1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the internal per-function state used for llvm translation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
15 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
16 
17 #include "CGBuilder.h"
18 #include "CGDebugInfo.h"
19 #include "CGLoopInfo.h"
20 #include "CGValue.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "EHScopeStack.h"
24 #include "clang/AST/CharUnits.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/AST/ExprObjC.h"
27 #include "clang/AST/Type.h"
28 #include "clang/Basic/ABI.h"
29 #include "clang/Basic/CapturedStmt.h"
30 #include "clang/Basic/OpenMPKinds.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/Frontend/CodeGenOptions.h"
33 #include "llvm/ADT/ArrayRef.h"
34 #include "llvm/ADT/DenseMap.h"
35 #include "llvm/ADT/SmallVector.h"
36 #include "llvm/IR/ValueHandle.h"
37 #include "llvm/Support/Debug.h"
38 
39 namespace llvm {
40 class BasicBlock;
41 class LLVMContext;
42 class MDNode;
43 class Module;
44 class SwitchInst;
45 class Twine;
46 class Value;
47 class CallSite;
48 }
49 
50 namespace clang {
51 class ASTContext;
52 class BlockDecl;
53 class CXXDestructorDecl;
54 class CXXForRangeStmt;
55 class CXXTryStmt;
56 class Decl;
57 class LabelDecl;
58 class EnumConstantDecl;
59 class FunctionDecl;
60 class FunctionProtoType;
61 class LabelStmt;
62 class ObjCContainerDecl;
63 class ObjCInterfaceDecl;
64 class ObjCIvarDecl;
65 class ObjCMethodDecl;
66 class ObjCImplementationDecl;
67 class ObjCPropertyImplDecl;
68 class TargetInfo;
69 class TargetCodeGenInfo;
70 class VarDecl;
71 class ObjCForCollectionStmt;
72 class ObjCAtTryStmt;
73 class ObjCAtThrowStmt;
74 class ObjCAtSynchronizedStmt;
75 class ObjCAutoreleasePoolStmt;
76 
77 namespace CodeGen {
78 class CodeGenTypes;
79 class CGFunctionInfo;
80 class CGRecordLayout;
81 class CGBlockInfo;
82 class CGCXXABI;
83 class BlockFlags;
84 class BlockFieldFlags;
85 
86 /// The kind of evaluation to perform on values of a particular
87 /// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
88 /// CGExprAgg?
89 ///
90 /// TODO: should vectors maybe be split out into their own thing?
91 enum TypeEvaluationKind {
92   TEK_Scalar,
93   TEK_Complex,
94   TEK_Aggregate
95 };
96 
97 /// CodeGenFunction - This class organizes the per-function state that is used
98 /// while generating LLVM code.
99 class CodeGenFunction : public CodeGenTypeCache {
100   CodeGenFunction(const CodeGenFunction &) = delete;
101   void operator=(const CodeGenFunction &) = delete;
102 
103   friend class CGCXXABI;
104 public:
105   /// A jump destination is an abstract label, branching to which may
106   /// require a jump out through normal cleanups.
107   struct JumpDest {
108     JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {}
109     JumpDest(llvm::BasicBlock *Block,
110              EHScopeStack::stable_iterator Depth,
111              unsigned Index)
112       : Block(Block), ScopeDepth(Depth), Index(Index) {}
113 
114     bool isValid() const { return Block != nullptr; }
115     llvm::BasicBlock *getBlock() const { return Block; }
116     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
117     unsigned getDestIndex() const { return Index; }
118 
119     // This should be used cautiously.
120     void setScopeDepth(EHScopeStack::stable_iterator depth) {
121       ScopeDepth = depth;
122     }
123 
124   private:
125     llvm::BasicBlock *Block;
126     EHScopeStack::stable_iterator ScopeDepth;
127     unsigned Index;
128   };
129 
130   CodeGenModule &CGM;  // Per-module state.
131   const TargetInfo &Target;
132 
133   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
134   LoopInfoStack LoopStack;
135   CGBuilderTy Builder;
136 
137   /// \brief CGBuilder insert helper. This function is called after an
138   /// instruction is created using Builder.
139   void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
140                     llvm::BasicBlock *BB,
141                     llvm::BasicBlock::iterator InsertPt) const;
142 
143   /// CurFuncDecl - Holds the Decl for the current outermost
144   /// non-closure context.
145   const Decl *CurFuncDecl;
146   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
147   const Decl *CurCodeDecl;
148   const CGFunctionInfo *CurFnInfo;
149   QualType FnRetTy;
150   llvm::Function *CurFn;
151 
152   /// CurGD - The GlobalDecl for the current function being compiled.
153   GlobalDecl CurGD;
154 
155   /// PrologueCleanupDepth - The cleanup depth enclosing all the
156   /// cleanups associated with the parameters.
157   EHScopeStack::stable_iterator PrologueCleanupDepth;
158 
159   /// ReturnBlock - Unified return block.
160   JumpDest ReturnBlock;
161 
162   /// ReturnValue - The temporary alloca to hold the return value. This is null
163   /// iff the function has no return value.
164   llvm::Value *ReturnValue;
165 
166   /// AllocaInsertPoint - This is an instruction in the entry block before which
167   /// we prefer to insert allocas.
168   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
169 
170   /// \brief API for captured statement code generation.
171   class CGCapturedStmtInfo {
172   public:
173     explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default)
174         : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
175     explicit CGCapturedStmtInfo(const CapturedStmt &S,
176                                 CapturedRegionKind K = CR_Default)
177       : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
178 
179       RecordDecl::field_iterator Field =
180         S.getCapturedRecordDecl()->field_begin();
181       for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
182                                                 E = S.capture_end();
183            I != E; ++I, ++Field) {
184         if (I->capturesThis())
185           CXXThisFieldDecl = *Field;
186         else if (I->capturesVariable())
187           CaptureFields[I->getCapturedVar()] = *Field;
188       }
189     }
190 
191     virtual ~CGCapturedStmtInfo();
192 
193     CapturedRegionKind getKind() const { return Kind; }
194 
195     virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
196     // \brief Retrieve the value of the context parameter.
197     virtual llvm::Value *getContextValue() const { return ThisValue; }
198 
199     /// \brief Lookup the captured field decl for a variable.
200     virtual const FieldDecl *lookup(const VarDecl *VD) const {
201       return CaptureFields.lookup(VD);
202     }
203 
204     bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
205     virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
206 
207     static bool classof(const CGCapturedStmtInfo *) {
208       return true;
209     }
210 
211     /// \brief Emit the captured statement body.
212     virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
213       CGF.incrementProfileCounter(S);
214       CGF.EmitStmt(S);
215     }
216 
217     /// \brief Get the name of the capture helper.
218     virtual StringRef getHelperName() const { return "__captured_stmt"; }
219 
220   private:
221     /// \brief The kind of captured statement being generated.
222     CapturedRegionKind Kind;
223 
224     /// \brief Keep the map between VarDecl and FieldDecl.
225     llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
226 
227     /// \brief The base address of the captured record, passed in as the first
228     /// argument of the parallel region function.
229     llvm::Value *ThisValue;
230 
231     /// \brief Captured 'this' type.
232     FieldDecl *CXXThisFieldDecl;
233   };
234   CGCapturedStmtInfo *CapturedStmtInfo;
235 
236   /// \brief RAII for correct setting/restoring of CapturedStmtInfo.
237   class CGCapturedStmtRAII {
238   private:
239     CodeGenFunction &CGF;
240     CGCapturedStmtInfo *PrevCapturedStmtInfo;
241   public:
242     CGCapturedStmtRAII(CodeGenFunction &CGF,
243                        CGCapturedStmtInfo *NewCapturedStmtInfo)
244         : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) {
245       CGF.CapturedStmtInfo = NewCapturedStmtInfo;
246     }
247     ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; }
248   };
249 
250   /// BoundsChecking - Emit run-time bounds checks. Higher values mean
251   /// potentially higher performance penalties.
252   unsigned char BoundsChecking;
253 
254   /// \brief Sanitizers enabled for this function.
255   SanitizerSet SanOpts;
256 
257   /// \brief True if CodeGen currently emits code implementing sanitizer checks.
258   bool IsSanitizerScope;
259 
260   /// \brief RAII object to set/unset CodeGenFunction::IsSanitizerScope.
261   class SanitizerScope {
262     CodeGenFunction *CGF;
263   public:
264     SanitizerScope(CodeGenFunction *CGF);
265     ~SanitizerScope();
266   };
267 
268   /// In C++, whether we are code generating a thunk.  This controls whether we
269   /// should emit cleanups.
270   bool CurFuncIsThunk;
271 
272   /// In ARC, whether we should autorelease the return value.
273   bool AutoreleaseResult;
274 
275   /// Whether we processed a Microsoft-style asm block during CodeGen. These can
276   /// potentially set the return value.
277   bool SawAsmBlock;
278 
279   /// True if the current function is an outlined SEH helper. This can be a
280   /// finally block or filter expression.
281   bool IsOutlinedSEHHelper;
282 
283   const CodeGen::CGBlockInfo *BlockInfo;
284   llvm::Value *BlockPointer;
285 
286   llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
287   FieldDecl *LambdaThisCaptureField;
288 
289   /// \brief A mapping from NRVO variables to the flags used to indicate
290   /// when the NRVO has been applied to this variable.
291   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
292 
293   EHScopeStack EHStack;
294   llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
295   llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack;
296 
297   /// Header for data within LifetimeExtendedCleanupStack.
298   struct LifetimeExtendedCleanupHeader {
299     /// The size of the following cleanup object.
300     unsigned Size;
301     /// The kind of cleanup to push: a value from the CleanupKind enumeration.
302     CleanupKind Kind;
303 
304     size_t getSize() const { return Size; }
305     CleanupKind getKind() const { return Kind; }
306   };
307 
308   /// i32s containing the indexes of the cleanup destinations.
309   llvm::AllocaInst *NormalCleanupDest;
310 
311   unsigned NextCleanupDestIndex;
312 
313   /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
314   CGBlockInfo *FirstBlockInfo;
315 
316   /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
317   llvm::BasicBlock *EHResumeBlock;
318 
319   /// The exception slot.  All landing pads write the current exception pointer
320   /// into this alloca.
321   llvm::Value *ExceptionSlot;
322 
323   /// The selector slot.  Under the MandatoryCleanup model, all landing pads
324   /// write the current selector value into this alloca.
325   llvm::AllocaInst *EHSelectorSlot;
326 
327   llvm::AllocaInst *AbnormalTerminationSlot;
328 
329   /// The implicit parameter to SEH filter functions of type
330   /// 'EXCEPTION_POINTERS*'.
331   ImplicitParamDecl *SEHPointersDecl;
332 
333   /// Emits a landing pad for the current EH stack.
334   llvm::BasicBlock *EmitLandingPad();
335 
336   llvm::BasicBlock *getInvokeDestImpl();
337 
338   template <class T>
339   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
340     return DominatingValue<T>::save(*this, value);
341   }
342 
343 public:
344   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
345   /// rethrows.
346   SmallVector<llvm::Value*, 8> ObjCEHValueStack;
347 
348   /// A class controlling the emission of a finally block.
349   class FinallyInfo {
350     /// Where the catchall's edge through the cleanup should go.
351     JumpDest RethrowDest;
352 
353     /// A function to call to enter the catch.
354     llvm::Constant *BeginCatchFn;
355 
356     /// An i1 variable indicating whether or not the @finally is
357     /// running for an exception.
358     llvm::AllocaInst *ForEHVar;
359 
360     /// An i8* variable into which the exception pointer to rethrow
361     /// has been saved.
362     llvm::AllocaInst *SavedExnVar;
363 
364   public:
365     void enter(CodeGenFunction &CGF, const Stmt *Finally,
366                llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
367                llvm::Constant *rethrowFn);
368     void exit(CodeGenFunction &CGF);
369   };
370 
371   /// Returns true inside SEH __try blocks.
372   bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }
373 
374   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
375   /// current full-expression.  Safe against the possibility that
376   /// we're currently inside a conditionally-evaluated expression.
377   template <class T, class... As>
378   void pushFullExprCleanup(CleanupKind kind, As... A) {
379     // If we're not in a conditional branch, or if none of the
380     // arguments requires saving, then use the unconditional cleanup.
381     if (!isInConditionalBranch())
382       return EHStack.pushCleanup<T>(kind, A...);
383 
384     // Stash values in a tuple so we can guarantee the order of saves.
385     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
386     SavedTuple Saved{saveValueInCond(A)...};
387 
388     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
389     EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
390     initFullExprCleanup();
391   }
392 
393   /// \brief Queue a cleanup to be pushed after finishing the current
394   /// full-expression.
395   template <class T, class... As>
396   void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
397     assert(!isInConditionalBranch() && "can't defer conditional cleanup");
398 
399     LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind };
400 
401     size_t OldSize = LifetimeExtendedCleanupStack.size();
402     LifetimeExtendedCleanupStack.resize(
403         LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size);
404 
405     static_assert(sizeof(Header) % llvm::AlignOf<T>::Alignment == 0,
406                   "Cleanup will be allocated on misaligned address");
407     char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
408     new (Buffer) LifetimeExtendedCleanupHeader(Header);
409     new (Buffer + sizeof(Header)) T(A...);
410   }
411 
412   /// Set up the last cleaup that was pushed as a conditional
413   /// full-expression cleanup.
414   void initFullExprCleanup();
415 
416   /// PushDestructorCleanup - Push a cleanup to call the
417   /// complete-object destructor of an object of the given type at the
418   /// given address.  Does nothing if T is not a C++ class type with a
419   /// non-trivial destructor.
420   void PushDestructorCleanup(QualType T, llvm::Value *Addr);
421 
422   /// PushDestructorCleanup - Push a cleanup to call the
423   /// complete-object variant of the given destructor on the object at
424   /// the given address.
425   void PushDestructorCleanup(const CXXDestructorDecl *Dtor,
426                              llvm::Value *Addr);
427 
428   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
429   /// process all branch fixups.
430   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
431 
432   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
433   /// The block cannot be reactivated.  Pops it if it's the top of the
434   /// stack.
435   ///
436   /// \param DominatingIP - An instruction which is known to
437   ///   dominate the current IP (if set) and which lies along
438   ///   all paths of execution between the current IP and the
439   ///   the point at which the cleanup comes into scope.
