1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the internal per-function state used for llvm translation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef CLANG_CODEGEN_CODEGENFUNCTION_H
15 #define CLANG_CODEGEN_CODEGENFUNCTION_H
16 
17 #include "CGBuilder.h"
18 #include "CGDebugInfo.h"
19 #include "CGValue.h"
20 #include "CodeGenModule.h"
21 #include "CodeGenPGO.h"
22 #include "EHScopeStack.h"
23 #include "clang/AST/CharUnits.h"
24 #include "clang/AST/ExprCXX.h"
25 #include "clang/AST/ExprObjC.h"
26 #include "clang/AST/Type.h"
27 #include "clang/Basic/ABI.h"
28 #include "clang/Basic/CapturedStmt.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/Frontend/CodeGenOptions.h"
31 #include "llvm/ADT/ArrayRef.h"
32 #include "llvm/ADT/DenseMap.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/IR/ValueHandle.h"
35 #include "llvm/Support/Debug.h"
36 
37 namespace llvm {
38   class BasicBlock;
39   class LLVMContext;
40   class MDNode;
41   class Module;
42   class SwitchInst;
43   class Twine;
44   class Value;
45   class CallSite;
46 }
47 
48 namespace clang {
49   class ASTContext;
50   class BlockDecl;
51   class CXXDestructorDecl;
52   class CXXForRangeStmt;
53   class CXXTryStmt;
54   class Decl;
55   class LabelDecl;
56   class EnumConstantDecl;
57   class FunctionDecl;
58   class FunctionProtoType;
59   class LabelStmt;
60   class ObjCContainerDecl;
61   class ObjCInterfaceDecl;
62   class ObjCIvarDecl;
63   class ObjCMethodDecl;
64   class ObjCImplementationDecl;
65   class ObjCPropertyImplDecl;
66   class TargetInfo;
67   class TargetCodeGenInfo;
68   class VarDecl;
69   class ObjCForCollectionStmt;
70   class ObjCAtTryStmt;
71   class ObjCAtThrowStmt;
72   class ObjCAtSynchronizedStmt;
73   class ObjCAutoreleasePoolStmt;
74 
75 namespace CodeGen {
76   class CodeGenTypes;
77   class CGFunctionInfo;
78   class CGRecordLayout;
79   class CGBlockInfo;
80   class CGCXXABI;
81   class BlockFlags;
82   class BlockFieldFlags;
83 
84 /// The kind of evaluation to perform on values of a particular
85 /// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
86 /// CGExprAgg?
87 ///
88 /// TODO: should vectors maybe be split out into their own thing?
89 enum TypeEvaluationKind {
90   TEK_Scalar,
91   TEK_Complex,
92   TEK_Aggregate
93 };
94 
95 /// CodeGenFunction - This class organizes the per-function state that is used
96 /// while generating LLVM code.
97 class CodeGenFunction : public CodeGenTypeCache {
98   CodeGenFunction(const CodeGenFunction &) LLVM_DELETED_FUNCTION;
99   void operator=(const CodeGenFunction &) LLVM_DELETED_FUNCTION;
100 
101   friend class CGCXXABI;
102 public:
103   /// A jump destination is an abstract label, branching to which may
104   /// require a jump out through normal cleanups.
105   struct JumpDest {
106     JumpDest() : Block(0), ScopeDepth(), Index(0) {}
107     JumpDest(llvm::BasicBlock *Block,
108              EHScopeStack::stable_iterator Depth,
109              unsigned Index)
110       : Block(Block), ScopeDepth(Depth), Index(Index) {}
111 
112     bool isValid() const { return Block != 0; }
113     llvm::BasicBlock *getBlock() const { return Block; }
114     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
115     unsigned getDestIndex() const { return Index; }
116 
117     // This should be used cautiously.
118     void setScopeDepth(EHScopeStack::stable_iterator depth) {
119       ScopeDepth = depth;
120     }
121 
122   private:
123     llvm::BasicBlock *Block;
124     EHScopeStack::stable_iterator ScopeDepth;
125     unsigned Index;
126   };
127 
128   CodeGenModule &CGM;  // Per-module state.
129   const TargetInfo &Target;
130 
131   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
132   CGBuilderTy Builder;
133 
134   /// CurFuncDecl - Holds the Decl for the current outermost
135   /// non-closure context.
136   const Decl *CurFuncDecl;
137   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
138   const Decl *CurCodeDecl;
139   const CGFunctionInfo *CurFnInfo;
140   QualType FnRetTy;
141   llvm::Function *CurFn;
142 
143   /// CurGD - The GlobalDecl for the current function being compiled.
144   GlobalDecl CurGD;
145 
146   /// PrologueCleanupDepth - The cleanup depth enclosing all the
147   /// cleanups associated with the parameters.
148   EHScopeStack::stable_iterator PrologueCleanupDepth;
149 
150   /// ReturnBlock - Unified return block.
151   JumpDest ReturnBlock;
152 
153   /// ReturnValue - The temporary alloca to hold the return value. This is null
154   /// iff the function has no return value.
155   llvm::Value *ReturnValue;
156 
157   /// AllocaInsertPoint - This is an instruction in the entry block before which
158   /// we prefer to insert allocas.
159   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
160 
161   /// \brief API for captured statement code generation.
162   class CGCapturedStmtInfo {
163   public:
164     explicit CGCapturedStmtInfo(const CapturedStmt &S,
165                                 CapturedRegionKind K = CR_Default)
166       : Kind(K), ThisValue(0), CXXThisFieldDecl(0) {
167 
168       RecordDecl::field_iterator Field =
169         S.getCapturedRecordDecl()->field_begin();
170       for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
171                                                 E = S.capture_end();
172            I != E; ++I, ++Field) {
173         if (I->capturesThis())
174           CXXThisFieldDecl = *Field;
175         else
176           CaptureFields[I->getCapturedVar()] = *Field;
177       }
178     }
179 
180     virtual ~CGCapturedStmtInfo();
181 
182     CapturedRegionKind getKind() const { return Kind; }
183 
184     void setContextValue(llvm::Value *V) { ThisValue = V; }
185     // \brief Retrieve the value of the context parameter.
186     llvm::Value *getContextValue() const { return ThisValue; }
187 
188     /// \brief Lookup the captured field decl for a variable.
189     const FieldDecl *lookup(const VarDecl *VD) const {
190       return CaptureFields.lookup(VD);
191     }
192 
193     bool isCXXThisExprCaptured() const { return CXXThisFieldDecl != 0; }
194     FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
195 
196     /// \brief Emit the captured statement body.
197     virtual void EmitBody(CodeGenFunction &CGF, Stmt *S) {
198       CGF.EmitStmt(S);
199     }
200 
201     /// \brief Get the name of the capture helper.
202     virtual StringRef getHelperName() const { return "__captured_stmt"; }
203 
204   private:
205     /// \brief The kind of captured statement being generated.
206     CapturedRegionKind Kind;
207 
208     /// \brief Keep the map between VarDecl and FieldDecl.
209     llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
210 
211     /// \brief The base address of the captured record, passed in as the first
212     /// argument of the parallel region function.
213     llvm::Value *ThisValue;
214 
215     /// \brief Captured 'this' type.
216     FieldDecl *CXXThisFieldDecl;
217   };
218   CGCapturedStmtInfo *CapturedStmtInfo;
219 
220   /// BoundsChecking - Emit run-time bounds checks. Higher values mean
221   /// potentially higher performance penalties.
222   unsigned char BoundsChecking;
223 
224   /// \brief Whether any type-checking sanitizers are enabled. If \c false,
225   /// calls to EmitTypeCheck can be skipped.
226   bool SanitizePerformTypeCheck;
227 
228   /// \brief Sanitizer options to use for this function.
229   const SanitizerOptions *SanOpts;
230 
231   /// In ARC, whether we should autorelease the return value.
232   bool AutoreleaseResult;
233 
234   const CodeGen::CGBlockInfo *BlockInfo;
235   llvm::Value *BlockPointer;
236 
237   llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
238   FieldDecl *LambdaThisCaptureField;
239 
240   /// \brief A mapping from NRVO variables to the flags used to indicate
241   /// when the NRVO has been applied to this variable.
242   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
243 
244   EHScopeStack EHStack;
245   llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
246 
247   /// Header for data within LifetimeExtendedCleanupStack.
248   struct LifetimeExtendedCleanupHeader {
249     /// The size of the following cleanup object.
250     size_t Size : 29;
251     /// The kind of cleanup to push: a value from the CleanupKind enumeration.
252     unsigned Kind : 3;
253 
254     size_t getSize() const { return Size; }
255     CleanupKind getKind() const { return static_cast<CleanupKind>(Kind); }
256   };
257 
258   /// i32s containing the indexes of the cleanup destinations.
259   llvm::AllocaInst *NormalCleanupDest;
260 
261   unsigned NextCleanupDestIndex;
262 
263   /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
264   CGBlockInfo *FirstBlockInfo;
265 
266   /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
267   llvm::BasicBlock *EHResumeBlock;
268 
269   /// The exception slot.  All landing pads write the current exception pointer
270   /// into this alloca.
271   llvm::Value *ExceptionSlot;
272 
273   /// The selector slot.  Under the MandatoryCleanup model, all landing pads
274   /// write the current selector value into this alloca.
275   llvm::AllocaInst *EHSelectorSlot;
276 
277   /// Emits a landing pad for the current EH stack.
278   llvm::BasicBlock *EmitLandingPad();
279 
280   llvm::BasicBlock *getInvokeDestImpl();
281 
282   template <class T>
283   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
284     return DominatingValue<T>::save(*this, value);
285   }
286 
287 public:
288   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
289   /// rethrows.
290   SmallVector<llvm::Value*, 8> ObjCEHValueStack;
291 
292   /// A class controlling the emission of a finally block.
293   class FinallyInfo {
294     /// Where the catchall's edge through the cleanup should go.
295     JumpDest RethrowDest;
296 
297     /// A function to call to enter the catch.
298     llvm::Constant *BeginCatchFn;
299 
300     /// An i1 variable indicating whether or not the @finally is
301     /// running for an exception.
302     llvm::AllocaInst *ForEHVar;
303 
304     /// An i8* variable into which the exception pointer to rethrow
305     /// has been saved.
306     llvm::AllocaInst *SavedExnVar;
307 
308   public:
309     void enter(CodeGenFunction &CGF, const Stmt *Finally,
310                llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
311                llvm::Constant *rethrowFn);
312     void exit(CodeGenFunction &CGF);
313   };
314 
315   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
316   /// current full-expression.  Safe against the possibility that
317   /// we're currently inside a conditionally-evaluated expression.
318   template <class T, class A0>
319   void pushFullExprCleanup(CleanupKind kind, A0 a0) {
320     // If we're not in a conditional branch, or if none of the
321     // arguments requires saving, then use the unconditional cleanup.
322     if (!isInConditionalBranch())
323       return EHStack.pushCleanup<T>(kind, a0);
324 
325     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
326 
327     typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType;
328     EHStack.pushCleanup<CleanupType>(kind, a0_saved);
329     initFullExprCleanup();
330   }
331 
332   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
333   /// current full-expression.  Safe against the possibility that
334   /// we're currently inside a conditionally-evaluated expression.
335   template <class T, class A0, class A1>
336   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) {
337     // If we're not in a conditional branch, or if none of the
338     // arguments requires saving, then use the unconditional cleanup.
339     if (!isInConditionalBranch())
340       return EHStack.pushCleanup<T>(kind, a0, a1);
341 
342     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
343     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
344 
345     typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType;
346     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved);
347     initFullExprCleanup();
348   }
349 
350   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
351   /// current full-expression.  Safe against the possibility that
352   /// we're currently inside a conditionally-evaluated expression.
353   template <class T, class A0, class A1, class A2>
354   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2) {
355     // If we're not in a conditional branch, or if none of the
356     // arguments requires saving, then use the unconditional cleanup.
357     if (!isInConditionalBranch()) {
358       return EHStack.pushCleanup<T>(kind, a0, a1, a2);
359     }
360 
361     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
362     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
363     typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
364 
365     typedef EHScopeStack::ConditionalCleanup3<T, A0, A1, A2> CleanupType;
366     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, a2_saved);
367     initFullExprCleanup();
368   }
369 
370   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
371   /// current full-expression.  Safe against the possibility that
372   /// we're currently inside a conditionally-evaluated expression.
