1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the internal per-function state used for llvm translation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
15 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
16 
17 #include "CGBuilder.h"
18 #include "CGDebugInfo.h"
19 #include "CGLoopInfo.h"
20 #include "CGValue.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "EHScopeStack.h"
24 #include "VarBypassDetector.h"
25 #include "clang/AST/CharUnits.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/ExprObjC.h"
28 #include "clang/AST/ExprOpenMP.h"
29 #include "clang/AST/Type.h"
30 #include "clang/Basic/ABI.h"
31 #include "clang/Basic/CapturedStmt.h"
32 #include "clang/Basic/OpenMPKinds.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "clang/Frontend/CodeGenOptions.h"
35 #include "llvm/ADT/ArrayRef.h"
36 #include "llvm/ADT/DenseMap.h"
37 #include "llvm/ADT/SmallVector.h"
38 #include "llvm/IR/ValueHandle.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Transforms/Utils/SanitizerStats.h"
41 
42 namespace llvm {
43 class BasicBlock;
44 class LLVMContext;
45 class MDNode;
46 class Module;
47 class SwitchInst;
48 class Twine;
49 class Value;
50 class CallSite;
51 }
52 
53 namespace clang {
54 class ASTContext;
55 class BlockDecl;
56 class CXXDestructorDecl;
57 class CXXForRangeStmt;
58 class CXXTryStmt;
59 class Decl;
60 class LabelDecl;
61 class EnumConstantDecl;
62 class FunctionDecl;
63 class FunctionProtoType;
64 class LabelStmt;
65 class ObjCContainerDecl;
66 class ObjCInterfaceDecl;
67 class ObjCIvarDecl;
68 class ObjCMethodDecl;
69 class ObjCImplementationDecl;
70 class ObjCPropertyImplDecl;
71 class TargetInfo;
72 class VarDecl;
73 class ObjCForCollectionStmt;
74 class ObjCAtTryStmt;
75 class ObjCAtThrowStmt;
76 class ObjCAtSynchronizedStmt;
77 class ObjCAutoreleasePoolStmt;
78 
79 namespace CodeGen {
80 class CodeGenTypes;
81 class CGCallee;
82 class CGFunctionInfo;
83 class CGRecordLayout;
84 class CGBlockInfo;
85 class CGCXXABI;
86 class BlockByrefHelpers;
87 class BlockByrefInfo;
88 class BlockFlags;
89 class BlockFieldFlags;
90 class RegionCodeGenTy;
91 class TargetCodeGenInfo;
92 struct OMPTaskDataTy;
93 struct CGCoroData;
94 
95 /// The kind of evaluation to perform on values of a particular
96 /// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
97 /// CGExprAgg?
98 ///
99 /// TODO: should vectors maybe be split out into their own thing?
100 enum TypeEvaluationKind {
101   TEK_Scalar,
102   TEK_Complex,
103   TEK_Aggregate
104 };
105 
106 #define LIST_SANITIZER_CHECKS                                                  \
107   SANITIZER_CHECK(AddOverflow, add_overflow, 0)                                \
108   SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0)                  \
109   SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0)                             \
110   SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0)                          \
111   SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0)            \
112   SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0)                   \
113   SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 0)             \
114   SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0)                     \
115   SANITIZER_CHECK(MissingReturn, missing_return, 0)                            \
116   SANITIZER_CHECK(MulOverflow, mul_overflow, 0)                                \
117   SANITIZER_CHECK(NegateOverflow, negate_overflow, 0)                          \
118   SANITIZER_CHECK(NonnullArg, nonnull_arg, 0)                                  \
119   SANITIZER_CHECK(NonnullReturn, nonnull_return, 0)                            \
120   SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0)                               \
121   SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0)                    \
122   SANITIZER_CHECK(SubOverflow, sub_overflow, 0)                                \
123   SANITIZER_CHECK(TypeMismatch, type_mismatch, 1)                              \
124   SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0)
125 
126 enum SanitizerHandler {
127 #define SANITIZER_CHECK(Enum, Name, Version) Enum,
128   LIST_SANITIZER_CHECKS
129 #undef SANITIZER_CHECK
130 };
131 
132 /// CodeGenFunction - This class organizes the per-function state that is used
133 /// while generating LLVM code.
134 class CodeGenFunction : public CodeGenTypeCache {
135   CodeGenFunction(const CodeGenFunction &) = delete;
136   void operator=(const CodeGenFunction &) = delete;
137 
138   friend class CGCXXABI;
139 public:
140   /// A jump destination is an abstract label, branching to which may
141   /// require a jump out through normal cleanups.
142   struct JumpDest {
143     JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {}
144     JumpDest(llvm::BasicBlock *Block,
145              EHScopeStack::stable_iterator Depth,
146              unsigned Index)
147       : Block(Block), ScopeDepth(Depth), Index(Index) {}
148 
149     bool isValid() const { return Block != nullptr; }
150     llvm::BasicBlock *getBlock() const { return Block; }
151     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
152     unsigned getDestIndex() const { return Index; }
153 
154     // This should be used cautiously.
155     void setScopeDepth(EHScopeStack::stable_iterator depth) {
156       ScopeDepth = depth;
157     }
158 
159   private:
160     llvm::BasicBlock *Block;
161     EHScopeStack::stable_iterator ScopeDepth;
162     unsigned Index;
163   };
164 
165   CodeGenModule &CGM;  // Per-module state.
166   const TargetInfo &Target;
167 
168   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
169   LoopInfoStack LoopStack;
170   CGBuilderTy Builder;
171 
172   // Stores variables for which we can't generate correct lifetime markers
173   // because of jumps.
174   VarBypassDetector Bypasses;
175 
176   /// \brief CGBuilder insert helper. This function is called after an
177   /// instruction is created using Builder.
178   void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
179                     llvm::BasicBlock *BB,
180                     llvm::BasicBlock::iterator InsertPt) const;
181 
182   /// CurFuncDecl - Holds the Decl for the current outermost
183   /// non-closure context.
184   const Decl *CurFuncDecl;
185   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
186   const Decl *CurCodeDecl;
187   const CGFunctionInfo *CurFnInfo;
188   QualType FnRetTy;
189   llvm::Function *CurFn;
190 
191   // Holds coroutine data if the current function is a coroutine. We use a
192   // wrapper to manage its lifetime, so that we don't have to define CGCoroData
193   // in this header.
194   struct CGCoroInfo {
195     std::unique_ptr<CGCoroData> Data;
196     CGCoroInfo();
197     ~CGCoroInfo();
198   };
199   CGCoroInfo CurCoro;
200 
201   /// CurGD - The GlobalDecl for the current function being compiled.
202   GlobalDecl CurGD;
203 
204   /// PrologueCleanupDepth - The cleanup depth enclosing all the
205   /// cleanups associated with the parameters.
206   EHScopeStack::stable_iterator PrologueCleanupDepth;
207 
208   /// ReturnBlock - Unified return block.
209   JumpDest ReturnBlock;
210 
211   /// ReturnValue - The temporary alloca to hold the return
212   /// value. This is invalid iff the function has no return value.
213   Address ReturnValue;
214 
215   /// Return true if a label was seen in the current scope.
216   bool hasLabelBeenSeenInCurrentScope() const {
217     if (CurLexicalScope)
218       return CurLexicalScope->hasLabels();
219     return !LabelMap.empty();
220   }
221 
222   /// AllocaInsertPoint - This is an instruction in the entry block before which
223   /// we prefer to insert allocas.
224   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
225 
226   /// \brief API for captured statement code generation.
227   class CGCapturedStmtInfo {
228   public:
229     explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default)
230         : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
231     explicit CGCapturedStmtInfo(const CapturedStmt &S,
232                                 CapturedRegionKind K = CR_Default)
233       : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
234 
235       RecordDecl::field_iterator Field =
236         S.getCapturedRecordDecl()->field_begin();
237       for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
238                                                 E = S.capture_end();
239            I != E; ++I, ++Field) {
240         if (I->capturesThis())
241           CXXThisFieldDecl = *Field;
242         else if (I->capturesVariable())
243           CaptureFields[I->getCapturedVar()] = *Field;
244         else if (I->capturesVariableByCopy())
245           CaptureFields[I->getCapturedVar()] = *Field;
246       }
247     }
248 
249     virtual ~CGCapturedStmtInfo();
250 
251     CapturedRegionKind getKind() const { return Kind; }
252 
253     virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
254     // \brief Retrieve the value of the context parameter.
255     virtual llvm::Value *getContextValue() const { return ThisValue; }
256 
257     /// \brief Lookup the captured field decl for a variable.
258     virtual const FieldDecl *lookup(const VarDecl *VD) const {
259       return CaptureFields.lookup(VD);
260     }
261 
262     bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
263     virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
264 
265     static bool classof(const CGCapturedStmtInfo *) {
266       return true;
267     }
268 
269     /// \brief Emit the captured statement body.
270     virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
271       CGF.incrementProfileCounter(S);
272       CGF.EmitStmt(S);
273     }
274 
275     /// \brief Get the name of the capture helper.
276     virtual StringRef getHelperName() const { return "__captured_stmt"; }
277 
278   private:
279     /// \brief The kind of captured statement being generated.
280     CapturedRegionKind Kind;
281 
282     /// \brief Keep the map between VarDecl and FieldDecl.
283     llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
284 
285     /// \brief The base address of the captured record, passed in as the first
286     /// argument of the parallel region function.
287     llvm::Value *ThisValue;
288 
289     /// \brief Captured 'this' type.
290     FieldDecl *CXXThisFieldDecl;
291   };
292   CGCapturedStmtInfo *CapturedStmtInfo;
293 
294   /// \brief RAII for correct setting/restoring of CapturedStmtInfo.
295   class CGCapturedStmtRAII {
296   private:
297     CodeGenFunction &CGF;
298     CGCapturedStmtInfo *PrevCapturedStmtInfo;
299   public:
300     CGCapturedStmtRAII(CodeGenFunction &CGF,
301                        CGCapturedStmtInfo *NewCapturedStmtInfo)
302         : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) {
303       CGF.CapturedStmtInfo = NewCapturedStmtInfo;
304     }
305     ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; }
306   };
307 
308   /// \brief Sanitizers enabled for this function.
309   SanitizerSet SanOpts;
310 
311   /// \brief True if CodeGen currently emits code implementing sanitizer checks.
312   bool IsSanitizerScope;
313 
314   /// \brief RAII object to set/unset CodeGenFunction::IsSanitizerScope.
315   class SanitizerScope {
316     CodeGenFunction *CGF;
317   public:
318     SanitizerScope(CodeGenFunction *CGF);
319     ~SanitizerScope();
320   };
321 
322   /// In C++, whether we are code generating a thunk.  This controls whether we
323   /// should emit cleanups.
324   bool CurFuncIsThunk;
325 
326   /// In ARC, whether we should autorelease the return value.
327   bool AutoreleaseResult;
328 
329   /// Whether we processed a Microsoft-style asm block during CodeGen. These can
330   /// potentially set the return value.
331   bool SawAsmBlock;
332 
333   const FunctionDecl *CurSEHParent = nullptr;
334 
335   /// True if the current function is an outlined SEH helper. This can be a
336   /// finally block or filter expression.
337   bool IsOutlinedSEHHelper;
338 
339   const CodeGen::CGBlockInfo *BlockInfo;
340   llvm::Value *BlockPointer;
341 
342   llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
343   FieldDecl *LambdaThisCaptureField;
344 
345   /// \brief A mapping from NRVO variables to the flags used to indicate
346   /// when the NRVO has been applied to this variable.
347   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
348 
349   EHScopeStack EHStack;
350   llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
351   llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack;
352 
353   llvm::Instruction *CurrentFuncletPad = nullptr;
354 
355   class CallLifetimeEnd final : public EHScopeStack::Cleanup {
356     llvm::Value *Addr;
357     llvm::Value *Size;
358 
359   public:
360     CallLifetimeEnd(Address addr, llvm::Value *size)
361         : Addr(addr.getPointer()), Size(size) {}
362 
363     void Emit(CodeGenFunction &CGF, Flags flags) override {
364       CGF.EmitLifetimeEnd(Size, Addr);
365     }
366   };
367 
368   /// Header for data within LifetimeExtendedCleanupStack.
369   struct LifetimeExtendedCleanupHeader {
370     /// The size of the following cleanup object.
371     unsigned Size;
372     /// The kind of cleanup to push: a value from the CleanupKind enumeration.
373     CleanupKind Kind;
374 
375     size_t getSize() const { return Size; }
376     CleanupKind getKind() const { return Kind; }
377   };
378 
379   /// i32s containing the indexes of the cleanup destinations.
380   llvm::AllocaInst *NormalCleanupDest;
381 
382   unsigned NextCleanupDestIndex;
383 
384   /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
385   CGBlockInfo *FirstBlockInfo;
386 
387   /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
388   llvm::BasicBlock *EHResumeBlock;
389 
390   /// The exception slot.  All landing pads write the current exception pointer
391   /// into this alloca.
392   llvm::Value *ExceptionSlot;
393 
394   /// The selector slot.  Under the MandatoryCleanup model, all landing pads
395   /// write the current selector value into this alloca.
396   llvm::AllocaInst *EHSelectorSlot;
397 
398   /// A stack of exception code slots. Entering an __except block pushes a slot
399   /// on the stack and leaving pops one. The __exception_code() intrinsic loads
400   /// a value from the top of the stack.
401   SmallVector<Address, 1> SEHCodeSlotStack;
402 
403   /// Value returned by __exception_info intrinsic.
404   llvm::Value *SEHInfo = nullptr;
405 
406   /// Emits a landing pad for the current EH stack.
407   llvm::BasicBlock *EmitLandingPad();
408 
409   llvm::BasicBlock *getInvokeDestImpl();
410 
411   template <class T>
412   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
413     return DominatingValue<T>::save(*this, value);
414   }
415 
416 public:
417   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
418   /// rethrows.
419   SmallVector<llvm::Value*, 8> ObjCEHValueStack;
420 
421   /// A class controlling the emission of a finally block.
422   class FinallyInfo {
423     /// Where the catchall's edge through the cleanup should go.
424     JumpDest RethrowDest;
425 
426     /// A function to call to enter the catch.
427     llvm::Constant *BeginCatchFn;
428 
429     /// An i1 variable indicating whether or not the @finally is
430     /// running for an exception.
431     llvm::AllocaInst *ForEHVar;
432 
433     /// An i8* variable into which the exception pointer to rethrow
434     /// has been saved.
435     llvm::AllocaInst *SavedExnVar;
436 
437   public:
438     void enter(CodeGenFunction &CGF, const Stmt *Finally,
439                llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
440                llvm::Constant *rethrowFn);
441     void exit(CodeGenFunction &CGF);
442   };
443 
444   /// Returns true inside SEH __try blocks.
445   bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }
446 
447   /// Returns true while emitting a cleanuppad.
448   bool isCleanupPadScope() const {
449     return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad);
450   }
451 
452   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
453   /// current full-expression.  Safe against the possibility that
454   /// we're currently inside a conditionally-evaluated expression.
455   template <class T, class... As>
456   void pushFullExprCleanup(CleanupKind kind, As... A) {
457     // If we're not in a conditional branch, or if none of the
458     // arguments requires saving, then use the unconditional cleanup.
459     if (!isInConditionalBranch())
460       return EHStack.pushCleanup<T>(kind, A...);
461 
462     // Stash values in a tuple so we can guarantee the order of saves.
463     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
464     SavedTuple Saved{saveValueInCond(A)...};
465 
466     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
467     EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
468     initFullExprCleanup();
469   }
470 
471   /// \brief Queue a cleanup to be pushed after finishing the current
472   /// full-expression.
473   template <class T, class... As>
474   void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
475     assert(!isInConditionalBranch() && "can't defer conditional cleanup");
476 
477     LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind };
478 
479     size_t OldSize = LifetimeExtendedCleanupStack.size();
480     LifetimeExtendedCleanupStack.resize(
481         LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size);
482 
483     static_assert(sizeof(Header) % alignof(T) == 0,
484                   "Cleanup will be allocated on misaligned address");
485     char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
486     new (Buffer) LifetimeExtendedCleanupHeader(Header);
487     new (Buffer + sizeof(Header)) T(A...);
488   }
489 
490   /// Set up the last cleaup that was pushed as a conditional
491   /// full-expression cleanup.
492   void initFullExprCleanup();
493 
494   /// PushDestructorCleanup - Push a cleanup to call the
495   /// complete-object destructor of an object of the given type at the
496   /// given address.  Does nothing if T is not a C++ class type with a
497   /// non-trivial destructor.
498   void PushDestructorCleanup(QualType T, Address Addr);
499 
500   /// PushDestructorCleanup - Push a cleanup to call the
501   /// complete-object variant of the given destructor on the object at
502   /// the given address.
503   void PushDestructorCleanup(const CXXDestructorDecl *Dtor, Address Addr);
504 
505   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
506   /// process all branch fixups.
507   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
508 
509   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
510   /// The block cannot be reactivated.  Pops it if it's the top of the
511   /// stack.
512   ///
513   /// \param DominatingIP - An instruction which is known to
514   ///   dominate the current IP (if set) and which lies along
515   ///   all paths of execution between the current IP and the
516   ///   the point at which the cleanup comes into scope.
517   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
518                               llvm::Instruction *DominatingIP);
519 
520   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
521   /// Cannot be used to resurrect a deactivated cleanup.
