1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the internal per-function state used for llvm translation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef CLANG_CODEGEN_CODEGENFUNCTION_H
15 #define CLANG_CODEGEN_CODEGENFUNCTION_H
16 
17 #include "CGBuilder.h"
18 #include "CGDebugInfo.h"
19 #include "CGLoopInfo.h"
20 #include "CGValue.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "EHScopeStack.h"
24 #include "clang/AST/CharUnits.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/AST/ExprObjC.h"
27 #include "clang/AST/Type.h"
28 #include "clang/Basic/ABI.h"
29 #include "clang/Basic/CapturedStmt.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "clang/Frontend/CodeGenOptions.h"
32 #include "llvm/ADT/ArrayRef.h"
33 #include "llvm/ADT/DenseMap.h"
34 #include "llvm/ADT/SmallVector.h"
35 #include "llvm/IR/ValueHandle.h"
36 #include "llvm/Support/Debug.h"
37 
38 namespace llvm {
39 class BasicBlock;
40 class LLVMContext;
41 class MDNode;
42 class Module;
43 class SwitchInst;
44 class Twine;
45 class Value;
46 class CallSite;
47 }
48 
49 namespace clang {
50 class ASTContext;
51 class BlockDecl;
52 class CXXDestructorDecl;
53 class CXXForRangeStmt;
54 class CXXTryStmt;
55 class Decl;
56 class LabelDecl;
57 class EnumConstantDecl;
58 class FunctionDecl;
59 class FunctionProtoType;
60 class LabelStmt;
61 class ObjCContainerDecl;
62 class ObjCInterfaceDecl;
63 class ObjCIvarDecl;
64 class ObjCMethodDecl;
65 class ObjCImplementationDecl;
66 class ObjCPropertyImplDecl;
67 class TargetInfo;
68 class TargetCodeGenInfo;
69 class VarDecl;
70 class ObjCForCollectionStmt;
71 class ObjCAtTryStmt;
72 class ObjCAtThrowStmt;
73 class ObjCAtSynchronizedStmt;
74 class ObjCAutoreleasePoolStmt;
75 
76 namespace CodeGen {
77 class CodeGenTypes;
78 class CGFunctionInfo;
79 class CGRecordLayout;
80 class CGBlockInfo;
81 class CGCXXABI;
82 class BlockFlags;
83 class BlockFieldFlags;
84 
85 /// The kind of evaluation to perform on values of a particular
86 /// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
87 /// CGExprAgg?
88 ///
89 /// TODO: should vectors maybe be split out into their own thing?
90 enum TypeEvaluationKind {
91   TEK_Scalar,
92   TEK_Complex,
93   TEK_Aggregate
94 };
95 
96 class SuppressDebugLocation {
97   llvm::DebugLoc CurLoc;
98   llvm::IRBuilderBase &Builder;
99 public:
100   SuppressDebugLocation(llvm::IRBuilderBase &Builder)
101       : CurLoc(Builder.getCurrentDebugLocation()), Builder(Builder) {
102     Builder.SetCurrentDebugLocation(llvm::DebugLoc());
103   }
104   ~SuppressDebugLocation() {
105     Builder.SetCurrentDebugLocation(CurLoc);
106   }
107 };
108 
109 /// CodeGenFunction - This class organizes the per-function state that is used
110 /// while generating LLVM code.
111 class CodeGenFunction : public CodeGenTypeCache {
112   CodeGenFunction(const CodeGenFunction &) LLVM_DELETED_FUNCTION;
113   void operator=(const CodeGenFunction &) LLVM_DELETED_FUNCTION;
114 
115   friend class CGCXXABI;
116 public:
117   /// A jump destination is an abstract label, branching to which may
118   /// require a jump out through normal cleanups.
119   struct JumpDest {
120     JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {}
121     JumpDest(llvm::BasicBlock *Block,
122              EHScopeStack::stable_iterator Depth,
123              unsigned Index)
124       : Block(Block), ScopeDepth(Depth), Index(Index) {}
125 
126     bool isValid() const { return Block != nullptr; }
127     llvm::BasicBlock *getBlock() const { return Block; }
128     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
129     unsigned getDestIndex() const { return Index; }
130 
131     // This should be used cautiously.
132     void setScopeDepth(EHScopeStack::stable_iterator depth) {
133       ScopeDepth = depth;
134     }
135 
136   private:
137     llvm::BasicBlock *Block;
138     EHScopeStack::stable_iterator ScopeDepth;
139     unsigned Index;
140   };
141 
142   CodeGenModule &CGM;  // Per-module state.
143   const TargetInfo &Target;
144 
145   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
146   LoopInfoStack LoopStack;
147   CGBuilderTy Builder;
148 
149   /// \brief CGBuilder insert helper. This function is called after an
150   /// instruction is created using Builder.
151   void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
152                     llvm::BasicBlock *BB,
153                     llvm::BasicBlock::iterator InsertPt) const;
154 
155   /// CurFuncDecl - Holds the Decl for the current outermost
156   /// non-closure context.
157   const Decl *CurFuncDecl;
158   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
159   const Decl *CurCodeDecl;
160   const CGFunctionInfo *CurFnInfo;
161   QualType FnRetTy;
162   llvm::Function *CurFn;
163 
164   /// CurGD - The GlobalDecl for the current function being compiled.
165   GlobalDecl CurGD;
166 
167   /// PrologueCleanupDepth - The cleanup depth enclosing all the
168   /// cleanups associated with the parameters.
169   EHScopeStack::stable_iterator PrologueCleanupDepth;
170 
171   /// ReturnBlock - Unified return block.
172   JumpDest ReturnBlock;
173 
174   /// ReturnValue - The temporary alloca to hold the return value. This is null
175   /// iff the function has no return value.
176   llvm::Value *ReturnValue;
177 
178   /// AllocaInsertPoint - This is an instruction in the entry block before which
179   /// we prefer to insert allocas.
180   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
181 
182   /// \brief API for captured statement code generation.
183   class CGCapturedStmtInfo {
184   public:
185     explicit CGCapturedStmtInfo(const CapturedStmt &S,
186                                 CapturedRegionKind K = CR_Default)
187       : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
188 
189       RecordDecl::field_iterator Field =
190         S.getCapturedRecordDecl()->field_begin();
191       for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
192                                                 E = S.capture_end();
193            I != E; ++I, ++Field) {
194         if (I->capturesThis())
195           CXXThisFieldDecl = *Field;
196         else
197           CaptureFields[I->getCapturedVar()] = *Field;
198       }
199     }
200 
201     virtual ~CGCapturedStmtInfo();
202 
203     CapturedRegionKind getKind() const { return Kind; }
204 
205     void setContextValue(llvm::Value *V) { ThisValue = V; }
206     // \brief Retrieve the value of the context parameter.
207     llvm::Value *getContextValue() const { return ThisValue; }
208 
209     /// \brief Lookup the captured field decl for a variable.
210     const FieldDecl *lookup(const VarDecl *VD) const {
211       return CaptureFields.lookup(VD);
212     }
213 
214     bool isCXXThisExprCaptured() const { return CXXThisFieldDecl != nullptr; }
215     FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
216 
217     /// \brief Emit the captured statement body.
218     virtual void EmitBody(CodeGenFunction &CGF, Stmt *S) {
219       RegionCounter Cnt = CGF.getPGORegionCounter(S);
220       Cnt.beginRegion(CGF.Builder);
221       CGF.EmitStmt(S);
222     }
223 
224     /// \brief Get the name of the capture helper.
225     virtual StringRef getHelperName() const { return "__captured_stmt"; }
226 
227   private:
228     /// \brief The kind of captured statement being generated.
229     CapturedRegionKind Kind;
230 
231     /// \brief Keep the map between VarDecl and FieldDecl.
232     llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
233 
234     /// \brief The base address of the captured record, passed in as the first
235     /// argument of the parallel region function.
236     llvm::Value *ThisValue;
237 
238     /// \brief Captured 'this' type.
239     FieldDecl *CXXThisFieldDecl;
240   };
241   CGCapturedStmtInfo *CapturedStmtInfo;
242 
243   /// BoundsChecking - Emit run-time bounds checks. Higher values mean
244   /// potentially higher performance penalties.
245   unsigned char BoundsChecking;
246 
247   /// \brief Sanitizer options to use for this function.
248   const SanitizerOptions *SanOpts;
249 
250   /// \brief True if CodeGen currently emits code implementing sanitizer checks.
251   bool IsSanitizerScope;
252 
253   /// \brief RAII object to set/unset CodeGenFunction::IsSanitizerScope.
254   class SanitizerScope {
255     CodeGenFunction *CGF;
256   public:
257     SanitizerScope(CodeGenFunction *CGF);
258     ~SanitizerScope();
259   };
260 
261   /// In ARC, whether we should autorelease the return value.
262   bool AutoreleaseResult;
263 
264   const CodeGen::CGBlockInfo *BlockInfo;
265   llvm::Value *BlockPointer;
266 
267   llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
268   FieldDecl *LambdaThisCaptureField;
269 
270   /// \brief A mapping from NRVO variables to the flags used to indicate
271   /// when the NRVO has been applied to this variable.
272   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
273 
274   EHScopeStack EHStack;
275   llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
276 
277   /// Header for data within LifetimeExtendedCleanupStack.
278   struct LifetimeExtendedCleanupHeader {
279     /// The size of the following cleanup object.
280     size_t Size : 29;
281     /// The kind of cleanup to push: a value from the CleanupKind enumeration.
282     unsigned Kind : 3;
283 
284     size_t getSize() const { return Size; }
285     CleanupKind getKind() const { return static_cast<CleanupKind>(Kind); }
286   };
287 
288   /// i32s containing the indexes of the cleanup destinations.
289   llvm::AllocaInst *NormalCleanupDest;
290 
291   unsigned NextCleanupDestIndex;
292 
293   /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
294   CGBlockInfo *FirstBlockInfo;
295 
296   /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
297   llvm::BasicBlock *EHResumeBlock;
298 
299   /// The exception slot.  All landing pads write the current exception pointer
300   /// into this alloca.
301   llvm::Value *ExceptionSlot;
302 
303   /// The selector slot.  Under the MandatoryCleanup model, all landing pads
304   /// write the current selector value into this alloca.
305   llvm::AllocaInst *EHSelectorSlot;
306 
307   /// Emits a landing pad for the current EH stack.
308   llvm::BasicBlock *EmitLandingPad();
309 
310   llvm::BasicBlock *getInvokeDestImpl();
311 
312   template <class T>
313   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
314     return DominatingValue<T>::save(*this, value);
315   }
316 
317 public:
318   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
319   /// rethrows.
320   SmallVector<llvm::Value*, 8> ObjCEHValueStack;
321 
322   /// A class controlling the emission of a finally block.
323   class FinallyInfo {
324     /// Where the catchall's edge through the cleanup should go.
325     JumpDest RethrowDest;
326 
327     /// A function to call to enter the catch.
328     llvm::Constant *BeginCatchFn;
329 
330     /// An i1 variable indicating whether or not the @finally is
331     /// running for an exception.
332     llvm::AllocaInst *ForEHVar;
333 
334     /// An i8* variable into which the exception pointer to rethrow
335     /// has been saved.
336     llvm::AllocaInst *SavedExnVar;
337 
338   public:
339     void enter(CodeGenFunction &CGF, const Stmt *Finally,
340                llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
341                llvm::Constant *rethrowFn);
342     void exit(CodeGenFunction &CGF);
343   };
344 
345   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
346   /// current full-expression.  Safe against the possibility that
347   /// we're currently inside a conditionally-evaluated expression.
348   template <class T, class A0>
349   void pushFullExprCleanup(CleanupKind kind, A0 a0) {
350     // If we're not in a conditional branch, or if none of the
351     // arguments requires saving, then use the unconditional cleanup.
352     if (!isInConditionalBranch())
353       return EHStack.pushCleanup<T>(kind, a0);
354 
355     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
356 
357     typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType;
358     EHStack.pushCleanup<CleanupType>(kind, a0_saved);
359     initFullExprCleanup();
360   }
361 
362   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
363   /// current full-expression.  Safe against the possibility that
364   /// we're currently inside a conditionally-evaluated expression.
365   template <class T, class A0, class A1>
366   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) {
367     // If we're not in a conditional branch, or if none of the
368     // arguments requires saving, then use the unconditional cleanup.
369     if (!isInConditionalBranch())
370       return EHStack.pushCleanup<T>(kind, a0, a1);
371 
372     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
373     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
374 
375     typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType;
376     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved);
377     initFullExprCleanup();
378   }
379 
380   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
381   /// current full-expression.  Safe against the possibility that
382   /// we're currently inside a conditionally-evaluated expression.
383   template <class T, class A0, class A1, class A2>
384   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2) {
385     // If we're not in a conditional branch, or if none of the
386     // arguments requires saving, then use the unconditional cleanup.
