator *e); 2672 std::pair<LValue,llvm::Value*> 2673 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 2674 2675 llvm::Value *EmitObjCThrowOperand(const Expr *expr); 2676 2677 llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr); 2678 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 2679 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 2680 2681 llvm::Value *EmitARCExtendBlockObject(const Expr *expr); 2682 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 2683 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 2684 2685 void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values); 2686 2687 static Destroyer destroyARCStrongImprecise; 2688 static Destroyer destroyARCStrongPrecise; 2689 static Destroyer destroyARCWeak; 2690 2691 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 2692 llvm::Value *EmitObjCAutoreleasePoolPush(); 2693 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 2694 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 2695 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 2696 2697 /// \brief Emits a reference binding to the passed in expression. 2698 RValue EmitReferenceBindingToExpr(const Expr *E); 2699 2700 //===--------------------------------------------------------------------===// 2701 // Expression Emission 2702 //===--------------------------------------------------------------------===// 2703 2704 // Expressions are broken into three classes: scalar, complex, aggregate. 2705 2706 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 2707 /// scalar type, returning the result. 2708 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 2709 2710 /// Emit a conversion from the specified type to the specified destination 2711 /// type, both of which are LLVM scalar types. 2712 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 2713 QualType DstTy, SourceLocation Loc); 2714 2715 /// Emit a conversion from the specified complex type to the specified 2716 /// destination type, where the destination type is an LLVM scalar type. 2717 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 2718 QualType DstTy, 2719 SourceLocation Loc); 2720 2721 /// EmitAggExpr - Emit the computation of the specified expression 2722 /// of aggregate type. The result is computed into the given slot, 2723 /// which may be null to indicate that the value is not needed. 2724 void EmitAggExpr(const Expr *E, AggValueSlot AS); 2725 2726 /// EmitAggExprToLValue - Emit the computation of the specified expression of 2727 /// aggregate type into a temporary LValue. 2728 LValue EmitAggExprToLValue(const Expr *E); 2729 2730 /// EmitGCMemmoveCollectable - Emit special API for structs with object 2731 /// pointers. 2732 void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr, 2733 QualType Ty); 2734 2735 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 2736 /// make sure it survives garbage collection until this point. 2737 void EmitExtendGCLifetime(llvm::Value *object); 2738 2739 /// EmitComplexExpr - Emit the computation of the specified expression of 2740 /// complex type, returning the result. 2741 ComplexPairTy EmitComplexExpr(const Expr *E, 2742 bool IgnoreReal = false, 2743 bool IgnoreImag = false); 2744 2745 /// EmitComplexExprIntoLValue - Emit the given expression of complex 2746 /// type and place its result into the specified l-value. 2747 void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit); 2748 2749 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 2750 void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit); 2751 2752 /// EmitLoadOfComplex - Load a complex number from the specified l-value. 2753 ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc); 2754 2755 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 2756 /// global variable that has already been created for it. If the initializer 2757 /// has a different type than GV does, this may free GV and return a different 2758 /// one. Otherwise it just returns GV. 2759 llvm::GlobalVariable * 2760 AddInitializerToStaticVarDecl(const VarDecl &D, 2761 llvm::GlobalVariable *GV); 2762 2763 2764 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 2765 /// variable with global storage. 2766 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr, 2767 bool PerformInit); 2768 2769 llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::Constant *Dtor, 2770 llvm::Constant *Addr); 2771 2772 /// Call atexit() with a function that passes the given argument to 2773 /// the given function. 