1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the internal per-function state used for llvm translation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
15 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
16 
17 #include "CGBuilder.h"
18 #include "CGDebugInfo.h"
19 #include "CGLoopInfo.h"
20 #include "CGValue.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "EHScopeStack.h"
24 #include "VarBypassDetector.h"
25 #include "clang/AST/CharUnits.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/ExprObjC.h"
28 #include "clang/AST/ExprOpenMP.h"
29 #include "clang/AST/Type.h"
30 #include "clang/Basic/ABI.h"
31 #include "clang/Basic/CapturedStmt.h"
32 #include "clang/Basic/OpenMPKinds.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "clang/Frontend/CodeGenOptions.h"
35 #include "llvm/ADT/ArrayRef.h"
36 #include "llvm/ADT/DenseMap.h"
37 #include "llvm/ADT/SmallVector.h"
38 #include "llvm/IR/ValueHandle.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Transforms/Utils/SanitizerStats.h"
41 
42 namespace llvm {
43 class BasicBlock;
44 class LLVMContext;
45 class MDNode;
46 class Module;
47 class SwitchInst;
48 class Twine;
49 class Value;
50 class CallSite;
51 }
52 
53 namespace clang {
54 class ASTContext;
55 class BlockDecl;
56 class CXXDestructorDecl;
57 class CXXForRangeStmt;
58 class CXXTryStmt;
59 class Decl;
60 class LabelDecl;
61 class EnumConstantDecl;
62 class FunctionDecl;
63 class FunctionProtoType;
64 class LabelStmt;
65 class ObjCContainerDecl;
66 class ObjCInterfaceDecl;
67 class ObjCIvarDecl;
68 class ObjCMethodDecl;
69 class ObjCImplementationDecl;
70 class ObjCPropertyImplDecl;
71 class TargetInfo;
72 class VarDecl;
73 class ObjCForCollectionStmt;
74 class ObjCAtTryStmt;
75 class ObjCAtThrowStmt;
76 class ObjCAtSynchronizedStmt;
77 class ObjCAutoreleasePoolStmt;
78 
79 namespace analyze_os_log {
80 class OSLogBufferLayout;
81 }
82 
83 namespace CodeGen {
84 class CodeGenTypes;
85 class CGCallee;
86 class CGFunctionInfo;
87 class CGRecordLayout;
88 class CGBlockInfo;
89 class CGCXXABI;
90 class BlockByrefHelpers;
91 class BlockByrefInfo;
92 class BlockFlags;
93 class BlockFieldFlags;
94 class RegionCodeGenTy;
95 class TargetCodeGenInfo;
96 struct OMPTaskDataTy;
97 struct CGCoroData;
98 
99 /// The kind of evaluation to perform on values of a particular
100 /// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
101 /// CGExprAgg?
102 ///
103 /// TODO: should vectors maybe be split out into their own thing?
104 enum TypeEvaluationKind {
105   TEK_Scalar,
106   TEK_Complex,
107   TEK_Aggregate
108 };
109 
110 #define LIST_SANITIZER_CHECKS                                                  \
111   SANITIZER_CHECK(AddOverflow, add_overflow, 0)                                \
112   SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0)                  \
113   SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0)                             \
114   SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0)                          \
115   SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0)            \
116   SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0)                   \
117   SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 0)             \
118   SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0)                          \
119   SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0)                     \
120   SANITIZER_CHECK(MissingReturn, missing_return, 0)                            \
121   SANITIZER_CHECK(MulOverflow, mul_overflow, 0)                                \
122   SANITIZER_CHECK(NegateOverflow, negate_overflow, 0)                          \
123   SANITIZER_CHECK(NullabilityArg, nullability_arg, 0)                          \
124   SANITIZER_CHECK(NullabilityReturn, nullability_return, 1)                    \
125   SANITIZER_CHECK(NonnullArg, nonnull_arg, 0)                                  \
126   SANITIZER_CHECK(NonnullReturn, nonnull_return, 1)                            \
127   SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0)                               \
128   SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0)                        \
129   SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0)                    \
130   SANITIZER_CHECK(SubOverflow, sub_overflow, 0)                                \
131   SANITIZER_CHECK(TypeMismatch, type_mismatch, 1)                              \
132   SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0)
133 
134 enum SanitizerHandler {
135 #define SANITIZER_CHECK(Enum, Name, Version) Enum,
136   LIST_SANITIZER_CHECKS
137 #undef SANITIZER_CHECK
138 };
139 
140 /// CodeGenFunction - This class organizes the per-function state that is used
141 /// while generating LLVM code.
142 class CodeGenFunction : public CodeGenTypeCache {
143   CodeGenFunction(const CodeGenFunction &) = delete;
144   void operator=(const CodeGenFunction &) = delete;
145 
146   friend class CGCXXABI;
147 public:
148   /// A jump destination is an abstract label, branching to which may
149   /// require a jump out through normal cleanups.
150   struct JumpDest {
151     JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {}
152     JumpDest(llvm::BasicBlock *Block,
153              EHScopeStack::stable_iterator Depth,
154              unsigned Index)
155       : Block(Block), ScopeDepth(Depth), Index(Index) {}
156 
157     bool isValid() const { return Block != nullptr; }
158     llvm::BasicBlock *getBlock() const { return Block; }
159     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
160     unsigned getDestIndex() const { return Index; }
161 
162     // This should be used cautiously.
163     void setScopeDepth(EHScopeStack::stable_iterator depth) {
164       ScopeDepth = depth;
165     }
166 
167   private:
168     llvm::BasicBlock *Block;
169     EHScopeStack::stable_iterator ScopeDepth;
170     unsigned Index;
171   };
172 
173   CodeGenModule &CGM;  // Per-module state.
174   const TargetInfo &Target;
175 
176   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
177   LoopInfoStack LoopStack;
178   CGBuilderTy Builder;
179 
180   // Stores variables for which we can't generate correct lifetime markers
181   // because of jumps.
182   VarBypassDetector Bypasses;
183 
184   // CodeGen lambda for loops and support for ordered clause
185   typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &,
186                                   JumpDest)>
187       CodeGenLoopTy;
188   typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation,
189                                   const unsigned, const bool)>
190       CodeGenOrderedTy;
191 
192   // Codegen lambda for loop bounds in worksharing loop constructs
193   typedef llvm::function_ref<std::pair<LValue, LValue>(
194       CodeGenFunction &, const OMPExecutableDirective &S)>
195       CodeGenLoopBoundsTy;
196 
197   // Codegen lambda for loop bounds in dispatch-based loop implementation
198   typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>(
199       CodeGenFunction &, const OMPExecutableDirective &S, Address LB,
200       Address UB)>
201       CodeGenDispatchBoundsTy;
202 
203   /// \brief CGBuilder insert helper. This function is called after an
204   /// instruction is created using Builder.
205   void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
206                     llvm::BasicBlock *BB,
207                     llvm::BasicBlock::iterator InsertPt) const;
208 
209   /// CurFuncDecl - Holds the Decl for the current outermost
210   /// non-closure context.
211   const Decl *CurFuncDecl;
212   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
213   const Decl *CurCodeDecl;
214   const CGFunctionInfo *CurFnInfo;
215   QualType FnRetTy;
216   llvm::Function *CurFn;
217 
218   // Holds coroutine data if the current function is a coroutine. We use a
219   // wrapper to manage its lifetime, so that we don't have to define CGCoroData
220   // in this header.
221   struct CGCoroInfo {
222     std::unique_ptr<CGCoroData> Data;
223     CGCoroInfo();
224     ~CGCoroInfo();
225   };
226   CGCoroInfo CurCoro;
227 
228   /// CurGD - The GlobalDecl for the current function being compiled.
229   GlobalDecl CurGD;
230 
231   /// PrologueCleanupDepth - The cleanup depth enclosing all the
232   /// cleanups associated with the parameters.
233   EHScopeStack::stable_iterator PrologueCleanupDepth;
234 
235   /// ReturnBlock - Unified return block.
236   JumpDest ReturnBlock;
237 
238   /// ReturnValue - The temporary alloca to hold the return
239   /// value. This is invalid iff the function has no return value.
240   Address ReturnValue;
241 
242   /// Return true if a label was seen in the current scope.
243   bool hasLabelBeenSeenInCurrentScope() const {
244     if (CurLexicalScope)
245       return CurLexicalScope->hasLabels();
246     return !LabelMap.empty();
247   }
248 
249   /// AllocaInsertPoint - This is an instruction in the entry block before which
250   /// we prefer to insert allocas.
251   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
252 
253   /// \brief API for captured statement code generation.
254   class CGCapturedStmtInfo {
255   public:
256     explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default)
257         : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
258     explicit CGCapturedStmtInfo(const CapturedStmt &S,
259                                 CapturedRegionKind K = CR_Default)
260       : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
261 
262       RecordDecl::field_iterator Field =
263         S.getCapturedRecordDecl()->field_begin();
264       for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
265                                                 E = S.capture_end();
266            I != E; ++I, ++Field) {
267         if (I->capturesThis())
268           CXXThisFieldDecl = *Field;
269         else if (I->capturesVariable())
270           CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
271         else if (I->capturesVariableByCopy())
272           CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
273       }
274     }
275 
276     virtual ~CGCapturedStmtInfo();
277 
278     CapturedRegionKind getKind() const { return Kind; }
279 
280     virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
281     // \brief Retrieve the value of the context parameter.
282     virtual llvm::Value *getContextValue() const { return ThisValue; }
283 
284     /// \brief Lookup the captured field decl for a variable.
285     virtual const FieldDecl *lookup(const VarDecl *VD) const {
286       return CaptureFields.lookup(VD->getCanonicalDecl());
287     }
288 
289     bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
290     virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
291 
292     static bool classof(const CGCapturedStmtInfo *) {
293       return true;
294     }
295 
296     /// \brief Emit the captured statement body.
297     virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
298       CGF.incrementProfileCounter(S);
299       CGF.EmitStmt(S);
300     }
301 
302     /// \brief Get the name of the capture helper.
303     virtual StringRef getHelperName() const { return "__captured_stmt"; }
304 
305   private:
306     /// \brief The kind of captured statement being generated.
307     CapturedRegionKind Kind;
308 
309     /// \brief Keep the map between VarDecl and FieldDecl.
310     llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
311 
312     /// \brief The base address of the captured record, passed in as the first
313     /// argument of the parallel region function.
314     llvm::Value *ThisValue;
315 
316     /// \brief Captured 'this' type.
317     FieldDecl *CXXThisFieldDecl;
318   };
319   CGCapturedStmtInfo *CapturedStmtInfo;
320 
321   /// \brief RAII for correct setting/restoring of CapturedStmtInfo.
322   class CGCapturedStmtRAII {
323   private:
324     CodeGenFunction &CGF;
325     CGCapturedStmtInfo *PrevCapturedStmtInfo;
326   public:
327     CGCapturedStmtRAII(CodeGenFunction &CGF,
328                        CGCapturedStmtInfo *NewCapturedStmtInfo)
329         : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) {
330       CGF.CapturedStmtInfo = NewCapturedStmtInfo;
331     }
332     ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; }
333   };
334 
335   /// An abstract representation of regular/ObjC call/message targets.
336   class AbstractCallee {
337     /// The function declaration of the callee.
338     const Decl *CalleeDecl;
339 
340   public:
341     AbstractCallee() : CalleeDecl(nullptr) {}
342     AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {}
343     AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {}
344     bool hasFunctionDecl() const {
345       return dyn_cast_or_null<FunctionDecl>(CalleeDecl);
346     }
347     const Decl *getDecl() const { return CalleeDecl; }
348     unsigned getNumParams() const {
349       if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
350         return FD->getNumParams();
351       return cast<ObjCMethodDecl>(CalleeDecl)->param_size();
352     }
353     const ParmVarDecl *getParamDecl(unsigned I) const {
354       if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
355         return FD->getParamDecl(I);
356       return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I);
357     }
358   };
359 
360   /// \brief Sanitizers enabled for this function.
361   SanitizerSet SanOpts;
362 
363   /// \brief True if CodeGen currently emits code implementing sanitizer checks.
364   bool IsSanitizerScope;
365 
366   /// \brief RAII object to set/unset CodeGenFunction::IsSanitizerScope.
367   class SanitizerScope {
368     CodeGenFunction *CGF;
369   public:
370     SanitizerScope(CodeGenFunction *CGF);
371     ~SanitizerScope();
372   };
373 
374   /// In C++, whether we are code generating a thunk.  This controls whether we
375   /// should emit cleanups.
376   bool CurFuncIsThunk;
377 
378   /// In ARC, whether we should autorelease the return value.
379   bool AutoreleaseResult;
380 
381   /// Whether we processed a Microsoft-style asm block during CodeGen. These can
382   /// potentially set the return value.
383   bool SawAsmBlock;
384 
385   const FunctionDecl *CurSEHParent = nullptr;
386 
387   /// True if the current function is an outlined SEH helper. This can be a
388   /// finally block or filter expression.
389   bool IsOutlinedSEHHelper;
390 
391   const CodeGen::CGBlockInfo *BlockInfo;
392   llvm::Value *BlockPointer;
393 
394   llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
395   FieldDecl *LambdaThisCaptureField;
396 
397   /// \brief A mapping from NRVO variables to the flags used to indicate
398   /// when the NRVO has been applied to this variable.
399   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
400 
401   EHScopeStack EHStack;
402   llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
403   llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack;
404 
405   llvm::Instruction *CurrentFuncletPad = nullptr;
406 
407   class CallLifetimeEnd final : public EHScopeStack::Cleanup {
408     llvm::Value *Addr;
409     llvm::Value *Size;
410 
411   public:
412     CallLifetimeEnd(Address addr, llvm::Value *size)
413         : Addr(addr.getPointer()), Size(size) {}
414 
415     void Emit(CodeGenFunction &CGF, Flags flags) override {
416       CGF.EmitLifetimeEnd(Size, Addr);
417     }
418   };
419 
420   /// Header for data within LifetimeExtendedCleanupStack.
421   struct LifetimeExtendedCleanupHeader {
422     /// The size of the following cleanup object.
423     unsigned Size;
424     /// The kind of cleanup to push: a value from the CleanupKind enumeration.
425     CleanupKind Kind;
426 
427     size_t getSize() const { return Size; }
428     CleanupKind getKind() const { return Kind; }
429   };
430 
431   /// i32s containing the indexes of the cleanup destinations.
432   llvm::AllocaInst *NormalCleanupDest;
433 
434   unsigned NextCleanupDestIndex;
435 
436   /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
437   CGBlockInfo *FirstBlockInfo;
438 
439   /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
440   llvm::BasicBlock *EHResumeBlock;
441 
442   /// The exception slot.  All landing pads write the current exception pointer
443   /// into this alloca.
444   llvm::Value *ExceptionSlot;
445 
446   /// The selector slot.  Under the MandatoryCleanup model, all landing pads
447   /// write the current selector value into this alloca.
448   llvm::AllocaInst *EHSelectorSlot;
449 
450   /// A stack of exception code slots. Entering an __except block pushes a slot
451   /// on the stack and leaving pops one. The __exception_code() intrinsic loads
452   /// a value from the top of the stack.
453   SmallVector<Address, 1> SEHCodeSlotStack;
454 
455   /// Value returned by __exception_info intrinsic.
456   llvm::Value *SEHInfo = nullptr;
457 
458   /// Emits a landing pad for the current EH stack.
459   llvm::BasicBlock *EmitLandingPad();
460 
461   llvm::BasicBlock *getInvokeDestImpl();
462 
463   template <class T>
464   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
465     return DominatingValue<T>::save(*this, value);
466   }
467 
468 public:
469   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
470   /// rethrows.
471   SmallVector<llvm::Value*, 8> ObjCEHValueStack;
472 
473   /// A class controlling the emission of a finally block.
474   class FinallyInfo {
475     /// Where the catchall's edge through the cleanup should go.
476     JumpDest RethrowDest;
477 
478     /// A function to call to enter the catch.
479     llvm::Constant *BeginCatchFn;
480 
481     /// An i1 variable indicating whether or not the @finally is
482     /// running for an exception.
483     llvm::AllocaInst *ForEHVar;
484 
485     /// An i8* variable into which the exception pointer to rethrow
486     /// has been saved.
487     llvm::AllocaInst *SavedExnVar;
488 
489   public:
490     void enter(CodeGenFunction &CGF, const Stmt *Finally,
491                llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
492                llvm::Constant *rethrowFn);
493     void exit(CodeGenFunction &CGF);
494   };
495 
496   /// Returns true inside SEH __try blocks.
497   bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }
498 
499   /// Returns true while emitting a cleanuppad.
500   bool isCleanupPadScope() const {
501     return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad);
502   }
503 
504   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
505   /// current full-expression.  Safe against the possibility that
506   /// we're currently inside a conditionally-evaluated expression.
507   template <class T, class... As>
508   void pushFullExprCleanup(CleanupKind kind, As... A) {
509     // If we're not in a conditional branch, or if none of the
510     // arguments requires saving, then use the unconditional cleanup.
511     if (!isInConditionalBranch())
512       return EHStack.pushCleanup<T>(kind, A...);
513 
514     // Stash values in a tuple so we can guarantee the order of saves.
515     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
516     SavedTuple Saved{saveValueInCond(A)...};
517 
518     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
519     EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
520     initFullExprCleanup();
521   }
522 
523   /// \brief Queue a cleanup to be pushed after finishing the current
524   /// full-expression.
525   template <class T, class... As>
526   void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
527     assert(!isInConditionalBranch() && "can't defer conditional cleanup");
528 
529     LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind };
530 
531     size_t OldSize = LifetimeExtendedCleanupStack.size();
532     LifetimeExtendedCleanupStack.resize(
533         LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size);
534 
535     static_assert(sizeof(Header) % alignof(T) == 0,
536                   "Cleanup will be allocated on misaligned address");
537     char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
538     new (Buffer) LifetimeExtendedCleanupHeader(Header);
539     new (Buffer + sizeof(Header)) T(A...);
540   }
541 
542   /// Set up the last cleaup that was pushed as a conditional
543   /// full-expression cleanup.
544   void initFullExprCleanup();
545 
546   /// PushDestructorCleanup - Push a cleanup to call the
547   /// complete-object destructor of an object of the given type at the
548   /// given address.  Does nothing if T is not a C++ class type with a
549   /// non-trivial destructor.
550   void PushDestructorCleanup(QualType T, Address Addr);
551 
552   /// PushDestructorCleanup - Push a cleanup to call the
553   /// complete-object variant of the given destructor on the object at
554   /// the given address.
555   void PushDestructorCleanup(const CXXDestructorDecl *Dtor, Address Addr);
556 
557   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
558   /// process all branch fixups.
559   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
560 
561   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
562   /// The block cannot be reactivated.  Pops it if it's the top of the
563   /// stack.
