1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the internal per-function state used for llvm translation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef CLANG_CODEGEN_CODEGENFUNCTION_H
15 #define CLANG_CODEGEN_CODEGENFUNCTION_H
16 
17 #include "clang/AST/Type.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/ExprObjC.h"
20 #include "clang/AST/CharUnits.h"
21 #include "clang/Basic/ABI.h"
22 #include "clang/Basic/TargetInfo.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/Support/ValueHandle.h"
26 #include "CodeGenModule.h"
27 #include "CGBlocks.h"
28 #include "CGBuilder.h"
29 #include "CGCall.h"
30 #include "CGValue.h"
31 
32 namespace llvm {
33   class BasicBlock;
34   class LLVMContext;
35   class MDNode;
36   class Module;
37   class SwitchInst;
38   class Twine;
39   class Value;
40   class CallSite;
41 }
42 
43 namespace clang {
44   class APValue;
45   class ASTContext;
46   class CXXDestructorDecl;
47   class CXXTryStmt;
48   class Decl;
49   class EnumConstantDecl;
50   class FunctionDecl;
51   class FunctionProtoType;
52   class LabelStmt;
53   class ObjCContainerDecl;
54   class ObjCInterfaceDecl;
55   class ObjCIvarDecl;
56   class ObjCMethodDecl;
57   class ObjCImplementationDecl;
58   class ObjCPropertyImplDecl;
59   class TargetInfo;
60   class TargetCodeGenInfo;
61   class VarDecl;
62   class ObjCForCollectionStmt;
63   class ObjCAtTryStmt;
64   class ObjCAtThrowStmt;
65   class ObjCAtSynchronizedStmt;
66 
67 namespace CodeGen {
68   class CodeGenTypes;
69   class CGDebugInfo;
70   class CGFunctionInfo;
71   class CGRecordLayout;
72   class CGBlockInfo;
73   class CGCXXABI;
74 
75 /// A branch fixup.  These are required when emitting a goto to a
76 /// label which hasn't been emitted yet.  The goto is optimistically
77 /// emitted as a branch to the basic block for the label, and (if it
78 /// occurs in a scope with non-trivial cleanups) a fixup is added to
79 /// the innermost cleanup.  When a (normal) cleanup is popped, any
80 /// unresolved fixups in that scope are threaded through the cleanup.
81 struct BranchFixup {
82   /// The block containing the terminator which needs to be modified
83   /// into a switch if this fixup is resolved into the current scope.
84   /// If null, LatestBranch points directly to the destination.
85   llvm::BasicBlock *OptimisticBranchBlock;
86 
87   /// The ultimate destination of the branch.
88   ///
89   /// This can be set to null to indicate that this fixup was
90   /// successfully resolved.
91   llvm::BasicBlock *Destination;
92 
93   /// The destination index value.
94   unsigned DestinationIndex;
95 
96   /// The initial branch of the fixup.
97   llvm::BranchInst *InitialBranch;
98 };
99 
100 /// A metaprogramming class which decides whether a type is a subclass
101 /// of llvm::Value that needs to be saved if it's used in a
102 /// conditional cleanup.
103 template
104   <class T,
105    bool mustSave =
106      llvm::is_base_of<llvm::Value, llvm::remove_pointer<T> >::value
107      && !llvm::is_base_of<llvm::Constant, llvm::remove_pointer<T> >::value
108      && !llvm::is_base_of<llvm::BasicBlock, llvm::remove_pointer<T> >::value>
109 struct SavedValueInCond {
110   typedef T type;
111   typedef T saved_type;
112   static bool needsSaving(type value) { return false; }
113   static saved_type save(CodeGenFunction &CGF, type value) { return value; }
114   static type restore(CodeGenFunction &CGF, saved_type value) { return value; }
115 };
116 // Partial specialization for true arguments at end of file.
117 
118 enum CleanupKind {
119   EHCleanup = 0x1,
120   NormalCleanup = 0x2,
121   NormalAndEHCleanup = EHCleanup | NormalCleanup,
122 
123   InactiveCleanup = 0x4,
124   InactiveEHCleanup = EHCleanup | InactiveCleanup,
125   InactiveNormalCleanup = NormalCleanup | InactiveCleanup,
126   InactiveNormalAndEHCleanup = NormalAndEHCleanup | InactiveCleanup
127 };
128 
129 /// A stack of scopes which respond to exceptions, including cleanups
130 /// and catch blocks.
131 class EHScopeStack {
132 public:
133   /// A saved depth on the scope stack.  This is necessary because
134   /// pushing scopes onto the stack invalidates iterators.
135   class stable_iterator {
136     friend class EHScopeStack;
137 
138     /// Offset from StartOfData to EndOfBuffer.
139     ptrdiff_t Size;
140 
141     stable_iterator(ptrdiff_t Size) : Size(Size) {}
142 
143   public:
144     static stable_iterator invalid() { return stable_iterator(-1); }
145     stable_iterator() : Size(-1) {}
146 
147     bool isValid() const { return Size >= 0; }
148 
149     /// Returns true if this scope encloses I.
150     /// Returns false if I is invalid.
151     /// This scope must be valid.
152     bool encloses(stable_iterator I) const { return Size <= I.Size; }
153 
154     /// Returns true if this scope strictly encloses I: that is,
155     /// if it encloses I and is not I.
156     /// Returns false is I is invalid.
157     /// This scope must be valid.
158     bool strictlyEncloses(stable_iterator I) const { return Size < I.Size; }
159 
160     friend bool operator==(stable_iterator A, stable_iterator B) {
161       return A.Size == B.Size;
162     }
163     friend bool operator!=(stable_iterator A, stable_iterator B) {
164       return A.Size != B.Size;
165     }
166   };
167 
168   /// Information for lazily generating a cleanup.  Subclasses must be
169   /// POD-like: cleanups will not be destructed, and they will be
170   /// allocated on the cleanup stack and freely copied and moved
171   /// around.
172   ///
173   /// Cleanup implementations should generally be declared in an
174   /// anonymous namespace.
175   class Cleanup {
176   public:
177     // Anchor the construction vtable.  We use the destructor because
178     // gcc gives an obnoxious warning if there are virtual methods
179     // with an accessible non-virtual destructor.  Unfortunately,
180     // declaring this destructor makes it non-trivial, but there
181     // doesn't seem to be any other way around this warning.
182     //
183     // This destructor will never be called.
184     virtual ~Cleanup();
185 
186     /// Emit the cleanup.  For normal cleanups, this is run in the
187     /// same EH context as when the cleanup was pushed, i.e. the
188     /// immediately-enclosing context of the cleanup scope.  For
189     /// EH cleanups, this is run in a terminate context.
190     ///
191     // \param IsForEHCleanup true if this is for an EH cleanup, false
192     ///  if for a normal cleanup.
193     virtual void Emit(CodeGenFunction &CGF, bool IsForEHCleanup) = 0;
194   };
195 
196   /// A helper class for cleanups that execute conditionally.
197   class ConditionalCleanup : public Cleanup {
198     /// Either an i1 which directly indicates whether the cleanup
199     /// should be run or an i1* from which that should be loaded.
200     llvm::Value *cond;
201 
202   public:
203     virtual void Emit(CodeGenFunction &CGF, bool IsForEHCleanup);
204 
205   protected:
206     ConditionalCleanup(llvm::Value *cond) : cond(cond) {}
207 
208     /// Emit the non-conditional code for the cleanup.
209     virtual void EmitImpl(CodeGenFunction &CGF, bool IsForEHCleanup) = 0;
210   };
211 
212   /// UnconditionalCleanupN stores its N parameters and just passes
213   /// them to the real cleanup function.
214   template <class T, class A0, class A1>
215   class UnconditionalCleanup2 : public Cleanup {
216     A0 a0; A1 a1;
217   public:
218     UnconditionalCleanup2(A0 a0, A1 a1) : a0(a0), a1(a1) {}
219     void Emit(CodeGenFunction &CGF, bool IsForEHCleanup) {
220       T::Emit(CGF, IsForEHCleanup, a0, a1);
221     }
222   };
223 
224   /// ConditionalCleanupN stores the saved form of its N parameters,
225   /// then restores them and performs the cleanup.
226   template <class T, class A0, class A1>
227   class ConditionalCleanup2 : public ConditionalCleanup {
228     typedef typename SavedValueInCond<A0>::saved_type A0_saved;
229     typedef typename SavedValueInCond<A1>::saved_type A1_saved;
230     A0_saved a0_saved;
231     A1_saved a1_saved;
232 
233     void EmitImpl(CodeGenFunction &CGF, bool IsForEHCleanup) {
234       A0 a0 = SavedValueInCond<A0>::restore(CGF, a0_saved);
235       A1 a1 = SavedValueInCond<A1>::restore(CGF, a1_saved);
236       T::Emit(CGF, IsForEHCleanup, a0, a1);
237     }
238 
239   public:
240     ConditionalCleanup2(llvm::Value *cond, A0_saved a0, A1_saved a1)
241       : ConditionalCleanup(cond), a0_saved(a0), a1_saved(a1) {}
242   };
243 
244 private:
245   // The implementation for this class is in CGException.h and
246   // CGException.cpp; the definition is here because it's used as a
247   // member of CodeGenFunction.
248 
249   /// The start of the scope-stack buffer, i.e. the allocated pointer
250   /// for the buffer.  All of these pointers are either simultaneously
251   /// null or simultaneously valid.
252   char *StartOfBuffer;
253 
254   /// The end of the buffer.
255   char *EndOfBuffer;
256 
257   /// The first valid entry in the buffer.
258   char *StartOfData;
259 
260   /// The innermost normal cleanup on the stack.
261   stable_iterator InnermostNormalCleanup;
262 
263   /// The innermost EH cleanup on the stack.
264   stable_iterator InnermostEHCleanup;
265 
266   /// The number of catches on the stack.
267   unsigned CatchDepth;
268 
269   /// The current EH destination index.  Reset to FirstCatchIndex
270   /// whenever the last EH cleanup is popped.
