1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the internal per-function state used for llvm translation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 15 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 16 17 #include "CGBuilder.h" 18 #include "CGDebugInfo.h" 19 #include "CGLoopInfo.h" 20 #include "CGValue.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "EHScopeStack.h" 24 #include "clang/AST/CharUnits.h" 25 #include "clang/AST/ExprCXX.h" 26 #include "clang/AST/ExprObjC.h" 27 #include "clang/AST/Type.h" 28 #include "clang/Basic/ABI.h" 29 #include "clang/Basic/CapturedStmt.h" 30 #include "clang/Basic/OpenMPKinds.h" 31 #include "clang/Basic/TargetInfo.h" 32 #include "clang/Frontend/CodeGenOptions.h" 33 #include "llvm/ADT/ArrayRef.h" 34 #include "llvm/ADT/DenseMap.h" 35 #include "llvm/ADT/SmallVector.h" 36 #include "llvm/IR/ValueHandle.h" 37 #include "llvm/Support/Debug.h" 38 39 namespace llvm { 40 class BasicBlock; 41 class LLVMContext; 42 class MDNode; 43 class Module; 44 class SwitchInst; 45 class Twine; 46 class Value; 47 class CallSite; 48 } 49 50 namespace clang { 51 class ASTContext; 52 class BlockDecl; 53 class CXXDestructorDecl; 54 class CXXForRangeStmt; 55 class CXXTryStmt; 56 class Decl; 57 class LabelDecl; 58 class EnumConstantDecl; 59 class FunctionDecl; 60 class FunctionProtoType; 61 class LabelStmt; 62 class ObjCContainerDecl; 63 class ObjCInterfaceDecl; 64 class ObjCIvarDecl; 65 class ObjCMethodDecl; 66 class ObjCImplementationDecl; 67 class ObjCPropertyImplDecl; 68 class TargetInfo; 69 class TargetCodeGenInfo; 70 class VarDecl; 71 class ObjCForCollectionStmt; 72 class ObjCAtTryStmt; 73 class ObjCAtThrowStmt; 74 class ObjCAtSynchronizedStmt; 75 class ObjCAutoreleasePoolStmt; 76 77 namespace CodeGen { 78 class CodeGenTypes; 79 class CGFunctionInfo; 80 class CGRecordLayout; 81 class CGBlockInfo; 82 class CGCXXABI; 83 class BlockFlags; 84 class BlockFieldFlags; 85 86 /// The kind of evaluation to perform on values of a particular 87 /// type. Basically, is the code in CGExprScalar, CGExprComplex, or 88 /// CGExprAgg? 89 /// 90 /// TODO: should vectors maybe be split out into their own thing? 91 enum TypeEvaluationKind { 92 TEK_Scalar, 93 TEK_Complex, 94 TEK_Aggregate 95 }; 96 97 /// CodeGenFunction - This class organizes the per-function state that is used 98 /// while generating LLVM code. 99 class CodeGenFunction : public CodeGenTypeCache { 100 CodeGenFunction(const CodeGenFunction &) = delete; 101 void operator=(const CodeGenFunction &) = delete; 102 103 friend class CGCXXABI; 104 public: 105 /// A jump destination is an abstract label, branching to which may 106 /// require a jump out through normal cleanups. 107 struct JumpDest { 108 JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {} 109 JumpDest(llvm::BasicBlock *Block, 110 EHScopeStack::stable_iterator Depth, 111 unsigned Index) 112 : Block(Block), ScopeDepth(Depth), Index(Index) {} 113 114 bool isValid() const { return Block != nullptr; } 115 llvm::BasicBlock *getBlock() const { return Block; } 116 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 117 unsigned getDestIndex() const { return Index; } 118 119 // This should be used cautiously. 120 void setScopeDepth(EHScopeStack::stable_iterator depth) { 121 ScopeDepth = depth; 122 } 123 124 private: 125 llvm::BasicBlock *Block; 126 EHScopeStack::stable_iterator ScopeDepth; 127 unsigned Index; 128 }; 129 130 CodeGenModule &CGM; // Per-module state. 131 const TargetInfo &Target; 132 133 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 134 LoopInfoStack LoopStack; 135 CGBuilderTy Builder; 136 137 /// \brief CGBuilder insert helper. This function is called after an 138 /// instruction is created using Builder. 139 void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name, 140 llvm::BasicBlock *BB, 141 llvm::BasicBlock::iterator InsertPt) const; 142 143 /// CurFuncDecl - Holds the Decl for the current outermost 144 /// non-closure context. 145 const Decl *CurFuncDecl; 146 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 147 const Decl *CurCodeDecl; 148 const CGFunctionInfo *CurFnInfo; 149 QualType FnRetTy; 150 llvm::Function *CurFn; 151 152 /// CurGD - The GlobalDecl for the current function being compiled. 153 GlobalDecl CurGD; 154 155 /// PrologueCleanupDepth - The cleanup depth enclosing all the 156 /// cleanups associated with the parameters. 157 EHScopeStack::stable_iterator PrologueCleanupDepth; 158 159 /// ReturnBlock - Unified return block. 160 JumpDest ReturnBlock; 161 162 /// ReturnValue - The temporary alloca to hold the return value. This is null 163 /// iff the function has no return value. 164 llvm::Value *ReturnValue; 165 166 /// AllocaInsertPoint - This is an instruction in the entry block before which 167 /// we prefer to insert allocas. 168 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 169 170 /// \brief API for captured statement code generation. 171 class CGCapturedStmtInfo { 172 public: 173 explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default) 174 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {} 175 explicit CGCapturedStmtInfo(const CapturedStmt &S, 176 CapturedRegionKind K = CR_Default) 177 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) { 178 179 RecordDecl::field_iterator Field = 180 S.getCapturedRecordDecl()->field_begin(); 181 for (CapturedStmt::const_capture_iterator I = S.capture_begin(), 182 E = S.capture_end(); 183 I != E; ++I, ++Field) { 184 if (I->capturesThis()) 185 CXXThisFieldDecl = *Field; 186 else if (I->capturesVariable()) 187 CaptureFields[I->getCapturedVar()] = *Field; 188 } 189 } 190 191 virtual ~CGCapturedStmtInfo(); 192 193 CapturedRegionKind getKind() const { return Kind; } 194 195 void setContextValue(llvm::Value *V) { ThisValue = V; } 196 // \brief Retrieve the value of the context parameter. 197 virtual llvm::Value *getContextValue() const { return ThisValue; } 198 199 /// \brief Lookup the captured field decl for a variable. 200 virtual const FieldDecl *lookup(const VarDecl *VD) const { 201 return CaptureFields.lookup(VD); 202 } 203 204 bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; } 205 virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; } 206 207 static bool classof(const CGCapturedStmtInfo *) { 208 return true; 209 } 210 211 /// \brief Emit the captured statement body. 212 virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) { 213 RegionCounter Cnt = CGF.getPGORegionCounter(S); 214 Cnt.beginRegion(CGF.Builder); 215 CGF.EmitStmt(S); 216 } 217 218 /// \brief Get the name of the capture helper. 219 virtual StringRef getHelperName() const { return "__captured_stmt"; } 220 221 private: 222 /// \brief The kind of captured statement being generated. 223 CapturedRegionKind Kind; 224 225 /// \brief Keep the map between VarDecl and FieldDecl. 226 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields; 227 228 /// \brief The base address of the captured record, passed in as the first 229 /// argument of the parallel region function. 230 llvm::Value *ThisValue; 231 232 /// \brief Captured 'this' type. 233 FieldDecl *CXXThisFieldDecl; 234 }; 235 CGCapturedStmtInfo *CapturedStmtInfo; 236 237 /// BoundsChecking - Emit run-time bounds checks. Higher values mean 238 /// potentially higher performance penalties. 239 unsigned char BoundsChecking; 240 241 /// \brief Sanitizers enabled for this function. 242 SanitizerSet SanOpts; 243 244 /// \brief True if CodeGen currently emits code implementing sanitizer checks. 245 bool IsSanitizerScope; 246 247 /// \brief RAII object to set/unset CodeGenFunction::IsSanitizerScope. 248 class SanitizerScope { 249 CodeGenFunction *CGF; 250 public: 251 SanitizerScope(CodeGenFunction *CGF); 252 ~SanitizerScope(); 253 }; 254 255 /// In C++, whether we are code generating a thunk. This controls whether we 256 /// should emit cleanups. 257 bool CurFuncIsThunk; 258 259 /// In ARC, whether we should autorelease the return value. 260 bool AutoreleaseResult; 261 262 /// Whether we processed a Microsoft-style asm block during CodeGen. These can 263 /// potentially set the return value. 264 bool SawAsmBlock; 265 266 const CodeGen::CGBlockInfo *BlockInfo; 267 llvm::Value *BlockPointer; 268 269 llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; 270 FieldDecl *LambdaThisCaptureField; 271 272 /// \brief A mapping from NRVO variables to the flags used to indicate 273 /// when the NRVO has been applied to this variable. 274 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 275 276 EHScopeStack EHStack; 277 llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack; 278 llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack; 279 280 /// Header for data within LifetimeExtendedCleanupStack. 281 struct LifetimeExtendedCleanupHeader { 282 /// The size of the following cleanup object. 283 unsigned Size : 29; 284 /// The kind of cleanup to push: a value from the CleanupKind enumeration. 285 unsigned Kind : 3; 286 287 size_t getSize() const { return size_t(Size); } 288 CleanupKind getKind() const { return static_cast<CleanupKind>(Kind); } 289 }; 290 291 /// i32s containing the indexes of the cleanup destinations. 292 llvm::AllocaInst *NormalCleanupDest; 293 294 unsigned NextCleanupDestIndex; 295 296 /// FirstBlockInfo - The head of a singly-linked-list of block layouts. 297 CGBlockInfo *FirstBlockInfo; 298 299 /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. 300 llvm::BasicBlock *EHResumeBlock; 301 302 /// The exception slot. All landing pads write the current exception pointer 303 /// into this alloca. 304 llvm::Value *ExceptionSlot; 305 306 /// The selector slot. Under the MandatoryCleanup model, all landing pads 307 /// write the current selector value into this alloca. 308 llvm::AllocaInst *EHSelectorSlot; 309 310 llvm::AllocaInst *AbnormalTerminationSlot; 311 312 /// The implicit parameter to SEH filter functions of type 313 /// 'EXCEPTION_POINTERS*'. 314 ImplicitParamDecl *SEHPointersDecl; 315 316 /// Emits a landing pad for the current EH stack. 317 llvm::BasicBlock *EmitLandingPad(); 318 319 llvm::BasicBlock *getInvokeDestImpl(); 320 321 template <class T> 322 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 323 return DominatingValue<T>::save(*this, value); 324 } 325 326 public: 327 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 328 /// rethrows. 329 SmallVector<llvm::Value*, 8> ObjCEHValueStack; 330 331 /// A class controlling the emission of a finally block. 332 class FinallyInfo { 333 /// Where the catchall's edge through the cleanup should go. 334 JumpDest RethrowDest; 335 336 /// A function to call to enter the catch. 337 llvm::Constant *BeginCatchFn; 338 339 /// An i1 variable indicating whether or not the @finally is 340 /// running for an exception. 341 llvm::AllocaInst *ForEHVar; 342 343 /// An i8* variable into which the exception pointer to rethrow 344 /// has been saved. 345 llvm::AllocaInst *SavedExnVar; 346 347 public: 348 void enter(CodeGenFunction &CGF, const Stmt *Finally, 349 llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn, 350 llvm::Constant *rethrowFn); 351 void exit(CodeGenFunction &CGF); 352 }; 353 354 /// Cleanups can be emitted for two reasons: normal control leaving a region 355 /// exceptional control flow leaving a region. 356 struct SEHFinallyInfo { 357 SEHFinallyInfo() 358 : FinallyBB(nullptr), ContBB(nullptr), ResumeBB(nullptr) {} 359 360 llvm::BasicBlock *FinallyBB; 361 llvm::BasicBlock *ContBB; 362 llvm::BasicBlock *ResumeBB; 363 }; 364 365 /// Returns true inside SEH __try blocks. 366 bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); } 367 368 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 369 /// current full-expression. Safe against the possibility that 370 /// we're currently inside a conditionally-evaluated expression. 371 template <class T, class... As> 372 void pushFullExprCleanup(CleanupKind kind, As... A) { 373 // If we're not in a conditional branch, or if none of the 374 // arguments requires saving, then use the unconditional cleanup. 375 if (!isInConditionalBranch()) 376 return EHStack.pushCleanup<T>(kind, A...); 377 378 // Stash values in a tuple so we can guarantee the order of saves. 379 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 380 SavedTuple Saved{saveValueInCond(A)...}; 381 382 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 383 EHStack.pushCleanupTuple<CleanupType>(kind, Saved); 384 initFullExprCleanup(); 385 } 386 387 /// \brief Queue a cleanup to be pushed after finishing the current 388 /// full-expression. 389 template <class T, class... As> 390 void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) { 391 assert(!isInConditionalBranch() && "can't defer conditional cleanup"); 392 393 LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind }; 394 395 size_t OldSize = LifetimeExtendedCleanupStack.size(); 396 LifetimeExtendedCleanupStack.resize( 397 LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size); 398 399 char *Buffer = &LifetimeExtendedCleanupStack[OldSize]; 400 new (Buffer) LifetimeExtendedCleanupHeader(Header); 401 new (Buffer + sizeof(Header)) T(A...); 402 } 403 404 /// Set up the last cleaup that was pushed as a conditional 405 /// full-expression cleanup. 406 void initFullExprCleanup(); 407 408 /// PushDestructorCleanup - Push a cleanup to call the 409 /// complete-object destructor of an object of the given type at the 410 /// given address. Does nothing if T is not a C++ class type with a 411 /// non-trivial destructor. 412 void PushDestructorCleanup(QualType T, llvm::Value *Addr); 413 414 /// PushDestructorCleanup - Push a cleanup to call the 415 /// complete-object variant of the given destructor on the object at 416 /// the given address. 417 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, 418 llvm::Value *Addr); 419 420 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 421 /// process all branch fixups. 422 void PopCleanupBlock(bool FallThroughIsBranchThrough = false); 423 424 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 425 /// The block cannot be reactivated. Pops it if it's the top of the 426 /// stack. 427 /// 428 /// \param DominatingIP - An instruction which is known to 429 /// dominate the current IP (if set) and which lies along 430 /// all paths of execution between the current IP and the 431 /// the point at which the cleanup comes into scope. 