564   ///
565   /// \param DominatingIP - An instruction which is known to
566   ///   dominate the current IP (if set) and which lies along
567   ///   all paths of execution between the current IP and the
568   ///   the point at which the cleanup comes into scope.
569   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
570                               llvm::Instruction *DominatingIP);
571 
572   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
573   /// Cannot be used to resurrect a deactivated cleanup.
574   ///
575   /// \param DominatingIP - An instruction which is known to
576   ///   dominate the current IP (if set) and which lies along
577   ///   all paths of execution between the current IP and the
578   ///   the point at which the cleanup comes into scope.
579   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
580                             llvm::Instruction *DominatingIP);
581 
582   /// \brief Enters a new scope for capturing cleanups, all of which
583   /// will be executed once the scope is exited.
584   class RunCleanupsScope {
585     EHScopeStack::stable_iterator CleanupStackDepth;
586     size_t LifetimeExtendedCleanupStackSize;
587     bool OldDidCallStackSave;
588   protected:
589     bool PerformCleanup;
590   private:
591 
592     RunCleanupsScope(const RunCleanupsScope &) = delete;
593     void operator=(const RunCleanupsScope &) = delete;
594 
595   protected:
596     CodeGenFunction& CGF;
597 
598   public:
599     /// \brief Enter a new cleanup scope.
600     explicit RunCleanupsScope(CodeGenFunction &CGF)
601       : PerformCleanup(true), CGF(CGF)
602     {
603       CleanupStackDepth = CGF.EHStack.stable_begin();
604       LifetimeExtendedCleanupStackSize =
605           CGF.LifetimeExtendedCleanupStack.size();
606       OldDidCallStackSave = CGF.DidCallStackSave;
607       CGF.DidCallStackSave = false;
608     }
609 
610     /// \brief Exit this cleanup scope, emitting any accumulated cleanups.
611     ~RunCleanupsScope() {
612       if (PerformCleanup)
613         ForceCleanup();
614     }
615 
616     /// \brief Determine whether this scope requires any cleanups.
617     bool requiresCleanups() const {
618       return CGF.EHStack.stable_begin() != CleanupStackDepth;
619     }
620 
621     /// \brief Force the emission of cleanups now, instead of waiting
622     /// until this object is destroyed.
623     /// \param ValuesToReload - A list of values that need to be available at
624     /// the insertion point after cleanup emission. If cleanup emission created
625     /// a shared cleanup block, these value pointers will be rewritten.
626     /// Otherwise, they not will be modified.
627     void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) {
628       assert(PerformCleanup && "Already forced cleanup");
629       CGF.DidCallStackSave = OldDidCallStackSave;
630       CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize,
631                            ValuesToReload);
632       PerformCleanup = false;
633     }
634   };
635 
636   class LexicalScope : public RunCleanupsScope {
637     SourceRange Range;
638     SmallVector<const LabelDecl*, 4> Labels;
639     LexicalScope *ParentScope;
640 
641     LexicalScope(const LexicalScope &) = delete;
642     void operator=(const LexicalScope &) = delete;
643 
644   public:
645     /// \brief Enter a new cleanup scope.
646     explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
647       : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
648       CGF.CurLexicalScope = this;
649       if (CGDebugInfo *DI = CGF.getDebugInfo())
650         DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
651     }
652 
653     void addLabel(const LabelDecl *label) {
654       assert(PerformCleanup && "adding label to dead scope?");
655       Labels.push_back(label);
656     }
657 
658     /// \brief Exit this cleanup scope, emitting any accumulated
659     /// cleanups.
660     ~LexicalScope() {
661       if (CGDebugInfo *DI = CGF.getDebugInfo())
662         DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
663 
664       // If we should perform a cleanup, force them now.  Note that
665       // this ends the cleanup scope before rescoping any labels.
666       if (PerformCleanup) {
667         ApplyDebugLocation DL(CGF, Range.getEnd());
668         ForceCleanup();
669       }
670     }
671 
672     /// \brief Force the emission of cleanups now, instead of waiting
673     /// until this object is destroyed.
674     void ForceCleanup() {
675       CGF.CurLexicalScope = ParentScope;
676       RunCleanupsScope::ForceCleanup();
677 
678       if (!Labels.empty())
679         rescopeLabels();
680     }
681 
682     bool hasLabels() const {
683       return !Labels.empty();
684     }
685 
686     void rescopeLabels();
687   };
688 
689   typedef llvm::DenseMap<const Decl *, Address> DeclMapTy;
690 
691   /// \brief The scope used to remap some variables as private in the OpenMP
692   /// loop body (or other captured region emitted without outlining), and to
693   /// restore old vars back on exit.
694   class OMPPrivateScope : public RunCleanupsScope {
695     DeclMapTy SavedLocals;
696     DeclMapTy SavedPrivates;
697 
698   private:
699     OMPPrivateScope(const OMPPrivateScope &) = delete;
700     void operator=(const OMPPrivateScope &) = delete;
701 
702   public:
703     /// \brief Enter a new OpenMP private scope.
704     explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}
705 
706     /// \brief Registers \a LocalVD variable as a private and apply \a
707     /// PrivateGen function for it to generate corresponding private variable.
708     /// \a PrivateGen returns an address of the generated private variable.
709     /// \return true if the variable is registered as private, false if it has
710     /// been privatized already.
711     bool
712     addPrivate(const VarDecl *LocalVD,
713                llvm::function_ref<Address()> PrivateGen) {
714       assert(PerformCleanup && "adding private to dead scope");
715 
716       LocalVD = LocalVD->getCanonicalDecl();
717       // Only save it once.
718       if (SavedLocals.count(LocalVD)) return false;
719 
720       // Copy the existing local entry to SavedLocals.
721       auto it = CGF.LocalDeclMap.find(LocalVD);
722       if (it != CGF.LocalDeclMap.end()) {
723         SavedLocals.insert({LocalVD, it->second});
724       } else {
725         SavedLocals.insert({LocalVD, Address::invalid()});
726       }
727 
728       // Generate the private entry.
729       Address Addr = PrivateGen();
730       QualType VarTy = LocalVD->getType();
731       if (VarTy->isReferenceType()) {
732         Address Temp = CGF.CreateMemTemp(VarTy);
733         CGF.Builder.CreateStore(Addr.getPointer(), Temp);
734         Addr = Temp;
735       }
736       SavedPrivates.insert({LocalVD, Addr});
737 
738       return true;
739     }
740 
741     /// \brief Privatizes local variables previously registered as private.
742     /// Registration is separate from the actual privatization to allow
743     /// initializers use values of the original variables, not the private one.
744     /// This is important, for example, if the private variable is a class
745     /// variable initialized by a constructor that references other private
746     /// variables. But at initialization original variables must be used, not
747     /// private copies.
748     /// \return true if at least one variable was privatized, false otherwise.
749     bool Privatize() {
750       copyInto(SavedPrivates, CGF.LocalDeclMap);
751       SavedPrivates.clear();
752       return !SavedLocals.empty();
753     }
754 
755     void ForceCleanup() {
756       RunCleanupsScope::ForceCleanup();
757       copyInto(SavedLocals, CGF.LocalDeclMap);
758       SavedLocals.clear();
759     }
760 
761     /// \brief Exit scope - all the mapped variables are restored.
762     ~OMPPrivateScope() {
763       if (PerformCleanup)
764         ForceCleanup();
765     }
766 
767     /// Checks if the global variable is captured in current function.
768     bool isGlobalVarCaptured(const VarDecl *VD) const {
769       VD = VD->getCanonicalDecl();
770       return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0;
771     }
772 
773   private:
774     /// Copy all the entries in the source map over the corresponding
775     /// entries in the destination, which must exist.
776     static void copyInto(const DeclMapTy &src, DeclMapTy &dest) {
777       for (auto &pair : src) {
778         if (!pair.second.isValid()) {
779           dest.erase(pair.first);
780           continue;
781         }
782 
783         auto it = dest.find(pair.first);
784         if (it != dest.end()) {
785           it->second = pair.second;
786         } else {
787           dest.insert(pair);
788         }
789       }
790     }
791   };
792 
793   /// \brief Takes the old cleanup stack size and emits the cleanup blocks
794   /// that have been added.
795   void
796   PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
797                    std::initializer_list<llvm::Value **> ValuesToReload = {});
798 
799   /// \brief Takes the old cleanup stack size and emits the cleanup blocks
800   /// that have been added, then adds all lifetime-extended cleanups from
801   /// the given position to the stack.
802   void
803   PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
804                    size_t OldLifetimeExtendedStackSize,
805                    std::initializer_list<llvm::Value **> ValuesToReload = {});
806 
807   void ResolveBranchFixups(llvm::BasicBlock *Target);
808 
809   /// The given basic block lies in the current EH scope, but may be a
810   /// target of a potentially scope-crossing jump; get a stable handle
811   /// to which we can perform this jump later.
812   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
813     return JumpDest(Target,
814                     EHStack.getInnermostNormalCleanup(),
815                     NextCleanupDestIndex++);
816   }
817 
818   /// The given basic block lies in the current EH scope, but may be a
819   /// target of a potentially scope-crossing jump; get a stable handle
820   /// to which we can perform this jump later.
821   JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
822     return getJumpDestInCurrentScope(createBasicBlock(Name));
823   }
824 
825   /// EmitBranchThroughCleanup - Emit a branch from the current insert
826   /// block through the normal cleanup handling code (if any) and then
827   /// on to \arg Dest.
828   void EmitBranchThroughCleanup(JumpDest Dest);
829 
830   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
831   /// specified destination obviously has no cleanups to run.  'false' is always
832   /// a conservatively correct answer for this method.
833   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
834 
835   /// popCatchScope - Pops the catch scope at the top of the EHScope
836   /// stack, emitting any required code (other than the catch handlers
837   /// themselves).
838   void popCatchScope();
839 
840   llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
841   llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
842   llvm::BasicBlock *getMSVCDispatchBlock(EHScopeStack::stable_iterator scope);
843 
844   /// An object to manage conditionally-evaluated expressions.
845   class ConditionalEvaluation {
846     llvm::BasicBlock *StartBB;
847 
848   public:
849     ConditionalEvaluation(CodeGenFunction &CGF)
850       : StartBB(CGF.Builder.GetInsertBlock()) {}
851 
852     void begin(CodeGenFunction &CGF) {
853       assert(CGF.OutermostConditional != this);
854       if (!CGF.OutermostConditional)
855         CGF.OutermostConditional = this;
856     }
857 
858     void end(CodeGenFunction &CGF) {
859       assert(CGF.OutermostConditional != nullptr);
860       if (CGF.OutermostConditional == this)
861         CGF.OutermostConditional = nullptr;
862     }
863 
864     /// Returns a block which will be executed prior to each
865     /// evaluation of the conditional code.
866     llvm::BasicBlock *getStartingBlock() const {
867       return StartBB;
868     }
869   };
870 
871   /// isInConditionalBranch - Return true if we're currently emitting
872   /// one branch or the other of a conditional expression.
873   bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
874 
875   void setBeforeOutermostConditional(llvm::Value *value, Address addr) {
876     assert(isInConditionalBranch());
877     llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
878     auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back());
879     store->setAlignment(addr.getAlignment().getQuantity());
880   }
881 
882   /// An RAII object to record that we're evaluating a statement
883   /// expression.
884   class StmtExprEvaluation {
885     CodeGenFunction &CGF;
886 
887     /// We have to save the outermost conditional: cleanups in a
888     /// statement expression aren't conditional just because the
889     /// StmtExpr is.
890     ConditionalEvaluation *SavedOutermostConditional;
891 
892   public:
893     StmtExprEvaluation(CodeGenFunction &CGF)
894       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
895       CGF.OutermostConditional = nullptr;
896     }
897 
898     ~StmtExprEvaluation() {
899       CGF.OutermostConditional = SavedOutermostConditional;
900       CGF.EnsureInsertPoint();
901     }
902   };
903 
904   /// An object which temporarily prevents a value from being
905   /// destroyed by aggressive peephole optimizations that assume that
906   /// all uses of a value have been realized in the IR.
907   class PeepholeProtection {
908     llvm::Instruction *Inst;
909     friend class CodeGenFunction;
910 
911   public:
912     PeepholeProtection() : Inst(nullptr) {}
913   };
914 
915   /// A non-RAII class containing all the information about a bound
916   /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
917   /// this which makes individual mappings very simple; using this
918   /// class directly is useful when you have a variable number of
919   /// opaque values or don't want the RAII functionality for some
920   /// reason.
921   class OpaqueValueMappingData {
922     const OpaqueValueExpr *OpaqueValue;
923     bool BoundLValue;
924     CodeGenFunction::PeepholeProtection Protection;
925 
926     OpaqueValueMappingData(const OpaqueValueExpr *ov,
927                            bool boundLValue)
928       : OpaqueValue(ov), BoundLValue(boundLValue) {}
929   public:
930     OpaqueValueMappingData() : OpaqueValue(nullptr) {}
931 
932     static bool shouldBindAsLValue(const Expr *expr) {
933       // gl-values should be bound as l-values for obvious reasons.
934       // Records should be bound as l-values because IR generation
935       // always keeps them in memory.  Expressions of function type
936       // act exactly like l-values but are formally required to be
937       // r-values in C.
938       return expr->isGLValue() ||
939              expr->getType()->isFunctionType() ||
940              hasAggregateEvaluationKind(expr->getType());
941     }
942 
943     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
944                                        const OpaqueValueExpr *ov,
945                                        const Expr *e) {
946       if (shouldBindAsLValue(ov))
947         return bind(CGF, ov, CGF.EmitLValue(e));
948       return bind(CGF, ov, CGF.EmitAnyExpr(e));
949     }
950 
951     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
952                                        const OpaqueValueExpr *ov,
953                                        const LValue &lv) {
954       assert(shouldBindAsLValue(ov));
955       CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
956       return OpaqueValueMappingData(ov, true);
957     }
958 
959     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
960                                        const OpaqueValueExpr *ov,
961                                        const RValue &rv) {
962       assert(!shouldBindAsLValue(ov));
963       CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
964 
965       OpaqueValueMappingData data(ov, false);
966 
967       // Work around an extremely aggressive peephole optimization in
968       // EmitScalarConversion which assumes that all other uses of a
969       // value are extant.
970       data.Protection = CGF.protectFromPeepholes(rv);
971 
972       return data;
973     }
974 
975     bool isValid() const { return OpaqueValue != nullptr; }
976     void clear() { OpaqueValue = nullptr; }
977 
978     void unbind(CodeGenFunction &CGF) {
979       assert(OpaqueValue && "no data to unbind!");
980 
981       if (BoundLValue) {
982         CGF.OpaqueLValues.erase(OpaqueValue);
983       } else {
984         CGF.OpaqueRValues.erase(OpaqueValue);
985         CGF.unprotectFromPeepholes(Protection);
986       }
987     }
988   };
989 
990   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
991   class OpaqueValueMapping {
992     CodeGenFunction &CGF;
993     OpaqueValueMappingData Data;
994 
995   public:
996     static bool shouldBindAsLValue(const Expr *expr) {
997       return OpaqueValueMappingData::shouldBindAsLValue(expr);
998     }
999 
1000     /// Build the opaque value mapping for the given conditional
1001     /// operator if it's the GNU ?: extension.  This is a common
1002     /// enough pattern that the convenience operator is really
1003     /// helpful.
1004     ///
1005     OpaqueValueMapping(CodeGenFunction &CGF,
1006                        const AbstractConditionalOperator *op) : CGF(CGF) {
1007       if (isa<ConditionalOperator>(op))
1008         // Leave Data empty.
1009         return;
1010 
1011       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
1012       Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
1013                                           e->getCommon());
1014     }
1015 
1016     /// Build the opaque value mapping for an OpaqueValueExpr whose source
1017     /// expression is set to the expression the OVE represents.
1018     OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV)
1019         : CGF(CGF) {
1020       if (OV) {
1021         assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used "
1022                                       "for OVE with no source expression");
1023         Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr());
1024       }
1025     }
1026 
1027     OpaqueValueMapping(CodeGenFunction &CGF,
1028                        const OpaqueValueExpr *opaqueValue,
1029                        LValue lvalue)
1030       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
1031     }
1032 
1033     OpaqueValueMapping(CodeGenFunction &CGF,
1034                        const OpaqueValueExpr *opaqueValue,
1035                        RValue rvalue)
1036       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
1037     }
1038 
1039     void pop() {
1040       Data.unbind(CGF);
1041       Data.clear();
1042     }
1043 
1044     ~OpaqueValueMapping() {
1045       if (Data.isValid()) Data.unbind(CGF);
1046     }
1047   };
1048 
1049 private:
1050   CGDebugInfo *DebugInfo;
1051   bool DisableDebugInfo;
1052 
1053   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
1054   /// calling llvm.stacksave for multiple VLAs in the same scope.
1055   bool DidCallStackSave;
1056 
1057   /// IndirectBranch - The first time an indirect goto is seen we create a block
1058   /// with an indirect branch.  Every time we see the address of a label taken,
1059   /// we add the label to the indirect goto.  Every subsequent indirect goto is
1060   /// codegen'd as a jump to the IndirectBranch's basic block.
1061   llvm::IndirectBrInst *IndirectBranch;
1062 
1063   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1064   /// decls.
1065   DeclMapTy LocalDeclMap;
1066 
1067   /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this
1068   /// will contain a mapping from said ParmVarDecl to its implicit "object_size"
1069   /// parameter.
1070   llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2>
1071       SizeArguments;
1072 
1073   /// Track escaped local variables with auto storage. Used during SEH
1074   /// outlining to produce a call to llvm.localescape.
1075   llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;
1076 
1077   /// LabelMap - This keeps track of the LLVM basic block for each C label.
1078   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1079 
1080   // BreakContinueStack - This keeps track of where break and continue
1081   // statements should jump to.
1082   struct BreakContinue {
1083     BreakContinue(JumpDest Break, JumpDest Continue)
1084       : BreakBlock(Break), ContinueBlock(Continue) {}
1085 
1086     JumpDest BreakBlock;
1087     JumpDest ContinueBlock;
1088   };
1089   SmallVector<BreakContinue, 8> BreakContinueStack;
1090 
1091   /// Handles cancellation exit points in OpenMP-related constructs.
1092   class OpenMPCancelExitStack {
1093     /// Tracks cancellation exit point and join point for cancel-related exit
1094     /// and normal exit.
1095     struct CancelExit {
1096       CancelExit() = default;
1097       CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock,
1098                  JumpDest ContBlock)
1099           : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {}
1100       OpenMPDirectiveKind Kind = OMPD_unknown;
1101       /// true if the exit block has been emitted already by the special
1102       /// emitExit() call, false if the default codegen is used.
1103       bool HasBeenEmitted = false;
1104       JumpDest ExitBlock;
1105       JumpDest ContBlock;
1106     };
1107 
1108     SmallVector<CancelExit, 8> Stack;
1109 
1110   public:
1111     OpenMPCancelExitStack() : Stack(1) {}
1112     ~OpenMPCancelExitStack() = default;
1113     /// Fetches the exit block for the current OpenMP construct.
