1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the internal per-function state used for llvm translation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef CLANG_CODEGEN_CODEGENFUNCTION_H 15 #define CLANG_CODEGEN_CODEGENFUNCTION_H 16 17 #include "CGBuilder.h" 18 #include "CGDebugInfo.h" 19 #include "CGLoopInfo.h" 20 #include "CGValue.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "EHScopeStack.h" 24 #include "clang/AST/CharUnits.h" 25 #include "clang/AST/ExprCXX.h" 26 #include "clang/AST/ExprObjC.h" 27 #include "clang/AST/Type.h" 28 #include "clang/Basic/ABI.h" 29 #include "clang/Basic/CapturedStmt.h" 30 #include "clang/Basic/TargetInfo.h" 31 #include "clang/Frontend/CodeGenOptions.h" 32 #include "llvm/ADT/ArrayRef.h" 33 #include "llvm/ADT/DenseMap.h" 34 #include "llvm/ADT/SmallVector.h" 35 #include "llvm/IR/ValueHandle.h" 36 #include "llvm/Support/Debug.h" 37 38 namespace llvm { 39 class BasicBlock; 40 class LLVMContext; 41 class MDNode; 42 class Module; 43 class SwitchInst; 44 class Twine; 45 class Value; 46 class CallSite; 47 } 48 49 namespace clang { 50 class ASTContext; 51 class BlockDecl; 52 class CXXDestructorDecl; 53 class CXXForRangeStmt; 54 class CXXTryStmt; 55 class Decl; 56 class LabelDecl; 57 class EnumConstantDecl; 58 class FunctionDecl; 59 class FunctionProtoType; 60 class LabelStmt; 61 class ObjCContainerDecl; 62 class ObjCInterfaceDecl; 63 class ObjCIvarDecl; 64 class ObjCMethodDecl; 65 class ObjCImplementationDecl; 66 class ObjCPropertyImplDecl; 67 class TargetInfo; 68 class TargetCodeGenInfo; 69 class VarDecl; 70 class ObjCForCollectionStmt; 71 class ObjCAtTryStmt; 72 class ObjCAtThrowStmt; 73 class ObjCAtSynchronizedStmt; 74 class ObjCAutoreleasePoolStmt; 75 76 namespace CodeGen { 77 class CodeGenTypes; 78 class CGFunctionInfo; 79 class CGRecordLayout; 80 class CGBlockInfo; 81 class CGCXXABI; 82 class BlockFlags; 83 class BlockFieldFlags; 84 85 /// The kind of evaluation to perform on values of a particular 86 /// type. Basically, is the code in CGExprScalar, CGExprComplex, or 87 /// CGExprAgg? 88 /// 89 /// TODO: should vectors maybe be split out into their own thing? 90 enum TypeEvaluationKind { 91 TEK_Scalar, 92 TEK_Complex, 93 TEK_Aggregate 94 }; 95 96 /// CodeGenFunction - This class organizes the per-function state that is used 97 /// while generating LLVM code. 98 class CodeGenFunction : public CodeGenTypeCache { 99 CodeGenFunction(const CodeGenFunction &) LLVM_DELETED_FUNCTION; 100 void operator=(const CodeGenFunction &) LLVM_DELETED_FUNCTION; 101 102 friend class CGCXXABI; 103 public: 104 /// A jump destination is an abstract label, branching to which may 105 /// require a jump out through normal cleanups. 106 struct JumpDest { 107 JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {} 108 JumpDest(llvm::BasicBlock *Block, 109 EHScopeStack::stable_iterator Depth, 110 unsigned Index) 111 : Block(Block), ScopeDepth(Depth), Index(Index) {} 112 113 bool isValid() const { return Block != nullptr; } 114 llvm::BasicBlock *getBlock() const { return Block; } 115 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 116 unsigned getDestIndex() const { return Index; } 117 118 // This should be used cautiously. 119 void setScopeDepth(EHScopeStack::stable_iterator depth) { 120 ScopeDepth = depth; 121 } 122 123 private: 124 llvm::BasicBlock *Block; 125 EHScopeStack::stable_iterator ScopeDepth; 126 unsigned Index; 127 }; 128 129 CodeGenModule &CGM; // Per-module state. 130 const TargetInfo &Target; 131 132 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 133 LoopInfoStack LoopStack; 134 CGBuilderTy Builder; 135 136 /// \brief CGBuilder insert helper. This function is called after an 137 /// instruction is created using Builder. 138 void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name, 139 llvm::BasicBlock *BB, 140 llvm::BasicBlock::iterator InsertPt) const; 141 142 /// CurFuncDecl - Holds the Decl for the current outermost 143 /// non-closure context. 144 const Decl *CurFuncDecl; 145 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 146 const Decl *CurCodeDecl; 147 const CGFunctionInfo *CurFnInfo; 148 QualType FnRetTy; 149 llvm::Function *CurFn; 150 151 /// CurGD - The GlobalDecl for the current function being compiled. 152 GlobalDecl CurGD; 153 154 /// PrologueCleanupDepth - The cleanup depth enclosing all the 155 /// cleanups associated with the parameters. 156 EHScopeStack::stable_iterator PrologueCleanupDepth; 157 158 /// ReturnBlock - Unified return block. 159 JumpDest ReturnBlock; 160 161 /// ReturnValue - The temporary alloca to hold the return value. This is null 162 /// iff the function has no return value. 163 llvm::Value *ReturnValue; 164 165 /// AllocaInsertPoint - This is an instruction in the entry block before which 166 /// we prefer to insert allocas. 167 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 168 169 /// \brief API for captured statement code generation. 170 class CGCapturedStmtInfo { 171 public: 172 explicit CGCapturedStmtInfo(const CapturedStmt &S, 173 CapturedRegionKind K = CR_Default) 174 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) { 175 176 RecordDecl::field_iterator Field = 177 S.getCapturedRecordDecl()->field_begin(); 178 for (CapturedStmt::const_capture_iterator I = S.capture_begin(), 179 E = S.capture_end(); 180 I != E; ++I, ++Field) { 181 if (I->capturesThis()) 182 CXXThisFieldDecl = *Field; 183 else 184 CaptureFields[I->getCapturedVar()] = *Field; 185 } 186 } 187 188 virtual ~CGCapturedStmtInfo(); 189 190 CapturedRegionKind getKind() const { return Kind; } 191 192 void setContextValue(llvm::Value *V) { ThisValue = V; } 193 // \brief Retrieve the value of the context parameter. 194 llvm::Value *getContextValue() const { return ThisValue; } 195 196 /// \brief Lookup the captured field decl for a variable. 197 const FieldDecl *lookup(const VarDecl *VD) const { 198 return CaptureFields.lookup(VD); 199 } 200 201 bool isCXXThisExprCaptured() const { return CXXThisFieldDecl != nullptr; } 202 FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; } 203 204 /// \brief Emit the captured statement body. 205 virtual void EmitBody(CodeGenFunction &CGF, Stmt *S) { 206 RegionCounter Cnt = CGF.getPGORegionCounter(S); 207 Cnt.beginRegion(CGF.Builder); 208 CGF.EmitStmt(S); 209 } 210 211 /// \brief Get the name of the capture helper. 212 virtual StringRef getHelperName() const { return "__captured_stmt"; } 213 214 private: 215 /// \brief The kind of captured statement being generated. 216 CapturedRegionKind Kind; 217 218 /// \brief Keep the map between VarDecl and FieldDecl. 219 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields; 220 221 /// \brief The base address of the captured record, passed in as the first 222 /// argument of the parallel region function. 223 llvm::Value *ThisValue; 224 225 /// \brief Captured 'this' type. 226 FieldDecl *CXXThisFieldDecl; 227 }; 228 CGCapturedStmtInfo *CapturedStmtInfo; 229 230 /// BoundsChecking - Emit run-time bounds checks. Higher values mean 231 /// potentially higher performance penalties. 232 unsigned char BoundsChecking; 233 234 /// \brief Whether any type-checking sanitizers are enabled. If \c false, 235 /// calls to EmitTypeCheck can be skipped. 236 bool SanitizePerformTypeCheck; 237 238 /// \brief Sanitizer options to use for this function. 239 const SanitizerOptions *SanOpts; 240 241 /// In ARC, whether we should autorelease the return value. 242 bool AutoreleaseResult; 243 244 const CodeGen::CGBlockInfo *BlockInfo; 245 llvm::Value *BlockPointer; 246 247 llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; 248 FieldDecl *LambdaThisCaptureField; 249 250 /// \brief A mapping from NRVO variables to the flags used to indicate 251 /// when the NRVO has been applied to this variable. 252 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 253 254 EHScopeStack EHStack; 255 llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack; 256 257 /// Header for data within LifetimeExtendedCleanupStack. 258 struct LifetimeExtendedCleanupHeader { 259 /// The size of the following cleanup object. 260 size_t Size : 29; 261 /// The kind of cleanup to push: a value from the CleanupKind enumeration. 262 unsigned Kind : 3; 263 264 size_t getSize() const { return Size; } 265 CleanupKind getKind() const { return static_cast<CleanupKind>(Kind); } 266 }; 267 268 /// i32s containing the indexes of the cleanup destinations. 269 llvm::AllocaInst *NormalCleanupDest; 270 271 unsigned NextCleanupDestIndex; 272 273 /// FirstBlockInfo - The head of a singly-linked-list of block layouts. 274 CGBlockInfo *FirstBlockInfo; 275 276 /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. 277 llvm::BasicBlock *EHResumeBlock; 278 279 /// The exception slot. All landing pads write the current exception pointer 280 /// into this alloca. 281 llvm::Value *ExceptionSlot; 282 283 /// The selector slot. Under the MandatoryCleanup model, all landing pads 284 /// write the current selector value into this alloca. 285 llvm::AllocaInst *EHSelectorSlot; 286 287 /// Emits a landing pad for the current EH stack. 288 llvm::BasicBlock *EmitLandingPad(); 289 290 llvm::BasicBlock *getInvokeDestImpl(); 291 292 template <class T> 293 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 294 return DominatingValue<T>::save(*this, value); 295 } 296 297 public: 298 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 299 /// rethrows. 300 SmallVector<llvm::Value*, 8> ObjCEHValueStack; 301 302 /// A class controlling the emission of a finally block. 303 class FinallyInfo { 304 /// Where the catchall's edge through the cleanup should go. 305 JumpDest RethrowDest; 306 307 /// A function to call to enter the catch. 308 llvm::Constant *BeginCatchFn; 309 310 /// An i1 variable indicating whether or not the @finally is 311 /// running for an exception. 312 llvm::AllocaInst *ForEHVar; 313 314 /// An i8* variable into which the exception pointer to rethrow 315 /// has been saved. 316 llvm::AllocaInst *SavedExnVar; 317 318 public: 319 void enter(CodeGenFunction &CGF, const Stmt *Finally, 320 llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn, 321 llvm::Constant *rethrowFn); 322 void exit(CodeGenFunction &CGF); 323 }; 324 325 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 326 /// current full-expression. Safe against the possibility that 327 /// we're currently inside a conditionally-evaluated expression. 328 template <class T, class A0> 329 void pushFullExprCleanup(CleanupKind kind, A0 a0) { 330 // If we're not in a conditional branch, or if none of the 331 // arguments requires saving, then use the unconditional cleanup. 332 if (!isInConditionalBranch()) 333 return EHStack.pushCleanup<T>(kind, a0); 334 335 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 336 337 typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType; 338 EHStack.pushCleanup<CleanupType>(kind, a0_saved); 339 initFullExprCleanup(); 340 } 341 342 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 343 /// current full-expression. Safe against the possibility that 344 /// we're currently inside a conditionally-evaluated expression. 345 template <class T, class A0, class A1> 346 void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) { 347 // If we're not in a conditional branch, or if none of the 348 // arguments requires saving, then use the unconditional cleanup. 349 if (!isInConditionalBranch()) 350 return EHStack.pushCleanup<T>(kind, a0, a1); 351 352 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 353 typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); 354 355 typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType; 356 EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved); 357 initFullExprCleanup(); 358 } 359 360 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 361 /// current full-expression. Safe against the possibility that 362 /// we're currently inside a conditionally-evaluated expression. 363 template <class T, class A0, class A1, class A2> 364 void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2) { 365 // If we're not in a conditional branch, or if none of the 366 // arguments requires saving, then use the unconditional cleanup. 367 if (!isInConditionalBranch()) { 368 return EHStack.pushCleanup<T>(kind, a0, a1, a2); 369 } 370 371 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 372 typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); 373 typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2); 374 375 typedef EHScopeStack::ConditionalCleanup3<T, A0, A1, A2> CleanupType; 376 EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, a2_saved); 377 initFullExprCleanup(); 378 } 379 380 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 381 /// current full-expression. Safe against the possibility that 382 /// we're currently inside a conditionally-evaluated expression. 383 template <class T, class A0, class A1, class A2, class A3> 384 void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2, A3 a3) { 385 // If we're not in a conditional branch, or if none of the 386 // arguments requires saving, then use the unconditional cleanup. 387 if (!isInConditionalBranch()) { 388 return EHStack.pushCleanup<T>(kind, a0, a1, a2, a3); 389 } 390 391 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 392 typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); 393 typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2); 394 typename DominatingValue<A3>::saved_type a3_saved = saveValueInCond(a3); 395 396 typedef EHScopeStack::ConditionalCleanup4<T, A0, A1, A2, A3> CleanupType; 397 EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, 398 a2_saved, a3_saved); 399 initFullExprCleanup(); 400 } 401 402 /// \brief Queue a cleanup to be pushed after finishing the current 403 /// full-expression. 