2774 void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn, 2775 llvm::Constant *addr); 2776 2777 /// Emit code in this function to perform a guarded variable 2778 /// initialization. Guarded initializations are used when it's not 2779 /// possible to prove that an initialization will be done exactly 2780 /// once, e.g. with a static local variable or a static data member 2781 /// of a class template. 2782 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, 2783 bool PerformInit); 2784 2785 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 2786 /// variables. 2787 void GenerateCXXGlobalInitFunc(llvm::Function *Fn, 2788 ArrayRef<llvm::Function *> CXXThreadLocals, 2789 llvm::GlobalVariable *Guard = nullptr); 2790 2791 /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global 2792 /// variables. 2793 void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn, 2794 const std::vector<std::pair<llvm::WeakVH, 2795 llvm::Constant*> > &DtorsAndObjects); 2796 2797 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 2798 const VarDecl *D, 2799 llvm::GlobalVariable *Addr, 2800 bool PerformInit); 2801 2802 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 2803 2804 void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src, 2805 const Expr *Exp); 2806 2807 void enterFullExpression(const ExprWithCleanups *E) { 2808 if (E->getNumObjects() == 0) return; 2809 enterNonTrivialFullExpression(E); 2810 } 2811 void enterNonTrivialFullExpression(const ExprWithCleanups *E); 2812 2813 void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true); 2814 2815 void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest); 2816 2817 RValue EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest = nullptr); 2818 2819 //===--------------------------------------------------------------------===// 2820 // Annotations Emission 2821 //===--------------------------------------------------------------------===// 2822 2823 /// Emit an annotation call (intrinsic or builtin). 2824 llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn, 2825 llvm::Value *AnnotatedVal, 2826 StringRef AnnotationStr, 2827 SourceLocation Location); 2828 2829 /// Emit local annotations for the local variable V, declared by D. 2830 void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); 2831 2832 /// Emit field annotations for the given field & value. Returns the 2833 /// annotation result. 2834 llvm::Value *EmitFieldAnnotations(const FieldDecl *D, llvm::Value *V); 2835 2836 //===--------------------------------------------------------------------===// 2837 // Internal Helpers 2838 //===--------------------------------------------------------------------===// 2839 2840 /// ContainsLabel - Return true if the statement contains a label in it. If 2841 /// this statement is not executed normally, it not containing a label means 2842 /// that we can just remove the code. 2843 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 2844 2845 /// containsBreak - Return true if the statement contains a break out of it. 2846 /// If the statement (recursively) contains a switch or loop with a break 2847 /// inside of it, this is fine. 2848 static bool containsBreak(const Stmt *S); 2849 2850 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 2851 /// to a constant, or if it does but contains a label, return false. If it 2852 /// constant folds return true and set the boolean result in Result. 2853 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result); 2854 2855 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 2856 /// to a constant, or if it does but contains a label, return false. If it 2857 /// constant folds return true and set the folded value. 2858 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result); 2859 2860 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 2861 /// if statement) to the specified blocks. Based on the condition, this might 2862 /// try to simplify the codegen of the conditional based on the branch. 2863 /// TrueCount should be the number of times we expect the condition to 2864 /// evaluate to true based on PGO data. 2865 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 2866 llvm::BasicBlock *FalseBlock, uint64_t TrueCount); 2867 2868 /// \brief Emit a description of a type in a format suitable for passing to 2869 /// a runtime sanitizer handler. 2870 llvm::Constant *EmitCheckTypeDescriptor(QualType T); 2871 2872 /// \brief Convert a value into a format suitable for passing to a runtime 2873 /// sanitizer handler. 2874 llvm::Value *EmitCheckValue(llvm::Value *V); 2875 2876 /// \brief Emit a description of a source location in a format suitable for 2877 /// passing to a runtime sanitizer handler. 