1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the internal per-function state used for llvm translation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef CLANG_CODEGEN_CODEGENFUNCTION_H
15 #define CLANG_CODEGEN_CODEGENFUNCTION_H
16 
17 #include "CGBuilder.h"
18 #include "CGDebugInfo.h"
19 #include "CGLoopInfo.h"
20 #include "CGValue.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "EHScopeStack.h"
24 #include "clang/AST/CharUnits.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/AST/ExprObjC.h"
27 #include "clang/AST/Type.h"
28 #include "clang/Basic/ABI.h"
29 #include "clang/Basic/CapturedStmt.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "clang/Frontend/CodeGenOptions.h"
32 #include "llvm/ADT/ArrayRef.h"
33 #include "llvm/ADT/DenseMap.h"
34 #include "llvm/ADT/SmallVector.h"
35 #include "llvm/IR/ValueHandle.h"
36 #include "llvm/Support/Debug.h"
37 
38 namespace llvm {
39 class BasicBlock;
40 class LLVMContext;
41 class MDNode;
42 class Module;
43 class SwitchInst;
44 class Twine;
45 class Value;
46 class CallSite;
47 }
48 
49 namespace clang {
50 class ASTContext;
51 class BlockDecl;
52 class CXXDestructorDecl;
53 class CXXForRangeStmt;
54 class CXXTryStmt;
55 class Decl;
56 class LabelDecl;
57 class EnumConstantDecl;
58 class FunctionDecl;
59 class FunctionProtoType;
60 class LabelStmt;
61 class ObjCContainerDecl;
62 class ObjCInterfaceDecl;
63 class ObjCIvarDecl;
64 class ObjCMethodDecl;
65 class ObjCImplementationDecl;
66 class ObjCPropertyImplDecl;
67 class TargetInfo;
68 class TargetCodeGenInfo;
69 class VarDecl;
70 class ObjCForCollectionStmt;
71 class ObjCAtTryStmt;
72 class ObjCAtThrowStmt;
73 class ObjCAtSynchronizedStmt;
74 class ObjCAutoreleasePoolStmt;
75 
76 namespace CodeGen {
77 class CodeGenTypes;
78 class CGFunctionInfo;
79 class CGRecordLayout;
80 class CGBlockInfo;
81 class CGCXXABI;
82 class BlockFlags;
83 class BlockFieldFlags;
84 
85 /// The kind of evaluation to perform on values of a particular
86 /// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
87 /// CGExprAgg?
88 ///
89 /// TODO: should vectors maybe be split out into their own thing?
90 enum TypeEvaluationKind {
91   TEK_Scalar,
92   TEK_Complex,
93   TEK_Aggregate
94 };
95 
96 /// CodeGenFunction - This class organizes the per-function state that is used
97 /// while generating LLVM code.
98 class CodeGenFunction : public CodeGenTypeCache {
99   CodeGenFunction(const CodeGenFunction &) LLVM_DELETED_FUNCTION;
100   void operator=(const CodeGenFunction &) LLVM_DELETED_FUNCTION;
101 
102   friend class CGCXXABI;
103 public:
104   /// A jump destination is an abstract label, branching to which may
105   /// require a jump out through normal cleanups.
106   struct JumpDest {
107     JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {}
108     JumpDest(llvm::BasicBlock *Block,
109              EHScopeStack::stable_iterator Depth,
110              unsigned Index)
111       : Block(Block), ScopeDepth(Depth), Index(Index) {}
112 
113     bool isValid() const { return Block != nullptr; }
114     llvm::BasicBlock *getBlock() const { return Block; }
115     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
116     unsigned getDestIndex() const { return Index; }
117 
118     // This should be used cautiously.
119     void setScopeDepth(EHScopeStack::stable_iterator depth) {
120       ScopeDepth = depth;
121     }
122 
123   private:
124     llvm::BasicBlock *Block;
125     EHScopeStack::stable_iterator ScopeDepth;
126     unsigned Index;
127   };
128 
129   CodeGenModule &CGM;  // Per-module state.
130   const TargetInfo &Target;
131 
132   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
133   LoopInfoStack LoopStack;
134   CGBuilderTy Builder;
135 
136   /// \brief CGBuilder insert helper. This function is called after an
137   /// instruction is created using Builder.
138   void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
139                     llvm::BasicBlock *BB,
140                     llvm::BasicBlock::iterator InsertPt) const;
141 
142   /// CurFuncDecl - Holds the Decl for the current outermost
143   /// non-closure context.
144   const Decl *CurFuncDecl;
145   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
146   const Decl *CurCodeDecl;
147   const CGFunctionInfo *CurFnInfo;
148   QualType FnRetTy;
149   llvm::Function *CurFn;
150 
151   /// CurGD - The GlobalDecl for the current function being compiled.
152   GlobalDecl CurGD;
153 
154   /// PrologueCleanupDepth - The cleanup depth enclosing all the
155   /// cleanups associated with the parameters.
156   EHScopeStack::stable_iterator PrologueCleanupDepth;
157 
158   /// ReturnBlock - Unified return block.
159   JumpDest ReturnBlock;
160 
161   /// ReturnValue - The temporary alloca to hold the return value. This is null
162   /// iff the function has no return value.
163   llvm::Value *ReturnValue;
164 
165   /// AllocaInsertPoint - This is an instruction in the entry block before which
166   /// we prefer to insert allocas.
167   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
168 
169   /// \brief API for captured statement code generation.
170   class CGCapturedStmtInfo {
171   public:
172     explicit CGCapturedStmtInfo(const CapturedStmt &S,
173                                 CapturedRegionKind K = CR_Default)
174       : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
175 
176       RecordDecl::field_iterator Field =
177         S.getCapturedRecordDecl()->field_begin();
178       for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
179                                                 E = S.capture_end();
180            I != E; ++I, ++Field) {
181         if (I->capturesThis())
182           CXXThisFieldDecl = *Field;
183         else
184           CaptureFields[I->getCapturedVar()] = *Field;
185       }
186     }
187 
188     virtual ~CGCapturedStmtInfo();
189 
190     CapturedRegionKind getKind() const { return Kind; }
191 
192     void setContextValue(llvm::Value *V) { ThisValue = V; }
193     // \brief Retrieve the value of the context parameter.
194     llvm::Value *getContextValue() const { return ThisValue; }
195 
196     /// \brief Lookup the captured field decl for a variable.
197     const FieldDecl *lookup(const VarDecl *VD) const {
198       return CaptureFields.lookup(VD);
199     }
200 
201     bool isCXXThisExprCaptured() const { return CXXThisFieldDecl != nullptr; }
202     FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
203 
204     /// \brief Emit the captured statement body.
205     virtual void EmitBody(CodeGenFunction &CGF, Stmt *S) {
206       RegionCounter Cnt = CGF.getPGORegionCounter(S);
207       Cnt.beginRegion(CGF.Builder);
208       CGF.EmitStmt(S);
209     }
210 
211     /// \brief Get the name of the capture helper.
212     virtual StringRef getHelperName() const { return "__captured_stmt"; }
213 
214   private:
215     /// \brief The kind of captured statement being generated.
216     CapturedRegionKind Kind;
217 
218     /// \brief Keep the map between VarDecl and FieldDecl.
219     llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
220 
221     /// \brief The base address of the captured record, passed in as the first
222     /// argument of the parallel region function.
223     llvm::Value *ThisValue;
224 
225     /// \brief Captured 'this' type.
226     FieldDecl *CXXThisFieldDecl;
227   };
228   CGCapturedStmtInfo *CapturedStmtInfo;
229 
230   /// BoundsChecking - Emit run-time bounds checks. Higher values mean
231   /// potentially higher performance penalties.
232   unsigned char BoundsChecking;
233 
234   /// \brief Whether any type-checking sanitizers are enabled. If \c false,
235   /// calls to EmitTypeCheck can be skipped.
236   bool SanitizePerformTypeCheck;
237 
238   /// \brief Sanitizer options to use for this function.
239   const SanitizerOptions *SanOpts;
240 
241   /// In ARC, whether we should autorelease the return value.
242   bool AutoreleaseResult;
243 
244   const CodeGen::CGBlockInfo *BlockInfo;
245   llvm::Value *BlockPointer;
246 
247   llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
248   FieldDecl *LambdaThisCaptureField;
249 
250   /// \brief A mapping from NRVO variables to the flags used to indicate
251   /// when the NRVO has been applied to this variable.
252   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
253 
254   EHScopeStack EHStack;
255   llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
256 
257   /// Header for data within LifetimeExtendedCleanupStack.
258   struct LifetimeExtendedCleanupHeader {
259     /// The size of the following cleanup object.
260     size_t Size : 29;
261     /// The kind of cleanup to push: a value from the CleanupKind enumeration.
262     unsigned Kind : 3;
263 
264     size_t getSize() const { return Size; }
265     CleanupKind getKind() const { return static_cast<CleanupKind>(Kind); }
266   };
267 
268   /// i32s containing the indexes of the cleanup destinations.
269   llvm::AllocaInst *NormalCleanupDest;
270 
271   unsigned NextCleanupDestIndex;
272 
273   /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
274   CGBlockInfo *FirstBlockInfo;
275 
276   /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
277   llvm::BasicBlock *EHResumeBlock;
278 
279   /// The exception slot.  All landing pads write the current exception pointer
280   /// into this alloca.
281   llvm::Value *ExceptionSlot;
282 
283   /// The selector slot.  Under the MandatoryCleanup model, all landing pads
284   /// write the current selector value into this alloca.
285   llvm::AllocaInst *EHSelectorSlot;
286 
287   /// Emits a landing pad for the current EH stack.
288   llvm::BasicBlock *EmitLandingPad();
289 
290   llvm::BasicBlock *getInvokeDestImpl();
291 
292   template <class T>
293   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
294     return DominatingValue<T>::save(*this, value);
295   }
296 
297 public:
298   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
299   /// rethrows.
300   SmallVector<llvm::Value*, 8> ObjCEHValueStack;
301 
302   /// A class controlling the emission of a finally block.
303   class FinallyInfo {
304     /// Where the catchall's edge through the cleanup should go.
305     JumpDest RethrowDest;
306 
307     /// A function to call to enter the catch.
308     llvm::Constant *BeginCatchFn;
309 
310     /// An i1 variable indicating whether or not the @finally is
311     /// running for an exception.
312     llvm::AllocaInst *ForEHVar;
313 
314     /// An i8* variable into which the exception pointer to rethrow
315     /// has been saved.
316     llvm::AllocaInst *SavedExnVar;
317 
318   public:
319     void enter(CodeGenFunction &CGF, const Stmt *Finally,
320                llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
321                llvm::Constant *rethrowFn);
322     void exit(CodeGenFunction &CGF);
323   };
324 
325   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
326   /// current full-expression.  Safe against the possibility that
327   /// we're currently inside a conditionally-evaluated expression.
328   template <class T, class A0>
329   void pushFullExprCleanup(CleanupKind kind, A0 a0) {
330     // If we're not in a conditional branch, or if none of the
331     // arguments requires saving, then use the unconditional cleanup.
332     if (!isInConditionalBranch())
333       return EHStack.pushCleanup<T>(kind, a0);
334 
335     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
336 
337     typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType;
338     EHStack.pushCleanup<CleanupType>(kind, a0_saved);
339     initFullExprCleanup();
340   }
341 
342   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
343   /// current full-expression.  Safe against the possibility that
344   /// we're currently inside a conditionally-evaluated expression.
345   template <class T, class A0, class A1>
346   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) {
347     // If we're not in a conditional branch, or if none of the
348     // arguments requires saving, then use the unconditional cleanup.
349     if (!isInConditionalBranch())
350       return EHStack.pushCleanup<T>(kind, a0, a1);
351 
352     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
353     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
354 
355     typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType;
356     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved);
357     initFullExprCleanup();
358   }
359 
360   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
361   /// current full-expression.  Safe against the possibility that
362   /// we're currently inside a conditionally-evaluated expression.
363   template <class T, class A0, class A1, class A2>
364   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2) {
365     // If we're not in a conditional branch, or if none of the
366     // arguments requires saving, then use the unconditional cleanup.
367     if (!isInConditionalBranch()) {
368       return EHStack.pushCleanup<T>(kind, a0, a1, a2);
369     }
370 
371     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
372     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
373     typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
374 
375     typedef EHScopeStack::ConditionalCleanup3<T, A0, A1, A2> CleanupType;
376     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, a2_saved);
377     initFullExprCleanup();
378   }
379 
380   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
381   /// current full-expression.  Safe against the possibility that
382   /// we're currently inside a conditionally-evaluated expression.