440   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
441                               llvm::Instruction *DominatingIP);
442 
443   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
444   /// Cannot be used to resurrect a deactivated cleanup.
445   ///
446   /// \param DominatingIP - An instruction which is known to
447   ///   dominate the current IP (if set) and which lies along
448   ///   all paths of execution between the current IP and the
449   ///   the point at which the cleanup comes into scope.
450   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
451                             llvm::Instruction *DominatingIP);
452 
453   /// \brief Enters a new scope for capturing cleanups, all of which
454   /// will be executed once the scope is exited.
455   class RunCleanupsScope {
456     EHScopeStack::stable_iterator CleanupStackDepth;
457     size_t LifetimeExtendedCleanupStackSize;
458     bool OldDidCallStackSave;
459   protected:
460     bool PerformCleanup;
461   private:
462 
463     RunCleanupsScope(const RunCleanupsScope &) = delete;
464     void operator=(const RunCleanupsScope &) = delete;
465 
466   protected:
467     CodeGenFunction& CGF;
468 
469   public:
470     /// \brief Enter a new cleanup scope.
471     explicit RunCleanupsScope(CodeGenFunction &CGF)
472       : PerformCleanup(true), CGF(CGF)
473     {
474       CleanupStackDepth = CGF.EHStack.stable_begin();
475       LifetimeExtendedCleanupStackSize =
476           CGF.LifetimeExtendedCleanupStack.size();
477       OldDidCallStackSave = CGF.DidCallStackSave;
478       CGF.DidCallStackSave = false;
479     }
480 
481     /// \brief Exit this cleanup scope, emitting any accumulated
482     /// cleanups.
483     ~RunCleanupsScope() {
484       if (PerformCleanup) {
485         CGF.DidCallStackSave = OldDidCallStackSave;
486         CGF.PopCleanupBlocks(CleanupStackDepth,
487                              LifetimeExtendedCleanupStackSize);
488       }
489     }
490 
491     /// \brief Determine whether this scope requires any cleanups.
492     bool requiresCleanups() const {
493       return CGF.EHStack.stable_begin() != CleanupStackDepth;
494     }
495 
496     /// \brief Force the emission of cleanups now, instead of waiting
497     /// until this object is destroyed.
498     void ForceCleanup() {
499       assert(PerformCleanup && "Already forced cleanup");
500       CGF.DidCallStackSave = OldDidCallStackSave;
501       CGF.PopCleanupBlocks(CleanupStackDepth,
502                            LifetimeExtendedCleanupStackSize);
503       PerformCleanup = false;
504     }
505   };
506 
507   class LexicalScope : public RunCleanupsScope {
508     SourceRange Range;
509     SmallVector<const LabelDecl*, 4> Labels;
510     LexicalScope *ParentScope;
511 
512     LexicalScope(const LexicalScope &) = delete;
513     void operator=(const LexicalScope &) = delete;
514 
515   public:
516     /// \brief Enter a new cleanup scope.
517     explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
518       : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
519       CGF.CurLexicalScope = this;
520       if (CGDebugInfo *DI = CGF.getDebugInfo())
521         DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
522     }
523 
524     void addLabel(const LabelDecl *label) {
525       assert(PerformCleanup && "adding label to dead scope?");
526       Labels.push_back(label);
527     }
528 
529     /// \brief Exit this cleanup scope, emitting any accumulated
530     /// cleanups.
531     ~LexicalScope() {
532       if (CGDebugInfo *DI = CGF.getDebugInfo())
533         DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
534 
535       // If we should perform a cleanup, force them now.  Note that
536       // this ends the cleanup scope before rescoping any labels.
537       if (PerformCleanup) {
538         ApplyDebugLocation DL(CGF, Range.getEnd());
539         ForceCleanup();
540       }
541     }
542 
543     /// \brief Force the emission of cleanups now, instead of waiting
544     /// until this object is destroyed.
545     void ForceCleanup() {
546       CGF.CurLexicalScope = ParentScope;
547       RunCleanupsScope::ForceCleanup();
548 
549       if (!Labels.empty())
550         rescopeLabels();
551     }
552 
553     void rescopeLabels();
554   };
555 
556   /// \brief The scope used to remap some variables as private in the OpenMP
557   /// loop body (or other captured region emitted without outlining), and to
558   /// restore old vars back on exit.
559   class OMPPrivateScope : public RunCleanupsScope {
560     typedef llvm::DenseMap<const VarDecl *, llvm::Value *> VarDeclMapTy;
561     VarDeclMapTy SavedLocals;
562     VarDeclMapTy SavedPrivates;
563 
564   private:
565     OMPPrivateScope(const OMPPrivateScope &) = delete;
566     void operator=(const OMPPrivateScope &) = delete;
567 
568   public:
569     /// \brief Enter a new OpenMP private scope.
570     explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}
571 
572     /// \brief Registers \a LocalVD variable as a private and apply \a
573     /// PrivateGen function for it to generate corresponding private variable.
574     /// \a PrivateGen returns an address of the generated private variable.
575     /// \return true if the variable is registered as private, false if it has
576     /// been privatized already.
577     bool
578     addPrivate(const VarDecl *LocalVD,
579                const std::function<llvm::Value *()> &PrivateGen) {
580       assert(PerformCleanup && "adding private to dead scope");
581       if (SavedLocals.count(LocalVD) > 0) return false;
582       SavedLocals[LocalVD] = CGF.LocalDeclMap.lookup(LocalVD);
583       CGF.LocalDeclMap.erase(LocalVD);
584       SavedPrivates[LocalVD] = PrivateGen();
585       CGF.LocalDeclMap[LocalVD] = SavedLocals[LocalVD];
586       return true;
587     }
588 
589     /// \brief Privatizes local variables previously registered as private.
590     /// Registration is separate from the actual privatization to allow
591     /// initializers use values of the original variables, not the private one.
592     /// This is important, for example, if the private variable is a class
593     /// variable initialized by a constructor that references other private
594     /// variables. But at initialization original variables must be used, not
595     /// private copies.
596     /// \return true if at least one variable was privatized, false otherwise.
597     bool Privatize() {
598       for (auto VDPair : SavedPrivates) {
599         CGF.LocalDeclMap[VDPair.first] = VDPair.second;
600       }
601       SavedPrivates.clear();
602       return !SavedLocals.empty();
603     }
604 
605     void ForceCleanup() {
606       RunCleanupsScope::ForceCleanup();
607       // Remap vars back to the original values.
608       for (auto I : SavedLocals) {
609         CGF.LocalDeclMap[I.first] = I.second;
610       }
611       SavedLocals.clear();
612     }
613 
614     /// \brief Exit scope - all the mapped variables are restored.
615     ~OMPPrivateScope() {
616       if (PerformCleanup)
617         ForceCleanup();
618     }
619   };
620 
621   /// \brief Takes the old cleanup stack size and emits the cleanup blocks
622   /// that have been added.
623   void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize);
624 
625   /// \brief Takes the old cleanup stack size and emits the cleanup blocks
626   /// that have been added, then adds all lifetime-extended cleanups from
627   /// the given position to the stack.
628   void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
629                         size_t OldLifetimeExtendedStackSize);
630 
631   void ResolveBranchFixups(llvm::BasicBlock *Target);
632 
633   /// The given basic block lies in the current EH scope, but may be a
634   /// target of a potentially scope-crossing jump; get a stable handle
635   /// to which we can perform this jump later.
636   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
637     return JumpDest(Target,
638                     EHStack.getInnermostNormalCleanup(),
639                     NextCleanupDestIndex++);
640   }
641 
642   /// The given basic block lies in the current EH scope, but may be a
643   /// target of a potentially scope-crossing jump; get a stable handle
644   /// to which we can perform this jump later.
645   JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
646     return getJumpDestInCurrentScope(createBasicBlock(Name));
647   }
648 
649   /// EmitBranchThroughCleanup - Emit a branch from the current insert
650   /// block through the normal cleanup handling code (if any) and then
651   /// on to \arg Dest.
652   void EmitBranchThroughCleanup(JumpDest Dest);
653 
654   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
655   /// specified destination obviously has no cleanups to run.  'false' is always
656   /// a conservatively correct answer for this method.
657   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
658 
659   /// popCatchScope - Pops the catch scope at the top of the EHScope
660   /// stack, emitting any required code (other than the catch handlers
661   /// themselves).
662   void popCatchScope();
663 
664   llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
665   llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
666 
667   /// An object to manage conditionally-evaluated expressions.
668   class ConditionalEvaluation {
669     llvm::BasicBlock *StartBB;
670 
671   public:
672     ConditionalEvaluation(CodeGenFunction &CGF)
673       : StartBB(CGF.Builder.GetInsertBlock()) {}
674 
675     void begin(CodeGenFunction &CGF) {
676       assert(CGF.OutermostConditional != this);
677       if (!CGF.OutermostConditional)
678         CGF.OutermostConditional = this;
679     }
680 
681     void end(CodeGenFunction &CGF) {
682       assert(CGF.OutermostConditional != nullptr);
683       if (CGF.OutermostConditional == this)
684         CGF.OutermostConditional = nullptr;
685     }
686 
687     /// Returns a block which will be executed prior to each
688     /// evaluation of the conditional code.
689     llvm::BasicBlock *getStartingBlock() const {
690       return StartBB;
691     }
692   };
693 
694   /// isInConditionalBranch - Return true if we're currently emitting
695   /// one branch or the other of a conditional expression.
696   bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
697 
698   void setBeforeOutermostConditional(llvm::Value *value, llvm::Value *addr) {
699     assert(isInConditionalBranch());
700     llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
701     new llvm::StoreInst(value, addr, &block->back());
702   }
703 
704   /// An RAII object to record that we're evaluating a statement
705   /// expression.
706   class StmtExprEvaluation {
707     CodeGenFunction &CGF;
708 
709     /// We have to save the outermost conditional: cleanups in a
710     /// statement expression aren't conditional just because the
711     /// StmtExpr is.
712     ConditionalEvaluation *SavedOutermostConditional;
713 
714   public:
715     StmtExprEvaluation(CodeGenFunction &CGF)
716       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
717       CGF.OutermostConditional = nullptr;
718     }
719 
720     ~StmtExprEvaluation() {
721       CGF.OutermostConditional = SavedOutermostConditional;
722       CGF.EnsureInsertPoint();
723     }
724   };
725 
726   /// An object which temporarily prevents a value from being
727   /// destroyed by aggressive peephole optimizations that assume that
728   /// all uses of a value have been realized in the IR.
729   class PeepholeProtection {
730     llvm::Instruction *Inst;
731     friend class CodeGenFunction;
732 
733   public:
734     PeepholeProtection() : Inst(nullptr) {}
735   };
736 
737   /// A non-RAII class containing all the information about a bound
738   /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
739   /// this which makes individual mappings very simple; using this
740   /// class directly is useful when you have a variable number of
741   /// opaque values or don't want the RAII functionality for some
742   /// reason.
743   class OpaqueValueMappingData {
744     const OpaqueValueExpr *OpaqueValue;
745     bool BoundLValue;
746     CodeGenFunction::PeepholeProtection Protection;
747 
748     OpaqueValueMappingData(const OpaqueValueExpr *ov,
749                            bool boundLValue)
750       : OpaqueValue(ov), BoundLValue(boundLValue) {}
751   public:
752     OpaqueValueMappingData() : OpaqueValue(nullptr) {}
753 
754     static bool shouldBindAsLValue(const Expr *expr) {
755       // gl-values should be bound as l-values for obvious reasons.
756       // Records should be bound as l-values because IR generation
757       // always keeps them in memory.  Expressions of function type
758       // act exactly like l-values but are formally required to be
759       // r-values in C.
760       return expr->isGLValue() ||
761              expr->getType()->isFunctionType() ||
762              hasAggregateEvaluationKind(expr->getType());
763     }
764 
765     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
766                                        const OpaqueValueExpr *ov,
767                                        const Expr *e) {
768       if (shouldBindAsLValue(ov))
769         return bind(CGF, ov, CGF.EmitLValue(e));
770       return bind(CGF, ov, CGF.EmitAnyExpr(e));
771     }
772 
773     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
774                                        const OpaqueValueExpr *ov,
775                                        const LValue &lv) {
776       assert(shouldBindAsLValue(ov));
777       CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
778       return OpaqueValueMappingData(ov, true);
779     }
780 
781     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
782                                        const OpaqueValueExpr *ov,
783                                        const RValue &rv) {
784       assert(!shouldBindAsLValue(ov));
785       CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
786 
787       OpaqueValueMappingData data(ov, false);
788 
789       // Work around an extremely aggressive peephole optimization in
790       // EmitScalarConversion which assumes that all other uses of a
791       // value are extant.
792       data.Protection = CGF.protectFromPeepholes(rv);
793 
794       return data;
795     }
796 
797     bool isValid() const { return OpaqueValue != nullptr; }
798     void clear() { OpaqueValue = nullptr; }
799 
800     void unbind(CodeGenFunction &CGF) {
801       assert(OpaqueValue && "no data to unbind!");
802 
803       if (BoundLValue) {
804         CGF.OpaqueLValues.erase(OpaqueValue);
805       } else {
806         CGF.OpaqueRValues.erase(OpaqueValue);
807         CGF.unprotectFromPeepholes(Protection);
808       }
809     }
810   };
811 
812   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
813   class OpaqueValueMapping {
814     CodeGenFunction &CGF;
815     OpaqueValueMappingData Data;
816 
817   public:
818     static bool shouldBindAsLValue(const Expr *expr) {
819       return OpaqueValueMappingData::shouldBindAsLValue(expr);
820     }
821 
822     /// Build the opaque value mapping for the given conditional
823     /// operator if it's the GNU ?: extension.  This is a common
824     /// enough pattern that the convenience operator is really
825     /// helpful.
826     ///
827     OpaqueValueMapping(CodeGenFunction &CGF,
828                        const AbstractConditionalOperator *op) : CGF(CGF) {
829       if (isa<ConditionalOperator>(op))
830         // Leave Data empty.