522   ///
523   /// \param DominatingIP - An instruction which is known to
524   ///   dominate the current IP (if set) and which lies along
525   ///   all paths of execution between the current IP and the
526   ///   the point at which the cleanup comes into scope.
527   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
528                             llvm::Instruction *DominatingIP);
529 
530   /// \brief Enters a new scope for capturing cleanups, all of which
531   /// will be executed once the scope is exited.
532   class RunCleanupsScope {
533     EHScopeStack::stable_iterator CleanupStackDepth;
534     size_t LifetimeExtendedCleanupStackSize;
535     bool OldDidCallStackSave;
536   protected:
537     bool PerformCleanup;
538   private:
539 
540     RunCleanupsScope(const RunCleanupsScope &) = delete;
541     void operator=(const RunCleanupsScope &) = delete;
542 
543   protected:
544     CodeGenFunction& CGF;
545 
546   public:
547     /// \brief Enter a new cleanup scope.
548     explicit RunCleanupsScope(CodeGenFunction &CGF)
549       : PerformCleanup(true), CGF(CGF)
550     {
551       CleanupStackDepth = CGF.EHStack.stable_begin();
552       LifetimeExtendedCleanupStackSize =
553           CGF.LifetimeExtendedCleanupStack.size();
554       OldDidCallStackSave = CGF.DidCallStackSave;
555       CGF.DidCallStackSave = false;
556     }
557 
558     /// \brief Exit this cleanup scope, emitting any accumulated
559     /// cleanups.
560     ~RunCleanupsScope() {
561       if (PerformCleanup) {
562         CGF.DidCallStackSave = OldDidCallStackSave;
563         CGF.PopCleanupBlocks(CleanupStackDepth,
564                              LifetimeExtendedCleanupStackSize);
565       }
566     }
567 
568     /// \brief Determine whether this scope requires any cleanups.
569     bool requiresCleanups() const {
570       return CGF.EHStack.stable_begin() != CleanupStackDepth;
571     }
572 
573     /// \brief Force the emission of cleanups now, instead of waiting
574     /// until this object is destroyed.
575     void ForceCleanup() {
576       assert(PerformCleanup && "Already forced cleanup");
577       CGF.DidCallStackSave = OldDidCallStackSave;
578       CGF.PopCleanupBlocks(CleanupStackDepth,
579                            LifetimeExtendedCleanupStackSize);
580       PerformCleanup = false;
581     }
582   };
583 
584   class LexicalScope : public RunCleanupsScope {
585     SourceRange Range;
586     SmallVector<const LabelDecl*, 4> Labels;
587     LexicalScope *ParentScope;
588 
589     LexicalScope(const LexicalScope &) = delete;
590     void operator=(const LexicalScope &) = delete;
591 
592   public:
593     /// \brief Enter a new cleanup scope.
594     explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
595       : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
596       CGF.CurLexicalScope = this;
597       if (CGDebugInfo *DI = CGF.getDebugInfo())
598         DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
599     }
600 
601     void addLabel(const LabelDecl *label) {
602       assert(PerformCleanup && "adding label to dead scope?");
603       Labels.push_back(label);
604     }
605 
606     /// \brief Exit this cleanup scope, emitting any accumulated
607     /// cleanups.
608     ~LexicalScope() {
609       if (CGDebugInfo *DI = CGF.getDebugInfo())
610         DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
611 
612       // If we should perform a cleanup, force them now.  Note that
613       // this ends the cleanup scope before rescoping any labels.
614       if (PerformCleanup) {
615         ApplyDebugLocation DL(CGF, Range.getEnd());
616         ForceCleanup();
617       }
618     }
619 
620     /// \brief Force the emission of cleanups now, instead of waiting
621     /// until this object is destroyed.
622     void ForceCleanup() {
623       CGF.CurLexicalScope = ParentScope;
624       RunCleanupsScope::ForceCleanup();
625 
626       if (!Labels.empty())
627         rescopeLabels();
628     }
629 
630     bool hasLabels() const {
631       return !Labels.empty();
632     }
633 
634     void rescopeLabels();
635   };
636 
637   typedef llvm::DenseMap<const Decl *, Address> DeclMapTy;
638 
639   /// \brief The scope used to remap some variables as private in the OpenMP
640   /// loop body (or other captured region emitted without outlining), and to
641   /// restore old vars back on exit.
642   class OMPPrivateScope : public RunCleanupsScope {
643     DeclMapTy SavedLocals;
644     DeclMapTy SavedPrivates;
645 
646   private:
647     OMPPrivateScope(const OMPPrivateScope &) = delete;
648     void operator=(const OMPPrivateScope &) = delete;
649 
650   public:
651     /// \brief Enter a new OpenMP private scope.
652     explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}
653 
654     /// \brief Registers \a LocalVD variable as a private and apply \a
655     /// PrivateGen function for it to generate corresponding private variable.
656     /// \a PrivateGen returns an address of the generated private variable.
657     /// \return true if the variable is registered as private, false if it has
658     /// been privatized already.
659     bool
660     addPrivate(const VarDecl *LocalVD,
661                llvm::function_ref<Address()> PrivateGen) {
662       assert(PerformCleanup && "adding private to dead scope");
663 
664       // Only save it once.
665       if (SavedLocals.count(LocalVD)) return false;
666 
667       // Copy the existing local entry to SavedLocals.
668       auto it = CGF.LocalDeclMap.find(LocalVD);
669       if (it != CGF.LocalDeclMap.end()) {
670         SavedLocals.insert({LocalVD, it->second});
671       } else {
672         SavedLocals.insert({LocalVD, Address::invalid()});
673       }
674 
675       // Generate the private entry.
676       Address Addr = PrivateGen();
677       QualType VarTy = LocalVD->getType();
678       if (VarTy->isReferenceType()) {
679         Address Temp = CGF.CreateMemTemp(VarTy);
680         CGF.Builder.CreateStore(Addr.getPointer(), Temp);
681         Addr = Temp;
682       }
683       SavedPrivates.insert({LocalVD, Addr});
684 
685       return true;
686     }
687 
688     /// \brief Privatizes local variables previously registered as private.
689     /// Registration is separate from the actual privatization to allow
690     /// initializers use values of the original variables, not the private one.
691     /// This is important, for example, if the private variable is a class
692     /// variable initialized by a constructor that references other private
693     /// variables. But at initialization original variables must be used, not
694     /// private copies.
695     /// \return true if at least one variable was privatized, false otherwise.
696     bool Privatize() {
697       copyInto(SavedPrivates, CGF.LocalDeclMap);
698       SavedPrivates.clear();
699       return !SavedLocals.empty();
700     }
701 
702     void ForceCleanup() {
703       RunCleanupsScope::ForceCleanup();
704       copyInto(SavedLocals, CGF.LocalDeclMap);
705       SavedLocals.clear();
706     }
707 
708     /// \brief Exit scope - all the mapped variables are restored.
709     ~OMPPrivateScope() {
710       if (PerformCleanup)
711         ForceCleanup();
712     }
713 
714     /// Checks if the global variable is captured in current function.
715     bool isGlobalVarCaptured(const VarDecl *VD) const {
716       return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0;
717     }
718 
719   private:
720     /// Copy all the entries in the source map over the corresponding
721     /// entries in the destination, which must exist.
722     static void copyInto(const DeclMapTy &src, DeclMapTy &dest) {
723       for (auto &pair : src) {
724         if (!pair.second.isValid()) {
725           dest.erase(pair.first);
726           continue;
727         }
728 
729         auto it = dest.find(pair.first);
730         if (it != dest.end()) {
731           it->second = pair.second;
732         } else {
733           dest.insert(pair);
734         }
735       }
736     }
737   };
738 
739   /// \brief Takes the old cleanup stack size and emits the cleanup blocks
740   /// that have been added.
741   void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize);
742 
743   /// \brief Takes the old cleanup stack size and emits the cleanup blocks
744   /// that have been added, then adds all lifetime-extended cleanups from
745   /// the given position to the stack.
746   void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
747                         size_t OldLifetimeExtendedStackSize);
748 
749   void ResolveBranchFixups(llvm::BasicBlock *Target);
750 
751   /// The given basic block lies in the current EH scope, but may be a
752   /// target of a potentially scope-crossing jump; get a stable handle
753   /// to which we can perform this jump later.
754   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
755     return JumpDest(Target,
756                     EHStack.getInnermostNormalCleanup(),
757                     NextCleanupDestIndex++);
758   }
759 
760   /// The given basic block lies in the current EH scope, but may be a
761   /// target of a potentially scope-crossing jump; get a stable handle
762   /// to which we can perform this jump later.
763   JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
764     return getJumpDestInCurrentScope(createBasicBlock(Name));
765   }
766 
767   /// EmitBranchThroughCleanup - Emit a branch from the current insert
768   /// block through the normal cleanup handling code (if any) and then
769   /// on to \arg Dest.
770   void EmitBranchThroughCleanup(JumpDest Dest);
771 
772   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
773   /// specified destination obviously has no cleanups to run.  'false' is always
774   /// a conservatively correct answer for this method.
775   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
776 
777   /// popCatchScope - Pops the catch scope at the top of the EHScope
778   /// stack, emitting any required code (other than the catch handlers
779   /// themselves).
780   void popCatchScope();
781 
782   llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
783   llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
784   llvm::BasicBlock *getMSVCDispatchBlock(EHScopeStack::stable_iterator scope);
785 
786   /// An object to manage conditionally-evaluated expressions.
787   class ConditionalEvaluation {
788     llvm::BasicBlock *StartBB;
789 
790   public:
791     ConditionalEvaluation(CodeGenFunction &CGF)
792       : StartBB(CGF.Builder.GetInsertBlock()) {}
793 
794     void begin(CodeGenFunction &CGF) {
795       assert(CGF.OutermostConditional != this);
796       if (!CGF.OutermostConditional)
797         CGF.OutermostConditional = this;
798     }
799 
800     void end(CodeGenFunction &CGF) {
801       assert(CGF.OutermostConditional != nullptr);
802       if (CGF.OutermostConditional == this)
803         CGF.OutermostConditional = nullptr;
804     }
805 
806     /// Returns a block which will be executed prior to each
807     /// evaluation of the conditional code.
808     llvm::BasicBlock *getStartingBlock() const {
809       return StartBB;
810     }
811   };
812 
813   /// isInConditionalBranch - Return true if we're currently emitting
814   /// one branch or the other of a conditional expression.
815   bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
816 
817   void setBeforeOutermostConditional(llvm::Value *value, Address addr) {
818     assert(isInConditionalBranch());
819     llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
820     auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back());
821     store->setAlignment(addr.getAlignment().getQuantity());
822   }
823 
824   /// An RAII object to record that we're evaluating a statement
825   /// expression.
826   class StmtExprEvaluation {
827     CodeGenFunction &CGF;
828 
829     /// We have to save the outermost conditional: cleanups in a
830     /// statement expression aren't conditional just because the
831     /// StmtExpr is.
832     ConditionalEvaluation *SavedOutermostConditional;
833 
834   public:
835     StmtExprEvaluation(CodeGenFunction &CGF)
836       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
837       CGF.OutermostConditional = nullptr;
838     }
839 
840     ~StmtExprEvaluation() {
841       CGF.OutermostConditional = SavedOutermostConditional;
842       CGF.EnsureInsertPoint();
843     }
844   };
845 
846   /// An object which temporarily prevents a value from being
847   /// destroyed by aggressive peephole optimizations that assume that
848   /// all uses of a value have been realized in the IR.
849   class PeepholeProtection {
850     llvm::Instruction *Inst;
851     friend class CodeGenFunction;
852 
853   public:
854     PeepholeProtection() : Inst(nullptr) {}
855   };
856 
857   /// A non-RAII class containing all the information about a bound
858   /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
859   /// this which makes individual mappings very simple; using this
860   /// class directly is useful when you have a variable number of
861   /// opaque values or don't want the RAII functionality for some
862   /// reason.
863   class OpaqueValueMappingData {
864     const OpaqueValueExpr *OpaqueValue;
865     bool BoundLValue;
866     CodeGenFunction::PeepholeProtection Protection;
867 
868     OpaqueValueMappingData(const OpaqueValueExpr *ov,
869                            bool boundLValue)
870       : OpaqueValue(ov), BoundLValue(boundLValue) {}
871   public:
872     OpaqueValueMappingData() : OpaqueValue(nullptr) {}
873 
874     static bool shouldBindAsLValue(const Expr *expr) {
875       // gl-values should be bound as l-values for obvious reasons.
876       // Records should be bound as l-values because IR generation
877       // always keeps them in memory.  Expressions of function type
878       // act exactly like l-values but are formally required to be
879       // r-values in C.
880       return expr->isGLValue() ||
881              expr->getType()->isFunctionType() ||
882              hasAggregateEvaluationKind(expr->getType());
883     }
884 
885     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
886                                        const OpaqueValueExpr *ov,
887                                        const Expr *e) {
888       if (shouldBindAsLValue(ov))
889         return bind(CGF, ov, CGF.EmitLValue(e));
890       return bind(CGF, ov, CGF.EmitAnyExpr(e));
891     }
892 
893     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
894                                        const OpaqueValueExpr *ov,
895                                        const LValue &lv) {
896       assert(shouldBindAsLValue(ov));
897       CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
898       return OpaqueValueMappingData(ov, true);
899     }
900 
901     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
902                                        const OpaqueValueExpr *ov,
903                                        const RValue &rv) {
904       assert(!shouldBindAsLValue(ov));
905       CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
906 
907       OpaqueValueMappingData data(ov, false);
908 
909       // Work around an extremely aggressive peephole optimization in
910       // EmitScalarConversion which assumes that all other uses of a
911       // value are extant.
912       data.Protection = CGF.protectFromPeepholes(rv);
913 
914       return data;
915     }
916 
917     bool isValid() const { return OpaqueValue != nullptr; }
918     void clear() { OpaqueValue = nullptr; }
919 
920     void unbind(CodeGenFunction &CGF) {
921       assert(OpaqueValue && "no data to unbind!");
922 
923       if (BoundLValue) {
924         CGF.OpaqueLValues.erase(OpaqueValue);
925       } else {
926         CGF.OpaqueRValues.erase(OpaqueValue);
927         CGF.unprotectFromPeepholes(Protection);
928       }
929     }
930   };
931 
932   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
933   class OpaqueValueMapping {
934     CodeGenFunction &CGF;
935     OpaqueValueMappingData Data;
936 
937   public:
938     static bool shouldBindAsLValue(const Expr *expr) {
939       return OpaqueValueMappingData::shouldBindAsLValue(expr);
940     }
941 
942     /// Build the opaque value mapping for the given conditional
943     /// operator if it's the GNU ?: extension.  This is a common
944     /// enough pattern that the convenience operator is really
945     /// helpful.
946     ///
947     OpaqueValueMapping(CodeGenFunction &CGF,
948                        const AbstractConditionalOperator *op) : CGF(CGF) {
949       if (isa<ConditionalOperator>(op))
950         // Leave Data empty.
951         return;
952 
953       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
954       Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
955                                           e->getCommon());
956     }
957 
958     /// Build the opaque value mapping for an OpaqueValueExpr whose source
959     /// expression is set to the expression the OVE represents.
960     OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV)
961         : CGF(CGF) {
962       if (OV) {
963         assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used "
964                                       "for OVE with no source expression");
965         Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr());
966       }
967     }
968 
969     OpaqueValueMapping(CodeGenFunction &CGF,
970                        const OpaqueValueExpr *opaqueValue,
971                        LValue lvalue)
972       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
973     }
974 
975     OpaqueValueMapping(CodeGenFunction &CGF,
976                        const OpaqueValueExpr *opaqueValue,
977                        RValue rvalue)
978       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
979     }
980 
981     void pop() {
982       Data.unbind(CGF);
983       Data.clear();
984     }
985 
986     ~OpaqueValueMapping() {
987       if (Data.isValid()) Data.unbind(CGF);
988     }
989   };
990 
991 private:
992   CGDebugInfo *DebugInfo;
993   bool DisableDebugInfo;
994 
995   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
996   /// calling llvm.stacksave for multiple VLAs in the same scope.
997   bool DidCallStackSave;
998 
999   /// IndirectBranch - The first time an indirect goto is seen we create a block
1000   /// with an indirect branch.  Every time we see the address of a label taken,
1001   /// we add the label to the indirect goto.  Every subsequent indirect goto is
1002   /// codegen'd as a jump to the IndirectBranch's basic block.
1003   llvm::IndirectBrInst *IndirectBranch;
1004 
1005   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1006   /// decls.
1007   DeclMapTy LocalDeclMap;
1008 
1009   /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this
1010   /// will contain a mapping from said ParmVarDecl to its implicit "object_size"
1011   /// parameter.
1012   llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2>
1013       SizeArguments;
1014 
1015   /// Track escaped local variables with auto storage. Used during SEH
1016   /// outlining to produce a call to llvm.localescape.
1017   llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;
1018 
1019   /// LabelMap - This keeps track of the LLVM basic block for each C label.
1020   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1021 
1022   // BreakContinueStack - This keeps track of where break and continue
1023   // statements should jump to.
1024   struct BreakContinue {
1025     BreakContinue(JumpDest Break, JumpDest Continue)
1026       : BreakBlock(Break), ContinueBlock(Continue) {}
1027 
1028     JumpDest BreakBlock;
1029     JumpDest ContinueBlock;
1030   };
1031   SmallVector<BreakContinue, 8> BreakContinueStack;
1032 
1033   /// Handles cancellation exit points in OpenMP-related constructs.
