1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the internal per-function state used for llvm translation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef CLANG_CODEGEN_CODEGENFUNCTION_H
15 #define CLANG_CODEGEN_CODEGENFUNCTION_H
16 
17 #include "clang/AST/Type.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/ExprObjC.h"
20 #include "clang/AST/CharUnits.h"
21 #include "clang/Frontend/CodeGenOptions.h"
22 #include "clang/Basic/ABI.h"
23 #include "clang/Basic/TargetInfo.h"
24 #include "llvm/ADT/ArrayRef.h"
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/Support/ValueHandle.h"
28 #include "llvm/Support/Debug.h"
29 #include "CodeGenModule.h"
30 #include "CGBuilder.h"
31 #include "CGDebugInfo.h"
32 #include "CGValue.h"
33 
34 namespace llvm {
35   class BasicBlock;
36   class LLVMContext;
37   class MDNode;
38   class Module;
39   class SwitchInst;
40   class Twine;
41   class Value;
42   class CallSite;
43 }
44 
45 namespace clang {
46   class ASTContext;
47   class BlockDecl;
48   class CXXDestructorDecl;
49   class CXXForRangeStmt;
50   class CXXTryStmt;
51   class Decl;
52   class LabelDecl;
53   class EnumConstantDecl;
54   class FunctionDecl;
55   class FunctionProtoType;
56   class LabelStmt;
57   class ObjCContainerDecl;
58   class ObjCInterfaceDecl;
59   class ObjCIvarDecl;
60   class ObjCMethodDecl;
61   class ObjCImplementationDecl;
62   class ObjCPropertyImplDecl;
63   class TargetInfo;
64   class TargetCodeGenInfo;
65   class VarDecl;
66   class ObjCForCollectionStmt;
67   class ObjCAtTryStmt;
68   class ObjCAtThrowStmt;
69   class ObjCAtSynchronizedStmt;
70   class ObjCAutoreleasePoolStmt;
71 
72 namespace CodeGen {
73   class CodeGenTypes;
74   class CGFunctionInfo;
75   class CGRecordLayout;
76   class CGBlockInfo;
77   class CGCXXABI;
78   class BlockFlags;
79   class BlockFieldFlags;
80 
81 /// A branch fixup.  These are required when emitting a goto to a
82 /// label which hasn't been emitted yet.  The goto is optimistically
83 /// emitted as a branch to the basic block for the label, and (if it
84 /// occurs in a scope with non-trivial cleanups) a fixup is added to
85 /// the innermost cleanup.  When a (normal) cleanup is popped, any
86 /// unresolved fixups in that scope are threaded through the cleanup.
87 struct BranchFixup {
88   /// The block containing the terminator which needs to be modified
89   /// into a switch if this fixup is resolved into the current scope.
90   /// If null, LatestBranch points directly to the destination.
91   llvm::BasicBlock *OptimisticBranchBlock;
92 
93   /// The ultimate destination of the branch.
94   ///
95   /// This can be set to null to indicate that this fixup was
96   /// successfully resolved.
97   llvm::BasicBlock *Destination;
98 
99   /// The destination index value.
100   unsigned DestinationIndex;
101 
102   /// The initial branch of the fixup.
103   llvm::BranchInst *InitialBranch;
104 };
105 
106 template <class T> struct InvariantValue {
107   typedef T type;
108   typedef T saved_type;
109   static bool needsSaving(type value) { return false; }
110   static saved_type save(CodeGenFunction &CGF, type value) { return value; }
111   static type restore(CodeGenFunction &CGF, saved_type value) { return value; }
112 };
113 
114 /// A metaprogramming class for ensuring that a value will dominate an
115 /// arbitrary position in a function.
116 template <class T> struct DominatingValue : InvariantValue<T> {};
117 
118 template <class T, bool mightBeInstruction =
119             llvm::is_base_of<llvm::Value, T>::value &&
120             !llvm::is_base_of<llvm::Constant, T>::value &&
121             !llvm::is_base_of<llvm::BasicBlock, T>::value>
122 struct DominatingPointer;
123 template <class T> struct DominatingPointer<T,false> : InvariantValue<T*> {};
124 // template <class T> struct DominatingPointer<T,true> at end of file
125 
126 template <class T> struct DominatingValue<T*> : DominatingPointer<T> {};
127 
128 enum CleanupKind {
129   EHCleanup = 0x1,
130   NormalCleanup = 0x2,
131   NormalAndEHCleanup = EHCleanup | NormalCleanup,
132 
133   InactiveCleanup = 0x4,
134   InactiveEHCleanup = EHCleanup | InactiveCleanup,
135   InactiveNormalCleanup = NormalCleanup | InactiveCleanup,
136   InactiveNormalAndEHCleanup = NormalAndEHCleanup | InactiveCleanup
137 };
138 
139 /// A stack of scopes which respond to exceptions, including cleanups
140 /// and catch blocks.
141 class EHScopeStack {
142 public:
143   /// A saved depth on the scope stack.  This is necessary because
144   /// pushing scopes onto the stack invalidates iterators.
145   class stable_iterator {
146     friend class EHScopeStack;
147 
148     /// Offset from StartOfData to EndOfBuffer.
149     ptrdiff_t Size;
150 
151     stable_iterator(ptrdiff_t Size) : Size(Size) {}
152 
153   public:
154     static stable_iterator invalid() { return stable_iterator(-1); }
155     stable_iterator() : Size(-1) {}
156 
157     bool isValid() const { return Size >= 0; }
158 
159     /// Returns true if this scope encloses I.
160     /// Returns false if I is invalid.
161     /// This scope must be valid.
162     bool encloses(stable_iterator I) const { return Size <= I.Size; }
163 
164     /// Returns true if this scope strictly encloses I: that is,
165     /// if it encloses I and is not I.
166     /// Returns false is I is invalid.
167     /// This scope must be valid.
168     bool strictlyEncloses(stable_iterator I) const { return Size < I.Size; }
169 
170     friend bool operator==(stable_iterator A, stable_iterator B) {
171       return A.Size == B.Size;
172     }
173     friend bool operator!=(stable_iterator A, stable_iterator B) {
174       return A.Size != B.Size;
175     }
176   };
177 
178   /// Information for lazily generating a cleanup.  Subclasses must be
179   /// POD-like: cleanups will not be destructed, and they will be
180   /// allocated on the cleanup stack and freely copied and moved
181   /// around.
182   ///
183   /// Cleanup implementations should generally be declared in an
184   /// anonymous namespace.
185   class Cleanup {
186     // Anchor the construction vtable.
187     virtual void anchor();
188   public:
189     /// Generation flags.
190     class Flags {
191       enum {
192         F_IsForEH             = 0x1,
193         F_IsNormalCleanupKind = 0x2,
194         F_IsEHCleanupKind     = 0x4
195       };
196       unsigned flags;
197 
198     public:
199       Flags() : flags(0) {}
200 
201       /// isForEH - true if the current emission is for an EH cleanup.
202       bool isForEHCleanup() const { return flags & F_IsForEH; }
203       bool isForNormalCleanup() const { return !isForEHCleanup(); }
204       void setIsForEHCleanup() { flags |= F_IsForEH; }
205 
206       bool isNormalCleanupKind() const { return flags & F_IsNormalCleanupKind; }
207       void setIsNormalCleanupKind() { flags |= F_IsNormalCleanupKind; }
208 
209       /// isEHCleanupKind - true if the cleanup was pushed as an EH
210       /// cleanup.
211       bool isEHCleanupKind() const { return flags & F_IsEHCleanupKind; }
212       void setIsEHCleanupKind() { flags |= F_IsEHCleanupKind; }
213     };
214 
215     // Provide a virtual destructor to suppress a very common warning
216     // that unfortunately cannot be suppressed without this.  Cleanups
217     // should not rely on this destructor ever being called.
218     virtual ~Cleanup() {}
219 
220     /// Emit the cleanup.  For normal cleanups, this is run in the
221     /// same EH context as when the cleanup was pushed, i.e. the
222     /// immediately-enclosing context of the cleanup scope.  For
223     /// EH cleanups, this is run in a terminate context.
224     ///
225     // \param IsForEHCleanup true if this is for an EH cleanup, false
226     ///  if for a normal cleanup.
227     virtual void Emit(CodeGenFunction &CGF, Flags flags) = 0;
228   };
229 
230   /// ConditionalCleanupN stores the saved form of its N parameters,
231   /// then restores them and performs the cleanup.
232   template <class T, class A0>
233   class ConditionalCleanup1 : public Cleanup {
234     typedef typename DominatingValue<A0>::saved_type A0_saved;
235     A0_saved a0_saved;
236 
237     void Emit(CodeGenFunction &CGF, Flags flags) {
238       A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
239       T(a0).Emit(CGF, flags);
240     }
241 
242   public:
243     ConditionalCleanup1(A0_saved a0)
244       : a0_saved(a0) {}
245   };
246 
247   template <class T, class A0, class A1>
248   class ConditionalCleanup2 : public Cleanup {
249     typedef typename DominatingValue<A0>::saved_type A0_saved;
250     typedef typename DominatingValue<A1>::saved_type A1_saved;
251     A0_saved a0_saved;
252     A1_saved a1_saved;
253 
254     void Emit(CodeGenFunction &CGF, Flags flags) {
255       A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
256       A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
257       T(a0, a1).Emit(CGF, flags);
258     }
259 
260   public:
261     ConditionalCleanup2(A0_saved a0, A1_saved a1)
262       : a0_saved(a0), a1_saved(a1) {}
263   };
264 
265   template <class T, class A0, class A1, class A2>
266   class ConditionalCleanup3 : public Cleanup {
267     typedef typename DominatingValue<A0>::saved_type A0_saved;
268     typedef typename DominatingValue<A1>::saved_type A1_saved;
269     typedef typename DominatingValue<A2>::saved_type A2_saved;
270     A0_saved a0_saved;
271     A1_saved a1_saved;
272     A2_saved a2_saved;
273 
274     void Emit(CodeGenFunction &CGF, Flags flags) {
275       A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
276       A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
277       A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved);
278       T(a0, a1, a2).Emit(CGF, flags);
279     }
280 
281   public:
282     ConditionalCleanup3(A0_saved a0, A1_saved a1, A2_saved a2)
283       : a0_saved(a0), a1_saved(a1), a2_saved(a2) {}
284   };
285 
286   template <class T, class A0, class A1, class A2, class A3>
287   class ConditionalCleanup4 : public Cleanup {
288     typedef typename DominatingValue<A0>::saved_type A0_saved;
289     typedef typename DominatingValue<A1>::saved_type A1_saved;
290     typedef typename DominatingValue<A2>::saved_type A2_saved;
291     typedef typename DominatingValue<A3>::saved_type A3_saved;
292     A0_saved a0_saved;
293     A1_saved a1_saved;
294     A2_saved a2_saved;
295     A3_saved a3_saved;
296 
297     void Emit(CodeGenFunction &CGF, Flags flags) {
298       A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
299       A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
300       A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved);
301       A3 a3 = DominatingValue<A3>::restore(CGF, a3_saved);
302       T(a0, a1, a2, a3).Emit(CGF, flags);
303     }
304 
305   public:
306     ConditionalCleanup4(A0_saved a0, A1_saved a1, A2_saved a2, A3_saved a3)
307       : a0_saved(a0), a1_saved(a1), a2_saved(a2), a3_saved(a3) {}
308   };
309 
310 private:
311   // The implementation for this class is in CGException.h and
312   // CGException.cpp; the definition is here because it's used as a
313   // member of CodeGenFunction.
314 
315   /// The start of the scope-stack buffer, i.e. the allocated pointer
316   /// for the buffer.  All of these pointers are either simultaneously
317   /// null or simultaneously valid.
318   char *StartOfBuffer;
319 
320   /// The end of the buffer.
321   char *EndOfBuffer;
322 
323   /// The first valid entry in the buffer.
324   char *StartOfData;
325 
326   /// The innermost normal cleanup on the stack.
327   stable_iterator InnermostNormalCleanup;
328 
329   /// The innermost EH scope on the stack.
330   stable_iterator InnermostEHScope;
331 
332   /// The current set of branch fixups.  A branch fixup is a jump to
333   /// an as-yet unemitted label, i.e. a label for which we don't yet
334   /// know the EH stack depth.  Whenever we pop a cleanup, we have
335   /// to thread all the current branch fixups through it.
336   ///
337   /// Fixups are recorded as the Use of the respective branch or
338   /// switch statement.  The use points to the final destination.
339   /// When popping out of a cleanup, these uses are threaded through
340   /// the cleanup and adjusted to point to the new cleanup.