404 template <class T, class A0, class A1, class A2, class A3> 405 void pushCleanupAfterFullExpr(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) { 406 assert(!isInConditionalBranch() && "can't defer conditional cleanup"); 407 408 LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind }; 409 410 size_t OldSize = LifetimeExtendedCleanupStack.size(); 411 LifetimeExtendedCleanupStack.resize( 412 LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size); 413 414 char *Buffer = &LifetimeExtendedCleanupStack[OldSize]; 415 new (Buffer) LifetimeExtendedCleanupHeader(Header); 416 new (Buffer + sizeof(Header)) T(a0, a1, a2, a3); 417 } 418 419 /// Set up the last cleaup that was pushed as a conditional 420 /// full-expression cleanup. 421 void initFullExprCleanup(); 422 423 /// PushDestructorCleanup - Push a cleanup to call the 424 /// complete-object destructor of an object of the given type at the 425 /// given address. Does nothing if T is not a C++ class type with a 426 /// non-trivial destructor. 427 void PushDestructorCleanup(QualType T, llvm::Value *Addr); 428 429 /// PushDestructorCleanup - Push a cleanup to call the 430 /// complete-object variant of the given destructor on the object at 431 /// the given address. 432 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, 433 llvm::Value *Addr); 434 435 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 436 /// process all branch fixups. 437 void PopCleanupBlock(bool FallThroughIsBranchThrough = false); 438 439 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 440 /// The block cannot be reactivated. Pops it if it's the top of the 441 /// stack. 442 /// 443 /// \param DominatingIP - An instruction which is known to 444 /// dominate the current IP (if set) and which lies along 445 /// all paths of execution between the current IP and the 446 /// the point at which the cleanup comes into scope. 447 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 448 llvm::Instruction *DominatingIP); 449 450 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 451 /// Cannot be used to resurrect a deactivated cleanup. 452 /// 453 /// \param DominatingIP - An instruction which is known to 454 /// dominate the current IP (if set) and which lies along 455 /// all paths of execution between the current IP and the 456 /// the point at which the cleanup comes into scope. 457 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 458 llvm::Instruction *DominatingIP); 459 460 /// \brief Enters a new scope for capturing cleanups, all of which 461 /// will be executed once the scope is exited. 462 class RunCleanupsScope { 463 EHScopeStack::stable_iterator CleanupStackDepth; 464 size_t LifetimeExtendedCleanupStackSize; 465 bool OldDidCallStackSave; 466 protected: 467 bool PerformCleanup; 468 private: 469 470 RunCleanupsScope(const RunCleanupsScope &) LLVM_DELETED_FUNCTION; 471 void operator=(const RunCleanupsScope &) LLVM_DELETED_FUNCTION; 472 473 protected: 474 CodeGenFunction& CGF; 475 476 public: 477 /// \brief Enter a new cleanup scope. 478 explicit RunCleanupsScope(CodeGenFunction &CGF) 479 : PerformCleanup(true), CGF(CGF) 480 { 481 CleanupStackDepth = CGF.EHStack.stable_begin(); 482 LifetimeExtendedCleanupStackSize = 483 CGF.LifetimeExtendedCleanupStack.size(); 484 OldDidCallStackSave = CGF.DidCallStackSave; 485 CGF.DidCallStackSave = false; 486 } 487 488 /// \brief Exit this cleanup scope, emitting any accumulated 489 /// cleanups. 490 ~RunCleanupsScope() { 491 if (PerformCleanup) { 492 CGF.DidCallStackSave = OldDidCallStackSave; 493 CGF.PopCleanupBlocks(CleanupStackDepth, 494 LifetimeExtendedCleanupStackSize); 495 } 496 } 497 498 /// \brief Determine whether this scope requires any cleanups. 499 bool requiresCleanups() const { 500 return CGF.EHStack.stable_begin() != CleanupStackDepth; 501 } 502 503 /// \brief Force the emission of cleanups now, instead of waiting 504 /// until this object is destroyed. 505 void ForceCleanup() { 506 assert(PerformCleanup && "Already forced cleanup"); 507 CGF.DidCallStackSave = OldDidCallStackSave; 508 CGF.PopCleanupBlocks(CleanupStackDepth, 509 LifetimeExtendedCleanupStackSize); 510 PerformCleanup = false; 511 } 512 }; 513 514 class LexicalScope: protected RunCleanupsScope { 515 SourceRange Range; 516 SmallVector<const LabelDecl*, 4> Labels; 517 LexicalScope *ParentScope; 518 519 LexicalScope(const LexicalScope &) LLVM_DELETED_FUNCTION; 520 void operator=(const LexicalScope &) LLVM_DELETED_FUNCTION; 521 522 public: 523 /// \brief Enter a new cleanup scope. 524 explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) 525 : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) { 526 CGF.CurLexicalScope = this; 527 if (CGDebugInfo *DI = CGF.getDebugInfo()) 528 DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); 529 } 530 531 void addLabel(const LabelDecl *label) { 532 assert(PerformCleanup && "adding label to dead scope?"); 533 Labels.push_back(label); 534 } 535 536 /// \brief Exit this cleanup scope, emitting any accumulated 537 /// cleanups. 538 ~LexicalScope() { 539 if (CGDebugInfo *DI = CGF.getDebugInfo()) 540 DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 541 542 // If we should perform a cleanup, force them now. Note that 543 // this ends the cleanup scope before rescoping any labels. 544 if (PerformCleanup) ForceCleanup(); 545 } 546 547 /// \brief Force the emission of cleanups now, instead of waiting 548 /// until this object is destroyed. 549 void ForceCleanup() { 550 CGF.CurLexicalScope = ParentScope; 551 RunCleanupsScope::ForceCleanup(); 552 553 if (!Labels.empty()) 554 rescopeLabels(); 555 } 556 557 void rescopeLabels(); 558 }; 559 560 561 /// \brief Takes the old cleanup stack size and emits the cleanup blocks 562 /// that have been added. 563 void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize); 564 565 /// \brief Takes the old cleanup stack size and emits the cleanup blocks 566 /// that have been added, then adds all lifetime-extended cleanups from 567 /// the given position to the stack. 568 void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 569 size_t OldLifetimeExtendedStackSize); 570 571 void ResolveBranchFixups(llvm::BasicBlock *Target); 572 573 /// The given basic block lies in the current EH scope, but may be a 574 /// target of a potentially scope-crossing jump; get a stable handle 575 /// to which we can perform this jump later. 576 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 577 return JumpDest(Target, 578 EHStack.getInnermostNormalCleanup(), 579 NextCleanupDestIndex++); 580 } 581 582 /// The given basic block lies in the current EH scope, but may be a 583 /// target of a potentially scope-crossing jump; get a stable handle 584 /// to which we can perform this jump later. 585 JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { 586 return getJumpDestInCurrentScope(createBasicBlock(Name)); 587 } 588 589 /// EmitBranchThroughCleanup - Emit a branch from the current insert 590 /// block through the normal cleanup handling code (if any) and then 591 /// on to \arg Dest. 592 void EmitBranchThroughCleanup(JumpDest Dest); 593 594 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 595 /// specified destination obviously has no cleanups to run. 'false' is always 596 /// a conservatively correct answer for this method. 597 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 598 599 /// popCatchScope - Pops the catch scope at the top of the EHScope 600 /// stack, emitting any required code (other than the catch handlers 601 /// themselves). 602 void popCatchScope(); 603 604 llvm::BasicBlock *getEHResumeBlock(bool isCleanup); 605 llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); 606 607 /// An object to manage conditionally-evaluated expressions. 608 class ConditionalEvaluation { 609 llvm::BasicBlock *StartBB; 610 611 public: 612 ConditionalEvaluation(CodeGenFunction &CGF) 613 : StartBB(CGF.Builder.GetInsertBlock()) {} 614 615 void begin(CodeGenFunction &CGF) { 616 assert(CGF.OutermostConditional != this); 617 if (!CGF.OutermostConditional) 618 CGF.OutermostConditional = this; 619 } 620 621 void end(CodeGenFunction &CGF) { 622 assert(CGF.OutermostConditional != nullptr); 623 if (CGF.OutermostConditional == this) 624 CGF.OutermostConditional = nullptr; 625 } 626 627 /// Returns a block which will be executed prior to each 628 /// evaluation of the conditional code. 629 llvm::BasicBlock *getStartingBlock() const { 630 return StartBB; 631 } 632 }; 633 634 /// isInConditionalBranch - Return true if we're currently emitting 635 /// one branch or the other of a conditional expression. 636 bool isInConditionalBranch() const { return OutermostConditional != nullptr; } 637 638 void setBeforeOutermostConditional(llvm::Value *value, llvm::Value *addr) { 639 assert(isInConditionalBranch()); 640 llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); 641 new llvm::StoreInst(value, addr, &block->back()); 642 } 643 644 /// An RAII object to record that we're evaluating a statement 645 /// expression. 646 class StmtExprEvaluation { 647 CodeGenFunction &CGF; 648 649 /// We have to save the outermost conditional: cleanups in a 650 /// statement expression aren't conditional just because the 651 /// StmtExpr is. 652 ConditionalEvaluation *SavedOutermostConditional; 653 654 public: 655 StmtExprEvaluation(CodeGenFunction &CGF) 656 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 657 CGF.OutermostConditional = nullptr; 658 } 659 660 ~StmtExprEvaluation() { 661 CGF.OutermostConditional = SavedOutermostConditional; 662 CGF.EnsureInsertPoint(); 663 } 664 }; 665 666 /// An object which temporarily prevents a value from being 667 /// destroyed by aggressive peephole optimizations that assume that 668 /// all uses of a value have been realized in the IR. 669 class PeepholeProtection { 670 llvm::Instruction *Inst; 671 friend class CodeGenFunction; 672 673 public: 674 PeepholeProtection() : Inst(nullptr) {} 675 }; 676 677 /// A non-RAII class containing all the information about a bound 678 /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for 679 /// this which makes individual mappings very simple; using this 680 /// class directly is useful when you have a variable number of 681 /// opaque values or don't want the RAII functionality for some 682 /// reason. 683 class OpaqueValueMappingData { 684 const OpaqueValueExpr *OpaqueValue; 685 bool BoundLValue; 686 CodeGenFunction::PeepholeProtection Protection; 687 688 OpaqueValueMappingData(const OpaqueValueExpr *ov, 689 bool boundLValue) 690 : OpaqueValue(ov), BoundLValue(boundLValue) {} 691 public: 692 OpaqueValueMappingData() : OpaqueValue(nullptr) {} 693 694 static bool shouldBindAsLValue(const Expr *expr) { 695 // gl-values should be bound as l-values for obvious reasons. 696 // Records should be bound as l-values because IR generation 697 // always keeps them in memory. Expressions of function type 698 // act exactly like l-values but are formally required to be 699 // r-values in C. 700 return expr->isGLValue() || 701 expr->getType()->isFunctionType() || 702 hasAggregateEvaluationKind(expr->getType()); 703 } 704 705 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 706 const OpaqueValueExpr *ov, 707 const Expr *e) { 708 if (shouldBindAsLValue(ov)) 709 return bind(CGF, ov, CGF.EmitLValue(e)); 710 return bind(CGF, ov, CGF.EmitAnyExpr(e)); 711 } 712 713 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 714 const OpaqueValueExpr *ov, 715 const LValue &lv) { 716 assert(shouldBindAsLValue(ov)); 717 CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); 718 return OpaqueValueMappingData(ov, true); 719 } 720 721 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 722 const OpaqueValueExpr *ov, 723 const RValue &rv) { 724 assert(!shouldBindAsLValue(ov)); 725 CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); 726 727 OpaqueValueMappingData data(ov, false); 728 729 // Work around an extremely aggressive peephole optimization in 730 // EmitScalarConversion which assumes that all other uses of a 731 // value are extant. 732 data.Protection = CGF.protectFromPeepholes(rv); 733 734 return data; 735 } 736 737 bool isValid() const { return OpaqueValue != nullptr; } 738 void clear() { OpaqueValue = nullptr; } 739 740 void unbind(CodeGenFunction &CGF) { 741 assert(OpaqueValue && "no data to unbind!"); 742 743 if (BoundLValue) { 744 CGF.OpaqueLValues.erase(OpaqueValue); 745 } else { 746 CGF.OpaqueRValues.erase(OpaqueValue); 747 CGF.unprotectFromPeepholes(Protection); 748 } 749 } 750 }; 751 752 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 753 class OpaqueValueMapping { 754 CodeGenFunction &CGF; 755 OpaqueValueMappingData Data; 756 757 public: 758 static bool shouldBindAsLValue(const Expr *expr) { 759 return OpaqueValueMappingData::shouldBindAsLValue(expr); 760 } 761 762 /// Build the opaque value mapping for the given conditional 763 /// operator if it's the GNU ?: extension. This is a common 764 /// enough pattern that the convenience operator is really 765 /// helpful. 766 /// 767 OpaqueValueMapping(CodeGenFunction &CGF, 768 const AbstractConditionalOperator *op) : CGF(CGF) { 769 if (isa<ConditionalOperator>(op)) 770 // Leave Data empty. 