2878 llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc); 2879 2880 /// \brief Create a basic block that will call a handler function in a 2881 /// sanitizer runtime with the provided arguments, and create a conditional 2882 /// branch to it. 2883 void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 2884 StringRef CheckName, ArrayRef<llvm::Constant *> StaticArgs, 2885 ArrayRef<llvm::Value *> DynamicArgs); 2886 2887 /// \brief Create a basic block that will call the trap intrinsic, and emit a 2888 /// conditional branch to it, for the -ftrapv checks. 2889 void EmitTrapCheck(llvm::Value *Checked); 2890 2891 /// \brief Emit a call to trap or debugtrap and attach function attribute 2892 /// "trap-func-name" if specified. 2893 llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID); 2894 2895 /// \brief Create a check for a function parameter that may potentially be 2896 /// declared as non-null. 2897 void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc, 2898 const FunctionDecl *FD, unsigned ParmNum); 2899 2900 /// EmitCallArg - Emit a single call argument. 2901 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 2902 2903 /// EmitDelegateCallArg - We are performing a delegate call; that 2904 /// is, the current function is delegating to another one. Produce 2905 /// a r-value suitable for passing the given parameter. 2906 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param, 2907 SourceLocation loc); 2908 2909 /// SetFPAccuracy - Set the minimum required accuracy of the given floating 2910 /// point operation, expressed as the maximum relative error in ulp. 2911 void SetFPAccuracy(llvm::Value *Val, float Accuracy); 2912 2913 private: 2914 llvm::MDNode *getRangeForLoadFromType(QualType Ty); 2915 void EmitReturnOfRValue(RValue RV, QualType Ty); 2916 2917 void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New); 2918 2919 llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4> 2920 DeferredReplacements; 2921 2922 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 2923 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 2924 /// 2925 /// \param AI - The first function argument of the expansion. 2926 void ExpandTypeFromArgs(QualType Ty, LValue Dst, 2927 SmallVectorImpl<llvm::Argument *>::iterator &AI); 2928 2929 /// ExpandTypeToArgs - Expand an RValue \arg RV, with the LLVM type for \arg 2930 /// Ty, into individual arguments on the provided vector \arg IRCallArgs, 2931 /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand. 2932 void ExpandTypeToArgs(QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy, 2933 SmallVectorImpl<llvm::Value *> &IRCallArgs, 2934 unsigned &IRCallArgPos); 2935 2936 llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info, 2937 const Expr *InputExpr, std::string &ConstraintStr); 2938 2939 llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 2940 LValue InputValue, QualType InputType, 2941 std::string &ConstraintStr, 2942 SourceLocation Loc); 2943 2944 public: 2945 #ifndef NDEBUG 2946 // Determine whether the given argument is an Objective-C method 2947 // that may have type parameters in its signature. 2948 static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) { 2949 const DeclContext *dc = method->getDeclContext(); 2950 if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) { 2951 return classDecl->getTypeParamListAsWritten(); 2952 } 2953 2954 if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) { 2955 return catDecl->getTypeParamList(); 2956 } 2957 2958 return false; 2959 } 2960 2961 template<typename T> 2962 static bool isObjCMethodWithTypeParams(const T *) { return false; } 2963 #endif 2964 2965 /// EmitCallArgs - Emit call arguments for a function. 2966 template <typename T> 2967 void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo, 2968 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 2969 const FunctionDecl *CalleeDecl = nullptr, 2970 unsigned ParamsToSkip = 0) { 2971 SmallVector<QualType, 16> ArgTypes; 2972 CallExpr::const_arg_iterator Arg = ArgRange.begin(); 2973 2974 assert((ParamsToSkip == 0 || CallArgTypeInfo) && 2975 "Can't skip parameters if type info is not provided"); 2976 if (CallArgTypeInfo) { 2977 #ifndef NDEBUG 2978 bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo); 2979 #endif 2980 2981 // First, use the argument types that the type info knows about 2982 for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip, 2983 E = CallArgTypeInfo->param_type_end(); 2984 I != E; ++I, ++Arg) { 2985 assert(Arg != ArgRange.end() && "Running over edge of argument list!"); 2986 assert((isGenericMethod || 2987 ((*I)->isVariablyModifiedType() || 2988 (*I).getNonReferenceType()->isObjCRetainableType() || 2989 getContext() 2990 .getCanonicalType((*I).getNonReferenceType()) 2991 .getTypePtr() == 2992 getContext() 2993 .getCanonicalType((*Arg)->getType()) 2994 .getTypePtr())) && 2995 "type mismatch in call argument!"); 2996 ArgTypes.push_back(*I); 2997 } 2998 } 2999 3000 // Either we've emitted all the call args, or we have a call to variadic 3001 // function. 