383   template <class T, class A0, class A1, class A2, class A3>
384   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2, A3 a3) {
385     // If we're not in a conditional branch, or if none of the
386     // arguments requires saving, then use the unconditional cleanup.
387     if (!isInConditionalBranch()) {
388       return EHStack.pushCleanup<T>(kind, a0, a1, a2, a3);
389     }
390 
391     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
392     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
393     typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
394     typename DominatingValue<A3>::saved_type a3_saved = saveValueInCond(a3);
395 
396     typedef EHScopeStack::ConditionalCleanup4<T, A0, A1, A2, A3> CleanupType;
397     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved,
398                                      a2_saved, a3_saved);
399     initFullExprCleanup();
400   }
401 
402   /// \brief Queue a cleanup to be pushed after finishing the current
403   /// full-expression.
404   template <class T, class A0, class A1, class A2, class A3>
405   void pushCleanupAfterFullExpr(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) {
406     assert(!isInConditionalBranch() && "can't defer conditional cleanup");
407 
408     LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind };
409 
410     size_t OldSize = LifetimeExtendedCleanupStack.size();
411     LifetimeExtendedCleanupStack.resize(
412         LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size);
413 
414     char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
415     new (Buffer) LifetimeExtendedCleanupHeader(Header);
416     new (Buffer + sizeof(Header)) T(a0, a1, a2, a3);
417   }
418 
419   /// Set up the last cleaup that was pushed as a conditional
420   /// full-expression cleanup.
421   void initFullExprCleanup();
422 
423   /// PushDestructorCleanup - Push a cleanup to call the
424   /// complete-object destructor of an object of the given type at the
425   /// given address.  Does nothing if T is not a C++ class type with a
426   /// non-trivial destructor.
427   void PushDestructorCleanup(QualType T, llvm::Value *Addr);
428 
429   /// PushDestructorCleanup - Push a cleanup to call the
430   /// complete-object variant of the given destructor on the object at
431   /// the given address.
432   void PushDestructorCleanup(const CXXDestructorDecl *Dtor,
433                              llvm::Value *Addr);
434 
435   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
436   /// process all branch fixups.
437   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
438 
439   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
440   /// The block cannot be reactivated.  Pops it if it's the top of the
441   /// stack.
442   ///
443   /// \param DominatingIP - An instruction which is known to
444   ///   dominate the current IP (if set) and which lies along
445   ///   all paths of execution between the current IP and the
446   ///   the point at which the cleanup comes into scope.
447   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
448                               llvm::Instruction *DominatingIP);
449 
450   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
451   /// Cannot be used to resurrect a deactivated cleanup.
452   ///
453   /// \param DominatingIP - An instruction which is known to
454   ///   dominate the current IP (if set) and which lies along
455   ///   all paths of execution between the current IP and the
456   ///   the point at which the cleanup comes into scope.
457   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
458                             llvm::Instruction *DominatingIP);
459 
460   /// \brief Enters a new scope for capturing cleanups, all of which
461   /// will be executed once the scope is exited.
462   class RunCleanupsScope {
463     EHScopeStack::stable_iterator CleanupStackDepth;
464     size_t LifetimeExtendedCleanupStackSize;
465     bool OldDidCallStackSave;
466   protected:
467     bool PerformCleanup;
468   private:
469 
470     RunCleanupsScope(const RunCleanupsScope &) LLVM_DELETED_FUNCTION;
471     void operator=(const RunCleanupsScope &) LLVM_DELETED_FUNCTION;
472 
473   protected:
474     CodeGenFunction& CGF;
475 
476   public:
477     /// \brief Enter a new cleanup scope.
478     explicit RunCleanupsScope(CodeGenFunction &CGF)
479       : PerformCleanup(true), CGF(CGF)
480     {
481       CleanupStackDepth = CGF.EHStack.stable_begin();
482       LifetimeExtendedCleanupStackSize =
483           CGF.LifetimeExtendedCleanupStack.size();
484       OldDidCallStackSave = CGF.DidCallStackSave;
485       CGF.DidCallStackSave = false;
486     }
487 
488     /// \brief Exit this cleanup scope, emitting any accumulated
489     /// cleanups.
490     ~RunCleanupsScope() {
491       if (PerformCleanup) {
492         CGF.DidCallStackSave = OldDidCallStackSave;
493         CGF.PopCleanupBlocks(CleanupStackDepth,
494                              LifetimeExtendedCleanupStackSize);
495       }
496     }
497 
498     /// \brief Determine whether this scope requires any cleanups.
499     bool requiresCleanups() const {
500       return CGF.EHStack.stable_begin() != CleanupStackDepth;
501     }
502 
503     /// \brief Force the emission of cleanups now, instead of waiting
504     /// until this object is destroyed.
505     void ForceCleanup() {
506       assert(PerformCleanup && "Already forced cleanup");
507       CGF.DidCallStackSave = OldDidCallStackSave;
508       CGF.PopCleanupBlocks(CleanupStackDepth,
509                            LifetimeExtendedCleanupStackSize);
510       PerformCleanup = false;
511     }
512   };
513 
514   class LexicalScope: protected RunCleanupsScope {
515     SourceRange Range;
516     SmallVector<const LabelDecl*, 4> Labels;
517     LexicalScope *ParentScope;
518 
519     LexicalScope(const LexicalScope &) LLVM_DELETED_FUNCTION;
520     void operator=(const LexicalScope &) LLVM_DELETED_FUNCTION;
521 
522   public:
523     /// \brief Enter a new cleanup scope.
524     explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
525       : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
526       CGF.CurLexicalScope = this;
527       if (CGDebugInfo *DI = CGF.getDebugInfo())
528         DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
529     }
530 
531     void addLabel(const LabelDecl *label) {
532       assert(PerformCleanup && "adding label to dead scope?");
533       Labels.push_back(label);
534     }
535 
536     /// \brief Exit this cleanup scope, emitting any accumulated
537     /// cleanups.
538     ~LexicalScope() {
539       if (CGDebugInfo *DI = CGF.getDebugInfo())
540         DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
541 
542       // If we should perform a cleanup, force them now.  Note that
543       // this ends the cleanup scope before rescoping any labels.
544       if (PerformCleanup) ForceCleanup();
545     }
546 
547     /// \brief Force the emission of cleanups now, instead of waiting
548     /// until this object is destroyed.
549     void ForceCleanup() {
550       CGF.CurLexicalScope = ParentScope;
551       RunCleanupsScope::ForceCleanup();
552 
553       if (!Labels.empty())
554         rescopeLabels();
555     }
556 
557     void rescopeLabels();
558   };
559 
560 
561   /// \brief Takes the old cleanup stack size and emits the cleanup blocks
562   /// that have been added.
563   void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize);
564 
565   /// \brief Takes the old cleanup stack size and emits the cleanup blocks
566   /// that have been added, then adds all lifetime-extended cleanups from
567   /// the given position to the stack.
568   void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
569                         size_t OldLifetimeExtendedStackSize);
570 
571   void ResolveBranchFixups(llvm::BasicBlock *Target);
572 
573   /// The given basic block lies in the current EH scope, but may be a
574   /// target of a potentially scope-crossing jump; get a stable handle
575   /// to which we can perform this jump later.
576   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
577     return JumpDest(Target,
578                     EHStack.getInnermostNormalCleanup(),
579                     NextCleanupDestIndex++);
580   }
581 
582   /// The given basic block lies in the current EH scope, but may be a
583   /// target of a potentially scope-crossing jump; get a stable handle
584   /// to which we can perform this jump later.
585   JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
586     return getJumpDestInCurrentScope(createBasicBlock(Name));
587   }
588 
589   /// EmitBranchThroughCleanup - Emit a branch from the current insert
590   /// block through the normal cleanup handling code (if any) and then
591   /// on to \arg Dest.
592   void EmitBranchThroughCleanup(JumpDest Dest);
593 
594   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
595   /// specified destination obviously has no cleanups to run.  'false' is always
596   /// a conservatively correct answer for this method.
597   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
598 
599   /// popCatchScope - Pops the catch scope at the top of the EHScope
600   /// stack, emitting any required code (other than the catch handlers
601   /// themselves).
602   void popCatchScope();
603 
604   llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
605   llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
606 
607   /// An object to manage conditionally-evaluated expressions.
608   class ConditionalEvaluation {
609     llvm::BasicBlock *StartBB;
610 
611   public:
612     ConditionalEvaluation(CodeGenFunction &CGF)
613       : StartBB(CGF.Builder.GetInsertBlock()) {}
614 
615     void begin(CodeGenFunction &CGF) {
616       assert(CGF.OutermostConditional != this);
617       if (!CGF.OutermostConditional)
618         CGF.OutermostConditional = this;
619     }
620 
621     void end(CodeGenFunction &CGF) {
622       assert(CGF.OutermostConditional != nullptr);
623       if (CGF.OutermostConditional == this)
624         CGF.OutermostConditional = nullptr;
625     }
626 
627     /// Returns a block which will be executed prior to each
628     /// evaluation of the conditional code.
629     llvm::BasicBlock *getStartingBlock() const {
630       return StartBB;
631     }
632   };
633 
634   /// isInConditionalBranch - Return true if we're currently emitting
635   /// one branch or the other of a conditional expression.
636   bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
637 
638   void setBeforeOutermostConditional(llvm::Value *value, llvm::Value *addr) {
639     assert(isInConditionalBranch());
640     llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
641     new llvm::StoreInst(value, addr, &block->back());
642   }
643 
644   /// An RAII object to record that we're evaluating a statement
645   /// expression.
646   class StmtExprEvaluation {
647     CodeGenFunction &CGF;
648 
649     /// We have to save the outermost conditional: cleanups in a
650     /// statement expression aren't conditional just because the
651     /// StmtExpr is.
652     ConditionalEvaluation *SavedOutermostConditional;
653 
654   public:
655     StmtExprEvaluation(CodeGenFunction &CGF)
656       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
657       CGF.OutermostConditional = nullptr;
658     }
659 
660     ~StmtExprEvaluation() {
661       CGF.OutermostConditional = SavedOutermostConditional;
662       CGF.EnsureInsertPoint();
663     }
664   };
665 
666   /// An object which temporarily prevents a value from being
667   /// destroyed by aggressive peephole optimizations that assume that
668   /// all uses of a value have been realized in the IR.
669   class PeepholeProtection {
670     llvm::Instruction *Inst;
671     friend class CodeGenFunction;
672 
673   public:
674     PeepholeProtection() : Inst(nullptr) {}
675   };
676 
677   /// A non-RAII class containing all the information about a bound
678   /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
679   /// this which makes individual mappings very simple; using this
680   /// class directly is useful when you have a variable number of
681   /// opaque values or don't want the RAII functionality for some
682   /// reason.
683   class OpaqueValueMappingData {
684     const OpaqueValueExpr *OpaqueValue;
685     bool BoundLValue;
686     CodeGenFunction::PeepholeProtection Protection;
687 
688     OpaqueValueMappingData(const OpaqueValueExpr *ov,
689                            bool boundLValue)
690       : OpaqueValue(ov), BoundLValue(boundLValue) {}
691   public:
692     OpaqueValueMappingData() : OpaqueValue(nullptr) {}
693 
694     static bool shouldBindAsLValue(const Expr *expr) {
695       // gl-values should be bound as l-values for obvious reasons.
696       // Records should be bound as l-values because IR generation
697       // always keeps them in memory.  Expressions of function type
698       // act exactly like l-values but are formally required to be
699       // r-values in C.
700       return expr->isGLValue() ||
701              expr->getType()->isFunctionType() ||
702              hasAggregateEvaluationKind(expr->getType());
703     }
704 
705     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
706                                        const OpaqueValueExpr *ov,
707                                        const Expr *e) {
708       if (shouldBindAsLValue(ov))
709         return bind(CGF, ov, CGF.EmitLValue(e));
710       return bind(CGF, ov, CGF.EmitAnyExpr(e));
711     }
712 
713     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
714                                        const OpaqueValueExpr *ov,
715                                        const LValue &lv) {
716       assert(shouldBindAsLValue(ov));
717       CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
718       return OpaqueValueMappingData(ov, true);
719     }
720 
721     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
722                                        const OpaqueValueExpr *ov,
723                                        const RValue &rv) {
724       assert(!shouldBindAsLValue(ov));
725       CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
726 
727       OpaqueValueMappingData data(ov, false);
728 
729       // Work around an extremely aggressive peephole optimization in
730       // EmitScalarConversion which assumes that all other uses of a
731       // value are extant.