271   unsigned NextEHDestIndex;
272   enum { FirstEHDestIndex = 1 };
273 
274   /// The current set of branch fixups.  A branch fixup is a jump to
275   /// an as-yet unemitted label, i.e. a label for which we don't yet
276   /// know the EH stack depth.  Whenever we pop a cleanup, we have
277   /// to thread all the current branch fixups through it.
278   ///
279   /// Fixups are recorded as the Use of the respective branch or
280   /// switch statement.  The use points to the final destination.
281   /// When popping out of a cleanup, these uses are threaded through
282   /// the cleanup and adjusted to point to the new cleanup.
283   ///
284   /// Note that branches are allowed to jump into protected scopes
285   /// in certain situations;  e.g. the following code is legal:
286   ///     struct A { ~A(); }; // trivial ctor, non-trivial dtor
287   ///     goto foo;
288   ///     A a;
289   ///    foo:
290   ///     bar();
291   llvm::SmallVector<BranchFixup, 8> BranchFixups;
292 
293   char *allocate(size_t Size);
294 
295   void *pushCleanup(CleanupKind K, size_t DataSize);
296 
297 public:
298   EHScopeStack() : StartOfBuffer(0), EndOfBuffer(0), StartOfData(0),
299                    InnermostNormalCleanup(stable_end()),
300                    InnermostEHCleanup(stable_end()),
301                    CatchDepth(0), NextEHDestIndex(FirstEHDestIndex) {}
302   ~EHScopeStack() { delete[] StartOfBuffer; }
303 
304   // Variadic templates would make this not terrible.
305 
306   /// Push a lazily-created cleanup on the stack.
307   template <class T>
308   void pushCleanup(CleanupKind Kind) {
309     void *Buffer = pushCleanup(Kind, sizeof(T));
310     Cleanup *Obj = new(Buffer) T();
311     (void) Obj;
312   }
313 
314   /// Push a lazily-created cleanup on the stack.
315   template <class T, class A0>
316   void pushCleanup(CleanupKind Kind, A0 a0) {
317     void *Buffer = pushCleanup(Kind, sizeof(T));
318     Cleanup *Obj = new(Buffer) T(a0);
319     (void) Obj;
320   }
321 
322   /// Push a lazily-created cleanup on the stack.
323   template <class T, class A0, class A1>
324   void pushCleanup(CleanupKind Kind, A0 a0, A1 a1) {
325     void *Buffer = pushCleanup(Kind, sizeof(T));
326     Cleanup *Obj = new(Buffer) T(a0, a1);
327     (void) Obj;
328   }
329 
330   /// Push a lazily-created cleanup on the stack.
331   template <class T, class A0, class A1, class A2>
332   void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2) {
333     void *Buffer = pushCleanup(Kind, sizeof(T));
334     Cleanup *Obj = new(Buffer) T(a0, a1, a2);
335     (void) Obj;
336   }
337 
338   /// Push a lazily-created cleanup on the stack.
339   template <class T, class A0, class A1, class A2, class A3>
340   void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) {
341     void *Buffer = pushCleanup(Kind, sizeof(T));
342     Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3);
343     (void) Obj;
344   }
345 
346   /// Push a lazily-created cleanup on the stack.
347   template <class T, class A0, class A1, class A2, class A3, class A4>
348   void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3, A4 a4) {
349     void *Buffer = pushCleanup(Kind, sizeof(T));
350     Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3, a4);
351     (void) Obj;
352   }
353 
354   // Feel free to add more variants of the following:
355 
356   /// Push a cleanup with non-constant storage requirements on the
357   /// stack.  The cleanup type must provide an additional static method:
358   ///   static size_t getExtraSize(size_t);
359   /// The argument to this method will be the value N, which will also
360   /// be passed as the first argument to the constructor.
361   ///
362   /// The data stored in the extra storage must obey the same
363   /// restrictions as normal cleanup member data.
364   ///
365   /// The pointer returned from this method is valid until the cleanup
366   /// stack is modified.
367   template <class T, class A0, class A1, class A2>
368   T *pushCleanupWithExtra(CleanupKind Kind, size_t N, A0 a0, A1 a1, A2 a2) {
369     void *Buffer = pushCleanup(Kind, sizeof(T) + T::getExtraSize(N));
370     return new (Buffer) T(N, a0, a1, a2);
371   }
372 
373   /// Pops a cleanup scope off the stack.  This should only be called
374   /// by CodeGenFunction::PopCleanupBlock.
375   void popCleanup();
376 
377   /// Push a set of catch handlers on the stack.  The catch is
378   /// uninitialized and will need to have the given number of handlers
379   /// set on it.
380   class EHCatchScope *pushCatch(unsigned NumHandlers);
381 
382   /// Pops a catch scope off the stack.
383   void popCatch();
384 
385   /// Push an exceptions filter on the stack.
386   class EHFilterScope *pushFilter(unsigned NumFilters);
387 
388   /// Pops an exceptions filter off the stack.
389   void popFilter();
390 
391   /// Push a terminate handler on the stack.
392   void pushTerminate();
393 
394   /// Pops a terminate handler off the stack.
395   void popTerminate();
396 
397   /// Determines whether the exception-scopes stack is empty.
398   bool empty() const { return StartOfData == EndOfBuffer; }
399 
400   bool requiresLandingPad() const {
401     return (CatchDepth || hasEHCleanups());
402   }
403 
404   /// Determines whether there are any normal cleanups on the stack.
405   bool hasNormalCleanups() const {
406     return InnermostNormalCleanup != stable_end();
407   }
408 
409   /// Returns the innermost normal cleanup on the stack, or
410   /// stable_end() if there are no normal cleanups.
411   stable_iterator getInnermostNormalCleanup() const {
412     return InnermostNormalCleanup;
413   }
414   stable_iterator getInnermostActiveNormalCleanup() const; // CGException.h
415 
416   /// Determines whether there are any EH cleanups on the stack.
417   bool hasEHCleanups() const {
418     return InnermostEHCleanup != stable_end();
419   }
420 
421   /// Returns the innermost EH cleanup on the stack, or stable_end()
422   /// if there are no EH cleanups.
423   stable_iterator getInnermostEHCleanup() const {
424     return InnermostEHCleanup;
425   }
426   stable_iterator getInnermostActiveEHCleanup() const; // CGException.h
427 
428   /// An unstable reference to a scope-stack depth.  Invalidated by
429   /// pushes but not pops.
430   class iterator;
431 
432   /// Returns an iterator pointing to the innermost EH scope.
433   iterator begin() const;
434 
435   /// Returns an iterator pointing to the outermost EH scope.
436   iterator end() const;
437 
438   /// Create a stable reference to the top of the EH stack.  The
439   /// returned reference is valid until that scope is popped off the
440   /// stack.
441   stable_iterator stable_begin() const {
442     return stable_iterator(EndOfBuffer - StartOfData);
443   }
444 
445   /// Create a stable reference to the bottom of the EH stack.
446   static stable_iterator stable_end() {
447     return stable_iterator(0);
448   }
449 
450   /// Translates an iterator into a stable_iterator.
451   stable_iterator stabilize(iterator it) const;
452 
453   /// Finds the nearest cleanup enclosing the given iterator.
454   /// Returns stable_iterator::invalid() if there are no such cleanups.
455   stable_iterator getEnclosingEHCleanup(iterator it) const;
456 
457   /// Turn a stable reference to a scope depth into a unstable pointer
458   /// to the EH stack.
459   iterator find(stable_iterator save) const;
460 
461   /// Removes the cleanup pointed to by the given stable_iterator.
462   void removeCleanup(stable_iterator save);
463 
464   /// Add a branch fixup to the current cleanup scope.
465   BranchFixup &addBranchFixup() {
466     assert(hasNormalCleanups() && "adding fixup in scope without cleanups");
467     BranchFixups.push_back(BranchFixup());
468     return BranchFixups.back();
469   }
470 
471   unsigned getNumBranchFixups() const { return BranchFixups.size(); }
472   BranchFixup &getBranchFixup(unsigned I) {
473     assert(I < getNumBranchFixups());
474     return BranchFixups[I];
475   }
476 
477   /// Pops lazily-removed fixups from the end of the list.  This
478   /// should only be called by procedures which have just popped a
479   /// cleanup or resolved one or more fixups.
480   void popNullFixups();
481 
482   /// Clears the branch-fixups list.  This should only be called by
483   /// ResolveAllBranchFixups.
484   void clearFixups() { BranchFixups.clear(); }
485 
486   /// Gets the next EH destination index.
487   unsigned getNextEHDestIndex() { return NextEHDestIndex++; }
488 };
489 
490 /// CodeGenFunction - This class organizes the per-function state that is used
491 /// while generating LLVM code.
492 class CodeGenFunction : public BlockFunction {
493   CodeGenFunction(const CodeGenFunction&); // DO NOT IMPLEMENT
494   void operator=(const CodeGenFunction&);  // DO NOT IMPLEMENT
495 
496   friend class CGCXXABI;
497 public:
498   /// A jump destination is an abstract label, branching to which may
499   /// require a jump out through normal cleanups.
500   struct JumpDest {
501     JumpDest() : Block(0), ScopeDepth(), Index(0) {}
502     JumpDest(llvm::BasicBlock *Block,
503              EHScopeStack::stable_iterator Depth,
504              unsigned Index)
505       : Block(Block), ScopeDepth(Depth), Index(Index) {}
506 
507     bool isValid() const { return Block != 0; }
508     llvm::BasicBlock *getBlock() const { return Block; }
509     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
510     unsigned getDestIndex() const { return Index; }
511 
512   private:
513     llvm::BasicBlock *Block;
514     EHScopeStack::stable_iterator ScopeDepth;
515     unsigned Index;
516   };
517 
518   /// An unwind destination is an abstract label, branching to which
519   /// may require a jump out through EH cleanups.