373   template <class T, class A0, class A1, class A2, class A3>
374   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2, A3 a3) {
375     // If we're not in a conditional branch, or if none of the
376     // arguments requires saving, then use the unconditional cleanup.
377     if (!isInConditionalBranch()) {
378       return EHStack.pushCleanup<T>(kind, a0, a1, a2, a3);
379     }
380 
381     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
382     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
383     typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
384     typename DominatingValue<A3>::saved_type a3_saved = saveValueInCond(a3);
385 
386     typedef EHScopeStack::ConditionalCleanup4<T, A0, A1, A2, A3> CleanupType;
387     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved,
388                                      a2_saved, a3_saved);
389     initFullExprCleanup();
390   }
391 
392   /// \brief Queue a cleanup to be pushed after finishing the current
393   /// full-expression.
394   template <class T, class A0, class A1, class A2, class A3>
395   void pushCleanupAfterFullExpr(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) {
396     assert(!isInConditionalBranch() && "can't defer conditional cleanup");
397 
398     LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind };
399 
400     size_t OldSize = LifetimeExtendedCleanupStack.size();
401     LifetimeExtendedCleanupStack.resize(
402         LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size);
403 
404     char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
405     new (Buffer) LifetimeExtendedCleanupHeader(Header);
406     new (Buffer + sizeof(Header)) T(a0, a1, a2, a3);
407   }
408 
409   /// Set up the last cleaup that was pushed as a conditional
410   /// full-expression cleanup.
411   void initFullExprCleanup();
412 
413   /// PushDestructorCleanup - Push a cleanup to call the
414   /// complete-object destructor of an object of the given type at the
415   /// given address.  Does nothing if T is not a C++ class type with a
416   /// non-trivial destructor.
417   void PushDestructorCleanup(QualType T, llvm::Value *Addr);
418 
419   /// PushDestructorCleanup - Push a cleanup to call the
420   /// complete-object variant of the given destructor on the object at
421   /// the given address.
422   void PushDestructorCleanup(const CXXDestructorDecl *Dtor,
423                              llvm::Value *Addr);
424 
425   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
426   /// process all branch fixups.
427   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
428 
429   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
430   /// The block cannot be reactivated.  Pops it if it's the top of the
431   /// stack.
432   ///
433   /// \param DominatingIP - An instruction which is known to
434   ///   dominate the current IP (if set) and which lies along
435   ///   all paths of execution between the current IP and the
436   ///   the point at which the cleanup comes into scope.
437   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
438                               llvm::Instruction *DominatingIP);
439 
440   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
441   /// Cannot be used to resurrect a deactivated cleanup.
442   ///
443   /// \param DominatingIP - An instruction which is known to
444   ///   dominate the current IP (if set) and which lies along
445   ///   all paths of execution between the current IP and the
446   ///   the point at which the cleanup comes into scope.
447   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
448                             llvm::Instruction *DominatingIP);
449 
450   /// \brief Enters a new scope for capturing cleanups, all of which
451   /// will be executed once the scope is exited.
452   class RunCleanupsScope {
453     EHScopeStack::stable_iterator CleanupStackDepth;
454     size_t LifetimeExtendedCleanupStackSize;
455     bool OldDidCallStackSave;
456   protected:
457     bool PerformCleanup;
458   private:
459 
460     RunCleanupsScope(const RunCleanupsScope &) LLVM_DELETED_FUNCTION;
461     void operator=(const RunCleanupsScope &) LLVM_DELETED_FUNCTION;
462 
463   protected:
464     CodeGenFunction& CGF;
465 
466   public:
467     /// \brief Enter a new cleanup scope.
468     explicit RunCleanupsScope(CodeGenFunction &CGF)
469       : PerformCleanup(true), CGF(CGF)
470     {
471       CleanupStackDepth = CGF.EHStack.stable_begin();
472       LifetimeExtendedCleanupStackSize =
473           CGF.LifetimeExtendedCleanupStack.size();
474       OldDidCallStackSave = CGF.DidCallStackSave;
475       CGF.DidCallStackSave = false;
476     }
477 
478     /// \brief Exit this cleanup scope, emitting any accumulated
479     /// cleanups.
480     ~RunCleanupsScope() {
481       if (PerformCleanup) {
482         CGF.DidCallStackSave = OldDidCallStackSave;
483         CGF.PopCleanupBlocks(CleanupStackDepth,
484                              LifetimeExtendedCleanupStackSize);
485       }
486     }
487 
488     /// \brief Determine whether this scope requires any cleanups.
489     bool requiresCleanups() const {
490       return CGF.EHStack.stable_begin() != CleanupStackDepth;
491     }
492 
493     /// \brief Force the emission of cleanups now, instead of waiting
494     /// until this object is destroyed.
495     void ForceCleanup() {
496       assert(PerformCleanup && "Already forced cleanup");
497       CGF.DidCallStackSave = OldDidCallStackSave;
498       CGF.PopCleanupBlocks(CleanupStackDepth,
499                            LifetimeExtendedCleanupStackSize);
500       PerformCleanup = false;
501     }
502   };
503 
504   class LexicalScope: protected RunCleanupsScope {
505     SourceRange Range;
506     SmallVector<const LabelDecl*, 4> Labels;
507     LexicalScope *ParentScope;
508 
509     LexicalScope(const LexicalScope &) LLVM_DELETED_FUNCTION;
510     void operator=(const LexicalScope &) LLVM_DELETED_FUNCTION;
511 
512   public:
513     /// \brief Enter a new cleanup scope.
514     explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
515       : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
516       CGF.CurLexicalScope = this;
517       if (CGDebugInfo *DI = CGF.getDebugInfo())
518         DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
519     }
520 
521     void addLabel(const LabelDecl *label) {
522       assert(PerformCleanup && "adding label to dead scope?");
523       Labels.push_back(label);
524     }
525 
526     /// \brief Exit this cleanup scope, emitting any accumulated
527     /// cleanups.
528     ~LexicalScope() {
529       if (CGDebugInfo *DI = CGF.getDebugInfo())
530         DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
531 
532       // If we should perform a cleanup, force them now.  Note that
533       // this ends the cleanup scope before rescoping any labels.
534       if (PerformCleanup) ForceCleanup();
535     }
536 
537     /// \brief Force the emission of cleanups now, instead of waiting
538     /// until this object is destroyed.
539     void ForceCleanup() {
540       CGF.CurLexicalScope = ParentScope;
541       RunCleanupsScope::ForceCleanup();
542 
543       if (!Labels.empty())
544         rescopeLabels();
545     }
546 
547     void rescopeLabels();
548   };
549 
550 
551   /// \brief Takes the old cleanup stack size and emits the cleanup blocks
552   /// that have been added.
553   void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize);
554 
555   /// \brief Takes the old cleanup stack size and emits the cleanup blocks
556   /// that have been added, then adds all lifetime-extended cleanups from
557   /// the given position to the stack.
558   void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
559                         size_t OldLifetimeExtendedStackSize);
560 
561   void ResolveBranchFixups(llvm::BasicBlock *Target);
562 
563   /// The given basic block lies in the current EH scope, but may be a
564   /// target of a potentially scope-crossing jump; get a stable handle
565   /// to which we can perform this jump later.
566   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
567     return JumpDest(Target,
568                     EHStack.getInnermostNormalCleanup(),
569                     NextCleanupDestIndex++);
570   }
571 
572   /// The given basic block lies in the current EH scope, but may be a
573   /// target of a potentially scope-crossing jump; get a stable handle
574   /// to which we can perform this jump later.
575   JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
576     return getJumpDestInCurrentScope(createBasicBlock(Name));
577   }
578 
579   /// EmitBranchThroughCleanup - Emit a branch from the current insert
580   /// block through the normal cleanup handling code (if any) and then
581   /// on to \arg Dest.
582   void EmitBranchThroughCleanup(JumpDest Dest);
583 
584   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
585   /// specified destination obviously has no cleanups to run.  'false' is always
586   /// a conservatively correct answer for this method.
587   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
588 
589   /// popCatchScope - Pops the catch scope at the top of the EHScope
590   /// stack, emitting any required code (other than the catch handlers
591   /// themselves).
592   void popCatchScope();
593 
594   llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
595   llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
596 
597   /// An object to manage conditionally-evaluated expressions.
598   class ConditionalEvaluation {
599     llvm::BasicBlock *StartBB;
600 
601   public:
602     ConditionalEvaluation(CodeGenFunction &CGF)
603       : StartBB(CGF.Builder.GetInsertBlock()) {}
604 
605     void begin(CodeGenFunction &CGF) {
606       assert(CGF.OutermostConditional != this);
607       if (!CGF.OutermostConditional)
608         CGF.OutermostConditional = this;
609     }
610 
611     void end(CodeGenFunction &CGF) {
612       assert(CGF.OutermostConditional != 0);
613       if (CGF.OutermostConditional == this)
614         CGF.OutermostConditional = 0;
615     }
616 
617     /// Returns a block which will be executed prior to each
618     /// evaluation of the conditional code.
619     llvm::BasicBlock *getStartingBlock() const {
620       return StartBB;
621     }
622   };
623 
624   /// isInConditionalBranch - Return true if we're currently emitting
625   /// one branch or the other of a conditional expression.
626   bool isInConditionalBranch() const { return OutermostConditional != 0; }
627 
628   void setBeforeOutermostConditional(llvm::Value *value, llvm::Value *addr) {
629     assert(isInConditionalBranch());
630     llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
631     new llvm::StoreInst(value, addr, &block->back());
632   }
633 
634   /// An RAII object to record that we're evaluating a statement
635   /// expression.
636   class StmtExprEvaluation {
637     CodeGenFunction &CGF;
638 
639     /// We have to save the outermost conditional: cleanups in a
640     /// statement expression aren't conditional just because the
641     /// StmtExpr is.
642     ConditionalEvaluation *SavedOutermostConditional;
643 
644   public:
645     StmtExprEvaluation(CodeGenFunction &CGF)
646       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
647       CGF.OutermostConditional = 0;
648     }
649 
650     ~StmtExprEvaluation() {
651       CGF.OutermostConditional = SavedOutermostConditional;
652       CGF.EnsureInsertPoint();
653     }
654   };
655 
656   /// An object which temporarily prevents a value from being
657   /// destroyed by aggressive peephole optimizations that assume that
658   /// all uses of a value have been realized in the IR.
659   class PeepholeProtection {
660     llvm::Instruction *Inst;
661     friend class CodeGenFunction;
662 
663   public:
664     PeepholeProtection() : Inst(0) {}
665   };
666 
667   /// A non-RAII class containing all the information about a bound
668   /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
669   /// this which makes individual mappings very simple; using this
670   /// class directly is useful when you have a variable number of
671   /// opaque values or don't want the RAII functionality for some
672   /// reason.
673   class OpaqueValueMappingData {
674     const OpaqueValueExpr *OpaqueValue;
675     bool BoundLValue;
676     CodeGenFunction::PeepholeProtection Protection;
677 
678     OpaqueValueMappingData(const OpaqueValueExpr *ov,
679                            bool boundLValue)
680       : OpaqueValue(ov), BoundLValue(boundLValue) {}
681   public:
682     OpaqueValueMappingData() : OpaqueValue(0) {}
683 
684     static bool shouldBindAsLValue(const Expr *expr) {
685       // gl-values should be bound as l-values for obvious reasons.
686       // Records should be bound as l-values because IR generation
687       // always keeps them in memory.  Expressions of function type
688       // act exactly like l-values but are formally required to be
689       // r-values in C.
690       return expr->isGLValue() ||
691              expr->getType()->isFunctionType() ||
692              hasAggregateEvaluationKind(expr->getType());
693     }
694 
695     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
696                                        const OpaqueValueExpr *ov,
697                                        const Expr *e) {
698       if (shouldBindAsLValue(ov))
699         return bind(CGF, ov, CGF.EmitLValue(e));
700       return bind(CGF, ov, CGF.EmitAnyExpr(e));
701     }
702 
703     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
704                                        const OpaqueValueExpr *ov,
705                                        const LValue &lv) {
706       assert(shouldBindAsLValue(ov));
707       CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
708       return OpaqueValueMappingData(ov, true);
709     }
710 
711     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
712                                        const OpaqueValueExpr *ov,
713                                        const RValue &rv) {
714       assert(!shouldBindAsLValue(ov));
715       CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
716 
717       OpaqueValueMappingData data(ov, false);
718 
719       // Work around an extremely aggressive peephole optimization in
720       // EmitScalarConversion which assumes that all other uses of a
721       // value are extant.