341   ///
342   /// Note that branches are allowed to jump into protected scopes
343   /// in certain situations;  e.g. the following code is legal:
344   ///     struct A { ~A(); }; // trivial ctor, non-trivial dtor
345   ///     goto foo;
346   ///     A a;
347   ///    foo:
348   ///     bar();
349   SmallVector<BranchFixup, 8> BranchFixups;
350 
351   char *allocate(size_t Size);
352 
353   void *pushCleanup(CleanupKind K, size_t DataSize);
354 
355 public:
356   EHScopeStack() : StartOfBuffer(0), EndOfBuffer(0), StartOfData(0),
357                    InnermostNormalCleanup(stable_end()),
358                    InnermostEHScope(stable_end()) {}
359   ~EHScopeStack() { delete[] StartOfBuffer; }
360 
361   // Variadic templates would make this not terrible.
362 
363   /// Push a lazily-created cleanup on the stack.
364   template <class T>
365   void pushCleanup(CleanupKind Kind) {
366     void *Buffer = pushCleanup(Kind, sizeof(T));
367     Cleanup *Obj = new(Buffer) T();
368     (void) Obj;
369   }
370 
371   /// Push a lazily-created cleanup on the stack.
372   template <class T, class A0>
373   void pushCleanup(CleanupKind Kind, A0 a0) {
374     void *Buffer = pushCleanup(Kind, sizeof(T));
375     Cleanup *Obj = new(Buffer) T(a0);
376     (void) Obj;
377   }
378 
379   /// Push a lazily-created cleanup on the stack.
380   template <class T, class A0, class A1>
381   void pushCleanup(CleanupKind Kind, A0 a0, A1 a1) {
382     void *Buffer = pushCleanup(Kind, sizeof(T));
383     Cleanup *Obj = new(Buffer) T(a0, a1);
384     (void) Obj;
385   }
386 
387   /// Push a lazily-created cleanup on the stack.
388   template <class T, class A0, class A1, class A2>
389   void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2) {
390     void *Buffer = pushCleanup(Kind, sizeof(T));
391     Cleanup *Obj = new(Buffer) T(a0, a1, a2);
392     (void) Obj;
393   }
394 
395   /// Push a lazily-created cleanup on the stack.
396   template <class T, class A0, class A1, class A2, class A3>
397   void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) {
398     void *Buffer = pushCleanup(Kind, sizeof(T));
399     Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3);
400     (void) Obj;
401   }
402 
403   /// Push a lazily-created cleanup on the stack.
404   template <class T, class A0, class A1, class A2, class A3, class A4>
405   void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3, A4 a4) {
406     void *Buffer = pushCleanup(Kind, sizeof(T));
407     Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3, a4);
408     (void) Obj;
409   }
410 
411   // Feel free to add more variants of the following:
412 
413   /// Push a cleanup with non-constant storage requirements on the
414   /// stack.  The cleanup type must provide an additional static method:
415   ///   static size_t getExtraSize(size_t);
416   /// The argument to this method will be the value N, which will also
417   /// be passed as the first argument to the constructor.
418   ///
419   /// The data stored in the extra storage must obey the same
420   /// restrictions as normal cleanup member data.
421   ///
422   /// The pointer returned from this method is valid until the cleanup
423   /// stack is modified.
424   template <class T, class A0, class A1, class A2>
425   T *pushCleanupWithExtra(CleanupKind Kind, size_t N, A0 a0, A1 a1, A2 a2) {
426     void *Buffer = pushCleanup(Kind, sizeof(T) + T::getExtraSize(N));
427     return new (Buffer) T(N, a0, a1, a2);
428   }
429 
430   /// Pops a cleanup scope off the stack.  This is private to CGCleanup.cpp.
431   void popCleanup();
432 
433   /// Push a set of catch handlers on the stack.  The catch is
434   /// uninitialized and will need to have the given number of handlers
435   /// set on it.
436   class EHCatchScope *pushCatch(unsigned NumHandlers);
437 
438   /// Pops a catch scope off the stack.  This is private to CGException.cpp.
439   void popCatch();
440 
441   /// Push an exceptions filter on the stack.
442   class EHFilterScope *pushFilter(unsigned NumFilters);
443 
444   /// Pops an exceptions filter off the stack.
445   void popFilter();
446 
447   /// Push a terminate handler on the stack.
448   void pushTerminate();
449 
450   /// Pops a terminate handler off the stack.
451   void popTerminate();
452 
453   /// Determines whether the exception-scopes stack is empty.
454   bool empty() const { return StartOfData == EndOfBuffer; }
455 
456   bool requiresLandingPad() const {
457     return InnermostEHScope != stable_end();
458   }
459 
460   /// Determines whether there are any normal cleanups on the stack.
461   bool hasNormalCleanups() const {
462     return InnermostNormalCleanup != stable_end();
463   }
464 
465   /// Returns the innermost normal cleanup on the stack, or
466   /// stable_end() if there are no normal cleanups.
467   stable_iterator getInnermostNormalCleanup() const {
468     return InnermostNormalCleanup;
469   }
470   stable_iterator getInnermostActiveNormalCleanup() const;
471 
472   stable_iterator getInnermostEHScope() const {
473     return InnermostEHScope;
474   }
475 
476   stable_iterator getInnermostActiveEHScope() const;
477 
478   /// An unstable reference to a scope-stack depth.  Invalidated by
479   /// pushes but not pops.
480   class iterator;
481 
482   /// Returns an iterator pointing to the innermost EH scope.
483   iterator begin() const;
484 
485   /// Returns an iterator pointing to the outermost EH scope.
486   iterator end() const;
487 
488   /// Create a stable reference to the top of the EH stack.  The
489   /// returned reference is valid until that scope is popped off the
490   /// stack.
491   stable_iterator stable_begin() const {
492     return stable_iterator(EndOfBuffer - StartOfData);
493   }
494 
495   /// Create a stable reference to the bottom of the EH stack.
496   static stable_iterator stable_end() {
497     return stable_iterator(0);
498   }
499 
500   /// Translates an iterator into a stable_iterator.
501   stable_iterator stabilize(iterator it) const;
502 
503   /// Turn a stable reference to a scope depth into a unstable pointer
504   /// to the EH stack.
505   iterator find(stable_iterator save) const;
506 
507   /// Removes the cleanup pointed to by the given stable_iterator.
508   void removeCleanup(stable_iterator save);
509 
510   /// Add a branch fixup to the current cleanup scope.
511   BranchFixup &addBranchFixup() {
512     assert(hasNormalCleanups() && "adding fixup in scope without cleanups");
513     BranchFixups.push_back(BranchFixup());
514     return BranchFixups.back();
515   }
516 
517   unsigned getNumBranchFixups() const { return BranchFixups.size(); }
518   BranchFixup &getBranchFixup(unsigned I) {
519     assert(I < getNumBranchFixups());
520     return BranchFixups[I];
521   }
522 
523   /// Pops lazily-removed fixups from the end of the list.  This
524   /// should only be called by procedures which have just popped a
525   /// cleanup or resolved one or more fixups.
526   void popNullFixups();
527 
528   /// Clears the branch-fixups list.  This should only be called by
529   /// ResolveAllBranchFixups.
530   void clearFixups() { BranchFixups.clear(); }
531 };
532 
533 /// CodeGenFunction - This class organizes the per-function state that is used
534 /// while generating LLVM code.
535 class CodeGenFunction : public CodeGenTypeCache {
536   CodeGenFunction(const CodeGenFunction&); // DO NOT IMPLEMENT
537   void operator=(const CodeGenFunction&);  // DO NOT IMPLEMENT
538 
539   friend class CGCXXABI;
540 public:
541   /// A jump destination is an abstract label, branching to which may
542   /// require a jump out through normal cleanups.
543   struct JumpDest {
544     JumpDest() : Block(0), ScopeDepth(), Index(0) {}
545     JumpDest(llvm::BasicBlock *Block,
546              EHScopeStack::stable_iterator Depth,
547              unsigned Index)
548       : Block(Block), ScopeDepth(Depth), Index(Index) {}
549 
550     bool isValid() const { return Block != 0; }
551     llvm::BasicBlock *getBlock() const { return Block; }
552     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
553     unsigned getDestIndex() const { return Index; }
554 
555   private:
556     llvm::BasicBlock *Block;
557     EHScopeStack::stable_iterator ScopeDepth;
558     unsigned Index;
559   };
560 
561   CodeGenModule &CGM;  // Per-module state.
562   const TargetInfo &Target;
563 
564   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
565   CGBuilderTy Builder;
566 
567   /// CurFuncDecl - Holds the Decl for the current function or ObjC method.
568   /// This excludes BlockDecls.
569   const Decl *CurFuncDecl;
570   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
571   const Decl *CurCodeDecl;
572   const CGFunctionInfo *CurFnInfo;
573   QualType FnRetTy;
574   llvm::Function *CurFn;
575 
576   /// CurGD - The GlobalDecl for the current function being compiled.
577   GlobalDecl CurGD;
578 
579   /// PrologueCleanupDepth - The cleanup depth enclosing all the
580   /// cleanups associated with the parameters.
581   EHScopeStack::stable_iterator PrologueCleanupDepth;
582 
583   /// ReturnBlock - Unified return block.
584   JumpDest ReturnBlock;
585 
586   /// ReturnValue - The temporary alloca to hold the return value. This is null
587   /// iff the function has no return value.
588   llvm::Value *ReturnValue;
589 
590   /// AllocaInsertPoint - This is an instruction in the entry block before which
591   /// we prefer to insert allocas.
592   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
593 
594   /// BoundsChecking - Emit run-time bounds checks. Higher values mean
595   /// potentially higher performance penalties.
596   unsigned char BoundsChecking;
597 
598   /// CatchUndefined - Emit run-time checks to catch undefined behaviors.
599   bool CatchUndefined;
600 
601   /// In ARC, whether we should autorelease the return value.
602   bool AutoreleaseResult;
603 
604   const CodeGen::CGBlockInfo *BlockInfo;
605   llvm::Value *BlockPointer;
606 
607   llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
608   FieldDecl *LambdaThisCaptureField;
609 
610   /// \brief A mapping from NRVO variables to the flags used to indicate
611   /// when the NRVO has been applied to this variable.
612   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
613 
614   EHScopeStack EHStack;
615 
616   /// i32s containing the indexes of the cleanup destinations.
617   llvm::AllocaInst *NormalCleanupDest;
618 
619   unsigned NextCleanupDestIndex;
620 
621   /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
622   CGBlockInfo *FirstBlockInfo;
623 
624   /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
625   llvm::BasicBlock *EHResumeBlock;
626 
627   /// The exception slot.  All landing pads write the current exception pointer
628   /// into this alloca.
629   llvm::Value *ExceptionSlot;
630 
631   /// The selector slot.  Under the MandatoryCleanup model, all landing pads
632   /// write the current selector value into this alloca.
633   llvm::AllocaInst *EHSelectorSlot;
634 
635   /// Emits a landing pad for the current EH stack.
636   llvm::BasicBlock *EmitLandingPad();
637 
638   llvm::BasicBlock *getInvokeDestImpl();
639 
640   template <class T>
641   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
642     return DominatingValue<T>::save(*this, value);
643   }
644 
645 public:
646   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
647   /// rethrows.
648   SmallVector<llvm::Value*, 8> ObjCEHValueStack;
649 
650   /// A class controlling the emission of a finally block.
651   class FinallyInfo {
652     /// Where the catchall's edge through the cleanup should go.
653     JumpDest RethrowDest;
654 
655     /// A function to call to enter the catch.
656     llvm::Constant *BeginCatchFn;
657 
658     /// An i1 variable indicating whether or not the @finally is
659     /// running for an exception.
660     llvm::AllocaInst *ForEHVar;
661 
662     /// An i8* variable into which the exception pointer to rethrow
663     /// has been saved.
664     llvm::AllocaInst *SavedExnVar;
665 
666   public:
667     void enter(CodeGenFunction &CGF, const Stmt *Finally,
668                llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
669                llvm::Constant *rethrowFn);
670     void exit(CodeGenFunction &CGF);
671   };
672 
673   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
674   /// current full-expression.  Safe against the possibility that
675   /// we're currently inside a conditionally-evaluated expression.
676   template <class T, class A0>
677   void pushFullExprCleanup(CleanupKind kind, A0 a0) {
678     // If we're not in a conditional branch, or if none of the
679     // arguments requires saving, then use the unconditional cleanup.
680     if (!isInConditionalBranch())
681       return EHStack.pushCleanup<T>(kind, a0);
682 
683     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
684 
685     typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType;
686     EHStack.pushCleanup<CleanupType>(kind, a0_saved);
687     initFullExprCleanup();
688   }
689 
690   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
691   /// current full-expression.  Safe against the possibility that
692   /// we're currently inside a conditionally-evaluated expression.