732       data.Protection = CGF.protectFromPeepholes(rv);
733 
734       return data;
735     }
736 
737     bool isValid() const { return OpaqueValue != nullptr; }
738     void clear() { OpaqueValue = nullptr; }
739 
740     void unbind(CodeGenFunction &CGF) {
741       assert(OpaqueValue && "no data to unbind!");
742 
743       if (BoundLValue) {
744         CGF.OpaqueLValues.erase(OpaqueValue);
745       } else {
746         CGF.OpaqueRValues.erase(OpaqueValue);
747         CGF.unprotectFromPeepholes(Protection);
748       }
749     }
750   };
751 
752   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
753   class OpaqueValueMapping {
754     CodeGenFunction &CGF;
755     OpaqueValueMappingData Data;
756 
757   public:
758     static bool shouldBindAsLValue(const Expr *expr) {
759       return OpaqueValueMappingData::shouldBindAsLValue(expr);
760     }
761 
762     /// Build the opaque value mapping for the given conditional
763     /// operator if it's the GNU ?: extension.  This is a common
764     /// enough pattern that the convenience operator is really
765     /// helpful.
766     ///
767     OpaqueValueMapping(CodeGenFunction &CGF,
768                        const AbstractConditionalOperator *op) : CGF(CGF) {
769       if (isa<ConditionalOperator>(op))
770         // Leave Data empty.
771         return;
772 
773       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
774       Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
775                                           e->getCommon());
776     }
777 
778     OpaqueValueMapping(CodeGenFunction &CGF,
779                        const OpaqueValueExpr *opaqueValue,
780                        LValue lvalue)
781       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
782     }
783 
784     OpaqueValueMapping(CodeGenFunction &CGF,
785                        const OpaqueValueExpr *opaqueValue,
786                        RValue rvalue)
787       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
788     }
789 
790     void pop() {
791       Data.unbind(CGF);
792       Data.clear();
793     }
794 
795     ~OpaqueValueMapping() {
796       if (Data.isValid()) Data.unbind(CGF);
797     }
798   };
799 
800   /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field
801   /// number that holds the value.
802   unsigned getByRefValueLLVMField(const ValueDecl *VD) const;
803 
804   /// BuildBlockByrefAddress - Computes address location of the
805   /// variable which is declared as __block.
806   llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr,
807                                       const VarDecl *V);
808 private:
809   CGDebugInfo *DebugInfo;
810   bool DisableDebugInfo;
811 
812   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
813   /// calling llvm.stacksave for multiple VLAs in the same scope.
814   bool DidCallStackSave;
815 
816   /// IndirectBranch - The first time an indirect goto is seen we create a block
817   /// with an indirect branch.  Every time we see the address of a label taken,
818   /// we add the label to the indirect goto.  Every subsequent indirect goto is
819   /// codegen'd as a jump to the IndirectBranch's basic block.
820   llvm::IndirectBrInst *IndirectBranch;
821 
822   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
823   /// decls.
824   typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy;
825   DeclMapTy LocalDeclMap;
826 
827   /// LabelMap - This keeps track of the LLVM basic block for each C label.
828   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
829 
830   // BreakContinueStack - This keeps track of where break and continue
831   // statements should jump to.
832   struct BreakContinue {
833     BreakContinue(JumpDest Break, JumpDest Continue)
834       : BreakBlock(Break), ContinueBlock(Continue) {}
835 
836     JumpDest BreakBlock;
837     JumpDest ContinueBlock;
838   };
839   SmallVector<BreakContinue, 8> BreakContinueStack;
840 
841   CodeGenPGO PGO;
842 
843 public:
844   /// Get a counter for instrumentation of the region associated with the given
845   /// statement.
846   RegionCounter getPGORegionCounter(const Stmt *S) {
847     return RegionCounter(PGO, S);
848   }
849 private:
850 
851   /// SwitchInsn - This is nearest current switch instruction. It is null if
852   /// current context is not in a switch.
853   llvm::SwitchInst *SwitchInsn;
854   /// The branch weights of SwitchInsn when doing instrumentation based PGO.
855   SmallVector<uint64_t, 16> *SwitchWeights;
856 
857   /// CaseRangeBlock - This block holds if condition check for last case
858   /// statement range in current switch instruction.
859   llvm::BasicBlock *CaseRangeBlock;
860 
861   /// OpaqueLValues - Keeps track of the current set of opaque value
862   /// expressions.
863   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
864   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
865 
866   // VLASizeMap - This keeps track of the associated size for each VLA type.
867   // We track this by the size expression rather than the type itself because
868   // in certain situations, like a const qualifier applied to an VLA typedef,
869   // multiple VLA types can share the same size expression.
870   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
871   // enter/leave scopes.
872   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
873 
874   /// A block containing a single 'unreachable' instruction.  Created
875   /// lazily by getUnreachableBlock().
876   llvm::BasicBlock *UnreachableBlock;
877 
878   /// Counts of the number return expressions in the function.
879   unsigned NumReturnExprs;
880 
881   /// Count the number of simple (constant) return expressions in the function.
882   unsigned NumSimpleReturnExprs;
883 
884   /// The last regular (non-return) debug location (breakpoint) in the function.
885   SourceLocation LastStopPoint;
886 
887 public:
888   /// A scope within which we are constructing the fields of an object which
889   /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
890   /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
891   class FieldConstructionScope {
892   public:
893     FieldConstructionScope(CodeGenFunction &CGF, llvm::Value *This)
894         : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
895       CGF.CXXDefaultInitExprThis = This;
896     }
897     ~FieldConstructionScope() {
898       CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
899     }
900 
901   private:
902     CodeGenFunction &CGF;
903     llvm::Value *OldCXXDefaultInitExprThis;
904   };
905 
906   /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
907   /// is overridden to be the object under construction.
908   class CXXDefaultInitExprScope {
909   public:
910     CXXDefaultInitExprScope(CodeGenFunction &CGF)
911         : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue) {
912       CGF.CXXThisValue = CGF.CXXDefaultInitExprThis;
913     }
914     ~CXXDefaultInitExprScope() {
915       CGF.CXXThisValue = OldCXXThisValue;
916     }
917 
918   public:
919     CodeGenFunction &CGF;
920     llvm::Value *OldCXXThisValue;
921   };
922 
923 private:
924   /// CXXThisDecl - When generating code for a C++ member function,
925   /// this will hold the implicit 'this' declaration.
926   ImplicitParamDecl *CXXABIThisDecl;
927   llvm::Value *CXXABIThisValue;
928   llvm::Value *CXXThisValue;
929 
930   /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
931   /// this expression.
932   llvm::Value *CXXDefaultInitExprThis;
933 
934   /// CXXStructorImplicitParamDecl - When generating code for a constructor or
935   /// destructor, this will hold the implicit argument (e.g. VTT).
936   ImplicitParamDecl *CXXStructorImplicitParamDecl;
937   llvm::Value *CXXStructorImplicitParamValue;
938 
939   /// OutermostConditional - Points to the outermost active
940   /// conditional control.  This is used so that we know if a
941   /// temporary should be destroyed conditionally.
942   ConditionalEvaluation *OutermostConditional;
943 
944   /// The current lexical scope.
945   LexicalScope *CurLexicalScope;
946 
947   /// The current source location that should be used for exception
948   /// handling code.
949   SourceLocation CurEHLocation;
950 
951   /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM
952   /// type as well as the field number that contains the actual data.
953   llvm::DenseMap<const ValueDecl *, std::pair<llvm::Type *,
954                                               unsigned> > ByRefValueInfo;
955 
956   llvm::BasicBlock *TerminateLandingPad;
957   llvm::BasicBlock *TerminateHandler;
958   llvm::BasicBlock *TrapBB;
959 
960   /// Add a kernel metadata node to the named metadata node 'opencl.kernels'.
961   /// In the kernel metadata node, reference the kernel function and metadata
962   /// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2):
963   /// - A node for the vec_type_hint(<type>) qualifier contains string
964   ///   "vec_type_hint", an undefined value of the <type> data type,
965   ///   and a Boolean that is true if the <type> is integer and signed.
966   /// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string
967   ///   "work_group_size_hint", and three 32-bit integers X, Y and Z.
968   /// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string
969   ///   "reqd_work_group_size", and three 32-bit integers X, Y and Z.
970   void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
971                                 llvm::Function *Fn);
972 
973 public:
974   CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
975   ~CodeGenFunction();
976 
977   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
978   ASTContext &getContext() const { return CGM.getContext(); }
979   CGDebugInfo *getDebugInfo() {
980     if (DisableDebugInfo)
981       return nullptr;
982     return DebugInfo;
983   }
984   void disableDebugInfo() { DisableDebugInfo = true; }
985   void enableDebugInfo() { DisableDebugInfo = false; }
986 
987   bool shouldUseFusedARCCalls() {
988     return CGM.getCodeGenOpts().OptimizationLevel == 0;
989   }
990 
991   const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
992 
993   /// Returns a pointer to the function's exception object and selector slot,
994   /// which is assigned in every landing pad.
995   llvm::Value *getExceptionSlot();
996   llvm::Value *getEHSelectorSlot();
997 
998   /// Returns the contents of the function's exception object and selector
999   /// slots.
1000   llvm::Value *getExceptionFromSlot();
1001   llvm::Value *getSelectorFromSlot();
1002 
1003   llvm::Value *getNormalCleanupDestSlot();
1004 
1005   llvm::BasicBlock *getUnreachableBlock() {
1006     if (!UnreachableBlock) {
1007       UnreachableBlock = createBasicBlock("unreachable");
1008       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1009     }
1010     return UnreachableBlock;
1011   }
1012 
1013   llvm::BasicBlock *getInvokeDest() {
1014     if (!EHStack.requiresLandingPad()) return nullptr;
1015     return getInvokeDestImpl();
1016   }
1017 
1018   const TargetInfo &getTarget() const { return Target; }
1019   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1020 
1021   //===--------------------------------------------------------------------===//
1022   //                                  Cleanups
1023   //===--------------------------------------------------------------------===//
1024 
1025   typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty);
1026 
1027   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1028                                         llvm::Value *arrayEndPointer,
1029                                         QualType elementType,
1030                                         Destroyer *destroyer);
1031   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1032                                       llvm::Value *arrayEnd,
1033                                       QualType elementType,
1034                                       Destroyer *destroyer);
1035 
1036   void pushDestroy(QualType::DestructionKind dtorKind,
1037                    llvm::Value *addr, QualType type);
1038   void pushEHDestroy(QualType::DestructionKind dtorKind,
1039                      llvm::Value *addr, QualType type);
1040   void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type,
1041                    Destroyer *destroyer, bool useEHCleanupForArray);
1042   void pushLifetimeExtendedDestroy(CleanupKind kind, llvm::Value *addr,
1043                                    QualType type, Destroyer *destroyer,
1044                                    bool useEHCleanupForArray);
1045   void pushStackRestore(CleanupKind kind, llvm::Value *SPMem);
1046   void emitDestroy(llvm::Value *addr, QualType type, Destroyer *destroyer,
1047                    bool useEHCleanupForArray);
1048   llvm::Function *generateDestroyHelper(llvm::Constant *addr, QualType type,
1049                                         Destroyer *destroyer,
1050                                         bool useEHCleanupForArray,
1051                                         const VarDecl *VD);
1052   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1053                         QualType type, Destroyer *destroyer,
1054                         bool checkZeroLength, bool useEHCleanup);
1055 
1056   Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1057 
1058   /// Determines whether an EH cleanup is required to destroy a type
1059   /// with the given destruction kind.
1060   bool needsEHCleanup(QualType::DestructionKind kind) {
1061     switch (kind) {
1062     case QualType::DK_none:
1063       return false;
1064     case QualType::DK_cxx_destructor:
1065     case QualType::DK_objc_weak_lifetime:
1066       return getLangOpts().Exceptions;
1067     case QualType::DK_objc_strong_lifetime:
1068       return getLangOpts().Exceptions &&
1069              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1070     }
1071     llvm_unreachable("bad destruction kind");
1072   }
1073 
1074   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
1075     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1076   }
1077 
1078   //===--------------------------------------------------------------------===//
1079   //                                  Objective-C
1080   //===--------------------------------------------------------------------===//
1081 
1082   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1083 
1084   void StartObjCMethod(const ObjCMethodDecl *MD,
1085                        const ObjCContainerDecl *CD,
1086                        SourceLocation StartLoc);
1087 
1088   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1089   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1090                           const ObjCPropertyImplDecl *PID);
1091   void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1092                               const ObjCPropertyImplDecl *propImpl,
1093                               const ObjCMethodDecl *GetterMothodDecl,
1094                               llvm::Constant *AtomicHelperFn);
1095 
1096   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1097                                   ObjCMethodDecl *MD, bool ctor);
1098 
1099   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1100   /// for the given property.