387     if (!isInConditionalBranch()) {
388       return EHStack.pushCleanup<T>(kind, a0, a1, a2);
389     }
390 
391     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
392     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
393     typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
394 
395     typedef EHScopeStack::ConditionalCleanup3<T, A0, A1, A2> CleanupType;
396     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, a2_saved);
397     initFullExprCleanup();
398   }
399 
400   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
401   /// current full-expression.  Safe against the possibility that
402   /// we're currently inside a conditionally-evaluated expression.
403   template <class T, class A0, class A1, class A2, class A3>
404   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2, A3 a3) {
405     // If we're not in a conditional branch, or if none of the
406     // arguments requires saving, then use the unconditional cleanup.
407     if (!isInConditionalBranch()) {
408       return EHStack.pushCleanup<T>(kind, a0, a1, a2, a3);
409     }
410 
411     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
412     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
413     typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
414     typename DominatingValue<A3>::saved_type a3_saved = saveValueInCond(a3);
415 
416     typedef EHScopeStack::ConditionalCleanup4<T, A0, A1, A2, A3> CleanupType;
417     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved,
418                                      a2_saved, a3_saved);
419     initFullExprCleanup();
420   }
421 
422   /// \brief Queue a cleanup to be pushed after finishing the current
423   /// full-expression.
424   template <class T, class A0, class A1, class A2, class A3>
425   void pushCleanupAfterFullExpr(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) {
426     assert(!isInConditionalBranch() && "can't defer conditional cleanup");
427 
428     LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind };
429 
430     size_t OldSize = LifetimeExtendedCleanupStack.size();
431     LifetimeExtendedCleanupStack.resize(
432         LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size);
433 
434     char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
435     new (Buffer) LifetimeExtendedCleanupHeader(Header);
436     new (Buffer + sizeof(Header)) T(a0, a1, a2, a3);
437   }
438 
439   /// Set up the last cleaup that was pushed as a conditional
440   /// full-expression cleanup.
441   void initFullExprCleanup();
442 
443   /// PushDestructorCleanup - Push a cleanup to call the
444   /// complete-object destructor of an object of the given type at the
445   /// given address.  Does nothing if T is not a C++ class type with a
446   /// non-trivial destructor.
447   void PushDestructorCleanup(QualType T, llvm::Value *Addr);
448 
449   /// PushDestructorCleanup - Push a cleanup to call the
450   /// complete-object variant of the given destructor on the object at
451   /// the given address.
452   void PushDestructorCleanup(const CXXDestructorDecl *Dtor,
453                              llvm::Value *Addr);
454 
455   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
456   /// process all branch fixups.
457   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
458 
459   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
460   /// The block cannot be reactivated.  Pops it if it's the top of the
461   /// stack.
462   ///
463   /// \param DominatingIP - An instruction which is known to
464   ///   dominate the current IP (if set) and which lies along
465   ///   all paths of execution between the current IP and the
466   ///   the point at which the cleanup comes into scope.
467   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
468                               llvm::Instruction *DominatingIP);
469 
470   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
471   /// Cannot be used to resurrect a deactivated cleanup.
472   ///
473   /// \param DominatingIP - An instruction which is known to
474   ///   dominate the current IP (if set) and which lies along
475   ///   all paths of execution between the current IP and the
476   ///   the point at which the cleanup comes into scope.
477   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
478                             llvm::Instruction *DominatingIP);
479 
480   /// \brief Enters a new scope for capturing cleanups, all of which
481   /// will be executed once the scope is exited.
482   class RunCleanupsScope {
483     EHScopeStack::stable_iterator CleanupStackDepth;
484     size_t LifetimeExtendedCleanupStackSize;
485     bool OldDidCallStackSave;
486   protected:
487     bool PerformCleanup;
488   private:
489 
490     RunCleanupsScope(const RunCleanupsScope &) LLVM_DELETED_FUNCTION;
491     void operator=(const RunCleanupsScope &) LLVM_DELETED_FUNCTION;
492 
493   protected:
494     CodeGenFunction& CGF;
495 
496   public:
497     /// \brief Enter a new cleanup scope.
498     explicit RunCleanupsScope(CodeGenFunction &CGF)
499       : PerformCleanup(true), CGF(CGF)
500     {
501       CleanupStackDepth = CGF.EHStack.stable_begin();
502       LifetimeExtendedCleanupStackSize =
503           CGF.LifetimeExtendedCleanupStack.size();
504       OldDidCallStackSave = CGF.DidCallStackSave;
505       CGF.DidCallStackSave = false;
506     }
507 
508     /// \brief Exit this cleanup scope, emitting any accumulated
509     /// cleanups.
510     ~RunCleanupsScope() {
511       if (PerformCleanup) {
512         CGF.DidCallStackSave = OldDidCallStackSave;
513         CGF.PopCleanupBlocks(CleanupStackDepth,
514                              LifetimeExtendedCleanupStackSize);
515       }
516     }
517 
518     /// \brief Determine whether this scope requires any cleanups.
519     bool requiresCleanups() const {
520       return CGF.EHStack.stable_begin() != CleanupStackDepth;
521     }
522 
523     /// \brief Force the emission of cleanups now, instead of waiting
524     /// until this object is destroyed.
525     void ForceCleanup() {
526       assert(PerformCleanup && "Already forced cleanup");
527       CGF.DidCallStackSave = OldDidCallStackSave;
528       CGF.PopCleanupBlocks(CleanupStackDepth,
529                            LifetimeExtendedCleanupStackSize);
530       PerformCleanup = false;
531     }
532   };
533 
534   class LexicalScope: protected RunCleanupsScope {
535     SourceRange Range;
536     SmallVector<const LabelDecl*, 4> Labels;
537     LexicalScope *ParentScope;
538 
539     LexicalScope(const LexicalScope &) LLVM_DELETED_FUNCTION;
540     void operator=(const LexicalScope &) LLVM_DELETED_FUNCTION;
541 
542   public:
543     /// \brief Enter a new cleanup scope.
544     explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
545       : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
546       CGF.CurLexicalScope = this;
547       if (CGDebugInfo *DI = CGF.getDebugInfo())
548         DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
549     }
550 
551     void addLabel(const LabelDecl *label) {
552       assert(PerformCleanup && "adding label to dead scope?");
553       Labels.push_back(label);
554     }
555 
556     /// \brief Exit this cleanup scope, emitting any accumulated
557     /// cleanups.
558     ~LexicalScope() {
559       if (CGDebugInfo *DI = CGF.getDebugInfo())
560         DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
561 
562       // If we should perform a cleanup, force them now.  Note that
563       // this ends the cleanup scope before rescoping any labels.
564       if (PerformCleanup) ForceCleanup();
565     }
566 
567     /// \brief Force the emission of cleanups now, instead of waiting
568     /// until this object is destroyed.
569     void ForceCleanup() {
570       CGF.CurLexicalScope = ParentScope;
571       RunCleanupsScope::ForceCleanup();
572 
573       if (!Labels.empty())
574         rescopeLabels();
575     }
576 
577     void rescopeLabels();
578   };
579 
580 
581   /// \brief Takes the old cleanup stack size and emits the cleanup blocks
582   /// that have been added.
583   void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize);
584 
585   /// \brief Takes the old cleanup stack size and emits the cleanup blocks
586   /// that have been added, then adds all lifetime-extended cleanups from
587   /// the given position to the stack.
588   void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
589                         size_t OldLifetimeExtendedStackSize);
590 
591   void ResolveBranchFixups(llvm::BasicBlock *Target);
592 
593   /// The given basic block lies in the current EH scope, but may be a
594   /// target of a potentially scope-crossing jump; get a stable handle
595   /// to which we can perform this jump later.
596   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
597     return JumpDest(Target,
598                     EHStack.getInnermostNormalCleanup(),
599                     NextCleanupDestIndex++);
600   }
601 
602   /// The given basic block lies in the current EH scope, but may be a
603   /// target of a potentially scope-crossing jump; get a stable handle
604   /// to which we can perform this jump later.
605   JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
606     return getJumpDestInCurrentScope(createBasicBlock(Name));
607   }
608 
609   /// EmitBranchThroughCleanup - Emit a branch from the current insert
610   /// block through the normal cleanup handling code (if any) and then
611   /// on to \arg Dest.
612   void EmitBranchThroughCleanup(JumpDest Dest);
613 
614   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
615   /// specified destination obviously has no cleanups to run.  'false' is always
616   /// a conservatively correct answer for this method.
617   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
618 
619   /// popCatchScope - Pops the catch scope at the top of the EHScope
620   /// stack, emitting any required code (other than the catch handlers
621   /// themselves).
622   void popCatchScope();
623 
624   llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
625   llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
626 
627   /// An object to manage conditionally-evaluated expressions.
628   class ConditionalEvaluation {
629     llvm::BasicBlock *StartBB;
630 
631   public:
632     ConditionalEvaluation(CodeGenFunction &CGF)
633       : StartBB(CGF.Builder.GetInsertBlock()) {}
634 
635     void begin(CodeGenFunction &CGF) {
636       assert(CGF.OutermostConditional != this);
637       if (!CGF.OutermostConditional)
638         CGF.OutermostConditional = this;
639     }
640 
641     void end(CodeGenFunction &CGF) {
642       assert(CGF.OutermostConditional != nullptr);
643       if (CGF.OutermostConditional == this)
644         CGF.OutermostConditional = nullptr;
645     }
646 
647     /// Returns a block which will be executed prior to each
648     /// evaluation of the conditional code.
649     llvm::BasicBlock *getStartingBlock() const {
650       return StartBB;
651     }
652   };
653 
654   /// isInConditionalBranch - Return true if we're currently emitting
655   /// one branch or the other of a conditional expression.
656   bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
657 
658   void setBeforeOutermostConditional(llvm::Value *value, llvm::Value *addr) {
659     assert(isInConditionalBranch());
660     llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
661     new llvm::StoreInst(value, addr, &block->back());
662   }
663 
664   /// An RAII object to record that we're evaluating a statement
665   /// expression.
666   class StmtExprEvaluation {
667     CodeGenFunction &CGF;
668 
669     /// We have to save the outermost conditional: cleanups in a
670     /// statement expression aren't conditional just because the
671     /// StmtExpr is.
672     ConditionalEvaluation *SavedOutermostConditional;
673 
674   public:
675     StmtExprEvaluation(CodeGenFunction &CGF)
676       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
677       CGF.OutermostConditional = nullptr;
678     }
679 
680     ~StmtExprEvaluation() {
681       CGF.OutermostConditional = SavedOutermostConditional;
682       CGF.EnsureInsertPoint();
683     }
684   };
685 
686   /// An object which temporarily prevents a value from being
687   /// destroyed by aggressive peephole optimizations that assume that
688   /// all uses of a value have been realized in the IR.
689   class PeepholeProtection {
690     llvm::Instruction *Inst;
691     friend class CodeGenFunction;
692 
693   public:
694     PeepholeProtection() : Inst(nullptr) {}
695   };
696 
697   /// A non-RAII class containing all the information about a bound
698   /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
699   /// this which makes individual mappings very simple; using this
700   /// class directly is useful when you have a variable number of
701   /// opaque values or don't want the RAII functionality for some
702   /// reason.
703   class OpaqueValueMappingData {
704     const OpaqueValueExpr *OpaqueValue;
705     bool BoundLValue;
706     CodeGenFunction::PeepholeProtection Protection;
707 
708     OpaqueValueMappingData(const OpaqueValueExpr *ov,
709                            bool boundLValue)
710       : OpaqueValue(ov), BoundLValue(boundLValue) {}
711   public:
712     OpaqueValueMappingData() : OpaqueValue(nullptr) {}
713 
714     static bool shouldBindAsLValue(const Expr *expr) {
715       // gl-values should be bound as l-values for obvious reasons.
716       // Records should be bound as l-values because IR generation
717       // always keeps them in memory.  Expressions of function type
718       // act exactly like l-values but are formally required to be
719       // r-values in C.
720       return expr->isGLValue() ||
721              expr->getType()->isFunctionType() ||
722              hasAggregateEvaluationKind(expr->getType());
723     }
724 
725     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
726                                        const OpaqueValueExpr *ov,
727                                        const Expr *e) {
728       if (shouldBindAsLValue(ov))
729         return bind(CGF, ov, CGF.EmitLValue(e));
730       return bind(CGF, ov, CGF.EmitAnyExpr(e));
731     }
732 
733     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
734                                        const OpaqueValueExpr *ov,
735                                        const LValue &lv) {
736       assert(shouldBindAsLValue(ov));
737       CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
738       return OpaqueValueMappingData(ov, true);
739     }
740 
741     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
742                                        const OpaqueValueExpr *ov,
743                                        const RValue &rv) {
744       assert(!shouldBindAsLValue(ov));
745       CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
746 
747       OpaqueValueMappingData data(ov, false);
748 
749       // Work around an extremely aggressive peephole optimization in
750       // EmitScalarConversion which assumes that all other uses of a
751       // value are extant.