831         return;
832 
833       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
834       Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
835                                           e->getCommon());
836     }
837 
838     OpaqueValueMapping(CodeGenFunction &CGF,
839                        const OpaqueValueExpr *opaqueValue,
840                        LValue lvalue)
841       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
842     }
843 
844     OpaqueValueMapping(CodeGenFunction &CGF,
845                        const OpaqueValueExpr *opaqueValue,
846                        RValue rvalue)
847       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
848     }
849 
850     void pop() {
851       Data.unbind(CGF);
852       Data.clear();
853     }
854 
855     ~OpaqueValueMapping() {
856       if (Data.isValid()) Data.unbind(CGF);
857     }
858   };
859 
860   /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field
861   /// number that holds the value.
862   std::pair<llvm::Type *, unsigned>
863   getByRefValueLLVMField(const ValueDecl *VD) const;
864 
865   /// BuildBlockByrefAddress - Computes address location of the
866   /// variable which is declared as __block.
867   llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr,
868                                       const VarDecl *V);
869 private:
870   CGDebugInfo *DebugInfo;
871   bool DisableDebugInfo;
872 
873   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
874   /// calling llvm.stacksave for multiple VLAs in the same scope.
875   bool DidCallStackSave;
876 
877   /// IndirectBranch - The first time an indirect goto is seen we create a block
878   /// with an indirect branch.  Every time we see the address of a label taken,
879   /// we add the label to the indirect goto.  Every subsequent indirect goto is
880   /// codegen'd as a jump to the IndirectBranch's basic block.
881   llvm::IndirectBrInst *IndirectBranch;
882 
883   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
884   /// decls.
885   typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy;
886   DeclMapTy LocalDeclMap;
887 
888   /// Track escaped local variables with auto storage. Used during SEH
889   /// outlining to produce a call to llvm.frameescape.
890   llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;
891 
892   /// LabelMap - This keeps track of the LLVM basic block for each C label.
893   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
894 
895   // BreakContinueStack - This keeps track of where break and continue
896   // statements should jump to.
897   struct BreakContinue {
898     BreakContinue(JumpDest Break, JumpDest Continue)
899       : BreakBlock(Break), ContinueBlock(Continue) {}
900 
901     JumpDest BreakBlock;
902     JumpDest ContinueBlock;
903   };
904   SmallVector<BreakContinue, 8> BreakContinueStack;
905 
906   CodeGenPGO PGO;
907 
908   /// Calculate branch weights appropriate for PGO data
909   llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount);
910   llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights);
911   llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond,
912                                             uint64_t LoopCount);
913 
914 public:
915   /// Increment the profiler's counter for the given statement.
916   void incrementProfileCounter(const Stmt *S) {
917     if (CGM.getCodeGenOpts().ProfileInstrGenerate)
918       PGO.emitCounterIncrement(Builder, S);
919     PGO.setCurrentStmt(S);
920   }
921 
922   /// Get the profiler's count for the given statement.
923   uint64_t getProfileCount(const Stmt *S) {
924     Optional<uint64_t> Count = PGO.getStmtCount(S);
925     if (!Count.hasValue())
926       return 0;
927     return *Count;
928   }
929 
930   /// Set the profiler's current count.
931   void setCurrentProfileCount(uint64_t Count) {
932     PGO.setCurrentRegionCount(Count);
933   }
934 
935   /// Get the profiler's current count. This is generally the count for the most
936   /// recently incremented counter.
937   uint64_t getCurrentProfileCount() {
938     return PGO.getCurrentRegionCount();
939   }
940 
941 private:
942 
943   /// SwitchInsn - This is nearest current switch instruction. It is null if
944   /// current context is not in a switch.
945   llvm::SwitchInst *SwitchInsn;
946   /// The branch weights of SwitchInsn when doing instrumentation based PGO.
947   SmallVector<uint64_t, 16> *SwitchWeights;
948 
949   /// CaseRangeBlock - This block holds if condition check for last case
950   /// statement range in current switch instruction.
951   llvm::BasicBlock *CaseRangeBlock;
952 
953   /// OpaqueLValues - Keeps track of the current set of opaque value
954   /// expressions.
955   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
956   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
957 
958   // VLASizeMap - This keeps track of the associated size for each VLA type.
959   // We track this by the size expression rather than the type itself because
960   // in certain situations, like a const qualifier applied to an VLA typedef,
961   // multiple VLA types can share the same size expression.
962   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
963   // enter/leave scopes.
964   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
965 
966   /// A block containing a single 'unreachable' instruction.  Created
967   /// lazily by getUnreachableBlock().
968   llvm::BasicBlock *UnreachableBlock;
969 
970   /// Counts of the number return expressions in the function.
971   unsigned NumReturnExprs;
972 
973   /// Count the number of simple (constant) return expressions in the function.
974   unsigned NumSimpleReturnExprs;
975 
976   /// The last regular (non-return) debug location (breakpoint) in the function.
977   SourceLocation LastStopPoint;
978 
979 public:
980   /// A scope within which we are constructing the fields of an object which
981   /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
982   /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
983   class FieldConstructionScope {
984   public:
985     FieldConstructionScope(CodeGenFunction &CGF, llvm::Value *This)
986         : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
987       CGF.CXXDefaultInitExprThis = This;
988     }
989     ~FieldConstructionScope() {
990       CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
991     }
992 
993   private:
994     CodeGenFunction &CGF;
995     llvm::Value *OldCXXDefaultInitExprThis;
996   };
997 
998   /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
999   /// is overridden to be the object under construction.
1000   class CXXDefaultInitExprScope {
1001   public:
1002     CXXDefaultInitExprScope(CodeGenFunction &CGF)
1003         : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue) {
1004       CGF.CXXThisValue = CGF.CXXDefaultInitExprThis;
1005     }
1006     ~CXXDefaultInitExprScope() {
1007       CGF.CXXThisValue = OldCXXThisValue;
1008     }
1009 
1010   public:
1011     CodeGenFunction &CGF;
1012     llvm::Value *OldCXXThisValue;
1013   };
1014 
1015 private:
1016   /// CXXThisDecl - When generating code for a C++ member function,
1017   /// this will hold the implicit 'this' declaration.
1018   ImplicitParamDecl *CXXABIThisDecl;
1019   llvm::Value *CXXABIThisValue;
1020   llvm::Value *CXXThisValue;
1021 
1022   /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
1023   /// this expression.
1024   llvm::Value *CXXDefaultInitExprThis;
1025 
1026   /// CXXStructorImplicitParamDecl - When generating code for a constructor or
1027   /// destructor, this will hold the implicit argument (e.g. VTT).
1028   ImplicitParamDecl *CXXStructorImplicitParamDecl;
1029   llvm::Value *CXXStructorImplicitParamValue;
1030 
1031   /// OutermostConditional - Points to the outermost active
1032   /// conditional control.  This is used so that we know if a
1033   /// temporary should be destroyed conditionally.
1034   ConditionalEvaluation *OutermostConditional;
1035 
1036   /// The current lexical scope.
1037   LexicalScope *CurLexicalScope;
1038 
1039   /// The current source location that should be used for exception
1040   /// handling code.
1041   SourceLocation CurEHLocation;
1042 
1043   /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM
1044   /// type as well as the field number that contains the actual data.
1045   llvm::DenseMap<const ValueDecl *, std::pair<llvm::Type *,
1046                                               unsigned> > ByRefValueInfo;
1047 
1048   llvm::BasicBlock *TerminateLandingPad;
1049   llvm::BasicBlock *TerminateHandler;
1050   llvm::BasicBlock *TrapBB;
1051 
1052   /// Add a kernel metadata node to the named metadata node 'opencl.kernels'.
1053   /// In the kernel metadata node, reference the kernel function and metadata
1054   /// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2):
1055   /// - A node for the vec_type_hint(<type>) qualifier contains string
1056   ///   "vec_type_hint", an undefined value of the <type> data type,
1057   ///   and a Boolean that is true if the <type> is integer and signed.
1058   /// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string
1059   ///   "work_group_size_hint", and three 32-bit integers X, Y and Z.
1060   /// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string
1061   ///   "reqd_work_group_size", and three 32-bit integers X, Y and Z.
1062   void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
1063                                 llvm::Function *Fn);
1064 
1065 public:
1066   CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1067   ~CodeGenFunction();
1068 
1069   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1070   ASTContext &getContext() const { return CGM.getContext(); }
1071   CGDebugInfo *getDebugInfo() {
1072     if (DisableDebugInfo)
1073       return nullptr;
1074     return DebugInfo;
1075   }
1076   void disableDebugInfo() { DisableDebugInfo = true; }
1077   void enableDebugInfo() { DisableDebugInfo = false; }
1078 
1079   bool shouldUseFusedARCCalls() {
1080     return CGM.getCodeGenOpts().OptimizationLevel == 0;
1081   }
1082 
1083   const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1084 
1085   /// Returns a pointer to the function's exception object and selector slot,
1086   /// which is assigned in every landing pad.
1087   llvm::Value *getExceptionSlot();
1088   llvm::Value *getEHSelectorSlot();
1089 
1090   /// Returns the contents of the function's exception object and selector
1091   /// slots.
1092   llvm::Value *getExceptionFromSlot();
1093   llvm::Value *getSelectorFromSlot();
1094 
1095   llvm::Value *getNormalCleanupDestSlot();
1096 
1097   llvm::BasicBlock *getUnreachableBlock() {
1098     if (!UnreachableBlock) {
1099       UnreachableBlock = createBasicBlock("unreachable");
1100       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1101     }
1102     return UnreachableBlock;
1103   }
1104 
1105   llvm::BasicBlock *getInvokeDest() {
1106     if (!EHStack.requiresLandingPad()) return nullptr;
1107     return getInvokeDestImpl();
1108   }
1109 
1110   bool currentFunctionUsesSEHTry() const {
1111     const auto *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
1112     return FD && FD->usesSEHTry();
1113   }
1114 
1115   const TargetInfo &getTarget() const { return Target; }
1116   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1117 
1118   //===--------------------------------------------------------------------===//
1119   //                                  Cleanups
1120   //===--------------------------------------------------------------------===//
1121 
1122   typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty);
1123 
1124   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1125                                         llvm::Value *arrayEndPointer,
1126                                         QualType elementType,
1127                                         Destroyer *destroyer);
1128   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1129                                       llvm::Value *arrayEnd,
1130                                       QualType elementType,
1131                                       Destroyer *destroyer);
1132 
1133   void pushDestroy(QualType::DestructionKind dtorKind,
1134                    llvm::Value *addr, QualType type);
1135   void pushEHDestroy(QualType::DestructionKind dtorKind,
1136                      llvm::Value *addr, QualType type);
1137   void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type,
1138                    Destroyer *destroyer, bool useEHCleanupForArray);
1139   void pushLifetimeExtendedDestroy(CleanupKind kind, llvm::Value *addr,
1140                                    QualType type, Destroyer *destroyer,
1141                                    bool useEHCleanupForArray);
1142   void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1143                                    llvm::Value *CompletePtr,
1144                                    QualType ElementType);
1145   void pushStackRestore(CleanupKind kind, llvm::Value *SPMem);
1146   void emitDestroy(llvm::Value *addr, QualType type, Destroyer *destroyer,
1147                    bool useEHCleanupForArray);
1148   llvm::Function *generateDestroyHelper(llvm::Constant *addr, QualType type,
1149                                         Destroyer *destroyer,
1150                                         bool useEHCleanupForArray,
1151                                         const VarDecl *VD);
1152   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1153                         QualType type, Destroyer *destroyer,
1154                         bool checkZeroLength, bool useEHCleanup);
1155 
1156   Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1157 
1158   /// Determines whether an EH cleanup is required to destroy a type
1159   /// with the given destruction kind.
1160   bool needsEHCleanup(QualType::DestructionKind kind) {
1161     switch (kind) {
1162     case QualType::DK_none:
1163       return false;
1164     case QualType::DK_cxx_destructor:
1165     case QualType::DK_objc_weak_lifetime:
1166       return getLangOpts().Exceptions;
1167     case QualType::DK_objc_strong_lifetime:
1168       return getLangOpts().Exceptions &&
1169              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1170     }
1171     llvm_unreachable("bad destruction kind");
1172   }
1173 
1174   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
1175     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1176   }
1177 
1178   //===--------------------------------------------------------------------===//
1179   //                                  Objective-C
1180   //===--------------------------------------------------------------------===//
1181 
1182   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1183 
1184   void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
1185 
1186   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1187   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1188                           const ObjCPropertyImplDecl *PID);
1189   void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1190                               const ObjCPropertyImplDecl *propImpl,
1191                               const ObjCMethodDecl *GetterMothodDecl,
1192                               llvm::Constant *AtomicHelperFn);
1193 
1194   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1195                                   ObjCMethodDecl *MD, bool ctor);
1196 
1197   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1198   /// for the given property.
1199   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1200                           const ObjCPropertyImplDecl *PID);
1201   void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1202                               const ObjCPropertyImplDecl *propImpl,
1203                               llvm::Constant *AtomicHelperFn);
1204   bool IndirectObjCSetterArg(const CGFunctionInfo &FI);
1205   bool IvarTypeWithAggrGCObjects(QualType Ty);
1206 
1207   //===--------------------------------------------------------------------===//
1208   //                                  Block Bits
1209   //===--------------------------------------------------------------------===//
1210 
1211   llvm::Value *EmitBlockLiteral(const BlockExpr *);
1212   llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
1213   static void destroyBlockInfos(CGBlockInfo *info);
1214   llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *,
1215                                            const CGBlockInfo &Info,
1216                                            llvm::StructType *,
1217                                            llvm::Constant *BlockVarLayout);
1218 
1219   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1220                                         const CGBlockInfo &Info,
1221                                         const DeclMapTy &ldm,
1222                                         bool IsLambdaConversionToBlock);
1223 
1224   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1225   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1226   llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
1227                                              const ObjCPropertyImplDecl *PID);
1228   llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
1229                                              const ObjCPropertyImplDecl *PID);
1230   llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
1231 
1232   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
1233 
1234   class AutoVarEmission;
1235 
1236   void emitByrefStructureInit(const AutoVarEmission &emission);
1237   void enterByrefCleanup(const AutoVarEmission &emission);
1238 
1239   llvm::Value *LoadBlockStruct() {
1240     assert(BlockPointer && "no block pointer set!");
1241     return BlockPointer;
1242   }
1243 
1244   void AllocateBlockCXXThisPointer(const CXXThisExpr *E);
1245   void AllocateBlockDecl(const DeclRefExpr *E);
1246   llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
1247   llvm::Type *BuildByRefType(const VarDecl *var);
1248 
1249   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1250                     const CGFunctionInfo &FnInfo);
1251   /// \brief Emit code for the start of a function.