432 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 433 llvm::Instruction *DominatingIP); 434 435 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 436 /// Cannot be used to resurrect a deactivated cleanup. 437 /// 438 /// \param DominatingIP - An instruction which is known to 439 /// dominate the current IP (if set) and which lies along 440 /// all paths of execution between the current IP and the 441 /// the point at which the cleanup comes into scope. 442 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 443 llvm::Instruction *DominatingIP); 444 445 /// \brief Enters a new scope for capturing cleanups, all of which 446 /// will be executed once the scope is exited. 447 class RunCleanupsScope { 448 EHScopeStack::stable_iterator CleanupStackDepth; 449 size_t LifetimeExtendedCleanupStackSize; 450 bool OldDidCallStackSave; 451 protected: 452 bool PerformCleanup; 453 private: 454 455 RunCleanupsScope(const RunCleanupsScope &) = delete; 456 void operator=(const RunCleanupsScope &) = delete; 457 458 protected: 459 CodeGenFunction& CGF; 460 461 public: 462 /// \brief Enter a new cleanup scope. 463 explicit RunCleanupsScope(CodeGenFunction &CGF) 464 : PerformCleanup(true), CGF(CGF) 465 { 466 CleanupStackDepth = CGF.EHStack.stable_begin(); 467 LifetimeExtendedCleanupStackSize = 468 CGF.LifetimeExtendedCleanupStack.size(); 469 OldDidCallStackSave = CGF.DidCallStackSave; 470 CGF.DidCallStackSave = false; 471 } 472 473 /// \brief Exit this cleanup scope, emitting any accumulated 474 /// cleanups. 475 ~RunCleanupsScope() { 476 if (PerformCleanup) { 477 CGF.DidCallStackSave = OldDidCallStackSave; 478 CGF.PopCleanupBlocks(CleanupStackDepth, 479 LifetimeExtendedCleanupStackSize); 480 } 481 } 482 483 /// \brief Determine whether this scope requires any cleanups. 484 bool requiresCleanups() const { 485 return CGF.EHStack.stable_begin() != CleanupStackDepth; 486 } 487 488 /// \brief Force the emission of cleanups now, instead of waiting 489 /// until this object is destroyed. 490 void ForceCleanup() { 491 assert(PerformCleanup && "Already forced cleanup"); 492 CGF.DidCallStackSave = OldDidCallStackSave; 493 CGF.PopCleanupBlocks(CleanupStackDepth, 494 LifetimeExtendedCleanupStackSize); 495 PerformCleanup = false; 496 } 497 }; 498 499 class LexicalScope : public RunCleanupsScope { 500 SourceRange Range; 501 SmallVector<const LabelDecl*, 4> Labels; 502 LexicalScope *ParentScope; 503 504 LexicalScope(const LexicalScope &) = delete; 505 void operator=(const LexicalScope &) = delete; 506 507 public: 508 /// \brief Enter a new cleanup scope. 509 explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) 510 : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) { 511 CGF.CurLexicalScope = this; 512 if (CGDebugInfo *DI = CGF.getDebugInfo()) 513 DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); 514 } 515 516 void addLabel(const LabelDecl *label) { 517 assert(PerformCleanup && "adding label to dead scope?"); 518 Labels.push_back(label); 519 } 520 521 /// \brief Exit this cleanup scope, emitting any accumulated 522 /// cleanups. 523 ~LexicalScope() { 524 if (CGDebugInfo *DI = CGF.getDebugInfo()) 525 DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 526 527 // If we should perform a cleanup, force them now. Note that 528 // this ends the cleanup scope before rescoping any labels. 529 if (PerformCleanup) { 530 ApplyDebugLocation DL(CGF, Range.getEnd()); 531 ForceCleanup(); 532 } 533 } 534 535 /// \brief Force the emission of cleanups now, instead of waiting 536 /// until this object is destroyed. 537 void ForceCleanup() { 538 CGF.CurLexicalScope = ParentScope; 539 RunCleanupsScope::ForceCleanup(); 540 541 if (!Labels.empty()) 542 rescopeLabels(); 543 } 544 545 void rescopeLabels(); 546 }; 547 548 /// \brief The scope used to remap some variables as private in the OpenMP 549 /// loop body (or other captured region emitted without outlining), and to 550 /// restore old vars back on exit. 551 class OMPPrivateScope : public RunCleanupsScope { 552 typedef llvm::DenseMap<const VarDecl *, llvm::Value *> VarDeclMapTy; 553 VarDeclMapTy SavedLocals; 554 VarDeclMapTy SavedPrivates; 555 556 private: 557 OMPPrivateScope(const OMPPrivateScope &) = delete; 558 void operator=(const OMPPrivateScope &) = delete; 559 560 public: 561 /// \brief Enter a new OpenMP private scope. 562 explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {} 563 564 /// \brief Registers \a LocalVD variable as a private and apply \a 565 /// PrivateGen function for it to generate corresponding private variable. 566 /// \a PrivateGen returns an address of the generated private variable. 567 /// \return true if the variable is registered as private, false if it has 568 /// been privatized already. 569 bool 570 addPrivate(const VarDecl *LocalVD, 571 const std::function<llvm::Value *()> &PrivateGen) { 572 assert(PerformCleanup && "adding private to dead scope"); 573 if (SavedLocals.count(LocalVD) > 0) return false; 574 SavedLocals[LocalVD] = CGF.LocalDeclMap.lookup(LocalVD); 575 CGF.LocalDeclMap.erase(LocalVD); 576 SavedPrivates[LocalVD] = PrivateGen(); 577 CGF.LocalDeclMap[LocalVD] = SavedLocals[LocalVD]; 578 return true; 579 } 580 581 /// \brief Privatizes local variables previously registered as private. 582 /// Registration is separate from the actual privatization to allow 583 /// initializers use values of the original variables, not the private one. 584 /// This is important, for example, if the private variable is a class 585 /// variable initialized by a constructor that references other private 586 /// variables. But at initialization original variables must be used, not 587 /// private copies. 588 /// \return true if at least one variable was privatized, false otherwise. 589 bool Privatize() { 590 for (auto VDPair : SavedPrivates) { 591 CGF.LocalDeclMap[VDPair.first] = VDPair.second; 592 } 593 SavedPrivates.clear(); 594 return !SavedLocals.empty(); 595 } 596 597 void ForceCleanup() { 598 RunCleanupsScope::ForceCleanup(); 599 // Remap vars back to the original values. 600 for (auto I : SavedLocals) { 601 CGF.LocalDeclMap[I.first] = I.second; 602 } 603 SavedLocals.clear(); 604 } 605 606 /// \brief Exit scope - all the mapped variables are restored. 607 ~OMPPrivateScope() { 608 if (PerformCleanup) 609 ForceCleanup(); 610 } 611 }; 612 613 /// \brief Takes the old cleanup stack size and emits the cleanup blocks 614 /// that have been added. 615 void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize); 616 617 /// \brief Takes the old cleanup stack size and emits the cleanup blocks 618 /// that have been added, then adds all lifetime-extended cleanups from 619 /// the given position to the stack. 620 void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 621 size_t OldLifetimeExtendedStackSize); 622 623 void ResolveBranchFixups(llvm::BasicBlock *Target); 624 625 /// The given basic block lies in the current EH scope, but may be a 626 /// target of a potentially scope-crossing jump; get a stable handle 627 /// to which we can perform this jump later. 628 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 629 return JumpDest(Target, 630 EHStack.getInnermostNormalCleanup(), 631 NextCleanupDestIndex++); 632 } 633 634 /// The given basic block lies in the current EH scope, but may be a 635 /// target of a potentially scope-crossing jump; get a stable handle 636 /// to which we can perform this jump later. 637 JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { 638 return getJumpDestInCurrentScope(createBasicBlock(Name)); 639 } 640 641 /// EmitBranchThroughCleanup - Emit a branch from the current insert 642 /// block through the normal cleanup handling code (if any) and then 643 /// on to \arg Dest. 644 void EmitBranchThroughCleanup(JumpDest Dest); 645 646 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 647 /// specified destination obviously has no cleanups to run. 'false' is always 648 /// a conservatively correct answer for this method. 649 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 650 651 /// popCatchScope - Pops the catch scope at the top of the EHScope 652 /// stack, emitting any required code (other than the catch handlers 653 /// themselves). 654 void popCatchScope(); 655 656 llvm::BasicBlock *getEHResumeBlock(bool isCleanup); 657 llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); 658 659 /// An object to manage conditionally-evaluated expressions. 660 class ConditionalEvaluation { 661 llvm::BasicBlock *StartBB; 662 663 public: 664 ConditionalEvaluation(CodeGenFunction &CGF) 665 : StartBB(CGF.Builder.GetInsertBlock()) {} 666 667 void begin(CodeGenFunction &CGF) { 668 assert(CGF.OutermostConditional != this); 669 if (!CGF.OutermostConditional) 670 CGF.OutermostConditional = this; 671 } 672 673 void end(CodeGenFunction &CGF) { 674 assert(CGF.OutermostConditional != nullptr); 675 if (CGF.OutermostConditional == this) 676 CGF.OutermostConditional = nullptr; 677 } 678 679 /// Returns a block which will be executed prior to each 680 /// evaluation of the conditional code. 681 llvm::BasicBlock *getStartingBlock() const { 682 return StartBB; 683 } 684 }; 685 686 /// isInConditionalBranch - Return true if we're currently emitting 687 /// one branch or the other of a conditional expression. 688 bool isInConditionalBranch() const { return OutermostConditional != nullptr; } 689 690 void setBeforeOutermostConditional(llvm::Value *value, llvm::Value *addr) { 691 assert(isInConditionalBranch()); 692 llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); 693 new llvm::StoreInst(value, addr, &block->back()); 694 } 695 696 /// An RAII object to record that we're evaluating a statement 697 /// expression. 698 class StmtExprEvaluation { 699 CodeGenFunction &CGF; 700 701 /// We have to save the outermost conditional: cleanups in a 702 /// statement expression aren't conditional just because the 703 /// StmtExpr is. 704 ConditionalEvaluation *SavedOutermostConditional; 705 706 public: 707 StmtExprEvaluation(CodeGenFunction &CGF) 708 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 709 CGF.OutermostConditional = nullptr; 710 } 711 712 ~StmtExprEvaluation() { 713 CGF.OutermostConditional = SavedOutermostConditional; 714 CGF.EnsureInsertPoint(); 715 } 716 }; 717 718 /// An object which temporarily prevents a value from being 719 /// destroyed by aggressive peephole optimizations that assume that 720 /// all uses of a value have been realized in the IR. 721 class PeepholeProtection { 722 llvm::Instruction *Inst; 723 friend class CodeGenFunction; 724 725 public: 726 PeepholeProtection() : Inst(nullptr) {} 727 }; 728 729 /// A non-RAII class containing all the information about a bound 730 /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for 731 /// this which makes individual mappings very simple; using this 732 /// class directly is useful when you have a variable number of 733 /// opaque values or don't want the RAII functionality for some 734 /// reason. 735 class OpaqueValueMappingData { 736 const OpaqueValueExpr *OpaqueValue; 737 bool BoundLValue; 738 CodeGenFunction::PeepholeProtection Protection; 739 740 OpaqueValueMappingData(const OpaqueValueExpr *ov, 741 bool boundLValue) 742 : OpaqueValue(ov), BoundLValue(boundLValue) {} 743 public: 744 OpaqueValueMappingData() : OpaqueValue(nullptr) {} 745 746 static bool shouldBindAsLValue(const Expr *expr) { 747 // gl-values should be bound as l-values for obvious reasons. 748 // Records should be bound as l-values because IR generation 749 // always keeps them in memory. Expressions of function type 750 // act exactly like l-values but are formally required to be 751 // r-values in C. 752 return expr->isGLValue() || 753 expr->getType()->isFunctionType() || 754 hasAggregateEvaluationKind(expr->getType()); 755 } 756 757 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 758 const OpaqueValueExpr *ov, 759 const Expr *e) { 760 if (shouldBindAsLValue(ov)) 761 return bind(CGF, ov, CGF.EmitLValue(e)); 762 return bind(CGF, ov, CGF.EmitAnyExpr(e)); 763 } 764 765 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 766 const OpaqueValueExpr *ov, 767 const LValue &lv) { 768 assert(shouldBindAsLValue(ov)); 769 CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); 770 return OpaqueValueMappingData(ov, true); 771 } 772 773 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 774 const OpaqueValueExpr *ov, 775 const RValue &rv) { 776 assert(!shouldBindAsLValue(ov)); 777 CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); 778 779 OpaqueValueMappingData data(ov, false); 780 781 // Work around an extremely aggressive peephole optimization in 782 // EmitScalarConversion which assumes that all other uses of a 783 // value are extant. 784 data.Protection = CGF.protectFromPeepholes(rv); 785 786 return data; 787 } 788 789 bool isValid() const { return OpaqueValue != nullptr; } 790 void clear() { OpaqueValue = nullptr; } 791 792 void unbind(CodeGenFunction &CGF) { 793 assert(OpaqueValue && "no data to unbind!"); 794 795 if (BoundLValue) { 796 CGF.OpaqueLValues.erase(OpaqueValue); 797 } else { 798 CGF.OpaqueRValues.erase(OpaqueValue); 799 CGF.unprotectFromPeepholes(Protection); 800 } 801 } 802 }; 803 804 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 805 class OpaqueValueMapping { 806 CodeGenFunction &CGF; 807 OpaqueValueMappingData Data; 808 809 public: 810 static bool shouldBindAsLValue(const Expr *expr) { 811 return OpaqueValueMappingData::shouldBindAsLValue(expr); 812 } 813 814 /// Build the opaque value mapping for the given conditional 815 /// operator if it's the GNU ?: extension. This is a common 816 /// enough pattern that the convenience operator is really 817 /// helpful. 818 /// 819 OpaqueValueMapping(CodeGenFunction &CGF, 820 const AbstractConditionalOperator *op) : CGF(CGF) { 821 if (isa<ConditionalOperator>(op)) 822 // Leave Data empty. 823 return; 824 825 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 826 Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), 827 e->getCommon()); 828 } 829 830 OpaqueValueMapping(CodeGenFunction &CGF, 831 const OpaqueValueExpr *opaqueValue, 832 LValue lvalue) 833 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { 834 } 835 836 OpaqueValueMapping(CodeGenFunction &CGF, 837 const OpaqueValueExpr *opaqueValue, 838 RValue rvalue) 839 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { 840 } 841 842 void pop() { 843 Data.unbind(CGF); 844 Data.clear(); 845 } 846 847 ~OpaqueValueMapping() { 848 if (Data.isValid()) Data.unbind(CGF); 849 } 850 }; 851 852 /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field 853 /// number that holds the value. 