752       data.Protection = CGF.protectFromPeepholes(rv);
753 
754       return data;
755     }
756 
757     bool isValid() const { return OpaqueValue != nullptr; }
758     void clear() { OpaqueValue = nullptr; }
759 
760     void unbind(CodeGenFunction &CGF) {
761       assert(OpaqueValue && "no data to unbind!");
762 
763       if (BoundLValue) {
764         CGF.OpaqueLValues.erase(OpaqueValue);
765       } else {
766         CGF.OpaqueRValues.erase(OpaqueValue);
767         CGF.unprotectFromPeepholes(Protection);
768       }
769     }
770   };
771 
772   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
773   class OpaqueValueMapping {
774     CodeGenFunction &CGF;
775     OpaqueValueMappingData Data;
776 
777   public:
778     static bool shouldBindAsLValue(const Expr *expr) {
779       return OpaqueValueMappingData::shouldBindAsLValue(expr);
780     }
781 
782     /// Build the opaque value mapping for the given conditional
783     /// operator if it's the GNU ?: extension.  This is a common
784     /// enough pattern that the convenience operator is really
785     /// helpful.
786     ///
787     OpaqueValueMapping(CodeGenFunction &CGF,
788                        const AbstractConditionalOperator *op) : CGF(CGF) {
789       if (isa<ConditionalOperator>(op))
790         // Leave Data empty.
791         return;
792 
793       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
794       Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
795                                           e->getCommon());
796     }
797 
798     OpaqueValueMapping(CodeGenFunction &CGF,
799                        const OpaqueValueExpr *opaqueValue,
800                        LValue lvalue)
801       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
802     }
803 
804     OpaqueValueMapping(CodeGenFunction &CGF,
805                        const OpaqueValueExpr *opaqueValue,
806                        RValue rvalue)
807       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
808     }
809 
810     void pop() {
811       Data.unbind(CGF);
812       Data.clear();
813     }
814 
815     ~OpaqueValueMapping() {
816       if (Data.isValid()) Data.unbind(CGF);
817     }
818   };
819 
820   /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field
821   /// number that holds the value.
822   unsigned getByRefValueLLVMField(const ValueDecl *VD) const;
823 
824   /// BuildBlockByrefAddress - Computes address location of the
825   /// variable which is declared as __block.
826   llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr,
827                                       const VarDecl *V);
828 private:
829   CGDebugInfo *DebugInfo;
830   bool DisableDebugInfo;
831 
832   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
833   /// calling llvm.stacksave for multiple VLAs in the same scope.
834   bool DidCallStackSave;
835 
836   /// IndirectBranch - The first time an indirect goto is seen we create a block
837   /// with an indirect branch.  Every time we see the address of a label taken,
838   /// we add the label to the indirect goto.  Every subsequent indirect goto is
839   /// codegen'd as a jump to the IndirectBranch's basic block.
840   llvm::IndirectBrInst *IndirectBranch;
841 
842   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
843   /// decls.
844   typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy;
845   DeclMapTy LocalDeclMap;
846 
847   /// LabelMap - This keeps track of the LLVM basic block for each C label.
848   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
849 
850   // BreakContinueStack - This keeps track of where break and continue
851   // statements should jump to.
852   struct BreakContinue {
853     BreakContinue(JumpDest Break, JumpDest Continue)
854       : BreakBlock(Break), ContinueBlock(Continue) {}
855 
856     JumpDest BreakBlock;
857     JumpDest ContinueBlock;
858   };
859   SmallVector<BreakContinue, 8> BreakContinueStack;
860 
861   CodeGenPGO PGO;
862 
863 public:
864   /// Get a counter for instrumentation of the region associated with the given
865   /// statement.
866   RegionCounter getPGORegionCounter(const Stmt *S) {
867     return RegionCounter(PGO, S);
868   }
869 private:
870 
871   /// SwitchInsn - This is nearest current switch instruction. It is null if
872   /// current context is not in a switch.
873   llvm::SwitchInst *SwitchInsn;
874   /// The branch weights of SwitchInsn when doing instrumentation based PGO.
875   SmallVector<uint64_t, 16> *SwitchWeights;
876 
877   /// CaseRangeBlock - This block holds if condition check for last case
878   /// statement range in current switch instruction.
879   llvm::BasicBlock *CaseRangeBlock;
880 
881   /// OpaqueLValues - Keeps track of the current set of opaque value
882   /// expressions.
883   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
884   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
885 
886   // VLASizeMap - This keeps track of the associated size for each VLA type.
887   // We track this by the size expression rather than the type itself because
888   // in certain situations, like a const qualifier applied to an VLA typedef,
889   // multiple VLA types can share the same size expression.
890   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
891   // enter/leave scopes.
892   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
893 
894   /// A block containing a single 'unreachable' instruction.  Created
895   /// lazily by getUnreachableBlock().
896   llvm::BasicBlock *UnreachableBlock;
897 
898   /// Counts of the number return expressions in the function.
899   unsigned NumReturnExprs;
900 
901   /// Count the number of simple (constant) return expressions in the function.
902   unsigned NumSimpleReturnExprs;
903 
904   /// The last regular (non-return) debug location (breakpoint) in the function.
905   SourceLocation LastStopPoint;
906 
907 public:
908   /// A scope within which we are constructing the fields of an object which
909   /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
910   /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
911   class FieldConstructionScope {
912   public:
913     FieldConstructionScope(CodeGenFunction &CGF, llvm::Value *This)
914         : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
915       CGF.CXXDefaultInitExprThis = This;
916     }
917     ~FieldConstructionScope() {
918       CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
919     }
920 
921   private:
922     CodeGenFunction &CGF;
923     llvm::Value *OldCXXDefaultInitExprThis;
924   };
925 
926   /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
927   /// is overridden to be the object under construction.
928   class CXXDefaultInitExprScope {
929   public:
930     CXXDefaultInitExprScope(CodeGenFunction &CGF)
931         : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue) {
932       CGF.CXXThisValue = CGF.CXXDefaultInitExprThis;
933     }
934     ~CXXDefaultInitExprScope() {
935       CGF.CXXThisValue = OldCXXThisValue;
936     }
937 
938   public:
939     CodeGenFunction &CGF;
940     llvm::Value *OldCXXThisValue;
941   };
942 
943 private:
944   /// CXXThisDecl - When generating code for a C++ member function,
945   /// this will hold the implicit 'this' declaration.
946   ImplicitParamDecl *CXXABIThisDecl;
947   llvm::Value *CXXABIThisValue;
948   llvm::Value *CXXThisValue;
949 
950   /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
951   /// this expression.
952   llvm::Value *CXXDefaultInitExprThis;
953 
954   /// CXXStructorImplicitParamDecl - When generating code for a constructor or
955   /// destructor, this will hold the implicit argument (e.g. VTT).
956   ImplicitParamDecl *CXXStructorImplicitParamDecl;
957   llvm::Value *CXXStructorImplicitParamValue;
958 
959   /// OutermostConditional - Points to the outermost active
960   /// conditional control.  This is used so that we know if a
961   /// temporary should be destroyed conditionally.
962   ConditionalEvaluation *OutermostConditional;
963 
964   /// The current lexical scope.
965   LexicalScope *CurLexicalScope;
966 
967   /// The current source location that should be used for exception
968   /// handling code.
969   SourceLocation CurEHLocation;
970 
971   /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM
972   /// type as well as the field number that contains the actual data.
973   llvm::DenseMap<const ValueDecl *, std::pair<llvm::Type *,
974                                               unsigned> > ByRefValueInfo;
975 
976   llvm::BasicBlock *TerminateLandingPad;
977   llvm::BasicBlock *TerminateHandler;
978   llvm::BasicBlock *TrapBB;
979 
980   /// Add a kernel metadata node to the named metadata node 'opencl.kernels'.
981   /// In the kernel metadata node, reference the kernel function and metadata
982   /// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2):
983   /// - A node for the vec_type_hint(<type>) qualifier contains string
984   ///   "vec_type_hint", an undefined value of the <type> data type,
985   ///   and a Boolean that is true if the <type> is integer and signed.
986   /// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string
987   ///   "work_group_size_hint", and three 32-bit integers X, Y and Z.
988   /// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string
989   ///   "reqd_work_group_size", and three 32-bit integers X, Y and Z.
990   void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
991                                 llvm::Function *Fn);
992 
993 public:
994   CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
995   ~CodeGenFunction();
996 
997   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
998   ASTContext &getContext() const { return CGM.getContext(); }
999   CGDebugInfo *getDebugInfo() {
1000     if (DisableDebugInfo)
1001       return nullptr;
1002     return DebugInfo;
1003   }
1004   void disableDebugInfo() { DisableDebugInfo = true; }
1005   void enableDebugInfo() { DisableDebugInfo = false; }
1006 
1007   bool shouldUseFusedARCCalls() {
1008     return CGM.getCodeGenOpts().OptimizationLevel == 0;
1009   }
1010 
1011   const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1012 
1013   /// Returns a pointer to the function's exception object and selector slot,
1014   /// which is assigned in every landing pad.
1015   llvm::Value *getExceptionSlot();
1016   llvm::Value *getEHSelectorSlot();
1017 
1018   /// Returns the contents of the function's exception object and selector
1019   /// slots.
1020   llvm::Value *getExceptionFromSlot();
1021   llvm::Value *getSelectorFromSlot();
1022 
1023   llvm::Value *getNormalCleanupDestSlot();
1024 
1025   llvm::BasicBlock *getUnreachableBlock() {
1026     if (!UnreachableBlock) {
1027       UnreachableBlock = createBasicBlock("unreachable");
1028       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1029     }
1030     return UnreachableBlock;
1031   }
1032 
1033   llvm::BasicBlock *getInvokeDest() {
1034     if (!EHStack.requiresLandingPad()) return nullptr;
1035     return getInvokeDestImpl();
1036   }
1037 
1038   const TargetInfo &getTarget() const { return Target; }
1039   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1040 
1041   //===--------------------------------------------------------------------===//
1042   //                                  Cleanups
1043   //===--------------------------------------------------------------------===//
1044 
1045   typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty);
1046 
1047   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1048                                         llvm::Value *arrayEndPointer,
1049                                         QualType elementType,
1050                                         Destroyer *destroyer);
1051   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1052                                       llvm::Value *arrayEnd,
1053                                       QualType elementType,
1054                                       Destroyer *destroyer);
1055 
1056   void pushDestroy(QualType::DestructionKind dtorKind,
1057                    llvm::Value *addr, QualType type);
1058   void pushEHDestroy(QualType::DestructionKind dtorKind,
1059                      llvm::Value *addr, QualType type);
1060   void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type,
1061                    Destroyer *destroyer, bool useEHCleanupForArray);
1062   void pushLifetimeExtendedDestroy(CleanupKind kind, llvm::Value *addr,
1063                                    QualType type, Destroyer *destroyer,
1064                                    bool useEHCleanupForArray);
1065   void pushStackRestore(CleanupKind kind, llvm::Value *SPMem);
1066   void emitDestroy(llvm::Value *addr, QualType type, Destroyer *destroyer,
1067                    bool useEHCleanupForArray);
1068   llvm::Function *generateDestroyHelper(llvm::Constant *addr, QualType type,
1069                                         Destroyer *destroyer,
1070                                         bool useEHCleanupForArray,
1071                                         const VarDecl *VD);
1072   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1073                         QualType type, Destroyer *destroyer,
1074                         bool checkZeroLength, bool useEHCleanup);
1075 
1076   Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1077 
1078   /// Determines whether an EH cleanup is required to destroy a type
1079   /// with the given destruction kind.
1080   bool needsEHCleanup(QualType::DestructionKind kind) {
1081     switch (kind) {
1082     case QualType::DK_none:
1083       return false;
1084     case QualType::DK_cxx_destructor:
1085     case QualType::DK_objc_weak_lifetime:
1086       return getLangOpts().Exceptions;
1087     case QualType::DK_objc_strong_lifetime:
1088       return getLangOpts().Exceptions &&
1089              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1090     }
1091     llvm_unreachable("bad destruction kind");
1092   }
1093 
1094   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
1095     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1096   }
1097 
1098   //===--------------------------------------------------------------------===//
1099   //                                  Objective-C
1100   //===--------------------------------------------------------------------===//
1101 
1102   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1103 
1104   void StartObjCMethod(const ObjCMethodDecl *MD,
1105                        const ObjCContainerDecl *CD,
1106                        SourceLocation StartLoc);
1107 
1108   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1109   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1110                           const ObjCPropertyImplDecl *PID);
1111   void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1112                               const ObjCPropertyImplDecl *propImpl,
1113                               const ObjCMethodDecl *GetterMothodDecl,
1114                               llvm::Constant *AtomicHelperFn);
1115 
1116   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1117                                   ObjCMethodDecl *MD, bool ctor);
1118 
1119   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1120   /// for the given property.