722       data.Protection = CGF.protectFromPeepholes(rv);
723 
724       return data;
725     }
726 
727     bool isValid() const { return OpaqueValue != 0; }
728     void clear() { OpaqueValue = 0; }
729 
730     void unbind(CodeGenFunction &CGF) {
731       assert(OpaqueValue && "no data to unbind!");
732 
733       if (BoundLValue) {
734         CGF.OpaqueLValues.erase(OpaqueValue);
735       } else {
736         CGF.OpaqueRValues.erase(OpaqueValue);
737         CGF.unprotectFromPeepholes(Protection);
738       }
739     }
740   };
741 
742   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
743   class OpaqueValueMapping {
744     CodeGenFunction &CGF;
745     OpaqueValueMappingData Data;
746 
747   public:
748     static bool shouldBindAsLValue(const Expr *expr) {
749       return OpaqueValueMappingData::shouldBindAsLValue(expr);
750     }
751 
752     /// Build the opaque value mapping for the given conditional
753     /// operator if it's the GNU ?: extension.  This is a common
754     /// enough pattern that the convenience operator is really
755     /// helpful.
756     ///
757     OpaqueValueMapping(CodeGenFunction &CGF,
758                        const AbstractConditionalOperator *op) : CGF(CGF) {
759       if (isa<ConditionalOperator>(op))
760         // Leave Data empty.
761         return;
762 
763       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
764       Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
765                                           e->getCommon());
766     }
767 
768     OpaqueValueMapping(CodeGenFunction &CGF,
769                        const OpaqueValueExpr *opaqueValue,
770                        LValue lvalue)
771       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
772     }
773 
774     OpaqueValueMapping(CodeGenFunction &CGF,
775                        const OpaqueValueExpr *opaqueValue,
776                        RValue rvalue)
777       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
778     }
779 
780     void pop() {
781       Data.unbind(CGF);
782       Data.clear();
783     }
784 
785     ~OpaqueValueMapping() {
786       if (Data.isValid()) Data.unbind(CGF);
787     }
788   };
789 
790   /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field
791   /// number that holds the value.
792   unsigned getByRefValueLLVMField(const ValueDecl *VD) const;
793 
794   /// BuildBlockByrefAddress - Computes address location of the
795   /// variable which is declared as __block.
796   llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr,
797                                       const VarDecl *V);
798 private:
799   CGDebugInfo *DebugInfo;
800   bool DisableDebugInfo;
801 
802   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
803   /// calling llvm.stacksave for multiple VLAs in the same scope.
804   bool DidCallStackSave;
805 
806   /// IndirectBranch - The first time an indirect goto is seen we create a block
807   /// with an indirect branch.  Every time we see the address of a label taken,
808   /// we add the label to the indirect goto.  Every subsequent indirect goto is
809   /// codegen'd as a jump to the IndirectBranch's basic block.
810   llvm::IndirectBrInst *IndirectBranch;
811 
812   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
813   /// decls.
814   typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy;
815   DeclMapTy LocalDeclMap;
816 
817   /// LabelMap - This keeps track of the LLVM basic block for each C label.
818   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
819 
820   // BreakContinueStack - This keeps track of where break and continue
821   // statements should jump to.
822   struct BreakContinue {
823     BreakContinue(JumpDest Break, JumpDest Continue)
824       : BreakBlock(Break), ContinueBlock(Continue) {}
825 
826     JumpDest BreakBlock;
827     JumpDest ContinueBlock;
828   };
829   SmallVector<BreakContinue, 8> BreakContinueStack;
830 
831   CodeGenPGO PGO;
832 
833 public:
834   /// Get a counter for instrumentation of the region associated with the given
835   /// statement.
836   RegionCounter getPGORegionCounter(const Stmt *S) {
837     return RegionCounter(PGO, S);
838   }
839 private:
840 
841   /// SwitchInsn - This is nearest current switch instruction. It is null if
842   /// current context is not in a switch.
843   llvm::SwitchInst *SwitchInsn;
844   /// The branch weights of SwitchInsn when doing instrumentation based PGO.
845   SmallVector<uint64_t, 16> *SwitchWeights;
846 
847   /// CaseRangeBlock - This block holds if condition check for last case
848   /// statement range in current switch instruction.
849   llvm::BasicBlock *CaseRangeBlock;
850 
851   /// OpaqueLValues - Keeps track of the current set of opaque value
852   /// expressions.
853   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
854   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
855 
856   // VLASizeMap - This keeps track of the associated size for each VLA type.
857   // We track this by the size expression rather than the type itself because
858   // in certain situations, like a const qualifier applied to an VLA typedef,
859   // multiple VLA types can share the same size expression.
860   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
861   // enter/leave scopes.
862   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
863 
864   /// A block containing a single 'unreachable' instruction.  Created
865   /// lazily by getUnreachableBlock().
866   llvm::BasicBlock *UnreachableBlock;
867 
868   /// Counts of the number return expressions in the function.
869   unsigned NumReturnExprs;
870 
871   /// Count the number of simple (constant) return expressions in the function.
872   unsigned NumSimpleReturnExprs;
873 
874   /// The last regular (non-return) debug location (breakpoint) in the function.
875   SourceLocation LastStopPoint;
876 
877 public:
878   /// A scope within which we are constructing the fields of an object which
879   /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
880   /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
881   class FieldConstructionScope {
882   public:
883     FieldConstructionScope(CodeGenFunction &CGF, llvm::Value *This)
884         : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
885       CGF.CXXDefaultInitExprThis = This;
886     }
887     ~FieldConstructionScope() {
888       CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
889     }
890 
891   private:
892     CodeGenFunction &CGF;
893     llvm::Value *OldCXXDefaultInitExprThis;
894   };
895 
896   /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
897   /// is overridden to be the object under construction.
898   class CXXDefaultInitExprScope {
899   public:
900     CXXDefaultInitExprScope(CodeGenFunction &CGF)
901         : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue) {
902       CGF.CXXThisValue = CGF.CXXDefaultInitExprThis;
903     }
904     ~CXXDefaultInitExprScope() {
905       CGF.CXXThisValue = OldCXXThisValue;
906     }
907 
908   public:
909     CodeGenFunction &CGF;
910     llvm::Value *OldCXXThisValue;
911   };
912 
913 private:
914   /// CXXThisDecl - When generating code for a C++ member function,
915   /// this will hold the implicit 'this' declaration.
916   ImplicitParamDecl *CXXABIThisDecl;
917   llvm::Value *CXXABIThisValue;
918   llvm::Value *CXXThisValue;
919 
920   /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
921   /// this expression.
922   llvm::Value *CXXDefaultInitExprThis;
923 
924   /// CXXStructorImplicitParamDecl - When generating code for a constructor or
925   /// destructor, this will hold the implicit argument (e.g. VTT).
926   ImplicitParamDecl *CXXStructorImplicitParamDecl;
927   llvm::Value *CXXStructorImplicitParamValue;
928 
929   /// OutermostConditional - Points to the outermost active
930   /// conditional control.  This is used so that we know if a
931   /// temporary should be destroyed conditionally.
932   ConditionalEvaluation *OutermostConditional;
933 
934   /// The current lexical scope.
935   LexicalScope *CurLexicalScope;
936 
937   /// The current source location that should be used for exception
938   /// handling code.
939   SourceLocation CurEHLocation;
940 
941   /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM
942   /// type as well as the field number that contains the actual data.
943   llvm::DenseMap<const ValueDecl *, std::pair<llvm::Type *,
944                                               unsigned> > ByRefValueInfo;
945 
946   llvm::BasicBlock *TerminateLandingPad;
947   llvm::BasicBlock *TerminateHandler;
948   llvm::BasicBlock *TrapBB;
949 
950   /// Add a kernel metadata node to the named metadata node 'opencl.kernels'.
951   /// In the kernel metadata node, reference the kernel function and metadata
952   /// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2):
953   /// - A node for the vec_type_hint(<type>) qualifier contains string
954   ///   "vec_type_hint", an undefined value of the <type> data type,
955   ///   and a Boolean that is true if the <type> is integer and signed.
956   /// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string
957   ///   "work_group_size_hint", and three 32-bit integers X, Y and Z.
958   /// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string
959   ///   "reqd_work_group_size", and three 32-bit integers X, Y and Z.
960   void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
961                                 llvm::Function *Fn);
962 
963 public:
964   CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
965   ~CodeGenFunction();
966 
967   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
968   ASTContext &getContext() const { return CGM.getContext(); }
969   CGDebugInfo *getDebugInfo() {
970     if (DisableDebugInfo)
971       return NULL;
972     return DebugInfo;
973   }
974   void disableDebugInfo() { DisableDebugInfo = true; }
975   void enableDebugInfo() { DisableDebugInfo = false; }
976 
977   bool shouldUseFusedARCCalls() {
978     return CGM.getCodeGenOpts().OptimizationLevel == 0;
979   }
980 
981   const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
982 
983   /// Returns a pointer to the function's exception object and selector slot,
984   /// which is assigned in every landing pad.
985   llvm::Value *getExceptionSlot();
986   llvm::Value *getEHSelectorSlot();
987 
988   /// Returns the contents of the function's exception object and selector
989   /// slots.
990   llvm::Value *getExceptionFromSlot();
991   llvm::Value *getSelectorFromSlot();
992 
993   llvm::Value *getNormalCleanupDestSlot();
994 
995   llvm::BasicBlock *getUnreachableBlock() {
996     if (!UnreachableBlock) {
997       UnreachableBlock = createBasicBlock("unreachable");
998       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
999     }
1000     return UnreachableBlock;
1001   }
1002 
1003   llvm::BasicBlock *getInvokeDest() {
1004     if (!EHStack.requiresLandingPad()) return 0;
1005     return getInvokeDestImpl();
1006   }
1007 
1008   const TargetInfo &getTarget() const { return Target; }
1009   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1010 
1011   //===--------------------------------------------------------------------===//
1012   //                                  Cleanups
1013   //===--------------------------------------------------------------------===//
1014 
1015   typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty);
1016 
1017   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1018                                         llvm::Value *arrayEndPointer,
1019                                         QualType elementType,
1020                                         Destroyer *destroyer);
1021   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1022                                       llvm::Value *arrayEnd,
1023                                       QualType elementType,
1024                                       Destroyer *destroyer);
1025 
1026   void pushDestroy(QualType::DestructionKind dtorKind,
1027                    llvm::Value *addr, QualType type);
1028   void pushEHDestroy(QualType::DestructionKind dtorKind,
1029                      llvm::Value *addr, QualType type);
1030   void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type,
1031                    Destroyer *destroyer, bool useEHCleanupForArray);
1032   void pushLifetimeExtendedDestroy(CleanupKind kind, llvm::Value *addr,
1033                                    QualType type, Destroyer *destroyer,
1034                                    bool useEHCleanupForArray);
1035   void pushStackRestore(CleanupKind kind, llvm::Value *SPMem);
1036   void emitDestroy(llvm::Value *addr, QualType type, Destroyer *destroyer,
1037                    bool useEHCleanupForArray);
1038   llvm::Function *generateDestroyHelper(llvm::Constant *addr, QualType type,
1039                                         Destroyer *destroyer,
1040                                         bool useEHCleanupForArray,
1041                                         const VarDecl *VD);
1042   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1043                         QualType type, Destroyer *destroyer,
1044                         bool checkZeroLength, bool useEHCleanup);
1045 
1046   Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1047 
1048   /// Determines whether an EH cleanup is required to destroy a type
1049   /// with the given destruction kind.
1050   bool needsEHCleanup(QualType::DestructionKind kind) {
1051     switch (kind) {
1052     case QualType::DK_none:
1053       return false;
1054     case QualType::DK_cxx_destructor:
1055     case QualType::DK_objc_weak_lifetime:
1056       return getLangOpts().Exceptions;
1057     case QualType::DK_objc_strong_lifetime:
1058       return getLangOpts().Exceptions &&
1059              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1060     }
1061     llvm_unreachable("bad destruction kind");
1062   }
1063 
1064   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
1065     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1066   }
1067 
1068   //===--------------------------------------------------------------------===//
1069   //                                  Objective-C
1070   //===--------------------------------------------------------------------===//
1071 
1072   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1073 
1074   void StartObjCMethod(const ObjCMethodDecl *MD,
1075                        const ObjCContainerDecl *CD,
1076                        SourceLocation StartLoc);
1077 
1078   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1079   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1080                           const ObjCPropertyImplDecl *PID);
1081   void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1082                               const ObjCPropertyImplDecl *propImpl,
1083                               const ObjCMethodDecl *GetterMothodDecl,
1084                               llvm::Constant *AtomicHelperFn);
1085 
1086   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1087                                   ObjCMethodDecl *MD, bool ctor);
1088 
1089   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1090   /// for the given property.