1034   class OpenMPCancelExitStack {
1035     /// Tracks cancellation exit point and join point for cancel-related exit
1036     /// and normal exit.
1037     struct CancelExit {
1038       CancelExit() = default;
1039       CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock,
1040                  JumpDest ContBlock)
1041           : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {}
1042       OpenMPDirectiveKind Kind = OMPD_unknown;
1043       /// true if the exit block has been emitted already by the special
1044       /// emitExit() call, false if the default codegen is used.
1045       bool HasBeenEmitted = false;
1046       JumpDest ExitBlock;
1047       JumpDest ContBlock;
1048     };
1049 
1050     SmallVector<CancelExit, 8> Stack;
1051 
1052   public:
1053     OpenMPCancelExitStack() : Stack(1) {}
1054     ~OpenMPCancelExitStack() = default;
1055     /// Fetches the exit block for the current OpenMP construct.
1056     JumpDest getExitBlock() const { return Stack.back().ExitBlock; }
1057     /// Emits exit block with special codegen procedure specific for the related
1058     /// OpenMP construct + emits code for normal construct cleanup.
1059     void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
1060                   const llvm::function_ref<void(CodeGenFunction &)> &CodeGen) {
1061       if (Stack.back().Kind == Kind && getExitBlock().isValid()) {
1062         assert(CGF.getOMPCancelDestination(Kind).isValid());
1063         assert(CGF.HaveInsertPoint());
1064         assert(!Stack.back().HasBeenEmitted);
1065         auto IP = CGF.Builder.saveAndClearIP();
1066         CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1067         CodeGen(CGF);
1068         CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1069         CGF.Builder.restoreIP(IP);
1070         Stack.back().HasBeenEmitted = true;
1071       }
1072       CodeGen(CGF);
1073     }
1074     /// Enter the cancel supporting \a Kind construct.
1075     /// \param Kind OpenMP directive that supports cancel constructs.
1076     /// \param HasCancel true, if the construct has inner cancel directive,
1077     /// false otherwise.
1078     void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) {
1079       Stack.push_back({Kind,
1080                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit")
1081                                  : JumpDest(),
1082                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont")
1083                                  : JumpDest()});
1084     }
1085     /// Emits default exit point for the cancel construct (if the special one
1086     /// has not be used) + join point for cancel/normal exits.
1087     void exit(CodeGenFunction &CGF) {
1088       if (getExitBlock().isValid()) {
1089         assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid());
1090         bool HaveIP = CGF.HaveInsertPoint();
1091         if (!Stack.back().HasBeenEmitted) {
1092           if (HaveIP)
1093             CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1094           CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1095           CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1096         }
1097         CGF.EmitBlock(Stack.back().ContBlock.getBlock());
1098         if (!HaveIP) {
1099           CGF.Builder.CreateUnreachable();
1100           CGF.Builder.ClearInsertionPoint();
1101         }
1102       }
1103       Stack.pop_back();
1104     }
1105   };
1106   OpenMPCancelExitStack OMPCancelStack;
1107 
1108   /// Controls insertion of cancellation exit blocks in worksharing constructs.
1109   class OMPCancelStackRAII {
1110     CodeGenFunction &CGF;
1111 
1112   public:
1113     OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
1114                        bool HasCancel)
1115         : CGF(CGF) {
1116       CGF.OMPCancelStack.enter(CGF, Kind, HasCancel);
1117     }
1118     ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); }
1119   };
1120 
1121   CodeGenPGO PGO;
1122 
1123   /// Calculate branch weights appropriate for PGO data
1124   llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount);
1125   llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights);
1126   llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond,
1127                                             uint64_t LoopCount);
1128 
1129 public:
1130   /// Increment the profiler's counter for the given statement.
1131   void incrementProfileCounter(const Stmt *S) {
1132     if (CGM.getCodeGenOpts().hasProfileClangInstr())
1133       PGO.emitCounterIncrement(Builder, S);
1134     PGO.setCurrentStmt(S);
1135   }
1136 
1137   /// Get the profiler's count for the given statement.
1138   uint64_t getProfileCount(const Stmt *S) {
1139     Optional<uint64_t> Count = PGO.getStmtCount(S);
1140     if (!Count.hasValue())
1141       return 0;
1142     return *Count;
1143   }
1144 
1145   /// Set the profiler's current count.
1146   void setCurrentProfileCount(uint64_t Count) {
1147     PGO.setCurrentRegionCount(Count);
1148   }
1149 
1150   /// Get the profiler's current count. This is generally the count for the most
1151   /// recently incremented counter.
1152   uint64_t getCurrentProfileCount() {
1153     return PGO.getCurrentRegionCount();
1154   }
1155 
1156 private:
1157 
1158   /// SwitchInsn - This is nearest current switch instruction. It is null if
1159   /// current context is not in a switch.
1160   llvm::SwitchInst *SwitchInsn;
1161   /// The branch weights of SwitchInsn when doing instrumentation based PGO.
1162   SmallVector<uint64_t, 16> *SwitchWeights;
1163 
1164   /// CaseRangeBlock - This block holds if condition check for last case
1165   /// statement range in current switch instruction.
1166   llvm::BasicBlock *CaseRangeBlock;
1167 
1168   /// OpaqueLValues - Keeps track of the current set of opaque value
1169   /// expressions.
1170   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1171   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1172 
1173   // VLASizeMap - This keeps track of the associated size for each VLA type.
1174   // We track this by the size expression rather than the type itself because
1175   // in certain situations, like a const qualifier applied to an VLA typedef,
1176   // multiple VLA types can share the same size expression.
1177   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1178   // enter/leave scopes.
1179   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1180 
1181   /// A block containing a single 'unreachable' instruction.  Created
1182   /// lazily by getUnreachableBlock().
1183   llvm::BasicBlock *UnreachableBlock;
1184 
1185   /// Counts of the number return expressions in the function.
1186   unsigned NumReturnExprs;
1187 
1188   /// Count the number of simple (constant) return expressions in the function.
1189   unsigned NumSimpleReturnExprs;
1190 
1191   /// The last regular (non-return) debug location (breakpoint) in the function.
1192   SourceLocation LastStopPoint;
1193 
1194 public:
1195   /// A scope within which we are constructing the fields of an object which
1196   /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
1197   /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
1198   class FieldConstructionScope {
1199   public:
1200     FieldConstructionScope(CodeGenFunction &CGF, Address This)
1201         : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
1202       CGF.CXXDefaultInitExprThis = This;
1203     }
1204     ~FieldConstructionScope() {
1205       CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
1206     }
1207 
1208   private:
1209     CodeGenFunction &CGF;
1210     Address OldCXXDefaultInitExprThis;
1211   };
1212 
1213   /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
1214   /// is overridden to be the object under construction.
1215   class CXXDefaultInitExprScope {
1216   public:
1217     CXXDefaultInitExprScope(CodeGenFunction &CGF)
1218       : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue),
1219         OldCXXThisAlignment(CGF.CXXThisAlignment) {
1220       CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer();
1221       CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment();
1222     }
1223     ~CXXDefaultInitExprScope() {
1224       CGF.CXXThisValue = OldCXXThisValue;
1225       CGF.CXXThisAlignment = OldCXXThisAlignment;
1226     }
1227 
1228   public:
1229     CodeGenFunction &CGF;
1230     llvm::Value *OldCXXThisValue;
1231     CharUnits OldCXXThisAlignment;
1232   };
1233 
1234   /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the
1235   /// current loop index is overridden.
1236   class ArrayInitLoopExprScope {
1237   public:
1238     ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index)
1239       : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) {
1240       CGF.ArrayInitIndex = Index;
1241     }
1242     ~ArrayInitLoopExprScope() {
1243       CGF.ArrayInitIndex = OldArrayInitIndex;
1244     }
1245 
1246   private:
1247     CodeGenFunction &CGF;
1248     llvm::Value *OldArrayInitIndex;
1249   };
1250 
1251   class InlinedInheritingConstructorScope {
1252   public:
1253     InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD)
1254         : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl),
1255           OldCurCodeDecl(CGF.CurCodeDecl),
1256           OldCXXABIThisDecl(CGF.CXXABIThisDecl),
1257           OldCXXABIThisValue(CGF.CXXABIThisValue),
1258           OldCXXThisValue(CGF.CXXThisValue),
1259           OldCXXABIThisAlignment(CGF.CXXABIThisAlignment),
1260           OldCXXThisAlignment(CGF.CXXThisAlignment),
1261           OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy),
1262           OldCXXInheritedCtorInitExprArgs(
1263               std::move(CGF.CXXInheritedCtorInitExprArgs)) {
1264       CGF.CurGD = GD;
1265       CGF.CurFuncDecl = CGF.CurCodeDecl =
1266           cast<CXXConstructorDecl>(GD.getDecl());
1267       CGF.CXXABIThisDecl = nullptr;
1268       CGF.CXXABIThisValue = nullptr;
1269       CGF.CXXThisValue = nullptr;
1270       CGF.CXXABIThisAlignment = CharUnits();
1271       CGF.CXXThisAlignment = CharUnits();
1272       CGF.ReturnValue = Address::invalid();
1273       CGF.FnRetTy = QualType();
1274       CGF.CXXInheritedCtorInitExprArgs.clear();
1275     }
1276     ~InlinedInheritingConstructorScope() {
1277       CGF.CurGD = OldCurGD;
1278       CGF.CurFuncDecl = OldCurFuncDecl;
1279       CGF.CurCodeDecl = OldCurCodeDecl;
1280       CGF.CXXABIThisDecl = OldCXXABIThisDecl;
1281       CGF.CXXABIThisValue = OldCXXABIThisValue;
1282       CGF.CXXThisValue = OldCXXThisValue;
1283       CGF.CXXABIThisAlignment = OldCXXABIThisAlignment;
1284       CGF.CXXThisAlignment = OldCXXThisAlignment;
1285       CGF.ReturnValue = OldReturnValue;
1286       CGF.FnRetTy = OldFnRetTy;
1287       CGF.CXXInheritedCtorInitExprArgs =
1288           std::move(OldCXXInheritedCtorInitExprArgs);
1289     }
1290 
1291   private:
1292     CodeGenFunction &CGF;
1293     GlobalDecl OldCurGD;
1294     const Decl *OldCurFuncDecl;
1295     const Decl *OldCurCodeDecl;
1296     ImplicitParamDecl *OldCXXABIThisDecl;
1297     llvm::Value *OldCXXABIThisValue;
1298     llvm::Value *OldCXXThisValue;
1299     CharUnits OldCXXABIThisAlignment;
1300     CharUnits OldCXXThisAlignment;
1301     Address OldReturnValue;
1302     QualType OldFnRetTy;
1303     CallArgList OldCXXInheritedCtorInitExprArgs;
1304   };
1305 
1306 private:
1307   /// CXXThisDecl - When generating code for a C++ member function,
1308   /// this will hold the implicit 'this' declaration.
1309   ImplicitParamDecl *CXXABIThisDecl;
1310   llvm::Value *CXXABIThisValue;
1311   llvm::Value *CXXThisValue;
1312   CharUnits CXXABIThisAlignment;
1313   CharUnits CXXThisAlignment;
1314 
1315   /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
1316   /// this expression.
1317   Address CXXDefaultInitExprThis = Address::invalid();
1318 
1319   /// The current array initialization index when evaluating an
1320   /// ArrayInitIndexExpr within an ArrayInitLoopExpr.
1321   llvm::Value *ArrayInitIndex = nullptr;
1322 
1323   /// The values of function arguments to use when evaluating
1324   /// CXXInheritedCtorInitExprs within this context.
1325   CallArgList CXXInheritedCtorInitExprArgs;
1326 
1327   /// CXXStructorImplicitParamDecl - When generating code for a constructor or
1328   /// destructor, this will hold the implicit argument (e.g. VTT).
1329   ImplicitParamDecl *CXXStructorImplicitParamDecl;
1330   llvm::Value *CXXStructorImplicitParamValue;
1331 
1332   /// OutermostConditional - Points to the outermost active
1333   /// conditional control.  This is used so that we know if a
1334   /// temporary should be destroyed conditionally.
1335   ConditionalEvaluation *OutermostConditional;
1336 
1337   /// The current lexical scope.
1338   LexicalScope *CurLexicalScope;
1339 
1340   /// The current source location that should be used for exception
1341   /// handling code.
1342   SourceLocation CurEHLocation;
1343 
1344   /// BlockByrefInfos - For each __block variable, contains
1345   /// information about the layout of the variable.
1346   llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos;
1347 
1348   llvm::BasicBlock *TerminateLandingPad;
1349   llvm::BasicBlock *TerminateHandler;
1350   llvm::BasicBlock *TrapBB;
1351 
1352   /// True if we need emit the life-time markers.
1353   const bool ShouldEmitLifetimeMarkers;
1354 
1355   /// Add a kernel metadata node to the named metadata node 'opencl.kernels'.
1356   /// In the kernel metadata node, reference the kernel function and metadata
1357   /// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2):
1358   /// - A node for the vec_type_hint(<type>) qualifier contains string
1359   ///   "vec_type_hint", an undefined value of the <type> data type,
1360   ///   and a Boolean that is true if the <type> is integer and signed.
1361   /// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string
1362   ///   "work_group_size_hint", and three 32-bit integers X, Y and Z.
1363   /// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string
1364   ///   "reqd_work_group_size", and three 32-bit integers X, Y and Z.
1365   void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
1366                                 llvm::Function *Fn);
1367 
1368 public:
1369   CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1370   ~CodeGenFunction();
1371 
1372   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1373   ASTContext &getContext() const { return CGM.getContext(); }
1374   CGDebugInfo *getDebugInfo() {
1375     if (DisableDebugInfo)
1376       return nullptr;
1377     return DebugInfo;
1378   }
1379   void disableDebugInfo() { DisableDebugInfo = true; }
1380   void enableDebugInfo() { DisableDebugInfo = false; }
1381 
1382   bool shouldUseFusedARCCalls() {
1383     return CGM.getCodeGenOpts().OptimizationLevel == 0;
1384   }
1385 
1386   const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1387 
1388   /// Returns a pointer to the function's exception object and selector slot,
1389   /// which is assigned in every landing pad.
1390   Address getExceptionSlot();
1391   Address getEHSelectorSlot();
1392 
1393   /// Returns the contents of the function's exception object and selector
1394   /// slots.
1395   llvm::Value *getExceptionFromSlot();
1396   llvm::Value *getSelectorFromSlot();
1397 
1398   Address getNormalCleanupDestSlot();
1399 
1400   llvm::BasicBlock *getUnreachableBlock() {
1401     if (!UnreachableBlock) {
1402       UnreachableBlock = createBasicBlock("unreachable");
1403       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1404     }
1405     return UnreachableBlock;
1406   }
1407 
1408   llvm::BasicBlock *getInvokeDest() {
1409     if (!EHStack.requiresLandingPad()) return nullptr;
1410     return getInvokeDestImpl();
1411   }
1412 
1413   bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; }
1414 
1415   const TargetInfo &getTarget() const { return Target; }
1416   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1417 
1418   //===--------------------------------------------------------------------===//
1419   //                                  Cleanups
1420   //===--------------------------------------------------------------------===//
1421 
1422   typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty);
1423 
1424   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1425                                         Address arrayEndPointer,
1426                                         QualType elementType,
1427                                         CharUnits elementAlignment,
1428                                         Destroyer *destroyer);
1429   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1430                                       llvm::Value *arrayEnd,
1431                                       QualType elementType,
1432                                       CharUnits elementAlignment,
1433                                       Destroyer *destroyer);
1434 
1435   void pushDestroy(QualType::DestructionKind dtorKind,
1436                    Address addr, QualType type);
1437   void pushEHDestroy(QualType::DestructionKind dtorKind,
1438                      Address addr, QualType type);
1439   void pushDestroy(CleanupKind kind, Address addr, QualType type,
1440                    Destroyer *destroyer, bool useEHCleanupForArray);
1441   void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr,
1442                                    QualType type, Destroyer *destroyer,
1443                                    bool useEHCleanupForArray);
1444   void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1445                                    llvm::Value *CompletePtr,
1446                                    QualType ElementType);
1447   void pushStackRestore(CleanupKind kind, Address SPMem);
1448   void emitDestroy(Address addr, QualType type, Destroyer *destroyer,
1449                    bool useEHCleanupForArray);
1450   llvm::Function *generateDestroyHelper(Address addr, QualType type,
1451                                         Destroyer *destroyer,
1452                                         bool useEHCleanupForArray,
1453                                         const VarDecl *VD);
1454   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1455                         QualType elementType, CharUnits elementAlign,
1456                         Destroyer *destroyer,
1457                         bool checkZeroLength, bool useEHCleanup);
1458 
1459   Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1460 
1461   /// Determines whether an EH cleanup is required to destroy a type
1462   /// with the given destruction kind.