1121   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1122                           const ObjCPropertyImplDecl *PID);
1123   void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1124                               const ObjCPropertyImplDecl *propImpl,
1125                               llvm::Constant *AtomicHelperFn);
1126   bool IndirectObjCSetterArg(const CGFunctionInfo &FI);
1127   bool IvarTypeWithAggrGCObjects(QualType Ty);
1128 
1129   //===--------------------------------------------------------------------===//
1130   //                                  Block Bits
1131   //===--------------------------------------------------------------------===//
1132 
1133   llvm::Value *EmitBlockLiteral(const BlockExpr *);
1134   llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
1135   static void destroyBlockInfos(CGBlockInfo *info);
1136   llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *,
1137                                            const CGBlockInfo &Info,
1138                                            llvm::StructType *,
1139                                            llvm::Constant *BlockVarLayout);
1140 
1141   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1142                                         const CGBlockInfo &Info,
1143                                         const DeclMapTy &ldm,
1144                                         bool IsLambdaConversionToBlock);
1145 
1146   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1147   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1148   llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
1149                                              const ObjCPropertyImplDecl *PID);
1150   llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
1151                                              const ObjCPropertyImplDecl *PID);
1152   llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
1153 
1154   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
1155 
1156   class AutoVarEmission;
1157 
1158   void emitByrefStructureInit(const AutoVarEmission &emission);
1159   void enterByrefCleanup(const AutoVarEmission &emission);
1160 
1161   llvm::Value *LoadBlockStruct() {
1162     assert(BlockPointer && "no block pointer set!");
1163     return BlockPointer;
1164   }
1165 
1166   void AllocateBlockCXXThisPointer(const CXXThisExpr *E);
1167   void AllocateBlockDecl(const DeclRefExpr *E);
1168   llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
1169   llvm::Type *BuildByRefType(const VarDecl *var);
1170 
1171   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1172                     const CGFunctionInfo &FnInfo);
1173   /// \brief Emit code for the start of a function.
1174   /// \param Loc       The location to be associated with the function.
1175   /// \param StartLoc  The location of the function body.
1176   void StartFunction(GlobalDecl GD,
1177                      QualType RetTy,
1178                      llvm::Function *Fn,
1179                      const CGFunctionInfo &FnInfo,
1180                      const FunctionArgList &Args,
1181                      SourceLocation Loc = SourceLocation(),
1182                      SourceLocation StartLoc = SourceLocation());
1183 
1184   void EmitConstructorBody(FunctionArgList &Args);
1185   void EmitDestructorBody(FunctionArgList &Args);
1186   void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
1187   void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body);
1188   void EmitBlockWithFallThrough(llvm::BasicBlock *BB, RegionCounter &Cnt);
1189 
1190   void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
1191                                   CallArgList &CallArgs);
1192   void EmitLambdaToBlockPointerBody(FunctionArgList &Args);
1193   void EmitLambdaBlockInvokeBody();
1194   void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
1195   void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD);
1196 
1197   /// EmitReturnBlock - Emit the unified return block, trying to avoid its
1198   /// emission when possible.
1199   void EmitReturnBlock();
1200 
1201   /// FinishFunction - Complete IR generation of the current function. It is
1202   /// legal to call this function even if there is no current insertion point.
1203   void FinishFunction(SourceLocation EndLoc=SourceLocation());
1204 
1205   void StartThunk(llvm::Function *Fn, GlobalDecl GD, const CGFunctionInfo &FnInfo);
1206 
1207   void EmitCallAndReturnForThunk(GlobalDecl GD, llvm::Value *Callee,
1208                                  const ThunkInfo *Thunk);
1209 
1210   /// GenerateThunk - Generate a thunk for the given method.
1211   void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1212                      GlobalDecl GD, const ThunkInfo &Thunk);
1213 
1214   void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1215                             GlobalDecl GD, const ThunkInfo &Thunk);
1216 
1217   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1218                         FunctionArgList &Args);
1219 
1220   void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init,
1221                                ArrayRef<VarDecl *> ArrayIndexes);
1222 
1223   /// InitializeVTablePointer - Initialize the vtable pointer of the given
1224   /// subobject.
1225   ///
1226   void InitializeVTablePointer(BaseSubobject Base,
1227                                const CXXRecordDecl *NearestVBase,
1228                                CharUnits OffsetFromNearestVBase,
1229                                const CXXRecordDecl *VTableClass);
1230 
1231   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1232   void InitializeVTablePointers(BaseSubobject Base,
1233                                 const CXXRecordDecl *NearestVBase,
1234                                 CharUnits OffsetFromNearestVBase,
1235                                 bool BaseIsNonVirtualPrimaryBase,
1236                                 const CXXRecordDecl *VTableClass,
1237                                 VisitedVirtualBasesSetTy& VBases);
1238 
1239   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1240 
1241   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1242   /// to by This.
1243   llvm::Value *GetVTablePtr(llvm::Value *This, llvm::Type *Ty);
1244 
1245 
1246   /// CanDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given
1247   /// expr can be devirtualized.
1248   bool CanDevirtualizeMemberFunctionCall(const Expr *Base,
1249                                          const CXXMethodDecl *MD);
1250 
1251   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1252   /// given phase of destruction for a destructor.  The end result
1253   /// should call destructors on members and base classes in reverse
1254   /// order of their construction.
1255   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1256 
1257   /// ShouldInstrumentFunction - Return true if the current function should be
1258   /// instrumented with __cyg_profile_func_* calls
1259   bool ShouldInstrumentFunction();
1260 
1261   /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
1262   /// instrumentation function with the current function and the call site, if
1263   /// function instrumentation is enabled.
1264   void EmitFunctionInstrumentation(const char *Fn);
1265 
1266   /// EmitMCountInstrumentation - Emit call to .mcount.
1267   void EmitMCountInstrumentation();
1268 
1269   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1270   /// arguments for the given function. This is also responsible for naming the
1271   /// LLVM function arguments.
1272   void EmitFunctionProlog(const CGFunctionInfo &FI,
1273                           llvm::Function *Fn,
1274                           const FunctionArgList &Args);
1275 
1276   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1277   /// given temporary.
1278   void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
1279                           SourceLocation EndLoc);
1280 
1281   /// EmitStartEHSpec - Emit the start of the exception spec.
1282   void EmitStartEHSpec(const Decl *D);
1283 
1284   /// EmitEndEHSpec - Emit the end of the exception spec.
1285   void EmitEndEHSpec(const Decl *D);
1286 
1287   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
1288   llvm::BasicBlock *getTerminateLandingPad();
1289 
1290   /// getTerminateHandler - Return a handler (not a landing pad, just
1291   /// a catch handler) that just calls terminate.  This is used when
1292   /// a terminate scope encloses a try.
1293   llvm::BasicBlock *getTerminateHandler();
1294 
1295   llvm::Type *ConvertTypeForMem(QualType T);
1296   llvm::Type *ConvertType(QualType T);
1297   llvm::Type *ConvertType(const TypeDecl *T) {
1298     return ConvertType(getContext().getTypeDeclType(T));
1299   }
1300 
1301   /// LoadObjCSelf - Load the value of self. This function is only valid while
1302   /// generating code for an Objective-C method.
1303   llvm::Value *LoadObjCSelf();
1304 
1305   /// TypeOfSelfObject - Return type of object that this self represents.
1306   QualType TypeOfSelfObject();
1307 
1308   /// hasAggregateLLVMType - Return true if the specified AST type will map into
1309   /// an aggregate LLVM type or is void.
1310   static TypeEvaluationKind getEvaluationKind(QualType T);
1311 
1312   static bool hasScalarEvaluationKind(QualType T) {
1313     return getEvaluationKind(T) == TEK_Scalar;
1314   }
1315 
1316   static bool hasAggregateEvaluationKind(QualType T) {
1317     return getEvaluationKind(T) == TEK_Aggregate;
1318   }
1319 
1320   /// createBasicBlock - Create an LLVM basic block.
1321   llvm::BasicBlock *createBasicBlock(const Twine &name = "",
1322                                      llvm::Function *parent = nullptr,
1323                                      llvm::BasicBlock *before = nullptr) {
1324 #ifdef NDEBUG
1325     return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
1326 #else
1327     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
1328 #endif
1329   }
1330 
1331   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
1332   /// label maps to.
1333   JumpDest getJumpDestForLabel(const LabelDecl *S);
1334 
1335   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
1336   /// another basic block, simplify it. This assumes that no other code could
1337   /// potentially reference the basic block.
1338   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
1339 
1340   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
1341   /// adding a fall-through branch from the current insert block if
1342   /// necessary. It is legal to call this function even if there is no current
1343   /// insertion point.
1344   ///
1345   /// IsFinished - If true, indicates that the caller has finished emitting
1346   /// branches to the given block and does not expect to emit code into it. This
1347   /// means the block can be ignored if it is unreachable.
1348   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
1349 
1350   /// EmitBlockAfterUses - Emit the given block somewhere hopefully
1351   /// near its uses, and leave the insertion point in it.
1352   void EmitBlockAfterUses(llvm::BasicBlock *BB);
1353 
1354   /// EmitBranch - Emit a branch to the specified basic block from the current
1355   /// insert block, taking care to avoid creation of branches from dummy
1356   /// blocks. It is legal to call this function even if there is no current
1357   /// insertion point.
1358   ///
1359   /// This function clears the current insertion point. The caller should follow
1360   /// calls to this function with calls to Emit*Block prior to generation new
1361   /// code.
1362   void EmitBranch(llvm::BasicBlock *Block);
1363 
1364   /// HaveInsertPoint - True if an insertion point is defined. If not, this
1365   /// indicates that the current code being emitted is unreachable.
1366   bool HaveInsertPoint() const {
1367     return Builder.GetInsertBlock() != nullptr;
1368   }
1369 
1370   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
1371   /// emitted IR has a place to go. Note that by definition, if this function
1372   /// creates a block then that block is unreachable; callers may do better to
1373   /// detect when no insertion point is defined and simply skip IR generation.
1374   void EnsureInsertPoint() {
1375     if (!HaveInsertPoint())
1376       EmitBlock(createBasicBlock());
1377   }
1378 
1379   /// ErrorUnsupported - Print out an error that codegen doesn't support the
1380   /// specified stmt yet.
1381   void ErrorUnsupported(const Stmt *S, const char *Type);
1382 
1383   //===--------------------------------------------------------------------===//
1384   //                                  Helpers
1385   //===--------------------------------------------------------------------===//
1386 
1387   LValue MakeAddrLValue(llvm::Value *V, QualType T,
1388                         CharUnits Alignment = CharUnits()) {
1389     return LValue::MakeAddr(V, T, Alignment, getContext(),
1390                             CGM.getTBAAInfo(T));
1391   }
1392 
1393   LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
1394     CharUnits Alignment;
1395     if (!T->isIncompleteType())
1396       Alignment = getContext().getTypeAlignInChars(T);
1397     return LValue::MakeAddr(V, T, Alignment, getContext(),
1398                             CGM.getTBAAInfo(T));
1399   }
1400 
1401   /// CreateTempAlloca - This creates a alloca and inserts it into the entry
1402   /// block. The caller is responsible for setting an appropriate alignment on
1403   /// the alloca.
1404   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty,
1405                                      const Twine &Name = "tmp");
1406 
1407   /// InitTempAlloca - Provide an initial value for the given alloca.
1408   void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value);
1409 
1410   /// CreateIRTemp - Create a temporary IR object of the given type, with
1411   /// appropriate alignment. This routine should only be used when an temporary
1412   /// value needs to be stored into an alloca (for example, to avoid explicit
1413   /// PHI construction), but the type is the IR type, not the type appropriate
1414   /// for storing in memory.
1415   llvm::AllocaInst *CreateIRTemp(QualType T, const Twine &Name = "tmp");
1416 
1417   /// CreateMemTemp - Create a temporary memory object of the given type, with
1418   /// appropriate alignment.
1419   llvm::AllocaInst *CreateMemTemp(QualType T, const Twine &Name = "tmp");
1420 
1421   /// CreateAggTemp - Create a temporary memory object for the given
1422   /// aggregate type.
1423   AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
1424     CharUnits Alignment = getContext().getTypeAlignInChars(T);
1425     return AggValueSlot::forAddr(CreateMemTemp(T, Name), Alignment,
1426                                  T.getQualifiers(),
1427                                  AggValueSlot::IsNotDestructed,
1428                                  AggValueSlot::DoesNotNeedGCBarriers,
1429                                  AggValueSlot::IsNotAliased);
1430   }
1431 
1432   /// CreateInAllocaTmp - Create a temporary memory object for the given
1433   /// aggregate type.