693   template <class T, class A0, class A1>
694   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) {
695     // If we're not in a conditional branch, or if none of the
696     // arguments requires saving, then use the unconditional cleanup.
697     if (!isInConditionalBranch())
698       return EHStack.pushCleanup<T>(kind, a0, a1);
699 
700     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
701     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
702 
703     typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType;
704     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved);
705     initFullExprCleanup();
706   }
707 
708   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
709   /// current full-expression.  Safe against the possibility that
710   /// we're currently inside a conditionally-evaluated expression.
711   template <class T, class A0, class A1, class A2>
712   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2) {
713     // If we're not in a conditional branch, or if none of the
714     // arguments requires saving, then use the unconditional cleanup.
715     if (!isInConditionalBranch()) {
716       return EHStack.pushCleanup<T>(kind, a0, a1, a2);
717     }
718 
719     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
720     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
721     typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
722 
723     typedef EHScopeStack::ConditionalCleanup3<T, A0, A1, A2> CleanupType;
724     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, a2_saved);
725     initFullExprCleanup();
726   }
727 
728   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
729   /// current full-expression.  Safe against the possibility that
730   /// we're currently inside a conditionally-evaluated expression.
731   template <class T, class A0, class A1, class A2, class A3>
732   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2, A3 a3) {
733     // If we're not in a conditional branch, or if none of the
734     // arguments requires saving, then use the unconditional cleanup.
735     if (!isInConditionalBranch()) {
736       return EHStack.pushCleanup<T>(kind, a0, a1, a2, a3);
737     }
738 
739     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
740     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
741     typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
742     typename DominatingValue<A3>::saved_type a3_saved = saveValueInCond(a3);
743 
744     typedef EHScopeStack::ConditionalCleanup4<T, A0, A1, A2, A3> CleanupType;
745     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved,
746                                      a2_saved, a3_saved);
747     initFullExprCleanup();
748   }
749 
750   /// Set up the last cleaup that was pushed as a conditional
751   /// full-expression cleanup.
752   void initFullExprCleanup();
753 
754   /// PushDestructorCleanup - Push a cleanup to call the
755   /// complete-object destructor of an object of the given type at the
756   /// given address.  Does nothing if T is not a C++ class type with a
757   /// non-trivial destructor.
758   void PushDestructorCleanup(QualType T, llvm::Value *Addr);
759 
760   /// PushDestructorCleanup - Push a cleanup to call the
761   /// complete-object variant of the given destructor on the object at
762   /// the given address.
763   void PushDestructorCleanup(const CXXDestructorDecl *Dtor,
764                              llvm::Value *Addr);
765 
766   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
767   /// process all branch fixups.
768   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
769 
770   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
771   /// The block cannot be reactivated.  Pops it if it's the top of the
772   /// stack.
773   ///
774   /// \param DominatingIP - An instruction which is known to
775   ///   dominate the current IP (if set) and which lies along
776   ///   all paths of execution between the current IP and the
777   ///   the point at which the cleanup comes into scope.
778   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
779                               llvm::Instruction *DominatingIP);
780 
781   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
782   /// Cannot be used to resurrect a deactivated cleanup.
783   ///
784   /// \param DominatingIP - An instruction which is known to
785   ///   dominate the current IP (if set) and which lies along
786   ///   all paths of execution between the current IP and the
787   ///   the point at which the cleanup comes into scope.
788   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
789                             llvm::Instruction *DominatingIP);
790 
791   /// \brief Enters a new scope for capturing cleanups, all of which
792   /// will be executed once the scope is exited.
793   class RunCleanupsScope {
794     EHScopeStack::stable_iterator CleanupStackDepth;
795     bool OldDidCallStackSave;
796     bool PerformCleanup;
797 
798     RunCleanupsScope(const RunCleanupsScope &); // DO NOT IMPLEMENT
799     RunCleanupsScope &operator=(const RunCleanupsScope &); // DO NOT IMPLEMENT
800 
801   protected:
802     CodeGenFunction& CGF;
803 
804   public:
805     /// \brief Enter a new cleanup scope.
806     explicit RunCleanupsScope(CodeGenFunction &CGF)
807       : PerformCleanup(true), CGF(CGF)
808     {
809       CleanupStackDepth = CGF.EHStack.stable_begin();
810       OldDidCallStackSave = CGF.DidCallStackSave;
811       CGF.DidCallStackSave = false;
812     }
813 
814     /// \brief Exit this cleanup scope, emitting any accumulated
815     /// cleanups.
816     ~RunCleanupsScope() {
817       if (PerformCleanup) {
818         CGF.DidCallStackSave = OldDidCallStackSave;
819         CGF.PopCleanupBlocks(CleanupStackDepth);
820       }
821     }
822 
823     /// \brief Determine whether this scope requires any cleanups.
824     bool requiresCleanups() const {
825       return CGF.EHStack.stable_begin() != CleanupStackDepth;
826     }
827 
828     /// \brief Force the emission of cleanups now, instead of waiting
829     /// until this object is destroyed.
830     void ForceCleanup() {
831       assert(PerformCleanup && "Already forced cleanup");
832       CGF.DidCallStackSave = OldDidCallStackSave;
833       CGF.PopCleanupBlocks(CleanupStackDepth);
834       PerformCleanup = false;
835     }
836   };
837 
838   class LexicalScope: protected RunCleanupsScope {
839     SourceRange Range;
840     bool PopDebugStack;
841 
842     LexicalScope(const LexicalScope &); // DO NOT IMPLEMENT THESE
843     LexicalScope &operator=(const LexicalScope &);
844 
845   public:
846     /// \brief Enter a new cleanup scope.
847     explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
848       : RunCleanupsScope(CGF), Range(Range), PopDebugStack(true) {
849       if (CGDebugInfo *DI = CGF.getDebugInfo())
850         DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
851     }
852 
853     /// \brief Exit this cleanup scope, emitting any accumulated
854     /// cleanups.
855     ~LexicalScope() {
856       if (PopDebugStack) {
857         CGDebugInfo *DI = CGF.getDebugInfo();
858         if (DI) DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
859       }
860     }
861 
862     /// \brief Force the emission of cleanups now, instead of waiting
863     /// until this object is destroyed.
864     void ForceCleanup() {
865       RunCleanupsScope::ForceCleanup();
866       if (CGDebugInfo *DI = CGF.getDebugInfo()) {
867         DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
868         PopDebugStack = false;
869       }
870     }
871   };
872 
873 
874   /// PopCleanupBlocks - Takes the old cleanup stack size and emits
875   /// the cleanup blocks that have been added.
876   void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize);
877 
878   void ResolveBranchFixups(llvm::BasicBlock *Target);
879 
880   /// The given basic block lies in the current EH scope, but may be a
881   /// target of a potentially scope-crossing jump; get a stable handle
882   /// to which we can perform this jump later.
883   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
884     return JumpDest(Target,
885                     EHStack.getInnermostNormalCleanup(),
886                     NextCleanupDestIndex++);
887   }
888 
889   /// The given basic block lies in the current EH scope, but may be a
890   /// target of a potentially scope-crossing jump; get a stable handle
891   /// to which we can perform this jump later.
892   JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
893     return getJumpDestInCurrentScope(createBasicBlock(Name));
894   }
895 
896   /// EmitBranchThroughCleanup - Emit a branch from the current insert
897   /// block through the normal cleanup handling code (if any) and then
898   /// on to \arg Dest.
899   void EmitBranchThroughCleanup(JumpDest Dest);
900 
901   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
902   /// specified destination obviously has no cleanups to run.  'false' is always
903   /// a conservatively correct answer for this method.
904   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
905 
906   /// popCatchScope - Pops the catch scope at the top of the EHScope
907   /// stack, emitting any required code (other than the catch handlers
908   /// themselves).
909   void popCatchScope();
910 
911   llvm::BasicBlock *getEHResumeBlock();
912   llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
913 
914   /// An object to manage conditionally-evaluated expressions.
915   class ConditionalEvaluation {
916     llvm::BasicBlock *StartBB;
917 
918   public:
919     ConditionalEvaluation(CodeGenFunction &CGF)
920       : StartBB(CGF.Builder.GetInsertBlock()) {}
921 
922     void begin(CodeGenFunction &CGF) {
923       assert(CGF.OutermostConditional != this);
924       if (!CGF.OutermostConditional)
925         CGF.OutermostConditional = this;
926     }
927 
928     void end(CodeGenFunction &CGF) {
929       assert(CGF.OutermostConditional != 0);
930       if (CGF.OutermostConditional == this)
931         CGF.OutermostConditional = 0;
932     }
933 
934     /// Returns a block which will be executed prior to each
935     /// evaluation of the conditional code.
936     llvm::BasicBlock *getStartingBlock() const {
937       return StartBB;
938     }
939   };
940 
941   /// isInConditionalBranch - Return true if we're currently emitting
942   /// one branch or the other of a conditional expression.
943   bool isInConditionalBranch() const { return OutermostConditional != 0; }
944 
945   void setBeforeOutermostConditional(llvm::Value *value, llvm::Value *addr) {
946     assert(isInConditionalBranch());
947     llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
948     new llvm::StoreInst(value, addr, &block->back());
949   }
950 
951   /// An RAII object to record that we're evaluating a statement
952   /// expression.
953   class StmtExprEvaluation {
954     CodeGenFunction &CGF;
955 
956     /// We have to save the outermost conditional: cleanups in a
957     /// statement expression aren't conditional just because the
958     /// StmtExpr is.
959     ConditionalEvaluation *SavedOutermostConditional;
960 
961   public:
962     StmtExprEvaluation(CodeGenFunction &CGF)
963       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
964       CGF.OutermostConditional = 0;
965     }
966 
967     ~StmtExprEvaluation() {
968       CGF.OutermostConditional = SavedOutermostConditional;
969       CGF.EnsureInsertPoint();
970     }
971   };
972 
973   /// An object which temporarily prevents a value from being
974   /// destroyed by aggressive peephole optimizations that assume that
975   /// all uses of a value have been realized in the IR.
976   class PeepholeProtection {
977     llvm::Instruction *Inst;
978     friend class CodeGenFunction;
979 
980   public:
981     PeepholeProtection() : Inst(0) {}
982   };
983 
984   /// A non-RAII class containing all the information about a bound
985   /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
986   /// this which makes individual mappings very simple; using this
987   /// class directly is useful when you have a variable number of
988   /// opaque values or don't want the RAII functionality for some
989   /// reason.
990   class OpaqueValueMappingData {
991     const OpaqueValueExpr *OpaqueValue;
992     bool BoundLValue;
993     CodeGenFunction::PeepholeProtection Protection;
994 
995     OpaqueValueMappingData(const OpaqueValueExpr *ov,
996                            bool boundLValue)
997       : OpaqueValue(ov), BoundLValue(boundLValue) {}
998   public:
999     OpaqueValueMappingData() : OpaqueValue(0) {}
1000 
1001     static bool shouldBindAsLValue(const Expr *expr) {
1002       // gl-values should be bound as l-values for obvious reasons.
1003       // Records should be bound as l-values because IR generation
1004       // always keeps them in memory.  Expressions of function type
1005       // act exactly like l-values but are formally required to be
1006       // r-values in C.
1007       return expr->isGLValue() ||
1008              expr->getType()->isRecordType() ||
1009              expr->getType()->isFunctionType();
1010     }
1011 
1012     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1013                                        const OpaqueValueExpr *ov,
1014                                        const Expr *e) {
1015       if (shouldBindAsLValue(ov))
1016         return bind(CGF, ov, CGF.EmitLValue(e));
1017       return bind(CGF, ov, CGF.EmitAnyExpr(e));
1018     }
1019 
1020     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1021                                        const OpaqueValueExpr *ov,
1022                                        const LValue &lv) {
1023       assert(shouldBindAsLValue(ov));
1024       CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
1025       return OpaqueValueMappingData(ov, true);
1026     }
1027 
1028     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1029                                        const OpaqueValueExpr *ov,
1030                                        const RValue &rv) {
1031       assert(!shouldBindAsLValue(ov));
1032       CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
1033 
1034       OpaqueValueMappingData data(ov, false);
1035 
1036       // Work around an extremely aggressive peephole optimization in
1037       // EmitScalarConversion which assumes that all other uses of a
1038       // value are extant.