771 return; 772 773 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 774 Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), 775 e->getCommon()); 776 } 777 778 OpaqueValueMapping(CodeGenFunction &CGF, 779 const OpaqueValueExpr *opaqueValue, 780 LValue lvalue) 781 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { 782 } 783 784 OpaqueValueMapping(CodeGenFunction &CGF, 785 const OpaqueValueExpr *opaqueValue, 786 RValue rvalue) 787 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { 788 } 789 790 void pop() { 791 Data.unbind(CGF); 792 Data.clear(); 793 } 794 795 ~OpaqueValueMapping() { 796 if (Data.isValid()) Data.unbind(CGF); 797 } 798 }; 799 800 /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field 801 /// number that holds the value. 802 unsigned getByRefValueLLVMField(const ValueDecl *VD) const; 803 804 /// BuildBlockByrefAddress - Computes address location of the 805 /// variable which is declared as __block. 806 llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr, 807 const VarDecl *V); 808 private: 809 CGDebugInfo *DebugInfo; 810 bool DisableDebugInfo; 811 812 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 813 /// calling llvm.stacksave for multiple VLAs in the same scope. 814 bool DidCallStackSave; 815 816 /// IndirectBranch - The first time an indirect goto is seen we create a block 817 /// with an indirect branch. Every time we see the address of a label taken, 818 /// we add the label to the indirect goto. Every subsequent indirect goto is 819 /// codegen'd as a jump to the IndirectBranch's basic block. 820 llvm::IndirectBrInst *IndirectBranch; 821 822 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 823 /// decls. 824 typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy; 825 DeclMapTy LocalDeclMap; 826 827 /// LabelMap - This keeps track of the LLVM basic block for each C label. 828 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 829 830 // BreakContinueStack - This keeps track of where break and continue 831 // statements should jump to. 832 struct BreakContinue { 833 BreakContinue(JumpDest Break, JumpDest Continue) 834 : BreakBlock(Break), ContinueBlock(Continue) {} 835 836 JumpDest BreakBlock; 837 JumpDest ContinueBlock; 838 }; 839 SmallVector<BreakContinue, 8> BreakContinueStack; 840 841 CodeGenPGO PGO; 842 843 public: 844 /// Get a counter for instrumentation of the region associated with the given 845 /// statement. 846 RegionCounter getPGORegionCounter(const Stmt *S) { 847 return RegionCounter(PGO, S); 848 } 849 private: 850 851 /// SwitchInsn - This is nearest current switch instruction. It is null if 852 /// current context is not in a switch. 853 llvm::SwitchInst *SwitchInsn; 854 /// The branch weights of SwitchInsn when doing instrumentation based PGO. 855 SmallVector<uint64_t, 16> *SwitchWeights; 856 857 /// CaseRangeBlock - This block holds if condition check for last case 858 /// statement range in current switch instruction. 859 llvm::BasicBlock *CaseRangeBlock; 860 861 /// OpaqueLValues - Keeps track of the current set of opaque value 862 /// expressions. 863 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 864 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 865 866 // VLASizeMap - This keeps track of the associated size for each VLA type. 867 // We track this by the size expression rather than the type itself because 868 // in certain situations, like a const qualifier applied to an VLA typedef, 869 // multiple VLA types can share the same size expression. 870 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 871 // enter/leave scopes. 872 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 873 874 /// A block containing a single 'unreachable' instruction. Created 875 /// lazily by getUnreachableBlock(). 876 llvm::BasicBlock *UnreachableBlock; 877 878 /// Counts of the number return expressions in the function. 879 unsigned NumReturnExprs; 880 881 /// Count the number of simple (constant) return expressions in the function. 882 unsigned NumSimpleReturnExprs; 883 884 /// The last regular (non-return) debug location (breakpoint) in the function. 885 SourceLocation LastStopPoint; 886 887 public: 888 /// A scope within which we are constructing the fields of an object which 889 /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use 890 /// if we need to evaluate a CXXDefaultInitExpr within the evaluation. 891 class FieldConstructionScope { 892 public: 893 FieldConstructionScope(CodeGenFunction &CGF, llvm::Value *This) 894 : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) { 895 CGF.CXXDefaultInitExprThis = This; 896 } 897 ~FieldConstructionScope() { 898 CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis; 899 } 900 901 private: 902 CodeGenFunction &CGF; 903 llvm::Value *OldCXXDefaultInitExprThis; 904 }; 905 906 /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this' 907 /// is overridden to be the object under construction. 908 class CXXDefaultInitExprScope { 909 public: 910 CXXDefaultInitExprScope(CodeGenFunction &CGF) 911 : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue) { 912 CGF.CXXThisValue = CGF.CXXDefaultInitExprThis; 913 } 914 ~CXXDefaultInitExprScope() { 915 CGF.CXXThisValue = OldCXXThisValue; 916 } 917 918 public: 919 CodeGenFunction &CGF; 920 llvm::Value *OldCXXThisValue; 921 }; 922 923 private: 924 /// CXXThisDecl - When generating code for a C++ member function, 925 /// this will hold the implicit 'this' declaration. 926 ImplicitParamDecl *CXXABIThisDecl; 927 llvm::Value *CXXABIThisValue; 928 llvm::Value *CXXThisValue; 929 930 /// The value of 'this' to use when evaluating CXXDefaultInitExprs within 931 /// this expression. 932 llvm::Value *CXXDefaultInitExprThis; 933 934 /// CXXStructorImplicitParamDecl - When generating code for a constructor or 935 /// destructor, this will hold the implicit argument (e.g. VTT). 936 ImplicitParamDecl *CXXStructorImplicitParamDecl; 937 llvm::Value *CXXStructorImplicitParamValue; 938 939 /// OutermostConditional - Points to the outermost active 940 /// conditional control. This is used so that we know if a 941 /// temporary should be destroyed conditionally. 942 ConditionalEvaluation *OutermostConditional; 943 944 /// The current lexical scope. 945 LexicalScope *CurLexicalScope; 946 947 /// The current source location that should be used for exception 948 /// handling code. 949 SourceLocation CurEHLocation; 950 951 /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM 952 /// type as well as the field number that contains the actual data. 953 llvm::DenseMap<const ValueDecl *, std::pair<llvm::Type *, 954 unsigned> > ByRefValueInfo; 955 956 llvm::BasicBlock *TerminateLandingPad; 957 llvm::BasicBlock *TerminateHandler; 958 llvm::BasicBlock *TrapBB; 959 960 /// Add a kernel metadata node to the named metadata node 'opencl.kernels'. 961 /// In the kernel metadata node, reference the kernel function and metadata 962 /// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2): 963 /// - A node for the vec_type_hint(<type>) qualifier contains string 964 /// "vec_type_hint", an undefined value of the <type> data type, 965 /// and a Boolean that is true if the <type> is integer and signed. 966 /// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string 967 /// "work_group_size_hint", and three 32-bit integers X, Y and Z. 968 /// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string 969 /// "reqd_work_group_size", and three 32-bit integers X, Y and Z. 970 void EmitOpenCLKernelMetadata(const FunctionDecl *FD, 971 llvm::Function *Fn); 972 973 public: 974 CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false); 975 ~CodeGenFunction(); 976 977 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 978 ASTContext &getContext() const { return CGM.getContext(); } 979 CGDebugInfo *getDebugInfo() { 980 if (DisableDebugInfo) 981 return nullptr; 982 return DebugInfo; 983 } 984 void disableDebugInfo() { DisableDebugInfo = true; } 985 void enableDebugInfo() { DisableDebugInfo = false; } 986 987 bool shouldUseFusedARCCalls() { 988 return CGM.getCodeGenOpts().OptimizationLevel == 0; 989 } 990 991 const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } 992 993 /// Returns a pointer to the function's exception object and selector slot, 994 /// which is assigned in every landing pad. 995 llvm::Value *getExceptionSlot(); 996 llvm::Value *getEHSelectorSlot(); 997 998 /// Returns the contents of the function's exception object and selector 999 /// slots. 1000 llvm::Value *getExceptionFromSlot(); 1001 llvm::Value *getSelectorFromSlot(); 1002 1003 llvm::Value *getNormalCleanupDestSlot(); 1004 1005 llvm::BasicBlock *getUnreachableBlock() { 1006 if (!UnreachableBlock) { 1007 UnreachableBlock = createBasicBlock("unreachable"); 1008 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 1009 } 1010 return UnreachableBlock; 1011 } 1012 1013 llvm::BasicBlock *getInvokeDest() { 1014 if (!EHStack.requiresLandingPad()) return nullptr; 1015 return getInvokeDestImpl(); 1016 } 1017 1018 const TargetInfo &getTarget() const { return Target; } 1019 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 1020 1021 //===--------------------------------------------------------------------===// 1022 // Cleanups 1023 //===--------------------------------------------------------------------===// 1024 1025 typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty); 1026 1027 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1028 llvm::Value *arrayEndPointer, 1029 QualType elementType, 1030 Destroyer *destroyer); 1031 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1032 llvm::Value *arrayEnd, 1033 QualType elementType, 1034 Destroyer *destroyer); 1035 1036 void pushDestroy(QualType::DestructionKind dtorKind, 1037 llvm::Value *addr, QualType type); 1038 void pushEHDestroy(QualType::DestructionKind dtorKind, 1039 llvm::Value *addr, QualType type); 1040 void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type, 1041 Destroyer *destroyer, bool useEHCleanupForArray); 1042 void pushLifetimeExtendedDestroy(CleanupKind kind, llvm::Value *addr, 1043 QualType type, Destroyer *destroyer, 1044 bool useEHCleanupForArray); 1045 void pushStackRestore(CleanupKind kind, llvm::Value *SPMem); 1046 void emitDestroy(llvm::Value *addr, QualType type, Destroyer *destroyer, 1047 bool useEHCleanupForArray); 1048 llvm::Function *generateDestroyHelper(llvm::Constant *addr, QualType type, 1049 Destroyer *destroyer, 1050 bool useEHCleanupForArray, 1051 const VarDecl *VD); 1052 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 1053 QualType type, Destroyer *destroyer, 1054 bool checkZeroLength, bool useEHCleanup); 1055 1056 Destroyer *getDestroyer(QualType::DestructionKind destructionKind); 1057 1058 /// Determines whether an EH cleanup is required to destroy a type 1059 /// with the given destruction kind. 1060 bool needsEHCleanup(QualType::DestructionKind kind) { 1061 switch (kind) { 1062 case QualType::DK_none: 1063 return false; 1064 case QualType::DK_cxx_destructor: 1065 case QualType::DK_objc_weak_lifetime: 1066 return getLangOpts().Exceptions; 1067 case QualType::DK_objc_strong_lifetime: 1068 return getLangOpts().Exceptions && 1069 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 1070 } 1071 llvm_unreachable("bad destruction kind"); 1072 } 1073 1074 CleanupKind getCleanupKind(QualType::DestructionKind kind) { 1075 return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); 1076 } 1077 1078 //===--------------------------------------------------------------------===// 1079 // Objective-C 1080 //===--------------------------------------------------------------------===// 1081 1082 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 1083 1084 void StartObjCMethod(const ObjCMethodDecl *MD, 1085 const ObjCContainerDecl *CD, 1086 SourceLocation StartLoc); 1087 1088 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 1089 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 1090 const ObjCPropertyImplDecl *PID); 1091 void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 1092 const ObjCPropertyImplDecl *propImpl, 1093 const ObjCMethodDecl *GetterMothodDecl, 1094 llvm::Constant *AtomicHelperFn); 1095 1096 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1097 ObjCMethodDecl *MD, bool ctor); 1098 1099 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 1100 /// for the given property. 1101 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 1102 const ObjCPropertyImplDecl *PID); 1103 void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1104 const ObjCPropertyImplDecl *propImpl, 1105 llvm::Constant *AtomicHelperFn); 1106 bool IndirectObjCSetterArg(const CGFunctionInfo &FI); 1107 bool IvarTypeWithAggrGCObjects(QualType Ty); 1108 1109 //===--------------------------------------------------------------------===// 1110 // Block Bits 1111 //===--------------------------------------------------------------------===// 1112 1113 llvm::Value *EmitBlockLiteral(const BlockExpr *); 1114 llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); 1115 static void destroyBlockInfos(CGBlockInfo *info); 1116 llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *, 1117 const CGBlockInfo &Info, 1118 llvm::StructType *, 1119 llvm::Constant *BlockVarLayout); 1120 1121 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 1122 const CGBlockInfo &Info, 1123 const DeclMapTy &ldm, 1124 bool IsLambdaConversionToBlock); 1125 1126 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 1127 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 1128 llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( 1129 const ObjCPropertyImplDecl *PID); 1130 llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( 1131 const ObjCPropertyImplDecl *PID); 1132 llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); 1133 1134 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags); 1135 1136 class AutoVarEmission; 1137 1138 void emitByrefStructureInit(const AutoVarEmission &emission); 1139 void enterByrefCleanup(const AutoVarEmission &emission); 1140 1141 llvm::Value *LoadBlockStruct() { 1142 assert(BlockPointer && "no block pointer set!"); 1143 return BlockPointer; 1144 } 1145 1146 void AllocateBlockCXXThisPointer(const CXXThisExpr *E); 1147 void AllocateBlockDecl(const DeclRefExpr *E); 1148 llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef); 1149 llvm::Type *BuildByRefType(const VarDecl *var); 1150 1151 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1152 const CGFunctionInfo &FnInfo); 1153 /// \brief Emit code for the start of a function. 