1434   AggValueSlot CreateInAllocaTmp(QualType T, const Twine &Name = "inalloca");
1435 
1436   /// Emit a cast to void* in the appropriate address space.
1437   llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
1438 
1439   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
1440   /// expression and compare the result against zero, returning an Int1Ty value.
1441   llvm::Value *EvaluateExprAsBool(const Expr *E);
1442 
1443   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
1444   void EmitIgnoredExpr(const Expr *E);
1445 
1446   /// EmitAnyExpr - Emit code to compute the specified expression which can have
1447   /// any type.  The result is returned as an RValue struct.  If this is an
1448   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
1449   /// the result should be returned.
1450   ///
1451   /// \param ignoreResult True if the resulting value isn't used.
1452   RValue EmitAnyExpr(const Expr *E,
1453                      AggValueSlot aggSlot = AggValueSlot::ignored(),
1454                      bool ignoreResult = false);
1455 
1456   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
1457   // or the value of the expression, depending on how va_list is defined.
1458   llvm::Value *EmitVAListRef(const Expr *E);
1459 
1460   /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
1461   /// always be accessible even if no aggregate location is provided.
1462   RValue EmitAnyExprToTemp(const Expr *E);
1463 
1464   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
1465   /// arbitrary expression into the given memory location.
1466   void EmitAnyExprToMem(const Expr *E, llvm::Value *Location,
1467                         Qualifiers Quals, bool IsInitializer);
1468 
1469   /// EmitExprAsInit - Emits the code necessary to initialize a
1470   /// location in memory with the given initializer.
1471   void EmitExprAsInit(const Expr *init, const ValueDecl *D,
1472                       LValue lvalue, bool capturedByInit);
1473 
1474   /// hasVolatileMember - returns true if aggregate type has a volatile
1475   /// member.
1476   bool hasVolatileMember(QualType T) {
1477     if (const RecordType *RT = T->getAs<RecordType>()) {
1478       const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
1479       return RD->hasVolatileMember();
1480     }
1481     return false;
1482   }
1483   /// EmitAggregateCopy - Emit an aggregate assignment.
1484   ///
1485   /// The difference to EmitAggregateCopy is that tail padding is not copied.
1486   /// This is required for correctness when assigning non-POD structures in C++.
1487   void EmitAggregateAssign(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1488                            QualType EltTy) {
1489     bool IsVolatile = hasVolatileMember(EltTy);
1490     EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, CharUnits::Zero(),
1491                       true);
1492   }
1493 
1494   /// EmitAggregateCopy - Emit an aggregate copy.
1495   ///
1496   /// \param isVolatile - True iff either the source or the destination is
1497   /// volatile.
1498   /// \param isAssignment - If false, allow padding to be copied.  This often
1499   /// yields more efficient.
1500   void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1501                          QualType EltTy, bool isVolatile=false,
1502                          CharUnits Alignment = CharUnits::Zero(),
1503                          bool isAssignment = false);
1504 
1505   /// StartBlock - Start new block named N. If insert block is a dummy block
1506   /// then reuse it.
1507   void StartBlock(const char *N);
1508 
1509   /// GetAddrOfLocalVar - Return the address of a local variable.
1510   llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) {
1511     llvm::Value *Res = LocalDeclMap[VD];
1512     assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!");
1513     return Res;
1514   }
1515 
1516   /// getOpaqueLValueMapping - Given an opaque value expression (which
1517   /// must be mapped to an l-value), return its mapping.
1518   const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
1519     assert(OpaqueValueMapping::shouldBindAsLValue(e));
1520 
1521     llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
1522       it = OpaqueLValues.find(e);
1523     assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
1524     return it->second;
1525   }
1526 
1527   /// getOpaqueRValueMapping - Given an opaque value expression (which
1528   /// must be mapped to an r-value), return its mapping.
1529   const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
1530     assert(!OpaqueValueMapping::shouldBindAsLValue(e));
1531 
1532     llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
1533       it = OpaqueRValues.find(e);
1534     assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
1535     return it->second;
1536   }
1537 
1538   /// getAccessedFieldNo - Given an encoded value and a result number, return
1539   /// the input field number being accessed.
1540   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
1541 
1542   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
1543   llvm::BasicBlock *GetIndirectGotoBlock();
1544 
1545   /// EmitNullInitialization - Generate code to set a value of the given type to
1546   /// null, If the type contains data member pointers, they will be initialized
1547   /// to -1 in accordance with the Itanium C++ ABI.
1548   void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty);
1549 
1550   // EmitVAArg - Generate code to get an argument from the passed in pointer
1551   // and update it accordingly. The return value is a pointer to the argument.
1552   // FIXME: We should be able to get rid of this method and use the va_arg
1553   // instruction in LLVM instead once it works well enough.
1554   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty);
1555 
1556   /// emitArrayLength - Compute the length of an array, even if it's a
1557   /// VLA, and drill down to the base element type.
1558   llvm::Value *emitArrayLength(const ArrayType *arrayType,
1559                                QualType &baseType,
1560                                llvm::Value *&addr);
1561 
1562   /// EmitVLASize - Capture all the sizes for the VLA expressions in
1563   /// the given variably-modified type and store them in the VLASizeMap.
1564   ///
1565   /// This function can be called with a null (unreachable) insert point.
1566   void EmitVariablyModifiedType(QualType Ty);
1567 
1568   /// getVLASize - Returns an LLVM value that corresponds to the size,
1569   /// in non-variably-sized elements, of a variable length array type,
1570   /// plus that largest non-variably-sized element type.  Assumes that
1571   /// the type has already been emitted with EmitVariablyModifiedType.
1572   std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla);
1573   std::pair<llvm::Value*,QualType> getVLASize(QualType vla);
1574 
1575   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
1576   /// generating code for an C++ member function.
1577   llvm::Value *LoadCXXThis() {
1578     assert(CXXThisValue && "no 'this' value for this function");
1579     return CXXThisValue;
1580   }
1581 
1582   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
1583   /// virtual bases.
1584   // FIXME: Every place that calls LoadCXXVTT is something
1585   // that needs to be abstracted properly.
1586   llvm::Value *LoadCXXVTT() {
1587     assert(CXXStructorImplicitParamValue && "no VTT value for this function");
1588     return CXXStructorImplicitParamValue;
1589   }
1590 
1591   /// LoadCXXStructorImplicitParam - Load the implicit parameter
1592   /// for a constructor/destructor.
1593   llvm::Value *LoadCXXStructorImplicitParam() {
1594     assert(CXXStructorImplicitParamValue &&
1595            "no implicit argument value for this function");
1596     return CXXStructorImplicitParamValue;
1597   }
1598 
1599   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
1600   /// complete class to the given direct base.
1601   llvm::Value *
1602   GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value,
1603                                         const CXXRecordDecl *Derived,
1604                                         const CXXRecordDecl *Base,
1605                                         bool BaseIsVirtual);
1606 
1607   /// GetAddressOfBaseClass - This function will add the necessary delta to the
1608   /// load of 'this' and returns address of the base class.
1609   llvm::Value *GetAddressOfBaseClass(llvm::Value *Value,
1610                                      const CXXRecordDecl *Derived,
1611                                      CastExpr::path_const_iterator PathBegin,
1612                                      CastExpr::path_const_iterator PathEnd,
1613                                      bool NullCheckValue);
1614 
1615   llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value,
1616                                         const CXXRecordDecl *Derived,
1617                                         CastExpr::path_const_iterator PathBegin,
1618                                         CastExpr::path_const_iterator PathEnd,
1619                                         bool NullCheckValue);
1620 
1621   /// GetVTTParameter - Return the VTT parameter that should be passed to a
1622   /// base constructor/destructor with virtual bases.
1623   /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
1624   /// to ItaniumCXXABI.cpp together with all the references to VTT.
1625   llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
1626                                bool Delegating);
1627 
1628   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
1629                                       CXXCtorType CtorType,
1630                                       const FunctionArgList &Args,
1631                                       SourceLocation Loc);
1632   // It's important not to confuse this and the previous function. Delegating
1633   // constructors are the C++0x feature. The constructor delegate optimization
1634   // is used to reduce duplication in the base and complete consturctors where
1635   // they are substantially the same.
1636   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
1637                                         const FunctionArgList &Args);
1638   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
1639                               bool ForVirtualBase, bool Delegating,
1640                               llvm::Value *This,
1641                               CallExpr::const_arg_iterator ArgBeg,
1642                               CallExpr::const_arg_iterator ArgEnd);
1643 
1644   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
1645                               llvm::Value *This, llvm::Value *Src,
1646                               CallExpr::const_arg_iterator ArgBeg,
1647                               CallExpr::const_arg_iterator ArgEnd);
1648 
1649   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1650                                   const ConstantArrayType *ArrayTy,
1651                                   llvm::Value *ArrayPtr,
1652                                   CallExpr::const_arg_iterator ArgBeg,
1653                                   CallExpr::const_arg_iterator ArgEnd,
1654                                   bool ZeroInitialization = false);
1655 
1656   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1657                                   llvm::Value *NumElements,
1658                                   llvm::Value *ArrayPtr,
1659                                   CallExpr::const_arg_iterator ArgBeg,
1660                                   CallExpr::const_arg_iterator ArgEnd,
1661                                   bool ZeroInitialization = false);
1662 
1663   static Destroyer destroyCXXObject;
1664 
1665   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
1666                              bool ForVirtualBase, bool Delegating,
1667                              llvm::Value *This);
1668 
1669   void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
1670                                llvm::Value *NewPtr, llvm::Value *NumElements,
1671                                llvm::Value *AllocSizeWithoutCookie);
1672 
1673   void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
1674                         llvm::Value *Ptr);
1675 
1676   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
1677   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
1678 
1679   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
1680                       QualType DeleteTy);
1681 
1682   RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
1683                                   const Expr *Arg, bool IsDelete);
1684 
1685   llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E);
1686   llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE);
1687   llvm::Value* EmitCXXUuidofExpr(const CXXUuidofExpr *E);
1688 
1689   /// \brief Situations in which we might emit a check for the suitability of a
1690   ///        pointer or glvalue.
1691   enum TypeCheckKind {
1692     /// Checking the operand of a load. Must be suitably sized and aligned.
1693     TCK_Load,
1694     /// Checking the destination of a store. Must be suitably sized and aligned.
1695     TCK_Store,
1696     /// Checking the bound value in a reference binding. Must be suitably sized
1697     /// and aligned, but is not required to refer to an object (until the
1698     /// reference is used), per core issue 453.
1699     TCK_ReferenceBinding,
1700     /// Checking the object expression in a non-static data member access. Must
1701     /// be an object within its lifetime.
1702     TCK_MemberAccess,
1703     /// Checking the 'this' pointer for a call to a non-static member function.
1704     /// Must be an object within its lifetime.
1705     TCK_MemberCall,
1706     /// Checking the 'this' pointer for a constructor call.
1707     TCK_ConstructorCall,
1708     /// Checking the operand of a static_cast to a derived pointer type. Must be
1709     /// null or an object within its lifetime.
1710     TCK_DowncastPointer,
1711     /// Checking the operand of a static_cast to a derived reference type. Must
1712     /// be an object within its lifetime.
1713     TCK_DowncastReference
1714   };
1715 
1716   /// \brief Whether any type-checking sanitizers are enabled. If \c false,
1717   /// calls to EmitTypeCheck can be skipped.
1718   bool sanitizePerformTypeCheck() const;
1719 
1720   /// \brief Emit a check that \p V is the address of storage of the
1721   /// appropriate size and alignment for an object of type \p Type.
1722   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
1723                      QualType Type, CharUnits Alignment = CharUnits::Zero());
1724 
1725   /// \brief Emit a check that \p Base points into an array object, which
1726   /// we can access at index \p Index. \p Accessed should be \c false if we
1727   /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
1728   void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
1729                        QualType IndexType, bool Accessed);
1730 
1731   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1732                                        bool isInc, bool isPre);
1733   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1734                                          bool isInc, bool isPre);
1735   //===--------------------------------------------------------------------===//
1736   //                            Declaration Emission
1737   //===--------------------------------------------------------------------===//
1738 
1739   /// EmitDecl - Emit a declaration.
1740   ///
1741   /// This function can be called with a null (unreachable) insert point.
1742   void EmitDecl(const Decl &D);
1743 
1744   /// EmitVarDecl - Emit a local variable declaration.
1745   ///
1746   /// This function can be called with a null (unreachable) insert point.
1747   void EmitVarDecl(const VarDecl &D);
1748 
1749   void EmitScalarInit(const Expr *init, const ValueDecl *D,
1750                       LValue lvalue, bool capturedByInit);
1751   void EmitScalarInit(llvm::Value *init, LValue lvalue);
1752 
1753   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
1754                              llvm::Value *Address);
1755 
1756   /// EmitAutoVarDecl - Emit an auto variable declaration.