1463   bool needsEHCleanup(QualType::DestructionKind kind) {
1464     switch (kind) {
1465     case QualType::DK_none:
1466       return false;
1467     case QualType::DK_cxx_destructor:
1468     case QualType::DK_objc_weak_lifetime:
1469       return getLangOpts().Exceptions;
1470     case QualType::DK_objc_strong_lifetime:
1471       return getLangOpts().Exceptions &&
1472              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1473     }
1474     llvm_unreachable("bad destruction kind");
1475   }
1476 
1477   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
1478     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1479   }
1480 
1481   //===--------------------------------------------------------------------===//
1482   //                                  Objective-C
1483   //===--------------------------------------------------------------------===//
1484 
1485   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1486 
1487   void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
1488 
1489   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1490   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1491                           const ObjCPropertyImplDecl *PID);
1492   void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1493                               const ObjCPropertyImplDecl *propImpl,
1494                               const ObjCMethodDecl *GetterMothodDecl,
1495                               llvm::Constant *AtomicHelperFn);
1496 
1497   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1498                                   ObjCMethodDecl *MD, bool ctor);
1499 
1500   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1501   /// for the given property.
1502   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1503                           const ObjCPropertyImplDecl *PID);
1504   void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1505                               const ObjCPropertyImplDecl *propImpl,
1506                               llvm::Constant *AtomicHelperFn);
1507 
1508   //===--------------------------------------------------------------------===//
1509   //                                  Block Bits
1510   //===--------------------------------------------------------------------===//
1511 
1512   llvm::Value *EmitBlockLiteral(const BlockExpr *);
1513   static void destroyBlockInfos(CGBlockInfo *info);
1514 
1515   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1516                                         const CGBlockInfo &Info,
1517                                         const DeclMapTy &ldm,
1518                                         bool IsLambdaConversionToBlock);
1519 
1520   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1521   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1522   llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
1523                                              const ObjCPropertyImplDecl *PID);
1524   llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
1525                                              const ObjCPropertyImplDecl *PID);
1526   llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
1527 
1528   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
1529 
1530   class AutoVarEmission;
1531 
1532   void emitByrefStructureInit(const AutoVarEmission &emission);
1533   void enterByrefCleanup(const AutoVarEmission &emission);
1534 
1535   void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum,
1536                                 llvm::Value *ptr);
1537 
1538   Address LoadBlockStruct();
1539   Address GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
1540 
1541   /// BuildBlockByrefAddress - Computes the location of the
1542   /// data in a variable which is declared as __block.
1543   Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V,
1544                                 bool followForward = true);
1545   Address emitBlockByrefAddress(Address baseAddr,
1546                                 const BlockByrefInfo &info,
1547                                 bool followForward,
1548                                 const llvm::Twine &name);
1549 
1550   const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var);
1551 
1552   QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args);
1553 
1554   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1555                     const CGFunctionInfo &FnInfo);
1556   /// \brief Emit code for the start of a function.
1557   /// \param Loc       The location to be associated with the function.
1558   /// \param StartLoc  The location of the function body.
1559   void StartFunction(GlobalDecl GD,
1560                      QualType RetTy,
1561                      llvm::Function *Fn,
1562                      const CGFunctionInfo &FnInfo,
1563                      const FunctionArgList &Args,
1564                      SourceLocation Loc = SourceLocation(),
1565                      SourceLocation StartLoc = SourceLocation());
1566 
1567   void EmitConstructorBody(FunctionArgList &Args);
1568   void EmitDestructorBody(FunctionArgList &Args);
1569   void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
1570   void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body);
1571   void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S);
1572 
1573   void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
1574                                   CallArgList &CallArgs);
1575   void EmitLambdaToBlockPointerBody(FunctionArgList &Args);
1576   void EmitLambdaBlockInvokeBody();
1577   void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
1578   void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD);
1579   void EmitAsanPrologueOrEpilogue(bool Prologue);
1580 
1581   /// \brief Emit the unified return block, trying to avoid its emission when
1582   /// possible.
1583   /// \return The debug location of the user written return statement if the
1584   /// return block is is avoided.
1585   llvm::DebugLoc EmitReturnBlock();
1586 
1587   /// FinishFunction - Complete IR generation of the current function. It is
1588   /// legal to call this function even if there is no current insertion point.
1589   void FinishFunction(SourceLocation EndLoc=SourceLocation());
1590 
1591   void StartThunk(llvm::Function *Fn, GlobalDecl GD,
1592                   const CGFunctionInfo &FnInfo);
1593 
1594   void EmitCallAndReturnForThunk(llvm::Constant *Callee,
1595                                  const ThunkInfo *Thunk);
1596 
1597   void FinishThunk();
1598 
1599   /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
1600   void EmitMustTailThunk(const CXXMethodDecl *MD, llvm::Value *AdjustedThisPtr,
1601                          llvm::Value *Callee);
1602 
1603   /// Generate a thunk for the given method.
1604   void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1605                      GlobalDecl GD, const ThunkInfo &Thunk);
1606 
1607   llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn,
1608                                        const CGFunctionInfo &FnInfo,
1609                                        GlobalDecl GD, const ThunkInfo &Thunk);
1610 
1611   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1612                         FunctionArgList &Args);
1613 
1614   void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init);
1615 
1616   /// Struct with all informations about dynamic [sub]class needed to set vptr.
1617   struct VPtr {
1618     BaseSubobject Base;
1619     const CXXRecordDecl *NearestVBase;
1620     CharUnits OffsetFromNearestVBase;
1621     const CXXRecordDecl *VTableClass;
1622   };
1623 
1624   /// Initialize the vtable pointer of the given subobject.
1625   void InitializeVTablePointer(const VPtr &vptr);
1626 
1627   typedef llvm::SmallVector<VPtr, 4> VPtrsVector;
1628 
1629   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1630   VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass);
1631 
1632   void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase,
1633                          CharUnits OffsetFromNearestVBase,
1634                          bool BaseIsNonVirtualPrimaryBase,
1635                          const CXXRecordDecl *VTableClass,
1636                          VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs);
1637 
1638   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1639 
1640   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1641   /// to by This.
1642   llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy,
1643                             const CXXRecordDecl *VTableClass);
1644 
1645   enum CFITypeCheckKind {
1646     CFITCK_VCall,
1647     CFITCK_NVCall,
1648     CFITCK_DerivedCast,
1649     CFITCK_UnrelatedCast,
1650     CFITCK_ICall,
1651   };
1652 
1653   /// \brief Derived is the presumed address of an object of type T after a
1654   /// cast. If T is a polymorphic class type, emit a check that the virtual
1655   /// table for Derived belongs to a class derived from T.
1656   void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived,
1657                                  bool MayBeNull, CFITypeCheckKind TCK,
1658                                  SourceLocation Loc);
1659 
1660   /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
1661   /// If vptr CFI is enabled, emit a check that VTable is valid.
1662   void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable,
1663                                  CFITypeCheckKind TCK, SourceLocation Loc);
1664 
1665   /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
1666   /// RD using llvm.type.test.
1667   void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable,
1668                           CFITypeCheckKind TCK, SourceLocation Loc);
1669 
1670   /// If whole-program virtual table optimization is enabled, emit an assumption
1671   /// that VTable is a member of RD's type identifier. Or, if vptr CFI is
1672   /// enabled, emit a check that VTable is a member of RD's type identifier.
1673   void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
1674                                     llvm::Value *VTable, SourceLocation Loc);
1675 
1676   /// Returns whether we should perform a type checked load when loading a
1677   /// virtual function for virtual calls to members of RD. This is generally
1678   /// true when both vcall CFI and whole-program-vtables are enabled.
1679   bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD);
1680 
1681   /// Emit a type checked load from the given vtable.
1682   llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable,
1683                                          uint64_t VTableByteOffset);
1684 
1685   /// CanDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given
1686   /// expr can be devirtualized.
1687   bool CanDevirtualizeMemberFunctionCall(const Expr *Base,
1688                                          const CXXMethodDecl *MD);
1689 
1690   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1691   /// given phase of destruction for a destructor.  The end result
1692   /// should call destructors on members and base classes in reverse
1693   /// order of their construction.
1694   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1695 
1696   /// ShouldInstrumentFunction - Return true if the current function should be
1697   /// instrumented with __cyg_profile_func_* calls
1698   bool ShouldInstrumentFunction();
1699 
1700   /// ShouldXRayInstrument - Return true if the current function should be
1701   /// instrumented with XRay nop sleds.
1702   bool ShouldXRayInstrumentFunction() const;
1703 
1704   /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
1705   /// instrumentation function with the current function and the call site, if
1706   /// function instrumentation is enabled.
1707   void EmitFunctionInstrumentation(const char *Fn);
1708 
1709   /// EmitMCountInstrumentation - Emit call to .mcount.
1710   void EmitMCountInstrumentation();
1711 
1712   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1713   /// arguments for the given function. This is also responsible for naming the
1714   /// LLVM function arguments.
1715   void EmitFunctionProlog(const CGFunctionInfo &FI,
1716                           llvm::Function *Fn,
1717                           const FunctionArgList &Args);
1718 
1719   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1720   /// given temporary.
1721   void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
1722                           SourceLocation EndLoc);
1723 
1724   /// EmitStartEHSpec - Emit the start of the exception spec.
1725   void EmitStartEHSpec(const Decl *D);
1726 
1727   /// EmitEndEHSpec - Emit the end of the exception spec.
1728   void EmitEndEHSpec(const Decl *D);
1729 
1730   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
1731   llvm::BasicBlock *getTerminateLandingPad();
1732 
1733   /// getTerminateHandler - Return a handler (not a landing pad, just
1734   /// a catch handler) that just calls terminate.  This is used when
1735   /// a terminate scope encloses a try.
1736   llvm::BasicBlock *getTerminateHandler();
1737 
1738   llvm::Type *ConvertTypeForMem(QualType T);
1739   llvm::Type *ConvertType(QualType T);
1740   llvm::Type *ConvertType(const TypeDecl *T) {
1741     return ConvertType(getContext().getTypeDeclType(T));
1742   }
1743 
1744   /// LoadObjCSelf - Load the value of self. This function is only valid while
1745   /// generating code for an Objective-C method.
1746   llvm::Value *LoadObjCSelf();
1747 
1748   /// TypeOfSelfObject - Return type of object that this self represents.
1749   QualType TypeOfSelfObject();
1750 
1751   /// hasAggregateLLVMType - Return true if the specified AST type will map into
1752   /// an aggregate LLVM type or is void.
1753   static TypeEvaluationKind getEvaluationKind(QualType T);
1754 
1755   static bool hasScalarEvaluationKind(QualType T) {
1756     return getEvaluationKind(T) == TEK_Scalar;
1757   }
1758 
1759   static bool hasAggregateEvaluationKind(QualType T) {
1760     return getEvaluationKind(T) == TEK_Aggregate;
1761   }
1762 
1763   /// createBasicBlock - Create an LLVM basic block.
1764   llvm::BasicBlock *createBasicBlock(const Twine &name = "",
1765                                      llvm::Function *parent = nullptr,
1766                                      llvm::BasicBlock *before = nullptr) {
1767 #ifdef NDEBUG
1768     return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
1769 #else
1770     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
1771 #endif
1772   }
1773 
1774   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
1775   /// label maps to.
1776   JumpDest getJumpDestForLabel(const LabelDecl *S);
1777 
1778   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
1779   /// another basic block, simplify it. This assumes that no other code could
1780   /// potentially reference the basic block.
1781   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
1782 
1783   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
1784   /// adding a fall-through branch from the current insert block if
1785   /// necessary. It is legal to call this function even if there is no current
1786   /// insertion point.
1787   ///
1788   /// IsFinished - If true, indicates that the caller has finished emitting
1789   /// branches to the given block and does not expect to emit code into it. This
1790   /// means the block can be ignored if it is unreachable.
1791   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
1792 
1793   /// EmitBlockAfterUses - Emit the given block somewhere hopefully
1794   /// near its uses, and leave the insertion point in it.
1795   void EmitBlockAfterUses(llvm::BasicBlock *BB);
1796 
1797   /// EmitBranch - Emit a branch to the specified basic block from the current
1798   /// insert block, taking care to avoid creation of branches from dummy
1799   /// blocks. It is legal to call this function even if there is no current
1800   /// insertion point.
1801   ///
1802   /// This function clears the current insertion point. The caller should follow
1803   /// calls to this function with calls to Emit*Block prior to generation new
1804   /// code.
1805   void EmitBranch(llvm::BasicBlock *Block);
1806 
1807   /// HaveInsertPoint - True if an insertion point is defined. If not, this
1808   /// indicates that the current code being emitted is unreachable.
1809   bool HaveInsertPoint() const {
1810     return Builder.GetInsertBlock() != nullptr;
1811   }
1812 
1813   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
1814   /// emitted IR has a place to go. Note that by definition, if this function
1815   /// creates a block then that block is unreachable; callers may do better to
1816   /// detect when no insertion point is defined and simply skip IR generation.
1817   void EnsureInsertPoint() {
1818     if (!HaveInsertPoint())
1819       EmitBlock(createBasicBlock());
1820   }
1821 
1822   /// ErrorUnsupported - Print out an error that codegen doesn't support the
1823   /// specified stmt yet.
1824   void ErrorUnsupported(const Stmt *S, const char *Type);
1825 
1826   //===--------------------------------------------------------------------===//
1827   //                                  Helpers
1828   //===--------------------------------------------------------------------===//
1829 
1830   LValue MakeAddrLValue(Address Addr, QualType T,
1831                         AlignmentSource AlignSource = AlignmentSource::Type) {
1832     return LValue::MakeAddr(Addr, T, getContext(), AlignSource,
1833                             CGM.getTBAAInfo(T));
1834   }
1835 
1836   LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
1837                         AlignmentSource AlignSource = AlignmentSource::Type) {
1838     return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
1839                             AlignSource, CGM.getTBAAInfo(T));
1840   }
1841 
1842   LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T);
1843   LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T);
1844   CharUnits getNaturalTypeAlignment(QualType T,
1845                                     AlignmentSource *Source = nullptr,
1846                                     bool forPointeeType = false);
1847   CharUnits getNaturalPointeeTypeAlignment(QualType T,
1848                                            AlignmentSource *Source = nullptr);
1849 
1850   Address EmitLoadOfReference(Address Ref, const ReferenceType *RefTy,
1851                               AlignmentSource *Source = nullptr);
1852   LValue EmitLoadOfReferenceLValue(Address Ref, const ReferenceType *RefTy);
1853 
1854   Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy,
1855                             AlignmentSource *Source = nullptr);
1856   LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy);
1857 
1858   /// CreateTempAlloca - This creates a alloca and inserts it into the entry
1859   /// block. The caller is responsible for setting an appropriate alignment on
1860   /// the alloca.
1861   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty,
1862                                      const Twine &Name = "tmp");
1863   Address CreateTempAlloca(llvm::Type *Ty, CharUnits align,
1864                            const Twine &Name = "tmp");
1865 
1866   /// CreateDefaultAlignedTempAlloca - This creates an alloca with the
1867   /// default ABI alignment of the given LLVM type.
1868   ///
1869   /// IMPORTANT NOTE: This is *not* generally the right alignment for
1870   /// any given AST type that happens to have been lowered to the
1871   /// given IR type.  This should only ever be used for function-local,
1872   /// IR-driven manipulations like saving and restoring a value.  Do
1873   /// not hand this address off to arbitrary IRGen routines, and especially
1874   /// do not pass it as an argument to a function that might expect a
1875   /// properly ABI-aligned value.
1876   Address CreateDefaultAlignTempAlloca(llvm::Type *Ty,
1877                                        const Twine &Name = "tmp");
1878 
1879   /// InitTempAlloca - Provide an initial value for the given alloca which
1880   /// will be observable at all locations in the function.
1881   ///
1882   /// The address should be something that was returned from one of
1883   /// the CreateTempAlloca or CreateMemTemp routines, and the
1884   /// initializer must be valid in the entry block (i.e. it must
1885   /// either be a constant or an argument value).
1886   void InitTempAlloca(Address Alloca, llvm::Value *Value);
1887 
1888   /// CreateIRTemp - Create a temporary IR object of the given type, with
1889   /// appropriate alignment. This routine should only be used when an temporary
1890   /// value needs to be stored into an alloca (for example, to avoid explicit
1891   /// PHI construction), but the type is the IR type, not the type appropriate
1892   /// for storing in memory.
1893   ///
1894   /// That is, this is exactly equivalent to CreateMemTemp, but calling
1895   /// ConvertType instead of ConvertTypeForMem.
1896   Address CreateIRTemp(QualType T, const Twine &Name = "tmp");
1897 
1898   /// CreateMemTemp - Create a temporary memory object of the given type, with
1899   /// appropriate alignment.
1900   Address CreateMemTemp(QualType T, const Twine &Name = "tmp");
1901   Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp");
1902 
1903   /// CreateAggTemp - Create a temporary memory object for the given
1904   /// aggregate type.
1905   AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
1906     return AggValueSlot::forAddr(CreateMemTemp(T, Name),
1907                                  T.getQualifiers(),
1908                                  AggValueSlot::IsNotDestructed,
1909                                  AggValueSlot::DoesNotNeedGCBarriers,
1910                                  AggValueSlot::IsNotAliased);
1911   }
1912 
1913   /// Emit a cast to void* in the appropriate address space.
1914   llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
1915 
1916   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
1917   /// expression and compare the result against zero, returning an Int1Ty value.
1918   llvm::Value *EvaluateExprAsBool(const Expr *E);
1919 
1920   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
1921   void EmitIgnoredExpr(const Expr *E);
1922 
1923   /// EmitAnyExpr - Emit code to compute the specified expression which can have
1924   /// any type.  The result is returned as an RValue struct.  If this is an
1925   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
1926   /// the result should be returned.
1927   ///
1928   /// \param ignoreResult True if the resulting value isn't used.