1114     JumpDest getExitBlock() const { return Stack.back().ExitBlock; }
1115     /// Emits exit block with special codegen procedure specific for the related
1116     /// OpenMP construct + emits code for normal construct cleanup.
1117     void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
1118                   const llvm::function_ref<void(CodeGenFunction &)> &CodeGen) {
1119       if (Stack.back().Kind == Kind && getExitBlock().isValid()) {
1120         assert(CGF.getOMPCancelDestination(Kind).isValid());
1121         assert(CGF.HaveInsertPoint());
1122         assert(!Stack.back().HasBeenEmitted);
1123         auto IP = CGF.Builder.saveAndClearIP();
1124         CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1125         CodeGen(CGF);
1126         CGF.EmitBranch(Stack.back().ContBlock.getBlock());
1127         CGF.Builder.restoreIP(IP);
1128         Stack.back().HasBeenEmitted = true;
1129       }
1130       CodeGen(CGF);
1131     }
1132     /// Enter the cancel supporting \a Kind construct.
1133     /// \param Kind OpenMP directive that supports cancel constructs.
1134     /// \param HasCancel true, if the construct has inner cancel directive,
1135     /// false otherwise.
1136     void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) {
1137       Stack.push_back({Kind,
1138                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit")
1139                                  : JumpDest(),
1140                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont")
1141                                  : JumpDest()});
1142     }
1143     /// Emits default exit point for the cancel construct (if the special one
1144     /// has not be used) + join point for cancel/normal exits.
1145     void exit(CodeGenFunction &CGF) {
1146       if (getExitBlock().isValid()) {
1147         assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid());
1148         bool HaveIP = CGF.HaveInsertPoint();
1149         if (!Stack.back().HasBeenEmitted) {
1150           if (HaveIP)
1151             CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1152           CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1153           CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1154         }
1155         CGF.EmitBlock(Stack.back().ContBlock.getBlock());
1156         if (!HaveIP) {
1157           CGF.Builder.CreateUnreachable();
1158           CGF.Builder.ClearInsertionPoint();
1159         }
1160       }
1161       Stack.pop_back();
1162     }
1163   };
1164   OpenMPCancelExitStack OMPCancelStack;
1165 
1166   /// Controls insertion of cancellation exit blocks in worksharing constructs.
1167   class OMPCancelStackRAII {
1168     CodeGenFunction &CGF;
1169 
1170   public:
1171     OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
1172                        bool HasCancel)
1173         : CGF(CGF) {
1174       CGF.OMPCancelStack.enter(CGF, Kind, HasCancel);
1175     }
1176     ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); }
1177   };
1178 
1179   CodeGenPGO PGO;
1180 
1181   /// Calculate branch weights appropriate for PGO data
1182   llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount);
1183   llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights);
1184   llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond,
1185                                             uint64_t LoopCount);
1186 
1187 public:
1188   /// Increment the profiler's counter for the given statement by \p StepV.
1189   /// If \p StepV is null, the default increment is 1.
1190   void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) {
1191     if (CGM.getCodeGenOpts().hasProfileClangInstr())
1192       PGO.emitCounterIncrement(Builder, S, StepV);
1193     PGO.setCurrentStmt(S);
1194   }
1195 
1196   /// Get the profiler's count for the given statement.
1197   uint64_t getProfileCount(const Stmt *S) {
1198     Optional<uint64_t> Count = PGO.getStmtCount(S);
1199     if (!Count.hasValue())
1200       return 0;
1201     return *Count;
1202   }
1203 
1204   /// Set the profiler's current count.
1205   void setCurrentProfileCount(uint64_t Count) {
1206     PGO.setCurrentRegionCount(Count);
1207   }
1208 
1209   /// Get the profiler's current count. This is generally the count for the most
1210   /// recently incremented counter.
1211   uint64_t getCurrentProfileCount() {
1212     return PGO.getCurrentRegionCount();
1213   }
1214 
1215 private:
1216 
1217   /// SwitchInsn - This is nearest current switch instruction. It is null if
1218   /// current context is not in a switch.
1219   llvm::SwitchInst *SwitchInsn;
1220   /// The branch weights of SwitchInsn when doing instrumentation based PGO.
1221   SmallVector<uint64_t, 16> *SwitchWeights;
1222 
1223   /// CaseRangeBlock - This block holds if condition check for last case
1224   /// statement range in current switch instruction.
1225   llvm::BasicBlock *CaseRangeBlock;
1226 
1227   /// OpaqueLValues - Keeps track of the current set of opaque value
1228   /// expressions.
1229   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1230   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1231 
1232   // VLASizeMap - This keeps track of the associated size for each VLA type.
1233   // We track this by the size expression rather than the type itself because
1234   // in certain situations, like a const qualifier applied to an VLA typedef,
1235   // multiple VLA types can share the same size expression.
1236   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1237   // enter/leave scopes.
1238   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1239 
1240   /// A block containing a single 'unreachable' instruction.  Created
1241   /// lazily by getUnreachableBlock().
1242   llvm::BasicBlock *UnreachableBlock;
1243 
1244   /// Counts of the number return expressions in the function.
1245   unsigned NumReturnExprs;
1246 
1247   /// Count the number of simple (constant) return expressions in the function.
1248   unsigned NumSimpleReturnExprs;
1249 
1250   /// The last regular (non-return) debug location (breakpoint) in the function.
1251   SourceLocation LastStopPoint;
1252 
1253 public:
1254   /// A scope within which we are constructing the fields of an object which
1255   /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
1256   /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
1257   class FieldConstructionScope {
1258   public:
1259     FieldConstructionScope(CodeGenFunction &CGF, Address This)
1260         : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
1261       CGF.CXXDefaultInitExprThis = This;
1262     }
1263     ~FieldConstructionScope() {
1264       CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
1265     }
1266 
1267   private:
1268     CodeGenFunction &CGF;
1269     Address OldCXXDefaultInitExprThis;
1270   };
1271 
1272   /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
1273   /// is overridden to be the object under construction.
1274   class CXXDefaultInitExprScope {
1275   public:
1276     CXXDefaultInitExprScope(CodeGenFunction &CGF)
1277       : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue),
1278         OldCXXThisAlignment(CGF.CXXThisAlignment) {
1279       CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer();
1280       CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment();
1281     }
1282     ~CXXDefaultInitExprScope() {
1283       CGF.CXXThisValue = OldCXXThisValue;
1284       CGF.CXXThisAlignment = OldCXXThisAlignment;
1285     }
1286 
1287   public:
1288     CodeGenFunction &CGF;
1289     llvm::Value *OldCXXThisValue;
1290     CharUnits OldCXXThisAlignment;
1291   };
1292 
1293   /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the
1294   /// current loop index is overridden.
1295   class ArrayInitLoopExprScope {
1296   public:
1297     ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index)
1298       : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) {
1299       CGF.ArrayInitIndex = Index;
1300     }
1301     ~ArrayInitLoopExprScope() {
1302       CGF.ArrayInitIndex = OldArrayInitIndex;
1303     }
1304 
1305   private:
1306     CodeGenFunction &CGF;
1307     llvm::Value *OldArrayInitIndex;
1308   };
1309 
1310   class InlinedInheritingConstructorScope {
1311   public:
1312     InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD)
1313         : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl),
1314           OldCurCodeDecl(CGF.CurCodeDecl),
1315           OldCXXABIThisDecl(CGF.CXXABIThisDecl),
1316           OldCXXABIThisValue(CGF.CXXABIThisValue),
1317           OldCXXThisValue(CGF.CXXThisValue),
1318           OldCXXABIThisAlignment(CGF.CXXABIThisAlignment),
1319           OldCXXThisAlignment(CGF.CXXThisAlignment),
1320           OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy),
1321           OldCXXInheritedCtorInitExprArgs(
1322               std::move(CGF.CXXInheritedCtorInitExprArgs)) {
1323       CGF.CurGD = GD;
1324       CGF.CurFuncDecl = CGF.CurCodeDecl =
1325           cast<CXXConstructorDecl>(GD.getDecl());
1326       CGF.CXXABIThisDecl = nullptr;
1327       CGF.CXXABIThisValue = nullptr;
1328       CGF.CXXThisValue = nullptr;
1329       CGF.CXXABIThisAlignment = CharUnits();
1330       CGF.CXXThisAlignment = CharUnits();
1331       CGF.ReturnValue = Address::invalid();
1332       CGF.FnRetTy = QualType();
1333       CGF.CXXInheritedCtorInitExprArgs.clear();
1334     }
1335     ~InlinedInheritingConstructorScope() {
1336       CGF.CurGD = OldCurGD;
1337       CGF.CurFuncDecl = OldCurFuncDecl;
1338       CGF.CurCodeDecl = OldCurCodeDecl;
1339       CGF.CXXABIThisDecl = OldCXXABIThisDecl;
1340       CGF.CXXABIThisValue = OldCXXABIThisValue;
1341       CGF.CXXThisValue = OldCXXThisValue;
1342       CGF.CXXABIThisAlignment = OldCXXABIThisAlignment;
1343       CGF.CXXThisAlignment = OldCXXThisAlignment;
1344       CGF.ReturnValue = OldReturnValue;
1345       CGF.FnRetTy = OldFnRetTy;
1346       CGF.CXXInheritedCtorInitExprArgs =
1347           std::move(OldCXXInheritedCtorInitExprArgs);
1348     }
1349 
1350   private:
1351     CodeGenFunction &CGF;
1352     GlobalDecl OldCurGD;
1353     const Decl *OldCurFuncDecl;
1354     const Decl *OldCurCodeDecl;
1355     ImplicitParamDecl *OldCXXABIThisDecl;
1356     llvm::Value *OldCXXABIThisValue;
1357     llvm::Value *OldCXXThisValue;
1358     CharUnits OldCXXABIThisAlignment;
1359     CharUnits OldCXXThisAlignment;
1360     Address OldReturnValue;
1361     QualType OldFnRetTy;
1362     CallArgList OldCXXInheritedCtorInitExprArgs;
1363   };
1364 
1365 private:
1366   /// CXXThisDecl - When generating code for a C++ member function,
1367   /// this will hold the implicit 'this' declaration.
1368   ImplicitParamDecl *CXXABIThisDecl;
1369   llvm::Value *CXXABIThisValue;
1370   llvm::Value *CXXThisValue;
1371   CharUnits CXXABIThisAlignment;
1372   CharUnits CXXThisAlignment;
1373 
1374   /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
1375   /// this expression.
1376   Address CXXDefaultInitExprThis = Address::invalid();
1377 
1378   /// The current array initialization index when evaluating an
1379   /// ArrayInitIndexExpr within an ArrayInitLoopExpr.
1380   llvm::Value *ArrayInitIndex = nullptr;
1381 
1382   /// The values of function arguments to use when evaluating
1383   /// CXXInheritedCtorInitExprs within this context.
1384   CallArgList CXXInheritedCtorInitExprArgs;
1385 
1386   /// CXXStructorImplicitParamDecl - When generating code for a constructor or
1387   /// destructor, this will hold the implicit argument (e.g. VTT).
1388   ImplicitParamDecl *CXXStructorImplicitParamDecl;
1389   llvm::Value *CXXStructorImplicitParamValue;
1390 
1391   /// OutermostConditional - Points to the outermost active
1392   /// conditional control.  This is used so that we know if a
1393   /// temporary should be destroyed conditionally.
1394   ConditionalEvaluation *OutermostConditional;
1395 
1396   /// The current lexical scope.
1397   LexicalScope *CurLexicalScope;
1398 
1399   /// The current source location that should be used for exception
1400   /// handling code.
1401   SourceLocation CurEHLocation;
1402 
1403   /// BlockByrefInfos - For each __block variable, contains
1404   /// information about the layout of the variable.
1405   llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos;
1406 
1407   /// Used by -fsanitize=nullability-return to determine whether the return
1408   /// value can be checked.
1409   llvm::Value *RetValNullabilityPrecondition = nullptr;
1410 
1411   /// Check if -fsanitize=nullability-return instrumentation is required for
1412   /// this function.
1413   bool requiresReturnValueNullabilityCheck() const {
1414     return RetValNullabilityPrecondition;
1415   }
1416 
1417   /// Used to store precise source locations for return statements by the
1418   /// runtime return value checks.
1419   Address ReturnLocation = Address::invalid();
1420 
1421   /// Check if the return value of this function requires sanitization.
1422   bool requiresReturnValueCheck() const {
1423     return requiresReturnValueNullabilityCheck() ||
1424            (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
1425             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>());
1426   }
1427 
1428   llvm::BasicBlock *TerminateLandingPad;
1429   llvm::BasicBlock *TerminateHandler;
1430   llvm::BasicBlock *TrapBB;
1431 
1432   /// True if we need emit the life-time markers.
1433   const bool ShouldEmitLifetimeMarkers;
1434 
1435   /// Add OpenCL kernel arg metadata and the kernel attribute meatadata to
1436   /// the function metadata.
1437   void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
1438                                 llvm::Function *Fn);
1439 
1440 public:
1441   CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1442   ~CodeGenFunction();
1443 
1444   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1445   ASTContext &getContext() const { return CGM.getContext(); }
1446   CGDebugInfo *getDebugInfo() {
1447     if (DisableDebugInfo)
1448       return nullptr;
1449     return DebugInfo;
1450   }
1451   void disableDebugInfo() { DisableDebugInfo = true; }
1452   void enableDebugInfo() { DisableDebugInfo = false; }
1453 
1454   bool shouldUseFusedARCCalls() {
1455     return CGM.getCodeGenOpts().OptimizationLevel == 0;
1456   }
1457 
1458   const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1459 
1460   /// Returns a pointer to the function's exception object and selector slot,
1461   /// which is assigned in every landing pad.
1462   Address getExceptionSlot();
1463   Address getEHSelectorSlot();
1464 
1465   /// Returns the contents of the function's exception object and selector
1466   /// slots.
1467   llvm::Value *getExceptionFromSlot();
1468   llvm::Value *getSelectorFromSlot();
1469 
1470   Address getNormalCleanupDestSlot();
1471 
1472   llvm::BasicBlock *getUnreachableBlock() {
1473     if (!UnreachableBlock) {
1474       UnreachableBlock = createBasicBlock("unreachable");
1475       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1476     }
1477     return UnreachableBlock;
1478   }
1479 
1480   llvm::BasicBlock *getInvokeDest() {
1481     if (!EHStack.requiresLandingPad()) return nullptr;
1482     return getInvokeDestImpl();
1483   }
1484 
1485   bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; }
1486 
1487   const TargetInfo &getTarget() const { return Target; }
1488   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1489   const TargetCodeGenInfo &getTargetHooks() const {
1490     return CGM.getTargetCodeGenInfo();
1491   }
1492 
1493   //===--------------------------------------------------------------------===//
1494   //                                  Cleanups
1495   //===--------------------------------------------------------------------===//
1496 
1497   typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty);
1498 
1499   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1500                                         Address arrayEndPointer,
1501                                         QualType elementType,
1502                                         CharUnits elementAlignment,
1503                                         Destroyer *destroyer);
1504   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1505                                       llvm::Value *arrayEnd,
1506                                       QualType elementType,
1507                                       CharUnits elementAlignment,
1508                                       Destroyer *destroyer);
1509 
1510   void pushDestroy(QualType::DestructionKind dtorKind,
1511                    Address addr, QualType type);
1512   void pushEHDestroy(QualType::DestructionKind dtorKind,
1513                      Address addr, QualType type);
1514   void pushDestroy(CleanupKind kind, Address addr, QualType type,
1515                    Destroyer *destroyer, bool useEHCleanupForArray);
1516   void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr,
1517                                    QualType type, Destroyer *destroyer,
1518                                    bool useEHCleanupForArray);
1519   void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1520                                    llvm::Value *CompletePtr,
1521                                    QualType ElementType);
1522   void pushStackRestore(CleanupKind kind, Address SPMem);
1523   void emitDestroy(Address addr, QualType type, Destroyer *destroyer,
1524                    bool useEHCleanupForArray);
1525   llvm::Function *generateDestroyHelper(Address addr, QualType type,
1526                                         Destroyer *destroyer,
1527                                         bool useEHCleanupForArray,
1528                                         const VarDecl *VD);
1529   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1530                         QualType elementType, CharUnits elementAlign,
1531                         Destroyer *destroyer,
1532                         bool checkZeroLength, bool useEHCleanup);
1533 
1534   Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1535 
1536   /// Determines whether an EH cleanup is required to destroy a type
1537   /// with the given destruction kind.
1538   bool needsEHCleanup(QualType::DestructionKind kind) {
1539     switch (kind) {
1540     case QualType::DK_none:
1541       return false;
1542     case QualType::DK_cxx_destructor:
1543     case QualType::DK_objc_weak_lifetime:
1544       return getLangOpts().Exceptions;
1545     case QualType::DK_objc_strong_lifetime:
1546       return getLangOpts().Exceptions &&
1547              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1548     }
1549     llvm_unreachable("bad destruction kind");
1550   }
1551 
1552   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
1553     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1554   }
1555 
1556   //===--------------------------------------------------------------------===//
1557   //                                  Objective-C
1558   //===--------------------------------------------------------------------===//
1559 
1560   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1561 
1562   void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
1563 
1564   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1565   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1566                           const ObjCPropertyImplDecl *PID);
1567   void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1568                               const ObjCPropertyImplDecl *propImpl,
1569                               const ObjCMethodDecl *GetterMothodDecl,
1570                               llvm::Constant *AtomicHelperFn);
1571 
1572   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1573                                   ObjCMethodDecl *MD, bool ctor);
1574 
1575   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1576   /// for the given property.
1577   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1578                           const ObjCPropertyImplDecl *PID);
1579   void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1580                               const ObjCPropertyImplDecl *propImpl,
1581                               llvm::Constant *AtomicHelperFn);
1582 
1583   //===--------------------------------------------------------------------===//
1584   //                                  Block Bits
1585   //===--------------------------------------------------------------------===//
1586 
1587   /// Emit block literal.
1588   /// \return an LLVM value which is a pointer to a struct which contains
1589   /// information about the block, including the block invoke function, the
1590   /// captured variables, etc.
1591   /// \param InvokeF will contain the block invoke function if it is not
1592   /// nullptr.
1593   llvm::Value *EmitBlockLiteral(const BlockExpr *,
1594                                 llvm::Function **InvokeF = nullptr);
1595   static void destroyBlockInfos(CGBlockInfo *info);
1596 
1597   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1598                                         const CGBlockInfo &Info,
1599                                         const DeclMapTy &ldm,
1600                                         bool IsLambdaConversionToBlock,
1601                                         bool BuildGlobalBlock);
1602 
1603   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1604   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1605   llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
1606                                              const ObjCPropertyImplDecl *PID);
1607   llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
1608                                              const ObjCPropertyImplDecl *PID);
1609   llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
1610 
1611   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
1612 
1613   class AutoVarEmission;
1614 
1615   void emitByrefStructureInit(const AutoVarEmission &emission);
1616   void enterByrefCleanup(const AutoVarEmission &emission);
1617 
1618   void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum,
1619                                 llvm::Value *ptr);
1620 
1621   Address LoadBlockStruct();
1622   Address GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
1623 
1624   /// BuildBlockByrefAddress - Computes the location of the
1625   /// data in a variable which is declared as __block.