1154 /// \param Loc The location to be associated with the function. 1155 /// \param StartLoc The location of the function body. 1156 void StartFunction(GlobalDecl GD, 1157 QualType RetTy, 1158 llvm::Function *Fn, 1159 const CGFunctionInfo &FnInfo, 1160 const FunctionArgList &Args, 1161 SourceLocation Loc = SourceLocation(), 1162 SourceLocation StartLoc = SourceLocation()); 1163 1164 void EmitConstructorBody(FunctionArgList &Args); 1165 void EmitDestructorBody(FunctionArgList &Args); 1166 void emitImplicitAssignmentOperatorBody(FunctionArgList &Args); 1167 void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body); 1168 void EmitBlockWithFallThrough(llvm::BasicBlock *BB, RegionCounter &Cnt); 1169 1170 void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator, 1171 CallArgList &CallArgs); 1172 void EmitLambdaToBlockPointerBody(FunctionArgList &Args); 1173 void EmitLambdaBlockInvokeBody(); 1174 void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD); 1175 void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD); 1176 1177 /// EmitReturnBlock - Emit the unified return block, trying to avoid its 1178 /// emission when possible. 1179 void EmitReturnBlock(); 1180 1181 /// FinishFunction - Complete IR generation of the current function. It is 1182 /// legal to call this function even if there is no current insertion point. 1183 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 1184 1185 void StartThunk(llvm::Function *Fn, GlobalDecl GD, const CGFunctionInfo &FnInfo); 1186 1187 void EmitCallAndReturnForThunk(GlobalDecl GD, llvm::Value *Callee, 1188 const ThunkInfo *Thunk); 1189 1190 /// GenerateThunk - Generate a thunk for the given method. 1191 void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1192 GlobalDecl GD, const ThunkInfo &Thunk); 1193 1194 void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1195 GlobalDecl GD, const ThunkInfo &Thunk); 1196 1197 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 1198 FunctionArgList &Args); 1199 1200 void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init, 1201 ArrayRef<VarDecl *> ArrayIndexes); 1202 1203 /// InitializeVTablePointer - Initialize the vtable pointer of the given 1204 /// subobject. 1205 /// 1206 void InitializeVTablePointer(BaseSubobject Base, 1207 const CXXRecordDecl *NearestVBase, 1208 CharUnits OffsetFromNearestVBase, 1209 const CXXRecordDecl *VTableClass); 1210 1211 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 1212 void InitializeVTablePointers(BaseSubobject Base, 1213 const CXXRecordDecl *NearestVBase, 1214 CharUnits OffsetFromNearestVBase, 1215 bool BaseIsNonVirtualPrimaryBase, 1216 const CXXRecordDecl *VTableClass, 1217 VisitedVirtualBasesSetTy& VBases); 1218 1219 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 1220 1221 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 1222 /// to by This. 1223 llvm::Value *GetVTablePtr(llvm::Value *This, llvm::Type *Ty); 1224 1225 1226 /// CanDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given 1227 /// expr can be devirtualized. 1228 bool CanDevirtualizeMemberFunctionCall(const Expr *Base, 1229 const CXXMethodDecl *MD); 1230 1231 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 1232 /// given phase of destruction for a destructor. The end result 1233 /// should call destructors on members and base classes in reverse 1234 /// order of their construction. 1235 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 1236 1237 /// ShouldInstrumentFunction - Return true if the current function should be 1238 /// instrumented with __cyg_profile_func_* calls 1239 bool ShouldInstrumentFunction(); 1240 1241 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 1242 /// instrumentation function with the current function and the call site, if 1243 /// function instrumentation is enabled. 1244 void EmitFunctionInstrumentation(const char *Fn); 1245 1246 /// EmitMCountInstrumentation - Emit call to .mcount. 1247 void EmitMCountInstrumentation(); 1248 1249 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 1250 /// arguments for the given function. This is also responsible for naming the 1251 /// LLVM function arguments. 1252 void EmitFunctionProlog(const CGFunctionInfo &FI, 1253 llvm::Function *Fn, 1254 const FunctionArgList &Args); 1255 1256 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 1257 /// given temporary. 1258 void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc, 1259 SourceLocation EndLoc); 1260 1261 /// EmitStartEHSpec - Emit the start of the exception spec. 1262 void EmitStartEHSpec(const Decl *D); 1263 1264 /// EmitEndEHSpec - Emit the end of the exception spec. 1265 void EmitEndEHSpec(const Decl *D); 1266 1267 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 1268 llvm::BasicBlock *getTerminateLandingPad(); 1269 1270 /// getTerminateHandler - Return a handler (not a landing pad, just 1271 /// a catch handler) that just calls terminate. This is used when 1272 /// a terminate scope encloses a try. 1273 llvm::BasicBlock *getTerminateHandler(); 1274 1275 llvm::Type *ConvertTypeForMem(QualType T); 1276 llvm::Type *ConvertType(QualType T); 1277 llvm::Type *ConvertType(const TypeDecl *T) { 1278 return ConvertType(getContext().getTypeDeclType(T)); 1279 } 1280 1281 /// LoadObjCSelf - Load the value of self. This function is only valid while 1282 /// generating code for an Objective-C method. 1283 llvm::Value *LoadObjCSelf(); 1284 1285 /// TypeOfSelfObject - Return type of object that this self represents. 1286 QualType TypeOfSelfObject(); 1287 1288 /// hasAggregateLLVMType - Return true if the specified AST type will map into 1289 /// an aggregate LLVM type or is void. 1290 static TypeEvaluationKind getEvaluationKind(QualType T); 1291 1292 static bool hasScalarEvaluationKind(QualType T) { 1293 return getEvaluationKind(T) == TEK_Scalar; 1294 } 1295 1296 static bool hasAggregateEvaluationKind(QualType T) { 1297 return getEvaluationKind(T) == TEK_Aggregate; 1298 } 1299 1300 /// createBasicBlock - Create an LLVM basic block. 1301 llvm::BasicBlock *createBasicBlock(const Twine &name = "", 1302 llvm::Function *parent = nullptr, 1303 llvm::BasicBlock *before = nullptr) { 1304 #ifdef NDEBUG 1305 return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before); 1306 #else 1307 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 1308 #endif 1309 } 1310 1311 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 1312 /// label maps to. 1313 JumpDest getJumpDestForLabel(const LabelDecl *S); 1314 1315 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 1316 /// another basic block, simplify it. This assumes that no other code could 1317 /// potentially reference the basic block. 1318 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 1319 1320 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 1321 /// adding a fall-through branch from the current insert block if 1322 /// necessary. It is legal to call this function even if there is no current 1323 /// insertion point. 1324 /// 1325 /// IsFinished - If true, indicates that the caller has finished emitting 1326 /// branches to the given block and does not expect to emit code into it. This 1327 /// means the block can be ignored if it is unreachable. 1328 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 1329 1330 /// EmitBlockAfterUses - Emit the given block somewhere hopefully 1331 /// near its uses, and leave the insertion point in it. 1332 void EmitBlockAfterUses(llvm::BasicBlock *BB); 1333 1334 /// EmitBranch - Emit a branch to the specified basic block from the current 1335 /// insert block, taking care to avoid creation of branches from dummy 1336 /// blocks. It is legal to call this function even if there is no current 1337 /// insertion point. 1338 /// 1339 /// This function clears the current insertion point. The caller should follow 1340 /// calls to this function with calls to Emit*Block prior to generation new 1341 /// code. 1342 void EmitBranch(llvm::BasicBlock *Block); 1343 1344 /// HaveInsertPoint - True if an insertion point is defined. If not, this 1345 /// indicates that the current code being emitted is unreachable. 1346 bool HaveInsertPoint() const { 1347 return Builder.GetInsertBlock() != nullptr; 1348 } 1349 1350 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 1351 /// emitted IR has a place to go. Note that by definition, if this function 1352 /// creates a block then that block is unreachable; callers may do better to 1353 /// detect when no insertion point is defined and simply skip IR generation. 1354 void EnsureInsertPoint() { 1355 if (!HaveInsertPoint()) 1356 EmitBlock(createBasicBlock()); 1357 } 1358 1359 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1360 /// specified stmt yet. 1361 void ErrorUnsupported(const Stmt *S, const char *Type); 1362 1363 //===--------------------------------------------------------------------===// 1364 // Helpers 1365 //===--------------------------------------------------------------------===// 1366 1367 LValue MakeAddrLValue(llvm::Value *V, QualType T, 1368 CharUnits Alignment = CharUnits()) { 1369 return LValue::MakeAddr(V, T, Alignment, getContext(), 1370 CGM.getTBAAInfo(T)); 1371 } 1372 1373 LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 1374 CharUnits Alignment; 1375 if (!T->isIncompleteType()) 1376 Alignment = getContext().getTypeAlignInChars(T); 1377 return LValue::MakeAddr(V, T, Alignment, getContext(), 1378 CGM.getTBAAInfo(T)); 1379 } 1380 1381 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 1382 /// block. The caller is responsible for setting an appropriate alignment on 1383 /// the alloca. 1384 llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, 1385 const Twine &Name = "tmp"); 1386 1387 /// InitTempAlloca - Provide an initial value for the given alloca. 1388 void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value); 1389 1390 /// CreateIRTemp - Create a temporary IR object of the given type, with 1391 /// appropriate alignment. This routine should only be used when an temporary 1392 /// value needs to be stored into an alloca (for example, to avoid explicit 1393 /// PHI construction), but the type is the IR type, not the type appropriate 1394 /// for storing in memory. 1395 llvm::AllocaInst *CreateIRTemp(QualType T, const Twine &Name = "tmp"); 1396 1397 /// CreateMemTemp - Create a temporary memory object of the given type, with 1398 /// appropriate alignment. 1399 llvm::AllocaInst *CreateMemTemp(QualType T, const Twine &Name = "tmp"); 1400 1401 /// CreateAggTemp - Create a temporary memory object for the given 1402 /// aggregate type. 1403 AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") { 1404 CharUnits Alignment = getContext().getTypeAlignInChars(T); 1405 return AggValueSlot::forAddr(CreateMemTemp(T, Name), Alignment, 1406 T.getQualifiers(), 1407 AggValueSlot::IsNotDestructed, 1408 AggValueSlot::DoesNotNeedGCBarriers, 1409 AggValueSlot::IsNotAliased); 1410 } 1411 1412 /// CreateInAllocaTmp - Create a temporary memory object for the given 1413 /// aggregate type. 1414 AggValueSlot CreateInAllocaTmp(QualType T, const Twine &Name = "inalloca"); 1415 1416 /// Emit a cast to void* in the appropriate address space. 1417 llvm::Value *EmitCastToVoidPtr(llvm::Value *value); 1418 1419 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 1420 /// expression and compare the result against zero, returning an Int1Ty value. 1421 llvm::Value *EvaluateExprAsBool(const Expr *E); 1422 1423 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 1424 void EmitIgnoredExpr(const Expr *E); 1425 1426 /// EmitAnyExpr - Emit code to compute the specified expression which can have 1427 /// any type. The result is returned as an RValue struct. If this is an 1428 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 1429 /// the result should be returned. 1430 /// 1431 /// \param ignoreResult True if the resulting value isn't used. 1432 RValue EmitAnyExpr(const Expr *E, 1433 AggValueSlot aggSlot = AggValueSlot::ignored(), 1434 bool ignoreResult = false); 1435 1436 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 1437 // or the value of the expression, depending on how va_list is defined. 1438 llvm::Value *EmitVAListRef(const Expr *E); 1439 1440 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 1441 /// always be accessible even if no aggregate location is provided. 1442 RValue EmitAnyExprToTemp(const Expr *E); 1443 1444 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 1445 /// arbitrary expression into the given memory location. 1446 void EmitAnyExprToMem(const Expr *E, llvm::Value *Location, 1447 Qualifiers Quals, bool IsInitializer); 1448 1449 /// EmitExprAsInit - Emits the code necessary to initialize a 1450 /// location in memory with the given initializer. 1451 void EmitExprAsInit(const Expr *init, const ValueDecl *D, 1452 LValue lvalue, bool capturedByInit); 1453 1454 /// hasVolatileMember - returns true if aggregate type has a volatile 1455 /// member. 