854 unsigned getByRefValueLLVMField(const ValueDecl *VD) const; 855 856 /// BuildBlockByrefAddress - Computes address location of the 857 /// variable which is declared as __block. 858 llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr, 859 const VarDecl *V); 860 private: 861 CGDebugInfo *DebugInfo; 862 bool DisableDebugInfo; 863 864 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 865 /// calling llvm.stacksave for multiple VLAs in the same scope. 866 bool DidCallStackSave; 867 868 /// IndirectBranch - The first time an indirect goto is seen we create a block 869 /// with an indirect branch. Every time we see the address of a label taken, 870 /// we add the label to the indirect goto. Every subsequent indirect goto is 871 /// codegen'd as a jump to the IndirectBranch's basic block. 872 llvm::IndirectBrInst *IndirectBranch; 873 874 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 875 /// decls. 876 typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy; 877 DeclMapTy LocalDeclMap; 878 879 /// LabelMap - This keeps track of the LLVM basic block for each C label. 880 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 881 882 // BreakContinueStack - This keeps track of where break and continue 883 // statements should jump to. 884 struct BreakContinue { 885 BreakContinue(JumpDest Break, JumpDest Continue) 886 : BreakBlock(Break), ContinueBlock(Continue) {} 887 888 JumpDest BreakBlock; 889 JumpDest ContinueBlock; 890 }; 891 SmallVector<BreakContinue, 8> BreakContinueStack; 892 893 CodeGenPGO PGO; 894 895 public: 896 /// Get a counter for instrumentation of the region associated with the given 897 /// statement. 898 RegionCounter getPGORegionCounter(const Stmt *S) { 899 return RegionCounter(PGO, S); 900 } 901 private: 902 903 /// SwitchInsn - This is nearest current switch instruction. It is null if 904 /// current context is not in a switch. 905 llvm::SwitchInst *SwitchInsn; 906 /// The branch weights of SwitchInsn when doing instrumentation based PGO. 907 SmallVector<uint64_t, 16> *SwitchWeights; 908 909 /// CaseRangeBlock - This block holds if condition check for last case 910 /// statement range in current switch instruction. 911 llvm::BasicBlock *CaseRangeBlock; 912 913 /// OpaqueLValues - Keeps track of the current set of opaque value 914 /// expressions. 915 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 916 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 917 918 // VLASizeMap - This keeps track of the associated size for each VLA type. 919 // We track this by the size expression rather than the type itself because 920 // in certain situations, like a const qualifier applied to an VLA typedef, 921 // multiple VLA types can share the same size expression. 922 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 923 // enter/leave scopes. 924 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 925 926 /// A block containing a single 'unreachable' instruction. Created 927 /// lazily by getUnreachableBlock(). 928 llvm::BasicBlock *UnreachableBlock; 929 930 /// Counts of the number return expressions in the function. 931 unsigned NumReturnExprs; 932 933 /// Count the number of simple (constant) return expressions in the function. 934 unsigned NumSimpleReturnExprs; 935 936 /// The last regular (non-return) debug location (breakpoint) in the function. 937 SourceLocation LastStopPoint; 938 939 public: 940 /// A scope within which we are constructing the fields of an object which 941 /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use 942 /// if we need to evaluate a CXXDefaultInitExpr within the evaluation. 943 class FieldConstructionScope { 944 public: 945 FieldConstructionScope(CodeGenFunction &CGF, llvm::Value *This) 946 : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) { 947 CGF.CXXDefaultInitExprThis = This; 948 } 949 ~FieldConstructionScope() { 950 CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis; 951 } 952 953 private: 954 CodeGenFunction &CGF; 955 llvm::Value *OldCXXDefaultInitExprThis; 956 }; 957 958 /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this' 959 /// is overridden to be the object under construction. 960 class CXXDefaultInitExprScope { 961 public: 962 CXXDefaultInitExprScope(CodeGenFunction &CGF) 963 : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue) { 964 CGF.CXXThisValue = CGF.CXXDefaultInitExprThis; 965 } 966 ~CXXDefaultInitExprScope() { 967 CGF.CXXThisValue = OldCXXThisValue; 968 } 969 970 public: 971 CodeGenFunction &CGF; 972 llvm::Value *OldCXXThisValue; 973 }; 974 975 private: 976 /// CXXThisDecl - When generating code for a C++ member function, 977 /// this will hold the implicit 'this' declaration. 978 ImplicitParamDecl *CXXABIThisDecl; 979 llvm::Value *CXXABIThisValue; 980 llvm::Value *CXXThisValue; 981 982 /// The value of 'this' to use when evaluating CXXDefaultInitExprs within 983 /// this expression. 984 llvm::Value *CXXDefaultInitExprThis; 985 986 /// CXXStructorImplicitParamDecl - When generating code for a constructor or 987 /// destructor, this will hold the implicit argument (e.g. VTT). 988 ImplicitParamDecl *CXXStructorImplicitParamDecl; 989 llvm::Value *CXXStructorImplicitParamValue; 990 991 /// OutermostConditional - Points to the outermost active 992 /// conditional control. This is used so that we know if a 993 /// temporary should be destroyed conditionally. 994 ConditionalEvaluation *OutermostConditional; 995 996 /// The current lexical scope. 997 LexicalScope *CurLexicalScope; 998 999 /// The current source location that should be used for exception 1000 /// handling code. 1001 SourceLocation CurEHLocation; 1002 1003 /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM 1004 /// type as well as the field number that contains the actual data. 1005 llvm::DenseMap<const ValueDecl *, std::pair<llvm::Type *, 1006 unsigned> > ByRefValueInfo; 1007 1008 llvm::BasicBlock *TerminateLandingPad; 1009 llvm::BasicBlock *TerminateHandler; 1010 llvm::BasicBlock *TrapBB; 1011 1012 /// Add a kernel metadata node to the named metadata node 'opencl.kernels'. 1013 /// In the kernel metadata node, reference the kernel function and metadata 1014 /// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2): 1015 /// - A node for the vec_type_hint(<type>) qualifier contains string 1016 /// "vec_type_hint", an undefined value of the <type> data type, 1017 /// and a Boolean that is true if the <type> is integer and signed. 1018 /// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string 1019 /// "work_group_size_hint", and three 32-bit integers X, Y and Z. 1020 /// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string 1021 /// "reqd_work_group_size", and three 32-bit integers X, Y and Z. 1022 void EmitOpenCLKernelMetadata(const FunctionDecl *FD, 1023 llvm::Function *Fn); 1024 1025 public: 1026 CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false); 1027 ~CodeGenFunction(); 1028 1029 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 1030 ASTContext &getContext() const { return CGM.getContext(); } 1031 CGDebugInfo *getDebugInfo() { 1032 if (DisableDebugInfo) 1033 return nullptr; 1034 return DebugInfo; 1035 } 1036 void disableDebugInfo() { DisableDebugInfo = true; } 1037 void enableDebugInfo() { DisableDebugInfo = false; } 1038 1039 bool shouldUseFusedARCCalls() { 1040 return CGM.getCodeGenOpts().OptimizationLevel == 0; 1041 } 1042 1043 const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } 1044 1045 /// Returns a pointer to the function's exception object and selector slot, 1046 /// which is assigned in every landing pad. 1047 llvm::Value *getExceptionSlot(); 1048 llvm::Value *getEHSelectorSlot(); 1049 1050 /// Stack slot that contains whether a __finally block is being executed as an 1051 /// EH cleanup or as a normal cleanup. 1052 llvm::Value *getAbnormalTerminationSlot(); 1053 1054 /// Returns the contents of the function's exception object and selector 1055 /// slots. 1056 llvm::Value *getExceptionFromSlot(); 1057 llvm::Value *getSelectorFromSlot(); 1058 1059 llvm::Value *getNormalCleanupDestSlot(); 1060 1061 llvm::BasicBlock *getUnreachableBlock() { 1062 if (!UnreachableBlock) { 1063 UnreachableBlock = createBasicBlock("unreachable"); 1064 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 1065 } 1066 return UnreachableBlock; 1067 } 1068 1069 llvm::BasicBlock *getInvokeDest() { 1070 if (!EHStack.requiresLandingPad()) return nullptr; 1071 return getInvokeDestImpl(); 1072 } 1073 1074 bool currentFunctionUsesSEHTry() const { 1075 const auto *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl); 1076 return FD && FD->usesSEHTry(); 1077 } 1078 1079 const TargetInfo &getTarget() const { return Target; } 1080 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 1081 1082 //===--------------------------------------------------------------------===// 1083 // Cleanups 1084 //===--------------------------------------------------------------------===// 1085 1086 typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty); 1087 1088 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1089 llvm::Value *arrayEndPointer, 1090 QualType elementType, 1091 Destroyer *destroyer); 1092 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1093 llvm::Value *arrayEnd, 1094 QualType elementType, 1095 Destroyer *destroyer); 1096 1097 void pushDestroy(QualType::DestructionKind dtorKind, 1098 llvm::Value *addr, QualType type); 1099 void pushEHDestroy(QualType::DestructionKind dtorKind, 1100 llvm::Value *addr, QualType type); 1101 void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type, 1102 Destroyer *destroyer, bool useEHCleanupForArray); 1103 void pushLifetimeExtendedDestroy(CleanupKind kind, llvm::Value *addr, 1104 QualType type, Destroyer *destroyer, 1105 bool useEHCleanupForArray); 1106 void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 1107 llvm::Value *CompletePtr, 1108 QualType ElementType); 1109 void pushStackRestore(CleanupKind kind, llvm::Value *SPMem); 1110 void emitDestroy(llvm::Value *addr, QualType type, Destroyer *destroyer, 1111 bool useEHCleanupForArray); 1112 llvm::Function *generateDestroyHelper(llvm::Constant *addr, QualType type, 1113 Destroyer *destroyer, 1114 bool useEHCleanupForArray, 1115 const VarDecl *VD); 1116 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 1117 QualType type, Destroyer *destroyer, 1118 bool checkZeroLength, bool useEHCleanup); 1119 1120 Destroyer *getDestroyer(QualType::DestructionKind destructionKind); 1121 1122 /// Determines whether an EH cleanup is required to destroy a type 1123 /// with the given destruction kind. 1124 bool needsEHCleanup(QualType::DestructionKind kind) { 1125 switch (kind) { 1126 case QualType::DK_none: 1127 return false; 1128 case QualType::DK_cxx_destructor: 1129 case QualType::DK_objc_weak_lifetime: 1130 return getLangOpts().Exceptions; 1131 case QualType::DK_objc_strong_lifetime: 1132 return getLangOpts().Exceptions && 1133 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 1134 } 1135 llvm_unreachable("bad destruction kind"); 1136 } 1137 1138 CleanupKind getCleanupKind(QualType::DestructionKind kind) { 1139 return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); 1140 } 1141 1142 //===--------------------------------------------------------------------===// 1143 // Objective-C 1144 //===--------------------------------------------------------------------===// 1145 1146 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 1147 1148 void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD); 1149 1150 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 1151 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 1152 const ObjCPropertyImplDecl *PID); 1153 void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 1154 const ObjCPropertyImplDecl *propImpl, 1155 const ObjCMethodDecl *GetterMothodDecl, 1156 llvm::Constant *AtomicHelperFn); 1157 1158 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1159 ObjCMethodDecl *MD, bool ctor); 1160 1161 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 1162 /// for the given property. 1163 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 1164 const ObjCPropertyImplDecl *PID); 1165 void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1166 const ObjCPropertyImplDecl *propImpl, 1167 llvm::Constant *AtomicHelperFn); 1168 bool IndirectObjCSetterArg(const CGFunctionInfo &FI); 1169 bool IvarTypeWithAggrGCObjects(QualType Ty); 1170 1171 //===--------------------------------------------------------------------===// 1172 // Block Bits 1173 //===--------------------------------------------------------------------===// 1174 1175 llvm::Value *EmitBlockLiteral(const BlockExpr *); 1176 llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); 1177 static void destroyBlockInfos(CGBlockInfo *info); 1178 llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *, 1179 const CGBlockInfo &Info, 1180 llvm::StructType *, 1181 llvm::Constant *BlockVarLayout); 1182 1183 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 1184 const CGBlockInfo &Info, 1185 const DeclMapTy &ldm, 1186 bool IsLambdaConversionToBlock); 1187 1188 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 1189 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 1190 llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( 1191 const ObjCPropertyImplDecl *PID); 1192 llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( 1193 const ObjCPropertyImplDecl *PID); 1194 llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); 1195 1196 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags); 1197 1198 class AutoVarEmission; 1199 1200 void emitByrefStructureInit(const AutoVarEmission &emission); 1201 void enterByrefCleanup(const AutoVarEmission &emission); 1202 1203 llvm::Value *LoadBlockStruct() { 1204 assert(BlockPointer && "no block pointer set!"); 1205 return BlockPointer; 1206 } 1207 1208 void AllocateBlockCXXThisPointer(const CXXThisExpr *E); 1209 void AllocateBlockDecl(const DeclRefExpr *E); 1210 llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef); 1211 llvm::Type *BuildByRefType(const VarDecl *var); 1212 1213 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1214 const CGFunctionInfo &FnInfo); 1215 /// \brief Emit code for the start of a function. 1216 /// \param Loc The location to be associated with the function. 