1757   ///
1758   /// This function can be called with a null (unreachable) insert point.
1759   void EmitAutoVarDecl(const VarDecl &D);
1760 
1761   class AutoVarEmission {
1762     friend class CodeGenFunction;
1763 
1764     const VarDecl *Variable;
1765 
1766     /// The alignment of the variable.
1767     CharUnits Alignment;
1768 
1769     /// The address of the alloca.  Null if the variable was emitted
1770     /// as a global constant.
1771     llvm::Value *Address;
1772 
1773     llvm::Value *NRVOFlag;
1774 
1775     /// True if the variable is a __block variable.
1776     bool IsByRef;
1777 
1778     /// True if the variable is of aggregate type and has a constant
1779     /// initializer.
1780     bool IsConstantAggregate;
1781 
1782     /// Non-null if we should use lifetime annotations.
1783     llvm::Value *SizeForLifetimeMarkers;
1784 
1785     struct Invalid {};
1786     AutoVarEmission(Invalid) : Variable(nullptr) {}
1787 
1788     AutoVarEmission(const VarDecl &variable)
1789       : Variable(&variable), Address(nullptr), NRVOFlag(nullptr),
1790         IsByRef(false), IsConstantAggregate(false),
1791         SizeForLifetimeMarkers(nullptr) {}
1792 
1793     bool wasEmittedAsGlobal() const { return Address == nullptr; }
1794 
1795   public:
1796     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
1797 
1798     bool useLifetimeMarkers() const {
1799       return SizeForLifetimeMarkers != nullptr;
1800     }
1801     llvm::Value *getSizeForLifetimeMarkers() const {
1802       assert(useLifetimeMarkers());
1803       return SizeForLifetimeMarkers;
1804     }
1805 
1806     /// Returns the raw, allocated address, which is not necessarily
1807     /// the address of the object itself.
1808     llvm::Value *getAllocatedAddress() const {
1809       return Address;
1810     }
1811 
1812     /// Returns the address of the object within this declaration.
1813     /// Note that this does not chase the forwarding pointer for
1814     /// __block decls.
1815     llvm::Value *getObjectAddress(CodeGenFunction &CGF) const {
1816       if (!IsByRef) return Address;
1817 
1818       return CGF.Builder.CreateStructGEP(Address,
1819                                          CGF.getByRefValueLLVMField(Variable),
1820                                          Variable->getNameAsString());
1821     }
1822   };
1823   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
1824   void EmitAutoVarInit(const AutoVarEmission &emission);
1825   void EmitAutoVarCleanups(const AutoVarEmission &emission);
1826   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
1827                               QualType::DestructionKind dtorKind);
1828 
1829   void EmitStaticVarDecl(const VarDecl &D,
1830                          llvm::GlobalValue::LinkageTypes Linkage);
1831 
1832   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
1833   void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, bool ArgIsPointer,
1834                     unsigned ArgNo);
1835 
1836   /// protectFromPeepholes - Protect a value that we're intending to
1837   /// store to the side, but which will probably be used later, from
1838   /// aggressive peepholing optimizations that might delete it.
1839   ///
1840   /// Pass the result to unprotectFromPeepholes to declare that
1841   /// protection is no longer required.
1842   ///
1843   /// There's no particular reason why this shouldn't apply to
1844   /// l-values, it's just that no existing peepholes work on pointers.
1845   PeepholeProtection protectFromPeepholes(RValue rvalue);
1846   void unprotectFromPeepholes(PeepholeProtection protection);
1847 
1848   //===--------------------------------------------------------------------===//
1849   //                             Statement Emission
1850   //===--------------------------------------------------------------------===//
1851 
1852   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
1853   void EmitStopPoint(const Stmt *S);
1854 
1855   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
1856   /// this function even if there is no current insertion point.
1857   ///
1858   /// This function may clear the current insertion point; callers should use
1859   /// EnsureInsertPoint if they wish to subsequently generate code without first
1860   /// calling EmitBlock, EmitBranch, or EmitStmt.
1861   void EmitStmt(const Stmt *S);
1862 
1863   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
1864   /// necessarily require an insertion point or debug information; typically
1865   /// because the statement amounts to a jump or a container of other
1866   /// statements.
1867   ///
1868   /// \return True if the statement was handled.
1869   bool EmitSimpleStmt(const Stmt *S);
1870 
1871   llvm::Value *EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
1872                                 AggValueSlot AVS = AggValueSlot::ignored());
1873   llvm::Value *EmitCompoundStmtWithoutScope(const CompoundStmt &S,
1874                                             bool GetLast = false,
1875                                             AggValueSlot AVS =
1876                                                 AggValueSlot::ignored());
1877 
1878   /// EmitLabel - Emit the block for the given label. It is legal to call this
1879   /// function even if there is no current insertion point.
1880   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
1881 
1882   void EmitLabelStmt(const LabelStmt &S);
1883   void EmitAttributedStmt(const AttributedStmt &S);
1884   void EmitGotoStmt(const GotoStmt &S);
1885   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
1886   void EmitIfStmt(const IfStmt &S);
1887 
1888   void EmitCondBrHints(llvm::LLVMContext &Context, llvm::BranchInst *CondBr,
1889                        const ArrayRef<const Attr *> &Attrs);
1890   void EmitWhileStmt(const WhileStmt &S,
1891                      const ArrayRef<const Attr *> &Attrs = None);
1892   void EmitDoStmt(const DoStmt &S, const ArrayRef<const Attr *> &Attrs = None);
1893   void EmitForStmt(const ForStmt &S,
1894                    const ArrayRef<const Attr *> &Attrs = None);
1895   void EmitReturnStmt(const ReturnStmt &S);
1896   void EmitDeclStmt(const DeclStmt &S);
1897   void EmitBreakStmt(const BreakStmt &S);
1898   void EmitContinueStmt(const ContinueStmt &S);
1899   void EmitSwitchStmt(const SwitchStmt &S);
1900   void EmitDefaultStmt(const DefaultStmt &S);
1901   void EmitCaseStmt(const CaseStmt &S);
1902   void EmitCaseStmtRange(const CaseStmt &S);
1903   void EmitAsmStmt(const AsmStmt &S);
1904 
1905   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
1906   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
1907   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
1908   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
1909   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
1910 
1911   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
1912   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
1913 
1914   void EmitCXXTryStmt(const CXXTryStmt &S);
1915   void EmitSEHTryStmt(const SEHTryStmt &S);
1916   void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
1917   void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
1918                            const ArrayRef<const Attr *> &Attrs = None);
1919 
1920   llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
1921   llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
1922   llvm::Value *GenerateCapturedStmtArgument(const CapturedStmt &S);
1923 
1924   void EmitOMPParallelDirective(const OMPParallelDirective &S);
1925   void EmitOMPSimdDirective(const OMPSimdDirective &S);
1926   void EmitOMPForDirective(const OMPForDirective &S);
1927   void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
1928   void EmitOMPSectionDirective(const OMPSectionDirective &S);
1929   void EmitOMPSingleDirective(const OMPSingleDirective &S);
1930   void EmitOMPMasterDirective(const OMPMasterDirective &S);
1931   void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
1932   void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
1933   void EmitOMPTaskDirective(const OMPTaskDirective &S);
1934 
1935   //===--------------------------------------------------------------------===//
1936   //                         LValue Expression Emission
1937   //===--------------------------------------------------------------------===//
1938 
1939   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
1940   RValue GetUndefRValue(QualType Ty);
1941 
1942   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
1943   /// and issue an ErrorUnsupported style diagnostic (using the
1944   /// provided Name).
1945   RValue EmitUnsupportedRValue(const Expr *E,
1946                                const char *Name);
1947 
1948   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
1949   /// an ErrorUnsupported style diagnostic (using the provided Name).
1950   LValue EmitUnsupportedLValue(const Expr *E,
1951                                const char *Name);
1952 
1953   /// EmitLValue - Emit code to compute a designator that specifies the location
1954   /// of the expression.
1955   ///
1956   /// This can return one of two things: a simple address or a bitfield
1957   /// reference.  In either case, the LLVM Value* in the LValue structure is
1958   /// guaranteed to be an LLVM pointer type.
1959   ///
1960   /// If this returns a bitfield reference, nothing about the pointee type of
1961   /// the LLVM value is known: For example, it may not be a pointer to an
1962   /// integer.
1963   ///
1964   /// If this returns a normal address, and if the lvalue's C type is fixed
1965   /// size, this method guarantees that the returned pointer type will point to
1966   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
1967   /// variable length type, this is not possible.
1968   ///
1969   LValue EmitLValue(const Expr *E);
1970 
1971   /// \brief Same as EmitLValue but additionally we generate checking code to
1972   /// guard against undefined behavior.  This is only suitable when we know
1973   /// that the address will be used to access the object.
1974   LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
1975 
1976   RValue convertTempToRValue(llvm::Value *addr, QualType type,
1977                              SourceLocation Loc);
1978 
1979   void EmitAtomicInit(Expr *E, LValue lvalue);
1980 
1981   RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
1982                         AggValueSlot slot = AggValueSlot::ignored());
1983 
1984   void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
1985 
1986   /// EmitToMemory - Change a scalar value from its value
1987   /// representation to its in-memory representation.
1988   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
1989 
1990   /// EmitFromMemory - Change a scalar value from its memory
1991   /// representation to its value representation.
1992   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
1993 
1994   /// EmitLoadOfScalar - Load a scalar value from an address, taking
1995   /// care to appropriately convert from the memory representation to
1996   /// the LLVM value representation.
1997   llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
1998                                 unsigned Alignment, QualType Ty,
1999                                 SourceLocation Loc,
2000                                 llvm::MDNode *TBAAInfo = nullptr,
2001                                 QualType TBAABaseTy = QualType(),
2002                                 uint64_t TBAAOffset = 0);
2003 
2004   /// EmitLoadOfScalar - Load a scalar value from an address, taking
2005   /// care to appropriately convert from the memory representation to
2006   /// the LLVM value representation.  The l-value must be a simple
2007   /// l-value.
2008   llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
2009 
2010   /// EmitStoreOfScalar - Store a scalar value to an address, taking
2011   /// care to appropriately convert from the memory representation to
2012   /// the LLVM value representation.
2013   void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
2014                          bool Volatile, unsigned Alignment, QualType Ty,
2015                          llvm::MDNode *TBAAInfo = nullptr, bool isInit = false,
2016                          QualType TBAABaseTy = QualType(),
2017                          uint64_t TBAAOffset = 0);
2018 
2019   /// EmitStoreOfScalar - Store a scalar value to an address, taking
2020   /// care to appropriately convert from the memory representation to
2021   /// the LLVM value representation.  The l-value must be a simple
2022   /// l-value.  The isInit flag indicates whether this is an initialization.
2023   /// If so, atomic qualifiers are ignored and the store is always non-atomic.
2024   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
2025 
2026   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
2027   /// this method emits the address of the lvalue, then loads the result as an
2028   /// rvalue, returning the rvalue.
2029   RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
2030   RValue EmitLoadOfExtVectorElementLValue(LValue V);
2031   RValue EmitLoadOfBitfieldLValue(LValue LV);
2032   RValue EmitLoadOfGlobalRegLValue(LValue LV);
2033 
2034   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
2035   /// lvalue, where both are guaranteed to the have the same type, and that type
2036   /// is 'Ty'.
2037   void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit=false);
2038   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
2039   void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
2040 
2041   /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
2042   /// as EmitStoreThroughLValue.
2043   ///
2044   /// \param Result [out] - If non-null, this will be set to a Value* for the
2045   /// bit-field contents after the store, appropriate for use as the result of
2046   /// an assignment to the bit-field.
2047   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2048                                       llvm::Value **Result=nullptr);
2049 
2050   /// Emit an l-value for an assignment (simple or compound) of complex type.