1929   RValue EmitAnyExpr(const Expr *E,
1930                      AggValueSlot aggSlot = AggValueSlot::ignored(),
1931                      bool ignoreResult = false);
1932 
1933   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
1934   // or the value of the expression, depending on how va_list is defined.
1935   Address EmitVAListRef(const Expr *E);
1936 
1937   /// Emit a "reference" to a __builtin_ms_va_list; this is
1938   /// always the value of the expression, because a __builtin_ms_va_list is a
1939   /// pointer to a char.
1940   Address EmitMSVAListRef(const Expr *E);
1941 
1942   /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
1943   /// always be accessible even if no aggregate location is provided.
1944   RValue EmitAnyExprToTemp(const Expr *E);
1945 
1946   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
1947   /// arbitrary expression into the given memory location.
1948   void EmitAnyExprToMem(const Expr *E, Address Location,
1949                         Qualifiers Quals, bool IsInitializer);
1950 
1951   void EmitAnyExprToExn(const Expr *E, Address Addr);
1952 
1953   /// EmitExprAsInit - Emits the code necessary to initialize a
1954   /// location in memory with the given initializer.
1955   void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
1956                       bool capturedByInit);
1957 
1958   /// hasVolatileMember - returns true if aggregate type has a volatile
1959   /// member.
1960   bool hasVolatileMember(QualType T) {
1961     if (const RecordType *RT = T->getAs<RecordType>()) {
1962       const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
1963       return RD->hasVolatileMember();
1964     }
1965     return false;
1966   }
1967   /// EmitAggregateCopy - Emit an aggregate assignment.
1968   ///
1969   /// The difference to EmitAggregateCopy is that tail padding is not copied.
1970   /// This is required for correctness when assigning non-POD structures in C++.
1971   void EmitAggregateAssign(Address DestPtr, Address SrcPtr,
1972                            QualType EltTy) {
1973     bool IsVolatile = hasVolatileMember(EltTy);
1974     EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, true);
1975   }
1976 
1977   void EmitAggregateCopyCtor(Address DestPtr, Address SrcPtr,
1978                              QualType DestTy, QualType SrcTy) {
1979     EmitAggregateCopy(DestPtr, SrcPtr, SrcTy, /*IsVolatile=*/false,
1980                       /*IsAssignment=*/false);
1981   }
1982 
1983   /// EmitAggregateCopy - Emit an aggregate copy.
1984   ///
1985   /// \param isVolatile - True iff either the source or the destination is
1986   /// volatile.
1987   /// \param isAssignment - If false, allow padding to be copied.  This often
1988   /// yields more efficient.
1989   void EmitAggregateCopy(Address DestPtr, Address SrcPtr,
1990                          QualType EltTy, bool isVolatile=false,
1991                          bool isAssignment = false);
1992 
1993   /// GetAddrOfLocalVar - Return the address of a local variable.
1994   Address GetAddrOfLocalVar(const VarDecl *VD) {
1995     auto it = LocalDeclMap.find(VD);
1996     assert(it != LocalDeclMap.end() &&
1997            "Invalid argument to GetAddrOfLocalVar(), no decl!");
1998     return it->second;
1999   }
2000 
2001   /// getOpaqueLValueMapping - Given an opaque value expression (which
2002   /// must be mapped to an l-value), return its mapping.
2003   const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
2004     assert(OpaqueValueMapping::shouldBindAsLValue(e));
2005 
2006     llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
2007       it = OpaqueLValues.find(e);
2008     assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
2009     return it->second;
2010   }
2011 
2012   /// getOpaqueRValueMapping - Given an opaque value expression (which
2013   /// must be mapped to an r-value), return its mapping.
2014   const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
2015     assert(!OpaqueValueMapping::shouldBindAsLValue(e));
2016 
2017     llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
2018       it = OpaqueRValues.find(e);
2019     assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
2020     return it->second;
2021   }
2022 
2023   /// Get the index of the current ArrayInitLoopExpr, if any.
2024   llvm::Value *getArrayInitIndex() { return ArrayInitIndex; }
2025 
2026   /// getAccessedFieldNo - Given an encoded value and a result number, return
2027   /// the input field number being accessed.
2028   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
2029 
2030   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
2031   llvm::BasicBlock *GetIndirectGotoBlock();
2032 
2033   /// EmitNullInitialization - Generate code to set a value of the given type to
2034   /// null, If the type contains data member pointers, they will be initialized
2035   /// to -1 in accordance with the Itanium C++ ABI.
2036   void EmitNullInitialization(Address DestPtr, QualType Ty);
2037 
2038   /// Emits a call to an LLVM variable-argument intrinsic, either
2039   /// \c llvm.va_start or \c llvm.va_end.
2040   /// \param ArgValue A reference to the \c va_list as emitted by either
2041   /// \c EmitVAListRef or \c EmitMSVAListRef.
2042   /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise,
2043   /// calls \c llvm.va_end.
2044   llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart);
2045 
2046   /// Generate code to get an argument from the passed in pointer
2047   /// and update it accordingly.
2048   /// \param VE The \c VAArgExpr for which to generate code.
2049   /// \param VAListAddr Receives a reference to the \c va_list as emitted by
2050   /// either \c EmitVAListRef or \c EmitMSVAListRef.
2051   /// \returns A pointer to the argument.
2052   // FIXME: We should be able to get rid of this method and use the va_arg
2053   // instruction in LLVM instead once it works well enough.
2054   Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr);
2055 
2056   /// emitArrayLength - Compute the length of an array, even if it's a
2057   /// VLA, and drill down to the base element type.
2058   llvm::Value *emitArrayLength(const ArrayType *arrayType,
2059                                QualType &baseType,
2060                                Address &addr);
2061 
2062   /// EmitVLASize - Capture all the sizes for the VLA expressions in
2063   /// the given variably-modified type and store them in the VLASizeMap.
2064   ///
2065   /// This function can be called with a null (unreachable) insert point.
2066   void EmitVariablyModifiedType(QualType Ty);
2067 
2068   /// getVLASize - Returns an LLVM value that corresponds to the size,
2069   /// in non-variably-sized elements, of a variable length array type,
2070   /// plus that largest non-variably-sized element type.  Assumes that
2071   /// the type has already been emitted with EmitVariablyModifiedType.
2072   std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla);
2073   std::pair<llvm::Value*,QualType> getVLASize(QualType vla);
2074 
2075   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
2076   /// generating code for an C++ member function.
2077   llvm::Value *LoadCXXThis() {
2078     assert(CXXThisValue && "no 'this' value for this function");
2079     return CXXThisValue;
2080   }
2081   Address LoadCXXThisAddress();
2082 
2083   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
2084   /// virtual bases.
2085   // FIXME: Every place that calls LoadCXXVTT is something
2086   // that needs to be abstracted properly.
2087   llvm::Value *LoadCXXVTT() {
2088     assert(CXXStructorImplicitParamValue && "no VTT value for this function");
2089     return CXXStructorImplicitParamValue;
2090   }
2091 
2092   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
2093   /// complete class to the given direct base.
2094   Address
2095   GetAddressOfDirectBaseInCompleteClass(Address Value,
2096                                         const CXXRecordDecl *Derived,
2097                                         const CXXRecordDecl *Base,
2098                                         bool BaseIsVirtual);
2099 
2100   static bool ShouldNullCheckClassCastValue(const CastExpr *Cast);
2101 
2102   /// GetAddressOfBaseClass - This function will add the necessary delta to the
2103   /// load of 'this' and returns address of the base class.
2104   Address GetAddressOfBaseClass(Address Value,
2105                                 const CXXRecordDecl *Derived,
2106                                 CastExpr::path_const_iterator PathBegin,
2107                                 CastExpr::path_const_iterator PathEnd,
2108                                 bool NullCheckValue, SourceLocation Loc);
2109 
2110   Address GetAddressOfDerivedClass(Address Value,
2111                                    const CXXRecordDecl *Derived,
2112                                    CastExpr::path_const_iterator PathBegin,
2113                                    CastExpr::path_const_iterator PathEnd,
2114                                    bool NullCheckValue);
2115 
2116   /// GetVTTParameter - Return the VTT parameter that should be passed to a
2117   /// base constructor/destructor with virtual bases.
2118   /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
2119   /// to ItaniumCXXABI.cpp together with all the references to VTT.
2120   llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
2121                                bool Delegating);
2122 
2123   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
2124                                       CXXCtorType CtorType,
2125                                       const FunctionArgList &Args,
2126                                       SourceLocation Loc);
2127   // It's important not to confuse this and the previous function. Delegating
2128   // constructors are the C++0x feature. The constructor delegate optimization
2129   // is used to reduce duplication in the base and complete consturctors where
2130   // they are substantially the same.
2131   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2132                                         const FunctionArgList &Args);
2133 
2134   /// Emit a call to an inheriting constructor (that is, one that invokes a
2135   /// constructor inherited from a base class) by inlining its definition. This
2136   /// is necessary if the ABI does not support forwarding the arguments to the
2137   /// base class constructor (because they're variadic or similar).
2138   void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2139                                                CXXCtorType CtorType,
2140                                                bool ForVirtualBase,
2141                                                bool Delegating,
2142                                                CallArgList &Args);
2143 
2144   /// Emit a call to a constructor inherited from a base class, passing the
2145   /// current constructor's arguments along unmodified (without even making
2146   /// a copy).
2147   void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D,
2148                                        bool ForVirtualBase, Address This,
2149                                        bool InheritedFromVBase,
2150                                        const CXXInheritedCtorInitExpr *E);
2151 
2152   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2153                               bool ForVirtualBase, bool Delegating,
2154                               Address This, const CXXConstructExpr *E);
2155 
2156   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2157                               bool ForVirtualBase, bool Delegating,
2158                               Address This, CallArgList &Args);
2159 
2160   /// Emit assumption load for all bases. Requires to be be called only on
2161   /// most-derived class and not under construction of the object.
2162   void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This);
2163 
2164   /// Emit assumption that vptr load == global vtable.
2165   void EmitVTableAssumptionLoad(const VPtr &vptr, Address This);
2166 
2167   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
2168                                       Address This, Address Src,
2169                                       const CXXConstructExpr *E);
2170 
2171   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2172                                   const ArrayType *ArrayTy,
2173                                   Address ArrayPtr,
2174                                   const CXXConstructExpr *E,
2175                                   bool ZeroInitialization = false);
2176 
2177   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2178                                   llvm::Value *NumElements,
2179                                   Address ArrayPtr,
2180                                   const CXXConstructExpr *E,
2181                                   bool ZeroInitialization = false);
2182 
2183   static Destroyer destroyCXXObject;
2184 
2185   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
2186                              bool ForVirtualBase, bool Delegating,
2187                              Address This);
2188 
2189   void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
2190                                llvm::Type *ElementTy, Address NewPtr,
2191                                llvm::Value *NumElements,
2192                                llvm::Value *AllocSizeWithoutCookie);
2193 
2194   void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
2195                         Address Ptr);
2196 
2197   llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr);
2198   void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr);
2199 
2200   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
2201   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
2202 
2203   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
2204                       QualType DeleteTy, llvm::Value *NumElements = nullptr,
2205                       CharUnits CookieSize = CharUnits());
2206 
2207   RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
2208                                   const Expr *Arg, bool IsDelete);
2209 
2210   llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E);
2211   llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE);
2212   Address EmitCXXUuidofExpr(const CXXUuidofExpr *E);
2213 
2214   /// \brief Situations in which we might emit a check for the suitability of a
2215   ///        pointer or glvalue.
2216   enum TypeCheckKind {
2217     /// Checking the operand of a load. Must be suitably sized and aligned.
2218     TCK_Load,
2219     /// Checking the destination of a store. Must be suitably sized and aligned.
2220     TCK_Store,
2221     /// Checking the bound value in a reference binding. Must be suitably sized
2222     /// and aligned, but is not required to refer to an object (until the
2223     /// reference is used), per core issue 453.
2224     TCK_ReferenceBinding,
2225     /// Checking the object expression in a non-static data member access. Must
2226     /// be an object within its lifetime.
2227     TCK_MemberAccess,
2228     /// Checking the 'this' pointer for a call to a non-static member function.
2229     /// Must be an object within its lifetime.
2230     TCK_MemberCall,
2231     /// Checking the 'this' pointer for a constructor call.
2232     TCK_ConstructorCall,
2233     /// Checking the operand of a static_cast to a derived pointer type. Must be
2234     /// null or an object within its lifetime.
2235     TCK_DowncastPointer,
2236     /// Checking the operand of a static_cast to a derived reference type. Must
2237     /// be an object within its lifetime.
2238     TCK_DowncastReference,
2239     /// Checking the operand of a cast to a base object. Must be suitably sized
2240     /// and aligned.
2241     TCK_Upcast,
2242     /// Checking the operand of a cast to a virtual base object. Must be an
2243     /// object within its lifetime.
2244     TCK_UpcastToVirtualBase
2245   };
2246 
2247   /// \brief Whether any type-checking sanitizers are enabled. If \c false,
2248   /// calls to EmitTypeCheck can be skipped.
2249   bool sanitizePerformTypeCheck() const;
2250 
2251   /// \brief Emit a check that \p V is the address of storage of the
2252   /// appropriate size and alignment for an object of type \p Type.
2253   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
2254                      QualType Type, CharUnits Alignment = CharUnits::Zero(),
2255                      bool SkipNullCheck = false);
2256 
2257   /// \brief Emit a check that \p Base points into an array object, which
2258   /// we can access at index \p Index. \p Accessed should be \c false if we
2259   /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
2260   void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
2261                        QualType IndexType, bool Accessed);
2262 
2263   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2264                                        bool isInc, bool isPre);
2265   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
2266                                          bool isInc, bool isPre);
2267 
2268   void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment,
2269                                llvm::Value *OffsetValue = nullptr) {
2270     Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment,
2271                                       OffsetValue);
2272   }
2273 
2274   /// Converts Location to a DebugLoc, if debug information is enabled.
2275   llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location);
2276 
2277 
2278   //===--------------------------------------------------------------------===//
2279   //                            Declaration Emission
2280   //===--------------------------------------------------------------------===//
2281 
2282   /// EmitDecl - Emit a declaration.
2283   ///
2284   /// This function can be called with a null (unreachable) insert point.
2285   void EmitDecl(const Decl &D);
2286 
2287   /// EmitVarDecl - Emit a local variable declaration.
2288   ///
2289   /// This function can be called with a null (unreachable) insert point.
2290   void EmitVarDecl(const VarDecl &D);
2291 
2292   void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2293                       bool capturedByInit);
2294 
2295   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
2296                              llvm::Value *Address);
2297 
2298   /// \brief Determine whether the given initializer is trivial in the sense
2299   /// that it requires no code to be generated.
2300   bool isTrivialInitializer(const Expr *Init);
2301 
2302   /// EmitAutoVarDecl - Emit an auto variable declaration.
2303   ///
2304   /// This function can be called with a null (unreachable) insert point.
2305   void EmitAutoVarDecl(const VarDecl &D);
2306 
2307   class AutoVarEmission {
2308     friend class CodeGenFunction;
2309 
2310     const VarDecl *Variable;
2311 
2312     /// The address of the alloca.  Invalid if the variable was emitted
2313     /// as a global constant.
2314     Address Addr;
2315 
2316     llvm::Value *NRVOFlag;
2317 
2318     /// True if the variable is a __block variable.
2319     bool IsByRef;
2320 
2321     /// True if the variable is of aggregate type and has a constant
2322     /// initializer.
2323     bool IsConstantAggregate;
2324 
2325     /// Non-null if we should use lifetime annotations.
2326     llvm::Value *SizeForLifetimeMarkers;
2327 
2328     struct Invalid {};
2329     AutoVarEmission(Invalid) : Variable(nullptr), Addr(Address::invalid()) {}
2330 
2331     AutoVarEmission(const VarDecl &variable)
2332       : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr),
2333         IsByRef(false), IsConstantAggregate(false),
2334         SizeForLifetimeMarkers(nullptr) {}
2335 
2336     bool wasEmittedAsGlobal() const { return !Addr.isValid(); }
2337 
2338   public:
2339     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
2340 
2341     bool useLifetimeMarkers() const {
2342       return SizeForLifetimeMarkers != nullptr;
2343     }
2344     llvm::Value *getSizeForLifetimeMarkers() const {
2345       assert(useLifetimeMarkers());
2346       return SizeForLifetimeMarkers;
2347     }
2348 
2349     /// Returns the raw, allocated address, which is not necessarily
2350     /// the address of the object itself.
2351     Address getAllocatedAddress() const {
2352       return Addr;
2353     }
2354 
2355     /// Returns the address of the object within this declaration.
2356     /// Note that this does not chase the forwarding pointer for
2357     /// __block decls.