1252   /// \param Loc       The location to be associated with the function.
1253   /// \param StartLoc  The location of the function body.
1254   void StartFunction(GlobalDecl GD,
1255                      QualType RetTy,
1256                      llvm::Function *Fn,
1257                      const CGFunctionInfo &FnInfo,
1258                      const FunctionArgList &Args,
1259                      SourceLocation Loc = SourceLocation(),
1260                      SourceLocation StartLoc = SourceLocation());
1261 
1262   void EmitConstructorBody(FunctionArgList &Args);
1263   void EmitDestructorBody(FunctionArgList &Args);
1264   void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
1265   void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body);
1266   void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S);
1267 
1268   void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
1269                                   CallArgList &CallArgs);
1270   void EmitLambdaToBlockPointerBody(FunctionArgList &Args);
1271   void EmitLambdaBlockInvokeBody();
1272   void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
1273   void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD);
1274   void EmitAsanPrologueOrEpilogue(bool Prologue);
1275 
1276   /// \brief Emit the unified return block, trying to avoid its emission when
1277   /// possible.
1278   /// \return The debug location of the user written return statement if the
1279   /// return block is is avoided.
1280   llvm::DebugLoc EmitReturnBlock();
1281 
1282   /// FinishFunction - Complete IR generation of the current function. It is
1283   /// legal to call this function even if there is no current insertion point.
1284   void FinishFunction(SourceLocation EndLoc=SourceLocation());
1285 
1286   void StartThunk(llvm::Function *Fn, GlobalDecl GD,
1287                   const CGFunctionInfo &FnInfo);
1288 
1289   void EmitCallAndReturnForThunk(llvm::Value *Callee, const ThunkInfo *Thunk);
1290 
1291   /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
1292   void EmitMustTailThunk(const CXXMethodDecl *MD, llvm::Value *AdjustedThisPtr,
1293                          llvm::Value *Callee);
1294 
1295   /// GenerateThunk - Generate a thunk for the given method.
1296   void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1297                      GlobalDecl GD, const ThunkInfo &Thunk);
1298 
1299   llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn,
1300                                        const CGFunctionInfo &FnInfo,
1301                                        GlobalDecl GD, const ThunkInfo &Thunk);
1302 
1303   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1304                         FunctionArgList &Args);
1305 
1306   void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init,
1307                                ArrayRef<VarDecl *> ArrayIndexes);
1308 
1309   /// InitializeVTablePointer - Initialize the vtable pointer of the given
1310   /// subobject.
1311   ///
1312   void InitializeVTablePointer(BaseSubobject Base,
1313                                const CXXRecordDecl *NearestVBase,
1314                                CharUnits OffsetFromNearestVBase,
1315                                const CXXRecordDecl *VTableClass);
1316 
1317   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1318   void InitializeVTablePointers(BaseSubobject Base,
1319                                 const CXXRecordDecl *NearestVBase,
1320                                 CharUnits OffsetFromNearestVBase,
1321                                 bool BaseIsNonVirtualPrimaryBase,
1322                                 const CXXRecordDecl *VTableClass,
1323                                 VisitedVirtualBasesSetTy& VBases);
1324 
1325   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1326 
1327   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1328   /// to by This.
1329   llvm::Value *GetVTablePtr(llvm::Value *This, llvm::Type *Ty);
1330 
1331   enum CFITypeCheckKind {
1332     CFITCK_VCall,
1333     CFITCK_NVCall,
1334     CFITCK_DerivedCast,
1335     CFITCK_UnrelatedCast,
1336   };
1337 
1338   /// \brief Derived is the presumed address of an object of type T after a
1339   /// cast. If T is a polymorphic class type, emit a check that the virtual
1340   /// table for Derived belongs to a class derived from T.
1341   void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived,
1342                                  bool MayBeNull, CFITypeCheckKind TCK,
1343                                  SourceLocation Loc);
1344 
1345   /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
1346   /// If vptr CFI is enabled, emit a check that VTable is valid.
1347   void EmitVTablePtrCheckForCall(const CXXMethodDecl *MD, llvm::Value *VTable,
1348                                  CFITypeCheckKind TCK, SourceLocation Loc);
1349 
1350   /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
1351   /// RD using llvm.bitset.test.
1352   void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable,
1353                           CFITypeCheckKind TCK, SourceLocation Loc);
1354 
1355   /// CanDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given
1356   /// expr can be devirtualized.
1357   bool CanDevirtualizeMemberFunctionCall(const Expr *Base,
1358                                          const CXXMethodDecl *MD);
1359 
1360   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1361   /// given phase of destruction for a destructor.  The end result
1362   /// should call destructors on members and base classes in reverse
1363   /// order of their construction.
1364   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1365 
1366   /// ShouldInstrumentFunction - Return true if the current function should be
1367   /// instrumented with __cyg_profile_func_* calls
1368   bool ShouldInstrumentFunction();
1369 
1370   /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
1371   /// instrumentation function with the current function and the call site, if
1372   /// function instrumentation is enabled.
1373   void EmitFunctionInstrumentation(const char *Fn);
1374 
1375   /// EmitMCountInstrumentation - Emit call to .mcount.
1376   void EmitMCountInstrumentation();
1377 
1378   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1379   /// arguments for the given function. This is also responsible for naming the
1380   /// LLVM function arguments.
1381   void EmitFunctionProlog(const CGFunctionInfo &FI,
1382                           llvm::Function *Fn,
1383                           const FunctionArgList &Args);
1384 
1385   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1386   /// given temporary.
1387   void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
1388                           SourceLocation EndLoc);
1389 
1390   /// EmitStartEHSpec - Emit the start of the exception spec.
1391   void EmitStartEHSpec(const Decl *D);
1392 
1393   /// EmitEndEHSpec - Emit the end of the exception spec.
1394   void EmitEndEHSpec(const Decl *D);
1395 
1396   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
1397   llvm::BasicBlock *getTerminateLandingPad();
1398 
1399   /// getTerminateHandler - Return a handler (not a landing pad, just
1400   /// a catch handler) that just calls terminate.  This is used when
1401   /// a terminate scope encloses a try.
1402   llvm::BasicBlock *getTerminateHandler();
1403 
1404   llvm::Type *ConvertTypeForMem(QualType T);
1405   llvm::Type *ConvertType(QualType T);
1406   llvm::Type *ConvertType(const TypeDecl *T) {
1407     return ConvertType(getContext().getTypeDeclType(T));
1408   }
1409 
1410   /// LoadObjCSelf - Load the value of self. This function is only valid while
1411   /// generating code for an Objective-C method.
1412   llvm::Value *LoadObjCSelf();
1413 
1414   /// TypeOfSelfObject - Return type of object that this self represents.
1415   QualType TypeOfSelfObject();
1416 
1417   /// hasAggregateLLVMType - Return true if the specified AST type will map into
1418   /// an aggregate LLVM type or is void.
1419   static TypeEvaluationKind getEvaluationKind(QualType T);
1420 
1421   static bool hasScalarEvaluationKind(QualType T) {
1422     return getEvaluationKind(T) == TEK_Scalar;
1423   }
1424 
1425   static bool hasAggregateEvaluationKind(QualType T) {
1426     return getEvaluationKind(T) == TEK_Aggregate;
1427   }
1428 
1429   /// createBasicBlock - Create an LLVM basic block.
1430   llvm::BasicBlock *createBasicBlock(const Twine &name = "",
1431                                      llvm::Function *parent = nullptr,
1432                                      llvm::BasicBlock *before = nullptr) {
1433 #ifdef NDEBUG
1434     return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
1435 #else
1436     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
1437 #endif
1438   }
1439 
1440   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
1441   /// label maps to.
1442   JumpDest getJumpDestForLabel(const LabelDecl *S);
1443 
1444   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
1445   /// another basic block, simplify it. This assumes that no other code could
1446   /// potentially reference the basic block.
1447   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
1448 
1449   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
1450   /// adding a fall-through branch from the current insert block if
1451   /// necessary. It is legal to call this function even if there is no current
1452   /// insertion point.
1453   ///
1454   /// IsFinished - If true, indicates that the caller has finished emitting
1455   /// branches to the given block and does not expect to emit code into it. This
1456   /// means the block can be ignored if it is unreachable.
1457   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
1458 
1459   /// EmitBlockAfterUses - Emit the given block somewhere hopefully
1460   /// near its uses, and leave the insertion point in it.
1461   void EmitBlockAfterUses(llvm::BasicBlock *BB);
1462 
1463   /// EmitBranch - Emit a branch to the specified basic block from the current
1464   /// insert block, taking care to avoid creation of branches from dummy
1465   /// blocks. It is legal to call this function even if there is no current
1466   /// insertion point.
1467   ///
1468   /// This function clears the current insertion point. The caller should follow
1469   /// calls to this function with calls to Emit*Block prior to generation new
1470   /// code.
1471   void EmitBranch(llvm::BasicBlock *Block);
1472 
1473   /// HaveInsertPoint - True if an insertion point is defined. If not, this
1474   /// indicates that the current code being emitted is unreachable.
1475   bool HaveInsertPoint() const {
1476     return Builder.GetInsertBlock() != nullptr;
1477   }
1478 
1479   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
1480   /// emitted IR has a place to go. Note that by definition, if this function
1481   /// creates a block then that block is unreachable; callers may do better to
1482   /// detect when no insertion point is defined and simply skip IR generation.
1483   void EnsureInsertPoint() {
1484     if (!HaveInsertPoint())
1485       EmitBlock(createBasicBlock());
1486   }
1487 
1488   /// ErrorUnsupported - Print out an error that codegen doesn't support the
1489   /// specified stmt yet.
1490   void ErrorUnsupported(const Stmt *S, const char *Type);
1491 
1492   //===--------------------------------------------------------------------===//
1493   //                                  Helpers
1494   //===--------------------------------------------------------------------===//
1495 
1496   LValue MakeAddrLValue(llvm::Value *V, QualType T,
1497                         CharUnits Alignment = CharUnits()) {
1498     return LValue::MakeAddr(V, T, Alignment, getContext(),
1499                             CGM.getTBAAInfo(T));
1500   }
1501 
1502   LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T);
1503 
1504   /// CreateTempAlloca - This creates a alloca and inserts it into the entry
1505   /// block. The caller is responsible for setting an appropriate alignment on
1506   /// the alloca.
1507   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty,
1508                                      const Twine &Name = "tmp");
1509 
1510   /// InitTempAlloca - Provide an initial value for the given alloca.
1511   void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value);
1512 
1513   /// CreateIRTemp - Create a temporary IR object of the given type, with
1514   /// appropriate alignment. This routine should only be used when an temporary
1515   /// value needs to be stored into an alloca (for example, to avoid explicit
1516   /// PHI construction), but the type is the IR type, not the type appropriate
1517   /// for storing in memory.
1518   llvm::AllocaInst *CreateIRTemp(QualType T, const Twine &Name = "tmp");
1519 
1520   /// CreateMemTemp - Create a temporary memory object of the given type, with
1521   /// appropriate alignment.
1522   llvm::AllocaInst *CreateMemTemp(QualType T, const Twine &Name = "tmp");
1523 
1524   /// CreateAggTemp - Create a temporary memory object for the given
1525   /// aggregate type.
1526   AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
1527     CharUnits Alignment = getContext().getTypeAlignInChars(T);
1528     return AggValueSlot::forAddr(CreateMemTemp(T, Name), Alignment,
1529                                  T.getQualifiers(),
1530                                  AggValueSlot::IsNotDestructed,
1531                                  AggValueSlot::DoesNotNeedGCBarriers,
1532                                  AggValueSlot::IsNotAliased);
1533   }
1534 
1535   /// CreateInAllocaTmp - Create a temporary memory object for the given
1536   /// aggregate type.
1537   AggValueSlot CreateInAllocaTmp(QualType T, const Twine &Name = "inalloca");
1538 
1539   /// Emit a cast to void* in the appropriate address space.
1540   llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
1541 
1542   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
1543   /// expression and compare the result against zero, returning an Int1Ty value.
1544   llvm::Value *EvaluateExprAsBool(const Expr *E);
1545 
1546   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
1547   void EmitIgnoredExpr(const Expr *E);
1548 
1549   /// EmitAnyExpr - Emit code to compute the specified expression which can have
1550   /// any type.  The result is returned as an RValue struct.  If this is an
1551   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
1552   /// the result should be returned.
1553   ///
1554   /// \param ignoreResult True if the resulting value isn't used.
1555   RValue EmitAnyExpr(const Expr *E,
1556                      AggValueSlot aggSlot = AggValueSlot::ignored(),
1557                      bool ignoreResult = false);
1558 
1559   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
1560   // or the value of the expression, depending on how va_list is defined.
1561   llvm::Value *EmitVAListRef(const Expr *E);
1562 
1563   /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
1564   /// always be accessible even if no aggregate location is provided.
1565   RValue EmitAnyExprToTemp(const Expr *E);
1566 
1567   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
1568   /// arbitrary expression into the given memory location.
1569   void EmitAnyExprToMem(const Expr *E, llvm::Value *Location,
1570                         Qualifiers Quals, bool IsInitializer);
1571 
1572   void EmitAnyExprToExn(const Expr *E, llvm::Value *Addr);
1573 
1574   /// EmitExprAsInit - Emits the code necessary to initialize a
1575   /// location in memory with the given initializer.
1576   void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
1577                       bool capturedByInit);
1578 
1579   /// hasVolatileMember - returns true if aggregate type has a volatile
1580   /// member.
1581   bool hasVolatileMember(QualType T) {
1582     if (const RecordType *RT = T->getAs<RecordType>()) {
1583       const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
1584       return RD->hasVolatileMember();
1585     }
1586     return false;
1587   }
1588   /// EmitAggregateCopy - Emit an aggregate assignment.
1589   ///
1590   /// The difference to EmitAggregateCopy is that tail padding is not copied.
1591   /// This is required for correctness when assigning non-POD structures in C++.