520   struct UnwindDest {
521     UnwindDest() : Block(0), ScopeDepth(), Index(0) {}
522     UnwindDest(llvm::BasicBlock *Block,
523                EHScopeStack::stable_iterator Depth,
524                unsigned Index)
525       : Block(Block), ScopeDepth(Depth), Index(Index) {}
526 
527     bool isValid() const { return Block != 0; }
528     llvm::BasicBlock *getBlock() const { return Block; }
529     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
530     unsigned getDestIndex() const { return Index; }
531 
532   private:
533     llvm::BasicBlock *Block;
534     EHScopeStack::stable_iterator ScopeDepth;
535     unsigned Index;
536   };
537 
538   CodeGenModule &CGM;  // Per-module state.
539   const TargetInfo &Target;
540 
541   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
542   CGBuilderTy Builder;
543 
544   /// CurFuncDecl - Holds the Decl for the current function or ObjC method.
545   /// This excludes BlockDecls.
546   const Decl *CurFuncDecl;
547   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
548   const Decl *CurCodeDecl;
549   const CGFunctionInfo *CurFnInfo;
550   QualType FnRetTy;
551   llvm::Function *CurFn;
552 
553   /// CurGD - The GlobalDecl for the current function being compiled.
554   GlobalDecl CurGD;
555 
556   /// ReturnBlock - Unified return block.
557   JumpDest ReturnBlock;
558 
559   /// ReturnValue - The temporary alloca to hold the return value. This is null
560   /// iff the function has no return value.
561   llvm::Value *ReturnValue;
562 
563   /// RethrowBlock - Unified rethrow block.
564   UnwindDest RethrowBlock;
565 
566   /// AllocaInsertPoint - This is an instruction in the entry block before which
567   /// we prefer to insert allocas.
568   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
569 
570   // intptr_t, i32, i64
571   const llvm::IntegerType *IntPtrTy, *Int32Ty, *Int64Ty;
572   uint32_t LLVMPointerWidth;
573 
574   bool Exceptions;
575   bool CatchUndefined;
576 
577   /// \brief A mapping from NRVO variables to the flags used to indicate
578   /// when the NRVO has been applied to this variable.
579   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
580 
581   /// \brief A mapping from 'Save' expression in a conditional expression
582   /// to the IR for this expression. Used to implement IR gen. for Gnu
583   /// extension's missing LHS expression in a conditional operator expression.
584   llvm::DenseMap<const Expr *, llvm::Value *> ConditionalSaveExprs;
585   llvm::DenseMap<const Expr *, ComplexPairTy> ConditionalSaveComplexExprs;
586   llvm::DenseMap<const Expr *, LValue> ConditionalSaveLValueExprs;
587 
588   EHScopeStack EHStack;
589 
590   /// i32s containing the indexes of the cleanup destinations.
591   llvm::AllocaInst *NormalCleanupDest;
592   llvm::AllocaInst *EHCleanupDest;
593 
594   unsigned NextCleanupDestIndex;
595 
596   /// The exception slot.  All landing pads write the current
597   /// exception pointer into this alloca.
598   llvm::Value *ExceptionSlot;
599 
600   /// Emits a landing pad for the current EH stack.
601   llvm::BasicBlock *EmitLandingPad();
602 
603   llvm::BasicBlock *getInvokeDestImpl();
604 
605   /// Sets up a condition for a full-expression cleanup.
606   llvm::Value *initFullExprCleanup();
607 
608   template <class T>
609   typename SavedValueInCond<T>::saved_type saveValueInCond(T value) {
610     return SavedValueInCond<T>::save(*this, value);
611   }
612 
613 public:
614   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
615   /// rethrows.
616   llvm::SmallVector<llvm::Value*, 8> ObjCEHValueStack;
617 
618   // A struct holding information about a finally block's IR
619   // generation.  For now, doesn't actually hold anything.
620   struct FinallyInfo {
621   };
622 
623   FinallyInfo EnterFinallyBlock(const Stmt *Stmt,
624                                 llvm::Constant *BeginCatchFn,
625                                 llvm::Constant *EndCatchFn,
626                                 llvm::Constant *RethrowFn);
627   void ExitFinallyBlock(FinallyInfo &FinallyInfo);
628 
629   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
630   /// current full-expression.  Safe against the possibility that
631   /// we're currently inside a conditionally-evaluated expression.
632   template <class T, class A0, class A1>
633   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) {
634     // If we're not in a conditional branch, or if none of the
635     // arguments requires saving, then use the unconditional cleanup.
636     if (!(isInConditionalBranch() ||
637           SavedValueInCond<A0>::needsSaving(a0) ||
638           SavedValueInCond<A1>::needsSaving(a1))) {
639       typedef EHScopeStack::UnconditionalCleanup2<T, A0, A1> CleanupType;
640       return EHStack.pushCleanup<CleanupType>(kind, a0, a1);
641     }
642 
643     llvm::Value *condVar = initFullExprCleanup();
644     typename SavedValueInCond<A0>::saved_type a0_saved = saveValueInCond(a0);
645     typename SavedValueInCond<A1>::saved_type a1_saved = saveValueInCond(a1);
646 
647     typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType;
648     EHStack.pushCleanup<CleanupType>(kind, condVar, a0_saved, a1_saved);
649   }
650 
651   /// PushDestructorCleanup - Push a cleanup to call the
652   /// complete-object destructor of an object of the given type at the
653   /// given address.  Does nothing if T is not a C++ class type with a
654   /// non-trivial destructor.
655   void PushDestructorCleanup(QualType T, llvm::Value *Addr);
656 
657   /// PushDestructorCleanup - Push a cleanup to call the
658   /// complete-object variant of the given destructor on the object at
659   /// the given address.
660   void PushDestructorCleanup(const CXXDestructorDecl *Dtor,
661                              llvm::Value *Addr);
662 
663   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
664   /// process all branch fixups.
665   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
666 
667   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
668   /// The block cannot be reactivated.  Pops it if it's the top of the
669   /// stack.
670   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup);
671 
672   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
673   /// Cannot be used to resurrect a deactivated cleanup.
674   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup);
675 
676   /// \brief Enters a new scope for capturing cleanups, all of which
677   /// will be executed once the scope is exited.
678   class RunCleanupsScope {
679     CodeGenFunction& CGF;
680     EHScopeStack::stable_iterator CleanupStackDepth;
681     bool OldDidCallStackSave;
682     bool PerformCleanup;
683 
684     RunCleanupsScope(const RunCleanupsScope &); // DO NOT IMPLEMENT
685     RunCleanupsScope &operator=(const RunCleanupsScope &); // DO NOT IMPLEMENT
686 
687   public:
688     /// \brief Enter a new cleanup scope.
689     explicit RunCleanupsScope(CodeGenFunction &CGF)
690       : CGF(CGF), PerformCleanup(true)
691     {
692       CleanupStackDepth = CGF.EHStack.stable_begin();
693       OldDidCallStackSave = CGF.DidCallStackSave;
694       CGF.DidCallStackSave = false;
695     }
696 
697     /// \brief Exit this cleanup scope, emitting any accumulated
698     /// cleanups.
699     ~RunCleanupsScope() {
700       if (PerformCleanup) {
701         CGF.DidCallStackSave = OldDidCallStackSave;
702         CGF.PopCleanupBlocks(CleanupStackDepth);
703       }
704     }
705 
706     /// \brief Determine whether this scope requires any cleanups.
707     bool requiresCleanups() const {
708       return CGF.EHStack.stable_begin() != CleanupStackDepth;
709     }
710 
711     /// \brief Force the emission of cleanups now, instead of waiting
712     /// until this object is destroyed.
713     void ForceCleanup() {
714       assert(PerformCleanup && "Already forced cleanup");
715       CGF.DidCallStackSave = OldDidCallStackSave;
716       CGF.PopCleanupBlocks(CleanupStackDepth);
717       PerformCleanup = false;
718     }
719   };
720 
721 
722   /// PopCleanupBlocks - Takes the old cleanup stack size and emits
723   /// the cleanup blocks that have been added.
724   void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize);
725 
726   void ResolveBranchFixups(llvm::BasicBlock *Target);
727 
728   /// The given basic block lies in the current EH scope, but may be a
729   /// target of a potentially scope-crossing jump; get a stable handle
730   /// to which we can perform this jump later.
731   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
732     return JumpDest(Target,
733                     EHStack.getInnermostNormalCleanup(),
734                     NextCleanupDestIndex++);
735   }
736 
737   /// The given basic block lies in the current EH scope, but may be a
738   /// target of a potentially scope-crossing jump; get a stable handle
739   /// to which we can perform this jump later.
740   JumpDest getJumpDestInCurrentScope(const char *Name = 0) {
741     return getJumpDestInCurrentScope(createBasicBlock(Name));
742   }
743 
744   /// EmitBranchThroughCleanup - Emit a branch from the current insert
745   /// block through the normal cleanup handling code (if any) and then
746   /// on to \arg Dest.
747   void EmitBranchThroughCleanup(JumpDest Dest);
748 
749   /// EmitBranchThroughEHCleanup - Emit a branch from the current
750   /// insert block through the EH cleanup handling code (if any) and
751   /// then on to \arg Dest.
752   void EmitBranchThroughEHCleanup(UnwindDest Dest);
753 
754   /// getRethrowDest - Returns the unified outermost-scope rethrow
755   /// destination.
756   UnwindDest getRethrowDest();
757 
758   /// An object to manage conditionally-evaluated expressions.
759   class ConditionalEvaluation {
760     llvm::BasicBlock *StartBB;
761 
762   public:
763     ConditionalEvaluation(CodeGenFunction &CGF)
764       : StartBB(CGF.Builder.GetInsertBlock()) {}
765 
766     void begin(CodeGenFunction &CGF) {
767       assert(CGF.OutermostConditional != this);
768       if (!CGF.OutermostConditional)
769         CGF.OutermostConditional = this;
770     }
771 
772     void end(CodeGenFunction &CGF) {
773       assert(CGF.OutermostConditional != 0);
774       if (CGF.OutermostConditional == this)
775         CGF.OutermostConditional = 0;
776     }
777 
778     /// Returns a block which will be executed prior to each
779     /// evaluation of the conditional code.