1217 /// \param StartLoc The location of the function body. 1218 void StartFunction(GlobalDecl GD, 1219 QualType RetTy, 1220 llvm::Function *Fn, 1221 const CGFunctionInfo &FnInfo, 1222 const FunctionArgList &Args, 1223 SourceLocation Loc = SourceLocation(), 1224 SourceLocation StartLoc = SourceLocation()); 1225 1226 void EmitConstructorBody(FunctionArgList &Args); 1227 void EmitDestructorBody(FunctionArgList &Args); 1228 void emitImplicitAssignmentOperatorBody(FunctionArgList &Args); 1229 void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body); 1230 void EmitBlockWithFallThrough(llvm::BasicBlock *BB, RegionCounter &Cnt); 1231 1232 void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator, 1233 CallArgList &CallArgs); 1234 void EmitLambdaToBlockPointerBody(FunctionArgList &Args); 1235 void EmitLambdaBlockInvokeBody(); 1236 void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD); 1237 void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD); 1238 void EmitAsanPrologueOrEpilogue(bool Prologue); 1239 1240 /// \brief Emit the unified return block, trying to avoid its emission when 1241 /// possible. 1242 /// \return The debug location of the user written return statement if the 1243 /// return block is is avoided. 1244 llvm::DebugLoc EmitReturnBlock(); 1245 1246 /// FinishFunction - Complete IR generation of the current function. It is 1247 /// legal to call this function even if there is no current insertion point. 1248 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 1249 1250 void StartThunk(llvm::Function *Fn, GlobalDecl GD, 1251 const CGFunctionInfo &FnInfo); 1252 1253 void EmitCallAndReturnForThunk(llvm::Value *Callee, const ThunkInfo *Thunk); 1254 1255 /// Emit a musttail call for a thunk with a potentially adjusted this pointer. 1256 void EmitMustTailThunk(const CXXMethodDecl *MD, llvm::Value *AdjustedThisPtr, 1257 llvm::Value *Callee); 1258 1259 /// GenerateThunk - Generate a thunk for the given method. 1260 void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1261 GlobalDecl GD, const ThunkInfo &Thunk); 1262 1263 void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1264 GlobalDecl GD, const ThunkInfo &Thunk); 1265 1266 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 1267 FunctionArgList &Args); 1268 1269 void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init, 1270 ArrayRef<VarDecl *> ArrayIndexes); 1271 1272 /// InitializeVTablePointer - Initialize the vtable pointer of the given 1273 /// subobject. 1274 /// 1275 void InitializeVTablePointer(BaseSubobject Base, 1276 const CXXRecordDecl *NearestVBase, 1277 CharUnits OffsetFromNearestVBase, 1278 const CXXRecordDecl *VTableClass); 1279 1280 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 1281 void InitializeVTablePointers(BaseSubobject Base, 1282 const CXXRecordDecl *NearestVBase, 1283 CharUnits OffsetFromNearestVBase, 1284 bool BaseIsNonVirtualPrimaryBase, 1285 const CXXRecordDecl *VTableClass, 1286 VisitedVirtualBasesSetTy& VBases); 1287 1288 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 1289 1290 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 1291 /// to by This. 1292 llvm::Value *GetVTablePtr(llvm::Value *This, llvm::Type *Ty); 1293 1294 /// \brief Derived is the presumed address of an object of type T after a 1295 /// cast. If T is a polymorphic class type, emit a check that the virtual 1296 /// table for Derived belongs to a class derived from T. 1297 void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived, 1298 bool MayBeNull); 1299 1300 /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable. 1301 /// If vptr CFI is enabled, emit a check that VTable is valid. 1302 void EmitVTablePtrCheckForCall(const CXXMethodDecl *MD, llvm::Value *VTable); 1303 1304 /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for 1305 /// RD using llvm.bitset.test. 1306 void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable); 1307 1308 /// CanDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given 1309 /// expr can be devirtualized. 1310 bool CanDevirtualizeMemberFunctionCall(const Expr *Base, 1311 const CXXMethodDecl *MD); 1312 1313 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 1314 /// given phase of destruction for a destructor. The end result 1315 /// should call destructors on members and base classes in reverse 1316 /// order of their construction. 1317 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 1318 1319 /// ShouldInstrumentFunction - Return true if the current function should be 1320 /// instrumented with __cyg_profile_func_* calls 1321 bool ShouldInstrumentFunction(); 1322 1323 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 1324 /// instrumentation function with the current function and the call site, if 1325 /// function instrumentation is enabled. 1326 void EmitFunctionInstrumentation(const char *Fn); 1327 1328 /// EmitMCountInstrumentation - Emit call to .mcount. 1329 void EmitMCountInstrumentation(); 1330 1331 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 1332 /// arguments for the given function. This is also responsible for naming the 1333 /// LLVM function arguments. 1334 void EmitFunctionProlog(const CGFunctionInfo &FI, 1335 llvm::Function *Fn, 1336 const FunctionArgList &Args); 1337 1338 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 1339 /// given temporary. 1340 void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc, 1341 SourceLocation EndLoc); 1342 1343 /// EmitStartEHSpec - Emit the start of the exception spec. 1344 void EmitStartEHSpec(const Decl *D); 1345 1346 /// EmitEndEHSpec - Emit the end of the exception spec. 1347 void EmitEndEHSpec(const Decl *D); 1348 1349 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 1350 llvm::BasicBlock *getTerminateLandingPad(); 1351 1352 /// getTerminateHandler - Return a handler (not a landing pad, just 1353 /// a catch handler) that just calls terminate. This is used when 1354 /// a terminate scope encloses a try. 1355 llvm::BasicBlock *getTerminateHandler(); 1356 1357 llvm::Type *ConvertTypeForMem(QualType T); 1358 llvm::Type *ConvertType(QualType T); 1359 llvm::Type *ConvertType(const TypeDecl *T) { 1360 return ConvertType(getContext().getTypeDeclType(T)); 1361 } 1362 1363 /// LoadObjCSelf - Load the value of self. This function is only valid while 1364 /// generating code for an Objective-C method. 1365 llvm::Value *LoadObjCSelf(); 1366 1367 /// TypeOfSelfObject - Return type of object that this self represents. 1368 QualType TypeOfSelfObject(); 1369 1370 /// hasAggregateLLVMType - Return true if the specified AST type will map into 1371 /// an aggregate LLVM type or is void. 1372 static TypeEvaluationKind getEvaluationKind(QualType T); 1373 1374 static bool hasScalarEvaluationKind(QualType T) { 1375 return getEvaluationKind(T) == TEK_Scalar; 1376 } 1377 1378 static bool hasAggregateEvaluationKind(QualType T) { 1379 return getEvaluationKind(T) == TEK_Aggregate; 1380 } 1381 1382 /// createBasicBlock - Create an LLVM basic block. 1383 llvm::BasicBlock *createBasicBlock(const Twine &name = "", 1384 llvm::Function *parent = nullptr, 1385 llvm::BasicBlock *before = nullptr) { 1386 #ifdef NDEBUG 1387 return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before); 1388 #else 1389 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 1390 #endif 1391 } 1392 1393 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 1394 /// label maps to. 1395 JumpDest getJumpDestForLabel(const LabelDecl *S); 1396 1397 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 1398 /// another basic block, simplify it. This assumes that no other code could 1399 /// potentially reference the basic block. 1400 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 1401 1402 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 1403 /// adding a fall-through branch from the current insert block if 1404 /// necessary. It is legal to call this function even if there is no current 1405 /// insertion point. 1406 /// 1407 /// IsFinished - If true, indicates that the caller has finished emitting 1408 /// branches to the given block and does not expect to emit code into it. This 1409 /// means the block can be ignored if it is unreachable. 1410 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 1411 1412 /// EmitBlockAfterUses - Emit the given block somewhere hopefully 1413 /// near its uses, and leave the insertion point in it. 1414 void EmitBlockAfterUses(llvm::BasicBlock *BB); 1415 1416 /// EmitBranch - Emit a branch to the specified basic block from the current 1417 /// insert block, taking care to avoid creation of branches from dummy 1418 /// blocks. It is legal to call this function even if there is no current 1419 /// insertion point. 1420 /// 1421 /// This function clears the current insertion point. The caller should follow 1422 /// calls to this function with calls to Emit*Block prior to generation new 1423 /// code. 1424 void EmitBranch(llvm::BasicBlock *Block); 1425 1426 /// HaveInsertPoint - True if an insertion point is defined. If not, this 1427 /// indicates that the current code being emitted is unreachable. 1428 bool HaveInsertPoint() const { 1429 return Builder.GetInsertBlock() != nullptr; 1430 } 1431 1432 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 1433 /// emitted IR has a place to go. Note that by definition, if this function 1434 /// creates a block then that block is unreachable; callers may do better to 1435 /// detect when no insertion point is defined and simply skip IR generation. 1436 void EnsureInsertPoint() { 1437 if (!HaveInsertPoint()) 1438 EmitBlock(createBasicBlock()); 1439 } 1440 1441 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1442 /// specified stmt yet. 1443 void ErrorUnsupported(const Stmt *S, const char *Type); 1444 1445 //===--------------------------------------------------------------------===// 1446 // Helpers 1447 //===--------------------------------------------------------------------===// 1448 1449 LValue MakeAddrLValue(llvm::Value *V, QualType T, 1450 CharUnits Alignment = CharUnits()) { 1451 return LValue::MakeAddr(V, T, Alignment, getContext(), 1452 CGM.getTBAAInfo(T)); 1453 } 1454 1455 LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T); 1456 1457 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 1458 /// block. The caller is responsible for setting an appropriate alignment on 1459 /// the alloca. 1460 llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, 1461 const Twine &Name = "tmp"); 1462 1463 /// InitTempAlloca - Provide an initial value for the given alloca. 1464 void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value); 1465 1466 /// CreateIRTemp - Create a temporary IR object of the given type, with 1467 /// appropriate alignment. This routine should only be used when an temporary 1468 /// value needs to be stored into an alloca (for example, to avoid explicit 1469 /// PHI construction), but the type is the IR type, not the type appropriate 1470 /// for storing in memory. 1471 llvm::AllocaInst *CreateIRTemp(QualType T, const Twine &Name = "tmp"); 1472 1473 /// CreateMemTemp - Create a temporary memory object of the given type, with 1474 /// appropriate alignment. 1475 llvm::AllocaInst *CreateMemTemp(QualType T, const Twine &Name = "tmp"); 1476 1477 /// CreateAggTemp - Create a temporary memory object for the given 1478 /// aggregate type. 1479 AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") { 1480 CharUnits Alignment = getContext().getTypeAlignInChars(T); 1481 return AggValueSlot::forAddr(CreateMemTemp(T, Name), Alignment, 1482 T.getQualifiers(), 1483 AggValueSlot::IsNotDestructed, 1484 AggValueSlot::DoesNotNeedGCBarriers, 1485 AggValueSlot::IsNotAliased); 1486 } 1487 1488 /// CreateInAllocaTmp - Create a temporary memory object for the given 1489 /// aggregate type. 1490 AggValueSlot CreateInAllocaTmp(QualType T, const Twine &Name = "inalloca"); 1491 1492 /// Emit a cast to void* in the appropriate address space. 1493 llvm::Value *EmitCastToVoidPtr(llvm::Value *value); 1494 1495 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 1496 /// expression and compare the result against zero, returning an Int1Ty value. 1497 llvm::Value *EvaluateExprAsBool(const Expr *E); 1498 1499 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 1500 void EmitIgnoredExpr(const Expr *E); 1501 1502 /// EmitAnyExpr - Emit code to compute the specified expression which can have 1503 /// any type. The result is returned as an RValue struct. If this is an 1504 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 1505 /// the result should be returned. 1506 /// 1507 /// \param ignoreResult True if the resulting value isn't used. 1508 RValue EmitAnyExpr(const Expr *E, 1509 AggValueSlot aggSlot = AggValueSlot::ignored(), 1510 bool ignoreResult = false); 1511 1512 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 1513 // or the value of the expression, depending on how va_list is defined. 1514 llvm::Value *EmitVAListRef(const Expr *E); 1515 1516 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 1517 /// always be accessible even if no aggregate location is provided. 1518 RValue EmitAnyExprToTemp(const Expr *E); 1519 1520 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 1521 /// arbitrary expression into the given memory location. 1522 void EmitAnyExprToMem(const Expr *E, llvm::Value *Location, 1523 Qualifiers Quals, bool IsInitializer); 1524 1525 void EmitAnyExprToExn(const Expr *E, llvm::Value *Addr); 1526 1527 /// EmitExprAsInit - Emits the code necessary to initialize a 1528 /// location in memory with the given initializer. 1529 void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue, 1530 bool capturedByInit); 1531 1532 /// hasVolatileMember - returns true if aggregate type has a volatile 1533 /// member. 1534 bool hasVolatileMember(QualType T) { 1535 if (const RecordType *RT = T->getAs<RecordType>()) { 1536 const RecordDecl *RD = cast<RecordDecl>(RT->getDecl()); 1537 return RD->hasVolatileMember(); 1538 } 1539 return false; 1540 } 1541 /// EmitAggregateCopy - Emit an aggregate assignment. 1542 /// 1543 /// The difference to EmitAggregateCopy is that tail padding is not copied. 1544 /// This is required for correctness when assigning non-POD structures in C++. 