1091   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1092                           const ObjCPropertyImplDecl *PID);
1093   void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1094                               const ObjCPropertyImplDecl *propImpl,
1095                               llvm::Constant *AtomicHelperFn);
1096   bool IndirectObjCSetterArg(const CGFunctionInfo &FI);
1097   bool IvarTypeWithAggrGCObjects(QualType Ty);
1098 
1099   //===--------------------------------------------------------------------===//
1100   //                                  Block Bits
1101   //===--------------------------------------------------------------------===//
1102 
1103   llvm::Value *EmitBlockLiteral(const BlockExpr *);
1104   llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
1105   static void destroyBlockInfos(CGBlockInfo *info);
1106   llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *,
1107                                            const CGBlockInfo &Info,
1108                                            llvm::StructType *,
1109                                            llvm::Constant *BlockVarLayout);
1110 
1111   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1112                                         const CGBlockInfo &Info,
1113                                         const DeclMapTy &ldm,
1114                                         bool IsLambdaConversionToBlock);
1115 
1116   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1117   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1118   llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
1119                                              const ObjCPropertyImplDecl *PID);
1120   llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
1121                                              const ObjCPropertyImplDecl *PID);
1122   llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
1123 
1124   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
1125 
1126   class AutoVarEmission;
1127 
1128   void emitByrefStructureInit(const AutoVarEmission &emission);
1129   void enterByrefCleanup(const AutoVarEmission &emission);
1130 
1131   llvm::Value *LoadBlockStruct() {
1132     assert(BlockPointer && "no block pointer set!");
1133     return BlockPointer;
1134   }
1135 
1136   void AllocateBlockCXXThisPointer(const CXXThisExpr *E);
1137   void AllocateBlockDecl(const DeclRefExpr *E);
1138   llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
1139   llvm::Type *BuildByRefType(const VarDecl *var);
1140 
1141   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1142                     const CGFunctionInfo &FnInfo);
1143   void StartFunction(GlobalDecl GD,
1144                      QualType RetTy,
1145                      llvm::Function *Fn,
1146                      const CGFunctionInfo &FnInfo,
1147                      const FunctionArgList &Args,
1148                      SourceLocation StartLoc);
1149 
1150   void EmitConstructorBody(FunctionArgList &Args);
1151   void EmitDestructorBody(FunctionArgList &Args);
1152   void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
1153   void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body);
1154   void EmitBlockWithFallThrough(llvm::BasicBlock *BB, RegionCounter &Cnt);
1155 
1156   void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
1157                                   CallArgList &CallArgs);
1158   void EmitLambdaToBlockPointerBody(FunctionArgList &Args);
1159   void EmitLambdaBlockInvokeBody();
1160   void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
1161   void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD);
1162 
1163   /// EmitReturnBlock - Emit the unified return block, trying to avoid its
1164   /// emission when possible.
1165   void EmitReturnBlock();
1166 
1167   /// FinishFunction - Complete IR generation of the current function. It is
1168   /// legal to call this function even if there is no current insertion point.
1169   void FinishFunction(SourceLocation EndLoc=SourceLocation());
1170 
1171   void StartThunk(llvm::Function *Fn, GlobalDecl GD, const CGFunctionInfo &FnInfo);
1172 
1173   void EmitCallAndReturnForThunk(GlobalDecl GD, llvm::Value *Callee,
1174                                  const ThunkInfo *Thunk);
1175 
1176   /// GenerateThunk - Generate a thunk for the given method.
1177   void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1178                      GlobalDecl GD, const ThunkInfo &Thunk);
1179 
1180   void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1181                             GlobalDecl GD, const ThunkInfo &Thunk);
1182 
1183   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1184                         FunctionArgList &Args);
1185 
1186   void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init,
1187                                ArrayRef<VarDecl *> ArrayIndexes);
1188 
1189   /// InitializeVTablePointer - Initialize the vtable pointer of the given
1190   /// subobject.
1191   ///
1192   void InitializeVTablePointer(BaseSubobject Base,
1193                                const CXXRecordDecl *NearestVBase,
1194                                CharUnits OffsetFromNearestVBase,
1195                                const CXXRecordDecl *VTableClass);
1196 
1197   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1198   void InitializeVTablePointers(BaseSubobject Base,
1199                                 const CXXRecordDecl *NearestVBase,
1200                                 CharUnits OffsetFromNearestVBase,
1201                                 bool BaseIsNonVirtualPrimaryBase,
1202                                 const CXXRecordDecl *VTableClass,
1203                                 VisitedVirtualBasesSetTy& VBases);
1204 
1205   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1206 
1207   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1208   /// to by This.
1209   llvm::Value *GetVTablePtr(llvm::Value *This, llvm::Type *Ty);
1210 
1211 
1212   /// CanDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given
1213   /// expr can be devirtualized.
1214   bool CanDevirtualizeMemberFunctionCall(const Expr *Base,
1215                                          const CXXMethodDecl *MD);
1216 
1217   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1218   /// given phase of destruction for a destructor.  The end result
1219   /// should call destructors on members and base classes in reverse
1220   /// order of their construction.
1221   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1222 
1223   /// ShouldInstrumentFunction - Return true if the current function should be
1224   /// instrumented with __cyg_profile_func_* calls
1225   bool ShouldInstrumentFunction();
1226 
1227   /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
1228   /// instrumentation function with the current function and the call site, if
1229   /// function instrumentation is enabled.
1230   void EmitFunctionInstrumentation(const char *Fn);
1231 
1232   /// EmitMCountInstrumentation - Emit call to .mcount.
1233   void EmitMCountInstrumentation();
1234 
1235   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1236   /// arguments for the given function. This is also responsible for naming the
1237   /// LLVM function arguments.
1238   void EmitFunctionProlog(const CGFunctionInfo &FI,
1239                           llvm::Function *Fn,
1240                           const FunctionArgList &Args);
1241 
1242   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1243   /// given temporary.
1244   void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
1245                           SourceLocation EndLoc);
1246 
1247   /// EmitStartEHSpec - Emit the start of the exception spec.
1248   void EmitStartEHSpec(const Decl *D);
1249 
1250   /// EmitEndEHSpec - Emit the end of the exception spec.
1251   void EmitEndEHSpec(const Decl *D);
1252 
1253   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
1254   llvm::BasicBlock *getTerminateLandingPad();
1255 
1256   /// getTerminateHandler - Return a handler (not a landing pad, just
1257   /// a catch handler) that just calls terminate.  This is used when
1258   /// a terminate scope encloses a try.
1259   llvm::BasicBlock *getTerminateHandler();
1260 
1261   llvm::Type *ConvertTypeForMem(QualType T);
1262   llvm::Type *ConvertType(QualType T);
1263   llvm::Type *ConvertType(const TypeDecl *T) {
1264     return ConvertType(getContext().getTypeDeclType(T));
1265   }
1266 
1267   /// LoadObjCSelf - Load the value of self. This function is only valid while
1268   /// generating code for an Objective-C method.
1269   llvm::Value *LoadObjCSelf();
1270 
1271   /// TypeOfSelfObject - Return type of object that this self represents.
1272   QualType TypeOfSelfObject();
1273 
1274   /// hasAggregateLLVMType - Return true if the specified AST type will map into
1275   /// an aggregate LLVM type or is void.
1276   static TypeEvaluationKind getEvaluationKind(QualType T);
1277 
1278   static bool hasScalarEvaluationKind(QualType T) {
1279     return getEvaluationKind(T) == TEK_Scalar;
1280   }
1281 
1282   static bool hasAggregateEvaluationKind(QualType T) {
1283     return getEvaluationKind(T) == TEK_Aggregate;
1284   }
1285 
1286   /// createBasicBlock - Create an LLVM basic block.
1287   llvm::BasicBlock *createBasicBlock(const Twine &name = "",
1288                                      llvm::Function *parent = 0,
1289                                      llvm::BasicBlock *before = 0) {
1290 #ifdef NDEBUG
1291     return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
1292 #else
1293     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
1294 #endif
1295   }
1296 
1297   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
1298   /// label maps to.
1299   JumpDest getJumpDestForLabel(const LabelDecl *S);
1300 
1301   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
1302   /// another basic block, simplify it. This assumes that no other code could
1303   /// potentially reference the basic block.
1304   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
1305 
1306   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
1307   /// adding a fall-through branch from the current insert block if
1308   /// necessary. It is legal to call this function even if there is no current
1309   /// insertion point.
1310   ///
1311   /// IsFinished - If true, indicates that the caller has finished emitting
1312   /// branches to the given block and does not expect to emit code into it. This
1313   /// means the block can be ignored if it is unreachable.
1314   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
1315 
1316   /// EmitBlockAfterUses - Emit the given block somewhere hopefully
1317   /// near its uses, and leave the insertion point in it.
1318   void EmitBlockAfterUses(llvm::BasicBlock *BB);
1319 
1320   /// EmitBranch - Emit a branch to the specified basic block from the current
1321   /// insert block, taking care to avoid creation of branches from dummy
1322   /// blocks. It is legal to call this function even if there is no current
1323   /// insertion point.
1324   ///
1325   /// This function clears the current insertion point. The caller should follow
1326   /// calls to this function with calls to Emit*Block prior to generation new
1327   /// code.
1328   void EmitBranch(llvm::BasicBlock *Block);
1329 
1330   /// HaveInsertPoint - True if an insertion point is defined. If not, this
1331   /// indicates that the current code being emitted is unreachable.
1332   bool HaveInsertPoint() const {
1333     return Builder.GetInsertBlock() != 0;
1334   }
1335 
1336   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
1337   /// emitted IR has a place to go. Note that by definition, if this function
1338   /// creates a block then that block is unreachable; callers may do better to
1339   /// detect when no insertion point is defined and simply skip IR generation.
1340   void EnsureInsertPoint() {
1341     if (!HaveInsertPoint())
1342       EmitBlock(createBasicBlock());
1343   }
1344 
1345   /// ErrorUnsupported - Print out an error that codegen doesn't support the
1346   /// specified stmt yet.
1347   void ErrorUnsupported(const Stmt *S, const char *Type);
1348 
1349   //===--------------------------------------------------------------------===//
1350   //                                  Helpers
1351   //===--------------------------------------------------------------------===//
1352 
1353   LValue MakeAddrLValue(llvm::Value *V, QualType T,
1354                         CharUnits Alignment = CharUnits()) {
1355     return LValue::MakeAddr(V, T, Alignment, getContext(),
1356                             CGM.getTBAAInfo(T));
1357   }
1358 
1359   LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
1360     CharUnits Alignment;
1361     if (!T->isIncompleteType())
1362       Alignment = getContext().getTypeAlignInChars(T);
1363     return LValue::MakeAddr(V, T, Alignment, getContext(),
1364                             CGM.getTBAAInfo(T));
1365   }
1366 
1367   /// CreateTempAlloca - This creates a alloca and inserts it into the entry
1368   /// block. The caller is responsible for setting an appropriate alignment on
1369   /// the alloca.
1370   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty,
1371                                      const Twine &Name = "tmp");
1372 
1373   /// InitTempAlloca - Provide an initial value for the given alloca.
1374   void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value);
1375 
1376   /// CreateIRTemp - Create a temporary IR object of the given type, with
1377   /// appropriate alignment. This routine should only be used when an temporary
1378   /// value needs to be stored into an alloca (for example, to avoid explicit
1379   /// PHI construction), but the type is the IR type, not the type appropriate
1380   /// for storing in memory.
1381   llvm::AllocaInst *CreateIRTemp(QualType T, const Twine &Name = "tmp");
1382 
1383   /// CreateMemTemp - Create a temporary memory object of the given type, with
1384   /// appropriate alignment.
1385   llvm::AllocaInst *CreateMemTemp(QualType T, const Twine &Name = "tmp");
1386 
1387   /// CreateAggTemp - Create a temporary memory object for the given
1388   /// aggregate type.