1456 bool hasVolatileMember(QualType T) { 1457 if (const RecordType *RT = T->getAs<RecordType>()) { 1458 const RecordDecl *RD = cast<RecordDecl>(RT->getDecl()); 1459 return RD->hasVolatileMember(); 1460 } 1461 return false; 1462 } 1463 /// EmitAggregateCopy - Emit an aggregate assignment. 1464 /// 1465 /// The difference to EmitAggregateCopy is that tail padding is not copied. 1466 /// This is required for correctness when assigning non-POD structures in C++. 1467 void EmitAggregateAssign(llvm::Value *DestPtr, llvm::Value *SrcPtr, 1468 QualType EltTy) { 1469 bool IsVolatile = hasVolatileMember(EltTy); 1470 EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, CharUnits::Zero(), 1471 true); 1472 } 1473 1474 /// EmitAggregateCopy - Emit an aggregate copy. 1475 /// 1476 /// \param isVolatile - True iff either the source or the destination is 1477 /// volatile. 1478 /// \param isAssignment - If false, allow padding to be copied. This often 1479 /// yields more efficient. 1480 void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr, 1481 QualType EltTy, bool isVolatile=false, 1482 CharUnits Alignment = CharUnits::Zero(), 1483 bool isAssignment = false); 1484 1485 /// StartBlock - Start new block named N. If insert block is a dummy block 1486 /// then reuse it. 1487 void StartBlock(const char *N); 1488 1489 /// GetAddrOfLocalVar - Return the address of a local variable. 1490 llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) { 1491 llvm::Value *Res = LocalDeclMap[VD]; 1492 assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!"); 1493 return Res; 1494 } 1495 1496 /// getOpaqueLValueMapping - Given an opaque value expression (which 1497 /// must be mapped to an l-value), return its mapping. 1498 const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) { 1499 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 1500 1501 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 1502 it = OpaqueLValues.find(e); 1503 assert(it != OpaqueLValues.end() && "no mapping for opaque value!"); 1504 return it->second; 1505 } 1506 1507 /// getOpaqueRValueMapping - Given an opaque value expression (which 1508 /// must be mapped to an r-value), return its mapping. 1509 const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) { 1510 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 1511 1512 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 1513 it = OpaqueRValues.find(e); 1514 assert(it != OpaqueRValues.end() && "no mapping for opaque value!"); 1515 return it->second; 1516 } 1517 1518 /// getAccessedFieldNo - Given an encoded value and a result number, return 1519 /// the input field number being accessed. 1520 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 1521 1522 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 1523 llvm::BasicBlock *GetIndirectGotoBlock(); 1524 1525 /// EmitNullInitialization - Generate code to set a value of the given type to 1526 /// null, If the type contains data member pointers, they will be initialized 1527 /// to -1 in accordance with the Itanium C++ ABI. 1528 void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty); 1529 1530 // EmitVAArg - Generate code to get an argument from the passed in pointer 1531 // and update it accordingly. The return value is a pointer to the argument. 1532 // FIXME: We should be able to get rid of this method and use the va_arg 1533 // instruction in LLVM instead once it works well enough. 1534 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty); 1535 1536 /// emitArrayLength - Compute the length of an array, even if it's a 1537 /// VLA, and drill down to the base element type. 1538 llvm::Value *emitArrayLength(const ArrayType *arrayType, 1539 QualType &baseType, 1540 llvm::Value *&addr); 1541 1542 /// EmitVLASize - Capture all the sizes for the VLA expressions in 1543 /// the given variably-modified type and store them in the VLASizeMap. 1544 /// 1545 /// This function can be called with a null (unreachable) insert point. 1546 void EmitVariablyModifiedType(QualType Ty); 1547 1548 /// getVLASize - Returns an LLVM value that corresponds to the size, 1549 /// in non-variably-sized elements, of a variable length array type, 1550 /// plus that largest non-variably-sized element type. Assumes that 1551 /// the type has already been emitted with EmitVariablyModifiedType. 1552 std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla); 1553 std::pair<llvm::Value*,QualType> getVLASize(QualType vla); 1554 1555 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 1556 /// generating code for an C++ member function. 1557 llvm::Value *LoadCXXThis() { 1558 assert(CXXThisValue && "no 'this' value for this function"); 1559 return CXXThisValue; 1560 } 1561 1562 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 1563 /// virtual bases. 1564 // FIXME: Every place that calls LoadCXXVTT is something 1565 // that needs to be abstracted properly. 1566 llvm::Value *LoadCXXVTT() { 1567 assert(CXXStructorImplicitParamValue && "no VTT value for this function"); 1568 return CXXStructorImplicitParamValue; 1569 } 1570 1571 /// LoadCXXStructorImplicitParam - Load the implicit parameter 1572 /// for a constructor/destructor. 1573 llvm::Value *LoadCXXStructorImplicitParam() { 1574 assert(CXXStructorImplicitParamValue && 1575 "no implicit argument value for this function"); 1576 return CXXStructorImplicitParamValue; 1577 } 1578 1579 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 1580 /// complete class to the given direct base. 1581 llvm::Value * 1582 GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value, 1583 const CXXRecordDecl *Derived, 1584 const CXXRecordDecl *Base, 1585 bool BaseIsVirtual); 1586 1587 /// GetAddressOfBaseClass - This function will add the necessary delta to the 1588 /// load of 'this' and returns address of the base class. 1589 llvm::Value *GetAddressOfBaseClass(llvm::Value *Value, 1590 const CXXRecordDecl *Derived, 1591 CastExpr::path_const_iterator PathBegin, 1592 CastExpr::path_const_iterator PathEnd, 1593 bool NullCheckValue); 1594 1595 llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value, 1596 const CXXRecordDecl *Derived, 1597 CastExpr::path_const_iterator PathBegin, 1598 CastExpr::path_const_iterator PathEnd, 1599 bool NullCheckValue); 1600 1601 /// GetVTTParameter - Return the VTT parameter that should be passed to a 1602 /// base constructor/destructor with virtual bases. 1603 /// FIXME: VTTs are Itanium ABI-specific, so the definition should move 1604 /// to ItaniumCXXABI.cpp together with all the references to VTT. 1605 llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase, 1606 bool Delegating); 1607 1608 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 1609 CXXCtorType CtorType, 1610 const FunctionArgList &Args, 1611 SourceLocation Loc); 1612 // It's important not to confuse this and the previous function. Delegating 1613 // constructors are the C++0x feature. The constructor delegate optimization 1614 // is used to reduce duplication in the base and complete consturctors where 1615 // they are substantially the same. 1616 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 1617 const FunctionArgList &Args); 1618 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 1619 bool ForVirtualBase, bool Delegating, 1620 llvm::Value *This, 1621 CallExpr::const_arg_iterator ArgBeg, 1622 CallExpr::const_arg_iterator ArgEnd); 1623 1624 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 1625 llvm::Value *This, llvm::Value *Src, 1626 CallExpr::const_arg_iterator ArgBeg, 1627 CallExpr::const_arg_iterator ArgEnd); 1628 1629 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 1630 const ConstantArrayType *ArrayTy, 1631 llvm::Value *ArrayPtr, 1632 CallExpr::const_arg_iterator ArgBeg, 1633 CallExpr::const_arg_iterator ArgEnd, 1634 bool ZeroInitialization = false); 1635 1636 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 1637 llvm::Value *NumElements, 1638 llvm::Value *ArrayPtr, 1639 CallExpr::const_arg_iterator ArgBeg, 1640 CallExpr::const_arg_iterator ArgEnd, 1641 bool ZeroInitialization = false); 1642 1643 static Destroyer destroyCXXObject; 1644 1645 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 1646 bool ForVirtualBase, bool Delegating, 1647 llvm::Value *This); 1648 1649 void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, 1650 llvm::Value *NewPtr, llvm::Value *NumElements); 1651 1652 void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, 1653 llvm::Value *Ptr); 1654 1655 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 1656 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 1657 1658 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 1659 QualType DeleteTy); 1660 1661 llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E); 1662 llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE); 1663 llvm::Value* EmitCXXUuidofExpr(const CXXUuidofExpr *E); 1664 1665 /// \brief Situations in which we might emit a check for the suitability of a 1666 /// pointer or glvalue. 1667 enum TypeCheckKind { 1668 /// Checking the operand of a load. Must be suitably sized and aligned. 1669 TCK_Load, 1670 /// Checking the destination of a store. Must be suitably sized and aligned. 1671 TCK_Store, 1672 /// Checking the bound value in a reference binding. Must be suitably sized 1673 /// and aligned, but is not required to refer to an object (until the 1674 /// reference is used), per core issue 453. 1675 TCK_ReferenceBinding, 1676 /// Checking the object expression in a non-static data member access. Must 1677 /// be an object within its lifetime. 1678 TCK_MemberAccess, 1679 /// Checking the 'this' pointer for a call to a non-static member function. 1680 /// Must be an object within its lifetime. 1681 TCK_MemberCall, 1682 /// Checking the 'this' pointer for a constructor call. 1683 TCK_ConstructorCall, 1684 /// Checking the operand of a static_cast to a derived pointer type. Must be 1685 /// null or an object within its lifetime. 1686 TCK_DowncastPointer, 1687 /// Checking the operand of a static_cast to a derived reference type. Must 1688 /// be an object within its lifetime. 1689 TCK_DowncastReference 1690 }; 1691 1692 /// \brief Emit a check that \p V is the address of storage of the 1693 /// appropriate size and alignment for an object of type \p Type. 1694 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, 1695 QualType Type, CharUnits Alignment = CharUnits::Zero()); 1696 1697 /// \brief Emit a check that \p Base points into an array object, which 1698 /// we can access at index \p Index. \p Accessed should be \c false if we 1699 /// this expression is used as an lvalue, for instance in "&Arr[Idx]". 1700 void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, 1701 QualType IndexType, bool Accessed); 1702 1703 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 1704 bool isInc, bool isPre); 1705 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 1706 bool isInc, bool isPre); 1707 //===--------------------------------------------------------------------===// 1708 // Declaration Emission 1709 //===--------------------------------------------------------------------===// 1710 1711 /// EmitDecl - Emit a declaration. 1712 /// 1713 /// This function can be called with a null (unreachable) insert point. 1714 void EmitDecl(const Decl &D); 1715 1716 /// EmitVarDecl - Emit a local variable declaration. 1717 /// 1718 /// This function can be called with a null (unreachable) insert point. 1719 void EmitVarDecl(const VarDecl &D); 1720 1721 void EmitScalarInit(const Expr *init, const ValueDecl *D, 1722 LValue lvalue, bool capturedByInit); 1723 void EmitScalarInit(llvm::Value *init, LValue lvalue); 1724 1725 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 1726 llvm::Value *Address); 1727 1728 /// EmitAutoVarDecl - Emit an auto variable declaration. 1729 /// 1730 /// This function can be called with a null (unreachable) insert point. 1731 void EmitAutoVarDecl(const VarDecl &D); 1732 1733 class AutoVarEmission { 1734 friend class CodeGenFunction; 1735 1736 const VarDecl *Variable; 1737 1738 /// The alignment of the variable. 1739 CharUnits Alignment; 1740 1741 /// The address of the alloca. Null if the variable was emitted 1742 /// as a global constant. 1743 llvm::Value *Address; 1744 1745 llvm::Value *NRVOFlag; 1746 1747 /// True if the variable is a __block variable. 1748 bool IsByRef; 1749 1750 /// True if the variable is of aggregate type and has a constant 1751 /// initializer. 1752 bool IsConstantAggregate; 1753 1754 /// Non-null if we should use lifetime annotations. 1755 llvm::Value *SizeForLifetimeMarkers; 1756 1757 struct Invalid {}; 1758 AutoVarEmission(Invalid) : Variable(nullptr) {} 1759 1760 AutoVarEmission(const VarDecl &variable) 1761 : Variable(&variable), Address(nullptr), NRVOFlag(nullptr), 1762 IsByRef(false), IsConstantAggregate(false), 1763 SizeForLifetimeMarkers(nullptr) {} 1764 1765 bool wasEmittedAsGlobal() const { return Address == nullptr; } 1766 1767 public: 1768 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 1769 1770 bool useLifetimeMarkers() const { 1771 return SizeForLifetimeMarkers != nullptr; 1772 } 1773 llvm::Value *getSizeForLifetimeMarkers() const { 1774 assert(useLifetimeMarkers()); 1775 return SizeForLifetimeMarkers; 1776 } 1777 1778 /// Returns the raw, allocated address, which is not necessarily 1779 /// the address of the object itself. 1780 llvm::Value *getAllocatedAddress() const { 1781 return Address; 1782 } 1783 1784 /// Returns the address of the object within this declaration. 