1101   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1102                           const ObjCPropertyImplDecl *PID);
1103   void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1104                               const ObjCPropertyImplDecl *propImpl,
1105                               llvm::Constant *AtomicHelperFn);
1106   bool IndirectObjCSetterArg(const CGFunctionInfo &FI);
1107   bool IvarTypeWithAggrGCObjects(QualType Ty);
1108 
1109   //===--------------------------------------------------------------------===//
1110   //                                  Block Bits
1111   //===--------------------------------------------------------------------===//
1112 
1113   llvm::Value *EmitBlockLiteral(const BlockExpr *);
1114   llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
1115   static void destroyBlockInfos(CGBlockInfo *info);
1116   llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *,
1117                                            const CGBlockInfo &Info,
1118                                            llvm::StructType *,
1119                                            llvm::Constant *BlockVarLayout);
1120 
1121   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1122                                         const CGBlockInfo &Info,
1123                                         const DeclMapTy &ldm,
1124                                         bool IsLambdaConversionToBlock);
1125 
1126   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1127   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1128   llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
1129                                              const ObjCPropertyImplDecl *PID);
1130   llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
1131                                              const ObjCPropertyImplDecl *PID);
1132   llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
1133 
1134   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
1135 
1136   class AutoVarEmission;
1137 
1138   void emitByrefStructureInit(const AutoVarEmission &emission);
1139   void enterByrefCleanup(const AutoVarEmission &emission);
1140 
1141   llvm::Value *LoadBlockStruct() {
1142     assert(BlockPointer && "no block pointer set!");
1143     return BlockPointer;
1144   }
1145 
1146   void AllocateBlockCXXThisPointer(const CXXThisExpr *E);
1147   void AllocateBlockDecl(const DeclRefExpr *E);
1148   llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
1149   llvm::Type *BuildByRefType(const VarDecl *var);
1150 
1151   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1152                     const CGFunctionInfo &FnInfo);
1153   /// \brief Emit code for the start of a function.
1154   /// \param Loc       The location to be associated with the function.
1155   /// \param StartLoc  The location of the function body.
1156   void StartFunction(GlobalDecl GD,
1157                      QualType RetTy,
1158                      llvm::Function *Fn,
1159                      const CGFunctionInfo &FnInfo,
1160                      const FunctionArgList &Args,
1161                      SourceLocation Loc = SourceLocation(),
1162                      SourceLocation StartLoc = SourceLocation());
1163 
1164   void EmitConstructorBody(FunctionArgList &Args);
1165   void EmitDestructorBody(FunctionArgList &Args);
1166   void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
1167   void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body);
1168   void EmitBlockWithFallThrough(llvm::BasicBlock *BB, RegionCounter &Cnt);
1169 
1170   void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
1171                                   CallArgList &CallArgs);
1172   void EmitLambdaToBlockPointerBody(FunctionArgList &Args);
1173   void EmitLambdaBlockInvokeBody();
1174   void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
1175   void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD);
1176 
1177   /// EmitReturnBlock - Emit the unified return block, trying to avoid its
1178   /// emission when possible.
1179   void EmitReturnBlock();
1180 
1181   /// FinishFunction - Complete IR generation of the current function. It is
1182   /// legal to call this function even if there is no current insertion point.
1183   void FinishFunction(SourceLocation EndLoc=SourceLocation());
1184 
1185   void StartThunk(llvm::Function *Fn, GlobalDecl GD, const CGFunctionInfo &FnInfo);
1186 
1187   void EmitCallAndReturnForThunk(GlobalDecl GD, llvm::Value *Callee,
1188                                  const ThunkInfo *Thunk);
1189 
1190   /// GenerateThunk - Generate a thunk for the given method.
1191   void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1192                      GlobalDecl GD, const ThunkInfo &Thunk);
1193 
1194   void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1195                             GlobalDecl GD, const ThunkInfo &Thunk);
1196 
1197   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1198                         FunctionArgList &Args);
1199 
1200   void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init,
1201                                ArrayRef<VarDecl *> ArrayIndexes);
1202 
1203   /// InitializeVTablePointer - Initialize the vtable pointer of the given
1204   /// subobject.
1205   ///
1206   void InitializeVTablePointer(BaseSubobject Base,
1207                                const CXXRecordDecl *NearestVBase,
1208                                CharUnits OffsetFromNearestVBase,
1209                                const CXXRecordDecl *VTableClass);
1210 
1211   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1212   void InitializeVTablePointers(BaseSubobject Base,
1213                                 const CXXRecordDecl *NearestVBase,
1214                                 CharUnits OffsetFromNearestVBase,
1215                                 bool BaseIsNonVirtualPrimaryBase,
1216                                 const CXXRecordDecl *VTableClass,
1217                                 VisitedVirtualBasesSetTy& VBases);
1218 
1219   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1220 
1221   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1222   /// to by This.
1223   llvm::Value *GetVTablePtr(llvm::Value *This, llvm::Type *Ty);
1224 
1225 
1226   /// CanDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given
1227   /// expr can be devirtualized.
1228   bool CanDevirtualizeMemberFunctionCall(const Expr *Base,
1229                                          const CXXMethodDecl *MD);
1230 
1231   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1232   /// given phase of destruction for a destructor.  The end result
1233   /// should call destructors on members and base classes in reverse
1234   /// order of their construction.
1235   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1236 
1237   /// ShouldInstrumentFunction - Return true if the current function should be
1238   /// instrumented with __cyg_profile_func_* calls
1239   bool ShouldInstrumentFunction();
1240 
1241   /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
1242   /// instrumentation function with the current function and the call site, if
1243   /// function instrumentation is enabled.
1244   void EmitFunctionInstrumentation(const char *Fn);
1245 
1246   /// EmitMCountInstrumentation - Emit call to .mcount.
1247   void EmitMCountInstrumentation();
1248 
1249   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1250   /// arguments for the given function. This is also responsible for naming the
1251   /// LLVM function arguments.
1252   void EmitFunctionProlog(const CGFunctionInfo &FI,
1253                           llvm::Function *Fn,
1254                           const FunctionArgList &Args);
1255 
1256   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1257   /// given temporary.
1258   void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
1259                           SourceLocation EndLoc);
1260 
1261   /// EmitStartEHSpec - Emit the start of the exception spec.
1262   void EmitStartEHSpec(const Decl *D);
1263 
1264   /// EmitEndEHSpec - Emit the end of the exception spec.
1265   void EmitEndEHSpec(const Decl *D);
1266 
1267   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
1268   llvm::BasicBlock *getTerminateLandingPad();
1269 
1270   /// getTerminateHandler - Return a handler (not a landing pad, just
1271   /// a catch handler) that just calls terminate.  This is used when
1272   /// a terminate scope encloses a try.
1273   llvm::BasicBlock *getTerminateHandler();
1274 
1275   llvm::Type *ConvertTypeForMem(QualType T);
1276   llvm::Type *ConvertType(QualType T);
1277   llvm::Type *ConvertType(const TypeDecl *T) {
1278     return ConvertType(getContext().getTypeDeclType(T));
1279   }
1280 
1281   /// LoadObjCSelf - Load the value of self. This function is only valid while
1282   /// generating code for an Objective-C method.
1283   llvm::Value *LoadObjCSelf();
1284 
1285   /// TypeOfSelfObject - Return type of object that this self represents.
1286   QualType TypeOfSelfObject();
1287 
1288   /// hasAggregateLLVMType - Return true if the specified AST type will map into
1289   /// an aggregate LLVM type or is void.
1290   static TypeEvaluationKind getEvaluationKind(QualType T);
1291 
1292   static bool hasScalarEvaluationKind(QualType T) {
1293     return getEvaluationKind(T) == TEK_Scalar;
1294   }
1295 
1296   static bool hasAggregateEvaluationKind(QualType T) {
1297     return getEvaluationKind(T) == TEK_Aggregate;
1298   }
1299 
1300   /// createBasicBlock - Create an LLVM basic block.
1301   llvm::BasicBlock *createBasicBlock(const Twine &name = "",
1302                                      llvm::Function *parent = nullptr,
1303                                      llvm::BasicBlock *before = nullptr) {
1304 #ifdef NDEBUG
1305     return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
1306 #else
1307     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
1308 #endif
1309   }
1310 
1311   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
1312   /// label maps to.
1313   JumpDest getJumpDestForLabel(const LabelDecl *S);
1314 
1315   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
1316   /// another basic block, simplify it. This assumes that no other code could
1317   /// potentially reference the basic block.
1318   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
1319 
1320   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
1321   /// adding a fall-through branch from the current insert block if
1322   /// necessary. It is legal to call this function even if there is no current
1323   /// insertion point.
1324   ///
1325   /// IsFinished - If true, indicates that the caller has finished emitting
1326   /// branches to the given block and does not expect to emit code into it. This
1327   /// means the block can be ignored if it is unreachable.
1328   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
1329 
1330   /// EmitBlockAfterUses - Emit the given block somewhere hopefully
1331   /// near its uses, and leave the insertion point in it.
1332   void EmitBlockAfterUses(llvm::BasicBlock *BB);
1333 
1334   /// EmitBranch - Emit a branch to the specified basic block from the current
1335   /// insert block, taking care to avoid creation of branches from dummy
1336   /// blocks. It is legal to call this function even if there is no current
1337   /// insertion point.
1338   ///
1339   /// This function clears the current insertion point. The caller should follow
1340   /// calls to this function with calls to Emit*Block prior to generation new
1341   /// code.
1342   void EmitBranch(llvm::BasicBlock *Block);
1343 
1344   /// HaveInsertPoint - True if an insertion point is defined. If not, this
1345   /// indicates that the current code being emitted is unreachable.
1346   bool HaveInsertPoint() const {
1347     return Builder.GetInsertBlock() != nullptr;
1348   }
1349 
1350   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
1351   /// emitted IR has a place to go. Note that by definition, if this function
1352   /// creates a block then that block is unreachable; callers may do better to
1353   /// detect when no insertion point is defined and simply skip IR generation.
1354   void EnsureInsertPoint() {
1355     if (!HaveInsertPoint())
1356       EmitBlock(createBasicBlock());
1357   }
1358 
1359   /// ErrorUnsupported - Print out an error that codegen doesn't support the
1360   /// specified stmt yet.
1361   void ErrorUnsupported(const Stmt *S, const char *Type);
1362 
1363   //===--------------------------------------------------------------------===//
1364   //                                  Helpers
1365   //===--------------------------------------------------------------------===//
1366 
1367   LValue MakeAddrLValue(llvm::Value *V, QualType T,
1368                         CharUnits Alignment = CharUnits()) {
1369     return LValue::MakeAddr(V, T, Alignment, getContext(),
1370                             CGM.getTBAAInfo(T));
1371   }
1372 
1373   LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
1374     CharUnits Alignment;
1375     if (!T->isIncompleteType())
1376       Alignment = getContext().getTypeAlignInChars(T);
1377     return LValue::MakeAddr(V, T, Alignment, getContext(),
1378                             CGM.getTBAAInfo(T));
1379   }
1380 
1381   /// CreateTempAlloca - This creates a alloca and inserts it into the entry
1382   /// block. The caller is responsible for setting an appropriate alignment on
1383   /// the alloca.
1384   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty,
1385                                      const Twine &Name = "tmp");
1386 
1387   /// InitTempAlloca - Provide an initial value for the given alloca.
1388   void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value);
1389 
1390   /// CreateIRTemp - Create a temporary IR object of the given type, with
1391   /// appropriate alignment. This routine should only be used when an temporary
1392   /// value needs to be stored into an alloca (for example, to avoid explicit
1393   /// PHI construction), but the type is the IR type, not the type appropriate
1394   /// for storing in memory.
1395   llvm::AllocaInst *CreateIRTemp(QualType T, const Twine &Name = "tmp");
1396 
1397   /// CreateMemTemp - Create a temporary memory object of the given type, with
1398   /// appropriate alignment.
1399   llvm::AllocaInst *CreateMemTemp(QualType T, const Twine &Name = "tmp");
1400 
1401   /// CreateAggTemp - Create a temporary memory object for the given
1402   /// aggregate type.
1403   AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
1404     CharUnits Alignment = getContext().getTypeAlignInChars(T);
1405     return AggValueSlot::forAddr(CreateMemTemp(T, Name), Alignment,
1406                                  T.getQualifiers(),
1407                                  AggValueSlot::IsNotDestructed,
1408                                  AggValueSlot::DoesNotNeedGCBarriers,
1409                                  AggValueSlot::IsNotAliased);
1410   }
1411 
1412   /// CreateInAllocaTmp - Create a temporary memory object for the given
1413   /// aggregate type.
1414   AggValueSlot CreateInAllocaTmp(QualType T, const Twine &Name = "inalloca");
1415 
1416   /// Emit a cast to void* in the appropriate address space.