1545 void EmitAggregateAssign(llvm::Value *DestPtr, llvm::Value *SrcPtr, 1546 QualType EltTy) { 1547 bool IsVolatile = hasVolatileMember(EltTy); 1548 EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, CharUnits::Zero(), 1549 true); 1550 } 1551 1552 void EmitAggregateCopyCtor(llvm::Value *DestPtr, llvm::Value *SrcPtr, 1553 QualType DestTy, QualType SrcTy) { 1554 CharUnits DestTypeAlign = getContext().getTypeAlignInChars(DestTy); 1555 CharUnits SrcTypeAlign = getContext().getTypeAlignInChars(SrcTy); 1556 EmitAggregateCopy(DestPtr, SrcPtr, SrcTy, /*IsVolatile=*/false, 1557 std::min(DestTypeAlign, SrcTypeAlign), 1558 /*IsAssignment=*/false); 1559 } 1560 1561 /// EmitAggregateCopy - Emit an aggregate copy. 1562 /// 1563 /// \param isVolatile - True iff either the source or the destination is 1564 /// volatile. 1565 /// \param isAssignment - If false, allow padding to be copied. This often 1566 /// yields more efficient. 1567 void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr, 1568 QualType EltTy, bool isVolatile=false, 1569 CharUnits Alignment = CharUnits::Zero(), 1570 bool isAssignment = false); 1571 1572 /// StartBlock - Start new block named N. If insert block is a dummy block 1573 /// then reuse it. 1574 void StartBlock(const char *N); 1575 1576 /// GetAddrOfLocalVar - Return the address of a local variable. 1577 llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) { 1578 llvm::Value *Res = LocalDeclMap[VD]; 1579 assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!"); 1580 return Res; 1581 } 1582 1583 /// getOpaqueLValueMapping - Given an opaque value expression (which 1584 /// must be mapped to an l-value), return its mapping. 1585 const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) { 1586 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 1587 1588 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 1589 it = OpaqueLValues.find(e); 1590 assert(it != OpaqueLValues.end() && "no mapping for opaque value!"); 1591 return it->second; 1592 } 1593 1594 /// getOpaqueRValueMapping - Given an opaque value expression (which 1595 /// must be mapped to an r-value), return its mapping. 1596 const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) { 1597 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 1598 1599 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 1600 it = OpaqueRValues.find(e); 1601 assert(it != OpaqueRValues.end() && "no mapping for opaque value!"); 1602 return it->second; 1603 } 1604 1605 /// getAccessedFieldNo - Given an encoded value and a result number, return 1606 /// the input field number being accessed. 1607 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 1608 1609 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 1610 llvm::BasicBlock *GetIndirectGotoBlock(); 1611 1612 /// EmitNullInitialization - Generate code to set a value of the given type to 1613 /// null, If the type contains data member pointers, they will be initialized 1614 /// to -1 in accordance with the Itanium C++ ABI. 1615 void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty); 1616 1617 // EmitVAArg - Generate code to get an argument from the passed in pointer 1618 // and update it accordingly. The return value is a pointer to the argument. 1619 // FIXME: We should be able to get rid of this method and use the va_arg 1620 // instruction in LLVM instead once it works well enough. 1621 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty); 1622 1623 /// emitArrayLength - Compute the length of an array, even if it's a 1624 /// VLA, and drill down to the base element type. 1625 llvm::Value *emitArrayLength(const ArrayType *arrayType, 1626 QualType &baseType, 1627 llvm::Value *&addr); 1628 1629 /// EmitVLASize - Capture all the sizes for the VLA expressions in 1630 /// the given variably-modified type and store them in the VLASizeMap. 1631 /// 1632 /// This function can be called with a null (unreachable) insert point. 1633 void EmitVariablyModifiedType(QualType Ty); 1634 1635 /// getVLASize - Returns an LLVM value that corresponds to the size, 1636 /// in non-variably-sized elements, of a variable length array type, 1637 /// plus that largest non-variably-sized element type. Assumes that 1638 /// the type has already been emitted with EmitVariablyModifiedType. 1639 std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla); 1640 std::pair<llvm::Value*,QualType> getVLASize(QualType vla); 1641 1642 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 1643 /// generating code for an C++ member function. 1644 llvm::Value *LoadCXXThis() { 1645 assert(CXXThisValue && "no 'this' value for this function"); 1646 return CXXThisValue; 1647 } 1648 1649 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 1650 /// virtual bases. 1651 // FIXME: Every place that calls LoadCXXVTT is something 1652 // that needs to be abstracted properly. 1653 llvm::Value *LoadCXXVTT() { 1654 assert(CXXStructorImplicitParamValue && "no VTT value for this function"); 1655 return CXXStructorImplicitParamValue; 1656 } 1657 1658 /// LoadCXXStructorImplicitParam - Load the implicit parameter 1659 /// for a constructor/destructor. 1660 llvm::Value *LoadCXXStructorImplicitParam() { 1661 assert(CXXStructorImplicitParamValue && 1662 "no implicit argument value for this function"); 1663 return CXXStructorImplicitParamValue; 1664 } 1665 1666 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 1667 /// complete class to the given direct base. 1668 llvm::Value * 1669 GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value, 1670 const CXXRecordDecl *Derived, 1671 const CXXRecordDecl *Base, 1672 bool BaseIsVirtual); 1673 1674 /// GetAddressOfBaseClass - This function will add the necessary delta to the 1675 /// load of 'this' and returns address of the base class. 1676 llvm::Value *GetAddressOfBaseClass(llvm::Value *Value, 1677 const CXXRecordDecl *Derived, 1678 CastExpr::path_const_iterator PathBegin, 1679 CastExpr::path_const_iterator PathEnd, 1680 bool NullCheckValue, SourceLocation Loc); 1681 1682 llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value, 1683 const CXXRecordDecl *Derived, 1684 CastExpr::path_const_iterator PathBegin, 1685 CastExpr::path_const_iterator PathEnd, 1686 bool NullCheckValue); 1687 1688 /// GetVTTParameter - Return the VTT parameter that should be passed to a 1689 /// base constructor/destructor with virtual bases. 1690 /// FIXME: VTTs are Itanium ABI-specific, so the definition should move 1691 /// to ItaniumCXXABI.cpp together with all the references to VTT. 1692 llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase, 1693 bool Delegating); 1694 1695 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 1696 CXXCtorType CtorType, 1697 const FunctionArgList &Args, 1698 SourceLocation Loc); 1699 // It's important not to confuse this and the previous function. Delegating 1700 // constructors are the C++0x feature. The constructor delegate optimization 1701 // is used to reduce duplication in the base and complete consturctors where 1702 // they are substantially the same. 1703 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 1704 const FunctionArgList &Args); 1705 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 1706 bool ForVirtualBase, bool Delegating, 1707 llvm::Value *This, const CXXConstructExpr *E); 1708 1709 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 1710 llvm::Value *This, llvm::Value *Src, 1711 const CXXConstructExpr *E); 1712 1713 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 1714 const ConstantArrayType *ArrayTy, 1715 llvm::Value *ArrayPtr, 1716 const CXXConstructExpr *E, 1717 bool ZeroInitialization = false); 1718 1719 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 1720 llvm::Value *NumElements, 1721 llvm::Value *ArrayPtr, 1722 const CXXConstructExpr *E, 1723 bool ZeroInitialization = false); 1724 1725 static Destroyer destroyCXXObject; 1726 1727 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 1728 bool ForVirtualBase, bool Delegating, 1729 llvm::Value *This); 1730 1731 void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, 1732 llvm::Value *NewPtr, llvm::Value *NumElements, 1733 llvm::Value *AllocSizeWithoutCookie); 1734 1735 void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, 1736 llvm::Value *Ptr); 1737 1738 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 1739 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 1740 1741 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 1742 QualType DeleteTy); 1743 1744 RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 1745 const Expr *Arg, bool IsDelete); 1746 1747 llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E); 1748 llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE); 1749 llvm::Value* EmitCXXUuidofExpr(const CXXUuidofExpr *E); 1750 1751 /// \brief Situations in which we might emit a check for the suitability of a 1752 /// pointer or glvalue. 1753 enum TypeCheckKind { 1754 /// Checking the operand of a load. Must be suitably sized and aligned. 1755 TCK_Load, 1756 /// Checking the destination of a store. Must be suitably sized and aligned. 1757 TCK_Store, 1758 /// Checking the bound value in a reference binding. Must be suitably sized 1759 /// and aligned, but is not required to refer to an object (until the 1760 /// reference is used), per core issue 453. 1761 TCK_ReferenceBinding, 1762 /// Checking the object expression in a non-static data member access. Must 1763 /// be an object within its lifetime. 1764 TCK_MemberAccess, 1765 /// Checking the 'this' pointer for a call to a non-static member function. 1766 /// Must be an object within its lifetime. 1767 TCK_MemberCall, 1768 /// Checking the 'this' pointer for a constructor call. 1769 TCK_ConstructorCall, 1770 /// Checking the operand of a static_cast to a derived pointer type. Must be 1771 /// null or an object within its lifetime. 1772 TCK_DowncastPointer, 1773 /// Checking the operand of a static_cast to a derived reference type. Must 1774 /// be an object within its lifetime. 1775 TCK_DowncastReference, 1776 /// Checking the operand of a cast to a base object. Must be suitably sized 1777 /// and aligned. 1778 TCK_Upcast, 1779 /// Checking the operand of a cast to a virtual base object. Must be an 1780 /// object within its lifetime. 1781 TCK_UpcastToVirtualBase 1782 }; 1783 1784 /// \brief Whether any type-checking sanitizers are enabled. If \c false, 1785 /// calls to EmitTypeCheck can be skipped. 1786 bool sanitizePerformTypeCheck() const; 1787 1788 /// \brief Emit a check that \p V is the address of storage of the 1789 /// appropriate size and alignment for an object of type \p Type. 1790 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, 1791 QualType Type, CharUnits Alignment = CharUnits::Zero(), 1792 bool SkipNullCheck = false); 1793 1794 /// \brief Emit a check that \p Base points into an array object, which 1795 /// we can access at index \p Index. \p Accessed should be \c false if we 1796 /// this expression is used as an lvalue, for instance in "&Arr[Idx]". 1797 void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, 1798 QualType IndexType, bool Accessed); 1799 1800 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 1801 bool isInc, bool isPre); 1802 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 1803 bool isInc, bool isPre); 1804 1805 void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment, 1806 llvm::Value *OffsetValue = nullptr) { 1807 Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment, 1808 OffsetValue); 1809 } 1810 1811 //===--------------------------------------------------------------------===// 1812 // Declaration Emission 1813 //===--------------------------------------------------------------------===// 1814 1815 /// EmitDecl - Emit a declaration. 1816 /// 1817 /// This function can be called with a null (unreachable) insert point. 1818 void EmitDecl(const Decl &D); 1819 1820 /// EmitVarDecl - Emit a local variable declaration. 1821 /// 1822 /// This function can be called with a null (unreachable) insert point. 1823 void EmitVarDecl(const VarDecl &D); 1824 1825 void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue, 1826 bool capturedByInit); 1827 void EmitScalarInit(llvm::Value *init, LValue lvalue); 1828 1829 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 1830 llvm::Value *Address); 1831 1832 /// \brief Determine whether the given initializer is trivial in the sense 1833 /// that it requires no code to be generated. 1834 bool isTrivialInitializer(const Expr *Init); 1835 1836 /// EmitAutoVarDecl - Emit an auto variable declaration. 1837 /// 1838 /// This function can be called with a null (unreachable) insert point. 1839 void EmitAutoVarDecl(const VarDecl &D); 1840 1841 class AutoVarEmission { 1842 friend class CodeGenFunction; 1843 1844 const VarDecl *Variable; 1845 1846 /// The alignment of the variable. 1847 CharUnits Alignment; 1848 1849 /// The address of the alloca. Null if the variable was emitted 1850 /// as a global constant. 1851 llvm::Value *Address; 1852 1853 llvm::Value *NRVOFlag; 1854 1855 /// True if the variable is a __block variable. 1856 bool IsByRef; 1857 1858 /// True if the variable is of aggregate type and has a constant 1859 /// initializer. 1860 bool IsConstantAggregate; 1861 1862 /// Non-null if we should use lifetime annotations. 1863 llvm::Value *SizeForLifetimeMarkers; 1864 1865 struct Invalid {}; 1866 AutoVarEmission(Invalid) : Variable(nullptr) {} 1867 1868 AutoVarEmission(const VarDecl &variable) 1869 : Variable(&variable), Address(nullptr), NRVOFlag(nullptr), 1870 IsByRef(false), IsConstantAggregate(false), 1871 SizeForLifetimeMarkers(nullptr) {} 1872 1873 bool wasEmittedAsGlobal() const { return Address == nullptr; } 1874 1875 public: 1876 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 1877 1878 bool useLifetimeMarkers() const { 1879 return SizeForLifetimeMarkers != nullptr; 1880 } 1881 llvm::Value *getSizeForLifetimeMarkers() const { 1882 assert(useLifetimeMarkers()); 1883 return SizeForLifetimeMarkers; 1884 } 1885 1886 /// Returns the raw, allocated address, which is not necessarily 1887 /// the address of the object itself. 1888 llvm::Value *getAllocatedAddress() const { 1889 return Address; 1890 } 1891 1892 /// Returns the address of the object within this declaration. 1893 /// Note that this does not chase the forwarding pointer for 1894 /// __block decls. 