780     llvm::BasicBlock *getStartingBlock() const {
781       return StartBB;
782     }
783   };
784 
785   /// isInConditionalBranch - Return true if we're currently emitting
786   /// one branch or the other of a conditional expression.
787   bool isInConditionalBranch() const { return OutermostConditional != 0; }
788 
789   /// An RAII object to record that we're evaluating a statement
790   /// expression.
791   class StmtExprEvaluation {
792     CodeGenFunction &CGF;
793 
794     /// We have to save the outermost conditional: cleanups in a
795     /// statement expression aren't conditional just because the
796     /// StmtExpr is.
797     ConditionalEvaluation *SavedOutermostConditional;
798 
799   public:
800     StmtExprEvaluation(CodeGenFunction &CGF)
801       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
802       CGF.OutermostConditional = 0;
803     }
804 
805     ~StmtExprEvaluation() {
806       CGF.OutermostConditional = SavedOutermostConditional;
807       CGF.EnsureInsertPoint();
808     }
809   };
810 
811   /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field
812   /// number that holds the value.
813   unsigned getByRefValueLLVMField(const ValueDecl *VD) const;
814 
815   /// BuildBlockByrefAddress - Computes address location of the
816   /// variable which is declared as __block.
817   llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr,
818                                       const VarDecl *V);
819 private:
820   CGDebugInfo *DebugInfo;
821 
822   /// IndirectBranch - The first time an indirect goto is seen we create a block
823   /// with an indirect branch.  Every time we see the address of a label taken,
824   /// we add the label to the indirect goto.  Every subsequent indirect goto is
825   /// codegen'd as a jump to the IndirectBranch's basic block.
826   llvm::IndirectBrInst *IndirectBranch;
827 
828   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
829   /// decls.
830   llvm::DenseMap<const Decl*, llvm::Value*> LocalDeclMap;
831 
832   /// LabelMap - This keeps track of the LLVM basic block for each C label.
833   llvm::DenseMap<const LabelStmt*, JumpDest> LabelMap;
834 
835   // BreakContinueStack - This keeps track of where break and continue
836   // statements should jump to.
837   struct BreakContinue {
838     BreakContinue(JumpDest Break, JumpDest Continue)
839       : BreakBlock(Break), ContinueBlock(Continue) {}
840 
841     JumpDest BreakBlock;
842     JumpDest ContinueBlock;
843   };
844   llvm::SmallVector<BreakContinue, 8> BreakContinueStack;
845 
846   /// SwitchInsn - This is nearest current switch instruction. It is null if if
847   /// current context is not in a switch.
848   llvm::SwitchInst *SwitchInsn;
849 
850   /// CaseRangeBlock - This block holds if condition check for last case
851   /// statement range in current switch instruction.
852   llvm::BasicBlock *CaseRangeBlock;
853 
854   // VLASizeMap - This keeps track of the associated size for each VLA type.
855   // We track this by the size expression rather than the type itself because
856   // in certain situations, like a const qualifier applied to an VLA typedef,
857   // multiple VLA types can share the same size expression.
858   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
859   // enter/leave scopes.
860   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
861 
862   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
863   /// calling llvm.stacksave for multiple VLAs in the same scope.
864   bool DidCallStackSave;
865 
866   /// A block containing a single 'unreachable' instruction.  Created
867   /// lazily by getUnreachableBlock().
868   llvm::BasicBlock *UnreachableBlock;
869 
870   /// CXXThisDecl - When generating code for a C++ member function,
871   /// this will hold the implicit 'this' declaration.
872   ImplicitParamDecl *CXXThisDecl;
873   llvm::Value *CXXThisValue;
874 
875   /// CXXVTTDecl - When generating code for a base object constructor or
876   /// base object destructor with virtual bases, this will hold the implicit
877   /// VTT parameter.
878   ImplicitParamDecl *CXXVTTDecl;
879   llvm::Value *CXXVTTValue;
880 
881   /// OutermostConditional - Points to the outermost active
882   /// conditional control.  This is used so that we know if a
883   /// temporary should be destroyed conditionally.
884   ConditionalEvaluation *OutermostConditional;
885 
886 
887   /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM
888   /// type as well as the field number that contains the actual data.
889   llvm::DenseMap<const ValueDecl *, std::pair<const llvm::Type *,
890                                               unsigned> > ByRefValueInfo;
891 
892   llvm::BasicBlock *TerminateLandingPad;
893   llvm::BasicBlock *TerminateHandler;
894   llvm::BasicBlock *TrapBB;
895 
896 public:
897   CodeGenFunction(CodeGenModule &cgm);
898 
899   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
900   ASTContext &getContext() const;
901   CGDebugInfo *getDebugInfo() { return DebugInfo; }
902 
903   /// Returns a pointer to the function's exception object slot, which
904   /// is assigned in every landing pad.
905   llvm::Value *getExceptionSlot();
906 
907   llvm::Value *getNormalCleanupDestSlot();
908   llvm::Value *getEHCleanupDestSlot();
909 
910   llvm::BasicBlock *getUnreachableBlock() {
911     if (!UnreachableBlock) {
912       UnreachableBlock = createBasicBlock("unreachable");
913       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
914     }
915     return UnreachableBlock;
916   }
917 
918   llvm::BasicBlock *getInvokeDest() {
919     if (!EHStack.requiresLandingPad()) return 0;
920     return getInvokeDestImpl();
921   }
922 
923   llvm::LLVMContext &getLLVMContext() { return VMContext; }
924 
925   //===--------------------------------------------------------------------===//
926   //                                  Objective-C
927   //===--------------------------------------------------------------------===//
928 
929   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
930 
931   void StartObjCMethod(const ObjCMethodDecl *MD,
932                        const ObjCContainerDecl *CD);
933 
934   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
935   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
936                           const ObjCPropertyImplDecl *PID);
937   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
938                                   ObjCMethodDecl *MD, bool ctor);
939 
940   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
941   /// for the given property.
942   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
943                           const ObjCPropertyImplDecl *PID);
944   bool IndirectObjCSetterArg(const CGFunctionInfo &FI);
945   bool IvarTypeWithAggrGCObjects(QualType Ty);
946 
947   //===--------------------------------------------------------------------===//
948   //                                  Block Bits
949   //===--------------------------------------------------------------------===//
950 
951   llvm::Value *BuildBlockLiteralTmp(const BlockExpr *);
952   llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *,
953                                            const CGBlockInfo &Info,
954                                            const llvm::StructType *,
955                                            llvm::Constant *BlockVarLayout,
956                                            std::vector<HelperInfo> *);
957 
958   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
959                                         const BlockExpr *BExpr,
960                                         CGBlockInfo &Info,
961                                         const Decl *OuterFuncDecl,
962                                         llvm::Constant *& BlockVarLayout,
963                                   llvm::DenseMap<const Decl*, llvm::Value*> ldm);
964 
965   llvm::Value *LoadBlockStruct();
966 
967   void AllocateBlockCXXThisPointer(const CXXThisExpr *E);
968   void AllocateBlockDecl(const BlockDeclRefExpr *E);
969   llvm::Value *GetAddrOfBlockDecl(const BlockDeclRefExpr *E) {
970     return GetAddrOfBlockDecl(E->getDecl(), E->isByRef());
971   }
972   llvm::Value *GetAddrOfBlockDecl(const ValueDecl *D, bool ByRef);
973   const llvm::Type *BuildByRefType(const ValueDecl *D);
974 
975   void GenerateCode(GlobalDecl GD, llvm::Function *Fn);
976   void StartFunction(GlobalDecl GD, QualType RetTy,
977                      llvm::Function *Fn,
978                      const FunctionArgList &Args,
979                      SourceLocation StartLoc);
980 
981   void EmitConstructorBody(FunctionArgList &Args);
982   void EmitDestructorBody(FunctionArgList &Args);
983   void EmitFunctionBody(FunctionArgList &Args);
984 
985   /// EmitReturnBlock - Emit the unified return block, trying to avoid its
986   /// emission when possible.
987   void EmitReturnBlock();
988 
989   /// FinishFunction - Complete IR generation of the current function. It is
990   /// legal to call this function even if there is no current insertion point.
991   void FinishFunction(SourceLocation EndLoc=SourceLocation());
992 
993   /// GenerateThunk - Generate a thunk for the given method.
994   void GenerateThunk(llvm::Function *Fn, GlobalDecl GD, const ThunkInfo &Thunk);
995 
996   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
997                         FunctionArgList &Args);
998 
999   /// InitializeVTablePointer - Initialize the vtable pointer of the given
1000   /// subobject.
1001   ///
1002   void InitializeVTablePointer(BaseSubobject Base,
1003                                const CXXRecordDecl *NearestVBase,
1004                                uint64_t OffsetFromNearestVBase,
1005                                llvm::Constant *VTable,
1006                                const CXXRecordDecl *VTableClass);
1007 
1008   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1009   void InitializeVTablePointers(BaseSubobject Base,
1010                                 const CXXRecordDecl *NearestVBase,
1011                                 uint64_t OffsetFromNearestVBase,
1012                                 bool BaseIsNonVirtualPrimaryBase,
1013                                 llvm::Constant *VTable,
1014                                 const CXXRecordDecl *VTableClass,
1015                                 VisitedVirtualBasesSetTy& VBases);
1016 
1017   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1018 
1019   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1020   /// to by This.
1021   llvm::Value *GetVTablePtr(llvm::Value *This, const llvm::Type *Ty);
1022 
1023   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1024   /// given phase of destruction for a destructor.  The end result
1025   /// should call destructors on members and base classes in reverse
1026   /// order of their construction.
1027   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1028 
1029   /// ShouldInstrumentFunction - Return true if the current function should be
1030   /// instrumented with __cyg_profile_func_* calls
1031   bool ShouldInstrumentFunction();
1032 
1033   /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
1034   /// instrumentation function with the current function and the call site, if
1035   /// function instrumentation is enabled.
1036   void EmitFunctionInstrumentation(const char *Fn);
1037 
1038   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1039   /// arguments for the given function. This is also responsible for naming the
1040   /// LLVM function arguments.