1417   llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
1418 
1419   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
1420   /// expression and compare the result against zero, returning an Int1Ty value.
1421   llvm::Value *EvaluateExprAsBool(const Expr *E);
1422 
1423   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
1424   void EmitIgnoredExpr(const Expr *E);
1425 
1426   /// EmitAnyExpr - Emit code to compute the specified expression which can have
1427   /// any type.  The result is returned as an RValue struct.  If this is an
1428   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
1429   /// the result should be returned.
1430   ///
1431   /// \param ignoreResult True if the resulting value isn't used.
1432   RValue EmitAnyExpr(const Expr *E,
1433                      AggValueSlot aggSlot = AggValueSlot::ignored(),
1434                      bool ignoreResult = false);
1435 
1436   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
1437   // or the value of the expression, depending on how va_list is defined.
1438   llvm::Value *EmitVAListRef(const Expr *E);
1439 
1440   /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
1441   /// always be accessible even if no aggregate location is provided.
1442   RValue EmitAnyExprToTemp(const Expr *E);
1443 
1444   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
1445   /// arbitrary expression into the given memory location.
1446   void EmitAnyExprToMem(const Expr *E, llvm::Value *Location,
1447                         Qualifiers Quals, bool IsInitializer);
1448 
1449   /// EmitExprAsInit - Emits the code necessary to initialize a
1450   /// location in memory with the given initializer.
1451   void EmitExprAsInit(const Expr *init, const ValueDecl *D,
1452                       LValue lvalue, bool capturedByInit);
1453 
1454   /// hasVolatileMember - returns true if aggregate type has a volatile
1455   /// member.
1456   bool hasVolatileMember(QualType T) {
1457     if (const RecordType *RT = T->getAs<RecordType>()) {
1458       const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
1459       return RD->hasVolatileMember();
1460     }
1461     return false;
1462   }
1463   /// EmitAggregateCopy - Emit an aggregate assignment.
1464   ///
1465   /// The difference to EmitAggregateCopy is that tail padding is not copied.
1466   /// This is required for correctness when assigning non-POD structures in C++.
1467   void EmitAggregateAssign(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1468                            QualType EltTy) {
1469     bool IsVolatile = hasVolatileMember(EltTy);
1470     EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, CharUnits::Zero(),
1471                       true);
1472   }
1473 
1474   /// EmitAggregateCopy - Emit an aggregate copy.
1475   ///
1476   /// \param isVolatile - True iff either the source or the destination is
1477   /// volatile.
1478   /// \param isAssignment - If false, allow padding to be copied.  This often
1479   /// yields more efficient.
1480   void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1481                          QualType EltTy, bool isVolatile=false,
1482                          CharUnits Alignment = CharUnits::Zero(),
1483                          bool isAssignment = false);
1484 
1485   /// StartBlock - Start new block named N. If insert block is a dummy block
1486   /// then reuse it.
1487   void StartBlock(const char *N);
1488 
1489   /// GetAddrOfLocalVar - Return the address of a local variable.
1490   llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) {
1491     llvm::Value *Res = LocalDeclMap[VD];
1492     assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!");
1493     return Res;
1494   }
1495 
1496   /// getOpaqueLValueMapping - Given an opaque value expression (which
1497   /// must be mapped to an l-value), return its mapping.
1498   const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
1499     assert(OpaqueValueMapping::shouldBindAsLValue(e));
1500 
1501     llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
1502       it = OpaqueLValues.find(e);
1503     assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
1504     return it->second;
1505   }
1506 
1507   /// getOpaqueRValueMapping - Given an opaque value expression (which
1508   /// must be mapped to an r-value), return its mapping.
1509   const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
1510     assert(!OpaqueValueMapping::shouldBindAsLValue(e));
1511 
1512     llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
1513       it = OpaqueRValues.find(e);
1514     assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
1515     return it->second;
1516   }
1517 
1518   /// getAccessedFieldNo - Given an encoded value and a result number, return
1519   /// the input field number being accessed.
1520   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
1521 
1522   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
1523   llvm::BasicBlock *GetIndirectGotoBlock();
1524 
1525   /// EmitNullInitialization - Generate code to set a value of the given type to
1526   /// null, If the type contains data member pointers, they will be initialized
1527   /// to -1 in accordance with the Itanium C++ ABI.
1528   void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty);
1529 
1530   // EmitVAArg - Generate code to get an argument from the passed in pointer
1531   // and update it accordingly. The return value is a pointer to the argument.
1532   // FIXME: We should be able to get rid of this method and use the va_arg
1533   // instruction in LLVM instead once it works well enough.
1534   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty);
1535 
1536   /// emitArrayLength - Compute the length of an array, even if it's a
1537   /// VLA, and drill down to the base element type.
1538   llvm::Value *emitArrayLength(const ArrayType *arrayType,
1539                                QualType &baseType,
1540                                llvm::Value *&addr);
1541 
1542   /// EmitVLASize - Capture all the sizes for the VLA expressions in
1543   /// the given variably-modified type and store them in the VLASizeMap.
1544   ///
1545   /// This function can be called with a null (unreachable) insert point.
1546   void EmitVariablyModifiedType(QualType Ty);
1547 
1548   /// getVLASize - Returns an LLVM value that corresponds to the size,
1549   /// in non-variably-sized elements, of a variable length array type,
1550   /// plus that largest non-variably-sized element type.  Assumes that
1551   /// the type has already been emitted with EmitVariablyModifiedType.
1552   std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla);
1553   std::pair<llvm::Value*,QualType> getVLASize(QualType vla);
1554 
1555   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
1556   /// generating code for an C++ member function.
1557   llvm::Value *LoadCXXThis() {
1558     assert(CXXThisValue && "no 'this' value for this function");
1559     return CXXThisValue;
1560   }
1561 
1562   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
1563   /// virtual bases.
1564   // FIXME: Every place that calls LoadCXXVTT is something
1565   // that needs to be abstracted properly.
1566   llvm::Value *LoadCXXVTT() {
1567     assert(CXXStructorImplicitParamValue && "no VTT value for this function");
1568     return CXXStructorImplicitParamValue;
1569   }
1570 
1571   /// LoadCXXStructorImplicitParam - Load the implicit parameter
1572   /// for a constructor/destructor.
1573   llvm::Value *LoadCXXStructorImplicitParam() {
1574     assert(CXXStructorImplicitParamValue &&
1575            "no implicit argument value for this function");
1576     return CXXStructorImplicitParamValue;
1577   }
1578 
1579   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
1580   /// complete class to the given direct base.
1581   llvm::Value *
1582   GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value,
1583                                         const CXXRecordDecl *Derived,
1584                                         const CXXRecordDecl *Base,
1585                                         bool BaseIsVirtual);
1586 
1587   /// GetAddressOfBaseClass - This function will add the necessary delta to the
1588   /// load of 'this' and returns address of the base class.
1589   llvm::Value *GetAddressOfBaseClass(llvm::Value *Value,
1590                                      const CXXRecordDecl *Derived,
1591                                      CastExpr::path_const_iterator PathBegin,
1592                                      CastExpr::path_const_iterator PathEnd,
1593                                      bool NullCheckValue);
1594 
1595   llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value,
1596                                         const CXXRecordDecl *Derived,
1597                                         CastExpr::path_const_iterator PathBegin,
1598                                         CastExpr::path_const_iterator PathEnd,
1599                                         bool NullCheckValue);
1600 
1601   /// GetVTTParameter - Return the VTT parameter that should be passed to a
1602   /// base constructor/destructor with virtual bases.
1603   /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
1604   /// to ItaniumCXXABI.cpp together with all the references to VTT.
1605   llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
1606                                bool Delegating);
1607 
1608   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
1609                                       CXXCtorType CtorType,
1610                                       const FunctionArgList &Args,
1611                                       SourceLocation Loc);
1612   // It's important not to confuse this and the previous function. Delegating
1613   // constructors are the C++0x feature. The constructor delegate optimization
1614   // is used to reduce duplication in the base and complete consturctors where
1615   // they are substantially the same.
1616   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
1617                                         const FunctionArgList &Args);
1618   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
1619                               bool ForVirtualBase, bool Delegating,
1620                               llvm::Value *This,
1621                               CallExpr::const_arg_iterator ArgBeg,
1622                               CallExpr::const_arg_iterator ArgEnd);
1623 
1624   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
1625                               llvm::Value *This, llvm::Value *Src,
1626                               CallExpr::const_arg_iterator ArgBeg,
1627                               CallExpr::const_arg_iterator ArgEnd);
1628 
1629   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1630                                   const ConstantArrayType *ArrayTy,
1631                                   llvm::Value *ArrayPtr,
1632                                   CallExpr::const_arg_iterator ArgBeg,
1633                                   CallExpr::const_arg_iterator ArgEnd,
1634                                   bool ZeroInitialization = false);
1635 
1636   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1637                                   llvm::Value *NumElements,
1638                                   llvm::Value *ArrayPtr,
1639                                   CallExpr::const_arg_iterator ArgBeg,
1640                                   CallExpr::const_arg_iterator ArgEnd,
1641                                   bool ZeroInitialization = false);
1642 
1643   static Destroyer destroyCXXObject;
1644 
1645   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
1646                              bool ForVirtualBase, bool Delegating,
1647                              llvm::Value *This);
1648 
1649   void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
1650                                llvm::Value *NewPtr, llvm::Value *NumElements);
1651 
1652   void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
1653                         llvm::Value *Ptr);
1654 
1655   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
1656   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
1657 
1658   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
1659                       QualType DeleteTy);
1660 
1661   llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E);
1662   llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE);
1663   llvm::Value* EmitCXXUuidofExpr(const CXXUuidofExpr *E);
1664 
1665   /// \brief Situations in which we might emit a check for the suitability of a
1666   ///        pointer or glvalue.
1667   enum TypeCheckKind {
1668     /// Checking the operand of a load. Must be suitably sized and aligned.
1669     TCK_Load,
1670     /// Checking the destination of a store. Must be suitably sized and aligned.
1671     TCK_Store,
1672     /// Checking the bound value in a reference binding. Must be suitably sized
1673     /// and aligned, but is not required to refer to an object (until the
1674     /// reference is used), per core issue 453.
1675     TCK_ReferenceBinding,
1676     /// Checking the object expression in a non-static data member access. Must
1677     /// be an object within its lifetime.
1678     TCK_MemberAccess,
1679     /// Checking the 'this' pointer for a call to a non-static member function.
1680     /// Must be an object within its lifetime.
1681     TCK_MemberCall,
1682     /// Checking the 'this' pointer for a constructor call.
1683     TCK_ConstructorCall,
1684     /// Checking the operand of a static_cast to a derived pointer type. Must be
1685     /// null or an object within its lifetime.
1686     TCK_DowncastPointer,
1687     /// Checking the operand of a static_cast to a derived reference type. Must
1688     /// be an object within its lifetime.
1689     TCK_DowncastReference
1690   };
1691 
1692   /// \brief Emit a check that \p V is the address of storage of the
1693   /// appropriate size and alignment for an object of type \p Type.
1694   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
1695                      QualType Type, CharUnits Alignment = CharUnits::Zero());
1696 
1697   /// \brief Emit a check that \p Base points into an array object, which
1698   /// we can access at index \p Index. \p Accessed should be \c false if we
1699   /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
1700   void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
1701                        QualType IndexType, bool Accessed);
1702 
1703   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1704                                        bool isInc, bool isPre);
1705   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1706                                          bool isInc, bool isPre);
1707   //===--------------------------------------------------------------------===//
1708   //                            Declaration Emission
1709   //===--------------------------------------------------------------------===//
1710 
1711   /// EmitDecl - Emit a declaration.
1712   ///
1713   /// This function can be called with a null (unreachable) insert point.
1714   void EmitDecl(const Decl &D);
1715 
1716   /// EmitVarDecl - Emit a local variable declaration.
1717   ///
1718   /// This function can be called with a null (unreachable) insert point.
1719   void EmitVarDecl(const VarDecl &D);
1720 
1721   void EmitScalarInit(const Expr *init, const ValueDecl *D,
1722                       LValue lvalue, bool capturedByInit);
1723   void EmitScalarInit(llvm::Value *init, LValue lvalue);
1724 
1725   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
1726                              llvm::Value *Address);
1727 
1728   /// EmitAutoVarDecl - Emit an auto variable declaration.
1729   ///
1730   /// This function can be called with a null (unreachable) insert point.
1731   void EmitAutoVarDecl(const VarDecl &D);
1732 
1733   class AutoVarEmission {
1734     friend class CodeGenFunction;
1735 
1736     const VarDecl *Variable;
1737 
1738     /// The alignment of the variable.