1785 /// Note that this does not chase the forwarding pointer for 1786 /// __block decls. 1787 llvm::Value *getObjectAddress(CodeGenFunction &CGF) const { 1788 if (!IsByRef) return Address; 1789 1790 return CGF.Builder.CreateStructGEP(Address, 1791 CGF.getByRefValueLLVMField(Variable), 1792 Variable->getNameAsString()); 1793 } 1794 }; 1795 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 1796 void EmitAutoVarInit(const AutoVarEmission &emission); 1797 void EmitAutoVarCleanups(const AutoVarEmission &emission); 1798 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 1799 QualType::DestructionKind dtorKind); 1800 1801 void EmitStaticVarDecl(const VarDecl &D, 1802 llvm::GlobalValue::LinkageTypes Linkage); 1803 1804 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 1805 void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, bool ArgIsPointer, 1806 unsigned ArgNo); 1807 1808 /// protectFromPeepholes - Protect a value that we're intending to 1809 /// store to the side, but which will probably be used later, from 1810 /// aggressive peepholing optimizations that might delete it. 1811 /// 1812 /// Pass the result to unprotectFromPeepholes to declare that 1813 /// protection is no longer required. 1814 /// 1815 /// There's no particular reason why this shouldn't apply to 1816 /// l-values, it's just that no existing peepholes work on pointers. 1817 PeepholeProtection protectFromPeepholes(RValue rvalue); 1818 void unprotectFromPeepholes(PeepholeProtection protection); 1819 1820 //===--------------------------------------------------------------------===// 1821 // Statement Emission 1822 //===--------------------------------------------------------------------===// 1823 1824 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 1825 void EmitStopPoint(const Stmt *S); 1826 1827 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 1828 /// this function even if there is no current insertion point. 1829 /// 1830 /// This function may clear the current insertion point; callers should use 1831 /// EnsureInsertPoint if they wish to subsequently generate code without first 1832 /// calling EmitBlock, EmitBranch, or EmitStmt. 1833 void EmitStmt(const Stmt *S); 1834 1835 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 1836 /// necessarily require an insertion point or debug information; typically 1837 /// because the statement amounts to a jump or a container of other 1838 /// statements. 1839 /// 1840 /// \return True if the statement was handled. 1841 bool EmitSimpleStmt(const Stmt *S); 1842 1843 llvm::Value *EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 1844 AggValueSlot AVS = AggValueSlot::ignored()); 1845 llvm::Value *EmitCompoundStmtWithoutScope(const CompoundStmt &S, 1846 bool GetLast = false, 1847 AggValueSlot AVS = 1848 AggValueSlot::ignored()); 1849 1850 /// EmitLabel - Emit the block for the given label. It is legal to call this 1851 /// function even if there is no current insertion point. 1852 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 1853 1854 void EmitLabelStmt(const LabelStmt &S); 1855 void EmitAttributedStmt(const AttributedStmt &S); 1856 void EmitGotoStmt(const GotoStmt &S); 1857 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 1858 void EmitIfStmt(const IfStmt &S); 1859 void EmitWhileStmt(const WhileStmt &S); 1860 void EmitDoStmt(const DoStmt &S); 1861 void EmitForStmt(const ForStmt &S); 1862 void EmitReturnStmt(const ReturnStmt &S); 1863 void EmitDeclStmt(const DeclStmt &S); 1864 void EmitBreakStmt(const BreakStmt &S); 1865 void EmitContinueStmt(const ContinueStmt &S); 1866 void EmitSwitchStmt(const SwitchStmt &S); 1867 void EmitDefaultStmt(const DefaultStmt &S); 1868 void EmitCaseStmt(const CaseStmt &S); 1869 void EmitCaseStmtRange(const CaseStmt &S); 1870 void EmitAsmStmt(const AsmStmt &S); 1871 1872 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 1873 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 1874 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 1875 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 1876 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 1877 1878 llvm::Constant *getUnwindResumeFn(); 1879 llvm::Constant *getUnwindResumeOrRethrowFn(); 1880 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 1881 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 1882 1883 void EmitCXXTryStmt(const CXXTryStmt &S); 1884 void EmitSEHTryStmt(const SEHTryStmt &S); 1885 void EmitCXXForRangeStmt(const CXXForRangeStmt &S); 1886 1887 llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K); 1888 llvm::Function *GenerateCapturedStmtFunction(const CapturedDecl *CD, 1889 const RecordDecl *RD, 1890 SourceLocation Loc); 1891 llvm::Value *GenerateCapturedStmtArgument(const CapturedStmt &S); 1892 1893 void EmitOMPParallelDirective(const OMPParallelDirective &S); 1894 void EmitOMPSimdDirective(const OMPSimdDirective &S); 1895 1896 //===--------------------------------------------------------------------===// 1897 // LValue Expression Emission 1898 //===--------------------------------------------------------------------===// 1899 1900 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 1901 RValue GetUndefRValue(QualType Ty); 1902 1903 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 1904 /// and issue an ErrorUnsupported style diagnostic (using the 1905 /// provided Name). 1906 RValue EmitUnsupportedRValue(const Expr *E, 1907 const char *Name); 1908 1909 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 1910 /// an ErrorUnsupported style diagnostic (using the provided Name). 1911 LValue EmitUnsupportedLValue(const Expr *E, 1912 const char *Name); 1913 1914 /// EmitLValue - Emit code to compute a designator that specifies the location 1915 /// of the expression. 1916 /// 1917 /// This can return one of two things: a simple address or a bitfield 1918 /// reference. In either case, the LLVM Value* in the LValue structure is 1919 /// guaranteed to be an LLVM pointer type. 1920 /// 1921 /// If this returns a bitfield reference, nothing about the pointee type of 1922 /// the LLVM value is known: For example, it may not be a pointer to an 1923 /// integer. 1924 /// 1925 /// If this returns a normal address, and if the lvalue's C type is fixed 1926 /// size, this method guarantees that the returned pointer type will point to 1927 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 1928 /// variable length type, this is not possible. 1929 /// 1930 LValue EmitLValue(const Expr *E); 1931 1932 /// \brief Same as EmitLValue but additionally we generate checking code to 1933 /// guard against undefined behavior. This is only suitable when we know 1934 /// that the address will be used to access the object. 1935 LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK); 1936 1937 RValue convertTempToRValue(llvm::Value *addr, QualType type, 1938 SourceLocation Loc); 1939 1940 void EmitAtomicInit(Expr *E, LValue lvalue); 1941 1942 RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc, 1943 AggValueSlot slot = AggValueSlot::ignored()); 1944 1945 void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit); 1946 1947 /// EmitToMemory - Change a scalar value from its value 1948 /// representation to its in-memory representation. 1949 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 1950 1951 /// EmitFromMemory - Change a scalar value from its memory 1952 /// representation to its value representation. 1953 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 1954 1955 /// EmitLoadOfScalar - Load a scalar value from an address, taking 1956 /// care to appropriately convert from the memory representation to 1957 /// the LLVM value representation. 1958 llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile, 1959 unsigned Alignment, QualType Ty, 1960 SourceLocation Loc, 1961 llvm::MDNode *TBAAInfo = nullptr, 1962 QualType TBAABaseTy = QualType(), 1963 uint64_t TBAAOffset = 0); 1964 1965 /// EmitLoadOfScalar - Load a scalar value from an address, taking 1966 /// care to appropriately convert from the memory representation to 1967 /// the LLVM value representation. The l-value must be a simple 1968 /// l-value. 1969 llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc); 1970 1971 /// EmitStoreOfScalar - Store a scalar value to an address, taking 1972 /// care to appropriately convert from the memory representation to 1973 /// the LLVM value representation. 1974 void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr, 1975 bool Volatile, unsigned Alignment, QualType Ty, 1976 llvm::MDNode *TBAAInfo = nullptr, bool isInit = false, 1977 QualType TBAABaseTy = QualType(), 1978 uint64_t TBAAOffset = 0); 1979 1980 /// EmitStoreOfScalar - Store a scalar value to an address, taking 1981 /// care to appropriately convert from the memory representation to 1982 /// the LLVM value representation. The l-value must be a simple 1983 /// l-value. The isInit flag indicates whether this is an initialization. 1984 /// If so, atomic qualifiers are ignored and the store is always non-atomic. 1985 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); 1986 1987 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 1988 /// this method emits the address of the lvalue, then loads the result as an 1989 /// rvalue, returning the rvalue. 1990 RValue EmitLoadOfLValue(LValue V, SourceLocation Loc); 1991 RValue EmitLoadOfExtVectorElementLValue(LValue V); 1992 RValue EmitLoadOfBitfieldLValue(LValue LV); 1993 RValue EmitLoadOfGlobalRegLValue(LValue LV); 1994 1995 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 1996 /// lvalue, where both are guaranteed to the have the same type, and that type 1997 /// is 'Ty'. 1998 void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit=false); 1999 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 2000 void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst); 2001 2002 /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints 2003 /// as EmitStoreThroughLValue. 2004 /// 2005 /// \param Result [out] - If non-null, this will be set to a Value* for the 2006 /// bit-field contents after the store, appropriate for use as the result of 2007 /// an assignment to the bit-field. 2008 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 2009 llvm::Value **Result=nullptr); 2010 2011 /// Emit an l-value for an assignment (simple or compound) of complex type. 2012 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 2013 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 2014 LValue EmitScalarCompooundAssignWithComplex(const CompoundAssignOperator *E, 2015 llvm::Value *&Result); 2016 2017 // Note: only available for agg return types 2018 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 2019 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 2020 // Note: only available for agg return types 2021 LValue EmitCallExprLValue(const CallExpr *E); 2022 // Note: only available for agg return types 2023 LValue EmitVAArgExprLValue(const VAArgExpr *E); 2024 LValue EmitDeclRefLValue(const DeclRefExpr *E); 2025 LValue EmitReadRegister(const VarDecl *VD); 2026 LValue EmitStringLiteralLValue(const StringLiteral *E); 2027 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 2028 LValue EmitPredefinedLValue(const PredefinedExpr *E); 2029 LValue EmitUnaryOpLValue(const UnaryOperator *E); 2030 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 2031 bool Accessed = false); 2032 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 2033 LValue EmitMemberExpr(const MemberExpr *E); 2034 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 2035 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 2036 LValue EmitInitListLValue(const InitListExpr *E); 2037 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 2038 LValue EmitCastLValue(const CastExpr *E); 2039 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 2040 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 2041 2042 RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc); 2043 2044 class ConstantEmission { 2045 llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; 2046 ConstantEmission(llvm::Constant *C, bool isReference) 2047 : ValueAndIsReference(C, isReference) {} 2048 public: 2049 ConstantEmission() {} 2050 static ConstantEmission forReference(llvm::Constant *C) { 2051 return ConstantEmission(C, true); 2052 } 2053 static ConstantEmission forValue(llvm::Constant *C) { 2054 return ConstantEmission(C, false); 2055 } 2056 2057 LLVM_EXPLICIT operator bool() const { 2058 return ValueAndIsReference.getOpaqueValue() != nullptr; 2059 } 2060 2061 bool isReference() const { return ValueAndIsReference.getInt(); } 2062 LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { 2063 assert(isReference()); 2064 return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), 2065 refExpr->getType()); 2066 } 2067 2068 llvm::Constant *getValue() const { 2069 assert(!isReference()); 2070 return ValueAndIsReference.getPointer(); 2071 } 2072 }; 2073 2074 ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); 2075 2076 RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, 2077 AggValueSlot slot = AggValueSlot::ignored()); 2078 LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); 2079 2080 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 2081 const ObjCIvarDecl *Ivar); 2082 LValue EmitLValueForField(LValue Base, const FieldDecl* Field); 2083 LValue EmitLValueForLambdaField(const FieldDecl *Field); 2084 2085 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 2086 /// if the Field is a reference, this will return the address of the reference 2087 /// and not the address of the value stored in the reference. 