2358     Address getObjectAddress(CodeGenFunction &CGF) const {
2359       if (!IsByRef) return Addr;
2360 
2361       return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false);
2362     }
2363   };
2364   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
2365   void EmitAutoVarInit(const AutoVarEmission &emission);
2366   void EmitAutoVarCleanups(const AutoVarEmission &emission);
2367   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
2368                               QualType::DestructionKind dtorKind);
2369 
2370   void EmitStaticVarDecl(const VarDecl &D,
2371                          llvm::GlobalValue::LinkageTypes Linkage);
2372 
2373   class ParamValue {
2374     llvm::Value *Value;
2375     unsigned Alignment;
2376     ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {}
2377   public:
2378     static ParamValue forDirect(llvm::Value *value) {
2379       return ParamValue(value, 0);
2380     }
2381     static ParamValue forIndirect(Address addr) {
2382       assert(!addr.getAlignment().isZero());
2383       return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity());
2384     }
2385 
2386     bool isIndirect() const { return Alignment != 0; }
2387     llvm::Value *getAnyValue() const { return Value; }
2388 
2389     llvm::Value *getDirectValue() const {
2390       assert(!isIndirect());
2391       return Value;
2392     }
2393 
2394     Address getIndirectAddress() const {
2395       assert(isIndirect());
2396       return Address(Value, CharUnits::fromQuantity(Alignment));
2397     }
2398   };
2399 
2400   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
2401   void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo);
2402 
2403   /// protectFromPeepholes - Protect a value that we're intending to
2404   /// store to the side, but which will probably be used later, from
2405   /// aggressive peepholing optimizations that might delete it.
2406   ///
2407   /// Pass the result to unprotectFromPeepholes to declare that
2408   /// protection is no longer required.
2409   ///
2410   /// There's no particular reason why this shouldn't apply to
2411   /// l-values, it's just that no existing peepholes work on pointers.
2412   PeepholeProtection protectFromPeepholes(RValue rvalue);
2413   void unprotectFromPeepholes(PeepholeProtection protection);
2414 
2415   //===--------------------------------------------------------------------===//
2416   //                             Statement Emission
2417   //===--------------------------------------------------------------------===//
2418 
2419   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
2420   void EmitStopPoint(const Stmt *S);
2421 
2422   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
2423   /// this function even if there is no current insertion point.
2424   ///
2425   /// This function may clear the current insertion point; callers should use
2426   /// EnsureInsertPoint if they wish to subsequently generate code without first
2427   /// calling EmitBlock, EmitBranch, or EmitStmt.
2428   void EmitStmt(const Stmt *S);
2429 
2430   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
2431   /// necessarily require an insertion point or debug information; typically
2432   /// because the statement amounts to a jump or a container of other
2433   /// statements.
2434   ///
2435   /// \return True if the statement was handled.
2436   bool EmitSimpleStmt(const Stmt *S);
2437 
2438   Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
2439                            AggValueSlot AVS = AggValueSlot::ignored());
2440   Address EmitCompoundStmtWithoutScope(const CompoundStmt &S,
2441                                        bool GetLast = false,
2442                                        AggValueSlot AVS =
2443                                                 AggValueSlot::ignored());
2444 
2445   /// EmitLabel - Emit the block for the given label. It is legal to call this
2446   /// function even if there is no current insertion point.
2447   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
2448 
2449   void EmitLabelStmt(const LabelStmt &S);
2450   void EmitAttributedStmt(const AttributedStmt &S);
2451   void EmitGotoStmt(const GotoStmt &S);
2452   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
2453   void EmitIfStmt(const IfStmt &S);
2454 
2455   void EmitWhileStmt(const WhileStmt &S,
2456                      ArrayRef<const Attr *> Attrs = None);
2457   void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None);
2458   void EmitForStmt(const ForStmt &S,
2459                    ArrayRef<const Attr *> Attrs = None);
2460   void EmitReturnStmt(const ReturnStmt &S);
2461   void EmitDeclStmt(const DeclStmt &S);
2462   void EmitBreakStmt(const BreakStmt &S);
2463   void EmitContinueStmt(const ContinueStmt &S);
2464   void EmitSwitchStmt(const SwitchStmt &S);
2465   void EmitDefaultStmt(const DefaultStmt &S);
2466   void EmitCaseStmt(const CaseStmt &S);
2467   void EmitCaseStmtRange(const CaseStmt &S);
2468   void EmitAsmStmt(const AsmStmt &S);
2469 
2470   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
2471   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
2472   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
2473   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
2474   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
2475 
2476   void EmitCoroutineBody(const CoroutineBodyStmt &S);
2477   RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID);
2478 
2479   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2480   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2481 
2482   void EmitCXXTryStmt(const CXXTryStmt &S);
2483   void EmitSEHTryStmt(const SEHTryStmt &S);
2484   void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
2485   void EnterSEHTryStmt(const SEHTryStmt &S);
2486   void ExitSEHTryStmt(const SEHTryStmt &S);
2487 
2488   void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter,
2489                               const Stmt *OutlinedStmt);
2490 
2491   llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
2492                                             const SEHExceptStmt &Except);
2493 
2494   llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF,
2495                                              const SEHFinallyStmt &Finally);
2496 
2497   void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF,
2498                                 llvm::Value *ParentFP,
2499                                 llvm::Value *EntryEBP);
2500   llvm::Value *EmitSEHExceptionCode();
2501   llvm::Value *EmitSEHExceptionInfo();
2502   llvm::Value *EmitSEHAbnormalTermination();
2503 
2504   /// Scan the outlined statement for captures from the parent function. For
2505   /// each capture, mark the capture as escaped and emit a call to
2506   /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap.
2507   void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
2508                           bool IsFilter);
2509 
2510   /// Recovers the address of a local in a parent function. ParentVar is the
2511   /// address of the variable used in the immediate parent function. It can
2512   /// either be an alloca or a call to llvm.localrecover if there are nested
2513   /// outlined functions. ParentFP is the frame pointer of the outermost parent
2514   /// frame.
2515   Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF,
2516                                     Address ParentVar,
2517                                     llvm::Value *ParentFP);
2518 
2519   void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
2520                            ArrayRef<const Attr *> Attrs = None);
2521 
2522   /// Returns calculated size of the specified type.
2523   llvm::Value *getTypeSize(QualType Ty);
2524   LValue InitCapturedStruct(const CapturedStmt &S);
2525   llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
2526   llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
2527   Address GenerateCapturedStmtArgument(const CapturedStmt &S);
2528   llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S);
2529   void GenerateOpenMPCapturedVars(const CapturedStmt &S,
2530                                   SmallVectorImpl<llvm::Value *> &CapturedVars);
2531   void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy,
2532                           SourceLocation Loc);
2533   /// \brief Perform element by element copying of arrays with type \a
2534   /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
2535   /// generated by \a CopyGen.
2536   ///
2537   /// \param DestAddr Address of the destination array.
2538   /// \param SrcAddr Address of the source array.
2539   /// \param OriginalType Type of destination and source arrays.
2540   /// \param CopyGen Copying procedure that copies value of single array element
2541   /// to another single array element.
2542   void EmitOMPAggregateAssign(
2543       Address DestAddr, Address SrcAddr, QualType OriginalType,
2544       const llvm::function_ref<void(Address, Address)> &CopyGen);
2545   /// \brief Emit proper copying of data from one variable to another.
2546   ///
2547   /// \param OriginalType Original type of the copied variables.
2548   /// \param DestAddr Destination address.
2549   /// \param SrcAddr Source address.
2550   /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
2551   /// type of the base array element).
2552   /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
2553   /// the base array element).
2554   /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
2555   /// DestVD.
2556   void EmitOMPCopy(QualType OriginalType,
2557                    Address DestAddr, Address SrcAddr,
2558                    const VarDecl *DestVD, const VarDecl *SrcVD,
2559                    const Expr *Copy);
2560   /// \brief Emit atomic update code for constructs: \a X = \a X \a BO \a E or
2561   /// \a X = \a E \a BO \a E.
2562   ///
2563   /// \param X Value to be updated.
2564   /// \param E Update value.
2565   /// \param BO Binary operation for update operation.
2566   /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
2567   /// expression, false otherwise.
2568   /// \param AO Atomic ordering of the generated atomic instructions.
2569   /// \param CommonGen Code generator for complex expressions that cannot be
2570   /// expressed through atomicrmw instruction.
2571   /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was
2572   /// generated, <false, RValue::get(nullptr)> otherwise.
2573   std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr(
2574       LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
2575       llvm::AtomicOrdering AO, SourceLocation Loc,
2576       const llvm::function_ref<RValue(RValue)> &CommonGen);
2577   bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
2578                                  OMPPrivateScope &PrivateScope);
2579   void EmitOMPPrivateClause(const OMPExecutableDirective &D,
2580                             OMPPrivateScope &PrivateScope);
2581   void EmitOMPUseDevicePtrClause(
2582       const OMPClause &C, OMPPrivateScope &PrivateScope,
2583       const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap);
2584   /// \brief Emit code for copyin clause in \a D directive. The next code is
2585   /// generated at the start of outlined functions for directives:
2586   /// \code
2587   /// threadprivate_var1 = master_threadprivate_var1;
2588   /// operator=(threadprivate_var2, master_threadprivate_var2);
2589   /// ...
2590   /// __kmpc_barrier(&loc, global_tid);
2591   /// \endcode
2592   ///
2593   /// \param D OpenMP directive possibly with 'copyin' clause(s).
2594   /// \returns true if at least one copyin variable is found, false otherwise.
2595   bool EmitOMPCopyinClause(const OMPExecutableDirective &D);
2596   /// \brief Emit initial code for lastprivate variables. If some variable is
2597   /// not also firstprivate, then the default initialization is used. Otherwise
2598   /// initialization of this variable is performed by EmitOMPFirstprivateClause
2599   /// method.
2600   ///
2601   /// \param D Directive that may have 'lastprivate' directives.
2602   /// \param PrivateScope Private scope for capturing lastprivate variables for
2603   /// proper codegen in internal captured statement.
2604   ///
2605   /// \returns true if there is at least one lastprivate variable, false
2606   /// otherwise.
2607   bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D,
2608                                     OMPPrivateScope &PrivateScope);
2609   /// \brief Emit final copying of lastprivate values to original variables at
2610   /// the end of the worksharing or simd directive.
2611   ///
2612   /// \param D Directive that has at least one 'lastprivate' directives.
2613   /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
2614   /// it is the last iteration of the loop code in associated directive, or to
2615   /// 'i1 false' otherwise. If this item is nullptr, no final check is required.
2616   void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D,
2617                                      bool NoFinals,
2618                                      llvm::Value *IsLastIterCond = nullptr);
2619   /// Emit initial code for linear clauses.
2620   void EmitOMPLinearClause(const OMPLoopDirective &D,
2621                            CodeGenFunction::OMPPrivateScope &PrivateScope);
2622   /// Emit final code for linear clauses.
2623   /// \param CondGen Optional conditional code for final part of codegen for
2624   /// linear clause.
2625   void EmitOMPLinearClauseFinal(
2626       const OMPLoopDirective &D,
2627       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen);
2628   /// \brief Emit initial code for reduction variables. Creates reduction copies
2629   /// and initializes them with the values according to OpenMP standard.
2630   ///
2631   /// \param D Directive (possibly) with the 'reduction' clause.
2632   /// \param PrivateScope Private scope for capturing reduction variables for
2633   /// proper codegen in internal captured statement.
2634   ///
2635   void EmitOMPReductionClauseInit(const OMPExecutableDirective &D,
2636                                   OMPPrivateScope &PrivateScope);
2637   /// \brief Emit final update of reduction values to original variables at
2638   /// the end of the directive.
2639   ///
2640   /// \param D Directive that has at least one 'reduction' directives.
2641   void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D);
2642   /// \brief Emit initial code for linear variables. Creates private copies
2643   /// and initializes them with the values according to OpenMP standard.
2644   ///
2645   /// \param D Directive (possibly) with the 'linear' clause.
2646   void EmitOMPLinearClauseInit(const OMPLoopDirective &D);
2647 
2648   typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/,
2649                                         llvm::Value * /*OutlinedFn*/,
2650                                         const OMPTaskDataTy & /*Data*/)>
2651       TaskGenTy;
2652   void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S,
2653                                  const RegionCodeGenTy &BodyGen,
2654                                  const TaskGenTy &TaskGen, OMPTaskDataTy &Data);
2655 
2656   void EmitOMPParallelDirective(const OMPParallelDirective &S);
2657   void EmitOMPSimdDirective(const OMPSimdDirective &S);
2658   void EmitOMPForDirective(const OMPForDirective &S);
2659   void EmitOMPForSimdDirective(const OMPForSimdDirective &S);
2660   void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
2661   void EmitOMPSectionDirective(const OMPSectionDirective &S);
2662   void EmitOMPSingleDirective(const OMPSingleDirective &S);
2663   void EmitOMPMasterDirective(const OMPMasterDirective &S);
2664   void EmitOMPCriticalDirective(const OMPCriticalDirective &S);
2665   void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
2666   void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S);
2667   void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
2668   void EmitOMPTaskDirective(const OMPTaskDirective &S);
2669   void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
2670   void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
2671   void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
2672   void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S);
2673   void EmitOMPFlushDirective(const OMPFlushDirective &S);
2674   void EmitOMPOrderedDirective(const OMPOrderedDirective &S);
2675   void EmitOMPAtomicDirective(const OMPAtomicDirective &S);
2676   void EmitOMPTargetDirective(const OMPTargetDirective &S);
2677   void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S);
2678   void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S);
2679   void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S);
2680   void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S);
2681   void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S);
2682   void
2683   EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S);
2684   void EmitOMPTeamsDirective(const OMPTeamsDirective &S);
2685   void
2686   EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S);
2687   void EmitOMPCancelDirective(const OMPCancelDirective &S);
2688   void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S);
2689   void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S);
2690   void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S);
2691   void EmitOMPDistributeDirective(const OMPDistributeDirective &S);
2692   void EmitOMPDistributeLoop(const OMPDistributeDirective &S);
2693   void EmitOMPDistributeParallelForDirective(
2694       const OMPDistributeParallelForDirective &S);
2695   void EmitOMPDistributeParallelForSimdDirective(
2696       const OMPDistributeParallelForSimdDirective &S);
2697   void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S);
2698   void EmitOMPTargetParallelForSimdDirective(
2699       const OMPTargetParallelForSimdDirective &S);
2700   void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S);
2701   void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S);
2702   void
2703   EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S);
2704   void EmitOMPTeamsDistributeParallelForSimdDirective(
2705       const OMPTeamsDistributeParallelForSimdDirective &S);
2706   void EmitOMPTeamsDistributeParallelForDirective(
2707       const OMPTeamsDistributeParallelForDirective &S);
2708   void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S);
2709   void EmitOMPTargetTeamsDistributeDirective(
2710       const OMPTargetTeamsDistributeDirective &S);
2711   void EmitOMPTargetTeamsDistributeParallelForDirective(
2712       const OMPTargetTeamsDistributeParallelForDirective &S);
2713   void EmitOMPTargetTeamsDistributeParallelForSimdDirective(
2714       const OMPTargetTeamsDistributeParallelForSimdDirective &S);
2715   void EmitOMPTargetTeamsDistributeSimdDirective(
2716       const OMPTargetTeamsDistributeSimdDirective &S);
2717 
2718   /// Emit device code for the target directive.
2719   static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM,
2720                                           StringRef ParentName,
2721                                           const OMPTargetDirective &S);
2722   static void
2723   EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
2724                                       const OMPTargetParallelDirective &S);
2725   static void
2726   EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
2727                                    const OMPTargetTeamsDirective &S);
2728   /// \brief Emit inner loop of the worksharing/simd construct.
2729   ///
2730   /// \param S Directive, for which the inner loop must be emitted.
2731   /// \param RequiresCleanup true, if directive has some associated private
2732   /// variables.
2733   /// \param LoopCond Bollean condition for loop continuation.
2734   /// \param IncExpr Increment expression for loop control variable.
2735   /// \param BodyGen Generator for the inner body of the inner loop.
2736   /// \param PostIncGen Genrator for post-increment code (required for ordered
2737   /// loop directvies).
2738   void EmitOMPInnerLoop(
2739       const Stmt &S, bool RequiresCleanup, const Expr *LoopCond,
2740       const Expr *IncExpr,
2741       const llvm::function_ref<void(CodeGenFunction &)> &BodyGen,
2742       const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen);
2743 
2744   JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind);
2745   /// Emit initial code for loop counters of loop-based directives.
2746   void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S,
2747                                   OMPPrivateScope &LoopScope);
2748 
2749 private:
2750   /// Helpers for blocks
2751   llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
2752 
2753   /// Helpers for the OpenMP loop directives.
2754   void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit);
2755   void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false);
2756   void EmitOMPSimdFinal(
2757       const OMPLoopDirective &D,
2758       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen);
2759   /// \brief Emit code for the worksharing loop-based directive.
2760   /// \return true, if this construct has any lastprivate clause, false -
2761   /// otherwise.
2762   bool EmitOMPWorksharingLoop(const OMPLoopDirective &S);
2763   void EmitOMPOuterLoop(bool IsMonotonic, bool DynamicOrOrdered,
2764       const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered,
2765       Address LB, Address UB, Address ST, Address IL, llvm::Value *Chunk);
2766   void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind,
2767                            bool IsMonotonic, const OMPLoopDirective &S,
2768                            OMPPrivateScope &LoopScope, bool Ordered, Address LB,
2769                            Address UB, Address ST, Address IL,
2770                            llvm::Value *Chunk);
2771   void EmitOMPDistributeOuterLoop(
2772       OpenMPDistScheduleClauseKind ScheduleKind,
2773       const OMPDistributeDirective &S, OMPPrivateScope &LoopScope,
2774       Address LB, Address UB, Address ST, Address IL, llvm::Value *Chunk);
2775   /// \brief Emit code for sections directive.