1592   void EmitAggregateAssign(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1593                            QualType EltTy) {
1594     bool IsVolatile = hasVolatileMember(EltTy);
1595     EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, CharUnits::Zero(),
1596                       true);
1597   }
1598 
1599   void EmitAggregateCopyCtor(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1600                            QualType DestTy, QualType SrcTy) {
1601     CharUnits DestTypeAlign = getContext().getTypeAlignInChars(DestTy);
1602     CharUnits SrcTypeAlign = getContext().getTypeAlignInChars(SrcTy);
1603     EmitAggregateCopy(DestPtr, SrcPtr, SrcTy, /*IsVolatile=*/false,
1604                       std::min(DestTypeAlign, SrcTypeAlign),
1605                       /*IsAssignment=*/false);
1606   }
1607 
1608   /// EmitAggregateCopy - Emit an aggregate copy.
1609   ///
1610   /// \param isVolatile - True iff either the source or the destination is
1611   /// volatile.
1612   /// \param isAssignment - If false, allow padding to be copied.  This often
1613   /// yields more efficient.
1614   void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1615                          QualType EltTy, bool isVolatile=false,
1616                          CharUnits Alignment = CharUnits::Zero(),
1617                          bool isAssignment = false);
1618 
1619   /// StartBlock - Start new block named N. If insert block is a dummy block
1620   /// then reuse it.
1621   void StartBlock(const char *N);
1622 
1623   /// GetAddrOfLocalVar - Return the address of a local variable.
1624   llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) {
1625     llvm::Value *Res = LocalDeclMap[VD];
1626     assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!");
1627     return Res;
1628   }
1629 
1630   /// getOpaqueLValueMapping - Given an opaque value expression (which
1631   /// must be mapped to an l-value), return its mapping.
1632   const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
1633     assert(OpaqueValueMapping::shouldBindAsLValue(e));
1634 
1635     llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
1636       it = OpaqueLValues.find(e);
1637     assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
1638     return it->second;
1639   }
1640 
1641   /// getOpaqueRValueMapping - Given an opaque value expression (which
1642   /// must be mapped to an r-value), return its mapping.
1643   const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
1644     assert(!OpaqueValueMapping::shouldBindAsLValue(e));
1645 
1646     llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
1647       it = OpaqueRValues.find(e);
1648     assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
1649     return it->second;
1650   }
1651 
1652   /// getAccessedFieldNo - Given an encoded value and a result number, return
1653   /// the input field number being accessed.
1654   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
1655 
1656   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
1657   llvm::BasicBlock *GetIndirectGotoBlock();
1658 
1659   /// EmitNullInitialization - Generate code to set a value of the given type to
1660   /// null, If the type contains data member pointers, they will be initialized
1661   /// to -1 in accordance with the Itanium C++ ABI.
1662   void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty);
1663 
1664   // EmitVAArg - Generate code to get an argument from the passed in pointer
1665   // and update it accordingly. The return value is a pointer to the argument.
1666   // FIXME: We should be able to get rid of this method and use the va_arg
1667   // instruction in LLVM instead once it works well enough.
1668   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty);
1669 
1670   /// emitArrayLength - Compute the length of an array, even if it's a
1671   /// VLA, and drill down to the base element type.
1672   llvm::Value *emitArrayLength(const ArrayType *arrayType,
1673                                QualType &baseType,
1674                                llvm::Value *&addr);
1675 
1676   /// EmitVLASize - Capture all the sizes for the VLA expressions in
1677   /// the given variably-modified type and store them in the VLASizeMap.
1678   ///
1679   /// This function can be called with a null (unreachable) insert point.
1680   void EmitVariablyModifiedType(QualType Ty);
1681 
1682   /// getVLASize - Returns an LLVM value that corresponds to the size,
1683   /// in non-variably-sized elements, of a variable length array type,
1684   /// plus that largest non-variably-sized element type.  Assumes that
1685   /// the type has already been emitted with EmitVariablyModifiedType.
1686   std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla);
1687   std::pair<llvm::Value*,QualType> getVLASize(QualType vla);
1688 
1689   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
1690   /// generating code for an C++ member function.
1691   llvm::Value *LoadCXXThis() {
1692     assert(CXXThisValue && "no 'this' value for this function");
1693     return CXXThisValue;
1694   }
1695 
1696   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
1697   /// virtual bases.
1698   // FIXME: Every place that calls LoadCXXVTT is something
1699   // that needs to be abstracted properly.
1700   llvm::Value *LoadCXXVTT() {
1701     assert(CXXStructorImplicitParamValue && "no VTT value for this function");
1702     return CXXStructorImplicitParamValue;
1703   }
1704 
1705   /// LoadCXXStructorImplicitParam - Load the implicit parameter
1706   /// for a constructor/destructor.
1707   llvm::Value *LoadCXXStructorImplicitParam() {
1708     assert(CXXStructorImplicitParamValue &&
1709            "no implicit argument value for this function");
1710     return CXXStructorImplicitParamValue;
1711   }
1712 
1713   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
1714   /// complete class to the given direct base.
1715   llvm::Value *
1716   GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value,
1717                                         const CXXRecordDecl *Derived,
1718                                         const CXXRecordDecl *Base,
1719                                         bool BaseIsVirtual);
1720 
1721   /// GetAddressOfBaseClass - This function will add the necessary delta to the
1722   /// load of 'this' and returns address of the base class.
1723   llvm::Value *GetAddressOfBaseClass(llvm::Value *Value,
1724                                      const CXXRecordDecl *Derived,
1725                                      CastExpr::path_const_iterator PathBegin,
1726                                      CastExpr::path_const_iterator PathEnd,
1727                                      bool NullCheckValue, SourceLocation Loc);
1728 
1729   llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value,
1730                                         const CXXRecordDecl *Derived,
1731                                         CastExpr::path_const_iterator PathBegin,
1732                                         CastExpr::path_const_iterator PathEnd,
1733                                         bool NullCheckValue);
1734 
1735   /// GetVTTParameter - Return the VTT parameter that should be passed to a
1736   /// base constructor/destructor with virtual bases.
1737   /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
1738   /// to ItaniumCXXABI.cpp together with all the references to VTT.
1739   llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
1740                                bool Delegating);
1741 
1742   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
1743                                       CXXCtorType CtorType,
1744                                       const FunctionArgList &Args,
1745                                       SourceLocation Loc);
1746   // It's important not to confuse this and the previous function. Delegating
1747   // constructors are the C++0x feature. The constructor delegate optimization
1748   // is used to reduce duplication in the base and complete consturctors where
1749   // they are substantially the same.
1750   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
1751                                         const FunctionArgList &Args);
1752   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
1753                               bool ForVirtualBase, bool Delegating,
1754                               llvm::Value *This, const CXXConstructExpr *E);
1755 
1756   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
1757                               llvm::Value *This, llvm::Value *Src,
1758                               const CXXConstructExpr *E);
1759 
1760   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1761                                   const ConstantArrayType *ArrayTy,
1762                                   llvm::Value *ArrayPtr,
1763                                   const CXXConstructExpr *E,
1764                                   bool ZeroInitialization = false);
1765 
1766   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1767                                   llvm::Value *NumElements,
1768                                   llvm::Value *ArrayPtr,
1769                                   const CXXConstructExpr *E,
1770                                   bool ZeroInitialization = false);
1771 
1772   static Destroyer destroyCXXObject;
1773 
1774   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
1775                              bool ForVirtualBase, bool Delegating,
1776                              llvm::Value *This);
1777 
1778   void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
1779                                llvm::Type *ElementTy, llvm::Value *NewPtr,
1780                                llvm::Value *NumElements,
1781                                llvm::Value *AllocSizeWithoutCookie);
1782 
1783   void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
1784                         llvm::Value *Ptr);
1785 
1786   llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr);
1787   void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr);
1788 
1789   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
1790   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
1791 
1792   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
1793                       QualType DeleteTy);
1794 
1795   RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
1796                                   const Expr *Arg, bool IsDelete);
1797 
1798   llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E);
1799   llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE);
1800   llvm::Value* EmitCXXUuidofExpr(const CXXUuidofExpr *E);
1801 
1802   /// \brief Situations in which we might emit a check for the suitability of a
1803   ///        pointer or glvalue.
1804   enum TypeCheckKind {
1805     /// Checking the operand of a load. Must be suitably sized and aligned.
1806     TCK_Load,
1807     /// Checking the destination of a store. Must be suitably sized and aligned.
1808     TCK_Store,
1809     /// Checking the bound value in a reference binding. Must be suitably sized
1810     /// and aligned, but is not required to refer to an object (until the
1811     /// reference is used), per core issue 453.
1812     TCK_ReferenceBinding,
1813     /// Checking the object expression in a non-static data member access. Must
1814     /// be an object within its lifetime.
1815     TCK_MemberAccess,
1816     /// Checking the 'this' pointer for a call to a non-static member function.
1817     /// Must be an object within its lifetime.
1818     TCK_MemberCall,
1819     /// Checking the 'this' pointer for a constructor call.
1820     TCK_ConstructorCall,
1821     /// Checking the operand of a static_cast to a derived pointer type. Must be
1822     /// null or an object within its lifetime.
1823     TCK_DowncastPointer,
1824     /// Checking the operand of a static_cast to a derived reference type. Must
1825     /// be an object within its lifetime.
1826     TCK_DowncastReference,
1827     /// Checking the operand of a cast to a base object. Must be suitably sized
1828     /// and aligned.
1829     TCK_Upcast,
1830     /// Checking the operand of a cast to a virtual base object. Must be an
1831     /// object within its lifetime.
1832     TCK_UpcastToVirtualBase
1833   };
1834 
1835   /// \brief Whether any type-checking sanitizers are enabled. If \c false,
1836   /// calls to EmitTypeCheck can be skipped.
1837   bool sanitizePerformTypeCheck() const;
1838 
1839   /// \brief Emit a check that \p V is the address of storage of the
1840   /// appropriate size and alignment for an object of type \p Type.
1841   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
1842                      QualType Type, CharUnits Alignment = CharUnits::Zero(),
1843                      bool SkipNullCheck = false);
1844 
1845   /// \brief Emit a check that \p Base points into an array object, which
1846   /// we can access at index \p Index. \p Accessed should be \c false if we
1847   /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
1848   void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
1849                        QualType IndexType, bool Accessed);
1850 
1851   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1852                                        bool isInc, bool isPre);
1853   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1854                                          bool isInc, bool isPre);
1855 
1856   void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment,
1857                                llvm::Value *OffsetValue = nullptr) {
1858     Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment,
1859                                       OffsetValue);
1860   }
1861 
1862   //===--------------------------------------------------------------------===//
1863   //                            Declaration Emission
1864   //===--------------------------------------------------------------------===//
1865 
1866   /// EmitDecl - Emit a declaration.
1867   ///
1868   /// This function can be called with a null (unreachable) insert point.
1869   void EmitDecl(const Decl &D);
1870 
1871   /// EmitVarDecl - Emit a local variable declaration.
1872   ///
1873   /// This function can be called with a null (unreachable) insert point.
1874   void EmitVarDecl(const VarDecl &D);
1875 
1876   void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
1877                       bool capturedByInit);
1878   void EmitScalarInit(llvm::Value *init, LValue lvalue);
1879 
1880   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
1881                              llvm::Value *Address);
1882 
1883   /// \brief Determine whether the given initializer is trivial in the sense
1884   /// that it requires no code to be generated.
1885   bool isTrivialInitializer(const Expr *Init);
1886 
1887   /// EmitAutoVarDecl - Emit an auto variable declaration.
1888   ///
1889   /// This function can be called with a null (unreachable) insert point.
1890   void EmitAutoVarDecl(const VarDecl &D);
1891 
1892   class AutoVarEmission {
1893     friend class CodeGenFunction;
1894 
1895     const VarDecl *Variable;
1896 
1897     /// The alignment of the variable.
1898     CharUnits Alignment;
1899 
1900     /// The address of the alloca.  Null if the variable was emitted
1901     /// as a global constant.
1902     llvm::Value *Address;
1903 
1904     llvm::Value *NRVOFlag;
1905 
1906     /// True if the variable is a __block variable.
1907     bool IsByRef;
1908 
1909     /// True if the variable is of aggregate type and has a constant
1910     /// initializer.
1911     bool IsConstantAggregate;
1912 
1913     /// Non-null if we should use lifetime annotations.
1914     llvm::Value *SizeForLifetimeMarkers;
1915 
1916     struct Invalid {};
1917     AutoVarEmission(Invalid) : Variable(nullptr) {}
1918 
1919     AutoVarEmission(const VarDecl &variable)
1920       : Variable(&variable), Address(nullptr), NRVOFlag(nullptr),
1921         IsByRef(false), IsConstantAggregate(false),
1922         SizeForLifetimeMarkers(nullptr) {}
1923 
1924     bool wasEmittedAsGlobal() const { return Address == nullptr; }
1925 
1926   public:
1927     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
1928 
1929     bool useLifetimeMarkers() const {
1930       return SizeForLifetimeMarkers != nullptr;
1931     }
1932     llvm::Value *getSizeForLifetimeMarkers() const {
1933       assert(useLifetimeMarkers());
1934       return SizeForLifetimeMarkers;
1935     }
1936 
1937     /// Returns the raw, allocated address, which is not necessarily
1938     /// the address of the object itself.
1939     llvm::Value *getAllocatedAddress() const {
1940       return Address;
1941     }
1942 
1943     /// Returns the address of the object within this declaration.
1944     /// Note that this does not chase the forwarding pointer for
1945     /// __block decls.
1946     llvm::Value *getObjectAddress(CodeGenFunction &CGF) const {
1947       if (!IsByRef) return Address;
1948 
1949       auto F = CGF.getByRefValueLLVMField(Variable);
1950       return CGF.Builder.CreateStructGEP(F.first, Address, F.second,
1951                                          Variable->getNameAsString());
1952     }
1953   };
1954   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
1955   void EmitAutoVarInit(const AutoVarEmission &emission);
1956   void EmitAutoVarCleanups(const AutoVarEmission &emission);
1957   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
1958                               QualType::DestructionKind dtorKind);
1959 
1960   void EmitStaticVarDecl(const VarDecl &D,
1961                          llvm::GlobalValue::LinkageTypes Linkage);
1962 
1963   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
1964   void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, bool ArgIsPointer,
1965                     unsigned ArgNo);
1966 
1967   /// protectFromPeepholes - Protect a value that we're intending to
1968   /// store to the side, but which will probably be used later, from
1969   /// aggressive peepholing optimizations that might delete it.