2088 LValue EmitLValueForFieldInitialization(LValue Base, 2089 const FieldDecl* Field); 2090 2091 LValue EmitLValueForIvar(QualType ObjectTy, 2092 llvm::Value* Base, const ObjCIvarDecl *Ivar, 2093 unsigned CVRQualifiers); 2094 2095 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 2096 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 2097 LValue EmitLambdaLValue(const LambdaExpr *E); 2098 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 2099 LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E); 2100 2101 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 2102 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 2103 LValue EmitStmtExprLValue(const StmtExpr *E); 2104 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 2105 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 2106 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init); 2107 2108 //===--------------------------------------------------------------------===// 2109 // Scalar Expression Emission 2110 //===--------------------------------------------------------------------===// 2111 2112 /// EmitCall - Generate a call of the given function, expecting the given 2113 /// result type, and using the given argument list which specifies both the 2114 /// LLVM arguments and the types they were derived from. 2115 /// 2116 /// \param TargetDecl - If given, the decl of the function in a direct call; 2117 /// used to set attributes on the call (noreturn, etc.). 2118 RValue EmitCall(const CGFunctionInfo &FnInfo, 2119 llvm::Value *Callee, 2120 ReturnValueSlot ReturnValue, 2121 const CallArgList &Args, 2122 const Decl *TargetDecl = nullptr, 2123 llvm::Instruction **callOrInvoke = nullptr); 2124 2125 RValue EmitCall(QualType FnType, llvm::Value *Callee, 2126 SourceLocation CallLoc, 2127 ReturnValueSlot ReturnValue, 2128 CallExpr::const_arg_iterator ArgBeg, 2129 CallExpr::const_arg_iterator ArgEnd, 2130 const Decl *TargetDecl = nullptr); 2131 RValue EmitCallExpr(const CallExpr *E, 2132 ReturnValueSlot ReturnValue = ReturnValueSlot()); 2133 2134 llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, 2135 const Twine &name = ""); 2136 llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, 2137 ArrayRef<llvm::Value*> args, 2138 const Twine &name = ""); 2139 llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, 2140 const Twine &name = ""); 2141 llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, 2142 ArrayRef<llvm::Value*> args, 2143 const Twine &name = ""); 2144 2145 llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, 2146 ArrayRef<llvm::Value *> Args, 2147 const Twine &Name = ""); 2148 llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, 2149 const Twine &Name = ""); 2150 llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, 2151 ArrayRef<llvm::Value*> args, 2152 const Twine &name = ""); 2153 llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, 2154 const Twine &name = ""); 2155 void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee, 2156 ArrayRef<llvm::Value*> args); 2157 2158 llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 2159 NestedNameSpecifier *Qual, 2160 llvm::Type *Ty); 2161 2162 llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 2163 CXXDtorType Type, 2164 const CXXRecordDecl *RD); 2165 2166 RValue EmitCXXMemberCall(const CXXMethodDecl *MD, 2167 SourceLocation CallLoc, 2168 llvm::Value *Callee, 2169 ReturnValueSlot ReturnValue, 2170 llvm::Value *This, 2171 llvm::Value *ImplicitParam, 2172 QualType ImplicitParamTy, 2173 CallExpr::const_arg_iterator ArgBeg, 2174 CallExpr::const_arg_iterator ArgEnd); 2175 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 2176 ReturnValueSlot ReturnValue); 2177 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 2178 ReturnValueSlot ReturnValue); 2179 2180 llvm::Value *EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E, 2181 const CXXMethodDecl *MD, 2182 llvm::Value *This); 2183 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 2184 const CXXMethodDecl *MD, 2185 ReturnValueSlot ReturnValue); 2186 2187 RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 2188 ReturnValueSlot ReturnValue); 2189 2190 2191 RValue EmitBuiltinExpr(const FunctionDecl *FD, 2192 unsigned BuiltinID, const CallExpr *E); 2193 2194 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 2195 2196 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 2197 /// is unhandled by the current target. 2198 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2199 2200 llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty, 2201 const llvm::CmpInst::Predicate Fp, 2202 const llvm::CmpInst::Predicate Ip, 2203 const llvm::Twine &Name = ""); 2204 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2205 2206 llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID, 2207 unsigned LLVMIntrinsic, 2208 unsigned AltLLVMIntrinsic, 2209 const char *NameHint, 2210 unsigned Modifier, 2211 const CallExpr *E, 2212 SmallVectorImpl<llvm::Value *> &Ops, 2213 llvm::Value *Align = nullptr); 2214 llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID, 2215 unsigned Modifier, llvm::Type *ArgTy, 2216 const CallExpr *E); 2217 llvm::Value *EmitNeonCall(llvm::Function *F, 2218 SmallVectorImpl<llvm::Value*> &O, 2219 const char *name, 2220 unsigned shift = 0, bool rightshift = false); 2221 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 2222 llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, 2223 bool negateForRightShift); 2224 llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt, 2225 llvm::Type *Ty, bool usgn, const char *name); 2226 llvm::Value *EmitConcatVectors(llvm::Value *Lo, llvm::Value *Hi, 2227 llvm::Type *ArgTy); 2228 llvm::Value *EmitExtractHigh(llvm::Value *In, llvm::Type *ResTy); 2229 // Helper functions for EmitAArch64BuiltinExpr. 2230 llvm::Value *vectorWrapScalar8(llvm::Value *Op); 2231 llvm::Value *vectorWrapScalar16(llvm::Value *Op); 2232 llvm::Value *emitVectorWrappedScalar8Intrinsic( 2233 unsigned Int, SmallVectorImpl<llvm::Value *> &Ops, const char *Name); 2234 llvm::Value *emitVectorWrappedScalar16Intrinsic( 2235 unsigned Int, SmallVectorImpl<llvm::Value *> &Ops, const char *Name); 2236 llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2237 llvm::Value *EmitNeon64Call(llvm::Function *F, 2238 llvm::SmallVectorImpl<llvm::Value *> &O, 2239 const char *name); 2240 2241 llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); 2242 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2243 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2244 2245 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 2246 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 2247 llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); 2248 llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); 2249 llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); 2250 llvm::Value *EmitObjCCollectionLiteral(const Expr *E, 2251 const ObjCMethodDecl *MethodWithObjects); 2252 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 2253 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 2254 ReturnValueSlot Return = ReturnValueSlot()); 2255 2256 /// Retrieves the default cleanup kind for an ARC cleanup. 2257 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. 2258 CleanupKind getARCCleanupKind() { 2259 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 2260 ? NormalAndEHCleanup : NormalCleanup; 2261 } 2262 2263 // ARC primitives. 2264 void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr); 2265 void EmitARCDestroyWeak(llvm::Value *addr); 2266 llvm::Value *EmitARCLoadWeak(llvm::Value *addr); 2267 llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr); 2268 llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr, 2269 bool ignored); 2270 void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src); 2271 void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src); 2272 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 2273 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 2274 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 2275 bool resultIgnored); 2276 llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value, 2277 bool resultIgnored); 2278 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 2279 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 2280 llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); 2281 void EmitARCDestroyStrong(llvm::Value *addr, ARCPreciseLifetime_t precise); 2282 void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 2283 llvm::Value *EmitARCAutorelease(llvm::Value *value); 2284 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 2285 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 2286 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 2287 2288 std::pair<LValue,llvm::Value*> 2289 EmitARCStoreAutoreleasing(const BinaryOperator *e); 2290 std::pair<LValue,llvm::Value*> 2291 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 2292 2293 llvm::Value *EmitObjCThrowOperand(const Expr *expr); 2294 2295 llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr); 2296 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 2297 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 2298 2299 llvm::Value *EmitARCExtendBlockObject(const Expr *expr); 2300 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 2301 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 2302 2303 void EmitARCIntrinsicUse(llvm::ArrayRef<llvm::Value*> values); 2304 2305 static Destroyer destroyARCStrongImprecise; 2306 static Destroyer destroyARCStrongPrecise; 2307 static Destroyer destroyARCWeak; 2308 2309 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 2310 llvm::Value *EmitObjCAutoreleasePoolPush(); 2311 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 2312 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 2313 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 2314 2315 /// \brief Emits a reference binding to the passed in expression. 2316 RValue EmitReferenceBindingToExpr(const Expr *E); 2317 2318 //===--------------------------------------------------------------------===// 2319 // Expression Emission 2320 //===--------------------------------------------------------------------===// 2321 2322 // Expressions are broken into three classes: scalar, complex, aggregate. 2323 2324 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 2325 /// scalar type, returning the result. 2326 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 2327 2328 /// EmitScalarConversion - Emit a conversion from the specified type to the 2329 /// specified destination type, both of which are LLVM scalar types. 2330 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 2331 QualType DstTy); 2332 2333 /// EmitComplexToScalarConversion - Emit a conversion from the specified 2334 /// complex type to the specified destination type, where the destination type 2335 /// is an LLVM scalar type. 2336 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 2337 QualType DstTy); 2338 2339 2340 /// EmitAggExpr - Emit the computation of the specified expression 2341 /// of aggregate type. The result is computed into the given slot, 2342 /// which may be null to indicate that the value is not needed. 2343 void EmitAggExpr(const Expr *E, AggValueSlot AS); 2344 2345 /// EmitAggExprToLValue - Emit the computation of the specified expression of 2346 /// aggregate type into a temporary LValue. 2347 LValue EmitAggExprToLValue(const Expr *E); 2348 2349 /// EmitGCMemmoveCollectable - Emit special API for structs with object 2350 /// pointers. 2351 void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr, 2352 QualType Ty); 2353 2354 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 2355 /// make sure it survives garbage collection until this point. 2356 void EmitExtendGCLifetime(llvm::Value *object); 2357 2358 /// EmitComplexExpr - Emit the computation of the specified expression of 2359 /// complex type, returning the result. 2360 ComplexPairTy EmitComplexExpr(const Expr *E, 2361 bool IgnoreReal = false, 2362 bool IgnoreImag = false); 2363 2364 /// EmitComplexExprIntoLValue - Emit the given expression of complex 2365 /// type and place its result into the specified l-value. 2366 void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit); 2367 2368 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 2369 void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit); 2370 2371 /// EmitLoadOfComplex - Load a complex number from the specified l-value. 2372 ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc); 2373 2374 /// CreateStaticVarDecl - Create a zero-initialized LLVM global for 2375 /// a static local variable. 2376 llvm::Constant *CreateStaticVarDecl(const VarDecl &D, 2377 const char *Separator, 2378 llvm::GlobalValue::LinkageTypes Linkage); 2379 2380 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 2381 /// global variable that has already been created for it. If the initializer 2382 /// has a different type than GV does, this may free GV and return a different 2383 /// one. Otherwise it just returns GV. 2384 llvm::GlobalVariable * 2385 AddInitializerToStaticVarDecl(const VarDecl &D, 2386 llvm::GlobalVariable *GV); 2387 2388 2389 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 2390 /// variable with global storage. 2391 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr, 2392 bool PerformInit); 2393 2394 /// Call atexit() with a function that passes the given argument to 2395 /// the given function. 