1895 llvm::Value *getObjectAddress(CodeGenFunction &CGF) const { 1896 if (!IsByRef) return Address; 1897 1898 return CGF.Builder.CreateStructGEP(Address, 1899 CGF.getByRefValueLLVMField(Variable), 1900 Variable->getNameAsString()); 1901 } 1902 }; 1903 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 1904 void EmitAutoVarInit(const AutoVarEmission &emission); 1905 void EmitAutoVarCleanups(const AutoVarEmission &emission); 1906 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 1907 QualType::DestructionKind dtorKind); 1908 1909 void EmitStaticVarDecl(const VarDecl &D, 1910 llvm::GlobalValue::LinkageTypes Linkage); 1911 1912 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 1913 void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, bool ArgIsPointer, 1914 unsigned ArgNo); 1915 1916 /// protectFromPeepholes - Protect a value that we're intending to 1917 /// store to the side, but which will probably be used later, from 1918 /// aggressive peepholing optimizations that might delete it. 1919 /// 1920 /// Pass the result to unprotectFromPeepholes to declare that 1921 /// protection is no longer required. 1922 /// 1923 /// There's no particular reason why this shouldn't apply to 1924 /// l-values, it's just that no existing peepholes work on pointers. 1925 PeepholeProtection protectFromPeepholes(RValue rvalue); 1926 void unprotectFromPeepholes(PeepholeProtection protection); 1927 1928 //===--------------------------------------------------------------------===// 1929 // Statement Emission 1930 //===--------------------------------------------------------------------===// 1931 1932 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 1933 void EmitStopPoint(const Stmt *S); 1934 1935 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 1936 /// this function even if there is no current insertion point. 1937 /// 1938 /// This function may clear the current insertion point; callers should use 1939 /// EnsureInsertPoint if they wish to subsequently generate code without first 1940 /// calling EmitBlock, EmitBranch, or EmitStmt. 1941 void EmitStmt(const Stmt *S); 1942 1943 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 1944 /// necessarily require an insertion point or debug information; typically 1945 /// because the statement amounts to a jump or a container of other 1946 /// statements. 1947 /// 1948 /// \return True if the statement was handled. 1949 bool EmitSimpleStmt(const Stmt *S); 1950 1951 llvm::Value *EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 1952 AggValueSlot AVS = AggValueSlot::ignored()); 1953 llvm::Value *EmitCompoundStmtWithoutScope(const CompoundStmt &S, 1954 bool GetLast = false, 1955 AggValueSlot AVS = 1956 AggValueSlot::ignored()); 1957 1958 /// EmitLabel - Emit the block for the given label. It is legal to call this 1959 /// function even if there is no current insertion point. 1960 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 1961 1962 void EmitLabelStmt(const LabelStmt &S); 1963 void EmitAttributedStmt(const AttributedStmt &S); 1964 void EmitGotoStmt(const GotoStmt &S); 1965 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 1966 void EmitIfStmt(const IfStmt &S); 1967 1968 void EmitCondBrHints(llvm::LLVMContext &Context, llvm::BranchInst *CondBr, 1969 ArrayRef<const Attr *> Attrs); 1970 void EmitWhileStmt(const WhileStmt &S, 1971 ArrayRef<const Attr *> Attrs = None); 1972 void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None); 1973 void EmitForStmt(const ForStmt &S, 1974 ArrayRef<const Attr *> Attrs = None); 1975 void EmitReturnStmt(const ReturnStmt &S); 1976 void EmitDeclStmt(const DeclStmt &S); 1977 void EmitBreakStmt(const BreakStmt &S); 1978 void EmitContinueStmt(const ContinueStmt &S); 1979 void EmitSwitchStmt(const SwitchStmt &S); 1980 void EmitDefaultStmt(const DefaultStmt &S); 1981 void EmitCaseStmt(const CaseStmt &S); 1982 void EmitCaseStmtRange(const CaseStmt &S); 1983 void EmitAsmStmt(const AsmStmt &S); 1984 1985 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 1986 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 1987 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 1988 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 1989 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 1990 1991 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 1992 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 1993 1994 void EmitCXXTryStmt(const CXXTryStmt &S); 1995 void EmitSEHTryStmt(const SEHTryStmt &S); 1996 void EmitSEHLeaveStmt(const SEHLeaveStmt &S); 1997 void EnterSEHTryStmt(const SEHTryStmt &S, SEHFinallyInfo &FI); 1998 void ExitSEHTryStmt(const SEHTryStmt &S, SEHFinallyInfo &FI); 1999 2000 llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF, 2001 const SEHExceptStmt &Except); 2002 2003 void EmitSEHExceptionCodeSave(); 2004 llvm::Value *EmitSEHExceptionCode(); 2005 llvm::Value *EmitSEHExceptionInfo(); 2006 llvm::Value *EmitSEHAbnormalTermination(); 2007 2008 void EmitCXXForRangeStmt(const CXXForRangeStmt &S, 2009 ArrayRef<const Attr *> Attrs = None); 2010 2011 LValue InitCapturedStruct(const CapturedStmt &S); 2012 llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K); 2013 void GenerateCapturedStmtFunctionProlog(const CapturedStmt &S); 2014 llvm::Function *GenerateCapturedStmtFunctionEpilog(const CapturedStmt &S); 2015 llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S); 2016 llvm::Value *GenerateCapturedStmtArgument(const CapturedStmt &S); 2017 void EmitOMPAggregateAssign(LValue OriginalAddr, llvm::Value *PrivateAddr, 2018 const Expr *AssignExpr, QualType Type, 2019 const VarDecl *VDInit); 2020 void EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 2021 OMPPrivateScope &PrivateScope); 2022 void EmitOMPPrivateClause(const OMPExecutableDirective &D, 2023 OMPPrivateScope &PrivateScope); 2024 2025 void EmitOMPParallelDirective(const OMPParallelDirective &S); 2026 void EmitOMPSimdDirective(const OMPSimdDirective &S); 2027 void EmitOMPForDirective(const OMPForDirective &S); 2028 void EmitOMPForSimdDirective(const OMPForSimdDirective &S); 2029 void EmitOMPSectionsDirective(const OMPSectionsDirective &S); 2030 void EmitOMPSectionDirective(const OMPSectionDirective &S); 2031 void EmitOMPSingleDirective(const OMPSingleDirective &S); 2032 void EmitOMPMasterDirective(const OMPMasterDirective &S); 2033 void EmitOMPCriticalDirective(const OMPCriticalDirective &S); 2034 void EmitOMPParallelForDirective(const OMPParallelForDirective &S); 2035 void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S); 2036 void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S); 2037 void EmitOMPTaskDirective(const OMPTaskDirective &S); 2038 void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S); 2039 void EmitOMPBarrierDirective(const OMPBarrierDirective &S); 2040 void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S); 2041 void EmitOMPFlushDirective(const OMPFlushDirective &S); 2042 void EmitOMPOrderedDirective(const OMPOrderedDirective &S); 2043 void EmitOMPAtomicDirective(const OMPAtomicDirective &S); 2044 void EmitOMPTargetDirective(const OMPTargetDirective &S); 2045 void EmitOMPTeamsDirective(const OMPTeamsDirective &S); 2046 2047 private: 2048 2049 /// Helpers for the OpenMP loop directives. 2050 void EmitOMPLoopBody(const OMPLoopDirective &Directive, 2051 bool SeparateIter = false); 2052 void EmitOMPInnerLoop(const Stmt &S, bool RequiresCleanup, 2053 const Expr *LoopCond, const Expr *IncExpr, 2054 const std::function<void()> &BodyGen); 2055 void EmitOMPSimdFinal(const OMPLoopDirective &S); 2056 void EmitOMPWorksharingLoop(const OMPLoopDirective &S); 2057 void EmitOMPForOuterLoop(OpenMPScheduleClauseKind ScheduleKind, 2058 const OMPLoopDirective &S, 2059 OMPPrivateScope &LoopScope, llvm::Value *LB, 2060 llvm::Value *UB, llvm::Value *ST, llvm::Value *IL, 2061 llvm::Value *Chunk); 2062 2063 public: 2064 2065 //===--------------------------------------------------------------------===// 2066 // LValue Expression Emission 2067 //===--------------------------------------------------------------------===// 2068 2069 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 2070 RValue GetUndefRValue(QualType Ty); 2071 2072 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 2073 /// and issue an ErrorUnsupported style diagnostic (using the 2074 /// provided Name). 2075 RValue EmitUnsupportedRValue(const Expr *E, 2076 const char *Name); 2077 2078 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 2079 /// an ErrorUnsupported style diagnostic (using the provided Name). 2080 LValue EmitUnsupportedLValue(const Expr *E, 2081 const char *Name); 2082 2083 /// EmitLValue - Emit code to compute a designator that specifies the location 2084 /// of the expression. 2085 /// 2086 /// This can return one of two things: a simple address or a bitfield 2087 /// reference. In either case, the LLVM Value* in the LValue structure is 2088 /// guaranteed to be an LLVM pointer type. 2089 /// 2090 /// If this returns a bitfield reference, nothing about the pointee type of 2091 /// the LLVM value is known: For example, it may not be a pointer to an 2092 /// integer. 2093 /// 2094 /// If this returns a normal address, and if the lvalue's C type is fixed 2095 /// size, this method guarantees that the returned pointer type will point to 2096 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 2097 /// variable length type, this is not possible. 2098 /// 2099 LValue EmitLValue(const Expr *E); 2100 2101 /// \brief Same as EmitLValue but additionally we generate checking code to 2102 /// guard against undefined behavior. This is only suitable when we know 2103 /// that the address will be used to access the object. 2104 LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK); 2105 2106 RValue convertTempToRValue(llvm::Value *addr, QualType type, 2107 SourceLocation Loc); 2108 2109 void EmitAtomicInit(Expr *E, LValue lvalue); 2110 2111 bool LValueIsSuitableForInlineAtomic(LValue Src); 2112 bool typeIsSuitableForInlineAtomic(QualType Ty, bool IsVolatile) const; 2113 2114 RValue EmitAtomicLoad(LValue LV, SourceLocation SL, 2115 AggValueSlot Slot = AggValueSlot::ignored()); 2116 2117 RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc, 2118 llvm::AtomicOrdering AO, bool IsVolatile = false, 2119 AggValueSlot slot = AggValueSlot::ignored()); 2120 2121 void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit); 2122 2123 void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO, 2124 bool IsVolatile, bool isInit); 2125 2126 std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange( 2127 LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, 2128 llvm::AtomicOrdering Success = llvm::SequentiallyConsistent, 2129 llvm::AtomicOrdering Failure = llvm::SequentiallyConsistent, 2130 bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored()); 2131 2132 void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO, 2133 const std::function<RValue(RValue)> &UpdateOp, 2134 bool IsVolatile); 2135 2136 /// EmitToMemory - Change a scalar value from its value 2137 /// representation to its in-memory representation. 2138 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 2139 2140 /// EmitFromMemory - Change a scalar value from its memory 2141 /// representation to its value representation. 2142 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 2143 2144 /// EmitLoadOfScalar - Load a scalar value from an address, taking 2145 /// care to appropriately convert from the memory representation to 2146 /// the LLVM value representation. 2147 llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile, 2148 unsigned Alignment, QualType Ty, 2149 SourceLocation Loc, 2150 llvm::MDNode *TBAAInfo = nullptr, 2151 QualType TBAABaseTy = QualType(), 2152 uint64_t TBAAOffset = 0); 2153 2154 /// EmitLoadOfScalar - Load a scalar value from an address, taking 2155 /// care to appropriately convert from the memory representation to 2156 /// the LLVM value representation. The l-value must be a simple 2157 /// l-value. 2158 llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc); 2159 2160 /// EmitStoreOfScalar - Store a scalar value to an address, taking 2161 /// care to appropriately convert from the memory representation to 2162 /// the LLVM value representation. 2163 void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr, 2164 bool Volatile, unsigned Alignment, QualType Ty, 2165 llvm::MDNode *TBAAInfo = nullptr, bool isInit = false, 2166 QualType TBAABaseTy = QualType(), 2167 uint64_t TBAAOffset = 0); 2168 2169 /// EmitStoreOfScalar - Store a scalar value to an address, taking 2170 /// care to appropriately convert from the memory representation to 2171 /// the LLVM value representation. The l-value must be a simple 2172 /// l-value. The isInit flag indicates whether this is an initialization. 2173 /// If so, atomic qualifiers are ignored and the store is always non-atomic. 2174 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); 2175 2176 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 2177 /// this method emits the address of the lvalue, then loads the result as an 2178 /// rvalue, returning the rvalue. 2179 RValue EmitLoadOfLValue(LValue V, SourceLocation Loc); 2180 RValue EmitLoadOfExtVectorElementLValue(LValue V); 2181 RValue EmitLoadOfBitfieldLValue(LValue LV); 2182 RValue EmitLoadOfGlobalRegLValue(LValue LV); 2183 2184 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 2185 /// lvalue, where both are guaranteed to the have the same type, and that type 2186 /// is 'Ty'. 2187 void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false); 2188 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 2189 void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst); 2190 2191 /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints 2192 /// as EmitStoreThroughLValue. 2193 /// 2194 /// \param Result [out] - If non-null, this will be set to a Value* for the 2195 /// bit-field contents after the store, appropriate for use as the result of 2196 /// an assignment to the bit-field. 