1039       data.Protection = CGF.protectFromPeepholes(rv);
1040 
1041       return data;
1042     }
1043 
1044     bool isValid() const { return OpaqueValue != 0; }
1045     void clear() { OpaqueValue = 0; }
1046 
1047     void unbind(CodeGenFunction &CGF) {
1048       assert(OpaqueValue && "no data to unbind!");
1049 
1050       if (BoundLValue) {
1051         CGF.OpaqueLValues.erase(OpaqueValue);
1052       } else {
1053         CGF.OpaqueRValues.erase(OpaqueValue);
1054         CGF.unprotectFromPeepholes(Protection);
1055       }
1056     }
1057   };
1058 
1059   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
1060   class OpaqueValueMapping {
1061     CodeGenFunction &CGF;
1062     OpaqueValueMappingData Data;
1063 
1064   public:
1065     static bool shouldBindAsLValue(const Expr *expr) {
1066       return OpaqueValueMappingData::shouldBindAsLValue(expr);
1067     }
1068 
1069     /// Build the opaque value mapping for the given conditional
1070     /// operator if it's the GNU ?: extension.  This is a common
1071     /// enough pattern that the convenience operator is really
1072     /// helpful.
1073     ///
1074     OpaqueValueMapping(CodeGenFunction &CGF,
1075                        const AbstractConditionalOperator *op) : CGF(CGF) {
1076       if (isa<ConditionalOperator>(op))
1077         // Leave Data empty.
1078         return;
1079 
1080       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
1081       Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
1082                                           e->getCommon());
1083     }
1084 
1085     OpaqueValueMapping(CodeGenFunction &CGF,
1086                        const OpaqueValueExpr *opaqueValue,
1087                        LValue lvalue)
1088       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
1089     }
1090 
1091     OpaqueValueMapping(CodeGenFunction &CGF,
1092                        const OpaqueValueExpr *opaqueValue,
1093                        RValue rvalue)
1094       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
1095     }
1096 
1097     void pop() {
1098       Data.unbind(CGF);
1099       Data.clear();
1100     }
1101 
1102     ~OpaqueValueMapping() {
1103       if (Data.isValid()) Data.unbind(CGF);
1104     }
1105   };
1106 
1107   /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field
1108   /// number that holds the value.
1109   unsigned getByRefValueLLVMField(const ValueDecl *VD) const;
1110 
1111   /// BuildBlockByrefAddress - Computes address location of the
1112   /// variable which is declared as __block.
1113   llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr,
1114                                       const VarDecl *V);
1115 private:
1116   CGDebugInfo *DebugInfo;
1117   bool DisableDebugInfo;
1118 
1119   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
1120   /// calling llvm.stacksave for multiple VLAs in the same scope.
1121   bool DidCallStackSave;
1122 
1123   /// IndirectBranch - The first time an indirect goto is seen we create a block
1124   /// with an indirect branch.  Every time we see the address of a label taken,
1125   /// we add the label to the indirect goto.  Every subsequent indirect goto is
1126   /// codegen'd as a jump to the IndirectBranch's basic block.
1127   llvm::IndirectBrInst *IndirectBranch;
1128 
1129   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1130   /// decls.
1131   typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy;
1132   DeclMapTy LocalDeclMap;
1133 
1134   /// LabelMap - This keeps track of the LLVM basic block for each C label.
1135   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1136 
1137   // BreakContinueStack - This keeps track of where break and continue
1138   // statements should jump to.
1139   struct BreakContinue {
1140     BreakContinue(JumpDest Break, JumpDest Continue)
1141       : BreakBlock(Break), ContinueBlock(Continue) {}
1142 
1143     JumpDest BreakBlock;
1144     JumpDest ContinueBlock;
1145   };
1146   SmallVector<BreakContinue, 8> BreakContinueStack;
1147 
1148   /// SwitchInsn - This is nearest current switch instruction. It is null if
1149   /// current context is not in a switch.
1150   llvm::SwitchInst *SwitchInsn;
1151 
1152   /// CaseRangeBlock - This block holds if condition check for last case
1153   /// statement range in current switch instruction.
1154   llvm::BasicBlock *CaseRangeBlock;
1155 
1156   /// OpaqueLValues - Keeps track of the current set of opaque value
1157   /// expressions.
1158   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1159   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1160 
1161   // VLASizeMap - This keeps track of the associated size for each VLA type.
1162   // We track this by the size expression rather than the type itself because
1163   // in certain situations, like a const qualifier applied to an VLA typedef,
1164   // multiple VLA types can share the same size expression.
1165   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1166   // enter/leave scopes.
1167   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1168 
1169   /// A block containing a single 'unreachable' instruction.  Created
1170   /// lazily by getUnreachableBlock().
1171   llvm::BasicBlock *UnreachableBlock;
1172 
1173   /// CXXThisDecl - When generating code for a C++ member function,
1174   /// this will hold the implicit 'this' declaration.
1175   ImplicitParamDecl *CXXABIThisDecl;
1176   llvm::Value *CXXABIThisValue;
1177   llvm::Value *CXXThisValue;
1178 
1179   /// CXXVTTDecl - When generating code for a base object constructor or
1180   /// base object destructor with virtual bases, this will hold the implicit
1181   /// VTT parameter.
1182   ImplicitParamDecl *CXXVTTDecl;
1183   llvm::Value *CXXVTTValue;
1184 
1185   /// OutermostConditional - Points to the outermost active
1186   /// conditional control.  This is used so that we know if a
1187   /// temporary should be destroyed conditionally.
1188   ConditionalEvaluation *OutermostConditional;
1189 
1190 
1191   /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM
1192   /// type as well as the field number that contains the actual data.
1193   llvm::DenseMap<const ValueDecl *, std::pair<llvm::Type *,
1194                                               unsigned> > ByRefValueInfo;
1195 
1196   llvm::BasicBlock *TerminateLandingPad;
1197   llvm::BasicBlock *TerminateHandler;
1198   llvm::BasicBlock *TrapBB;
1199 
1200 public:
1201   CodeGenFunction(CodeGenModule &cgm);
1202   ~CodeGenFunction();
1203 
1204   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1205   ASTContext &getContext() const { return CGM.getContext(); }
1206   CGDebugInfo *getDebugInfo() {
1207     if (DisableDebugInfo)
1208       return NULL;
1209     return DebugInfo;
1210   }
1211   void disableDebugInfo() { DisableDebugInfo = true; }
1212   void enableDebugInfo() { DisableDebugInfo = false; }
1213 
1214   bool shouldUseFusedARCCalls() {
1215     return CGM.getCodeGenOpts().OptimizationLevel == 0;
1216   }
1217 
1218   const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1219 
1220   /// Returns a pointer to the function's exception object and selector slot,
1221   /// which is assigned in every landing pad.
1222   llvm::Value *getExceptionSlot();
1223   llvm::Value *getEHSelectorSlot();
1224 
1225   /// Returns the contents of the function's exception object and selector
1226   /// slots.
1227   llvm::Value *getExceptionFromSlot();
1228   llvm::Value *getSelectorFromSlot();
1229 
1230   llvm::Value *getNormalCleanupDestSlot();
1231 
1232   llvm::BasicBlock *getUnreachableBlock() {
1233     if (!UnreachableBlock) {
1234       UnreachableBlock = createBasicBlock("unreachable");
1235       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1236     }
1237     return UnreachableBlock;
1238   }
1239 
1240   llvm::BasicBlock *getInvokeDest() {
1241     if (!EHStack.requiresLandingPad()) return 0;
1242     return getInvokeDestImpl();
1243   }
1244 
1245   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1246 
1247   //===--------------------------------------------------------------------===//
1248   //                                  Cleanups
1249   //===--------------------------------------------------------------------===//
1250 
1251   typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty);
1252 
1253   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1254                                         llvm::Value *arrayEndPointer,
1255                                         QualType elementType,
1256                                         Destroyer *destroyer);
1257   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1258                                       llvm::Value *arrayEnd,
1259                                       QualType elementType,
1260                                       Destroyer *destroyer);
1261 
1262   void pushDestroy(QualType::DestructionKind dtorKind,
1263                    llvm::Value *addr, QualType type);
1264   void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type,
1265                    Destroyer *destroyer, bool useEHCleanupForArray);
1266   void emitDestroy(llvm::Value *addr, QualType type, Destroyer *destroyer,
1267                    bool useEHCleanupForArray);
1268   llvm::Function *generateDestroyHelper(llvm::Constant *addr,
1269                                         QualType type,
1270                                         Destroyer *destroyer,
1271                                         bool useEHCleanupForArray);
1272   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1273                         QualType type, Destroyer *destroyer,
1274                         bool checkZeroLength, bool useEHCleanup);
1275 
1276   Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1277 
1278   /// Determines whether an EH cleanup is required to destroy a type
1279   /// with the given destruction kind.
1280   bool needsEHCleanup(QualType::DestructionKind kind) {
1281     switch (kind) {
1282     case QualType::DK_none:
1283       return false;
1284     case QualType::DK_cxx_destructor:
1285     case QualType::DK_objc_weak_lifetime:
1286       return getLangOpts().Exceptions;
1287     case QualType::DK_objc_strong_lifetime:
1288       return getLangOpts().Exceptions &&
1289              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1290     }
1291     llvm_unreachable("bad destruction kind");
1292   }
1293 
1294   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
1295     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1296   }
1297 
1298   //===--------------------------------------------------------------------===//
1299   //                                  Objective-C
1300   //===--------------------------------------------------------------------===//
1301 
1302   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1303 
1304   void StartObjCMethod(const ObjCMethodDecl *MD,
1305                        const ObjCContainerDecl *CD,
1306                        SourceLocation StartLoc);
1307 
1308   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1309   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1310                           const ObjCPropertyImplDecl *PID);
1311   void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1312                               const ObjCPropertyImplDecl *propImpl,
1313                               const ObjCMethodDecl *GetterMothodDecl,
1314                               llvm::Constant *AtomicHelperFn);
1315 
1316   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1317                                   ObjCMethodDecl *MD, bool ctor);
1318 
1319   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1320   /// for the given property.
1321   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1322                           const ObjCPropertyImplDecl *PID);
1323   void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1324                               const ObjCPropertyImplDecl *propImpl,
1325                               llvm::Constant *AtomicHelperFn);
1326   bool IndirectObjCSetterArg(const CGFunctionInfo &FI);
1327   bool IvarTypeWithAggrGCObjects(QualType Ty);
1328 
1329   //===--------------------------------------------------------------------===//
1330   //                                  Block Bits
1331   //===--------------------------------------------------------------------===//
1332 
1333   llvm::Value *EmitBlockLiteral(const BlockExpr *);
1334   llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
1335   static void destroyBlockInfos(CGBlockInfo *info);
1336   llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *,
1337                                            const CGBlockInfo &Info,
1338                                            llvm::StructType *,
1339                                            llvm::Constant *BlockVarLayout);
1340 
1341   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1342                                         const CGBlockInfo &Info,
1343                                         const Decl *OuterFuncDecl,
1344                                         const DeclMapTy &ldm,
1345                                         bool IsLambdaConversionToBlock);
1346 
1347   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1348   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1349   llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
1350                                              const ObjCPropertyImplDecl *PID);
1351   llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
1352                                              const ObjCPropertyImplDecl *PID);
1353   llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
1354 
1355   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
1356 
1357   class AutoVarEmission;
1358 
1359   void emitByrefStructureInit(const AutoVarEmission &emission);
1360   void enterByrefCleanup(const AutoVarEmission &emission);
1361 
1362   llvm::Value *LoadBlockStruct() {
1363     assert(BlockPointer && "no block pointer set!");
1364     return BlockPointer;
1365   }
1366 
1367   void AllocateBlockCXXThisPointer(const CXXThisExpr *E);
1368   void AllocateBlockDecl(const DeclRefExpr *E);
1369   llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
1370   llvm::Type *BuildByRefType(const VarDecl *var);
1371 
1372   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1373                     const CGFunctionInfo &FnInfo);
1374   void StartFunction(GlobalDecl GD, QualType RetTy,
1375                      llvm::Function *Fn,
1376                      const CGFunctionInfo &FnInfo,
1377                      const FunctionArgList &Args,
1378                      SourceLocation StartLoc);
1379 
1380   void EmitConstructorBody(FunctionArgList &Args);
1381   void EmitDestructorBody(FunctionArgList &Args);
1382   void EmitFunctionBody(FunctionArgList &Args);
1383 
1384   void EmitForwardingCallToLambda(const CXXRecordDecl *Lambda,
1385                                   CallArgList &CallArgs);
1386   void EmitLambdaToBlockPointerBody(FunctionArgList &Args);
1387   void EmitLambdaBlockInvokeBody();
1388   void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
1389   void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD);
1390 
1391   /// EmitReturnBlock - Emit the unified return block, trying to avoid its
1392   /// emission when possible.
1393   void EmitReturnBlock();
1394 
1395   /// FinishFunction - Complete IR generation of the current function. It is
1396   /// legal to call this function even if there is no current insertion point.