1389   AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
1390     CharUnits Alignment = getContext().getTypeAlignInChars(T);
1391     return AggValueSlot::forAddr(CreateMemTemp(T, Name), Alignment,
1392                                  T.getQualifiers(),
1393                                  AggValueSlot::IsNotDestructed,
1394                                  AggValueSlot::DoesNotNeedGCBarriers,
1395                                  AggValueSlot::IsNotAliased);
1396   }
1397 
1398   /// CreateInAllocaTmp - Create a temporary memory object for the given
1399   /// aggregate type.
1400   AggValueSlot CreateInAllocaTmp(QualType T, const Twine &Name = "inalloca");
1401 
1402   /// Emit a cast to void* in the appropriate address space.
1403   llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
1404 
1405   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
1406   /// expression and compare the result against zero, returning an Int1Ty value.
1407   llvm::Value *EvaluateExprAsBool(const Expr *E);
1408 
1409   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
1410   void EmitIgnoredExpr(const Expr *E);
1411 
1412   /// EmitAnyExpr - Emit code to compute the specified expression which can have
1413   /// any type.  The result is returned as an RValue struct.  If this is an
1414   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
1415   /// the result should be returned.
1416   ///
1417   /// \param ignoreResult True if the resulting value isn't used.
1418   RValue EmitAnyExpr(const Expr *E,
1419                      AggValueSlot aggSlot = AggValueSlot::ignored(),
1420                      bool ignoreResult = false);
1421 
1422   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
1423   // or the value of the expression, depending on how va_list is defined.
1424   llvm::Value *EmitVAListRef(const Expr *E);
1425 
1426   /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
1427   /// always be accessible even if no aggregate location is provided.
1428   RValue EmitAnyExprToTemp(const Expr *E);
1429 
1430   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
1431   /// arbitrary expression into the given memory location.
1432   void EmitAnyExprToMem(const Expr *E, llvm::Value *Location,
1433                         Qualifiers Quals, bool IsInitializer);
1434 
1435   /// EmitExprAsInit - Emits the code necessary to initialize a
1436   /// location in memory with the given initializer.
1437   void EmitExprAsInit(const Expr *init, const ValueDecl *D,
1438                       LValue lvalue, bool capturedByInit);
1439 
1440   /// hasVolatileMember - returns true if aggregate type has a volatile
1441   /// member.
1442   bool hasVolatileMember(QualType T) {
1443     if (const RecordType *RT = T->getAs<RecordType>()) {
1444       const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
1445       return RD->hasVolatileMember();
1446     }
1447     return false;
1448   }
1449   /// EmitAggregateCopy - Emit an aggregate assignment.
1450   ///
1451   /// The difference to EmitAggregateCopy is that tail padding is not copied.
1452   /// This is required for correctness when assigning non-POD structures in C++.
1453   void EmitAggregateAssign(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1454                            QualType EltTy) {
1455     bool IsVolatile = hasVolatileMember(EltTy);
1456     EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, CharUnits::Zero(),
1457                       true);
1458   }
1459 
1460   /// EmitAggregateCopy - Emit an aggregate copy.
1461   ///
1462   /// \param isVolatile - True iff either the source or the destination is
1463   /// volatile.
1464   /// \param isAssignment - If false, allow padding to be copied.  This often
1465   /// yields more efficient.
1466   void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1467                          QualType EltTy, bool isVolatile=false,
1468                          CharUnits Alignment = CharUnits::Zero(),
1469                          bool isAssignment = false);
1470 
1471   /// StartBlock - Start new block named N. If insert block is a dummy block
1472   /// then reuse it.
1473   void StartBlock(const char *N);
1474 
1475   /// GetAddrOfLocalVar - Return the address of a local variable.
1476   llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) {
1477     llvm::Value *Res = LocalDeclMap[VD];
1478     assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!");
1479     return Res;
1480   }
1481 
1482   /// getOpaqueLValueMapping - Given an opaque value expression (which
1483   /// must be mapped to an l-value), return its mapping.
1484   const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
1485     assert(OpaqueValueMapping::shouldBindAsLValue(e));
1486 
1487     llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
1488       it = OpaqueLValues.find(e);
1489     assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
1490     return it->second;
1491   }
1492 
1493   /// getOpaqueRValueMapping - Given an opaque value expression (which
1494   /// must be mapped to an r-value), return its mapping.
1495   const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
1496     assert(!OpaqueValueMapping::shouldBindAsLValue(e));
1497 
1498     llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
1499       it = OpaqueRValues.find(e);
1500     assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
1501     return it->second;
1502   }
1503 
1504   /// getAccessedFieldNo - Given an encoded value and a result number, return
1505   /// the input field number being accessed.
1506   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
1507 
1508   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
1509   llvm::BasicBlock *GetIndirectGotoBlock();
1510 
1511   /// EmitNullInitialization - Generate code to set a value of the given type to
1512   /// null, If the type contains data member pointers, they will be initialized
1513   /// to -1 in accordance with the Itanium C++ ABI.
1514   void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty);
1515 
1516   // EmitVAArg - Generate code to get an argument from the passed in pointer
1517   // and update it accordingly. The return value is a pointer to the argument.
1518   // FIXME: We should be able to get rid of this method and use the va_arg
1519   // instruction in LLVM instead once it works well enough.
1520   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty);
1521 
1522   /// emitArrayLength - Compute the length of an array, even if it's a
1523   /// VLA, and drill down to the base element type.
1524   llvm::Value *emitArrayLength(const ArrayType *arrayType,
1525                                QualType &baseType,
1526                                llvm::Value *&addr);
1527 
1528   /// EmitVLASize - Capture all the sizes for the VLA expressions in
1529   /// the given variably-modified type and store them in the VLASizeMap.
1530   ///
1531   /// This function can be called with a null (unreachable) insert point.
1532   void EmitVariablyModifiedType(QualType Ty);
1533 
1534   /// getVLASize - Returns an LLVM value that corresponds to the size,
1535   /// in non-variably-sized elements, of a variable length array type,
1536   /// plus that largest non-variably-sized element type.  Assumes that
1537   /// the type has already been emitted with EmitVariablyModifiedType.
1538   std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla);
1539   std::pair<llvm::Value*,QualType> getVLASize(QualType vla);
1540 
1541   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
1542   /// generating code for an C++ member function.
1543   llvm::Value *LoadCXXThis() {
1544     assert(CXXThisValue && "no 'this' value for this function");
1545     return CXXThisValue;
1546   }
1547 
1548   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
1549   /// virtual bases.
1550   // FIXME: Every place that calls LoadCXXVTT is something
1551   // that needs to be abstracted properly.
1552   llvm::Value *LoadCXXVTT() {
1553     assert(CXXStructorImplicitParamValue && "no VTT value for this function");
1554     return CXXStructorImplicitParamValue;
1555   }
1556 
1557   /// LoadCXXStructorImplicitParam - Load the implicit parameter
1558   /// for a constructor/destructor.
1559   llvm::Value *LoadCXXStructorImplicitParam() {
1560     assert(CXXStructorImplicitParamValue &&
1561            "no implicit argument value for this function");
1562     return CXXStructorImplicitParamValue;
1563   }
1564 
1565   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
1566   /// complete class to the given direct base.
1567   llvm::Value *
1568   GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value,
1569                                         const CXXRecordDecl *Derived,
1570                                         const CXXRecordDecl *Base,
1571                                         bool BaseIsVirtual);
1572 
1573   /// GetAddressOfBaseClass - This function will add the necessary delta to the
1574   /// load of 'this' and returns address of the base class.
1575   llvm::Value *GetAddressOfBaseClass(llvm::Value *Value,
1576                                      const CXXRecordDecl *Derived,
1577                                      CastExpr::path_const_iterator PathBegin,
1578                                      CastExpr::path_const_iterator PathEnd,
1579                                      bool NullCheckValue);
1580 
1581   llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value,
1582                                         const CXXRecordDecl *Derived,
1583                                         CastExpr::path_const_iterator PathBegin,
1584                                         CastExpr::path_const_iterator PathEnd,
1585                                         bool NullCheckValue);
1586 
1587   /// GetVTTParameter - Return the VTT parameter that should be passed to a
1588   /// base constructor/destructor with virtual bases.
1589   /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
1590   /// to ItaniumCXXABI.cpp together with all the references to VTT.
1591   llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
1592                                bool Delegating);
1593 
1594   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
1595                                       CXXCtorType CtorType,
1596                                       const FunctionArgList &Args,
1597                                       SourceLocation Loc);
1598   // It's important not to confuse this and the previous function. Delegating
1599   // constructors are the C++0x feature. The constructor delegate optimization
1600   // is used to reduce duplication in the base and complete consturctors where
1601   // they are substantially the same.
1602   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
1603                                         const FunctionArgList &Args);
1604   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
1605                               bool ForVirtualBase, bool Delegating,
1606                               llvm::Value *This,
1607                               CallExpr::const_arg_iterator ArgBeg,
1608                               CallExpr::const_arg_iterator ArgEnd);
1609 
1610   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
1611                               llvm::Value *This, llvm::Value *Src,
1612                               CallExpr::const_arg_iterator ArgBeg,
1613                               CallExpr::const_arg_iterator ArgEnd);
1614 
1615   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1616                                   const ConstantArrayType *ArrayTy,
1617                                   llvm::Value *ArrayPtr,
1618                                   CallExpr::const_arg_iterator ArgBeg,
1619                                   CallExpr::const_arg_iterator ArgEnd,
1620                                   bool ZeroInitialization = false);
1621 
1622   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1623                                   llvm::Value *NumElements,
1624                                   llvm::Value *ArrayPtr,
1625                                   CallExpr::const_arg_iterator ArgBeg,
1626                                   CallExpr::const_arg_iterator ArgEnd,
1627                                   bool ZeroInitialization = false);
1628 
1629   static Destroyer destroyCXXObject;
1630 
1631   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
1632                              bool ForVirtualBase, bool Delegating,
1633                              llvm::Value *This);
1634 
1635   void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
1636                                llvm::Value *NewPtr, llvm::Value *NumElements);
1637 
1638   void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
1639                         llvm::Value *Ptr);
1640 
1641   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
1642   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
1643 
1644   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
1645                       QualType DeleteTy);
1646 
1647   llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E);
1648   llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE);
1649   llvm::Value* EmitCXXUuidofExpr(const CXXUuidofExpr *E);
1650 
1651   /// \brief Situations in which we might emit a check for the suitability of a
1652   ///        pointer or glvalue.
1653   enum TypeCheckKind {
1654     /// Checking the operand of a load. Must be suitably sized and aligned.
1655     TCK_Load,
1656     /// Checking the destination of a store. Must be suitably sized and aligned.
1657     TCK_Store,
1658     /// Checking the bound value in a reference binding. Must be suitably sized
1659     /// and aligned, but is not required to refer to an object (until the
1660     /// reference is used), per core issue 453.
1661     TCK_ReferenceBinding,
1662     /// Checking the object expression in a non-static data member access. Must
1663     /// be an object within its lifetime.
1664     TCK_MemberAccess,
1665     /// Checking the 'this' pointer for a call to a non-static member function.
1666     /// Must be an object within its lifetime.
1667     TCK_MemberCall,
1668     /// Checking the 'this' pointer for a constructor call.
1669     TCK_ConstructorCall,
1670     /// Checking the operand of a static_cast to a derived pointer type. Must be
1671     /// null or an object within its lifetime.
1672     TCK_DowncastPointer,
1673     /// Checking the operand of a static_cast to a derived reference type. Must
1674     /// be an object within its lifetime.
1675     TCK_DowncastReference
1676   };
1677 
1678   /// \brief Emit a check that \p V is the address of storage of the
1679   /// appropriate size and alignment for an object of type \p Type.
1680   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
1681                      QualType Type, CharUnits Alignment = CharUnits::Zero());
1682 
1683   /// \brief Emit a check that \p Base points into an array object, which
1684   /// we can access at index \p Index. \p Accessed should be \c false if we
1685   /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
1686   void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
1687                        QualType IndexType, bool Accessed);
1688 
1689   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1690                                        bool isInc, bool isPre);
1691   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1692                                          bool isInc, bool isPre);
1693   //===--------------------------------------------------------------------===//
1694   //                            Declaration Emission
1695   //===--------------------------------------------------------------------===//
1696 
1697   /// EmitDecl - Emit a declaration.
1698   ///
1699   /// This function can be called with a null (unreachable) insert point.
1700   void EmitDecl(const Decl &D);
1701 
1702   /// EmitVarDecl - Emit a local variable declaration.