2051   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
2052   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
2053   LValue EmitScalarCompooundAssignWithComplex(const CompoundAssignOperator *E,
2054                                               llvm::Value *&Result);
2055 
2056   // Note: only available for agg return types
2057   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
2058   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
2059   // Note: only available for agg return types
2060   LValue EmitCallExprLValue(const CallExpr *E);
2061   // Note: only available for agg return types
2062   LValue EmitVAArgExprLValue(const VAArgExpr *E);
2063   LValue EmitDeclRefLValue(const DeclRefExpr *E);
2064   LValue EmitReadRegister(const VarDecl *VD);
2065   LValue EmitStringLiteralLValue(const StringLiteral *E);
2066   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
2067   LValue EmitPredefinedLValue(const PredefinedExpr *E);
2068   LValue EmitUnaryOpLValue(const UnaryOperator *E);
2069   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
2070                                 bool Accessed = false);
2071   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
2072   LValue EmitMemberExpr(const MemberExpr *E);
2073   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
2074   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
2075   LValue EmitInitListLValue(const InitListExpr *E);
2076   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
2077   LValue EmitCastLValue(const CastExpr *E);
2078   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
2079   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
2080 
2081   RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
2082 
2083   class ConstantEmission {
2084     llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
2085     ConstantEmission(llvm::Constant *C, bool isReference)
2086       : ValueAndIsReference(C, isReference) {}
2087   public:
2088     ConstantEmission() {}
2089     static ConstantEmission forReference(llvm::Constant *C) {
2090       return ConstantEmission(C, true);
2091     }
2092     static ConstantEmission forValue(llvm::Constant *C) {
2093       return ConstantEmission(C, false);
2094     }
2095 
2096     LLVM_EXPLICIT operator bool() const {
2097       return ValueAndIsReference.getOpaqueValue() != nullptr;
2098     }
2099 
2100     bool isReference() const { return ValueAndIsReference.getInt(); }
2101     LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
2102       assert(isReference());
2103       return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
2104                                             refExpr->getType());
2105     }
2106 
2107     llvm::Constant *getValue() const {
2108       assert(!isReference());
2109       return ValueAndIsReference.getPointer();
2110     }
2111   };
2112 
2113   ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
2114 
2115   RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
2116                                 AggValueSlot slot = AggValueSlot::ignored());
2117   LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
2118 
2119   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
2120                               const ObjCIvarDecl *Ivar);
2121   LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
2122   LValue EmitLValueForLambdaField(const FieldDecl *Field);
2123 
2124   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
2125   /// if the Field is a reference, this will return the address of the reference
2126   /// and not the address of the value stored in the reference.
2127   LValue EmitLValueForFieldInitialization(LValue Base,
2128                                           const FieldDecl* Field);
2129 
2130   LValue EmitLValueForIvar(QualType ObjectTy,
2131                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
2132                            unsigned CVRQualifiers);
2133 
2134   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
2135   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
2136   LValue EmitLambdaLValue(const LambdaExpr *E);
2137   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
2138   LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
2139 
2140   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
2141   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
2142   LValue EmitStmtExprLValue(const StmtExpr *E);
2143   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
2144   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
2145   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init);
2146 
2147   //===--------------------------------------------------------------------===//
2148   //                         Scalar Expression Emission
2149   //===--------------------------------------------------------------------===//
2150 
2151   /// EmitCall - Generate a call of the given function, expecting the given
2152   /// result type, and using the given argument list which specifies both the
2153   /// LLVM arguments and the types they were derived from.
2154   ///
2155   /// \param TargetDecl - If given, the decl of the function in a direct call;
2156   /// used to set attributes on the call (noreturn, etc.).
2157   RValue EmitCall(const CGFunctionInfo &FnInfo,
2158                   llvm::Value *Callee,
2159                   ReturnValueSlot ReturnValue,
2160                   const CallArgList &Args,
2161                   const Decl *TargetDecl = nullptr,
2162                   llvm::Instruction **callOrInvoke = nullptr);
2163 
2164   RValue EmitCall(QualType FnType, llvm::Value *Callee,
2165                   SourceLocation CallLoc,
2166                   ReturnValueSlot ReturnValue,
2167                   CallExpr::const_arg_iterator ArgBeg,
2168                   CallExpr::const_arg_iterator ArgEnd,
2169                   const Decl *TargetDecl = nullptr);
2170   RValue EmitCallExpr(const CallExpr *E,
2171                       ReturnValueSlot ReturnValue = ReturnValueSlot());
2172 
2173   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
2174                                   const Twine &name = "");
2175   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
2176                                   ArrayRef<llvm::Value*> args,
2177                                   const Twine &name = "");
2178   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
2179                                           const Twine &name = "");
2180   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
2181                                           ArrayRef<llvm::Value*> args,
2182                                           const Twine &name = "");
2183 
2184   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2185                                   ArrayRef<llvm::Value *> Args,
2186                                   const Twine &Name = "");
2187   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2188                                   const Twine &Name = "");
2189   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
2190                                          ArrayRef<llvm::Value*> args,
2191                                          const Twine &name = "");
2192   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
2193                                          const Twine &name = "");
2194   void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
2195                                        ArrayRef<llvm::Value*> args);
2196 
2197   llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
2198                                          NestedNameSpecifier *Qual,
2199                                          llvm::Type *Ty);
2200 
2201   llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
2202                                                    CXXDtorType Type,
2203                                                    const CXXRecordDecl *RD);
2204 
2205   RValue EmitCXXMemberCall(const CXXMethodDecl *MD,
2206                            SourceLocation CallLoc,
2207                            llvm::Value *Callee,
2208                            ReturnValueSlot ReturnValue,
2209                            llvm::Value *This,
2210                            llvm::Value *ImplicitParam,
2211                            QualType ImplicitParamTy,
2212                            CallExpr::const_arg_iterator ArgBeg,
2213                            CallExpr::const_arg_iterator ArgEnd);
2214   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
2215                                ReturnValueSlot ReturnValue);
2216   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
2217                                       ReturnValueSlot ReturnValue);
2218 
2219   llvm::Value *EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E,
2220                                            const CXXMethodDecl *MD,
2221                                            llvm::Value *This);
2222   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
2223                                        const CXXMethodDecl *MD,
2224                                        ReturnValueSlot ReturnValue);
2225 
2226   RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
2227                                 ReturnValueSlot ReturnValue);
2228 
2229 
2230   RValue EmitBuiltinExpr(const FunctionDecl *FD,
2231                          unsigned BuiltinID, const CallExpr *E);
2232 
2233   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
2234 
2235   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
2236   /// is unhandled by the current target.
2237   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2238 
2239   llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
2240                                              const llvm::CmpInst::Predicate Fp,
2241                                              const llvm::CmpInst::Predicate Ip,
2242                                              const llvm::Twine &Name = "");
2243   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2244 
2245   llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
2246                                          unsigned LLVMIntrinsic,
2247                                          unsigned AltLLVMIntrinsic,
2248                                          const char *NameHint,
2249                                          unsigned Modifier,
2250                                          const CallExpr *E,
2251                                          SmallVectorImpl<llvm::Value *> &Ops,
2252                                          llvm::Value *Align = nullptr);
2253   llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
2254                                           unsigned Modifier, llvm::Type *ArgTy,
2255                                           const CallExpr *E);
2256   llvm::Value *EmitNeonCall(llvm::Function *F,
2257                             SmallVectorImpl<llvm::Value*> &O,
2258                             const char *name,
2259                             unsigned shift = 0, bool rightshift = false);
2260   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
2261   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
2262                                    bool negateForRightShift);
2263   llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
2264                                  llvm::Type *Ty, bool usgn, const char *name);
2265   // Helper functions for EmitAArch64BuiltinExpr.
2266   llvm::Value *vectorWrapScalar8(llvm::Value *Op);
2267   llvm::Value *vectorWrapScalar16(llvm::Value *Op);
2268   llvm::Value *emitVectorWrappedScalar8Intrinsic(
2269       unsigned Int, SmallVectorImpl<llvm::Value *> &Ops, const char *Name);
2270   llvm::Value *emitVectorWrappedScalar16Intrinsic(
2271       unsigned Int, SmallVectorImpl<llvm::Value *> &Ops, const char *Name);
2272   llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2273   llvm::Value *EmitNeon64Call(llvm::Function *F,
2274                               llvm::SmallVectorImpl<llvm::Value *> &O,
2275                               const char *name);
2276 
2277   llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
2278   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2279   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2280   llvm::Value *EmitR600BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2281 
2282   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
2283   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
2284   llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
2285   llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
2286   llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
2287   llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
2288                                 const ObjCMethodDecl *MethodWithObjects);
2289   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
2290   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
2291                              ReturnValueSlot Return = ReturnValueSlot());
2292 
2293   /// Retrieves the default cleanup kind for an ARC cleanup.
2294   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
2295   CleanupKind getARCCleanupKind() {
2296     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
2297              ? NormalAndEHCleanup : NormalCleanup;
2298   }
2299 
2300   // ARC primitives.
2301   void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr);
2302   void EmitARCDestroyWeak(llvm::Value *addr);
2303   llvm::Value *EmitARCLoadWeak(llvm::Value *addr);
2304   llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr);
2305   llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr,
2306                                 bool ignored);
2307   void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src);
2308   void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src);
2309   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
2310   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
2311   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
2312                                   bool resultIgnored);
2313   llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value,
2314                                       bool resultIgnored);
2315   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
2316   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
2317   llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
2318   void EmitARCDestroyStrong(llvm::Value *addr, ARCPreciseLifetime_t precise);
2319   void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
2320   llvm::Value *EmitARCAutorelease(llvm::Value *value);
2321   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
2322   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
2323   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
2324 
2325   std::pair<LValue,llvm::Value*>
2326   EmitARCStoreAutoreleasing(const BinaryOperator *e);
2327   std::pair<LValue,llvm::Value*>
2328   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
2329 
2330   llvm::Value *EmitObjCThrowOperand(const Expr *expr);
2331 
2332   llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr);
2333   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
2334   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
2335 
2336   llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
2337   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
2338   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
2339 
2340   void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
2341 
2342   static Destroyer destroyARCStrongImprecise;
2343   static Destroyer destroyARCStrongPrecise;
2344   static Destroyer destroyARCWeak;
2345 
2346   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
2347   llvm::Value *EmitObjCAutoreleasePoolPush();
2348   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
2349   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
2350   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
2351 
2352   /// \brief Emits a reference binding to the passed in expression.
2353   RValue EmitReferenceBindingToExpr(const Expr *E);
2354 
2355   //===--------------------------------------------------------------------===//
2356   //                           Expression Emission
2357   //===--------------------------------------------------------------------===//
2358 
2359   // Expressions are broken into three classes: scalar, complex, aggregate.
2360 
2361   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
2362   /// scalar type, returning the result.
2363   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
2364 
2365   /// EmitScalarConversion - Emit a conversion from the specified type to the
2366   /// specified destination type, both of which are LLVM scalar types.
2367   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
2368                                     QualType DstTy);
2369 
2370   /// EmitComplexToScalarConversion - Emit a conversion from the specified
2371   /// complex type to the specified destination type, where the destination type
2372   /// is an LLVM scalar type.
2373   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
2374                                              QualType DstTy);
2375 
2376 
2377   /// EmitAggExpr - Emit the computation of the specified expression
2378   /// of aggregate type.  The result is computed into the given slot,
2379   /// which may be null to indicate that the value is not needed.
2380   void EmitAggExpr(const Expr *E, AggValueSlot AS);
2381 
2382   /// EmitAggExprToLValue - Emit the computation of the specified expression of
2383   /// aggregate type into a temporary LValue.
2384   LValue EmitAggExprToLValue(const Expr *E);
2385 
2386   /// EmitGCMemmoveCollectable - Emit special API for structs with object
2387   /// pointers.
2388   void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr,
2389                                 QualType Ty);
2390 
2391   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
2392   /// make sure it survives garbage collection until this point.
2393   void EmitExtendGCLifetime(llvm::Value *object);
2394 
2395   /// EmitComplexExpr - Emit the computation of the specified expression of
2396   /// complex type, returning the result.
2397   ComplexPairTy EmitComplexExpr(const Expr *E,
2398                                 bool IgnoreReal = false,
2399                                 bool IgnoreImag = false);
2400 
2401   /// EmitComplexExprIntoLValue - Emit the given expression of complex
2402   /// type and place its result into the specified l-value.
2403   void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
2404 
2405   /// EmitStoreOfComplex - Store a complex number into the specified l-value.
2406   void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
2407 
2408   /// EmitLoadOfComplex - Load a complex number from the specified l-value.
2409   ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
2410 
2411   /// CreateStaticVarDecl - Create a zero-initialized LLVM global for
2412   /// a static local variable.
2413   llvm::Constant *CreateStaticVarDecl(const VarDecl &D,
2414                                       const char *Separator,
2415                                       llvm::GlobalValue::LinkageTypes Linkage);
2416 
2417   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
2418   /// global variable that has already been created for it.  If the initializer
2419   /// has a different type than GV does, this may free GV and return a different
2420   /// one.  Otherwise it just returns GV.
2421   llvm::GlobalVariable *
2422   AddInitializerToStaticVarDecl(const VarDecl &D,
2423                                 llvm::GlobalVariable *GV);
2424 
2425 
2426   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
2427   /// variable with global storage.
2428   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
2429                                 bool PerformInit);
2430 
2431   /// Call atexit() with a function that passes the given argument to
2432   /// the given function.
2433   void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn,
2434                                     llvm::Constant *addr);
2435 
2436   /// Emit code in this function to perform a guarded variable
2437   /// initialization.  Guarded initializations are used when it's not
2438   /// possible to prove that an initialization will be done exactly
2439   /// once, e.g. with a static local variable or a static data member
2440   /// of a class template.
2441   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
2442                           bool PerformInit);
2443 
2444   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
2445   /// variables.