1397   void FinishFunction(SourceLocation EndLoc=SourceLocation());
1398 
1399   /// GenerateThunk - Generate a thunk for the given method.
1400   void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1401                      GlobalDecl GD, const ThunkInfo &Thunk);
1402 
1403   void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1404                             GlobalDecl GD, const ThunkInfo &Thunk);
1405 
1406   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1407                         FunctionArgList &Args);
1408 
1409   void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init,
1410                                ArrayRef<VarDecl *> ArrayIndexes);
1411 
1412   /// InitializeVTablePointer - Initialize the vtable pointer of the given
1413   /// subobject.
1414   ///
1415   void InitializeVTablePointer(BaseSubobject Base,
1416                                const CXXRecordDecl *NearestVBase,
1417                                CharUnits OffsetFromNearestVBase,
1418                                llvm::Constant *VTable,
1419                                const CXXRecordDecl *VTableClass);
1420 
1421   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1422   void InitializeVTablePointers(BaseSubobject Base,
1423                                 const CXXRecordDecl *NearestVBase,
1424                                 CharUnits OffsetFromNearestVBase,
1425                                 bool BaseIsNonVirtualPrimaryBase,
1426                                 llvm::Constant *VTable,
1427                                 const CXXRecordDecl *VTableClass,
1428                                 VisitedVirtualBasesSetTy& VBases);
1429 
1430   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1431 
1432   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1433   /// to by This.
1434   llvm::Value *GetVTablePtr(llvm::Value *This, llvm::Type *Ty);
1435 
1436   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1437   /// given phase of destruction for a destructor.  The end result
1438   /// should call destructors on members and base classes in reverse
1439   /// order of their construction.
1440   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1441 
1442   /// ShouldInstrumentFunction - Return true if the current function should be
1443   /// instrumented with __cyg_profile_func_* calls
1444   bool ShouldInstrumentFunction();
1445 
1446   /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
1447   /// instrumentation function with the current function and the call site, if
1448   /// function instrumentation is enabled.
1449   void EmitFunctionInstrumentation(const char *Fn);
1450 
1451   /// EmitMCountInstrumentation - Emit call to .mcount.
1452   void EmitMCountInstrumentation();
1453 
1454   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1455   /// arguments for the given function. This is also responsible for naming the
1456   /// LLVM function arguments.
1457   void EmitFunctionProlog(const CGFunctionInfo &FI,
1458                           llvm::Function *Fn,
1459                           const FunctionArgList &Args);
1460 
1461   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1462   /// given temporary.
1463   void EmitFunctionEpilog(const CGFunctionInfo &FI);
1464 
1465   /// EmitStartEHSpec - Emit the start of the exception spec.
1466   void EmitStartEHSpec(const Decl *D);
1467 
1468   /// EmitEndEHSpec - Emit the end of the exception spec.
1469   void EmitEndEHSpec(const Decl *D);
1470 
1471   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
1472   llvm::BasicBlock *getTerminateLandingPad();
1473 
1474   /// getTerminateHandler - Return a handler (not a landing pad, just
1475   /// a catch handler) that just calls terminate.  This is used when
1476   /// a terminate scope encloses a try.
1477   llvm::BasicBlock *getTerminateHandler();
1478 
1479   llvm::Type *ConvertTypeForMem(QualType T);
1480   llvm::Type *ConvertType(QualType T);
1481   llvm::Type *ConvertType(const TypeDecl *T) {
1482     return ConvertType(getContext().getTypeDeclType(T));
1483   }
1484 
1485   /// LoadObjCSelf - Load the value of self. This function is only valid while
1486   /// generating code for an Objective-C method.
1487   llvm::Value *LoadObjCSelf();
1488 
1489   /// TypeOfSelfObject - Return type of object that this self represents.
1490   QualType TypeOfSelfObject();
1491 
1492   /// hasAggregateLLVMType - Return true if the specified AST type will map into
1493   /// an aggregate LLVM type or is void.
1494   static bool hasAggregateLLVMType(QualType T);
1495 
1496   /// createBasicBlock - Create an LLVM basic block.
1497   llvm::BasicBlock *createBasicBlock(StringRef name = "",
1498                                      llvm::Function *parent = 0,
1499                                      llvm::BasicBlock *before = 0) {
1500 #ifdef NDEBUG
1501     return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
1502 #else
1503     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
1504 #endif
1505   }
1506 
1507   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
1508   /// label maps to.
1509   JumpDest getJumpDestForLabel(const LabelDecl *S);
1510 
1511   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
1512   /// another basic block, simplify it. This assumes that no other code could
1513   /// potentially reference the basic block.
1514   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
1515 
1516   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
1517   /// adding a fall-through branch from the current insert block if
1518   /// necessary. It is legal to call this function even if there is no current
1519   /// insertion point.
1520   ///
1521   /// IsFinished - If true, indicates that the caller has finished emitting
1522   /// branches to the given block and does not expect to emit code into it. This
1523   /// means the block can be ignored if it is unreachable.
1524   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
1525 
1526   /// EmitBlockAfterUses - Emit the given block somewhere hopefully
1527   /// near its uses, and leave the insertion point in it.
1528   void EmitBlockAfterUses(llvm::BasicBlock *BB);
1529 
1530   /// EmitBranch - Emit a branch to the specified basic block from the current
1531   /// insert block, taking care to avoid creation of branches from dummy
1532   /// blocks. It is legal to call this function even if there is no current
1533   /// insertion point.
1534   ///
1535   /// This function clears the current insertion point. The caller should follow
1536   /// calls to this function with calls to Emit*Block prior to generation new
1537   /// code.
1538   void EmitBranch(llvm::BasicBlock *Block);
1539 
1540   /// HaveInsertPoint - True if an insertion point is defined. If not, this
1541   /// indicates that the current code being emitted is unreachable.
1542   bool HaveInsertPoint() const {
1543     return Builder.GetInsertBlock() != 0;
1544   }
1545 
1546   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
1547   /// emitted IR has a place to go. Note that by definition, if this function
1548   /// creates a block then that block is unreachable; callers may do better to
1549   /// detect when no insertion point is defined and simply skip IR generation.
1550   void EnsureInsertPoint() {
1551     if (!HaveInsertPoint())
1552       EmitBlock(createBasicBlock());
1553   }
1554 
1555   /// ErrorUnsupported - Print out an error that codegen doesn't support the
1556   /// specified stmt yet.
1557   void ErrorUnsupported(const Stmt *S, const char *Type,
1558                         bool OmitOnError=false);
1559 
1560   //===--------------------------------------------------------------------===//
1561   //                                  Helpers
1562   //===--------------------------------------------------------------------===//
1563 
1564   LValue MakeAddrLValue(llvm::Value *V, QualType T,
1565                         CharUnits Alignment = CharUnits()) {
1566     return LValue::MakeAddr(V, T, Alignment, getContext(),
1567                             CGM.getTBAAInfo(T));
1568   }
1569   LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
1570     CharUnits Alignment;
1571     if (!T->isIncompleteType())
1572       Alignment = getContext().getTypeAlignInChars(T);
1573     return LValue::MakeAddr(V, T, Alignment, getContext(),
1574                             CGM.getTBAAInfo(T));
1575   }
1576 
1577   /// CreateTempAlloca - This creates a alloca and inserts it into the entry
1578   /// block. The caller is responsible for setting an appropriate alignment on
1579   /// the alloca.
1580   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty,
1581                                      const Twine &Name = "tmp");
1582 
1583   /// InitTempAlloca - Provide an initial value for the given alloca.
1584   void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value);
1585 
1586   /// CreateIRTemp - Create a temporary IR object of the given type, with
1587   /// appropriate alignment. This routine should only be used when an temporary
1588   /// value needs to be stored into an alloca (for example, to avoid explicit
1589   /// PHI construction), but the type is the IR type, not the type appropriate
1590   /// for storing in memory.
1591   llvm::AllocaInst *CreateIRTemp(QualType T, const Twine &Name = "tmp");
1592 
1593   /// CreateMemTemp - Create a temporary memory object of the given type, with
1594   /// appropriate alignment.
1595   llvm::AllocaInst *CreateMemTemp(QualType T, const Twine &Name = "tmp");
1596 
1597   /// CreateAggTemp - Create a temporary memory object for the given
1598   /// aggregate type.
1599   AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
1600     CharUnits Alignment = getContext().getTypeAlignInChars(T);
1601     return AggValueSlot::forAddr(CreateMemTemp(T, Name), Alignment,
1602                                  T.getQualifiers(),
1603                                  AggValueSlot::IsNotDestructed,
1604                                  AggValueSlot::DoesNotNeedGCBarriers,
1605                                  AggValueSlot::IsNotAliased);
1606   }
1607 
1608   /// Emit a cast to void* in the appropriate address space.
1609   llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
1610 
1611   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
1612   /// expression and compare the result against zero, returning an Int1Ty value.
1613   llvm::Value *EvaluateExprAsBool(const Expr *E);
1614 
1615   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
1616   void EmitIgnoredExpr(const Expr *E);
1617 
1618   /// EmitAnyExpr - Emit code to compute the specified expression which can have
1619   /// any type.  The result is returned as an RValue struct.  If this is an
1620   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
1621   /// the result should be returned.
1622   ///
1623   /// \param IgnoreResult - True if the resulting value isn't used.
1624   RValue EmitAnyExpr(const Expr *E,
1625                      AggValueSlot AggSlot = AggValueSlot::ignored(),
1626                      bool IgnoreResult = false);
1627 
1628   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
1629   // or the value of the expression, depending on how va_list is defined.
1630   llvm::Value *EmitVAListRef(const Expr *E);
1631 
1632   /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
1633   /// always be accessible even if no aggregate location is provided.
1634   RValue EmitAnyExprToTemp(const Expr *E);
1635 
1636   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
1637   /// arbitrary expression into the given memory location.
1638   void EmitAnyExprToMem(const Expr *E, llvm::Value *Location,
1639                         Qualifiers Quals, bool IsInitializer);
1640 
1641   /// EmitExprAsInit - Emits the code necessary to initialize a
1642   /// location in memory with the given initializer.
1643   void EmitExprAsInit(const Expr *init, const ValueDecl *D,
1644                       LValue lvalue, bool capturedByInit);
1645 
1646   /// EmitAggregateCopy - Emit an aggrate copy.
1647   ///
1648   /// \param isVolatile - True iff either the source or the destination is
1649   /// volatile.
1650   void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1651                          QualType EltTy, bool isVolatile=false,
1652                          unsigned Alignment = 0);
1653 
1654   /// StartBlock - Start new block named N. If insert block is a dummy block
1655   /// then reuse it.
1656   void StartBlock(const char *N);
1657 
1658   /// GetAddrOfStaticLocalVar - Return the address of a static local variable.
1659   llvm::Constant *GetAddrOfStaticLocalVar(const VarDecl *BVD) {
1660     return cast<llvm::Constant>(GetAddrOfLocalVar(BVD));
1661   }
1662 
1663   /// GetAddrOfLocalVar - Return the address of a local variable.
1664   llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) {
1665     llvm::Value *Res = LocalDeclMap[VD];
1666     assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!");
1667     return Res;
1668   }
1669 
1670   /// getOpaqueLValueMapping - Given an opaque value expression (which
1671   /// must be mapped to an l-value), return its mapping.
1672   const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
1673     assert(OpaqueValueMapping::shouldBindAsLValue(e));
1674 
1675     llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
1676       it = OpaqueLValues.find(e);
1677     assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
1678     return it->second;
1679   }
1680 
1681   /// getOpaqueRValueMapping - Given an opaque value expression (which
1682   /// must be mapped to an r-value), return its mapping.
1683   const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
1684     assert(!OpaqueValueMapping::shouldBindAsLValue(e));
1685 
1686     llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
1687       it = OpaqueRValues.find(e);
1688     assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
1689     return it->second;
1690   }
1691 
1692   /// getAccessedFieldNo - Given an encoded value and a result number, return
1693   /// the input field number being accessed.
1694   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
1695 
1696   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
1697   llvm::BasicBlock *GetIndirectGotoBlock();
1698 
1699   /// EmitNullInitialization - Generate code to set a value of the given type to
1700   /// null, If the type contains data member pointers, they will be initialized
1701   /// to -1 in accordance with the Itanium C++ ABI.
1702   void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty);
1703 
1704   // EmitVAArg - Generate code to get an argument from the passed in pointer
1705   // and update it accordingly. The return value is a pointer to the argument.
1706   // FIXME: We should be able to get rid of this method and use the va_arg
1707   // instruction in LLVM instead once it works well enough.
1708   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty);
1709 
1710   /// emitArrayLength - Compute the length of an array, even if it's a
1711   /// VLA, and drill down to the base element type.