1626   Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V,
1627                                 bool followForward = true);
1628   Address emitBlockByrefAddress(Address baseAddr,
1629                                 const BlockByrefInfo &info,
1630                                 bool followForward,
1631                                 const llvm::Twine &name);
1632 
1633   const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var);
1634 
1635   QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args);
1636 
1637   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1638                     const CGFunctionInfo &FnInfo);
1639   /// \brief Emit code for the start of a function.
1640   /// \param Loc       The location to be associated with the function.
1641   /// \param StartLoc  The location of the function body.
1642   void StartFunction(GlobalDecl GD,
1643                      QualType RetTy,
1644                      llvm::Function *Fn,
1645                      const CGFunctionInfo &FnInfo,
1646                      const FunctionArgList &Args,
1647                      SourceLocation Loc = SourceLocation(),
1648                      SourceLocation StartLoc = SourceLocation());
1649 
1650   static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor);
1651 
1652   void EmitConstructorBody(FunctionArgList &Args);
1653   void EmitDestructorBody(FunctionArgList &Args);
1654   void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
1655   void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body);
1656   void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S);
1657 
1658   void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
1659                                   CallArgList &CallArgs);
1660   void EmitLambdaBlockInvokeBody();
1661   void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
1662   void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD);
1663   void EmitAsanPrologueOrEpilogue(bool Prologue);
1664 
1665   /// \brief Emit the unified return block, trying to avoid its emission when
1666   /// possible.
1667   /// \return The debug location of the user written return statement if the
1668   /// return block is is avoided.
1669   llvm::DebugLoc EmitReturnBlock();
1670 
1671   /// FinishFunction - Complete IR generation of the current function. It is
1672   /// legal to call this function even if there is no current insertion point.
1673   void FinishFunction(SourceLocation EndLoc=SourceLocation());
1674 
1675   void StartThunk(llvm::Function *Fn, GlobalDecl GD,
1676                   const CGFunctionInfo &FnInfo);
1677 
1678   void EmitCallAndReturnForThunk(llvm::Constant *Callee,
1679                                  const ThunkInfo *Thunk);
1680 
1681   void FinishThunk();
1682 
1683   /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
1684   void EmitMustTailThunk(const CXXMethodDecl *MD, llvm::Value *AdjustedThisPtr,
1685                          llvm::Value *Callee);
1686 
1687   /// Generate a thunk for the given method.
1688   void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1689                      GlobalDecl GD, const ThunkInfo &Thunk);
1690 
1691   llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn,
1692                                        const CGFunctionInfo &FnInfo,
1693                                        GlobalDecl GD, const ThunkInfo &Thunk);
1694 
1695   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1696                         FunctionArgList &Args);
1697 
1698   void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init);
1699 
1700   /// Struct with all informations about dynamic [sub]class needed to set vptr.
1701   struct VPtr {
1702     BaseSubobject Base;
1703     const CXXRecordDecl *NearestVBase;
1704     CharUnits OffsetFromNearestVBase;
1705     const CXXRecordDecl *VTableClass;
1706   };
1707 
1708   /// Initialize the vtable pointer of the given subobject.
1709   void InitializeVTablePointer(const VPtr &vptr);
1710 
1711   typedef llvm::SmallVector<VPtr, 4> VPtrsVector;
1712 
1713   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1714   VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass);
1715 
1716   void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase,
1717                          CharUnits OffsetFromNearestVBase,
1718                          bool BaseIsNonVirtualPrimaryBase,
1719                          const CXXRecordDecl *VTableClass,
1720                          VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs);
1721 
1722   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1723 
1724   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1725   /// to by This.
1726   llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy,
1727                             const CXXRecordDecl *VTableClass);
1728 
1729   enum CFITypeCheckKind {
1730     CFITCK_VCall,
1731     CFITCK_NVCall,
1732     CFITCK_DerivedCast,
1733     CFITCK_UnrelatedCast,
1734     CFITCK_ICall,
1735   };
1736 
1737   /// \brief Derived is the presumed address of an object of type T after a
1738   /// cast. If T is a polymorphic class type, emit a check that the virtual
1739   /// table for Derived belongs to a class derived from T.
1740   void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived,
1741                                  bool MayBeNull, CFITypeCheckKind TCK,
1742                                  SourceLocation Loc);
1743 
1744   /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
1745   /// If vptr CFI is enabled, emit a check that VTable is valid.
1746   void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable,
1747                                  CFITypeCheckKind TCK, SourceLocation Loc);
1748 
1749   /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
1750   /// RD using llvm.type.test.
1751   void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable,
1752                           CFITypeCheckKind TCK, SourceLocation Loc);
1753 
1754   /// If whole-program virtual table optimization is enabled, emit an assumption
1755   /// that VTable is a member of RD's type identifier. Or, if vptr CFI is
1756   /// enabled, emit a check that VTable is a member of RD's type identifier.
1757   void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
1758                                     llvm::Value *VTable, SourceLocation Loc);
1759 
1760   /// Returns whether we should perform a type checked load when loading a
1761   /// virtual function for virtual calls to members of RD. This is generally
1762   /// true when both vcall CFI and whole-program-vtables are enabled.
1763   bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD);
1764 
1765   /// Emit a type checked load from the given vtable.
1766   llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable,
1767                                          uint64_t VTableByteOffset);
1768 
1769   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1770   /// given phase of destruction for a destructor.  The end result
1771   /// should call destructors on members and base classes in reverse
1772   /// order of their construction.
1773   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1774 
1775   /// ShouldInstrumentFunction - Return true if the current function should be
1776   /// instrumented with __cyg_profile_func_* calls
1777   bool ShouldInstrumentFunction();
1778 
1779   /// ShouldXRayInstrument - Return true if the current function should be
1780   /// instrumented with XRay nop sleds.
1781   bool ShouldXRayInstrumentFunction() const;
1782 
1783   /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
1784   /// instrumentation function with the current function and the call site, if
1785   /// function instrumentation is enabled.
1786   void EmitFunctionInstrumentation(const char *Fn);
1787 
1788   /// EmitMCountInstrumentation - Emit call to .mcount.
1789   void EmitMCountInstrumentation();
1790 
1791   /// Encode an address into a form suitable for use in a function prologue.
1792   llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F,
1793                                              llvm::Constant *Addr);
1794 
1795   /// Decode an address used in a function prologue, encoded by \c
1796   /// EncodeAddrForUseInPrologue.
1797   llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F,
1798                                         llvm::Value *EncodedAddr);
1799 
1800   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1801   /// arguments for the given function. This is also responsible for naming the
1802   /// LLVM function arguments.
1803   void EmitFunctionProlog(const CGFunctionInfo &FI,
1804                           llvm::Function *Fn,
1805                           const FunctionArgList &Args);
1806 
1807   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1808   /// given temporary.
1809   void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
1810                           SourceLocation EndLoc);
1811 
1812   /// Emit a test that checks if the return value \p RV is nonnull.
1813   void EmitReturnValueCheck(llvm::Value *RV);
1814 
1815   /// EmitStartEHSpec - Emit the start of the exception spec.
1816   void EmitStartEHSpec(const Decl *D);
1817 
1818   /// EmitEndEHSpec - Emit the end of the exception spec.
1819   void EmitEndEHSpec(const Decl *D);
1820 
1821   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
1822   llvm::BasicBlock *getTerminateLandingPad();
1823 
1824   /// getTerminateHandler - Return a handler (not a landing pad, just
1825   /// a catch handler) that just calls terminate.  This is used when
1826   /// a terminate scope encloses a try.
1827   llvm::BasicBlock *getTerminateHandler();
1828 
1829   llvm::Type *ConvertTypeForMem(QualType T);
1830   llvm::Type *ConvertType(QualType T);
1831   llvm::Type *ConvertType(const TypeDecl *T) {
1832     return ConvertType(getContext().getTypeDeclType(T));
1833   }
1834 
1835   /// LoadObjCSelf - Load the value of self. This function is only valid while
1836   /// generating code for an Objective-C method.
1837   llvm::Value *LoadObjCSelf();
1838 
1839   /// TypeOfSelfObject - Return type of object that this self represents.
1840   QualType TypeOfSelfObject();
1841 
1842   /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T.
1843   static TypeEvaluationKind getEvaluationKind(QualType T);
1844 
1845   static bool hasScalarEvaluationKind(QualType T) {
1846     return getEvaluationKind(T) == TEK_Scalar;
1847   }
1848 
1849   static bool hasAggregateEvaluationKind(QualType T) {
1850     return getEvaluationKind(T) == TEK_Aggregate;
1851   }
1852 
1853   /// createBasicBlock - Create an LLVM basic block.
1854   llvm::BasicBlock *createBasicBlock(const Twine &name = "",
1855                                      llvm::Function *parent = nullptr,
1856                                      llvm::BasicBlock *before = nullptr) {
1857 #ifdef NDEBUG
1858     return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
1859 #else
1860     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
1861 #endif
1862   }
1863 
1864   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
1865   /// label maps to.
1866   JumpDest getJumpDestForLabel(const LabelDecl *S);
1867 
1868   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
1869   /// another basic block, simplify it. This assumes that no other code could
1870   /// potentially reference the basic block.
1871   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
1872 
1873   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
1874   /// adding a fall-through branch from the current insert block if
1875   /// necessary. It is legal to call this function even if there is no current
1876   /// insertion point.
1877   ///
1878   /// IsFinished - If true, indicates that the caller has finished emitting
1879   /// branches to the given block and does not expect to emit code into it. This
1880   /// means the block can be ignored if it is unreachable.
1881   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
1882 
1883   /// EmitBlockAfterUses - Emit the given block somewhere hopefully
1884   /// near its uses, and leave the insertion point in it.
1885   void EmitBlockAfterUses(llvm::BasicBlock *BB);
1886 
1887   /// EmitBranch - Emit a branch to the specified basic block from the current
1888   /// insert block, taking care to avoid creation of branches from dummy
1889   /// blocks. It is legal to call this function even if there is no current
1890   /// insertion point.
1891   ///
1892   /// This function clears the current insertion point. The caller should follow
1893   /// calls to this function with calls to Emit*Block prior to generation new
1894   /// code.
1895   void EmitBranch(llvm::BasicBlock *Block);
1896 
1897   /// HaveInsertPoint - True if an insertion point is defined. If not, this
1898   /// indicates that the current code being emitted is unreachable.
1899   bool HaveInsertPoint() const {
1900     return Builder.GetInsertBlock() != nullptr;
1901   }
1902 
1903   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
1904   /// emitted IR has a place to go. Note that by definition, if this function
1905   /// creates a block then that block is unreachable; callers may do better to
1906   /// detect when no insertion point is defined and simply skip IR generation.
1907   void EnsureInsertPoint() {
1908     if (!HaveInsertPoint())
1909       EmitBlock(createBasicBlock());
1910   }
1911 
1912   /// ErrorUnsupported - Print out an error that codegen doesn't support the
1913   /// specified stmt yet.
1914   void ErrorUnsupported(const Stmt *S, const char *Type);
1915 
1916   //===--------------------------------------------------------------------===//
1917   //                                  Helpers
1918   //===--------------------------------------------------------------------===//
1919 
1920   LValue MakeAddrLValue(Address Addr, QualType T,
1921                         AlignmentSource Source = AlignmentSource::Type) {
1922     return LValue::MakeAddr(Addr, T, getContext(),
1923                             LValueBaseInfo(Source, false),
1924                             CGM.getTBAAAccessInfo(T));
1925   }
1926 
1927   LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo,
1928                         TBAAAccessInfo TBAAInfo) {
1929     return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo);
1930   }
1931 
1932   LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
1933                         AlignmentSource Source = AlignmentSource::Type) {
1934     return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
1935                             LValueBaseInfo(Source, false),
1936                             CGM.getTBAAAccessInfo(T));
1937   }
1938 
1939   LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
1940                         LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) {
1941     return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
1942                             BaseInfo, TBAAInfo);
1943   }
1944 
1945   LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T);
1946   LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T);
1947   CharUnits getNaturalTypeAlignment(QualType T,
1948                                     LValueBaseInfo *BaseInfo = nullptr,
1949                                     TBAAAccessInfo *TBAAInfo = nullptr,
1950                                     bool forPointeeType = false);
1951   CharUnits getNaturalPointeeTypeAlignment(QualType T,
1952                                            LValueBaseInfo *BaseInfo = nullptr,
1953                                            TBAAAccessInfo *TBAAInfo = nullptr);
1954 
1955   Address EmitLoadOfReference(Address Ref, const ReferenceType *RefTy,
1956                               LValueBaseInfo *BaseInfo = nullptr,
1957                               TBAAAccessInfo *TBAAInfo = nullptr);
1958   LValue EmitLoadOfReferenceLValue(Address Ref, const ReferenceType *RefTy);
1959 
1960   Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy,
1961                             LValueBaseInfo *BaseInfo = nullptr,
1962                             TBAAAccessInfo *TBAAInfo = nullptr);
1963   LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy);
1964 
1965   /// CreateTempAlloca - This creates an alloca and inserts it into the entry
1966   /// block if \p ArraySize is nullptr, otherwise inserts it at the current
1967   /// insertion point of the builder. The caller is responsible for setting an
1968   /// appropriate alignment on
1969   /// the alloca.
1970   ///
1971   /// \p ArraySize is the number of array elements to be allocated if it
1972   ///    is not nullptr.
1973   ///
1974   /// LangAS::Default is the address space of pointers to local variables and
1975   /// temporaries, as exposed in the source language. In certain
1976   /// configurations, this is not the same as the alloca address space, and a
1977   /// cast is needed to lift the pointer from the alloca AS into
1978   /// LangAS::Default. This can happen when the target uses a restricted
1979   /// address space for the stack but the source language requires
1980   /// LangAS::Default to be a generic address space. The latter condition is
1981   /// common for most programming languages; OpenCL is an exception in that
1982   /// LangAS::Default is the private address space, which naturally maps
1983   /// to the stack.
1984   ///
1985   /// Because the address of a temporary is often exposed to the program in
1986   /// various ways, this function will perform the cast by default. The cast
1987   /// may be avoided by passing false as \p CastToDefaultAddrSpace; this is
1988   /// more efficient if the caller knows that the address will not be exposed.
1989   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp",
1990                                      llvm::Value *ArraySize = nullptr);
1991   Address CreateTempAlloca(llvm::Type *Ty, CharUnits align,
1992                            const Twine &Name = "tmp",
1993                            llvm::Value *ArraySize = nullptr,
1994                            bool CastToDefaultAddrSpace = true);
1995 
1996   /// CreateDefaultAlignedTempAlloca - This creates an alloca with the
1997   /// default ABI alignment of the given LLVM type.
1998   ///
1999   /// IMPORTANT NOTE: This is *not* generally the right alignment for
2000   /// any given AST type that happens to have been lowered to the
2001   /// given IR type.  This should only ever be used for function-local,
2002   /// IR-driven manipulations like saving and restoring a value.  Do
2003   /// not hand this address off to arbitrary IRGen routines, and especially
2004   /// do not pass it as an argument to a function that might expect a
2005   /// properly ABI-aligned value.
2006   Address CreateDefaultAlignTempAlloca(llvm::Type *Ty,
2007                                        const Twine &Name = "tmp");
2008 
2009   /// InitTempAlloca - Provide an initial value for the given alloca which
2010   /// will be observable at all locations in the function.
2011   ///
2012   /// The address should be something that was returned from one of
2013   /// the CreateTempAlloca or CreateMemTemp routines, and the
2014   /// initializer must be valid in the entry block (i.e. it must
2015   /// either be a constant or an argument value).
2016   void InitTempAlloca(Address Alloca, llvm::Value *Value);
2017 
2018   /// CreateIRTemp - Create a temporary IR object of the given type, with
2019   /// appropriate alignment. This routine should only be used when an temporary
2020   /// value needs to be stored into an alloca (for example, to avoid explicit
2021   /// PHI construction), but the type is the IR type, not the type appropriate
2022   /// for storing in memory.
2023   ///
2024   /// That is, this is exactly equivalent to CreateMemTemp, but calling
2025   /// ConvertType instead of ConvertTypeForMem.
2026   Address CreateIRTemp(QualType T, const Twine &Name = "tmp");
2027 
2028   /// CreateMemTemp - Create a temporary memory object of the given type, with
2029   /// appropriate alignment. Cast it to the default address space if
2030   /// \p CastToDefaultAddrSpace is true.
2031   Address CreateMemTemp(QualType T, const Twine &Name = "tmp",
2032                         bool CastToDefaultAddrSpace = true);
2033   Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp",
2034                         bool CastToDefaultAddrSpace = true);
2035 
2036   /// CreateAggTemp - Create a temporary memory object for the given
2037   /// aggregate type.
2038   AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
2039     return AggValueSlot::forAddr(CreateMemTemp(T, Name),
2040                                  T.getQualifiers(),
2041                                  AggValueSlot::IsNotDestructed,
2042                                  AggValueSlot::DoesNotNeedGCBarriers,
2043                                  AggValueSlot::IsNotAliased);
2044   }
2045 
2046   /// Emit a cast to void* in the appropriate address space.
2047   llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
2048 
2049   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
2050   /// expression and compare the result against zero, returning an Int1Ty value.
2051   llvm::Value *EvaluateExprAsBool(const Expr *E);
2052 
2053   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
2054   void EmitIgnoredExpr(const Expr *E);
2055 
2056   /// EmitAnyExpr - Emit code to compute the specified expression which can have
2057   /// any type.  The result is returned as an RValue struct.  If this is an
2058   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
2059   /// the result should be returned.
2060   ///
2061   /// \param ignoreResult True if the resulting value isn't used.
2062   RValue EmitAnyExpr(const Expr *E,
2063                      AggValueSlot aggSlot = AggValueSlot::ignored(),
2064                      bool ignoreResult = false);
2065 
2066   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
2067   // or the value of the expression, depending on how va_list is defined.
2068   Address EmitVAListRef(const Expr *E);
2069 
2070   /// Emit a "reference" to a __builtin_ms_va_list; this is
2071   /// always the value of the expression, because a __builtin_ms_va_list is a
2072   /// pointer to a char.
2073   Address EmitMSVAListRef(const Expr *E);
2074 
2075   /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will
2076   /// always be accessible even if no aggregate location is provided.
2077   RValue EmitAnyExprToTemp(const Expr *E);
2078 
2079   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
2080   /// arbitrary expression into the given memory location.