1739     CharUnits Alignment;
1740 
1741     /// The address of the alloca.  Null if the variable was emitted
1742     /// as a global constant.
1743     llvm::Value *Address;
1744 
1745     llvm::Value *NRVOFlag;
1746 
1747     /// True if the variable is a __block variable.
1748     bool IsByRef;
1749 
1750     /// True if the variable is of aggregate type and has a constant
1751     /// initializer.
1752     bool IsConstantAggregate;
1753 
1754     /// Non-null if we should use lifetime annotations.
1755     llvm::Value *SizeForLifetimeMarkers;
1756 
1757     struct Invalid {};
1758     AutoVarEmission(Invalid) : Variable(nullptr) {}
1759 
1760     AutoVarEmission(const VarDecl &variable)
1761       : Variable(&variable), Address(nullptr), NRVOFlag(nullptr),
1762         IsByRef(false), IsConstantAggregate(false),
1763         SizeForLifetimeMarkers(nullptr) {}
1764 
1765     bool wasEmittedAsGlobal() const { return Address == nullptr; }
1766 
1767   public:
1768     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
1769 
1770     bool useLifetimeMarkers() const {
1771       return SizeForLifetimeMarkers != nullptr;
1772     }
1773     llvm::Value *getSizeForLifetimeMarkers() const {
1774       assert(useLifetimeMarkers());
1775       return SizeForLifetimeMarkers;
1776     }
1777 
1778     /// Returns the raw, allocated address, which is not necessarily
1779     /// the address of the object itself.
1780     llvm::Value *getAllocatedAddress() const {
1781       return Address;
1782     }
1783 
1784     /// Returns the address of the object within this declaration.
1785     /// Note that this does not chase the forwarding pointer for
1786     /// __block decls.
1787     llvm::Value *getObjectAddress(CodeGenFunction &CGF) const {
1788       if (!IsByRef) return Address;
1789 
1790       return CGF.Builder.CreateStructGEP(Address,
1791                                          CGF.getByRefValueLLVMField(Variable),
1792                                          Variable->getNameAsString());
1793     }
1794   };
1795   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
1796   void EmitAutoVarInit(const AutoVarEmission &emission);
1797   void EmitAutoVarCleanups(const AutoVarEmission &emission);
1798   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
1799                               QualType::DestructionKind dtorKind);
1800 
1801   void EmitStaticVarDecl(const VarDecl &D,
1802                          llvm::GlobalValue::LinkageTypes Linkage);
1803 
1804   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
1805   void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, bool ArgIsPointer,
1806                     unsigned ArgNo);
1807 
1808   /// protectFromPeepholes - Protect a value that we're intending to
1809   /// store to the side, but which will probably be used later, from
1810   /// aggressive peepholing optimizations that might delete it.
1811   ///
1812   /// Pass the result to unprotectFromPeepholes to declare that
1813   /// protection is no longer required.
1814   ///
1815   /// There's no particular reason why this shouldn't apply to
1816   /// l-values, it's just that no existing peepholes work on pointers.
1817   PeepholeProtection protectFromPeepholes(RValue rvalue);
1818   void unprotectFromPeepholes(PeepholeProtection protection);
1819 
1820   //===--------------------------------------------------------------------===//
1821   //                             Statement Emission
1822   //===--------------------------------------------------------------------===//
1823 
1824   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
1825   void EmitStopPoint(const Stmt *S);
1826 
1827   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
1828   /// this function even if there is no current insertion point.
1829   ///
1830   /// This function may clear the current insertion point; callers should use
1831   /// EnsureInsertPoint if they wish to subsequently generate code without first
1832   /// calling EmitBlock, EmitBranch, or EmitStmt.
1833   void EmitStmt(const Stmt *S);
1834 
1835   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
1836   /// necessarily require an insertion point or debug information; typically
1837   /// because the statement amounts to a jump or a container of other
1838   /// statements.
1839   ///
1840   /// \return True if the statement was handled.
1841   bool EmitSimpleStmt(const Stmt *S);
1842 
1843   llvm::Value *EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
1844                                 AggValueSlot AVS = AggValueSlot::ignored());
1845   llvm::Value *EmitCompoundStmtWithoutScope(const CompoundStmt &S,
1846                                             bool GetLast = false,
1847                                             AggValueSlot AVS =
1848                                                 AggValueSlot::ignored());
1849 
1850   /// EmitLabel - Emit the block for the given label. It is legal to call this
1851   /// function even if there is no current insertion point.
1852   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
1853 
1854   void EmitLabelStmt(const LabelStmt &S);
1855   void EmitAttributedStmt(const AttributedStmt &S);
1856   void EmitGotoStmt(const GotoStmt &S);
1857   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
1858   void EmitIfStmt(const IfStmt &S);
1859   void EmitWhileStmt(const WhileStmt &S);
1860   void EmitDoStmt(const DoStmt &S);
1861   void EmitForStmt(const ForStmt &S);
1862   void EmitReturnStmt(const ReturnStmt &S);
1863   void EmitDeclStmt(const DeclStmt &S);
1864   void EmitBreakStmt(const BreakStmt &S);
1865   void EmitContinueStmt(const ContinueStmt &S);
1866   void EmitSwitchStmt(const SwitchStmt &S);
1867   void EmitDefaultStmt(const DefaultStmt &S);
1868   void EmitCaseStmt(const CaseStmt &S);
1869   void EmitCaseStmtRange(const CaseStmt &S);
1870   void EmitAsmStmt(const AsmStmt &S);
1871 
1872   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
1873   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
1874   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
1875   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
1876   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
1877 
1878   llvm::Constant *getUnwindResumeFn();
1879   llvm::Constant *getUnwindResumeOrRethrowFn();
1880   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
1881   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
1882 
1883   void EmitCXXTryStmt(const CXXTryStmt &S);
1884   void EmitSEHTryStmt(const SEHTryStmt &S);
1885   void EmitCXXForRangeStmt(const CXXForRangeStmt &S);
1886 
1887   llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
1888   llvm::Function *GenerateCapturedStmtFunction(const CapturedDecl *CD,
1889                                                const RecordDecl *RD,
1890                                                SourceLocation Loc);
1891   llvm::Value *GenerateCapturedStmtArgument(const CapturedStmt &S);
1892 
1893   void EmitOMPParallelDirective(const OMPParallelDirective &S);
1894   void EmitOMPSimdDirective(const OMPSimdDirective &S);
1895 
1896   //===--------------------------------------------------------------------===//
1897   //                         LValue Expression Emission
1898   //===--------------------------------------------------------------------===//
1899 
1900   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
1901   RValue GetUndefRValue(QualType Ty);
1902 
1903   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
1904   /// and issue an ErrorUnsupported style diagnostic (using the
1905   /// provided Name).
1906   RValue EmitUnsupportedRValue(const Expr *E,
1907                                const char *Name);
1908 
1909   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
1910   /// an ErrorUnsupported style diagnostic (using the provided Name).
1911   LValue EmitUnsupportedLValue(const Expr *E,
1912                                const char *Name);
1913 
1914   /// EmitLValue - Emit code to compute a designator that specifies the location
1915   /// of the expression.
1916   ///
1917   /// This can return one of two things: a simple address or a bitfield
1918   /// reference.  In either case, the LLVM Value* in the LValue structure is
1919   /// guaranteed to be an LLVM pointer type.
1920   ///
1921   /// If this returns a bitfield reference, nothing about the pointee type of
1922   /// the LLVM value is known: For example, it may not be a pointer to an
1923   /// integer.
1924   ///
1925   /// If this returns a normal address, and if the lvalue's C type is fixed
1926   /// size, this method guarantees that the returned pointer type will point to
1927   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
1928   /// variable length type, this is not possible.
1929   ///
1930   LValue EmitLValue(const Expr *E);
1931 
1932   /// \brief Same as EmitLValue but additionally we generate checking code to
1933   /// guard against undefined behavior.  This is only suitable when we know
1934   /// that the address will be used to access the object.
1935   LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
1936 
1937   RValue convertTempToRValue(llvm::Value *addr, QualType type,
1938                              SourceLocation Loc);
1939 
1940   void EmitAtomicInit(Expr *E, LValue lvalue);
1941 
1942   RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
1943                         AggValueSlot slot = AggValueSlot::ignored());
1944 
1945   void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
1946 
1947   /// EmitToMemory - Change a scalar value from its value
1948   /// representation to its in-memory representation.
1949   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
1950 
1951   /// EmitFromMemory - Change a scalar value from its memory
1952   /// representation to its value representation.
1953   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
1954 
1955   /// EmitLoadOfScalar - Load a scalar value from an address, taking
1956   /// care to appropriately convert from the memory representation to
1957   /// the LLVM value representation.
1958   llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
1959                                 unsigned Alignment, QualType Ty,
1960                                 SourceLocation Loc,
1961                                 llvm::MDNode *TBAAInfo = nullptr,
1962                                 QualType TBAABaseTy = QualType(),
1963                                 uint64_t TBAAOffset = 0);
1964 
1965   /// EmitLoadOfScalar - Load a scalar value from an address, taking
1966   /// care to appropriately convert from the memory representation to
1967   /// the LLVM value representation.  The l-value must be a simple
1968   /// l-value.
1969   llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
1970 
1971   /// EmitStoreOfScalar - Store a scalar value to an address, taking
1972   /// care to appropriately convert from the memory representation to
1973   /// the LLVM value representation.
1974   void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
1975                          bool Volatile, unsigned Alignment, QualType Ty,
1976                          llvm::MDNode *TBAAInfo = nullptr, bool isInit = false,
1977                          QualType TBAABaseTy = QualType(),
1978                          uint64_t TBAAOffset = 0);
1979 
1980   /// EmitStoreOfScalar - Store a scalar value to an address, taking
1981   /// care to appropriately convert from the memory representation to
1982   /// the LLVM value representation.  The l-value must be a simple
1983   /// l-value.  The isInit flag indicates whether this is an initialization.
1984   /// If so, atomic qualifiers are ignored and the store is always non-atomic.
1985   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
1986 
1987   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
1988   /// this method emits the address of the lvalue, then loads the result as an
1989   /// rvalue, returning the rvalue.
1990   RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
1991   RValue EmitLoadOfExtVectorElementLValue(LValue V);
1992   RValue EmitLoadOfBitfieldLValue(LValue LV);
1993   RValue EmitLoadOfGlobalRegLValue(LValue LV);
1994 
1995   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1996   /// lvalue, where both are guaranteed to the have the same type, and that type
1997   /// is 'Ty'.
1998   void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit=false);
1999   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
2000   void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
2001 
2002   /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
2003   /// as EmitStoreThroughLValue.
2004   ///
2005   /// \param Result [out] - If non-null, this will be set to a Value* for the
2006   /// bit-field contents after the store, appropriate for use as the result of
2007   /// an assignment to the bit-field.
2008   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2009                                       llvm::Value **Result=nullptr);
2010 
2011   /// Emit an l-value for an assignment (simple or compound) of complex type.
2012   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
2013   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
2014   LValue EmitScalarCompooundAssignWithComplex(const CompoundAssignOperator *E,
2015                                               llvm::Value *&Result);
2016 
2017   // Note: only available for agg return types
2018   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
2019   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
2020   // Note: only available for agg return types
2021   LValue EmitCallExprLValue(const CallExpr *E);
2022   // Note: only available for agg return types
2023   LValue EmitVAArgExprLValue(const VAArgExpr *E);
2024   LValue EmitDeclRefLValue(const DeclRefExpr *E);
2025   LValue EmitReadRegister(const VarDecl *VD);
2026   LValue EmitStringLiteralLValue(const StringLiteral *E);
2027   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
2028   LValue EmitPredefinedLValue(const PredefinedExpr *E);
2029   LValue EmitUnaryOpLValue(const UnaryOperator *E);
2030   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
2031                                 bool Accessed = false);
2032   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
2033   LValue EmitMemberExpr(const MemberExpr *E);
2034   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
2035   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
2036   LValue EmitInitListLValue(const InitListExpr *E);
2037   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
2038   LValue EmitCastLValue(const CastExpr *E);
2039   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
2040   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
2041 
2042   RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
2043 
2044   class ConstantEmission {
2045     llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
2046     ConstantEmission(llvm::Constant *C, bool isReference)
2047       : ValueAndIsReference(C, isReference) {}
2048   public:
2049     ConstantEmission() {}
2050     static ConstantEmission forReference(llvm::Constant *C) {
2051       return ConstantEmission(C, true);
2052     }
2053     static ConstantEmission forValue(llvm::Constant *C) {
2054       return ConstantEmission(C, false);
2055     }
2056 
2057     LLVM_EXPLICIT operator bool() const {
2058       return ValueAndIsReference.getOpaqueValue() != nullptr;
2059     }
2060 
2061     bool isReference() const { return ValueAndIsReference.getInt(); }
2062     LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
2063       assert(isReference());
2064       return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
2065                                             refExpr->getType());
2066     }
2067 
2068     llvm::Constant *getValue() const {
2069       assert(!isReference());
2070       return ValueAndIsReference.getPointer();
2071     }
2072   };
2073 
2074   ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
2075 
2076   RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
2077                                 AggValueSlot slot = AggValueSlot::ignored());
2078   LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
2079 
2080   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
2081                               const ObjCIvarDecl *Ivar);
2082   LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
2083   LValue EmitLValueForLambdaField(const FieldDecl *Field);
2084 
2085   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
2086   /// if the Field is a reference, this will return the address of the reference
2087   /// and not the address of the value stored in the reference.