1970   ///
1971   /// Pass the result to unprotectFromPeepholes to declare that
1972   /// protection is no longer required.
1973   ///
1974   /// There's no particular reason why this shouldn't apply to
1975   /// l-values, it's just that no existing peepholes work on pointers.
1976   PeepholeProtection protectFromPeepholes(RValue rvalue);
1977   void unprotectFromPeepholes(PeepholeProtection protection);
1978 
1979   //===--------------------------------------------------------------------===//
1980   //                             Statement Emission
1981   //===--------------------------------------------------------------------===//
1982 
1983   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
1984   void EmitStopPoint(const Stmt *S);
1985 
1986   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
1987   /// this function even if there is no current insertion point.
1988   ///
1989   /// This function may clear the current insertion point; callers should use
1990   /// EnsureInsertPoint if they wish to subsequently generate code without first
1991   /// calling EmitBlock, EmitBranch, or EmitStmt.
1992   void EmitStmt(const Stmt *S);
1993 
1994   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
1995   /// necessarily require an insertion point or debug information; typically
1996   /// because the statement amounts to a jump or a container of other
1997   /// statements.
1998   ///
1999   /// \return True if the statement was handled.
2000   bool EmitSimpleStmt(const Stmt *S);
2001 
2002   llvm::Value *EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
2003                                 AggValueSlot AVS = AggValueSlot::ignored());
2004   llvm::Value *EmitCompoundStmtWithoutScope(const CompoundStmt &S,
2005                                             bool GetLast = false,
2006                                             AggValueSlot AVS =
2007                                                 AggValueSlot::ignored());
2008 
2009   /// EmitLabel - Emit the block for the given label. It is legal to call this
2010   /// function even if there is no current insertion point.
2011   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
2012 
2013   void EmitLabelStmt(const LabelStmt &S);
2014   void EmitAttributedStmt(const AttributedStmt &S);
2015   void EmitGotoStmt(const GotoStmt &S);
2016   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
2017   void EmitIfStmt(const IfStmt &S);
2018 
2019   void EmitCondBrHints(llvm::LLVMContext &Context, llvm::BranchInst *CondBr,
2020                        ArrayRef<const Attr *> Attrs);
2021   void EmitWhileStmt(const WhileStmt &S,
2022                      ArrayRef<const Attr *> Attrs = None);
2023   void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None);
2024   void EmitForStmt(const ForStmt &S,
2025                    ArrayRef<const Attr *> Attrs = None);
2026   void EmitReturnStmt(const ReturnStmt &S);
2027   void EmitDeclStmt(const DeclStmt &S);
2028   void EmitBreakStmt(const BreakStmt &S);
2029   void EmitContinueStmt(const ContinueStmt &S);
2030   void EmitSwitchStmt(const SwitchStmt &S);
2031   void EmitDefaultStmt(const DefaultStmt &S);
2032   void EmitCaseStmt(const CaseStmt &S);
2033   void EmitCaseStmtRange(const CaseStmt &S);
2034   void EmitAsmStmt(const AsmStmt &S);
2035 
2036   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
2037   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
2038   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
2039   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
2040   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
2041 
2042   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2043   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2044 
2045   void EmitCXXTryStmt(const CXXTryStmt &S);
2046   void EmitSEHTryStmt(const SEHTryStmt &S);
2047   void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
2048   void EnterSEHTryStmt(const SEHTryStmt &S);
2049   void ExitSEHTryStmt(const SEHTryStmt &S);
2050 
2051   void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, StringRef Name,
2052                               QualType RetTy, FunctionArgList &Args,
2053                               const Stmt *OutlinedStmt);
2054 
2055   llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
2056                                             const SEHExceptStmt &Except);
2057 
2058   llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF,
2059                                              const SEHFinallyStmt &Finally);
2060 
2061   void EmitSEHExceptionCodeSave();
2062   llvm::Value *EmitSEHExceptionCode();
2063   llvm::Value *EmitSEHExceptionInfo();
2064   llvm::Value *EmitSEHAbnormalTermination();
2065 
2066   /// Scan the outlined statement for captures from the parent function. For
2067   /// each capture, mark the capture as escaped and emit a call to
2068   /// llvm.framerecover. Insert the framerecover result into the LocalDeclMap.
2069   void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
2070                           llvm::Value *ParentFP);
2071 
2072   void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
2073                            ArrayRef<const Attr *> Attrs = None);
2074 
2075   LValue InitCapturedStruct(const CapturedStmt &S);
2076   llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
2077   void GenerateCapturedStmtFunctionProlog(const CapturedStmt &S);
2078   llvm::Function *GenerateCapturedStmtFunctionEpilog(const CapturedStmt &S);
2079   llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
2080   llvm::Value *GenerateCapturedStmtArgument(const CapturedStmt &S);
2081   /// \brief Perform element by element copying of arrays with type \a
2082   /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
2083   /// generated by \a CopyGen.
2084   ///
2085   /// \param DestAddr Address of the destination array.
2086   /// \param SrcAddr Address of the source array.
2087   /// \param OriginalType Type of destination and source arrays.
2088   /// \param CopyGen Copying procedure that copies value of single array element
2089   /// to another single array element.
2090   void EmitOMPAggregateAssign(
2091       llvm::Value *DestAddr, llvm::Value *SrcAddr, QualType OriginalType,
2092       const llvm::function_ref<void(llvm::Value *, llvm::Value *)> &CopyGen);
2093   /// \brief Emit proper copying of data from one variable to another.
2094   ///
2095   /// \param OriginalType Original type of the copied variables.
2096   /// \param DestAddr Destination address.
2097   /// \param SrcAddr Source address.
2098   /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
2099   /// type of the base array element).
2100   /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
2101   /// the base array element).
2102   /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
2103   /// DestVD.
2104   void EmitOMPCopy(CodeGenFunction &CGF, QualType OriginalType,
2105                    llvm::Value *DestAddr, llvm::Value *SrcAddr,
2106                    const VarDecl *DestVD, const VarDecl *SrcVD,
2107                    const Expr *Copy);
2108   /// \brief Emit atomic update code for constructs: \a X = \a X \a BO \a E or
2109   /// \a X = \a E \a BO \a E.
2110   ///
2111   /// \param X Value to be updated.
2112   /// \param E Update value.
2113   /// \param BO Binary operation for update operation.
2114   /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
2115   /// expression, false otherwise.
2116   /// \param AO Atomic ordering of the generated atomic instructions.
2117   /// \param CommonGen Code generator for complex expressions that cannot be
2118   /// expressed through atomicrmw instruction.
2119   /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was
2120   /// generated, <false, RValue::get(nullptr)> otherwise.
2121   std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr(
2122       LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
2123       llvm::AtomicOrdering AO, SourceLocation Loc,
2124       const llvm::function_ref<RValue(RValue)> &CommonGen);
2125   bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
2126                                  OMPPrivateScope &PrivateScope);
2127   void EmitOMPPrivateClause(const OMPExecutableDirective &D,
2128                             OMPPrivateScope &PrivateScope);
2129   /// \brief Emit code for copyin clause in \a D directive. The next code is
2130   /// generated at the start of outlined functions for directives:
2131   /// \code
2132   /// threadprivate_var1 = master_threadprivate_var1;
2133   /// operator=(threadprivate_var2, master_threadprivate_var2);
2134   /// ...
2135   /// __kmpc_barrier(&loc, global_tid);
2136   /// \endcode
2137   ///
2138   /// \param D OpenMP directive possibly with 'copyin' clause(s).
2139   /// \returns true if at least one copyin variable is found, false otherwise.
2140   bool EmitOMPCopyinClause(const OMPExecutableDirective &D);
2141   /// \brief Emit initial code for lastprivate variables. If some variable is
2142   /// not also firstprivate, then the default initialization is used. Otherwise
2143   /// initialization of this variable is performed by EmitOMPFirstprivateClause
2144   /// method.
2145   ///
2146   /// \param D Directive that may have 'lastprivate' directives.
2147   /// \param PrivateScope Private scope for capturing lastprivate variables for
2148   /// proper codegen in internal captured statement.
2149   ///
2150   /// \returns true if there is at least one lastprivate variable, false
2151   /// otherwise.
2152   bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D,
2153                                     OMPPrivateScope &PrivateScope);
2154   /// \brief Emit final copying of lastprivate values to original variables at
2155   /// the end of the worksharing or simd directive.
2156   ///
2157   /// \param D Directive that has at least one 'lastprivate' directives.
2158   /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
2159   /// it is the last iteration of the loop code in associated directive, or to
2160   /// 'i1 false' otherwise. If this item is nullptr, no final check is required.
2161   void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D,
2162                                      llvm::Value *IsLastIterCond = nullptr);
2163   /// \brief Emit initial code for reduction variables. Creates reduction copies
2164   /// and initializes them with the values according to OpenMP standard.
2165   ///
2166   /// \param D Directive (possibly) with the 'reduction' clause.
2167   /// \param PrivateScope Private scope for capturing reduction variables for
2168   /// proper codegen in internal captured statement.
2169   ///
2170   void EmitOMPReductionClauseInit(const OMPExecutableDirective &D,
2171                                   OMPPrivateScope &PrivateScope);
2172   /// \brief Emit final update of reduction values to original variables at
2173   /// the end of the directive.
2174   ///
2175   /// \param D Directive that has at least one 'reduction' directives.
2176   void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D);
2177   /// \brief Emit initial code for linear variables. Creates private copies
2178   /// and initializes them with the values according to OpenMP standard.
2179   ///
2180   /// \param D Directive (possibly) with the 'linear' clause.
2181   void EmitOMPLinearClauseInit(const OMPLoopDirective &D);
2182 
2183   void EmitOMPParallelDirective(const OMPParallelDirective &S);
2184   void EmitOMPSimdDirective(const OMPSimdDirective &S);
2185   void EmitOMPForDirective(const OMPForDirective &S);
2186   void EmitOMPForSimdDirective(const OMPForSimdDirective &S);
2187   void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
2188   void EmitOMPSectionDirective(const OMPSectionDirective &S);
2189   void EmitOMPSingleDirective(const OMPSingleDirective &S);
2190   void EmitOMPMasterDirective(const OMPMasterDirective &S);
2191   void EmitOMPCriticalDirective(const OMPCriticalDirective &S);
2192   void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
2193   void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S);
2194   void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
2195   void EmitOMPTaskDirective(const OMPTaskDirective &S);
2196   void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
2197   void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
2198   void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
2199   void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S);
2200   void EmitOMPFlushDirective(const OMPFlushDirective &S);
2201   void EmitOMPOrderedDirective(const OMPOrderedDirective &S);
2202   void EmitOMPAtomicDirective(const OMPAtomicDirective &S);
2203   void EmitOMPTargetDirective(const OMPTargetDirective &S);
2204   void EmitOMPTeamsDirective(const OMPTeamsDirective &S);
2205   void
2206   EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S);
2207   void EmitOMPCancelDirective(const OMPCancelDirective &S);
2208 
2209   /// \brief Emit inner loop of the worksharing/simd construct.
2210   ///
2211   /// \param S Directive, for which the inner loop must be emitted.
2212   /// \param RequiresCleanup true, if directive has some associated private
2213   /// variables.
2214   /// \param LoopCond Bollean condition for loop continuation.
2215   /// \param IncExpr Increment expression for loop control variable.
2216   /// \param BodyGen Generator for the inner body of the inner loop.
2217   /// \param PostIncGen Genrator for post-increment code (required for ordered
2218   /// loop directvies).
2219   void EmitOMPInnerLoop(
2220       const Stmt &S, bool RequiresCleanup, const Expr *LoopCond,
2221       const Expr *IncExpr,
2222       const llvm::function_ref<void(CodeGenFunction &)> &BodyGen,
2223       const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen);
2224 
2225 private:
2226 
2227   /// Helpers for the OpenMP loop directives.
2228   void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit);
2229   void EmitOMPSimdInit(const OMPLoopDirective &D);
2230   void EmitOMPSimdFinal(const OMPLoopDirective &D);
2231   /// \brief Emit code for the worksharing loop-based directive.
2232   /// \return true, if this construct has any lastprivate clause, false -
2233   /// otherwise.
2234   bool EmitOMPWorksharingLoop(const OMPLoopDirective &S);
2235   void EmitOMPForOuterLoop(OpenMPScheduleClauseKind ScheduleKind,
2236                            const OMPLoopDirective &S,
2237                            OMPPrivateScope &LoopScope, bool Ordered,
2238                            llvm::Value *LB, llvm::Value *UB, llvm::Value *ST,
2239                            llvm::Value *IL, llvm::Value *Chunk);
2240   /// \brief Emit code for sections directive.
2241   OpenMPDirectiveKind EmitSections(const OMPExecutableDirective &S);
2242 
2243 public:
2244 
2245   //===--------------------------------------------------------------------===//
2246   //                         LValue Expression Emission
2247   //===--------------------------------------------------------------------===//
2248 
2249   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
2250   RValue GetUndefRValue(QualType Ty);
2251 
2252   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
2253   /// and issue an ErrorUnsupported style diagnostic (using the
2254   /// provided Name).
2255   RValue EmitUnsupportedRValue(const Expr *E,
2256                                const char *Name);
2257 
2258   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
2259   /// an ErrorUnsupported style diagnostic (using the provided Name).
2260   LValue EmitUnsupportedLValue(const Expr *E,
2261                                const char *Name);
2262 
2263   /// EmitLValue - Emit code to compute a designator that specifies the location
2264   /// of the expression.
2265   ///
2266   /// This can return one of two things: a simple address or a bitfield
2267   /// reference.  In either case, the LLVM Value* in the LValue structure is
2268   /// guaranteed to be an LLVM pointer type.
2269   ///
2270   /// If this returns a bitfield reference, nothing about the pointee type of
2271   /// the LLVM value is known: For example, it may not be a pointer to an
2272   /// integer.
2273   ///
2274   /// If this returns a normal address, and if the lvalue's C type is fixed
2275   /// size, this method guarantees that the returned pointer type will point to
2276   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
2277   /// variable length type, this is not possible.
2278   ///
2279   LValue EmitLValue(const Expr *E);
2280 
2281   /// \brief Same as EmitLValue but additionally we generate checking code to
2282   /// guard against undefined behavior.  This is only suitable when we know
2283   /// that the address will be used to access the object.