1712   llvm::Value *emitArrayLength(const ArrayType *arrayType,
1713                                QualType &baseType,
1714                                llvm::Value *&addr);
1715 
1716   /// EmitVLASize - Capture all the sizes for the VLA expressions in
1717   /// the given variably-modified type and store them in the VLASizeMap.
1718   ///
1719   /// This function can be called with a null (unreachable) insert point.
1720   void EmitVariablyModifiedType(QualType Ty);
1721 
1722   /// getVLASize - Returns an LLVM value that corresponds to the size,
1723   /// in non-variably-sized elements, of a variable length array type,
1724   /// plus that largest non-variably-sized element type.  Assumes that
1725   /// the type has already been emitted with EmitVariablyModifiedType.
1726   std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla);
1727   std::pair<llvm::Value*,QualType> getVLASize(QualType vla);
1728 
1729   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
1730   /// generating code for an C++ member function.
1731   llvm::Value *LoadCXXThis() {
1732     assert(CXXThisValue && "no 'this' value for this function");
1733     return CXXThisValue;
1734   }
1735 
1736   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
1737   /// virtual bases.
1738   llvm::Value *LoadCXXVTT() {
1739     assert(CXXVTTValue && "no VTT value for this function");
1740     return CXXVTTValue;
1741   }
1742 
1743   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
1744   /// complete class to the given direct base.
1745   llvm::Value *
1746   GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value,
1747                                         const CXXRecordDecl *Derived,
1748                                         const CXXRecordDecl *Base,
1749                                         bool BaseIsVirtual);
1750 
1751   /// GetAddressOfBaseClass - This function will add the necessary delta to the
1752   /// load of 'this' and returns address of the base class.
1753   llvm::Value *GetAddressOfBaseClass(llvm::Value *Value,
1754                                      const CXXRecordDecl *Derived,
1755                                      CastExpr::path_const_iterator PathBegin,
1756                                      CastExpr::path_const_iterator PathEnd,
1757                                      bool NullCheckValue);
1758 
1759   llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value,
1760                                         const CXXRecordDecl *Derived,
1761                                         CastExpr::path_const_iterator PathBegin,
1762                                         CastExpr::path_const_iterator PathEnd,
1763                                         bool NullCheckValue);
1764 
1765   llvm::Value *GetVirtualBaseClassOffset(llvm::Value *This,
1766                                          const CXXRecordDecl *ClassDecl,
1767                                          const CXXRecordDecl *BaseClassDecl);
1768 
1769   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
1770                                       CXXCtorType CtorType,
1771                                       const FunctionArgList &Args);
1772   // It's important not to confuse this and the previous function. Delegating
1773   // constructors are the C++0x feature. The constructor delegate optimization
1774   // is used to reduce duplication in the base and complete consturctors where
1775   // they are substantially the same.
1776   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
1777                                         const FunctionArgList &Args);
1778   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
1779                               bool ForVirtualBase, llvm::Value *This,
1780                               CallExpr::const_arg_iterator ArgBeg,
1781                               CallExpr::const_arg_iterator ArgEnd);
1782 
1783   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
1784                               llvm::Value *This, llvm::Value *Src,
1785                               CallExpr::const_arg_iterator ArgBeg,
1786                               CallExpr::const_arg_iterator ArgEnd);
1787 
1788   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1789                                   const ConstantArrayType *ArrayTy,
1790                                   llvm::Value *ArrayPtr,
1791                                   CallExpr::const_arg_iterator ArgBeg,
1792                                   CallExpr::const_arg_iterator ArgEnd,
1793                                   bool ZeroInitialization = false);
1794 
1795   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1796                                   llvm::Value *NumElements,
1797                                   llvm::Value *ArrayPtr,
1798                                   CallExpr::const_arg_iterator ArgBeg,
1799                                   CallExpr::const_arg_iterator ArgEnd,
1800                                   bool ZeroInitialization = false);
1801 
1802   static Destroyer destroyCXXObject;
1803 
1804   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
1805                              bool ForVirtualBase, llvm::Value *This);
1806 
1807   void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
1808                                llvm::Value *NewPtr, llvm::Value *NumElements);
1809 
1810   void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
1811                         llvm::Value *Ptr);
1812 
1813   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
1814   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
1815 
1816   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
1817                       QualType DeleteTy);
1818 
1819   llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E);
1820   llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE);
1821 
1822   void MaybeEmitStdInitializerListCleanup(llvm::Value *loc, const Expr *init);
1823   void EmitStdInitializerListCleanup(llvm::Value *loc,
1824                                      const InitListExpr *init);
1825 
1826   void EmitCheck(llvm::Value *, unsigned Size);
1827 
1828   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1829                                        bool isInc, bool isPre);
1830   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1831                                          bool isInc, bool isPre);
1832   //===--------------------------------------------------------------------===//
1833   //                            Declaration Emission
1834   //===--------------------------------------------------------------------===//
1835 
1836   /// EmitDecl - Emit a declaration.
1837   ///
1838   /// This function can be called with a null (unreachable) insert point.
1839   void EmitDecl(const Decl &D);
1840 
1841   /// EmitVarDecl - Emit a local variable declaration.
1842   ///
1843   /// This function can be called with a null (unreachable) insert point.
1844   void EmitVarDecl(const VarDecl &D);
1845 
1846   void EmitScalarInit(const Expr *init, const ValueDecl *D,
1847                       LValue lvalue, bool capturedByInit);
1848   void EmitScalarInit(llvm::Value *init, LValue lvalue);
1849 
1850   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
1851                              llvm::Value *Address);
1852 
1853   /// EmitAutoVarDecl - Emit an auto variable declaration.
1854   ///
1855   /// This function can be called with a null (unreachable) insert point.
1856   void EmitAutoVarDecl(const VarDecl &D);
1857 
1858   class AutoVarEmission {
1859     friend class CodeGenFunction;
1860 
1861     const VarDecl *Variable;
1862 
1863     /// The alignment of the variable.
1864     CharUnits Alignment;
1865 
1866     /// The address of the alloca.  Null if the variable was emitted
1867     /// as a global constant.
1868     llvm::Value *Address;
1869 
1870     llvm::Value *NRVOFlag;
1871 
1872     /// True if the variable is a __block variable.
1873     bool IsByRef;
1874 
1875     /// True if the variable is of aggregate type and has a constant
1876     /// initializer.
1877     bool IsConstantAggregate;
1878 
1879     struct Invalid {};
1880     AutoVarEmission(Invalid) : Variable(0) {}
1881 
1882     AutoVarEmission(const VarDecl &variable)
1883       : Variable(&variable), Address(0), NRVOFlag(0),
1884         IsByRef(false), IsConstantAggregate(false) {}
1885 
1886     bool wasEmittedAsGlobal() const { return Address == 0; }
1887 
1888   public:
1889     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
1890 
1891     /// Returns the address of the object within this declaration.
1892     /// Note that this does not chase the forwarding pointer for
1893     /// __block decls.
1894     llvm::Value *getObjectAddress(CodeGenFunction &CGF) const {
1895       if (!IsByRef) return Address;
1896 
1897       return CGF.Builder.CreateStructGEP(Address,
1898                                          CGF.getByRefValueLLVMField(Variable),
1899                                          Variable->getNameAsString());
1900     }
1901   };
1902   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
1903   void EmitAutoVarInit(const AutoVarEmission &emission);
1904   void EmitAutoVarCleanups(const AutoVarEmission &emission);
1905   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
1906                               QualType::DestructionKind dtorKind);
1907 
1908   void EmitStaticVarDecl(const VarDecl &D,
1909                          llvm::GlobalValue::LinkageTypes Linkage);
1910 
1911   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
1912   void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, unsigned ArgNo);
1913 
1914   /// protectFromPeepholes - Protect a value that we're intending to
1915   /// store to the side, but which will probably be used later, from
1916   /// aggressive peepholing optimizations that might delete it.
1917   ///
1918   /// Pass the result to unprotectFromPeepholes to declare that
1919   /// protection is no longer required.
1920   ///
1921   /// There's no particular reason why this shouldn't apply to
1922   /// l-values, it's just that no existing peepholes work on pointers.
1923   PeepholeProtection protectFromPeepholes(RValue rvalue);
1924   void unprotectFromPeepholes(PeepholeProtection protection);
1925 
1926   //===--------------------------------------------------------------------===//
1927   //                             Statement Emission
1928   //===--------------------------------------------------------------------===//
1929 
1930   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
1931   void EmitStopPoint(const Stmt *S);
1932 
1933   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
1934   /// this function even if there is no current insertion point.
1935   ///
1936   /// This function may clear the current insertion point; callers should use
1937   /// EnsureInsertPoint if they wish to subsequently generate code without first
1938   /// calling EmitBlock, EmitBranch, or EmitStmt.
1939   void EmitStmt(const Stmt *S);
1940 
1941   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
1942   /// necessarily require an insertion point or debug information; typically
1943   /// because the statement amounts to a jump or a container of other
1944   /// statements.
1945   ///
1946   /// \return True if the statement was handled.
1947   bool EmitSimpleStmt(const Stmt *S);
1948 
1949   RValue EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
1950                           AggValueSlot AVS = AggValueSlot::ignored());
1951 
1952   /// EmitLabel - Emit the block for the given label. It is legal to call this
1953   /// function even if there is no current insertion point.
1954   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
1955 
1956   void EmitLabelStmt(const LabelStmt &S);
1957   void EmitAttributedStmt(const AttributedStmt &S);
1958   void EmitGotoStmt(const GotoStmt &S);
1959   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
1960   void EmitIfStmt(const IfStmt &S);
1961   void EmitWhileStmt(const WhileStmt &S);
1962   void EmitDoStmt(const DoStmt &S);
1963   void EmitForStmt(const ForStmt &S);
1964   void EmitReturnStmt(const ReturnStmt &S);
1965   void EmitDeclStmt(const DeclStmt &S);
1966   void EmitBreakStmt(const BreakStmt &S);
1967   void EmitContinueStmt(const ContinueStmt &S);
1968   void EmitSwitchStmt(const SwitchStmt &S);
1969   void EmitDefaultStmt(const DefaultStmt &S);
1970   void EmitCaseStmt(const CaseStmt &S);
1971   void EmitCaseStmtRange(const CaseStmt &S);
1972   void EmitAsmStmt(const AsmStmt &S);
1973 
1974   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
1975   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
1976   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
1977   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
1978   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
1979 
1980   llvm::Constant *getUnwindResumeFn();
1981   llvm::Constant *getUnwindResumeOrRethrowFn();
1982   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
1983   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
1984 
1985   void EmitCXXTryStmt(const CXXTryStmt &S);
1986   void EmitCXXForRangeStmt(const CXXForRangeStmt &S);
1987 
1988   //===--------------------------------------------------------------------===//
1989   //                         LValue Expression Emission
1990   //===--------------------------------------------------------------------===//
1991 
1992   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
1993   RValue GetUndefRValue(QualType Ty);
1994 
1995   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
1996   /// and issue an ErrorUnsupported style diagnostic (using the
1997   /// provided Name).
1998   RValue EmitUnsupportedRValue(const Expr *E,
1999                                const char *Name);
2000 
2001   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
2002   /// an ErrorUnsupported style diagnostic (using the provided Name).
2003   LValue EmitUnsupportedLValue(const Expr *E,
2004                                const char *Name);
2005 
2006   /// EmitLValue - Emit code to compute a designator that specifies the location
2007   /// of the expression.
2008   ///
2009   /// This can return one of two things: a simple address or a bitfield
2010   /// reference.  In either case, the LLVM Value* in the LValue structure is
2011   /// guaranteed to be an LLVM pointer type.
2012   ///
2013   /// If this returns a bitfield reference, nothing about the pointee type of
2014   /// the LLVM value is known: For example, it may not be a pointer to an
2015   /// integer.
2016   ///
2017   /// If this returns a normal address, and if the lvalue's C type is fixed
2018   /// size, this method guarantees that the returned pointer type will point to
2019   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
2020   /// variable length type, this is not possible.
2021   ///
2022   LValue EmitLValue(const Expr *E);
2023 
2024   /// EmitCheckedLValue - Same as EmitLValue but additionally we generate
2025   /// checking code to guard against undefined behavior.  This is only
2026   /// suitable when we know that the address will be used to access the
2027   /// object.
2028   LValue EmitCheckedLValue(const Expr *E);
2029 
2030   /// EmitToMemory - Change a scalar value from its value
2031   /// representation to its in-memory representation.
2032   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
2033 
2034   /// EmitFromMemory - Change a scalar value from its memory
2035   /// representation to its value representation.