2088   LValue EmitLValueForFieldInitialization(LValue Base,
2089                                           const FieldDecl* Field);
2090 
2091   LValue EmitLValueForIvar(QualType ObjectTy,
2092                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
2093                            unsigned CVRQualifiers);
2094 
2095   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
2096   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
2097   LValue EmitLambdaLValue(const LambdaExpr *E);
2098   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
2099   LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
2100 
2101   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
2102   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
2103   LValue EmitStmtExprLValue(const StmtExpr *E);
2104   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
2105   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
2106   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init);
2107 
2108   //===--------------------------------------------------------------------===//
2109   //                         Scalar Expression Emission
2110   //===--------------------------------------------------------------------===//
2111 
2112   /// EmitCall - Generate a call of the given function, expecting the given
2113   /// result type, and using the given argument list which specifies both the
2114   /// LLVM arguments and the types they were derived from.
2115   ///
2116   /// \param TargetDecl - If given, the decl of the function in a direct call;
2117   /// used to set attributes on the call (noreturn, etc.).
2118   RValue EmitCall(const CGFunctionInfo &FnInfo,
2119                   llvm::Value *Callee,
2120                   ReturnValueSlot ReturnValue,
2121                   const CallArgList &Args,
2122                   const Decl *TargetDecl = nullptr,
2123                   llvm::Instruction **callOrInvoke = nullptr);
2124 
2125   RValue EmitCall(QualType FnType, llvm::Value *Callee,
2126                   SourceLocation CallLoc,
2127                   ReturnValueSlot ReturnValue,
2128                   CallExpr::const_arg_iterator ArgBeg,
2129                   CallExpr::const_arg_iterator ArgEnd,
2130                   const Decl *TargetDecl = nullptr);
2131   RValue EmitCallExpr(const CallExpr *E,
2132                       ReturnValueSlot ReturnValue = ReturnValueSlot());
2133 
2134   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
2135                                   const Twine &name = "");
2136   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
2137                                   ArrayRef<llvm::Value*> args,
2138                                   const Twine &name = "");
2139   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
2140                                           const Twine &name = "");
2141   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
2142                                           ArrayRef<llvm::Value*> args,
2143                                           const Twine &name = "");
2144 
2145   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2146                                   ArrayRef<llvm::Value *> Args,
2147                                   const Twine &Name = "");
2148   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2149                                   const Twine &Name = "");
2150   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
2151                                          ArrayRef<llvm::Value*> args,
2152                                          const Twine &name = "");
2153   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
2154                                          const Twine &name = "");
2155   void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
2156                                        ArrayRef<llvm::Value*> args);
2157 
2158   llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
2159                                          NestedNameSpecifier *Qual,
2160                                          llvm::Type *Ty);
2161 
2162   llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
2163                                                    CXXDtorType Type,
2164                                                    const CXXRecordDecl *RD);
2165 
2166   RValue EmitCXXMemberCall(const CXXMethodDecl *MD,
2167                            SourceLocation CallLoc,
2168                            llvm::Value *Callee,
2169                            ReturnValueSlot ReturnValue,
2170                            llvm::Value *This,
2171                            llvm::Value *ImplicitParam,
2172                            QualType ImplicitParamTy,
2173                            CallExpr::const_arg_iterator ArgBeg,
2174                            CallExpr::const_arg_iterator ArgEnd);
2175   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
2176                                ReturnValueSlot ReturnValue);
2177   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
2178                                       ReturnValueSlot ReturnValue);
2179 
2180   llvm::Value *EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E,
2181                                            const CXXMethodDecl *MD,
2182                                            llvm::Value *This);
2183   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
2184                                        const CXXMethodDecl *MD,
2185                                        ReturnValueSlot ReturnValue);
2186 
2187   RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
2188                                 ReturnValueSlot ReturnValue);
2189 
2190 
2191   RValue EmitBuiltinExpr(const FunctionDecl *FD,
2192                          unsigned BuiltinID, const CallExpr *E);
2193 
2194   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
2195 
2196   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
2197   /// is unhandled by the current target.
2198   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2199 
2200   llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
2201                                              const llvm::CmpInst::Predicate Fp,
2202                                              const llvm::CmpInst::Predicate Ip,
2203                                              const llvm::Twine &Name = "");
2204   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2205 
2206   llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
2207                                          unsigned LLVMIntrinsic,
2208                                          unsigned AltLLVMIntrinsic,
2209                                          const char *NameHint,
2210                                          unsigned Modifier,
2211                                          const CallExpr *E,
2212                                          SmallVectorImpl<llvm::Value *> &Ops,
2213                                          llvm::Value *Align = nullptr);
2214   llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
2215                                           unsigned Modifier, llvm::Type *ArgTy,
2216                                           const CallExpr *E);
2217   llvm::Value *EmitNeonCall(llvm::Function *F,
2218                             SmallVectorImpl<llvm::Value*> &O,
2219                             const char *name,
2220                             unsigned shift = 0, bool rightshift = false);
2221   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
2222   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
2223                                    bool negateForRightShift);
2224   llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
2225                                  llvm::Type *Ty, bool usgn, const char *name);
2226   llvm::Value *EmitConcatVectors(llvm::Value *Lo, llvm::Value *Hi,
2227                                  llvm::Type *ArgTy);
2228   llvm::Value *EmitExtractHigh(llvm::Value *In, llvm::Type *ResTy);
2229   // Helper functions for EmitAArch64BuiltinExpr.
2230   llvm::Value *vectorWrapScalar8(llvm::Value *Op);
2231   llvm::Value *vectorWrapScalar16(llvm::Value *Op);
2232   llvm::Value *emitVectorWrappedScalar8Intrinsic(
2233       unsigned Int, SmallVectorImpl<llvm::Value *> &Ops, const char *Name);
2234   llvm::Value *emitVectorWrappedScalar16Intrinsic(
2235       unsigned Int, SmallVectorImpl<llvm::Value *> &Ops, const char *Name);
2236   llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2237   llvm::Value *EmitNeon64Call(llvm::Function *F,
2238                               llvm::SmallVectorImpl<llvm::Value *> &O,
2239                               const char *name);
2240 
2241   llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
2242   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2243   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2244 
2245   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
2246   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
2247   llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
2248   llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
2249   llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
2250   llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
2251                                 const ObjCMethodDecl *MethodWithObjects);
2252   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
2253   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
2254                              ReturnValueSlot Return = ReturnValueSlot());
2255 
2256   /// Retrieves the default cleanup kind for an ARC cleanup.
2257   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
2258   CleanupKind getARCCleanupKind() {
2259     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
2260              ? NormalAndEHCleanup : NormalCleanup;
2261   }
2262 
2263   // ARC primitives.
2264   void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr);
2265   void EmitARCDestroyWeak(llvm::Value *addr);
2266   llvm::Value *EmitARCLoadWeak(llvm::Value *addr);
2267   llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr);
2268   llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr,
2269                                 bool ignored);
2270   void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src);
2271   void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src);
2272   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
2273   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
2274   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
2275                                   bool resultIgnored);
2276   llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value,
2277                                       bool resultIgnored);
2278   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
2279   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
2280   llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
2281   void EmitARCDestroyStrong(llvm::Value *addr, ARCPreciseLifetime_t precise);
2282   void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
2283   llvm::Value *EmitARCAutorelease(llvm::Value *value);
2284   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
2285   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
2286   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
2287 
2288   std::pair<LValue,llvm::Value*>
2289   EmitARCStoreAutoreleasing(const BinaryOperator *e);
2290   std::pair<LValue,llvm::Value*>
2291   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
2292 
2293   llvm::Value *EmitObjCThrowOperand(const Expr *expr);
2294 
2295   llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr);
2296   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
2297   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
2298 
2299   llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
2300   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
2301   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
2302 
2303   void EmitARCIntrinsicUse(llvm::ArrayRef<llvm::Value*> values);
2304 
2305   static Destroyer destroyARCStrongImprecise;
2306   static Destroyer destroyARCStrongPrecise;
2307   static Destroyer destroyARCWeak;
2308 
2309   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
2310   llvm::Value *EmitObjCAutoreleasePoolPush();
2311   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
2312   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
2313   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
2314 
2315   /// \brief Emits a reference binding to the passed in expression.
2316   RValue EmitReferenceBindingToExpr(const Expr *E);
2317 
2318   //===--------------------------------------------------------------------===//
2319   //                           Expression Emission
2320   //===--------------------------------------------------------------------===//
2321 
2322   // Expressions are broken into three classes: scalar, complex, aggregate.
2323 
2324   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
2325   /// scalar type, returning the result.
2326   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
2327 
2328   /// EmitScalarConversion - Emit a conversion from the specified type to the
2329   /// specified destination type, both of which are LLVM scalar types.
2330   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
2331                                     QualType DstTy);
2332 
2333   /// EmitComplexToScalarConversion - Emit a conversion from the specified
2334   /// complex type to the specified destination type, where the destination type
2335   /// is an LLVM scalar type.
2336   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
2337                                              QualType DstTy);
2338 
2339 
2340   /// EmitAggExpr - Emit the computation of the specified expression
2341   /// of aggregate type.  The result is computed into the given slot,
2342   /// which may be null to indicate that the value is not needed.
2343   void EmitAggExpr(const Expr *E, AggValueSlot AS);
2344 
2345   /// EmitAggExprToLValue - Emit the computation of the specified expression of
2346   /// aggregate type into a temporary LValue.
2347   LValue EmitAggExprToLValue(const Expr *E);
2348 
2349   /// EmitGCMemmoveCollectable - Emit special API for structs with object
2350   /// pointers.
2351   void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr,
2352                                 QualType Ty);
2353 
2354   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
2355   /// make sure it survives garbage collection until this point.
2356   void EmitExtendGCLifetime(llvm::Value *object);
2357 
2358   /// EmitComplexExpr - Emit the computation of the specified expression of
2359   /// complex type, returning the result.
2360   ComplexPairTy EmitComplexExpr(const Expr *E,
2361                                 bool IgnoreReal = false,
2362                                 bool IgnoreImag = false);
2363 
2364   /// EmitComplexExprIntoLValue - Emit the given expression of complex
2365   /// type and place its result into the specified l-value.
2366   void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
2367 
2368   /// EmitStoreOfComplex - Store a complex number into the specified l-value.
2369   void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
2370 
2371   /// EmitLoadOfComplex - Load a complex number from the specified l-value.
2372   ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
2373 
2374   /// CreateStaticVarDecl - Create a zero-initialized LLVM global for
2375   /// a static local variable.
2376   llvm::Constant *CreateStaticVarDecl(const VarDecl &D,
2377                                       const char *Separator,
2378                                       llvm::GlobalValue::LinkageTypes Linkage);
2379 
2380   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
2381   /// global variable that has already been created for it.  If the initializer
2382   /// has a different type than GV does, this may free GV and return a different
2383   /// one.  Otherwise it just returns GV.
2384   llvm::GlobalVariable *
2385   AddInitializerToStaticVarDecl(const VarDecl &D,
2386                                 llvm::GlobalVariable *GV);
2387 
2388 
2389   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
2390   /// variable with global storage.
2391   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
2392                                 bool PerformInit);
2393 
2394   /// Call atexit() with a function that passes the given argument to
2395   /// the given function.
2396   void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn,
2397                                     llvm::Constant *addr);
2398 
2399   /// Emit code in this function to perform a guarded variable
2400   /// initialization.  Guarded initializations are used when it's not
2401   /// possible to prove that an initialization will be done exactly
2402   /// once, e.g. with a static local variable or a static data member
2403   /// of a class template.
2404   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
2405                           bool PerformInit);
2406 
2407   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
2408   /// variables.
2409   void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
2410                                  ArrayRef<llvm::Constant *> Decls,
2411                                  llvm::GlobalVariable *Guard = nullptr);
2412 
2413   /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
2414   /// variables.