2081   void EmitAnyExprToMem(const Expr *E, Address Location,
2082                         Qualifiers Quals, bool IsInitializer);
2083 
2084   void EmitAnyExprToExn(const Expr *E, Address Addr);
2085 
2086   /// EmitExprAsInit - Emits the code necessary to initialize a
2087   /// location in memory with the given initializer.
2088   void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2089                       bool capturedByInit);
2090 
2091   /// hasVolatileMember - returns true if aggregate type has a volatile
2092   /// member.
2093   bool hasVolatileMember(QualType T) {
2094     if (const RecordType *RT = T->getAs<RecordType>()) {
2095       const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
2096       return RD->hasVolatileMember();
2097     }
2098     return false;
2099   }
2100   /// EmitAggregateCopy - Emit an aggregate assignment.
2101   ///
2102   /// The difference to EmitAggregateCopy is that tail padding is not copied.
2103   /// This is required for correctness when assigning non-POD structures in C++.
2104   void EmitAggregateAssign(Address DestPtr, Address SrcPtr,
2105                            QualType EltTy) {
2106     bool IsVolatile = hasVolatileMember(EltTy);
2107     EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, true);
2108   }
2109 
2110   void EmitAggregateCopyCtor(Address DestPtr, Address SrcPtr,
2111                              QualType DestTy, QualType SrcTy) {
2112     EmitAggregateCopy(DestPtr, SrcPtr, SrcTy, /*IsVolatile=*/false,
2113                       /*IsAssignment=*/false);
2114   }
2115 
2116   /// EmitAggregateCopy - Emit an aggregate copy.
2117   ///
2118   /// \param isVolatile - True iff either the source or the destination is
2119   /// volatile.
2120   /// \param isAssignment - If false, allow padding to be copied.  This often
2121   /// yields more efficient.
2122   void EmitAggregateCopy(Address DestPtr, Address SrcPtr,
2123                          QualType EltTy, bool isVolatile=false,
2124                          bool isAssignment = false);
2125 
2126   /// GetAddrOfLocalVar - Return the address of a local variable.
2127   Address GetAddrOfLocalVar(const VarDecl *VD) {
2128     auto it = LocalDeclMap.find(VD);
2129     assert(it != LocalDeclMap.end() &&
2130            "Invalid argument to GetAddrOfLocalVar(), no decl!");
2131     return it->second;
2132   }
2133 
2134   /// getOpaqueLValueMapping - Given an opaque value expression (which
2135   /// must be mapped to an l-value), return its mapping.
2136   const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
2137     assert(OpaqueValueMapping::shouldBindAsLValue(e));
2138 
2139     llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
2140       it = OpaqueLValues.find(e);
2141     assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
2142     return it->second;
2143   }
2144 
2145   /// getOpaqueRValueMapping - Given an opaque value expression (which
2146   /// must be mapped to an r-value), return its mapping.
2147   const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
2148     assert(!OpaqueValueMapping::shouldBindAsLValue(e));
2149 
2150     llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
2151       it = OpaqueRValues.find(e);
2152     assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
2153     return it->second;
2154   }
2155 
2156   /// Get the index of the current ArrayInitLoopExpr, if any.
2157   llvm::Value *getArrayInitIndex() { return ArrayInitIndex; }
2158 
2159   /// getAccessedFieldNo - Given an encoded value and a result number, return
2160   /// the input field number being accessed.
2161   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
2162 
2163   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
2164   llvm::BasicBlock *GetIndirectGotoBlock();
2165 
2166   /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts.
2167   static bool IsWrappedCXXThis(const Expr *E);
2168 
2169   /// EmitNullInitialization - Generate code to set a value of the given type to
2170   /// null, If the type contains data member pointers, they will be initialized
2171   /// to -1 in accordance with the Itanium C++ ABI.
2172   void EmitNullInitialization(Address DestPtr, QualType Ty);
2173 
2174   /// Emits a call to an LLVM variable-argument intrinsic, either
2175   /// \c llvm.va_start or \c llvm.va_end.
2176   /// \param ArgValue A reference to the \c va_list as emitted by either
2177   /// \c EmitVAListRef or \c EmitMSVAListRef.
2178   /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise,
2179   /// calls \c llvm.va_end.
2180   llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart);
2181 
2182   /// Generate code to get an argument from the passed in pointer
2183   /// and update it accordingly.
2184   /// \param VE The \c VAArgExpr for which to generate code.
2185   /// \param VAListAddr Receives a reference to the \c va_list as emitted by
2186   /// either \c EmitVAListRef or \c EmitMSVAListRef.
2187   /// \returns A pointer to the argument.
2188   // FIXME: We should be able to get rid of this method and use the va_arg
2189   // instruction in LLVM instead once it works well enough.
2190   Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr);
2191 
2192   /// emitArrayLength - Compute the length of an array, even if it's a
2193   /// VLA, and drill down to the base element type.
2194   llvm::Value *emitArrayLength(const ArrayType *arrayType,
2195                                QualType &baseType,
2196                                Address &addr);
2197 
2198   /// EmitVLASize - Capture all the sizes for the VLA expressions in
2199   /// the given variably-modified type and store them in the VLASizeMap.
2200   ///
2201   /// This function can be called with a null (unreachable) insert point.
2202   void EmitVariablyModifiedType(QualType Ty);
2203 
2204   /// getVLASize - Returns an LLVM value that corresponds to the size,
2205   /// in non-variably-sized elements, of a variable length array type,
2206   /// plus that largest non-variably-sized element type.  Assumes that
2207   /// the type has already been emitted with EmitVariablyModifiedType.
2208   std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla);
2209   std::pair<llvm::Value*,QualType> getVLASize(QualType vla);
2210 
2211   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
2212   /// generating code for an C++ member function.
2213   llvm::Value *LoadCXXThis() {
2214     assert(CXXThisValue && "no 'this' value for this function");
2215     return CXXThisValue;
2216   }
2217   Address LoadCXXThisAddress();
2218 
2219   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
2220   /// virtual bases.
2221   // FIXME: Every place that calls LoadCXXVTT is something
2222   // that needs to be abstracted properly.
2223   llvm::Value *LoadCXXVTT() {
2224     assert(CXXStructorImplicitParamValue && "no VTT value for this function");
2225     return CXXStructorImplicitParamValue;
2226   }
2227 
2228   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
2229   /// complete class to the given direct base.
2230   Address
2231   GetAddressOfDirectBaseInCompleteClass(Address Value,
2232                                         const CXXRecordDecl *Derived,
2233                                         const CXXRecordDecl *Base,
2234                                         bool BaseIsVirtual);
2235 
2236   static bool ShouldNullCheckClassCastValue(const CastExpr *Cast);
2237 
2238   /// GetAddressOfBaseClass - This function will add the necessary delta to the
2239   /// load of 'this' and returns address of the base class.
2240   Address GetAddressOfBaseClass(Address Value,
2241                                 const CXXRecordDecl *Derived,
2242                                 CastExpr::path_const_iterator PathBegin,
2243                                 CastExpr::path_const_iterator PathEnd,
2244                                 bool NullCheckValue, SourceLocation Loc);
2245 
2246   Address GetAddressOfDerivedClass(Address Value,
2247                                    const CXXRecordDecl *Derived,
2248                                    CastExpr::path_const_iterator PathBegin,
2249                                    CastExpr::path_const_iterator PathEnd,
2250                                    bool NullCheckValue);
2251 
2252   /// GetVTTParameter - Return the VTT parameter that should be passed to a
2253   /// base constructor/destructor with virtual bases.
2254   /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
2255   /// to ItaniumCXXABI.cpp together with all the references to VTT.
2256   llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
2257                                bool Delegating);
2258 
2259   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
2260                                       CXXCtorType CtorType,
2261                                       const FunctionArgList &Args,
2262                                       SourceLocation Loc);
2263   // It's important not to confuse this and the previous function. Delegating
2264   // constructors are the C++0x feature. The constructor delegate optimization
2265   // is used to reduce duplication in the base and complete consturctors where
2266   // they are substantially the same.
2267   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2268                                         const FunctionArgList &Args);
2269 
2270   /// Emit a call to an inheriting constructor (that is, one that invokes a
2271   /// constructor inherited from a base class) by inlining its definition. This
2272   /// is necessary if the ABI does not support forwarding the arguments to the
2273   /// base class constructor (because they're variadic or similar).
2274   void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2275                                                CXXCtorType CtorType,
2276                                                bool ForVirtualBase,
2277                                                bool Delegating,
2278                                                CallArgList &Args);
2279 
2280   /// Emit a call to a constructor inherited from a base class, passing the
2281   /// current constructor's arguments along unmodified (without even making
2282   /// a copy).
2283   void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D,
2284                                        bool ForVirtualBase, Address This,
2285                                        bool InheritedFromVBase,
2286                                        const CXXInheritedCtorInitExpr *E);
2287 
2288   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2289                               bool ForVirtualBase, bool Delegating,
2290                               Address This, const CXXConstructExpr *E);
2291 
2292   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2293                               bool ForVirtualBase, bool Delegating,
2294                               Address This, CallArgList &Args);
2295 
2296   /// Emit assumption load for all bases. Requires to be be called only on
2297   /// most-derived class and not under construction of the object.
2298   void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This);
2299 
2300   /// Emit assumption that vptr load == global vtable.
2301   void EmitVTableAssumptionLoad(const VPtr &vptr, Address This);
2302 
2303   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
2304                                       Address This, Address Src,
2305                                       const CXXConstructExpr *E);
2306 
2307   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2308                                   const ArrayType *ArrayTy,
2309                                   Address ArrayPtr,
2310                                   const CXXConstructExpr *E,
2311                                   bool ZeroInitialization = false);
2312 
2313   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2314                                   llvm::Value *NumElements,
2315                                   Address ArrayPtr,
2316                                   const CXXConstructExpr *E,
2317                                   bool ZeroInitialization = false);
2318 
2319   static Destroyer destroyCXXObject;
2320 
2321   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
2322                              bool ForVirtualBase, bool Delegating,
2323                              Address This);
2324 
2325   void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
2326                                llvm::Type *ElementTy, Address NewPtr,
2327                                llvm::Value *NumElements,
2328                                llvm::Value *AllocSizeWithoutCookie);
2329 
2330   void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
2331                         Address Ptr);
2332 
2333   llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr);
2334   void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr);
2335 
2336   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
2337   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
2338 
2339   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
2340                       QualType DeleteTy, llvm::Value *NumElements = nullptr,
2341                       CharUnits CookieSize = CharUnits());
2342 
2343   RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
2344                                   const Expr *Arg, bool IsDelete);
2345 
2346   llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E);
2347   llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE);
2348   Address EmitCXXUuidofExpr(const CXXUuidofExpr *E);
2349 
2350   /// \brief Situations in which we might emit a check for the suitability of a
2351   ///        pointer or glvalue.
2352   enum TypeCheckKind {
2353     /// Checking the operand of a load. Must be suitably sized and aligned.
2354     TCK_Load,
2355     /// Checking the destination of a store. Must be suitably sized and aligned.
2356     TCK_Store,
2357     /// Checking the bound value in a reference binding. Must be suitably sized
2358     /// and aligned, but is not required to refer to an object (until the
2359     /// reference is used), per core issue 453.
2360     TCK_ReferenceBinding,
2361     /// Checking the object expression in a non-static data member access. Must
2362     /// be an object within its lifetime.
2363     TCK_MemberAccess,
2364     /// Checking the 'this' pointer for a call to a non-static member function.
2365     /// Must be an object within its lifetime.
2366     TCK_MemberCall,
2367     /// Checking the 'this' pointer for a constructor call.
2368     TCK_ConstructorCall,
2369     /// Checking the operand of a static_cast to a derived pointer type. Must be
2370     /// null or an object within its lifetime.
2371     TCK_DowncastPointer,
2372     /// Checking the operand of a static_cast to a derived reference type. Must
2373     /// be an object within its lifetime.
2374     TCK_DowncastReference,
2375     /// Checking the operand of a cast to a base object. Must be suitably sized
2376     /// and aligned.
2377     TCK_Upcast,
2378     /// Checking the operand of a cast to a virtual base object. Must be an
2379     /// object within its lifetime.
2380     TCK_UpcastToVirtualBase,
2381     /// Checking the value assigned to a _Nonnull pointer. Must not be null.
2382     TCK_NonnullAssign
2383   };
2384 
2385   /// Determine whether the pointer type check \p TCK permits null pointers.
2386   static bool isNullPointerAllowed(TypeCheckKind TCK);
2387 
2388   /// Determine whether the pointer type check \p TCK requires a vptr check.
2389   static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty);
2390 
2391   /// \brief Whether any type-checking sanitizers are enabled. If \c false,
2392   /// calls to EmitTypeCheck can be skipped.
2393   bool sanitizePerformTypeCheck() const;
2394 
2395   /// \brief Emit a check that \p V is the address of storage of the
2396   /// appropriate size and alignment for an object of type \p Type.
2397   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
2398                      QualType Type, CharUnits Alignment = CharUnits::Zero(),
2399                      SanitizerSet SkippedChecks = SanitizerSet());
2400 
2401   /// \brief Emit a check that \p Base points into an array object, which
2402   /// we can access at index \p Index. \p Accessed should be \c false if we
2403   /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
2404   void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
2405                        QualType IndexType, bool Accessed);
2406 
2407   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2408                                        bool isInc, bool isPre);
2409   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
2410                                          bool isInc, bool isPre);
2411 
2412   void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment,
2413                                llvm::Value *OffsetValue = nullptr) {
2414     Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment,
2415                                       OffsetValue);
2416   }
2417 
2418   /// Converts Location to a DebugLoc, if debug information is enabled.
2419   llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location);
2420 
2421 
2422   //===--------------------------------------------------------------------===//
2423   //                            Declaration Emission
2424   //===--------------------------------------------------------------------===//
2425 
2426   /// EmitDecl - Emit a declaration.
2427   ///
2428   /// This function can be called with a null (unreachable) insert point.
2429   void EmitDecl(const Decl &D);
2430 
2431   /// EmitVarDecl - Emit a local variable declaration.
2432   ///
2433   /// This function can be called with a null (unreachable) insert point.
2434   void EmitVarDecl(const VarDecl &D);
2435 
2436   void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2437                       bool capturedByInit);
2438 
2439   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
2440                              llvm::Value *Address);
2441 
2442   /// \brief Determine whether the given initializer is trivial in the sense
2443   /// that it requires no code to be generated.
2444   bool isTrivialInitializer(const Expr *Init);
2445 
2446   /// EmitAutoVarDecl - Emit an auto variable declaration.
2447   ///
2448   /// This function can be called with a null (unreachable) insert point.
2449   void EmitAutoVarDecl(const VarDecl &D);
2450 
2451   class AutoVarEmission {
2452     friend class CodeGenFunction;
2453 
2454     const VarDecl *Variable;
2455 
2456     /// The address of the alloca.  Invalid if the variable was emitted
2457     /// as a global constant.
2458     Address Addr;
2459 
2460     llvm::Value *NRVOFlag;
2461 
2462     /// True if the variable is a __block variable.
2463     bool IsByRef;
2464 
2465     /// True if the variable is of aggregate type and has a constant
2466     /// initializer.
2467     bool IsConstantAggregate;
2468 
2469     /// Non-null if we should use lifetime annotations.
2470     llvm::Value *SizeForLifetimeMarkers;
2471 
2472     struct Invalid {};
2473     AutoVarEmission(Invalid) : Variable(nullptr), Addr(Address::invalid()) {}
2474 
2475     AutoVarEmission(const VarDecl &variable)
2476       : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr),
2477         IsByRef(false), IsConstantAggregate(false),
2478         SizeForLifetimeMarkers(nullptr) {}
2479 
2480     bool wasEmittedAsGlobal() const { return !Addr.isValid(); }
2481 
2482   public:
2483     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
2484 
2485     bool useLifetimeMarkers() const {
2486       return SizeForLifetimeMarkers != nullptr;
2487     }
2488     llvm::Value *getSizeForLifetimeMarkers() const {
2489       assert(useLifetimeMarkers());
2490       return SizeForLifetimeMarkers;
2491     }
2492 
2493     /// Returns the raw, allocated address, which is not necessarily
2494     /// the address of the object itself.
2495     Address getAllocatedAddress() const {
2496       return Addr;
2497     }
2498 
2499     /// Returns the address of the object within this declaration.
2500     /// Note that this does not chase the forwarding pointer for
2501     /// __block decls.
2502     Address getObjectAddress(CodeGenFunction &CGF) const {
2503       if (!IsByRef) return Addr;
2504 
2505       return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false);
2506     }
2507   };
2508   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
2509   void EmitAutoVarInit(const AutoVarEmission &emission);
2510   void EmitAutoVarCleanups(const AutoVarEmission &emission);
2511   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
2512                               QualType::DestructionKind dtorKind);
2513 
2514   void EmitStaticVarDecl(const VarDecl &D,
2515                          llvm::GlobalValue::LinkageTypes Linkage);
2516 
2517   class ParamValue {
2518     llvm::Value *Value;
2519     unsigned Alignment;
2520     ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {}
2521   public:
2522     static ParamValue forDirect(llvm::Value *value) {
2523       return ParamValue(value, 0);
2524     }
2525     static ParamValue forIndirect(Address addr) {
2526       assert(!addr.getAlignment().isZero());
2527       return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity());
2528     }
2529 
2530     bool isIndirect() const { return Alignment != 0; }
2531     llvm::Value *getAnyValue() const { return Value; }
2532 
2533     llvm::Value *getDirectValue() const {
2534       assert(!isIndirect());
2535       return Value;
2536     }
2537 
2538     Address getIndirectAddress() const {
2539       assert(isIndirect());
2540       return Address(Value, CharUnits::fromQuantity(Alignment));
2541     }
2542   };
2543 
2544   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
2545   void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo);
2546 
2547   /// protectFromPeepholes - Protect a value that we're intending to
2548   /// store to the side, but which will probably be used later, from
2549   /// aggressive peepholing optimizations that might delete it.
2550   ///
2551   /// Pass the result to unprotectFromPeepholes to declare that
2552   /// protection is no longer required.
2553   ///
2554   /// There's no particular reason why this shouldn't apply to
2555   /// l-values, it's just that no existing peepholes work on pointers.
2556   PeepholeProtection protectFromPeepholes(RValue rvalue);
2557   void unprotectFromPeepholes(PeepholeProtection protection);
2558 
2559   void EmitAlignmentAssumption(llvm::Value *PtrValue, llvm::Value *Alignment,
2560                                llvm::Value *OffsetValue = nullptr) {
2561     Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment,
2562                                       OffsetValue);
2563   }
2564 
2565   //===--------------------------------------------------------------------===//
2566   //                             Statement Emission
2567   //===--------------------------------------------------------------------===//
2568 
2569   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
2570   void EmitStopPoint(const Stmt *S);
2571 
2572   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
2573   /// this function even if there is no current insertion point.