1703   ///
1704   /// This function can be called with a null (unreachable) insert point.
1705   void EmitVarDecl(const VarDecl &D);
1706 
1707   void EmitScalarInit(const Expr *init, const ValueDecl *D,
1708                       LValue lvalue, bool capturedByInit);
1709   void EmitScalarInit(llvm::Value *init, LValue lvalue);
1710 
1711   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
1712                              llvm::Value *Address);
1713 
1714   /// EmitAutoVarDecl - Emit an auto variable declaration.
1715   ///
1716   /// This function can be called with a null (unreachable) insert point.
1717   void EmitAutoVarDecl(const VarDecl &D);
1718 
1719   class AutoVarEmission {
1720     friend class CodeGenFunction;
1721 
1722     const VarDecl *Variable;
1723 
1724     /// The alignment of the variable.
1725     CharUnits Alignment;
1726 
1727     /// The address of the alloca.  Null if the variable was emitted
1728     /// as a global constant.
1729     llvm::Value *Address;
1730 
1731     llvm::Value *NRVOFlag;
1732 
1733     /// True if the variable is a __block variable.
1734     bool IsByRef;
1735 
1736     /// True if the variable is of aggregate type and has a constant
1737     /// initializer.
1738     bool IsConstantAggregate;
1739 
1740     /// Non-null if we should use lifetime annotations.
1741     llvm::Value *SizeForLifetimeMarkers;
1742 
1743     struct Invalid {};
1744     AutoVarEmission(Invalid) : Variable(0) {}
1745 
1746     AutoVarEmission(const VarDecl &variable)
1747       : Variable(&variable), Address(0), NRVOFlag(0),
1748         IsByRef(false), IsConstantAggregate(false),
1749         SizeForLifetimeMarkers(0) {}
1750 
1751     bool wasEmittedAsGlobal() const { return Address == 0; }
1752 
1753   public:
1754     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
1755 
1756     bool useLifetimeMarkers() const { return SizeForLifetimeMarkers != 0; }
1757     llvm::Value *getSizeForLifetimeMarkers() const {
1758       assert(useLifetimeMarkers());
1759       return SizeForLifetimeMarkers;
1760     }
1761 
1762     /// Returns the raw, allocated address, which is not necessarily
1763     /// the address of the object itself.
1764     llvm::Value *getAllocatedAddress() const {
1765       return Address;
1766     }
1767 
1768     /// Returns the address of the object within this declaration.
1769     /// Note that this does not chase the forwarding pointer for
1770     /// __block decls.
1771     llvm::Value *getObjectAddress(CodeGenFunction &CGF) const {
1772       if (!IsByRef) return Address;
1773 
1774       return CGF.Builder.CreateStructGEP(Address,
1775                                          CGF.getByRefValueLLVMField(Variable),
1776                                          Variable->getNameAsString());
1777     }
1778   };
1779   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
1780   void EmitAutoVarInit(const AutoVarEmission &emission);
1781   void EmitAutoVarCleanups(const AutoVarEmission &emission);
1782   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
1783                               QualType::DestructionKind dtorKind);
1784 
1785   void EmitStaticVarDecl(const VarDecl &D,
1786                          llvm::GlobalValue::LinkageTypes Linkage);
1787 
1788   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
1789   void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, bool ArgIsPointer,
1790                     unsigned ArgNo);
1791 
1792   /// protectFromPeepholes - Protect a value that we're intending to
1793   /// store to the side, but which will probably be used later, from
1794   /// aggressive peepholing optimizations that might delete it.
1795   ///
1796   /// Pass the result to unprotectFromPeepholes to declare that
1797   /// protection is no longer required.
1798   ///
1799   /// There's no particular reason why this shouldn't apply to
1800   /// l-values, it's just that no existing peepholes work on pointers.
1801   PeepholeProtection protectFromPeepholes(RValue rvalue);
1802   void unprotectFromPeepholes(PeepholeProtection protection);
1803 
1804   //===--------------------------------------------------------------------===//
1805   //                             Statement Emission
1806   //===--------------------------------------------------------------------===//
1807 
1808   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
1809   void EmitStopPoint(const Stmt *S);
1810 
1811   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
1812   /// this function even if there is no current insertion point.
1813   ///
1814   /// This function may clear the current insertion point; callers should use
1815   /// EnsureInsertPoint if they wish to subsequently generate code without first
1816   /// calling EmitBlock, EmitBranch, or EmitStmt.
1817   void EmitStmt(const Stmt *S);
1818 
1819   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
1820   /// necessarily require an insertion point or debug information; typically
1821   /// because the statement amounts to a jump or a container of other
1822   /// statements.
1823   ///
1824   /// \return True if the statement was handled.
1825   bool EmitSimpleStmt(const Stmt *S);
1826 
1827   llvm::Value *EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
1828                                 AggValueSlot AVS = AggValueSlot::ignored());
1829   llvm::Value *EmitCompoundStmtWithoutScope(const CompoundStmt &S,
1830                                             bool GetLast = false,
1831                                             AggValueSlot AVS =
1832                                                 AggValueSlot::ignored());
1833 
1834   /// EmitLabel - Emit the block for the given label. It is legal to call this
1835   /// function even if there is no current insertion point.
1836   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
1837 
1838   void EmitLabelStmt(const LabelStmt &S);
1839   void EmitAttributedStmt(const AttributedStmt &S);
1840   void EmitGotoStmt(const GotoStmt &S);
1841   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
1842   void EmitIfStmt(const IfStmt &S);
1843   void EmitWhileStmt(const WhileStmt &S);
1844   void EmitDoStmt(const DoStmt &S);
1845   void EmitForStmt(const ForStmt &S);
1846   void EmitReturnStmt(const ReturnStmt &S);
1847   void EmitDeclStmt(const DeclStmt &S);
1848   void EmitBreakStmt(const BreakStmt &S);
1849   void EmitContinueStmt(const ContinueStmt &S);
1850   void EmitSwitchStmt(const SwitchStmt &S);
1851   void EmitDefaultStmt(const DefaultStmt &S);
1852   void EmitCaseStmt(const CaseStmt &S);
1853   void EmitCaseStmtRange(const CaseStmt &S);
1854   void EmitAsmStmt(const AsmStmt &S);
1855 
1856   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
1857   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
1858   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
1859   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
1860   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
1861 
1862   llvm::Constant *getUnwindResumeFn();
1863   llvm::Constant *getUnwindResumeOrRethrowFn();
1864   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
1865   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
1866 
1867   void EmitCXXTryStmt(const CXXTryStmt &S);
1868   void EmitSEHTryStmt(const SEHTryStmt &S);
1869   void EmitCXXForRangeStmt(const CXXForRangeStmt &S);
1870 
1871   llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
1872   llvm::Function *GenerateCapturedStmtFunction(const CapturedDecl *CD,
1873                                                const RecordDecl *RD,
1874                                                SourceLocation Loc);
1875 
1876   //===--------------------------------------------------------------------===//
1877   //                         LValue Expression Emission
1878   //===--------------------------------------------------------------------===//
1879 
1880   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
1881   RValue GetUndefRValue(QualType Ty);
1882 
1883   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
1884   /// and issue an ErrorUnsupported style diagnostic (using the
1885   /// provided Name).
1886   RValue EmitUnsupportedRValue(const Expr *E,
1887                                const char *Name);
1888 
1889   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
1890   /// an ErrorUnsupported style diagnostic (using the provided Name).
1891   LValue EmitUnsupportedLValue(const Expr *E,
1892                                const char *Name);
1893 
1894   /// EmitLValue - Emit code to compute a designator that specifies the location
1895   /// of the expression.
1896   ///
1897   /// This can return one of two things: a simple address or a bitfield
1898   /// reference.  In either case, the LLVM Value* in the LValue structure is
1899   /// guaranteed to be an LLVM pointer type.
1900   ///
1901   /// If this returns a bitfield reference, nothing about the pointee type of
1902   /// the LLVM value is known: For example, it may not be a pointer to an
1903   /// integer.
1904   ///
1905   /// If this returns a normal address, and if the lvalue's C type is fixed
1906   /// size, this method guarantees that the returned pointer type will point to
1907   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
1908   /// variable length type, this is not possible.
1909   ///
1910   LValue EmitLValue(const Expr *E);
1911 
1912   /// \brief Same as EmitLValue but additionally we generate checking code to
1913   /// guard against undefined behavior.  This is only suitable when we know
1914   /// that the address will be used to access the object.
1915   LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
1916 
1917   RValue convertTempToRValue(llvm::Value *addr, QualType type,
1918                              SourceLocation Loc);
1919 
1920   void EmitAtomicInit(Expr *E, LValue lvalue);
1921 
1922   RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
1923                         AggValueSlot slot = AggValueSlot::ignored());
1924 
1925   void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
1926 
1927   /// EmitToMemory - Change a scalar value from its value
1928   /// representation to its in-memory representation.
1929   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
1930 
1931   /// EmitFromMemory - Change a scalar value from its memory
1932   /// representation to its value representation.
1933   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
1934 
1935   /// EmitLoadOfScalar - Load a scalar value from an address, taking
1936   /// care to appropriately convert from the memory representation to
1937   /// the LLVM value representation.
1938   llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
1939                                 unsigned Alignment, QualType Ty,
1940                                 SourceLocation Loc,
1941                                 llvm::MDNode *TBAAInfo = 0,
1942                                 QualType TBAABaseTy = QualType(),
1943                                 uint64_t TBAAOffset = 0);
1944 
1945   /// EmitLoadOfScalar - Load a scalar value from an address, taking
1946   /// care to appropriately convert from the memory representation to
1947   /// the LLVM value representation.  The l-value must be a simple
1948   /// l-value.
1949   llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
1950 
1951   /// EmitStoreOfScalar - Store a scalar value to an address, taking
1952   /// care to appropriately convert from the memory representation to
1953   /// the LLVM value representation.
1954   void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
1955                          bool Volatile, unsigned Alignment, QualType Ty,
1956                          llvm::MDNode *TBAAInfo = 0, bool isInit = false,
1957                          QualType TBAABaseTy = QualType(),
1958                          uint64_t TBAAOffset = 0);
1959 
1960   /// EmitStoreOfScalar - Store a scalar value to an address, taking
1961   /// care to appropriately convert from the memory representation to
1962   /// the LLVM value representation.  The l-value must be a simple
1963   /// l-value.  The isInit flag indicates whether this is an initialization.
1964   /// If so, atomic qualifiers are ignored and the store is always non-atomic.
1965   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
1966 
1967   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
1968   /// this method emits the address of the lvalue, then loads the result as an
1969   /// rvalue, returning the rvalue.
1970   RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
1971   RValue EmitLoadOfExtVectorElementLValue(LValue V);
1972   RValue EmitLoadOfBitfieldLValue(LValue LV);
1973 
1974   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1975   /// lvalue, where both are guaranteed to the have the same type, and that type
1976   /// is 'Ty'.
1977   void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit=false);
1978   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
1979 
1980   /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
1981   /// as EmitStoreThroughLValue.
1982   ///
1983   /// \param Result [out] - If non-null, this will be set to a Value* for the
1984   /// bit-field contents after the store, appropriate for use as the result of
1985   /// an assignment to the bit-field.
1986   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1987                                       llvm::Value **Result=0);
1988 
1989   /// Emit an l-value for an assignment (simple or compound) of complex type.