1041   void EmitFunctionProlog(const CGFunctionInfo &FI,
1042                           llvm::Function *Fn,
1043                           const FunctionArgList &Args);
1044 
1045   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1046   /// given temporary.
1047   void EmitFunctionEpilog(const CGFunctionInfo &FI);
1048 
1049   /// EmitStartEHSpec - Emit the start of the exception spec.
1050   void EmitStartEHSpec(const Decl *D);
1051 
1052   /// EmitEndEHSpec - Emit the end of the exception spec.
1053   void EmitEndEHSpec(const Decl *D);
1054 
1055   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
1056   llvm::BasicBlock *getTerminateLandingPad();
1057 
1058   /// getTerminateHandler - Return a handler (not a landing pad, just
1059   /// a catch handler) that just calls terminate.  This is used when
1060   /// a terminate scope encloses a try.
1061   llvm::BasicBlock *getTerminateHandler();
1062 
1063   const llvm::Type *ConvertTypeForMem(QualType T);
1064   const llvm::Type *ConvertType(QualType T);
1065   const llvm::Type *ConvertType(const TypeDecl *T) {
1066     return ConvertType(getContext().getTypeDeclType(T));
1067   }
1068 
1069   /// LoadObjCSelf - Load the value of self. This function is only valid while
1070   /// generating code for an Objective-C method.
1071   llvm::Value *LoadObjCSelf();
1072 
1073   /// TypeOfSelfObject - Return type of object that this self represents.
1074   QualType TypeOfSelfObject();
1075 
1076   /// hasAggregateLLVMType - Return true if the specified AST type will map into
1077   /// an aggregate LLVM type or is void.
1078   static bool hasAggregateLLVMType(QualType T);
1079 
1080   /// createBasicBlock - Create an LLVM basic block.
1081   llvm::BasicBlock *createBasicBlock(const char *Name="",
1082                                      llvm::Function *Parent=0,
1083                                      llvm::BasicBlock *InsertBefore=0) {
1084 #ifdef NDEBUG
1085     return llvm::BasicBlock::Create(VMContext, "", Parent, InsertBefore);
1086 #else
1087     return llvm::BasicBlock::Create(VMContext, Name, Parent, InsertBefore);
1088 #endif
1089   }
1090 
1091   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
1092   /// label maps to.
1093   JumpDest getJumpDestForLabel(const LabelStmt *S);
1094 
1095   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
1096   /// another basic block, simplify it. This assumes that no other code could
1097   /// potentially reference the basic block.
1098   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
1099 
1100   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
1101   /// adding a fall-through branch from the current insert block if
1102   /// necessary. It is legal to call this function even if there is no current
1103   /// insertion point.
1104   ///
1105   /// IsFinished - If true, indicates that the caller has finished emitting
1106   /// branches to the given block and does not expect to emit code into it. This
1107   /// means the block can be ignored if it is unreachable.
1108   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
1109 
1110   /// EmitBranch - Emit a branch to the specified basic block from the current
1111   /// insert block, taking care to avoid creation of branches from dummy
1112   /// blocks. It is legal to call this function even if there is no current
1113   /// insertion point.
1114   ///
1115   /// This function clears the current insertion point. The caller should follow
1116   /// calls to this function with calls to Emit*Block prior to generation new
1117   /// code.
1118   void EmitBranch(llvm::BasicBlock *Block);
1119 
1120   /// HaveInsertPoint - True if an insertion point is defined. If not, this
1121   /// indicates that the current code being emitted is unreachable.
1122   bool HaveInsertPoint() const {
1123     return Builder.GetInsertBlock() != 0;
1124   }
1125 
1126   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
1127   /// emitted IR has a place to go. Note that by definition, if this function
1128   /// creates a block then that block is unreachable; callers may do better to
1129   /// detect when no insertion point is defined and simply skip IR generation.
1130   void EnsureInsertPoint() {
1131     if (!HaveInsertPoint())
1132       EmitBlock(createBasicBlock());
1133   }
1134 
1135   /// ErrorUnsupported - Print out an error that codegen doesn't support the
1136   /// specified stmt yet.
1137   void ErrorUnsupported(const Stmt *S, const char *Type,
1138                         bool OmitOnError=false);
1139 
1140   //===--------------------------------------------------------------------===//
1141   //                                  Helpers
1142   //===--------------------------------------------------------------------===//
1143 
1144   LValue MakeAddrLValue(llvm::Value *V, QualType T, unsigned Alignment = 0) {
1145     return LValue::MakeAddr(V, T, Alignment, getContext(),
1146                             CGM.getTBAAInfo(T));
1147   }
1148 
1149   /// CreateTempAlloca - This creates a alloca and inserts it into the entry
1150   /// block. The caller is responsible for setting an appropriate alignment on
1151   /// the alloca.
1152   llvm::AllocaInst *CreateTempAlloca(const llvm::Type *Ty,
1153                                      const llvm::Twine &Name = "tmp");
1154 
1155   /// InitTempAlloca - Provide an initial value for the given alloca.
1156   void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value);
1157 
1158   /// CreateIRTemp - Create a temporary IR object of the given type, with
1159   /// appropriate alignment. This routine should only be used when an temporary
1160   /// value needs to be stored into an alloca (for example, to avoid explicit
1161   /// PHI construction), but the type is the IR type, not the type appropriate
1162   /// for storing in memory.
1163   llvm::AllocaInst *CreateIRTemp(QualType T, const llvm::Twine &Name = "tmp");
1164 
1165   /// CreateMemTemp - Create a temporary memory object of the given type, with
1166   /// appropriate alignment.
1167   llvm::AllocaInst *CreateMemTemp(QualType T, const llvm::Twine &Name = "tmp");
1168 
1169   /// CreateAggTemp - Create a temporary memory object for the given
1170   /// aggregate type.
1171   AggValueSlot CreateAggTemp(QualType T, const llvm::Twine &Name = "tmp") {
1172     return AggValueSlot::forAddr(CreateMemTemp(T, Name), false, false);
1173   }
1174 
1175   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
1176   /// expression and compare the result against zero, returning an Int1Ty value.
1177   llvm::Value *EvaluateExprAsBool(const Expr *E);
1178 
1179   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
1180   void EmitIgnoredExpr(const Expr *E);
1181 
1182   /// EmitAnyExpr - Emit code to compute the specified expression which can have
1183   /// any type.  The result is returned as an RValue struct.  If this is an
1184   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
1185   /// the result should be returned.
1186   ///
1187   /// \param IgnoreResult - True if the resulting value isn't used.
1188   RValue EmitAnyExpr(const Expr *E,
1189                      AggValueSlot AggSlot = AggValueSlot::ignored(),
1190                      bool IgnoreResult = false);
1191 
1192   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
1193   // or the value of the expression, depending on how va_list is defined.
1194   llvm::Value *EmitVAListRef(const Expr *E);
1195 
1196   /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
1197   /// always be accessible even if no aggregate location is provided.
1198   RValue EmitAnyExprToTemp(const Expr *E);
1199 
1200   /// EmitsAnyExprToMem - Emits the code necessary to evaluate an
1201   /// arbitrary expression into the given memory location.
1202   void EmitAnyExprToMem(const Expr *E, llvm::Value *Location,
1203                         bool IsLocationVolatile,
1204                         bool IsInitializer);
1205 
1206   /// EmitAggregateCopy - Emit an aggrate copy.
1207   ///
1208   /// \param isVolatile - True iff either the source or the destination is
1209   /// volatile.
1210   void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1211                          QualType EltTy, bool isVolatile=false);
1212 
1213   /// StartBlock - Start new block named N. If insert block is a dummy block
1214   /// then reuse it.
1215   void StartBlock(const char *N);
1216 
1217   /// GetAddrOfStaticLocalVar - Return the address of a static local variable.
1218   llvm::Constant *GetAddrOfStaticLocalVar(const VarDecl *BVD) {
1219     return cast<llvm::Constant>(GetAddrOfLocalVar(BVD));
1220   }
1221 
1222   /// GetAddrOfLocalVar - Return the address of a local variable.
1223   llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) {
1224     llvm::Value *Res = LocalDeclMap[VD];
1225     assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!");
1226     return Res;
1227   }
1228 
1229   /// getAccessedFieldNo - Given an encoded value and a result number, return
1230   /// the input field number being accessed.
1231   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
1232 
1233   llvm::BlockAddress *GetAddrOfLabel(const LabelStmt *L);
1234   llvm::BasicBlock *GetIndirectGotoBlock();
1235 
1236   /// EmitNullInitialization - Generate code to set a value of the given type to
1237   /// null, If the type contains data member pointers, they will be initialized
1238   /// to -1 in accordance with the Itanium C++ ABI.
1239   void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty);
1240 
1241   // EmitVAArg - Generate code to get an argument from the passed in pointer
1242   // and update it accordingly. The return value is a pointer to the argument.
1243   // FIXME: We should be able to get rid of this method and use the va_arg
1244   // instruction in LLVM instead once it works well enough.
1245   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty);
1246 
1247   /// EmitVLASize - Generate code for any VLA size expressions that might occur
1248   /// in a variably modified type. If Ty is a VLA, will return the value that
1249   /// corresponds to the size in bytes of the VLA type. Will return 0 otherwise.
1250   ///
1251   /// This function can be called with a null (unreachable) insert point.
1252   llvm::Value *EmitVLASize(QualType Ty);
1253 
1254   // GetVLASize - Returns an LLVM value that corresponds to the size in bytes
1255   // of a variable length array type.
1256   llvm::Value *GetVLASize(const VariableArrayType *);
1257 
1258   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
1259   /// generating code for an C++ member function.
1260   llvm::Value *LoadCXXThis() {
1261     assert(CXXThisValue && "no 'this' value for this function");
1262     return CXXThisValue;
1263   }
1264 
1265   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
1266   /// virtual bases.
1267   llvm::Value *LoadCXXVTT() {
1268     assert(CXXVTTValue && "no VTT value for this function");
1269     return CXXVTTValue;
1270   }
1271 
1272   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
1273   /// complete class to the given direct base.