2574   ///
2575   /// This function may clear the current insertion point; callers should use
2576   /// EnsureInsertPoint if they wish to subsequently generate code without first
2577   /// calling EmitBlock, EmitBranch, or EmitStmt.
2578   void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None);
2579 
2580   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
2581   /// necessarily require an insertion point or debug information; typically
2582   /// because the statement amounts to a jump or a container of other
2583   /// statements.
2584   ///
2585   /// \return True if the statement was handled.
2586   bool EmitSimpleStmt(const Stmt *S);
2587 
2588   Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
2589                            AggValueSlot AVS = AggValueSlot::ignored());
2590   Address EmitCompoundStmtWithoutScope(const CompoundStmt &S,
2591                                        bool GetLast = false,
2592                                        AggValueSlot AVS =
2593                                                 AggValueSlot::ignored());
2594 
2595   /// EmitLabel - Emit the block for the given label. It is legal to call this
2596   /// function even if there is no current insertion point.
2597   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
2598 
2599   void EmitLabelStmt(const LabelStmt &S);
2600   void EmitAttributedStmt(const AttributedStmt &S);
2601   void EmitGotoStmt(const GotoStmt &S);
2602   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
2603   void EmitIfStmt(const IfStmt &S);
2604 
2605   void EmitWhileStmt(const WhileStmt &S,
2606                      ArrayRef<const Attr *> Attrs = None);
2607   void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None);
2608   void EmitForStmt(const ForStmt &S,
2609                    ArrayRef<const Attr *> Attrs = None);
2610   void EmitReturnStmt(const ReturnStmt &S);
2611   void EmitDeclStmt(const DeclStmt &S);
2612   void EmitBreakStmt(const BreakStmt &S);
2613   void EmitContinueStmt(const ContinueStmt &S);
2614   void EmitSwitchStmt(const SwitchStmt &S);
2615   void EmitDefaultStmt(const DefaultStmt &S);
2616   void EmitCaseStmt(const CaseStmt &S);
2617   void EmitCaseStmtRange(const CaseStmt &S);
2618   void EmitAsmStmt(const AsmStmt &S);
2619 
2620   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
2621   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
2622   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
2623   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
2624   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
2625 
2626   void EmitCoroutineBody(const CoroutineBodyStmt &S);
2627   void EmitCoreturnStmt(const CoreturnStmt &S);
2628   RValue EmitCoawaitExpr(const CoawaitExpr &E,
2629                          AggValueSlot aggSlot = AggValueSlot::ignored(),
2630                          bool ignoreResult = false);
2631   LValue EmitCoawaitLValue(const CoawaitExpr *E);
2632   RValue EmitCoyieldExpr(const CoyieldExpr &E,
2633                          AggValueSlot aggSlot = AggValueSlot::ignored(),
2634                          bool ignoreResult = false);
2635   LValue EmitCoyieldLValue(const CoyieldExpr *E);
2636   RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID);
2637 
2638   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2639   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2640 
2641   void EmitCXXTryStmt(const CXXTryStmt &S);
2642   void EmitSEHTryStmt(const SEHTryStmt &S);
2643   void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
2644   void EnterSEHTryStmt(const SEHTryStmt &S);
2645   void ExitSEHTryStmt(const SEHTryStmt &S);
2646 
2647   void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter,
2648                               const Stmt *OutlinedStmt);
2649 
2650   llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
2651                                             const SEHExceptStmt &Except);
2652 
2653   llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF,
2654                                              const SEHFinallyStmt &Finally);
2655 
2656   void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF,
2657                                 llvm::Value *ParentFP,
2658                                 llvm::Value *EntryEBP);
2659   llvm::Value *EmitSEHExceptionCode();
2660   llvm::Value *EmitSEHExceptionInfo();
2661   llvm::Value *EmitSEHAbnormalTermination();
2662 
2663   /// Scan the outlined statement for captures from the parent function. For
2664   /// each capture, mark the capture as escaped and emit a call to
2665   /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap.
2666   void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
2667                           bool IsFilter);
2668 
2669   /// Recovers the address of a local in a parent function. ParentVar is the
2670   /// address of the variable used in the immediate parent function. It can
2671   /// either be an alloca or a call to llvm.localrecover if there are nested
2672   /// outlined functions. ParentFP is the frame pointer of the outermost parent
2673   /// frame.
2674   Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF,
2675                                     Address ParentVar,
2676                                     llvm::Value *ParentFP);
2677 
2678   void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
2679                            ArrayRef<const Attr *> Attrs = None);
2680 
2681   /// Returns calculated size of the specified type.
2682   llvm::Value *getTypeSize(QualType Ty);
2683   LValue InitCapturedStruct(const CapturedStmt &S);
2684   llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
2685   llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
2686   Address GenerateCapturedStmtArgument(const CapturedStmt &S);
2687   llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S);
2688   void GenerateOpenMPCapturedVars(const CapturedStmt &S,
2689                                   SmallVectorImpl<llvm::Value *> &CapturedVars);
2690   void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy,
2691                           SourceLocation Loc);
2692   /// \brief Perform element by element copying of arrays with type \a
2693   /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
2694   /// generated by \a CopyGen.
2695   ///
2696   /// \param DestAddr Address of the destination array.
2697   /// \param SrcAddr Address of the source array.
2698   /// \param OriginalType Type of destination and source arrays.
2699   /// \param CopyGen Copying procedure that copies value of single array element
2700   /// to another single array element.
2701   void EmitOMPAggregateAssign(
2702       Address DestAddr, Address SrcAddr, QualType OriginalType,
2703       const llvm::function_ref<void(Address, Address)> &CopyGen);
2704   /// \brief Emit proper copying of data from one variable to another.
2705   ///
2706   /// \param OriginalType Original type of the copied variables.
2707   /// \param DestAddr Destination address.
2708   /// \param SrcAddr Source address.
2709   /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
2710   /// type of the base array element).
2711   /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
2712   /// the base array element).
2713   /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
2714   /// DestVD.
2715   void EmitOMPCopy(QualType OriginalType,
2716                    Address DestAddr, Address SrcAddr,
2717                    const VarDecl *DestVD, const VarDecl *SrcVD,
2718                    const Expr *Copy);
2719   /// \brief Emit atomic update code for constructs: \a X = \a X \a BO \a E or
2720   /// \a X = \a E \a BO \a E.
2721   ///
2722   /// \param X Value to be updated.
2723   /// \param E Update value.
2724   /// \param BO Binary operation for update operation.
2725   /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
2726   /// expression, false otherwise.
2727   /// \param AO Atomic ordering of the generated atomic instructions.
2728   /// \param CommonGen Code generator for complex expressions that cannot be
2729   /// expressed through atomicrmw instruction.
2730   /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was
2731   /// generated, <false, RValue::get(nullptr)> otherwise.
2732   std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr(
2733       LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
2734       llvm::AtomicOrdering AO, SourceLocation Loc,
2735       const llvm::function_ref<RValue(RValue)> &CommonGen);
2736   bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
2737                                  OMPPrivateScope &PrivateScope);
2738   void EmitOMPPrivateClause(const OMPExecutableDirective &D,
2739                             OMPPrivateScope &PrivateScope);
2740   void EmitOMPUseDevicePtrClause(
2741       const OMPClause &C, OMPPrivateScope &PrivateScope,
2742       const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap);
2743   /// \brief Emit code for copyin clause in \a D directive. The next code is
2744   /// generated at the start of outlined functions for directives:
2745   /// \code
2746   /// threadprivate_var1 = master_threadprivate_var1;
2747   /// operator=(threadprivate_var2, master_threadprivate_var2);
2748   /// ...
2749   /// __kmpc_barrier(&loc, global_tid);
2750   /// \endcode
2751   ///
2752   /// \param D OpenMP directive possibly with 'copyin' clause(s).
2753   /// \returns true if at least one copyin variable is found, false otherwise.
2754   bool EmitOMPCopyinClause(const OMPExecutableDirective &D);
2755   /// \brief Emit initial code for lastprivate variables. If some variable is
2756   /// not also firstprivate, then the default initialization is used. Otherwise
2757   /// initialization of this variable is performed by EmitOMPFirstprivateClause
2758   /// method.
2759   ///
2760   /// \param D Directive that may have 'lastprivate' directives.
2761   /// \param PrivateScope Private scope for capturing lastprivate variables for
2762   /// proper codegen in internal captured statement.
2763   ///
2764   /// \returns true if there is at least one lastprivate variable, false
2765   /// otherwise.
2766   bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D,
2767                                     OMPPrivateScope &PrivateScope);
2768   /// \brief Emit final copying of lastprivate values to original variables at
2769   /// the end of the worksharing or simd directive.
2770   ///
2771   /// \param D Directive that has at least one 'lastprivate' directives.
2772   /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
2773   /// it is the last iteration of the loop code in associated directive, or to
2774   /// 'i1 false' otherwise. If this item is nullptr, no final check is required.
2775   void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D,
2776                                      bool NoFinals,
2777                                      llvm::Value *IsLastIterCond = nullptr);
2778   /// Emit initial code for linear clauses.
2779   void EmitOMPLinearClause(const OMPLoopDirective &D,
2780                            CodeGenFunction::OMPPrivateScope &PrivateScope);
2781   /// Emit final code for linear clauses.
2782   /// \param CondGen Optional conditional code for final part of codegen for
2783   /// linear clause.
2784   void EmitOMPLinearClauseFinal(
2785       const OMPLoopDirective &D,
2786       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen);
2787   /// \brief Emit initial code for reduction variables. Creates reduction copies
2788   /// and initializes them with the values according to OpenMP standard.
2789   ///
2790   /// \param D Directive (possibly) with the 'reduction' clause.
2791   /// \param PrivateScope Private scope for capturing reduction variables for
2792   /// proper codegen in internal captured statement.
2793   ///
2794   void EmitOMPReductionClauseInit(const OMPExecutableDirective &D,
2795                                   OMPPrivateScope &PrivateScope);
2796   /// \brief Emit final update of reduction values to original variables at
2797   /// the end of the directive.
2798   ///
2799   /// \param D Directive that has at least one 'reduction' directives.
2800   /// \param ReductionKind The kind of reduction to perform.
2801   void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D,
2802                                    const OpenMPDirectiveKind ReductionKind);
2803   /// \brief Emit initial code for linear variables. Creates private copies
2804   /// and initializes them with the values according to OpenMP standard.
2805   ///
2806   /// \param D Directive (possibly) with the 'linear' clause.
2807   /// \return true if at least one linear variable is found that should be
2808   /// initialized with the value of the original variable, false otherwise.
2809   bool EmitOMPLinearClauseInit(const OMPLoopDirective &D);
2810 
2811   typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/,
2812                                         llvm::Value * /*OutlinedFn*/,
2813                                         const OMPTaskDataTy & /*Data*/)>
2814       TaskGenTy;
2815   void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S,
2816                                  const RegionCodeGenTy &BodyGen,
2817                                  const TaskGenTy &TaskGen, OMPTaskDataTy &Data);
2818 
2819   void EmitOMPParallelDirective(const OMPParallelDirective &S);
2820   void EmitOMPSimdDirective(const OMPSimdDirective &S);
2821   void EmitOMPForDirective(const OMPForDirective &S);
2822   void EmitOMPForSimdDirective(const OMPForSimdDirective &S);
2823   void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
2824   void EmitOMPSectionDirective(const OMPSectionDirective &S);
2825   void EmitOMPSingleDirective(const OMPSingleDirective &S);
2826   void EmitOMPMasterDirective(const OMPMasterDirective &S);
2827   void EmitOMPCriticalDirective(const OMPCriticalDirective &S);
2828   void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
2829   void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S);
2830   void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
2831   void EmitOMPTaskDirective(const OMPTaskDirective &S);
2832   void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
2833   void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
2834   void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
2835   void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S);
2836   void EmitOMPFlushDirective(const OMPFlushDirective &S);
2837   void EmitOMPOrderedDirective(const OMPOrderedDirective &S);
2838   void EmitOMPAtomicDirective(const OMPAtomicDirective &S);
2839   void EmitOMPTargetDirective(const OMPTargetDirective &S);
2840   void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S);
2841   void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S);
2842   void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S);
2843   void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S);
2844   void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S);
2845   void
2846   EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S);
2847   void EmitOMPTeamsDirective(const OMPTeamsDirective &S);
2848   void
2849   EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S);
2850   void EmitOMPCancelDirective(const OMPCancelDirective &S);
2851   void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S);
2852   void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S);
2853   void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S);
2854   void EmitOMPDistributeDirective(const OMPDistributeDirective &S);
2855   void EmitOMPDistributeParallelForDirective(
2856       const OMPDistributeParallelForDirective &S);
2857   void EmitOMPDistributeParallelForSimdDirective(
2858       const OMPDistributeParallelForSimdDirective &S);
2859   void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S);
2860   void EmitOMPTargetParallelForSimdDirective(
2861       const OMPTargetParallelForSimdDirective &S);
2862   void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S);
2863   void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S);
2864   void
2865   EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S);
2866   void EmitOMPTeamsDistributeParallelForSimdDirective(
2867       const OMPTeamsDistributeParallelForSimdDirective &S);
2868   void EmitOMPTeamsDistributeParallelForDirective(
2869       const OMPTeamsDistributeParallelForDirective &S);
2870   void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S);
2871   void EmitOMPTargetTeamsDistributeDirective(
2872       const OMPTargetTeamsDistributeDirective &S);
2873   void EmitOMPTargetTeamsDistributeParallelForDirective(
2874       const OMPTargetTeamsDistributeParallelForDirective &S);
2875   void EmitOMPTargetTeamsDistributeParallelForSimdDirective(
2876       const OMPTargetTeamsDistributeParallelForSimdDirective &S);
2877   void EmitOMPTargetTeamsDistributeSimdDirective(
2878       const OMPTargetTeamsDistributeSimdDirective &S);
2879 
2880   /// Emit device code for the target directive.
2881   static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM,
2882                                           StringRef ParentName,
2883                                           const OMPTargetDirective &S);
2884   static void
2885   EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
2886                                       const OMPTargetParallelDirective &S);
2887   static void
2888   EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
2889                                    const OMPTargetTeamsDirective &S);
2890   /// \brief Emit inner loop of the worksharing/simd construct.
2891   ///
2892   /// \param S Directive, for which the inner loop must be emitted.
2893   /// \param RequiresCleanup true, if directive has some associated private
2894   /// variables.
2895   /// \param LoopCond Bollean condition for loop continuation.
2896   /// \param IncExpr Increment expression for loop control variable.
2897   /// \param BodyGen Generator for the inner body of the inner loop.
2898   /// \param PostIncGen Genrator for post-increment code (required for ordered
2899   /// loop directvies).
2900   void EmitOMPInnerLoop(
2901       const Stmt &S, bool RequiresCleanup, const Expr *LoopCond,
2902       const Expr *IncExpr,
2903       const llvm::function_ref<void(CodeGenFunction &)> &BodyGen,
2904       const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen);
2905 
2906   JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind);
2907   /// Emit initial code for loop counters of loop-based directives.
2908   void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S,
2909                                   OMPPrivateScope &LoopScope);
2910 
2911   /// Helper for the OpenMP loop directives.
2912   void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit);
2913 
2914   /// \brief Emit code for the worksharing loop-based directive.
2915   /// \return true, if this construct has any lastprivate clause, false -
2916   /// otherwise.
2917   bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB,
2918                               const CodeGenLoopBoundsTy &CodeGenLoopBounds,
2919                               const CodeGenDispatchBoundsTy &CGDispatchBounds);
2920 
2921   /// Emits the lvalue for the expression with possibly captured variable.
2922   LValue EmitOMPSharedLValue(const Expr *E);
2923 
2924 private:
2925   /// Helpers for blocks. Returns invoke function by \p InvokeF if it is not
2926   /// nullptr. It should be called without \p InvokeF if the caller does not
2927   /// need invoke function to be returned.
2928   llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info,
2929                                 llvm::Function **InvokeF = nullptr);
2930 
2931   /// Helpers for the OpenMP loop directives.
2932   void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false);
2933   void EmitOMPSimdFinal(
2934       const OMPLoopDirective &D,
2935       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen);
2936 
2937   void EmitOMPDistributeLoop(const OMPLoopDirective &S,
2938                              const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr);
2939 
2940   /// struct with the values to be passed to the OpenMP loop-related functions
2941   struct OMPLoopArguments {
2942     /// loop lower bound
2943     Address LB = Address::invalid();
2944     /// loop upper bound
2945     Address UB = Address::invalid();
2946     /// loop stride
2947     Address ST = Address::invalid();
2948     /// isLastIteration argument for runtime functions
2949     Address IL = Address::invalid();
2950     /// Chunk value generated by sema
2951     llvm::Value *Chunk = nullptr;
2952     /// EnsureUpperBound
2953     Expr *EUB = nullptr;
2954     /// IncrementExpression
2955     Expr *IncExpr = nullptr;
2956     /// Loop initialization
2957     Expr *Init = nullptr;
2958     /// Loop exit condition
2959     Expr *Cond = nullptr;
2960     /// Update of LB after a whole chunk has been executed
2961     Expr *NextLB = nullptr;
2962     /// Update of UB after a whole chunk has been executed
2963     Expr *NextUB = nullptr;
2964     OMPLoopArguments() = default;
2965     OMPLoopArguments(Address LB, Address UB, Address ST, Address IL,
2966                      llvm::Value *Chunk = nullptr, Expr *EUB = nullptr,
2967                      Expr *IncExpr = nullptr, Expr *Init = nullptr,
2968                      Expr *Cond = nullptr, Expr *NextLB = nullptr,
2969                      Expr *NextUB = nullptr)
2970         : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB),
2971           IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB),
2972           NextUB(NextUB) {}
2973   };
2974   void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic,
2975                         const OMPLoopDirective &S, OMPPrivateScope &LoopScope,
2976                         const OMPLoopArguments &LoopArgs,
2977                         const CodeGenLoopTy &CodeGenLoop,
2978                         const CodeGenOrderedTy &CodeGenOrdered);
2979   void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind,
2980                            bool IsMonotonic, const OMPLoopDirective &S,
2981                            OMPPrivateScope &LoopScope, bool Ordered,
2982                            const OMPLoopArguments &LoopArgs,
2983                            const CodeGenDispatchBoundsTy &CGDispatchBounds);
2984   void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind,
2985                                   const OMPLoopDirective &S,
2986                                   OMPPrivateScope &LoopScope,
2987                                   const OMPLoopArguments &LoopArgs,
2988                                   const CodeGenLoopTy &CodeGenLoopContent);
2989   /// \brief Emit code for sections directive.
2990   void EmitSections(const OMPExecutableDirective &S);
2991 
2992 public:
2993 
2994   //===--------------------------------------------------------------------===//
2995   //                         LValue Expression Emission
2996   //===--------------------------------------------------------------------===//
2997 
2998   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
2999   RValue GetUndefRValue(QualType Ty);
3000 
3001   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
3002   /// and issue an ErrorUnsupported style diagnostic (using the
3003   /// provided Name).