2446   void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
2447                                  ArrayRef<llvm::Constant *> Decls,
2448                                  llvm::GlobalVariable *Guard = nullptr);
2449 
2450   /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
2451   /// variables.
2452   void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn,
2453                                   const std::vector<std::pair<llvm::WeakVH,
2454                                   llvm::Constant*> > &DtorsAndObjects);
2455 
2456   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
2457                                         const VarDecl *D,
2458                                         llvm::GlobalVariable *Addr,
2459                                         bool PerformInit);
2460 
2461   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
2462 
2463   void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src,
2464                                   const Expr *Exp);
2465 
2466   void enterFullExpression(const ExprWithCleanups *E) {
2467     if (E->getNumObjects() == 0) return;
2468     enterNonTrivialFullExpression(E);
2469   }
2470   void enterNonTrivialFullExpression(const ExprWithCleanups *E);
2471 
2472   void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
2473 
2474   void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest);
2475 
2476   RValue EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest = nullptr);
2477 
2478   //===--------------------------------------------------------------------===//
2479   //                         Annotations Emission
2480   //===--------------------------------------------------------------------===//
2481 
2482   /// Emit an annotation call (intrinsic or builtin).
2483   llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
2484                                   llvm::Value *AnnotatedVal,
2485                                   StringRef AnnotationStr,
2486                                   SourceLocation Location);
2487 
2488   /// Emit local annotations for the local variable V, declared by D.
2489   void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
2490 
2491   /// Emit field annotations for the given field & value. Returns the
2492   /// annotation result.
2493   llvm::Value *EmitFieldAnnotations(const FieldDecl *D, llvm::Value *V);
2494 
2495   //===--------------------------------------------------------------------===//
2496   //                             Internal Helpers
2497   //===--------------------------------------------------------------------===//
2498 
2499   /// ContainsLabel - Return true if the statement contains a label in it.  If
2500   /// this statement is not executed normally, it not containing a label means
2501   /// that we can just remove the code.
2502   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
2503 
2504   /// containsBreak - Return true if the statement contains a break out of it.
2505   /// If the statement (recursively) contains a switch or loop with a break
2506   /// inside of it, this is fine.
2507   static bool containsBreak(const Stmt *S);
2508 
2509   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2510   /// to a constant, or if it does but contains a label, return false.  If it
2511   /// constant folds return true and set the boolean result in Result.
2512   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result);
2513 
2514   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2515   /// to a constant, or if it does but contains a label, return false.  If it
2516   /// constant folds return true and set the folded value.
2517   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result);
2518 
2519   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
2520   /// if statement) to the specified blocks.  Based on the condition, this might
2521   /// try to simplify the codegen of the conditional based on the branch.
2522   /// TrueCount should be the number of times we expect the condition to
2523   /// evaluate to true based on PGO data.
2524   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
2525                             llvm::BasicBlock *FalseBlock, uint64_t TrueCount);
2526 
2527   /// \brief Emit a description of a type in a format suitable for passing to
2528   /// a runtime sanitizer handler.
2529   llvm::Constant *EmitCheckTypeDescriptor(QualType T);
2530 
2531   /// \brief Convert a value into a format suitable for passing to a runtime
2532   /// sanitizer handler.
2533   llvm::Value *EmitCheckValue(llvm::Value *V);
2534 
2535   /// \brief Emit a description of a source location in a format suitable for
2536   /// passing to a runtime sanitizer handler.
2537   llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
2538 
2539   /// \brief Specify under what conditions this check can be recovered
2540   enum CheckRecoverableKind {
2541     /// Always terminate program execution if this check fails
2542     CRK_Unrecoverable,
2543     /// Check supports recovering, allows user to specify which
2544     CRK_Recoverable,
2545     /// Runtime conditionally aborts, always need to support recovery.
2546     CRK_AlwaysRecoverable
2547   };
2548 
2549   /// \brief Create a basic block that will call a handler function in a
2550   /// sanitizer runtime with the provided arguments, and create a conditional
2551   /// branch to it.
2552   void EmitCheck(llvm::Value *Checked, StringRef CheckName,
2553                  ArrayRef<llvm::Constant *> StaticArgs,
2554                  ArrayRef<llvm::Value *> DynamicArgs,
2555                  CheckRecoverableKind Recoverable);
2556 
2557   /// \brief Create a basic block that will call the trap intrinsic, and emit a
2558   /// conditional branch to it, for the -ftrapv checks.
2559   void EmitTrapCheck(llvm::Value *Checked);
2560 
2561   /// EmitCallArg - Emit a single call argument.
2562   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
2563 
2564   /// EmitDelegateCallArg - We are performing a delegate call; that
2565   /// is, the current function is delegating to another one.  Produce
2566   /// a r-value suitable for passing the given parameter.
2567   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
2568                            SourceLocation loc);
2569 
2570   /// SetFPAccuracy - Set the minimum required accuracy of the given floating
2571   /// point operation, expressed as the maximum relative error in ulp.
2572   void SetFPAccuracy(llvm::Value *Val, float Accuracy);
2573 
2574 private:
2575   llvm::MDNode *getRangeForLoadFromType(QualType Ty);
2576   void EmitReturnOfRValue(RValue RV, QualType Ty);
2577 
2578   void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
2579 
2580   llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4>
2581   DeferredReplacements;
2582 
2583   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
2584   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
2585   ///
2586   /// \param AI - The first function argument of the expansion.
2587   /// \return The argument following the last expanded function
2588   /// argument.
2589   llvm::Function::arg_iterator
2590   ExpandTypeFromArgs(QualType Ty, LValue Dst,
2591                      llvm::Function::arg_iterator AI);
2592 
2593   /// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg
2594   /// Ty, into individual arguments on the provided vector \arg Args. See
2595   /// ABIArgInfo::Expand.
2596   void ExpandTypeToArgs(QualType Ty, RValue Src,
2597                         SmallVectorImpl<llvm::Value *> &Args,
2598                         llvm::FunctionType *IRFuncTy);
2599 
2600   llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
2601                             const Expr *InputExpr, std::string &ConstraintStr);
2602 
2603   llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
2604                                   LValue InputValue, QualType InputType,
2605                                   std::string &ConstraintStr,
2606                                   SourceLocation Loc);
2607 
2608 public:
2609   /// EmitCallArgs - Emit call arguments for a function.
2610   template <typename T>
2611   void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo,
2612                     CallExpr::const_arg_iterator ArgBeg,
2613                     CallExpr::const_arg_iterator ArgEnd,
2614                     bool ForceColumnInfo = false) {
2615     if (CallArgTypeInfo) {
2616       EmitCallArgs(Args, CallArgTypeInfo->isVariadic(),
2617                    CallArgTypeInfo->param_type_begin(),
2618                    CallArgTypeInfo->param_type_end(), ArgBeg, ArgEnd,
2619                    ForceColumnInfo);
2620     } else {
2621       // T::param_type_iterator might not have a default ctor.
2622       const QualType *NoIter = nullptr;
2623       EmitCallArgs(Args, /*AllowExtraArguments=*/true, NoIter, NoIter, ArgBeg,
2624                    ArgEnd, ForceColumnInfo);
2625     }
2626   }
2627 
2628   template<typename ArgTypeIterator>
2629   void EmitCallArgs(CallArgList& Args,
2630                     bool AllowExtraArguments,
2631                     ArgTypeIterator ArgTypeBeg,
2632                     ArgTypeIterator ArgTypeEnd,
2633                     CallExpr::const_arg_iterator ArgBeg,
2634                     CallExpr::const_arg_iterator ArgEnd,
2635                     bool ForceColumnInfo = false) {
2636     SmallVector<QualType, 16> ArgTypes;
2637     CallExpr::const_arg_iterator Arg = ArgBeg;
2638 
2639     // First, use the argument types that the type info knows about
2640     for (ArgTypeIterator I = ArgTypeBeg, E = ArgTypeEnd; I != E; ++I, ++Arg) {
2641       assert(Arg != ArgEnd && "Running over edge of argument list!");
2642 #ifndef NDEBUG
2643       QualType ArgType = *I;
2644       QualType ActualArgType = Arg->getType();
2645       if (ArgType->isPointerType() && ActualArgType->isPointerType()) {
2646         QualType ActualBaseType =
2647             ActualArgType->getAs<PointerType>()->getPointeeType();
2648         QualType ArgBaseType =
2649             ArgType->getAs<PointerType>()->getPointeeType();
2650         if (ArgBaseType->isVariableArrayType()) {
2651           if (const VariableArrayType *VAT =
2652               getContext().getAsVariableArrayType(ActualBaseType)) {
2653             if (!VAT->getSizeExpr())
2654               ActualArgType = ArgType;
2655           }
2656         }
2657       }
2658       assert(getContext().getCanonicalType(ArgType.getNonReferenceType()).
2659              getTypePtr() ==
2660              getContext().getCanonicalType(ActualArgType).getTypePtr() &&
2661              "type mismatch in call argument!");
2662 #endif
2663       ArgTypes.push_back(*I);
2664     }
2665 
2666     // Either we've emitted all the call args, or we have a call to variadic
2667     // function or some other call that allows extra arguments.
2668     assert((Arg == ArgEnd || AllowExtraArguments) &&
2669            "Extra arguments in non-variadic function!");
2670 
2671     // If we still have any arguments, emit them using the type of the argument.
2672     for (; Arg != ArgEnd; ++Arg)
2673       ArgTypes.push_back(Arg->getType());
2674 
2675     EmitCallArgs(Args, ArgTypes, ArgBeg, ArgEnd, ForceColumnInfo);
2676   }
2677 
2678   void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes,
2679                     CallExpr::const_arg_iterator ArgBeg,
2680                     CallExpr::const_arg_iterator ArgEnd,
2681                     bool ForceColumnInfo = false);
2682 
2683 private:
2684   const TargetCodeGenInfo &getTargetHooks() const {
2685     return CGM.getTargetCodeGenInfo();
2686   }
2687 
2688   void EmitDeclMetadata();
2689 
2690   CodeGenModule::ByrefHelpers *
2691   buildByrefHelpers(llvm::StructType &byrefType,
2692                     const AutoVarEmission &emission);
2693 
2694   void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
2695 
2696   /// GetPointeeAlignment - Given an expression with a pointer type, emit the
2697   /// value and compute our best estimate of the alignment of the pointee.
2698   std::pair<llvm::Value*, unsigned> EmitPointerWithAlignment(const Expr *Addr);
2699 };
2700 
2701 /// Helper class with most of the code for saving a value for a
2702 /// conditional expression cleanup.
2703 struct DominatingLLVMValue {
2704   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
2705 
2706   /// Answer whether the given value needs extra work to be saved.
2707   static bool needsSaving(llvm::Value *value) {
2708     // If it's not an instruction, we don't need to save.
2709     if (!isa<llvm::Instruction>(value)) return false;
2710 
2711     // If it's an instruction in the entry block, we don't need to save.
2712     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
2713     return (block != &block->getParent()->getEntryBlock());
2714   }
2715 
2716   /// Try to save the given value.
2717   static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
2718     if (!needsSaving(value)) return saved_type(value, false);
2719 
2720     // Otherwise we need an alloca.
2721     llvm::Value *alloca =
2722       CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save");
2723     CGF.Builder.CreateStore(value, alloca);
2724 
2725     return saved_type(alloca, true);
2726   }
2727 
2728   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
2729     if (!value.getInt()) return value.getPointer();
2730     return CGF.Builder.CreateLoad(value.getPointer());
2731   }
2732 };
2733 
2734 /// A partial specialization of DominatingValue for llvm::Values that
2735 /// might be llvm::Instructions.
2736 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
2737   typedef T *type;
2738   static type restore(CodeGenFunction &CGF, saved_type value) {
2739     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
2740   }
2741 };
2742 
2743 /// A specialization of DominatingValue for RValue.
2744 template <> struct DominatingValue<RValue> {
2745   typedef RValue type;
2746   class saved_type {
2747     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
2748                 AggregateAddress, ComplexAddress };
2749 
2750     llvm::Value *Value;
2751     Kind K;
2752     saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {}
2753 
2754   public:
2755     static bool needsSaving(RValue value);
2756     static saved_type save(CodeGenFunction &CGF, RValue value);
2757     RValue restore(CodeGenFunction &CGF);
2758 
2759     // implementations in CGExprCXX.cpp
2760   };
2761 
2762   static bool needsSaving(type value) {
2763     return saved_type::needsSaving(value);
2764   }
2765   static saved_type save(CodeGenFunction &CGF, type value) {
2766     return saved_type::save(CGF, value);
2767   }
2768   static type restore(CodeGenFunction &CGF, saved_type value) {
2769     return value.restore(CGF);
2770   }
2771 };
2772 
2773 }  // end namespace CodeGen
2774 }  // end namespace clang
2775 
2776 #endif
2777