1274   llvm::Value *
1275   GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value,
1276                                         const CXXRecordDecl *Derived,
1277                                         const CXXRecordDecl *Base,
1278                                         bool BaseIsVirtual);
1279 
1280   /// GetAddressOfBaseClass - This function will add the necessary delta to the
1281   /// load of 'this' and returns address of the base class.
1282   llvm::Value *GetAddressOfBaseClass(llvm::Value *Value,
1283                                      const CXXRecordDecl *Derived,
1284                                      CastExpr::path_const_iterator PathBegin,
1285                                      CastExpr::path_const_iterator PathEnd,
1286                                      bool NullCheckValue);
1287 
1288   llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value,
1289                                         const CXXRecordDecl *Derived,
1290                                         CastExpr::path_const_iterator PathBegin,
1291                                         CastExpr::path_const_iterator PathEnd,
1292                                         bool NullCheckValue);
1293 
1294   llvm::Value *GetVirtualBaseClassOffset(llvm::Value *This,
1295                                          const CXXRecordDecl *ClassDecl,
1296                                          const CXXRecordDecl *BaseClassDecl);
1297 
1298   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
1299                                       CXXCtorType CtorType,
1300                                       const FunctionArgList &Args);
1301   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
1302                               bool ForVirtualBase, llvm::Value *This,
1303                               CallExpr::const_arg_iterator ArgBeg,
1304                               CallExpr::const_arg_iterator ArgEnd);
1305 
1306   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
1307                               llvm::Value *This, llvm::Value *Src,
1308                               CallExpr::const_arg_iterator ArgBeg,
1309                               CallExpr::const_arg_iterator ArgEnd);
1310 
1311   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1312                                   const ConstantArrayType *ArrayTy,
1313                                   llvm::Value *ArrayPtr,
1314                                   CallExpr::const_arg_iterator ArgBeg,
1315                                   CallExpr::const_arg_iterator ArgEnd,
1316                                   bool ZeroInitialization = false);
1317 
1318   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1319                                   llvm::Value *NumElements,
1320                                   llvm::Value *ArrayPtr,
1321                                   CallExpr::const_arg_iterator ArgBeg,
1322                                   CallExpr::const_arg_iterator ArgEnd,
1323                                   bool ZeroInitialization = false);
1324 
1325   void EmitCXXAggrDestructorCall(const CXXDestructorDecl *D,
1326                                  const ArrayType *Array,
1327                                  llvm::Value *This);
1328 
1329   void EmitCXXAggrDestructorCall(const CXXDestructorDecl *D,
1330                                  llvm::Value *NumElements,
1331                                  llvm::Value *This);
1332 
1333   llvm::Function *GenerateCXXAggrDestructorHelper(const CXXDestructorDecl *D,
1334                                                   const ArrayType *Array,
1335                                                   llvm::Value *This);
1336 
1337   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
1338                              bool ForVirtualBase, llvm::Value *This);
1339 
1340   void EmitNewArrayInitializer(const CXXNewExpr *E, llvm::Value *NewPtr,
1341                                llvm::Value *NumElements);
1342 
1343   void EmitCXXTemporary(const CXXTemporary *Temporary, llvm::Value *Ptr);
1344 
1345   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
1346   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
1347 
1348   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
1349                       QualType DeleteTy);
1350 
1351   llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E);
1352   llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE);
1353 
1354   void EmitCheck(llvm::Value *, unsigned Size);
1355 
1356   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1357                                        bool isInc, bool isPre);
1358   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1359                                          bool isInc, bool isPre);
1360   //===--------------------------------------------------------------------===//
1361   //                            Declaration Emission
1362   //===--------------------------------------------------------------------===//
1363 
1364   /// EmitDecl - Emit a declaration.
1365   ///
1366   /// This function can be called with a null (unreachable) insert point.
1367   void EmitDecl(const Decl &D);
1368 
1369   /// EmitVarDecl - Emit a local variable declaration.
1370   ///
1371   /// This function can be called with a null (unreachable) insert point.
1372   void EmitVarDecl(const VarDecl &D);
1373 
1374   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
1375                              llvm::Value *Address);
1376 
1377   /// EmitAutoVarDecl - Emit an auto variable declaration.
1378   ///
1379   /// This function can be called with a null (unreachable) insert point.
1380   void EmitAutoVarDecl(const VarDecl &D, SpecialInitFn *SpecialInit = 0);
1381 
1382   void EmitStaticVarDecl(const VarDecl &D,
1383                          llvm::GlobalValue::LinkageTypes Linkage);
1384 
1385   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
1386   void EmitParmDecl(const VarDecl &D, llvm::Value *Arg);
1387 
1388   //===--------------------------------------------------------------------===//
1389   //                             Statement Emission
1390   //===--------------------------------------------------------------------===//
1391 
1392   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
1393   void EmitStopPoint(const Stmt *S);
1394 
1395   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
1396   /// this function even if there is no current insertion point.
1397   ///
1398   /// This function may clear the current insertion point; callers should use
1399   /// EnsureInsertPoint if they wish to subsequently generate code without first
1400   /// calling EmitBlock, EmitBranch, or EmitStmt.
1401   void EmitStmt(const Stmt *S);
1402 
1403   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
1404   /// necessarily require an insertion point or debug information; typically
1405   /// because the statement amounts to a jump or a container of other
1406   /// statements.
1407   ///
1408   /// \return True if the statement was handled.
1409   bool EmitSimpleStmt(const Stmt *S);
1410 
1411   RValue EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
1412                           AggValueSlot AVS = AggValueSlot::ignored());
1413 
1414   /// EmitLabel - Emit the block for the given label. It is legal to call this
1415   /// function even if there is no current insertion point.
1416   void EmitLabel(const LabelStmt &S); // helper for EmitLabelStmt.
1417 
1418   void EmitLabelStmt(const LabelStmt &S);
1419   void EmitGotoStmt(const GotoStmt &S);
1420   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
1421   void EmitIfStmt(const IfStmt &S);
1422   void EmitWhileStmt(const WhileStmt &S);
1423   void EmitDoStmt(const DoStmt &S);
1424   void EmitForStmt(const ForStmt &S);
1425   void EmitReturnStmt(const ReturnStmt &S);
1426   void EmitDeclStmt(const DeclStmt &S);
1427   void EmitBreakStmt(const BreakStmt &S);
1428   void EmitContinueStmt(const ContinueStmt &S);
1429   void EmitSwitchStmt(const SwitchStmt &S);
1430   void EmitDefaultStmt(const DefaultStmt &S);
1431   void EmitCaseStmt(const CaseStmt &S);
1432   void EmitCaseStmtRange(const CaseStmt &S);
1433   void EmitAsmStmt(const AsmStmt &S);
1434 
1435   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
1436   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
1437   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
1438   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
1439 
1440   llvm::Constant *getUnwindResumeOrRethrowFn();
1441   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
1442   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
1443 
1444   void EmitCXXTryStmt(const CXXTryStmt &S);
1445 
1446   //===--------------------------------------------------------------------===//
1447   //                         LValue Expression Emission
1448   //===--------------------------------------------------------------------===//
1449 
1450   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
1451   RValue GetUndefRValue(QualType Ty);
1452 
1453   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
1454   /// and issue an ErrorUnsupported style diagnostic (using the
1455   /// provided Name).
1456   RValue EmitUnsupportedRValue(const Expr *E,
1457                                const char *Name);
1458 
1459   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
1460   /// an ErrorUnsupported style diagnostic (using the provided Name).
1461   LValue EmitUnsupportedLValue(const Expr *E,
1462                                const char *Name);
1463 
1464   /// EmitLValue - Emit code to compute a designator that specifies the location
1465   /// of the expression.
1466   ///
1467   /// This can return one of two things: a simple address or a bitfield
1468   /// reference.  In either case, the LLVM Value* in the LValue structure is
1469   /// guaranteed to be an LLVM pointer type.
1470   ///
1471   /// If this returns a bitfield reference, nothing about the pointee type of
1472   /// the LLVM value is known: For example, it may not be a pointer to an
1473   /// integer.
1474   ///
1475   /// If this returns a normal address, and if the lvalue's C type is fixed
1476   /// size, this method guarantees that the returned pointer type will point to
1477   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
1478   /// variable length type, this is not possible.
1479   ///
1480   LValue EmitLValue(const Expr *E);
1481 
1482   /// EmitCheckedLValue - Same as EmitLValue but additionally we generate
1483   /// checking code to guard against undefined behavior.  This is only
1484   /// suitable when we know that the address will be used to access the
1485   /// object.
1486   LValue EmitCheckedLValue(const Expr *E);
1487 
1488   /// EmitToMemory - Change a scalar value from its value
1489   /// representation to its in-memory representation.
1490   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
1491 
1492   /// EmitFromMemory - Change a scalar value from its memory
1493   /// representation to its value representation.
1494   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
1495 
1496   /// EmitLoadOfScalar - Load a scalar value from an address, taking
1497   /// care to appropriately convert from the memory representation to
1498   /// the LLVM value representation.
1499   llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
1500                                 unsigned Alignment, QualType Ty,
1501                                 llvm::MDNode *TBAAInfo = 0);
1502 
1503   /// EmitStoreOfScalar - Store a scalar value to an address, taking
1504   /// care to appropriately convert from the memory representation to
1505   /// the LLVM value representation.
1506   void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
1507                          bool Volatile, unsigned Alignment, QualType Ty,
1508                          llvm::MDNode *TBAAInfo = 0);
1509 
1510   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
1511   /// this method emits the address of the lvalue, then loads the result as an
1512   /// rvalue, returning the rvalue.
1513   RValue EmitLoadOfLValue(LValue V, QualType LVType);
1514   RValue EmitLoadOfExtVectorElementLValue(LValue V, QualType LVType);
1515   RValue EmitLoadOfBitfieldLValue(LValue LV, QualType ExprType);
1516   RValue EmitLoadOfPropertyRefLValue(LValue LV,
1517                                  ReturnValueSlot Return = ReturnValueSlot());
1518 
1519   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1520   /// lvalue, where both are guaranteed to the have the same type, and that type
1521   /// is 'Ty'.