2036   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
2037 
2038   /// EmitLoadOfScalar - Load a scalar value from an address, taking
2039   /// care to appropriately convert from the memory representation to
2040   /// the LLVM value representation.
2041   llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
2042                                 unsigned Alignment, QualType Ty,
2043                                 llvm::MDNode *TBAAInfo = 0);
2044 
2045   /// EmitLoadOfScalar - Load a scalar value from an address, taking
2046   /// care to appropriately convert from the memory representation to
2047   /// the LLVM value representation.  The l-value must be a simple
2048   /// l-value.
2049   llvm::Value *EmitLoadOfScalar(LValue lvalue);
2050 
2051   /// EmitStoreOfScalar - Store a scalar value to an address, taking
2052   /// care to appropriately convert from the memory representation to
2053   /// the LLVM value representation.
2054   void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
2055                          bool Volatile, unsigned Alignment, QualType Ty,
2056                          llvm::MDNode *TBAAInfo = 0, bool isInit=false);
2057 
2058   /// EmitStoreOfScalar - Store a scalar value to an address, taking
2059   /// care to appropriately convert from the memory representation to
2060   /// the LLVM value representation.  The l-value must be a simple
2061   /// l-value.  The isInit flag indicates whether this is an initialization.
2062   /// If so, atomic qualifiers are ignored and the store is always non-atomic.
2063   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
2064 
2065   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
2066   /// this method emits the address of the lvalue, then loads the result as an
2067   /// rvalue, returning the rvalue.
2068   RValue EmitLoadOfLValue(LValue V);
2069   RValue EmitLoadOfExtVectorElementLValue(LValue V);
2070   RValue EmitLoadOfBitfieldLValue(LValue LV);
2071 
2072   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
2073   /// lvalue, where both are guaranteed to the have the same type, and that type
2074   /// is 'Ty'.
2075   void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit=false);
2076   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
2077 
2078   /// EmitStoreThroughLValue - Store Src into Dst with same constraints as
2079   /// EmitStoreThroughLValue.
2080   ///
2081   /// \param Result [out] - If non-null, this will be set to a Value* for the
2082   /// bit-field contents after the store, appropriate for use as the result of
2083   /// an assignment to the bit-field.
2084   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2085                                       llvm::Value **Result=0);
2086 
2087   /// Emit an l-value for an assignment (simple or compound) of complex type.
2088   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
2089   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
2090 
2091   // Note: only available for agg return types
2092   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
2093   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
2094   // Note: only available for agg return types
2095   LValue EmitCallExprLValue(const CallExpr *E);
2096   // Note: only available for agg return types
2097   LValue EmitVAArgExprLValue(const VAArgExpr *E);
2098   LValue EmitDeclRefLValue(const DeclRefExpr *E);
2099   LValue EmitStringLiteralLValue(const StringLiteral *E);
2100   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
2101   LValue EmitPredefinedLValue(const PredefinedExpr *E);
2102   LValue EmitUnaryOpLValue(const UnaryOperator *E);
2103   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E);
2104   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
2105   LValue EmitMemberExpr(const MemberExpr *E);
2106   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
2107   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
2108   LValue EmitInitListLValue(const InitListExpr *E);
2109   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
2110   LValue EmitCastLValue(const CastExpr *E);
2111   LValue EmitNullInitializationLValue(const CXXScalarValueInitExpr *E);
2112   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
2113   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
2114 
2115   RValue EmitRValueForField(LValue LV, const FieldDecl *FD);
2116 
2117   class ConstantEmission {
2118     llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
2119     ConstantEmission(llvm::Constant *C, bool isReference)
2120       : ValueAndIsReference(C, isReference) {}
2121   public:
2122     ConstantEmission() {}
2123     static ConstantEmission forReference(llvm::Constant *C) {
2124       return ConstantEmission(C, true);
2125     }
2126     static ConstantEmission forValue(llvm::Constant *C) {
2127       return ConstantEmission(C, false);
2128     }
2129 
2130     operator bool() const { return ValueAndIsReference.getOpaqueValue() != 0; }
2131 
2132     bool isReference() const { return ValueAndIsReference.getInt(); }
2133     LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
2134       assert(isReference());
2135       return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
2136                                             refExpr->getType());
2137     }
2138 
2139     llvm::Constant *getValue() const {
2140       assert(!isReference());
2141       return ValueAndIsReference.getPointer();
2142     }
2143   };
2144 
2145   ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
2146 
2147   RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
2148                                 AggValueSlot slot = AggValueSlot::ignored());
2149   LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
2150 
2151   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
2152                               const ObjCIvarDecl *Ivar);
2153   LValue EmitLValueForAnonRecordField(llvm::Value* Base,
2154                                       const IndirectFieldDecl* Field,
2155                                       unsigned CVRQualifiers);
2156   LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
2157 
2158   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
2159   /// if the Field is a reference, this will return the address of the reference
2160   /// and not the address of the value stored in the reference.
2161   LValue EmitLValueForFieldInitialization(LValue Base,
2162                                           const FieldDecl* Field);
2163 
2164   LValue EmitLValueForIvar(QualType ObjectTy,
2165                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
2166                            unsigned CVRQualifiers);
2167 
2168   LValue EmitLValueForBitfield(llvm::Value* Base, const FieldDecl* Field,
2169                                 unsigned CVRQualifiers);
2170 
2171   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
2172   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
2173   LValue EmitLambdaLValue(const LambdaExpr *E);
2174   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
2175 
2176   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
2177   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
2178   LValue EmitStmtExprLValue(const StmtExpr *E);
2179   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
2180   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
2181   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init);
2182 
2183   //===--------------------------------------------------------------------===//
2184   //                         Scalar Expression Emission
2185   //===--------------------------------------------------------------------===//
2186 
2187   /// EmitCall - Generate a call of the given function, expecting the given
2188   /// result type, and using the given argument list which specifies both the
2189   /// LLVM arguments and the types they were derived from.
2190   ///
2191   /// \param TargetDecl - If given, the decl of the function in a direct call;
2192   /// used to set attributes on the call (noreturn, etc.).
2193   RValue EmitCall(const CGFunctionInfo &FnInfo,
2194                   llvm::Value *Callee,
2195                   ReturnValueSlot ReturnValue,
2196                   const CallArgList &Args,
2197                   const Decl *TargetDecl = 0,
2198                   llvm::Instruction **callOrInvoke = 0);
2199 
2200   RValue EmitCall(QualType FnType, llvm::Value *Callee,
2201                   ReturnValueSlot ReturnValue,
2202                   CallExpr::const_arg_iterator ArgBeg,
2203                   CallExpr::const_arg_iterator ArgEnd,
2204                   const Decl *TargetDecl = 0);
2205   RValue EmitCallExpr(const CallExpr *E,
2206                       ReturnValueSlot ReturnValue = ReturnValueSlot());
2207 
2208   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2209                                   ArrayRef<llvm::Value *> Args,
2210                                   const Twine &Name = "");
2211   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2212                                   const Twine &Name = "");
2213 
2214   llvm::Value *BuildVirtualCall(const CXXMethodDecl *MD, llvm::Value *This,
2215                                 llvm::Type *Ty);
2216   llvm::Value *BuildVirtualCall(const CXXDestructorDecl *DD, CXXDtorType Type,
2217                                 llvm::Value *This, llvm::Type *Ty);
2218   llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
2219                                          NestedNameSpecifier *Qual,
2220                                          llvm::Type *Ty);
2221 
2222   llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
2223                                                    CXXDtorType Type,
2224                                                    const CXXRecordDecl *RD);
2225 
2226   RValue EmitCXXMemberCall(const CXXMethodDecl *MD,
2227                            llvm::Value *Callee,
2228                            ReturnValueSlot ReturnValue,
2229                            llvm::Value *This,
2230                            llvm::Value *VTT,
2231                            CallExpr::const_arg_iterator ArgBeg,
2232                            CallExpr::const_arg_iterator ArgEnd);
2233   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
2234                                ReturnValueSlot ReturnValue);
2235   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
2236                                       ReturnValueSlot ReturnValue);
2237 
2238   llvm::Value *EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E,
2239                                            const CXXMethodDecl *MD,
2240                                            llvm::Value *This);
2241   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
2242                                        const CXXMethodDecl *MD,
2243                                        ReturnValueSlot ReturnValue);
2244 
2245   RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
2246                                 ReturnValueSlot ReturnValue);
2247 
2248 
2249   RValue EmitBuiltinExpr(const FunctionDecl *FD,
2250                          unsigned BuiltinID, const CallExpr *E);
2251 
2252   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
2253 
2254   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
2255   /// is unhandled by the current target.
2256   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2257 
2258   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2259   llvm::Value *EmitNeonCall(llvm::Function *F,
2260                             SmallVectorImpl<llvm::Value*> &O,
2261                             const char *name,
2262                             unsigned shift = 0, bool rightshift = false);
2263   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
2264   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
2265                                    bool negateForRightShift);
2266 
2267   llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
2268   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2269   llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2270   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2271 
2272   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
2273   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
2274   llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
2275   llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
2276   llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
2277   llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
2278                                 const ObjCMethodDecl *MethodWithObjects);
2279   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
2280   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
2281                              ReturnValueSlot Return = ReturnValueSlot());
2282 
2283   /// Retrieves the default cleanup kind for an ARC cleanup.
2284   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
2285   CleanupKind getARCCleanupKind() {
2286     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
2287              ? NormalAndEHCleanup : NormalCleanup;
2288   }
2289 
2290   // ARC primitives.
2291   void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr);
2292   void EmitARCDestroyWeak(llvm::Value *addr);
2293   llvm::Value *EmitARCLoadWeak(llvm::Value *addr);
2294   llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr);
2295   llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr,
2296                                 bool ignored);
2297   void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src);
2298   void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src);
2299   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
2300   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
2301   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
2302                                   bool ignored);
2303   llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value,
2304                                       bool ignored);
2305   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
2306   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
2307   llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
2308   void EmitARCRelease(llvm::Value *value, bool precise);
2309   llvm::Value *EmitARCAutorelease(llvm::Value *value);
2310   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
2311   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
2312   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
2313 
2314   std::pair<LValue,llvm::Value*>
2315   EmitARCStoreAutoreleasing(const BinaryOperator *e);
2316   std::pair<LValue,llvm::Value*>
2317   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
2318 
2319   llvm::Value *EmitObjCThrowOperand(const Expr *expr);
2320 
2321   llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr);
2322   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
2323   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
2324 
2325   llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
2326   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
2327   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
2328 
2329   static Destroyer destroyARCStrongImprecise;
2330   static Destroyer destroyARCStrongPrecise;
2331   static Destroyer destroyARCWeak;
2332 
2333   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
2334   llvm::Value *EmitObjCAutoreleasePoolPush();
2335   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
2336   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
2337   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
2338 
2339   /// EmitReferenceBindingToExpr - Emits a reference binding to the passed in
2340   /// expression. Will emit a temporary variable if E is not an LValue.
2341   RValue EmitReferenceBindingToExpr(const Expr* E,
2342                                     const NamedDecl *InitializedDecl);
2343 
2344   //===--------------------------------------------------------------------===//
2345   //                           Expression Emission
2346   //===--------------------------------------------------------------------===//
2347 
2348   // Expressions are broken into three classes: scalar, complex, aggregate.
2349 
2350   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
2351   /// scalar type, returning the result.
2352   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
2353 
2354   /// EmitScalarConversion - Emit a conversion from the specified type to the
2355   /// specified destination type, both of which are LLVM scalar types.
2356   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
2357                                     QualType DstTy);
2358 
2359   /// EmitComplexToScalarConversion - Emit a conversion from the specified
2360   /// complex type to the specified destination type, where the destination type
2361   /// is an LLVM scalar type.
2362   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
2363                                              QualType DstTy);
2364 
2365 
2366   /// EmitAggExpr - Emit the computation of the specified expression
2367   /// of aggregate type.  The result is computed into the given slot,
2368   /// which may be null to indicate that the value is not needed.
2369   void EmitAggExpr(const Expr *E, AggValueSlot AS, bool IgnoreResult = false);
2370 
2371   /// EmitAggExprToLValue - Emit the computation of the specified expression of
2372   /// aggregate type into a temporary LValue.
2373   LValue EmitAggExprToLValue(const Expr *E);
2374 
2375   /// EmitGCMemmoveCollectable - Emit special API for structs with object
2376   /// pointers.
2377   void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr,
2378                                 QualType Ty);
2379 
2380   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
2381   /// make sure it survives garbage collection until this point.
2382   void EmitExtendGCLifetime(llvm::Value *object);
2383 
2384   /// EmitComplexExpr - Emit the computation of the specified expression of
2385   /// complex type, returning the result.