2284   LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
2285 
2286   RValue convertTempToRValue(llvm::Value *addr, QualType type,
2287                              SourceLocation Loc);
2288 
2289   void EmitAtomicInit(Expr *E, LValue lvalue);
2290 
2291   bool LValueIsSuitableForInlineAtomic(LValue Src);
2292   bool typeIsSuitableForInlineAtomic(QualType Ty, bool IsVolatile) const;
2293 
2294   RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
2295                         AggValueSlot Slot = AggValueSlot::ignored());
2296 
2297   RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
2298                         llvm::AtomicOrdering AO, bool IsVolatile = false,
2299                         AggValueSlot slot = AggValueSlot::ignored());
2300 
2301   void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
2302 
2303   void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
2304                        bool IsVolatile, bool isInit);
2305 
2306   std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
2307       LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
2308       llvm::AtomicOrdering Success = llvm::SequentiallyConsistent,
2309       llvm::AtomicOrdering Failure = llvm::SequentiallyConsistent,
2310       bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
2311 
2312   void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
2313                         const llvm::function_ref<RValue(RValue)> &UpdateOp,
2314                         bool IsVolatile);
2315 
2316   /// EmitToMemory - Change a scalar value from its value
2317   /// representation to its in-memory representation.
2318   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
2319 
2320   /// EmitFromMemory - Change a scalar value from its memory
2321   /// representation to its value representation.
2322   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
2323 
2324   /// EmitLoadOfScalar - Load a scalar value from an address, taking
2325   /// care to appropriately convert from the memory representation to
2326   /// the LLVM value representation.
2327   llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
2328                                 unsigned Alignment, QualType Ty,
2329                                 SourceLocation Loc,
2330                                 llvm::MDNode *TBAAInfo = nullptr,
2331                                 QualType TBAABaseTy = QualType(),
2332                                 uint64_t TBAAOffset = 0);
2333 
2334   /// EmitLoadOfScalar - Load a scalar value from an address, taking
2335   /// care to appropriately convert from the memory representation to
2336   /// the LLVM value representation.  The l-value must be a simple
2337   /// l-value.
2338   llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
2339 
2340   /// EmitStoreOfScalar - Store a scalar value to an address, taking
2341   /// care to appropriately convert from the memory representation to
2342   /// the LLVM value representation.
2343   void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
2344                          bool Volatile, unsigned Alignment, QualType Ty,
2345                          llvm::MDNode *TBAAInfo = nullptr, bool isInit = false,
2346                          QualType TBAABaseTy = QualType(),
2347                          uint64_t TBAAOffset = 0);
2348 
2349   /// EmitStoreOfScalar - Store a scalar value to an address, taking
2350   /// care to appropriately convert from the memory representation to
2351   /// the LLVM value representation.  The l-value must be a simple
2352   /// l-value.  The isInit flag indicates whether this is an initialization.
2353   /// If so, atomic qualifiers are ignored and the store is always non-atomic.
2354   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
2355 
2356   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
2357   /// this method emits the address of the lvalue, then loads the result as an
2358   /// rvalue, returning the rvalue.
2359   RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
2360   RValue EmitLoadOfExtVectorElementLValue(LValue V);
2361   RValue EmitLoadOfBitfieldLValue(LValue LV);
2362   RValue EmitLoadOfGlobalRegLValue(LValue LV);
2363 
2364   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
2365   /// lvalue, where both are guaranteed to the have the same type, and that type
2366   /// is 'Ty'.
2367   void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
2368   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
2369   void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
2370 
2371   /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
2372   /// as EmitStoreThroughLValue.
2373   ///
2374   /// \param Result [out] - If non-null, this will be set to a Value* for the
2375   /// bit-field contents after the store, appropriate for use as the result of
2376   /// an assignment to the bit-field.
2377   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2378                                       llvm::Value **Result=nullptr);
2379 
2380   /// Emit an l-value for an assignment (simple or compound) of complex type.
2381   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
2382   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
2383   LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
2384                                              llvm::Value *&Result);
2385 
2386   // Note: only available for agg return types
2387   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
2388   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
2389   // Note: only available for agg return types
2390   LValue EmitCallExprLValue(const CallExpr *E);
2391   // Note: only available for agg return types
2392   LValue EmitVAArgExprLValue(const VAArgExpr *E);
2393   LValue EmitDeclRefLValue(const DeclRefExpr *E);
2394   LValue EmitReadRegister(const VarDecl *VD);
2395   LValue EmitStringLiteralLValue(const StringLiteral *E);
2396   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
2397   LValue EmitPredefinedLValue(const PredefinedExpr *E);
2398   LValue EmitUnaryOpLValue(const UnaryOperator *E);
2399   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
2400                                 bool Accessed = false);
2401   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
2402   LValue EmitMemberExpr(const MemberExpr *E);
2403   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
2404   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
2405   LValue EmitInitListLValue(const InitListExpr *E);
2406   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
2407   LValue EmitCastLValue(const CastExpr *E);
2408   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
2409   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
2410 
2411   llvm::Value *EmitExtVectorElementLValue(LValue V);
2412 
2413   RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
2414 
2415   class ConstantEmission {
2416     llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
2417     ConstantEmission(llvm::Constant *C, bool isReference)
2418       : ValueAndIsReference(C, isReference) {}
2419   public:
2420     ConstantEmission() {}
2421     static ConstantEmission forReference(llvm::Constant *C) {
2422       return ConstantEmission(C, true);
2423     }
2424     static ConstantEmission forValue(llvm::Constant *C) {
2425       return ConstantEmission(C, false);
2426     }
2427 
2428     explicit operator bool() const {
2429       return ValueAndIsReference.getOpaqueValue() != nullptr;
2430     }
2431 
2432     bool isReference() const { return ValueAndIsReference.getInt(); }
2433     LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
2434       assert(isReference());
2435       return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
2436                                             refExpr->getType());
2437     }
2438 
2439     llvm::Constant *getValue() const {
2440       assert(!isReference());
2441       return ValueAndIsReference.getPointer();
2442     }
2443   };
2444 
2445   ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
2446 
2447   RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
2448                                 AggValueSlot slot = AggValueSlot::ignored());
2449   LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
2450 
2451   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
2452                               const ObjCIvarDecl *Ivar);
2453   LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
2454   LValue EmitLValueForLambdaField(const FieldDecl *Field);
2455 
2456   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
2457   /// if the Field is a reference, this will return the address of the reference
2458   /// and not the address of the value stored in the reference.
2459   LValue EmitLValueForFieldInitialization(LValue Base,
2460                                           const FieldDecl* Field);
2461 
2462   LValue EmitLValueForIvar(QualType ObjectTy,
2463                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
2464                            unsigned CVRQualifiers);
2465 
2466   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
2467   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
2468   LValue EmitLambdaLValue(const LambdaExpr *E);
2469   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
2470   LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
2471 
2472   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
2473   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
2474   LValue EmitStmtExprLValue(const StmtExpr *E);
2475   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
2476   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
2477   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init);
2478 
2479   //===--------------------------------------------------------------------===//
2480   //                         Scalar Expression Emission
2481   //===--------------------------------------------------------------------===//
2482 
2483   /// EmitCall - Generate a call of the given function, expecting the given
2484   /// result type, and using the given argument list which specifies both the
2485   /// LLVM arguments and the types they were derived from.
2486   ///
2487   /// \param TargetDecl - If given, the decl of the function in a direct call;
2488   /// used to set attributes on the call (noreturn, etc.).
2489   RValue EmitCall(const CGFunctionInfo &FnInfo,
2490                   llvm::Value *Callee,
2491                   ReturnValueSlot ReturnValue,
2492                   const CallArgList &Args,
2493                   const Decl *TargetDecl = nullptr,
2494                   llvm::Instruction **callOrInvoke = nullptr);
2495 
2496   RValue EmitCall(QualType FnType, llvm::Value *Callee, const CallExpr *E,
2497                   ReturnValueSlot ReturnValue,
2498                   const Decl *TargetDecl = nullptr,
2499                   llvm::Value *Chain = nullptr);
2500   RValue EmitCallExpr(const CallExpr *E,
2501                       ReturnValueSlot ReturnValue = ReturnValueSlot());
2502 
2503   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
2504                                   const Twine &name = "");
2505   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
2506                                   ArrayRef<llvm::Value*> args,
2507                                   const Twine &name = "");
2508   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
2509                                           const Twine &name = "");
2510   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
2511                                           ArrayRef<llvm::Value*> args,
2512                                           const Twine &name = "");
2513 
2514   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2515                                   ArrayRef<llvm::Value *> Args,
2516                                   const Twine &Name = "");
2517   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2518                                   const Twine &Name = "");
2519   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
2520                                          ArrayRef<llvm::Value*> args,
2521                                          const Twine &name = "");
2522   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
2523                                          const Twine &name = "");
2524   void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
2525                                        ArrayRef<llvm::Value*> args);
2526 
2527   llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
2528                                          NestedNameSpecifier *Qual,
2529                                          llvm::Type *Ty);
2530 
2531   llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
2532                                                    CXXDtorType Type,
2533                                                    const CXXRecordDecl *RD);
2534 
2535   RValue
2536   EmitCXXMemberOrOperatorCall(const CXXMethodDecl *MD, llvm::Value *Callee,
2537                               ReturnValueSlot ReturnValue, llvm::Value *This,
2538                               llvm::Value *ImplicitParam,
2539                               QualType ImplicitParamTy, const CallExpr *E);
2540   RValue EmitCXXStructorCall(const CXXMethodDecl *MD, llvm::Value *Callee,
2541                              ReturnValueSlot ReturnValue, llvm::Value *This,
2542                              llvm::Value *ImplicitParam,
2543                              QualType ImplicitParamTy, const CallExpr *E,
2544                              StructorType Type);
2545   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
2546                                ReturnValueSlot ReturnValue);
2547   RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE,
2548                                                const CXXMethodDecl *MD,
2549                                                ReturnValueSlot ReturnValue,
2550                                                bool HasQualifier,
2551                                                NestedNameSpecifier *Qualifier,
2552                                                bool IsArrow, const Expr *Base);
2553   // Compute the object pointer.
2554   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
2555                                       ReturnValueSlot ReturnValue);
2556 
2557   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
2558                                        const CXXMethodDecl *MD,
2559                                        ReturnValueSlot ReturnValue);
2560 
2561   RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
2562                                 ReturnValueSlot ReturnValue);
2563 
2564 
2565   RValue EmitBuiltinExpr(const FunctionDecl *FD,
2566                          unsigned BuiltinID, const CallExpr *E,
2567                          ReturnValueSlot ReturnValue);
2568 
2569   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
2570 
2571   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
2572   /// is unhandled by the current target.
2573   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2574 
2575   llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
2576                                              const llvm::CmpInst::Predicate Fp,
2577                                              const llvm::CmpInst::Predicate Ip,
2578                                              const llvm::Twine &Name = "");
2579   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2580 
2581   llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
2582                                          unsigned LLVMIntrinsic,
2583                                          unsigned AltLLVMIntrinsic,
2584                                          const char *NameHint,
2585                                          unsigned Modifier,
2586                                          const CallExpr *E,
2587                                          SmallVectorImpl<llvm::Value *> &Ops,
2588                                          llvm::Value *Align = nullptr);
2589   llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
2590                                           unsigned Modifier, llvm::Type *ArgTy,
2591                                           const CallExpr *E);
2592   llvm::Value *EmitNeonCall(llvm::Function *F,
2593                             SmallVectorImpl<llvm::Value*> &O,
2594                             const char *name,
2595                             unsigned shift = 0, bool rightshift = false);
2596   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
2597   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
2598                                    bool negateForRightShift);
2599   llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
2600                                  llvm::Type *Ty, bool usgn, const char *name);
2601   // Helper functions for EmitAArch64BuiltinExpr.
2602   llvm::Value *vectorWrapScalar8(llvm::Value *Op);
2603   llvm::Value *vectorWrapScalar16(llvm::Value *Op);
2604   llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2605 
2606   llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
2607   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2608   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2609   llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2610   llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2611   llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2612 
2613   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
2614   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
2615   llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
2616   llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
2617   llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
2618   llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
2619                                 const ObjCMethodDecl *MethodWithObjects);
2620   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
2621   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
2622                              ReturnValueSlot Return = ReturnValueSlot());
2623 
2624   /// Retrieves the default cleanup kind for an ARC cleanup.
2625   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
2626   CleanupKind getARCCleanupKind() {
2627     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
2628              ? NormalAndEHCleanup : NormalCleanup;
2629   }
2630 
2631   // ARC primitives.
2632   void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr);
2633   void EmitARCDestroyWeak(llvm::Value *addr);
2634   llvm::Value *EmitARCLoadWeak(llvm::Value *addr);
2635   llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr);
2636   llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr,
2637                                 bool ignored);
2638   void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src);
2639   void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src);
2640   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
2641   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
2642   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
2643                                   bool resultIgnored);
2644   llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value,
2645                                       bool resultIgnored);
2646   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
2647   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
2648   llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
2649   void EmitARCDestroyStrong(llvm::Value *addr, ARCPreciseLifetime_t precise);
2650   void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
2651   llvm::Value *EmitARCAutorelease(llvm::Value *value);
2652   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
2653   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
2654   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
2655 
2656   std::pair<LValue,llvm::Value*>
2657   EmitARCStoreAutoreleasing(const BinaryOperator *e);
2658   std::pair<LValue,llvm::Value*>
2659   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
2660 
2661   llvm::Value *EmitObjCThrowOperand(const Expr *expr);
2662 
2663   llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr);
2664   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
2665   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
2666 
2667   llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
2668   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
2669   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
2670 
2671   void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
2672 
2673   static Destroyer destroyARCStrongImprecise;
2674   static Destroyer destroyARCStrongPrecise;
2675   static Destroyer destroyARCWeak;
2676 
2677   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
2678   llvm::Value *EmitObjCAutoreleasePoolPush();
2679   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
2680   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
2681   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
2682 
2683   /// \brief Emits a reference binding to the passed in expression.
2684   RValue EmitReferenceBindingToExpr(const Expr *E);
2685 
2686   //===--------------------------------------------------------------------===//
2687   //                           Expression Emission
2688   //===--------------------------------------------------------------------===//
2689 
2690   // Expressions are broken into three classes: scalar, complex, aggregate.