1522   void EmitStoreThroughLValue(RValue Src, LValue Dst, QualType Ty);
1523   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst,
1524                                                 QualType Ty);
1525   void EmitStoreThroughPropertyRefLValue(RValue Src, LValue Dst);
1526 
1527   /// EmitStoreThroughLValue - Store Src into Dst with same constraints as
1528   /// EmitStoreThroughLValue.
1529   ///
1530   /// \param Result [out] - If non-null, this will be set to a Value* for the
1531   /// bit-field contents after the store, appropriate for use as the result of
1532   /// an assignment to the bit-field.
1533   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, QualType Ty,
1534                                       llvm::Value **Result=0);
1535 
1536   /// Emit an l-value for an assignment (simple or compound) of complex type.
1537   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
1538   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
1539 
1540   // Note: only availabe for agg return types
1541   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
1542   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
1543   // Note: only available for agg return types
1544   LValue EmitCallExprLValue(const CallExpr *E);
1545   // Note: only available for agg return types
1546   LValue EmitVAArgExprLValue(const VAArgExpr *E);
1547   LValue EmitDeclRefLValue(const DeclRefExpr *E);
1548   LValue EmitStringLiteralLValue(const StringLiteral *E);
1549   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
1550   LValue EmitPredefinedLValue(const PredefinedExpr *E);
1551   LValue EmitUnaryOpLValue(const UnaryOperator *E);
1552   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E);
1553   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
1554   LValue EmitMemberExpr(const MemberExpr *E);
1555   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
1556   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
1557   LValue EmitConditionalOperatorLValue(const ConditionalOperator *E);
1558   LValue EmitCastLValue(const CastExpr *E);
1559   LValue EmitNullInitializationLValue(const CXXScalarValueInitExpr *E);
1560 
1561   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
1562                               const ObjCIvarDecl *Ivar);
1563   LValue EmitLValueForAnonRecordField(llvm::Value* Base,
1564                                       const IndirectFieldDecl* Field,
1565                                       unsigned CVRQualifiers);
1566   LValue EmitLValueForField(llvm::Value* Base, const FieldDecl* Field,
1567                             unsigned CVRQualifiers);
1568 
1569   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
1570   /// if the Field is a reference, this will return the address of the reference
1571   /// and not the address of the value stored in the reference.
1572   LValue EmitLValueForFieldInitialization(llvm::Value* Base,
1573                                           const FieldDecl* Field,
1574                                           unsigned CVRQualifiers);
1575 
1576   LValue EmitLValueForIvar(QualType ObjectTy,
1577                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
1578                            unsigned CVRQualifiers);
1579 
1580   LValue EmitLValueForBitfield(llvm::Value* Base, const FieldDecl* Field,
1581                                 unsigned CVRQualifiers);
1582 
1583   LValue EmitBlockDeclRefLValue(const BlockDeclRefExpr *E);
1584 
1585   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
1586   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
1587   LValue EmitExprWithCleanupsLValue(const ExprWithCleanups *E);
1588   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
1589 
1590   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
1591   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
1592   LValue EmitObjCPropertyRefLValue(const ObjCPropertyRefExpr *E);
1593   LValue EmitStmtExprLValue(const StmtExpr *E);
1594   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
1595   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
1596   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init);
1597   //===--------------------------------------------------------------------===//
1598   //                         Scalar Expression Emission
1599   //===--------------------------------------------------------------------===//
1600 
1601   /// EmitCall - Generate a call of the given function, expecting the given
1602   /// result type, and using the given argument list which specifies both the
1603   /// LLVM arguments and the types they were derived from.
1604   ///
1605   /// \param TargetDecl - If given, the decl of the function in a direct call;
1606   /// used to set attributes on the call (noreturn, etc.).
1607   RValue EmitCall(const CGFunctionInfo &FnInfo,
1608                   llvm::Value *Callee,
1609                   ReturnValueSlot ReturnValue,
1610                   const CallArgList &Args,
1611                   const Decl *TargetDecl = 0,
1612                   llvm::Instruction **callOrInvoke = 0);
1613 
1614   RValue EmitCall(QualType FnType, llvm::Value *Callee,
1615                   ReturnValueSlot ReturnValue,
1616                   CallExpr::const_arg_iterator ArgBeg,
1617                   CallExpr::const_arg_iterator ArgEnd,
1618                   const Decl *TargetDecl = 0);
1619   RValue EmitCallExpr(const CallExpr *E,
1620                       ReturnValueSlot ReturnValue = ReturnValueSlot());
1621 
1622   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
1623                                   llvm::Value * const *ArgBegin,
1624                                   llvm::Value * const *ArgEnd,
1625                                   const llvm::Twine &Name = "");
1626 
1627   llvm::Value *BuildVirtualCall(const CXXMethodDecl *MD, llvm::Value *This,
1628                                 const llvm::Type *Ty);
1629   llvm::Value *BuildVirtualCall(const CXXDestructorDecl *DD, CXXDtorType Type,
1630                                 llvm::Value *This, const llvm::Type *Ty);
1631   llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
1632                                          NestedNameSpecifier *Qual,
1633                                          llvm::Value *This,
1634                                          const llvm::Type *Ty);
1635 
1636   RValue EmitCXXMemberCall(const CXXMethodDecl *MD,
1637                            llvm::Value *Callee,
1638                            ReturnValueSlot ReturnValue,
1639                            llvm::Value *This,
1640                            llvm::Value *VTT,
1641                            CallExpr::const_arg_iterator ArgBeg,
1642                            CallExpr::const_arg_iterator ArgEnd);
1643   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
1644                                ReturnValueSlot ReturnValue);
1645   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
1646                                       ReturnValueSlot ReturnValue);
1647 
1648   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
1649                                        const CXXMethodDecl *MD,
1650                                        ReturnValueSlot ReturnValue);
1651 
1652 
1653   RValue EmitBuiltinExpr(const FunctionDecl *FD,
1654                          unsigned BuiltinID, const CallExpr *E);
1655 
1656   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
1657 
1658   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
1659   /// is unhandled by the current target.
1660   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
1661 
1662   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
1663   llvm::Value *EmitNeonCall(llvm::Function *F,
1664                             llvm::SmallVectorImpl<llvm::Value*> &O,
1665                             const char *name,
1666                             unsigned shift = 0, bool rightshift = false);
1667   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
1668   llvm::Value *EmitNeonShiftVector(llvm::Value *V, const llvm::Type *Ty,
1669                                    bool negateForRightShift);
1670 
1671   llvm::Value *BuildVector(const llvm::SmallVectorImpl<llvm::Value*> &Ops);
1672   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
1673   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
1674 
1675   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
1676   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
1677   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
1678   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
1679                              ReturnValueSlot Return = ReturnValueSlot());
1680 
1681   /// EmitReferenceBindingToExpr - Emits a reference binding to the passed in
1682   /// expression. Will emit a temporary variable if E is not an LValue.
1683   RValue EmitReferenceBindingToExpr(const Expr* E,
1684                                     const NamedDecl *InitializedDecl);
1685 
1686   //===--------------------------------------------------------------------===//
1687   //                           Expression Emission
1688   //===--------------------------------------------------------------------===//
1689 
1690   // Expressions are broken into three classes: scalar, complex, aggregate.
1691 
1692   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
1693   /// scalar type, returning the result.
1694   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
1695 
1696   /// EmitScalarConversion - Emit a conversion from the specified type to the
1697   /// specified destination type, both of which are LLVM scalar types.
1698   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
1699                                     QualType DstTy);
1700 
1701   /// EmitComplexToScalarConversion - Emit a conversion from the specified
1702   /// complex type to the specified destination type, where the destination type
1703   /// is an LLVM scalar type.
1704   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
1705                                              QualType DstTy);
1706 
1707 
1708   /// EmitAggExpr - Emit the computation of the specified expression
1709   /// of aggregate type.  The result is computed into the given slot,
1710   /// which may be null to indicate that the value is not needed.
1711   void EmitAggExpr(const Expr *E, AggValueSlot AS, bool IgnoreResult = false);
1712 
1713   /// EmitAggExprToLValue - Emit the computation of the specified expression of
1714   /// aggregate type into a temporary LValue.
1715   LValue EmitAggExprToLValue(const Expr *E);
1716 
1717   /// EmitGCMemmoveCollectable - Emit special API for structs with object
1718   /// pointers.
1719   void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1720                                 QualType Ty);
1721 
1722   /// EmitComplexExpr - Emit the computation of the specified expression of
1723   /// complex type, returning the result.
1724   ComplexPairTy EmitComplexExpr(const Expr *E,
1725                                 bool IgnoreReal = false,
1726                                 bool IgnoreImag = false);
1727 
1728   /// EmitComplexExprIntoAddr - Emit the computation of the specified expression
1729   /// of complex type, storing into the specified Value*.
1730   void EmitComplexExprIntoAddr(const Expr *E, llvm::Value *DestAddr,
1731                                bool DestIsVolatile);
1732 
1733   /// StoreComplexToAddr - Store a complex number into the specified address.
1734   void StoreComplexToAddr(ComplexPairTy V, llvm::Value *DestAddr,
1735                           bool DestIsVolatile);
1736   /// LoadComplexFromAddr - Load a complex number from the specified address.
1737   ComplexPairTy LoadComplexFromAddr(llvm::Value *SrcAddr, bool SrcIsVolatile);
1738 
1739   /// CreateStaticVarDecl - Create a zero-initialized LLVM global for
1740   /// a static local variable.
1741   llvm::GlobalVariable *CreateStaticVarDecl(const VarDecl &D,
1742                                             const char *Separator,
1743                                        llvm::GlobalValue::LinkageTypes Linkage);
1744 
1745   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
1746   /// global variable that has already been created for it.  If the initializer
1747   /// has a different type than GV does, this may free GV and return a different
1748   /// one.  Otherwise it just returns GV.
1749   llvm::GlobalVariable *
1750   AddInitializerToStaticVarDecl(const VarDecl &D,
1751                                 llvm::GlobalVariable *GV);
1752 
1753 
1754   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
1755   /// variable with global storage.