3004   RValue EmitUnsupportedRValue(const Expr *E,
3005                                const char *Name);
3006 
3007   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
3008   /// an ErrorUnsupported style diagnostic (using the provided Name).
3009   LValue EmitUnsupportedLValue(const Expr *E,
3010                                const char *Name);
3011 
3012   /// EmitLValue - Emit code to compute a designator that specifies the location
3013   /// of the expression.
3014   ///
3015   /// This can return one of two things: a simple address or a bitfield
3016   /// reference.  In either case, the LLVM Value* in the LValue structure is
3017   /// guaranteed to be an LLVM pointer type.
3018   ///
3019   /// If this returns a bitfield reference, nothing about the pointee type of
3020   /// the LLVM value is known: For example, it may not be a pointer to an
3021   /// integer.
3022   ///
3023   /// If this returns a normal address, and if the lvalue's C type is fixed
3024   /// size, this method guarantees that the returned pointer type will point to
3025   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
3026   /// variable length type, this is not possible.
3027   ///
3028   LValue EmitLValue(const Expr *E);
3029 
3030   /// \brief Same as EmitLValue but additionally we generate checking code to
3031   /// guard against undefined behavior.  This is only suitable when we know
3032   /// that the address will be used to access the object.
3033   LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
3034 
3035   RValue convertTempToRValue(Address addr, QualType type,
3036                              SourceLocation Loc);
3037 
3038   void EmitAtomicInit(Expr *E, LValue lvalue);
3039 
3040   bool LValueIsSuitableForInlineAtomic(LValue Src);
3041 
3042   RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
3043                         AggValueSlot Slot = AggValueSlot::ignored());
3044 
3045   RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
3046                         llvm::AtomicOrdering AO, bool IsVolatile = false,
3047                         AggValueSlot slot = AggValueSlot::ignored());
3048 
3049   void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
3050 
3051   void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
3052                        bool IsVolatile, bool isInit);
3053 
3054   std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
3055       LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
3056       llvm::AtomicOrdering Success =
3057           llvm::AtomicOrdering::SequentiallyConsistent,
3058       llvm::AtomicOrdering Failure =
3059           llvm::AtomicOrdering::SequentiallyConsistent,
3060       bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
3061 
3062   void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
3063                         const llvm::function_ref<RValue(RValue)> &UpdateOp,
3064                         bool IsVolatile);
3065 
3066   /// EmitToMemory - Change a scalar value from its value
3067   /// representation to its in-memory representation.
3068   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
3069 
3070   /// EmitFromMemory - Change a scalar value from its memory
3071   /// representation to its value representation.
3072   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
3073 
3074   /// Check if the scalar \p Value is within the valid range for the given
3075   /// type \p Ty.
3076   ///
3077   /// Returns true if a check is needed (even if the range is unknown).
3078   bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
3079                             SourceLocation Loc);
3080 
3081   /// EmitLoadOfScalar - Load a scalar value from an address, taking
3082   /// care to appropriately convert from the memory representation to
3083   /// the LLVM value representation.
3084   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3085                                 SourceLocation Loc,
3086                                 AlignmentSource Source = AlignmentSource::Type,
3087                                 bool isNontemporal = false) {
3088     return EmitLoadOfScalar(Addr, Volatile, Ty, Loc,
3089                             LValueBaseInfo(Source, false),
3090                             CGM.getTBAAAccessInfo(Ty), isNontemporal);
3091   }
3092 
3093   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3094                                 SourceLocation Loc, LValueBaseInfo BaseInfo,
3095                                 TBAAAccessInfo TBAAInfo,
3096                                 bool isNontemporal = false);
3097 
3098   /// EmitLoadOfScalar - Load a scalar value from an address, taking
3099   /// care to appropriately convert from the memory representation to
3100   /// the LLVM value representation.  The l-value must be a simple
3101   /// l-value.
3102   llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
3103 
3104   /// EmitStoreOfScalar - Store a scalar value to an address, taking
3105   /// care to appropriately convert from the memory representation to
3106   /// the LLVM value representation.
3107   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3108                          bool Volatile, QualType Ty,
3109                          AlignmentSource Source = AlignmentSource::Type,
3110                          bool isInit = false, bool isNontemporal = false) {
3111     EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source, false),
3112                       CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal);
3113   }
3114 
3115   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3116                          bool Volatile, QualType Ty,
3117                          LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo,
3118                          bool isInit = false, bool isNontemporal = false);
3119 
3120   /// EmitStoreOfScalar - Store a scalar value to an address, taking
3121   /// care to appropriately convert from the memory representation to
3122   /// the LLVM value representation.  The l-value must be a simple
3123   /// l-value.  The isInit flag indicates whether this is an initialization.
3124   /// If so, atomic qualifiers are ignored and the store is always non-atomic.
3125   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
3126 
3127   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
3128   /// this method emits the address of the lvalue, then loads the result as an
3129   /// rvalue, returning the rvalue.
3130   RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
3131   RValue EmitLoadOfExtVectorElementLValue(LValue V);
3132   RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc);
3133   RValue EmitLoadOfGlobalRegLValue(LValue LV);
3134 
3135   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
3136   /// lvalue, where both are guaranteed to the have the same type, and that type
3137   /// is 'Ty'.
3138   void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
3139   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
3140   void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
3141 
3142   /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
3143   /// as EmitStoreThroughLValue.
3144   ///
3145   /// \param Result [out] - If non-null, this will be set to a Value* for the
3146   /// bit-field contents after the store, appropriate for use as the result of
3147   /// an assignment to the bit-field.
3148   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
3149                                       llvm::Value **Result=nullptr);
3150 
3151   /// Emit an l-value for an assignment (simple or compound) of complex type.
3152   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
3153   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
3154   LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
3155                                              llvm::Value *&Result);
3156 
3157   // Note: only available for agg return types
3158   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
3159   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
3160   // Note: only available for agg return types
3161   LValue EmitCallExprLValue(const CallExpr *E);
3162   // Note: only available for agg return types
3163   LValue EmitVAArgExprLValue(const VAArgExpr *E);
3164   LValue EmitDeclRefLValue(const DeclRefExpr *E);
3165   LValue EmitStringLiteralLValue(const StringLiteral *E);
3166   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
3167   LValue EmitPredefinedLValue(const PredefinedExpr *E);
3168   LValue EmitUnaryOpLValue(const UnaryOperator *E);
3169   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3170                                 bool Accessed = false);
3171   LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3172                                  bool IsLowerBound = true);
3173   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
3174   LValue EmitMemberExpr(const MemberExpr *E);
3175   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
3176   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
3177   LValue EmitInitListLValue(const InitListExpr *E);
3178   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
3179   LValue EmitCastLValue(const CastExpr *E);
3180   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
3181   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
3182 
3183   Address EmitExtVectorElementLValue(LValue V);
3184 
3185   RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
3186 
3187   Address EmitArrayToPointerDecay(const Expr *Array,
3188                                   LValueBaseInfo *BaseInfo = nullptr,
3189                                   TBAAAccessInfo *TBAAInfo = nullptr);
3190 
3191   class ConstantEmission {
3192     llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
3193     ConstantEmission(llvm::Constant *C, bool isReference)
3194       : ValueAndIsReference(C, isReference) {}
3195   public:
3196     ConstantEmission() {}
3197     static ConstantEmission forReference(llvm::Constant *C) {
3198       return ConstantEmission(C, true);
3199     }
3200     static ConstantEmission forValue(llvm::Constant *C) {
3201       return ConstantEmission(C, false);
3202     }
3203 
3204     explicit operator bool() const {
3205       return ValueAndIsReference.getOpaqueValue() != nullptr;
3206     }
3207 
3208     bool isReference() const { return ValueAndIsReference.getInt(); }
3209     LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
3210       assert(isReference());
3211       return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
3212                                             refExpr->getType());
3213     }
3214 
3215     llvm::Constant *getValue() const {
3216       assert(!isReference());
3217       return ValueAndIsReference.getPointer();
3218     }
3219   };
3220 
3221   ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
3222   ConstantEmission tryEmitAsConstant(const MemberExpr *ME);
3223 
3224   RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
3225                                 AggValueSlot slot = AggValueSlot::ignored());
3226   LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
3227 
3228   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3229                               const ObjCIvarDecl *Ivar);
3230   LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
3231   LValue EmitLValueForLambdaField(const FieldDecl *Field);
3232 
3233   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
3234   /// if the Field is a reference, this will return the address of the reference
3235   /// and not the address of the value stored in the reference.
3236   LValue EmitLValueForFieldInitialization(LValue Base,
3237                                           const FieldDecl* Field);
3238 
3239   LValue EmitLValueForIvar(QualType ObjectTy,
3240                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
3241                            unsigned CVRQualifiers);
3242 
3243   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
3244   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
3245   LValue EmitLambdaLValue(const LambdaExpr *E);
3246   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
3247   LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
3248 
3249   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
3250   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
3251   LValue EmitStmtExprLValue(const StmtExpr *E);
3252   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
3253   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
3254   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init);
3255 
3256   //===--------------------------------------------------------------------===//
3257   //                         Scalar Expression Emission
3258   //===--------------------------------------------------------------------===//
3259 
3260   /// EmitCall - Generate a call of the given function, expecting the given
3261   /// result type, and using the given argument list which specifies both the
3262   /// LLVM arguments and the types they were derived from.
3263   RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
3264                   ReturnValueSlot ReturnValue, const CallArgList &Args,
3265                   llvm::Instruction **callOrInvoke = nullptr);
3266 
3267   RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E,
3268                   ReturnValueSlot ReturnValue,
3269                   llvm::Value *Chain = nullptr);
3270   RValue EmitCallExpr(const CallExpr *E,
3271                       ReturnValueSlot ReturnValue = ReturnValueSlot());
3272   RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
3273   CGCallee EmitCallee(const Expr *E);
3274 
3275   void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl);
3276 
3277   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
3278                                   const Twine &name = "");
3279   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
3280                                   ArrayRef<llvm::Value*> args,
3281                                   const Twine &name = "");
3282   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
3283                                           const Twine &name = "");
3284   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
3285                                           ArrayRef<llvm::Value*> args,
3286                                           const Twine &name = "");
3287 
3288   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
3289                                   ArrayRef<llvm::Value *> Args,
3290                                   const Twine &Name = "");
3291   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
3292                                          ArrayRef<llvm::Value*> args,
3293                                          const Twine &name = "");
3294   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
3295                                          const Twine &name = "");
3296   void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
3297                                        ArrayRef<llvm::Value*> args);
3298 
3299   CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
3300                                      NestedNameSpecifier *Qual,
3301                                      llvm::Type *Ty);
3302 
3303   CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
3304                                                CXXDtorType Type,
3305                                                const CXXRecordDecl *RD);
3306 
3307   RValue
3308   EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method,
3309                               const CGCallee &Callee,
3310                               ReturnValueSlot ReturnValue, llvm::Value *This,
3311                               llvm::Value *ImplicitParam,
3312                               QualType ImplicitParamTy, const CallExpr *E,
3313                               CallArgList *RtlArgs);
3314   RValue EmitCXXDestructorCall(const CXXDestructorDecl *DD,
3315                                const CGCallee &Callee,
3316                                llvm::Value *This, llvm::Value *ImplicitParam,
3317                                QualType ImplicitParamTy, const CallExpr *E,
3318                                StructorType Type);
3319   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
3320                                ReturnValueSlot ReturnValue);
3321   RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE,
3322                                                const CXXMethodDecl *MD,
3323                                                ReturnValueSlot ReturnValue,
3324                                                bool HasQualifier,
3325                                                NestedNameSpecifier *Qualifier,
3326                                                bool IsArrow, const Expr *Base);
3327   // Compute the object pointer.
3328   Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
3329                                           llvm::Value *memberPtr,
3330                                           const MemberPointerType *memberPtrType,
3331                                           LValueBaseInfo *BaseInfo = nullptr,
3332                                           TBAAAccessInfo *TBAAInfo = nullptr);
3333   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
3334                                       ReturnValueSlot ReturnValue);
3335 
3336   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
3337                                        const CXXMethodDecl *MD,
3338                                        ReturnValueSlot ReturnValue);
3339   RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E);
3340 
3341   RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
3342                                 ReturnValueSlot ReturnValue);
3343 
3344   RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E,
3345                                        ReturnValueSlot ReturnValue);
3346 
3347   RValue EmitBuiltinExpr(const FunctionDecl *FD,
3348                          unsigned BuiltinID, const CallExpr *E,
3349                          ReturnValueSlot ReturnValue);
3350 
3351   /// Emit IR for __builtin_os_log_format.
3352   RValue emitBuiltinOSLogFormat(const CallExpr &E);
3353 
3354   llvm::Function *generateBuiltinOSLogHelperFunction(
3355       const analyze_os_log::OSLogBufferLayout &Layout,
3356       CharUnits BufferAlignment);
3357 
3358   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
3359 
3360   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
3361   /// is unhandled by the current target.
3362   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3363 
3364   llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
3365                                              const llvm::CmpInst::Predicate Fp,
3366                                              const llvm::CmpInst::Predicate Ip,
3367                                              const llvm::Twine &Name = "");
3368   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3369 
3370   llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
3371                                          unsigned LLVMIntrinsic,
3372                                          unsigned AltLLVMIntrinsic,
3373                                          const char *NameHint,
3374                                          unsigned Modifier,
3375                                          const CallExpr *E,
3376                                          SmallVectorImpl<llvm::Value *> &Ops,
3377                                          Address PtrOp0, Address PtrOp1);
3378   llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
3379                                           unsigned Modifier, llvm::Type *ArgTy,
3380                                           const CallExpr *E);
3381   llvm::Value *EmitNeonCall(llvm::Function *F,
3382                             SmallVectorImpl<llvm::Value*> &O,
3383                             const char *name,
3384                             unsigned shift = 0, bool rightshift = false);
3385   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
3386   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
3387                                    bool negateForRightShift);
3388   llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
3389                                  llvm::Type *Ty, bool usgn, const char *name);
3390   llvm::Value *vectorWrapScalar16(llvm::Value *Op);
3391   llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3392 
3393   llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
3394   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3395   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3396   llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3397   llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3398   llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3399   llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
3400                                           const CallExpr *E);
3401 
3402 private:
3403   enum class MSVCIntrin;
3404 
3405 public:
3406   llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E);
3407 
3408   llvm::Value *EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args);
3409 
3410   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
3411   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
3412   llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
3413   llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
3414   llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
3415   llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
3416                                 const ObjCMethodDecl *MethodWithObjects);
3417   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
3418   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
3419                              ReturnValueSlot Return = ReturnValueSlot());
3420 
3421   /// Retrieves the default cleanup kind for an ARC cleanup.
3422   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
3423   CleanupKind getARCCleanupKind() {
3424     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
3425              ? NormalAndEHCleanup : NormalCleanup;
3426   }
3427 
3428   // ARC primitives.
3429   void EmitARCInitWeak(Address addr, llvm::Value *value);
3430   void EmitARCDestroyWeak(Address addr);
3431   llvm::Value *EmitARCLoadWeak(Address addr);
3432   llvm::Value *EmitARCLoadWeakRetained(Address addr);
3433   llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored);
3434   void EmitARCCopyWeak(Address dst, Address src);
3435   void EmitARCMoveWeak(Address dst, Address src);
3436   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
3437   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
3438   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
3439                                   bool resultIgnored);
3440   llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value,
3441                                       bool resultIgnored);
3442   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
3443   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
3444   llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
3445   void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise);
3446   void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
3447   llvm::Value *EmitARCAutorelease(llvm::Value *value);
3448   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
3449   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
3450   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
3451   llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value);
3452 
3453   std::pair<LValue,llvm::Value*>
3454   EmitARCStoreAutoreleasing(const BinaryOperator *e);
3455   std::pair<LValue,llvm::Value*>
3456   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
3457   std::pair<LValue,llvm::Value*>
3458   EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored);
3459 
3460   llvm::Value *EmitObjCThrowOperand(const Expr *expr);
3461   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
3462   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
3463 
3464   llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
3465   llvm::Value *EmitARCReclaimReturnedObject(const Expr *e,
3466                                             bool allowUnsafeClaim);
3467   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
3468   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
3469   llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr);
3470 
3471   void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
3472 
3473   static Destroyer destroyARCStrongImprecise;
3474   static Destroyer destroyARCStrongPrecise;
3475   static Destroyer destroyARCWeak;
3476   static Destroyer emitARCIntrinsicUse;
3477 
3478   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
3479   llvm::Value *EmitObjCAutoreleasePoolPush();
3480   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
3481   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
3482   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
3483 
3484   /// \brief Emits a reference binding to the passed in expression.
3485   RValue EmitReferenceBindingToExpr(const Expr *E);
3486 
3487   //===--------------------------------------------------------------------===//
3488   //                           Expression Emission
3489   //===--------------------------------------------------------------------===//
3490 
3491   // Expressions are broken into three classes: scalar, complex, aggregate.
3492 
3493   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
3494   /// scalar type, returning the result.
3495   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
3496 
3497   /// Emit a conversion from the specified type to the specified destination
3498   /// type, both of which are LLVM scalar types.
3499   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
3500                                     QualType DstTy, SourceLocation Loc);
3501 
3502   /// Emit a conversion from the specified complex type to the specified
3503   /// destination type, where the destination type is an LLVM scalar type.
3504   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
3505                                              QualType DstTy,
3506                                              SourceLocation Loc);
3507 
3508   /// EmitAggExpr - Emit the computation of the specified expression
3509   /// of aggregate type.  The result is computed into the given slot,
3510   /// which may be null to indicate that the value is not needed.
3511   void EmitAggExpr(const Expr *E, AggValueSlot AS);
3512 
3513   /// EmitAggExprToLValue - Emit the computation of the specified expression of
3514   /// aggregate type into a temporary LValue.
3515   LValue EmitAggExprToLValue(const Expr *E);
3516 
3517   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
3518   /// make sure it survives garbage collection until this point.
3519   void EmitExtendGCLifetime(llvm::Value *object);
3520 
3521   /// EmitComplexExpr - Emit the computation of the specified expression of
3522   /// complex type, returning the result.
3523   ComplexPairTy EmitComplexExpr(const Expr *E,
3524                                 bool IgnoreReal = false,
3525                                 bool IgnoreImag = false);
3526 
3527   /// EmitComplexExprIntoLValue - Emit the given expression of complex
3528   /// type and place its result into the specified l-value.
3529   void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
3530 
3531   /// EmitStoreOfComplex - Store a complex number into the specified l-value.
3532   void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
3533 
3534   /// EmitLoadOfComplex - Load a complex number from the specified l-value.
3535   ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
3536 
3537   Address emitAddrOfRealComponent(Address complex, QualType complexType);
3538   Address emitAddrOfImagComponent(Address complex, QualType complexType);
3539 
3540   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
3541   /// global variable that has already been created for it.  If the initializer
3542   /// has a different type than GV does, this may free GV and return a different
3543   /// one.  Otherwise it just returns GV.