1990   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
1991   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
1992   LValue EmitScalarCompooundAssignWithComplex(const CompoundAssignOperator *E,
1993                                               llvm::Value *&Result);
1994 
1995   // Note: only available for agg return types
1996   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
1997   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
1998   // Note: only available for agg return types
1999   LValue EmitCallExprLValue(const CallExpr *E);
2000   // Note: only available for agg return types
2001   LValue EmitVAArgExprLValue(const VAArgExpr *E);
2002   LValue EmitDeclRefLValue(const DeclRefExpr *E);
2003   LValue EmitStringLiteralLValue(const StringLiteral *E);
2004   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
2005   LValue EmitPredefinedLValue(const PredefinedExpr *E);
2006   LValue EmitUnaryOpLValue(const UnaryOperator *E);
2007   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
2008                                 bool Accessed = false);
2009   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
2010   LValue EmitMemberExpr(const MemberExpr *E);
2011   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
2012   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
2013   LValue EmitInitListLValue(const InitListExpr *E);
2014   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
2015   LValue EmitCastLValue(const CastExpr *E);
2016   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
2017   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
2018 
2019   RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
2020 
2021   class ConstantEmission {
2022     llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
2023     ConstantEmission(llvm::Constant *C, bool isReference)
2024       : ValueAndIsReference(C, isReference) {}
2025   public:
2026     ConstantEmission() {}
2027     static ConstantEmission forReference(llvm::Constant *C) {
2028       return ConstantEmission(C, true);
2029     }
2030     static ConstantEmission forValue(llvm::Constant *C) {
2031       return ConstantEmission(C, false);
2032     }
2033 
2034     LLVM_EXPLICIT operator bool() const { return ValueAndIsReference.getOpaqueValue() != 0; }
2035 
2036     bool isReference() const { return ValueAndIsReference.getInt(); }
2037     LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
2038       assert(isReference());
2039       return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
2040                                             refExpr->getType());
2041     }
2042 
2043     llvm::Constant *getValue() const {
2044       assert(!isReference());
2045       return ValueAndIsReference.getPointer();
2046     }
2047   };
2048 
2049   ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
2050 
2051   RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
2052                                 AggValueSlot slot = AggValueSlot::ignored());
2053   LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
2054 
2055   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
2056                               const ObjCIvarDecl *Ivar);
2057   LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
2058   LValue EmitLValueForLambdaField(const FieldDecl *Field);
2059 
2060   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
2061   /// if the Field is a reference, this will return the address of the reference
2062   /// and not the address of the value stored in the reference.
2063   LValue EmitLValueForFieldInitialization(LValue Base,
2064                                           const FieldDecl* Field);
2065 
2066   LValue EmitLValueForIvar(QualType ObjectTy,
2067                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
2068                            unsigned CVRQualifiers);
2069 
2070   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
2071   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
2072   LValue EmitLambdaLValue(const LambdaExpr *E);
2073   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
2074   LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
2075 
2076   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
2077   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
2078   LValue EmitStmtExprLValue(const StmtExpr *E);
2079   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
2080   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
2081   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init);
2082 
2083   //===--------------------------------------------------------------------===//
2084   //                         Scalar Expression Emission
2085   //===--------------------------------------------------------------------===//
2086 
2087   /// EmitCall - Generate a call of the given function, expecting the given
2088   /// result type, and using the given argument list which specifies both the
2089   /// LLVM arguments and the types they were derived from.
2090   ///
2091   /// \param TargetDecl - If given, the decl of the function in a direct call;
2092   /// used to set attributes on the call (noreturn, etc.).
2093   RValue EmitCall(const CGFunctionInfo &FnInfo,
2094                   llvm::Value *Callee,
2095                   ReturnValueSlot ReturnValue,
2096                   const CallArgList &Args,
2097                   const Decl *TargetDecl = 0,
2098                   llvm::Instruction **callOrInvoke = 0);
2099 
2100   RValue EmitCall(QualType FnType, llvm::Value *Callee,
2101                   SourceLocation CallLoc,
2102                   ReturnValueSlot ReturnValue,
2103                   CallExpr::const_arg_iterator ArgBeg,
2104                   CallExpr::const_arg_iterator ArgEnd,
2105                   const Decl *TargetDecl = 0);
2106   RValue EmitCallExpr(const CallExpr *E,
2107                       ReturnValueSlot ReturnValue = ReturnValueSlot());
2108 
2109   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
2110                                   const Twine &name = "");
2111   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
2112                                   ArrayRef<llvm::Value*> args,
2113                                   const Twine &name = "");
2114   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
2115                                           const Twine &name = "");
2116   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
2117                                           ArrayRef<llvm::Value*> args,
2118                                           const Twine &name = "");
2119 
2120   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2121                                   ArrayRef<llvm::Value *> Args,
2122                                   const Twine &Name = "");
2123   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2124                                   const Twine &Name = "");
2125   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
2126                                          ArrayRef<llvm::Value*> args,
2127                                          const Twine &name = "");
2128   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
2129                                          const Twine &name = "");
2130   void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
2131                                        ArrayRef<llvm::Value*> args);
2132 
2133   llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
2134                                          NestedNameSpecifier *Qual,
2135                                          llvm::Type *Ty);
2136 
2137   llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
2138                                                    CXXDtorType Type,
2139                                                    const CXXRecordDecl *RD);
2140 
2141   RValue EmitCXXMemberCall(const CXXMethodDecl *MD,
2142                            SourceLocation CallLoc,
2143                            llvm::Value *Callee,
2144                            ReturnValueSlot ReturnValue,
2145                            llvm::Value *This,
2146                            llvm::Value *ImplicitParam,
2147                            QualType ImplicitParamTy,
2148                            CallExpr::const_arg_iterator ArgBeg,
2149                            CallExpr::const_arg_iterator ArgEnd);
2150   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
2151                                ReturnValueSlot ReturnValue);
2152   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
2153                                       ReturnValueSlot ReturnValue);
2154 
2155   llvm::Value *EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E,
2156                                            const CXXMethodDecl *MD,
2157                                            llvm::Value *This);
2158   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
2159                                        const CXXMethodDecl *MD,
2160                                        ReturnValueSlot ReturnValue);
2161 
2162   RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
2163                                 ReturnValueSlot ReturnValue);
2164 
2165 
2166   RValue EmitBuiltinExpr(const FunctionDecl *FD,
2167                          unsigned BuiltinID, const CallExpr *E);
2168 
2169   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
2170 
2171   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
2172   /// is unhandled by the current target.
2173   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2174 
2175   llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
2176                                              const llvm::CmpInst::Predicate Fp,
2177                                              const llvm::CmpInst::Predicate Ip,
2178                                              const llvm::Twine &Name = "");
2179   llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty);
2180   llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2181   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2182 
2183   llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
2184                                          unsigned LLVMIntrinsic,
2185                                          unsigned AltLLVMIntrinsic,
2186                                          const char *NameHint,
2187                                          unsigned Modifier,
2188                                          const CallExpr *E,
2189                                          SmallVectorImpl<llvm::Value *> &Ops,
2190                                          llvm::Value *Align = 0);
2191   llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
2192                                           unsigned Modifier, llvm::Type *ArgTy,
2193                                           const CallExpr *E);
2194   llvm::Value *EmitNeonCall(llvm::Function *F,
2195                             SmallVectorImpl<llvm::Value*> &O,
2196                             const char *name,
2197                             unsigned shift = 0, bool rightshift = false);
2198   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
2199   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
2200                                    bool negateForRightShift);
2201   llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
2202                                  llvm::Type *Ty, bool usgn, const char *name);
2203 
2204   llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
2205   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2206   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2207 
2208   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
2209   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
2210   llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
2211   llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
2212   llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
2213   llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
2214                                 const ObjCMethodDecl *MethodWithObjects);
2215   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
2216   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
2217                              ReturnValueSlot Return = ReturnValueSlot());
2218 
2219   /// Retrieves the default cleanup kind for an ARC cleanup.
2220   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
2221   CleanupKind getARCCleanupKind() {
2222     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
2223              ? NormalAndEHCleanup : NormalCleanup;
2224   }
2225 
2226   // ARC primitives.
2227   void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr);
2228   void EmitARCDestroyWeak(llvm::Value *addr);
2229   llvm::Value *EmitARCLoadWeak(llvm::Value *addr);
2230   llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr);
2231   llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr,
2232                                 bool ignored);
2233   void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src);
2234   void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src);
2235   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
2236   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
2237   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
2238                                   bool resultIgnored);
2239   llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value,
2240                                       bool resultIgnored);
2241   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
2242   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
2243   llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
2244   void EmitARCDestroyStrong(llvm::Value *addr, ARCPreciseLifetime_t precise);
2245   void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
2246   llvm::Value *EmitARCAutorelease(llvm::Value *value);
2247   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
2248   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
2249   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
2250 
2251   std::pair<LValue,llvm::Value*>
2252   EmitARCStoreAutoreleasing(const BinaryOperator *e);
2253   std::pair<LValue,llvm::Value*>
2254   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
2255 
2256   llvm::Value *EmitObjCThrowOperand(const Expr *expr);
2257 
2258   llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr);
2259   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
2260   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
2261 
2262   llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
2263   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
2264   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
2265 
2266   void EmitARCIntrinsicUse(llvm::ArrayRef<llvm::Value*> values);
2267 
2268   static Destroyer destroyARCStrongImprecise;
2269   static Destroyer destroyARCStrongPrecise;
2270   static Destroyer destroyARCWeak;
2271 
2272   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
2273   llvm::Value *EmitObjCAutoreleasePoolPush();
2274   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
2275   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
2276   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
2277 
2278   /// \brief Emits a reference binding to the passed in expression.
2279   RValue EmitReferenceBindingToExpr(const Expr *E);
2280 
2281   //===--------------------------------------------------------------------===//
2282   //                           Expression Emission
2283   //===--------------------------------------------------------------------===//
2284 
2285   // Expressions are broken into three classes: scalar, complex, aggregate.
2286 
2287   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
2288   /// scalar type, returning the result.
2289   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
2290 
2291   /// EmitScalarConversion - Emit a conversion from the specified type to the
2292   /// specified destination type, both of which are LLVM scalar types.
2293   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
2294                                     QualType DstTy);
2295 
2296   /// EmitComplexToScalarConversion - Emit a conversion from the specified
2297   /// complex type to the specified destination type, where the destination type
2298   /// is an LLVM scalar type.
2299   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
2300                                              QualType DstTy);
2301 
2302 
2303   /// EmitAggExpr - Emit the computation of the specified expression
2304   /// of aggregate type.  The result is computed into the given slot,
2305   /// which may be null to indicate that the value is not needed.
2306   void EmitAggExpr(const Expr *E, AggValueSlot AS);
2307 
2308   /// EmitAggExprToLValue - Emit the computation of the specified expression of
2309   /// aggregate type into a temporary LValue.
2310   LValue EmitAggExprToLValue(const Expr *E);
2311 
2312   /// EmitGCMemmoveCollectable - Emit special API for structs with object
2313   /// pointers.
2314   void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr,
2315                                 QualType Ty);
2316 
2317   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
2318   /// make sure it survives garbage collection until this point.
2319   void EmitExtendGCLifetime(llvm::Value *object);
2320 
2321   /// EmitComplexExpr - Emit the computation of the specified expression of
2322   /// complex type, returning the result.
2323   ComplexPairTy EmitComplexExpr(const Expr *E,
2324                                 bool IgnoreReal = false,
2325                                 bool IgnoreImag = false);
2326 
2327   /// EmitComplexExprIntoLValue - Emit the given expression of complex
2328   /// type and place its result into the specified l-value.
2329   void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
2330 
2331   /// EmitStoreOfComplex - Store a complex number into the specified l-value.
2332   void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
2333 
2334   /// EmitLoadOfComplex - Load a complex number from the specified l-value.
2335   ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
2336 
2337   /// CreateStaticVarDecl - Create a zero-initialized LLVM global for
2338   /// a static local variable.
2339   llvm::GlobalVariable *CreateStaticVarDecl(const VarDecl &D,
2340                                             const char *Separator,
2341                                        llvm::GlobalValue::LinkageTypes Linkage);
2342 
2343   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
2344   /// global variable that has already been created for it.  If the initializer
2345   /// has a different type than GV does, this may free GV and return a different
2346   /// one.  Otherwise it just returns GV.
2347   llvm::GlobalVariable *
2348   AddInitializerToStaticVarDecl(const VarDecl &D,
2349                                 llvm::GlobalVariable *GV);
2350 
2351 
2352   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
2353   /// variable with global storage.
2354   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
2355                                 bool PerformInit);
2356 
2357   /// Call atexit() with a function that passes the given argument to
2358   /// the given function.
2359   void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn,
2360                                     llvm::Constant *addr);
2361 
2362   /// Emit code in this function to perform a guarded variable
2363   /// initialization.  Guarded initializations are used when it's not
2364   /// possible to prove that an initialization will be done exactly
2365   /// once, e.g. with a static local variable or a static data member
2366   /// of a class template.
2367   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
2368                           bool PerformInit);
2369 
2370   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
2371   /// variables.
2372   void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
2373                                  ArrayRef<llvm::Constant *> Decls,
2374                                  llvm::GlobalVariable *Guard = 0);
2375 
2376   /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
2377   /// variables.