1756   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr);
1757 
1758   /// EmitCXXGlobalDtorRegistration - Emits a call to register the global ptr
1759   /// with the C++ runtime so that its destructor will be called at exit.
1760   void EmitCXXGlobalDtorRegistration(llvm::Constant *DtorFn,
1761                                      llvm::Constant *DeclPtr);
1762 
1763   /// Emit code in this function to perform a guarded variable
1764   /// initialization.  Guarded initializations are used when it's not
1765   /// possible to prove that an initialization will be done exactly
1766   /// once, e.g. with a static local variable or a static data member
1767   /// of a class template.
1768   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr);
1769 
1770   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
1771   /// variables.
1772   void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
1773                                  llvm::Constant **Decls,
1774                                  unsigned NumDecls);
1775 
1776   /// GenerateCXXGlobalDtorFunc - Generates code for destroying global
1777   /// variables.
1778   void GenerateCXXGlobalDtorFunc(llvm::Function *Fn,
1779                                  const std::vector<std::pair<llvm::WeakVH,
1780                                    llvm::Constant*> > &DtorsAndObjects);
1781 
1782   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, const VarDecl *D,
1783                                         llvm::GlobalVariable *Addr);
1784 
1785   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
1786 
1787   void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src,
1788                                   const Expr *Exp);
1789 
1790   RValue EmitExprWithCleanups(const ExprWithCleanups *E,
1791                               AggValueSlot Slot =AggValueSlot::ignored());
1792 
1793   void EmitCXXThrowExpr(const CXXThrowExpr *E);
1794 
1795   //===--------------------------------------------------------------------===//
1796   //                             Internal Helpers
1797   //===--------------------------------------------------------------------===//
1798 
1799   /// ContainsLabel - Return true if the statement contains a label in it.  If
1800   /// this statement is not executed normally, it not containing a label means
1801   /// that we can just remove the code.
1802   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
1803 
1804   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1805   /// to a constant, or if it does but contains a label, return 0.  If it
1806   /// constant folds to 'true' and does not contain a label, return 1, if it
1807   /// constant folds to 'false' and does not contain a label, return -1.
1808   int ConstantFoldsToSimpleInteger(const Expr *Cond);
1809 
1810   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
1811   /// if statement) to the specified blocks.  Based on the condition, this might
1812   /// try to simplify the codegen of the conditional based on the branch.
1813   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
1814                             llvm::BasicBlock *FalseBlock);
1815 
1816   /// getTrapBB - Create a basic block that will call the trap intrinsic.  We'll
1817   /// generate a branch around the created basic block as necessary.
1818   llvm::BasicBlock *getTrapBB();
1819 
1820   /// EmitCallArg - Emit a single call argument.
1821   RValue EmitCallArg(const Expr *E, QualType ArgType);
1822 
1823   /// EmitDelegateCallArg - We are performing a delegate call; that
1824   /// is, the current function is delegating to another one.  Produce
1825   /// a r-value suitable for passing the given parameter.
1826   RValue EmitDelegateCallArg(const VarDecl *Param);
1827 
1828 private:
1829   void EmitReturnOfRValue(RValue RV, QualType Ty);
1830 
1831   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
1832   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
1833   ///
1834   /// \param AI - The first function argument of the expansion.
1835   /// \return The argument following the last expanded function
1836   /// argument.
1837   llvm::Function::arg_iterator
1838   ExpandTypeFromArgs(QualType Ty, LValue Dst,
1839                      llvm::Function::arg_iterator AI);
1840 
1841   /// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg
1842   /// Ty, into individual arguments on the provided vector \arg Args. See
1843   /// ABIArgInfo::Expand.
1844   void ExpandTypeToArgs(QualType Ty, RValue Src,
1845                         llvm::SmallVector<llvm::Value*, 16> &Args);
1846 
1847   llvm::Value* EmitAsmInput(const AsmStmt &S,
1848                             const TargetInfo::ConstraintInfo &Info,
1849                             const Expr *InputExpr, std::string &ConstraintStr);
1850 
1851   llvm::Value* EmitAsmInputLValue(const AsmStmt &S,
1852                                   const TargetInfo::ConstraintInfo &Info,
1853                                   LValue InputValue, QualType InputType,
1854                                   std::string &ConstraintStr);
1855 
1856   /// EmitCallArgs - Emit call arguments for a function.
1857   /// The CallArgTypeInfo parameter is used for iterating over the known
1858   /// argument types of the function being called.
1859   template<typename T>
1860   void EmitCallArgs(CallArgList& Args, const T* CallArgTypeInfo,
1861                     CallExpr::const_arg_iterator ArgBeg,
1862                     CallExpr::const_arg_iterator ArgEnd) {
1863       CallExpr::const_arg_iterator Arg = ArgBeg;
1864 
1865     // First, use the argument types that the type info knows about
1866     if (CallArgTypeInfo) {
1867       for (typename T::arg_type_iterator I = CallArgTypeInfo->arg_type_begin(),
1868            E = CallArgTypeInfo->arg_type_end(); I != E; ++I, ++Arg) {
1869         assert(Arg != ArgEnd && "Running over edge of argument list!");
1870         QualType ArgType = *I;
1871 #ifndef NDEBUG
1872         QualType ActualArgType = Arg->getType();
1873         if (ArgType->isPointerType() && ActualArgType->isPointerType()) {
1874           QualType ActualBaseType =
1875             ActualArgType->getAs<PointerType>()->getPointeeType();
1876           QualType ArgBaseType =
1877             ArgType->getAs<PointerType>()->getPointeeType();
1878           if (ArgBaseType->isVariableArrayType()) {
1879             if (const VariableArrayType *VAT =
1880                 getContext().getAsVariableArrayType(ActualBaseType)) {
1881               if (!VAT->getSizeExpr())
1882                 ActualArgType = ArgType;
1883             }
1884           }
1885         }
1886         assert(getContext().getCanonicalType(ArgType.getNonReferenceType()).
1887                getTypePtr() ==
1888                getContext().getCanonicalType(ActualArgType).getTypePtr() &&
1889                "type mismatch in call argument!");
1890 #endif
1891         Args.push_back(std::make_pair(EmitCallArg(*Arg, ArgType),
1892                                       ArgType));
1893       }
1894 
1895       // Either we've emitted all the call args, or we have a call to a
1896       // variadic function.
1897       assert((Arg == ArgEnd || CallArgTypeInfo->isVariadic()) &&
1898              "Extra arguments in non-variadic function!");
1899 
1900     }
1901 
1902     // If we still have any arguments, emit them using the type of the argument.
1903     for (; Arg != ArgEnd; ++Arg) {
1904       QualType ArgType = Arg->getType();
1905       Args.push_back(std::make_pair(EmitCallArg(*Arg, ArgType),
1906                                     ArgType));
1907     }
1908   }
1909 
1910   const TargetCodeGenInfo &getTargetHooks() const {
1911     return CGM.getTargetCodeGenInfo();
1912   }
1913 
1914   void EmitDeclMetadata();
1915 };
1916 
1917 /// Helper class with most of the code for saving a value for a
1918 /// conditional expression cleanup.
1919 struct SavedValueInCondImpl {
1920   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
1921 
1922   /// Answer whether the given value needs extra work to be saved.
1923   static bool needsSaving(llvm::Value *value) {
1924     // If it's not an instruction, we don't need to save.
1925     if (!isa<llvm::Instruction>(value)) return false;
1926 
1927     // If it's an instruction in the entry block, we don't need to save.
1928     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
1929     return (block != &block->getParent()->getEntryBlock());
1930   }
1931 
1932   /// Try to save the given value.
1933   static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
1934     if (!needsSaving(value)) return saved_type(value, false);
1935 
1936     // Otherwise we need an alloca.
1937     llvm::Value *alloca =
1938       CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save");
1939     CGF.Builder.CreateStore(value, alloca);
1940 
1941     return saved_type(alloca, true);
1942   }
1943 
1944   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
1945     if (!value.getInt()) return value.getPointer();
1946     return CGF.Builder.CreateLoad(value.getPointer());
1947   }
1948 };
1949 
1950 /// Partial specialization of SavedValueInCond for when a value really
1951 /// requires saving.
1952 template <class T> struct SavedValueInCond<T,true> : SavedValueInCondImpl {
1953   typedef T type;
1954   static type restore(CodeGenFunction &CGF, saved_type value) {
1955     return static_cast<T>(SavedValueInCondImpl::restore(CGF, value));
1956   }
1957 };
1958 
1959 /// CGBlockInfo - Information to generate a block literal.
1960 class CGBlockInfo {
1961 public:
1962   /// Name - The name of the block, kindof.
1963   const char *Name;
1964 
1965   /// DeclRefs - Variables from parent scopes that have been
1966   /// imported into this block.
1967   llvm::SmallVector<const BlockDeclRefExpr *, 8> DeclRefs;
1968 
1969   /// InnerBlocks - This block and the blocks it encloses.
1970   llvm::SmallPtrSet<const DeclContext *, 4> InnerBlocks;
1971 
1972   /// CXXThisRef - Non-null if 'this' was required somewhere, in
1973   /// which case this is that expression.
1974   const CXXThisExpr *CXXThisRef;
1975 
1976   /// NeedsObjCSelf - True if something in this block has an implicit
1977   /// reference to 'self'.
1978   bool NeedsObjCSelf : 1;
1979 
1980   /// HasCXXObject - True if block has imported c++ object requiring copy
1981   /// construction in copy helper and destruction in copy dispose helpers.
1982   bool HasCXXObject : 1;
1983 
1984   /// These are initialized by GenerateBlockFunction.
1985   bool BlockHasCopyDispose : 1;
1986   CharUnits BlockSize;
1987   CharUnits BlockAlign;
1988   llvm::SmallVector<const Expr*, 8> BlockLayout;
1989 
1990   CGBlockInfo(const char *Name);
1991 };
1992 
1993 }  // end namespace CodeGen
1994 }  // end namespace clang
1995 
1996 #endif
1997