2396 void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn, 2397 llvm::Constant *addr); 2398 2399 /// Emit code in this function to perform a guarded variable 2400 /// initialization. Guarded initializations are used when it's not 2401 /// possible to prove that an initialization will be done exactly 2402 /// once, e.g. with a static local variable or a static data member 2403 /// of a class template. 2404 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, 2405 bool PerformInit); 2406 2407 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 2408 /// variables. 2409 void GenerateCXXGlobalInitFunc(llvm::Function *Fn, 2410 ArrayRef<llvm::Constant *> Decls, 2411 llvm::GlobalVariable *Guard = nullptr); 2412 2413 /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global 2414 /// variables. 2415 void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn, 2416 const std::vector<std::pair<llvm::WeakVH, 2417 llvm::Constant*> > &DtorsAndObjects); 2418 2419 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 2420 const VarDecl *D, 2421 llvm::GlobalVariable *Addr, 2422 bool PerformInit); 2423 2424 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 2425 2426 void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src, 2427 const Expr *Exp); 2428 2429 void enterFullExpression(const ExprWithCleanups *E) { 2430 if (E->getNumObjects() == 0) return; 2431 enterNonTrivialFullExpression(E); 2432 } 2433 void enterNonTrivialFullExpression(const ExprWithCleanups *E); 2434 2435 void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true); 2436 2437 void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest); 2438 2439 RValue EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest = nullptr); 2440 2441 //===--------------------------------------------------------------------===// 2442 // Annotations Emission 2443 //===--------------------------------------------------------------------===// 2444 2445 /// Emit an annotation call (intrinsic or builtin). 2446 llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn, 2447 llvm::Value *AnnotatedVal, 2448 StringRef AnnotationStr, 2449 SourceLocation Location); 2450 2451 /// Emit local annotations for the local variable V, declared by D. 2452 void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); 2453 2454 /// Emit field annotations for the given field & value. Returns the 2455 /// annotation result. 2456 llvm::Value *EmitFieldAnnotations(const FieldDecl *D, llvm::Value *V); 2457 2458 //===--------------------------------------------------------------------===// 2459 // Internal Helpers 2460 //===--------------------------------------------------------------------===// 2461 2462 /// ContainsLabel - Return true if the statement contains a label in it. If 2463 /// this statement is not executed normally, it not containing a label means 2464 /// that we can just remove the code. 2465 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 2466 2467 /// containsBreak - Return true if the statement contains a break out of it. 2468 /// If the statement (recursively) contains a switch or loop with a break 2469 /// inside of it, this is fine. 2470 static bool containsBreak(const Stmt *S); 2471 2472 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 2473 /// to a constant, or if it does but contains a label, return false. If it 2474 /// constant folds return true and set the boolean result in Result. 2475 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result); 2476 2477 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 2478 /// to a constant, or if it does but contains a label, return false. If it 2479 /// constant folds return true and set the folded value. 2480 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result); 2481 2482 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 2483 /// if statement) to the specified blocks. Based on the condition, this might 2484 /// try to simplify the codegen of the conditional based on the branch. 2485 /// TrueCount should be the number of times we expect the condition to 2486 /// evaluate to true based on PGO data. 2487 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 2488 llvm::BasicBlock *FalseBlock, uint64_t TrueCount); 2489 2490 /// \brief Emit a description of a type in a format suitable for passing to 2491 /// a runtime sanitizer handler. 2492 llvm::Constant *EmitCheckTypeDescriptor(QualType T); 2493 2494 /// \brief Convert a value into a format suitable for passing to a runtime 2495 /// sanitizer handler. 2496 llvm::Value *EmitCheckValue(llvm::Value *V); 2497 2498 /// \brief Emit a description of a source location in a format suitable for 2499 /// passing to a runtime sanitizer handler. 2500 llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc); 2501 2502 /// \brief Specify under what conditions this check can be recovered 2503 enum CheckRecoverableKind { 2504 /// Always terminate program execution if this check fails 2505 CRK_Unrecoverable, 2506 /// Check supports recovering, allows user to specify which 2507 CRK_Recoverable, 2508 /// Runtime conditionally aborts, always need to support recovery. 2509 CRK_AlwaysRecoverable 2510 }; 2511 2512 /// \brief Create a basic block that will call a handler function in a 2513 /// sanitizer runtime with the provided arguments, and create a conditional 2514 /// branch to it. 2515 void EmitCheck(llvm::Value *Checked, StringRef CheckName, 2516 ArrayRef<llvm::Constant *> StaticArgs, 2517 ArrayRef<llvm::Value *> DynamicArgs, 2518 CheckRecoverableKind Recoverable); 2519 2520 /// \brief Create a basic block that will call the trap intrinsic, and emit a 2521 /// conditional branch to it, for the -ftrapv checks. 2522 void EmitTrapCheck(llvm::Value *Checked); 2523 2524 /// EmitCallArg - Emit a single call argument. 2525 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 2526 2527 /// EmitDelegateCallArg - We are performing a delegate call; that 2528 /// is, the current function is delegating to another one. Produce 2529 /// a r-value suitable for passing the given parameter. 2530 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param, 2531 SourceLocation loc); 2532 2533 /// SetFPAccuracy - Set the minimum required accuracy of the given floating 2534 /// point operation, expressed as the maximum relative error in ulp. 2535 void SetFPAccuracy(llvm::Value *Val, float Accuracy); 2536 2537 private: 2538 llvm::MDNode *getRangeForLoadFromType(QualType Ty); 2539 void EmitReturnOfRValue(RValue RV, QualType Ty); 2540 2541 void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New); 2542 2543 llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4> 2544 DeferredReplacements; 2545 2546 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 2547 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 2548 /// 2549 /// \param AI - The first function argument of the expansion. 2550 /// \return The argument following the last expanded function 2551 /// argument. 2552 llvm::Function::arg_iterator 2553 ExpandTypeFromArgs(QualType Ty, LValue Dst, 2554 llvm::Function::arg_iterator AI); 2555 2556 /// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg 2557 /// Ty, into individual arguments on the provided vector \arg Args. See 2558 /// ABIArgInfo::Expand. 2559 void ExpandTypeToArgs(QualType Ty, RValue Src, 2560 SmallVectorImpl<llvm::Value *> &Args, 2561 llvm::FunctionType *IRFuncTy); 2562 2563 llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info, 2564 const Expr *InputExpr, std::string &ConstraintStr); 2565 2566 llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 2567 LValue InputValue, QualType InputType, 2568 std::string &ConstraintStr, 2569 SourceLocation Loc); 2570 2571 public: 2572 /// EmitCallArgs - Emit call arguments for a function. 2573 template <typename T> 2574 void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo, 2575 CallExpr::const_arg_iterator ArgBeg, 2576 CallExpr::const_arg_iterator ArgEnd, 2577 bool ForceColumnInfo = false) { 2578 if (CallArgTypeInfo) { 2579 EmitCallArgs(Args, CallArgTypeInfo->isVariadic(), 2580 CallArgTypeInfo->param_type_begin(), 2581 CallArgTypeInfo->param_type_end(), ArgBeg, ArgEnd, 2582 ForceColumnInfo); 2583 } else { 2584 // T::param_type_iterator might not have a default ctor. 2585 const QualType *NoIter = nullptr; 2586 EmitCallArgs(Args, /*AllowExtraArguments=*/true, NoIter, NoIter, ArgBeg, 2587 ArgEnd, ForceColumnInfo); 2588 } 2589 } 2590 2591 template<typename ArgTypeIterator> 2592 void EmitCallArgs(CallArgList& Args, 2593 bool AllowExtraArguments, 2594 ArgTypeIterator ArgTypeBeg, 2595 ArgTypeIterator ArgTypeEnd, 2596 CallExpr::const_arg_iterator ArgBeg, 2597 CallExpr::const_arg_iterator ArgEnd, 2598 bool ForceColumnInfo = false) { 2599 SmallVector<QualType, 16> ArgTypes; 2600 CallExpr::const_arg_iterator Arg = ArgBeg; 2601 2602 // First, use the argument types that the type info knows about 2603 for (ArgTypeIterator I = ArgTypeBeg, E = ArgTypeEnd; I != E; ++I, ++Arg) { 2604 assert(Arg != ArgEnd && "Running over edge of argument list!"); 2605 #ifndef NDEBUG 2606 QualType ArgType = *I; 2607 QualType ActualArgType = Arg->getType(); 2608 if (ArgType->isPointerType() && ActualArgType->isPointerType()) { 2609 QualType ActualBaseType = 2610 ActualArgType->getAs<PointerType>()->getPointeeType(); 2611 QualType ArgBaseType = 2612 ArgType->getAs<PointerType>()->getPointeeType(); 2613 if (ArgBaseType->isVariableArrayType()) { 2614 if (const VariableArrayType *VAT = 2615 getContext().getAsVariableArrayType(ActualBaseType)) { 2616 if (!VAT->getSizeExpr()) 2617 ActualArgType = ArgType; 2618 } 2619 } 2620 } 2621 assert(getContext().getCanonicalType(ArgType.getNonReferenceType()). 2622 getTypePtr() == 2623 getContext().getCanonicalType(ActualArgType).getTypePtr() && 2624 "type mismatch in call argument!"); 2625 #endif 2626 ArgTypes.push_back(*I); 2627 } 2628 2629 // Either we've emitted all the call args, or we have a call to variadic 2630 // function or some other call that allows extra arguments. 2631 assert((Arg == ArgEnd || AllowExtraArguments) && 2632 "Extra arguments in non-variadic function!"); 2633 2634 // If we still have any arguments, emit them using the type of the argument. 2635 for (; Arg != ArgEnd; ++Arg) 2636 ArgTypes.push_back(Arg->getType()); 2637 2638 EmitCallArgs(Args, ArgTypes, ArgBeg, ArgEnd, ForceColumnInfo); 2639 } 2640 2641 void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes, 2642 CallExpr::const_arg_iterator ArgBeg, 2643 CallExpr::const_arg_iterator ArgEnd, bool ForceColumnInfo); 2644 2645 private: 2646 const TargetCodeGenInfo &getTargetHooks() const { 2647 return CGM.getTargetCodeGenInfo(); 2648 } 2649 2650 void EmitDeclMetadata(); 2651 2652 CodeGenModule::ByrefHelpers * 2653 buildByrefHelpers(llvm::StructType &byrefType, 2654 const AutoVarEmission &emission); 2655 2656 void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); 2657 2658 /// GetPointeeAlignment - Given an expression with a pointer type, emit the 2659 /// value and compute our best estimate of the alignment of the pointee. 2660 std::pair<llvm::Value*, unsigned> EmitPointerWithAlignment(const Expr *Addr); 2661 }; 2662 2663 /// Helper class with most of the code for saving a value for a 2664 /// conditional expression cleanup. 2665 struct DominatingLLVMValue { 2666 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 2667 2668 /// Answer whether the given value needs extra work to be saved. 2669 static bool needsSaving(llvm::Value *value) { 2670 // If it's not an instruction, we don't need to save. 2671 if (!isa<llvm::Instruction>(value)) return false; 2672 2673 // If it's an instruction in the entry block, we don't need to save. 2674 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 2675 return (block != &block->getParent()->getEntryBlock()); 2676 } 2677 2678 /// Try to save the given value. 2679 static saved_type save(CodeGenFunction &CGF, llvm::Value *value) { 2680 if (!needsSaving(value)) return saved_type(value, false); 2681 2682 // Otherwise we need an alloca. 2683 llvm::Value *alloca = 2684 CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save"); 2685 CGF.Builder.CreateStore(value, alloca); 2686 2687 return saved_type(alloca, true); 2688 } 2689 2690 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) { 2691 if (!value.getInt()) return value.getPointer(); 2692 return CGF.Builder.CreateLoad(value.getPointer()); 2693 } 2694 }; 2695 2696 /// A partial specialization of DominatingValue for llvm::Values that 2697 /// might be llvm::Instructions. 2698 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 2699 typedef T *type; 2700 static type restore(CodeGenFunction &CGF, saved_type value) { 2701 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 2702 } 2703 }; 2704 2705 /// A specialization of DominatingValue for RValue. 2706 template <> struct DominatingValue<RValue> { 2707 typedef RValue type; 2708 class saved_type { 2709 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 2710 AggregateAddress, ComplexAddress }; 2711 2712 llvm::Value *Value; 2713 Kind K; 2714 saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {} 2715 2716 public: 2717 static bool needsSaving(RValue value); 2718 static saved_type save(CodeGenFunction &CGF, RValue value); 2719 RValue restore(CodeGenFunction &CGF); 2720 2721 // implementations in CGExprCXX.cpp 2722 }; 2723 2724 static bool needsSaving(type value) { 2725 return saved_type::needsSaving(value); 2726 } 2727 static saved_type save(CodeGenFunction &CGF, type value) { 2728 return saved_type::save(CGF, value); 2729 } 2730 static type restore(CodeGenFunction &CGF, saved_type value) { 2731 return value.restore(CGF); 2732 } 2733 }; 2734 2735 } // end namespace CodeGen 2736 } // end namespace clang 2737 2738 #endif 2739