2378   void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn,
2379                                   const std::vector<std::pair<llvm::WeakVH,
2380                                   llvm::Constant*> > &DtorsAndObjects);
2381 
2382   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
2383                                         const VarDecl *D,
2384                                         llvm::GlobalVariable *Addr,
2385                                         bool PerformInit);
2386 
2387   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
2388 
2389   void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src,
2390                                   const Expr *Exp);
2391 
2392   void enterFullExpression(const ExprWithCleanups *E) {
2393     if (E->getNumObjects() == 0) return;
2394     enterNonTrivialFullExpression(E);
2395   }
2396   void enterNonTrivialFullExpression(const ExprWithCleanups *E);
2397 
2398   void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
2399 
2400   void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest);
2401 
2402   RValue EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest = 0);
2403 
2404   //===--------------------------------------------------------------------===//
2405   //                         Annotations Emission
2406   //===--------------------------------------------------------------------===//
2407 
2408   /// Emit an annotation call (intrinsic or builtin).
2409   llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
2410                                   llvm::Value *AnnotatedVal,
2411                                   StringRef AnnotationStr,
2412                                   SourceLocation Location);
2413 
2414   /// Emit local annotations for the local variable V, declared by D.
2415   void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
2416 
2417   /// Emit field annotations for the given field & value. Returns the
2418   /// annotation result.
2419   llvm::Value *EmitFieldAnnotations(const FieldDecl *D, llvm::Value *V);
2420 
2421   //===--------------------------------------------------------------------===//
2422   //                             Internal Helpers
2423   //===--------------------------------------------------------------------===//
2424 
2425   /// ContainsLabel - Return true if the statement contains a label in it.  If
2426   /// this statement is not executed normally, it not containing a label means
2427   /// that we can just remove the code.
2428   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
2429 
2430   /// containsBreak - Return true if the statement contains a break out of it.
2431   /// If the statement (recursively) contains a switch or loop with a break
2432   /// inside of it, this is fine.
2433   static bool containsBreak(const Stmt *S);
2434 
2435   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2436   /// to a constant, or if it does but contains a label, return false.  If it
2437   /// constant folds return true and set the boolean result in Result.
2438   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result);
2439 
2440   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2441   /// to a constant, or if it does but contains a label, return false.  If it
2442   /// constant folds return true and set the folded value.
2443   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result);
2444 
2445   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
2446   /// if statement) to the specified blocks.  Based on the condition, this might
2447   /// try to simplify the codegen of the conditional based on the branch.
2448   /// TrueCount should be the number of times we expect the condition to
2449   /// evaluate to true based on PGO data.
2450   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
2451                             llvm::BasicBlock *FalseBlock, uint64_t TrueCount);
2452 
2453   /// \brief Emit a description of a type in a format suitable for passing to
2454   /// a runtime sanitizer handler.
2455   llvm::Constant *EmitCheckTypeDescriptor(QualType T);
2456 
2457   /// \brief Convert a value into a format suitable for passing to a runtime
2458   /// sanitizer handler.
2459   llvm::Value *EmitCheckValue(llvm::Value *V);
2460 
2461   /// \brief Emit a description of a source location in a format suitable for
2462   /// passing to a runtime sanitizer handler.
2463   llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
2464 
2465   /// \brief Specify under what conditions this check can be recovered
2466   enum CheckRecoverableKind {
2467     /// Always terminate program execution if this check fails
2468     CRK_Unrecoverable,
2469     /// Check supports recovering, allows user to specify which
2470     CRK_Recoverable,
2471     /// Runtime conditionally aborts, always need to support recovery.
2472     CRK_AlwaysRecoverable
2473   };
2474 
2475   /// \brief Create a basic block that will call a handler function in a
2476   /// sanitizer runtime with the provided arguments, and create a conditional
2477   /// branch to it.
2478   void EmitCheck(llvm::Value *Checked, StringRef CheckName,
2479                  ArrayRef<llvm::Constant *> StaticArgs,
2480                  ArrayRef<llvm::Value *> DynamicArgs,
2481                  CheckRecoverableKind Recoverable);
2482 
2483   /// \brief Create a basic block that will call the trap intrinsic, and emit a
2484   /// conditional branch to it, for the -ftrapv checks.
2485   void EmitTrapCheck(llvm::Value *Checked);
2486 
2487   /// EmitCallArg - Emit a single call argument.
2488   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
2489 
2490   /// EmitDelegateCallArg - We are performing a delegate call; that
2491   /// is, the current function is delegating to another one.  Produce
2492   /// a r-value suitable for passing the given parameter.
2493   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
2494                            SourceLocation loc);
2495 
2496   /// SetFPAccuracy - Set the minimum required accuracy of the given floating
2497   /// point operation, expressed as the maximum relative error in ulp.
2498   void SetFPAccuracy(llvm::Value *Val, float Accuracy);
2499 
2500 private:
2501   llvm::MDNode *getRangeForLoadFromType(QualType Ty);
2502   void EmitReturnOfRValue(RValue RV, QualType Ty);
2503 
2504   void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
2505 
2506   llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4>
2507   DeferredReplacements;
2508 
2509   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
2510   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
2511   ///
2512   /// \param AI - The first function argument of the expansion.
2513   /// \return The argument following the last expanded function
2514   /// argument.
2515   llvm::Function::arg_iterator
2516   ExpandTypeFromArgs(QualType Ty, LValue Dst,
2517                      llvm::Function::arg_iterator AI);
2518 
2519   /// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg
2520   /// Ty, into individual arguments on the provided vector \arg Args. See
2521   /// ABIArgInfo::Expand.
2522   void ExpandTypeToArgs(QualType Ty, RValue Src,
2523                         SmallVectorImpl<llvm::Value *> &Args,
2524                         llvm::FunctionType *IRFuncTy);
2525 
2526   llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
2527                             const Expr *InputExpr, std::string &ConstraintStr);
2528 
2529   llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
2530                                   LValue InputValue, QualType InputType,
2531                                   std::string &ConstraintStr,
2532                                   SourceLocation Loc);
2533 
2534 public:
2535   /// EmitCallArgs - Emit call arguments for a function.
2536   template <typename T>
2537   void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo,
2538                     CallExpr::const_arg_iterator ArgBeg,
2539                     CallExpr::const_arg_iterator ArgEnd,
2540                     bool ForceColumnInfo = false) {
2541     if (CallArgTypeInfo) {
2542       EmitCallArgs(Args, CallArgTypeInfo->isVariadic(),
2543                    CallArgTypeInfo->param_type_begin(),
2544                    CallArgTypeInfo->param_type_end(), ArgBeg, ArgEnd,
2545                    ForceColumnInfo);
2546     } else {
2547       // T::param_type_iterator might not have a default ctor.
2548       const QualType *NoIter = 0;
2549       EmitCallArgs(Args, /*AllowExtraArguments=*/true, NoIter, NoIter, ArgBeg,
2550                    ArgEnd, ForceColumnInfo);
2551     }
2552   }
2553 
2554   template<typename ArgTypeIterator>
2555   void EmitCallArgs(CallArgList& Args,
2556                     bool AllowExtraArguments,
2557                     ArgTypeIterator ArgTypeBeg,
2558                     ArgTypeIterator ArgTypeEnd,
2559                     CallExpr::const_arg_iterator ArgBeg,
2560                     CallExpr::const_arg_iterator ArgEnd,
2561                     bool ForceColumnInfo = false) {
2562     SmallVector<QualType, 16> ArgTypes;
2563     CallExpr::const_arg_iterator Arg = ArgBeg;
2564 
2565     // First, use the argument types that the type info knows about
2566     for (ArgTypeIterator I = ArgTypeBeg, E = ArgTypeEnd; I != E; ++I, ++Arg) {
2567       assert(Arg != ArgEnd && "Running over edge of argument list!");
2568 #ifndef NDEBUG
2569       QualType ArgType = *I;
2570       QualType ActualArgType = Arg->getType();
2571       if (ArgType->isPointerType() && ActualArgType->isPointerType()) {
2572         QualType ActualBaseType =
2573             ActualArgType->getAs<PointerType>()->getPointeeType();
2574         QualType ArgBaseType =
2575             ArgType->getAs<PointerType>()->getPointeeType();
2576         if (ArgBaseType->isVariableArrayType()) {
2577           if (const VariableArrayType *VAT =
2578               getContext().getAsVariableArrayType(ActualBaseType)) {
2579             if (!VAT->getSizeExpr())
2580               ActualArgType = ArgType;
2581           }
2582         }
2583       }
2584       assert(getContext().getCanonicalType(ArgType.getNonReferenceType()).
2585              getTypePtr() ==
2586              getContext().getCanonicalType(ActualArgType).getTypePtr() &&
2587              "type mismatch in call argument!");
2588 #endif
2589       ArgTypes.push_back(*I);
2590     }
2591 
2592     // Either we've emitted all the call args, or we have a call to variadic
2593     // function or some other call that allows extra arguments.
2594     assert((Arg == ArgEnd || AllowExtraArguments) &&
2595            "Extra arguments in non-variadic function!");
2596 
2597     // If we still have any arguments, emit them using the type of the argument.
2598     for (; Arg != ArgEnd; ++Arg)
2599       ArgTypes.push_back(Arg->getType());
2600 
2601     EmitCallArgs(Args, ArgTypes, ArgBeg, ArgEnd, ForceColumnInfo);
2602   }
2603 
2604   void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes,
2605                     CallExpr::const_arg_iterator ArgBeg,
2606                     CallExpr::const_arg_iterator ArgEnd, bool ForceColumnInfo);
2607 
2608 private:
2609   const TargetCodeGenInfo &getTargetHooks() const {
2610     return CGM.getTargetCodeGenInfo();
2611   }
2612 
2613   void EmitDeclMetadata();
2614 
2615   CodeGenModule::ByrefHelpers *
2616   buildByrefHelpers(llvm::StructType &byrefType,
2617                     const AutoVarEmission &emission);
2618 
2619   void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
2620 
2621   /// GetPointeeAlignment - Given an expression with a pointer type, emit the
2622   /// value and compute our best estimate of the alignment of the pointee.
2623   std::pair<llvm::Value*, unsigned> EmitPointerWithAlignment(const Expr *Addr);
2624 };
2625 
2626 /// Helper class with most of the code for saving a value for a
2627 /// conditional expression cleanup.
2628 struct DominatingLLVMValue {
2629   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
2630 
2631   /// Answer whether the given value needs extra work to be saved.
2632   static bool needsSaving(llvm::Value *value) {
2633     // If it's not an instruction, we don't need to save.
2634     if (!isa<llvm::Instruction>(value)) return false;
2635 
2636     // If it's an instruction in the entry block, we don't need to save.
2637     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
2638     return (block != &block->getParent()->getEntryBlock());
2639   }
2640 
2641   /// Try to save the given value.
2642   static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
2643     if (!needsSaving(value)) return saved_type(value, false);
2644 
2645     // Otherwise we need an alloca.
2646     llvm::Value *alloca =
2647       CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save");
2648     CGF.Builder.CreateStore(value, alloca);
2649 
2650     return saved_type(alloca, true);
2651   }
2652 
2653   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
2654     if (!value.getInt()) return value.getPointer();
2655     return CGF.Builder.CreateLoad(value.getPointer());
2656   }
2657 };
2658 
2659 /// A partial specialization of DominatingValue for llvm::Values that
2660 /// might be llvm::Instructions.
2661 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
2662   typedef T *type;
2663   static type restore(CodeGenFunction &CGF, saved_type value) {
2664     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
2665   }
2666 };
2667 
2668 /// A specialization of DominatingValue for RValue.
2669 template <> struct DominatingValue<RValue> {
2670   typedef RValue type;
2671   class saved_type {
2672     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
2673                 AggregateAddress, ComplexAddress };
2674 
2675     llvm::Value *Value;
2676     Kind K;
2677     saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {}
2678 
2679   public:
2680     static bool needsSaving(RValue value);
2681     static saved_type save(CodeGenFunction &CGF, RValue value);
2682     RValue restore(CodeGenFunction &CGF);
2683 
2684     // implementations in CGExprCXX.cpp
2685   };
2686 
2687   static bool needsSaving(type value) {
2688     return saved_type::needsSaving(value);
2689   }
2690   static saved_type save(CodeGenFunction &CGF, type value) {
2691     return saved_type::save(CGF, value);
2692   }
2693   static type restore(CodeGenFunction &CGF, saved_type value) {
2694     return value.restore(CGF);
2695   }
2696 };
2697 
2698 }  // end namespace CodeGen
2699 }  // end namespace clang
2700 
2701 #endif
2702