2415   void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn,
2416                                   const std::vector<std::pair<llvm::WeakVH,
2417                                   llvm::Constant*> > &DtorsAndObjects);
2418 
2419   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
2420                                         const VarDecl *D,
2421                                         llvm::GlobalVariable *Addr,
2422                                         bool PerformInit);
2423 
2424   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
2425 
2426   void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src,
2427                                   const Expr *Exp);
2428 
2429   void enterFullExpression(const ExprWithCleanups *E) {
2430     if (E->getNumObjects() == 0) return;
2431     enterNonTrivialFullExpression(E);
2432   }
2433   void enterNonTrivialFullExpression(const ExprWithCleanups *E);
2434 
2435   void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
2436 
2437   void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest);
2438 
2439   RValue EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest = nullptr);
2440 
2441   //===--------------------------------------------------------------------===//
2442   //                         Annotations Emission
2443   //===--------------------------------------------------------------------===//
2444 
2445   /// Emit an annotation call (intrinsic or builtin).
2446   llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
2447                                   llvm::Value *AnnotatedVal,
2448                                   StringRef AnnotationStr,
2449                                   SourceLocation Location);
2450 
2451   /// Emit local annotations for the local variable V, declared by D.
2452   void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
2453 
2454   /// Emit field annotations for the given field & value. Returns the
2455   /// annotation result.
2456   llvm::Value *EmitFieldAnnotations(const FieldDecl *D, llvm::Value *V);
2457 
2458   //===--------------------------------------------------------------------===//
2459   //                             Internal Helpers
2460   //===--------------------------------------------------------------------===//
2461 
2462   /// ContainsLabel - Return true if the statement contains a label in it.  If
2463   /// this statement is not executed normally, it not containing a label means
2464   /// that we can just remove the code.
2465   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
2466 
2467   /// containsBreak - Return true if the statement contains a break out of it.
2468   /// If the statement (recursively) contains a switch or loop with a break
2469   /// inside of it, this is fine.
2470   static bool containsBreak(const Stmt *S);
2471 
2472   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2473   /// to a constant, or if it does but contains a label, return false.  If it
2474   /// constant folds return true and set the boolean result in Result.
2475   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result);
2476 
2477   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2478   /// to a constant, or if it does but contains a label, return false.  If it
2479   /// constant folds return true and set the folded value.
2480   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result);
2481 
2482   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
2483   /// if statement) to the specified blocks.  Based on the condition, this might
2484   /// try to simplify the codegen of the conditional based on the branch.
2485   /// TrueCount should be the number of times we expect the condition to
2486   /// evaluate to true based on PGO data.
2487   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
2488                             llvm::BasicBlock *FalseBlock, uint64_t TrueCount);
2489 
2490   /// \brief Emit a description of a type in a format suitable for passing to
2491   /// a runtime sanitizer handler.
2492   llvm::Constant *EmitCheckTypeDescriptor(QualType T);
2493 
2494   /// \brief Convert a value into a format suitable for passing to a runtime
2495   /// sanitizer handler.
2496   llvm::Value *EmitCheckValue(llvm::Value *V);
2497 
2498   /// \brief Emit a description of a source location in a format suitable for
2499   /// passing to a runtime sanitizer handler.
2500   llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
2501 
2502   /// \brief Specify under what conditions this check can be recovered
2503   enum CheckRecoverableKind {
2504     /// Always terminate program execution if this check fails
2505     CRK_Unrecoverable,
2506     /// Check supports recovering, allows user to specify which
2507     CRK_Recoverable,
2508     /// Runtime conditionally aborts, always need to support recovery.
2509     CRK_AlwaysRecoverable
2510   };
2511 
2512   /// \brief Create a basic block that will call a handler function in a
2513   /// sanitizer runtime with the provided arguments, and create a conditional
2514   /// branch to it.
2515   void EmitCheck(llvm::Value *Checked, StringRef CheckName,
2516                  ArrayRef<llvm::Constant *> StaticArgs,
2517                  ArrayRef<llvm::Value *> DynamicArgs,
2518                  CheckRecoverableKind Recoverable);
2519 
2520   /// \brief Create a basic block that will call the trap intrinsic, and emit a
2521   /// conditional branch to it, for the -ftrapv checks.
2522   void EmitTrapCheck(llvm::Value *Checked);
2523 
2524   /// EmitCallArg - Emit a single call argument.
2525   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
2526 
2527   /// EmitDelegateCallArg - We are performing a delegate call; that
2528   /// is, the current function is delegating to another one.  Produce
2529   /// a r-value suitable for passing the given parameter.
2530   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
2531                            SourceLocation loc);
2532 
2533   /// SetFPAccuracy - Set the minimum required accuracy of the given floating
2534   /// point operation, expressed as the maximum relative error in ulp.
2535   void SetFPAccuracy(llvm::Value *Val, float Accuracy);
2536 
2537 private:
2538   llvm::MDNode *getRangeForLoadFromType(QualType Ty);
2539   void EmitReturnOfRValue(RValue RV, QualType Ty);
2540 
2541   void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
2542 
2543   llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4>
2544   DeferredReplacements;
2545 
2546   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
2547   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
2548   ///
2549   /// \param AI - The first function argument of the expansion.
2550   /// \return The argument following the last expanded function
2551   /// argument.
2552   llvm::Function::arg_iterator
2553   ExpandTypeFromArgs(QualType Ty, LValue Dst,
2554                      llvm::Function::arg_iterator AI);
2555 
2556   /// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg
2557   /// Ty, into individual arguments on the provided vector \arg Args. See
2558   /// ABIArgInfo::Expand.
2559   void ExpandTypeToArgs(QualType Ty, RValue Src,
2560                         SmallVectorImpl<llvm::Value *> &Args,
2561                         llvm::FunctionType *IRFuncTy);
2562 
2563   llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
2564                             const Expr *InputExpr, std::string &ConstraintStr);
2565 
2566   llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
2567                                   LValue InputValue, QualType InputType,
2568                                   std::string &ConstraintStr,
2569                                   SourceLocation Loc);
2570 
2571 public:
2572   /// EmitCallArgs - Emit call arguments for a function.
2573   template <typename T>
2574   void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo,
2575                     CallExpr::const_arg_iterator ArgBeg,
2576                     CallExpr::const_arg_iterator ArgEnd,
2577                     bool ForceColumnInfo = false) {
2578     if (CallArgTypeInfo) {
2579       EmitCallArgs(Args, CallArgTypeInfo->isVariadic(),
2580                    CallArgTypeInfo->param_type_begin(),
2581                    CallArgTypeInfo->param_type_end(), ArgBeg, ArgEnd,
2582                    ForceColumnInfo);
2583     } else {
2584       // T::param_type_iterator might not have a default ctor.
2585       const QualType *NoIter = nullptr;
2586       EmitCallArgs(Args, /*AllowExtraArguments=*/true, NoIter, NoIter, ArgBeg,
2587                    ArgEnd, ForceColumnInfo);
2588     }
2589   }
2590 
2591   template<typename ArgTypeIterator>
2592   void EmitCallArgs(CallArgList& Args,
2593                     bool AllowExtraArguments,
2594                     ArgTypeIterator ArgTypeBeg,
2595                     ArgTypeIterator ArgTypeEnd,
2596                     CallExpr::const_arg_iterator ArgBeg,
2597                     CallExpr::const_arg_iterator ArgEnd,
2598                     bool ForceColumnInfo = false) {
2599     SmallVector<QualType, 16> ArgTypes;
2600     CallExpr::const_arg_iterator Arg = ArgBeg;
2601 
2602     // First, use the argument types that the type info knows about
2603     for (ArgTypeIterator I = ArgTypeBeg, E = ArgTypeEnd; I != E; ++I, ++Arg) {
2604       assert(Arg != ArgEnd && "Running over edge of argument list!");
2605 #ifndef NDEBUG
2606       QualType ArgType = *I;
2607       QualType ActualArgType = Arg->getType();
2608       if (ArgType->isPointerType() && ActualArgType->isPointerType()) {
2609         QualType ActualBaseType =
2610             ActualArgType->getAs<PointerType>()->getPointeeType();
2611         QualType ArgBaseType =
2612             ArgType->getAs<PointerType>()->getPointeeType();
2613         if (ArgBaseType->isVariableArrayType()) {
2614           if (const VariableArrayType *VAT =
2615               getContext().getAsVariableArrayType(ActualBaseType)) {
2616             if (!VAT->getSizeExpr())
2617               ActualArgType = ArgType;
2618           }
2619         }
2620       }
2621       assert(getContext().getCanonicalType(ArgType.getNonReferenceType()).
2622              getTypePtr() ==
2623              getContext().getCanonicalType(ActualArgType).getTypePtr() &&
2624              "type mismatch in call argument!");
2625 #endif
2626       ArgTypes.push_back(*I);
2627     }
2628 
2629     // Either we've emitted all the call args, or we have a call to variadic
2630     // function or some other call that allows extra arguments.
2631     assert((Arg == ArgEnd || AllowExtraArguments) &&
2632            "Extra arguments in non-variadic function!");
2633 
2634     // If we still have any arguments, emit them using the type of the argument.
2635     for (; Arg != ArgEnd; ++Arg)
2636       ArgTypes.push_back(Arg->getType());
2637 
2638     EmitCallArgs(Args, ArgTypes, ArgBeg, ArgEnd, ForceColumnInfo);
2639   }
2640 
2641   void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes,
2642                     CallExpr::const_arg_iterator ArgBeg,
2643                     CallExpr::const_arg_iterator ArgEnd, bool ForceColumnInfo);
2644 
2645 private:
2646   const TargetCodeGenInfo &getTargetHooks() const {
2647     return CGM.getTargetCodeGenInfo();
2648   }
2649 
2650   void EmitDeclMetadata();
2651 
2652   CodeGenModule::ByrefHelpers *
2653   buildByrefHelpers(llvm::StructType &byrefType,
2654                     const AutoVarEmission &emission);
2655 
2656   void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
2657 
2658   /// GetPointeeAlignment - Given an expression with a pointer type, emit the
2659   /// value and compute our best estimate of the alignment of the pointee.
2660   std::pair<llvm::Value*, unsigned> EmitPointerWithAlignment(const Expr *Addr);
2661 };
2662 
2663 /// Helper class with most of the code for saving a value for a
2664 /// conditional expression cleanup.
2665 struct DominatingLLVMValue {
2666   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
2667 
2668   /// Answer whether the given value needs extra work to be saved.
2669   static bool needsSaving(llvm::Value *value) {
2670     // If it's not an instruction, we don't need to save.
2671     if (!isa<llvm::Instruction>(value)) return false;
2672 
2673     // If it's an instruction in the entry block, we don't need to save.
2674     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
2675     return (block != &block->getParent()->getEntryBlock());
2676   }
2677 
2678   /// Try to save the given value.
2679   static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
2680     if (!needsSaving(value)) return saved_type(value, false);
2681 
2682     // Otherwise we need an alloca.
2683     llvm::Value *alloca =
2684       CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save");
2685     CGF.Builder.CreateStore(value, alloca);
2686 
2687     return saved_type(alloca, true);
2688   }
2689 
2690   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
2691     if (!value.getInt()) return value.getPointer();
2692     return CGF.Builder.CreateLoad(value.getPointer());
2693   }
2694 };
2695 
2696 /// A partial specialization of DominatingValue for llvm::Values that
2697 /// might be llvm::Instructions.
2698 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
2699   typedef T *type;
2700   static type restore(CodeGenFunction &CGF, saved_type value) {
2701     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
2702   }
2703 };
2704 
2705 /// A specialization of DominatingValue for RValue.
2706 template <> struct DominatingValue<RValue> {
2707   typedef RValue type;
2708   class saved_type {
2709     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
2710                 AggregateAddress, ComplexAddress };
2711 
2712     llvm::Value *Value;
2713     Kind K;
2714     saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {}
2715 
2716   public:
2717     static bool needsSaving(RValue value);
2718     static saved_type save(CodeGenFunction &CGF, RValue value);
2719     RValue restore(CodeGenFunction &CGF);
2720 
2721     // implementations in CGExprCXX.cpp
2722   };
2723 
2724   static bool needsSaving(type value) {
2725     return saved_type::needsSaving(value);
2726   }
2727   static saved_type save(CodeGenFunction &CGF, type value) {
2728     return saved_type::save(CGF, value);
2729   }
2730   static type restore(CodeGenFunction &CGF, saved_type value) {
2731     return value.restore(CGF);
2732   }
2733 };
2734 
2735 }  // end namespace CodeGen
2736 }  // end namespace clang
2737 
2738 #endif
2739