2197 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 2198 llvm::Value **Result=nullptr); 2199 2200 /// Emit an l-value for an assignment (simple or compound) of complex type. 2201 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 2202 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 2203 LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 2204 llvm::Value *&Result); 2205 2206 // Note: only available for agg return types 2207 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 2208 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 2209 // Note: only available for agg return types 2210 LValue EmitCallExprLValue(const CallExpr *E); 2211 // Note: only available for agg return types 2212 LValue EmitVAArgExprLValue(const VAArgExpr *E); 2213 LValue EmitDeclRefLValue(const DeclRefExpr *E); 2214 LValue EmitReadRegister(const VarDecl *VD); 2215 LValue EmitStringLiteralLValue(const StringLiteral *E); 2216 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 2217 LValue EmitPredefinedLValue(const PredefinedExpr *E); 2218 LValue EmitUnaryOpLValue(const UnaryOperator *E); 2219 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 2220 bool Accessed = false); 2221 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 2222 LValue EmitMemberExpr(const MemberExpr *E); 2223 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 2224 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 2225 LValue EmitInitListLValue(const InitListExpr *E); 2226 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 2227 LValue EmitCastLValue(const CastExpr *E); 2228 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 2229 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 2230 2231 llvm::Value *EmitExtVectorElementLValue(LValue V); 2232 2233 RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc); 2234 2235 class ConstantEmission { 2236 llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; 2237 ConstantEmission(llvm::Constant *C, bool isReference) 2238 : ValueAndIsReference(C, isReference) {} 2239 public: 2240 ConstantEmission() {} 2241 static ConstantEmission forReference(llvm::Constant *C) { 2242 return ConstantEmission(C, true); 2243 } 2244 static ConstantEmission forValue(llvm::Constant *C) { 2245 return ConstantEmission(C, false); 2246 } 2247 2248 explicit operator bool() const { 2249 return ValueAndIsReference.getOpaqueValue() != nullptr; 2250 } 2251 2252 bool isReference() const { return ValueAndIsReference.getInt(); } 2253 LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { 2254 assert(isReference()); 2255 return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), 2256 refExpr->getType()); 2257 } 2258 2259 llvm::Constant *getValue() const { 2260 assert(!isReference()); 2261 return ValueAndIsReference.getPointer(); 2262 } 2263 }; 2264 2265 ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); 2266 2267 RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, 2268 AggValueSlot slot = AggValueSlot::ignored()); 2269 LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); 2270 2271 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 2272 const ObjCIvarDecl *Ivar); 2273 LValue EmitLValueForField(LValue Base, const FieldDecl* Field); 2274 LValue EmitLValueForLambdaField(const FieldDecl *Field); 2275 2276 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 2277 /// if the Field is a reference, this will return the address of the reference 2278 /// and not the address of the value stored in the reference. 2279 LValue EmitLValueForFieldInitialization(LValue Base, 2280 const FieldDecl* Field); 2281 2282 LValue EmitLValueForIvar(QualType ObjectTy, 2283 llvm::Value* Base, const ObjCIvarDecl *Ivar, 2284 unsigned CVRQualifiers); 2285 2286 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 2287 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 2288 LValue EmitLambdaLValue(const LambdaExpr *E); 2289 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 2290 LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E); 2291 2292 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 2293 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 2294 LValue EmitStmtExprLValue(const StmtExpr *E); 2295 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 2296 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 2297 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init); 2298 2299 //===--------------------------------------------------------------------===// 2300 // Scalar Expression Emission 2301 //===--------------------------------------------------------------------===// 2302 2303 /// EmitCall - Generate a call of the given function, expecting the given 2304 /// result type, and using the given argument list which specifies both the 2305 /// LLVM arguments and the types they were derived from. 2306 /// 2307 /// \param TargetDecl - If given, the decl of the function in a direct call; 2308 /// used to set attributes on the call (noreturn, etc.). 2309 RValue EmitCall(const CGFunctionInfo &FnInfo, 2310 llvm::Value *Callee, 2311 ReturnValueSlot ReturnValue, 2312 const CallArgList &Args, 2313 const Decl *TargetDecl = nullptr, 2314 llvm::Instruction **callOrInvoke = nullptr); 2315 2316 RValue EmitCall(QualType FnType, llvm::Value *Callee, const CallExpr *E, 2317 ReturnValueSlot ReturnValue, 2318 const Decl *TargetDecl = nullptr, 2319 llvm::Value *Chain = nullptr); 2320 RValue EmitCallExpr(const CallExpr *E, 2321 ReturnValueSlot ReturnValue = ReturnValueSlot()); 2322 2323 llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, 2324 const Twine &name = ""); 2325 llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, 2326 ArrayRef<llvm::Value*> args, 2327 const Twine &name = ""); 2328 llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, 2329 const Twine &name = ""); 2330 llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, 2331 ArrayRef<llvm::Value*> args, 2332 const Twine &name = ""); 2333 2334 llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, 2335 ArrayRef<llvm::Value *> Args, 2336 const Twine &Name = ""); 2337 llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, 2338 const Twine &Name = ""); 2339 llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, 2340 ArrayRef<llvm::Value*> args, 2341 const Twine &name = ""); 2342 llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, 2343 const Twine &name = ""); 2344 void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee, 2345 ArrayRef<llvm::Value*> args); 2346 2347 llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 2348 NestedNameSpecifier *Qual, 2349 llvm::Type *Ty); 2350 2351 llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 2352 CXXDtorType Type, 2353 const CXXRecordDecl *RD); 2354 2355 RValue 2356 EmitCXXMemberOrOperatorCall(const CXXMethodDecl *MD, llvm::Value *Callee, 2357 ReturnValueSlot ReturnValue, llvm::Value *This, 2358 llvm::Value *ImplicitParam, 2359 QualType ImplicitParamTy, const CallExpr *E); 2360 RValue EmitCXXStructorCall(const CXXMethodDecl *MD, llvm::Value *Callee, 2361 ReturnValueSlot ReturnValue, llvm::Value *This, 2362 llvm::Value *ImplicitParam, 2363 QualType ImplicitParamTy, const CallExpr *E, 2364 StructorType Type); 2365 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 2366 ReturnValueSlot ReturnValue); 2367 RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE, 2368 const CXXMethodDecl *MD, 2369 ReturnValueSlot ReturnValue, 2370 bool HasQualifier, 2371 NestedNameSpecifier *Qualifier, 2372 bool IsArrow, const Expr *Base); 2373 // Compute the object pointer. 2374 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 2375 ReturnValueSlot ReturnValue); 2376 2377 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 2378 const CXXMethodDecl *MD, 2379 ReturnValueSlot ReturnValue); 2380 2381 RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 2382 ReturnValueSlot ReturnValue); 2383 2384 2385 RValue EmitBuiltinExpr(const FunctionDecl *FD, 2386 unsigned BuiltinID, const CallExpr *E, 2387 ReturnValueSlot ReturnValue); 2388 2389 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 2390 2391 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 2392 /// is unhandled by the current target. 2393 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2394 2395 llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty, 2396 const llvm::CmpInst::Predicate Fp, 2397 const llvm::CmpInst::Predicate Ip, 2398 const llvm::Twine &Name = ""); 2399 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2400 2401 llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID, 2402 unsigned LLVMIntrinsic, 2403 unsigned AltLLVMIntrinsic, 2404 const char *NameHint, 2405 unsigned Modifier, 2406 const CallExpr *E, 2407 SmallVectorImpl<llvm::Value *> &Ops, 2408 llvm::Value *Align = nullptr); 2409 llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID, 2410 unsigned Modifier, llvm::Type *ArgTy, 2411 const CallExpr *E); 2412 llvm::Value *EmitNeonCall(llvm::Function *F, 2413 SmallVectorImpl<llvm::Value*> &O, 2414 const char *name, 2415 unsigned shift = 0, bool rightshift = false); 2416 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 2417 llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, 2418 bool negateForRightShift); 2419 llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt, 2420 llvm::Type *Ty, bool usgn, const char *name); 2421 // Helper functions for EmitAArch64BuiltinExpr. 2422 llvm::Value *vectorWrapScalar8(llvm::Value *Op); 2423 llvm::Value *vectorWrapScalar16(llvm::Value *Op); 2424 llvm::Value *emitVectorWrappedScalar8Intrinsic( 2425 unsigned Int, SmallVectorImpl<llvm::Value *> &Ops, const char *Name); 2426 llvm::Value *emitVectorWrappedScalar16Intrinsic( 2427 unsigned Int, SmallVectorImpl<llvm::Value *> &Ops, const char *Name); 2428 llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2429 llvm::Value *EmitNeon64Call(llvm::Function *F, 2430 llvm::SmallVectorImpl<llvm::Value *> &O, 2431 const char *name); 2432 2433 llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); 2434 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2435 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2436 llvm::Value *EmitR600BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2437 llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2438 2439 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 2440 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 2441 llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); 2442 llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); 2443 llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); 2444 llvm::Value *EmitObjCCollectionLiteral(const Expr *E, 2445 const ObjCMethodDecl *MethodWithObjects); 2446 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 2447 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 2448 ReturnValueSlot Return = ReturnValueSlot()); 2449 2450 /// Retrieves the default cleanup kind for an ARC cleanup. 2451 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. 2452 CleanupKind getARCCleanupKind() { 2453 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 2454 ? NormalAndEHCleanup : NormalCleanup; 2455 } 2456 2457 // ARC primitives. 2458 void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr); 2459 void EmitARCDestroyWeak(llvm::Value *addr); 2460 llvm::Value *EmitARCLoadWeak(llvm::Value *addr); 2461 llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr); 2462 llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr, 2463 bool ignored); 2464 void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src); 2465 void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src); 2466 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 2467 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 2468 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 2469 bool resultIgnored); 2470 llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value, 2471 bool resultIgnored); 2472 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 2473 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 2474 llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); 2475 void EmitARCDestroyStrong(llvm::Value *addr, ARCPreciseLifetime_t precise); 2476 void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 2477 llvm::Value *EmitARCAutorelease(llvm::Value *value); 2478 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 2479 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 2480 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 2481 2482 std::pair<LValue,llvm::Value*> 2483 EmitARCStoreAutoreleasing(const BinaryOperator *e); 2484 std::pair<LValue,llvm::Value*> 2485 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 2486 2487 llvm::Value *EmitObjCThrowOperand(const Expr *expr); 2488 2489 llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr); 2490 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 2491 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 2492 2493 llvm::Value *EmitARCExtendBlockObject(const Expr *expr); 2494 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 2495 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 2496 2497 void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values); 2498 2499 static Destroyer destroyARCStrongImprecise; 2500 static Destroyer destroyARCStrongPrecise; 2501 static Destroyer destroyARCWeak; 2502 2503 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 2504 llvm::Value *EmitObjCAutoreleasePoolPush(); 2505 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 2506 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 2507 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 2508 2509 /// \brief Emits a reference binding to the passed in expression. 2510 RValue EmitReferenceBindingToExpr(const Expr *E); 2511 2512 //===--------------------------------------------------------------------===// 2513 // Expression Emission 2514 //===--------------------------------------------------------------------===// 2515 2516 // Expressions are broken into three classes: scalar, complex, aggregate. 2517 2518 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 2519 /// scalar type, returning the result. 2520 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 2521 2522 /// EmitScalarConversion - Emit a conversion from the specified type to the 2523 /// specified destination type, both of which are LLVM scalar types. 2524 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 2525 QualType DstTy); 2526 2527 /// EmitComplexToScalarConversion - Emit a conversion from the specified 2528 /// complex type to the specified destination type, where the destination type 2529 /// is an LLVM scalar type. 2530 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 2531 QualType DstTy); 2532 2533 2534 /// EmitAggExpr - Emit the computation of the specified expression 2535 /// of aggregate type. The result is computed into the given slot, 2536 /// which may be null to indicate that the value is not needed. 2537 void EmitAggExpr(const Expr *E, AggValueSlot AS); 2538 2539 /// EmitAggExprToLValue - Emit the computation of the specified expression of 2540 /// aggregate type into a temporary LValue. 