2386   ComplexPairTy EmitComplexExpr(const Expr *E,
2387                                 bool IgnoreReal = false,
2388                                 bool IgnoreImag = false);
2389 
2390   /// EmitComplexExprIntoAddr - Emit the computation of the specified expression
2391   /// of complex type, storing into the specified Value*.
2392   void EmitComplexExprIntoAddr(const Expr *E, llvm::Value *DestAddr,
2393                                bool DestIsVolatile);
2394 
2395   /// StoreComplexToAddr - Store a complex number into the specified address.
2396   void StoreComplexToAddr(ComplexPairTy V, llvm::Value *DestAddr,
2397                           bool DestIsVolatile);
2398   /// LoadComplexFromAddr - Load a complex number from the specified address.
2399   ComplexPairTy LoadComplexFromAddr(llvm::Value *SrcAddr, bool SrcIsVolatile);
2400 
2401   /// CreateStaticVarDecl - Create a zero-initialized LLVM global for
2402   /// a static local variable.
2403   llvm::GlobalVariable *CreateStaticVarDecl(const VarDecl &D,
2404                                             const char *Separator,
2405                                        llvm::GlobalValue::LinkageTypes Linkage);
2406 
2407   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
2408   /// global variable that has already been created for it.  If the initializer
2409   /// has a different type than GV does, this may free GV and return a different
2410   /// one.  Otherwise it just returns GV.
2411   llvm::GlobalVariable *
2412   AddInitializerToStaticVarDecl(const VarDecl &D,
2413                                 llvm::GlobalVariable *GV);
2414 
2415 
2416   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
2417   /// variable with global storage.
2418   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
2419                                 bool PerformInit);
2420 
2421   /// Call atexit() with a function that passes the given argument to
2422   /// the given function.
2423   void registerGlobalDtorWithAtExit(llvm::Constant *fn, llvm::Constant *addr);
2424 
2425   /// Emit code in this function to perform a guarded variable
2426   /// initialization.  Guarded initializations are used when it's not
2427   /// possible to prove that an initialization will be done exactly
2428   /// once, e.g. with a static local variable or a static data member
2429   /// of a class template.
2430   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
2431                           bool PerformInit);
2432 
2433   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
2434   /// variables.
2435   void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
2436                                  llvm::Constant **Decls,
2437                                  unsigned NumDecls);
2438 
2439   /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
2440   /// variables.
2441   void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn,
2442                                   const std::vector<std::pair<llvm::WeakVH,
2443                                   llvm::Constant*> > &DtorsAndObjects);
2444 
2445   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
2446                                         const VarDecl *D,
2447                                         llvm::GlobalVariable *Addr,
2448                                         bool PerformInit);
2449 
2450   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
2451 
2452   void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src,
2453                                   const Expr *Exp);
2454 
2455   void enterFullExpression(const ExprWithCleanups *E) {
2456     if (E->getNumObjects() == 0) return;
2457     enterNonTrivialFullExpression(E);
2458   }
2459   void enterNonTrivialFullExpression(const ExprWithCleanups *E);
2460 
2461   void EmitCXXThrowExpr(const CXXThrowExpr *E);
2462 
2463   void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest);
2464 
2465   RValue EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest = 0);
2466 
2467   //===--------------------------------------------------------------------===//
2468   //                         Annotations Emission
2469   //===--------------------------------------------------------------------===//
2470 
2471   /// Emit an annotation call (intrinsic or builtin).
2472   llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
2473                                   llvm::Value *AnnotatedVal,
2474                                   llvm::StringRef AnnotationStr,
2475                                   SourceLocation Location);
2476 
2477   /// Emit local annotations for the local variable V, declared by D.
2478   void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
2479 
2480   /// Emit field annotations for the given field & value. Returns the
2481   /// annotation result.
2482   llvm::Value *EmitFieldAnnotations(const FieldDecl *D, llvm::Value *V);
2483 
2484   //===--------------------------------------------------------------------===//
2485   //                             Internal Helpers
2486   //===--------------------------------------------------------------------===//
2487 
2488   /// ContainsLabel - Return true if the statement contains a label in it.  If
2489   /// this statement is not executed normally, it not containing a label means
2490   /// that we can just remove the code.
2491   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
2492 
2493   /// containsBreak - Return true if the statement contains a break out of it.
2494   /// If the statement (recursively) contains a switch or loop with a break
2495   /// inside of it, this is fine.
2496   static bool containsBreak(const Stmt *S);
2497 
2498   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2499   /// to a constant, or if it does but contains a label, return false.  If it
2500   /// constant folds return true and set the boolean result in Result.
2501   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result);
2502 
2503   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2504   /// to a constant, or if it does but contains a label, return false.  If it
2505   /// constant folds return true and set the folded value.
2506   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APInt &Result);
2507 
2508   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
2509   /// if statement) to the specified blocks.  Based on the condition, this might
2510   /// try to simplify the codegen of the conditional based on the branch.
2511   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
2512                             llvm::BasicBlock *FalseBlock);
2513 
2514   /// getTrapBB - Create a basic block that will call the trap intrinsic.  We'll
2515   /// generate a branch around the created basic block as necessary.
2516   llvm::BasicBlock *getTrapBB();
2517 
2518   /// EmitCallArg - Emit a single call argument.
2519   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
2520 
2521   /// EmitDelegateCallArg - We are performing a delegate call; that
2522   /// is, the current function is delegating to another one.  Produce
2523   /// a r-value suitable for passing the given parameter.
2524   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param);
2525 
2526   /// SetFPAccuracy - Set the minimum required accuracy of the given floating
2527   /// point operation, expressed as the maximum relative error in ulp.
2528   void SetFPAccuracy(llvm::Value *Val, float Accuracy);
2529 
2530 private:
2531   llvm::MDNode *getRangeForLoadFromType(QualType Ty);
2532   void EmitReturnOfRValue(RValue RV, QualType Ty);
2533 
2534   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
2535   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
2536   ///
2537   /// \param AI - The first function argument of the expansion.
2538   /// \return The argument following the last expanded function
2539   /// argument.
2540   llvm::Function::arg_iterator
2541   ExpandTypeFromArgs(QualType Ty, LValue Dst,
2542                      llvm::Function::arg_iterator AI);
2543 
2544   /// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg
2545   /// Ty, into individual arguments on the provided vector \arg Args. See
2546   /// ABIArgInfo::Expand.
2547   void ExpandTypeToArgs(QualType Ty, RValue Src,
2548                         SmallVector<llvm::Value*, 16> &Args,
2549                         llvm::FunctionType *IRFuncTy);
2550 
2551   llvm::Value* EmitAsmInput(const AsmStmt &S,
2552                             const TargetInfo::ConstraintInfo &Info,
2553                             const Expr *InputExpr, std::string &ConstraintStr);
2554 
2555   llvm::Value* EmitAsmInputLValue(const AsmStmt &S,
2556                                   const TargetInfo::ConstraintInfo &Info,
2557                                   LValue InputValue, QualType InputType,
2558                                   std::string &ConstraintStr);
2559 
2560   /// EmitCallArgs - Emit call arguments for a function.
2561   /// The CallArgTypeInfo parameter is used for iterating over the known
2562   /// argument types of the function being called.
2563   template<typename T>
2564   void EmitCallArgs(CallArgList& Args, const T* CallArgTypeInfo,
2565                     CallExpr::const_arg_iterator ArgBeg,
2566                     CallExpr::const_arg_iterator ArgEnd) {
2567       CallExpr::const_arg_iterator Arg = ArgBeg;
2568 
2569     // First, use the argument types that the type info knows about
2570     if (CallArgTypeInfo) {
2571       for (typename T::arg_type_iterator I = CallArgTypeInfo->arg_type_begin(),
2572            E = CallArgTypeInfo->arg_type_end(); I != E; ++I, ++Arg) {
2573         assert(Arg != ArgEnd && "Running over edge of argument list!");
2574         QualType ArgType = *I;
2575 #ifndef NDEBUG
2576         QualType ActualArgType = Arg->getType();
2577         if (ArgType->isPointerType() && ActualArgType->isPointerType()) {
2578           QualType ActualBaseType =
2579             ActualArgType->getAs<PointerType>()->getPointeeType();
2580           QualType ArgBaseType =
2581             ArgType->getAs<PointerType>()->getPointeeType();
2582           if (ArgBaseType->isVariableArrayType()) {
2583             if (const VariableArrayType *VAT =
2584                 getContext().getAsVariableArrayType(ActualBaseType)) {
2585               if (!VAT->getSizeExpr())
2586                 ActualArgType = ArgType;
2587             }
2588           }
2589         }
2590         assert(getContext().getCanonicalType(ArgType.getNonReferenceType()).
2591                getTypePtr() ==
2592                getContext().getCanonicalType(ActualArgType).getTypePtr() &&
2593                "type mismatch in call argument!");
2594 #endif
2595         EmitCallArg(Args, *Arg, ArgType);
2596       }
2597 
2598       // Either we've emitted all the call args, or we have a call to a
2599       // variadic function.
2600       assert((Arg == ArgEnd || CallArgTypeInfo->isVariadic()) &&
2601              "Extra arguments in non-variadic function!");
2602 
2603     }
2604 
2605     // If we still have any arguments, emit them using the type of the argument.
2606     for (; Arg != ArgEnd; ++Arg)
2607       EmitCallArg(Args, *Arg, Arg->getType());
2608   }
2609 
2610   const TargetCodeGenInfo &getTargetHooks() const {
2611     return CGM.getTargetCodeGenInfo();
2612   }
2613 
2614   void EmitDeclMetadata();
2615 
2616   CodeGenModule::ByrefHelpers *
2617   buildByrefHelpers(llvm::StructType &byrefType,
2618                     const AutoVarEmission &emission);
2619 
2620   void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
2621 
2622   /// GetPointeeAlignment - Given an expression with a pointer type, find the
2623   /// alignment of the type referenced by the pointer.  Skip over implicit
2624   /// casts.
2625   unsigned GetPointeeAlignment(const Expr *Addr);
2626 
2627   /// GetPointeeAlignmentValue - Given an expression with a pointer type, find
2628   /// the alignment of the type referenced by the pointer.  Skip over implicit
2629   /// casts.  Return the alignment as an llvm::Value.
2630   llvm::Value *GetPointeeAlignmentValue(const Expr *Addr);
2631 };
2632 
2633 /// Helper class with most of the code for saving a value for a
2634 /// conditional expression cleanup.
2635 struct DominatingLLVMValue {
2636   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
2637 
2638   /// Answer whether the given value needs extra work to be saved.
2639   static bool needsSaving(llvm::Value *value) {
2640     // If it's not an instruction, we don't need to save.
2641     if (!isa<llvm::Instruction>(value)) return false;
2642 
2643     // If it's an instruction in the entry block, we don't need to save.
2644     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
2645     return (block != &block->getParent()->getEntryBlock());
2646   }
2647 
2648   /// Try to save the given value.
2649   static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
2650     if (!needsSaving(value)) return saved_type(value, false);
2651 
2652     // Otherwise we need an alloca.
2653     llvm::Value *alloca =
2654       CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save");
2655     CGF.Builder.CreateStore(value, alloca);
2656 
2657     return saved_type(alloca, true);
2658   }
2659 
2660   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
2661     if (!value.getInt()) return value.getPointer();
2662     return CGF.Builder.CreateLoad(value.getPointer());
2663   }
2664 };
2665 
2666 /// A partial specialization of DominatingValue for llvm::Values that
2667 /// might be llvm::Instructions.
2668 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
2669   typedef T *type;
2670   static type restore(CodeGenFunction &CGF, saved_type value) {
2671     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
2672   }
2673 };
2674 
2675 /// A specialization of DominatingValue for RValue.
2676 template <> struct DominatingValue<RValue> {
2677   typedef RValue type;
2678   class saved_type {
2679     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
2680                 AggregateAddress, ComplexAddress };
2681 
2682     llvm::Value *Value;
2683     Kind K;
2684     saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {}
2685 
2686   public:
2687     static bool needsSaving(RValue value);
2688     static saved_type save(CodeGenFunction &CGF, RValue value);
2689     RValue restore(CodeGenFunction &CGF);
2690 
2691     // implementations in CGExprCXX.cpp
2692   };
2693 
2694   static bool needsSaving(type value) {
2695     return saved_type::needsSaving(value);
2696   }
2697   static saved_type save(CodeGenFunction &CGF, type value) {
2698     return saved_type::save(CGF, value);
2699   }
2700   static type restore(CodeGenFunction &CGF, saved_type value) {
2701     return value.restore(CGF);
2702   }
2703 };
2704 
2705 }  // end namespace CodeGen
2706 }  // end namespace clang
2707 
2708 #endif
2709