2776   void EmitSections(const OMPExecutableDirective &S);
2777 
2778 public:
2779 
2780   //===--------------------------------------------------------------------===//
2781   //                         LValue Expression Emission
2782   //===--------------------------------------------------------------------===//
2783 
2784   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
2785   RValue GetUndefRValue(QualType Ty);
2786 
2787   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
2788   /// and issue an ErrorUnsupported style diagnostic (using the
2789   /// provided Name).
2790   RValue EmitUnsupportedRValue(const Expr *E,
2791                                const char *Name);
2792 
2793   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
2794   /// an ErrorUnsupported style diagnostic (using the provided Name).
2795   LValue EmitUnsupportedLValue(const Expr *E,
2796                                const char *Name);
2797 
2798   /// EmitLValue - Emit code to compute a designator that specifies the location
2799   /// of the expression.
2800   ///
2801   /// This can return one of two things: a simple address or a bitfield
2802   /// reference.  In either case, the LLVM Value* in the LValue structure is
2803   /// guaranteed to be an LLVM pointer type.
2804   ///
2805   /// If this returns a bitfield reference, nothing about the pointee type of
2806   /// the LLVM value is known: For example, it may not be a pointer to an
2807   /// integer.
2808   ///
2809   /// If this returns a normal address, and if the lvalue's C type is fixed
2810   /// size, this method guarantees that the returned pointer type will point to
2811   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
2812   /// variable length type, this is not possible.
2813   ///
2814   LValue EmitLValue(const Expr *E);
2815 
2816   /// \brief Same as EmitLValue but additionally we generate checking code to
2817   /// guard against undefined behavior.  This is only suitable when we know
2818   /// that the address will be used to access the object.
2819   LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
2820 
2821   RValue convertTempToRValue(Address addr, QualType type,
2822                              SourceLocation Loc);
2823 
2824   void EmitAtomicInit(Expr *E, LValue lvalue);
2825 
2826   bool LValueIsSuitableForInlineAtomic(LValue Src);
2827 
2828   RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
2829                         AggValueSlot Slot = AggValueSlot::ignored());
2830 
2831   RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
2832                         llvm::AtomicOrdering AO, bool IsVolatile = false,
2833                         AggValueSlot slot = AggValueSlot::ignored());
2834 
2835   void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
2836 
2837   void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
2838                        bool IsVolatile, bool isInit);
2839 
2840   std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
2841       LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
2842       llvm::AtomicOrdering Success =
2843           llvm::AtomicOrdering::SequentiallyConsistent,
2844       llvm::AtomicOrdering Failure =
2845           llvm::AtomicOrdering::SequentiallyConsistent,
2846       bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
2847 
2848   void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
2849                         const llvm::function_ref<RValue(RValue)> &UpdateOp,
2850                         bool IsVolatile);
2851 
2852   /// EmitToMemory - Change a scalar value from its value
2853   /// representation to its in-memory representation.
2854   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
2855 
2856   /// EmitFromMemory - Change a scalar value from its memory
2857   /// representation to its value representation.
2858   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
2859 
2860   /// EmitLoadOfScalar - Load a scalar value from an address, taking
2861   /// care to appropriately convert from the memory representation to
2862   /// the LLVM value representation.
2863   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
2864                                 SourceLocation Loc,
2865                                 AlignmentSource AlignSource =
2866                                   AlignmentSource::Type,
2867                                 llvm::MDNode *TBAAInfo = nullptr,
2868                                 QualType TBAABaseTy = QualType(),
2869                                 uint64_t TBAAOffset = 0,
2870                                 bool isNontemporal = false);
2871 
2872   /// EmitLoadOfScalar - Load a scalar value from an address, taking
2873   /// care to appropriately convert from the memory representation to
2874   /// the LLVM value representation.  The l-value must be a simple
2875   /// l-value.
2876   llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
2877 
2878   /// EmitStoreOfScalar - Store a scalar value to an address, taking
2879   /// care to appropriately convert from the memory representation to
2880   /// the LLVM value representation.
2881   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
2882                          bool Volatile, QualType Ty,
2883                          AlignmentSource AlignSource = AlignmentSource::Type,
2884                          llvm::MDNode *TBAAInfo = nullptr, bool isInit = false,
2885                          QualType TBAABaseTy = QualType(),
2886                          uint64_t TBAAOffset = 0, bool isNontemporal = false);
2887 
2888   /// EmitStoreOfScalar - Store a scalar value to an address, taking
2889   /// care to appropriately convert from the memory representation to
2890   /// the LLVM value representation.  The l-value must be a simple
2891   /// l-value.  The isInit flag indicates whether this is an initialization.
2892   /// If so, atomic qualifiers are ignored and the store is always non-atomic.
2893   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
2894 
2895   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
2896   /// this method emits the address of the lvalue, then loads the result as an
2897   /// rvalue, returning the rvalue.
2898   RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
2899   RValue EmitLoadOfExtVectorElementLValue(LValue V);
2900   RValue EmitLoadOfBitfieldLValue(LValue LV);
2901   RValue EmitLoadOfGlobalRegLValue(LValue LV);
2902 
2903   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
2904   /// lvalue, where both are guaranteed to the have the same type, and that type
2905   /// is 'Ty'.
2906   void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
2907   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
2908   void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
2909 
2910   /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
2911   /// as EmitStoreThroughLValue.
2912   ///
2913   /// \param Result [out] - If non-null, this will be set to a Value* for the
2914   /// bit-field contents after the store, appropriate for use as the result of
2915   /// an assignment to the bit-field.
2916   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2917                                       llvm::Value **Result=nullptr);
2918 
2919   /// Emit an l-value for an assignment (simple or compound) of complex type.
2920   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
2921   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
2922   LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
2923                                              llvm::Value *&Result);
2924 
2925   // Note: only available for agg return types
2926   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
2927   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
2928   // Note: only available for agg return types
2929   LValue EmitCallExprLValue(const CallExpr *E);
2930   // Note: only available for agg return types
2931   LValue EmitVAArgExprLValue(const VAArgExpr *E);
2932   LValue EmitDeclRefLValue(const DeclRefExpr *E);
2933   LValue EmitStringLiteralLValue(const StringLiteral *E);
2934   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
2935   LValue EmitPredefinedLValue(const PredefinedExpr *E);
2936   LValue EmitUnaryOpLValue(const UnaryOperator *E);
2937   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
2938                                 bool Accessed = false);
2939   LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
2940                                  bool IsLowerBound = true);
2941   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
2942   LValue EmitMemberExpr(const MemberExpr *E);
2943   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
2944   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
2945   LValue EmitInitListLValue(const InitListExpr *E);
2946   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
2947   LValue EmitCastLValue(const CastExpr *E);
2948   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
2949   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
2950 
2951   Address EmitExtVectorElementLValue(LValue V);
2952 
2953   RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
2954 
2955   Address EmitArrayToPointerDecay(const Expr *Array,
2956                                   AlignmentSource *AlignSource = nullptr);
2957 
2958   class ConstantEmission {
2959     llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
2960     ConstantEmission(llvm::Constant *C, bool isReference)
2961       : ValueAndIsReference(C, isReference) {}
2962   public:
2963     ConstantEmission() {}
2964     static ConstantEmission forReference(llvm::Constant *C) {
2965       return ConstantEmission(C, true);
2966     }
2967     static ConstantEmission forValue(llvm::Constant *C) {
2968       return ConstantEmission(C, false);
2969     }
2970 
2971     explicit operator bool() const {
2972       return ValueAndIsReference.getOpaqueValue() != nullptr;
2973     }
2974 
2975     bool isReference() const { return ValueAndIsReference.getInt(); }
2976     LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
2977       assert(isReference());
2978       return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
2979                                             refExpr->getType());
2980     }
2981 
2982     llvm::Constant *getValue() const {
2983       assert(!isReference());
2984       return ValueAndIsReference.getPointer();
2985     }
2986   };
2987 
2988   ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
2989 
2990   RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
2991                                 AggValueSlot slot = AggValueSlot::ignored());
2992   LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
2993 
2994   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
2995                               const ObjCIvarDecl *Ivar);
2996   LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
2997   LValue EmitLValueForLambdaField(const FieldDecl *Field);
2998 
2999   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
3000   /// if the Field is a reference, this will return the address of the reference
3001   /// and not the address of the value stored in the reference.
3002   LValue EmitLValueForFieldInitialization(LValue Base,
3003                                           const FieldDecl* Field);
3004 
3005   LValue EmitLValueForIvar(QualType ObjectTy,
3006                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
3007                            unsigned CVRQualifiers);
3008 
3009   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
3010   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
3011   LValue EmitLambdaLValue(const LambdaExpr *E);
3012   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
3013   LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
3014 
3015   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
3016   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
3017   LValue EmitStmtExprLValue(const StmtExpr *E);
3018   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
3019   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
3020   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init);
3021 
3022   //===--------------------------------------------------------------------===//
3023   //                         Scalar Expression Emission
3024   //===--------------------------------------------------------------------===//
3025 
3026   /// EmitCall - Generate a call of the given function, expecting the given
3027   /// result type, and using the given argument list which specifies both the
3028   /// LLVM arguments and the types they were derived from.
3029   RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
3030                   ReturnValueSlot ReturnValue, const CallArgList &Args,
3031                   llvm::Instruction **callOrInvoke = nullptr);
3032 
3033   RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E,
3034                   ReturnValueSlot ReturnValue,
3035                   llvm::Value *Chain = nullptr);
3036   RValue EmitCallExpr(const CallExpr *E,
3037                       ReturnValueSlot ReturnValue = ReturnValueSlot());
3038   RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
3039   CGCallee EmitCallee(const Expr *E);
3040 
3041   void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl);
3042 
3043   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
3044                                   const Twine &name = "");
3045   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
3046                                   ArrayRef<llvm::Value*> args,
3047                                   const Twine &name = "");
3048   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
3049                                           const Twine &name = "");
3050   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
3051                                           ArrayRef<llvm::Value*> args,
3052                                           const Twine &name = "");
3053 
3054   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
3055                                   ArrayRef<llvm::Value *> Args,
3056                                   const Twine &Name = "");
3057   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
3058                                          ArrayRef<llvm::Value*> args,
3059                                          const Twine &name = "");
3060   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
3061                                          const Twine &name = "");
3062   void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
3063                                        ArrayRef<llvm::Value*> args);
3064 
3065   CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
3066                                      NestedNameSpecifier *Qual,
3067                                      llvm::Type *Ty);
3068 
3069   CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
3070                                                CXXDtorType Type,
3071                                                const CXXRecordDecl *RD);
3072 
3073   RValue
3074   EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method,
3075                               const CGCallee &Callee,
3076                               ReturnValueSlot ReturnValue, llvm::Value *This,
3077                               llvm::Value *ImplicitParam,
3078                               QualType ImplicitParamTy, const CallExpr *E,
3079                               CallArgList *RtlArgs);
3080   RValue EmitCXXDestructorCall(const CXXDestructorDecl *DD,
3081                                const CGCallee &Callee,
3082                                llvm::Value *This, llvm::Value *ImplicitParam,
3083                                QualType ImplicitParamTy, const CallExpr *E,
3084                                StructorType Type);
3085   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
3086                                ReturnValueSlot ReturnValue);
3087   RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE,
3088                                                const CXXMethodDecl *MD,
3089                                                ReturnValueSlot ReturnValue,
3090                                                bool HasQualifier,
3091                                                NestedNameSpecifier *Qualifier,
3092                                                bool IsArrow, const Expr *Base);
3093   // Compute the object pointer.
3094   Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
3095                                           llvm::Value *memberPtr,
3096                                           const MemberPointerType *memberPtrType,
3097                                           AlignmentSource *AlignSource = nullptr);
3098   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
3099                                       ReturnValueSlot ReturnValue);
3100 
3101   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
3102                                        const CXXMethodDecl *MD,
3103                                        ReturnValueSlot ReturnValue);
3104   RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E);
3105 
3106   RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
3107                                 ReturnValueSlot ReturnValue);
3108 
3109   RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E,
3110                                        ReturnValueSlot ReturnValue);
3111 
3112   RValue EmitBuiltinExpr(const FunctionDecl *FD,
3113                          unsigned BuiltinID, const CallExpr *E,
3114                          ReturnValueSlot ReturnValue);
3115 
3116   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
3117 
3118   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
3119   /// is unhandled by the current target.
3120   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3121 
3122   llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
3123                                              const llvm::CmpInst::Predicate Fp,
3124                                              const llvm::CmpInst::Predicate Ip,
3125                                              const llvm::Twine &Name = "");
3126   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3127 
3128   llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
3129                                          unsigned LLVMIntrinsic,
3130                                          unsigned AltLLVMIntrinsic,
3131                                          const char *NameHint,
3132                                          unsigned Modifier,
3133                                          const CallExpr *E,
3134                                          SmallVectorImpl<llvm::Value *> &Ops,
3135                                          Address PtrOp0, Address PtrOp1);
3136   llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
3137                                           unsigned Modifier, llvm::Type *ArgTy,
3138                                           const CallExpr *E);
3139   llvm::Value *EmitNeonCall(llvm::Function *F,
3140                             SmallVectorImpl<llvm::Value*> &O,
3141                             const char *name,
3142                             unsigned shift = 0, bool rightshift = false);
3143   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
3144   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
3145                                    bool negateForRightShift);
3146   llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
3147                                  llvm::Type *Ty, bool usgn, const char *name);
3148   llvm::Value *vectorWrapScalar16(llvm::Value *Op);
3149   llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3150 
3151   llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
3152   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3153   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3154   llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3155   llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3156   llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3157   llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
3158                                           const CallExpr *E);
3159 
3160 private:
3161   enum class MSVCIntrin;
3162 
3163 public:
3164   llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E);
3165 
3166   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
3167   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
3168   llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
3169   llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
3170   llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
3171   llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
3172                                 const ObjCMethodDecl *MethodWithObjects);
3173   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
3174   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
3175                              ReturnValueSlot Return = ReturnValueSlot());
3176 
3177   /// Retrieves the default cleanup kind for an ARC cleanup.
3178   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
3179   CleanupKind getARCCleanupKind() {
3180     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
3181              ? NormalAndEHCleanup : NormalCleanup;
3182   }
3183 
3184   // ARC primitives.
3185   void EmitARCInitWeak(Address addr, llvm::Value *value);
3186   void EmitARCDestroyWeak(Address addr);
3187   llvm::Value *EmitARCLoadWeak(Address addr);
3188   llvm::Value *EmitARCLoadWeakRetained(Address addr);
3189   llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored);
3190   void EmitARCCopyWeak(Address dst, Address src);
3191   void EmitARCMoveWeak(Address dst, Address src);
3192   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
3193   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
3194   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
3195                                   bool resultIgnored);
3196   llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value,
3197                                       bool resultIgnored);
3198   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
3199   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
3200   llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
3201   void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise);
3202   void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
3203   llvm::Value *EmitARCAutorelease(llvm::Value *value);
3204   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
3205   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
3206   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
3207   llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value);
3208 
3209   std::pair<LValue,llvm::Value*>
3210   EmitARCStoreAutoreleasing(const BinaryOperator *e);
3211   std::pair<LValue,llvm::Value*>
3212   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
3213   std::pair<LValue,llvm::Value*>
3214   EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored);
3215 
3216   llvm::Value *EmitObjCThrowOperand(const Expr *expr);
3217   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
3218   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
3219 
3220   llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
3221   llvm::Value *EmitARCReclaimReturnedObject(const Expr *e,
3222                                             bool allowUnsafeClaim);
3223   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
3224   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
3225   llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr);
3226 
3227   void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
3228 
3229   static Destroyer destroyARCStrongImprecise;
3230   static Destroyer destroyARCStrongPrecise;
3231   static Destroyer destroyARCWeak;
3232 
3233   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
3234   llvm::Value *EmitObjCAutoreleasePoolPush();
3235   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
3236   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
3237   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
3238 
3239   /// \brief Emits a reference binding to the passed in expression.
3240   RValue EmitReferenceBindingToExpr(const Expr *E);
3241 
3242   //===--------------------------------------------------------------------===//
3243   //                           Expression Emission
3244   //===--------------------------------------------------------------------===//
3245 
3246   // Expressions are broken into three classes: scalar, complex, aggregate.
3247 
3248   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
3249   /// scalar type, returning the result.
3250   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
3251 
3252   /// Emit a conversion from the specified type to the specified destination
3253   /// type, both of which are LLVM scalar types.
3254   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
3255                                     QualType DstTy, SourceLocation Loc);
3256 
3257   /// Emit a conversion from the specified complex type to the specified
3258   /// destination type, where the destination type is an LLVM scalar type.
3259   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
3260                                              QualType DstTy,
3261                                              SourceLocation Loc);
3262 
3263   /// EmitAggExpr - Emit the computation of the specified expression
3264   /// of aggregate type.  The result is computed into the given slot,
3265   /// which may be null to indicate that the value is not needed.
3266   void EmitAggExpr(const Expr *E, AggValueSlot AS);
3267 
3268   /// EmitAggExprToLValue - Emit the computation of the specified expression of
3269   /// aggregate type into a temporary LValue.
3270   LValue EmitAggExprToLValue(const Expr *E);
3271 
3272   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
3273   /// make sure it survives garbage collection until this point.
3274   void EmitExtendGCLifetime(llvm::Value *object);
3275 
3276   /// EmitComplexExpr - Emit the computation of the specified expression of
3277   /// complex type, returning the result.