2541 LValue EmitAggExprToLValue(const Expr *E); 2542 2543 /// EmitGCMemmoveCollectable - Emit special API for structs with object 2544 /// pointers. 2545 void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr, 2546 QualType Ty); 2547 2548 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 2549 /// make sure it survives garbage collection until this point. 2550 void EmitExtendGCLifetime(llvm::Value *object); 2551 2552 /// EmitComplexExpr - Emit the computation of the specified expression of 2553 /// complex type, returning the result. 2554 ComplexPairTy EmitComplexExpr(const Expr *E, 2555 bool IgnoreReal = false, 2556 bool IgnoreImag = false); 2557 2558 /// EmitComplexExprIntoLValue - Emit the given expression of complex 2559 /// type and place its result into the specified l-value. 2560 void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit); 2561 2562 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 2563 void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit); 2564 2565 /// EmitLoadOfComplex - Load a complex number from the specified l-value. 2566 ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc); 2567 2568 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 2569 /// global variable that has already been created for it. If the initializer 2570 /// has a different type than GV does, this may free GV and return a different 2571 /// one. Otherwise it just returns GV. 2572 llvm::GlobalVariable * 2573 AddInitializerToStaticVarDecl(const VarDecl &D, 2574 llvm::GlobalVariable *GV); 2575 2576 2577 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 2578 /// variable with global storage. 2579 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr, 2580 bool PerformInit); 2581 2582 llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::Constant *Dtor, 2583 llvm::Constant *Addr); 2584 2585 /// Call atexit() with a function that passes the given argument to 2586 /// the given function. 2587 void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn, 2588 llvm::Constant *addr); 2589 2590 /// Emit code in this function to perform a guarded variable 2591 /// initialization. Guarded initializations are used when it's not 2592 /// possible to prove that an initialization will be done exactly 2593 /// once, e.g. with a static local variable or a static data member 2594 /// of a class template. 2595 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, 2596 bool PerformInit); 2597 2598 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 2599 /// variables. 2600 void GenerateCXXGlobalInitFunc(llvm::Function *Fn, 2601 ArrayRef<llvm::Function *> CXXThreadLocals, 2602 llvm::GlobalVariable *Guard = nullptr); 2603 2604 /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global 2605 /// variables. 2606 void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn, 2607 const std::vector<std::pair<llvm::WeakVH, 2608 llvm::Constant*> > &DtorsAndObjects); 2609 2610 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 2611 const VarDecl *D, 2612 llvm::GlobalVariable *Addr, 2613 bool PerformInit); 2614 2615 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 2616 2617 void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src, 2618 const Expr *Exp); 2619 2620 void enterFullExpression(const ExprWithCleanups *E) { 2621 if (E->getNumObjects() == 0) return; 2622 enterNonTrivialFullExpression(E); 2623 } 2624 void enterNonTrivialFullExpression(const ExprWithCleanups *E); 2625 2626 void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true); 2627 2628 void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest); 2629 2630 RValue EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest = nullptr); 2631 2632 //===--------------------------------------------------------------------===// 2633 // Annotations Emission 2634 //===--------------------------------------------------------------------===// 2635 2636 /// Emit an annotation call (intrinsic or builtin). 2637 llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn, 2638 llvm::Value *AnnotatedVal, 2639 StringRef AnnotationStr, 2640 SourceLocation Location); 2641 2642 /// Emit local annotations for the local variable V, declared by D. 2643 void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); 2644 2645 /// Emit field annotations for the given field & value. Returns the 2646 /// annotation result. 2647 llvm::Value *EmitFieldAnnotations(const FieldDecl *D, llvm::Value *V); 2648 2649 //===--------------------------------------------------------------------===// 2650 // Internal Helpers 2651 //===--------------------------------------------------------------------===// 2652 2653 /// ContainsLabel - Return true if the statement contains a label in it. If 2654 /// this statement is not executed normally, it not containing a label means 2655 /// that we can just remove the code. 2656 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 2657 2658 /// containsBreak - Return true if the statement contains a break out of it. 2659 /// If the statement (recursively) contains a switch or loop with a break 2660 /// inside of it, this is fine. 2661 static bool containsBreak(const Stmt *S); 2662 2663 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 2664 /// to a constant, or if it does but contains a label, return false. If it 2665 /// constant folds return true and set the boolean result in Result. 2666 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result); 2667 2668 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 2669 /// to a constant, or if it does but contains a label, return false. If it 2670 /// constant folds return true and set the folded value. 2671 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result); 2672 2673 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 2674 /// if statement) to the specified blocks. Based on the condition, this might 2675 /// try to simplify the codegen of the conditional based on the branch. 2676 /// TrueCount should be the number of times we expect the condition to 2677 /// evaluate to true based on PGO data. 2678 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 2679 llvm::BasicBlock *FalseBlock, uint64_t TrueCount); 2680 2681 /// \brief Emit a description of a type in a format suitable for passing to 2682 /// a runtime sanitizer handler. 2683 llvm::Constant *EmitCheckTypeDescriptor(QualType T); 2684 2685 /// \brief Convert a value into a format suitable for passing to a runtime 2686 /// sanitizer handler. 2687 llvm::Value *EmitCheckValue(llvm::Value *V); 2688 2689 /// \brief Emit a description of a source location in a format suitable for 2690 /// passing to a runtime sanitizer handler. 2691 llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc); 2692 2693 /// \brief Create a basic block that will call a handler function in a 2694 /// sanitizer runtime with the provided arguments, and create a conditional 2695 /// branch to it. 2696 void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerKind>> Checked, 2697 StringRef CheckName, ArrayRef<llvm::Constant *> StaticArgs, 2698 ArrayRef<llvm::Value *> DynamicArgs); 2699 2700 /// \brief Create a basic block that will call the trap intrinsic, and emit a 2701 /// conditional branch to it, for the -ftrapv checks. 2702 void EmitTrapCheck(llvm::Value *Checked); 2703 2704 /// EmitCallArg - Emit a single call argument. 2705 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 2706 2707 /// EmitDelegateCallArg - We are performing a delegate call; that 2708 /// is, the current function is delegating to another one. Produce 2709 /// a r-value suitable for passing the given parameter. 2710 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param, 2711 SourceLocation loc); 2712 2713 /// SetFPAccuracy - Set the minimum required accuracy of the given floating 2714 /// point operation, expressed as the maximum relative error in ulp. 2715 void SetFPAccuracy(llvm::Value *Val, float Accuracy); 2716 2717 private: 2718 llvm::MDNode *getRangeForLoadFromType(QualType Ty); 2719 void EmitReturnOfRValue(RValue RV, QualType Ty); 2720 2721 void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New); 2722 2723 llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4> 2724 DeferredReplacements; 2725 2726 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 2727 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 2728 /// 2729 /// \param AI - The first function argument of the expansion. 2730 void ExpandTypeFromArgs(QualType Ty, LValue Dst, 2731 SmallVectorImpl<llvm::Argument *>::iterator &AI); 2732 2733 /// ExpandTypeToArgs - Expand an RValue \arg RV, with the LLVM type for \arg 2734 /// Ty, into individual arguments on the provided vector \arg IRCallArgs, 2735 /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand. 2736 void ExpandTypeToArgs(QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy, 2737 SmallVectorImpl<llvm::Value *> &IRCallArgs, 2738 unsigned &IRCallArgPos); 2739 2740 llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info, 2741 const Expr *InputExpr, std::string &ConstraintStr); 2742 2743 llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 2744 LValue InputValue, QualType InputType, 2745 std::string &ConstraintStr, 2746 SourceLocation Loc); 2747 2748 public: 2749 /// EmitCallArgs - Emit call arguments for a function. 2750 template <typename T> 2751 void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo, 2752 CallExpr::const_arg_iterator ArgBeg, 2753 CallExpr::const_arg_iterator ArgEnd, 2754 const FunctionDecl *CalleeDecl = nullptr, 2755 unsigned ParamsToSkip = 0) { 2756 SmallVector<QualType, 16> ArgTypes; 2757 CallExpr::const_arg_iterator Arg = ArgBeg; 2758 2759 assert((ParamsToSkip == 0 || CallArgTypeInfo) && 2760 "Can't skip parameters if type info is not provided"); 2761 if (CallArgTypeInfo) { 2762 // First, use the argument types that the type info knows about 2763 for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip, 2764 E = CallArgTypeInfo->param_type_end(); 2765 I != E; ++I, ++Arg) { 2766 assert(Arg != ArgEnd && "Running over edge of argument list!"); 2767 assert( 2768 ((*I)->isVariablyModifiedType() || 2769 getContext() 2770 .getCanonicalType((*I).getNonReferenceType()) 2771 .getTypePtr() == 2772 getContext().getCanonicalType(Arg->getType()).getTypePtr()) && 2773 "type mismatch in call argument!"); 2774 ArgTypes.push_back(*I); 2775 } 2776 } 2777 2778 // Either we've emitted all the call args, or we have a call to variadic 2779 // function. 2780 assert( 2781 (Arg == ArgEnd || !CallArgTypeInfo || CallArgTypeInfo->isVariadic()) && 2782 "Extra arguments in non-variadic function!"); 2783 2784 // If we still have any arguments, emit them using the type of the argument. 2785 for (; Arg != ArgEnd; ++Arg) 2786 ArgTypes.push_back(getVarArgType(*Arg)); 2787 2788 EmitCallArgs(Args, ArgTypes, ArgBeg, ArgEnd, CalleeDecl, ParamsToSkip); 2789 } 2790 2791 void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes, 2792 CallExpr::const_arg_iterator ArgBeg, 2793 CallExpr::const_arg_iterator ArgEnd, 2794 const FunctionDecl *CalleeDecl = nullptr, 2795 unsigned ParamsToSkip = 0); 2796 2797 private: 2798 QualType getVarArgType(const Expr *Arg); 2799 2800 const TargetCodeGenInfo &getTargetHooks() const { 2801 return CGM.getTargetCodeGenInfo(); 2802 } 2803 2804 void EmitDeclMetadata(); 2805 2806 CodeGenModule::ByrefHelpers * 2807 buildByrefHelpers(llvm::StructType &byrefType, 2808 const AutoVarEmission &emission); 2809 2810 void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); 2811 2812 /// GetPointeeAlignment - Given an expression with a pointer type, emit the 2813 /// value and compute our best estimate of the alignment of the pointee. 2814 std::pair<llvm::Value*, unsigned> EmitPointerWithAlignment(const Expr *Addr); 2815 2816 llvm::Value *GetValueForARMHint(unsigned BuiltinID); 2817 }; 2818 2819 /// Helper class with most of the code for saving a value for a 2820 /// conditional expression cleanup. 2821 struct DominatingLLVMValue { 2822 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 2823 2824 /// Answer whether the given value needs extra work to be saved. 2825 static bool needsSaving(llvm::Value *value) { 2826 // If it's not an instruction, we don't need to save. 2827 if (!isa<llvm::Instruction>(value)) return false; 2828 2829 // If it's an instruction in the entry block, we don't need to save. 2830 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 2831 return (block != &block->getParent()->getEntryBlock()); 2832 } 2833 2834 /// Try to save the given value. 2835 static saved_type save(CodeGenFunction &CGF, llvm::Value *value) { 2836 if (!needsSaving(value)) return saved_type(value, false); 2837 2838 // Otherwise we need an alloca. 2839 llvm::Value *alloca = 2840 CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save"); 2841 CGF.Builder.CreateStore(value, alloca); 2842 2843 return saved_type(alloca, true); 2844 } 2845 2846 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) { 2847 if (!value.getInt()) return value.getPointer(); 2848 return CGF.Builder.CreateLoad(value.getPointer()); 2849 } 2850 }; 2851 2852 /// A partial specialization of DominatingValue for llvm::Values that 2853 /// might be llvm::Instructions. 2854 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 2855 typedef T *type; 2856 static type restore(CodeGenFunction &CGF, saved_type value) { 2857 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 2858 } 2859 }; 2860 2861 /// A specialization of DominatingValue for RValue. 2862 template <> struct DominatingValue<RValue> { 2863 typedef RValue type; 2864 class saved_type { 2865 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 2866 AggregateAddress, ComplexAddress }; 2867 2868 llvm::Value *Value; 2869 Kind K; 2870 saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {} 2871 2872 public: 2873 static bool needsSaving(RValue value); 2874 static saved_type save(CodeGenFunction &CGF, RValue value); 2875 RValue restore(CodeGenFunction &CGF); 2876 2877 // implementations in CGExprCXX.cpp 2878 }; 2879 2880 static bool needsSaving(type value) { 2881 return saved_type::needsSaving(value); 2882 } 2883 static saved_type save(CodeGenFunction &CGF, type value) { 2884 return saved_type::save(CGF, value); 2885 } 2886 static type restore(CodeGenFunction &CGF, saved_type value) { 2887 return value.restore(CGF); 2888 } 2889 }; 2890 2891 } // end namespace CodeGen 2892 } // end namespace clang 2893 2894 #endif 2895