3002 assert((Arg == ArgRange.end() || !CallArgTypeInfo || 3003 CallArgTypeInfo->isVariadic()) && 3004 "Extra arguments in non-variadic function!"); 3005 3006 // If we still have any arguments, emit them using the type of the argument. 3007 for (auto *A : llvm::make_range(Arg, ArgRange.end())) 3008 ArgTypes.push_back(getVarArgType(A)); 3009 3010 EmitCallArgs(Args, ArgTypes, ArgRange, CalleeDecl, ParamsToSkip); 3011 } 3012 3013 void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes, 3014 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 3015 const FunctionDecl *CalleeDecl = nullptr, 3016 unsigned ParamsToSkip = 0); 3017 3018 private: 3019 QualType getVarArgType(const Expr *Arg); 3020 3021 const TargetCodeGenInfo &getTargetHooks() const { 3022 return CGM.getTargetCodeGenInfo(); 3023 } 3024 3025 void EmitDeclMetadata(); 3026 3027 CodeGenModule::ByrefHelpers * 3028 buildByrefHelpers(llvm::StructType &byrefType, 3029 const AutoVarEmission &emission); 3030 3031 void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); 3032 3033 /// GetPointeeAlignment - Given an expression with a pointer type, emit the 3034 /// value and compute our best estimate of the alignment of the pointee. 3035 std::pair<llvm::Value*, unsigned> EmitPointerWithAlignment(const Expr *Addr); 3036 3037 llvm::Value *GetValueForARMHint(unsigned BuiltinID); 3038 }; 3039 3040 /// Helper class with most of the code for saving a value for a 3041 /// conditional expression cleanup. 3042 struct DominatingLLVMValue { 3043 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 3044 3045 /// Answer whether the given value needs extra work to be saved. 3046 static bool needsSaving(llvm::Value *value) { 3047 // If it's not an instruction, we don't need to save. 3048 if (!isa<llvm::Instruction>(value)) return false; 3049 3050 // If it's an instruction in the entry block, we don't need to save. 3051 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 3052 return (block != &block->getParent()->getEntryBlock()); 3053 } 3054 3055 /// Try to save the given value. 3056 static saved_type save(CodeGenFunction &CGF, llvm::Value *value) { 3057 if (!needsSaving(value)) return saved_type(value, false); 3058 3059 // Otherwise we need an alloca. 3060 llvm::Value *alloca = 3061 CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save"); 3062 CGF.Builder.CreateStore(value, alloca); 3063 3064 return saved_type(alloca, true); 3065 } 3066 3067 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) { 3068 if (!value.getInt()) return value.getPointer(); 3069 return CGF.Builder.CreateLoad(value.getPointer()); 3070 } 3071 }; 3072 3073 /// A partial specialization of DominatingValue for llvm::Values that 3074 /// might be llvm::Instructions. 3075 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 3076 typedef T *type; 3077 static type restore(CodeGenFunction &CGF, saved_type value) { 3078 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 3079 } 3080 }; 3081 3082 /// A specialization of DominatingValue for RValue. 3083 template <> struct DominatingValue<RValue> { 3084 typedef RValue type; 3085 class saved_type { 3086 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 3087 AggregateAddress, ComplexAddress }; 3088 3089 llvm::Value *Value; 3090 Kind K; 3091 saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {} 3092 3093 public: 3094 static bool needsSaving(RValue value); 3095 static saved_type save(CodeGenFunction &CGF, RValue value); 3096 RValue restore(CodeGenFunction &CGF); 3097 3098 // implementations in CGExprCXX.cpp 3099 }; 3100 3101 static bool needsSaving(type value) { 3102 return saved_type::needsSaving(value); 3103 } 3104 static saved_type save(CodeGenFunction &CGF, type value) { 3105 return saved_type::save(CGF, value); 3106 } 3107 static type restore(CodeGenFunction &CGF, saved_type value) { 3108 return value.restore(CGF); 3109 } 3110 }; 3111 3112 } // end namespace CodeGen 3113 } // end namespace clang 3114 3115 #endif 3116