2691 
2692   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
2693   /// scalar type, returning the result.
2694   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
2695 
2696   /// EmitScalarConversion - Emit a conversion from the specified type to the
2697   /// specified destination type, both of which are LLVM scalar types.
2698   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
2699                                     QualType DstTy);
2700 
2701   /// EmitComplexToScalarConversion - Emit a conversion from the specified
2702   /// complex type to the specified destination type, where the destination type
2703   /// is an LLVM scalar type.
2704   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
2705                                              QualType DstTy);
2706 
2707 
2708   /// EmitAggExpr - Emit the computation of the specified expression
2709   /// of aggregate type.  The result is computed into the given slot,
2710   /// which may be null to indicate that the value is not needed.
2711   void EmitAggExpr(const Expr *E, AggValueSlot AS);
2712 
2713   /// EmitAggExprToLValue - Emit the computation of the specified expression of
2714   /// aggregate type into a temporary LValue.
2715   LValue EmitAggExprToLValue(const Expr *E);
2716 
2717   /// EmitGCMemmoveCollectable - Emit special API for structs with object
2718   /// pointers.
2719   void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr,
2720                                 QualType Ty);
2721 
2722   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
2723   /// make sure it survives garbage collection until this point.
2724   void EmitExtendGCLifetime(llvm::Value *object);
2725 
2726   /// EmitComplexExpr - Emit the computation of the specified expression of
2727   /// complex type, returning the result.
2728   ComplexPairTy EmitComplexExpr(const Expr *E,
2729                                 bool IgnoreReal = false,
2730                                 bool IgnoreImag = false);
2731 
2732   /// EmitComplexExprIntoLValue - Emit the given expression of complex
2733   /// type and place its result into the specified l-value.
2734   void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
2735 
2736   /// EmitStoreOfComplex - Store a complex number into the specified l-value.
2737   void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
2738 
2739   /// EmitLoadOfComplex - Load a complex number from the specified l-value.
2740   ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
2741 
2742   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
2743   /// global variable that has already been created for it.  If the initializer
2744   /// has a different type than GV does, this may free GV and return a different
2745   /// one.  Otherwise it just returns GV.
2746   llvm::GlobalVariable *
2747   AddInitializerToStaticVarDecl(const VarDecl &D,
2748                                 llvm::GlobalVariable *GV);
2749 
2750 
2751   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
2752   /// variable with global storage.
2753   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
2754                                 bool PerformInit);
2755 
2756   llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::Constant *Dtor,
2757                                    llvm::Constant *Addr);
2758 
2759   /// Call atexit() with a function that passes the given argument to
2760   /// the given function.
2761   void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn,
2762                                     llvm::Constant *addr);
2763 
2764   /// Emit code in this function to perform a guarded variable
2765   /// initialization.  Guarded initializations are used when it's not
2766   /// possible to prove that an initialization will be done exactly
2767   /// once, e.g. with a static local variable or a static data member
2768   /// of a class template.
2769   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
2770                           bool PerformInit);
2771 
2772   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
2773   /// variables.
2774   void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
2775                                  ArrayRef<llvm::Function *> CXXThreadLocals,
2776                                  llvm::GlobalVariable *Guard = nullptr);
2777 
2778   /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
2779   /// variables.
2780   void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn,
2781                                   const std::vector<std::pair<llvm::WeakVH,
2782                                   llvm::Constant*> > &DtorsAndObjects);
2783 
2784   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
2785                                         const VarDecl *D,
2786                                         llvm::GlobalVariable *Addr,
2787                                         bool PerformInit);
2788 
2789   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
2790 
2791   void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src,
2792                                   const Expr *Exp);
2793 
2794   void enterFullExpression(const ExprWithCleanups *E) {
2795     if (E->getNumObjects() == 0) return;
2796     enterNonTrivialFullExpression(E);
2797   }
2798   void enterNonTrivialFullExpression(const ExprWithCleanups *E);
2799 
2800   void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
2801 
2802   void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest);
2803 
2804   RValue EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest = nullptr);
2805 
2806   //===--------------------------------------------------------------------===//
2807   //                         Annotations Emission
2808   //===--------------------------------------------------------------------===//
2809 
2810   /// Emit an annotation call (intrinsic or builtin).
2811   llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
2812                                   llvm::Value *AnnotatedVal,
2813                                   StringRef AnnotationStr,
2814                                   SourceLocation Location);
2815 
2816   /// Emit local annotations for the local variable V, declared by D.
2817   void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
2818 
2819   /// Emit field annotations for the given field & value. Returns the
2820   /// annotation result.
2821   llvm::Value *EmitFieldAnnotations(const FieldDecl *D, llvm::Value *V);
2822 
2823   //===--------------------------------------------------------------------===//
2824   //                             Internal Helpers
2825   //===--------------------------------------------------------------------===//
2826 
2827   /// ContainsLabel - Return true if the statement contains a label in it.  If
2828   /// this statement is not executed normally, it not containing a label means
2829   /// that we can just remove the code.
2830   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
2831 
2832   /// containsBreak - Return true if the statement contains a break out of it.
2833   /// If the statement (recursively) contains a switch or loop with a break
2834   /// inside of it, this is fine.
2835   static bool containsBreak(const Stmt *S);
2836 
2837   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2838   /// to a constant, or if it does but contains a label, return false.  If it
2839   /// constant folds return true and set the boolean result in Result.
2840   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result);
2841 
2842   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2843   /// to a constant, or if it does but contains a label, return false.  If it
2844   /// constant folds return true and set the folded value.
2845   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result);
2846 
2847   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
2848   /// if statement) to the specified blocks.  Based on the condition, this might
2849   /// try to simplify the codegen of the conditional based on the branch.
2850   /// TrueCount should be the number of times we expect the condition to
2851   /// evaluate to true based on PGO data.
2852   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
2853                             llvm::BasicBlock *FalseBlock, uint64_t TrueCount);
2854 
2855   /// \brief Emit a description of a type in a format suitable for passing to
2856   /// a runtime sanitizer handler.
2857   llvm::Constant *EmitCheckTypeDescriptor(QualType T);
2858 
2859   /// \brief Convert a value into a format suitable for passing to a runtime
2860   /// sanitizer handler.
2861   llvm::Value *EmitCheckValue(llvm::Value *V);
2862 
2863   /// \brief Emit a description of a source location in a format suitable for
2864   /// passing to a runtime sanitizer handler.
2865   llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
2866 
2867   /// \brief Create a basic block that will call a handler function in a
2868   /// sanitizer runtime with the provided arguments, and create a conditional
2869   /// branch to it.
2870   void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
2871                  StringRef CheckName, ArrayRef<llvm::Constant *> StaticArgs,
2872                  ArrayRef<llvm::Value *> DynamicArgs);
2873 
2874   /// \brief Create a basic block that will call the trap intrinsic, and emit a
2875   /// conditional branch to it, for the -ftrapv checks.
2876   void EmitTrapCheck(llvm::Value *Checked);
2877 
2878   /// \brief Create a check for a function parameter that may potentially be
2879   /// declared as non-null.
2880   void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc,
2881                            const FunctionDecl *FD, unsigned ParmNum);
2882 
2883   /// EmitCallArg - Emit a single call argument.
2884   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
2885 
2886   /// EmitDelegateCallArg - We are performing a delegate call; that
2887   /// is, the current function is delegating to another one.  Produce
2888   /// a r-value suitable for passing the given parameter.
2889   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
2890                            SourceLocation loc);
2891 
2892   /// SetFPAccuracy - Set the minimum required accuracy of the given floating
2893   /// point operation, expressed as the maximum relative error in ulp.
2894   void SetFPAccuracy(llvm::Value *Val, float Accuracy);
2895 
2896 private:
2897   llvm::MDNode *getRangeForLoadFromType(QualType Ty);
2898   void EmitReturnOfRValue(RValue RV, QualType Ty);
2899 
2900   void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
2901 
2902   llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4>
2903   DeferredReplacements;
2904 
2905   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
2906   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
2907   ///
2908   /// \param AI - The first function argument of the expansion.
2909   void ExpandTypeFromArgs(QualType Ty, LValue Dst,
2910                           SmallVectorImpl<llvm::Argument *>::iterator &AI);
2911 
2912   /// ExpandTypeToArgs - Expand an RValue \arg RV, with the LLVM type for \arg
2913   /// Ty, into individual arguments on the provided vector \arg IRCallArgs,
2914   /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand.
2915   void ExpandTypeToArgs(QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy,
2916                         SmallVectorImpl<llvm::Value *> &IRCallArgs,
2917                         unsigned &IRCallArgPos);
2918 
2919   llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
2920                             const Expr *InputExpr, std::string &ConstraintStr);
2921 
2922   llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
2923                                   LValue InputValue, QualType InputType,
2924                                   std::string &ConstraintStr,
2925                                   SourceLocation Loc);
2926 
2927 public:
2928   /// EmitCallArgs - Emit call arguments for a function.
2929   template <typename T>
2930   void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo,
2931                     CallExpr::const_arg_iterator ArgBeg,
2932                     CallExpr::const_arg_iterator ArgEnd,
2933                     const FunctionDecl *CalleeDecl = nullptr,
2934                     unsigned ParamsToSkip = 0) {
2935     SmallVector<QualType, 16> ArgTypes;
2936     CallExpr::const_arg_iterator Arg = ArgBeg;
2937 
2938     assert((ParamsToSkip == 0 || CallArgTypeInfo) &&
2939            "Can't skip parameters if type info is not provided");
2940     if (CallArgTypeInfo) {
2941       // First, use the argument types that the type info knows about
2942       for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip,
2943                 E = CallArgTypeInfo->param_type_end();
2944            I != E; ++I, ++Arg) {
2945         assert(Arg != ArgEnd && "Running over edge of argument list!");
2946         assert(
2947             ((*I)->isVariablyModifiedType() ||
2948              getContext()
2949                      .getCanonicalType((*I).getNonReferenceType())
2950                      .getTypePtr() ==
2951                  getContext().getCanonicalType(Arg->getType()).getTypePtr()) &&
2952             "type mismatch in call argument!");
2953         ArgTypes.push_back(*I);
2954       }
2955     }
2956 
2957     // Either we've emitted all the call args, or we have a call to variadic
2958     // function.
2959     assert(
2960         (Arg == ArgEnd || !CallArgTypeInfo || CallArgTypeInfo->isVariadic()) &&
2961         "Extra arguments in non-variadic function!");
2962 
2963     // If we still have any arguments, emit them using the type of the argument.
2964     for (; Arg != ArgEnd; ++Arg)
2965       ArgTypes.push_back(getVarArgType(*Arg));
2966 
2967     EmitCallArgs(Args, ArgTypes, ArgBeg, ArgEnd, CalleeDecl, ParamsToSkip);
2968   }
2969 
2970   void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes,
2971                     CallExpr::const_arg_iterator ArgBeg,
2972                     CallExpr::const_arg_iterator ArgEnd,
2973                     const FunctionDecl *CalleeDecl = nullptr,
2974                     unsigned ParamsToSkip = 0);
2975 
2976 private:
2977   QualType getVarArgType(const Expr *Arg);
2978 
2979   const TargetCodeGenInfo &getTargetHooks() const {
2980     return CGM.getTargetCodeGenInfo();
2981   }
2982 
2983   void EmitDeclMetadata();
2984 
2985   CodeGenModule::ByrefHelpers *
2986   buildByrefHelpers(llvm::StructType &byrefType,
2987                     const AutoVarEmission &emission);
2988 
2989   void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
2990 
2991   /// GetPointeeAlignment - Given an expression with a pointer type, emit the
2992   /// value and compute our best estimate of the alignment of the pointee.
2993   std::pair<llvm::Value*, unsigned> EmitPointerWithAlignment(const Expr *Addr);
2994 
2995   llvm::Value *GetValueForARMHint(unsigned BuiltinID);
2996 };
2997 
2998 /// Helper class with most of the code for saving a value for a
2999 /// conditional expression cleanup.
3000 struct DominatingLLVMValue {
3001   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
3002 
3003   /// Answer whether the given value needs extra work to be saved.
3004   static bool needsSaving(llvm::Value *value) {
3005     // If it's not an instruction, we don't need to save.
3006     if (!isa<llvm::Instruction>(value)) return false;
3007 
3008     // If it's an instruction in the entry block, we don't need to save.
3009     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
3010     return (block != &block->getParent()->getEntryBlock());
3011   }
3012 
3013   /// Try to save the given value.
3014   static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
3015     if (!needsSaving(value)) return saved_type(value, false);
3016 
3017     // Otherwise we need an alloca.
3018     llvm::Value *alloca =
3019       CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save");
3020     CGF.Builder.CreateStore(value, alloca);
3021 
3022     return saved_type(alloca, true);
3023   }
3024 
3025   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
3026     if (!value.getInt()) return value.getPointer();
3027     return CGF.Builder.CreateLoad(value.getPointer());
3028   }
3029 };
3030 
3031 /// A partial specialization of DominatingValue for llvm::Values that
3032 /// might be llvm::Instructions.
3033 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
3034   typedef T *type;
3035   static type restore(CodeGenFunction &CGF, saved_type value) {
3036     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
3037   }
3038 };
3039 
3040 /// A specialization of DominatingValue for RValue.
3041 template <> struct DominatingValue<RValue> {
3042   typedef RValue type;
3043   class saved_type {
3044     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
3045                 AggregateAddress, ComplexAddress };
3046 
3047     llvm::Value *Value;
3048     Kind K;
3049     saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {}
3050 
3051   public:
3052     static bool needsSaving(RValue value);
3053     static saved_type save(CodeGenFunction &CGF, RValue value);
3054     RValue restore(CodeGenFunction &CGF);
3055 
3056     // implementations in CGExprCXX.cpp
3057   };
3058 
3059   static bool needsSaving(type value) {
3060     return saved_type::needsSaving(value);
3061   }
3062   static saved_type save(CodeGenFunction &CGF, type value) {
3063     return saved_type::save(CGF, value);
3064   }
3065   static type restore(CodeGenFunction &CGF, saved_type value) {
3066     return value.restore(CGF);
3067   }
3068 };
3069 
3070 }  // end namespace CodeGen
3071 }  // end namespace clang
3072 
3073 #endif
3074