3544   llvm::GlobalVariable *
3545   AddInitializerToStaticVarDecl(const VarDecl &D,
3546                                 llvm::GlobalVariable *GV);
3547 
3548 
3549   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
3550   /// variable with global storage.
3551   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
3552                                 bool PerformInit);
3553 
3554   llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::Constant *Dtor,
3555                                    llvm::Constant *Addr);
3556 
3557   /// Call atexit() with a function that passes the given argument to
3558   /// the given function.
3559   void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn,
3560                                     llvm::Constant *addr);
3561 
3562   /// Emit code in this function to perform a guarded variable
3563   /// initialization.  Guarded initializations are used when it's not
3564   /// possible to prove that an initialization will be done exactly
3565   /// once, e.g. with a static local variable or a static data member
3566   /// of a class template.
3567   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
3568                           bool PerformInit);
3569 
3570   enum class GuardKind { VariableGuard, TlsGuard };
3571 
3572   /// Emit a branch to select whether or not to perform guarded initialization.
3573   void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit,
3574                                 llvm::BasicBlock *InitBlock,
3575                                 llvm::BasicBlock *NoInitBlock,
3576                                 GuardKind Kind, const VarDecl *D);
3577 
3578   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
3579   /// variables.
3580   void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
3581                                  ArrayRef<llvm::Function *> CXXThreadLocals,
3582                                  Address Guard = Address::invalid());
3583 
3584   /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
3585   /// variables.
3586   void GenerateCXXGlobalDtorsFunc(
3587       llvm::Function *Fn,
3588       const std::vector<std::pair<llvm::WeakTrackingVH, llvm::Constant *>>
3589           &DtorsAndObjects);
3590 
3591   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
3592                                         const VarDecl *D,
3593                                         llvm::GlobalVariable *Addr,
3594                                         bool PerformInit);
3595 
3596   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
3597 
3598   void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp);
3599 
3600   void enterFullExpression(const ExprWithCleanups *E) {
3601     if (E->getNumObjects() == 0) return;
3602     enterNonTrivialFullExpression(E);
3603   }
3604   void enterNonTrivialFullExpression(const ExprWithCleanups *E);
3605 
3606   void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
3607 
3608   void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest);
3609 
3610   RValue EmitAtomicExpr(AtomicExpr *E);
3611 
3612   //===--------------------------------------------------------------------===//
3613   //                         Annotations Emission
3614   //===--------------------------------------------------------------------===//
3615 
3616   /// Emit an annotation call (intrinsic or builtin).
3617   llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
3618                                   llvm::Value *AnnotatedVal,
3619                                   StringRef AnnotationStr,
3620                                   SourceLocation Location);
3621 
3622   /// Emit local annotations for the local variable V, declared by D.
3623   void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
3624 
3625   /// Emit field annotations for the given field & value. Returns the
3626   /// annotation result.
3627   Address EmitFieldAnnotations(const FieldDecl *D, Address V);
3628 
3629   //===--------------------------------------------------------------------===//
3630   //                             Internal Helpers
3631   //===--------------------------------------------------------------------===//
3632 
3633   /// ContainsLabel - Return true if the statement contains a label in it.  If
3634   /// this statement is not executed normally, it not containing a label means
3635   /// that we can just remove the code.
3636   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
3637 
3638   /// containsBreak - Return true if the statement contains a break out of it.
3639   /// If the statement (recursively) contains a switch or loop with a break
3640   /// inside of it, this is fine.
3641   static bool containsBreak(const Stmt *S);
3642 
3643   /// Determine if the given statement might introduce a declaration into the
3644   /// current scope, by being a (possibly-labelled) DeclStmt.
3645   static bool mightAddDeclToScope(const Stmt *S);
3646 
3647   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
3648   /// to a constant, or if it does but contains a label, return false.  If it
3649   /// constant folds return true and set the boolean result in Result.
3650   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result,
3651                                     bool AllowLabels = false);
3652 
3653   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
3654   /// to a constant, or if it does but contains a label, return false.  If it
3655   /// constant folds return true and set the folded value.
3656   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result,
3657                                     bool AllowLabels = false);
3658 
3659   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
3660   /// if statement) to the specified blocks.  Based on the condition, this might
3661   /// try to simplify the codegen of the conditional based on the branch.
3662   /// TrueCount should be the number of times we expect the condition to
3663   /// evaluate to true based on PGO data.
3664   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
3665                             llvm::BasicBlock *FalseBlock, uint64_t TrueCount);
3666 
3667   /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is
3668   /// nonnull, if \p LHS is marked _Nonnull.
3669   void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc);
3670 
3671   /// An enumeration which makes it easier to specify whether or not an
3672   /// operation is a subtraction.
3673   enum { NotSubtraction = false, IsSubtraction = true };
3674 
3675   /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to
3676   /// detect undefined behavior when the pointer overflow sanitizer is enabled.
3677   /// \p SignedIndices indicates whether any of the GEP indices are signed.
3678   /// \p IsSubtraction indicates whether the expression used to form the GEP
3679   /// is a subtraction.
3680   llvm::Value *EmitCheckedInBoundsGEP(llvm::Value *Ptr,
3681                                       ArrayRef<llvm::Value *> IdxList,
3682                                       bool SignedIndices,
3683                                       bool IsSubtraction,
3684                                       SourceLocation Loc,
3685                                       const Twine &Name = "");
3686 
3687   /// Specifies which type of sanitizer check to apply when handling a
3688   /// particular builtin.
3689   enum BuiltinCheckKind {
3690     BCK_CTZPassedZero,
3691     BCK_CLZPassedZero,
3692   };
3693 
3694   /// Emits an argument for a call to a builtin. If the builtin sanitizer is
3695   /// enabled, a runtime check specified by \p Kind is also emitted.
3696   llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind);
3697 
3698   /// \brief Emit a description of a type in a format suitable for passing to
3699   /// a runtime sanitizer handler.
3700   llvm::Constant *EmitCheckTypeDescriptor(QualType T);
3701 
3702   /// \brief Convert a value into a format suitable for passing to a runtime
3703   /// sanitizer handler.
3704   llvm::Value *EmitCheckValue(llvm::Value *V);
3705 
3706   /// \brief Emit a description of a source location in a format suitable for
3707   /// passing to a runtime sanitizer handler.
3708   llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
3709 
3710   /// \brief Create a basic block that will call a handler function in a
3711   /// sanitizer runtime with the provided arguments, and create a conditional
3712   /// branch to it.
3713   void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
3714                  SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs,
3715                  ArrayRef<llvm::Value *> DynamicArgs);
3716 
3717   /// \brief Emit a slow path cross-DSO CFI check which calls __cfi_slowpath
3718   /// if Cond if false.
3719   void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond,
3720                             llvm::ConstantInt *TypeId, llvm::Value *Ptr,
3721                             ArrayRef<llvm::Constant *> StaticArgs);
3722 
3723   /// \brief Create a basic block that will call the trap intrinsic, and emit a
3724   /// conditional branch to it, for the -ftrapv checks.
3725   void EmitTrapCheck(llvm::Value *Checked);
3726 
3727   /// \brief Emit a call to trap or debugtrap and attach function attribute
3728   /// "trap-func-name" if specified.
3729   llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID);
3730 
3731   /// \brief Emit a stub for the cross-DSO CFI check function.
3732   void EmitCfiCheckStub();
3733 
3734   /// \brief Emit a cross-DSO CFI failure handling function.
3735   void EmitCfiCheckFail();
3736 
3737   /// \brief Create a check for a function parameter that may potentially be
3738   /// declared as non-null.
3739   void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc,
3740                            AbstractCallee AC, unsigned ParmNum);
3741 
3742   /// EmitCallArg - Emit a single call argument.
3743   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
3744 
3745   /// EmitDelegateCallArg - We are performing a delegate call; that
3746   /// is, the current function is delegating to another one.  Produce
3747   /// a r-value suitable for passing the given parameter.
3748   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
3749                            SourceLocation loc);
3750 
3751   /// SetFPAccuracy - Set the minimum required accuracy of the given floating
3752   /// point operation, expressed as the maximum relative error in ulp.
3753   void SetFPAccuracy(llvm::Value *Val, float Accuracy);
3754 
3755 private:
3756   llvm::MDNode *getRangeForLoadFromType(QualType Ty);
3757   void EmitReturnOfRValue(RValue RV, QualType Ty);
3758 
3759   void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
3760 
3761   llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4>
3762   DeferredReplacements;
3763 
3764   /// Set the address of a local variable.
3765   void setAddrOfLocalVar(const VarDecl *VD, Address Addr) {
3766     assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!");
3767     LocalDeclMap.insert({VD, Addr});
3768   }
3769 
3770   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
3771   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
3772   ///
3773   /// \param AI - The first function argument of the expansion.
3774   void ExpandTypeFromArgs(QualType Ty, LValue Dst,
3775                           SmallVectorImpl<llvm::Value *>::iterator &AI);
3776 
3777   /// ExpandTypeToArgs - Expand an RValue \arg RV, with the LLVM type for \arg
3778   /// Ty, into individual arguments on the provided vector \arg IRCallArgs,
3779   /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand.
3780   void ExpandTypeToArgs(QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy,
3781                         SmallVectorImpl<llvm::Value *> &IRCallArgs,
3782                         unsigned &IRCallArgPos);
3783 
3784   llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
3785                             const Expr *InputExpr, std::string &ConstraintStr);
3786 
3787   llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
3788                                   LValue InputValue, QualType InputType,
3789                                   std::string &ConstraintStr,
3790                                   SourceLocation Loc);
3791 
3792   /// \brief Attempts to statically evaluate the object size of E. If that
3793   /// fails, emits code to figure the size of E out for us. This is
3794   /// pass_object_size aware.
3795   ///
3796   /// If EmittedExpr is non-null, this will use that instead of re-emitting E.
3797   llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
3798                                                llvm::IntegerType *ResType,
3799                                                llvm::Value *EmittedE);
3800 
3801   /// \brief Emits the size of E, as required by __builtin_object_size. This
3802   /// function is aware of pass_object_size parameters, and will act accordingly
3803   /// if E is a parameter with the pass_object_size attribute.
3804   llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type,
3805                                      llvm::IntegerType *ResType,
3806                                      llvm::Value *EmittedE);
3807 
3808 public:
3809 #ifndef NDEBUG
3810   // Determine whether the given argument is an Objective-C method
3811   // that may have type parameters in its signature.
3812   static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) {
3813     const DeclContext *dc = method->getDeclContext();
3814     if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) {
3815       return classDecl->getTypeParamListAsWritten();
3816     }
3817 
3818     if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) {
3819       return catDecl->getTypeParamList();
3820     }
3821 
3822     return false;
3823   }
3824 
3825   template<typename T>
3826   static bool isObjCMethodWithTypeParams(const T *) { return false; }
3827 #endif
3828 
3829   enum class EvaluationOrder {
3830     ///! No language constraints on evaluation order.
3831     Default,
3832     ///! Language semantics require left-to-right evaluation.
3833     ForceLeftToRight,
3834     ///! Language semantics require right-to-left evaluation.
3835     ForceRightToLeft
3836   };
3837 
3838   /// EmitCallArgs - Emit call arguments for a function.
3839   template <typename T>
3840   void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo,
3841                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3842                     AbstractCallee AC = AbstractCallee(),
3843                     unsigned ParamsToSkip = 0,
3844                     EvaluationOrder Order = EvaluationOrder::Default) {
3845     SmallVector<QualType, 16> ArgTypes;
3846     CallExpr::const_arg_iterator Arg = ArgRange.begin();
3847 
3848     assert((ParamsToSkip == 0 || CallArgTypeInfo) &&
3849            "Can't skip parameters if type info is not provided");
3850     if (CallArgTypeInfo) {
3851 #ifndef NDEBUG
3852       bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo);
3853 #endif
3854 
3855       // First, use the argument types that the type info knows about
3856       for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip,
3857                 E = CallArgTypeInfo->param_type_end();
3858            I != E; ++I, ++Arg) {
3859         assert(Arg != ArgRange.end() && "Running over edge of argument list!");
3860         assert((isGenericMethod ||
3861                 ((*I)->isVariablyModifiedType() ||
3862                  (*I).getNonReferenceType()->isObjCRetainableType() ||
3863                  getContext()
3864                          .getCanonicalType((*I).getNonReferenceType())
3865                          .getTypePtr() ==
3866                      getContext()
3867                          .getCanonicalType((*Arg)->getType())
3868                          .getTypePtr())) &&
3869                "type mismatch in call argument!");
3870         ArgTypes.push_back(*I);
3871       }
3872     }
3873 
3874     // Either we've emitted all the call args, or we have a call to variadic
3875     // function.
3876     assert((Arg == ArgRange.end() || !CallArgTypeInfo ||
3877             CallArgTypeInfo->isVariadic()) &&
3878            "Extra arguments in non-variadic function!");
3879 
3880     // If we still have any arguments, emit them using the type of the argument.
3881     for (auto *A : llvm::make_range(Arg, ArgRange.end()))
3882       ArgTypes.push_back(CallArgTypeInfo ? getVarArgType(A) : A->getType());
3883 
3884     EmitCallArgs(Args, ArgTypes, ArgRange, AC, ParamsToSkip, Order);
3885   }
3886 
3887   void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes,
3888                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3889                     AbstractCallee AC = AbstractCallee(),
3890                     unsigned ParamsToSkip = 0,
3891                     EvaluationOrder Order = EvaluationOrder::Default);
3892 
3893   /// EmitPointerWithAlignment - Given an expression with a pointer type,
3894   /// emit the value and compute our best estimate of the alignment of the
3895   /// pointee.
3896   ///
3897   /// \param BaseInfo - If non-null, this will be initialized with
3898   /// information about the source of the alignment and the may-alias
3899   /// attribute.  Note that this function will conservatively fall back on
3900   /// the type when it doesn't recognize the expression and may-alias will
3901   /// be set to false.
3902   ///
3903   /// One reasonable way to use this information is when there's a language
3904   /// guarantee that the pointer must be aligned to some stricter value, and
3905   /// we're simply trying to ensure that sufficiently obvious uses of under-
3906   /// aligned objects don't get miscompiled; for example, a placement new
3907   /// into the address of a local variable.  In such a case, it's quite
3908   /// reasonable to just ignore the returned alignment when it isn't from an
3909   /// explicit source.
3910   Address EmitPointerWithAlignment(const Expr *Addr,
3911                                    LValueBaseInfo *BaseInfo = nullptr,
3912                                    TBAAAccessInfo *TBAAInfo = nullptr);
3913 
3914   void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK);
3915 
3916 private:
3917   QualType getVarArgType(const Expr *Arg);
3918 
3919   void EmitDeclMetadata();
3920 
3921   BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType,
3922                                   const AutoVarEmission &emission);
3923 
3924   void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
3925 
3926   llvm::Value *GetValueForARMHint(unsigned BuiltinID);
3927   llvm::Value *EmitX86CpuIs(const CallExpr *E);
3928   llvm::Value *EmitX86CpuIs(StringRef CPUStr);
3929   llvm::Value *EmitX86CpuSupports(const CallExpr *E);
3930   llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs);
3931   llvm::Value *EmitX86CpuInit();
3932 };
3933 
3934 /// Helper class with most of the code for saving a value for a
3935 /// conditional expression cleanup.
3936 struct DominatingLLVMValue {
3937   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
3938 
3939   /// Answer whether the given value needs extra work to be saved.
3940   static bool needsSaving(llvm::Value *value) {
3941     // If it's not an instruction, we don't need to save.
3942     if (!isa<llvm::Instruction>(value)) return false;
3943 
3944     // If it's an instruction in the entry block, we don't need to save.
3945     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
3946     return (block != &block->getParent()->getEntryBlock());
3947   }
3948 
3949   /// Try to save the given value.
3950   static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
3951     if (!needsSaving(value)) return saved_type(value, false);
3952 
3953     // Otherwise, we need an alloca.
3954     auto align = CharUnits::fromQuantity(
3955               CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType()));
3956     Address alloca =
3957       CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save");
3958     CGF.Builder.CreateStore(value, alloca);
3959 
3960     return saved_type(alloca.getPointer(), true);
3961   }
3962 
3963   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
3964     // If the value says it wasn't saved, trust that it's still dominating.
3965     if (!value.getInt()) return value.getPointer();
3966 
3967     // Otherwise, it should be an alloca instruction, as set up in save().
3968     auto alloca = cast<llvm::AllocaInst>(value.getPointer());
3969     return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlignment());
3970   }
3971 };
3972 
3973 /// A partial specialization of DominatingValue for llvm::Values that
3974 /// might be llvm::Instructions.
3975 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
3976   typedef T *type;
3977   static type restore(CodeGenFunction &CGF, saved_type value) {
3978     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
3979   }
3980 };
3981 
3982 /// A specialization of DominatingValue for Address.
3983 template <> struct DominatingValue<Address> {
3984   typedef Address type;
3985 
3986   struct saved_type {
3987     DominatingLLVMValue::saved_type SavedValue;
3988     CharUnits Alignment;
3989   };
3990 
3991   static bool needsSaving(type value) {
3992     return DominatingLLVMValue::needsSaving(value.getPointer());
3993   }
3994   static saved_type save(CodeGenFunction &CGF, type value) {
3995     return { DominatingLLVMValue::save(CGF, value.getPointer()),
3996              value.getAlignment() };
3997   }
3998   static type restore(CodeGenFunction &CGF, saved_type value) {
3999     return Address(DominatingLLVMValue::restore(CGF, value.SavedValue),
4000                    value.Alignment);
4001   }
4002 };
4003 
4004 /// A specialization of DominatingValue for RValue.
4005 template <> struct DominatingValue<RValue> {
4006   typedef RValue type;
4007   class saved_type {
4008     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
4009                 AggregateAddress, ComplexAddress };
4010 
4011     llvm::Value *Value;
4012     unsigned K : 3;
4013     unsigned Align : 29;
4014     saved_type(llvm::Value *v, Kind k, unsigned a = 0)
4015       : Value(v), K(k), Align(a) {}
4016 
4017   public:
4018     static bool needsSaving(RValue value);
4019     static saved_type save(CodeGenFunction &CGF, RValue value);
4020     RValue restore(CodeGenFunction &CGF);
4021 
4022     // implementations in CGCleanup.cpp
4023   };
4024 
4025   static bool needsSaving(type value) {
4026     return saved_type::needsSaving(value);
4027   }
4028   static saved_type save(CodeGenFunction &CGF, type value) {
4029     return saved_type::save(CGF, value);
4030   }
4031   static type restore(CodeGenFunction &CGF, saved_type value) {
4032     return value.restore(CGF);
4033   }
4034 };
4035 
4036 }  // end namespace CodeGen
4037 }  // end namespace clang
4038 
4039 #endif
4040