3278   ComplexPairTy EmitComplexExpr(const Expr *E,
3279                                 bool IgnoreReal = false,
3280                                 bool IgnoreImag = false);
3281 
3282   /// EmitComplexExprIntoLValue - Emit the given expression of complex
3283   /// type and place its result into the specified l-value.
3284   void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
3285 
3286   /// EmitStoreOfComplex - Store a complex number into the specified l-value.
3287   void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
3288 
3289   /// EmitLoadOfComplex - Load a complex number from the specified l-value.
3290   ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
3291 
3292   Address emitAddrOfRealComponent(Address complex, QualType complexType);
3293   Address emitAddrOfImagComponent(Address complex, QualType complexType);
3294 
3295   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
3296   /// global variable that has already been created for it.  If the initializer
3297   /// has a different type than GV does, this may free GV and return a different
3298   /// one.  Otherwise it just returns GV.
3299   llvm::GlobalVariable *
3300   AddInitializerToStaticVarDecl(const VarDecl &D,
3301                                 llvm::GlobalVariable *GV);
3302 
3303 
3304   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
3305   /// variable with global storage.
3306   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
3307                                 bool PerformInit);
3308 
3309   llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::Constant *Dtor,
3310                                    llvm::Constant *Addr);
3311 
3312   /// Call atexit() with a function that passes the given argument to
3313   /// the given function.
3314   void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn,
3315                                     llvm::Constant *addr);
3316 
3317   /// Emit code in this function to perform a guarded variable
3318   /// initialization.  Guarded initializations are used when it's not
3319   /// possible to prove that an initialization will be done exactly
3320   /// once, e.g. with a static local variable or a static data member
3321   /// of a class template.
3322   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
3323                           bool PerformInit);
3324 
3325   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
3326   /// variables.
3327   void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
3328                                  ArrayRef<llvm::Function *> CXXThreadLocals,
3329                                  Address Guard = Address::invalid());
3330 
3331   /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
3332   /// variables.
3333   void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn,
3334                                   const std::vector<std::pair<llvm::WeakVH,
3335                                   llvm::Constant*> > &DtorsAndObjects);
3336 
3337   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
3338                                         const VarDecl *D,
3339                                         llvm::GlobalVariable *Addr,
3340                                         bool PerformInit);
3341 
3342   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
3343 
3344   void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp);
3345 
3346   void enterFullExpression(const ExprWithCleanups *E) {
3347     if (E->getNumObjects() == 0) return;
3348     enterNonTrivialFullExpression(E);
3349   }
3350   void enterNonTrivialFullExpression(const ExprWithCleanups *E);
3351 
3352   void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
3353 
3354   void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest);
3355 
3356   RValue EmitAtomicExpr(AtomicExpr *E);
3357 
3358   //===--------------------------------------------------------------------===//
3359   //                         Annotations Emission
3360   //===--------------------------------------------------------------------===//
3361 
3362   /// Emit an annotation call (intrinsic or builtin).
3363   llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
3364                                   llvm::Value *AnnotatedVal,
3365                                   StringRef AnnotationStr,
3366                                   SourceLocation Location);
3367 
3368   /// Emit local annotations for the local variable V, declared by D.
3369   void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
3370 
3371   /// Emit field annotations for the given field & value. Returns the
3372   /// annotation result.
3373   Address EmitFieldAnnotations(const FieldDecl *D, Address V);
3374 
3375   //===--------------------------------------------------------------------===//
3376   //                             Internal Helpers
3377   //===--------------------------------------------------------------------===//
3378 
3379   /// ContainsLabel - Return true if the statement contains a label in it.  If
3380   /// this statement is not executed normally, it not containing a label means
3381   /// that we can just remove the code.
3382   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
3383 
3384   /// containsBreak - Return true if the statement contains a break out of it.
3385   /// If the statement (recursively) contains a switch or loop with a break
3386   /// inside of it, this is fine.
3387   static bool containsBreak(const Stmt *S);
3388 
3389   /// Determine if the given statement might introduce a declaration into the
3390   /// current scope, by being a (possibly-labelled) DeclStmt.
3391   static bool mightAddDeclToScope(const Stmt *S);
3392 
3393   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
3394   /// to a constant, or if it does but contains a label, return false.  If it
3395   /// constant folds return true and set the boolean result in Result.
3396   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result,
3397                                     bool AllowLabels = false);
3398 
3399   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
3400   /// to a constant, or if it does but contains a label, return false.  If it
3401   /// constant folds return true and set the folded value.
3402   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result,
3403                                     bool AllowLabels = false);
3404 
3405   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
3406   /// if statement) to the specified blocks.  Based on the condition, this might
3407   /// try to simplify the codegen of the conditional based on the branch.
3408   /// TrueCount should be the number of times we expect the condition to
3409   /// evaluate to true based on PGO data.
3410   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
3411                             llvm::BasicBlock *FalseBlock, uint64_t TrueCount);
3412 
3413   /// \brief Emit a description of a type in a format suitable for passing to
3414   /// a runtime sanitizer handler.
3415   llvm::Constant *EmitCheckTypeDescriptor(QualType T);
3416 
3417   /// \brief Convert a value into a format suitable for passing to a runtime
3418   /// sanitizer handler.
3419   llvm::Value *EmitCheckValue(llvm::Value *V);
3420 
3421   /// \brief Emit a description of a source location in a format suitable for
3422   /// passing to a runtime sanitizer handler.
3423   llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
3424 
3425   /// \brief Create a basic block that will call a handler function in a
3426   /// sanitizer runtime with the provided arguments, and create a conditional
3427   /// branch to it.
3428   void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
3429                  SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs,
3430                  ArrayRef<llvm::Value *> DynamicArgs);
3431 
3432   /// \brief Emit a slow path cross-DSO CFI check which calls __cfi_slowpath
3433   /// if Cond if false.
3434   void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond,
3435                             llvm::ConstantInt *TypeId, llvm::Value *Ptr,
3436                             ArrayRef<llvm::Constant *> StaticArgs);
3437 
3438   /// \brief Create a basic block that will call the trap intrinsic, and emit a
3439   /// conditional branch to it, for the -ftrapv checks.
3440   void EmitTrapCheck(llvm::Value *Checked);
3441 
3442   /// \brief Emit a call to trap or debugtrap and attach function attribute
3443   /// "trap-func-name" if specified.
3444   llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID);
3445 
3446   /// \brief Emit a cross-DSO CFI failure handling function.
3447   void EmitCfiCheckFail();
3448 
3449   /// \brief Create a check for a function parameter that may potentially be
3450   /// declared as non-null.
3451   void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc,
3452                            const FunctionDecl *FD, unsigned ParmNum);
3453 
3454   /// EmitCallArg - Emit a single call argument.
3455   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
3456 
3457   /// EmitDelegateCallArg - We are performing a delegate call; that
3458   /// is, the current function is delegating to another one.  Produce
3459   /// a r-value suitable for passing the given parameter.
3460   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
3461                            SourceLocation loc);
3462 
3463   /// SetFPAccuracy - Set the minimum required accuracy of the given floating
3464   /// point operation, expressed as the maximum relative error in ulp.
3465   void SetFPAccuracy(llvm::Value *Val, float Accuracy);
3466 
3467 private:
3468   llvm::MDNode *getRangeForLoadFromType(QualType Ty);
3469   void EmitReturnOfRValue(RValue RV, QualType Ty);
3470 
3471   void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
3472 
3473   llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4>
3474   DeferredReplacements;
3475 
3476   /// Set the address of a local variable.
3477   void setAddrOfLocalVar(const VarDecl *VD, Address Addr) {
3478     assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!");
3479     LocalDeclMap.insert({VD, Addr});
3480   }
3481 
3482   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
3483   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
3484   ///
3485   /// \param AI - The first function argument of the expansion.
3486   void ExpandTypeFromArgs(QualType Ty, LValue Dst,
3487                           SmallVectorImpl<llvm::Value *>::iterator &AI);
3488 
3489   /// ExpandTypeToArgs - Expand an RValue \arg RV, with the LLVM type for \arg
3490   /// Ty, into individual arguments on the provided vector \arg IRCallArgs,
3491   /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand.
3492   void ExpandTypeToArgs(QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy,
3493                         SmallVectorImpl<llvm::Value *> &IRCallArgs,
3494                         unsigned &IRCallArgPos);
3495 
3496   llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
3497                             const Expr *InputExpr, std::string &ConstraintStr);
3498 
3499   llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
3500                                   LValue InputValue, QualType InputType,
3501                                   std::string &ConstraintStr,
3502                                   SourceLocation Loc);
3503 
3504   /// \brief Attempts to statically evaluate the object size of E. If that
3505   /// fails, emits code to figure the size of E out for us. This is
3506   /// pass_object_size aware.
3507   llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
3508                                                llvm::IntegerType *ResType);
3509 
3510   /// \brief Emits the size of E, as required by __builtin_object_size. This
3511   /// function is aware of pass_object_size parameters, and will act accordingly
3512   /// if E is a parameter with the pass_object_size attribute.
3513   llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type,
3514                                      llvm::IntegerType *ResType);
3515 
3516 public:
3517 #ifndef NDEBUG
3518   // Determine whether the given argument is an Objective-C method
3519   // that may have type parameters in its signature.
3520   static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) {
3521     const DeclContext *dc = method->getDeclContext();
3522     if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) {
3523       return classDecl->getTypeParamListAsWritten();
3524     }
3525 
3526     if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) {
3527       return catDecl->getTypeParamList();
3528     }
3529 
3530     return false;
3531   }
3532 
3533   template<typename T>
3534   static bool isObjCMethodWithTypeParams(const T *) { return false; }
3535 #endif
3536 
3537   enum class EvaluationOrder {
3538     ///! No language constraints on evaluation order.
3539     Default,
3540     ///! Language semantics require left-to-right evaluation.
3541     ForceLeftToRight,
3542     ///! Language semantics require right-to-left evaluation.
3543     ForceRightToLeft
3544   };
3545 
3546   /// EmitCallArgs - Emit call arguments for a function.
3547   template <typename T>
3548   void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo,
3549                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3550                     const FunctionDecl *CalleeDecl = nullptr,
3551                     unsigned ParamsToSkip = 0,
3552                     EvaluationOrder Order = EvaluationOrder::Default) {
3553     SmallVector<QualType, 16> ArgTypes;
3554     CallExpr::const_arg_iterator Arg = ArgRange.begin();
3555 
3556     assert((ParamsToSkip == 0 || CallArgTypeInfo) &&
3557            "Can't skip parameters if type info is not provided");
3558     if (CallArgTypeInfo) {
3559 #ifndef NDEBUG
3560       bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo);
3561 #endif
3562 
3563       // First, use the argument types that the type info knows about
3564       for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip,
3565                 E = CallArgTypeInfo->param_type_end();
3566            I != E; ++I, ++Arg) {
3567         assert(Arg != ArgRange.end() && "Running over edge of argument list!");
3568         assert((isGenericMethod ||
3569                 ((*I)->isVariablyModifiedType() ||
3570                  (*I).getNonReferenceType()->isObjCRetainableType() ||
3571                  getContext()
3572                          .getCanonicalType((*I).getNonReferenceType())
3573                          .getTypePtr() ==
3574                      getContext()
3575                          .getCanonicalType((*Arg)->getType())
3576                          .getTypePtr())) &&
3577                "type mismatch in call argument!");
3578         ArgTypes.push_back(*I);
3579       }
3580     }
3581 
3582     // Either we've emitted all the call args, or we have a call to variadic
3583     // function.
3584     assert((Arg == ArgRange.end() || !CallArgTypeInfo ||
3585             CallArgTypeInfo->isVariadic()) &&
3586            "Extra arguments in non-variadic function!");
3587 
3588     // If we still have any arguments, emit them using the type of the argument.
3589     for (auto *A : llvm::make_range(Arg, ArgRange.end()))
3590       ArgTypes.push_back(CallArgTypeInfo ? getVarArgType(A) : A->getType());
3591 
3592     EmitCallArgs(Args, ArgTypes, ArgRange, CalleeDecl, ParamsToSkip, Order);
3593   }
3594 
3595   void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes,
3596                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3597                     const FunctionDecl *CalleeDecl = nullptr,
3598                     unsigned ParamsToSkip = 0,
3599                     EvaluationOrder Order = EvaluationOrder::Default);
3600 
3601   /// EmitPointerWithAlignment - Given an expression with a pointer
3602   /// type, emit the value and compute our best estimate of the
3603   /// alignment of the pointee.
3604   ///
3605   /// Note that this function will conservatively fall back on the type
3606   /// when it doesn't
3607   ///
3608   /// \param Source - If non-null, this will be initialized with
3609   ///   information about the source of the alignment.  Note that this
3610   ///   function will conservatively fall back on the type when it
3611   ///   doesn't recognize the expression, which means that sometimes
3612   ///
3613   ///   a worst-case One
3614   ///   reasonable way to use this information is when there's a
3615   ///   language guarantee that the pointer must be aligned to some
3616   ///   stricter value, and we're simply trying to ensure that
3617   ///   sufficiently obvious uses of under-aligned objects don't get
3618   ///   miscompiled; for example, a placement new into the address of
3619   ///   a local variable.  In such a case, it's quite reasonable to
3620   ///   just ignore the returned alignment when it isn't from an
3621   ///   explicit source.
3622   Address EmitPointerWithAlignment(const Expr *Addr,
3623                                    AlignmentSource *Source = nullptr);
3624 
3625   void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK);
3626 
3627 private:
3628   QualType getVarArgType(const Expr *Arg);
3629 
3630   const TargetCodeGenInfo &getTargetHooks() const {
3631     return CGM.getTargetCodeGenInfo();
3632   }
3633 
3634   void EmitDeclMetadata();
3635 
3636   BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType,
3637                                   const AutoVarEmission &emission);
3638 
3639   void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
3640 
3641   llvm::Value *GetValueForARMHint(unsigned BuiltinID);
3642 };
3643 
3644 /// Helper class with most of the code for saving a value for a
3645 /// conditional expression cleanup.
3646 struct DominatingLLVMValue {
3647   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
3648 
3649   /// Answer whether the given value needs extra work to be saved.
3650   static bool needsSaving(llvm::Value *value) {
3651     // If it's not an instruction, we don't need to save.
3652     if (!isa<llvm::Instruction>(value)) return false;
3653 
3654     // If it's an instruction in the entry block, we don't need to save.
3655     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
3656     return (block != &block->getParent()->getEntryBlock());
3657   }
3658 
3659   /// Try to save the given value.
3660   static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
3661     if (!needsSaving(value)) return saved_type(value, false);
3662 
3663     // Otherwise, we need an alloca.
3664     auto align = CharUnits::fromQuantity(
3665               CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType()));
3666     Address alloca =
3667       CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save");
3668     CGF.Builder.CreateStore(value, alloca);
3669 
3670     return saved_type(alloca.getPointer(), true);
3671   }
3672 
3673   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
3674     // If the value says it wasn't saved, trust that it's still dominating.
3675     if (!value.getInt()) return value.getPointer();
3676 
3677     // Otherwise, it should be an alloca instruction, as set up in save().
3678     auto alloca = cast<llvm::AllocaInst>(value.getPointer());
3679     return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlignment());
3680   }
3681 };
3682 
3683 /// A partial specialization of DominatingValue for llvm::Values that
3684 /// might be llvm::Instructions.
3685 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
3686   typedef T *type;
3687   static type restore(CodeGenFunction &CGF, saved_type value) {
3688     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
3689   }
3690 };
3691 
3692 /// A specialization of DominatingValue for Address.
3693 template <> struct DominatingValue<Address> {
3694   typedef Address type;
3695 
3696   struct saved_type {
3697     DominatingLLVMValue::saved_type SavedValue;
3698     CharUnits Alignment;
3699   };
3700 
3701   static bool needsSaving(type value) {
3702     return DominatingLLVMValue::needsSaving(value.getPointer());
3703   }
3704   static saved_type save(CodeGenFunction &CGF, type value) {
3705     return { DominatingLLVMValue::save(CGF, value.getPointer()),
3706              value.getAlignment() };
3707   }
3708   static type restore(CodeGenFunction &CGF, saved_type value) {
3709     return Address(DominatingLLVMValue::restore(CGF, value.SavedValue),
3710                    value.Alignment);
3711   }
3712 };
3713 
3714 /// A specialization of DominatingValue for RValue.
3715 template <> struct DominatingValue<RValue> {
3716   typedef RValue type;
3717   class saved_type {
3718     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
3719                 AggregateAddress, ComplexAddress };
3720 
3721     llvm::Value *Value;
3722     unsigned K : 3;
3723     unsigned Align : 29;
3724     saved_type(llvm::Value *v, Kind k, unsigned a = 0)
3725       : Value(v), K(k), Align(a) {}
3726 
3727   public:
3728     static bool needsSaving(RValue value);
3729     static saved_type save(CodeGenFunction &CGF, RValue value);
3730     RValue restore(CodeGenFunction &CGF);
3731 
3732     // implementations in CGCleanup.cpp
3733   };
3734 
3735   static bool needsSaving(type value) {
3736     return saved_type::needsSaving(value);
3737   }
3738   static saved_type save(CodeGenFunction &CGF, type value) {
3739     return saved_type::save(CGF, value);
3740   }
3741   static type restore(CodeGenFunction &CGF, saved_type value) {
3742     return value.restore(CGF);
3743   }
3744 };
3745 
3746 }  // end namespace CodeGen
3747 }  // end namespace clang
3748 
3749 #endif
3750